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The big data era is upon us: data are being generated, analyzed, and used at an unprecedented scale, 
and data-driven decision making is sweeping through all aspects of society. Since the value of data 
explodes when it can be linked and fused with other data, addressing the big data integration (BDI) 
challenge is critical to realizing the promise of big data.

BDI differs from traditional data integration along the dimensions of volume, velocity, variety, and 
veracity. First, not only can data sources contain a huge volume of data, but also the number of data 
sources is now in the millions. Second, because of the rate at which newly collected data are made 
available, many of the data sources are very dynamic, and the number of data sources is also rapidly 
exploding. Third, data sources are extremely heterogeneous in their structure and content, exhibiting 
considerable variety even for substantially similar entities. Fourth, the data sources are of widely dif-
fering qualities, with significant differences in the coverage, accuracy and timeliness of data provided.

This book explores the progress that has been made by the data integration community on the topics 
of schema alignment, record linkage and data fusion in addressing these novel challenges faced by 
big data integration. Each of these topics is covered in a systematic way: first starting with a quick 
tour of the topic in the context of traditional data integration, followed by a detailed, example-driven 
exposition of recent innovative techniques that have been proposed to address the BDI challenges of 
volume, velocity, variety, and veracity. Finally, it presents emerging topics and opportunities that are 
specific to BDI, identifying promising directions for the data integration community.
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ABSTRACT
The big data era is upon us: data are being generated, analyzed, and used at an unprecedented scale,
and data-driven decision making is sweeping through all aspects of society. Since the value of data
explodes when it can be linked and fused with other data, addressing the big data integration (BDI)
challenge is critical to realizing the promise of big data.

BDI differs from traditional data integration along the dimensions of volume, velocity, variety,
and veracity. First, not only can data sources contain a huge volume of data, but also the number of
data sources is now in the millions. Second, because of the rate at which newly collected data are
made available, many of the data sources are very dynamic, and the number of data sources is also
rapidly exploding. Third, data sources are extremely heterogeneous in their structure and content,
exhibiting considerable variety even for substantially similar entities. Fourth, the data sources are
of widely differing qualities, with significant differences in the coverage, accuracy and timeliness of
data provided.

This book explores the progress that has been made by the data integration community on the
topics of schema alignment, record linkage and data fusion in addressing these novel challenges faced
by big data integration. Each of these topics is covered in a systematic way: first starting with a quick
tour of the topic in the context of traditional data integration, followed by a detailed, example-driven
exposition of recent innovative techniques that have been proposed to address the BDI challenges
of volume, velocity, variety, and veracity. Finally, it presents emerging topics and opportunities that
are specific to BDI, identifying promising directions for the data integration community.
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big data integration, data fusion, record linkage, schema alignment, variety, velocity, veracity, volume
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Preface

Big data integration is the confluence of two significant bodies of work: one quite old—data
integration—and the other relatively new—big data.

As long as there have been data sets that people have sought to link and fuse to enhance value,
data integration has been around. Even before computer scientists started investigating this area,
statisticians had already made much progress, given their pressing need to correlate and analyze
census data sets collected over time. Data integration is challenging for many reasons, not the least
being our ability to represent and misrepresent information about real-world entities in very diverse
ways. To effectively address these challenges, considerable progress has been made over the last few
decades by the data integration community on the foundational topics of schema alignment, record
linkage, and data fusion, especially for well-structured data.

Recent years have seen a dramatic growth in our ability to capture each event and every
interaction in the world as digital data. Concomitant with this ability has been our desire to analyze
and extract value from this data, ushering in the era of big data. This era has seen an enormous
increase in the amount and heterogeneity of data, as well as in the number of data sources, many of
which are very dynamic, while being of widely differing qualities. Since the value of data explodes
when it can be linked and fused with other data, data integration is critical to realizing the promise
of big data of enabling valuable, data-driven decisions to alter all aspects of society.

Data integration for big data is what has come to be known as big data integration. This book
explores the progress that has been made by the data integration community in addressing the novel
challenges faced by big data integration. It is intended as a starting point for researchers, practitioners
and students who would like to learn more about big data integration. We have attempted to cover
a diversity of topics and research efforts in this area, fully well realizing that it is impossible to be
comprehensive in such a dynamic area. We hope that many of our readers will be inspired by this
book to make their own contributions to this important area, to help further the promise of big data.
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C H A P T E R 1

Motivation: Challenges and
Opportunities for BDI

The big data era is the inevitable consequence of datafication: our ability to transform each event and
every interaction in the world into digital data, and our concomitant desire to analyze and extract
value from this data. Big data comes with a lot of promise, enabling us to make valuable, data-driven
decisions to alter all aspects of society.

Big data is being generated and used today in a variety of domains, including data-driven
science, telecommunications, social media, large-scale e-commerce, medical records and e-health,
and so on. Since the value of data explodes when it can be linked and fused with other data, addressing
the big data integration (BDI) challenge is critical to realizing the promise of big data in these and
other domains.

As one prominent example, recent efforts in mining the web and extracting entities, rela-
tionships, and ontologies to build general purpose knowledge bases such as Freebase [Bollacker
et al. 2008], the Google knowledge graph [Dong et al. 2014a], ProBase [Wu et al. 2012], and
Yago [Weikum and Theobald 2010] show promise of using integrated big data to improve applica-
tions such as web search and web-scale data analysis.

As a second important example, the flood of geo-referenced data available in recent years, such
as geo-tagged web objects (e.g., photos, videos, tweets), online check-ins (e.g., Foursquare), WiFi
logs, GPS traces of vehicles (e.g., taxi cabs), and roadside sensor networks has given momentum for
using such integrated big data to characterize large-scale human mobility [Becker et al. 2013], and
influence areas like public health, traffic engineering, and urban planning.

In this chapter, we first describe the problem of data integration and the components of
traditional data integration in Section 1.1. We then discuss the specific challenges that arise in BDI
in Section 1.2, where we first identify the dimensions along which BDI differs from traditional data
integration, then present a number of recent case studies that empirically study the nature of data
sources in BDI. BDI also offers opportunities that do not exist in traditional data integration, and
we highlight some of these opportunities in Section 1.3. Finally, we present an outline of the rest of
the book in Section 1.4.
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1.1 TRADITIONAL DATA INTEGRATION
Data integration has the goal of providing unified access to data residing in multiple, autonomous
data sources. While this goal is easy to state, achieving this goal has proven notoriously hard,
even for a small number of sources that provide structured data—the scenario of traditional data
integration [Doan et al. 2012].

To understand some of the challenging issues in data integration, consider an illustrative
example from the Flights domain, for the common tasks of tracking flight departures and arrivals,
examining flight schedules, and booking flights.

1.1.1 THE FLIGHTS EXAMPLE: DATA SOURCES
We have a few different kinds of sources, including two airline sources Airline1 and Airline2 (e.g.,
United Airlines, American Airlines, Delta, etc.), each providing flight data about a different air-
line, an airport source Airport3, providing information about flights departing from and arriving at a
particular airport (e.g., EWR, SFO), a comparison shopping travel source Airfare4 (e.g., Kayak, Or-
bitz, etc.), providing fares in different fare classes to compare alternate flights, and an informational
source Airinfo5 (e.g., a Wikipedia table), providing data about airports and airlines.

Sample data for the various source tables is shown in Tables 1.1–1.8, using short attribute
names for brevity. The mapping between the short and full attribute names is provided in Table 1.9
for ease of understanding. Records in different tables that are highlighted using the same color are
related to each other, and the various tables should be understood as follows.

Source Airline1

Source Airline1 provides the tables Airline1.Schedule(Flight Id, Flight Number, Start Date, End Date, De-

parture Time, Departure Airport, Arrival Time, Arrival Airport) and Airline1.Flight(Flight Id, Departure Date,
Departure Time, Departure Gate, Arrival Date, Arrival Time, Arrival Gate, Plane Id). The underlined at-
tributes form a key for the corresponding table, and Flight Id is used as a join key between these two
tables.

Table Airline1.Schedule shows flight schedules in Table 1.1. For example, record r11 in table
Airline1.Schedule states that Airline1’s flight 49 is scheduled to fly regularly from EWR to SFO,
departing at 18:05, and arriving at 21:10, between 2013-10-01 and 2014-03-31. Record r12 in
the same table shows that the same flight 49 has different scheduled departure and arrival times
between 2014-04-01 and 2014-09-30. Records r13 and r14 in the same table show the schedules for
two different segments of the same flight 55, the first from ORD to BOS, and the second from BOS
to EWR, between 2013-10-01 and 2014-09-30.

Table Airline1.Flight shows the actual departure and arrival information in Table 1.2, for the
flights whose schedules are shown in Airline1.Schedule. For example, record r21 in table Airline1.Flight
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TABLE 1.1: Sample data for Airline1.Schedule

FI FN SD ED DT DA AT AA

r11 123 49 2013-10-01 2014-03-31 18:05 EWR 21:10 SFO
r12 234 49 2014-04-01 2014-09-30 18:20 EWR 21:25 SFO
r13 345 55 2013-10-01 2014-09-30 18:30 ORD 21:30 BOS
r14 346 55 2013-10-01 2014-09-30 22:30 BOS 23:30 EWR

TABLE 1.2: Sample data for Airline1.Flight

FI DD DT DG AD AT AG PI

r21 123 2013-12-21 18:45 C98 2013-12-21 21:30 81 4013
r22 123 2013-12-28 21:30 C101 2013-12-29 00:30 81 3008
r23 345 2013-12-29 18:30 B6 2013-12-29 21:45 C18 4013
r24 346 2013-12-29 22:35 C18 2013-12-29 23:35 C101 4013

records information about a specific flight, corresponding to the regularly scheduled flight r11 (the
Flight Id 123 specifies the join key), using a plane with id 4013, actually departing on 2013-12-21 at
18:45 (40 minutes later than the scheduled departure time of 18:05) from gate C98, and actually
arriving on 2013-12-21 at 21:30 (20 minutes later than the scheduled arrival time of 21:10) at gate
81. Both r11 and r21 use yellow highlighting to visually depict their relationship. Record r22 in the
same table records information about a flight on a different date, also corresponding to the regularly
scheduled flight r11, with a considerably longer delay in departure and arrival times. Records r23 and
r24 record information about flights on 2013-12-29, corresponding to regularly scheduled flights
r13 and r14, respectively.

Source Airline2

Source Airline2 provides similar data to source Airline1, but using the table Airline2.Flight(Flight Number,
Departure Airport, Scheduled Departure Date, Scheduled Departure Time, Actual Departure Time, Arrival

Airport, Scheduled Arrival Date, Scheduled Arrival Time, Actual Arrival Time).
Each record in table Airline2.Flight, shown in Table 1.3, contains both the schedule and the

actual flight details. For example, record r31 records information about Airline2’s flight 53, departing
from SFO, scheduled to depart on 2013-12-21 at 15:30, with a 30 minute delay in the actual
departure time, arriving at EWR, scheduled to arrive on 2013-12-21 at 23:35, with a 40 minute
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TABLE 1.3: Sample data for Airline2.Flight

FN DA SDD SDT ADT AA SAD SAT AAT

r31 53 SFO 2013-12-21 15:30 16:00 EWR 2013-12-21 23:35 00:15 (+1d)
r32 53 SFO 2013-12-22 15:30 16:15 EWR 2013-12-22 23:35 00:30

r33 53 SFO 2014-06-28 16:00 16:05 EWR 2014-06-29 00:05 23:57 (-1d)
r34 53 SFO 2014-07-06 16:00 16:00 EWR 2014-07-07 00:05 00:09
r35 49 SFO 2013-12-21 12:00 12:35 EWR 2013-12-21 20:05 20:45
r36 77 LAX 2013-12-22 09:15 09:15 SFO 2013-12-22 11:00 10:59

TABLE 1.4: Sample data for Airport3.Departures

AL FN S A GT TT T G R

r41 A1 49 2013-12-21 2013-12-21 18:45 18:53 C 98 2
r42 A1 49 2013-12-28 2013-12-28 21:29 21:38 C 101 2

delay in the actual arrival time; its arrival on 2013-12-22 (the day after its scheduled arrival) is
indicated by the (+1d) associated with the actual arrival time. Note that this table contains a record
r35 for Airline2’s flight 49, which is different from Airline1’s flight 49, illustrating that different airlines
can use the same flight number for their respective flights.

Unlike source Airline1, source Airline2 does not publish the departure gate, arrival gate, and the
plane identifier used for the specific flight, illustrating the diversity between the schemas used by
these sources.

Source Airport3

Source Airport3 provides tables Airport3.Departures(Air Line, Flight Number, Scheduled, Actual, Gate Time,
Takeoff Time, Terminal, Gate, Runway) and Airport3.Arrivals(Air Line, Flight Number, Scheduled, Actual, Gate

Time, Landing Time, Terminal, Gate, Runway).
Table Airport3.Departures, shown in Table 1.4, publishes information only about flight depar-

tures from EWR. For example, record r41 in table Airport3.Departures states that Airline1’s flight 49,
scheduled to depart on 2013-12-21, departed on 2013-12-21 from terminal C and gate 98 at 18:45
and took off at 18:53 from runway 2. There is no information in this table about the arrival airport,
arrival date, and arrival time of this flight. Note that r41 corresponds to records r11 and r21, depicted
by the consistent use of the yellow highlight.
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TABLE 1.5: Sample data for Airport3.Arrivals

AL FN S A GT LT T G R

r51 A2 53 2013-12-21 2013-12-22 00:21 00:15 B 53 2
r52 A2 53 2013-12-22 2013-12-23 00:40 00:30 B 53 2
r53 A1 55 2013-12-29 2013-12-29 23:35 23:31 C 101 1
r54 A2 49 2013-12-21 2013-12-21 20:50 20:45 B 55 2

Table Airport3.Arrivals, shown in Table 1.5, publishes information only about flight arrivals
into EWR. For example, record r51 in table Airport3.Arrivals states that Airline2’s flight 53, scheduled
to arrive on 2013-12-21, arrived on 2013-12-22, landing on runway 2 at 00:15, reaching gate 53
of terminal B at 00:21. There is no information in this table about the departure airport, departure
date, and departure time of this flight. Note that r51 corresponds to record r31, both of which are
highlighted in lavender.

Unlike sources Airline1 and Airline2, source Airport3 distinguishes between the time at which
the flight left/reached the gate and the time at which the flight took off from/landed at the airport
runway.

Source Airfare4

Travel source Airfare4 publishes comparison shopping data for multiple airlines, including schedules
in Airfare4.Flight(Flight Id, Flight Number, Departure Airport, Departure Date, Departure Time, Arrival Airport,
Arrival Time) and fares in Airfare4.Fares(Flight Id, Fare Class, Fare). Flight Id is used as a join key between
these two tables.

For example, record r61 in Airfare4.Flight, shown in Table 1.6, states that Airline1’s flight A1-49
was scheduled to depart from Newark Liberty airport on 2013-12-21 at 18:05, and arrive at the San
Francisco airport on the same date at 21:10. Note that r61 corresponds to records r11, r21, and r41,
indicated by the yellow highlight shared by all records.

The records in table Airfare4.Fares, shown in Table 1.7, gives the fares for various fare classes
of this flight. For example, record r71 shows that fare class A of this flight has a fare of $5799.00;
the flight identifier 456 is the join key.

Source Airinfo5

Informational source Airinfo5 publishes data about airports and airline in Airinfo5.AirportCodes(Airport

Code, Airport Name) and Airinfo5.AirlineCodes(Air Line Code, Air Line Name), respectively.
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TABLE 1.6: Sample data for Airfare4.Flight

FI FN DA DD DT AA AT

r61 456 A1-49 Newark Liberty 2013-12-21 18:05 San Francisco 21:10
r62 457 A1-49 Newark Liberty 2014-04-05 18:05 San Francisco 21:10
r63 458 A1-49 Newark Liberty 2014-04-12 18:05 San Francisco 21:10
r64 460 A2-53 San Francisco 2013-12-22 15:30 Newark Liberty 23:35

r65 461 A2-53 San Francisco 2014-06-28 15:30 Newark Liberty 23:35
r66 462 A2-53 San Francisco 2014-07-06 16:00 Newark Liberty 00:05 (+1d)

TABLE 1.7: Sample data for Airfare4.Fares

FI FC F

r71 456 A $5799.00

r72 456 K $999.00
r73 456 Y $599.00

TABLE 1.8: Sample data for Airinfo5.AirportCodes, Airinfo5.AirlineCodes

Airinfo5.AirportCodes Airinfo5.AirlineCodes

AC AN ALC ALN

r81 EWR Newark Liberty, NJ, US r91 A1 Airline1
r82 SFO San Francisco, CA, US r92 A2 Airline2

For example, record r81 in Airinfo5.AirportCodes, shown in Table 1.8, states that the name of
the airport with code EWR is Newark Liberty, NJ, US. Similary, record r91 in Airinfo5.AirlineCodes,
also shown in Table 1.8, states that the name of the airline with code A1 is Airline1.

1.1.2 THE FLIGHTS EXAMPLE: DATA INTEGRATION
While each of the five sources is useful in isolation, the value of this data is considerably enhanced
when the different sources are integrated.
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TABLE 1.9: Abbreviated attribute names

Short Name Full Name Short Name Full Name

A Actual AA Arrival Airport
AAT Actual Arrival Time AC Airport Code
AD Arrival Date ADT Actual Departure Time
AG Arrival Gate AL Air Line
ALC Air Line Code ALN Air Line Name
AN Airport Name AT Arrival Time
DA Departure Airport DD Departure Date
DG Departure Gate DT Departure Time
ED End Date F Fare
FC Fare Class FI Flight Id
FN Flight Number G Gate
GT Gate Time LT Landing Time
PI Plane Id R Runway
S Scheduled SAD Scheduled Arrival Date
SAT Scheduled Arrival Time SD Start Date
SDD Scheduled Departure Date SDT Scheduled Departure Time
T Terminal TT Takeoff Time

Integrating Sources
First, each airline source (e.g., Airline1, Airline2) benefits by linking with the airport source Airport3

since the airport source provides much more detailed information about the actual flight departures
and arrivals, such as gate time, takeoff and landing times, and runways used; this can help the airlines
better understand the reasons for flight delays. Second, airport source Airport3 benefits by linking with
the airline sources (e.g., Airline1, Airline2) since the airline sources provide more detailed information
about the flight schedules and overall flight plans (especially for multi-hop flights such as Airline1’s
flight 55); this can help the airport better understand flight patterns. Third, the comparison shopping
travel source Airfare4 benefits by linking with the airline and airport sources to provide additional
information such as historical on-time departure/arrival statistics; this can be very useful to customers
as they make flight bookings. This linkage makes critical use of the informational source Airinfo5, as
we shall see later. Finally, customers benefit when the various sources are integrated since they do
not need to go to multiple sources to obtain all the information they need.
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For example, the query “for each airline flight number, compute the average delays between scheduled
and actual departure times, and between actual gate departure and takeoff times, over the past one month”
can be easily answered over the integrated database, but not using any single source.

However, integrating multiple, autonomous data sources can be quite difficult, often requiring
considerable manual effort to understand the semantics of the data in each source to resolve
ambiguities. Consider, again, our illustrative Flights example.

Semantic Ambiguity
In order to align the various source tables correctly, one needs to understand that (i) the same
conceptual information may be modeled quite differently in different sources, and (ii) different
conceptual information may be modeled similarly in different sources.

For example, source Airline1 models schedules in table Airline1.Schedule within date ranges
(specified by Start Date and End Date), using attributes Departure Time and Arrival Time for time
information. However, source Airline2 models schedules along with actual flight information in the
table Airline2.Flight, using different records for different actual flights, and differently named attributes
Scheduled Departure Date, Scheduled Departure Time, Scheduled Arrival Date, and Scheduled Arrival Time.

As another example, source Airport3 models both actual gate departure/arrival times (Gate

Time in Airport3.Departures and Airport3.Arrivals) and actual takeoff/landing times (Takeoff Time in
Airport3.Departures, Landing Time in Airport3.Arrivals). However, each of Airline1 and Airline2 models
only one kind of departure and arrival times; in particular, a careful examination of the data
shows that source Airline1 models gate times (Departure Time and Arrival Time in Airline1.Schedule and
Airline1.Flight) and Airline2 models takeoff and landing times (Scheduled Departure Time, Actual Departure

Time, Scheduled Arrival Time, Actual Arrival Time in Airline2.Flight).
To illustrate that different conceptual information may be modeled similarly, note that De-

parture Date is used by source Airline1 to model actual departure date (in Airline1.Flight), but is used to
model scheduled departure date by source Airfare4 (in Airfare4.Flight).

Instance Representation Ambiguity
In order to link the same data instance from multiple sources, one needs to take into account that
instances may be represented differently, reflecting the autonomous nature of the sources.

For example, flight numbers are represented in sources Airline1 and Airline2 using digits (e.g., 49
in r11, 53 in r31), while they are represented in source Airfare4 using alphanumerics (e.g., A1-49 in r61).
Similarly, the departure and arrival airports are represented in sources Airline1 and Airline2 using 3-
letter codes (e.g., EWR, SFO, LAX ), but as a descriptive string in Airfare4.Flight (e.g., Newark Liberty,
San Francisco). Since flights are uniquely identified by the combination of attributes (Airline, Flight

Number, Departure Airport, Departure Date), one would not be able to link the data in Airfare4.Flight
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with the corresponding data in Airline1, Airline2, and Airport3 without additional tables mapping
airline codes to airline descriptive names, and airport codes to airport descriptive names, such as
Airinfo5.AirlineCodes and Airinfo5.AirportCodes in Table 1.8. Even with such tables, one might need
approximate string matching techniques [Hadjieleftheriou and Srivastava 2011] to match Newark
Liberty in Airfare4.Flight with Newark Liberty, NJ, US in Airinfo5.AirportCodes.

Data Inconsistency
In order to fuse the data from multiple sources, one needs to resolve the instance-level ambiguities
and inconsistencies between the sources.

For example, there is an inconsistency between records r32 in Airline2.Flight and r52 in Air-

port3.Arrivals (both of which are highlighted in blue to indicate that they refer to the same flight).
Record r32 states that the Scheduled Arrival Date and Actual Arrival Time of Airline2’s flight 53 are 2013-
12-22 and 00:30, respectively, implying that the actual arrival date is the same as the scheduled
arrival date (unlike record r31, where the Actual Arrival Time included (+1d) to indicate that the actual
arrival date was the day after the scheduled arrival date). However, r52 states this flight arrived on
2013-12-23 at 00:30. This inconsistency would need to be resolved in the integrated data.

As another example, record r62 in Airfare4.Flight states that Airline1’s flight 49 on 2014-04-05 is
scheduled to depart and arrive at 18:05 and 21:10, respectively. While the departure date is consistent
with record r12 in Airline1.Schedule (both r12 and r62 are highlighted in green to indicate their
relationship), the scheduled departure and arrival times are not, possibly because r62 incorrectly used
the (out-of-date) times from r11 in Airline1.Schedule. Similary, record r65 in Airfare4.Flight states that
Airline2’s flight 53 on 2014-06-28 is scheduled to depart and arrive at 15:30 and 23:35, respectively.
While the departure date is consistent with record r33 in Airline2.Flight (both r33 and r65 are highlighted
in greenish yellow to indicate their relationship), the scheduled departure and arrival times are not,
possibly because r65 incorrectly used the out-of-date times from r32 in Airline2.Flight. Again, these
inconsistencies need to be resolved in the integrated data.

1.1.3 DATA INTEGRATION: ARCHITECTURE & THREE MAJOR STEPS
Traditional data integration addresses these challenges of semantic ambiguity, instance represen-
tation ambiguity, and data inconsistency by using a pipelined architecture, which consists of three
major steps, depicted in Figure 1.1.

Schema
Alignment

Record
linkage

Data
fusion

FIGURE 1.1: Traditional data integration: architecture.
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The first major step in traditional data integration is that of schema alignment , which addresses
the challenge of semantic ambiguity and aims to understand which attributes have the same meaning
and which ones do not. More formally, we have the following definition.

Definition 1.1 (Schema Alignment) Consider a set of source schemas in the same domain, where
different schemas may describe the domain in different ways. Schema alignment generates three
outcomes.

1. A mediated schema that provides a unified view of the disparate sources and captures the salient
aspects of the domain being considered.

2. An attribute matching that matches attributes in each source schema to the corresponding
attributes in the mediated schema.

3. A schema mapping between each source schema and the mediated schema to specify the
semantic relationships between the contents of the source and that of the mediated data.

The result schema mappings are used to reformulate a user query into a set of queries on the
underlying data sources for query answering.

This step is non-trivial for many reasons. Different sources can describe the same domain
using very different schemas, as illustrated in our Flights example. They may use different attribute
names even when they have the same meaning (e.g., Arrival Date in Airline1.Flight, Actual Arrival Date in
Airline2.Flight, and Actual in Airport3.Arrivals). Also, sources may apply different meanings for attributes
with the same name (e.g., Actual in Airport3.Departures refers to the actual departure date, while Actual

in Airport3.Arrivals refers to the actual arrival date).
The second major step in traditional data integration is that of record linkage, which addresses

the challenge of instance representation ambiguity, and aims to understand which records represent
the same entity and which ones do not. More formally, we have the following definition.

Definition 1.2 (Record Linkage) Consider a set of data sources, each providing a set of records
over a set of attributes. Record linkage computes a partitioning of the set of records, such that each
partition identifies the records that refer to a distinct entity.

Even when schema alignment has been performed, this step is still challenging for many
reasons. Different sources can describe the same entity in different ways. For example, records r11 in
Airline1.Schedule and r21 in Airline1.Flight should be linked to record r41 in Airport3.Departures; however,
r11 and r21 do not explicitly mention the name of the airline, while r41 does not explicitly mention the
departure airport, both of which are needed to uniquely identify a flight. Further, different sources
may use different ways of representing the same information (e.g., the alternate ways of representing
airports as discussed earlier). Finally, comparing every pair of records to determine whether or not
they refer to the same entity can be infeasible in the presence of billions of records.
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The third major step in traditional data integration is that of data fusion, which addresses the
challenge of data quality, and aims to understand which value to use in the integrated data when the
sources provide conflicting values. More formally, we have the following definition.

Definition 1.3 (Data Fusion) Consider a set of data items, and a set of data sources each of which
provides values for a subset of the data items. Data fusion decides the true value(s) for each data item.

Such conflicts can arise for a variety of reasons including mis-typing, incorrect calculations
(e.g., the conflict in actual arrival dates between records r32 and r52), out-of-date information (e.g.,
the conflict in scheduled departure and arrival times between records r12 and r62), and so on.

We will describe approaches used for each of these steps in subsequent chapters, and move
on to highlighting the challenges and opportunities that arise when moving from traditional data
integration to big data integration.

1.2 BDI: CHALLENGES
To appreciate the challenges that arise in big data integration, we present five recent case studies that
empirically examined various characteristics of data sources on the web that would be integrated in
BDI efforts, and the dimensions along which these characteristics are naturally classified.

When you can measure what you are speaking about, and express it in numbers, you know
something about it. —Lord Kelvin

1.2.1 THE “V” DIMENSIONS
Big data integration differs from traditional data integration along many dimensions, paralleling the
dimensions along which big data is characterized as differing from traditional databases.

Volume
In the big data era, not only can data sources contain a huge volume of data, but also the number of
data sources has grown to be in the millions; even for a single domain, the number of sources has
grown to be in the tens to hundreds of thousands.

There are many scenarios where a single data source can contain a huge volume of data, ranging
from social media and telecommunications networks to finance.

To illustrate a scenario with a large number of sources in a single domain, consider again
our Flights example. Suppose we would like to extend it to all airlines and all airports in the world
to support flexible, international travel itineraries. With hundreds of airlines worldwide, and over
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40,000 airports around the world,1 the number of data sources that would need to be integrated
would easily be in the tens of thousands.

More generally, the case studies we present in Sections 1.2.2, 1.2.3, and 1.2.5 quantify the
number of web sources with structured data, and demonstrate that these numbers are much higher
than the number of data sources that have been considered in traditional data integration.

Velocity
As a direct consequence of the rate at which data are being collected and continuously made available,
many of the data sources are quite dynamic, and the number of data sources is also rapidly exploding.

To illustrate the scenario with dynamic data sources, in our (extended) Flights example, there
are tens of thousands of data sources that provide information changing over time. Some of this
information changes at the granularity of minutes and hours, such as the estimated departure and
arrival times of flights, and the current locations of flights. Other information changes more slowly at
the granularity of months, weeks, and days, such as the changes in scheduled departure and arrival
times of flights. Providing an integrated view of such dynamically changing data across all these
sources is beyond that ability of traditional methods for data integration.

To illustrate the growth rate in the number of data sources, the case study we present in
Section 1.2.2 illustrates the explosion in the number of deep web sources within a few years.
Undoubtedly, these numbers are likely to be even higher today.

Variety
Data sources from different domains are naturally diverse since they refer to different types of entities
and relationships, which often need to be integrated to support complex applications. Further, data
sources even in the same domain are quite heterogeneous both at the schema level regarding how they
structure their data and at the instance level regarding how they describe the same real-world entity,
exhibiting considerable variety even for substantially similar entities. Finally, the domains, source
schemas, and entity representations evolve over time, adding to the diversity and heterogeneity that
need to be handled in big data integration.

Consider again our Flights example. Suppose we would like to extend it to other forms of
transportation (e.g., flights, ships, trains, buses, taxis) to support complex, international travel
itineraries. The variety of data sources (e.g., transportation companies, airports, bus terminals) that
would need to be integrated would be much higher. In addition to the number of airlines and airports

1. https://www.cia.gov/library/publications/the-world-factbook/fields/2053.html (accessed on October 1, 2014).
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worldwide, there are close to a thousand active seaports and inland ports in the world;2 there are over
a thousand operating bus companies in the world;3 and about as many operating train companies in
the world.4

The case studies we present in Sections 1.2.2, 1.2.4, and 1.2.5 quantify the considerable variety
that exist in practice in web sources.

Veracity
Data sources are of widely differing qualities, with significant differences in the coverage, accuracy,
and timeliness of data provided.

Our Flights example illustrates specific quality issues that can arise in practice. These quality
issues only get exacerbated with an increasing number and diversity of data sources, due to copying
between the sources and different types of correlations between the sources in practice.

The case studies we present in Sections 1.2.3, 1.2.4, and 1.2.6 illustrate the significant coverage
and quality issues that exist in data sources on the web, even for the same domain. This provides
some context for the observation that “one in three business leaders do not trust the information
they use to make decisions.” 5

1.2.2 CASE STUDY: QUANTITY OF DEEP WEB DATA
The deep web consists of a large number of data sources where data are stored in databases and
obtained (or surfaced) by querying web forms. He et al. [2007] and Madhavan et al. [2007]
experimentally study the volume, velocity, and domain-level variety of data sources available on the
deep web.

Main Questions
These two studies focus on two main questions related to the “V” dimensions presented in Sec-
tion 1.2.1.

. What is the scale of the deep web?
For example, how many query interfaces to databases exist on the web? How many web

databases are accessible through such query interfaces? How many web sources provide query
interfaces to databases? How have these deep web numbers changed over time?

2. http://www.ask.com/answers/99725161/how-many-sea-ports-in-world (accessed on October 1, 2014).

3. http://en.wikipedia.org/wiki/List_of_bus_operating_companies (accessed on October 1, 2014).

4. http://en.wikipedia.org/wiki/List_of_railway_companies (accessed on October 1, 2014).

5. http://www-01.ibm.com/software/data/bigdata/ (accessed on October 1, 2014).

http://www.ask.com/answers/99725161/how-many-sea-ports-in-world
http://en.wikipedia.org/wiki/List_of_bus_operating_companies
http://en.wikipedia.org/wiki/List_of_railway_companies
http://www-01.ibm.com/software/data/bigdata/
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. What is the distribution of domains in web databases?
For example, is the deep web driven and dominated by e-commerce, such as product

search? Or is there considerable domain-level variety among web databases? How does this
domain-level variety compare to that on the surface web?

Study Methodology
In the absence of a comprehensive index to deep web sources, both studies use sampling to quantify
answers to these questions.

He et al. [2007] take an IP sampling approach to collect server samples, by randomly sampling
1 million IP addresses in 2004, using the Wget HTTP client to download HTML pages, then
manually identifying and analyzing web databases in this sample to extrapolate their estimates of
the deep web to the estimated 2.2 billion valid IP addresses. This study distinguishes between deep
web sources, web databases (a deep web source can contain multiple web databases), and query
interfaces (a web database could be accessed by multiple query interfaces), and uses the following
methodology.

1. The web sources are crawled to a depth of three hops from the root page. All the HTML
query interfaces on the retrieved pages are identified.

Query interfaces (within a source) that refer to the same database are identified by
manually choosing a few random objects that can be accessed through one interface and
checking to see if each of them can be accessed through the other interfaces.

2. The domain distribution of the identified web databases is determined by manually catego-
rizing the identified web databases, using the top-level categories of the http://yahoo.com
directory (accessed on October 1, 2014) as the taxonomy.

Madhavan et al. [2007] instead use a random sample of 25 million web pages from the Google
index from 2006, then identify deep web query interfaces on these pages in a rule-driven manner , and
finally extrapolate their estimates to the 1 billion+ pages in the Google index. Using the terminology
of He et al., this study mainly examines the number of query interfaces on the deep web, not the
number of distinct deep web databases. For this task, they use the following methodology.

1. Since many HTML forms are present on multiple web pages, they compute a signature for
each form by combining the host present in the action of the form with the names of the
visible inputs in the form. This is used as a lower bound for the number of distinct HTML
forms.

http://yahoo.com
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2. From this number, they prune away non-query forms (such as password entry) and site search
boxes, and only count the number of forms that have at least one text input field, and between
two and ten total inputs.

Main Results
We categorize the main results of these studies according to the investigated “V” dimensions.

Volume, Velocity. The 2004 study by He et al. [2007] estimates a total of 307,000 deep web
sources, 450,000 web databases, and 1,258,000 distinct query interfaces to deep web content.
This is based on extrapolation from a total of 126 deep web sources, containing 190 web
databases and 406 query interfaces identified in their random IP sample. This number
of identified sources, databases, and query interfaces enables much of their analysis to be
accomplished by manually inspecting the identified query interfaces.

The subsequent 2006 study by Madhavan et al. [2007] estimates a total of more than
10 million distinct query interfaces to deep web content. This is based on extrapolating from
a total of 647,000 distinct query interfaces in their random sample of web pages. Working
with this much larger number of query interfaces requires the use of automated approaches
to differentiate query interfaces to the deep web from non-query forms. This increase in the
number of query interfaces identified by Madhavan et al. over the number identified by He
et al. is partly a reflection of the velocity at which the number of deep web sources increased
between the different time periods studied.

Variety. The study by He et al. [2007] shows that deep web databases have considerable domain-
level variety, where 51% of the 190 identified web databases in their sample are in non e-
commerce domain categories, such as health, society & culture, education, arts & humanities,
science, and so on. Only 49% of the 190 identified web databases are in e-commerce domain
categories. Table 1.10 shows the distribution of domain categories identified by He et al.,
illustrating the domain-level variety of the data in BDI. This domain-level variety of web
databases is in sharp contrast to the surface web, where an earlier study identified that e-
commerce web sites dominate with an 83% share.

The study by Madhavan et al. [2007] also confirms that the semantic content of deep
web sources varies widely, and is distributed under most directory categories.

1.2.3 CASE STUDY: EXTRACTED DOMAIN-SPECIFIC DATA
The documents that constitute the surface web contain a significant amount of structured data,
which can be obtained using web-scale information extraction techniques. Dalvi et al. [2012]
experimentally study the volume and coverage properties of such structured data (i.e., entities and
their attributes) in several domains (e.g., restaurants, hotels).
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TABLE 1.10: Domain category distribution of web
databases [He et al. 2007]

Domain Category E-commerce Percentage

Business & Economy Yes 24%

Computers & Internet Yes 16%
News & Media Yes 6%
Entertainment Yes 1%
Recreation & Sports Yes 2%
Health No 4%
Government No 2%
Regional No 4%
Society & Culture No 9%
Education No 16%
Arts & Humanities No 4%
Science No 2%
Reference No 8%
Others No 2%

Main Questions
Their study focuses on two main questions related to the “V” dimensions presented in Section 1.2.1.

. How many sources are needed to build a complete database for a given domain, even restricted
to well-specified attributes?

For example, is it the case that well-established head aggregators (such as http://yelp
.com for restaurants) contain most of the information, or does one need to go to the long tail
of web sources to build a reasonably complete database (e.g., with 95% coverage)? Is there
a substantial need to construct a comprehensive database, for example, as measured by the
demand for tail entities?

. How easy is it to discover the data sources and entities in a given domain?
For example, can one start with a few data sources or seed entities and iteratively discover

most (e.g., 99%) of the data? How critical are the head aggregators to this process of discovery
of data sources?

http://yelp.com
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Study Methodology
One way to answer the questions is to actually perform web-scale information extraction in a variety
of domains, and compute the desired quantities of interest; this is an extremely challenging task, for
which good solutions are currently being investigated. Instead, the approach that Dalvi et al. [2012]
take is to study domains with the following three properties.

1. One has access to a comprehensive structured database of entities in that domain.

2. The entities can be uniquely identified by the value of some key attributes available on the
web pages.

3. One has access to (nearly) all the web pages containing the key attributes of the entities.

Dalvi et al. identify nine such domains: books, restaurants, automotive, banks, libraries,
schools, hotels & lodging, retail & shopping, and home & garden. Books are identified using the
value of ISBN, while entities in the other domains are identified using phone numbers and/or home
page URLs. For each domain, they look for the identifying attributes of the entities on each web
page in the Yahoo! web cache, group web pages by hosts into sources, and aggregate the entities
found on all the web pages of each data source.

They model the problem of ease of discovery of data sources and entities using a bi-partite
graph of entities and sources, with an edge (E , S) indicating that an entity E is found in source S.
Graph properties like connectivity of the bi-partite graph can help understand the robustness of
iterative information extraction algorithms with respect to the choice of the seed entities or data
sources for bootstrapping. Similarly, the diameter can indicate how many iterations are needed for
convergence. In this way, they don’t need to do actual information extraction, and only study the
distribution of information about entities already in their database. While this methodology has its
limitations, it provides a good first study on this topic.

Main Results
We categorize the main results of this study according to the investigated “V” dimensions.

Volume. First, they find that all the domains they study have thousands to tens of thousands of
web sources (see Figure 1.2 for phone numbers in the restaurant domain). These numbers
are much higher than the number of data sources that are considered in traditional data
integration.

Second, they show that tail sources contain a significant amount of information, even for
domains like restaurants with well-established aggregator sources. For example, http://yelp
.com is shown to contain fewer than 70% of the restaurant phone numbers and fewer than

http://yelp.com
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FIGURE 1.2: K-coverage (the fraction of entities in the database that are present in at least k different
sources) for phone numbers in the restaurant domain [Dalvi et al. 2012].

40% of the home pages of restaurants. With the top 10 sources (ordered by decreasing number
of entities found on the sources), one can extract around 93% of all restaurant phone numbers,
and with the top 100 sources one can extract close to 100% of all restaurant phone numbers,
as seen in Figure 1.2. However, for a less available attribute such as home page URL, the
situation is quite different: one needs at least 10,000 sources to cover 95% of all restaurant
home page URLs.

Third, they investigate the redundancy of available information using k-coverage (the
fraction of entities in the database that are present in at least k different sources) to enable
a higher confidence in the extracted information. For example, they show that one needs
5000 sources to get 5-coverage of 90% of the restaurant phone numbers (while 10 sources is
sufficient to get 1-coverage of 93% of these phone numbers), as seen in Figure 1.2.

Fourth, they demonstrate (using user-generated restaurant reviews) that there is signifi-
cant value in extracting information from the sources in the long tail. In particular, while both

www.allitebooks.com

http://www.allitebooks.org
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the demand for and the availability of review information reduces towards the tail, informa-
tion availability reduces at a faster rate, suggesting that tail extraction can be valuable in spite
of the lower demand.

Fifth, as seen in Figure 1.3, they observe that there is a significant amount of data
redundancy (tens to hundreds of sources per entity on average), and the data within a domain
is well connected. This redundancy and well connectedness is critical for discovery of sources
and entities in BDI. In particular, for almost all the (domain, attribute) pairs, over 99% of the
entities are present in the largest connected component of the bi-partite graph, establishing
that even a randomly chosen small seed set of entities is sufficient to reach most of the entities
in the domain. Further, a small diameter (around 6–8) implies that iterative approaches would
converge fairly rapidly. Finally, they show that the graphs remain well connected (with over
90% entities) even after the top 10 aggregator sources are removed, demonstrating that the
connectivity does not depend only on the head aggregator sources.
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1.2.4 CASE STUDY: QUALITY OF DEEP WEB DATA
While the studies by He et al. [2007] and Madhavan et al. [2007] shed light on the volume, velocity,
and domain-level variety of deep web data, they do not investigate the quality of data present in
these sources. To overcome this limitation, Li et al. [2012] experimentally study the veracity of deep
web data.

Main Questions
This study focuses on two main questions related to the “V” dimensions presented in Section 1.2.1.

. What is the quality of deep web data?
For example, are there a lot of redundant data among deep web sources? Are the data

consistent across sources in a domain? Is the quality of data better in some domains than
others?

. What is the quality of the deep web sources?
For example, are the sources highly accurate? Are correct data provided by the majority

of the sources? Is there an authoritative source that can be trusted while all the other sources
are ignored, in case of inconsistency across sources? Do sources share data with or copy from
other sources?

Study Methodology
One way to answer these questions is to actually perform big data integration across all the deep
web sources in each of multiple domains; this is an extremely challenging task that has not yet been
solved. Instead, the approach that Li et al. [2012] take is to study a few domains with the following
properties.

1. The deep web sources in these domains are frequently used, and believed to be clean since
incorrect values can have an adverse effect on people’s lives.

2. The entities in these domains are consistently and uniquely identified across sources by the
value of some key attributes, making it easy to link information across deep web sources.

3. Focusing on a moderate number of popularly used sources is sufficient to understand the
quality of data experienced by users in these domains.

The study by Li et al. [2012] identifies two such domains: Stock and Flight. Stocks are
consistently and uniquely identified by stock symbols (e.g., T for AT&T Inc., and GOOG for
Google, Inc.) across sources, and flight numbers (e.g., UA 48) and departure/arrival airport codes
(e.g., EWR and SFO) are typically used to identify flights on a given day across sources. They
identify a moderately large number of popular deep web sources in each of the domains by: (i) using
domain-specific search terms on popular search engines and manually identifying deep web sources
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from the top 200 returned results; (ii) focusing on those sources that use the GET method (i.e.,
the form data are encoded in the URL itself ), and don’t use Javascript. This results in 55 sources
(including popular financial aggregators such as Yahoo! Finance, Google Finance, and MSN Money,
official stock exchange sources such as NASDAQ, and financial news sources such as Bloomberg
and MarketWatch) in the Stock domain and 38 sources (including 3 airline sources, 8 airport hub
sources, and 27 third-party sources such as Orbitz, Travelocity, etc.) in the Flight domain.

In the Stock domain, they pick 1000 stock symbols from the Dow Jones, NASDAQ, and
Russell 3000, and query each stock symbol on each of the 55 sources every week day in July 2011. The
queries are issued one hour after the stock market closes each day. Extracted attributes are manually
matched across sources to identify globally distinct attributes; of these, 16 popular attributes whose
values should be fairly stable after the stock market closes (such as daily closing price) are analyzed
in detail. A gold standard is generated for 200 stock symbols by taking the majority voting results
from 5 popular financial sources.

In the Flight domain, they focus on 1200 flights departing from or arriving at the hub airports
of the three airlines, United, Continental, and American, and query for each flight at least one hour
after the scheduled arrival time every day in December 2011. Extracted attributes are manually
matched across sources to identify globally distinct attributes; of these, six popular attributes are
analyzed in detail. A gold standard is generated for 100 flights by taking the data provided by the
corresponding airline source.

Main Results
We categorize the main results of this study according to the “V” dimensions presented in Sec-
tion 1.2.1, as in the previous study.

Although the primary focus of this study is veracity, the results of this study also cast some
light on the schema-level variety of deep web sources.

Variety. Li et al. [2012] identify considerable schema-level variety among the deep web sources
examined. For example, the 55 sources in the Stock domain provide different numbers of
attributes, ranging from 3–71, for a total of 333 attributes. After manually matching these
attributes across sources, they identify a total of 153 globally distinct attributes, many of which
are computed using other attributes (e.g., 52 week high and low prices). The distribution of
the number of providers for these attributes is highly skewed, with only 13.7% of the attributes
(a total of 21) provided by at least one third of the sources, and over 86% attributes provided
by fewer than 25% of the sources. The Flight domain does not exhibit as much schema-level
variety, with the 38 sources providing 43 attributes, which are manually matched to obtain 15
globally distinct attributes.
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FIGURE 1.4: Consistency of data items in the Stock and Flight domains [Li et al. 2012].

Veracity. The quality of data is not as high as expected, given that the data in the domains studied
are expected to be quite clean. In particular, the data in these domains exhibit significant levels
of inconsistency. In the Stock domain, for example, the number of different values (even
after allowing for some value tolerance) for a data item ranges from 1–13, with an average
of 3.7; further, inconsistent values are provided by different sources for over 60% of the data
items. Value inconsistency is much lower in the Flight domain, where the number of different
values (after allowing for value tolerance) for a data item ranges from 1–5, with an average of
1.45; further, inconsistent values are provided by different sources for fewer than 40% of the
data items. There are different reasons for the observed inconsistencies, including semantic
ambiguity, out-of-date data, and errors. Figure 1.4 illustrates the distribution of number of
values for data items for both domains. Li et al. show that these inconsistencies cannot be
effectively addressed by using naive voting, which often has an even lower accuracy than the
highest accuracy from a single source.

Similarly, they observe that the accuracy of deep web sources can vary a lot. In the Stock
domain, the average source accuracy is just 0.86, and only 35% of the sources have an accuracy
above 0.9. While most of the authoritative sources have an accuracy above 0.9, their coverages
are all below 0.9, implying that one cannot rely on a single authoritative source and ignore all
other sources. In the Flight domain, the average source accuracy is even lower, just 0.8, and
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29% of sources have an accuracy below 0.7. Authoritative sources in this domain again have
accuracies above 0.9, but their coverages are all below 0.9.

Finally, Li et al. [2012] observe copying between deep web sources in each domain. In
some cases, the copying is claimed explicitly, while in other cases it is detected by observing
embedded interfaces or query redirection. Interestingly, the accuracy of the original sources
that are copied is not always high, ranging from 0.75–0.92 for Stock, and from 0.53–0.93 for
Flight.

1.2.5 CASE STUDY: SURFACE WEB STRUCTURED DATA
The static HTML pages on the surface web obviously contain a vast volume of unstructured data,
but also include a huge volume of structured data in the form of HTML tables, such as the table in
Figure 1.5. Cafarella et al. [2008b] and Lautert et al. [2013] experimentally study the volume and
structural variety of such tables on the web.

This work is motivated by the fact that the surface web is typically modeled as a hyperlinked
collection of unstructured documents, which tends to ignore the relational data contained in web
documents. For example, most wikipedia pages contain high-quality relational data that provide

FIGURE 1.5: High-quality table on the web.
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valuable information on just about every topic. By explicitly recognizing relational tables on the
surface web, which are accessible to crawlers, web search engines can return such tables as well in
response to user keyword queries.

Main Questions
These studies focus on two main questions related to the “V” dimensions presented in Section 1.2.1.

. How many high-quality relational tables are present on the surface web? How does one
distinguish them from other uses of HTML tables (for example, form layout)?

. How heterogeneous are these tables?
For example, what is the distribution of table sizes, in terms of number of rows and

columns? How many of these tables have a richer structure (for example, nested tables, cross-
tabs) than conventional relational tables?

Study Methodology
Cafarella et al. [2008b] start from a multi-billion page english language portion of the Google crawl,
and use an HTML parser to obtain all occurrences of the HTML table tag. Only a small fraction
of the identified tables are high-quality relational tables, and they use the following methodology to
distinguish them from non-relational uses of the HTML tag.

1. They use parsers to eliminate obviously non-relational tables, including extremely small tables
(fewer than two rows or two columns), those that are embedded in HTML forms (which are
used for visual layout of user input fields), and calendars.

2. They use a sample of the remaining tables, and human labeling to estimate the total fraction
of high-quality relational tables.

3. They train a classifier to distinguish between relational tables and other uses of the HTML
table tag, such as page layout and property sheets, using a variety of table-level features. They
subsequently collect distributional statistics using the output of the classifer.

Lautert et al. [2013] observe that even high-quality tables on the web are structurally het-
erogeneous, with horizontal, vertical, and matrix structures, some having cells that span multiple
rows or columns, some with multiple values in individual cells, and so on. They use the following
methodology to quantify the structural heterogeneity of tables on the web.

1. They extract all HTML tables from a collection of crawled sources starting from wikipedia,
e-commerce, news, and university sources, visiting a total of 174,927 HTML pages, and
extracting 342,795 unique HTML tables.
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TABLE 1.11: Row statistics on high-quality
relational tables on the web [Cafarella et al. 2008b]

Number of Rows Percent of Tables

2-9 64.07

10–19 15.83
20–29 7.61
30+ 12.49

2. They develop a supervised neural network classifer to classify tables into different categories,
using a list of 25 layout, HTML, and lexical features. The training set uses 4,000 web tables.

Main Results
We categorize the main results of these studies according to the investigated “V” dimensions.

Volume. First, Cafarella et al. [2008b] extract approximately 14.1 billion raw HTML tables
from the crawl. Of these, 89.4% (or 12.5 billion) are eliminated as obviously non-relational
(almost all of which are extremely small tables) using their parsers. Of the remaining tables,
human judgement is used on a sample to determine about 10.4% (or 1.1% of raw HTML
tables) as high-quality relational tables. This results in an estimate of 154 million high-quality
relational tables on the web.

Second, Cafarella et al. [2008b] train a classifier using features such as numbers of rows
and columns, number of rows with mostly nulls, number of columns with non-string data,
average and standard deviation of string lengths in cells, and so on, to identify high-quality
relational tables with a high recall of 0.81, even though the precision is lower at 0.41. Using the
results of the classifier, they identify distributional statistics on numbers of rows and columns
of high-quality relational tables. More than 93% of these tables have between two and nine
columns; there are very few high-quality tables with a very large number of attributes. In
contrast, there is a greater diversity in the number of rows among high-quality tables, as
shown in Table 1.11.

Variety. Lautert et al. [2013] determine that there is considerable structural variety even among
the high-quality tables on the web. Only 17.8% of the high-quality tables on the web are akin
to traditional RDBMS tables (each cell contains a single value, and does not span more than
one row or column). The two biggest reasons for tables on the web differing from RDBMS
tables are: (i) 74.9% of the tables have cells with multiple values (of the same type or of different
types) and (ii) 12.9% of the tables have cells that span multiple rows or columns.
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1.2.6 CASE STUDY: EXTRACTED KNOWLEDGE TRIPLES
Our final case study is about domain-independent structured data represented as 〈subject, predicate,
object〉 knowledge triples, obtained using web-scale information extraction techniques. In our Flight

example, the triples 〈Airline1_49, departs_from, EWR〉 and 〈Airline1_49, arrives_at , SFO〉 represent
that the Departure Airport and Arrival Airport of Airline1’s flight 49 are EWR and SFO, respectively. Dong
et al. [2014b] experimentally study the volume and veracity of such knowledge triples obtained by
crawling a large set of web pages and extracting triples from them.

This work is motivated by the task of automatically constructing large-scale knowledge bases
by using multiple extractors to extract (possibly conflicting) values from each data source for each
data item, then resolving various ambiguities present in the extracted triples to construct a high
quality knowledge base.

Main Questions
This study focuses on two main questions related to the “V” dimensions presented in Section 1.2.1.

. What are the number and distributional properties of knowledge triples that can be extracted
from web pages?

For example, how many triples can be extracted from DOM trees found in web pages vs.
using natural language processing techniques on unstructured text?

. What is the quality of the extracted triples, and the accuracy of the extractors that are used
for this purpose?

Study Methodology
Dong et al. [2014b] crawl over 1 billion web pages, to extract knowledge triples from four types of
web content, using the following methodology.

1. They extract knowledge triples from: (i) text documents, by examining phrases and sentences;
(ii) DOM trees, which can be found on surface web pages (e.g., web lists), as well as in
deep web sources; (iii) web tables, which contain high quality relational information, where
rows represent subjects, columns represent predicates, and the corresponding cells contain
the objects of the triples; and (iv) web annotations, manually created by webmasters using
standard web ontologies such as http://schema.org.

2. They limit attention to extracting triples whose subjects and predicates exist in the manually
curated Freebase knowledge base [Bollacker et al. 2008].

3. The quality of the extracted knowledge is also evaluated against the Freebase knowledge base as
a gold standard. Specifically, if an extracted triple 〈s , p, o〉 occurs in Freebase, it is considered
to be true; if 〈s , p, o〉 does not occur in Freebase, but 〈s , p, o′〉 does, then the extracted triple
〈s , p, o〉 is considered to be false; otherwise it is not included in the gold standard.

http://schema.org


1.3 BDI: Opportunities 27

TXT
(301M)

1.1M 1.7M
1.5M0.3M

110M

13K

DOM
(1280M)

TBL
(10M)

ANO
(145M)

FIGURE 1.6: Contributions and overlaps between different types of web contents [Dong et al. 2014b].

Main Results
We categorize the main results of this study according to the investigated “V” dimensions.

Volume. First, Dong et al. [2014b] extract 1.6 billion distinct triples, with about 80% of the
triples from DOM trees, followed by about 19% from text documents, with little overlap
between the triples extracted from the different types of web content, as shown in Figure 1.6.

Second, these extracted triples are associated with 43 million subjects and 4.5 thousand
predicates (with 337 million (subject, predicate) pairs) from Freebase. Most distributions (such
as #triples per subject) are highly skewed, with a long tail; for example, there are over 1 million
triples for each of the top 5 entities, whereas for 56% entities they extract no more than 10
triples each.

Veracity. Among the 1.6 billion triples, 40% (or 650 million) have gold standard labels, of which
200 million are considered as true. Thus, the overall accuracy of extracted triples is only about
30%. Most of the errors are due to errors in the extractions, but a small percentage are due to
wrong information provided by the sources.

The study also shows a high variance in the accuracy of the extractors.

1.3 BDI: OPPORTUNITIES
BDI does not only come with difficult challenges, characterized along the “V” dimensions, as
we discussed in Section 1.2. There are also interesting opportunities enabled by BDI and the
infrastructures used for managing and analyzing big data, to effectively address these challenges.
We focus on three such opportunities.

1.3.1 DATA REDUNDANCY
The data obtained from different sources often overlap, resulting in a high data redundancy across
the large number of sources that need to be integrated.
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This is evident in our motivating Flights example, where information such as Departure Airport,
Scheduled Departure Time, Arrival Airport, and Scheduled Arrival Time about Airline1’s flight 49 can be
obtained from each of the sources Airline1, Airport3 and Airfare4.

The case studies presented in Sections 1.2.3 and 1.2.4 illustrate the redundancy that exists in
many domains. Specifically, the study by Dalvi et al. [2012] mentions that the average number of
sources per entity is quite large in all the domains studied, with 56 sources per hotel phone number
and 251 sources per library home page as particularly notable, as shown in Figure 1.3. Further,
this high average value is not just due to extreme skew; for example, over 80% of restaurant phone
numbers are present in at least 10 distinct sources, as shown by the 10-coverage plot in Figure 1.2.
Similarly, the study by Li et al. [2012] identifies 16 popular attributes in the Stock domain and 6
popular attributes in the Flight domain that are provided by at least one third of the sources analyzed
in each of these domains.

One key advantage of this data redundancy is to effectively address the veracity challenge in
BDI, as we discuss in detail in Chapter 4. Intuitively, if there are only a few sources that provide
overlapping information, and the sources provide conflicting values for a particular data item, it is
difficult to identify the true value with high confidence. But with a large number of sources, as is
the case in BDI, one can use sophisticated data fusion techniques to discover the truth.

A second advantage of data redundancy is to begin to address the variety challenge in BDI, and
identify attribute matchings between the source schemas, which are critical for schema alignment.
Intuitively, if there is significant data redundancy in a domain, and the bi-partite graph of entities
and sources is well connected (as in the domains studied by Dalvi et al. [2012]), one can start with
a small seed set of known entities, and use search engine technology to discover most of the entities
in that domain. When these entities have different schemas associated with them in the different
sources, one can naturally identify attribute matchings between the schemas used by the different
sources.

A third advantage of data redundancy is the ability to discover relevant sources for BDI in
a domain, when sources are not all known a priori. The key intuition again is to take advantage
of a well-connected bi-partite graph of entities and sources, start with a small seed set of known
entities, and use search engine technology to iteratively discover new sources and new entities, in an
alternating manner.

1.3.2 LONG DATA
A significant source of big data in practice is long data, that is, data collected about evolving entities
over time.

In our motivating Flights example, the schedules of airlines evolve over time, as illustrated
in the table Airline1.Schedule. In practice, airline and airport sources typically provide estimated
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flight departure and arrival times, which can vary considerably over short time periods; airplane
maintenance and repair logs provide insight about airplane quality over time, and so on.

While the case studies that we presented earlier in this chapter do not specifically deal with
long data, some of the techniques that we will describe in subsequent chapters, especially for record
linkage (Chapter 3) and data fusion (Chapter 4), take considerable advantage of the presence of
long data.

Intuitively, entities in the real world evolve, which result in their attribute values changing
over time. The information provided by data sources that contain such entities is not always fresh,
and out-of-date values are common, as illustrated in the table Airfare4.Flight. Record linkage and data
fusion in such scenarios are challenging, but can take advantage of the fact that evolution of entities
is typically a gradual and relatively smooth process: (i) even when some attributes of a flight (e.g.,
Scheduled Departure Time) evolve, other attributes (e.g., Departure Airport) do not necessarily change;
and (ii) even when entities evolve over short time periods, changes in attribute values are usually not
erratic (e.g., the changes to estimated arrival time of a flight as reported by the airline).

1.3.3 BIG DATA PLATFORMS
The management and analysis of big data has benefited considerably from significant advances in
recent years from scalable big data platforms on clusters of commodity hardware (e.g., Hadoop),
and distributed programming models (e.g., MapReduce).

Big data integration can be extremely resource intensive, with each of the tasks of schema
alignment, record linkage, and data fusion requiring significant computational resources. While
much work remains to be done to take full advantage of the big data platforms available, recent work
in this area has brought hope that these tasks can in fact be effectively parallelized. We present a few
such techniques, especially for record linkage and data fusion, in subsequent chapters.

1.4 OUTLINE OF BOOK
The rest of the book is structured as follows. In the next three chapters, we focus on each of the
main tasks of data integration. Chapter 2 focuses on schema alignment , Chapter 3 focuses on record
linkage, and Chapter 4 focuses on data fusion. Each of these chapters is organized similarly: we start
with a quick tour of the task in the context of traditional data integration, before describing how the
various BDI challenges of volume, velocity, variety, and veracity have been addressed in the recent
literature. In Chapter 5, we outline emerging topics that are specific to BDI and identify promising
directions of future work in this area. Finally, Chapter 6 summarizes and concludes the book.





31

C H A P T E R 2

Schema Alignment

The first component of data integration is schema alignment . As we showed in Section 1.2.3, there
can be thousands to millions of data sources in the same domain, but they often describe the domain
using different schemas. As an illustration, in the motivating example in Section 1.1, the four sources
describe the flight domain using very different schemas: they contain different numbers of tables
and different numbers of attributes; they may use different attribute names for the same attribute
(e.g., Scheduled Arrival Date in Airline2.Flight vs. Scheduled in Airport3.Arrivals); they may apply different
semantics for attributes with the same name (e.g., Arrival Time may mean landing time in one source
and arrival-at-gate time in another source). To integrate data from different sources, the first step
is to align the schemas and understand which attributes have the same semantics and which ones
do not.

When data integration started, the goal was often to integrate tens to hundreds of data sources
created independently in an organization. Semi-automatic tools such as Clio [Fagin et al. 2009] were
created to simplify schema alignment. Section 2.1 briefly overviews traditional solutions.

The big data environment makes the problem significantly harder. Instead of integrating data
within an organization, the goal is often to integrate structured data from the web, either in the form
of deep web data, or in the form of web tables or web lists. As a result, the number of data sources
available for integration explodes from hundreds of sources to millions of sources; and the schemas
of the data are constantly changing. Such volume and velocity of big data also increase the variety of
data remarkably, calling for new techniques and infrastructures to resolve the schema heterogeneity.

Section 2.2 describes how dataspace systems extend the traditional data integration infrastruc-
ture to address the variety and velocity challenges of big data. Dataspaces follow a pay-as-you-go
principle: they provide best-effort services such as simple keyword search at the beginning, and
gradually evolve schema alignment and improve search quality over time.

Section 2.3 describes new techniques for schema alignment, which make it possible to address
both the volume and the variety challenges in integrating structured data on the web. This includes
surfacing deep web data by crawling and indexing, and searching and integrating data from web
tables and web lists.
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FIGURE 2.1: Traditional schema alignment: three steps.

2.1 TRADITIONAL SCHEMA ALIGNMENT: A QUICK TOUR
The traditional approach for schema alignment contains three steps: creating a mediated schema,
attribute matching, and schema mapping, depicted in Figure 2.1.

2.1.1 MEDIATED SCHEMA
First, a mediated schema is created to provide a unified and virtual view of the disparate sources
and capture the salient aspects of the domain being considered. Often times the mediated schema
is created manually. For the motivating example, one possible mediated schema is shown as follows.

Mediated schema Mediate for the motivating example

Flight(Airline (AL), Flight ID (FI), Flight Number (FN), Flight date (FD), Departure Airport

(DA), Departure Gate (DG), Departure Terminal (DTE), Scheduled Departure Time

(SDT), Actual Departure Time (ADT), Arrival Airport (AA), Arrival Gate (AG), Arrival

Terminal (ATE) Scheduled Arrival Time (SAT), Actual Arrival Time (AAT))

Fare(Flight ID (FI), Fare Class (FC), Fare (F))

Airport(Airport Code (AC), Airport Name (AN), Airport City (ACI), Airport State (AST),

Airport Country (ACO))

The mediated schema Mediate contains three tables: Flight for flight information; Fare for
fare information; and Airport for airport information. As a unified view, the mediated schema often
contains more information than each schema. For example, it contains information for flight fares
and airports, which do not exist in Airline1, Airline2, and Airport3; on the other hand, it contains the
actual departure and arrival times and other information that do not exist in Airfare4. Also note that
the mediated schema may not contain every piece of information from every source. For example,
Airport3 provides information about runway but that is not included in the mediated schema as it is
deemed as rarely queried by users.

2.1.2 ATTRIBUTE MATCHING
Next, attributes in each source schema are matched to the corresponding attributes in the mediated
schema. In many cases the attribute correspondence is one-to-one; however, sometimes one attribute
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M.Flight(AL, FI, FN, FD, DA, DG, DTE, SDT, ADT, AA, AG, ATE, SAT, AAT) 

A1.Flight(FI, DD, DT, DG, AD, AT, AG, PI)

FIGURE 2.2: Attribute matching from Airline1.Flight to Mediate.Flight.

in the mediated schema may correspond to the combination of several attributes in the source schema,
and vice versa. For example, the combination of ACI, AST, ACO in Mediate.Airport corresponds to
AN in Airinfo5.AirportCodes. Figure 2.2 gives an example of schema matching from Airline1.Flight to
Mediate.Flight.

There have been many techniques proposed for attribute matching, exploring similarity of at-
tribute names, types, values, and the neighborhood relationships between attributes. Comprehensive
surveys are by Rahm and Bernstein [2001] and Bellahsene et al. [2011].

2.1.3 SCHEMA MAPPING
According to the correspondences of attribute matching, a schema mapping is built between each
source schema and the mediated schema. Such mappings specify the semantic relationships between
the contents of different data sources and would be used to reformulate a user query on the mediated
schema into a set of queries on the underlying data sources.

There are three types of schema mappings: global-as-view (GAV), local-as-view (LAV), and
global-local-as-view (GLAV). Global-as-view specifies how to obtain data in the mediated schema
by querying the data in source schemas; in other words, the mediated data can be considered as a
database view of the source data. Local-as-view specifies the source data as a view of the mediated
data; this approach makes it easy to add a new data source with a new schema. Finally, global-local-
as-view specifies both the mediated data and the local data as views of data of a virtual schema.

As an example, the following table gives the GAV mapping and the LAV mapping between
the mediated schema and Airline1. The mappings are given in Datalog. The GAV mapping states
that one can obtain attribute values in Mediate.Flight by joining Airline1.Schedule and Airline1.Flight on
Flight ID (FI). The LAV mapping states that one can obtain values in Airline1.Schedule and Airline1.Flight

by projecting on Mediate.Flight for all database tuples with Airline1 as the value for Airline (AL).
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Mappings between mediated schema Mediate and source schema Airline1

GAV Mediate.Flight(‘Airline1’, fi, fn, fd, da, gate(dg), terminal(dg), sdt, adt, aa,
gate(ag), terminal(ag), sat, aat)

:- Airline1.Schedule(fi, fn, sd, ed, sdt, da, sat, aa), Airline1.Flight(fi, fd, adt,
dg, ad, aat, ag, pi)

LAV Airline1.Schedule(fi, fn, —, —, sdt, da, sat, aa)
:- Mediate.Flight(‘Airline1’, fi, fn, fd, da, dg, dt, sdt, adt, aa, ag, at, sat, aat)

Airline1.Flight(fi, fd, adt, CAT(dg, dt), —, aat , CAT(ag, at), —)
:- Mediate.Flight(‘Airline1’, fi, fn, fd, da, dg, dt, sdt, adt, aa, ag, at, sat, aat)

Tools have been developed for semi-automatically building schema mappings according
to attribute matching results [Fagin et al. 2009]. A user query on the mediated schema will be
reformulated to queries on the source schemas according to schema mappings [Halevy 2001].

2.1.4 QUERY ANSWERING
Figure 2.3 depicts query answering in a traditional data integration system.

Users query the underlying data in a data-integration system by formulating queries over the
mediated schema. As an example, a user can query information about all flights departing from
EWR, arriving at SFO, and having a fare below $1000 as follows.

D1 

D2 

D3 

D4 

D5 

Mediated schema 

Q1

Q2

Q3

Q4

Q5

Q

m1 

m2 

m3 

m4 

m5 

FIGURE 2.3: Query answering in a traditional data-integration system.
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SELECT DISTINCT Flight.*
FROM Flight, Fare

WHERE Flight.DA=‘EWR’ AND Flight.AA=‘SFO’
AND Flight.FI = Fare.FI AND Fare.F < 1000

The user query is reformulated according to schema mappings between the mediated schema
and each source schema. For the example query, it cannot be answered on Airline1, Airline2, and Airport3

since they lack information on flight fares; however, it can be answered on Airfare4, together with
Airinfo5, using the following reformulated query.

SELECT DISTINCT Fl.FI, Fl.FN, Fl.DD, A1.AC, . . .
FROM Airfare4.Flight AS Fl, Airfare4.Fares AS Fa,

Airinfo5.AirportCodes AS A1, Airinfo5.AirportCodes AS A2
WHERE A1.AC=‘EWR’ AND A2.AC=‘SFO’

AND A1.AN CONTAINS Fl.DA AND A2.AN CONTAINS Fl.AA

AND Fl.FI = Fa.FI AND Fa.F < 1000

Finally, the query processor answers the queries on the source data, and returns a union of the
answers to the users.

2.2 ADDRESSING THE VARIETY AND VELOCITY CHALLENGES
A data integration system heavily relies on the schema mappings between the data sources and the
mediated schema for query reformulation. However, it is well known that creating and maintain-
ing such mappings is non-trivial and requires significant resources, upfront effort, and technical
expertise. Schema mapping tools have been built to help generate schema mappings; however, do-
main experts still need to get involved in refining the automatically generated mappings. As a result,
schema alignment is one of the major bottlenecks in building a data integration system. In the big
data context, where there can be a huge number of data sources and the schemas of the data can
keep changing, having perfect schema mappings and keeping them up-to-date with the constantly
evolving source schemas is infeasible.

Franklin et al. [2005] propose a dataspace support platform that addresses the variety and velocity
of data by pay-as-you-go data management: provide some services from the outset and evolve the
schema mappings between the different sources on an as-needed basis. Given a query, such a platform
generates best-effort or approximate answers from data sources where perfect schema mappings do
not exist. When it discovers a large number of sophisticated queries or data mining tasks over certain
sources, it will guide the users to make additional efforts to integrate those sources more precisely.
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This section describes some key techniques for dataspace systems. Section 2.2.1 describes how
to provide best-effort querying by building probabilistic mediated schemas and probabilistic schema
mappings. Section 2.2.2 describes how to solicit user feedback for confirming candidate mappings
in a pay-as-you-go manner.

2.2.1 PROBABILISTIC SCHEMA ALIGNMENT
To provide best-effort services on dataspaces, uncertainty needs to be handled at various levels.
First, when the number of data sources is large, there will be uncertainty about how to model the
domain; thus, there is uncertainty on the creation of the mediated schema. Second, attributes can
have ambiguous meanings, some attributes can overlap in their meanings and the meanings can
evolve over time; thus, there is uncertainty on attribute matching. Third, the scale of the data and
the constant evolution of source schemas prevent generating and maintaining precise mappings;
thus, there is uncertainty on schema mapping.

Such uncertainties can be addressed in two ways. First, a probabilistic mediated schema can
be built to capture the uncertainty on how to model the domain. Each possible mediated schema
in the probabilistic mediated schema represents one way of clustering the source attributes, where
attributes in the same cluster are considered as having the same semantics [Das Sarma et al. 2008].

Second, a probabilistic schema mapping can be built between each source schema and each
possible mediated schema in the probabilistic mediated schema. A probabilistic schema mapping
contains a set of attribute matchings, each describing one possible matching between source at-
tributes and the attribute clusters in a mediated schema [Dong et al. 2009c].

This section focuses on a setting in which each of the sources is a single relational table. As
a result, the schema mapping can be easily inferred from the attribute matching. We next describe
each component in detail and describe query answering in this new architecture at the end.

Probabilistic Mediated Schema
The mediated schema is the set of schema terms (e.g., relational table, attribute names) on which
queries are posed. It describes the aspects of the domain that are important for the integration
application. Consider automatically inferring a mediated schema from a set of data sources each with
a single relational table. In this context, the mediated schema can be thought of as a “clustering”
of source attributes, where similar attributes are grouped into the same cluster to form a mediated
attribute. Note that whereas in a traditional mediated schema an attribute has a name, naming of
an attribute is not necessary in such a mediated schema. Users can use any source attribute in their
queries and the source attribute will be replaced everywhere with the mediated attribute whose
corresponding cluster contains that source attribute. In practice, the most frequent source attribute
can be used to represent a mediated attribute when exposing the mediated schema to users.
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The quality of query answers critically depends on the quality of this clustering. However,
because of the heterogeneity of the data sources being integrated, typically the semantics of the
source attributes and in turn the clustering is uncertain, illustrated using the next example.

Example 2.1 Consider the following two source schemas both describing flights.

S1(Flight Number (FN), Departure Gate Time (DGT), Takeoff Time (TT),

Landing Time (LT), Arrival Gate Time (AGT))
S2(Flight Number (FN), Departure Time (DT), Arrival Time (AT))

In S2, the attribute DT can be either the departure gate time or the takeoff time. Similarly, AT

can be either the arrival gate time or the landing time.
Consider clustering the attributes of S1 and S2. There are multiple ways to cluster the

attributes and they correspond to different mediated schemas. A few are listed as follows:

Med1({FN}, {DT, DGT, TT}, {AT, AGT, LT})
Med2({FN}, {DT, DGT}, {TT}, {AT, LT}, {AGT})

Med3({FN}, {DT, DGT}, {TT}, {AT, AGT}, {LT})
Med4({FN}, {DT, TT}, {DGT}, {AT, LT}, {AGT})

Med5({FN}, {DT}, {DGT}, {TT}, {AT}, {AGT}, {LT})

None of the listed mediated schemas is perfect. Schema Med1 groups together multiple
attributes from S1. Schema Med2 seems inconsistent because Departure Time is grouped with Departure

Gate Time while Arrival Time is grouped with Landing Time. Schemas Med3, Med4 and Med5 are partially
correct but none of them captures the fact that Departure time and Arrival time can be either gate time,
or takeoff time and landing time.

As a result, none of the listed mediated schemas will return ideal answers for all user queries,
even if perfect schema mappings exist. For example, using Med1 prohibits returning correct answers
for queries that contain both Departure Gate Time and Takeoff Time, because they are taken to be
the same attribute. As another example, consider a query that contains Departure Time and Arrival

Time. Using Med3 or Med4 as the mediated schema will unnecessarily favor takeoff time and landing
time over gate time, or vice versa. A system with Med2 will incorrectly favor answers that return
the departure gate time together with arrival landing time. A system with Med5 may either miss
information from sources that provide DGT, TT, AGT, LT, or have the same problems as using Med2-

Med4.
As a solution, a probabilistic mediated schema can be constructed for all clusterings that are

most likely to be true, and each clustering is associated with a probability. For example, a probabilistic
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mediated schema can be constructed to include Med3 and Med4, each with probability 0.6 and 0.4
respectively.

Possible Mediated Schema Probability

Med3({FN}, {DT, DGT}, {TT}, {AT, AGT}, {LT}) 0.6

Med4({FN}, {DT, TT}, {DGT}, {AT, LT}, {AGT}) 0.4

Probabilistic mediated schemas are formally defined as follows. Consider a set of source
schemas {S1, . . . , Sn}. Denote the attributes in schema Si , i ∈ [1, n], by A(Si), and the set of all
source attributes as A. That is, A = A(S1) ∪ . . . ∪ A(Sn). Denote a mediated schema for the set
of sources {S1, . . . , Sn} by Med = {A1, . . . , Am}, where each Ai , i ∈ [1, m], is called a mediated
attribute. The mediated attributes are sets of attributes from the sources, (i.e., Ai ⊆ A); for each
i , j ∈ [1, m], i �= j , it holds that Ai ∩ Aj = ∅. As stated before, if a query contains an attribute
A ∈ Ai , i ∈ [1, m], then when answering the query A is replaced everywhere with Ai.

A probabilistic mediated schema (p-med-schema) consists of a set of mediated schemas, each
with a probability indicating the likelihood that the schema correctly describes the domain of the
sources.

Definition 2.1 (Probabilistic Mediated Schema) [Das Sarma et al. 2008] Let {S1, . . . , Sn} be a
set of schemas. A probabilistic mediated schema (p-med-schema) for {S1, . . . , Sn} is a set

pMed = {(Med1, Pr(Med1)), . . . , (Medl , Pr(Medl))},

where

. for each i ∈ [1, l], Medi is a mediated schema for S1, . . . , Sn, and for each i , j ∈ [1, l], i �= j ,
Medi and Medj correspond to different clusterings of the source attributes in A; and

. Pr(Medi) ∈ (0, 1], and �l
i=1 Pr(Medi) = 1.

Das Sarma et al. [2008] propose an algorithm for creating a probabilistic mediated schema
for source schemas S1, . . . , Sn: first construct the multiple mediated schemas Med1, . . . , Medl in
pMed, and then assign each of them a probability.

Two pieces of information available in the source schemas can serve as evidence for attribute
clustering: (1) pairwise similarity of source attributes; and (2) statistical co-occurrence properties
of source attributes. The first piece of information indicates when two attributes are likely to be
similar, and is used for creating multiple mediated schemas. One can apply a collection of attribute
matching modules to compute pairwise attribute similarity. The similarity s(ai , aj) between two
source attributes ai and aj measures how closely the two attributes represent the same real-world
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concept. The second piece of information indicates when two attributes are likely to be different,
and is used for assigning probabilities to each of the mediated schemas.

For the example schemas S1 and S2, pairwise string similarity and dictionary matching would
indicate that attribute DT can be similar to both DGT and TT because of attribute-name similarity and
value similarity. However, since the first source schema contains DGT and TT together, they cannot
refer to the same concept. Hence, the first schema suggests DGT is different from TT, making it less
likely for clustering DT, DGT, TT all together.

More specifically, given source schemas S1, . . . , Sn, the p-med-schema pMed is created in
three steps. First, compute similarity between attributes. Put attributes whose similarity is above
a threshold τ + ε into the same cluster, and call a pair of attributes whose similarity falls in
[τ − ε , τ + ε]an uncertain pair . Second, create a mediated schema for every subset of uncertain pairs,
where each pair of attributes in the subset are put in the same cluster. The resulting sets of mediated
schemas form the possible mediated schemas in the probabilistic mediated schema. Finally, consider
a source schema Si , i ∈ [1, n], as consistent with a possible mediated schema Medj , j ∈ [1, l], if
no two attributes in A(Si) occur in a cluster represented by a mediated attribute in Medj . For each
possible mediated schema, count the number of source schemas consistent with it and compute its
probability proportional to the count.

Probabilistic Schema Mappings
Schema mappings describe the relationship between the contents of the sources and that of the
mediated data. In many applications it is impossible to provide all schema mappings upfront.
Probabilistic schema mappings can capture uncertainty on mappings between schemas. We again
start with an illustrative example, then formally define probabilistic schema mappings, and describe
how they are generated at the end.

Example 2.2 Continue with Example 2.1. Consider the mapping between S1 and the mediated
schema Med3. A semi-automatic attribute-matching tool may generate four possible mappings
between S1 and Med3, each in the form of attribute matchings as only single-table schemas are
considered. They are shown as follows, where DDGT ={ DT, DGT } and AAGT ={ AT, AGT }.

Possible Mapping Between S1 and Med3 Probability

M1 {(FN, FN), (DGT, DDGT), (TT, TT), (AGT, AAGT), (LT, LT)} 0.64
M2 {(FN, FN), (DGT, DDGT), (TT, TT), (AGT, LT), (LT, AAGT)} 0.16
M3 {(FN, FN), (DGT, TT), (TT, DDGT), (AGT, AAGT), (LT, LT)} 0.16

M4 {(FN, FN), (DGT, TT), (TT, DDGT), (AGT, LT), (LT, AAGT)} 0.04

Whereas the four mappings all map S1.FN to Med3.FN, they map other attributes in the
source and the mediated schemas differently. For example, mapping M1 maps S1.DGT to Med3.DDGT,
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whereas M3 maps S1.DGT to Med3.TT. To capture the uncertainty about which mapping is correct,
instead of discarding some of the possible mappings arbitrarily or according to intervention of
domain experts, all mappings are kept for query answering and each is assigned a probability
indicating its likelihood of being true.

Similarly, there is a probabilistic mapping between S1 and Med4, where DTT ={ DT, TT } and
ALT ={ AT, LT }.

Possible Mapping Between S1 and Med4 Probability

M5 {(FN, FN), (DGT, DGT), (TT, DTT), (AGT, AGT), (LT, ALT)} 0.64

M6 {(FN, FN), (DGT, DGT), (TT, DTT), (AGT, ALT), (LT, AGT)} 0.16
M7 {(FN, FN), (DGT, DTT), (TT, DGT), (AGT, AGT), (LT, ALT)} 0.16

M8 {(FN, FN), (DGT, DTT), (TT, DGT), (AGT, ALT), (LT, AGT)} 0.04

Before defining probabilistic schema mappings, let us first review non-probabilistic schema
mappings. The goal of a schema mapping is to specify the semantic relationships between a source
schema S and a target schema T (e.g., mediated schema). The schema mapping considered in this
section is of a limited form: it contains one-to-one matching between attributes in S and attributes
in T .

Intuitively, a probabilistic schema mapping describes a probability distribution of a set of
possible schema mappings between a source schema and a target schema.

Definition 2.2 (Probabilistic Mapping) [Dong et al. 2009c] Let S and T be relational schemas,
each containing a single relational table. A probabilistic mapping (p-mapping), pM , between source
S and target T is a set pM = {(M1, Pr(M1)), . . . , (Ml , Pr(Ml))}, such that

. for i ∈ [1, l], Mi is a one-to-one attribute matching between S and T , and for every i , j ∈
[1, l], i �= j , Mi and Mj are different; and

. Pr(Mi) ∈ (0, 1] and
∑l

i=1 Pr(Mi) = 1.

Das Sarma et al. [2008] propose an algorithm for creating a p-mapping. First, compute
weighted matchings between each pair of source attribute and target attribute. These weighted
matchings are created by applying a set of existing attribute matching techniques. The weights are
normalized to range [0, 1]. Denote the weighted matching between the i-th source attribute and
the j-th target attribute as mi , j = ((i , j), wi , j), where wi , j is the weight of matching (i , j).

Although weighted matchings indicate the degree of similarity between pairs of attributes,
they do not indicate which target attribute a source attribute should map to. For example, a target
attribute Arrival Time can be similar both to the source attribute Arrival Gate Time and to Landing Time,
so it makes sense to map either of them to Arrival Time in a schema mapping. In fact, given a set of
weighted matchings, there could be a set of p-mappings that are consistent with it.
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Definition 2.3 (Consistent P-mapping) [Das Sarma et al. 2008] A p-mapping pM is consistent
with a weighted matching mi , j between a pair of source attribute and target attribute if the sum of
the probabilities of all mappings M ∈ pM containing matching (i , j) equals wi , j ; that is,

wi , j =
∑

M∈pM , (i , j)∈M

Pr(M).

A p-mapping is consistent with a set of weighted matchings m if it is consistent with each weighted
matching in m ∈ m.

Given a set of weighted matchings, there can be an infinite number of p-mappings that are
consistent with it. The following example illustrates this.

Example 2.3 Consider a source schema S(A,B) and a target schema T(A’,B’). Assume the following
weighted matchings between source and target attributes: wA,A′ = 0.6 and wB,B′ = 0.5 (the rest are 0).
There are an infinite number of p-mappings that are consistent with this set of weighted matchings
and the following table lists two.

P-mapping Possible Mapping Probability

pM1 M1: {(A, A′), (B , B ′)} 0.3
M2: {(A, A′)} 0.3
M3: {(B , B ′)} 0.2
M4: ∅ 0.2

pM2 M ′
1: {(A, A′), (B , B ′)} 0.5

M ′
2: {(A, A′)} 0.1

M ′
3: ∅ 0.4

In a sense, pM1 seems better than pM2 because it assumes that the similarity between A and
A’ is independent of the similarity between B and B’.

In the general case, among the many p-mappings that are consistent with a set of weighted
matchings m, the best is the one with the maximum entropy; that is, the p-mapping whose probability
distribution obtains the maximum value of

∑l
i=1 −pi ∗ log pi. In Example 2.3, pM1 obtains the

maximum entropy.
The intuition behind maximum entropy is that when selecting among multiple possible

distributions on a set of exclusive events, the one that does not favor any of the events over the
others is preferred. Hence, the distribution that does not introduce new information not known a
priori is preferred. The principle of maximum entropy is widely used in other areas such as natural
language processing.
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In summary, a p-mapping can be created in three steps. First, generate the weighted matchings
between every pair of attributes in the source schema S and the target schema T . Second, enumerate
all possible one-to-one schema mappings between S and T that contain a subset of matchings in m,
denoted by M1, . . . , Ml. Third, assign probabilities to the mappings by maximizing the entropy of
the result p-mapping; in other words, solve the following constraint optimization problem:

Maximize
l∑

k=1

−pk ∗ log pk subject to:

1. ∀k ∈ [1, l], 0 ≤ pk ≤ 1,

2.
l∑

k=1

pk = 1, and

3. ∀i , j :
∑

k∈[1, l], (i , j)∈Mk

pk = wi , j .

Query Answering
Before discussing query answering with respect to a p-med-schema and p-mappings, we first need
to define the semantics of p-mappings. Intuitively, a probabilistic schema mapping models the
uncertainty about which of the mappings in pM is the correct one. When a schema matching
system produces a set of candidate matches, there are two ways to interpret the uncertainty: (1) a
single mapping in pM is the correct one and it applies to all the data in S, or (2) several mappings
are partially correct and each is suitable for a subset of tuples in S, although it is not known which
mapping is the right one for a specific tuple.

Query answering is defined under both interpretations. The first interpretation is referred to
as the by-table semantics and the second one is referred to as the by-tuple semantics of probabilistic
mappings. Note that one cannot argue for one interpretation over the other; the needs of the
application should dictate the appropriate semantics. The next example illustrates the two semantics.

Example 2.4 Continue with Example 2.2 and consider an instance of S1 as follows.

FN DGT TT LT AGT

49 18:45 18:53 20:45 20:50
53 15:30 15:40 20:40 20:50

Recall that users can compose queries using any attribute in the source. Now consider query
Q: SELECT AT FROM Med3, where Med3 is given in Example 2.1. Consider the p-mapping in
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Example 2.2. Under the by-table semantics, each possible mapping is applied on all tuples in S1 and
it generates the following answer.

Probability

By-table Answer (AT) M1 M2 M3 M4 p-mapping

20:50 0.64 — 0.16 — 0.64+0.16=0.8

20:45 — 0.16 — 0.04 0.16+0.04=0.2
20:40 — 0.16 — 0.04 0.16+0.04=0.2

In contrast, under the by-tuple semantics, different possible mappings are applied on different
tuples in S1 and it generates the following answer (details skipped).

By-tuple Answer (AT) Probability

20:50 0.96
20:45 0.2
20:40 0.2

The definition for query answering with respect to p-mappings is a natural extension for
query answering with respect to normal mappings, reviewed next. A mapping defines a relationship
between instances of S and instances of T that are consistent with the mapping.

Definition 2.4 (Consistent Target Instance) [Abiteboul and Duschka 1998] Let M be a schema
mapping between source S and target T and DS be an instance of S.

An instance DT of T is said to be consistent with DS and M , if for each tuple tS ∈ DS, there
exists a tuple tT ∈ DT , such that for every attribute matching (as , at) ∈ M , the value of as in tS is
the same as the value of at in tT .

For a relation mapping M and a source instance DS, there can be an infinite number of target
instances that are consistent with DS and M . Denote by DT (DS , M) the set of all such target
instances. The set of answers to a query Q is the intersection of the answers on all instances in
DT (DS , M).

Definition 2.5 (Certain Answer) [Abiteboul and Duschka 1998] Let M be a relation mapping
between source S and target T . Let Q be a query over T and let DS be an instance of S.

A tuple t is said to be a certain answer of Q with respect to DS and M , if for every instance
DT ∈ DT (DS , M), t ∈ Q(DT ).

These notions can be generalized to the probabilistic setting, beginning with the by-table
semantics. Intuitively, a p-mapping pM describes a set of possible worlds, each with a possible
mapping M ∈ pM . In by-table semantics, a source table can fall in one of the possible worlds;
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that is, the possible mapping associated with that possible world applies to the whole source table.
Following this intuition, target instances that are consistent with the source instance are defined as
follows.

Definition 2.6 (By-table Consistent Instance) [Dong et al. 2009c] Let pM be a p-mapping
between source S and target T and DS be an instance of S.

An instance DT of T is said to be by-table consistent with DS and pM , if there exists a mapping
M ∈ pM such that DT is consistent with DS and M .

In the probabilistic context, a probability is assigned to every answer. Intuitively, the certain
answers are considered in isolation with respect to each possible mapping. The probability of an
answer t is the sum of the probabilities of the mappings for which t is deemed to be a certain answer.
By-table answers are defined as follows.

Definition 2.7 (By-table Answer) [Dong et al. 2009c] Let pM be a p-mapping between source
S and target T . Let Q be a query over T and let DS be an instance of S.

Let t be a tuple. Let m(t) be the subset of mappings in pM , such that for each M ∈ m(t) and
for each DT ∈ DT (DS , M), t ∈ Q(DT ).

Let p = ∑
M∈m(t) Pr(M). If p > 0, then (t , p) is a by-table answer of Q with respect to DS

and pM .

Under the possible-world notions, in by-tuple semantics, different tuples in a source table can
fall in different possible worlds; that is, different possible mappings associated with those possible
worlds can apply to the different source tuples.

Formally, the key difference in the definition of by-tuple semantics from that of by-table
semantics is that a consistent target instance is defined by a mapping sequence that assigns a (possibly
different) mapping in M to each source tuple in DS. (Without losing generality, in order to compare
between such sequences, some order is assigned to the tuples in the instance).

Definition 2.8 (By-tuple Consistent Instance) [Dong et al. 2009c] Let pM be a p-mapping
between source S and target T and let DS be an instance of S with d tuples.

An instance DT of T is said to be by-tuple consistent with DS and pM , if there is a sequence
〈M1, . . . , Md〉 such that d is the number of tuples in DS and for every 1 ≤ i ≤ d,

. Mi ∈ pM , and

. for the ith tuple of DS, ti, there exists a target tuple t ′
i
∈ DT such that for each attribute

matching (as , at) ∈ Mi, the value of as in ti is the same as the value of at in t ′
i
.
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Given a mapping sequence seq = 〈M1, . . . , Md〉, denote by DT (DS , seq) the set of all target
instances that are consistent with DS and seq. Note that if DT is by-table consistent with DS and M ,
then DT is also by-tuple consistent with DS and a mapping sequence in which each mapping is M .

One can think of every sequence of mappings seq = 〈M1, . . . , Md〉 as a separate event whose
probability is Pr(seq) = �d

i=1 Pr(Mi). If there are l mappings in pM , then there are ld sequences of
length d, and their probabilities add up to 1. Denote by seqd(pM) the set of mapping sequences of
length d generated from pM .

Definition 2.9 (By-tuple Answer) [Dong et al. 2009c] Let pM be a p-mapping between source
S and target T . Let Q be a query over T and DS be an instance of S with d tuples.

Let t be a tuple. Let seq(t) be the subset of seqd(pM), such that for each seq ∈ seq(t) and for
each DT ∈ DT (DS , seq), t ∈ Q(DT ).

Let p = ∑
seq∈seq(t) Pr(seq). If p > 0, then (t , p) is a by-tuple answer of Q with respect to DS

and pM .

The set of by-table answers for Q with respect to DS is denoted by Qtable(DS) and the set of
by-tuple answers for Q with respect to DS is denoted by Qtuple(DS).

In the case of by-table semantics, answering queries is conceptually simple. Given a p-mapping
pM between source S and target T and an SPJ query Q on T , compute the certain answers of Q

under each of the mappings M ∈ pM . Attach the probability Pr(M) to every certain answer under
M . If a tuple is an answer to Q under multiple mappings in pM , then add up the probabilities of
the different mappings.

To extend the by-table query-answering strategy to by-tuple semantics, one would need to
compute the certain answers for every mapping sequence generated by pM . However, the number
of such mapping sequences is exponential in the size of the input data. In fact, it is proved that in
general, answering SPJ queries in by-tuple semantics with respect to schema p-mappings is hard.

Theorem 2.1 [Dong et al. 2009c] Let pM be a p-mapping and let Q be an SPJ query.
. Answering Q with respect to pM in by-table semantics is in PTIME in the size of the data

and the mapping.

. The problem of finding the probability for a by-tuple answer to Q with respect to pM is
#P-complete in the size of the data and is in PTIME in the size of the mapping.

Proof. PTIME complexity is obvious. #P-hardness for by-tuple semantics in the size of the data
can be proved by reducing the problem of counting the number of variable assignments that satisfy
a bipartite monotone 2DNF boolean formula to the problem of finding the query answers.

Finally, consider the semantics of query answering with respect to a p-med-schema and a set
of p-mappings, each for a possible mediated schema. Intuitively, to compute query answers, one
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should first answer the query with respect to each possible mediated schema, and then for each
answer tuple take the sum of its probabilities weighted by the probabilities of the mediated schemas.
The formal definition for by-table semantics is as follows; the definition for by-tuple semantics is
similar.

Definition 2.10 (Query Answer Under P-med-schema and P-mappings) [Das Sarma et al. 2008]
Let S be a source schema and pMed = {(Med1, Pr(Med1)), . . . , (Medl , Pr(Medl))} be a p-med-
schema. Let pM = {pM(Med1), . . . , pM(Medl)} be a set of p-mappings where pM(Medi) is the
p-mapping between S and Medi. Let DS be an instance of S and Q be a query.

Let t be a tuple. Let Pr(t |Medi), i ∈ [1, l], be the probability of t in the answer of Q with
respect to Medi and pM(Medi). Let p = �l

i=1 Pr(t |Medi) ∗ Pr(Medi). If p > 0, then (t , p) is a
by-table answer with respect to pMed and pM.

All answers are denoted by QM, pM(DS).

Example 2.5 Consider the instance of S1 in Example 2.4 and query Q: SELECT AT FROM
M. Under the by-table semantics, the answers with respect to pMed in Example 2.1 and pM in
Example 2.2 are shown as follows.

By-table answer (AT) Med3 Med4 Final Probability

20:50 0.8 0.2 0.8*0.6+0.2*0.4=0.56

20:45 0.2 0.8 0.2*0.6+0.8*0.4=0.44
20:40 0.2 0.8 0.2*0.6+0.8*0.4=0.44

Such answers have two advantages: (1) answers with departure gate time and arrival gate time
and answers with takeoff time and landing time are treated equally, and (2) answers with the correct
correlation between departure time and arrival time are favored.

Main Results
Das Sarma et al. [2008] evaluate the proposed techniques on web tables crawled in five domains,
where each domain contains 50–800 web tables (i.e., data sources). The major results are as follows.

1. Comparing with an integration system where schema mappings are manually specified, the
proposed method obtains an F-measure over 0.9 in query answering on every domain.

2. The proposed method significantly improves the PR-curve over keyword search (for the same
recall, the precision often doubles), showing the benefit of leveraging the structure information
in a probabilistic manner.

3. Using a probabilistic mediated schema obtains better results than using a deterministic
mediated schema.
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4. System setup time increases linearly in the number of data sources, and finished in roughly
3.5 minutes for the domain with 817 data sources.

2.2.2 PAY-AS-YOU-GO USER FEEDBACK
A dataspace system starts with best-effort service by probabilistic schema alignment. As more queries
arrive, it would find the candidates where a precise mapping can help most and ask users or domain
experts to manually verify these mappings. There can be far too many candidates that can benefit
from user feedback; soliciting feedback for all of them is expensive and often unnecessary. The
challenge is thus to decide which is the best order to confirm candidate matches.

Jeffery et al. [2008] propose solving this problem using a decision-theoretic approach. The key
concept from decision theory used here is the value of perfect information (VPI) [Russell and Norvig
2010], which quantifies the potential benefit of determining the true value for some unknown.
We next explain in detail how the concept of VPI is applied in deciding the ordering of candidate
mappings for feedback.

Benefit of Confirming a Matching
Let � be a dataspace containing a set of data sources and matchings that are known between a pair of
attributes, a pair of entities, and a pair of values. Let � be a set of candidate matches not contained
in �. Denote the utility of the dataspace � with respect to � by U(�, �). The utility is aggregated
over a set of queries in the workload Q that have been observed in the query log. Each query Qi is
associated with a weight wi, decided by the frequency of the query or the importance of the query.
For each query Qi, its result quality over � and � is denoted by r(Q, �, �). The utility of � with
respect to � is computed as follows:

U(�, �) =
∑

(Qi ,wi)∈Q

wi
. r(Qi , �, �). (2.1)

Assume no query involves negation and only confirmed matchings are used to answer a query,
then knowing more mappings will improve the coverage of the answers. Accordingly, r(Q, �, �)

represents the coverage of the answers using the current dataspace � over that using the dataspace
enriched by the user feedback on �, denoted by � ∪ �p (�p ⊆ � are the correct matchings according
to user feedback).

r(Q, �, �) = |Q(�)|
|Q(� ∪ �p)| . (2.2)

Now consider the benefit of confirming a candidate match λ ∈ �. There are two possible
outcomes from the feedback: either λ is confirmed as correct or it is disconfirmed as incorrect. Denote
the two possible resulting dataspaces by �+

λ and �−
λ respectively. Assume with probability p the
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matching is correct; the probability can be computed according to the confidence from the automatic
matching results. The benefit of confirming λ can be computed using the following difference:

Benefit(λ) = U(�+
λ

, � \ {λ}) . p + U(�−
λ

, � \ {λ}) . (1 − p)

− U(�, �). (2.3)

Approximating the Benefit
Computing the benefit of confirming a matching λ requires estimating the coverage of a query, in
turn requiring the knowledge of the dataspace after user feedback on �, which is unknown. The
utility can be approximated by assuming that � contains only the mapping λ. Then Eq. (2.2) can
be rewritten as follows:

r(Q, �, �) = |Q(�)|
|Q(� ∪ {λ})|

. p + |Q(�)|
|Q(�)|

. (1 − p)

= |Q(�)|
|Q(� ∪ {λ})|

. p + (1 − p). (2.4)

On the other hand, since � = {λ}, it holds that

U(�+
λ

, � \ {λ}) = U(�−
λ

, � \ {λ}) =
∑

(Qi ,wi)∈Q

wi
. 1 = 1. (2.5)

Putting them together, the benefit can be rewritten as follows:

Benefit(λ) =
∑

(Qi ,wi)∈Q

wi

(
p + (1 − p) − (

|Q(�)|
|Q(� ∪ {λ})|

. p + (1 − p))

)

=
∑

(Qi ,wi)∈Q

wi
. p

(
1 − |Q(�)|

|Q(� ∪ {λ})|
)

(2.6)

Finally, since it is assumed that � = {λ}, only queries that contain one of the elements in λ

need to be considered, as other queries will not be affected. Denote such queries by Qλ; thus,

Benefit(λ) =
∑

(Qi ,wi)∈Qλ

wi
. p

(
1 − |Q(�)|

|Q(� ∪ {λ})|
)

. (2.7)

Order the matchings by their benefits and user feedback should be obtained first on high-
benefit matchings.

Example 2.6 Consider an instance of S1 in Example 2.4, denoted by D(S1), and Med3 in Exam-
ple 2.1. Consider a candidate attribute matching λ = (AGT, AAGT) with probability 0.8 being true.
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Assume only two queries have been observed relevant to λ. Query Q1: SELECT AT FROM Med3

has weight 0.9; query Q2: SELECT AGT FROM Med3 has weight 0.5.
For Q1, without matching λ no answer can be obtained from D(S1); thus, |Q1(�)| = 0. Once

λ is known, all answers can be obtained and so |Q1(� ∪ {λ})| = 1. For Q2, however, even without
matching λ all answers can still be obtained from D(S1); thus, |Q2(�)| = |Q2(� ∪ {λ})| = 1.
Applying Eq. (2.7), the benefit of λ is

Benefit(m) = 0.9 ∗ 0.8 ∗
(

1 − 0
1

)
+ 0.5 ∗ 0.8 ∗

(
1 − 1

1

)
= 0.72.

Main Results
Jeffery et al. [2008] evaluate the proposed algorithm on a data set derived from Google Base
(http://base.google.com). There are two major results.

1. The proposed method is effective: after confirming the top 10% of the candidate matchings,
it improves the coverage by 17.2%, and after confirming the top 20% matchings, it already
reaches 95% of the potential benefit obtained by getting feedback on all candidate matchings.

2. The proposed approximation is significantly better than baseline methods that sum the
weights, count the number of affected tuples, or use a random ordering. Its performance
is close to using an oracle that already knows the results of running the entire query load.

2.3 ADDRESSING THE VARIETY AND VOLUME CHALLENGES
The proliferation of the web provides huge volume of structured data; realizing the full potential of
such data requires seamless integration. However, the data are at web scale, the border between the
different domains is fuzzy and the variety within each domain is huge, and at every moment a new
web source may appear or an existing web source may disappear. All these present big challenges for
schema alignment.

This section describes recent progress in integrating two types of structured data on the web.
Section 2.3.1 describes integrating deep web data, and Section 2.3.2 describes integrating tabular
data on the web. We describe how the proposed methods address the volume and variety challenges
in big data.

2.3.1 INTEGRATING DEEP WEB DATA
The deep web refers to data stored in underlying databases and queried by HTML forms. As an
example, Figure 2.4 shows the web form to search flights at Orbitz.com. Cafarella et al. [2011]
estimated that deep web data generated more than 1 B web pages.

http://base.google.com
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FIGURE 2.4: Example web form for searching flights at Orbitz.com (accessed on April 1, 2014).

There are two common approaches for offering access to deep web data. The first is a data
integration solution that builds vertical search engines. Chuang and Chang [2008] propose building
holistic schema matching for web forms. The hypothesis is that there is an underlying domain
schema, and each source populates its data by projecting on a subset of attributes and selecting
a subset of tuples. As a result, discovering schema matching can be achieved by constructing a
complete domain schema that best describes all input data, and each attribute in this domain schema
is essentially a group of attributes from different sources that have the same semantic meaning.
This approach shares some similarity with constructing probabilistic mediated schema described in
Section 2.2; we skip the details here.

The second approach is surfacing. Madhavan et al. [2008] propose pre-computing the most
relevant form submissions for all interesting HTML forms. The URLs resulting from these sub-
missions are generated off-line and indexed like any other HTML webpage. This approach allows
seamless inclusion of deep-web data in web search: when a user decides from the snippet of search
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results that some deep-web content is relevant, she would click on the answer and be directed to the
underlying web site for fresh content. We next describe this technique in more detail.

There are two key problems to solve in surfacing the deep web. First, one needs to decide
which form inputs to fill when submitting queries to a form. Second, one needs to find appropriate
values to fill in these inputs. HTML forms typically have more than one input and hence a naive
strategy of enumerating the entire Cartesian product of all possible inputs can result in a very large
number of URLs being generated. Crawling too many URLs would drain the resources of a web
crawler and pose an unreasonable load on web servers hosting the HTML forms. On the other hand,
among the Cartesian product, very likely a large number of the result pages are empty and hence
useless from an indexing standpoint. For example, Madhavan et al. [2008] show that a particular
search form on cars.com has 5 inputs and a Cartesian product yields over 240M URLs, but there
are only 650K cars on sale.

Consider modeling the content behind a web form as a database D with a single table of m

attributes, and the web form FD that is used to query D as having n inputs: X1, . . . , Xn. A form
submission takes values for each of the inputs and returns a subset of the records in D. The notion
of query templates designates a subset of the inputs of FD as binding inputs and the rest as free inputs.
Multiple form submissions can be generated by assigning different values to the binding inputs. In
the example web form, one may use From, To, Leave, and Return as binding inputs, and set default
values for the rest of the free inputs.

Now the problem of surfacing a deep-web site can be divided into two subproblems.

1. Selecting an appropriate set of query templates.

2. Selecting appropriate input values for the binding inputs; that is, instantiating the query
template with actual values. For a select menu, use all values in the menu; for a text input, the
values need to be predicted without prior knowledge of the domains of the values.

Selecting Query Templates
When selecting templates, it is desirable to select templates that do not contain any presentation
inputs as binding inputs, because these templates retrieve the same underlying records as the
corresponding template without the presentation inputs. In addition, it is desirable to use the correct
dimension (i.e., the number of binding variables); too many dimensions increases crawling traffic
and may produce many results that are empty, whereas too few dimensions may return too many
records and go beyond the limit that the website allows for retrieval per query.

A query template is evaluated based on the distinctness of the web pages resulting from the
form submissions it generates. If the number of distinct web pages is small in comparison with the
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Algorithm 2.1: ISIT: Incremental search for informative query templates
[Madhavan et al. 2008]

Input: web form F .
Output: set T of informative templates.

1 I = GetCandidateInputs(F )

2 Q = {T | T .binding = {I }, I ∈ I}
3 T = ∅
4 while Q �= ∅ do
5 T = Pop(Q )

6 if CheckInformative(T , F) then
7 T = T ∪ {T }
8 Q = Q ∪ {T ′ | T ′.binding = T .binding ∪ {I }, I �∈ T .binding}
9 endif

10 endwhile

number of form submissions, it is very likely that either the template includes a presentation input, or
the template dimension is too high and many answer pages have no record. A template is considered
informative if the generated pages are sufficiently distinct. Specifically, a signature is computed for
the contents of the answer web pages and a template is deemed to be uninformative if the percentage
of signatures over all submissions is lower than a threshold τ . The details of signature generation
are less important; however, they should be agnostic to HTML formatting, record ordering, and
tolerant to minor differences in page contents (e.g., advertisements).

Definition 2.11 (Informative query template) [Madhavan et al. 2008] Let T be a query template
and Sig be a function that computes signatures for HTML pages. Let G be the set of all answer
pages from possible submissions according to T and S = {Sig(p)|p ∈ G}.

Template T is informative if |S|
|G| ≥ τ . The ratio |S|

|G| is called the distinctness fraction.

Algorithm ISIT shows how to find informative templates. Start with candidate templates
of dimension 1: for binding inputs choose values from select menus and for the text boxes; for free
inputs use default values (line 2). For each candidate, check if it is informative (line 6). An informative
candidate will be recorded for returning (line 7), and augmented by increasing the dimension by 1
(line 8). Terminate when there are no informative templates of a given dimension (line 4).

Note that it is possible that none of the one-dimensional query templates is informative but
there exist informative two-dimensional templates. In our example, only if one specifies both From

and To does the web form search return meaningful results; in other words, for any one-dimensional
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template, |S| = 0. A practical solution is to test templates of dimension two when none of the
one-dimensional templates is deemed informative.

Generating Input Values
A large number of HTML forms have text boxes. In addition, some forms with select menus require
valid values in their text boxes before any result can be retrieved. Consider generic text boxes where
the words entered in the text box are used to retrieve all documents in a backend text database
that contain those words. An iterative probing approach can be applied to identify the candidate
keywords for a text box.

At a high level, the algorithm proceeds in three steps.

1. Start by finding an initial seed set of words as values for the text box and construct a query
template with the text box as the single binding input. To cover all possible languages, select
the seeds from the words on the form page.

2. Generate the corresponding form submissions and extract additional keywords from the
resulting documents. The extracted keywords are then used to update the candidate values for
the text box.

3. Repeat Step 2 until either not being able to extract further keywords, or reaching an alternate
stopping condition (e.g., reaching the maximum number of iterations or the maximum
number of extracted keywords). On termination, a subset of the candidate keywords is chosen
as the set of values for the text box.

In the example in Figure 2.4, there are city names such as Las Vegas on the entrance webpage
of Orbitz.com and they can be used as input for From and To. From the results the algorithm would
iteratively extract more city names, such as from connection cities.

Main Results
Madhavan et al. [2008] evaluate the proposed algorithm on a sample of 500,000 HTML forms and
the major results are as follows.

1. Algorithm ISIT effectively generates templates. As the number of inputs increases, the
number of possible templates increases exponentially; however, the number of templates ISIT
tests increases only linearly, and so does the number of templates found to be informative.

2. Testing informativeness can reduce the number of generated URLs per form by an order of
magnitude.

3. The proposed method for generating input values can achieve good coverage of the underlying
database.
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4. Generating values only for text boxes can retrieve many more records than using only select
menus, showing the important role of value generation for text boxes.

2.3.2 INTEGRATING WEB TABLES
Web tables refer to relational data in tabular form on the web. As an example, Figure 2.5 shows a
web table about major airlines of the world. Cafarella et al. [2008a] estimate that after filtering out
tables that are used for page layout or other non-relational reasons, there are 154M distinct web
tables from English-language documents in Google’s main index (Section 1.2.5).

FIGURE 2.5: Example web table (Airlines) with some major airlines of the world (accessed on April 1, 2014).
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Web tables are different from deep web data: they are HTML tables that are already crawlable
without filling in any form; typically each web table is small. The two sets of data intersect, but
neither contains the other. Web tables are also different from relational databases. Web tables do
not have clearly specified schemas; the semantics are often encoded in the column caption, which
can sometimes be missing. Also, not every row necessarily corresponds to a tuple in a relational
database; in the example in Figure 2.5, two rows indicate the regions for the airlines in the rows
below them.

Three topics have been studied for leveraging web table data. The first is keyword search on
web tables, where the goal is to return highly relevant tables in answers to a keyword search [Cafarella
et al. 2008a, Pimplikar and Sarawagi 2012]. The second is to find relevant tables, where the goal is
to return tables that have similar or complementary data to the table edited by the user, to possibly
provide reference [Das Sarma et al. 2012]. The third is to extract knowledge from web tables,
where the goal is to extract (entity, property, value) triples that can be used to populate knowledge
bases [Limaye et al. 2010, Suchanek et al. 2011, Venetis et al. 2011, Zhang and Chakrabarti 2013].
We next describe techniques for each topic.

Note that similar problems have been studied for web lists [Elmeleegy et al. 2011, Gupta and
Sarawagi 2009]; we skip the details in this book.

Keyword Search on Web Tables
The goal of keyword search on web tables is to accept user keyword queries and rank web tables by
relevance. Cafarella et al. [2008a] propose a linear regression model and Pimplikar and Sarawagi
[2012] propose a graphical model to solve the problem. Here we describe the techniques for the
WebTables search engine [Cafarella et al. 2008a].

Ranking for web tables poses a unique set of challenges: frequent words in the webpage that
contains a web table may be different from what the web table describes; attribute labels in the
web tables are extremely important to understand the table but may not appear frequently; even
a webpage with high quality in general may contain tables of varying quality. As a result, a naive
ranking strategy that simply returns the webpages that best match the keyword search does not work
well. To address these challenges, Cafarella et al. [2008a] propose two ranking functions that do not
rely on existing search engines.

FeatureRank considers a set of relation-specific features listed in Table 2.1. It numerically
combines the different feature scores using a linear regression estimator. The estimator was
trained on a training set containing more than a thousand (q, relation) pairs, each judged
by two human judges with a score in [1, 5] indicating the relevance. The two most heavily
weighted features are the number of hits in each table’s header and the number of hits in
each table’s leftmost column. The former fits the intuition that attribute labels form a strong
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TABLE 2.1: Selected text-derived features used in search rankers. The
most important features are in italic [Cafarella et al. 2008a]

No. of rows
No. of columns
Has-header?
No. of NULLs in table
Document-search rank of source page
No. of Hits on header

No. of Hits on leftmost column

No. of Hits on second-to-leftmost column
No. of Hits on table body

indicator of a table’s subject matter. The latter indicates that values in the leftmost column
often act as a “semantic key”, providing a useful summary of the contents of a table row.

SchemaRank is the same as FeatureRank, except that it also includes a score indicating the
coherence of a schema as a feature. Intuitively, a coherent schema is one where the attributes
are all tightly related to one another. For example, a schema that consists of the attributes gate

and terminal is coherent, but one with gate and address is much less coherent.

Coherency is measured by Pointwise Mutual Information (PMI), which is often used in
computational linguistics and web text search to quantify how strongly two items are related [Turney
2001]. The PMI of the schema is computed as the average PMI of every pair of attributes in the
schema, which is computed from the frequency of each attribute and the frequency of co-occurrences
of two attributes. Formally, let A1 and A2 be two attributes. Denote by p(Ai) the fraction of unique
schemas containing Ai and by p(A1, A2) the fraction of unique schemas containing both A1 and
A2. Compute the PMI of a schema S with attributes A as follows:

PMI (S) = Avg
A1,A2∈A,A1�=A2

log
p(A1, A2)

p(A1) . p(A2)
. (2.8)

Example 2.7 Consider four web tables with the following schemas.

T1(FI, SDT, SAT)
T2(FI, SDT, SAT, ADT, AAT)
T3(FI, FC, F)

T4(AC, AN, ACI, ACO)
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For attributes SDT and SAT, the PMI is computed as follows. According to the schemas,
p(SDT) = 0.5, p(SAT) = 0.5, p(SDT, SAT) = 0.5; thus, PMI (SDT, SAT) = log 0.5

0.5 ∗ 0.5 = 1.
On the other hand, for attributes FI and SDT, p(FI) = 0.75, p(SDT) = 0.5, p(FI, SDT) = 0.5;

thus, PMI (FI, SDT) = log 0.5
0.5 ∗ 0.75 = 0.42. Intuitively, SDT is more coherent with SAT than with FI.

Finally, the coherence for T1 is Avg{1, 0.42, 0.42} = 0.61.

Main results. Cafarella et al. [2008a] show that FeatureRank significantly improves over using
web search ranking, whereas SchemaRank obtains even better results than FeatureRank.

Finding Related Web Tables
Das Sarma et al. [2012] describe a framework for discovering tables in a corpus that are related to a
given table. This problem is challenging for two reasons. First, the schemas of web tables are partial
at best and extremely heterogeneous. In some cases the crucial aspects of the schema that are needed
for reasoning about relatedness are embedded in text surrounding the tables or textual descriptions
attached to them. Second, one needs to consider different ways and degrees to which data can be
related. The following example illustrates the latter challenge.

Example 2.8 Consider the two CapitalCity tables in Figure 2.6. One of them lists major cities in
Asia and the other lists cities in Africa. They are related: their schemas are identical, and they provide
complementary sets of entities. Their union would produce a meaningful table.

On the other hand, consider these two tables and the Airlines table in Figure 2.5. The Airlines

table describes major airlines and their headquarter cities. Some of the cities, such as Doha, are
capital cities and information such as population is provided in the CapitalCity tables. The join of
these tables would produce a meaningful table.

In general, two tables are considered as related to each other if they can be viewed as results
to queries over the same (possibly hypothetical) original table. In particular, consider two most
common types of related tables: entity complement and schema complement , resulting from applying
different selection or projection conditions in similar structured queries, respectively, over the same
underlying virtual table. In a sense, finding related tables can be viewed as reverse-engineering
vertical/horizontal fragmentation in distributed databases. They are formally defined as follows.

Definition 2.12 (Entity complement) [Das Sarma et al. 2012] Let T1 and T2 be two tables. They
are entity complement if there exists a coherent virtual table T , such that Q1(T ) = T1 and Q2(T ) = T2,
where

1. Qi takes the form Qi(T ) = σPi(X)(T ), where X contains a set of attributes in T and Pi is a
selection predicate over X;
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(b)

(a)

FIGURE 2.6: Two web tables (CapitalCity) describing major cities in Asia and in Africa from nationsonline.org
(accessed on April 1, 2014).

www.allitebooks.com

http://www.allitebooks.org
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2. T1 ∪ T2 covers all entities in T and T1 �= T2; and

3. optionally, each Qi renames or projects a set of attributes and both include the key attribute X.

Definition 2.13 (Schema complement) [Das Sarma et al. 2012] Let T1 and T2 be two tables.
They are schema complement if there exists a coherent virtual table T , such that Q1(T ) = T1 and
Q2(T ) = T2, where

1. Qi takes the form Qi(T ) = �Ai
(T ), where Ai is the set of attributes (with optionally renam-

ing) to be projected;

2. A1 ∪ A2 covers all attributes in T , A1 ∩ A2 covers the key attribute in T , and A1 �= A2;

3. optionally, each Qi applies a fixed selection predicate P over the set of key attributes.

Formally, the problem of finding related tables is defined as follows.

Definition 2.14 (Finding related tables) [Das Sarma et al. 2012] Let T be a corpus of tables, T

be a query table, k be a constant. The problem selects k tables T1, . . . , Tk ∈ T with the highest
relatedness score of entity complement (schema complement) with T .

Several criteria can be considered in finding related tables. For entity complement tables, there
are three criteria.

Entity consistency. A related table T ′ should have the same type of entities as T , as required
by the coherence of the virtual table T and closeness of Q1 and Q2 in Definition 2.12. For
example, entities in the two tables in Figure 2.6 are both capital cities in the world. Das Sarma
et al. [2012] use reference sources such as Freebase [Bollacker et al. 2008] to decide type of
entities for type comparison.

Entity expansion. T ′ should substantially add new entities to those in T , as required by the
second bullet in Definition 2.12. For example, entities in the two tables in Figure 2.6 are capital
cities from different continents. Das Sarma et al. [2012] measure this by set comparison.

Schema consistency. The two tables should have similar (if not the same) schemas, thereby
describing similar properties of the entities, as required by the third bullet in Definition 2.12.
Das Sarma et al. [2012] apply state-of-the-art schema mapping techniques to obtain a schema
consistency score.

For schema complement, there are two criteria.

Coverage of entity set. T ′ should consist of most of the entities in T , if not all of them. This is
required by the third bullet in Definition 2.13. Das Sarma et al. [2012] compute this metric
by first applying entity mapping (or mapping entities in both tables to a reference data source
such as Freebase), and then computing the coverage of T ′ regarding entities in T .
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Benefit of additional attributes. T ′ should contain additional attributes that are not contained in
T ’s schema. This is required by the second bullet in Definition 2.13. Das Sarma et al. [2012]
quantify the benefit by combining the consistency and number of T ′’s additional attributes,
where the former can be computed using metrics similar to PMI introduced in Section 2.3.2.

Main results. Das Sarma et al. [2012] experimented on Wikipedia tables. They show the effec-
tiveness of their selection criteria and also show that the number of related tables roughly follows a
power-law distribution.

Extracting Knowledge from Web Tables
Web tables contain structured data that are often carefully edited and so of high quality. Each row
in a web table typically presents an entity, each column typically presents a property of the entities,
and each cell typically presents the value for the corresponding property of the corresponding entity.
It is desirable to extract such structured information from the web and the results can be used to
facilitate search or populate knowledge bases.

As a first step towards knowledge extraction, there has been a lot of work describing annotating
entities, types, and relationships in web tables [Limaye et al. 2010, Suchanek et al. 2011, Venetis
et al. 2011, Zhang and Chakrabarti 2013]. Here we describe the graphical-model based solution
proposed in [Limaye et al. 2010]. This approach assumes an external catalog such as Freebase and
the goal is to annotate each table in the following ways.

. Annotate each column of the table with one or more types. If a column is deemed not to have
any type in the catalog, determine that as well.

. Annotate each pair of columns with a binary relation in the catalog. If two columns are not
involved in any binary relation in the catalog, determine that as well.

. Annotate each table cell with an entity ID in the catalog when applicable.

The solution models the table annotation problem using a number of interrelated random
variables following a suitable joint distribution, represented by a probabilistic graphical model as
shown in Figure 2.7. The task of annotation then amounts to searching for an assignment of values
to the variables that maximizes the joint probability. We next describe the graphical model in more
detail.

Variables. There are three variables, shown as follows.

tc the type of column c

bcc′ the relation between column pairs c and c′

erc the entity label for a cell in row r and column c
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t1

b12 b13

t3

e11 e12 e13

e21 e22 e23

e31 e32 e33
φ3(t3, e33)

φ5(b23, e32, e33)

φ4(b23, t2, t3)

φ1(1, 1, e11)

φ2(1, t1)

b23

t2

FIGURE 2.7: Graphical model for annotating a 3x3 web table [Limaye et al. 2010].

Features. Intuitively, assigning values to the variables tc, bcc′, and erc needs to take into consider-
ation several signals. Following the framework of graphical models, these signals are represented as
features, and models are trained to learn how to combine these signals with suitable weights. These
features and weights are used to define potential functions over subsets of variables, and the product
of these potentials gives the joint distribution over all variables. The following table lists the five
types of features.

φ1(r , c, erc) Captures whether the text for cell (r , c) matches the entity erc.

φ2(c, tc) Captures whether the header text for column c describes a property of
type tc.

φ3(tc , erc) Captures whether the entity erc for row r and column c has type tc for
column c.

φ4(bcc′ , tc , tc′) Captures whether the relation bcc′ between columns c and c′ is
compatible with the types tc and tc′.

φ5(bcc′ , erc , erc′) Captures whether the relation bcc′ between the two cells at (r , c) and
(r , c′) is compatible with the two entities erc and erc′.

Main results. Limaye et al. [2010] experiment on annotating web tables using YAGO schema and
entities [Suchanek et al. 2007]. They show that the graphical model obtains a higher accuracy than
baseline methods including least common ancestor and majority voting.





63

C H A P T E R 3

Record Linkage

The second component of data integration is record linkage. Even after the schemas of different
sources have been aligned, when different sources provide values for the same attribute of the same
entity, these values may differ due to mis-typing, multiple naming conventions, and so on. To
illustrate, in our Flights example in Chapter 1, flight numbers are represented in source Airline2 using
digits (e.g., 53 in r32), while they are represented in source Airfare4 using alphanumerics (e.g., A2-
53 in r64). Similarly, airports are represented in source Airline2 using 3-letter codes (e.g., EWR and
SFO in r32), but as descriptive strings in Airfare4.Flight (e.g., Newark Liberty and San Francisco in r64).
These representational differences make it hard to link records r32 and r64, even though they refer
to the same entity. The goal of record linkage is to decide which records refer to the same entity, and
which refer to different entities.

In traditional record linkage, the goal is typically to link millions of records obtained from
tens to hundreds of data sources; thus, a brute force approach that compares every pair of records
is infeasible. Section 3.1 presents a quick tour of traditional record linkage, highlighting the role
that each of blocking, pairwise matching, and clustering plays in the process, before focusing on the
impact of the various facets of BDI on record linkage.

The big data environment makes the record linkage problem even more challenging: the
number of data sources available for integration is now in the millions, a vast number of which are
unstructured sources with textual data; the data in these sources dynamically change, and have a lot
of representational differences and errors. These challenges in volume, velocity, variety and veracity
of big data call for new record linkage techniques.

Section 3.2 discusses two techniques that have been proposed to address the challenge of
volume: one where MapReduce is used to effectively parallelize record linkage, and the other which
analyzes the results of blocking to reduce the number of pairwise matchings performed.

Then, Section 3.3 shows that incremental record linkage is necessary to effectively address the
challenge of velocity, and describes recent techniques that allow efficient incremental linkage under
insertions, deletions and modifications of records.

Section 3.4 describes a record linkage approach to address the variety challenge of BDI, for
the case where unstructured text snippets need to be linked to structured data.
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Finally, Section 3.5 presents record linkage techniques to address the veracity challenge,
for two scenarios: one where entities evolve over time requiring record linkage to be time-aware,
and the other that shows promising results in the presence of both erroneous data and multiple
representations of the same attribute value.

3.1 TRADITIONAL RECORD LINKAGE: A QUICK TOUR
We first formally define the problem of record linkage in data integration. Let E denote a set of
entities in a domain, described using a set of attributes A. Each entity E ∈ E is associated with zero,
one or more values for each attribute A ∈ A. We consider a set of data sources S. For each entity
in E, a source S ∈ S provides zero, one or more records over the attributes A, where each record
provides at most one value for an attribute.1 We consider atomic values (string, number, date, time,
etc.) as attribute values, and allow multiple representations of the same value, as well as erroneous
values, in records. The goal of record linkage is to take the records provided by the sources as input
and decide which records refer to the same entity.

Definition 3.1 (Record Linkage) Consider a set of data sources S, providing a set of records R
over a set of attributes A. Record linkage computes a partitioning P of R, such that each partition
in P identifies the records in R that refer to a distinct entity.

Example 3.1 Consider our illustrative Flights domain. The entities in that domain are individual
flights, which are associated with attributes Airline (AL), Flight Number (FN), Departure Airport (DA),
Departure Date (DD), Departure Time (DT), Arrival Airport (AA), Arrival Date (AD), and Arrival Time (AT).

A sample input set of records r211-r215, r221-r224, r231-r233 for record linkage is shown in
Table 3.1. These may have been obtained from multiple sources, but schema alignment can be
assumed to have been successfully performed.

Record linkage computes a partitioning, where records r211-r215 refer to the same entity
(depicted using the shared yellow color), r221-r224 refer to the same entity (depicted using the shared
red color), and r231-r233 refer to the same entity (depicted using the shared green color). Erroneous
attribute values are depicted in bold font and red color (e.g., Arrival Date of record r212, Airline of r214).
Small differences between the values of Departure Time in records that refer to the same entity are
often acceptable (e.g., 15:30, 15:37, 15:28, and 15:25 in r221–r224); similarly for Arrival Time. This
is because the records come from different sources that may use independent observers (e.g., airline
pilot, airport control tower) or slightly different semantics (e.g., gate departure time, takeoff time);
this is common in real sources.

1. This relies on the schemas of the sources having been aligned.
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TABLE 3.1: Sample Flights records

AL FN DA DD DT AA AD AT

r211 A2 53 SFO 2014-02-08 15:35 EWR 2014-02-08 23:55
r212 A2 53 SFO 2014-02-08 15:25 EWR 2014-02-08 00:05

r213 A2 53 SFO 2014-02-08 15:27 EWR 2014-02-09 00:09
r214 A1 53 SFO 2014-02-08 15:15 EWR 2014-02-08 23:30

r215 A2 53 SFO 2014-03-08 15:27 EWR 2014-02-08 23:55
r221 A2 53 SFO 2014-03-09 15:30 EWR 2014-03-09 23:45
r222 A2 53 SFO 2014-03-09 15:37 EWR 2014-03-09 23:40

r223 A2 53 SFO 2014-03-09 15:28 EWR 2014-03-09 23:37
r224 A2 53 SFO 2014-03-08 15:25 EWR 2014-03-09 23:35

r231 A1 49 EWR 2014-02-08 18:45 SFO 2014-02-08 21:40
r232 A1 49 EWR 2014-02-08 18:30 SFO 2014-02-08 21:37

r233 A1 49 EWR 2014-02-08 18:30 SAN 2014-02-08 21:30

Blocking
Pairwise
matching

Clustering

FIGURE 3.1: Traditional record linkage: three steps.

Record linkage consists of three main steps: blocking, pairwise matching, and clustering,
depicted in Figure 3.1. We will describe each of these steps in more detail next, but it is worth
keeping in mind that pairwise matching and clustering are used to ensure the semantics of record
linkage, while blocking is used to achieve scalability.

3.1.1 PAIRWISE MATCHING
The basic step of record linkage is pairwise matching, which compares a pair of records and makes
a local decision of whether or not they refer to the same entity. A variety of techniques have been
proposed for this step.

Rule-based approaches [Hernández and Stolfo 1998, Fan et al. 2009] have been commonly
used for this step in practice, and apply domain knowledge to make the local decision. For example,
in the illustrative example shown in Table 3.1, a useful rule that can achieve pairwise matching of
r211 and r212, while ensuring that r211 and r221 do not match, might be:
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If two records share the values of Airline, Flight Number, Departure Airport, and Arrival Airport, and also
share either the value of Departure Date or Arrival Date, then declare a match; otherwise, declare a
non-match.

The advantage of this approach is that the rule can be tailored to effectively deal with complex
matching scenarios. However, a key disadvantage of this approach is that it requires considerable
domain knowledge as well as knowledge about the data to formulate the pairwise matching rule,
rendering it ineffective when the records contain errors. For example, the above rule is inadequate
to achieve pairwise matching of r211 and r214 (since r214 has an incorrect value of Airline), while
it incorrectly matches records r215 and r224 (since both records have the same incorrect value of
Departure Date).

Classification-based approaches have also been used for this step since the seminal paper by
Fellegi and Sunter [1969], wherein a classifier is built using positive and negative training examples,
and the classifier decides whether a pair of records is a match or a non-match; it is also possible for
the classifier to output a possible-match, in which case the local decision is turned over to a human.
Such classification-based machine learning approaches have the advantage that they do not require
significant domain knowledge about the domain and the data, only knowledge of whether a pair
of records in the training data refers to the same entity or not. A disadvantage of this approach is
that it often requires a large number of training examples to accurately train the classifier, though
active learning based variations [Sarawagi and Bhamidipaty 2002] are often effective at reducing the
volume of training data needed.

Finally, distance-based approaches [Elmagarmid et al. 2007] apply distance metrics to com-
pute dissimilarity of corresponding attribute values (e.g., using Levenstein distance for computing
dissimilarity of strings, and Euclidean distance for computing dissimilarity of numeric attributes),
and take the weighted sum as the record-level distance. Low and high thresholds are used to declare
matches, non-matches and possible matches. A key advantage of this approach is that the domain
knowledge is limited to formulating distance metrics on atomic attributes, which can be potentially
reused for a large variety of entity domains. A disadvantage of this approach is that it is a blunt
hammer, which often requires careful parameter tuning (e.g., what should the weights on individual
attributes be for the weighted sum, what should the low and high thresholds be), although machine
learning approaches can often be used to tune the parameters in a principled fashion.

Example 3.2 Consider the set of records shown in Table 3.1, and the following simple distance-
based measure with thresholding for pairwise distance between records.

If corresponding attribute values are the same for a pair of records, the distance between them
is 0, else the distance between them is 1. Using weight 1 for each of the attributes Airline, Flight

Number, Departure Airport, Departure Date, Arrival Airport, and Arrival Date, and weight 0 for each of
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FIGURE 3.2: Pairwise matching graph.

the attributes Departure Time and Arrival Time, compute the record-level distance as the weighted
sum of the corresponding attribute-level distances. If the distance between two records is at most
1 (low threshold) then declare a match; otherwise, declare a non-match.

A graph showing the pairwise distance between records is depicted in Figure 3.2. The solid lines
indicate that the distance between the corresponding records is 0, and the dashed lines indicate that
the distance between the corresponding records is 1.

3.1.2 CLUSTERING
The local decisions of match or non-match made by the pairwise matching step may not be globally
consistent. For example, there is an inconsistency if pairwise matching declares that record pair R1

and R2 match, record pair R2 and R3 match, but record pair R1 and R3 do not match. In such a
scenario, the purpose of the clustering step is to reach a globally consistent decision of how to partition
the set of all records such that each partition refers to a distinct entity, and different partitions refer
to different entities.

This step first constructs a pairwise matching graph G, where each node corresponds to a
distinct record R ∈ R, and there is an undirected edge (R1, R2) if and only if the pairwise matching
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step declares a match between R1 and R2. A clustering of G partitions the nodes into pairwise disjoint
subsets based on the edges that are present in G. There exists a wealth of literature on clustering
algorithms for record linkage [Hassanzadeh et al. 2009]. These clustering algorithms tend not to
constrain the number of clusters in the output, since the number of entities in the data set is typically
not known a priori.

One of the simplest graph clustering strategies efficiently clusters graph G into connected
components by a single scan of the edges in the graph [Hernández and Stolfo 1998]. Essentially,
this strategy places a high trust on the local match decision, so even a few erroneous match decisions
can significantly alter the results of record linkage. Example 3.3 illustrates this scenario.

At the other extreme, a robust but expensive graph clustering algorithm is correlation clus-
tering [Bansal et al. 2004]. The goal of correlation clustering is to find a partition of nodes in G

that minimizes disagreements between the clustering and the edges in G, as follows. For each pair of
nodes in the same cluster that are not connected by an edge, there is a cohesion penalty of 1; for each
pair of nodes in different clusters that are connected by an edge, there is a correlation penalty of 1.
Correlation clustering seeks to compute the clustering that minimizes the overall sum of the penal-
ties (i.e., the disagreements). It has been proved that correlation clustering is NP-complete [Bansal
et al. 2004], and many efficient approximation algorithms have been proposed for this problem (e.g.,
Bansal et al. 2004, Charikar et al. 2003).

Example 3.3 Continue with Example 3.2, and the pairwise matching graph shown in Figure 3.2.
First, observe that the set of local decisions made by pairwise matching are globally inconsistent.

Second, clustering the graph into connected components would incorrectly declare that the
nine records r211-r224 all refer to the same entity, because of the spurious edge between r215 and r224.

Third, the use of correlation clustering could correctly obtain three clusters of records,
corresponding to the three flights: r211-r215, r221-r224, and r231-r233. This solution has a cohesion
penalty of 3 (due to the missing edges (r213, r214), (r213, r215), (r214, r215) in the first cluster) and a
correlation penalty of 1 (due to the extra edge (r215, r224) between the first and the second cluster),
for an overall sum of penalties of 4. This is the minimum total penalty among all clusterings of this
graph. For example, the total penalty of the connected components clustering is 22.

3.1.3 BLOCKING
Pairwise matching and clustering together ensure the desired semantics of record linkage, but may
be quite inefficient and even infeasible for a large set of records. The main source of inefficiency is
that pairwise matching appears to require a quadratic number of record pair comparisons to decide
which record pairs are matches and which are non-matches. When the number of records is even
moderately large (e.g., millions), the number of pairwise comparisons becomes prohibitively large.
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FIGURE 3.3: Use of a single blocking function.

Blocking was proposed as a strategy to scale record linkage to large data sets [Bitton and
DeWitt 1983, Hernández and Stolfo 1998]. The basic idea is to utilize a blocking function on the
values of one or more attributes to partition the input records into multiple small blocks, and restrict
the subsequent pairwise matching to records in the same block.

Example 3.4 Consider the records in Table 3.1. They could be partitioned by using a blocking
function that is the composition of values of the attributes (Departure Airport, Departure Date). Fig-
ure 3.3 illustrates the partitioning of records achieved using this blocking function.

The advantage of this strategy is that it can significantly reduce the number of pairwise
comparisons needed, and make record linkage feasible and efficient even for large data sets. In our
example, the number of pairwise comparisons would reduce from 66 (when comparing every pair of
12 records) to 13.

The disadvantage of this strategy is false negatives: if there are incorrect values or multiple
representations in the value of any attribute used by the blocking function, records that ought to refer
to the same entity may end up with different blocking key values, and hence could not be discovered
to refer to the same entity by subsequent pairwise matching and clustering steps. For example, record
r215 has an incorrect value for the Departure Date attribute, and does not get correctly clustered with
records r211-r214 subsequently, if the blocking function of Example 3.4 is used.

The key to addressing this disadvantage is to allow multiple blocking functions. Hernández and
Stolfo [1998] were the first to make this observation, and showed that using multiple blocking
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FIGURE 3.4: Use of multiple blocking functions.

functions could result in high quality record linkage without necessarily incurring a high cost.
In general, such blocking functions create a set of overlapping blocks that balance the recall of
record linkage (i.e., absence of false negatives) with the number of comparisons incurred by pairwise
matching. For example, q-grams2 blocking [Gravano et al. 2001] creates blocks of records that
share at least one q-gram. Similarly, the Canopy method [McCallum et al. 2000] employs a
computationally cheap similarity metric for building high-dimensional, overlapping blocks.

Example 3.5 Consider again the records in Table 3.1. Although the use of (Departure Airport,
Departure Date) as a blocking function can lead to false negatives, as shown in Example 3.4, adding
an additional bi-gram, such as (Arrival Airport, Arrival Date), as a blocking function would resolve the
false negatives.

Figure 3.4 illustrates the pairwise comparisons that would be performed using both blocking
functions. The edges in black connect record pairs that would be compared under the (Departure

Airport, Departure Date) blocking function, and the edges in blue connect record pairs that would
be compared under the (Arrival Airport, Arrival Date) blocking function. Comparing with Figure 3.2,

2. A q-gram of a string value is a substring of length q. A q-gram of a set of values is a subset of size q.
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one can see that every pair of records that should match would be compared using at least one of
these two blocking functions. Further, only two record pairs that do not match ((r213, r214) and
(r214, r215), shown using dashed lines) are compared using these blocking functions. Note that the
non-matching record pair (r213, r215) would not be compared using either blocking function.

3.2 ADDRESSING THE VOLUME CHALLENGE
Even with the use of blocking, record linkage for big data sets can take several hours or even
days [Köpcke et al. 2010]. In this section, we present two complementary techniques that have
been proposed to address this problem.

The first uses the MapReduce (MR) programming model, which has been highly effective
in parallelizing data-intensive computing in cluster environments with thousands of nodes, to
parallelize the blocking step of record linkage [Kolb et al. 2012]. The second analyzes the graph of
record pairs compared when multiple blocking functions are used, and identifies the most promising
set of pairwise matchings to perform [Papadakis et al. 2014].

3.2.1 USING MAPREDUCE TO PARALLELIZE BLOCKING
We first present a brief description of the MapReduce programming model, before describing the
technique of Kolb et al. [2012], which uses MapReduce to speed up the blocking step of record
linkage.

MapReduce: A Brief Description
In the MapReduce programming model [Dean and Ghemawat 2004, Li et al. 2014], computation
is expressed using two user-defined functions.

map: value1 → list (key2, value2).
The map function is called for each input value1, and produces a list of (key2, value2) pairs;
this function can be executed in parallel on disjoint partitions of the input data.

Each output (key2, value2) pair of the map function is assigned to a unique reducer by
a partition function, based on key2 and the number of available reducers. Consequently, all
(key , value) pairs with key = key2 would be assigned to the same reducer.

reduce: (key2, list (value2)) → list (value3).
The reduce function is called for each key2 that is assigned to a reducer, and can access the
list of all associated values list (value2) using a grouping function. This function can also be
executed in parallel for different (key2, list (value2)) pairs.
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FIGURE 3.5: Using MapReduce: a basic approach.

Using MapReduce: A Basic Approach
A basic approach to using MapReduce for record linkage is to: (i) read the input records, and use map
functions in parallel to redistribute the input records among several reducers based on the blocking
key; and (ii) perform pairwise matching on all records in a block using a reduce function, processing
different blocks in parallel. Such a basic MapReduce implementation is susceptible to severe load
imbalances due to skewed block sizes, limiting the speedup that can be achieved.

Example 3.6 Consider using MapReduce to perform record linkage on the records in Table 3.1.
Assume that the 12 records are blocked based on the value of attribute Departure Airport. The
straightforward approach to using MapReduce would proceed as follows.

The nine records r211-r224 are mapped to one reducer based on the value SFO of attribute
Departure Airport, and the three records r231-r233 are mapped to a second reducer based on the value
EWR of attribute Departure Airport. The first reducer calls the reduce function on nine records:
pairwise matching compares 36 pairs of records. The second reducer calls the reduce function on
three records: pairwise matching compares only three pairs of records. Figure 3.5 illustrates this
approach.

Due to the skewed block sizes, there is a significant load imbalance between the two reducers,
and the speedup achieved over a sequential implementation is only 1.083 (i.e., (36 + 3)/ max{36, 3})
with two reducers.

Using MapReduce: Load Balancing
Kolb et al. [2012] propose two strategies to balance the load among reducers for MapReduce-based
record linkage: BlockSplit and PairRange.
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The first strategy, BlockSplit, achieves load balancing by generating one or more logical
match tasks for each block, and greedily distributing the logical match tasks to the physical reducers.
It is based on three key ideas.

. First, a preprocessing MapReduce job determines the distribution of block sizes, to identify
where load balancing would be needed.

. Second, BlockSplit processes small blocks (where the number of pairwise comparisons is
no larger than the average workload that would need to be processed by a reducer to achieve
a balanced load) within a single match task. Large blocks are split into smaller sub-blocks,
which are processed using match tasks of two types: individual sub-blocks are processed akin
to small blocks, and pairs of distinct sub-blocks are processed by match tasks that evaluate the
cross-product of the two sub-blocks. This guarantees that all the pairwise comparisons in the
original block will be computed by the (set of ) match tasks.

. Third, BlockSplit determines the number of comparisons for each match task, and assigns
match tasks to reducers to implement a greedy load balancing heuristic.

Since a record in a large block may need to participate in multiple match tasks, BlockSplit
replicates such records, taking advantage of the ability of the map function to compute a list of
(key2, value2) pairs from a single input value1, where the different key2 values encode the nature
of the match tasks that the record participates in.

Example 3.7 Consider again the records in Table 3.1, and assume that they are split into two
groups according to an arbitrary input partitioning P: records r211, r213, r215, r222, r224, and r232 are
in group P0, and records r212, r214, r221, r223, r231, and r233 are in group P1.

The pre-processing MapReduce job determines the distribution of block sizes for each group
in the input partition, resulting in the following distribution.

Block Key Partition Group Size

SFO P0 5

SFO P1 4
EWR P0 1

EWR P1 2

The block with blocking key EWR has three records, and three pairwise comparisons need
to be performed on this block. The block with blocking key SFO has 9 records, and 36 pairwise
comparisons need to be performed on this block. If record linkage needs to be conducted using two
reducers, the block with blocking key EWR is considered as a small block, and the one with blocking
key SFO is considered as a large block, and split into sub-blocks as illustrated in Figure 3.6.
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FIGURE 3.6: Using MapReduce: BlockSplit.

To achieve this split, the map function first processes the records as described in the following
table.

Input value1 Partition Group Output list (key2, value2)

r211 P0 [(SFO .0, r211), (SFO .0x1, r0
211)]

r213 P0 [(SFO .0, r213), (SFO .0x1, r0
213)]

r215 P0 [(SFO .0, r215), (SFO .0x1, r0
215)]

r222 P0 [(SFO .0, r222), (SFO .0x1, r0
222)]

r224 P0 [(SFO .0, r224), (SFO .0x1, r0
224)]

r232 P0 [(EWR.∗, r232)]
r212 P1 [(SFO .1, r212), (SFO .0x1, r1

212)]
r214 P1 [(SFO .1, r214), (SFO .0x1, r1

214)]
r221 P1 [(SFO .1, r221), (SFO .0x1, r1

221)]

r223 P1 [(SFO .1, r223), (SFO .0x1, r1
223)]

r231 P1 [(EWR.∗, r231)]

r233 P1 [(EWR.∗, r233)]

The reduce function groups together (key2, value2) pairs with the same key2 value, and
computes the number of comparisons to be performed based on the nature of the match task encoded
in the key2 value, as described in the following table.
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Input (key2, list (value2)) Match Task No. of Comparisons

(SFO .0, [r211, r213, r215, r222, r224]) sub-block matching 10

(SFO .1, [r212, r214, r221, r223]) sub-block matching 6

(SFO .0x1, [r0
211, r0

213, r0
215, r0

222, r0
224 cross-product 20

r1
212, r1

214, r1
221, r1

223]) matching

(EWR.∗, [r231, r232, r233]) small block matching 3

Finally, BlockSplit assigns the match tasks to the two available reducers, based on a greedy
load balancing heuristic: reducer 0 is assigned match task SFO.0x1, which incurs 20 comparisons,
reducer 1 is assigned match tasks SFO.0, SFO.1, and EWR.*, which together incur 19 comparisons.
The speedup obtained with this assignment is 1.95 (i.e., (20 + 19)/ max{20, 19}), which is close to
the ideal speedup of 2 with two reducers.

Since BlockSplit is dependent on the input partitioning, and uses a greedy load balancing
heuristic, it does not guarantee load balancing, though it is quite effective as the previous example
illustrates. The second strategy proposed by Kolb et al. [2012], PairRange, guarantees load bal-
ancing by assigning a very similar number of pairwise matchings to each reduce task. It is based on
three key ideas.

. First, a preprocessing MapReduce job determines the distribution of block sizes, as for
BlockSplit.

. Second, PairRange implements a virtual global enumeration of all records and relevant
pairwise matchings based on the computed block size distribution. The enumeration scheme
is used by a map function to identify the pairwise matchings that are processed by each
reduce task.

. Third, to achieve load balancing, PairRange splits the range of all pairwise matchings into
r (almost) equal size ranges, and assigns the k’th range to the k’th reduce task.

As in BlockSplit, PairRange replicates input records, taking advantage of the ability of the
map function to compute a list of (key2, value2) pairs from a single input value1.

Example 3.8 Consider again the records in Table 3.1, and assume that block size distributions are
given, and the same input partitioning is used as in BlockSplit. The virtual global enumeration of
all records and pairwise matchings is illustrated in Table 3.2.

First, the records in the block with blocking key SFO are virtually enumerated (randomly)
in the order r211, r213, r215, r222, r224, r212, r214, r221, r223; this is illustrated by assigning them
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TABLE 3.2: Virtual global enumeration in PairRange

Blocking key SFO Blocking key EWR

r211 r213 r215 r222 r224 r212 r214 r221 r232 r231

0 1 2 3 4 5 6 7 9 10
r213 1 0 r231 10 36
r215 2 1 8 r233 11 37 38
r222 3 2 9 15
r224 4 3 10 16 21
r212 5 4 11 17 22 26
r214 6 5 12 18 23 27 30
r221 7 6 13 19 24 28 31 33
r223 8 7 14 20 25 29 32 34 35

numbers 0–8 in Table 3.2. Since every pair of records in this block needs to be compared, the
pairwise matchings can also be virtually enumerated, by leveraging the numbers assigned to each
of the records participating in the pairwise matchings. Thus, the pairwise matching (r211, r213),
corresponding to the records with numbers 0 and 1, is assigned the smallest number 0; (r211, r215) is
assigned the next number 1; and so on, until the last pairwise matching (r221, r223), corresponding
to the record with numbers 7 and 8, is assigned the largest number 35.

In the next step, the records in the block with blocking key EWR are virtually enumerated
(randomly) in the order r232, r231, r233; this is illustrated by assigning them numbers 9–11 in
Table 3.2. Then, all pairwise matchings involving these records are also enumerated in the virtual
global enumeration; this is illustrated by assigning them numbers 36–38.

Finally, if there are only two reducers, PairRange achieves load balancing by splitting the
range [0, 38] into two almost equally sized ranges, [0, 19] (indicated in green color in Table 3.2) and
[20, 38] (indicated in purple color in Table 3.2), and assigns these two ranges of pairwise matchings
to the two different reducers.

Main Results
Kolb et al. [2012] experimentally evaluate the various load balancing strategies on real-world data
sets, and compare them with the basic approach to using MapReduce for record linkage. Their main
results are as follows.
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1. Both BlockSplit and PairRange are stable across all data skews, with a small advantage for
PairRange due to its somewhat more uniform workload distribution.

In comparison, the basic strategy is not robust because a higher data skew increases the
number of pairs of the largest block, which can make it an order of magnitude or more slower
than either BlockSplit or PairRange.

2. Both BlockSplit and PairRange can take advantage of an increasing number of reduce
tasks, and are able to evenly distribute the workload across reduce tasks and nodes. Block-
Split is shown to be preferable for smaller data sets, otherwise PairRange has a better
performance.

3.2.2 META-BLOCKING: PRUNING PAIRWISE MATCHINGS
Papadakis et al. [2014] consider the problem of identifying the most promising set of pairwise
matchings to perform when the set of all pairwise matchings suggested by the use of a blocking
method is still too large for efficient record linkage.

As discussed in Section 3.1.3, blocking methods that allow multiple overlapping blocks
have the advantage of reducing false negatives (i.e., missed matches). Such methods are especially
important in the presence of schematic heterogeneity, where the lack of schema alignment suggests
the use of blocking keys in a schema-agnostic fashion. This issue is illustrated in the following
example.

Example 3.9 Consider the five records r ′
211-r ′

215 shown in Table 3.3. These records refer to the
same entity, and contain the same information as the corresponding records r211-r215 in Table 3.1.
However, the schemas of the records in Table 3.3 have not been properly aligned, and the values
in green and in bold font indicate misaligned values (while values in red and in bold font indicate
erroneous data, as in Table 3.1).

For example, records r ′
211 and r ′

215 contain the value EWR in the same column as the value
SFO in records r ′

212-r ′
214. Whether this column is assumed to be the Departure Airport or the Arrival

Airport, such inconsistencies would cause problems for traditional record linkage, which assumes
schematic homogeneity. In particular, even if one used multiple blocking keys on the values of
(column 4, column 5) and (column 7, column 8), which is analogous to the multiple blocking keys
used in Example 3.5, subsequent pairwise matching would only be able to compare record pairs
(r ′

212, r ′
214), (r ′

211, r ′
215) and (r ′

213, r ′
214), making it impossible to link all five records, even though

they refer to the same entity.
If, however, blocking was done on the (multiple) values of (Airport, Date), independent of

the columns in which these values occur, then every pair of records among the five records r ′
211-

r ′
215 would undergo pairwise matching (which would also need to be schema-agnostic to correctly
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TABLE 3.3: Sample Flights records with schematic heterogeneity

r ′
211 A2 53 EWR 2014-02-08 15:35 SFO 2014-02-08 23:55

r ′
212 A2 53 SFO 2014-02-08 00:05 EWR 2014-02-08 00:05

r ′
213 A2 53 SFO 2014-02-09 15:27 EWR 2014-02-08 00:09

r ′
214 A1 53 SFO 2014-02-08 15:15 EWR 2014-02-08 23:30

r ′
215 A2 53 EWR 2014-03-08 23:55 SFO 2014-02-08 15:27

r ′
221 A2 53 EWR 2014-03-09 15:30 SFO 2014-03-09 23:45

r ′
222 A2 53 SFO 2014-03-09 23:40 EWR 2014-03-09 15:37

r ′
223 A2 53 SFO 2014-03-09 15:28 EWR 2014-03-09 23:37

r ′
224 A2 53 EWR 2014-03-08 23:35 SFO 2014-03-09 15:25

r ′
231 A1 49 SFO 2014-02-08 18:45 EWR 2014-02-08 21:40

r ′
232 A1 49 EWR 2014-02-08 18:30 SFO 2014-02-08 21:37

r ′
233 A1 49 EWR 2014-02-08 18:30 SAN 2014-02-08 21:30

declare record matches), and subsequent clustering would determine that they all refer to the same
entity.

Using Multiple Blocking Keys: Inefficiency
Example 3.9 showed that, in the presence of schema heterogeneity in big data, the use of multiple
blocking keys in a schema-agnostic fashion is essential to achieve high recall. However, it can result
in considerable inefficiency: many pairs of non-matching records may end up being compared because
of the schema-agnostic use of blocking keys. This issue is illustrated in the following example.

Example 3.10 Example 3.5 showed how the use of multiple blocking functions such as (Departure

Airport, Departure Date) and (Arrival Airport, Arrival Date) would avoid the problem of false negatives
associated with the use of either blocking key.

In the presence of schema heterogeneity, it is unclear which values correspond to Departure

Airport and Arrival Airport, and which values correspond to Departure Date and Arrival Date. To get the
benefits of multiple blocking functions, one would need to block on multiple values, regardless of
the columns in which these values occur. Figure 3.7 illustrates the different (overlapping) blocks
that would be created when blocking on possible (Airline), (Flight Number), (Departure Airport, Departure

Date), and (Arrival Airport, Arrival Date) values; only blocks that have more than one record are shown
in the figure.

The use of schema-agnostic blocking ends up comparing many more non-matching record
pairs. As can be seen from Figure 3.7, non-matching record pairs (r ′

211, r ′
231) and (r ′

213, r ′
232) would
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FIGURE 3.7: Using schema agnostic blocking on multiple values.

end up being compared, since these records occur in the blocks (SFO, 2014-02-08) and (EWR,
2014-02-08). Note that these record pairs would not have been compared at all for the same set of
blocking functions in the absence of schema heterogeneity, as in Table 3.1. Thus, the use of schema-
agnostic blocking can increase the number of non-matching record pairs that undergo pairwise
comparison.

Meta-blocking: Improving Efficiency
Papadakis et al. [2014] propose meta-blocking as an approach to address the problem identified
previously. They aim to identify the most promising pairs of records for pairwise comparison, based
on a given set of blocks, thereby (i) performing significantly fewer pairwise comparisons, while
(ii) maintaining a high recall. Meta-blocking is independent of the choice of blocking functions used,
but is especially useful when the underlying blocking functions perform schema-agnostic blocking.

Meta-blocking first builds an edge-weighted blocking graph, GB , for a given set of blocks B,
where the nodes of GB are the records that occur in at least one block of B, and (undirected) edges
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connect pairs of records that co-occur in at least one block. Papadakis et al. [2014] propose several
edge weighting schemes, and pruning schemes, as follows.

. The edge weights are intended to balance the cost and benefit of actually performing the
pairwise comparison between the records that are connected by the edge.

. The pruning schemes identify and remove edges in the blocking graph that have a low
likelihood of a match. Pairwise comparisons are performed only for the edges that remain
in the blocking graph after pruning.

A simple edge weighting strategy is the Common Blocks Scheme (CBS), where the weight of
an edge is the number of common blocks in which the two records co-occur. A more sophisticated
strategy is the Aggregate Reciprocal Comparisons Scheme (ARCS), where the weight of an edge is
the sum of the reciprocal cardinalities of their common blocks; the intuition is that the more records
a block contains, the less likely they are to match.

Papadakis et al. [2014] propose pruning schemes that compose a pruning algorithm and a
pruning criterion. Two pruning algorithms, edge-centric (EP) and node-centric (NP), are identified,
where EP algorithms select the most globally promising edges, while NP algorithms select the edges
that are the most locally promising for each node. Two pruning criteria, weight-based (W) and
cardinality-based (C), are identified, where weight-based pruning eliminates edges whose weight is
below an identified threshold, while cardinality-based pruning retains the top-k edges. By combining
the pruning algorithm and the pruning criterion, four pruning schemes—WEP, CEP, WNP and
CNP—are identified.

We illustrate an edge weighting strategy and some pruning schemes in the following example.

Example 3.11 Consider the set of blocks depicted in Figure 3.7, for the records in Table 3.3.
Figure 3.8 depicts the blocking graph for the CBS edge weighting strategy, where nodes of

the same color indicate records that refer to the same entity. The solid edges have a weight of 3 or 4
(i.e., the corresponding records co-occur in 3 or 4 blocks). For example, the records (r ′

211, r ′
213) co-

occur in the four blocks (SFO, 2014-02-08), (EWR, 2014-02-08), (A2), and (53), while the records
(r ′

214, r ′
231) co-occur in the three blocks (SFO, 2014-02-08), (EWR, 2014-02-08), and (A1). The

dashed edges have a weight of 1 or 2 (i.e., the corresponding records co-occur in 1 or 2 blocks). For
example, the records (r ′

211, r ′
233) co-occur in only one block (EWR, 2014-02-08), while the records

(r ′
211, r ′

222) co-occur in the two blocks (A2) and (53). There are a total of 54 edges in the graph, of
which 22 are solid edges, and 32 are dashed edges. The average edge weight in this blocking graph
is 136/54 = 2.52.

If the WEP (weight-based, edge-centric pruning) scheme was used with a weight threshold
of the average edge weight, all the edges with weight 1 or 2 (i.e., the dashed edges) would get
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FIGURE 3.8: Using meta-blocking with schema agnostic blocking.

pruned out. Only the 22 edges with a weight of 3 or 4 (i.e., the solid edges) would undergo pairwise
comparison.

If the CEP (cardinality-based, edge-centric pruning) scheme was used with a cardinality
threshold of at least 22, all the solid edges would be retained and undergo pairwise comparison.
With a lower cardinality threshold, e.g., 13, some matching record pairs may not undergo pairwise
comparison, leading to a lower recall.

Main Results
Papadakis et al. [2014] experimentally evaluate various edge weighting strategies and pruning
schemes to demonstrate the benefits of meta-blocking over conventional blocking methods. Their
data sets and code are publicly available at http://sourceforge.net/projects/erframework (accessed on
October 1, 2014), and their main results are as follows.

1. Meta-blocking significantly improves blocking efficiency, often by 1-2 orders of magnitude,
while preserving a high recall.

The main reasons are that (i) the construction of the blocking graph uses low-cost edge
weight computation, instead of the more expensive pairwise comparison, and (ii) a large

http://sourceforge.net/projects/erframework
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number of (non-matching) record pairs are pruned, and hence not compared in a pairwise
fashion.

2. Edge-centric pruning typically outperforms node-centric pruning in efficiency, discarding
more superfluous pairwise comparisons, while maintaining a high recall when the fraction of
matching record pairs is expected to be low. In this case, the high weighted edges are more
likely to correspond to the matching record pairs.

3. Weight-based pruning typically achieves a better recall than cardinality-based pruning. De-
pending on the threshold, the latter can be much more efficient than the former, but this is
achieved with a moderate loss in recall.

4. Among the proposed edge weighting schemes, ARCS consistently achieves the highest
performance. This is because ARCS downweights the co-occurrence of records in high
cardinality blocks, which is analogous to the use of IDF (inverse document frequency) in
document search.

3.3 ADDRESSING THE VELOCITY CHALLENGE
In the big data era, many of the data sources are very dynamic and the number of data sources is
also rapidly exploding. This high velocity of data updates can quickly make previous linkage results
obsolete. Since it is expensive to perform batch record linkage each time there is a data update, it
would be ideal to perform incremental record linkage, to be able to quickly update existing linkage
results when data updates arrive.

3.3.1 INCREMENTAL RECORD LINKAGE
While there has been a significant body of work on record linkage in the literature over the past few
decades, incremental record linkage has started to receive attention only in recent years [Whang and
Garcia-Molina 2010, Whang and Garcia-Molina 2014, Gruenheid et al. 2014].

The main focus of the works by Whang and Garcia-Molina [2010], Whang and Garcia-
Molina [2014] is the evolution of pairwise matching rules over time. Whang and Garcia-Molina
[2014] briefly discuss the case of evolving data, and identify a general incremental condition un-
der which incremental record linkage can be easily performed using the batch linkage method.
Gruenheid et al. [2014] address the general case where the batch linkage algorithm may not be gen-
eral incremental, and propose incremental techniques that explore the trade-offs between quality of
the linkage results and efficiency of the incremental algorithms.

Challenges for Incremental Linkage
Recall that record linkage computes a partitioning P of the input records R, such that each partition
in P identifies the records in R that refer to the same entity.
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A natural thought for incremental linkage is that each inserted record is compared with
existing clusters, then either put it into an existing cluster (i.e., referring to an already known
entity), or create a new cluster for it (i.e., referring to a new entity). However, linkage algorithms
can make mistakes and the extra information from the data updates can often help identify and fix
such mistakes, as illustrated next with an example.

Example 3.12 Table 3.4 shows the records from the Flights domain, organized according to the
order in which the date updates arrived, where Flights0 is the initial set of records, and �Flights1 and
�Flights2 are two updates.

Assume that the initial set of records Flights0 consists of seven records—r213, r214, r215, r224,
r231, r232, and r233. Figure 3.9 illustrates the pairwise matching graph obtained by applying the
same pairwise similarity as in Example 3.2, and the result of record linkage by applying correlation
clustering on this graph. Note that this partitioning makes several mistakes due to the errors in
the data.

. Records r215 and r224 are in the same cluster, even though they refer to different entities. This
happens because of the erroneous values of Departure Date in both records.

. Records r213, r214, and r215 are in different clusters, even though they refer to the same entity.
This happens because the pairwise similarity measure does not declare any match between
pairs of these records, again because of the erroneous values in these records.

TABLE 3.4: Flights records and updates

AL FN DA DD DT AA AD AT

Flights0 r213 A2 53 SFO 2014-02-08 15:27 EWR 2014-02-09 00:09

r214 A1 53 SFO 2014-02-08 15:15 EWR 2014-02-08 23:30
r215 A2 53 SFO 2014-03-08 15:27 EWR 2014-02-08 23:55

r224 A2 53 SFO 2014-03-08 15:25 EWR 2014-03-09 23:35
r231 A1 49 EWR 2014-02-08 18:45 SFO 2014-02-08 21:40
r232 A1 49 EWR 2014-02-08 18:30 SFO 2014-02-08 21:37

r233 A1 49 EWR 2014-02-08 18:30 SAN 2014-02-08 21:30

�Flights1 r221 A2 53 SFO 2014-03-09 15:30 EWR 2014-03-09 23:45

r222 A2 53 SFO 2014-03-09 15:37 EWR 2014-03-09 23:40
r223 A2 53 SFO 2014-03-09 15:28 EWR 2014-03-09 23:37

�Flights2 r211 A2 53 SFO 2014-02-08 15:35 EWR 2014-02-08 23:55

r212 A2 53 SFO 2014-02-08 15:25 EWR 2014-02-08 00:05
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r224

r231 r233

r232

r213

r215

r214

FIGURE 3.9: Record linkage results on Flights0.

Now consider the update �Flights1, shown in Table 3.4, which consists of records r221, r222,
and r223. Figure 3.10 illustrates the pairwise matching graph, and the result of batch record linkage
by applying correlation clustering on this graph. Note that the extra information from this update
has helped identify and fix the previous mistake of putting r215 and r224 in the same cluster. Clearly,
this error could not have been fixed if an inserted record is either added to an existing cluster or used
to create a new cluster.

Finally, consider the update �Flights2, shown in Table 3.4, which consists of records r211 and
r212. Figure 3.11 illustrates the pairwise matching graph, and the result of batch record linkage by
applying correlation clustering on this graph. This contains three clusters, and fixes the previous
mistake of putting r213, r214, and r215 in separate clusters.

Optimal Incremental Algorithms
The goal of incremental linkage is two-fold. First, incremental linkage should be much faster than
conducting batch linkage, especially when the number of operations in the update �R is small.
Second, incremental linkage should obtain results of similar quality to batch linkage.

Note that correlation clustering algorithms operate on individual nodes and edges of the graph,
rather than on clusters, so they are not general incremental. Hence, the techniques of Whang and
Garcia-Molina [2014] are not applicable in the previous example. For this reason, we focus attention
on the incremental record linkage algorithms proposed by Gruenheid et al. [2014] in this section.
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FIGURE 3.10: Record linkage results on Flights0 + �Flights1.
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FIGURE 3.11: Record linkage results on Flights0 + �Flights1 + �Flights2.
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Gruenheid et al. propose two incremental algorithms, ConnectedComponent and Iter-
ative, that apply correlation clustering on subsets of the records, rather than all records, but are
guaranteed to find an optimal solution.

The ConnectedComponent algorithm considers only the clusters in the previous record
linkage result that are directly or indirectly connected to the nodes in the update �R. Correlation
clustering is applied on this subgraph G, and the new result of record linkage is obtained from the
previous result by replacing the old clusters of G by the new clusters.

The Iterative algorithm starts with the clusters in the previous record linkage result that are
directly connected to the nodes in the update �R, and expands it only when necessary. Intuitively,
it proceeds in three steps.

1. Obtain the clusters that are directly connected to the update �R, and put each of its connected
subgraphs into a queue.

2. For each connected subgraph G in the queue, dequeue it, and find its optimal clustering C.
For each cluster C ∈ C that did not exist in the previous clustering, find other clusters that
are directly connected to it, and put this connected subgraph G1 into the queue, taking care
to remove duplicates and merge with overlapping subgraphs in the queue.

3. Repeat Step 2 until the queue is empty.

Theorem 3.1 [Gruenheid et al. 2014] ConnectedComponent and Iterative give optimal
results for incremental record linkage if optimal algorithms are used for correlation clustering.

The proof of this theorem is based on establishing that correlation clustering satisfies a variety
of desirable properties, including locality, exchangeability, separability, and monotonicity [Gruenheid
et al. 2014]. The optimality of ConnectedComponent relies only on locality and monotonicity,
while the optimality of Iterative relies on all the properties being satisfied.

Correlation clustering is an NP-complete problem, hence optimal algorithms for correlation
clustering are not feasible for big data [Bansal et al. 2004]. However, a variety of polynomial-
time approximation algorithms have been proposed for correlation clustering (e.g., Bansal et al.
2004, Charikar et al. 2003), and any of these algorithms can be used within the framework of
ConnectedComponent and Iterative. While the resulting algorithms do not have any optimality
guarantees, Gruenheid et al. [2014] show that they obtain good quality results in practice.

Example 3.13 Consider the records in Table 3.4, and the clustering of Flights0 shown in Figure 3.9.
Let us consider the case when the records r221, r222, and r223 in the update �Flights1 are added.

These records are (directly or indirectly) connected only to the cluster in Figure 3.9 that contains r224

and r215. Hence, ConnectedComponent applies correlation clustering on these five records, and
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obtains two clusters, one containing r221-r224, the other containing only r215. Iterative performs
the same actions in this case. The resulting clustering of Flights0 + �Flights1 is shown in Figure 3.10.

Now consider the case when the records r211 and r212 in the update �Flights2 are added. These
records are (directly or indirectly) connected to the four clusters in Figure 3.10 that contain r213,
r214, r215, and r221-r224. Hence, ConnectedComponent applies correlation clustering on these
nine records, and obtains two clusters, one containing r211-r215, and the other containing r221-r224.

In this case, Iterative does something different from ConnectedComponent, although
the final result is identical. Note that the records in the update �Flights2 are directly connected only
to the three clusters in Figure 3.10 that contain r213, r214, and r215. Hence, Iterative first applies
correlation clustering on the five records r211-r215, and obtains a single cluster that contains all five
records. Since this is a new cluster, which is directly connected to the cluster in Figure 3.10 that
contains r221-r224, Iterative next applies correlation clustering on the nine records r211-r224. Since
this results in the same two clusters as before, Iterative terminates. The resulting clustering of
Flights0 + �Flights1 + �Flights2 is shown in Figure 3.11.

Note that, in this example, Iterative does more work than ConnectedComponent.
However, if the first iteration of Iterative (applying correlation clustering on the five records r211-
r215) had resulted in no change to the singleton cluster containing r215, Iterative would have
terminated after the first iteration, doing strictly less work than ConnectedComponent.

Greedy Incremental Algorithms
In general, the ConnectedComponent algorithm may require considering an unnecessarily big
subgraph when the pairwise similarity graph is well connected, while the Iterative algorithm
may require repeated efforts in examining quite a few subgraphs before convergence, as shown in
Example 3.13. Further, both algorithms operate at the coarse granularity of connected subgraphs of
the graph, which can be even larger than individual clusters.

Gruenheid et al. [2014] also propose a polynomial-time Greedy algorithm, where the
clustering in each later round is incrementally built upon the clustering of the previous round.
Specifically, each time a cluster in the queue is examined, the algorithm considers three possible
operations on the cluster, and chooses the best option (the one with the lowest penalty value, as in
correlation clustering).

. Merge the cluster with one neighboring cluster.

. Split the cluster into two clusters, by examining one record at a time and deciding whether
splitting it out of the cluster generates a better clustering.

. Move some nodes of the cluster to a neighboring cluster, or move some nodes of a neighboring
cluster into the given cluster.
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We illustrate the operation of the Greedy algorithm using an example next.

Example 3.14 Consider the records in Table 3.4, and the clustering of Flights0 shown in Figure 3.9.
When the records r221, r222, and r223 in the update �Flights1 are added, each of these records

is first put into the queue separately. A series of Merge operations is then performed to result in a
single cluster containing these three records: the intra-cluster penalty of this cluster is 0, since each
pair of records in the cluster is a match according to the pairwise similarity measure used. Finally,
a Move operation is performed to move record r224 from the previous cluster containing r224 and
r215 into the cluster containing records r221, r222, and r223. The Greedy algorithm then terminates,
with the clustering shown in Figure 3.10.

Similarly, when the records r211 and r212 in the update �Flights2 are added to the clustering
shown in Figure 3.10, a series of greedy Merge operations would end up with the clustering where
all records that refers to the same entity are in the same cluster, and records that refer to different
entities are in different clusters. This is shown in Figure 3.11.

Main Results
Gruenheid et al. [2014] experimentally evaluate the various incremental linkage algorithms to
demonstrate their benefits over batch linkage as well as naive incremental linkage algorithms. Their
main results are as follows.

1. The incremental record linkage algorithms significantly improve over batch linkage on effi-
ciency (often by 1-2 orders of magnitude) without sacrificing linkage quality.

2. The ConnectedComponent algorithm is always better than batch record linkage for all
update sizes as it solely modifies those clusters that are (directly or indirectly) connected to
the update.

3. The iterative approaches, Iterative (with the polynomial time algorithm that provides an
approximation for correlation clustering [Bansal et al. 2004]) and Greedy, are best applied
to updates that affect a small portion of the pairwise matching graph, i.e., when the update
has a local rather than global impact.

4. The Greedy algorithm is shown to be the most robust in noisy environments, obtained by
varying the parameters of a synthetic data set generator.

3.4 ADDRESSING THE VARIETY CHALLENGE
The big data era has a large variety of domains, sources, and data, as illustrated in Chapter 1.
Ideally, schema alignment (as described in the previous chapter) should have resolved schematic
heterogeneity across the sources, and the task of record linkage could assume schematic homogeneity
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among the sources. In practice, though, schema alignment is not easy, especially when entities,
relationships and ontologies need to be extracted from text snippets.

3.4.1 LINKING TEXT SNIPPETS TO STRUCTURED DATA
Many applications see a need to link text snippets with embedded attribute values, and sometimes
attribute names along with other text, to structured records. We will illustrate both the challenging
aspects of the problem, and the intricacy of the presented technique using an example from our
Flights domain.

Challenges
One approach to link a text snippet to the structured data is to use information extraction techniques
on the text snippet to obtain a structured, properly segmented record [Cortez and da Silva 2013],
and then use the techniques discussed in previous sections for the linkage. However, this may not
be straightforward for text snippets that are terse, with grammatically ill-formed text in the snippet.
Motivated by the need to link unstructured product offers from tens of thousands of online merchants
to a known shopping catalog with structured product information, Kannan et al. [2011] consider
this linkage problem. They propose a novel approach to link the text snippets to the structured data
in a way that makes effective use of the data in the structured records for this purpose. The following
example identifies some of the challenges that need to be overcome.

Example 3.15 Let the structured data consist of only records r211, r221, and r231 from Table 3.1,
reproduced in Table 3.5 for convenience. Consider the following text snippet, containing booking
information for a flight ticket.

PNR TWQZNK for A2 flight 53 SFO 2014-02-08 (15:30 hrs) to EWR fare class Q $355.55
confirmed.

It is evident that this booking information text snippet is a good match for record r211 in
Table 3.5. However, being able to link them requires overcoming several challenges.

TABLE 3.5: Sample Flights records from Table 3.1

AL FN DA DD DT AA AD AT

r211 A2 53 SFO 2014-02-08 15:35 EWR 2014-02-08 23:55

r221 A2 53 SFO 2014-03-09 15:30 EWR 2014-03-09 23:45
r231 A1 49 EWR 2014-02-08 18:45 SFO 2014-02-08 21:40
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. First, the text snippet does not always contain attribute names. For example, SFO could match
Departure Airport or Arrival Airport.

. Second, the attribute values present in the text snippet may match exactly or approximately,
or even be erroneous. For example, 15:30 in the text snippet matches the Departure Time of
r221 exactly, and that of r211 approximately.

. Third, the text snippet does not contain all the attribute values from the structured records,
i.e., one has to deal with missing data. For example, there is no information about the arrival
date or arrival time into EWR in the text snippet.

. Fourth, the text snippet may contain attribute values that are not present in the structured
data. For example, it contains information about fare class (Q) and price ($355.55), which are
not present in the structured record.

Solution
Kannan et al. [2011] take a supervised learning approach to the linkage problem and find the
structured record that has the highest probability of match to the given unstructured text snippet.
The matching function is learned in an offline stage, based on a small training set of text snippets,
each of which has been matched to a unique structured record. In the subsequent online stage, new
text snippets are matched one at a time, by choosing the best matched structured record amongst
the candidates by applying the learned matching function. The key components of the offline and
online stages are the semantic parsing strategy for the text snippets, and the matching function for
quantifying the quality of the match.

Semantic parsing of a text snippet is used both in the offline and online stages, and consists of
three steps: tagging strings in the text snippet with attribute names, identifying plausible parses based
on the tags, and finally obtaining an optimal parse of the text snippet for each candidate structured
record.

Tagging. Let A denote the attribute names in the structured data. An inverted index is built
on the structured records such that, for each string v, the inverted index returns the set of
attribute names in A associated with string v in the structured records.

Tagging of the text snippet is accomplished by examining all token level q-grams (e.g.,
up to q = 4) in the snippet and associating it with the set of all attribute names, using the
inverted index.
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PNR TWQZNK for A2 flight 53 SFO 2014-02-08
(15:30 hrs) to EWR fare class Q $355.55 confirmed
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FIGURE 3.12: Tagging of text snippet.

Plausible Parse. Given the tagging, a plausible parse of a text snippet is defined to be a particular
combination of all attributes identified in the tagging step such that each attribute is associated
with at most one value.3

Multiple plausible parses arise because of ambiguities in the data. Typically, only a small
number of parses are plausible.

Optimal Parse. When the text snippet is paired with a structured record, one of the plausible
parses of the text snippet is optimal, based on the learned matching function.

Different parses of the text snippet may be optimal for different structured records. Each
of these is evaluated, and the structured record that has the highest match probability with
the text snippet is returned.

We illustrate the semantic parsing strategy using an example next.

Example 3.16 Figure 3.12 shows the tagging of our example text snippet, using a large structured
database that contains (among others) the records in Table 3.5. As can be seen, three distinct strings
PNR, SFO, and EWR have been tagged with the two attributes Departure Airport and Arrival Airport,
since these are all valid airport codes. In this text snippet, the intent of PNR is passenger name
record and the tagging indicates the ambiguity in the data. However, strings such as $355.55 in
the text snippet are not tagged since the structured data do not contain any attributes with pricing
information.

3. Not associating an identified attribute with a value is needed since the text snippet may not contain all attributes from
the structured data, and may contain attributes not present in the structured data.



92 3. RECORD LINKAGE

PNR TWQZNK for A2 flight 53 SFO 2014-02-08
(15:30 hrs) to EWR fare class Q $355.55 confirmed
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PNR TWQZNK for A2 flight 53 SFO 2014-02-08
(15:30 hrs) to EWR fare class Q $355.55 confirmed
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FIGURE 3.13: Plausible parses of text snippet.

The tagging of the text snippet shown in Figure 3.12 has multiple plausible parses, due to
the ambiguity of the terse text snippet. Figure 3.13 shows two of the plausible parses. The plausible
parse at the top of the figure has associated the attribute Departure Airport with the value SFO, and
the attribute Arrival Airport with the value EWR. The plausible parse at the bottom of the figure has
reversed the associations. The plausible parse at the top of the figure has values for the attributes
Airline, Flight Number and Departure Time. The plausible parse at the bottom of the figure has no values
for these attributes; this captures the possibility that the strings such as A2, 53, and 15:30 may not
refer to attributes present in the structured data.

Kannan et al. [2011] present a matching function that can provide a probabilistic score of
matching between the text snippet and the structured record. In addition to ensuring that it takes
into account the match in values of certain attributes, the matching function also needs to (i) penalize
mismatches more than missing values, and (ii) learn the relative importance among these attributes.

For the former criterion, a similarity feature vector is designed for determining the similarity
levels between corresponding attributes, where

(i) A feature value is 1 if the attribute values in the text snippet and structured record match; for
numeric values (such as Departure Time), approximation is allowed in measuring similarity.
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(ii) A feature value is −1 if the attribute values mismatch.

(iii) A feature value is 0 if the attribute value is missing.

For the latter criterion, binary logistic regression is used to learn the weights of each feature,
given labeled data of good and bad matches. The logistic regression learns a mapping from the
similarity feature vector to a binary label.

Example 3.17 Continue with Example 3.16. The plausible parse at the top of Figure 3.13 is
the optimal parse for record r211, with the similarity feature vector having value 1 for each of the
attributes Airline, Flight Number, Departure Airport, Departure Date, Departure Time (allowing for numeric
approximation), and Arrival Airport, and value 0 for all the other attributes.

Similarly, the plausible parse at the bottom of the figure is the optimal parse for record r231 in
Table 3.5, with the similarity feature vector having value 1 for each of the attributes Departure Airport,
Arrival Airport, and Arrival Date.

Among these, record r211 has a higher match probability with the text snippet, and is returned.

Main Results
Kannan et al. [2011] experimentally evaluate several variants of their matching function in order
to study its characteristics, and also identify product categories where their technique resulted in at
least 85% precision in matching. Their system is deployed and used to match all the offers received
by Bing Shopping to the Bing product catalog. Their main results are as follows.

1. They observe that there is a positive correlation between the price of products in a category
and the data quality of the structured data and unstructured product offers. In particular,
the product categories that do not pass the desired threshold of 85% precision are low price
categories (e.g., accessories).

2. They show that the quality of the matching function improves when the weights of each
feature are learned, compared to assuming that the features are weighted equally. This is
especially true in the presence of low data quality, when certain combinations of few features
provide spurious matches.

3. They demonstrate a significant gain in F-measure when missing attributes are treated dif-
ferently from mismatched values. This is especially true for low economic value categories,
where missing attributes are more common.

4. Finally, they provide evidence for the scalability of their method, especially in conjunction
with the use of blocking functions where (i) they use a classifier to categorize product offers
into categories, and limit matching to product specifications in the same category; and (ii) they
identify candidates with at least one high-weighted feature.
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3.5 ADDRESSING THE VERACITY CHALLENGE
The different sources that provide records about the entities in a domain often represent the same
attribute value in different ways, some provide erroneous values, and when the records are about
the entities at different points in time, some of the erroneous values may just be out-of-date values.
Record linkage seeks to partition the records into clusters and identify the records that refer to
the same entity, despite the multiple representations of a value, erroneous and out-of-date attribute
values. The task of resolving conflicts and identifying the correct values for each of the attributes of
the entities is done during data fusion (described in detail in Chapter 4), which is performed after
record linkage.

While this separation of tasks enables sophisticated methods to be developed for each of these
tasks independently, it faces the problem that erroneous and out-of-date values in the records may
prevent correct record linkage. In this section, we present two record linkage techniques to address
this veracity challenge: one that focuses on out-of-date values, and another that effectively deals
with erroneous values.

3.5.1 TEMPORAL RECORD LINKAGE
In this section, we describe a technique proposed by Li et al. [2011], which identifies out-of-
date attribute values using a model of entity evolution over time, to enable linkage over temporal
records. Subsequent works by Chiang et al. [2014a], Chiang et al. [2014b] developed more detailed
probabilistic models to capture entity evolution, and faster algorithms for performing temporal
record linkage.

Challenges & Opportunities
We first illustrate the challenges faced by linkage over temporal records, using the following example.
We then highlight the new opportunities available to temporal record linkage that enable an elegant
solution to this problem.

Example 3.18 Consider again the Flights domain, but this time consider traveller flight profiles, as
in Table 3.6.

The 12 records refer to three entities, with record ids depicted in yellow, red, and green colors.
Record r260 describes E1: James Robert , in sales from Toronto in 1991. Records r270-r274 describe E2:
James Michael Robert , an engineer from San Francisco from 2004, who moved to New York as an
engineer in 2009 and became a manager in 2010 in New York; he used a shorter version of his name
in 2004-2005; this representational variation is depicted in blue color in bold font. Finally, records
r280-r285 describe E3: Robert James, a programmer in Chicago from 2004, who became a manager in
2008 in Chicago, then moved to Seattle later that year. Each of the records also lists names of co-
travellers. This clustering of records, corresponding to the ground truth due to entity evolution is
shown in Figure 3.14.
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TABLE 3.6: Traveller flight profiles

Name Profession Home Airport Co-travellers Year

r260 James Robert Sales Toronto Brown 1991
r270 James Robert Engineer San Francisco Smith, Wesson 2004

r271 James Robert Engineer San Francisco Smith 2005
r272 James Michael Robert Engineer San Francisco Smith, Wollensky 2007

r273 James Michael Robert Engineer New York Smith, Wollensky 2009
r274 James Michael Robert Manager New York Wollensky 2010
r280 Robert James Programmer Chicago David, Black 2004

r281 Robert James Programmer Chicago Black 2006
r282 Robert James Manager Chicago Larry, David 2008

r283 Robert James Manager Seattle John, David 2008
r284 Robert James Manager Seattle John, Long 2009

r285 Robert James Manager Seattle John 2010

r260: James Robert
Sales; Toronto

r271: James Robert
Engineer; San Francisco

r270: James Robert
Engineer; San Francisco

r280: Robert James
Programmer; Chicago

r281: Robert James
Programmer; Chicago r282: Robert James

Manager; Chicago

r283: Robert James
Manager; Seattle r285: Robert James

Manager; Seattle

r272: James Robert Michael
Engineer; San Francisco

r273: James Robert Michael
Engineer; New York

r274: James Robert Michael
Manager; New York

r284: Robert James
Manager; Seattle

1991 2004 2005 2006 2007 2008 2009 2010 2011

FIGURE 3.14: Ground truth due to entity evolution.
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r260: James Robert
Sales; Toronto

r271: James Robert
Engineer; San Francisco

r270: James Robert
Engineer; San Francisco

r280: Robert James
Programmer; Chicago

r281: Robert James
Programmer; Chicago

r282: Robert James
Manager; Chicago

r283: Robert James
Manager; Seattle r285: Robert James

Manager; Seattle

r272: James Robert Michael
Engineer; San Francisco

r273: James Robert Michael
Engineer; New York

r274: James Robert Michael
Manager; New York

r284: Robert James
Manager; Seattle

1991 2004 2005 2006 2007 2008 2009 2010 2011

FIGURE 3.15: Linkage with high value consistency.

If linkage is performed based on high value consistency on Name, Profession, and Home Airport,
the records in entities E2 and E3 may be split, as records for each of them can have different values
for these attributes. This clustering of records is shown in Figure 3.15.

Finally, if linkage is performed based only on high similarity of Name, all the records in entities
E1 and E3 along with some of the records in entity E2 may be merged, as their names share the same
set of words. This clustering of records is shown in Figure 3.16.

It is quite challenging to obtain the desired clustering of records without taking into account
the possibility of evolution of entities over time.

Despite the challenges faced by linkage over temporal records, temporal information does
present additional opportunities for linkage.

. First, entities typically evolve smoothly, with only a few attribute values of an entity changing
at any given time.

Consider again the example in Table 3.6. In 2009, person E2 changed his Home Airport,
but his Profession and Co-travellers remained the same; the following year, E2 changed his
Profession, but his Home Airport remained the same, and his Co-travellers had an overlap.
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r260: James Robert
Sales; Toronto

r271: James Robert
Engineer; San Francisco

r270: James Robert
Engineer; San Francisco

r280: Robert James
Programmer; Chicago

r281: Robert James
Programmer; Chicago

r282: Robert James
Manager; Chicago

r283: Robert James
Manager; Seattle r285: Robert James

Manager; Seattle

r272: James Robert Michael
Engineer; San Francisco

r273: James Robert Michael
Engineer; New York

r274: James Robert Michael
Manager; New York

r284: Robert James
Manager; Seattle

1991 2004 2005 2006 2007 2008 2009 2010 2011

FIGURE 3.16: Linkage with only name similarity.

. Second, entity evolution over time is typically not erratic.
In the example in Table 3.6, records r270, r280, r271, r281, r282 are very unlikely to all refer

to the same entity (see Figure 3.16), as a person is very unlikely to change his profession back
and forth over many years.

. Third, in case the data set is fairly complete, records that refer to the same real-world
entity typically (though not necessarily) observe continuity, or similarity in time gaps between
adjacent records.

In the example in Table 3.6, one is less confident that record r260 refers to the same
person as records r270-r274, given the big time gap between r260 and r270 and the small time
gaps between adjacent record pairs in r270-r274.

These opportunities provide clues to a possible solution for temporal record linkage, and we
next describe the solution strategy proposed by Li et al. [2011].
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Disagreement and Agreement Decays
Recall from Section 3.1 that record linkage consists of three steps: blocking, pairwise matching
and clustering. Li et al. [2011] propose improvements in the second and third steps of linkage for
records with timestamps. Here, we present their approach for pairwise matching; subsequently, we’ll
describe their temporal clustering strategy.

When performing pairwise matching, traditional linkage techniques reward high similarity
between attribute values, and penalize low similarity between attribute values. This is not necessarily
appropriate for temporal record linkage. First, as time elapses, attribute values of an entity may
evolve. For example, in Table 3.6, the values of attributes Profession and Home Airport change for
entities E2 and E3 over time. Second, as time elapses, different entities are increasingly likely to
share the same attribute values. For example, in Table 3.6, records r260 and r270 share the same
name, after a time gap of 13 years, even though they refer to distinct persons.

A key insight by Li et al. [2011] is that the notion of time decay, often used in data analytics
to reduce the impact of older records on analysis results [Cohen and Strauss 2003], can be used
effectively to capture the effect of time elapse on attribute value evolution. They propose two types
of decay, disagreement decay and agreement decay, defined as follows.

Definition 3.2 (Disagreement Decay) [Li et al. 2011] Consider an attribute A ∈ A and a time
gap �T . The disagreement decay of A over �T , denoted by d �=(A, �T ), is the probability that an
entity changes its A-value within time �T .

Definition 3.3 (Agreement Decay) [Li et al. 2011] Consider an attribute A ∈ A and a time gap
�T . The agreement decay of A over �T , denoted by d=(A, �T ), is the probability that two different
entities have the same A-value within time �T .

It is easy to see that both disagreement and agreement decays are in [0, 1], and monotonically
non-decreasing as a function of their second argument �T . Intuitively, the disagreement decay is
used to reduce the penalty for value disagreement, while the agreement decay is used to reduce the
reward for value agreement, over a long time period. More formally, this is done by defining the
pairwise similarity between two records R1 and R2 as

sim(R1, R2) = �A∈AdwA(s(R1.A, R2.A), �T ) ∗ s(R1.A, R2.A)

�A∈AdwA(s(R1.A, R2.A), �T )

where dwA(s(), �T ) denotes the decayed weight of attribute A with value similarity s() and time
gap �T = |R1.T − R2.T |. When the value similarity s() is low, dwA(s(), �T ) is set to wA ∗ (1 −
d �=(A, �T )); when the value similarity s() is high, dwA(s(), �T ) is set to wA ∗ (1 − d=(A, �T )),
where wA is the non-decayed weight of attribute A.
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Li et al. [2011] also describe ways to learn the disagreement and agreement decays empirically
from a labeled data set.

We next illustrate how the use of disagreement and agreement decays effectively capture the
effect of time elapse on attribute value evolution.

Example 3.19 (Linkage with Entity Evolution) Consider the records in Table 3.6. Let the record
similarity function be the weighted average similarity of the four attributes Name, Profession, Home

Airport and Co-travellers, with non-decayed weights 0.4, 0.2, 0.2 and 0.2, respectively. Let the value
similarity function be the Jaccard similarity (ratio of the size of the intersection of two sets to the
size of their union) of the sets of tokens in the two attribute values.

In the absence of any disagreement or agreement decays, the similarity of records r280 and
r282 would be (0.4 ∗ 1 + 0.2 ∗ 0 + 0.2 ∗ 1 + 0.2 ∗ 0.33)/(0.4 + 0.2 + 0.2 + 0.2) = 0.666.

These two records have a time gap of 4 years. Suppose the low value similarity threshold is
0.25, and the high value similarity threshold is 0.75, and the following values for the disagreement
and agreement decays have been learned: d �=(Profession, 4) = 0.8 (i.e., the probability that a person
changes her profession within 4 years is 0.8), d=(Name, 4) = 0.001 (i.e., the probability that two
different persons have the same name in 4 years is 0.001), and d=(HomeAirport, 4) = 0.01 (i.e.,
the probability that two different persons have the same home airport in 4 years is 0.01). Also,
suppose that there are no disagreement or agreement decays for Co-travellers. Then, the decayed
similarity of records r280 and r282 would be (0.4 ∗ 0.999 ∗ 1 + 0.2 ∗ 0.2 ∗ 0 + 0.2 ∗ 0.99 ∗ 1 + 0.2 ∗
0.33)/(0.4 ∗ 0.999 + 0.2 ∗ 0.2 + 0.2 ∗ 0.99 + 0.2) = 0.792, which is higher than the non-decayed
similarity between these two records.

Temporal Clustering
We now describe the temporal clustering strategy of Li et al. [2011]. Together with the approach for
refining pairwise matching with disagreement and agreement decays, it provides a complete solution
for temporal record linkage.

Their key intuition is that, unlike traditional clustering techniques that are time-agnostic,
considering the time order of records can often provide important clues for correct record linkage.
In Table 3.6, for example, records r270-r272 and r273-r274 may refer to the same person, even though
the decayed similarity between records r272 and r274 is low, because the time periods of r270-r272

(years 2004–2007) and r273-r274 (years 2009–2010) do not overlap. On the other hand, records
r270-r272 and r280-r282 are very likely to refer to different persons even though the decayed similarity
between r270 and r282 is high, because the records interleave and their occurrence periods highly
overlap.

Li et al. [2011] propose a variety of temporal clustering methods that process records in time
order and accumulate evidence over time to enable global decision making.
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. Early binding makes eager decisions and either creates a new cluster or merges a record with
a previously created cluster with which it has a high (decayed) record similarity.

. Late binding compares a record with each previously created cluster and computes a probability
of merging, but makes the clustering decision after processing all the records.

. Adjusted binding augments early or late binding, and improves on them by also comparing a
record with clusters created later, and adjusting the clustering results.

Main Results
Li et al. [2011] solve the temporal record linkage problem, and experimentally evaluate their
techniques on real-world data sets, including the DBLP data set. Their main results are as follows.

1. The two key components of decay and temporal clustering are both important for obtaining
good linkage results, improving in F-measure over traditional record linkage methods by up
to 43% on the DBLP data set.

Applying decay alone on baseline methods increases the recall a lot, but it is at the price
of a considerable drop in precision. Applying temporal clustering alone on baseline methods
considers the time order in clustering and continuity computation, so it can increase the recall
quite a bit (though not as much as applying decay alone) without reducing the precision as
much. Applying both components together provides the best F-measure, obtaining both high
precision and high recall.

2. Adjusted binding is shown to be the best temporal clustering method.
Early binding has a lower precision as it makes local decisions to merge records with

previously formed clusters, while late binding has a lower recall as it is conservative in merging
records that have high decayed similarity but low non-decayed similarity. Adjusted binding
significantly improves in recall over both methods by comparing early records with clusters
formed later, without sacrificing the precision much.

3. Finally, the proposed combination of decay and temporal clustering obtains good results on
hard cases in DBLP (such as the records for authors named Wei Wang), often fixing errors
made in DBLP.

3.5.2 RECORD LINKAGE WITH UNIQUENESS CONSTRAINTS
In this section, we present a record linkage technique proposed by Guo et al. [2010], which shows
promising results in the presence of both erroneous data and multiple representations of the same
attribute value.

Challenges
We first illustrate the challenges faced by record linkage in such a scenario, using the following
example.
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TABLE 3.7: Airline business listings

Name Phone Address Source

r206 SkyAire Corp xxx-1255 1 Main Street S10

r207 SkyAire Corp xxx-9400 1 Main Street
r208 SmileAir Inc xxx-0500 2 Summit Ave

r216 SkyAir Corp xxx-1255 1 Main Street S11

r217 SkyAire Corp xxx-9400 1 Main Street
r218 SmileAir Inc xxx-0500 2 Summit Avenue

r226 SkyAir Corp xxx-1255 1 Main Street S12

r227 SkyAir Corp xxx-9400 1 Main Street
r228 SmileAir Inc xxx-0500 2 Summit Avenue

r236 SkyAir Corp xxx-1255 1 Main Street S13

r237 SkyAir Corp xxx-9400 1 Main Street
r238 SmileAir Inc xxx-0500 2 Summit Avenue

r246 SkyAir Corp xxx-1255 1 Main Street S14

r247 SkyAir Corp xxx-9400 1 Main Street
r248 SmileAir Inc xxx-0500 2 Summit Avenue

r256 SkyAir Corp xxx-2255 1 Main Street S15

r257 SmileAir Inc xxx-0500 2 Summit Avenue

r266 SA Corp xxx-1255 1 Main Street S16

r267 SmileAir Inc xxx-0500 2 Summit Avenue

r276 SA Corp xxx-1255 1 Main Street S17

r277 SmileAir Inc xxx-0500 2 Summit Avenue

r286 SmileAir Inc xxx-0500 2 Summit Avenue S18

r296 SA Corp xxx-0500 2 Summit Avenue S19

r297 SmileAir Inc xxx-0500 2 Summit Avenue

Example 3.20 Consider again the Flights domain, but this time consider airline business listings
as in Table 3.7. The 24 records are provided by 10 sources, S10-S19, and refer to two entities, with
record ids depicted in yellow and green colors. Representational variations are depicted in blue color
in bold font, while erroneous values are depicted in red color in bold font.

To illustrate that erroneous values may prevent correct linking, a straightforward linkage may
link r296 (provided by S19) with the SmileAir Inc records, as they share phone and address, while
failing to link them with the SA Corp records from S16 and S17, let alone the SkyAir Corp records.
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If one realizes that r296 confuses between SkyAir and SmileAir and provides wrong values, there is a
higher likelihood to obtain correct linkage results.

To illustrate that linkage in such cases benefits from looking at global evidence, not just local
evidence, for the resolution of conflicts, suppose all SA Corp records have been correctly linked with
other SkyAir Corp records; then the fact that xxx-0500 is provided by more sources for SmileAir Inc
provides further evidence that it is incorrect for SkyAir Corp.

Linkage + Fusion
In general, an entity may have multiple values for an attribute. However, many domains often have
attributes that satisfy uniqueness constraints, that is, each entity has at most one value for an attribute
and each value is associated with at most one entity. (This hard constraint can be relaxed to a soft
constraint by allowing for a few exceptions.) Such constraints hold for attributes like business name,
phone, address, and so on, as in Table 3.7.

Guo et al. [2010] address the following problem to enable robust record linkage in the presence
of erroneous attribute values: Given a set S of independent data sources providing a set of records R, and
a set of (hard or soft) uniqueness constraints, (i) partition R into subsets of records that refer to the same
entity and (ii) discover the true values (if any) and different representations of each true value under the
uniqueness constraints.

They propose an approach to record linkage that combines it with the data fusion step, to
identify incorrect values and differentiate them from alternate representations of the correct value
during the record linkage step itself, thereby obtaining better linkage results. For this purpose, they
consider a finer granularity version of the pairwise matching graph, where individual attribute values
are nodes in the graph, and edges are binary associations between values in the records to be linked,
labeled with the sources that provide this association.

Definition 3.4 (K-Partite Graph Encoding) [Guo et al. 2010] Let S be a set of data sources,
providing a set of records R over a set of attributes A, with uniqueness constraints over k at-
tributes A1, . . . , Ak ∈ A. The k-partite graph encoding of (S , R) is an undirected graph G =
(V 1, . . . , V k , L), such that:

. each node in V i , i ∈ [1, k], is a value of attribute Ai, provided by a source in S;

. each edge (Vi , Vj) ∈ L, Vi ∈ V i , Vj ∈ V j , i , j ∈ [1, k], i �= j , represents the existence of at
least one record R with value Vi in attribute Ai and value Vj in attribute Aj ; this edge is
labeled with the set of all sources that provide such records.

Example 3.21 Figure 3.17 shows the 3-partite graph encoding of the data set in Table 3.7.

Solutions to the problem that Guo et al. [2010] tackle can be naturally encoded on the k-
partite graph by (i) clustering the nodes of V i such that each cluster represents a unique value of
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N1

SkyAire Corp

Name

Phone

Address

SkyAir Corp

1 Main Street 2 Summit Avenue

S10

S15

S15

S11-14

S10-14

S12-14

S11-15

S16-17 S10-19

S11-19

S11-19

S10

S10

S16-17

S19

S19

S10-11

S10-11

S10-14,16-17

xxx-2255xxx-1255 xxx-9400 xxx-0500

2 Summit Ave

SmileAir IncSA Corp

P1

A1 A2 A3

P2 P3 P4

N2 N3 N4

FIGURE 3.17: K-partite graph encoding.

Ai, and (ii) associating an edge between clusters if and only if they belong to the same entity in E.
We present the solutions obtained under hard and soft uniqueness constraints next, followed by a
discussion of the linkage technique with hard constraints.

Example 3.22 Figure 3.18 shows the solution obtained under hard uniqueness constraints on the
k-partite graph shown in Figure 3.17.

Note that it has correctly identified N1, N2, and N3 as alternate representations of the same
name, and A2 and A3 as alternate representations of the same address. Under the hard uniqueness
constraints, an entity can have at most one name, one phone and one address associated with it,
and each name, phone and address can be associated with at most one entity. This allows erroneous
values to be identified. Since there are only two entities in the final clustering, phones P2 and P3
are not associated with any name or address.

While we skip a discussion of the linkage technique with soft uniqueness constraints, the
solution obtained under these constraints is shown in Figure 3.19. Note that since some entities
can have more than one attribute value in this case, phones P1 and P3 are associated with the same
entity, since there is enough evidence in the input records for this linkage result.
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N1

SkyAire Corp SkyAir Corp

1 Main Street 2 Summit Avenue

xxx-2255xxx-1255 xxx-9400 xxx-0500

2 Summit Ave

SmileAir IncSA Corp

P1

A1 A2 A3

P2 P3 P4

N2 N3 N4Name

Phone

Address

FIGURE 3.18: Linkage with hard constraints.

N1

xxx-2255xxx-1255 xxx-9400 xxx-0500

P1

A1 A2 A3

P2 P3 P4

N2 N3 N4Name

Phone

Address

1 Main Street 2 Summit Avenue 2 Summit Ave

SkyAire Corp SkyAir Corp SmileAir IncSA Corp

FIGURE 3.19: Linkage with soft constraints.
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Linkage with Hard Constraints
In the case of hard uniqueness constraints, Guo et al. [2010] reduce the problem to a k-partite graph
clustering problem. For this clustering task, they use the Davies-Bouldin index [Davies and Bouldin
1979] (DB-index), which balances high intra-cluster cohesion with low inter-cluster correlation.

Formally, given a clustering C = {C1, . . . , Cn}, its DB-index is defined as

Avgn
i=1

(
max

j∈[1,n], j �=i

d(Ci , Ci) + d(Cj , Cj)

d(Ci , Cj)

)

where d(Ci , Cj) defines the distance between Ci and Cj . When i = j , the distance is the comple-
ment of the cohesion of Ci; otherwise the distance is the complement of the correlation between Ci

and Cj . The goal is to obtain a clustering with the minimum DB-index.
To compute the cluster distance, Guo et al. [2010] average the similarity distance between

value representations of the same attribute, and the association distance between value representa-
tions of different attributes.

Since finding an optimal DB-index clustering is intractable, Guo et al. [2010] propose a
hill climbing algorithm that (i) first generates an initial clustering using the well-known Hungarian
algorithm [Kuhn 2010] to find the one-to-one matching with the strongest associations (the sum
of the number of supporting sources on the selected edges), and then (ii) iteratively examines each
node and re-assigns it to its best cluster greedily, until convergence.

Main Results
Guo et al. [2010] solve their linkage problem for hard uniqueness constraints and soft uniqueness
constraints, and experimentally evaluate their solutions on real-world data sources that provide
business listings. Their main results are as follows.

1. The proposed combination of record linkage and data fusion is shown to have better accuracy
(F-measure) than techniques that apply linkage and fusion separately.

In particular, applying record linkage followed by data fusion can enforce uniqueness,
but is unable to identify false values from the beginning, so can mis-cluster during the record
linkage step.

2. The use of record linkage with soft constraints improves F-measure by a significant amount,
since real data often have exceptions to the hard constraint.
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In particular, the use of hard constraints has good precision, but the recall of the solution
suffers compared to the recall under soft constraints.

3. Finally, the proposed combination of record linkage and data fusion is scalable in conjunction
with the use of simple blocking techniques, with the overall execution time growing linearly
in the size of the data.
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C H A P T E R 4

BDI: Data Fusion

The third component of data integration is data fusion. Even when different sources provide infor-
mation for the same attribute of the same entity, they may provide conflicting values. Such conflicts
can arise because of mis-typing, incorrect calculations, out-of-date information, inconsistent in-
terpretations of the semantics, and sometimes rumors. The problem can be exacerbated by data
sharing and plagiarism between different sources. As an example, consider the scheduled departure
time for Flight 49 departing from EWR on 2014-04-05. Data source Airline1 provides 18:20, which
is the scheduled time for the airplane to leave the gate (typical interpretation for departure time);
and source Airfare4 provides 18:05, which was the scheduled time for the same flight before 2014-
04-01. Providing conflicting and incorrect data in data integration can be confusing, misleading,
and sometimes even harmful. The goal of data fusion is to decide which value truly reflects the real
world. In this example, one wishes to find out that 18:20 is the real scheduled departure time, so
the passengers can better plan their trip.

Data fusion is a fairly new area compared with schema alignment and record linkage. Tra-
ditionally, data integration mainly integrated enterprise data, which are fairly clean, so data fusion
is often rule based and the research focus is more of improving the efficiency, as overviewed in
Section 4.1.

With the recent rapid growth and expansion of web sources, many of which have low-to-
medium quality, a vast volume of conflicting data are introduced into the web. Section 4.2 describes
more advanced fusion models in addressing such veracity of big data; such models are typically
applied offline in creating data warehouses.

Section 4.3 addresses the volume of big data for both offline fusion and online fusion. For offline
fusion, a MapReduce based implementation of an advanced model is described. For online fusion
applied at query answering time, which has the benefit of being able to capture fast changes in the
data: an algorithm is described that returns estimated results according to partially retrieved data,
and refines the results after obtaining data from more sources.

Section 4.4 addresses the velocity of big data by introducing dynamic data fusion: instead of
assuming a static world, dynamic data fusion considers the evolution of the world and changes of
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true values over time, and tries to decide for each data value not only its correctness but also the
period of the time for which it is correct.

Finally, as previous chapters have shown, there can be a large heterogeneity from different
sources in terms of schema and entity reference, so it is not safe to assume well-aligned data as input
for data fusion. Section 4.5 describes how to address the variety of big data by applying multiple
techniques for schema alignment and record linkage, and resolving disagreements between those
techniques and between data sources holistically.

4.1 TRADITIONAL DATA FUSION: A QUICK TOUR
This section formally defines the problem of data fusion. Sections 4.3–4.5 extend the definition for
more complex applications.

Consider a set of data sources S and a set of data items D. A data item represents a particular
aspect of a real-world entity, such as the scheduled departure time of a flight; in a relational database,
a data item corresponds to a cell in a table. For each data item D ∈ D, a source S ∈ S can (but not
necessarily) provide a value; the value can be atomic (e.g., scheduled departure time), a set of values
(e.g., a set of phone numbers), or a list of values (e.g., a list of book authors).

Among different values provided for a data item, one is consistent with the real world thus
true, and the rest are false. In case the provided value is a set or list of atomic values, a value is
considered as true if all of its atomic values are correct and the set or list is complete (and the order
is preserved for a list). The goal of data fusion is to find for each data item D ∈ D the true value.

Definition 4.1 (Data Fusion) Let D be a set of data items. Let S be a set of data sources, each
providing values for a subset of data items in D. Data fusion decides the true value for each data item
in D.

Example 4.1 Consider the five data sources in Table 4.1. They provide information on the
scheduled departure time for five flights on 2014-04-01.

Source S1 provides all correct times. Source S2 provides the correct times for most of the
flights; however, sometimes it has mis-typing (e.g., 21:49 instead of 21:40 for Flight 4) and
sometimes it uses the take-off time (e.g., 19:18 instead of 19:02 for Flight 1) thus is internally
inconsistent. Source S3 has not updated its data and still provides the scheduled departure times for
the period of 2014-01-01 to 2014-03-31. Sources S4 and S5 copy the data from S3, while S5 makes
an error during copying.

Data fusion aims at finding the correct scheduled departure time for each flight; that is, the
times provided by source S1.
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TABLE 4.1: Five data sources provide information
on the scheduled departure time of five flights. False
values are in italics. Only S1 provides all true values.

S1 S2 S3 S4 S5

Flight 1 19:02 19:18 19:02 19:02 20:02

Flight 2 17:43 17:43 17:50 17:50 17:50

Flight 3 9:20 9:20 9:20 9:20 9:20
Flight 4 21:40 21:49 20:33 20:33 20:33

Flight 5 18:15 18:15 18:22 18:22 18:22

Early approaches to data fusion methods were typically rule based, such as using the observed
value from the most recently updated source, taking the average, maximum, or minimum for
numerical values, or applying voting to take the value provided by the largest number of data sources.
They focus on improving efficiency with the use of database queries (surveyed by Bleiholder and
Naumann, 2008). However, such rule-based fusion is often inadequate when large veracity exists,
as illustrated next.

Example 4.2 Continue with the motivating example in Example 4.1. First consider the three
sources S1, S2, and S3. For all flights except Flight 4, a majority voting on data provided by these
three sources can find the correct scheduled departure time. For Flight 4, however, these sources
provide three different times, resulting in a tie. It is hard to break such a tie unless S1 is identified
as a more accurate source than others.

Now consider in addition sources S4 and S5. Since the data provided by S3 are copied by S4 and
S5, a voting strategy would consider them as the majority and decide wrong scheduled departure
times for three flights. The correct times cannot be decided unless the copying relationships are
identified and the values provided by S4 and S5 are ignored in voting.

4.2 ADDRESSING THE VERACITY CHALLENGE
As illustrated in Example 4.2, rule-based data fusion is often inadequate when data sources have
different qualities and copying exists between sources. Recently, many advanced solutions have been
proposed to address the veracity challenge of big data. They resolve conflicts and prune erroneous data
by leveraging the collective wisdom from the sources, identifying trustworthy sources, and detecting
copying between the sources. These techniques typically contain some or all of the following three
components.
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Truth
discovery

Trustworthiness
evaluation

Copy
detection

FIGURE 4.1: Architecture of data fusion [Dong et al. 2009a].

Truth discovery. Among conflicting values, discover the one that is true. Voting, which leverages
agreements between sources, serves as a baseline approach. Essentially it considers that each
value has one vote from each of its providing data sources, and the value with the highest vote
count (i.e., the value provided by the largest number of sources) is taken as true.

Trustworthiness evaluation. For each data source, evaluate its trustworthiness according to the
correctness of its provided values. Accordingly, a higher vote count can be assigned to a more
trustworthy source, and this can be used in voting.

Copy detection. Detect copying between data sources, such that a discounted vote count can be
assigned to a copied value in voting.

Note that evaluating source trustworthiness requires knowledge of value correctness from
truth discovery, whereas the knowledge of source trustworthiness allows setting an appropriate vote
count for each source to obtain better truth-discovery results. Thus, it is a chicken-and-egg problem.
As shown later, copy detection requires knowledge of value correctness and source trustworthiness,
whereas its results can benefit truth discovery; thus, it is also a chicken-and-egg problem. Because
of such inter-dependence between these three components, they are often iteratively conducted
until reaching convergence or after a certain number of iterations. The architecture is illustrated in
Figure 4.1.

The majority of this section describes a solution for a core case that satisfies the following two
conditions.

Uniform false-value distribution. For each data item, there are multiple false values in the
underlying domain and an independent source has the same probability of providing each
of them.

Categorical value. For each data item, values that do not match exactly are considered as
completely different.

Section 4.2.5 discusses how to extend the basic approach to relax these conditions.
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4.2.1 ACCURACY OF A SOURCE
The basic building block for advanced data fusion is to evaluate the trustworthiness of a source.
There can be many different ways to measure source trustworthiness; we describe an approach that
measures it as the fraction of true values provided by a source, called the accuracy of the source [Dong
et al. 2009a]. The accuracy of source S is denoted by A(S). By its definition, the accuracy of S can
also be considered as the probability that a value provided by S is the true value.

Since often times it is not known for sure which values are true, the accuracy of a source is
computed as the average probability of its provided values being true (Section 4.2.2 describes how
such probabilities are computed). Formally, let V (S) be the values provided by S. For each v ∈ V (S),
Pr(v) denotes the probability that v is true. Then, A(S) is computed as follows:

A(S) = Avg
v∈V (S)

Pr(v). (4.1)

Good sources need to be distinguished from bad ones: a data source is considered to be good if
for each data item it is more likely to provide the true value than any particular false value; otherwise,
it is considered to be bad. Assume for each data item in D the number of false values in the domain
is n. Then, the probability that S provides a true value is A(S) and that it provides a particular false
value is 1−A(S)

n
under the condition of uniform false-value distribution. So S is good if A(S) >

1−A(S)
n

;
that is, A(S) > 1

1+n
. The rest of this chapter focuses on good sources, which is important for the

theorems to hold.

Example 4.3 Consider the five sources in Table 4.1. For source S1, by definition its accuracy is
5
5 = 1. Suppose the probabilities of its five provided values are computed as 0.982, 0.991, 1, 0.910, and
0.991, respectively. Its accuracy can be computed by Eq. (4.1) as 0.982+0.991+1+0.910+0.991

5 = 0.97,
which is very close to its real accuracy.

4.2.2 PROBABILITY OF A VALUE BEING TRUE
Now consider how to compute the probability that a value is true. For now it is assumed that
the sources are independent and Section 4.2.3 considers copying between sources. Intuitively, the
computation should consider both how many sources provide the value and the accuracy of those
sources. Bayesian analysis can be applied for this purpose.

Consider a data item D ∈ D. Let V(D) be the domain of D, including one true value and n

false values. Let SD be the sources that provide information on D. For each v ∈ V(D), let SD(v) ⊆ SD

denote the set of sources that provide v for D (SD(v) can be empty). Let �(D) denote the observation
of which value each S ∈ SD provides for D.

The probability Pr(v) for v ∈ V(D) can be computed as the a posteriori probability conditioned
on �(D). Recall that among the values in V(D), there is one and only one true value; thus, their
probabilities should sum up to 1. Assume the a priori belief of each value being true is the same,
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then according to the Bayes rule,

Pr(v) = Pr(v true|�(D)) ∝ Pr(�(D)|v true). (4.2)

Given the assumption of source independence for now, the probability Pr(�(D)|v true) can
be computed as the product of the probabilities that each source in SD(v) provides the true value
and the probabilities that each source in SD \ SD(v) provides an observed false value. The former,
according to the definition of source accuracy, is A(S); the latter, under the condition of uniform
false-value distribution, is 1−A(S)

n
. Thus,

Pr(�(D)|v true) = �
S∈SD(v)

A(S) . �
S∈SD\SD(v)

1 − A(S)

n

= �
S∈SD(v)

nA(S)

1 − A(S)
. �

S∈SD

1 − A(S)

n
. (4.3)

In Eq. (4.3), �
S∈SD

1−A(S)
n

is the same for all values. In other words,

Pr(v) ∝ �
S∈SD(v)

nA(S)

1 − A(S)
. (4.4)

Accordingly, the vote count of a data source S is defined as

C(S) = ln
nA(S)

1 − A(S)
. (4.5)

The vote count of a value v, denoted by C(v), can be computed as

C(v) =
∑

S∈SD(v)

C(S). (4.6)

Essentially, the vote count of a source is derived from its accuracy, and the vote count of a
value is computed as the sum of the vote counts of its providers. A value with a higher vote count is
more likely to be true. Combining Eqs. (4.2)–(4.6), the probability of each value can be computed
as follows:

Pr(v) = exp(C(v))∑
v0∈V(D) exp(C(v0))

. (4.7)

The following theorem shows three nice properties of Eq. (4.7). It states that a value provided
by a larger number of data sources or by more accurate sources has a higher probability to be true.

Theorem 4.1 [Dong et al. 2009a] Equation (4.7) has the following properties.
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1. If all data sources are good and have the same accuracy, when the size of SD(v) increases,
Pr(v) increases.

2. Fixing all sources in SD(v) except S, when A(S) increases for S, Pr(v) increases.

3. If there exists S ∈ SD(v) such that A(S) = 1, and no S ′ ∈ SD(v) such that A(S′) = 0, then
Pr(v) = 1; if there exists S ∈ SD(v) such that A(S) = 0, and no S′ ∈ SD(v) such that A(S ′) = 1,
then Pr(v) = 0.

Proof. The three properties can be proved as follows.

1. When all data sources have the same accuracy, they have the same vote count; when a source
is good, it has a positive vote count. Let c be that vote count and |SD(v)| be the size of SD(v).
Then C(v) = c . |SD(v)| increases with |SD(v)|, and so does Pr(v), which is proportional to
exp(C(v)).

2. When A(S) increases for a source S, C(S) increases and so does C(v) and Pr(v).

3. When A(S) = 1 for a source S, C(S) = ∞ and C(v) = ∞, so Pr(v) = 1. When A(S) = 0 for
a source S, A′(S) = −∞ and C(v) = −∞, so Pr(v) = 0.

Note that the first property is actually a justification for the voting strategy when all sources
have the same accuracy. The third property shows that it is not recommended to assign very high
or very low accuracy to a data source, which has been avoided by defining the accuracy of a source
as the average probability of its provided values.

Example 4.4 Consider S1, S2 and S3 in Table 4.1 and assume their accuracies are 0.97, 0.61, 0.4,
respectively. Assuming there are 10 false values in the domain (i.e., n = 10), the vote count of each
source can be computed as follows:

C(S1) = ln
10 ∗ 0.97
1 − 0.97

= 5.8; C(S2) = ln
10 ∗ 0.61
1 − 0.61

= 2.7; C(S3) = log
10 ∗ 0.4
1 − 0.4

= 1.9.

Now consider the three values provided for Flight 4. Value 21:40 is provided by S1 thus has
vote count 5.8, 21:49 is provided by S2 thus has vote count 2.7, and 20:33 is provided by S3 thus
has vote count 1.9. Among them, 21:40 has the highest vote count and so the highest probability
to be true. Indeed, its probability is

exp(5.8)
exp(5.8) + exp(2.7) + exp(1.9) + (10 − 2) ∗ exp(0)

= 0.914.
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4.2.3 COPYING BETWEEN SOURCES
Copying exists between two data sources S1 and S2 if they derive the same part of their data directly
or transitively from a common source (can be one of S1 or S2). Accordingly, there are two types of
data sources: independent sources and copiers.

An independent source provides all values independently. It may provide some erroneous values
because of incorrect knowledge of the real world, mis-typing, and so on.

A copier copies a part (or all) of data from other sources (independent sources or copiers). It
can copy from multiple sources by union, intersection, and so on, and since a snapshot of data
is considered, cyclic copying on a particular data item is impossible. In addition, a copier may
revise some of the copied values or add additional values; though, such revised and added values
are considered as independent contributions by the copier.

In many applications it is not known how each source obtains its data, so copying has to be
discovered from a snapshot of data. We next describe how to detect copying between a pair of sources
and how to apply this knowledge in truth discovery. For tractability, only direct copying is considered
in copy detection and truth discovery. Section 4.2.5 briefly discusses how to distinguish transitive
copying and co-copying from direct copying.

Copy Detection
Copy detection has been studied for text documents and software programs [Dong and Srivastava
2011], where reuse of sufficiently large text fragments is taken as evidence for copying. The problem
is much harder for structured data. First, sharing common data does not in itself imply copying,
since accurate sources can also share a lot of independently provided correct data; on the other hand,
not sharing a lot of common data does not in itself imply no-copying, since a copier may copy only
a small fraction of data from the original source. For the sources in Table 4.1, sources S3-S5 share
80–100% of their data and there is copying between them; however, S1 and S2 also share 60% of
their data, but they are independent. Second, even when two sources are dependent, it is often not
obvious which one is a copier. For the sources in Table 4.1, it is not clear among S3-S5, which one
is the original source.

On structured data, copying is detected based on two important intuitions. First, copying
is more likely between sources that share uncommon values, since sharing an uncommon value is
typically a low-probability event when the sources are independent. Take correctness of data in
consideration. Whereas there is a single true value for each data item, there are often multiple
distinct false values; thus, a particular false value is often an uncommon value, and sharing a lot of
false values indicates copying. In the motivating example (Table 4.1), with the knowledge of which
values are true and which are false, one would suspect copying between S3-S5 because they provide
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the same false value for three data items. However, one would suspect copying between S1 and S2

much less, as they share only true values.
Second, typically a random subset of data from a source would have the same property (e.g.,

accuracy) as the full data set. However, if the source is a copier, the data it copies may have different
properties from the data it provides independently. Thus, between two sources where copying is
likely, the source whose own data differ significantly from the data shared with the other source has
a higher likelihood to be a copier.

A Bayesian model is proposed to compute the probability of copying between a pair of data
sources based on these two intuitions [Dong et al. 2009a]. The model makes the following three
assumptions; Section 4.2.5 briefly discusses how extended techniques relax these assumptions.

No mutual copying. There is no mutual copying between a pair of sources; that is, S1 copying
from S2 and S2 copying from S1 do not happen at the same time.

Item-wise independence. The data from a source on different data items are independent
conditioned on being provided by the source.

Independent copying. The copying between a pair of data sources is independent of the copying
between any other pair of data sources.

Assume S consists of two types of data sources: good independent sources and copiers.
Consider two sources S1, S2 ∈ S. Under the assumption of no mutual copying, there are three possible
relationships: S1 and S2 being independent, denoted by S1⊥S2; S1 copying from S2, denoted by
S1 → S2; and S2 copying from S1, denoted by S2 → S1. Bayesian analysis is applied to compute the
probability of copying between S1 and S2 given observation of their data, denoted by .

Pr(S1⊥S2|) = α Pr(|S1⊥S2)

α Pr(|S1⊥S2) + 1−α
2 Pr(|S1 → S2) + 1−α

2 Pr(|S2 → S1)
. (4.8)

Here, α = Pr(S1⊥S2)(0 < α < 1) is the a priori probability that two data sources are inde-
pendent. As there is no a priori preference for copy direction, the a priori probability for copying in
each direction is set to 1−α

2 .
Now consider how to compute the probability of the observed data, conditioned on indepen-

dence of or copying between the sources. Consider the data items for which both S1 and S2 provide
values, denoted by D12. With the assumption item-wise independence, one can compute Pr(|S1⊥S2)

(similar for Pr(|S1 → S2) and Pr(|S2 → S1)) as the product of probabilities for the observation
on each individual data item, denoted by (D) for data item D.

Pr(|S1⊥S2) = �
D∈D12

((D)|S1⊥S2). (4.9)
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Such data items can be partitioned into three subsets: Dt , denoting the set of data items on
which S1 and S2 provide the same true value, Df , denoting the set of data items on which they
provide the same false value, and Dd , denoting the set of data items on which they provide different
values (Dt ∪ Df ∪ Dd = D12). The conditional probability of (D) for each type of data items can
be computed as follows.

First, consider the case where S1 and S2 are independent (i.e., S1⊥S2). Since there is a single
true value, the probability that S1 and S2 provide the same true value for data item D is

Pr((D : D ∈ Dt)|S1⊥S2) = A(S1) . A(S2). (4.10)

Under the uniform-false-value-distribution condition, the probability that source S provides
a particular false value for data item D is 1−A(S)

n
. Thus, the probability that S1 and S2 provide the

same false value for D is

Pr((D : D ∈ Df )|S1⊥S2) = n . 1 − A(S1)

n
. 1 − A(S2)

n
= (1 − A(S1))(1 − A(S2))

n
. (4.11)

Then, the probability that S1 and S2 provide different values on a data item D, denoted by Pd for
convenience, is

Pr((D : D ∈ Dd)|S1⊥S2) = 1 − A(S1)A(S2) − (1 − A(S1))(1 − A(S2))

n
= Pd . (4.12)

Next, consider the case when S2 copies from S1 (the equations when S1 copies from S2 are
similar). Assume the copier S2 copies on each data item with probability c (0 < c ≤ 1). There are
two cases where S1 and S2 provide the same value v for a data item D. First, with probability c,
S2 copies v from S1 and so v is true with probability A(S1) and false with probability 1 − A(S1).
Second, with probability 1 − c, the two sources provide v independently and so its probability of
being true or false is the same as in the case where S1 and S2 are independent. Thus,

Pr((D : D ∈ Dt)|S2 → S1) = A(S1) . c + A(S1) . A(S2) . (1 − c), (4.13)

Pr((D : D ∈ Df )|S2 → S1) = (1 − A(S1)) . c + (1 − A(S1))(1 − A(S2))

n
. (1 − c). (4.14)

If S1 and S2 provide different values, S2 must provide the value independently (with probability
1 − c) and its provided value is different from S1’s provided value (with probability Pd). Thus,

Pr((D : D ∈ Dd)|S2 → S1) = Pd
. (1 − c). (4.15)
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Combining Eqs. (4.8)–(4.15), one can compute the probability of S1⊥S2, S1 → S2, S2 → S1

accordingly. Note that Eqs. (4.13)–(4.14) are different for conditions S1 → S2 and S2 → S1; thus,
different probabilities may be computed for different directions.

The resulting equations have several nice properties that conform to the intuitions discussed
earlier in this section, formalized as follows.

Theorem 4.2 [Dong et al. 2009a] Let kt , kf , kd be the size of Dt , Df , Dd , respectively. Let S
be a set of good independent sources and copiers. Equation (4.8) has the following three properties
on S.

1. Fixing kt + kf and kd , when kf increases, the probability of copying (i.e., Pr(S1 → S2|) +
Pr(S2 → S1|)) increases.

2. Fixing kt + kf + kd, when kt + kf increases and none of kt and kf decreases, the probability
of copying increases.

3. Fixing kt and kf , when kd decreases, the probability of copying increases.

Proof. The three properties are proved with the assumption that each source has accuracy 1 − ε (ε
can be considered as the error rate). The proof can be easily extended for the case where each source
has a different accuracy.

1. Let k0 = kt + kf + kd . Then, kd = k0 − kt − kf .

Pr(S1⊥S2|) = 1 −
(

1 + (
1 − α

α
)(

1 − ε − c + cε

1 − ε + cε
)kt (

ε − cε

cn + ε − cε
)kf (

1
1 − c

)k0

)−1

.

As 0 < c < 1, it holds that 0 < 1−ε−c+cε
1−cε

< 1 and 0 < ε−cε
cn+ε−cε

< 1. When kt or kf increases,
( 1−ε−c+cε

1−cε
)kt or ( ε−cε

cn+ε−cε
)kf decreases. Thus, Pr(S1⊥S2|) decreases.

2. Let kc = kt + kf . Then, kt = kc − kf .

Pr(S1⊥S2|) = 1 −
(

1 + (
1 − α

α
)(

1 − ε

1 − ε + cε
)kc(

ε(1 − ε + cε)

(1 − ε)(cn + ε − cε)
)kf (

1
1 − c

)k
)−1

.

Because ε < n
n+1, ε(1 − ε + cε) < (1 − ε)(cn + ε − cε). Thus, when kf increases,

(
ε(1−cε)

(1−ε)(n−cn+cε)
)kf decreases and so Pr(S1⊥S2|) decreases.

3. Because kd increases, ( 1
1−c

)kd increases, and so Pr(S1⊥S2|) increases.

Example 4.5 Continue with the motivating example. Consider the possible copying relationship
between S1 and S2. They share no false values (all values they share are correct), so copying is unlikely.
With α = 0.5, c = 0.8, A(S1) = 0.97, A(S2) = 0.61, the Bayesian analysis goes as follows.
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Start with computation of Pr(|S1⊥S2). In case D ∈ Dt , Pr((D : D ∈ Dt)|S1⊥S2) =
0.97 ∗ 0.61 = 0.592. There is no data item in Df . Let Pd denote the probability Pr((D : D ∈
Dd)|S1⊥S2). Thus, Pr(|S1⊥S2) = 0.5923 ∗ P 2

d
= 0.2P 2

d
.

Next consider Pr(|S1 → S2). In case D ∈ Dt , Pr((D : D ∈ Dt)|S1 → S2) = 0.8 ∗ 0.61 +
0.2 ∗ 0.592 = 0.61. In case D ∈ Df , Pr((D : D ∈ Df )|S1 → S2) = 0.2Pd . Thus, Pr(|S1 →
S2) = 0.613 ∗ (0.2Pd)

2 = 0.009P 2
d

. Similarly, Pr(|S2 → S1) = 0.029P 2
d

.

According to Eq. (4.8), Pr(S1⊥S2|) = 0.5∗0.2P 2
d

0.5∗0.2P 2
d
+0.25∗0.009P 2

d
+0.25∗0.029P 2

d

= 0.91, so inde-

pendence is very likely.

Considering Copying in Truth Discovery
Previous subsections have described how to decide if two sources are dependent. However, even if
a source copies from another, it is possible that it provides some of the values independently, so it
would be inappropriate to completely ignore a copier. Instead, for each value v on D and its providers,
denoted by SD(v), the copiers should be identified and vote count C(v) should be computed from
only the independent providers. However, deciding which provider copies the value v is at best
probabilistic, because: (1) instead of deterministic decisions, only a probability is known for copying
in each direction between a pair of sources; and (2) the copier may not copy every value. Ideally,
one should enumerate all possible worlds of the copying relationships, compute the vote count of
v in each possible world, and take the weighted sum. But this takes exponential time and one can
estimate the vote count in polynomial time.

Consider sources in SD(v) one by one. For each source S, denote by Pre(S) the set of sources
that have already been considered and by Post(S) the set of sources that have not been considered
yet. The probability that S provides v independently of a source S0 ∈ Pre(S) is 1 − c(Pr(S1 →
S0|) + Pr(S0 → S1|)). Accordingly, the probability that S provides v independently of any data
source in Pre(S), denoted by I (S , v), is

I (S , v) = �
S0∈Pre(S)

(1 − c(Pr(S1 → S0|) + Pr(S0 → S1|))). (4.16)

Note, however, that I (S , v) is not precisely the probability that S provides v independently,
because S may copy from sources in Post(S). There are two possibilities. First, if none of those
sources copies from any source in Pre(S), when examining each of them, the possibility of copying
between it and S would still be considered so the vote count would be discounted. However, the
accuracy of the sources can be different, so the discounted vote count may be different. Second, if
some of those sources copy from sources in Pre(S), S actually transitively copies from sources in
Pre(S), so its vote count is not discounted appropriately. Thus, it is important to order the sources
to minimize such errors. Source ordering can proceed in a greedy fashion.
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1. If the probability of S1 → S2 is much higher than that of S2 → S1, consider S1 as a copier of
S2 with probability Pr(S1 → S2|) + Pr(S2 → S1|) (recall that it is assumed that there is
no mutual-copying) and order S2 before S1. Otherwise, consider both directions as equally
possible and there is no particular order between S1 and S2; consider such copying undirec-
tional .

2. For each subset of sources between which there is no particular ordering yet, sort them as
follows: in the first round, select a data source that is associated with the undirectional copying
of the highest probability (Pr(S1 → S2|) + Pr(S2 → S1|)); in later rounds, each time select
a data source that has the copying with the maximum probability with one of the previously
selected sources.

Finally, the vote count of value v is adjusted by taking only the “independent fraction” of the
original vote count (decided by source accuracy) from each source:

C(v) =
∑

S∈SD(v)

C(S)I (S , v). (4.17)

Example 4.6 Consider three data sources S1, S2, and S3 that provide the same value v on a data
item. Assume c = 0.8 and between each pair of sources the probability of copying is 0.4 (0.2 in each
direction). Enumerating all possible worlds would compute 2.08 as the vote count of v.

Now estimate the vote count of v. As all copyings have the same probability, the data
sources can be considered in any order. Consider the order of S1, S2, S3. The vote count of S1 is
1, that of S2 is 1 − 0.4 ∗ 0.8 = 0.68, and that of S3 is 0.682 = 0.46. So the estimated vote count is
1 + 0.68 + 0.46 = 2.14, very close to the real one, 2.08.

The following theorem has been proved to show the scalability and quality of the estimation.

Theorem 4.3 [Dong et al. 2009a] The vote-count estimation algorithm has the following two
properties.

1. Let t0 be the vote count of a value computed by enumerating all possible worlds and t be the
estimated vote count. Then, t0 ≤ t ≤ 1.5t0.

2. Let s be the number of sources that provide information on a data item. The vote count of
all values of this data item can be estimated in time O(s2 log s).

Proof.

1. Consider m data sources that vote for a value and assume they are ranked as S1, . . . , Sm. Let
D be a subset of copying relationships. Let G be a copying graph with copying in D. If G

contains nodes Si , Sj , Sk , 1 ≤ i < j < k ≤ m, where Sj depends on Sk, and Sk depends on Si,
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the estimation will (incorrectly) count the vote by Sj ; otherwise, the estimation computes the
correct vote count for G. For any three nodes in G, the probability that the previously described
case happens is at most 1

3 (by Bayesian analysis). So the probability that the estimated vote
count is more than the ideal vote count is at most 1

3. Thus, the total estimated vote count is
at most 1/3

1−1/3 = 0.5 more than the ideal vote count.

2. Let d be the number of copying relationships between the sources; d ≤ s(s−1)
2 . The bottleneck

of vote-count estimation is to order the sources, which can be done by iteratively finding the
highest-probability copying between an already sorted source and an unsorted source. This
can be done using heap sort in time O(d log d), so the time complexity is O(s2 log s).

4.2.4 THE END-TO-END SOLUTION
The end-to-end algorithm, AccuCopy, is described in Algorithm 4.1. The algorithm is consistent
with the architecture shown in Figure 4.1.

Algorithm AccuCopy starts by setting the same accuracy for each source and the same
probability for each value, then iteratively (1) computes probabilities of copying based on the
probabilities of values computed in the previous round, (2) updates probabilities of values, and
(3) updates accuracy of sources, and terminates when the accuracy of the sources becomes stable.
Note that it is crucial to consider copying from the beginning. Otherwise, a data source that has
been duplicated many times can dominate the vote results in the first round; later on the source is

Algorithm 4.1: AccuCopy: Discover true values by considering accuracy of and
copying between data sources

Input: S , D.
Output: the true value for each data item in D.

1 Set default accuracy for each source
2 while accuracy of sources changes && no oscillation of decided true values do
3 Compute probability of copying between each pair of sources by Eqs. (4.8)–(4.15)
4 Sort sources according to the copyings
5 Compute probability of each value for each data item by Eqs. (4.2)–(4.7) and Eq. (4.17)
6 Compute accuracy of each source by Eq. (4.1)
7 forall D ∈ D do
8 Among all values of D, select the one with the highest vote count as the true value
9 endfor

10 endwhile
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considered to share only “true” values with other sources, and the copying can hardly be detected.
However, in the first round it is not known which values are correct. Thus, Eq. (4.8) is applied to
compute the probability conditioned on the value being true and the probability conditioned on the
value being false, and the probability of copying is computed as the average weighted by the a priori
belief of truthfulness of a value.

It is proved that if source accuracy is ignored (i.e., assuming all sources have the same accuracy),
Algorithm AccuCopy converges.

Theorem 4.4 [Dong et al. 2009a] Let S be a set of good independent sources and copiers that
provide information on data items in D. Let l be the number of data items in D and n0 be the
maximum number of values provided for a data item by S. The AccuVote algorithm converges in
at most 2ln0 rounds on S and D if it ignores source accuracy.

Proof. It can be proved that if the decision on the true value for data item D changes back and
forth between two values v and v′, for each oscillation there needs to be decision changes on more
of the other data items than in the previous oscillation. The number of data items in D is finite, so
the algorithm converges.

Once accuracy of sources is considered, AccuCopy may not converge: when different values
are selected as the true values, the direction of the copying between two sources can change and in
turn suggest different true values. One can stop the process after detecting oscillation of decided
true values or after a certain number of rounds. The complexity of each round is O(|D||S|2 log |S|).
Example 4.7 Revisit the motivating example. Figure 4.2 shows the probability of copying,
Table 4.2 shows the computed accuracy of each data source, and Table 4.3 shows the probabilities
of values computed for Flight 4 and Flight 5.
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FIGURE 4.2: Probabilities of copying computed by AccuCopy on the motivating example [Dong et al.
2009a]. An arrow from source S to S ′ indicates that S copies from S′. Copyings are shown only when the sum
of the probabilities in both directions is over 0.1.



122 4. BDI: DATA FUSION

TABLE 4.2: Accuracy of data sources computed
by AccuCopy on the motivating example

S1 S2 S3 S4 S5

Round 1 0.52 0.42 0.53 0.53 0.53

Round 2 0.63 0.46 0.55 0.55 0.41
Round 3 0.71 0.52 0.53 0.53 0.37
Round 4 0.79 0.57 0.48 0.48 0.31

...
Round 11 0.97 0.61 0.40 0.40 0.21

TABLE 4.3: Vote count computed for the
scheduled departure time for Flight 4 and Flight 5
in the motivating example

Flight 4 Flight 5

21:40 21:49 20:33 18:15 18:22

Round 1 3.69 3.69 4.57 4.81 4.57
Round 2 2.38 1.98 3.00 4.01 3.00
Round 3 2.83 2.14 3.10 4.97 3.10
Round 4 3.20 2.38 3.00 5.58 3.00

...
Round 11 5.78 2.75 2.35 8.53 2.35

Initially, Line 1 of Algorithm AccuCopy sets the accuracy of each source to 0.8. Accordingly,
Line 3 computes the probability of copying between sources as shown on the left of Figure 4.2.
Taking the copying into consideration, Line 5 computes confidence of the values; for example, for
Flight 4 it computes 5.30 as the confidence of value 21:40 and 21:49, and 6.57 as the confidence
of value 20:33. Then, Line 6 updates the accuracy of each source to 0.52, 0.42, 0.53, 0.53, 0.53,
respectively, according to the computed value probabilities; the updated accuracy is used in the next
round.

Starting from the second round, S1 is considered more accurate and has a higher vote count.
In later rounds, AccuCopy gradually increases the accuracy of S1 and decreases that of S3-S5. At
the fourth round, AccuCopy decides that 21:40 is the correct scheduled departure time for Flight
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4 and finds the right scheduled departure time for all flights. Finally, AccuCopy terminates at the
eleventh round and the source accuracy it computes converges close to the expected ones (1, 0.6,
0.4, 0.4, 0.2, respectively).

4.2.5 EXTENSIONS AND ALTERNATIVES
Extensions for Truth Discovery
First, the two conditions described at the beginning of this section for the core case in truth discovery
can be relaxed as follows.

Non-uniform distribution of false values. In reality, false values of a data item may not be uniformly
distributed; for example, an out-of-date value or a value similar to the true value can occur more
often than others. Dong et al. [2012] extend the basic model by considering the popularity of each
value.

Let Pop(v|vt) denote the popularity of v among all false values conditioned on vt being true.
Then, the probability that source S provides the correct value remains A(S), but the probability that
S provides a particular incorrect value v becomes (1 − A(S))Pop(v|vt). Deriving from the Bayesian
analysis, the vote count of a source and that of a value v can be computed as follows. Recall that SD

denotes the set of sources that provide data item D and SD(v) denotes the set of sources that provide
value v on D.

C(S) = ln
A(S)

1 − A(S)
; (4.18)

C(v) =
∑

S∈SD(v)

C(S) − ρ(v); (4.19)

ρ(v) = |SD(v)| ln(|SD(v)|) + (|SD| − |SD(v)|) ln(|SD| − |SD(v)|). (4.20)

Similarity of values. Dong et al. [2009a] extend the basic model by considering similarity between
values. Let v and v′ be two values that are similar. Intuitively, the sources that vote for v′ also implicitly
vote for v and should be considered when counting votes for v. For example, a source that claims
21:49 as the departure time may actually mean 21:40 and should be considered as an implicit voter
of 21:40.

Formally, let sim(v , v′) ∈ [0, 1]denote the similarity between v and v′, which can be computed
based on edit distance of strings, difference between numerical values, etc. After computing the vote
count of each value of data item D, the vote counts can be adjusted according to the similarities
between them:

C∗(v) = C(v) + σ .
∑
v′�=v

C(v′) . sim(v , v′), (4.21)
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where σ ∈ [0, 1] is a parameter controlling the influence of similar values. The adjusted vote count
is used in computation in later rounds.

Other Methods of Measuring Source Trustworthiness
There have been many other ways proposed for measuring the trustworthiness of a source and they
can be categorized into four classes.

Web-link based methods [Kleinberg 1999, Pasternack and Roth 2010, Pasternack and Roth
2011, Yin and Tan 2011] measure source trustworthiness and value correctness using PageR-
ank [Brin and Page 1998]. A source providing a value induces a link between the source and
the value. The PageRank of a source is computed as the sum of those from its provided values,
whereas the PageRank of a value is computed as the sum of those from its provider sources.

IR-based methods [Galland et al. 2010] measure source trustworthiness as the similarity between
the provided values and the true values. They use similarity metrics that are widely accepted in
information retrieval, such as cosine similarity. The trustworthiness of a source is computed as
the cosine similarity between its provided values and the inferred true values. Value correctness
is decided by the accumulated source trustworthiness.

Graphical-model methods [Pasternack and Roth 2013, Zhao and Han 2012, Zhao et al. 2012]
apply probabilistic graphical models to jointly reason about source trustworthiness and value
correctness. As an example, LTM [Zhao and Han 2012] proposes a latent truth model that
models the quality of sources, truthfulness of values, and observations of data as random
variables.

Precision/Recall-based methods [Pochampally et al. 2014, Zhao et al. 2012] use precision and
recall (or specificity and sensitivity) to measure source trustworthiness in case the value is a
set or a list of atomic values. With such measures they can distinguish imprecise sources that
provide incorrect atomic values and incomplete sources that miss some atomic values.

Extensions for Copy Detection
Finally, there have been several extensions for copy detection, including how to relax the assumptions
described in Section 4.2.3.

Considering other aspects of data. In addition to value correctness, Dong et al. [2010] discuss
obtaining evidence for copying from other aspects of data, such as coverage of the data and
formatting of the data. Copying is considered likely if two sources share a lot of data items
that are rarely provided by others, if they use common rare formats, and so on.

Correlated copying. The basic model assumes item-wise independence, which seldom holds in
reality. One can imagine that a copier often copies in one of two modes: (1) it copies data
for a subset of entities on a subset of attributes, called per-entity copying; and (2) it copies on



4.2 Addressing the Veracity Challenge 125

a subset of attributes for a set of entities that it provides independently or copies from other
sources, called per-attribute copying. As an example, a third-party source may copy flight
information including flight number, departure and arrival airport and time, from airline
websites (per-entity copying); it then copies information about departure and arrival gate
from corresponding airport websites (per-attribute copying). Blanco et al. [2010] and Dong
et al. [2010] discuss how to distinguish these two modes in copy detection.

Global copy detection. The previously described techniques consider only local copy detection
where a pair of sources are considered each time. There can also be co-copying and transitive
copying. For example, S2 and S3 may both copy from S1 so they are co-copiers; S4 may copy
from S2, so it transitively copies from S1. Local copy detection may conclude that there is
copying between every pair of sources in this case. Dong et al. [2010] discuss how to apply
global copy detection, such that direct copying, co-copying, and transitive copying can be
distinguished.

Broader correlation between sources. In addition to direct copying between a pair of sources, a
subset of sources may be correlated or anti-correlated. For example, a subset of data sources
may apply similar semantics for some particular attributes such as flight departure time and
arrival time, thus are correlated; in case they apply different semantics, they are anti-correlated.
Pochampally et al. [2014] and Qi et al. [2013] discuss how to detect such broader correlation
between a subset of sources.

Main Results
Li et al. [2012] compare the algorithms proposed by Dong et al. [2009a, 2012], Galland et al.
[2010], Pasternack and Roth [2010], and Yin et al. [2007] on the Stock and Flight data described in
Section 1.2.4. The data sets are publicly available at http://lunadong.com/fusionDataSets.htm, and
the main results are as follows.

1. On the Stock data set, where copying is rare and mainly happens between high-quality sources,
the models that consider accuracy of sources typically out-perform naive voting. Among the
different models, the one presented in Sections 4.2.1–4.2.2, combined with consideration of
value similarity, obtains the highest precision, 0.93, 2.4% higher than that by naive voting.

2. On the Flight data set, where copying happens a lot between low-quality sources, most models
that consider source accuracy obtain even lower precision than naive voting. AccuCopy, on
the other hand, significantly improves the precision of the results over naive voting, by 9.1%.

3. As data sources are gradually added in decreasing order of their quality, on both domains the
best results are not obtained after adding all sources, but after adding only sources with the
highest quality. This motivates selecting the best sources for integration, as we describe in
Section 5.2.

http://lunadong.com/fusionDataSets.htm
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4.3 ADDRESSING THE VOLUME CHALLENGE
The fusion algorithms described in Section 4.2 assume that fusion would be conducted offline. This
section describes two extensions to address the volume challenge of big data. First, Section 4.3.1
briefly describes a MapReduce-based algorithm that scales to billions of data items and data sources.
Then, Section 4.3.2 describes how to conduct data fusion at query-answering time in an online
fashion.

4.3.1 A MAPREDUCE-BASED FRAMEWORK FOR OFFLINE FUSION
Conducting each component of data fusion sequentially for billions of data items and billions of
data sources can be prohibitively expensive. A natural thought is to parallelize the computation in a
MapReduce-based framework. Recall that the complexity of truth discovery and of trustworthiness
evaluation are both linear in the number of data items and in the number of data sources; the
MapReduce-based framework is effective in scaling them up. On the other hand, the complexity
of copy detection is quadratic in the number of data sources, since copying needs to be detected for
every pair of sources. Li et al. [2015] study how to scale up copy detection; however, parallelization
for pairs of billions of sources remains an open problem. The rest of this sub-section focuses on data
fusion techniques that include only truth discovery and trustworthiness evaluation. Figure 4.3 shows
the architecture of a MapReduce implementation of the algorithm.

Map each
(item, val, src)
by data item

M
Stage
I

Compute value
probability on
each data item

R

Map by
data item

M Stage III

Output the
true value

R

Map each
(item, val, src)
by provenance

M

N Y

Stage
II

Accuracy
eval for each
provenance

R

Converge?

FIGURE 4.3: MapReduce-based implementation for truth discovery and trustworthiness evaluation [Dong
et al. 2014b].
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There are three stages; each stage is a MapReduce process and so is performed in a parallel
fashion. The algorithm takes as input the provided data, each being a (data item, value, source)
triple.

I. The Map step partitions the triplet by the data item; the Reduce step applies Bayesian inference
on all values provided for the same data item and computes the probability for each of them.

II. The Map step partitions the triplet by the source; the Reduce step computes the accuracy of
each source from its value probabilities.

III. The first two stages iterate until convergence. The third stage outputs the results: the Map
step partitions the triplet by the data item; the Reduce step selects the value with the highest
probability as the fusion result for output.

4.3.2 ONLINE DATA FUSION
The algorithms described so far are targeted for an offline process. In many domains some part
of the data are frequently changing over time, such as estimated arrival time of flights. Frequently
performing offline fusion to keep up with the update of the data is infeasible given the sheer volume
of the data, the large number of data sources, and the high frequency of the updates. Instead, it is
desired to fuse data from different sources at query answering time. However, AccuCopy runs over
all sources and all data items, and may take many iterations before convergence, thus can be quite
time-consuming so inappropriate for online fusion.

Liu et al. [2011] propose an online data fusion technique to address this problem. It assumes
that source accuracy and copying relationships have been evaluated in an offline process and would
not change much over time. At query answering time it conducts truth discovery. Instead of waiting
for truth discovery to complete and returning all answers in a batch, online data fusion starts with
returning the answers from the first probed source, then refreshes the answers as it probes more
sources. For each returned answer, it shows the likelihood that the answer is correct based on the
retrieved data and knowledge of the source quality. When the system gains enough confidence that
data from the unprocessed sources are unlikely to change the returned answers, it terminates without
necessarily probing all sources. The next example illustrates how one can reduce the latency of truth
discovery at query answering time.

Example 4.8 Consider answering “When is the estimated arrival time for Flight 49?” on 9 data
sources shown in Figure 4.4. These sources provide three different answers, among which 21:45
is correct.

Table 4.4 shows how the online fusion system answers the query. The system starts with prob-
ing S9, returning 21:25 with probability .4 (how the sources are ordered and how the probabilities
are computed are described shortly). It then probes S5, observing a different answer 21:45; as a
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S1(20:50).3

S4(21:25)

.3

S5(21:45)
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FIGURE 4.4: Nine sources that provide the estimated arrival time for Flight 49. For each source, the answer
it provides is shown in parenthesis and its accuracy is shown in a circle. An arrow from S to S ′ means that S

copies some data from S′.

TABLE 4.4: Output at each time point in Example 4.8. The time
is made up for illustration purposes

Output

Time Answer Probability Probability Range Probed Source

Sec 1 21:25 .4 (0, 1) S9

Sec 2 21:25 .22 (0, 1) S5

Sec 3 21:45 .94 (0, 1) S3

Sec 4 21:45 .84 (0, 1) S4

Sec 5 21:45 .92 (0, 1) S6

Sec 6 21:45 .97 (.001, 1) S2

Sec 7 21:45 .97 (.014, 1) S1

Sec 8 21:45 .98 (.45, 1) S7

result, it lowers the probability for answer 21:25. Next, it probes S3 and observes 21:45 again, so
it refreshes the answer to 21:45 with a probability .94. Probing sources S4, S6, S2, S1, and S7 does
not change the answer, and the probability first decreases a little bit but then gradually increases to
.98. At this point, the system is confident enough that the data from S8 are unlikely to change the
answer and so terminates. Thus, the user starts to see the correct answer after 3 sources are probed
rather than waiting till the system completes probing all 9 sources.

As shown in Figure 4.5, such an online fusion system has four major components: one compo-
nent for offline preprocessing–source ordering, and three components for online query answering—
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FIGURE 4.5: Architecture of online data fusion [Liu et al. 2011].

truth identification, probability computation, and termination justification. They are next described in
detail for truth discovery considering only source accuracy, assuming all sources are independent and
provide all data items. Liu et al. [2011] present a complete solution that considers in addition source
coverage and copying relationships.

Truth Identification
Consider probing the sources in the pre-decided order. As a new source is probed, incrementally
update the vote count for each already encountered answer. In case all sources are independent,
incremental vote counting is straightforward: when a new source S is probed, add its vote count,
C(S), to the vote count of the value it provides. The value with the highest vote count is returned.

For the example in Table 4.4, after querying S9, the vote count of 21:25 is updated to 3.4 so it
will be returned as an answer. After querying S1, the vote count of 21:45 is updated to 3.4; so either
21:25 or 21:45 is returned.

Probability Computation
When a value v is returned as the answer, it is desired to return the expected probability and the
range of the probability for this value to be true. Previous sections have described how one may
compute the probability of a value according to the available data from a set S of sources, denoted
by Pr(v|S). However, during query answering there are a lot of sources that are not probed yet and
it is not known which values they may provide; when the expected probability and the range of the
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probability are returned, those sources should be taken in consideration. The problem is solved as
follows.

Consider all possible worlds that describe the possible values provided by the unseen sources in
S \ S, denoted by W(S \ S). For each possible world W ∈ W(S \ S), denote by Pr(W) its probability
and by Pr(v|S , W) the probability that v is true based on data provided in the possible world.
Then, the maximum probability of v is the maximum probability computed among all possible
worlds (similarly for minimum probability), and the expected probability of v is the sum of these
probabilities weighted by the probabilities of the possible worlds. They are formally defined as
follows.

Definition 4.2 (Expected/Maximum/Minimum Probability) [Liu et al. 2011] Let S be a set of
data sources and S ⊆ S be the probed sources. Let v be a value for a particular data item. The expected
probability of v, denoted by expPr(v|S), is defined as

expPr(v|S) =
∑

W∈W(S\S)

Pr(W) Pr(v|S , W). (4.22)

The maximum probability of v, denoted by maxPr(v|S), is defined as (similarly for minimum
probability)

maxPr(v|S) = max
W∈W(S\S)

Pr(v|S , W). (4.23)

As a new source is probed, the expected, maximum, and minimum probabilities need to be
efficiently computed based on the counted votes. Enumerating all possible worlds takes exponential
time so is not a feasible solution. In fact, it is proven that the expected probability for v is exactly the
same as Pr(v|S). The intuition is that the probability of an unseen source providing v or any other
value fully depends on the probability of v being true, which is computed from data in S; thus, the
unseen sources do not add any new information and so cannot change the expected probability.

Theorem 4.5 [Liu et al. 2011] Let S be a set of independent sources, S ⊆ S be the sources that
have been probed, and v be a value for a particular data item. Then, expPr(v|S) = Pr(v|S).

Proof. One can compute the probability of each possible world according to the probabilities of the
values being true, which are in turn computed based on observations on S.

Pr(W) =
∑

v∈D(D)

Pr(W |v) Pr(v|S) = Pr(W |S).

Obviously, W and v are independent conditioned on S. According to the definition of expected
probability,
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expPr(v|S) =
∑

W∈W(S−S)

Pr(W) Pr(v|S , W)

=
∑

W∈W(S−S)

Pr(W |S) . Pr(v , S , W)

Pr(S , W)

=
∑

W∈W(S−S)

Pr(W |S) . Pr(S) Pr(v|S) Pr(W |S)

Pr(S) Pr(W |S)

=
∑

W∈W(S−S)

Pr(W |S) Pr(v|S) = Pr(v|S).

For the maximum probability of value v, obviously it is obtained when all unseen sources
provide v.

Theorem 4.6 [Liu et al. 2011] Let S be a set of independent sources, S ⊆ S be the sources that
have been probed, and v be a value for a data item D. Let W be a possible world in which all sources
in S \ S provide value v on D. Then, maxPr(v|S) = Pr(v|S , W).

Obtaining the minimum probability of value v certainly requires that none of the unseen
sources provides v. Among the rest of the values, it is proven that if all unseen sources provide the
same value, and the value has the highest probability to be true according to the probed sources, v

has the minimum probability.

Theorem 4.7 [Liu et al. 2011] Let S be a set of independent sources, S ⊆ S be the sources that
have been probed, v be a value for a data item D, and vmax = argmaxv′∈D(D)−{v} Pr(v′|S). Let W

be a possible world in which all sources in S \ S provide value vmax on D. Then, minPr(v|S) =
Pr(v|S , W).

Consider the example in Table 4.4. Assume independence of the sources for illustrative
purpose (so the numbers presented here can be different from those in Table 4.4). After querying
S9 and S5, it is computed that expPr(21:45) = exp(3.4)

exp(3.4)+exp(3.4)+exp(0)∗9 = .43. If all other sources
provide 21:45, there are 8 providers for 21:45 and 1 provider for 21:25; thus, maxPr(21:45) = 1.
If all other sources provide 21:25, there is 1 provider for 21:45 and 8 providers for 21:25; thus,
minPr(21:45) = 0.

Termination Justification
As the sources are probed, the results often converge before finishing probing all sources. In such
situations, it is desired to terminate early. Thus, for each data item a termination condition is checked
and data retrieval stops for it after the condition is satisfied.
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To guarantee that probing more sources will not change the returned value v for data item
D, one should terminate only if for each v′ ∈ D(D), v′ �= v, it holds that minPr(v) > maxPr(v′).
However, this condition is very strict to be satisfied. It can be loosened in two ways: (1) for the value
v′ with the second highest vote count, minPr(v) > expPr(v′); (2) for such v′, expPr(v) > maxPr(v′).
Liu et al. [2011] show that these loose conditions lead to much faster termination, while sacrificing
the quality of the results only a little, if at all.

For the example in Table 4.4, after querying S7, minPr(21:45) = .45 but expPr(21 : 25) = .02.
Data retrieval can terminate without probing the remaining source S8.

Source Ordering
The algorithm assumes an ordered list of sources as input and probes the sources in the given order.
The sources should be ordered such that (1) the correct answers can be returned as early as possible
and (2) data retrieval can terminate as soon as possible. To reduce the overhead at runtime, source
ordering is conducted offline. Intuitively, when the sources are independent, the sources should be
ordered in non-increasing order of their accuracy.

Main Results
Liu et al. [2011] evaluate the online data fusion algorithm on a book data set that Yin et al. [2007]
crawled from AbeBooks.com by searching computer-science books. The data set is publicly available
at http://lunadong.com/fusionDataSets.htm, and the main results are as follows.

1. Liu et al. [2011] propose a query asking information about 100 books on 100 top coverage
sources. Results for 90% books are returned after probing around 15 sources, get stable after
probing 70 sources, and terminate after probing around 95 sources. The number of books with
results (correspondingly, stable results, terminated results) climbs quickly at the beginning and
then flattens out.

2. In terms of the number of correctly returned answers, it also increases quickly at the beginning,
flattens out later, but decreases when probing the last 32 sources, among which some have very
low accuracy. Considering copying performs better than considering only accuracy, which in
turn performs better than naive voting.

3. Among various termination conditions, minPr(v) > Pr(v′) terminates faster while obtains
the highest precision (note that Pr(v′) = expPr(v′) when the sources are independent).

4. The proposed source ordering techniques are effective and out-perform random ordering or
ordering by coverage.

http://lunadong.com/fusionDataSets.htm
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4.4 ADDRESSING THE VELOCITY CHALLENGE
So far, static values are assumed for data fusion; that is, the truth does not change over time and the
sources are static. The real world is dynamic; for example, scheduled departure and arrival time of the
same flight may change over time, there may be new flights, and existing flights may be terminated.
To capture such changes, data sources often update their data. When the sources fail to update their
data in time, there can be stale data; that is, they are true for a past period of time but not up-to-date.
This section very briefly discusses how to extend the fusion techniques designed for static sources
to address the velocity challenge of big data.

Note that online data fusion in a sense also addresses the velocity challenge but it focuses on
finding the currently true values. This section describes temporal data fusion, where the goal is to find
all correct values and their valid periods in the history, when the true values evolve over time.

Example 4.9 Consider the sources S1–S3 in Table 4.5; they provide information for five flights.
The scheduled departure time for the same flight may be changing over time. For example, Flight 1
was scheduled to depart at 19:18 in January, and in March was rescheduled to depart at 19:02. As
another example, Flight 4 is a new flight in March and was scheduled to depart at 20:33; in September
it was rescheduled to depart at 21:40. The sources are updating their data accordingly. For example,
S3 started to provide information about Flight 1 in February and it provided the correct scheduled

TABLE 4.5: Three data sources updating information on the
scheduled departure time of five flights. False values are in italic.

History S1 S2 S3

1. ( Jan, 19:18) (Apr, 19:02) ( Jan, 19:18) (Feb, 19:18)
(Mar, 19:02) ( Jul, 19:02)

2. ( Jan, 17:50) ( Jan, 17:50) ( Jan, 17:00) (Feb, 17:00)
(Sep, 17:43) (Oct, 17:43) (Feb, 17:50) (Mar, 17:50)

(Sep, 17:43)
3. ( Jan, 9:20) ( Jan, 9:20) ( Jan, 9:20) (Feb, 9:20)

4. (Mar, 20:33) (Apr, 20:33) (Sep, 21:49) ( Jul, 20:33)
(Sep, 21:40) (Oct, 21:40)

5. ( Jan, 18:22) ( Jan, 18:22) ( Jan, 18:25) (Feb, 18:25)
( Jun, 18:15) (Aug, 18:15) (Mar, 18:22) ( Jul, 18:22)

( Jul, 18:15)
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time 19:18. After the rescheduling in March, it updated its provided time to 19:02 correctly, but not
until July.

In such a dynamic setting erroneous data can be caused by several reasons. First, the sources
may provide erroneous values; for example, S2 wrongly provided 21:49 for Flight 4 in September.
Second, the sources may fail to update their data; for example, after Flight 1 was rescheduled, S2 did
not update its data accordingly. Third, some sources may not update their data in time; for example,
Flight 1 was rescheduled in March, but S3 did not update its data until July.

It is desired to find not only the currently correct values, but also the correct values in the
history and their valid period.

Formally, consider a set D of data items, each associated with a value at each particular time t

and can be associated with different values at different times; if D does not exist at t , it is associated
with a special value �. The life span of D is defined as a sequence of transitions (tr1, v1), . . . , (trl , vl),
where (1) l is the number of periods in D’s life time; (2) the value of D changes to vi at time
tri , i ∈ [1, l]; (3) v1 �= �, and vi �= vi+1 for each i ∈ [1, l − 1]; and (4) tr1 < tr2 < . . . < trl. The life
span of the scheduled departure time of the five flights are shown in the first column of Table 4.5.

Consider a set S of data sources, each providing values for data items in D and can change
the data over time. Data provided by the sources are observed at different times; by comparing
an observation with its previous observation, a series of updates can be inferred. Denote by T =
{t0, . . . , tn} the set of observation points and by U(S , ti), i ∈ [0, n], the updates at time ti; as a special
case, U(S , t0) contains values S provided at the beginning observation point t0. Note that an update
in U(S , ti), i ∈ [1, n], can happen at any time in (ti−1, ti] and updates that are overwritten before
the next observation may be missing; thus, frequent collection can often preserve more information.
Table 4.5 shows the updates of sources S1–S3.

Definition 4.3 (Temporal data fusion) Let D be a set of data items. Let S be a set of data sources,
each providing values for a subset of data items in D over time, observed in a set T of observation
time points. Temporal data fusion decides the true value for each data item in D at each time in T.

The solution to this problem contains two major parts. First, the quality metrics of the data
sources are defined for the dynamic setting. Second, Bayesian analysis is applied to decide the lifespan
of each data item.

Source Quality
Recall that for static data the quality of a source is captured by its accuracy. The metrics are much
more complex for the dynamic case. Ideally, a high-quality source should provide a new value for a
data item if and only if , and right after , the value becomes true. These three conditions are captured
by three measures: the coverage of a source measures the percentage of all transitions of different
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TABLE 4.6: CEF-measures for the data sources in Table 4.5

Source Coverage Exactness Freshness F(0) Freshness F(1)

S1 .92 .99 .27 .4
S2 .64 .8 .25 .42

data items that it captures (by updating to the correct value); the exactness is the complement of the
percentage of transitions that the source mis-captures (by providing a wrong value); and freshness is
a function of time �T , measuring among the captured transitions, the percentage that are captured
within time �T . These three measures are orthogonal and collectively referred to as the CEF-
measure.

Table 4.6 shows the CEF-measures computed for sources S1 and S2. It is observed that S1

has high coverage and exactness; for 27% transitions it captures in time �T = 0 (i.e., within the
same month), whereas for 40% transitions it captures in time �T = 1 (i.e., within the next month).
In comparison, S2 has lower coverage (e.g., it fails to capture the re-scheduling of Flight 1), and has
much lower exactness (e.g., it provides wrong time at some points for Flights 2, 4, and 5); however,
its freshness is similar to that of S1.

Lifespan Discovery
Consider a data item D ∈ D. To discover its life span, both the time and the value of each transition
need to be decided. This is done by Bayesian analysis based on the CEF-measures of its providers.

1. First, decide the value of D at time t0.

2. Then, find for D’s next transition the most likely time point in T and the most likely value,
and repeat this process until it is decided that there is no more transition.

Finally, note that there can still be copying relationships between the sources and the copying
relationships may even change over time. Dong et al. [2009b] describe how to apply an HMM model
to find such evolving relationships.

Main Results
Dong et al. [2009b] evaluate the dynamic data fusion algorithm on a restaurant data set including
over 5K restaurants in Manhattan, crawled from 12 web sources weekly in a period of 8 weeks. The
data set is publicly available at http://lunadong.com/fusionDataSets.htm, and the main results are
as follows.

http://lunadong.com/fusionDataSets.htm
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1. In this period 467 restaurants were marked by some source as being closed and among them
280 were indeed closed. The proposed method obtains a F-measure of 0.86 (precision = 0.86,
recall = 0.87) in identifying these closed restaurants. In comparison, considering all these
restaurants as closed has a low precision of 0.60, while considering restaurants marked by at
least two data sources as closed has a low recall of 0.34.

2. Among the 66 pairs of data sources, Dong et al. [2009b] identified 12 pairs of sources with
copying relationships.

3. An experiment on synthetic data shows that considering CEF-measures and copying both
improve lifespan discovery.

4.5 ADDRESSING THE VARIETY CHALLENGE
All data fusion techniques presented so far assume that schema alignment and record linkage have
been conducted and the data are well aligned. However, this assumption is too idealistic in the
context of big data: oftentimes the input of data fusion may contain many errors resulting from
schema alignment and record linkage. This section describes an initial step in addressing the variety
challenge of big data.

The input of data fusion can be visualized as a two-dimensional data matrix shown in
Figure 4.6: each row represents a data item, each column represents a data source, and each cell
represents the value provided by the data source on the data item. However, because of the possible
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FIGURE 4.6: Input for data fusion is two-dimensional, whereas input for extended data fusion is three-
dimensional [Dong et al. 2014b].
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errors in schema alignment and record linkage, a (data item, value) pair obtained from a source
may not be really what the source provides. Thus, a third dimension is introduced to represent
extractors, which conduct schema alignment and record linkage, and extract (data item, value) pairs
from sources. Different techniques may be applied for alignment and linkage; thus, there can be
several extractors on the same source. In the three-dimension input matrix, each cell represents
what the corresponding extractor extracts from the corresponding source on the corresponding data
item. In other words, a (data item, value) pair is not necessarily what is provided by a source, but what
is extracted by an extractor from the source. The definition of data fusion is extended to incorporate
addressing possible mistakes from the extractors.

Definition 4.4 (Extended data fusion) Let D be a set of data items. Let S be a set of data sources,
each providing values for a subset of data items in D. Let E be a set of extractors, each extracting
the values provided by S on D. Extended data fusion decides the true value for each data item in D.

To reduce the dimension of the input to extended data fusion, Dong et al. [2014b] consider
each (extractor, source) pair as a whole, called a provenance. Having a large number of provenances
indicates that the (data item, value) pair is either supported by many sources, or extracted by many
different extractors; both presumably would increase the confidence in its correctness.

On the other hand, the effectiveness of this approach is limited by the correlation of the
provenances, since an extractor may make a lot of common mistakes on different sources. A better
approach would be to distinguish mistakes made by extractors and erroneous information provided
by sources, which in turn would enable evaluating the quality of the sources and the quality of the
extractors independently. Then, one could identify possible mistakes by the same extractor on many
different sources, and avoid being biased by a false triple provided by only a couple of sources but
extracted by many different extractors. This still remains as an open problem.

Main Results
Dong et al. [2014b] experiment on the knowledge base described in Section 1.2.6 and evaluate how
well the traditional data fusion techniques can solve the problem of extended data fusion. Their main
results are as follows.

1. Treating (extractor, source) as a provenance obtains reasonably good results in solving the
extended data fusion problem. When it computes a probability above 0.9 for a (data item,
value) pair, the real accuracy is indeed high (0.94); when it computes a probability below 0.1
for a (data item, value) pair, the real accuracy is indeed low (0.2); and when it computes a
medium probability in [0.4, 0.6) for a (data item, value) pair, the real accuracy also matches
well (0.6).
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FIGURE 4.7: Fixing #provenances, (data item, value) pairs from more extractors are more likely to be
true [Dong et al. 2014b].

2. On the other hand, taking the cross product of the source and the extractor as provenances does
lose important signals. Figure 4.7 shows the accuracy of (data item, value) pairs by the number
of provenances on the knowledge base. For triples with the same number of provenances, those
being extracted by at least 8 extractors have a much higher accuracy (on average 70% higher)
than those being extracted by a single extractor.
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C H A P T E R 5

BDI: Emerging Topics

The previous chapters in this book have made it abundantly clear that big data integration offers
both significant new challenges and new opportunities to derive value by integrating data available
from a myriad of sources.

In this chapter, we describe some emerging topics and techniques that are expected to be
critical to the success of BDI. In Section 5.1, we describe some recent work that takes advantage of
the practice of crowdsourcing to seek human help to address challenges in data integration. Next,
in Section 5.2, we present recent work that observes that data integration comes with a cost, which
needs to be traded off with the potential benefit of integrating new sources to determine which
sources are worth integrating. Finally, in Section 5.3, we present some work that can serve as the
foundation for users to understand unfamiliar sources with data that are relevant to meet their needs.

5.1 ROLE OF CROWDSOURCING
Crowdsourcing systems seek help from a crowd of humans to effectively solve a variety of problems
that are quite easy for humans, but much more difficult for computers to solve. They have become
ubiquitous on the web in the last decade. Doan et al. [2011] provide an insightful survey of this
emerging field, and define crowdsourcing systems as follows.

Definition 5.1 (Crowdsourcing Systems) A system is a crowdsourcing system if it enlists a crowd
of humans to help solve a problem defined by the system owners, and if in doing so, it addresses the
following four fundamental challenges: How to recruit and retain users? What contributions can
users make? How to combine user contributions to solve the target problem? How to evaluate users
and their contributions?

Given the challenging nature of data integration, it is only natural that a variety of crowd-
sourcing approaches have been proposed for various data integration tasks. An early work in this
area was the MOBS project [McCann et al. 2003, McCann et al. 2008], which studies how to
collaboratively build data integration systems, especially schema alignment between data sources.
More recently, there has been a number of works that have focused on crowdsourcing for record
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linkage [Wang et al. 2012, Wang et al. 2013, Whang et al. 2013, Demartini et al. 2013, Gokhale
et al. 2014, Vesdapunt et al. 2014].

In this section, we present a couple of prominent works in the area of crowdsourcing for
record linkage. In Section 5.1.1, we present a hybrid human-computer approach which aims to
crowdsource a small number of record pairs to label all candidate record pairs as matches or non-
matches. In Section 5.1.2, we describe the first approach to crowdsource the end-to-end workflow
of the record linkage task. Finally, we outline some directions for future work in this area.

5.1.1 LEVERAGING TRANSITIVE RELATIONS
Wang et al. [2012] observe that a naive approach to crowdsourcing record linkage would be to ask
humans in the crowd to decide for each pair of records whether or not the two records refer to the same
entity. For a table with n records, this naive approach would result in O(n2) human intelligence tasks
(HITs), which is not scalable. Instead, they propose a hybrid human-computer approach CrowdER
that first uses computational techniques (e.g., the ones described in Chapter 3) to discard all pairs
of records with a low likelihood of being matches, and only ask humans to label all the remaining
candidate record pairs as matches or non-matches.

This approach, while clearly much better than a human-only approach, does not take advan-
tage of the fact that record linkage satisfies the transitive relations [Wang et al. 2013].

Positive Transitive Relation. If records R1 and R2 refer to the same entity, and records R2 and
R3 refer to the same entity, then R1 and R3 must refer to the same entity too.

Note that the order in which these record pairs are considered for labeling by the crowd
does not matter, if the labels by the crowd for different record pairs are consistent: any two
pairs can be labeled as matches by the crowd, and the label of the third pair can be inferred
to be a match by the system.

Negative Transitive Relation. If records R1 and R2 refer to the same entity, but records R2 and
R3 refer to different entities, then R1 and R3 must refer to different entities too.

Note that the order in which these record pairs are considered for labeling by the crowd
does matter, even if the labels by the crowd for different record pairs are consistent. If record
pairs (R1, R2) and (R2, R3) are labeled by the crowd as match and non-match, respectively,
the label of the third pair (R1, R3) can be inferred to be a non-match by the system. However,
if the crowd labels the pairs (R1, R3) and (R2, R3) as non-matches, this does not allow the
system to infer any label for the pair (R1, R2).

Given a set of candidate record pairs with unknown labels, it is easy to see that considering
the record pairs for labeling in different orders can lead to different numbers of record pairs being
labeled by the crowd, and hence a different number of record pairs whose labels can be inferred.
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ID Record ID Record Pair Likelihood

R1 iPhone 2nd generation L1 (R2, R3) 0.85
R2 iPhone Two L2 (R1, R2) 0.75
R3 iPhone 2 L3 (R1, R6) 0.72

R4 iPad Two L4 (R1, R3) 0.65
R5 iPad 2 L5 (R4, R5) 0.55

R6 iPad 3rd generation L6 (R4, R6) 0.48
L7 (R2, R4) 0.45

L8 (R5, R6) 0.42

R1 R6
L3

L7

L2 L6

L4 L8

L1 L5
R2

R3 R5

R4

FIGURE 5.1: Example to illustrate labeling by crowd for transitive relations [Wang et al. 2013].

Consider the example shown in Figure 5.1. It shows six records {R1, . . . , R6} and eight
pairs of records {L1, . . . , L8} whose labels need to be determined. These are depicted using a
graph, with records as nodes, and record pairs as edges: there are three entities, and the records
corresponding to the same entity are in the same color. Edges connecting nodes of the same color
are matches, while edges connecting nodes of different colors are non-matches. If the record pairs
are considered in the order L1, L2, L3, L4, L8, L7, L6, L5, seven record pairs would need to be
crowdsourced; only the label of L4 can be inferred. However, if the record pairs are considered in
the order L1, L2, L3, L4, L5, L6, L7, L8, only six record pairs would need to be crowdsourced; the
labels of L4 and L8 can be inferred. In this example, the minimum number of crowdsourced labels
needed is 6.

This raises the following problem: given a set of candidate record pairs with unknown labels,
which strategy should be used to ensure that the minimum number of record pairs needs to be labeled
by the crowd, such that for all other pairs, their labels can be inferred from the crowdsourced pairs
based on transitive relations? Vesdapunt et al. [2014] showed that this problem is NP-hard. Wang
et al. [2013] and Vesdapunt et al. [2014] present heuristics to solve this problem in practice. We
describe the approach of Wang et al. [2013] in this section.
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Challenges
Identifying a good strategy for crowdsourcing the labels of record pairs faces two key challenges.

First, under the model of labeling record pairs sequentially, is it better to ask humans in the
crowd to label record pairs that have a high likelihood of matching (i.e., a likely match), a low
likelihood of matching (i.e., a likely non-match), or a medium likelihood of matching (i.e., it is
unclear if it is a match or a non-match). It might seem intuitive to ask humans in the crowd to label
those record pairs that have a medium likelihood of matching, where the information gain from the
correct label is the highest. But is this intuition correct?

Second, in a real crowdsourcing system like Amazon Mechanical Turk (AMT), asking
humans to label one record pair at a time can take too many iterations, and hence is infeasible.
How much parallelism can be achieved while still ensuring that the number of record pairs labeled
is the minimum possible?

Key Contributions
Wang et al. [2013] address the challenges to identify good sequential and parallel strategies for
crowdsourcing the labels of record pairs, and make many interesting contributions.

First, they show that a good sequential labeling order to take advantage of transitive relations
is to label record pairs in the decreasing order of the match likelihood, assuming that the match
likelihoods of the different record pairs are independent of each other. This is because conclusively
establishing which record pairs match can be used to infer labels in both positive transitive relations
and negative transitive relations.

This can be seen using the example shown in Figure 5.1. By labeling record pairs in the order
L1, L2, L3, L4, L5, L6, L7, L8 (decreasing order of match likelihood), only six record pairs would
need to be crowdsourced, which is optimal in this example.

Second, they show that it is feasible to have a high degree of parallelism, while ensuring that
the number of record pairs labeled is the same as the sequential ordering. The key intuition here
is to start with the sequential order described above, and sequentially identify those record pairs
whose labels would need to be crowdsourced (i.e., not inferred), independent of the actual label of
preceding record pairs in the sequential order. While trying all combinations of match/non-match
labels of preceding record pairs to make this identification is exponential, an efficient algorithm can
be obtained by checking if a record pair would need to be crowdsourced, assuming only that all
preceding record pairs had a match label .

This approach can be illustrated using the example shown in Figure 5.1. Given the sequential
order of L1, L2, L3, L4, L5, L6, L7, L8, the record pairs L1, L2, L3, L5, L6 can be processed in
parallel in the first iteration, since none of their labels can be inferred by knowing the actual
label of the preceding record pairs in the sequential order. Once the labels of these record pairs
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are crowdsourced, the labels of L4 and L8 can be inferred, and only the label of L7 needs to be
crowdsourced. Again, only six labels are crowdsourced, using two iterations, instead of the six
iterations taken by the sequential strategy.

Main Results
Wang et al. [2013] experimentally evaluate their sequential and parallel strategies on two public
real-world data sets, the Cora data set of research publications and the Abt-Buy product data set, with
different characteristics in the number of matching record pairs, using both simulation and with
AMT. Their main results are as follows.

1. Transitive relations are very effective to reduce the number of record pairs whose labels need
crowdsourcing.

On the Cora data set, which has many entities with a large number of matching records,
using transitive relations reduces the number of crowdsourced record pairs by 95%. On the
Abt-Buy data set, which has only a few entities with more than two matching records, using
transitive relations is not as advantageous, but can still save about 20% crowdsourced record
pairs. These results additionally assumed that all record pairs below a specified low likelihood
threshold are indeed non-matches, which is quite reasonable in practice.

2. The number of record pairs whose labels need to be crowdsourced by the proposed sequential
order can be over an order of magnitude better than the worst order (first labeling non-
matching pairs, then the other matching pairs). Further, using a random order requires many
more crowdsourced record pairs than the proposed order, but still much fewer than the worst
order.

3. The parallel strategy reduced the number of iterations by up to two orders of magnitude over
the sequential strategy.

On the Cora data set, using a likelihood threshold of 0.3 for non-matches, the sequential
strategy required 1237 iterations, while the parallel strategy reduced the number of iterations
to 14.

4. The results on the actual crowdsourcing platform AMT are broadly consistent with the
simulation results, and show that transitive relations can lead to significant cost savings with
a little loss in result quality.

For example, on the Cora data set, the transitive approach reduces the number of human
intelligence tasks by 96.5%, and the time by 95% with about 5% loss in result quality. The
reason for the loss of quality is that some pairs’ labels are falsely inferred from incorrectly
labeled record pairs based on transitive relations.
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5.1.2 CROWDSOURCING THE END-TO-END WORKFLOW
Gokhale et al. [2014] observe that prior works on crowdsourcing record linkage are limited in that
they crowdsource only parts of the end-to-end workflow of record matching (see Chapter 3), relying
on expert software developers to program the remaining steps of the workflow. To address this issue,
they propose to crowdsource the end-to-end workflow of the record linkage task, requiring very
minimal input from a user who has a specific record linkage task to be performed. They characterize
their approach as hands-off crowdsourcing (HOC), and argue that it has the potential to enable wider
use of crowdsourcing for record linkage.

Challenges
HOC for record linkage clearly needs to address many challenges, as described below.

First, how can the blocking step of record linkage, which is essential to reduce the number of
record pairs that need to undergo pairwise matching, be crowdsourced? Current approaches require
a domain expert to carefully develop rules to ensure that blocking does not result in too many false
negatives. How can the development of such rules be crowdsourced without requiring any effort
from domain experts?

Second, the pairwise matching step of record linkage often uses learning-based approaches to
predict matching and non-matching record pairs. How can the training step of such learning-based
matchers use crowdsourcing in a cost-effective manner?

Third, how can the crowd be used to estimate the matching accuracy of the learning-based
matcher? A key challenge here is that only a very small fraction of candidate record pairs are matches,
thus the data is highly skewed. How can crowdsourcing be used to estimate precision and recall in
a principled manner?

Fourth, when the matching accuracy of the learning-based matcher needs to be improved,
iterative record linkage techniques focus on record pairs that earlier iterations fail to match correctly.
How can crowdsourcing be used to make this iterative step rigorous?

Key Contributions
Gokhale et al. [2014] address all the aforementioned challenges, making effective use of random
forests [Breiman 2001] and active learning [Settles 2012]. They dub their proposed HOC approach
as Corleone, named after the eponymous character from the Godfather movies. Corleone consists of
four main modules: blocker, matcher, accuracy estimator, and difficult pairs locator, to address the
above challenges, and requires only minimal input from a user who has a specific record linkage task
to be performed: the two tables to be matched, a short textual instruction to the crowd about what it
means for two records to match, two positive examples of record pairs that match, and two negative
examples of record pairs that do not match. Corleone’s key contributions are as follows.
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First, given two tables R1 and R2 on which record linkage needs to be performed, Corleone’s
blocker identifies a main-memory sized sample of record pairs from R1 × R2 (which includes the
two positive and two negative examples of record pairs supplied by the user). Each record pair in this
sample is then converted into a feature vector, using features from a standard library of similarity
functions, like edit distance, Jaccard measure, and so on. Corleone then uses crowdsourced active
learning on these feature vectors to learn a random forest F , using the four user supplied examples
to build the initial forest, which is iteratively refined. Since a random forest is a set of decision trees,
candidate blocking rules can be identified by extracting all negative rules (i.e., root-to-leaf decision
tree paths that lead to a “no” leaf ); such rules identify record pairs that do not match and hence can
serve as blocking rules. Crowdsourcing is then used to evaluate a subset of high precision and high
coverage candidate blocking rules, which are used to identify the subset of R1 × R2 on which the
matcher is applied.

Second, Corleone applies a standard strategy of training a random forest classifier using
crowdsourced active learning on feature vectors of record pairs to build a matcher. The key challenge
is to use crowdsourcing in a cost-effective manner, since excessive training both wastes money and
can decrease the matcher’s accuracy due to potential errors in crowdsourced results. This is done
by identifying the “confidence” of the matcher using information theoretic tools, monitoring the
confidence as the matcher trains, and stopping when the confidence has peaked.

Third, Corleone uses crowdsourcing to estimate the accuracy of the matcher. The challenge,
as mentioned previously, is to deal with the highly skewed data, in which only a very small fraction
of candidate record pairs are matches. This makes the use of a random sample of record pairs labeled
using crowdsourcing to estimate accuracy inadequate, since it would find too few positive examples.
The key idea proposed by Gokhale et al. [2014] is to use the negative rules extracted from the random
forest of the matcher (which are different from the blocking rules) to eliminate negative examples
systematically, thereby increasing the density of positive examples used to estimate accuracy.

Fourth, Corleone uses crowdsourcing to make the iterative step of iterative record linkage
rigorous and cost-effective using crowdsourcing. The basic idea of iterative record linkage is to locate
record pairs that are difficult to match, then build a new matcher specifically for those. The key idea
proposed by Gokhale et al. [2014] is to identify highly precise positive and negative rules, eliminate
record pairs that are covered by those rules, and treat the remaining examples as difficult to match.

Combining these four components, Corleone obtains a HOC solution to the end-to-end
workflow of record linkage.

Main Results
Gokhale et al. [2014] empirically evaluate Corleone on three real-world data sets, Restaurants, which
matches restaurant descriptions, Citations, which matches citations between DBLP and Google
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Scholar, and Products, which matches electronics products between Amazon and Walmart; these
three data sets are quite diverse, with varying matching difficulties. They use AMT (paying 1 cent
per question for Restaurants and Citations, and 2 cents per question for Products) to obtain the following
results.

1. Overall, Corleone achieves a high matching accuracy, with an F1 score of 89.3–96.5% across
the three data sets, at a reasonable crowdsourcing cost of only a few hundred dollars (for
Products).

The low cost is due to the fact that the number of labeled pairs is low compared to the
total number of pairs, even after blocking. Further, Corleone achieves comparable or better
accuracy than traditional solutions, while being totally hands-off.

2. The results on blocking demonstrate that crowdsourced blocking is quite effective, reducing
the total number of pairs to be matched to be just 0.02–0.3% of the cross product, for Citations

and Products, at a low cost of only a few tens of dollars (for Products) with a high precision
(over 99.9%) and a high recall (over 92%).

3. Corleone needs only 1–2 iterations on the three data sets, and the estimated F1 score is quite
accurate, typically within 5% of the true F1. This low error is despite the noisy labels from
the crowd.

5.1.3 FUTURE WORK
The work on using crowdsourcing for data integration provides a good foundation for using crowd-
sourcing to address the challenges of BDI, but considerable work remains to be done. We outline a
couple of promising directions of future work.

First, how does one leverage the algorithmic innovations that have been described in earlier
chapters on schema alignment, record linkage and data fusion in BDI with advances in crowdsourc-
ing to scale up to data sets with high volume, high velocity and high variety?

Second, crowdsourcing often produces noisy labels. When the data itself has low veracity,
one needs to better understand the correlations between the quality of the data and the quality of
crowdsourcing results, and its impact on BDI.

5.2 SOURCE SELECTION
The abundance of useful information available from a myriad of sources has been a boon to data
integration systems to increase the utility of integrated data. With more sources, the coverage of the
integrated data increases. Similarly, in the presence of inconsistency, the accuracy of the integrated
data can be improved by leveraging the collective wisdom of the sources using the fusion techniques
described in Chapter 4. However, data collection and integration come with a cost : many data



5.2 Source Selection 147

1 6 11 16 21 26 31 36
Number of sources

F
u

si
o
n

 r
ec

al
l

41

1.00

0.95

0.90

0.85

0.80

0.75

0.70

Vote

Accu

AccuSim

565146

FIGURE 5.2: Fusion result recall for the Stock domain [Li et al. 2012].

sources charge for their data, and even for sources that are free, integration costs (i.e., human and
computational costs) can be substantial. Clearly, incurring these costs for a new source may not be
worthwhile if the additional benefit of this source is limited.

Dong et al. [2012] show using several real-world data sets that it is not always worthwhile to
integrate all available sources in a domain. For example, in the presence of redundancy among data
sources in a domain, integrating new sources may not increase the coverage by much, if at all, while
adding to the total cost. This can be observed in the k-coverage plots in Figure 1.2, especially for
smaller k values. Even worse, some low-quality data sources can even hurt the accuracy of integrated
data and bring a negative benefit, while still adding to the total cost. This can be observed in the
plots of Figure 5.2, which show the recall of fusion results for the Stock domain in the study by
Li et al. [2012]; the orange oval shows that peak benefit is attained well before integrating all the
sources.

To address such concerns, Dong et al. [2012] identify the novel problem of source selection,
which is performed before real integration to balance the cost and the benefit of integration. This can
be important in many scenarios, ranging from web data providers that aggregate data from multiple
sources, to enterprises that purchase data from third parties, and to individual information users who
shop for data from data markets [Dong et al. 2012].
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Definition 5.2 (Source Selection) Consider a set of data sources S, and let I denote an integration
model. Let costI (S) and benefitI (S) denote the cost and benefit of integrating sources S ⊆ S by
model I respectively. Let opt and thresh denote two binary functions, and τ be a constant. The source
selection problem finds a subset of sources S ⊆ S that maximizes opt(costI (S), benefitI (S)) under the
constraint thresh(costI (S), benefitI (S)) ≤ τ .

Dong et al. [2012] study the problem of source selection for static sources and propose an
approach inspired by the marginalism principle in economic theory [Marshall 1890]; this technique
is described in Section 5.2.1. In follow-up work, Rekatsinas et al. [2014] study the problem of source
selection for sources whose content changes over time, and propose techniques for characterizing
and selecting fresh data sources; this is presented in Section 5.2.2. Finally, we outline some directions
for future work in this area.

5.2.1 STATIC SOURCES
Source selection, based on the metrics of cost and benefit, falls in the category of resource optimiza-
tion problems. There are two traditional ways to formulate the optimization problem.

. Find the subset of sources that maximizes the result benefit for a given maximum cost:

opt(costI (S), benefitI (S)) = benefitI (S)

thresh(costI (S), benefitI (S)) = costI (S).

. Find the subset of sources that minimizes the cost while having a minimal desired benefit:

opt(costI (S), benefitI (S)) = −costI (S)

thresh(costI (S), benefitI (S)) = −benefitI (S).

Dong et al. [2012] observe that neither of these formulations is ideal for source selection, and
instead formulate a problem inspired by the marginalism principle in economic theory: assuming
that cost and benefit are measured in the same unit (e.g., dollars), they propose to continue selecting
sources until the marginal benefit is less than the marginal cost ; equivalently, they propose to select the
set of sources with the maximum profit , for a given maximum cost, defined as follows:

opt(costI (S), benefitI (S)) = benefitI (S) − costI (S)

thresh(costI (S), benefitI (S)) = costI (S).

Dong et al. [2012] focus on the case where the integration model is a data fusion model, and
benefit is a function of the accuracy of the fusion result.
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Challenges
Applying the marginalism principle to source selection for data integration faces many chal-
lenges [Dong et al. 2012].

First, the law of diminishing returns (i.e., continuing to add resources will gradually yield lower
per-resource-unit returns) does not necessarily hold in data integration, so there can be multiple
marginal points, with maximal profits. This suggests that a straightforward greedy approach may
not be adequate to solve the problem.

Second, since data sources are not independent of each other, integrating sources in different
orders can lead to different quality (or benefit) curves, and each curve has its own marginal points.
This suggests that a solution would need to be able to compare multiple marginal points to choose
the best one.

Third, since source selection needs to be performed before real integration, the actual benefits
of integration in terms of result quality are not known. This suggests that the costs and benefits of
integrating subsets of sources would need to be analytically or empirically estimated.

Key Contributions
Dong et al. [2012] address the aforementioned challenges for source selection in the context of data
fusion for offline data integration, that is, the case of static sources, and make several key contributions.

First, they show that source selection in the context of data fusion is NP-complete in general,
and that a straightforward greedy algorithm can generate an arbitrarily bad solution.

Second, they propose an algorithm that applies the greedy randomized adaptive search procedure
(GRASP) meta-heuristic [Festa and Resende 2011] to solve the marginalism problem. GRASP
addresses the limitations of the greedy approach in two ways. First, instead of making a greedy
decision in every step, in each step it randomly chooses from the top-k candidates in terms of
resulting profit as the initial solution, and chooses the best selection from r repetitions as described
next. Second, in each repetition, after generating the initial solution, it performs local search in a
hill-climbing fashion. Both components are critical to avoid exploring the sources in a fixed order
and so make it possible to reach a near-optimal selection. However, GRASP does not come with
any approximation guarantees.

Third, they propose efficient (PTIME or pseudo-PTIME) dynamic-programming algo-
rithms that estimate the accuracy (and hence the benefit) of data fusion results based purely on
the accuracy of the input sources and the popularity of the most popular false value, assuming inde-
pendence of the input sources.
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Main Results
Dong et al. [2012] experimentally evaluate their source selection algorithm and the algorithms to
estimate the accuracy of data fusion results on a variety of data sets, including the Flight data used
by Li et al. [2012]. Their main results are as follows.

1. GRASP is significantly better than Greedy in selecting the subset of sources with the highest
profit, for a variety of benefit and cost functions and data fusion strategies.

Increasing the number of candidates (k) from which the initial solution is chosen and
the number of repetitions (r) improves the fraction of times for which GRASP obtains the
highest profit, at the cost of a higher run-time. GRASP with k = 10, r = 320 often obtains
the best source selection; even when the solution is not the best, the profit difference with
the best selection is under 2.5%. Even higher values of k can actually lower the result quality
since it makes the initial solution close to random selection.

Greedy rarely selects the best subset of sources, and the profit difference with the best
selection can be as high as 19.7%.

2. The algorithms to estimate the accuracy of data fusion results are quite accurate for a variety
of data fusion strategies, with a less than 10% absolute difference between the estimated and
real fusion recalls, and a less than 12% relative difference.

However, estimating accuracy for sophisticated data fusion strategies such as Accu (see
Chapter 4) takes much more time than for simpler strategies such as majority voting.

3. The subset of sources selected by GRASP is relatively insensitive to the choice of data fusion
strategies, suggesting the use of simpler data fusion strategies during the source selection
phase, and more sophisticated strategies during the actual fusion phase.

4. Finally, the source selection algorithms are quite scalable, taking less than 1 hour for synthetic
data with up to a million sources of various accuracy distributions. This is quite acceptable
since source selection is conducted offline and only once in a while.

5.2.2 DYNAMIC SOURCES
Rekatsinas et al. [2014] study the problem of source selection for dynamic sources, that is, sources
whose content changes over time. One motivation for this problem comes from the scenario of
listing aggregation, such as business, job or rental listings. Here, aggregators offer a search service
to end users by integrating listings from multiple sources, and each source provides a set of listings
and regular updates as new listings become available, or existing listings get updated or removed. A
second motivation comes from the increasingly popular scenario of collective analysis of online news
media for societal-event monitoring. Here, the analyst integrates events mentioned in a diverse set
of news media sources and analyzes them collectively to detect patterns characterizing the domain
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of interest. For example, the global database of events, languages, and tone (GDELT) aggregates
news articles from 15,275 sources in a single repository, and makes them available for analytic tasks.

Challenges
Source selection for dynamic data sources raises several additional challenges over the same problem
for static data sources.

First, a source with a high update frequency does not necessarily imply that the source has a
high freshness (i.e., up-to-date values compared to the real world). This can be observed in the plot
of average freshness versus average update frequency per day of 43 data sources providing records
for US businesses over 23 months, shown in Figure 5.3. In particular, the red oval shows that even
sources that are updated every day have a big range of possible average freshness values. The main
reason for this is that sources that add to their content frequently may still be ineffective at deleting
stale data or capturing value changes of older data items.

Second, the benefit of available sources may change over time and often the subset of sources
that maximizes the integration benefit may also change over time. This can be observed in the
evolution of coverage of the integration result for two sets of sources in the business listing sources
discussed above, shown in Figure 5.4. Both sets contain the two largest sources. Moreover, the first
set contains one other source while the second set contains three other sources, with comparable
sizes to the source added in the first set.
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Key Contributions
Rekatsinas et al. [2014] study the problem of time-aware source selection, and use the same problem
formulation as Dong et al. [2012], of reasoning about the profit of acquiring and integrating dynamic
sources to select the optimal subset of sources to be integrated. Their key contributions are as follows.

First, they use time-dependent definitions of data quality metrics such as coverage, freshness,
and accuracy to quantify the benefit of data integration.

Second, they introduce a theoretical framework that uses parametric statistical models to
describe the evolution of the world, and uses an ensemble of empirical distributions to describe the
complex update patterns and data quality changes of different data sources.

Third, they show that while the time-aware source selection problem is NP-complete, many
of its instances (e.g., where the benefit is a function of time-dependent coverage, and the cost is
linear) correspond to well-studied submodular optimization problems for which efficient local-
search algorithms with constant factor approximations are known [Feige et al. 2011]. Further, in
addition to selecting a subset of sources, these algorithms can also decide the optimal frequency to
acquire data from each source. The submodular optimization algorithm is conceptually similar to
GRASP, in that it starts by selecting the best source, explores the local neighborhood by adding and
deleting sources, and finally returns the selected set or its complement.

Main Results
Rekatsinas et al. [2014] experimentally evaluate (i) their source selection algorithms under different
families of benefit and cost functions, and (ii) the accuracy of their proposed models to predict the
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data changes in the sources and the world, on a variety of real-world and synthetic data sets, including
the business listing data and the GDELT data. Their main results are as follows.

1. The proposed models to predict data changes are quite accurate, with an average relative error
of around 2% on the business listing data, and an error increase rate of 0.1% per time unit.
On GDELT, the proposed models have a relative error of no more than 8%, which is quite
small considering that the amount of training data spanned only 15 days.

2. As in the study on static data sources by Dong et al. [2012], GRASP selects the subset of
dynamic sources with the highest profit most of the time, for a variety of benefit and cost
functions.

Interestingly, the solutions of the submodular optimization algorithm are mostly com-
parable to the best solutions, with an average quality loss of less than 2% and a worst-case
quality loss of about 10% compared to the best solution. However, there are some cases where
GRASP is significantly worse than submodular optimization, with an average quality loss of
about 9% and a worst-case quality loss of over 50% compared to the solutions by submodular
optimization. As before, Greedy is the worst strategy overall.

3. Finally, submodular optimization is about 1–2 orders of magnitude faster than GRASP
(depending on the number of iterations used by GRASP), and scales better as the number
of sources increases. Coupled with the robust quality of its solutions, the significantly faster
run-times makes submodular optimization a viable alternative to GRASP, especially for large
instances of source selection.

5.2.3 FUTURE WORK
The work on source selection is still in its infancy, and much work remains to be done. We outline
two promising directions of future work.

First, existing research [Dong et al. 2012, Rekatsinas et al. 2014] assumes independence of
data sources. Extending these works to take into account copying between data sources [Dong et al.
2009a] and arbitrary correlations between data sources [Pochampally et al. 2014] have the potential
to further improve the quality of the sources selected.

Second, existing research has only considered integration benefit to be a function of fusion
quality metrics such as coverage, freshness and accuracy. A more comprehensive treatment of
integration benefit, taking into account schema alignment and record linkage, in addition to data
fusion, would make source selection more widely applicable to a diversity of data sources.

5.3 SOURCE PROFILING
The number and variety of data sources available for integration and analysis have been a blessing
for data scientists and analysts, as they increasingly seek high quality evidence to make data-driven
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discoveries. However, not all available sources are likely to be relevant to the task at hand, and many
of the relevant sources may not provide the desired quality of evidence that the users need. Given
the myriad of sources, a key challenge is for users to be able to discover sources that contain data
that are relevant and are of sufficiently high quality to meet their needs.

When the structure, semantics, and contents of the data sources are very well-understood,
source selection techniques (described in Section 5.2) can be used to reason about the benefits and
costs of acquiring and integrating data to identify the subset of sources that are worth integrating.
However, in many scenarios, users are unfamiliar with the data domains of the sources, unaware of the
entities contained in the sources, and how the entity properties and relationships between the entities
are structured in the sources. The goal of source profiling is to effectively address the challenging
problem of helping users understand the source contents, before they even decide whether integration
needs to be performed [Naumann 2013].

An important step to achieving this understanding is to be able to relate the source contents
to the ontologies, entities, entity properties and relationships present in knowledge bases such as
Freebase [Bollacker et al. 2008], the Google knowledge graph [Dong et al. 2014b], ProBase [Wu
et al. 2012], and Yago [Weikum and Theobald 2010], which users already understand. A related
step is to characterize the quality of the source contents, using the variety of data quality metrics that
have been proposed in the literature [Batini and Scannapieco 2006], such as coverage, freshness, and
accuracy. Source profiling can be formalized as follows.

Definition 5.3 (Source Profiling) Consider a set of data sources S, with attributes A. Let KB

refer to a knowledge base, and DQ denote a set of data quality metrics. The source profiling
problem identifies (a) a mapping κ : S × 2A → 2KB, which associates a subset of attributes in
each source with concepts, entities, and relationships in the knowledge base, and (b) a mapping
μ: S × 2KB × DQ → range(DQ), which quantifies the data quality of different portions of the
sources expressed in terms of the knowledge base.

Source profiling is clearly challenging, and while some strides have been made towards this
goal, a lot remains to be done. Most of the research in this area has focused on relational sources,
and we present a couple of representative works in this section. In Section 5.3.1, we describe an
early, pioneering work on source profiling to collect statistical summaries about the structure and
content of sources; these summaries can be used to automatically discover the structural relationships
between source schema elements. In Section 5.3.2, we present an approach that can make use of the
discovered structural relationships between source schema elements to summarize the contents of a
relational source; this enables users to quickly identify the data domains of the source, and the main
tables in which each type of information resides. Finally, we outline some directions for future work
in this area.
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5.3.1 THE BELLMAN SYSTEM
Dasu et al. [2002] propose the Bellman system to enable analysts to understand the contents and
structure of complex, unfamiliar relational sources. This work is motivated by the observation that
large relational databases degrade in quality over time, due to a variety of factors such as incorrect
data (e.g., a provisioning group may promptly enter in the service/circuits they provision but might
not delete them as diligently), use of the database to model unanticipated events and entities (e.g.,
new services or customer types), and so on.

As an aid to be able to use such degraded data for new projects, including data analysis and
data integration, Bellman performs mining on the content and structure of the source to quickly
identify attributes with potential data quality issues, determine which attributes have similar values,
construct complex entities using join paths and so on. These mining results allow the analyst to make
sense of the source content.

Challenges
Mining complex databases to extract semantically meaningful information faces many challenges
[Dasu et al. 2002].

First, such databases often have thousands of tables with tens of thousands of attributes.
Discovering the database structure can be difficult because of the scale of the problem.

Second, constructing complex entities (e.g., a corporate customer) in a normalized database
often requires many joins with long join paths, which are non-trivial to automatically discover,
since foreign key dependencies are often not maintained, may degrade over time, and the schema
documentation is usually out-of-date.

Third, tables may contain heterogeneous entities (e.g., individual customers and small business
customers) that have different join paths in the database.

Fourth, the convention for recording data may be different in different tables, for example,
customer names may be present in one attribute in one table, but in two or more attributes in another.

Key Contributions
Dasu et al. [2002] address the aforementioned challenges in the case of structured databases, and
make several key contributions.

First, Bellman addresses the scale challenge by building and making use of a variety of concise
summaries of the values in individual attributes, instead of directly using the contents of the database.
This includes min-hash signatures [Broder et al. 2000], multiset signatures that extend min-hash
signatures by additionally keeping track of counts, q-gram min-hash signatures, and so on. These
are constant size signatures, independent of the number of records in database tables.



156 5. BDI: EMERGING TOPICS

Second, Bellman uses the concise attribute summaries to efficiently and accurately answer a
variety of exploration queries, such as finding similar attributes, finding composite attributes, finding
join paths, and finding heterogeneous tables. Some of these are illustrated below.

. What other attributes have sets of values that are similar to the set of values in a given
attribute A?

The resemblance ρ(A1, A2) of two sets of attribute values A1 and A2 is defined as
|A1 ∩ A2|/|A1 ∪ A2|. This value can be easily estimated using the min-hash signatures of
each of the two attributes.

The min-hash signature of attribute A is (s1(A), . . . , sn(A)), where si(A) =
mina∈A(hi(a)), 1 ≤ i ≤ n, and {hi: 1 ≤ i ≤ n} is a collection of pairwise independent hash
functions. Intuitively, each hash function maps elements in the domain of all attribute values
uniformly and randomly to the space of natural numbers, and si(A) is the smallest hash value
for any of the values in attribute A using hash function hi.

Given two attributes A1 and A2, it can be shown [Broder et al. 2000] that Pr[si(A1) =
si(A2)]= ρ(A1, A2), 1 ≤ i ≤ n. To tighten confidence bounds, the estimate of ρ(A1, A2) uses
all n signature components as follows:

ρ̂(A1, A2) = �i=1, . . . ,nI [si(A1) = si(A2)]/n

where I [si(A1) = si(A2)] is the indicator function, which takes value 1 if si(A1) = si(A2) and
0 otherwise.

. What other attributes have sets of values that are textually similar to the set of values in a
given attribute A?

This exploration query is useful in the presence of typographical errors.
Finding substring similarity between two sets of attributes values is computationally

difficult, because of the large numbers of substrings that may need to be compared. This
can be simplified by summarizing the substrings in an attribute using q-grams (the set of
all q-character substrings of this attribute), and using q-gram signatures (i.e., the min-hash
signatures of the set of q-grams in the attributes). Then, the q-gram resemblance between
attributes A1 and A2 can be used to answer the exploration query.

. What compositions of attributes have sets of values that are textually similar to the set of
values in a given attribute A?

This exploration query is useful for attributes such as customer name, which may be
present in one attribute in one table, but in two or more attributes in another.
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It can be answered using q-gram signatures, identifying candidate attributes present in
the same table, and evaluating combinations of two or more candidate attributes. For this
latter task, it is worth noting that min-hash signatures are summable, and si(A1 ∪ A2) =
min(si(A1), si(A2)), 1 ≤ i ≤ n.

Main Results
Dasu et al. [2002] experimentally evaluate their techniques to determine the utility and scalability
of their approach on a large, complex database. Their main results are as follows.

1. Bellman is able to compute all the signatures and sketches (with 250 signature components
and 3-grams) on 1078 attributes that contain at least 20 distinct values in less than 3 hours.

This shows that the offline processing needed to compute profiles of large, complex
databases can be performed efficiently.

2. Finding all attributes with a large resemblance to a particular attribute takes about 90 seconds
using 250 signature components on 1078 profiled attributes, with high accuracy.

It is possible to significantly decrease the run time by reducing the number of signature
components to 50–100, without significantly degrading the accuracy of the result.

Accurately estimating 3-gram resemblance is even easier since the universe of possible
values is quite small (there are only 2,097,152 possible 7 bit ASCII 3-grams).

5.3.2 SUMMARIZING SOURCES
Yang et al. [2009] propose an innovative approach to summarize the contents of a relational source,
so that users can quickly identify the data domains of the source, and the main tables in which each
type of information resides. This work is motivated by the observation that complex databases often
have thousands of inter-linked tables, and users who are unfamiliar with the data need to spend a
considerable amount of time understanding the schema before they can extract useful information
out of the database.

Consider, for illustrative purposes, the TPCE benchmark schema graph shown in Figure 5.5.
It consists of 33 tables, preclassified in four categories: Broker, Customer, Market and Dimension.
The database models a transaction system in which customers trade stocks. Various additional
information is stored about customers, securities, brokers, and so on. This figure also illustrates the
desired summary of the TPCE schema: By clustering the tables into a few labeled categories (and
color-coding the graph), the result gives any user a rough idea about what the database represents.
This classification was done manually by the designer of the benchmark; more importantly, the
labeling was also decided by the designer. Yang et al. [2009] propose a statistical model that
automatically classifies and labels schema tables, and produces a summary defined as follows.
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FIGURE 5.5: TPCE schema graph [Yang et al. 2009].

Definition 5.4 (Source Schema Summary) [Yang et al. 2009] Given a schema graph G for a
relational source, a summary of G of size k is a k-clustering C = {C1, . . . , Ck} of the tables in the
relational source, such that for each cluster Ci, a representative table center(Ci) ∈ Ci is defined. The
summary is represented as a set of labels {center(C1), . . . , center(Ck)}, and by a function that assigns
each table in the relational source to a cluster.

Challenges
Creating meaningful summaries of relational sources faces many challenges [Yang et al. 2009].

First, an automatic process for schema summarization needs to define a notion of table
importance, based on its attributes, its records, and its join relationships. However, straightforward
ways of defining table importance, such as being proportional to the number of records or the number
of join relationships, are not always consistent with intuitions. For example, in the TPCE schema of
Figure 5.5, table Trade_History is one of the largest tables with about 107 records, but it contains only
old transactions, which could be stale in a real-world system, hence not particularly important. In
contrast, table Customer, which contains information on the people who initiate all the transactions
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in the system, is quite important even though it contains only about 103 records. The key observation
is that table Customer has 23 attributes, the most of any table, while Trade_History has only 2 attributes.
As another example, table Status_Type has 6 join edges (the second most in the schema), yet it is
arguably the least significant in the entire database. However, connectivity needs to play a role in
the definition of table importance.

Second, in order to cluster tables one needs a definition of a metric space over database tables,
so that the distance function is consistent with an intuitive notion of table similarity. In particular,
notions of similarity assuming that all edges represent the same kind of relationship (e.g., number
of phone calls between customers) are not appropriate, since different join edges in a schema graph
represent different conceptual relationships.

Key Contributions
Yang et al. [2009] address the aforementioned challenges in the case of relational sources, and make
several key contributions.

First, table importance is defined in a principled fashion based on information theory and
statistical models, and reflects the information content of a table, as well as how that content relates
to the content of other tables. Since entropy is the well-known measure for information [Cover and
Thomas 2006], the information content of a table is defined as the sum of its attribute entropies
(including that of a key attribute). To take into account the join behavior of tables, join edges are
viewed as vehicles for information transfer between tables, with weights depending on the entropies
of their respective attributes. To identify the importance of a table, it is therefore natural to define a
random walk process on the schema graph, whereby each table starts with its information content,
and then repeatedly sends and receives information along its join edges, proportional to their weight.
If the underlying schema graph is connected and non-bipartite, this process converges to a stable
distribution. Yang et al. [2009] define the importance of a table as the value of this stable distribution
for that table.

Second, Yang et al. [2009] define a novel similarity function between pairs of tables, which
they refer to as strength. The strength of a join edge between two tables in the schema graph is
(i) proportional to the fraction of values in each of its join attributes that have matching records
in the other table, and (ii) inversely proportional to the average number of foreign key records that
match a primary key record. The strength of a join edge is always in (0,1]. The strength of a join
path is defined to be the product of the strengths of its join edges. Finally, the strength between any
pair of tables in the schema graph is the maximum strength among all join paths that connect this
pair of tables.

Third, Yang et al. [2009] propose using a weighted k-center algorithm for clustering the
tables, where the weights are the table importance values, the distance between pairs of tables is
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defined as 1 − strength, and k is the desired number of clusters. Weighted k-center is NP-hard, so
they employ a greedy approach. It starts by creating one cluster with the most important table as its
cluster center. It then iteratively chooses the table whose weighted distance from its cluster center
is largest, and creates a new cluster with that table as its cluster center; each table is then assigned
to the cluster with the closest cluster center.

Main Results
Yang et al. [2009] experimentally evaluate their approach to validate each of the three components of
their method: the model for table importance, the distance function between tables, and the choice
of weighted k-center as the appropriate clustering for source schema summarization. They conduct
their study over multiple significantly different instances of the TPCE schema. Their main results
are as follows.

1. The proposed entropy-based approach to defining table importance is both accurate and
consistent, outperforming alternate approaches.

In particular, the top-5 important tables in TPCE are determined to consist of one table
from the Broker category, and two tables each from the Customer and Market categories in
Figure 5.5. Further, the set of important tables remains quite consistent over the different
instances of the TPCE schema.

2. The proposed distance measure between tables has high accuracy in determining that TPCE
tables within each of the pre-classified categories have higher similarity to each other than to
tables in different categories.

In particular, the distance measure has an accuracy over 70% on the three main categories
of Broker, Customer, and Market.

3. Weighted k-center is shown to have high accuracy and robustness in clustering tables, in
conjunction with the proposed table importance and distance measures.

More specifically, the proposed source schema summarization obtains about 70% accuracy
on the three pre-classified categories, which is shown to be significantly higher than using
alternate approaches.

5.3.3 FUTURE WORK
The work on source exploration is still in its early stages, and a huge amount of work remains to be
done. We outline a couple of promising directions of future work.

First, current work focuses on profiling relational sources, where attributes and tables are well-
defined schema elements. However, sources in BDI can be quite diverse, ranging from tables and
RDF triples to DOM trees and free text. Extending current techniques to these kinds of data sources
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are critical for users to be able to discover the diversity of sources that contain data that are relevant
to meet their needs.

Second, BDI sources are not static, and evolve over time. Developing techniques that can
continually and incrementally profile sources to determine when they become relevant to a user’s
needs are important for the promise of BDI to enable data-driven discoveries to be fulfilled.
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C H A P T E R 6

Conclusions

Addressing the BDI challenge is critical to realizing the promise of big data, of enabling us to make
valuable, data-driven decisions to alter all aspects of society. This book explores the progress that has
been made by the data integration community on the topics of schema alignment, record linkage
and data fusion in addressing these novel challenges faced by big data integration. It also presents
emerging topics that are expected to be critical to the success of BDI.

Chapter 1 describes the problem of data integration and the components of traditional data
integration, before discussing the specific challenges that arise in BDI. It identifies the dimensions
of volume, velocity, variety, and veracity along which BDI differs from traditional data integration.
A number of recent case studies are then presented that empirically study the nature of data sources
in BDI. BDI also offers opportunities that did not exist in traditional data integration, and some of
these are highlighted as well.

Chapters 2–4 cover the core topics of schema alignment, record linkage, and data fusion
in a systematic way. First, each chapter starts with a quick tour of the topic in the context of
traditional data integration. Then, subsequent sections in the chapter present a detailed, example-
driven exposition of recent innovative techniques that have been proposed to address the BDI
challenges of volume, velocity, variety and veracity.

Finally, Chapter 5 presents a few works on the emerging topics of crowdsourcing, source
selection and source profiling. These highlight novel challenges and opportunities that arise in BDI,
outside the topics of schema alignment, record linkage, and data fusion.

The techniques presented in this book are not intended to be an exhaustive list of works
relevant to BDI, nor can they be expected to be in such an important, fast-moving field of research.
However, we do hope that this book serves as a starting point for interested readers to pursue
additional work on these exciting topics, and fulfill the promise of big data.
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