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Preface to the 2nd edition

After the first edition of this book was published, I received a lot of sup-

porting comments from various people. Nevertheless, many readers rec-

ommended some further subjects to be included in the book, in particular

related to new developments or tools. Furthermore, several misprints and

little mistakes were reported by them. Also, for some paragraphs, I decided

to rewrite them a bit or expand them by including more examples. Hence, I

did not hesitate for long, when World Scientific asked me to write a second

edition. You are holding the result of this effort in your hands.

The main extensions of the second edition are as follows:

• An introduction to the programming language Python has been

added, see Sec. 2.3. This language is half-way between a script

language (since it is interpreted) and a full high-level programming

language (it offers, e.g. complex data structures, object-oriented

elements and many libraries for various purposes). Thus, when

using Python, on the one hand it is easy to write scripts for various

tasks like data analysis. On the other hand, small to medium size

simulation project can be implemented rapidly.

• Since simulation and analysis of networks and graphs has become

more and more important in various fields of science, the Sec. 6.8

on graphs has been extended by a subsection (6.8.4) on the calcu-

lation of the connected component. This is one of the most-often

performed analyses for graphs and the basis of many complex al-

gorithms, e.g. to obtain shortest paths, diameters, or centrality

measures.

• The Sec. 8.1.1 on how to draw random numbers for discrete random

variables now includes the fastest available algorithm. It allows one

to draw each random number according to the given distribution in

vii
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constant time O(1). This is much faster compared to the standard

approach which takes O(logN), where N is the number of the

possible outcomes.

• The Sec. 8.2.4 covers the rejection method, which allows one to

draw random numbers according to a given probability density,

usually applied for non-invertible distribution functions. The sec-

tion has been extended by the general approach to border the tar-

get distribution by arbitrary probability density functions. This

enlarges strongly the range of distributions which can be realized

by this approach.

Furthermore, as an example for generating random points in

higher dimensions, drawing points uniformly on the surface of d-

dimensional hyper sphere is included now.

• In Chap. 8 on data analysis, in the Sec. 8.5 on hypothesis test and

measuring correlations in data sets, a subsection on the Receiver-

operator characteristic (ROC) has been included. The ROC is an

advanced yet widespread approach which allows for the determina-

tion of optimal parameters for hypothesis tests.

• Furthermore a subsection (8.5.5) on the principal-component anal-

ysis has been added. This is the simplest approach to search for

the most important “directions” in high-dimensional data.

• Data clustering methods are an important tool in the analysis of

big data sets, since they allow for looking for structure in over-

whelming amounts of data. This is a very sophisticated way of

data analysis, much beyond the level of averages, histograms and

curve fitting. Several approaches, ranging from the most-simple k-

means method to the advanced hierarchical clustering algorithms

are now explained extensively in Sec. 8.5.6.

• The Sec. 8.6.2 on fitting data using gnuplot has been extended by

how to restrict ranges of fitting parameters (which is not possi-

ble by default) and how to fit functions to multiple sets of data

simultaneously.

• In the first edition, gnuplot was only used to generate “quick and

dirty” plots of data. In Sec. 9.2.1 it is now shown how one can

generate publication-quality plots using gnuplot.

• The Sec. 9.2.4 on the ray tracer Povray has been extended by

some paragraphs which explain how this ray tracer can be used

to generated three-dimensional pictures of simulation snapshots.

By using sequences of such figures, small movies can be generated

easily.
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• In the first edition, the Sec. 9.3.1 on LATEX, a standard typeset-

ting tool to generate high-quality documents as large as complete

books (like this one), was a rather short introduction giving few

examples. For the second editions this section has been expanded

substantially, such that it now serves as a complete introduction to

LATEX, presenting the most-frequently used LATEXelements in sci-

entific publications, such that all necessary knowledge to generate

standard to advanced manuscripts (from the typesetting point of

view) is covered.

These new sections include and discuss, following the hands-on approach

of the first edition, all necessary source codes such that the reader can apply

the new knowledge to her or his case as quickly as possible. Thus, I hope

that this new edition will allow you to learn all technical aspects of scientific

computer simulations as fast as possible, ranging from the initial idea over

the implementation, performing the simulations, doing the data analysis,

up to the publication of your results. Thus, using this book will save you a

lot of time which you can use to concentrate on the actual scientific problem

you want to solve. Finally, since the new edition comprises almost all non-

problem specific knowledge you need in computational science, I decided to

rename the book to “Big Practical Guide to Computer Simulations”.

This new edition would not have been possible without the help of

many people. I am grateful to the following persons for communicating

mistakes, making useful suggestions and providing extensions of the book:

Pia Backmann, Jan Christoph Bernack, Gunnar Claussen, Timo Dewen-

ter, Florian Effenberg, Pascal Fieth, Nikolai Gagunashvili, Hendrike Hei-

demann, Iwo Ilnicki, Simon Knowles, Karsten Looschen, Markus Manssen,

Andreas Mohrs, Zacharais Njam Mokom, Oliver Melchert, Marc Mézard,

Tudor Mitran, Christoph Norrenbrock, Tom Seren, Hendrik Schawe, Sagar

Sinha, Verena Sterr, Sebastian von Ohr, and A. Peter Young. Further-

more, Oliver Melchert provided a Python script for data resampling which

is included in the new edition.

Alexander K. Hartmann

Oldenburg, July 2014
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Preface to the 1st edition

You have decided to become an expert in computer simulations, congrat-

ulations! This is a good decision, because computational and simulation

methods become more and more important in all areas of science, human-

ities, economy, engineering and mathematics. This book will help you a

great deal in learning the most important basics which you need during all

phases of a simulation research project, from the phases of program design,

implementation, and debugging, through running the simulations, organiz-

ing the data and analyzing the results, to the final phase where you want

to present and publish your results.

Note that nowadays thousands of different problems exist which are be-

ing investigated by computer simulations. One studies, for example, the

diffusion of chemicals in soils, the folding of proteins in cells, the communi-

cation of neurons in the brain, the deformation of cars in accidents, the be-

havior of brokers working at the stock market, the evolution of the weather

during the next days or weeks, the turbulent behavior of flowing water in

a turbine, the movement of electrons in semiconductors, the patterns of

words in languages, or the traffic of pedestrians in crowded shopping malls,

to name only a few. Consequently, there are many algorithms to treat the

variety of problems, for example, finite differences, finite elements, integra-

tion methods, matrix inversion, eigenvalue determination, equation solvers,

molecular dynamics simulations, Monte Carlo methods, density functional

approaches, graph algorithms, optimization methods, and so on. Which

methods are suitable for your problems depends heavily on the problems

you want to solve. Since there are way too many algorithms available for all

these different problems, and because everybody needs usually a different

xi
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one, these special-purpose algorithms are not covered in this book.

This book instead covers methods, techniques and algorithms, which

you always have to apply, independent of the actual simulation research

project you are considering. Here, practical aspects of conducting research

via computer simulations are discussed. An overview is given towards the

end of this preface. After reading this book, you only need some additional

information about the specific project your are considering, usually pro-

vided in scientific papers, and maybe you need a second special-purpose

book which you have to get. Then you are ready to start!

The book addresses people who have no or little experience with com-

puter simulations. This book is in particular suited for students who want

to start a project, like a PhD thesis, in the field of computer simulations.

But also researchers who have conducted already some simulation projects

may find a lot of the advanced material helpful. It is assumed that the

reader is familiar with an operating system such as UNIX (e.g. Linux), a

high-level programming language such as C, JAVA, Fortran or Pascal and

has some experience with at least tiny software projects.

Throughout the book, because of the limited space, usually only short

introductions to the specific areas are given, as “ready-to-use recipes”. The

material usually is presented here in a learning-by-example manner. Nev-

ertheless, the material is extensive enough to provide a fundamental set

of tools to perform all standard tasks when creating and performing sim-

ulations. In addition, references to more specialized literature are cited,

allowing specific subjects to be studied more extensively. Most examples

GET SOURCE CODE

DIR: c-programming
FILE(S): first.c

of code are in C/C++. Many examples, also

solutions to exercises, are available on the web-

site. This is indicated by a small GET SOURCE

CODE box in the text. Also some freely available

documentation is contained on the website. For details, see the appendix.1

Next, I give you some idea, how the book was realized. In fact, the

work on this book started when I was doing simulations for obtaining my

first university degree. I had to develop new algorithms and implement

them. I had to do many large-scale simulations on a parallel computing

cluster. The data had to be analyzed, usually in many different ways, and

over-and-over again when new data became available. Finally, the results

had to be presented and summarized in a scientific paper. These basic

steps remained my main occupation during my PhD and during my first

1All supplementary materials can be downloaded from the website:
http://www.worldscientific.com/r/9019-supp.
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post-doc projects. I became more and more experienced and refined my

approaches. I also improved my ways to work by reading books about soft-

ware engineering, algorithms, data structures and data analysis, as well as

by learning to use many programs. After the first-post doc years, I began

to supervise students. Hence, I started to pass on my knowledge, trying to

help other people to avoid many pitfalls and to devise highly efficient pro-

grams. Some of my experiences found their way to the last chapter of the

book of Heiko Rieger and myself with the title “Optimization Algorithms in

Physics”. That chapter is in fact a very short version of the present book.

Thus, it served as a seed of the this book and some material of the old

chapter appears occasionally here.2 During the years, I supervised more

and more students, and even gave a university course on the practical as-

pects of computer simulations. This course contained a lot of new material

compared to the book chapter and in fact it served as a seed for the present

book. Nevertheless, the material I used for supervising students was still

collected from several different sources, often not quite compatible with

each other. I started to feel that it would help my work, and also increase

the efficiency, if I wrote a full book about practical aspects of computer

simulations, which should contain “all” needed material comprehensively.

After two more years, I received an email from World Scientific, where my

course web page was noticed. They asked me whether I would like to write

a book, based on the course. Now it was not difficult to come to the de-

cision indeed to realize the book. You are now holding the result in your

hands.

Note that this book contains a very personal view of which tools are

considered useful. Very often, I present several independent tools, such as

tools for editing, compiling and analyzing programs rather than one all-

purpose environment which usually contains a framework just integrating

these basic tools. Nevertheless, most of the tools introduced are standard

programs and available on all computer systems (for Microsoft operating

systems they sometimes have other names).

Here, I give an overview over the contents of the book. First, a short

introduction to C programming is given. Also related topics like macros,

make files and shell scripts are touched. In the second chapter, the main

ideas of software engineering are explained and several hints allowing the

construction of efficient and reliable code are stated. In Chap. 4, three very

2taken from A.K. Hartmann and H. Rieger, Optimization Algorithms in Physics, pp.
293–357, 2002, Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with
permission.
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useful debugging tools are presented, which will help you to hunt down

bugs in your programs quickly. In Chap. 5, a short primer on object-

oriented software development is presented. In particular, it is shown that

this kind of programming style can be achieved with standard procedural

languages such as C as well, but also how C++ can be used. Next, basic

types of algorithms and advanced data structures are explained. These can

be used as auxiliary tools to create highly-professional, efficient simulation

programs. In the subsequent chapter, the benefit of using libraries like the

Standard Template Library and the GNU Scientific Library is explained

and it is shown how you can build your own libraries. In Chap. 8, aspects

of probability theory, random-number generation, data analysis, plotting

data and curve fitting are covered. In the last chapter, an introduction

to information retrieval and literature search in the Internet and to the

preparation of presentations and publications is given.

I am indebted to all my colleagues for countless hours of joyful col-

laborations, which laid the foundations of this book. I am very grateful

to Angelika Sievers for thoroughly reading all chapters of the book while

checking for typos, language and grammar mistakes. Finally, I would like to

thank Björn Ahrens, Luis Apolo, Bernd Burghardt, Niels Hoelzel, Magnus

Jungsbluth, Reinhard Leidl, Oliver Melchert, Axel Schulz, Bruno Sciolla

and Stefan Wolfsheimer for critically reading manuscript chapters and for

giving me many useful comments which helped me to improve the book

and to remove many typos.

Alexander K. Hartmann

Oldenburg, November 2008
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Chapter 1

Programming in C

Performing computer simulation in a sophisticated way always includes

writing computer programs. Even if one builds upon an existing package,

one usually has to perform minor or major modifications or write new

subroutines for data analysis.

Several programming languages are commonly used in science. The his-

torically first widespread high-level procedural programming language for

this purpose is Fortran, which was developed in the 1950s. Thirty years

ago, Fortran 77 was a standard in numerical computations, which has led

to the development of many Fortran-based libraries like the NAG (Numer-

ical Algorithms Group [Philipps (1987)] library. Since Fortran used to be

a very inflexible programming language, other high-level structural pro-

gramming languages like Pascal (and its extensions Modula-2 and Delphi)

and C (and its object-oriented extension C++) were developed from the

1970s on. These languages allow for complex data types, dynamic memory

allocation and modularization, which makes the treatment of large-scale

simulations much easier. During the 1980s, the C programming language

became a standard in particular for operating system programming. Hence,

standard operating systems like UNIX (Linux) and Windows are written

in C. This resulted in C being used in many other fields as well, in particu-

lar for scientific purposes. As a result, all standard numerical libraries are

now available for C/C++ and nowadays C is the dominating language for

writing simulation programs in science.

Note that Fortran caught up via the Fortran 90 and Fortran 95 stan-

dards, capable of basically everything C can do. Thus, Fortran is still heav-

ily used, in particular because it allows for easier parallelization of codes

related to linear and differential equations. Nevertheless, in this book we

have to select one language to concentrate on. We select C (and C++ in

1
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Chap. 5) because it offers, on the one hand, everything you can expect from

a high-level programming language. On the other hand, C is relatively close

to machine-level programming, which leads to a very high performance, but

also makes insecure programming possible. Also, more recent developments

like Java have a similar syntax to C and C++. C is also widespread out-

side the scientific community in business-related areas, a field where many

people reading this book will work in after their studies. Therefore, a sci-

entist benefits much from knowing C very well. In general, all high-level

programming languages are equally powerful. Therefore, good proficiency

in C allows to learn another programming language very quickly.

There are many additional programming languages used for specific

purposes such as writing scripts (traditional shell script languages, Perl)

or languages used within certain statistical and/or mathematical packages

like Mathematica, Maple, Matlab, or R. If you want to learn these, you have

to consult special literature.

Here, we start by explaining how to write simple C programs and what

the most fundamental program ingredients are. This also includes advanced

techniques like structures and self-defined data types. Note that we use a

standardized form called ANSI C. Structuring programs is easier when us-

ing subroutines and functions, which are covered in the second section.

Next, details for input-/output techniques are presented. In the fourth sec-

tion of this chapter, more details concerning pointers and memory allocation

are explained. In the last section, some examples for macro programming

are given. C++ extensions related to object-oriented programming are

covered in Chap. 5.

Before starting, you should be advised that learning to program is a

matter of practice. Consequently, it will not be sufficient to just read the

following sections. Instead, you should sit in front of a computer and try,

use, and modify all given examples extensively!

As always in this book, most concepts are introduced via examples.

Most standard statements and control structures are covered, but not ex-

plained in the most-general way. Nevertheless, it should be sufficient in

95% of all cases. For an exhaustive and complete description of C, you

should consult specialized literature [Kernighan and Ritchie (1988)].
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1.1 Basic C programs

It is assumed that you are familiar with your operating system, in particular

with concepts like commands, files and directories, and that your are able

to use a text editor. All examples given here are based on UNIX shell com-

mands, but should be simple to convert to your favorite operating system.

As always in this book, the basic functionalities are explained, such that

fundamental applications are covered. For a complete reference to C pro-

gramming, you should consult specialised books on this topic [Kernighan

and Ritchie (1988)]. Note that the standard (so-called ANSI) C contains

a complete set of commands such that programs for all tasks can be im-

plemented. Nevertheless, for many standard applications, e.g. computing

complex functions, solving equations, calculating integrals, or performing

algorithms on complex data structures like graphs, there are extensions of

the standard C, collected in so-called libraries. More about libraries and

how to use them can be found in Chap. 7.

GET SOURCE CODE

DIR: c-programming
FILE(S): first.c

In this chapter, we start the introduction to

C by presenting a very first C program, which

you should enter in your favorite text editor.

There you should save the file with the file

name, say, first.c. The program looks as follows:

#include <stdio.h>1

2

int main()3

{4

printf("My first program\n");5

return(0);6

}7

The meaning of the different lines will be explained in a minute. First,

you should compile the program. This means that in the current form the

program cannot be executed by the computer. The compiler converts it into

so-called machine code, which can be executed. Usually, the machine code

resulting from your programwill be put together with other already existing

machine codes, e.g. for some standard tasks like input/output subroutines.

This is the so-called linking state of the compilation performed by the linker.

Under UNIX/Linux, you can compile the program in a shell, provided

the current directory of the shell is in the directory where the program is

stored, via the command
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cc -o first -Wall first.c

The main command is cc, which is an abbreviation of C compiler. In

the above example, two options are used for the command cc:

-o (for ouput) gives the name the executable program will get, here

first.

-Wall The W stands for warning and all means the compiler will report

(almost) all strange things it observes, even if it is not an error in

a strict sense. Since C is very sloppy about many rules, it lets you

get away with a lot, which most of the times is not what you want

to do.

The classical example is the comparison operator ==, i.e. you have

to write a==b, if you want to test whether the values stored in

the variables a and b are equal. This is different from a=b, which

assigns a the value of b (see below). Nevertheless, for conditional

statements like if(a==b), sometimes the programmer mistakenly

writes if(a=b), which is nevertheless a meaningful statement un-

der some circumstances. Therefore, the compiler does not report

this as an error, but with -Wall, the compiler warns you that you

have used an assignment where a conditional statement is expected.

Hence, you should use the highest warning level -Wall always, and

ignore the warnings only, if you know exactly what you are doing.

Note that there are several other warning options in C which are not

turned on even when using -Wall, despite its name. For example,

the option -Wextra (previously called just -W) turns on additional

warnings. A complete list of all warning options can be found in

the compiler documentation.

The last argument of the cc command is the file you actually want to

compile. Note that, in principle, a program may consist of several files,

which can all be passed via arguments to the compiler. By default, the C

compiler will generate an executable. Consequently, the compiling process

will consist of the actual compiling of the input source files, which generates

a (hidden) assembler code for each input file. The assembler codes are

translated to executable codes. Finally the different executable codes are

linked into one program. If the option -c is given, the linking stage will

be omitted. In this case several executable .o files are created. The C

compiler, when called from the command line, offers a huge number of
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options, which are all described in the manual pages. Under UNIX/Linux,

you can access the manual via the man command, i.e. by entering “man cc”.

Now we come back to the structure of the program first.c. The

first line includes a file. This means that the file stdio.h contains some

definitions which the compiler should read before proceeding with the com-

pilation process. In this case, stdio.h contains declarations of some built

in standard functions for input/output i/o. The compiler needs these de-

clarations, because it has to know, for example, how many parameters are

passed to the function. The files containing declarations are usually called

header files, hence the suffix is .h. In this example, the compiler needs the

definition of the subroutine printf(), which means print formatted (see

below). Note that the actual definitions of the subroutines, i.e. the code

for the subroutine, is not contained in the header files, but in libraries (see

page 17) and Sec. 7.1.

The main program of every C program is called main(), which comprises

the remaining file of first.c. In fact, all codes which do something in C

programs are functions, i.e. they take some arguments and return some-

thing. Hence, main() is also a function. Here, it takes zero arguments,

indicated by the fact that nothing is written in the brackets () after the

name (main) of the function in line three. Below, you will learn how to pass

to main() some arguments via the command line. By default, the function

main() returns an integer value, which is indicated by the int in front of

the function name.

The definition of a function, i.e. the program code which is executed

when the function is called, is contained inside the pair {. . .} of brackets

(lines 4–7). Note that the opening and closing brackets are written below

each other for readability, but this is not required by the compiler. You

could have written everything in one line, or insert many empty lines, etc.

Also, the position inside a line does not matter at all, e.g. your program

could look like

#include <stdio.h>

int

main

(){

printf(

"My first program\n"); return(0);

}
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Certainly, the first version is much more readable than the second, so

you should follow some formatting rules. This is discussed in Sec. 3.2. Note

that concerning the #include directive, which is only a kind of command

passed to the compiler but not a true C command, the syntax is more

strict. Basically, each #include directive must be written in exactly one

line (unless one explicitly uses several lines via the \ symbol at the end of

a line). Also, only one directive is allowed per line. More information on

the compiler directives and the related macros is given in Sec. 1.6.

The code describing the functionality of main() comprises the two lines

5–6 here. First, the printf() subroutine prints the string given as ar-

gument to the screen, i.e. here the string “My first program”. The \n

symbol is a formatting symbol. It indicates that after printing the string

a new line is inserted. Consequently, any subsequent output, if also per-

formed using printf() occurring during the execution of a program, will be

printed starting at the next line. One can print many different things using

printf(), more details are explained in Sec. 1.3. Note that formally the

subroutine printf() is a function, since in C all subroutines are functions.

Functions can have side effects, like printing out information or changing

content of variables. Also, all functions calculate or return a value, which

is often less important than the side effects, like in this case. The function

call, together with the terminating semicolon, makes a statement. Each

statement must close with a semicolon, even if it is the last statement of a

function or the last statement of a block (see page 20) of statements.

In line 6, return(0) states the value the function returns. Here it is

just 0, which means for main() by convention that everything was OK.

In general, one can return arbitrary complex objects. Simple mathematical

functions will return a real number, e.g. the square root of the argument, but

also more complex objects like strings, arrays, lists or graphs are possible.

More on functions in C is given in Sec. 1.2.
To actually execute the command, one types into the shell the name of

the program, i.e.

first

Note that this assumes that the current directory is part of the search

path contained in the environment variable PATH. If this is not the case,

one has to type in “./first”. As a result of the program execution, the

message “My first program” will appear on the screen (inside the shell,

just in the line after where you have called the program), the program will

terminate and the shell will wait for your next command.
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1.1.1 Basic data types

To perform non-trivial computations, a program must be able to store data.

This can be done most conveniently using variables. In C, variables have

to be defined, i.e. the type has to be given (see below on the syntax of a

definition). A definition will also cause the compiler to reserve memory

space for the variable, where its content can be stored. The type of a

variable determines what kind of data can be stored in a variable and how

many bytes of memory are needed to store the content of a variable. Here,

we cover only the most important data types. The most fundamental type

is

• int

This type is used for integer numbers. Usually, four bytes are

used to store integer numbers. Hence, they can be in the range

[−231, 231 − 1]. Alternatively you can use unsigned int, which

allows for numbers in the range [0, 232 − 1]

To define some variables of type int, one writes int followed by a

comma-separated list of variable names and ended by a semicolon, like in

int num_rows, num_columns, num_entries;

which defines the three variables num rows, num columns and num entries.

Valid names of variables start with a letter {a. . . z,A,. . . ,z} and may contain

letters, digits {0, . . . , 9}, and the underscore ‘ ’ character.1 It is not allowed

to used reserved key words. Forbidden are particularly statement key words

like for or while as well as predefined and self-defined data types.

Initially, the values of variables are undefined (some compilers auto-

matically assign zero, but you cannot rely on this). To actually assign a

number, the C statement should contain the variable name, followed by

an equal character ‘=’ followed by a numeric constant for example, and

terminated by a semicolon like in

num_rows = 10;

num_colums = 30;

Note that the spaces around the ‘=’ are not necessary, but allow for

better readability. To the right of the ‘=’ symbol, arbitrary arithmetic

expressions are allowed, which may contain variables as well. If a variable

1One can start variables also with the underscore ‘ ’ character, but this is also done
by library subroutines, hence you should avoid an explicit use of the underscore.

09-Oct- 2014



October 9, 2014 14:51 Big Practical Guide to Computer Simulations book4˙2nd page 8

8 Big Practical Guide to Computer Simulations

appears in an expression, during the execution of the program the variable

will be replaced by its current value. A valid arithmetic expression is

num_entries = num_rows * num_colums;

More on arithmetic expressions, including the introduction of the most

common operators, will be presented in Sec. 1.1.2. Note that one can write

numeric constants also in octal (number with leading 0) or in hexadecimal

(number with leading 0x), e.g. the above statements could read as

num_rows = 012;

num_colums = 0x1e;

The value of one or several variables can be printed using the printf

command used above. For this purpose, the format string passed to printf

must contain conversion specifications for the variables, where the actual

value will be inserted, when the string is printed. The variables (or any

other arithmetic expression) have to be passed as additional arguments

after the string, separated by commas. The most common conversion spec-

ification to print integers is “%d”. The values of the variable can be printed

in a C program for example with

printf("colums = %d, rows = %d, total size = %d\n",

num_rows, num_colums, num_entries);

The ‘\n’ at the end of the format string indicates again a new line.

Using the above statements, the C program will print in this case

colums = 10, rows = 30, total size = 300

One can also assign variables right at the place where they are defined.

This is called initialization and can be done e.g. using

int num_rows = 30;

This is even mandatory when defining a variable as being a constant. This

means its content is not allowed to change. Syntactically, this is indicated

by the qualifier const written in front of the type name, e.g.

const int num_rows = 30;
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Hence, if you try to assign a value to num_rows somewhere else in the

program, the compiler will report an error.

Other fundamental data types, which have similar fundamental proper-

ties and usage like int, include

• short int

If you are sure that you do not need large numbers for specific

variables, you can economize memory by using this data type. It

consumes only two bytes, hence numbers in the range [−215, 215−1]

are feasible, while for unsigned short int, numbers in the range

[0, 216−1] can be used. Variables of these types are handled exactly

like int variables.

• char

This data type is used to store characters using the ASCII coding

systems in one byte. Characters which are assigned have to be

given in single quotes. When printing characters using printf(),

the conversion specification %c can be used. The following three

lines define a variable of type char, assign a character and print it.

char first_char;

first_char = ‘a’;

printf("The first character is %c.\n", first_char);

Note that you can also use char variables to store integers in

the range [−128, 127]. Therefore, when you print the variable

first_char using the %d conversion specification, you will get the

ASCII code number of the contained character, e.g. the number 97

for the letter ‘a’ and the number 10 for ‘\n’. The code numbers

might be machine and/or operating system dependent.

Variables of the type unsigned char can store numbers in the

range [0, 255].

• double and float

These are used to store floating-point numbers. Usually float

needs four bytes, allowing for numbers up/down to ±3.4 × 1038,

while double uses eight bytes allowing for much larger numbers

(±9 × 10307).

When assigning float or double numbers, one can e.g. use the

fixed point notation like in -124.38 or a “scientific” notation in

the form -1.2438e2 which means −1.2438× 102 (equivalently you

could write -12.438e1 or -1243.8e-1). Note that the numeric
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constant 4 is of type int, while the constant 4.0 is of type double.

Nevertheless, you can assign 4 to a floating-point variable, because

types are converted implicitly if necessary, see Sec. 1.1.2.

When printing float or double numbers usually the conversion

specifications %f for fixed point notation or %e for scientific notation

are used.

Note that standard C does not provide support for complex num-

bers. This is no problem, because there are many freely available

libraries which include all necessary operations for complex com-

putations, see Chap. 7.

• long int and long double

On some computer systems, more memory is provided for these

data types. In these cases, it makes sense to use these data types if

one requires a larger range of allowed values or a higher precision.

The use of variables of these data types is the same as for int or

double, respectively.

• addresses, also called pointers

Generic addresses in the main memory can be stored by variables

defined for example in the following way

void *address1, *address2;

Note that each variable must be preceded by a ‘*’ character. The

type void stands for “anything” in this case, although sometimes

it stands for “nothing” (see Sec. 1.2). If one wants to specify that

a pointer stores (or “points to”) the address of a variable of a

particular type, then one has to write the name of the data type

instead, e.g.

int *address3, *address4;

One important difference from a void pointer is that address3+1

refers to the memory address of address3 plus the number of bytes

needed to store an int value, while address1+1 is the memory

address of address1 plus one byte.

The actual address of a variable is obtained using the & operator

(see also next section), e.g. for an integer variable sum via

address1 = &sum;
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The printf() conversion specification

for pointers is ‘%p’, the result is shown

in hexadecimal. For example

GET SOURCE CODE

DIR: c-programming
FILE(S): address.c

printf("address = %p\n", address1);

could result in

address = 0xbffa0604

The value stored at the memory location where address1 points

to is obtained by writing *address1. Consequently, the lines

int sum;

int *address1;

address1 = &sum;

sum = 12;

printf("%d \n", *address1);

will result in printing 12 when running.

A slightly advanced use of pointers can be found in exercise (2).

GET SOURCE CODE

DIR: c-programming
FILE(S): sizeof.c

Note that you can determine the actual

number of bytes used by any data type, also

the self-defined ones (see Sec. 1.1.4), via the

size_of() function within a C program. The

name of the data type has to be passed to the function as argument. For

example, the following small program sizeof.c will print the number of

bytes used for each type:

#include <stdio.h>

int main()

{

printf("int uses %d bytes\n", sizeof(int));

printf("short int uses %d bytes\n", sizeof(short int));

printf("char uses %d bytes\n", sizeof(char));

printf("long int uses %d bytes\n", sizeof(long int));

printf("double uses %d bytes\n", sizeof(double));

printf("float uses %d bytes\n", sizeof(float));

printf("long double uses %d bytes\n", sizeof(long double));

printf("pointers use %d bytes\n", sizeof(void *));

return(0);

}
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Note that the format string of the printf statement, i.e. the first argument,

contains a conversion character %d, which means that when printing the

format string, the number passed as second argument will be printed as

integer number in place of the conversion character. More details on the

printf command and its format strings are explained in Sec. 1.3. Thus,

the program may produce the following output:

int uses 4 bytes

short int uses 2 bytes

char uses 1 bytes

long int uses 4 bytes

double uses 8 bytes

float uses 4 bytes

long double uses 12 bytes

pointers use 4 bytes

Hence, the usage of long int does not increase the range compared to

int, but so does long double. The sizeof() command will be in partic-

ular important when using dynamic memory management using pointers,

see Sec. 1.4.

The precision of all standard C data types is fixed. Nevertheless, there

are freely available libraries which allow for arbitrary precision including

corresponding operators, see Chap. 7. The operators for the standard arith-

metic data types are discussed in the next section.

1.1.2 Arithmetic expressions

Arithmetic expressions in C basically follow the same rules of traditional

arithmetics. The standard operations addition (operator +), subtraction

(-), multiplications (operator *), and division (/), as well as the usual

precedence rules are defined for all numeric data types. Furthermore, it is

possible to introduce explicit precedence by using brackets. The following

expressions give some examples:

total_charge = -elementary_charge*(num_electrons-num_protons);

weighted_avg_score = (1.0*scoreA+2.0*(scoreB1+scoreB2))/num_tests;

When executing the program, the values which result in evaluating the

expressions to the right of the ‘=’ character are assigned to the variables

shown to the left of the ‘=’ character. Note that an assignment is an ex-

pression itself, whose result is the value which is assigned. Therefore, the

result of the assignment x = 1.0 is 1.0 and can be assigned itself like in
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y = x = 1.0;

Nevertheless, such constructions are not used often and should usually be

avoided for clarity.

Note that for integer variables and constants, the division operation

results just in the quotient, being an integer again, e.g. 5/3 results in a

value 1. This is even the case if 5/3 is assigned to a variable of type

double! The remainder of an integer division can be obtained using the

modulus operator (%), e.g. 5%3 results in 2. Note that the modulus operator

is not allowed for one or two double or float operands. Nevertheless,

in general, if a binary operator combines objects of different types, the

value having lower resolution will be converted internally to the higher

resolution. Consequently, the type of an expression will be always of the

highest resolution. On the other hand, when assigning the result of an

expression to a variable of lower resolution (or when passing parameters to

functions as in Sec. 1.2), the result will also be automatically converted.

Therefore, when assigning a floating-point result to an integer variable, the

value will be truncated of any fractional part. One can also perform explicit

type conversions by using a cast. This means one writes the desired type

in () brackets left of a constant, variable or expression, e.g. in

void *addressA;

int *addressB;

addressB = (int *) addressA+1;

addressB will point 4 bytes behind addressA, while without the cast it

would point only one byte behind addressA.

As pointed out in the last section, *address refers to the content of the

variable where address points to. Hence, one can change the content of

this variable also by using *address on the left side of an assignment, like

in

int sum;

int *address1;

sum = 12;

address1 = &sum;

*address1 = -1;

printf("%d \n", sum);

which will result in printing the value -1 when the program is executed.
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The value of address1 will not be changed, but will still be the address of

variable sum.

It occurs very often that a variable is modified relative to its current

value. Hence, the variable occurs on the left side of an assignment as well

as on the right side within an arithmetic expression. For the simplest cases,

where the variable is incremented, decremented, multiplied with, or divided

by some value, a special short syntax exists (as well as for the modulus

operator and for the bitwise operations presented below). For example,

counter = counter + 3;

can be replaced by

counter += 3;

Consequently, the general form is

〈variable 〉 〈operator 〉= 〈expression 〉

where 〈operator 〉 can be any of

+ - * / % & | ^ << >>

The last five operators are for bitwise operations which are discussed below.

On the left side, 〈variable 〉 stands for an arbitrary variable to which the

value is assigned, an element of an array or of a structure, see Sec. 1.1.4.

The 〈expression 〉 on the right side can be any valid arithmetic expression,

e.g. it may contain several operators, nested formulas, and calls to functions.

Standard mathematical functions are introduced at the end of this section.

GET SOURCE CODE

DIR: c-programming
FILE(S): increment.c

There are special unary operators ++ and

-- which increase and decrease, respectively, a

variable by one, e.g. counter++. It can be ap-

plied to any variable of numeric or pointer type.

In addition to the change of the variable, this represents an expression which

evaluates to the value of the variable before the operator is applied or after

the operator is applied, depending on whether the operator is written behind

(postincrement) or in front (preincrement) of the variable. For example,

compiling and running

int counter1, counter2, counter3, counter4;

counter1 = 3;

counter2 = counter1++;
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counter3 = ++counter1;

counter4 = --counter1;

printf("%d %d %d %d\n", counter1, counter2, counter3, counter4);

will result in

4 3 5 4

Since the computer uses a binary representation of everything, in partic-

ular any natural number n can be interpreted as sequence akak−1 . . . a1a0
of 0s and 1s when writing the number in binary representation n =

∑
i 2

iai.

For instance, the number 201 is written as binary sequence (highest order

bits at the left) 11001001. For these sequences, there are a couple of oper-

ators which act directly on the bits. We start with operators involving two

arguments.

& Calculates a bitwise AND of the two operands.

For each pair (a, b) of bits, the & operation is

defined as shown in the table on the right: The

result is only 1 if a AND b are 1. Hence, for the

numbers 201 (binary 11001001) and 158 (binary

10011110) one will obtain from 201 & 158 the

result 136 (binary 10001000).

a b a&b

0 0 0

0 1 0

1 0 0

1 1 1

| Calculates a bitwise OR of the two operands, de-

fined as shown in the table on the right: The

result is 1 if a OR b are 1. Therefore, for the

numbers 201 and 158 one will obtain the result

223 (binary 11011111).

a b a|b

0 0 0

0 1 1

1 0 1

1 1 1

^ Calculates a bitwise XOR of the two operands,

defined as shown in the table on the right: The

result is 1 if a OR b is 1 but not both. Hence,

for the numbers 201 and 158 one will obtain the

result 87 (binary 01010111).

a b a^b

0 0 0

0 1 1

1 0 1

1 1 0

<< The expression seq << n evaluates to a shift of the sequence of

bits stored in the variable seq (or obtained from an expression in

general) by n positions to the left, which is equivalent to a mul-

tiplication with 2n. Thus, if seq contains 51 (binary 00110011),

seq << 2 will result in 204 (binary 11001100). Note that if the

number overflows, i.e. gets too large relative to the type of the
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variable or expression, the higher order bits will be erased. Conse-

quently, if seq is of type unsigned char, seq << 4 will result in

48 (binary 00110000).

>> Likewise, the expression seq >> n evaluates to a shift of the se-

quence of bits stored in the variable seq by n positions to the

right, which is equivalent to an integer division by 2n.

Furthermore, ~ is a unary inversion operator, which just replaces all

1s by 0s and all 0s by 1s. Therefore, the result depends on the standard

number of bits, because all leading 0s will be set to one. For example,

variable seq containing the value 12 (binary 1100, when omitting leading

0s as usual), ~seq will result in (4 bytes = 32 bits for int) 4294967283

(binary 11111111111111111111111111110011).

For floating point arithmetic, there are many predefined functions like

trigonometric functions, exponentials/logarithms, absolute value, Bessel

functions, Gamma function, error function, or maximum function. The

declarations of these functions are contained in the header file math.h.

GET SOURCE CODE

DIR: c-programming
FILE(S): mathtest.c

Thus, this file must be included, when us-

ing these functions. When compiling without

-Wall, note that the compiler will not com-

plain, if math.h is not included and this may

yield incorrect results. Furthermore, math.h contains definitions of useful

constants like the value of π or the Euler number e. The following simple

program mathtest.c illustrates how to use mathematical functions.

#include <stdio.h>1

#include <math.h>2

3

int main()4

{5

double z= 0.25*M_PI;6

printf("%f %f %f\n", sin(z), cos(z), tan(z));7

printf("%f %f \n", asin(sqrt(2.0)/2.0)/M_PI, acos(0.0)/M_PI);8

printf("%f %f %f %f\n", pow(M_E, 1.5),exp(1.5), log(1.0), log(M_E));9

printf("%f %f %f\n", fabs(-3.4), floor(-3.4), floor(3.4));10

printf("%f %f\n", fmax(1.3, 2.67), fmin(1.3, 2.67));11

printf("%e %e %e %e\n", erf(0.0), erf(1.0), erf(2.0), erf(5.0));12

printf("%f %f %f %f\n", tgamma(4.0), tgamma(4.5),13

tgamma(5.0), exp(gamma(5.0)) );14

printf("%f %f %f\n", j0(2.0), j1(2.0), jn(1.0,2.0));15

return(0);16

}17
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When compiling this program, one needs the additional option -lm,

which means that the library for mathematical functions will be linked. In

this library, precompiled code for all of these functions is contained and

those which are needed will be included in the final program.2 You can

compile the program using

cc -o mathtest -Wall mathtest.c -lm

In line 6 of the program, the predefined constant for π

(3.14159265358979323846) is used. Other important constants are the

Euler number (M_E = 2.7182818284590452354) and
√
2 (M_SQRT2 =

1.41421356237309504880). Lines 7–8 illustrate the usage of trigonomet-

ric functions and their inverse functions. Note that the arguments have to

be in radians, i.e. units of 2π. Line 9 shows how to use the general power

ax pow() and the exponential ex exp() functions. In line 10, the function

fabs() for calculating the absolute value of a number, and floor() for

rounding downwards are shown. Line 11 introduces the usage of the func-

tions fmax() and fmin() for calculating the maximum and the minimum

of two numbers, respectively. In line 12, four values of the error function

erf(x) = 2/
√
π
∫ x

0
e−y2

dy are obtained. In line 13, sample usages of the

gamma function are shown. Note that tgamma() is the gamma function

Γ(x) while gamma() represents ln Γ(x). Remember that for integer values n

one has Γ(n) = (n − 1)! =
∏n−1

k=1 k. Finally, in line 15, the Bessel function

of the first kind is shown. j(n, x) calculates the Bessel function of order n,

while j0 and j1 are shortcuts for jn(0, . ) and jn(1, . ), respectively.

Hence, when running the program, you will get

0.707107 0.707107 1.000000

0.250000 0.500000

4.481689 4.481689 0.000000 1.000000

3.400000 -4.000000 3.000000

2.670000 1.300000

0.000000e+00 8.427008e-01 9.953223e-01 1.000000e-00

6.000000 11.631728 24.000000 24.000000

0.223891 0.576725 0.576725

These functions are documented on the corresponding man pages, e.g.

man sin. More complicated functions, like Airy functions, elliptic func-

2Note that dynamical linking is usually used, i.e. the corresponding code is only linked
when running the program. This keeps the executables short. Nevertheless, explicit
linking at compile time can be forced using the option -static.
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tions, or spherical harmonics can be found in special libraries, as explained

in Chap. 7.

Finally, there is a special operator ?, which is related to the if statement

and is explained in the next section.

1.1.3 Control Statements

Using only the statements presented so far, a program would just consist of

a linear sequence of operations, which does not allow for complex problems

to be solved. In this section, statements are introduced which enable the

execution flow of a program to be controlled.

The simplest statement is the if statement, which allows to select be-

tween two statements depending on the evaluation of a conditional expres-

sion. A simple example is

if(x <= 0)

step_function = 0.0;

else

step_function = 1.0;

where the variable step_function will be assigned the value 0.0 if x is

smaller than or equal to zero, and step_function will get 1.0 if x is larger

than zero.

The general form of an if statement is as follows:

if( 〈condition 〉 )
〈statement 1 〉

else

〈statement 2 〉

During the execution, first the 〈condition 〉 is checked. If the condi-

tion is true, then 〈statement 1 〉 is executed. If the condition is false, then

〈statement 2 〉 is executed. These statements can be arbitrary, e.g. assign-

ments as in the above example, calls to functions, another nested if state-

ment, etc. Also, the type of the statements can be different, e.g. 〈statement

1 〉 may be a call to a function and 〈statement 2 〉 may be an assignment.

Note that the else part can be absent. In this case, if the condition is false,

the execution continues with the next statement after the if statement.

Basic conditional expressions can be formed by comparing (arithmetic)

expressions using relational operators. In C we have
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== != < <= > >=

Consequently, an expression of the form 〈expr1 〉 〈OP 〉 〈expr2 〉, will be

evaluated for 〈OP 〉 being == to true if both expressions are equal, while

for the operator != represents the test for non-equality. For the case 〈OP 〉
being <=, true results if 〈expr1 〉 is smaller than or equal to 〈expr2 〉, etc.
Note that the relational operators have lower precedence than the standard

arithmetic operators, meaning they will be evaluated last. This means that

counter < limit + 1 is equivalent to counter < (limit + 1).

C uses the integer 0 to represent a logical false and all other values to

represent true. Therefore, for the comparison counter=!n_max one could

write instead counter-n_max. This results in exactly the same behavior,

since this expression becomes zero if counter is equal to n_max. In fact, C

does not formally distinguish between arbitrary expressions and conditional

expressions. Thus, wherever a condition is expected, any expression can

appear in a C program. Nevertheless, to make a program more readable,

which usually leads to less programming bugs, one should use conditional

operators, if conditions are possible and meaningful.

A common mistake, as mentioned on page 4, is to use = instead of ==

when intending a comparison. Nevertheless, a statement like if(a = b+1)

is valid C syntax, because an assignment is also an expression itself, where

the result is the value which is assigned. Hence, in this case the result of the

expression will be b+1 which in C represents false if b equals -1 and true for

all other values of b. Usually, an assignment inside an if statement is not

intended by the program author. Hence, you should use the compiler option

-Wall, which makes the compiler print out a warning, when it encounters

such a case.

Compound conditional expressions can be formed by grouping them

using braces and combining them using the logical OR operator ||, the

logical AND operator &&, and the logical NOT operator !, e.g.

(counter>=10) && (counter<=50) && !(counter % 2==0)

which evaluates to true if the value of counter is inside the interval

[10, 50] and not an even number, i.e. odd.3 The NOT operator has

higher precedence than the AND/OR operators. Note that a sequence

of || or && operators is evaluated from left to right. This evaluation

stops when the result of the full expression is determined, e.g. after the

3Instead of !(counter % 2==0) one could also write (counter % 2!=0) or (counter

% 2==1) or right away (counter % 2).
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first occurrence of true for a sequence of || operators. This can be dan-

gerous when using, inside a compound conditional expression, operators

which change variables, like the post-increment operator ++, as used in

(num_particles > 100)&&(num_run++ > 100). In this case, it depends

on the result of the first condition whether the post-increment operator in

the second condition is performed or not. Consequently, in most cases such

constructions should be avoided for clarity, even if they work as intended.

Recall the first example of this section, where a value is assigned to

a single variable, which is different within the different branches of the

statement. For this special usage of the if statement, there exists the

conditional operator ? as shortcut. For the above example the resulting

conditional expression statement reads

step_function = (x<=0) ? 0.0 : 1.0;

The general format of the conditional expression is

〈condition 〉 ? 〈expression 1 〉 : 〈expression 2 〉
Hence, the ? operator is ternary. The result of the conditional expression

is 〈expression 1 〉 if the 〈condition 〉 evaluates to true, else the result is

〈expression 2 〉. The conditional expression can be used where a standard

expression can be used.

According to the general form of the if statement shown above, it might

appear that only one statement can be put into each of the two branches.

This restriction can be overcome by grouping any number of statements

into a block, which is created by embracing the statements by { . . . }

braces, e.g.

if(step % delta_measurement == 0)1

{2

num_measurements++;3

sum += energy;4

sum_squared += energy*energy;5

sum_cubed += energy*energy*energy;6

sum_quad += energy*energy*energy*energy;7

}8

This piece of code is from a simulation program, where the (somehow

calculated) energy is recorded, if the number of steps is a multiple of

delta_measurement. To obtain estimations for the average energy and

a confidence interval (“error bar”) as well as higher moments, one calcu-
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lates running sums of the energy (line 4), the energy squared (line 5), the

third (line 6) and the fourth power (line 7). The average energy will be

sum_energy/num_measurements. For details on the calculation of simple

statistical properties, see Sec. 8.3.

Note that it is also possible to define variables inside a block. For

traditional C, the variable definition must appear at the beginning of the

block, as it must appear at the beginning of main(), and in fact at the

beginning of any function.4 Using a block variable squared_energy, the

above example would read

if(step % delta_measurement == 0)1

{2

double squared_energy = energy*energy;3

4

num_measurements++;5

sum += energy;6

sum_squared += squared_energy;7

sum_cubed += squared_energy*energy;8

sum_quad += squared_energy*squared_energy;9

}10

In this way, the number of multiplications is reduced from five to three.

Note that such block variables are only visible and accessible within the

block where they are defined. The scope of variables will be explained in

more detail in Sec. 1.2.
Note that in case of nesting if. . . else statements, sometimes one needs

blocks to avoid ambiguities, e.g.

if(x==1)

if(y==1)

printf("case 11\n");

else

printf("case 1X\n");

is equivalent to

4This is different from C++, the object-oriented extension of C, and according the
modern C standard, where variables can be defined everywhere. Nevertheless, the clarity
of a program is increased, if all definitions of a block are collected in one place.
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if(x==1)

{

if(y==1)

printf("case 11\n");

else

printf("case 1X\n");

}

which is different from

if(x==1)

{

if(y==1)

printf("case 11\n");

}

else

printf("case 1X\n");

Therefore, one needs the brackets, if the else part should explicitly belong

to the first if statement. In any case, if several if statements are nested,

brackets always help to clarify their meaning.

Next, we consider the for loop, which enables one statement or a block

of statements to be executed several times. The following piece of code cal-

culates the sum of the squares of numbers from 1 to n_max, with n_max=100

here:

int counter, sum, n_max;1

2

sum = 0; n_max = 100;3

for(counter = 1; counter <= n_max; counter++)4

sum += counter*counter;5

The for command (line 4) controls how often the addition in line 4 is

executed, with counter getting the values 1, 2, 3, . . . , 99, 100, one after the

other. Consequently, sum will contain the value 338350, when the loop is

finished. The general form of a for loop is as follows:

for( 〈init expression 〉; 〈condition 〉; 〈increment expression 〉 )
〈body statement 〉

During the execution, first the 〈init expression 〉 is evaluated. Next, the

〈condition 〉 is checked. If the condition is true, then the 〈body statement 〉
is executed, next the 〈increment expression 〉 evaluated. This completes the

execution of one iteration of the loop. Then, once again the condition is
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tested to check whether it is still true. If it is, the loop is continued in the

same way. This is continued until the 〈condition 〉 becomes false. Then the

execution of the for loop is finished. Note that it is not guaranteed that a

loop finishes at some time, e.g. the following loop will run forever:

for(counter = 1; counter > 0; counter++)

sum += counter*counter;

The 〈init expression 〉, the 〈condition 〉, and the 〈increment expression 〉 are

usually arithmetic expressions or assignments. Hence, instead of counter++

one could write counter = counter +1. Due to its flexibility, C allows for

even more general forms, e.g. one could use printf("%d\n", counter++)

as 〈increment expression 〉, which would result in printing the value of

counter after each iteration of the loop. As you see, C allows for very

compact code. Nevertheless, this often makes the program listing somehow

hard to read, hence error-prone. Thus, it is preferable to write programs

which might be a bit longer but whose meaning is obvious. Therefore,

putting the printf statement also in the body of the loop in this case

would lead to simpler-to-understand code. In this case one also has to use

{. . . } braces to group a list of statements into one block.

In principle, one can use quite general constructions to perform a loop,

so one could use also variables of type double as iteration counters like in

double integral, delta, x;

integral = 0.0; delta = 0.01;

for(x=0.0; x <=M_PI; x += delta)

integral += delta*sin(x);

There are another two types of loops, the while loop and the do

. . . while loop. The former one has the following general form:

while( 〈condition 〉 )
〈statement 〉

The above 〈statement 〉 is executed as long as the condition is true. Con-

sequently, if one likes to perform a loop similar to a for loop, one has to

put the initialization before the while loop and one has to include the in-

crement in the 〈statement 〉, usually a block of several statements, like in

the following example:
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int counter, sum, n_max;1

2

sum = 0; n_max = 100;3

counter = 1;4

while(counter <= n_max)5

{6

sum += counter*counter;7

counter++;8

}9

Very similar is the do . . . while loop, which has the following general

form

do

〈statement 〉
while( 〈condition 〉 )

The difference from the while loop is that the 〈statement 〉 (again it may

be a {. . . } block of statements) is executed at least once. Only after each

iteration of the loop, the 〈condition 〉 is tested. The iteration of the loop

continues as long as the 〈condition 〉 is true.

There are three different statements, which allow to exit at any time the

execution of a block belonging to a loop. First, the break statement will

immediately stop the execution of the loop without completing the block.

Hence, the execution of the program continues with the first statement after

the loop statement. Second, the continue statement will also terminate the

current iteration of the loop, but the full loop is continued as normal, i.e.,

with the 〈increment statement 〉 in case of a loop or with the next evaluation

of the 〈condition 〉 in case of a while or a do. . . while loop. Thus, if the

〈condition 〉 allows, the loop will be continued with the next iteration. If

several loops are nested, the break and continue statements act only on

the innermost loop. Third, if a return statement is encountered, not only

the current loop will be terminated, but the whole function where the loop

is contained in will be exited.

Note that there is a fourth possibility. The C language contains a goto

statement which allows to jump everywhere in the program. Possible jump

targets can be identified by labels. Since the use of goto statements makes

a program hard to understand (“spaghetti code”), one should not use it.

One can always get along well without goto and no details are presented

here.

Finally, the switch statement should be mentioned. It can be used
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when the program should branch into one of a set of several statements

or blocks, and where the branch selected depends only on the value of one

given expression. As an example, one could have a simulation with several

different atom types, and depending on the atom type different energy

functions are used. In principle, one could use a set of nested if. . . else

statements, but in some cases the code is clearer using a switch. Since

the switch statement is not absolutely necessary, we do not go into details

here and refer the reader to the literature.

1.1.4 Complex data types

So far, only single variables have been introduced to store information.

Here, complex data structures will be explained which enable the program-

mer to implement vectors, matrices, higher order tensors, strings, and data

structures where elements of possibly different data types are grouped to-

gether to form one joint data type.

To define e.g. a vector intensity, which may contain the results of 100

measurements during a simulation, one can write

double intensity[100];

In C, such a vector is called an array. By this definition, the variable

intensity is defined, i.e., also enough memory will be allocated during

execution of the program to hold the 100 elements of the array. These

100 elements are stored consecutively in the memory, hence a chunk of

100*sizeof(double) bytes will be used to store the array. Note that the

memory, which is allocated, may contain any content, i.e. it must be re-

garded as undefined. Although some compilers initialize all allocated mem-

ory with 0s, your program should perform always an explicit initialization.

The allocated memory is available until the execution of the block, where

the array is defined, is finished. This holds for all variables defined inside

a block, including variables holding just a single element. More details on

this so-called scope of variables can be found in Sec. 1.2.

One can access the i’th element of the array by writing intensity[i],

i.e. the index (also called subscript) is written in [] brackets after the name

of the vector. In C, array indices start with 0, hence here the array elements

intensity[0], intensity[1], . . . , intensity[99] are available. In the

following example the average of the values in the array is calculated . Note

that some part of the code is not shown, as indicated by a comment in the

program (line 4). In C, comments are indicated by embracing the comment
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text in ’/*’ and ’*/’.

double avg_intensity;1

int i;2

3

/* ... "some" more code to generate data ... */4

5

avg_intensity = 0.0;6

for(i=0; i<100; i++)7

avg_intensity += intensity[i];8

avg_intensity /= 100;9

The index can be any expression which results in an integer, so one could

also access every third measurement only, if needed, starting at index 1, by

writing intensity[3*i+1].

Technically, a one-dimensional array is equal to a pointer which points to

the beginning of the memory chunk: intensity contains the address of the

beginning of the chunk, while intensity[0] contains the content stored in

the first element of chunk, which is equivalent to *intensity. The second

element can be accessed via intensity[1] or via *(intensity+1). More

details about this equivalence will be given in Sec. 1.4.

Note that during the execution of the program it is not checked whether

one accesses (reads or writes) elements outside the reserved range. Conse-

quently, one could easily write intensity[100] = 0.9;, which is in fact

a mistake that will not be detected by the compiler. Often, this will not

do any harm during the execution of the program, because it means that

a memory location will be accessed which is located just ahead the chunk

that has been reserved for the intensity array. The basic reason is that

memory is not allocated consecutively. Thus, very often the part just ahead

this chunk will not be used to store other variables and consequently the

program will not be affected. But if some other data is stored just ahead

the chunk, e.g. when almost all the main memory is used, some other data

will be overwritten by assigning a value to intensity[100]. In this case,

the program might crash, or it might just give strange results. Therefore,

different runs of the same program with the same input parameters might

sometimes crash, sometimes give wrong results, and sometimes even do fine.

Since such kind of bugs are obviously hard to detect, there are special tools

to find them, so-called memory checkers. For details on these very useful

tools, see Sec. 4.3.

The general form of an array definition is as follows:

09-Oct- 2014



October 9, 2014 14:51 Big Practical Guide to Computer Simulations book4˙2nd page 27

Programming in C 27

〈type 〉 〈variable name 〉 [〈size 〉];
The 〈type 〉 can be any predefined as well as self-defined data types, see

below. For example, an array with 10 elements of the type short int is

defined as follows:

short int flags[10];

It is also possible to mix the definition of single variables and arrays

(and other variables based on the same basic type) in one line, e.g.

double avg_intensity, variance, intensity[100];

For old-fashioned standard C (before the standard ISO C99), the size

of an array has to be known by compile time. Therefore, for compilers

supporting only this type of C, it is not possible to write int vector[size]

where size is a variable. In this case, if one wants to use arrays, where the

size is not known at compile time, i.e. variable-sized arrays, one can always

use the techniques of dynamic memory management as described in Sec.

1.4. This is the safest approach and also the most flexible. On the other

hand, up-to-date compilers, like the gnu C compiler gcc [Loukides and

Oram (1996)], support the definition of variable-sized arrays. Nevertheless,

in case you use them, you might face a problem in rare cases, when you want

to port your program to another system with old compilers. Furthermore,

it is not possible to resize the array after it has been created, in contrast

to arrays created using dynamic memory management.

As mentioned above, you cannot rely on arrays being initialized auto-

matically upon creation. On the other hand, it is possible, like for single-

valued variables, to combine the definition with an initialization, e.g.

int atom_weight[6] = {1,6,7,8,15,16};

Note that the length of the arrays can be larger than the number of elements

given for initialization. If no array size is given, the size of the array will

be automatically equal to the number of elements provided, like in

int atom_weight[] = {1,6,7,8,15,16};

where 6 elements will be allocated for atom_weight.

A very special type of array is one which has the basic type char. It is

used to store strings and can be defined e.g. via

char atom_name[100];
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One can assign values like for other types of arrays. Note that the last

element of a string should contain a terminating 0. Hence, one could write:

atom_name[0] = ’c’;

atom_name[1] = ’a’;

atom_name[2] = ’r’;

atom_name[3] = ’b’;

atom_name[4] = ’o’;

atom_name[5] = ’n’;

atom_name[6] = 0;

This is quite space consuming. A simpler form exists, in case one per-

forms an assignment together with the definition, i.e. an initialization:

char atom_name[100] = {"carbon"};

Consequently, it is not necessary to assign one element after the other.

To indicate string constants, double quotes are used, in contrast to single

quotes for single characters. The terminating 0 is not given explicitly.

To print a string using printf(), the conversion specification %s can

be used. In this case, one only needs to pass the name of the array, not

all variables one after the other. The printing system will automatically

print the string character after character until the terminating 0 is reached,

hence

printf("%s\n", atom_name);

will result in

carbon

being printed on the screen.

There are many auxiliary functions which are very useful for string

processing. The declaration of these functions is contained in string.h,

which must be included at the beginning of your program, if you use any of

these functions. Here, only few examples are given: strcpy (“string copy”)

will copy the content of the string passed as second parameter, including

the terminating 0, to the string passed as first parameter, like in

char atom_name1[100] = {"carbon"}, atom_name2[100];

strcpy(atom_name2, atom_name1);
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Therefore, the content of atom_name2 will be also "carbon". Note that

there is no check for the length of strings. Hence, if the second string until

the terminating 0 is longer than the length of chunk reserved for the first

string, one will write beyond the boundaries of the arrays. This may result

in unpredicted behavior, as discussed above, and should be avoided (see

Sec. 4.3). If you are not sure about the lengths of the strings, you could use

strncpy, which has an additional third argument that states the maximum

number of characters to be copied.

Note also that the above assignment cannot be performed by writing

atom_name2 = atom_name1, which might appear natural. In fact, writing

this in a program will result in a compiling error.5

Strings can be compared using strcmp(). A call strcmp(s1,s2), will

return 0 if the strings are equal, a negative value (usually -1) if s1 is lexi-

cographically smaller than s2 and a positive value if s1 is lexicographically

larger than s2.

Another useful function is sprintf(), which allows a programmer to

assemble strings easily. It works similar to printf(). As a difference,

the result is not printed to the screen, but to the string which is passed

as additional first argument. This is in particular useful when assembling

file names, usually to write out simulation results, where the file names

somehow contain some program parameters to distinguish different runs.

This could look like

sprintf(file_name1, "sim_N%d_T%3.2f_id%d.out",

num_particles, temperature, run_id);

Note that %3.2f means that a floating point number with at least 3 digits,

2 among them after the comma, is printed. More details on the use of

printf() and related commands, including these conversion specifications,

can be found in Sec. 1.3. Hence, if num_particles = 10, temperature =

1.3 and run_id = 15, the resulting file name will be

sim_N10_T1.30_id15.out

5This is different when explicitly using pointers instead of arrays, i.e. char

*atom name1, *atom name2. In this case one must explicitly allocate memory, see Sec.
1.4. Then one could in principle perform the given assignment, but no string will be
copied, just both pointers will point to the same string. Afterward, a change of the
content of atom name1 would also change the content of atom name2 since both are the
same. Also, if some memory had been allocated for atom name2, then it will be “lost”
after this assignment, in case no other pointer refers to it. This would be a real bug.
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This file name can be used to create a file where one can write some

data to, see again Sec. 1.3 on file creation and input/output.
Also, strings can be converted back to numbers. The “inverse” func-

tion to sprintf() is sscanf() and will be described in Sec. 1.3. For the
special case a string s contains an integer number, i.e. the digits of the
corresponding number, one can obtain the number as int value via the
atoi() function:

number = atoi(s);

For more details on string functions, please refer to the documentation,

e.g. man string will give an overview over many useful string functions.

Matrices or tensors can be implemented using multi-dimensional arrays.

E.g a matrix with elements of type double can be defined via

double mat1[10][20];

The i,j’th element of the matrix mat1 is accessed using mat1[i][j],

again arbitrary int expressions can be used instead of i and j. Note that

again no automatic check for array boundaries is performed. Assuming

that vec1 and vec2 are double arrays of lengths 20 and 10, respectively,

the following piece of code multiplies the matrix mat1 with the vector vec1

and stores the result in the vector vec2, which is finally printed:

for(i=0; i<10; i++)1

{2

vec2[i] = 0.0;3

for(j=0; j<20; j++)4

vec2[i] += mat1[i][j]*vec1[j];5

}6

for(i=0; i<10; i++)7

printf("%f\n", vec2[i]);8

Technically, the compiler treats multi-dimensional arrays like a big one-

dimensional array. Let’s see how this works for the matrix: First, a big

chunk of memory is allocated (again often uninitialized). Next, the array

is stored in this chunck consecutively row by row.

Consequently, in this case, the matrix will be stored in a chunk of 10×20

double elements each. Therefore, mat1 will contain the address where

chunk starts, which is the same as mat1[0]. mat[1] contains the address

where the part for the second row starts, while mat[0][0] is the content

of the first element of the first row, and so on. The size of the allocated

memory can be evaluated afterward at any position in the program using
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again the sizeof() function. For example, sizeof(mat1)will result in the

total number of elements 20 × 10×sizeof(double), i.e. in 1,600 if double

uses 8 bytes. The amount of memory reserved for one row can be obtained

via sizeof(mat1[0]).

Even higher-dimensional arrays can be defined like

double tensor1[10][20][10];

and accessed e.g. via tensor1[1][2][3] = 5.0. Further details are not

necessary here. In exercise (3), permutation matrices are considered.

GET SOURCE CODE

DIR: c-programming
FILE(S): person.c

For arrays and matrices, several elements of

the same type are put together. In many other

cases, one would like to treat a set of elements

of different types as single units. Consider as

toy example a simulation of a social system of people. Here, one wants to

store, for example, the age, height, sex, marital status and city of residence

for each person. In C, one can group these elements together using a struc-

ture. The elements are then called members of the structure. An example

declaration of a structure for persons, including extensive comments, reads

as follows:

struct person

{

int age; /* age of person (years) */

double height; /* height of person in meters */

short int sex; /* 0=male, 1=female */

short int status; /* 0=single,1=married,2=divorced,3=widowed */

int city; /* cities are coded as integers 1,... */

};

It is possible for the members to have also more complex data types like

arrays, other structures, or self-defined data types (see below).

To define variables, e.g. p1, p2, which are of type struct person, one

writes

struct person p1, p2;

Alternatively, one could also list the variables to be defined directly after

the closing bracket ‘}’ of the structure declaration itself (and just before

the final semicolon, which closes the declaration).

The members of a structure variable can be accessed by writing the

variable name, a dot ‘.’ and the name of the member. For instance, one
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could assign values to all members of p1 using

p1.age = 43;

p1.height = 1.73;

p1.sex = 0;

p1.status = 0;

p1.city = 23;

It is also possible to assign complete structures within one statement

like in

p2 = p1;

Thus, p2.age will have value 43, p2.height will be 1.73, etc.

Now, struct person can be used as any existing type name. In this

way, it is possible to define an array which contains all persons of the

simulation:

int num_persons = 100;

struct person pers[num_persons];

The access to the different members of the elements of the pers array

is obtained by combining the access methods for arrays with the access

method for structures. For example, to initialize the marital status of all

persons to 0 one could use:

for(p=0; p<num_persons; p++)

pers[p].status = 0;

Please note that pers.status[p]=0 is not correct in this case. It would be

correct, if pers contained as member an array status.

Sometimes, it is useful to declare new names for data types, in particular

if they are of complicated form like pointers to functions (see Sec. 1.4). The

typedef construct serves this purpose. The format is the same as that of

a single variable definition, but preceded by the keyword typedef, i.e.:

typedef 〈type 〉 〈type name 〉;
Consequently, the name given is now for a “new” type, not for a vari-

able. For example, to define the new type name person_t for the person

structure, one could write

typedef struct person person_t;

person_t p1, p2;
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It is also possible to combine the structure declaration and the definition

of the new name. In this case, one does not need to specify a name after

the key word struct:

typedef struct

{

int age; /* age of person (years) */

double height; /* height of person in meters */

short int sex; /* 0=male, 1=female */

short int status; /* 0=single,1=married,2=divorced,3=widowed */

int city; /* cities are coded as integers 1,... */

} person_t;

The author recommends to use the suffix _t (or similar rules) for the

names of self-defined types to make it obvious everywhere that a new type

name is used.

It is even possible just to define via typedef new names for existing

data types like double. This could be useful e.g. in a situation where one

knows in advance that one needs a sophisticated data structure later on

for some variables, like special types for extremely high-precision numbers.

In this case, one might want to start the implementation for development

purposes with standard double and only switch to the high-precision data

type later on. Hence, one could use typedef double precision_t so that

one would only have to change this typedef and not all occurrences of

definitions of variables of the high-precision type later on.

C offers other data types, e.g. enumerations (where each variable can

have only specific values), bit fields (for storing data bit wise) and unions

(for allowing variables to be at different types), which are not covered here.

These data types are useful for some applications but not absolutely nec-

essary. Please refer to the literature for details.

Based on these complex data types, even more advanced data struc-

tures can be developed. They are often very useful for organizing simula-

tion programs in a much better way, speeding up simulations considerably.

Advanced data structures like lists, trees and graphs are discussed in Secs.

6.6 to 6.8.
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1.2 Functions

GET SOURCE CODE

DIR: c-programming
FILE(S): step fct.c

Usually, there are many complex tasks, which

have to be performed at different places in a

simulation, e.g. evaluating mathematical func-

tions or calculating statistical properties of a

given set of numbers. One could explicitly include code for the calculation

each time, for example for the step function as shown on page 18. But this

is a waste of programming effort and makes the code not well structured. It

is better to move this task to a subroutine, which in C is always a function.

A function for calculating the step function could look like this:

/************* step_function() *******************/1

/** Mathematical step function: **/2

/** Returns 0 if argument is less or equal to 0 **/3

/** and 1 else **/4

/** **/5

/** Parameters: (*) = return parameter **/6

/** x: mathematical argument **/7

/* **/8

/** Returns: **/9

/** step function value **/10

/*************************************************/11

double step_function(double x)12

{13

if(x <= 0.0)14

return(0.0);15

else16

return(1.0);17

}18

As you see, the code of each function should be accompanied by a func-

tion comment (lines 1–11) which explains what the function does, what

arguments are to be passed and what is returned. Although this is not nec-

essary for the program to compile correctly, you should get used to writing

function comments, and other comments, right from the beginning. When-

ever I code a function, I start with the function comment! Medium or

large simulation projects, which have more than few pages of source code,

in particular if their lifetime is longer than some weeks, cannot be han-

dled efficiently without a good practice of commenting. More about this

and other aspects of software engineering can be found in Secs. 3.1 and

3.2. Note that all example source codes, which are available online for this
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book, carry extensive comments. Therefore, all functions will exhibit such

a function comment. Nevertheless, to save space, the functions presented

in the book will usually not show their respective comments.

In line 12, first the return type is declared, i.e. it will return a double

value here. Next, the function name step_function is given. Next, en-

closed by (. . .) brackets, the arguments to the function are listed. Here,

one variable of type double is the argument, which can be addressed by

the name x inside the function. Note that several arguments are possible.

In this case one has to separate them by commas (see below). The main

part of a function (here lines 13–18) is enclosed by {. . . } brackets. The

main part consists of definitions and statements, as in the main() part of

a full program. In fact, as you may have realized by now, the main() part

of the program follows the same syntax rules like any other function, with

the only difference that it always has to have the special name main().

Finally, the value returned by the function is determined via the return()

statement. There can be several return() statements inside the main part

of the function, but only one will be executed each time the function is

called.

A function is called in other parts of the code by writing the function

name and, in brackets, the list of arguments, quite the same as for prede-

fined functions like sin() or printf(). The value returned by a function

can be used as any result of an expression, e.g. printed or assigned to a

value of suitable type. The main program for our example, which may con-

tain e.g. a loop, printing out a few function values in the interval [−1, 1],

could look like

int main()1

{2

double x;3

4

for(x=-1.0; x<=1.0; x+=0.1) /* print step function in [-1,1] */5

printf("Theta(%f)=%f\n", x, step_function(x));6

7

return(0);8

}9

When running the program, the output looks like (only a part is shown

here, as indicated by the dots)
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.

.

Theta(-0.100000)=0.000000

Theta(-0.000000)=0.000000

Theta(0.100000)=1.000000

Theta(0.200000)=1.000000

.

.

To be able to use the function step_function() inside main(), the

compiler has to “be aware” of it when it compiles the code for main().

There are four ways of achieving this:

(1) The full function definition of step_function() appears before main()

in the source file. Then, when the compiler reaches the source code of

main(), it will have processed already the part where step_function()

is defined, hence the function is known to the compiler.

In this way, step_function() is a global object, hence it can also be

called from other functions, not only main().

(2) The full function definition comes after main() in the source file. To

make the compiler aware of the existence of step_function() when it

processes main(), one has to perform a declaration in advance, which

is called function prototype. This means that in the source code before

the definition of main(), the following line has to appear:

double step_function(double);

Note the closing semicolon at the end of the line. The function proto-

type carries all information which has to be known outside the function:

the function name, the types and order of the arguments, and the type

of the return argument.

All other functions which appear in the source code behind the function

prototype of step_function() can use calls to step_function() in

their code. Hence, if all function prototypes are listed at the beginning,

each function is allowed to call each other function.

(3) Very often, the source code is distributed over many source files. This

usually happens if your simulation program is large and can be decom-

posed into several independent modules. There might be, for example,

one module for setting up the simulation, another for auxiliary func-

tions, some for the main simulation functions, and so forth. In this case,

the second possibility has to be used, too. This means that for each
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source file where some function func() is to be used, a corresponding

function prototype must be known, when it is compiled. Usually, the

function prototype is not written in the file explicitly, but it is contained

in a header file, just as the function prototypes for standard functions

like sin() and printf(). This header file must be included using the

#include directive, see Sec. 1.6. Note that for including your own

header files, you have to use the form #include "header.h" instead

of #include <header.h>, which is only used for predefined (system)

header files.

In this case, where the function is not contained in a header file, the

function prototype should be preceded by the key word external,

which indicates that the function definition occurs outside the present

file, e.g.

extern double step_function(double);

Now, the function step_function() can always be used after the corre-

sponding header file has been made known by using #include. Usually,

one puts all #include directives at the beginning of a source file, such

that all definitions are known everywhere inside the source file.

(4) All first three possibilities allow step_function() to be used arbitrar-

ily in other functions, provided that the functions are informed about

step_function() via the definition itself or via a prototype. The rea-

son is that step_function() is a global object.

Nevertheless, it is possible to put the definition of step_function()

just inside main(), e.g. like in:

int main()1

{2

double x;3

double step_function(double x)4

{5

if(x <= 0.0)6

return(0.0);7

else8

return(1.0);9

}10

11

for(x=-1.0; x<=1.0; x+=0.1) /* print step function in [-1,1] */12

printf("Theta(%f)=%f\n", x, step_function(x));13

return(0);14

}15
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In this case, step_function() can be only used inside main(). Now,

step_function() is a local object. If you have another function in the

source code which calls step_function(), the compiler will complain!

Thus, cases 1-3 provide global definitions of step_function(), while case 4

is a local definition. This distinction can also be made for other definitions

like for variable definitions or type declarations. Nevertheless, type decla-

rations are usually global. Function and variable definitions can be used

quite often in the same context. Technically, in these two cases a name is

connected to an address, either the address where the variable content is

stored, or where the machine code for a function can be found.

The general form (according to ANSI standard) of a function definition

is as follows:

〈return type 〉 〈function name 〉 ( 〈arguments 〉 )
{

〈main part of function 〉
}

For the return type and the comma-separated list of arguments, vari-

ables of arbitrary type can be used. Later we will see examples where even

functions are passed as arguments to functions, e.g. see Sec. 7.1. Note

that the list of arguments can be empty, i.e. no arguments are passed. The

〈main part of function 〉 can be any type of valid code, including definitions

of variables, types and functions, and all kinds of statements. The variables

defined here are local, as mentioned above. For the next example, we con-

sider a function which takes an array of double numbers, and should return

the minimum and maximum numbers. The function should work for arrays

GET SOURCE CODE

DIR: c-programming
FILE(S): min max.c

of arbitrary number of elements, hence one has

to pass the array, in fact a pointer to the begin-

ning of the array, and the number of elements.

Since each function can return only one object,

one can declare a structure with two elements, which should take the result,

as in the following example:

typedef struct1

{2

double min;3

double max;4

} minmax_t;5

6
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minmax_t minmax(double x[], int num)7

{8

int i;9

minmax_t mm;10

11

mm.min = x[0];12

mm.max = x[0];13

14

for(i=1; i<num; i++)15

{16

if(x[i] < mm.min)17

mm.min = x[i];18

if(x[i] > mm.max)19

mm.max = x[i];20

}21

22

return(mm);23

}24

The first argument of the function (line 7) shows that x is an array, but

without specifying the size. Hence, the [] brackets are empty. Note that

one does not need to pass the number of elements fitting into the array; it

can be obtained using the sizeof() statement, see page 30. Nevertheless,

it is more obvious what is going on when the number is passed explicitly.

The function is also more flexible in this way, because one might not use

all entries of a large array.

Note that minmax() contains, in lines 9 and 10, definitions of local vari-

ables. The actual determination of the minimum and maximum elements

is done in lines 12–21. The result is returned in line 23.

There is also an “old” (non ANSI standard) form of a function definition,

where inside the (. . . ) brackets only the parameters are stated, but no types

are given. In this old form, the types are listed separately behind the (. . . )

brackets and before the {. . . } block, where the function’s main code is

contained, e.g.

minmax_t minmax(x, num)

double x[];

int num;

{

...

}

Sometimes you do not want a function to explicitly return something.
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In this case, you can use the special type void. No return statement is

necessary now. One can still use the return statement to leave a function,

but it must be used without a return value. Without an explicit return

statement, the function is just executed till the end of the block is reached.

Again, considering the minmax() example, instead of returning a struc-

ture of type minmax_t for returning two numbers, one can use a different

approach: One can pass pointers (see page 10), which point to the vari-

ables where the return values should be stored. Using pointers enables the

content of these variables to be changed. For the given example, this could

look like:

void minmax2(double x[], int num, double *p_min, double *p_max)1

{2

int i;3

double min_value, max_value;4

5

min_value = x[0];6

max_value = x[0];7

8

for(i=1; i<num; i++)9

{10

if(x[i] < min_value)11

min_value = x[i];12

if(x[i] > max_value)13

max_value = x[i];14

}15

*p_min = min_value;16

*p_max = max_value;17

}18

When calling minmax2(), one must pass the addresses where the results

should be stored, e.g. like in

minmax2(x, num, &x_min, &x_max);

Using pointers in this case is necessary because arguments are always

passed by value. This means that the content of the argument variable

is copied to a local variable of the function, i.e. which is accessible only

inside the function, similar to the variables defined in the main part of the

function. Consequently, if the value of an argument variable is changed

inside the function, which is possible, it will not affect the content of the

variable outside of the function. For example, consider the following variant

of minmax():
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minmax_t minmax(double x[], int num)1

{2

minmax_t mm;3

4

mm.min = x[num-1];5

mm.max = x[num-1];6

7

while(num >=0)8

{9

if(x[num] < mm.min)10

mm.min = x[num];11

if(x[num] > mm.max)12

mm.max = x[num];13

num--;14

}15

16

return(mm);17

}18

Here, the argument num is also used as counter during the main loop (lines

8–15), hence it is changed (line 14) during the execution. Nevertheless,

when the execution returns outside minmax(), the value which has been

passed will still remain at its original value. The only way to change vari-

ables outside a function in C is to use pointers, as we have described above.

Note again that passing an array is basically like passing a pointer. Thus,

all changes to elements of an array will persist after the execution of the

function has been terminated.6 Nevertheless, one can quantify an argu-

ment, which is a pointer or an array, as being constant by writing const in

front of the definition of the argument, e.g.

minmax_t minmax(const double x[], int num)

This means that no changes to the array x[] are allowed. This is sometimes

useful to prevent programming errors, because if you know in advance that

the content should not be altered and, when using const, accidentally

include changes to this variable in the code, the compiler will complain.

As we have seen in the previous examples, it is possible to define vari-

ables inside a function, like i, min_value and max_value in minmax2().

Such variables are called local variables. The argument variables, which

6Note that for C++ there is also the possibility of passing variables by reference,
which means that all changes to the argument will be effective also after the function
has been finished. Technically, this is achieved by passing in fact pointers, but this is
hidden to the programmer, who can use the argument variables like any local variables.
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hold copies of the actual arguments passed to the function, are also local.

These variables are accessible only inside the function where they are de-

fined. This defines the scope of a variable. Local variables exist only during

the time a function is executed: The memory for the variable will be re-

served when the function is called and the variable will be “deleted”, hence

the memory freed again, when the call finishes. Thus, each time a function

is called again, all local variables are created from scratch. As we have seen

previously, one can have other local objects like functions. Structures and

types can also be defined just locally. Note that the scope of a variable

or any other object can also be restricted to any block enclosed in {. . . }

brackets. Variables defined inside a block are accessible only within the

block and they exist only during the execution of the block. Each time the

block is executed again such a variable is defined from scratch. Thus, the

variable has no memory of past executions of the block.

There is one exception, the so-called static local variables. They

are identified by the key word static in front of the type. These

variables are created upon the first call to the function, and they

exist till the end of the execution of the program. Such variables

are useful when giving functions some internal memory, e.g. to store

a status variable which should be remembered each time the func-

tion is called. For static variables one gives usually an initialization

GET SOURCE CODE

DIR: c-programming
FILE(S): staticvars.c

together with the definition. This initialization

is only performed during the first call to the

function! For example, the following function

counts how often it is called and returns this

number each time it returns from execution:

int do_something(int n)1

{2

static int num_calls = 0;3

4

printf("I got:%d\n", n);5

6

return(++num_calls);7

}8

Another example for an application of static variables can be found in Sec.

8.2.1, where pseudo random number generators are treated.

On the other hand, there are global variables and other global objects,

which are defined outside any function or block, hence on the level where

main() is defined. These variables and other objects are accessible from
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everywhere!7 This makes it very convenient and is even necessary for the

definitions of self-defined data types, which cannot be passed as arguments

to functions. This may also appear convenient for variables, e.g. for a large-

scale simulation consisting of many particles. Here, one could store their

data in global variables, hence one does not have to pass these variables

to all functions where they are used. Nevertheless, as discussed in Sec.

3.2, the use of global variables is very error-prone and also very inflexible.

Do not use global variables, whenever you can avoid it !!! 8 For example,

consider a function which calculates the average velocity among a set of

moving particles. If you use global variables, you have to write a function

for the velocity calculation explicitly stating the name of the array vari-

able which is used to store the data, such as particle[]. Hence, if in

your program you simulate also a second independent set of particles, say

stored in particleB[], you have to provide another function for the veloc-

ity calculation of particleB[]. This is inefficient, so it is better to have

one single function, where the actual particles to be treated are passed as

arguments. Extrapolating these considerations leads to the conclusion that

all data should be passed via arguments to functions. Consequently, global

variables are not necessary, even dangerous, and should be avoided.

Note that if you define a function sub() inside another function func(),

GET SOURCE CODE

DIR: c-programming
FILE(S): hide.c

all other variables and other objects defined in

func()will be accessible from sub(), and hence

are global relative to sub(). Furthermore, a

local definition overrides any definitions which

are global at the given point, as in the following example:

int number1, number2; /* these are global variables */1

2

void do_something()3

{4

int number1; /* overides global definition */5

6

number1 = 33;7

printf("subr: n1=%d, n2=%d\n", number1, number2);8

number2 = 44;9

printf("subr: n1=%d, n2=%d\n", number1, number2);10

}11

7As an exception, a global variable which is declared static is only accessible inside
the same source file. This may be useful when you want to use a name for a global
variable, which is already or may be used as global variable elsewhere.

8This is basically always possible, except for some debugging purposes.
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int main()12

{13

number1 = 11;14

number2 = 22;15

printf("main: n1=%d, n2=%d\n", number1, number2);16

do_something();17

printf("main: n1=%d, n2=%d\n", number1, number2);18

19

return(0);20

}21

Inside do_something() only the global variable number2 is accessible,

while number1 is purely local. Consequently, the assignment of number1

will not affect the global variable, but it does so for number2. Therefore,

when running the program one gets

main: n1=11, n2=22

subr: n1=33, n2=22

subr: n1=33, n2=44

main: n1=11, n2=44

Nevertheless, one can always design simulation programs such that one

does not need nested levels of variable scopes. Thus, for clarity they should

be avoided unless absolutely necessary. There is a special compiler warning

flag -Wshadow, which makes the compiler report when some local definition

overrides a global definition. This flag is usually not included in the -Wall

set of warnings.

More advanced programming techniques which are based on functions,

like recursion, divide-and-conquer, and backtracking are discussed in Secs.

6.2 to 6.5.

1.3 Input/output

Since you want to know the results of your simulations, your program needs

some output. The most basic command for this is printf(), which prints

to the standard output, usually the screen, and which was already prelim-

inarily discussed above. Usually, you write out some raw or intermediate

results to files. For this purpose, fprintf() can be used. Below, we will

also introduce the relevant commands for creating, opening, writing, clos-

ing, and deleting files. Typically, your intermediate results have to be read

in again to be processed further. Hence, ways to read in data are discussed
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next. Also, simulation programs need command line arguments, which are

discussed afterwards. Finally, an easy method to compress data files during

the simulation is presented.

The printf() (“print formatted”) command consists of a format string

and some (possibly zero) expressions to be evaluated and then printed:

printf( 〈format strings 〉, 〈argument 1 〉, 〈argument 2 〉, . . . )
All arguments except the format string are optional. The format string

may contain characters which are just printed as they are given. Further-

more, the format string determines how many of the optional arguments

have to be given and it states how the values of these different arguments

are to be printed. This is achieved using so-called conversion specifications,

which are always preceded by the ‘%’ character. Each conversion specifica-

tion requires one argument, respectively. For example, a single integer is

printed using %d, as shown in the following example:

int num_particles = 100;

printf("number of particles: %d\n", num_particles)

which will result in

number of particles: 100

This format string also contains a character \n, which is an escape se-

quence and means that the printing after this output has been printed will

continue in the next line. The most important escape sequences are

\n a new line

\t a horizontal tabulator

\b a backspace

\\ a backslash ‘\’

\" a double quote "

There are different types o conversion specifications. The most impor-

tant ones, in the context of simulations, are
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%d, %i for integer numbers

%x, %X hexadecimal representation of integers

%f for floating point representation

%e, %E scientific (“exponential”) notation

%s strings

%p pointers (addresses).

GET SOURCE CODE

DIR: c-programming
FILE(S): printing.c

Note that one writes ‘%%’ for printing a

‘%’. A complete list of conversion specifications

can be found in the manual documentation of

printf(), e.g. by typing man 3 printf under

a UNIX system, where the number 3 refers to the section (“Programmer’s

manual”) since in Sec. 2 (“User commands”) there is another printf shell

command. Some of these conversion specifications appear in the following

primitive example (note that the format string can be split into several

pieces, like here):

int counter = 777;

double energy1 = 35678.99;

void *pointer = &energy1;

char name[100] = {"network"};

printf("After %d (hex:%x) iterations an energy of %f \n"

"(%e, stored at %p) was obtained for %s\n",

counter, counter, energy1, energy1, pointer, name);

When executing these lines of code, the following output will appear on the
screen:

After 777 (hex:309) iterations an energy of 35678.990000

(3.567899e+04, stored at 0xbfaee7d0) was obtained for network

Although printf() can handle an arbitrary number of arguments, the

number of arguments given must always match the number of conversion

specifications in the format string. Otherwise the compiler will complain.

When printing just using the raw conversion specifications, e.g. the

format of a floating-point number will always be the same. The predefined

format can be modified by optional specifications. Details can be found

again in the documentations (man pages). Here, we give only the most

important examples. First, right after the ‘%’ there can be a flag. Important

flags are 0, to fill numbers with leading zeros, and - for left adjustment.
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Next, the (minimum) field width can be stated, which is just an integer

number. Next, one can optionally have a precision specifier, which is a dot

‘.’ followed by another number (or .*, which means that the precision is

given as next argument by an expression of type int). For floating point/

exponential numbers, this is the number of digits after the radix, while for

integer numbers or strings it is the maximum field width. Finally, there

can be a length modification. The most important one is l which stands

for long, i.e. %ld will expect a long int as corresponding argument. The

following simple statement gives some examples for the modifications of the

output format:

printf("%06d, %4.3f, %-20s, %lf\n",

45, 3.14159265358979, "Hello", 36.5);

which will result in the following output

000045, 3.142, Hello , 36.500000

Instead of printing the output to the screen (called standard output

stdout), one can also print to files, see below, or to strings. The latter is

done via the sprintf() function, which has the following format

sprintf( 〈target string 〉, 〈format strings 〉, 〈argument 1 〉, . . .)
Consequently, as example one can use this to concatenate strings

sprintf(name, "%s %s", first_name, family_name);

In the context of computer simulations, this function is quite useful to

assemble parameter-sensitive file names, as shown in the example on page

29.

Printing to a file is more involved. First one must open the file. This is

done using fopen(), which has the following format:

fopen( 〈file name string 〉, 〈access mode string 〉)

GET SOURCE CODE

DIR: c-programming
FILE(S): file o.c

Thus, one must provide two argument

strings. The first one contains the name of the

file. This string may contain the path name rel-

ative to the working directory from which the

program is started.9 The second string states the access mode, which can
9This may be different for computer systems, where the jobs are submitted via queuing

systems. There, sometimes all paths have to be specified relative to the home directory,
or relative to some special scratch directories.
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be "w" for writing, which means that a file will be created from scratch.

Hence, if the file has existed previously, it will be deleted. Other important

access modes are "a" for appending at the end of a file and "r" for read-

ing a file. When the file is opened successfully, the function will return a

file pointer, which points to an internal structure where all information is

stored, which is needed by the operating system to access the file. Tech-

nically, the file is treated as a so-called stream, which makes an output to

different media possible in a unified way. To open a file, e.g. "funcs.dat",

for writing one can use

FILE *file_p;

file_p = fopen("funcs.dat", "w");

To actually write to the file, one can conveniently use the fprintf()

function, which works exactly like the printf() function, except that the

output is directed to a file. The format is similar to printf() except that

the (additional) first argument must be a file pointer. Therefore, the general

format is:

fprintf( 〈file pointer 〉, 〈format strings 〉, 〈argument 1 〉, . . .)

Assume that we want to write a four-column table containing some

values of the functions sin(x), cos(x), exp(x) in the interval [0, 2π]. We

write in the first line of the file a description of the following columns via

fprintf(file_p, "# x cos(x) sin(x) exp(x)\n");

Note that the first character ’#’ is recognized by most data analysis

and plotting tools like gnuplot (see Secs. 8.4 and 8.6.2) as comment line.

Hence, when you read in the file to postprocess the data, the first line will

be ignored. Nevertheless, for your bookkeeping, you should always use such

comment lines in your simulation output files. Having more information in

the output files available will help you a lot in organizing and analyzing

your results.

To write the actual data, one could use

for(x=0; x<=2*M_PI; x+=0.1)

fprintf(file_p, "%f %f %f %f\n", x, sin(x), cos(x), exp(x));

There are some predefined file pointers like stdout (standard output)

which writes to the screen. Hence, fprintf(stdout, ...) is equivalent
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to printf(...). Also, there exists stderr, which is the standard output

for error messages. This is also usually directed to the screen in interactive

mode, but in case your programs runs in a special environment, like when

using a queuing system, stderr is usually different from stdout.

Note that there are several other C functions for writing to files. Exam-

ples are putc(), which writes single characters, and puts(), which writes

strings. Since they provide no functionality beyond fprintf(), they are

not discussed here.

Finally, a file has to be closed when the access is terminated. For this

purpose, the function fclose() has to be used, which expects as argument

a file pointer of the file to be closed, e.g.

fclose(file_p);

Once a file is closed, it can be accessed by other means, e.g. inspected via

an editor. Note that while a simulation is running, data which is written via

fprintf() will not be immediately forwarded to the file. Usually internal

buffers are used, and the data is output to the file blockwise, each time

the buffer is full. Nevertheless, emptying the buffer can be triggered within

a program via the function fflush(), which also takes a file pointer as

argument.

So far, we have discussed ways to output data from a program. On the

other hand, your simulation programs usually need some input as well. The

most direct way is to use interactive input, e.g. to type in some parameters

values on request. This can be accomplished in C using the getchar()

function, which just reads one character from the keyboard. Longer inputs

can be read in using multiple calls to getchar(). Nevertheless, simulation

programs are very often processed by batch queues on large-scale computing

facilities. These batch jobs start at some time which is unknown in advance,

hence you cannot sit in front of the screen, wait till your programs have

started, and then supply the necessary input. Nevertheless, some programs,

in particular for small systems and/or pedagogical purpose, may run inter-

actively, quite often using a graphical user interface (GUI). Such interfaces

are beyond the scope of this book; also the way the user interface is pro-

grammed under C depends quite often on the programming environment.

Thus, the readers who are interested in simulations having a comfortable

GUI should consider for example the JAVA programming language [JAVA].

Anyway, in the context of (large-scale) computer simulations, input to pro-

grams is either done via command-line arguments, which are treated below,
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or via reading in files, which we discuss next.

Input files are either parameter files, which tell the simulation program

what the system to be simulated looks like, how many iterations are to

be performed, or at which temperature your system is simulated. These

files may also describe the complete (initial) state of a simulation, like the

coordinates of all particles or, in general, the degrees of freedom. Input files

may have been generated by previous simulation runs, which you would like

to continue. Furthermore, files where the simulation results are contained

in may be used as input files for further analysis. In case you do not use

standard tools like gnuplot (see Secs. 8.4 and 8.6.2), you have to teach your

self-written analysis program how to read in data. To summarize, reading

data files is an important task. How this is performed in C is explained

next.

Similar to writing to a file, one also has to open it for reading. This is

again done with the fopen() function, but now the access mode should be

"r". This will again provide a file pointer (a stream in general), which can

be used to actually read the file. The file pointer points to a memory area

where all necessary internal information about the file is stored, and also to

a current position, which indicates where the reading continues. Just after

opening the file, the current position is the beginning of the file. There

are several possibilities to actually read in and process the data. Here, we

will describe one approach in detail, probably the most general one. For

this purpose, we use the function fgets() (“file get string”), which exactly

reads the next unread line of the file, i.e. till the next new line ‘\n’ character.

The format of the function is as follows:

fgets( 〈file name string 〉, 〈maximum length 〉, 〈access mode string 〉)

Consequently, you have to pass a string s, where the line is stored to,

the maximum number nmax of allowed bytes, and a file pointer to fgets().

Note that the string will be terminated by a 0. Also, no more than nmax−1

bytes (without the closing 0) will be transferred to the string. This prevents

you from writing beyond the reserved range of memory. fgets() will return

the string which is passed (i.e. a pointer to the first character of the string),

if something was read in. If the end of the file is already reached, i.e. no

additional line could be read in, then a NULL pointer is returned.

Now, once the string is stored in memory, it can be further processed

in many different ways, e.g. by using string-processing functions. There

are many ways to treat the input lines, which basically depends on your
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chosen file format. For example, one can directly test the values of the

string elements. Hence, if you want to filter out comment lines, which start

by a ‘#’ character, you can test whether s[0] == #. If yes, then one can

continue with the next line.

A very convenient way to process strings is available if they follow some

format, e.g. in case they were generated using fprintf() or similar func-

tions. In this case one can use sscanf() which is basically the inversion of

sprintf(): One has to supply as parameters an input string, which is to

be analyzed, and a format string which may contain printable characters,

escape sequences, and conversion specifiers. Depending on the conversion

specifiers, pointers to variables also have to be supplied, one for each con-

version specifier indicating a value to be read in.10 The string is analyzed

by comparing it to the format string. Whenever a conversion specifier in

the format string is encountered, the corresponding value is extracted from

the input string and stored in the given variable. This processing continues

until the full input string is analyzed, or until the first mismatch between

format string and input string is detected. For example, if the string s

contains "particles: 20 runs: 100", then the call to

int num_read;

int num_part = 0, num_runs = 0;

num_read= sscanf(s, "particles: %d runs: %d", &num_part, &num_runs)

will assign the value 20 to num_part and 100 to num_runs, and will return

the value 2, which is assigned to num_read. If the format string contains a

mismatch, then the processing stops. Thus

num_read= sscanf(s, "particles: %d Runs: %d", &num_part, &num_runs)

will only assign the first variable num_part, while num_runs remains at its

initial value 0, and num_read will be 1. Therefore, if you are only interested

in the number of particles anyway, you may also use

num_read = sscanf(s, "particles: %d", &num_part)

The conversion specifiers are the same as for printf(). There is one

important point: When you print a variable of type float or double,

you can use a conversion specifier %f in both cases. But when reading in

10There may also appear the conversion specifier modification ‘*’ right behind the ‘%’
character which results in skipping the corresponding value; hence, no pointer should be
supplied for this item.
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a floating point number, which you want to assign to a variable of type

double, you must use the conversion specifier %lf, otherwise the value

will not be assigned correctly! Furthermore, there are also the functions

scanf() and fscanf()which enable standard (keyboard) input or file input

to be scanned directly. Nevertheless, this often generates problems. Hence,

it is better to first read in a line via fgets() (or gets() for standard input)

and then use sscanf().

As we have seen, fgets() reports if the end of the file has been reached.

This can also be tested directly via feof(), which takes a file pointer as

argument. It will return true (value 1), if the end of the file has been

reached. Note that it will not report true if just the last line has been read

in, i.e., an attempt to read in the next, non-existing line is necessary.

GET SOURCE CODE

DIR: c-programming
FILE(S): file in.c

As a complete toy example, we next present

a source code which reads in the four-column

file which we have printed above (page 48). The

program ignores all comment lines starting with

a ‘#’ character, and it just prints for each line the value in the first column

and the sum of the values in the other three columns, a task which may

occur for some data analysis problems11

int main(int argc, char**argv)1

{2

char line[1000]; /* string where one line of file is stored */3

double val1, val2, val3, val4; /* values from file */4

int num_got; /* how many where obtained from current line? */5

FILE *file_p; /* file pointer */6

7

file_p = fopen("funcs.dat", "r"); /* open file for reading */8

9

while(!feof(file_p)) /* read until end of file is reached */10

{11

if(fgets(line, 999, file_p) == NULL) /* read in line */12

continue; /* nothing was read in */13

if(line[0] == ’#’) /* comment line? */14

continue; /* ignore */15

num_got = sscanf(line, "%lf %lf %lf %lf", /* get values */16

&val1, &val2, &val3, &val4);17

11For this simple purpose, one should not write a program but use the awk tool. The
example is just used for pedagogical purposes here.
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if(num_got != 4) /* everything OK ? */18

{19

fprintf(stderr, "wrong line format in line: %s ", line);20

continue;21

}22

printf("%f result= %f\n", val1,23

val2+val3+val4); /* process */24

}25

fclose(file_p); /* close file */26

27

return(0);28

}29

First, the file has to be opened in line 8. Note that here the filename is hard-

coded in the program. In general, one will need analysis programs which

work for any files; hence, the file name has to be passed to the program.

This is discussed below. Here, for the purpose of the example, the filename

"funcs.dat" is sufficient. The file is processed in the main loop (lines 10–

25), until the end of the file has been reached. First, the current line is read

(line 12). Comment lines are ignored in lines 14 and 15. In lines 16–22, the

content of the line is analyzed, and finally processed in lines 23–24.

Finally, note that a very useful string processing function for analyzing

input files is strstr(), which is able to locate given string patterns inside

other strings. This is useful for reading in poorly structured input files,

where different values are identified by key words at arbitrary positions.

So far, we have just linearly read in a file. Sometimes it is necessary

to read a file several times. This can happen when you first want to count

how many input lines the file contains, e.g. to set up enough local storage

space dynamically (see Sec. 1.4), and then actually read in the data in

a second sweep.12 For this purpose, the rewind() function can be used,

which sets the internal position pointer back to the beginning of the file.

One can even navigate completely freely inside a file. For this purpose,

functions like fseek() and ftell() are available. For more details on

these functions, please refer to the documentation.

As mentioned above, one can use files to pass simulation parameters to a

program. This is in particular useful if many parameters are available, and

if one wants to archive the values of these parameters for the different runs.

This is helpful if one has to perform many different runs without getting

lost in all these data. Note that organizing large-scale simulations in a

12Alternatively, one could read in the data in one sweep, but dynamically extend the
local storage space, if necessary.
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useful way is an active area of research called Computational Provenance
[Comp. Sci. Eng. (2008)]. A possible parameter file, e.g. for the Molecular

Dynamics simulation13 of a system of gas particles, could look like this

num_particles = 512

temperature = 37.3

number_steps = 10000

step_size (fs) = 1.2

box_size = 10

appendix = A67

save_config = no

In real applications one could have many more simulation parameters,

which for example describe different particle types and the coefficients for

different force fields. Such a parameter file can be read in, as mentioned

above, most conveniently using the strstr() function; we do not go into

details here. Nevertheless, for many applications it is sufficient to pass

simulation parameters as arguments when invoking the program, e.g. like

arguments 512 37.3

where it is assumed that arguments is the name of the program, the first pa-

rameter (here 512) determines, say, the number of particles, and the second

(37.3) determines the temperature of the system. Different arguments al-

ways have to be separated by spaces. For other parameters of arguments,

the default values are taken, unless they are changed via options, as de-

scribed below.

To be able to read the program arguments, one has to define the main()

function as follows:

int main(int argc, char *argv[])

During the execution of main(), argc will contain the number of arguments

including the program name, i.e. three in the above example. The array

argv of strings contains in argv[0] the program name, in argv[1] the first

argument (here 512), in argv[2] the second argument (here 37.7) and so

on. Note that the arguments are stored in strings; hence, if they are to be

interpreted as numbers, they have to be converted, e.g. using atoi(), which

converts a string into an integer, or using sscanf() as described above.
13For a Molecular Dynamics simulation, you have formulas describing the forces be-

tween different particles (force fields). Using the forces you integrate the Newton’s equa-
tion of motions to study the dynamic evolution of such a system. Molecular Dynamics
simulations are widespread, such as to study the dynamics of proteins in cells.
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GET SOURCE CODE

DIR: c-programming
FILE(S): arguments.c

For our example, we use an additional

counter argz, to treat one argument after the

other. This is useful in particular in case

the program has additional options, see below.

Here, the program arguments are treated via:14

int N; /* number of particles */

double temp; /* temperature */

int argz = 1; /* counter to treat arguments */

N = atoi(argv[argz++]);

sscanf(argv[argz++], "%lf", &temp);

Some simulation parameters are usually kept at their default values and

they do not have to be passed as arguments each time. In this case, it is

convenient to use program options to change the default values. Program

options are usually indicated by a ‘-’ character at the beginning, followed

by some name, and maybe some additional values. A call to the example

program including some options could look like

arguments -size 10.3 -appendix XX 100 3.7

Options and their accompanying values are stored in the argv[] strings like

any other argument. Consequently, they can be processed using standard

string manipulation. For instance, one can implement a loop, that is exe-

cuted before the non-optional arguments are read, which is iterated as long

as the “current” argument starts with a ‘-’ character. Then, one can com-

pare the “current” argument via strcmp to the different available options.

If the option matches, one can take suitable actions, like setting a flag or

assigning some parameter value. Finally, one should implement printing an

error message in case the option passed as argument is not known to the

program. For the example program, this could look like:

char appendix[1000]; /* to identify output file */

int do_save; /* save files at end of output */

int print_help; /* print help message ? */

double l; /* lateral size of system */

int num_steps; /* how many MD steps are performed */

/** default values **/

l = 10; do_save = 0; appendix[0] = 0;

14For this program, no line numbers are given here because we discuss different parts
of the example program in non-linear order.
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num_steps = 10000; print_help = 0;

/** treat command line arguments **/

while((argz<argc)&&(argv[argz][0] == ’-’))

{

if(strcmp(argv[argz], "-steps") == 0)

num_steps = atoi(argv[++argz]);

else if(strcmp(argv[argz], "-save") == 0)

do_save = 1;

else if(strcmp(argv[argz], "-size") == 0)

sscanf(argv[++argz], "%lf", &l);

else if(strcmp(argv[argz], "-appendix") == 0)

strcpy(appendix, argv[++argz]);

else

{

fprintf(stderr, "unkown option: %s\n", argv[argz]);

print_help = 1;

break;

}

argz++;

}

Note that different types of arguments have to be treated independently.

For example, for -save, one just sets a flag variable, while for the other

options additional values have to be read in, i.e. an integer value (-steps),

a floating point value, (-size) or a string (-appendix).

It is also recommendable to print the calling sequence of your program

and maybe some additional important simulation parameters at the begin-

ning of each line to your output (or log) file, each line preceded by the ‘#’

comment symbol. This helps to reconstruct later on how the output file

was generated, i.e. supports Computational Provenance (see page 54). For

the current example it reads

char name_outfile[1000]; /* name of output file */

FILE *file_out; /* file pointer to output file */

...

sprintf(name_outfile, "md_N%d_T%3.2f%s.out", /* file name */

N, temp, appendix);

file_out = fopen(name_outfile, "w");

fprintf(file_out, "# calling sequence: "); /* print args */

for(t=0; t<argc; t++) /* print command line arguments */

fprintf(file_out,"%s ", argv[t]);

fprintf(file_out, "\n");
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fprintf(file_out, "# params: num_steps=%d, size=%f, save=%d\n",

num_steps, l, do_save);

Before treating the non-optional program arguments, you should always

test whether the number of supplied arguments is as expected. In case this

is not true, your program can conveniently print out a simple error message

which also explains the usage of your program. For the example above it

looks as follows (this code appears just before the values N and temp are

assigned):

if( print_help || (argc-argz) != 2) /* not enough arguments ? */

{ /* print error/usage message */

fprintf(stderr, "USAGE: %s {<options>} <num_part> <temp>\n",

argv[0]);

fprintf(stderr, " options: -steps <n> : num. MD steps "

"(d:%d)\n", num_steps);

fprintf(stderr, " -size <l>: system size (d:%d)\n",

l);

fprintf(stderr, " -save: save config at end\n");

fprintf(stderr, " -appendix <s>: for output file name\n");

exit(1);

}

Finally, when your simulation is finished, you can close the output file.

Quite often, simulation programs write out huge amounts of information.

In this case, to save hard-disk space, you should use a compression tool

like gzip to compress your output files. This can be done most conveniently

right in your program. For this purpose you can use the system() library

function, which takes as argument a string which may contain any command

line, e.g. a shell command line under UNIX/Linux. For our example, we

can compress the output file simply in the following way:

char command[1000]; /* for system() calls */

...

fclose(file_out); /* close file */

sprintf(command, "gzip %s", name_outfile); /* zip file */

system(command);

Using this compression, you also do not have to think much about how

to save data very efficiently, since the zipping program takes care of this

automatically. To unzip a file before reading it into your program is also
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quite simple, see exercise (4). The names of your compression tools, and

the behavior of the system() function depend heavily on the programming

environment and on the operating system. Hence, the application of this

zipping might make your program less portable. Note also that the output

file is only compressed after the simulation has terminated, hence when

the output file is written completely. Therefore, it may occupy a lot of

disk space before being compressed. If this poses a problem for you, you

can also use on-the-fly zipping libraries like zlib [zlib], which works for all

standard operating systems.

1.4 Pointers and dynamic memory management

More complex data types involve references between different objects. Con-

sider, for example, a simulation of a social system, where you simulate a

set of individuals, and you want to store for each individual the other in-

dividuals he/she knows. You could for example generate a big array with

one entry for each individual. The entry for each individual carries a small

array, which contains the indices of the other individuals he/she knows. On

the other hand, if you assume that you have two big arrays, one for the

males and one for the females, then you already have to distinguish whether

an index refers to a female or a male. As you see, for more complex simu-

lations, this might become even more cumbersome.

A more general and elegant approach is to use pointers to the objects

you want to refer to. In this case it does not matter whether the objects

are stored in the same or in different arrays, because pointers are basically

memory addresses, as introduced in Sec. 1.1.1. Here, it is explained how

dynamically changing data structures can be implemented via pointers and

via memory management. We also show how pointers and arrays are related

to each other. Using these basic ingredients, quite complex data structures

as lists, trees, or graphs can be built. These advanced applications are

discussed in Secs. 6.6 to 6.8.

First, the previously given information about pointers is summarized.

A pointer p to a memory position, where a variable of type 〈type 〉 is stored,
is defined via

〈type 〉 *p;

Initially, there is no value assigned to p (maybe zero for some compilers).

To make p pointing to some relevant location, there are two possibilities:
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First, if var is a variable of type 〈type 〉, one can write

p = &var;

Now, as you know already from page 10, p contains the address where var

is stored. Assigning a value to var will not change p. Nevertheless, one can

access or change the content of var via *p.

The second possibility is that one acquires some available memory, and

let p point to it. This works via the malloc() (“memory allocation”)

function, which requires as argument the number of bytes to be allocated.

It returns a pointer to “something” (i.e. of type void *), pointing to the

reserved memory area:

void *malloc(〈size 〉);

If the operating system cannot provide the requested memory, the special

pointer value NULL is returned. Since the size of a type is determined using

sizeof(), one can reserve a so far unused memory location where p can

point to via:

p = (〈type 〉 *) malloc(sizeof(〈type〉));

Note the cast in front of the malloc() statement. This memory alloca-

tion does not take place during compile time or right when the program is

started. It just happens, when the malloc() function is executed in the

program. For this reason, the processes connected to malloc() are called

dynamic memory management.

More interesting usages of pointers are possible. You could for instance

have some init() function in your simulation (taking, say, an integer as

argument) which also reserves some memory (where integers are stored)

and returns the pointer to this memory. The function prototype might

look like:

int *init(int);

On the other hand, functions can be referenced through pointers as well.

To define a pointer fct_p, which points to a function taking an integer as

argument and returning an integer, one writes

int (* fct_p)(int);
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which looks very similar to the prototype above; it just differs by the brack-

ets. Here, the usage of typedef is convenient. If pointers to functions of

this form are needed frequently in the program, one can define a new type

name and use it as follows, for example:

typedef int (* fctptr_t)(int);

fctptr_t fct_p;

Note that the name of the new type does not come at the end of the

statement. An example where pointers to functions are needed is given in

exercise (6), where a simple integration subroutine for an arbitrary function

is given. Another example you find in Sec. 8.3.4.

With the above use of malloc, memory is allocated that can store ex-

actly one value of the type 〈type 〉. One can reserve a chunk of memory

for several elements by just asking for more bytes. For example, one can

reserve a chunk to store 10 persons of the person_t (see page 32) type via

person_t *pp;

pp = (person_t *) malloc(10*sizeof(person_t));

This is essentially the same as reserving an array of size 10. Here, one can

access the i’th element via *(pp+i), e.g. like in

for(i=0; i<10; i++)

(*(pp+i)).age = 2*i;

Note that pp+i means that to the address pp one adds i times the number

of bytes required to store person_t, i.e., increasing p by one here means

to add sizeof(person_t) bytes to the address. Conveniently, it is also

possible to write pp[i] to access the i’th element; hence, one can write

pp[i].age to access the age member. For pointers to structures, there is

an alternative syntax to access the members. Instead of (*pp).age, one

can write pp->age. Similarly, to access the member age of the i’th element,

the loop above can also read

for(i=0; i<10; i++)

(pp+i)->age = 2*i;

Consequently, one-dimensional arrays and pointers, together with dy-

namic memory allocation, are very similar. One important difference is

that for an array the size of the array cannot be changed, after it has been
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defined, while this is possible when using dynamic memory management.

For this purpose, the realloc() function exists, which expects two argu-

ments: 1. the pointer to the memory area to be extended and 2. the new

size of the array:

void *realloc(〈pointer 〉, 〈size 〉);

The function returns a pointer to the new start of the memory chunk.

This can be the same position as before the call. Nevertheless, it may some-

times be necessary to extend the memory chunk considerably. In this case

it might happen that the operating system allocates a completely different

part of the memory and copies the memory content from the old chunk to

the beginning of the new chunk. In this case, the execution of the com-

mand might take some time, depending on the size of the memory area to

be copied.

Note that one should pass only pointers to realloc() which have been

allocated via malloc(), otherwise the behavior of the function is undefined.

Also, it might happen that the available memory is not sufficient. In this

case the special NULL pointer is returned.

If one wants to allocate a matrix mat dynamically, one has to do this in

two steps. First, one has to allocate one array which will contain pointers

to the beginning of each row, respectively. Now, within a loop, the memory

areas for the different rows can be allocated. If n_rows and n_cols are the

numbers of rows and columns, respectively, the code to allocate the matrix

mat could look like

double **mat;

int n_rows = 10, n_cols = 10;

int i, j;

mat = (double **) malloc(n_rows*sizeof(double *));

for(i=0; i<n_rows; i++)

mat[i] = (double *) malloc(n_cols*sizeof(double));

The access can be performed in the same way as for standard matrices;

hence, one can write, e.g. to initialize all entries to 0:

for(i=0; i<n_rows; i++)

for(j=0; j<n_cols; j++)

mat[i][j] = 0;
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Note that due to the way the dynamically allocated matrix mat is stored,

the actual access is different from a standard matrix smat, which is defined

via double smat[n_rows][n_cols]: A standard matrix is stored in one

large chunk of memory, where each row follows the next. On the other

hand, the different rows for the dynamically allocated matrix mat are usu-

ally stored in different places. Therefore, a direct access could look like

*(*(mat+i)+j). This also means that a dynamically allocated matrix

requires slightly more memory, because in addition to the actual matrix

elements one needs an array with pointers storing the addresses of the dif-

ferent rows. Nevertheless, dynamically allocated matrices are more flexible,

because the size can be changed during runtime. It is also possible that

different rows contain a different number of elements, which is not possible

for standard arrays either. This is useful, for example, when one wants to

store an array of strings with strings of different lengths.

Finally, all memory which has been reserved inside the program should

be released, one says freed again. For this purpose, the free() function

can be used, which takes as argument a pointer to a previously allocated

chunk of memory, e.g. like in:

free(p);

Freeing the memory which has been allocated for a matrix is performed

in two steps: First, all rows are freed, then the array containing the pointers

to the rows is freed. For the matrix mat this could look like:

for(i=0; i<n_rows; i++)

free(mat[i]);

free(mat);

Freeing of memory is particularly important, if the memory is used only

inside some function and will not be accessed again after the execution

of the function has terminated. If it is not freed, and if the function is

called several times, then more and more memory is allocated during the

execution of the program, which may cause the operating system to run

out of memory. Such a bug is called a memory leak and should be avoided

under all circumstances. A useful tool to detect memory leaks and other

bugs connected with dynamic memory management is introduced in Sec.

4.3. These bugs are often hard to spot by hand.

Using dynamic memory management, arbitrarily complex data struc-

tures can be generated. More advanced examples like lists, trees, and graphs

are discussed in Secs. 6.6 to 6.8.
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1.5 Important C compiler options

Throughout this book, many C compiler options are explained which are

useful or even necessary for some tasks. Here, they are summarized:

-o

sets the name of the output file, e.g. like in cc -o first first.c

-c

Just the compile process is performed, no final executable is linked.

Each .c file will result in a corresponding .o file. This is useful in

case the source code contains some functions which are used in several

different programs. This process can be made automatic using make

files, see Sec. 2.1.

-l

states the name of a library where some precompiled func-

tions can be found, e.g. for mathematical functions (m) in

cc -o mathtest mathtest.c -lm

-Wall

Switches on (almost) all compiler warnings, e.g. indicates if one uses

‘=’ inside a condition instead of ‘==’.

-Wextra

Switches on additional compiler warnings, e.g. indicates if one compares

variables of different types.

-Wshadow

When using this option, the compiler will warn if a local definition

shadows a global definition, e.g. in case there are two variables of the

same name (see page 44).

-g

Switches on support for debuggers, see Sec. 4.1.

-pg

Switches on support for profiling, i.e. for measuring where the program

spends how much running time, see Sec. 4.4.

-O

Switches on optimization of the code. This means it will run faster.

For example, the complier may “unroll” loops where the number of it-

erations is fixed. Also, it writes the code of a function inline instead

of calling the function (can be forced via the inline directive at the

beginning of a function definition). It can get rid of intermediate ex-

pressions/find common subexpression. Furthermore, it can decide to
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put variables, which are used frequently, into registers (which can also

be forced in the source by the register storage class specifier, which

has to be printed in front of the type name of a variable).

Different levels of optimization are available like -O0 (no optimization),

-O1, -O2 and -O3. The higher the level, the more optimized your

code is. The highest level may even alter the meaning of your code

under some circumstances; hence, to use -O3 is dangerous. Here, -O2

is recommended.

The effect on the running time of the different optimization options can

be tested in exercise (7).

-I

Normally, the compiler looks for include files in standard search paths

as indicated by the operating system, and in the current directory.

Using this option, additional search paths can be stated where in-

clude files of your own libraries (see Sec. 7.4) can be found, e.g.

cc -o prog prog.c -I$HOME/include.

-L

Normally, the compiler (in fact the linker) looks for library (.a) files

in standard search paths as indicated by the operating system, and in

the current directory. Using this option, additional search paths can

be stated, where your own ond other local libraries (see Sec. 7.4) can

be found, for instance cc -o prog prog.c -L$HOME/lib.

-D

Defines a macro (see Sec. 1.6), as if it was defined via the #define di-

rective in the source code, e.g. cc -o program program.c -DUNIX=1.

C compilers have many more options, some of them are machine-

dependent. You should have at least a quick look once at the documentation

of your compiler to see what options are available in principle.

1.6 Preprocessor directives and macros

The compile process can be controlled via preprocessor directives. The

most important one is the #include directive, which makes the compiler

read in the given file at the current position. In principle, arbitrary files

can be included, but it is most useful to include header files which contain

declarations of external functions, variables, and global data types, but no

actual code. Note that there are two variants for including files:
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• #include <header.h>

This will include a standard header file header.h (which is to be re-

placed by a real file name) as provided by the operating system. Hence,

the search for such files will usually take place in directories provided

by the operating system. Basically, every program has to have a

#include <stdio.h> at least. Other important standard header files

to be included are stdlib.h and math.h.

When using the -I compiling option, one can specify additional direc-

tories, where the compiler searches for header files.

• #include "header.h"

This is used for your private and local header files. This means, the

compiler will first look in the current directory for the header files. Only

if they are not found there, it will look in the standard directories.

More information on what you have to take into account when writing

your own header files is given below.

The second important type of compiler directive is the definition of a

macro. Macros are shortcuts for code sequences in programming languages.

Their primary purpose is to allow computer programs to be written more

quickly. But the main benefit comes from the fact that a more flexible

software development becomes possible. By using macros appropriately,

programs become better structured, more generally applicable, and less

error-prone. Here, it is explained how macros are defined and used in C; a

detailed introduction can be found in C textbooks such as Ref. [Kernighan

and Ritchie (1988)]. Other high-level programming languages exhibit sim-

ilar features.

In C a macro is constructed via the #define directive. Macros are

processed in the preprocessing stage of the compiler. This directive has the

form

#define 〈name〉 〈definition〉
Each definition must be on one line, without other definitions or direc-

tives. If the definition exceeds one line, each line except the last one has to

be ended with the backslash ‘\’ symbol. The simplest form of a macro is a

constant, e.g.

#define PI 3.1415926536

You can use the same sort of names for macros as for variables. It

is convention to use only upper-case letters for macros. A macro can be
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deleted via the #undef directive.

When scanning the code, the preprocessor just replaces literally every

occurrence of a macro by its definition. If you have, for example, the

expression 2.0*PI*omega in your code, the preprocessor will convert it

into 2.0*3.1415926536*omega. You can use macros also in the definition

of other macros. But macros are not replaced in strings, i.e. printf("PI");

will print PI and not 3.1415926536 when the program is run.

It is possible to test for the (non)existence of macros using the #ifdef

and #ifndef directives. This allows for conditional compiling or for

platform-independent code, such as in

#ifdef UNIX

...

#endif

#ifdef MSDOS

...

#endif

Please note that it is possible to supply definitions of macros to the

compiler via the -D option, e.g. cc -o program program.c -DUNIX=1. If

a macro is used only for conditional #ifdef/#ifndef statements, an assign-

ment like =1 can be omitted, i.e. -DUNIX is sufficient.

When programs are divided into several modules, or when library func-

tions are used, the definitions of data types and functions are provided in

header files (.h files), as mentioned above. It is important that each header

file should be read by the compiler only once for each source code file, oth-

erwise declarations will appear twice and the compiler will complain. When

projects become more complex, many header files have to be managed, and

it may become difficult to avoid multiple scanning of some header files. This

can be prevented automatically by this simple construction using macros:

/** example .h file: myfile.h **/

#ifndef _MYFILE_H_

#define _MYFILE_H_

.... (rest of .h file)

(may contain other #include directives)

#endif /* _MYFILE_H_ */
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After the body of the header file has been read the first time during a

compilation process, the macro _MYFILE_H_ is defined, thus the body will

never be read again.

So far, macros are just constants. You will benefit from their full power

when using macros with arguments. They are given in braces after the

name of the macro, such as in

#define MIN(x,y) ( (x)<(y) ? (x):(y) )

You do not have to worry more than usual about the names you choose

for the arguments, there cannot be a conflict with other variables of the

same name, because they are replaced by the expression you provide when

a macro is used, e.g. MIN(4*a, b-32) will be expanded to (4*a)<(b-32)

? (4*a):(b-32).

The arguments are used in ( ) braces in the macro, because the com-

parison < must have the lowest priority, regardless of which operators are

included in the expressions that are supplied as actual arguments. Fur-

thermore, you should take care of unexpected side effects. Macros do not

behave like functions. For example, when calling MIN(a++,b++) the vari-

able a or b may be increased twice when the program is executed. It is

usually better to use inline functions (or sometimes templates in C++) in

such cases. But there are many applications of macros, which cannot be

replaced by inline functions, like in the following example, which closes this

section.

The example illustrates how a program can be written in a clear way

using macros, making the program less error-prone, and furthermore allow-

ing for a broad applicability. A system of Ising spins is considered, i.e., a

lattice where at each site i a particle σi is placed. Each particle can have

only two states σi = ±1. It is assumed that all lattice sites are numbered

from 1 to N . This is different from C arrays, which start at index 0. The

benefit of starting with index 1 for the sites is that, for many simulations

of Ising systems, one needs the site 0 for additional technical reasons, see

below. For the simplest version of the model only neighbors of spins are

interacting. With a two-dimensional square lattice of size N = L×L a spin

i, which is not at the boundary, interacts with spins i + 1 (+x-direction),

i− 1 (−x-direction), i+L (+y-direction), and i−L (−y-direction). A spin

at the boundary may interact with fewer neighbors when free boundary

conditions are assumed. With periodic boundary conditions (pbc), all spins

have exactly 4 neighbors. In this case, a spin at the boundary interacts
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Fig. 1.1 A square lattice of size 10×10 with periodic boundary conditions. The arrows
indicate the neighbors of the spins.

also with the nearest mirror images, i.e. with the sites that are neighbors,

if you consider the system repeated in each direction. For a 10×10 system,

spin 5, which is in the first row, interacts with spins 5 + 1 = 6, 5 − 1 = 4,

5 + 10 = 15 and through the pbc with spin 95, see Fig. 1.1. The spin in

the upper left corner, spin 1, interacts with spins 2, 11, 10 and 91. In a

program pbc can be realized by performing all calculations modulo L (for

the ±x-directions) and modulo L2 (for the ±y-directions).
This way of realizing the neighbor relations in a program has several

disadvantages:

• You have to write the code for realization of the pbc everywhere where

the neighbor of spins are accessed. This makes the source code larger

and less clearly structured.

• When switching to free boundary conditions, you have to include fur-

ther code to check whether a spin is at the boundary.

• Your code works only for one lattice type. If you want to extend the

program to lattices of higher dimensions you have to rewrite the code

or provide extra tests/calculations.

• Even more complicated would be an extension to different lattice struc-

tures such as triangle or face-center cubic. This would make the

program look even more confusing.
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An alternative is to write the program directly in a way it can cope

with almost arbitrary lattice types. This can be achieved by setting up

the neighbor relation in one special initialization subroutine (not discussed

here) and storing it in an array next[]. Then, the code outside the sub-

routine remains the same for all lattice types and dimensions. Since the

code should work for all possible lattice dimensions, the array next is one-

dimensional. It is assumed that each site has num n neighbors. Then the

neighbors of site i can be stored in next[i*num n], next[i*num n+1], . . .,

next[i*num n+num n-1]. Please note that the sites are numbered begin-

ning with 1. This means, a system with N spins needs an array next of size

(N+1)*num n. When using free boundary conditions, missing neighbors can

be set to 0. The access to the array can be made easier using a macro NEXT:

#define NEXT(i,r) next[(i)*num_n + r]

NEXT(i,r) contains the neighbor of spin i in direction r. For example,

a quadratic system, r=0 is the +x-direction, r=1 the −x-direction, r=2 the

+y-direction and r=3 the −y-direction. However, which convention you use

depends on you, but you should make sure that they are consistent. For

the case of a quadratic lattice, it is num n=4. Please note that whenever the

macro NEXT is used, there must be a variable num_n defined, which stores

the number of neighbors. You could include num_n as a third parameter of

the macro, but in this case a call of the macro looks slightly more confusing.

Nevertheless, the way you define such a macro depends on your personal

preferences.

The NEXT macro cannot be realized by an inline function, in case you

want to set values directly like in NEXT(i,0)=i+1. Also, when using an

inline function, you would have to include all parameters explicitly, i.e.

num_n in the example. The last requirement could be circumvented by

using global variables, but this is bad programming style as well.

When the system is an Ising spin glass, the sign and magnitude of the

interaction may be different for each pair of spins. The interaction strengths

can be stored in a way similar to the neighbor relation, e.g. in an array j[].

The access can be simplified via the macro J:

#define J(i,r) j[(i)*num_n + r]

A subroutine for calculating the energy H =
∑
〈i,j〉 Jijσiσj may look as

follows (please note that the parameter N denotes the number of spins and

the values of the spins are stored in the array sigma[]):
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double spinglass_energy(int N, int num_n, int *next, int *j,

short int *sigma)

{

double energy = 0.0;

int i, r; /* counters */

for(i=1; i<=N; i++) /* loop over all lattice sites */

for(r=0; r<num_n; r++) /* loop over all neighbors */

energy += J(i,r)*sigma[i]*sigma[NEXT(i,r)];

return(energy/2); /* each pair has appeared twice in the sum */

}

The code for spinglass energy() is very short and clear. It works

for all kinds of lattices. Only the subroutine where the array next[] is

set up has to be rewritten when implementing a different type of lattice.

This is true for all kinds of code realizing such as Monte Carlo scheme or

the calculation of a physical quantity. For free boundary conditions, addi-

tionally sigma[0]=0must be assigned to be consistent with the convention

that missing neighbors have the id 0. This is the reason why the spin site

numbering starts with index 1 while C arrays start with index 0.
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Exercises
(solutions: can be downloaded from http://www.worldscientific.com/r/9019-supp)

(1) Structure and its size

Write a program which sets up using typedef
a data structure for amino acids (the basic
building blocks of proteins) and prints its
size. The structure should contain: the fol-
lowing four elements:

SOLUTION SOURCE CODE

DIR: c-programming
FILE(S):
struct size.c

• a char “type” of the amino acid
• an int “charge” (in units of the electron charge)
• a three-dimensional vector for the position
• a three-dimensional vector for the velcity

The main program should print the size of the data structure using the
sizeof() command. Please compare with the sum of the individual sizes!

(2) Pointer juggling

Write a program which contains a double

variable value, a pointer p1 which should
contain the address of value and a pointer
p2 which should contain the address of p1.

SOLUTION SOURCE CODE

DIR: c-programming
FILE(S): pointers.c

Perform the following steps

(a) Define p1 and p2 using suitable data types.
(b) Assign the desired values to value, p1, and p2.
(c) Print value, p1 and p2 using printf and suitable conversion specifiers.

Print furthermore the content of value via just using p1 and via just
using p2, respectively.

(3) Matrix permutation

Write a program which permutes a given ma-
trix test such that neighboring rows are ex-
changed. Use the multiplication of a suitably
chosen permutation matrix perm (from the
left) with test.

SOLUTION SOURCE CODE

DIR: c-programming
FILE(S): matrix.c

The program should

(a) contain the definition of three matrices, one is a n×n permutation matrix
(n is an even number) perm and two (test, result) are n×m matrices,

(b) initialize perm such that neighboring rows are exchanged,
(c) initialize test in an arbitrary way such that different rows can be distin-

guished,
(d) calculate the matrix product result = perm × test
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(e) print the matrix result row by row.

(4) Online unzipping

Write a program which prints a file, which is
passed as argument. If the file is compressed,
visible via the appendinx ".gz", the it should
be uncompressed first.

SOLUTION SOURCE CODE

DIR: c-programming
FILE(S): printzip.c

Requirements and hints:

(a) The filename should be passed as first argument.
(b) If no argument is given, a small error/usage message should be printed.
(c) Use strstr() to locate the substring ".gz" in the filename. If it is

contained, the file should be decompressed via the help of the system()

function.
(d) The file should be printed line by line.
(e) If the file was compressed before it was printed, it should be compressed

again, before the program stops.

(5) Bisection search

Write a function that searches in an array
’number[]’ of integers for a ’value’ . The
array is assumed to be sorted in increas-
ing manner. Thus, you can apply bisection
search.

SOLUTION SOURCE CODE

DIR: c-programming
FILE(S): bisection.c

This works by keeping an interval [bottom,top] and testing the entry in
the middle of the interval. If the value is found there, the search stops and
the index of the current middle is returned. Otherwise, if the entry at the
middle is larger than ’value’ the search continues in the remaining part of the
interval below the middle, and else above the middle. The function prototype
reads as follows:

/*********************** search() *********************/

/** Searches an int array sorted in increasing order **/

/** for the occurence of a certain ’value’ **/

/** PARAMETERS: (*)= return-parameter **/

/** size: number of entries **/

/** number: array **/

/** value: to be found **/

/** RETURNS: **/

/** index of entry, -1 if not found **/

/******************************************************/

int search(int size, int *number, int value)

Provide also a main() function which sets up an array with test numbers, e.g.
the 100 numbers from 0 to 396 with step size 4, and let the function search
for some test numbers, e.g. 120, 0, 396, 35 and 2000.
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(6) Integration of function

Write a function which integrates a one-
dimensional function f(x) over the interval
[x1, x2] via the trapezoidal rule, i.e. calcu-
lates

I =

tmax−1∑
t=0

f(x1 + tΔ) + f(x1 + (t+ 1)Δ)

2
Δ

=
f(x1)

2
Δ +

tmax−1∑
t=1

f(x1 + tΔ)Δ+
f(x2)

2
Δ

SOLUTION SOURCE CODE

DIR: c-programming
FILE(S):
integration.c

where tmax is the number of integration steps and Δ = (x2 − x1)/tmax.

The function prototype reads as follows:

/******************** integrate() *********************/

/** Integrates a 1-dim function numerically using **/

/** the trapezoidal rule **/

/** PARAMETERS: (*)= return-parameter **/

/** from: startpoint of interval **/

/** to: endpoint of interval **/

/** num_steps: number of integration steps **/

/** f: p. to function to be integrated **/

/** RETURNS: **/

/** value of integral **/

/******************************************************/

double integrate(double from, double to, int num_steps,

double (* f)(double))

Test the function in your main() function by integrating the sin() function
defined in math.h over different intervals, for example [0, π/2], [0, π].

(7) Optimizing code by compiler

Get the program optimization.c which cal-
culates for a set of numbers for all possible
subsets of numbers the sum. This takes ex-
ponentially long in the number of numbers,
hence it is a good testbed to see the effect of
compiler optimization

GET SOURCE CODE

DIR: c-programming
FILE(S):
optimization.c

Compile the program via cc -o optimization optimization.c -lm -Ox,
where x is 0, 1, 2, and 3. Measure the running time for executing the com-
pile program via time optimization (note that the program does not print
anything in the standard version).
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Scripts

Programmers’s life can be made much easier when using scripts. The first

task after writing the source code is to compile the code. For large software

projects, containing many modules, this can be quite an effort if compiling

is done by hand. Special scripts, called Make files, help a great deal to man-

age large software and other projects as explained in Sec. 2.1. Next, in Sec.

2.2, shell scripts are explained, which allow to perform many tasks auto-

matically. Here, scripts for the bash (Unix/Linux) shell will be introduced.

In fact, shell-scripting languages are like small programming languages.

More sophisticated are extended script languages, like Python, which is in-

troduced in Sec. 2.3. They allow to implement rather large projects in a

compact way with small effort.

2.1 Make Files

If your software project grows larger, it will consist of several source-code

files. Usually, there are many dependencies between the different files, e.g.

a data type defined in one header file can be used in several modules.

Consequently, when changing one of your source files, it may be necessary

to recompile several parts of the program. In case you do not want to

recompile your files every time by hand, you can transfer this task to the

make tool which can be found on UNIX operating systems. A complete

description of the abilities of make can be found in Ref. [Oram and Talbott

(1991)]. You should look on the man page (type man make) or in the texinfo

file [Texinfo] as well. Similar tools exists for other operating systems or

software development environments. Please consult the manuals in case

you are not working with a UNIX type of operating system.

The basic idea of make is that you keep a file which contains all depen-

75
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dencies between your source code files. Furthermore, it contains commands

(e.g. the compiler command) which generate the resulting files called tar-

gets , i.e. the final program and/or object (.o) files. Each pair of dependen-

cies and commands is called rule. The file containing all rules of a project

is called makefile, usually it is named Makefile and should be placed in

the directory where the source files are stored.

A rule can be coded by two lines of the form

〈target 〉 : 〈sources 〉
<tab> 〈command(s) 〉

The first line contains the dependencies and the second one the com-

mands. The command line must begin with a tabulator symbol <tab>,

which appears as a space in most editors. It is allowed to have several

targets depending on the same sources. You can extend the lines with the

backslash “\” at the end of each line. The command line is allowed to be

left empty. An example of a dependency/command pair is

simulation.o: simulation.c simulation.h

<tab> cc -c simulation.c

This means that the file simulation.o has to be compiled if either

simulation.c or simulation.h have been changed. The make program is

called by typing make on the command line of a UNIX shell. It uses the date

and time of the last changes performed on each file, which is stored along

with each file, to determine whether a rebuild of some targets is necessary.

Each time at least one of the source files is newer than the corresponding

target files, the commands given after the <tab> are executed. Specifically,

the command is executed if the target file does not exist at all. In this

special case, no source files have to be given after the colon in the first line

of the rule.

It is also possible to generate meta rules which, e.g. tell how to treat

all files which have a specific suffix. Standard rules, which tell how to treat

files ending for example with .c, exist already, but can be changed for each

file by stating a different rule. This subject is covered in the man page of

make.

The make tool always tries to build only the first object of yourmakefile,

unless enforced by the dependencies. Consequently, if you have to build

several independent object files object1, object2, object3, the whole

compiling must be toggled by the first rule, thus your makefile should read
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like this:

all: object1 object2 object3

object1: <sources of object1>

<tab> <command to generate object1>

object2: ...

<tab> <command to generate object2>

object3: ...

<tab> <command to generate object3>

Note that no command is given for the target all, because no com-

mands to be executed are connected to it. It is just used to make sure

that all objects on which it “depends” (artificially) are up to date. It is

not necessary to separate different rules by blank lines. Here, they are just

used for better readability. If you just want to rebuild e.g. object3, you

can call make object3. This allows several independent targets to be com-

bined into one makefile. When compiling programs via make, it is common

to include the target “clean” in the makefile such that all objects files are

removed when make clean is called. Thus, the next call of make (without

further arguments) compiles the whole program again from scratch. The

rule for ‘clean‘ reads like

clean:

<tab> rm -f *.o

Also, iterated dependencies are allowed, for example

object1: object2

object2: object3

<tab> ...

object3: ...

<tab> ...

The order of the rules is not important, except that make always starts

with the first target. Please note that the make tool is not just intended to

manage the software development process and toggle compile commands.

Any project where some output files depend on some input files in an arbi-

trary way can be controlled. For example, you could control the setting of

a book, where you have text-files, figures, a bibliography and an index as
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input files. The different chapters and finally the whole book are the target

files.

Furthermore, it is possible to define variables, sometimes also called

macros. They have the format

variable=definition

Also, variables belonging to your environment, like $HOME, can be refer-

enced in the makefile. The value of a variable can be used, similar to shell

variables, by placing a $ sign in front of the name of the variable, but you

have to embrace the name by (. . .) or {. . .}. There are some special vari-

ables, e.g. $@ holds the name of the target in each corresponding command

line; here no braces are necessary. The variable CC is predefined to hold the

compiling command. You can change it by including for example

CC=gcc

in the makefile. In the command part of a rule the compiler is called via

$(CC). Thus, you can change your compiler for the whole project very

quickly by altering just one line of the makefile.

Finally, it will be shown what a typical makefile for a small software

project might look like. The resulting program is called simulation. There

are two additional modules init.c, run.c and the corresponding header

.h files. In datatypes.h types are defined which are used in all modules.

Additionally, an external precompiled object file analysis.o in the direc-

tory $HOME/lib is to be linked whose corresponding header file is assumed

to be stored in $HOME/include. For init.o and run.o no commands are

given. In this case make applies the predefined standard command for files

having .o as suffix, which reads like

<tab> $(CC) $(CFLAGS) -c $@

where the variable CFLAGS may contain options passed to the compiler

and is initially empty. The makefile looks like this (please note that lines

beginning with #’ are comments:

#

# sample make file

#

OBJECTS=simulation.o init.o run.o

OBJECTSEXT=$(HOME)/lib/analysis.o

CC=gcc
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CFLAGS=-g -Wall -I$(HOME)/include

LIBS=-lm

simulation: $(OBJECTS) $(OBJECTSEXT)

<tab> $(CC) $(CFLAGS) -o $@ $(OBJECTS) $(OBJECTSEXT) $(LIBS)

$(OBJECTS): datatypes.h

clean:

<tab> rm -f *.o

The first three lines are comments, then five variables OBJECTS,

OBJECTSEXT, CC, CFLAGS, and LIBS are assigned. The final part of the

makefile are the rules.

Please note that sometimes bugs are introduced if the makefile is in-

complete. For example, consider a header file which is included in several

code files, but this dependency is not mentioned in the makefile. Then,

for example, if you change a data type in the header file, some of the code

files might not be compiled again, especially those you did not change.

Thus, the same object files can be treated with different formats in your

program, yielding bugs which seem hard to explain. Hence, in case you

encounter mysterious bugs, a make clean might help. However, most of

the time, bugs which are hard to explain are due to errors in your memory

management. How to track down those bugs is explained in Chap. 4.

The make tool exhibits many other features. For additional details,

please consult the references given above.

2.2 Shell Scripts

Shell scripts are even more general tools than make files. They are in fact

small programs, but they are usually not compiled, i.e. they are quickly

written but they run slowly. Scripts can be used to perform many adminis-

tration tasks like backing up data, installing software, or running simulation

programs for many different parameters. Here, only an example concerning

the last task is presented. For a general introduction to scripts, please refer

to a book on your operating system like UNIX/Linux.

Assume that you have a simulation program called coversim21 which

calculates vertex covers of graphs, which are graph-theoretical objects.1

1For the definition of a graph see Sec. 6.8. A vertex cover of a graph G = (V, E) is
a subset V ′ ⊂ V of vertices, such that each edge {i, j} ∈ E is incident to at least one
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Assume that you want to run the program for a fixed graph size L,

for a fixed concentration c of the edges, average over num realizations, and

write the results to a file, which contains a string appendix in its name to

distinguish it from other output files. Furthermore, you want to iterate over

different relative sizes x. Then you can use the following script run.scr

(under UNIX/Linux, specifically the bash shell is used):

#!/bin/bash

L=$1

c=$2

num=$3

appendix=$4

shift

shift

shift

shift

for x

do

${HOME}/cover/coversim21 -mag $L $c $x $num > \

mag_${c}_${x}${appendix}.out

done

The first line starting with “#” is a comment line, but it has a special

meaning. It tells the operating system the language in which the script is

written. In this case it is for the bash shell, the absolute pathname of the

shell is given. Each UNIX shell is equipped with its own script language.

Thus, you can use all commands which are allowed in the shell. There

are also more elaborate script languages like perl or Python. The latter is

covered in Sec. 2.3.

Scripts can have command line arguments, which are referred via $1,

$2, $3 etc., the name of the script itself being stored in $0. Thus, in

the lines 2 to 5, four variables are assigned. In general, you can use the

arguments everywhere in the script directly, i.e., it is not necessary to store

them in other variables. This is done here, because in the next four lines

the arguments $1 to $4 are thrown away by four shift commands. Then,

the argument which was on position five at the beginning is stored in the

first argument, the initially sixth argument is now stored in the second one,

and so on. Argument zero, containing the script name, is not affected by

the shift.

Next, the script enters a loop, given by “for x; do ... done”. This

vertex of V ′, i.e. i ∈ V ′ or j ∈ V ′.
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construction means that iteratively all remaining arguments are assigned

to the variable “x” and each time the body of the loop is executed. In this

case, the simulation is started via calling the program coversim21 stored

in the directory ${HOME}/cover/with some parameters (where you do not

have to care about their meaning here) and the output directed to a file.

Please note that you can state the loop parameters explicitly like in “for

size in 10 20 40 80 160; do ... done”.

The above script can be called, for example, by

run.scr 100 0.5 1000 testA 0.20 0.22 0.24 0.26 0.28 0.30

which means that the graph size is 100, the fraction of edges is 0.5, the

number of realizations per run is 1000, the string testA appears in the

output file name, and the simulation is performed for the relative sizes

0.20, 0.22, 0.24, 0.26, 0.28, and 0.30.

2.3 Python

Python is an interpreted programming language, somehow half-way be-

tween a script language and a full high-level programming language. This

makes it easy to write quickly programs, like for script languages, while

allowing for rather large-scale projects.

Note that Python is in fact a full object-oriented language, so quite

large projects are possible. Since the language is interpreted, the program

execution is somehow slower compared to compiled languages like C or

C++.2 Thus, we concentrate on using Python for writing scripts related

to data analysis. For an exhaustive coverage, the reader should consult the

documentation on the Python web page [Python].

Since Python is interpreted, one can use the language interactively. Un-

der UNIX/Linux, one can start it via entering python in a shell and enter

Python commands. This is in particular useful when learning the language.

The shell can be stopped via hitting <Ctrl>+<D> or typing quit(). Here

we concentrate on providing the commands in Python script files, which

usually end in the appendix .py. For a script loop.py you can either call

Python with the name of the script file as argument, i.e.,

phython loop.py

2With the Cython language, which is very similar to Python, one can include external
compiled C code to generate fast-running programs.
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GET SOURCE CODE

DIR: scripts
FILE(S): loop.py

Alternatively, like in a shell script, you can

write in the first line #! followed by the com-

plete path name of the Python interpreter.3

This is done in the following example, which

we use to introduce some of the main Python concepts:

#!/usr/bin/python1

2

a=[12, 45, 98, 112, 114, 135, 167, 298, 312]3

counter=04

for value in a:5

counter=counter+value6

print value7

print "sum of", len(a), "elements:", counter8

print range(7,12)9

print a[1], a[2:6]10

a.insert(3,77)11

print a12

a.extend([22, 8])13

print a14

a.sort()15

print a16

In line 3 of this script, a list is created, one of the basic data types in

Python. A list is a linearly ordered sequence of objects, for details see Sec.

6.6. The members of the list are given in square brackets, separated by com-

mas. Python allows several commands in a line, separated by semicolons.

In contrast to C, a line does not have to be terminated by a semicolon,

instead the line end identifies the end of a command as well. It is very

important to note that in contrast to C, variables are not declared. This

allows also for mixed types, i.e., the list may contain at the same time in-

tegers, floating points, strings, and even other lists as elements. Variables

exist after they are created and initialized, until the end of the script or

until the same variable name is used for something else. Thus, the vari-

able counter initialized in line 4 will store integer variables. If one writes

instead counter=0.0 it would hold floating point variables.

In lines 5–7 a for loop is performed. A for loop is always iterated over

the elements of a list (or a string). The body of the loop follows after the

colon. In contrast to C, no brackets are used to define the body of the loop.

Instead, the body of the loop is identified via indentation: The first line

after the for statement belongs to the loop and must be indented by at
3You must make the script executable via chmod +x loop.py in this case.
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least one space, here two spaces. All subsequent lines with the same level of

indentation belong to the loop as well. Thus, line 8 does not belong to the

loop. Note that if, for example, line 6 is not indented at all, or if line 7 is

indented not by two spaces (current loop body) or zero spaces (level of the

main program), an IndentationError is issued by the Python interpreter.

In line 6, an arithmetic statement is given. It works basically in the

same way as in C, i.e., you can use numbers, variables, arithmetic operators,

functions and (...) brackets. Note that ** is the power operator, i.e. 2**7

will result in 128. In line 7, a print statement is shown. In the most simple

case, one can just give an expression after the command, e.g. a variable

like here. The execution of the loop results simply in the elements of the

list being printed:

12

45

98

112

114

135

167

298

312

In line 8, also string constants, identified by single or double quotes, are

printed. Print statements can be formatted by giving several expressions

separated by commas, resulting in the expressions being printed one after

the other, separated by spaces. Therefore, the execution of this line yields

sum of 9 elements: 1293

Omitting one comma between two expression in a print statement would

result in a SyntaxError. There are other ways for formatted printing:

One can use format strings with ‘%’ as formatting symbols, like in the

C printf() function, or one can use a string method format(). Please

refer to the Python documentation for these advanced approaches.

The remaining lines 9–16 serve to demonstrate more commands for cre-

ating and accessing lists. First, one can easily create lists of consecutive

numbers with the range() command, see line 9. This is useful for standard

loops, for example, for i in range(3,10) will loop from 3 to 9. If just

one argument is given, the list will start at 0 and end one before the given

argument. Also a third argument being the step size can be given, which
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is by default 1. Also negative step sizes are possible. All arguments are

supposed to be integer numbers.

As visible on line 10, the elements of a list can be accessed by specifying

the position, just like for an array in C. Parts of a list can be addressed

by specifying ranges, called slicing. Note that also write access is possible

in this way, i.e. a[1]=77 overwrites element 1 of the list. By assigning

the empty list [] also sub lists can be removed, i.e. a[2:6]=[] removes

elements 2, 3, 4 and 5 from the list. Elements can be inserted by using

the extend method, see line 11. Thereby, the list is extended by appending

all elements in the given argument list, [22, 8] The existence of methods

signifies that Python is actually object oriented, the method is called for the

list object. The object-oriented approach easily allows for more complex

modifications, for example, to sort a list, see line 15. Other useful methods

for lists are insert(i,x) which inserts element x at position i, append(x)

which appends one single element x at the end of the list, index(x), which

returns the index of the first occurrence of item x, and remove(x), which

removes the first occurrence of item x from the list. Note that one could

indeed use

a.append([22, 8])

but this results in a different list where the last element is itself a list

consisting of the two numbers 22 and 8. If one wants to use the append()

method resulting in both numbers to be added as single numbers, one has

to use it twice:

a.append(22)

a.append(8)

So far, we have used the for statement to create a loop. More flexible is

the while loop, which consists of the while statement, a condition, followed

by a colon, and a block of commands, e.g.

counter = 3.5

while counter < 4.2:

print counter*counter

counter = counter + 0.1

Another standard way to direct the flow of the execution in a program-

ming language is the if statement, detailed by the following example:

if reps < 10:

reps = 10

print "number of repetitions raised to 10"
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elif reps > 1000:

reps = 1000

print "number of repetitions decreased to 1000"

else:

print "number of repetitions:", reps

Note that again blocks of commands are defined via the level of indentation.

The number of elif (“else if”) branches can be zero, one or any higher

number. The else branch can be omitted.

GET SOURCE CODE

DIR: scripts
FILE(S): strings.py

So far, we have learned about the data types

numerical variables and lists. Python also offers

strings, which have to be provided within single

or double quotes, e.g.

first_name = ’Donald E.’

family_name = "Knuth"

print family_name

print first_name

print len(first_name)

where the function len() returns the length of a string. Using a backslash

\ one can include quotes in a string:

quote="The Beatles sang \"We all live in a yellow submarine\""

One can access single letters of a string using an array notation, or

subsequences using slicing:

print first_name[3]

print first_name[0:3]

which will result in printing a and Don, respectively. The right limit of a slice

is exclusive. One or both of the limits can be omitted. Note that strings

are immutable, i.e. they cannot be changed. If you try an assignment like

first name[3]=’k’ you will get a SyntaxError. You can only “change”

strings by creating new modified strings. The most important operators are

the + operator for concatenation of strings and the * operator for repetition

of strings. For example,

full_name = first_name + " " + family_name

print full_name

praise= "GREAT "

praise_tape = 10*praise
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print praise_tape

will result in

Donald E. Knuth

GREAT GREAT GREAT GREAT GREAT GREAT GREAT GREAT GREAT GREAT

GET SOURCE CODE

DIR: scripts
FILE(S): dict.py

An even more sophisticated Python data

type is a dictionary, which is like an array but

allows for arbitrary objects as indices, called

keys here. Technically, it is a collection of

key:value pairs, separated by commas and embraced by curled braces:

Z={’H’:1, ’He’:2, "Li":3}

print Z

print Z[’He’]

will result in

{’H’: 1, ’Li’: 3, ’He’: 2}

2

Note that there is no inherent order of the elements or keys. For the above

example, the keys are strings and the values are integers. Nevertheless, a

single dictionary can hold keys or values of mixed type, e.g. one could for

the same dictionary add

Z[55]=98

Z[78]=’structure’

It is also possible to overwrite values by assigning a different value to

the key, or to remove a key:value pair via the del command. For example,

Z[55]=[27,57]

del Z[’He’]

print Z

will result in:

{’H’: 1, ’Li’: 3, 78: ’structure’, 55: [27, 57]}

It is also possible to extract all keys or all values from a dictionary by

using the keys() or values() methods:

print Z.keys()

print Z.values()
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result in

[’H’, ’Li’, 78, 55]

[1, 3, ’structure’, [27, 57]]

In this way one can iterate over all items of a dictionary:

for key in Z.keys():

print "Z[", key, "]=", Z[key]

Alternatively, one can use the iteritems() method in the following way:

for key,value in Z.iteritems():

print "Z[", key, "]=", value

GET SOURCE CODE

DIR: scripts
FILE(S): mix files.py

Next, we consider a more complex maybe

typical example for treatment of files via

Python. Suppose you have two files with

column-wise data and would like to merge them

such that you extract, say from the first file columns one and two, as well as

column one from the second file to generate a three-column file (under the

assumption that the number of lines is equal in both files). This is achieved

by the following script:

#!/usr/bin/python1

2

# for getting command line arguments3

import sys4

5

# read file names from command line6

file1=sys.argv[1]7

file2=sys.argv[2]8

9

# read in file 110

file = open(file1, "r")11

line1=[]12

for line in file:13

if (line[0] != ’#’):14

line1.append(line)15

file.close()16

17

# read in file 218

file = open(file2, "r")19

line2=[]20
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for line in file:21

if (line[0] != ’#’):22

line2.append(line)23

file.close()24

25

# print line by line: 1st and 2nd col. of file1, 2nd col. of file226

counter=027

while counter<len(line2):28

print line1[counter].split()[0], line1[counter].split()[1], \29

line2[counter].split()[1]30

counter=counter+131

In line 4 the “sys” module is imported, which allows to access command-

line arguments passed to the string. Here, we want to pass two argu-

ments corresponding to the two file names, see line 7 and 8. Note that

sys.argv[0] contains the script name, as in the C programming language.

A file is opened via using the open command in line 11. The first

argument of the command is the file name, the second the access mode.

An empty list is created where the lines of the file shall be stored, see line

12. The files is read, line by line and stored in the list, while ignoring all

lines starting with a ’#’, as visible in lines 13–15. After the file is read, it

is closed, see line 16. The same procedure is performed for the second file,

see lines 19–24.

Finally, the desired composition of the columns is printed in lines 27–31.

Here the split() method is used, which generates for a given string a list

of the space separated words, see lines 29,30.

GET SOURCE CODE

DIR: scripts
FILE(S): functions.py

Function definitions in Python are started

with the keyword def followed by the function

name, a comma-separated list of parameters in

brackets and a colon. Optionally one can write

an indented comment describing the function. In this case, the comment

has to be enclosed by a pair of three double quotation marks """, signifying

a so called Python docstring.

They actual function code is also indented. The function definition ends

when the previous or a smaller indentation occurs. A function may return

a value via the optional return statement, as in the following example:

def factorial(n):

if n <= 1:

return(1)

else:

return(n*factorial(n-1))
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As usual in Python, no types are declared for parameters or for the

return type. Thus, you can also pass or return any type of object, like

lists, dictionaries or of self-defined classes. Simple variables like numbers

are passed by value, i.e., changes to them will be effective only locally inside

the function, e.g.

def change1(x):

x=5

print x

z=10

print z

change1(z)

print z

will result in

10

5

10

Also, it is not immediately possible to change global variables, since any

assignment to a variable inside a function will create a local variable of this

name. For the (bad-programming style) purpose of using global variables

the global statement might be used, see the Python documentation.

If the objects passed to a function are mutable compound objects like

lists or dictionaries, they can be changed inside a function in the usual way,

e.g.

def change2(l):

ll=len(l)

l.append(ll)

list=[]

change2(list)

change2(list)

change2(list)

print list

will generate the list [0, 1, 2].
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GET SOURCE CODE

DIR: scripts
FILE(S):
resampling.py

This section is closed by a somehow larger

example, which performs a bootstrap resam-

pling of a set of random numbers to obtain an

error estimate for the variance of the set of ran-

dom numbers. For the concept of bootstrap-

ping, see Sec. 8.3.4.

We start with a function, which computes the empirical mean, the em-

pirical standard deviation and the error bar of the mean (see Sec. 8.3.1) for

a given set of numbers, stored in a list:

def basicStatistics(myList):1

av=var=tiny=0.2

3

# first pass to get mean4

N = len(myList)5

av = float(sum(myList))/N6

# second pass to get variance7

for el in myList:8

dum = el - av9

tiny += dum10

var += dum*dum11

# correction step12

var = (var - tiny*tiny/N)/(N-1)13

sDev = sqrt(var)14

sErr = sDev/sqrt(N)15

return av, sDev, sErr16

Here a very accurate two-pass algorithm [Press et al. (1995)] is used for

the calculation of the variance. Note that in one single return statement

a tuple of three values is returned, see line 16. The elements of a tuple can

be accessed separately using the array notation, see the following function

which picks the variance from the tuple. In the main program we will use

the resampling approach to calculate the error bar of the variance:

def Var(x):

return basicStatistics(x)[1]*basicStatistics(x)[1]

The actual resampling is performed in the following function.
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def bootstrap(array,estimFunc,nBootSamp=128):1

# estimate mean value from original array2

origEstim=estimFunc(array)3

4

## resample data from original array5

nMax=len(array)6

h = [0.0]*nBootSamp7

bootSamp = [0.0]*nMax8

for sample in range(nBootSamp):9

for val in range(nMax):10

bootSamp[val]=array[randint(0,nMax-1)]11

h[sample]=estimFunc(bootSamp)12

13

## estimate error as std deviation of resampled values14

resError = basicStatistics(h)[1]15

return origEstim,resError16

The function receives three arguments, the sample of data points stored

in a list array, a function calculating the estimator which is applied to

the data points, and the number nBootSamp of times a bootstrap sample

is taken. As usual, one cannot infer from the arguments which “type”

their are, this is only clarified by the way they are used in the body of the

function, highlighting the “duck-typing” feature of dynamical programming

languages such as Python. For example, in line 3 it is clear that estimFunc

is a function. For the third argument, a default value of 128 is stated, i.e.

if one calls bootstrap with only two arguments, the default value is used.

In line 7, a list (used as an array) h of nBootSamp entries is initialized with

zeros. In the same way, a list bootSample of nMax entries is initialized in

line 8. The main resampling is performed in lines 9–12: nBooSamp times a

bootstrap sample is taken, i.e., the list bootSample is filled with numbers

drawn randomly and independently from the original data array. Here,

the function randint(0,nMax-1) is used, which returns a uniform random

integer in the range from 0 to nMax-1. Note that in the bootstrap sample,

every data point may appear more than once. In line 12, the estimator is

calculated for the current bootstrap sample and stored in the current entry

of h. Finally, the variance of the bootstrap estimators (line 15) is the error

bar for the actual estimator, which both are returned in line 16.

Note that in the sample program resampling.py, also the main func-

tion is included, which sets up a random data set, drawn from a uniform

distribution, and calculates the variance together with a bootstrap error

bar.
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Software Engineering

Performing simulations or other large-scale software projects is not only a

matter of skillful coding. A lot depends on the organization of the design

and the way of programming. Also the methods used for testing and the

organization of actually running the simulations and performing the data

analysis have a strong influence on the success of a project. This is in par-

ticular true, if several people are involved in the project. In this chapter,

strategies for performing software projects are discussed. The correspond-

ing computer-science field is called software engineering. An introduction

to software engineering is given, for example, in Ref. [Sommerville (1989)],

while a more practical approach is presented in Ref. [Kernighan and Pike

(1999)].

First, a general introduction to software engineering is given (Sec. 3.1).

In Sec. 3.2, some hints are given on how to structure the source-code doc-

uments efficiently, such that programming, debugging and documentation

are facilitated. In the Sec. 3.3, the subversion tool is presented, which fa-

cilitates the management of any kind of projects, also software projects, in

particular if several people cooperate.

3.1 How to manage a (simulation) project

When you are creating a program, you should start never immediately

writing the code. In this way, only tiny software projects such as scripts

can be completed successfully. Otherwise your code will probably be very

inflexible and contain several hidden errors which are very hard to find. If

several people are involved in a project, it is obvious that a considerable

amount of planning is necessary.

But even when you are programming alone, the first step you should
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undertake is to sit down and think for a while. This will save you a lot

of time and effort later on. For medium- to large-scale projects, planning

and structuring is indispensable. There are many specialized books in the

field of software engineering, see for example Refs. [Sommerville (1989);

Ghezzi et al. (1991)]. Here, just the main steps are listed of how to create

a sophisticated software development cycle. The following descriptions re-

fer to the usual situation you find in computational science: One or a few

people are involved in the project. How to manage the development of big

programs involving many developers is explained in the above-mentioned

expert literature.

3.1.1 Definition of the problem and solution strategies

Write down the problem you want to solve. Drawing diagrams is always

helpful! Discuss your problem with others and tell them how you would

like to solve it. In this context many questions may appear of which some

examples are given here:

• What is the input you have to supply? In case you have only a few

parameters, they can be passed to the program via command-line ar-

guments or options. In other cases, especially when chemical systems

are to be simulated, many parameters have to be controlled and it may

be a good idea to use extra parameter files.

• Which results do you want to obtain and which quantities do you have

to analyze? Very often it is useful to write the raw results of your

simulations, such as the positions of all atoms or the orientations of all

spins of your system, to a configuration file. All measurable quantities

can be obtained by post-processing. Then, in case new questions arise,

it is very easy to analyze the data again. When using configuration files,

you should estimate the amount of data you generate. Is there enough

space on your disk? It may be helpful, to include the compression of

the data files directly in your programs (see page 57).

• Can you identify “objects” in your problem? Objects may be physical

entities like atoms or molecules, but also internal structures like nodes

in a tree or elements of tables. Considering the system and the program

as a hierarchical collection of objects usually makes the problem easier

to understand. More details on object-oriented development can be

found in Chap. 5.
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• Maybe the program will be extended later on? Usually a code is “never”

finished. You should foresee later extensions of the program and set up

everything in a way to be reused easily.

• Do you have existing programs available which can be included into the

software project? If you have implemented your previous projects in

the above-mentioned fashion, it is very likely that you can recycle some

code. But this requires experience and is not very easy to achieve at

the beginning. Over the years, however you will have a growing library

of programs which enables you to finish future software projects much

faster.

Has somebody else created a program which you can reuse? Sometimes

you can rely on external code like libraries. Examples are the Standard

Template Library and the GNU Scientific library which are covered in

Chap. 7.

• Which algorithms are known to solve your problem? Are you sure that

you can solve the problem at all? Many other techniques have been

invented already. You should always search the literature for existing

solutions. How searches can be simplified by using electronic data bases,

is covered more deeply in Chap. 9.

Sometimes it is necessary to invent new methods. This part of a project

may be the most time-consuming but also the most interesting task.

3.1.2 Designing data structures

Once you have identified the basic objects in your systems, you have to

think about how to represent them in the code. Sometimes it is sufficient

to define some struct types in C (or simple classes in C++). But usually

you will have to design a large set of data structures, referencing each other

in a complicated way.

A sophisticated design of the data structures will lead to better orga-

nized programs; usually they will even run faster. For example, consider a

set of vertices of a graph. Then assume that you have several lists Li each

containing elements referencing the vertices of degree i. Maybe the graph is

altered in your program and thus the degrees of the vertices change. Then

it is sometimes necessary to remove a vertex from one list and insert it

into another one. In this case you will gain speed, when your vertex data

structures also contain pointers to the positions where they are stored in

the lists. Hence, removing and inserting vertices in the lists will take only

a constant amount of time. Without these additional pointers, the insert
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and delete operations have to scan partially through the lists to locate the

elements. This leads to a linear time complexity of these operations.

Again, you should perform the design of the data structures in a way,

such that later extensions are done more easily. For example, when treating

lattices of atoms, you should use data structures which are independent of

the dimensionality of the system or even of the structure of the lattice; an

example is given in Sec. 1.6.

When you are using external libraries, they usually have some data

types included. The above-mentioned Standard Template Library has many

predefined data types like arrays, stacks, lists or heaps. Furthermore, it is

possible to combine the data types in complicated ways. For instance, you

can define a stack of graphs having strings attached to the vertices.

3.1.3 Defining small tasks

After setting up the basic data types, you should think about which basic

and complex operations, i.e. which functions in C/C++, you need to ma-

nipulate the objects of your simulation. Since you have already thought a

lot about your problem, you have a good overview of which operations may

occur. You should break down the ultimate task “perform simulation” into

small subtasks. This means, you use a top-down approach in the design

process. When implementing the design, it is usually not possible to write

a program in a sequential way as one code. For the actual implementation,

instead a bottom-up approach is recommended. This means, you should

start with the most basic operations. Later on, you can use them to create

more complicated operations. As always, you should define the subroutines

in a way such that they can be applied in a flexible way and such that

extensions are easy to perform.

But it is not necessary to identify all basic operations at the beginning.

During the development of the code, new applications may arise, which

lead to the need for further operations. Also, it may be required to change

or extend the data structures. However, the more you think in advance,

the less you need to change the program later on.

As an example, the problem of finding ground states is considered, i.e.

configurations with the lowest energies. A model for magnetic alloys con-

sisting of little magnetic moments called spins is used. The method is called

simulated annealing, which is a special Monte Carlo technique. Some of the

basic operations are:
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• Set up the data structures for storing the realizations of the interactions

and the spin configurations.

• Create a random realization of the interactions.

• Initialize a random spin configuration.

• Calculate the energy of a spin in the local field of its neighbors.

• Calculate the total energy of a system.

• Calculate the energy changes associated with a spin flip.

• Execute a Monte Carlo step.

• Execute a whole annealing run.

• Calculate the magnetization.

• Save a realization and the corresponding spin configurations in a file.

It is not necessary to define a corresponding subroutine for all operations.

Sometimes they require only few lines in the code, like the calculation of

the energy of one spin in the example above. In this case, such operations

could be written directly in the code, or a macro (see Sec. 1.6) could be

used.

3.1.4 Distributing work

In case several people are involved in a project, the next step is to split

up the work between the coworkers. If several types of objects appear in

the program design, a natural approach is to make everyone responsible

for one or several types of objects and the related operations. The code

should be broken up into several modules (i.e. source files), such that every

module is written by only one person. This makes the implementation easier

and also helps testing the code (see below). Nevertheless, the partitioning

of the work requires much care, since quite often some modules or data

types depend on others. For this reason, the actual implementation of a

data type should be hidden. This means that all interactions should be

performed through exactly defined interfaces which do not depend on the

internal representation, see also Chap. 5 on object-oriented programming.

When several people are editing the same files, then you should use a

version control system (VCS), see Sec. 3.3. It helps to keep track of all

versions, in particular it supports several people performing changes in the

same file at the same time. This can be quite painful without a VCS.
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3.1.5 Implementing the code

With good preparation, the actual implementation becomes only a small

part of the software development process. General style rules guarantee

clear-structured codes as explained in Sec. 3.2. Following style rules helps

a lot to understand a code several months after you, or someone else, has

written it. You should use a different file, i.e. a different module, for each

set of closely related data structures and functions; when using an object

oriented language, you should define different classes (see Chap. 5). This

rule should be obeyed for the case of a one-person project as well. Large

software projects containing many modules are easily maintained via make-

files (see Sec. 2.1).

Each function and each module should be tested separately, before com-

bining many modules into one program. In the following, some general hints

concerning testing are presented.

3.1.6 Testing

When performing tests on single subroutines, usually standard test cases

are used. This is the reason why many errors become apparent much later.

When modules have already been combined into one single program, errors

are much harder to find. For this reason, you should always try to find also

special and rare cases when testing a subroutine. Consider, for example,

a procedure which inserts an element into a list. Then, not only inserting

in the middle of the list, but also at the beginning, at the end and into

an empty list must be tested. Also, it is strongly recommended to read

your code carefully once again before considering it finished. In this way

many bugs can be found easily which otherwise must be tracked down by

intensive debugging.

The actual debugging of the code can be performed by placing print

instructions at selected positions in the code. But this approach is quite

time-consuming, because you have to modify and recompile your program

several times. Therefore, it is advisable to use debugging tools like a source-

code debugger and a program for checking the memory management. More

information about these tools can be found in Chap. 4. But usually, you

also need special operations which are not covered by an available tool.

You should always write a procedure which prints out the current instance

of the system that is simulated, such as the nodes and edges of a graph or
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the interaction constants of an disordered Ising system. This facilitates the

types of tests, which are described in the following.

After the raw operation of the subroutines has been verified, more com-

plex tests can be performed. When, for example, testing an optimization

routine, you should compare the outcome of the calculation for a small

system with the result which can be obtained by hand. This allows you

to follow the execution of the program step by step. If the outcome dif-

fers from the expected result, the small size of the test system enables you

much better to find the reason for the discrepancy. For each operation you

should think about the expected outcome and compare it with the result

originating from the running program.

Furthermore, it is very useful to compare the outcome of different meth-

ods applied to the same problem. For example, you know that there must

be something wrong, in case an approximation method finds a better value

than your “exact” algorithm. Sometimes analytical solutions are avail-

able, at least for special cases. Another approach is to use invariants.

For example, when performing a Molecular Dynamics simulation of an

atomic/molecular system (or a galaxy), energy and momentum must be

conserved; only numerical rounding errors should appear. These quanti-

ties can be recorded very easily. If they change in time, there must be a

bug in your code. In this case, usually the formulas for the energy and the

force are not compatible or the integration subroutine has a bug.

You should test each procedure directly after writing it. Many devel-

opers have experienced that if the interval between implementation and

tests is large, then the motivation for performing tests becomes very low,

resulting in more undetected bugs.

The final stage of the testing process begins when several modules are in-

tegrated into one large running program. In the case where you are writing

the code alone, not many surprises should appear, if you have performed

many tests on the single-module level. If several people are involved in

the project, many errors occur at this stage. But in any case, you should

remember: There is probably no complex program which is free of bugs.

Always remember the following important result from theoretical computer

science [Lewis and Papadimitriou (1981)]: It is impossible to invent a gen-

eral method, which can prove automatically that a given program obeys a

given specification. Thus, all tests must be designed to match the current

code.

In case a program is changed or extended several times, always keep the

old versions. Quite commonly, new bugs are introduced by changing the
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code, even if the change is small. In that case, you can compare your new

code with the older version. Please note that many editors only keep the

second latest version as backup, so you have to take care of this problem

yourself, unless you use a version control system, which keeps all older

version automatically.

For C programmers, it is always advisable to apply the -Wall (warning

level: all) option. Then several bugs already show up during the compiling

process, for example, the common mistake to use ‘=’ in comparisons instead

of ‘==’, or the access to uninitialized variables.1

In C++, some bugs can be detected by defining variables or parameter

as const, when they are considered to stay unchanged in a block of code

or subroutine. Here again, you will receive an error message already at

compile stage, if attempts are made to alter the value of such a variable.

This part finishes with a warning: Never try to save time when per-

forming tests. Bugs which appear later on are much harder to find and you

will have to spend a lot more time than you have “saved” before.

3.1.7 Writing documentation

This part of the software development process is very often disregarded,

especially in the context of scientific research, where no direct customers

exist. But even if you are using your own code, you should write good

documentation. It should consist of at least three parts:

• Comments in the source code: You should place comments at the be-

ginning of each module, in front of each subroutine or each self-defined

data structure, for blocks of the code and for selected lines. Addition-

ally, meaningful names for the variables are crucial. Following these

rules makes later changes and extension of the program much more

straightforward. You will find more hints on how a good programming

style can be achieved in Sec. 3.2.

• On-line help: You should include a short description of the program, its

parameters and its options in the main program. It should be printed,

when the program is called with the wrong number/form of the param-

eters, or when the option -help is passed. Even if you are the author

of the program, it is quite hard to remember all options and usages.

• External documentation: This part of the documentation process is im-

portant, when you would like to make the program available to other

users or when it grows really complex. Writing good instructions is

1But this is not true for some C++ compilers when combining with option -g.
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really a hard job. When you remember how often you have complained

about the instructions for a video recorder or a word processor, you will

understand why there is a high demand for good authors of documen-

tation in industry.

3.1.8 Using the code

Performing the actual simulations usually requires careful preparation. Sev-

eral questions have to be considered, for example:

• How long will the different runs take? Either by analysing your algo-

rithm you will know, whether your simulation is O(n), O(nk), O(en)

or something else. If you do not know, you should perform simulations

of small systems and extrapolate to large system sizes.

• Often you have to average over different runs or over several realizations

of a “disordered system”. This occurs, for example, when simulating

random graphs or alloys. The system sizes should in this case be chosen

in a way that the number of samples is large enough to reduce the

statistical fluctuations. It is better to have good statistics for a small

system than bad statistics for a large system. If you are lucky, your

model exhibits self-averaging. This means, the larger the sample, the

less the number of samples can be. Nevertheless, usually the numerical

effort grows stronger than the system size, so there will be a maximum

system size which can be treated with satisfying accuracy. To estimate

the accuracy, you should always calculate the statistical error bar σ(A)

for each quantity; see Chap. 8 on statistical analysis.

A good rule of a thumb is that each sample should take no more than

10 minutes. When you have many computers and much time available,

you can handle larger problems as well.

• Where to put the results? In many cases you have to investigate your

model for different parameters. You should organize the directories

where you put the data and the names of the files in such a way that

the former results can be found quickly even years later. You should

put a README file in each directory, explaining what it contains. Note

that organizing large-scale simulations in a useful way is an active area

of research called computational provenance [Comp. Sci. Eng. (2008)].

If you want to start a sequence of several simulations, you can write a

short script, which calls your program with different parameters within

a loop; see the example script in Sec. 2.2.
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• The program should write some information about the ongoing pro-

cesses into logfiles during each simulation. The logfile should state the

version number of the program and the parameters which have been

used to start the simulation in the first few lines. This facilitates a

reconstruction of how the results have been obtained.

The steps listed here do not usually occur in linear order. It is quite

common that after you have written a program and performed some simu-

lations, you are not satisfied with the performance or new questions arise.

Then you start to define new problems and the program will be extended.

It may also be necessary to extend the data structures, when for instance,

new attributes of the simulated models have to be included. It is also pos-

sible that a nasty bug is still hidden in the program, which is found later on

during the actual simulations and becomes obvious by results which cannot

be explained. In this case, changes cannot be circumvented either.

In other words, the software development process is a cycle which is

traversed several times. As a consequence, when planning your code, you

should always keep this in mind and set up everything in a flexible way, so

that extensions and code recycling can be performed easily.

3.2 Programming Style

The code should be written in a style that enables the author, and other

people as well, to understand and modify the program even years later.

Here, some principles are stated briefly that you should follow. Just a

general style of description is given. Everybody is free to choose his/her

own style, as long as it is precise and consistent.

• Split your code into several modules. This has several advantages:

– Performing changes, you have to recompile only the modules which

have been edited. Otherwise, if everything is contained in a long

file, the whole program has to be recompiled each time again.

– Functions which are related to each other can be collected in single

modules. It is much easier to navigate in several short files than in

one large program.

– Having been finished and tested, a module can be used for other

projects. Thus, software reuse is facilitated.

– Distributing the work among several people is impossible if every-

thing is written into one file. Furthermore, you should use a version
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control system (see Sec. 3.3) in case several people are involved.

This helps to avoid uncontrolled editing.

• To keep your program logically structured, you should always put data

structures and implementations of the operations in separate files. In

C/C++, this means, you have to write the data structures in a header

(.h) file and the code into a source code (.c/ .cpp) file.

• Try to find meaningful names for your variables and subroutines. Thus,

during the programming process it is much easier to remember their

meanings, which helps a lot in avoiding bugs. Additionally, it is not

necessary to look up the meaning frequently. For local variables like

loop counters, it is sufficient and more convenient to have short (e.g.

one letter) names.

In the beginning, this might seem to take additional time (e.g. writing

‘kinetic energy’ for a variable instead of ‘x10’). But several months

after you have written the program, you will appreciate your effort,

when you read the line

kinetic_energy += 0.5*atom[i].mass*atom[i].veloc*atom[i].veloc;

instead of

x10 += 0.5*x34[i].a*x34[i].b*x34[i].b;

• You should use proper indentation of your lines. This helps a great

deal in recognizing the structure of a program. Many bugs are caused

by misaligned braces forming a block of code. Furthermore, you should

place at most one command per line of code. The reader will probably

agree that

for(i=0; i<number_nodes; i++)

{

degree[i] = 0;

for(j=0; j<number_nodes; j++)

if(edge[i][j] > 0)

degree[i]++;

}

is much faster to understand than

for(i=0; i<number_nodes; i++) { degree[i] = 0; for(j=0;

j<number_nodes; j++) if(edge[i][j] > 0) degree[i]++; }
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• Avoid jumping to other parts of a program via the “goto” command.

This is bad style originating from programming in assembler or BASIC.

In modern programming languages, there are corresponding commands

for every logical programming construct. “Goto” commands make a

program harder to understand and much harder to debug if it does not

work as it should.

In case you want to break out of a loop, you can use a while/until loop

with a flag that indicates if the loop is to be stopped. In C, you can

also use the commands break or continue.

• Do not use global variables. At first sight, the use of global variables

may seem tempting: You do not have to care about parameters for

subroutines; the variables are accessible everywhere and everywhere

they have the same name. Programming is done much faster.

But later on you will have a bad time: Many bugs are created by im-

proper use of global variables. When you want to look up the definition

of a variable you have to search the whole list of global variables instead

of just checking the parameter list. Sometimes the range of validity of

a global variable is overwritten by a local variable. Furthermore, soft-

ware re-usage is almost impossible with global variables, because you

always have to check all variables used in a module for conflicts and

you are not allowed to employ the name for another object. When you

want to pass an object to a subroutine via a global variable, you do

not have the choice of how to name the object which is to be passed.

Most important, when you have a look into a subroutine after some

months, you cannot see immediately which objects are changed in the

subroutine; instead, you will have to read the whole subroutine again.

If you avoid this practice, you just have to look at the parameter list.

Most annoying, when a renaming occurs, you have to change the name

of a global variable everywhere in the whole program. Local variables

can be changed with little effort.

• Finally, an issue of utmost importance: Do not be economical with

comments in your source code! Most programs, which may appear log-

ically structured when writing them, will be a source of great confusion

when being read some weeks later. Every minute you spend on writing

reasonable comments you will save several times over later on. You

should consider different types of comments.

– Module comments: At the beginning of each module you should

state its name, what the module does, who wrote it and when it was
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written. It is a useful practice to include a version history, which

lists the changes that have been performed. A module comment

might look like this:

**********************************************************/

/*** Functions for spin glasses. ***/

/*** 1. loading and saving of configurations ***/

/*** 2. initialization ***/

/*** 3. evaluation functions ***/

/*** ***/

/*** A.K. Hartmann January 1996 ***/

/*** Version 1.8 09.10.2000 ***/

/*** ***/

/*********************************************************/

/*** Vers. History: ***/

/*** 1.0 feof-check in lsg_load...() included 02.03.96 ***/

/*** 2.0 comment for cs2html added 12.05.96 ***/

/*** 3.0 lsg_load_bond_n() added 03.03.97 ***/

/*** 4.0 lsg_invert_plane() added 12.08.98 ***/

/*** 5.0 lsg_write_gen() added 15.09.98 ***/

/*** 6.0 lsg_energy_B_hom() added 20.11.98 ***/

/*** 7.0 lsg_frac_frust() added 03.07.00 ***/

/*** 7.1 use new call-form of llist.c library 04.07.00 ***/

/*** -> no memory leak (through copy data) ***/

/*** 8.0 lsg_mc_T() added 23.08.00 ***/

– Type comments: For each data type (a structure in C or class in

C++) which you define in a header file, you should attach several

lines of comments describing the data type’s structure and its appli-

cation. For a class definition, also the methods which are available

should be described. Furthermore, for a structure, each element

should be explained. A nice arrangement of the comments makes

everything more readable. An example of what such a comment

may look like can be seen in Chap. 5 for the data type histo t.

– Function comments: For each function, its purpose, the meaning of

the input and output variables and the preconditions which have to

be fulfilled before calling must be stated. In case you are lazy and

do not write a man page, a comment atop of a subroutine is the

only source of information, if you want to use the subroutine later

on in another program.

If you use some special mathematical methods or clever algorithms

in the subroutine, you should always cite the source in the comment.
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Later on, this facilitates the understanding of how the methods

works.

The next example shows what the comment for a function may look

like:

/************************* mf_dinic1() *****************/

/** Calculated maximum flow using Dinics algorithm **/

/** See: R.E.Tarjan, Data Structures and Network **/

/** Algorithms, p.104f. **/

/** **/

/** PARAMETERS: (*)= return-parameter/altered var’s **/

/** N: number of inner nodes (without s,t) **/

/** dim: dimension of lattice **/

/** next: gives neighbors next[0..N][0..2*dim+1] **/

/** c: capacities c[0..N][0..2*dim+1] **/

/** (*) f: flow values f[0..N][0..2*dim+1] **/

/** use_flow: 0-> flow set to zero before used. **/

/** **/

/** RETURNS: **/

/** 0 -> OK **/

/*******************************************************/

int mf_dinic1(int N, int dim, int *next, int *c,

int *f, int use_flow)

– Block comments: You should divide each subroutine, unless it is

very short, into several logical blocks. A rule of thumb is that no

block should be longer than the number of lines you can display in

your editor window. Within one or two lines you should explain

what is done in the block. Example:

/* go through all nodes except source s and sink t in */

/* reversed topological order and set capacities */

for(t2=num_nodes-2; t2>0; t2--)

...

– Line comments: They are the lowest level comments. Since you are

using (hopefully) meaningful names for data types, variables and

subroutines, many lines should be self-explanatory. But in case the

meaning is not obvious, you should add a small comment at the end

of a line, for example:

C(t, SOURCE) = cap_s2t[t]; /* restore capacities */

Aligning all comments to the right makes a code easier to read.

Please avoid unnecessary comments like

counter++; /* increase counter */
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or unintelligible comments like

minimize_energy(spin, N, next, 5); /* I try this one */

The line containing C(t, SOURCE) is an example of how to apply a

macro. This subject is covered in Sec. 1.6.

Finally: The author of this book writes module, function and block

comments before he starts to write the corresponding first line of the code.

This forces him to think more clearly about the structure of the program.

You should do the same.

3.3 Version management with subversion

All simulation projects will evolve over time. This is reflected by changes of

documents like design descriptions, program source codes or papers where

the simulation algorithms and results are going to be published. If you are

just one person performing the project, i.e. one author, and if the project is

not very complicated, you can just keep always the “current” files; hence,

you do not perform explicit version management.

Nevertheless, you often need older versions, for example, to compare an

improved algorithm to a previous version. This can happen as well if the

latest version of your program behaves strangely, because you have entered

a little bug in your code. Or, when writing your paper, you can restore a

chapter which has accidentally been deleted.

To handle these cases, you could run your hand-made version man-

agement, for example, by naming your paper files config1v1.jpg,

config1v2.jpg, config1v3.jpg and so on. In many cases, this works fine,

but it is a bit waste of disk space, because each version is stored completely

even if two successive versions differ only slightly.

In case several authors work on a project, hand-made version manage-

ment becomes a bit more complicated. One standard way is to agree that

only one author is allowed to edit each file at a time. One says, the file is

locked by the current author. In practice, this means that you have mutu-

ally to agree who works next on which file. This is not bad, because you

have to communicate anyway a lot to organize a project efficiently. This

means, if an author wants to change a locked file, he has to wait with the

changes until the file is unlocked again. Also, the lock is only virtual, i.e. it

may happen accidentally that two person edit the same file. In this case,

the two authors have to create a new latest version by merging the two
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personal files in some way.

Most of your work when using hand-made version management can be

done automatically by a version control system (VCS). This means, the

VCS stores all versions of the files. Furthermore, the VCS does the version

counting for you. Each author can update at any time his or her local copy

such that he or she has always the latest versions. One can perform changes

to the files and commit the new version to the VCS, such that the other

authors can use them as well. Also, one can obtain any older version or

undo changes at any time.

Here, the subversion tool is presented. It is able to control every project

which consists of a directory in your system. The directory may contain

any types of files, also other directories or subdirectories, i.e. a full directory

tree. This means that subversion is able to control the versions of arbitrary

projects, such as program development, paper writing, or planning of large-

scale birthday parties. Note that subversion does not store the different

revisions completely. To save disk space, only the first version is stored.

For later revisions, only the difference from the previous version is stored,

respectively. Note that the version numbers, called revisions here, are given

to the complete directory tree. This means, even if just one single file is

changed, all files get virtually a new revision number. Internally, subversion

stores by default the files in a repository, which is usually just a directory

as well, containing files in custom file formats. As alternative, one can tell

subversion explicitly to use a Berkeley data base system, but this is slower

than the default manner.

By default, subversion does not perform locking. This means, several

authors can change a file in parallel. Usually, these changes will not conflict

with each other. In this case, subversion will automatically create a new

revision, which contains the changes of all authors. Note that the term

conflict applies only to the level of pure text comparison. Thus, if one

author introduces in one part of the code a data type, which is different from

what another author expects to use in his subroutine written elsewhere,

subversion will not be able to create a working code, although the code will

have no conflicts. If conflicts occur, for example, if two authors change the

same paragraph of a text, then subversion will tell you about the conflict.

Nevertheless, the authors have to resolve the conflict manually, usually by

speaking to each other, which is a good idea anyway. Note that subversion

is also able to lock documents, if the authors ask for this explicitly.

Next, the basic steps of using subversion are explained step by step. It

is assumed that your system administrator has already installed a running

09-Oct- 2014



October 9, 2014 14:51 Big Practical Guide to Computer Simulations book4˙2nd page 109

Software Engineering 109

version. Here, version 1.4 is discussed. Note that subversion is command-

line based, but there exist also graphical front-ends.

To create a new repository, you have to use the program svnadmin

with the command create. You have to specify a directory where the

repository is to be created. Here, it is assumed that the directory

/home/hartmann/svn/ already exists (the commands were issued in the

following example on the computer “Gene”, the user hartmann having the

current directory se):

Gene:se>svnadmin create /home/hartmann/svn/repos1

Then the subdirectory repos1 will be created,2 and initialized as empty

repository. This means, some subdirectories and some files are created

inside repos1.

To actually put something into the repository, you can import a com-

plete directory tree. For this purpose, you use the program svn, which is

the main workhorse of subversion, with the command import. The com-

mand is always the first argument passed to svn. You can use the help

command to learn more about subversion and its commands, for example

svn help import. As arguments for the import, you have to specify the

directory where the files are located, a directory in the repository and a

message via the option -m:

Gene:se>svn import list file:///home/hartmann/svn/repos1/list \

-m "init repository"

Adding list/list_main.c

Adding list/list.h

Adding list/list_remove_element.c

Adding list/list_mergesort.c

Adding list/list.c

Committed revision 1.

To specify the directory inside the repository, one has to use the URL

syntax. Here, since the repository is stored locally, the URL prefix is

file://. For repositories with distributed authors, the system adminis-

trator can activate remote access (see below). In this case, either stan-

dard URLs (http://, https://) or special subversion access (svn://,

svn+ssh://) are feasible. Please have a look at the documentation for

details.

2It may already exist as empty directory, which would be no harm.
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In this example, the files (and all subdirectories recursively) of the direc-

tory list are put into a repository directory, which will be created automat-

ically. Here, the repository directory has the same name as the imported

directory, but they can have different names. It is also possible to specify the

repository without subdirectory (file:///home/hartmann/svn/repos1/).

On the other hand, you can also specify a longer pathname if necessary. All

directories and subdirectories in the repository are automatically created,

if they do not exist. When directly listing the content of a repository using

standard operating system commands, you will not be able to see the files

or directories you have put in. They are stored internally.

Note that if you do not specify the -m option, subversion will call an

editor, where you have to enter a message.

An import command is issued only once for each top-level repository

directory. For later changes you have to use the commands commit, add,

or remove, see below. Remember always that all files and subdirectories of

the given directory are imported. Hence, you should have a clean directory,

when you perform an import. For a programming project, for example,

this means there should be no object files .o or auxiliary files present.

With the list command, you can view the content of the repository or

of subdirectories. Each time only one directory level is shown:3

Gene:se>svn list file:///home/hartmann/svn/repos1/

list/

Gene:se>svn list file:///home/hartmann/svn/repos1/list

list.c

list.h

list_main.c

list_mergesort.c

list_remove_element.c

Before you start editing some files the first time, you should first check-
out the current revision of the project to create a working copy. This starts
a so-called working cycle. This is done using the checkout command. As
second argument, again the URL of the repository path has to be specified:

Gene:listtest>svn checkout file:///home/hartmann/svn/repos1/list

A list/list_main.c

A list/list.h

A list/list_remove_element.c

A list/list_mergesort.c

A list/list.c

Checked out revision 1.

3Unless you use the option -R.
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This will create a subdirectory in the current directory (listtest here),

which contains the files (and possible other subdirectories recursively) con-

tained in the given repository directory. Note that it is also possible to

check out just subdirectories. Hence, if list contained a subdirectory

docs, you could specify file:///home/hartmann/svn/repos1/list/docs

as well. By default, subversion uses the base name as the name of the

directory which is created; in this case, the subdirectory list/docs would

be created. Also, one can give a third optional argument which specifies

the path of the directory or directories being checked out; hence, specifying

ldocs as forth argument would put all repository files and directories of

list/docs into ./ldocs. Please read the online help (svn help checkout)

for more information.

In addition to copying the regular files from the repository, subversion

will create a subdirectory .svn in all directories which are checked out.

These directories contain all system information needed by subversion to

administrate the working files. Please do not remove or edit the files in

these directories.

You can check out any directory or subdirectory of the repository as

often as you like. This means, you can have many working versions in

parallel (if you do not get confused by this).

Now you may edit some files (say after changing the directory to list).

This is done using the emacs editor here. Editing and other operations

change the status of a file, which can be inspected using the subversion

command status. You can perform these operations locally, which means

that you do not have to enter the repository URL:

Gene:list>emacs list_main.c

Gene:list>svn status

M list_main.c

The letter ‘M’ indicates that the file is modified. Other important status

values are ‘A’ for a file or directory which has been added using svn add

or copied using svn copy, ‘D’ for a file or directory which has been deleted

using svn delete. If you use svn move, the old file or directory will be

deleted and the new one created. Do never use operating system commands

like rm or mv to remove files which are under control of subversion, because

this would mess up the whole VCS. Finally, the status ’?’ is used for files

or directories which are not under the control of subversion.
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Once you are finished editing your files, you should finish a working cycle

by committing the files back to the repository using the commit command.

Again a message has to be passed, either via the option -m or interactively:

Gene:list>svn commit -m "exchange two main parts"

Sending list_main.c

Transmitting file data .

Committed revision 2.

After the committing process is finished, subversion tells you that this has

created a new revision, revision 2 in this case.

By default, other authors are not informed about the new revision. But

it is possible to use hooks. Hooks are Unix shell scripts (see Sec. 2.2) made

known to subversion. They are run either before or after a subversion

command is performed. These scripts are placed in the hook subdirectory

of your repository. By default, there are no active scripts, but the directory

contains some inactive template scripts, which can be used to implement

your own hooks. For example, you may want a mail is to be sent to all

authors informing them about the latest commit.

You can see the differences between the last updated revision and the

files in your working directory using then command diff. Say, you perform

further changes to list:main.c, then you get:

Gene:list>svn diff

Index: list_main.c

===================================================================

--- list_main.c (revision 2)

+++ list_main.c (working copy)

@@ -35,11 +35,11 @@

list = insert_element(list, elem2, elem);

print_list(list);

- /*list = mergesort_list(list);

+ list = mergesort_list(list);

printf("sort list\n");

- print_list(list);*/

+ print_list(list);

- printf("delete 6:\n");

+ /*printf("delete 6:\n");

elem = search_info(list, 6);
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list = remove_element(list, elem);

delete_element(elem);

@@ -49,7 +49,7 @@

elem = list;

list = remove_element(list, elem);

delete_element(elem);

- print_list(list);

+ print_list(list);*/

return(0);

}

The output is in diff format. The lines of the old revision are marked by

‘-’ symbols, the lines of the working copy by ‘+’ symbols. Line numbers

(where each block of empty lines is counted as one line) are given after the

@@ symbols. For convenience, also some lines are shown which have not

been changed.

If other authors performed changes to project files in the meantime,

you can get the latest revision by entering svn update (having the working

directory as current directory). This will update all files in your current

working directory to the latest revision. It is possible that some files in

the repository were changed which you have changed as well. In this case,

subversion will automatically merge the file from the latest revision with

the working file, if no conflicts from contradicting changes to the same text

positions arise. You must perform an update, before you can commit a file

which has been changed in the repository in the meantime:

Gene:list>svn commit -m "element 8"

Sending list_main.c

svn: Commit failed (details follow):

svn: Out of date: ’/list/list_main.c’ in transaction ’3-1’

This shows that you are forced to perform an update. If no conflict

arises, everything will be fine. If a conflict arises, in some versions of sub-

version you have the opportunity to resolve the conflicts interactively. We

consider the most general case, where you resolve the conflicts “by hand”

(which is the default in our example):

Gene:list>svn update

C list_main.c

Gene:list>ls list_main.c*

list_main.c list_main.c.mine list_main.c.r2 list_main.c.r3
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Suppose that your changes are based on revision 2 (.r2), while the

latest revsion is .r3. In this case, the update has created four files:

list_main.c.r2 contains the revision your changes are based on, while

list_main.c.r3 contains the latest revision. The file list_main.c.mine

contains your working file which was named list_main.c, before the up-

date was performed. Finally, list_main.c now contains a “mix” of your

working file and the latest revision. The parts where conflicts have been

found are indicated between extra lines of the form

<<<<<<< .mine

〈text of your working file〉
=======

〈text of the latest reversion〉
>>>>>>> .r3

Now you can edit the file list_main.c and create a consistent version.

Usually, you have to speak to the author of the latest revision to resolve

the conflicts most efficiently and to satisfy all authors. In the resulting

file all auxiliary lines containing <<<<<<<, ======= and >>>>>>> should

be removed. Then you have to tell subversion that you have resolved the

conflicts using the resolved command. This will remove all auxiliary files.

Then you can commit:

Gene:list>emacs list_main.c

Gene:list>svn resolved list_main.c

Resolved conflicted state of ’list_main.c’

Gene:list>ls

list.c list.h list_main.c list_mergesort.c list_remove_element.c

Gene:list>svn commit -m "element 8"

Sending list_main.c

Transmitting file data .

Committed revision 4.

You can have a look at the past revision history using the command

log. Also the messages describing the changes are shown, for example:
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Gene:list>svn log

---------------------------------------------------------------------

r3 | hartmann | 2008-11-08 13:00:29 +0100 (Sa, 08 Nov 2008) | 1 line

element 7

---------------------------------------------------------------------

r2 | hartmann | 2008-11-08 12:48:05 +0100 (Sa, 08 Nov 2008) | 1 line

exchange two main parts

---------------------------------------------------------------------

r1 | hartmann | 2008-11-08 12:38:47 +0100 (Sa, 08 Nov 2008) | 1 line

init

---------------------------------------------------------------------

So far, all examples were for the case of one author or, if the access

rights for the repository are set accordingly, also for several authors. In

any case, the repository is accessed only locally.

Often, people from different places cooperate in a project. In this case,

one must have access to the repository across the web. For the web ac-

cess, your local system administrator has to install a server. There are

currently two possibilities. The first one is to use svnserve, which is very

fast. Practically, when setting up a repository, you have usually to use a

special directory as parent directory; please ask your system administrator.

After creating your repository, you should create or change the passwd file

in the conf subdirectory of your repository, e.g.

[users]

alex = project1

bernd = project2

stefan = project3

This creates three “users” (not to be confused with the normal user accounts

on your system) for the repository, which have the passwords project1,

project2 and project3, respectively. Note that the passwords are not

encrypted; hence, you should not use very secret passwords for this purpose.

Furthermore, in the svnserve.conf file in the same conf subdirectory,

you have to uncomment the following lines (i.e. remove the ’#’ symbol in

front of them):
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[general]

auth-access = write

password-db = passwd

realm = This repository contains ...

The first line contains a tag, the second states that only authenticated

users have write access to the repository, i.e. only they can commit files.

The third line states the password file as entered above. The fourth line

should describe your repository. Here, you should put a meaningful short

description, which will be shown when logging in. When using svnserve,

you should use URLs starting with svn:// for the commands instead of

URLs beginning with file:// as above, for example for the commands

checkout or list:

svn checkout svn://svn.physik.uni-oldenburg.de/hartmann/repos1

All commands, where no URL is passed as argument, such as update and

commit, work like in the single-user case.

Another access method to subversion repositories is based on the Apache

server, in this case the URLs will begin with the standard http:// prefix.

Details about the server configuration with Apache, also more information

for the svnserve case, can be found in the documentation [SVN].
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Chapter 4

Debugging and Testing

In Chap. 3, the importance of thorough testing has already been stressed.

Here, four useful tools are presented which significantly assist in the de-

bugging process. Please note again that the tools run under UNIX/Linux

operating systems. Similar programs are available for other operating sys-

tems as well. The tools covered here are gdb, a source-code debugger, ddd ,

a graphic front-end to gdb, valgrind , which finds bugs resulting from bad

memory management, and finally gprof, which assists in finding running-

time consuming parts of your program.

4.1 gdb

The gdb gnu debugger tool is a source code debugger . Using gdb you can

watch the execution of your code “live”. You can stop the program at

arbitrarily chosen points by setting breakpoints at any lines or subroutines

in the source code, inspect variables/data structures, change them and let

the program continue (e.g. line by line). Here, some examples for the most

basic operations are given, detailed instructions can be obtained within the

program via the help command.

GET SOURCE CODE

DIR: debugging
FILE(S): gdbtest.c

As an example of how to debug, please con-

sider a program with the following little main()

function. The program does not do anything re-

ally meaningful, it just allocates an array, fills

it with numbers, calculates the sum of the number and prints the sum:

117

09-Oct- 2014



October 9, 2014 14:51 Big Practical Guide to Computer Simulations book4˙2nd page 118

118 Big Practical Guide to Computer Simulations

int main(int argc, char *argv[])26

{27

int t, *array, sum = 0;28

29

array = (int *) malloc (100*sizeof(int));30

for(t=0; t<100; t++)31

array[t] = t;32

for(t=0; t<100; t++)33

sum += array[t];34

printf("sum= %d\n", sum);35

free(array);36

return(0);37

}38

When compiling the code you have to include the option -g to allow

debugging:

cc -o gdbtest -g gdbtest.c

The debugger is invoked using gdb 〈program name〉, i.e.

gdb gdbtest

Now you can enter commands in textual form. It is very useful to list

the source code of the program via the list command, it is sufficient to

enter just l. By default always ten lines around the current position are

printed. Therefore, at the beginning, ten lines near the beginning of main()

are shown1 (the line with (gdb) shows the input, the other lines state the

answer of the debugger):

(gdb) l

19

20 for (t=0; t<n; t++)

21 sum += array[t];

22 return(sum);

23 }

24

25

26 int main(int argc, char *argv[])

27 {

28 int t, *array, sum = 0;

(gdb)

1At the top you see some lines of another function of the program, which is discussed
below.
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When entering the command l again, the next ten lines are listed. Fur-

thermore, you can refer to program lines of the code in the form list

〈from〉, 〈to〉 or to functions by typing list 〈name of function〉. More in-

formation can be obtained by typing help list.

To let the execution stop at a specific line, one can use the break com-

mand (abbreviation b). To stop the program before line 33 is executed, you

enter

(gdb) b 33

Breakpoint 1 at 0x8048443: file gdbtest.c, line 33.

One can also give the name of a function when specifying a breakpoint, see

help break. Breakpoints can be removed via the delete command. All

current breakpoints are displayed by entering info break.

To start the execution of the program, you enter run or just r. Note

that in case your program requires some arguments, you can set them via

set args 〈argument list〉.
As requested before, the program will stop at line 33:

gdb) r

Starting program: /home/hartmann/book4/programs/debugging/gdbtest 100

Breakpoint 1, main (argc=2, argv=0xbfdfcc94) at gdbtest.c:33

33 for(t=0; t<100; t++)

Now you can inspect, for example, the content of variables via the print

(or just p) command:

(gdb) p array

$1 = (int *) 0x8049680

(gdb) p array[99]

$2 = 99

To display the content of a variable permanently, the display command

is available. You can change the content of variables via the set command

(gdb) set array[99]=98

You can continue the program at each stage by typing next (or just n),

then just the next source-code line is executed:

(gdb) n

34 sum += array[t];
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Functions are regarded as one source-code line as well. If you want to

debug the function in a step-wise manner as well, you have to enter the

step command before the call to the function is performed. By entering

continue, the execution is continued until the next breakpoint is encoun-

tered. Also a severe error or the end of the program will stop the execution.

Please note that the output of the program being debugged appears in the

gdb window as well:

(gdb) c

Continuing.

sum= 4949

Program exited normally.

As you can see, the final value (4949) the program prints is affected by

the change of the variable array[99].

Very useful is the possibility to include conditions with breakpoints. In

this case, the breakpoint will come into action only if the condition is true.

This is useful, for example, if one wants to inspect the state of the simulation

after a certain, possibly large, number of iterations have been performed.

This can be done using the command condition. The command can be

applied to breakpoints which have already been defined. One must supply

the break point number and the condition. For example:

(gdb) delete 1

(gdb) b 34

Breakpoint 2 at 0x8048477: file gdbtest.c, line 34.

(gdb) condition 2 (t==50)

(gdb) r

Starting program: /home/hartmann/book4/programs/debugging/gdbtest

Breakpoint 2, main (argc=1, argv=0xbff8fe34) at gdbtest.c:34

34 sum += array[t];

(gdb) print t

$1 = 50

In case you are dealing with complex data structures, which is likely

if your simulation program evolves over some time, printing the state of

your objects using many applications of the print command is not very

efficient. For this case, you should implement in the C code of your simula-

tion program separate functions, which print program objects completely.

Whenever the debugger has stopped, after a breakpoint or when using the
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step command, you can call any function included in your program with

the call command. Here, this is illustrated with a simple checksum func-

tion, which does in this case the same as the above main() program. Such

a function can be useful in case you want to check quickly, whether the

value of a variable in an array has been changed:

int chksum(int n, int *array)

{

int sum=0, t;

for (t=0; t<n; t++)

sum += array[t];

return(sum);

}

For our example, the call could be performed as follows:

(gdb) call chksum(100, array)

$2 = 4950

GET SOURCE CODE

DIR: algorithms
FILE(S): list error.c

Debugging is in particular useful when

pointers are involved. Here, we consider the ex-

ample of a linear list, which is a sequence of el-

ements connected by pointers. The actual data

structure is presented in Sec. 6.6. We assume that a list consisting of ele-

ments 3 5 7 10 6 has been built up, but for some reason, the connection

is broken after the second element, see Fig. 4.1.

5 7
list

3 610

Fig. 4.1 A list consisting of five elements containing the integer numbers 3, 5, 7, 10
and 6. The list is represented by a pointer list which points to the first element. Each
element contains a pointer to its successor (represented by arrows in the figure), except

the last element, which contains a NULL pointer, represented by a filled circle. Due to
a bug in the program, the connection to the successor of the second element is lost.

When now the program attempts to insert a new element after the third

element, it will not work, see list error.c. We now use the debugger to

investigate the situation. For this purpose, a break point will be set in

the main program, just before the corresponding function is called, and the

program is started:

break 42
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Breakpoint 1 at 0x4007c0: file list_error.c, line 42.

(gdb) run

Starting program: list_error

Breakpoint 1, main (argc=1, argv=0x7fffffffdcf8) at list_error.c:42

42 list = insert_element(list, elem3, elem2);

Now, for example, the content of the variable list can be examined:

(gdb) print list

$1 = (elem_t *) 0x601030

This information is not particularly useful. When using pointers, it is better

to look at the content of the memory the pointer points to:

(gdb) print *list

$2 = {info = 3, next = 0x601010}

You can even go the the next (or further away elements), via the next field

of the element:

(gdb) print *list->next

$3 = {info = 5, next = 0x0}

Here, you can see that the list does not continue, thus you know better for

which bug you have to look for. Note, as mentioned before, it is very useful

when your program contains functions to print complex data structures,

which you can use within gdb, e.g.

(gdb) call print_list(list)

3 5

Almost any type of information about the debugged program can be

obtained using the info commands, which was already introduced above to

show the breakpoints (info break). For example, info registers shows

the contents of all integer registers of the processor, while info float

does the same for floating point registers. The command info variables

display a long list of all know symbols, info types a list of all types and

info program shows the current state of the execution. There are many

more info commands, see help info.

The commands explained in this section are sufficient for most of the

standard debugging tasks. Note that gdb offers many special commands,

please have a look at the documentation [Loukides and Oram (1996)].
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4.2 ddd

Some users may find graphical user interfaces more convenient. For this

reason there exists a graphical front-end to the gdb, the data display de-

bugger (ddd). On UNIX operating systems it is just invoked by typing ddd

(see also man page for options). Then a nice windows pops up, see Fig.

4.2. The lower part of the window is an ordinary gdb interface, several other

windows are available. By typing file <program> you can load a program

into the debugger. Then the source code is shown in the main window of

the debugger. All gdb commands are available, the most important ones

can be entered via menus or buttons using the mouse. For example, to set

a breakpoint it is sufficient to place the cursor in a source-code line in the

main ddd window and click on the break button. A good feature is that the

content of a variable is shown when moving the mouse onto it. For more

details, please consult the online help of ddd.

Fig. 4.2 The data display debugger (ddd). In the main window the source code is shown.
Commands can be invoked via a mouse or by entering them into the lower part of the
window.
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4.3 Memory checker

Most program bugs are revealed by systematically running the program and

cross-checking with the expected results. But other errors seem to appear

in a rather irregular and unpredictable fashion. Sometimes a program runs

without a problem, in other cases it crashes with a Segmentation fault

at rather puzzling locations in the code. Very often a bad memory manage-

ment is the cause of such a behavior. Writing beyond the boundaries of an

array, reading uninitialized memory locations or addressing data which has

been freed already, are the most common bugs of this class. Since the oper-

ating system organizes the memory in a different way each time a program

is run, it is rather unpredictable whether these errors become apparent or

not. Furthermore, it is very hard to track them down, because the effect of

such errors becomes visible most of the time at program locations different

from where the error has occurred.

As an example, we consider the case where the program writes beyond

the boundary of an array. This array is stored in the memory area called

heap,2 where all allocated memory is taken from. If at the location behind

the array another variable is stored, it may be overwritten in this case.

Hence, the error becomes visible the next time the other variable is read.

On the other hand, if the memory block behind the array is not used,

the program may run without any problems this time. Unfortunately, the

programmer is not able to influence the memory management directly.

To detect such types of nasty bugs, one can take advantage of memory

checkers. Here, valgrind is considered, which is a very convenient tool

and freely available. It works under UNIX and is included by just writing

valgrind in front of the calling sequence of your program. No special

compile commands or libraries are necessary. You can even debug standard

programs like ls, try valgrind ls.

GET SOURCE CODE

DIR: debugging
FILE(S): memerror1.c

As an example, the program from Sec. 4.1 is

considered, which is modified a bit; the memory

block allocated for the array is now slightly too

short (length 99 instead of 100):

#include <stdio.h>1

#include <stdlib.h>2

3

2Not to be confused with the data structure heap introduced in Sec. 6.7.1.
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int main(int argc, char *argv[])4

{5

int t, *array, sum = 0;6

7

array = (int *) malloc (99*sizeof(int));8

for(t=0; t<100; t++)9

array[t] = t;10

for(t=0; t<100; t++)11

sum += array[t];12

printf("sum= %d\n", sum);13

free(array);14

return(0);15

}16

The program is compiled via

cc -o memerror1 memerror1.c -g

We have compiled including -g, because the memory checker shall tell us

where the bug appears and, in a second run, we want to transfer the control

to the debugger automatically, if a bug appears.

Starting the program produces the following output, the program ter-

minates normally:

sum= 4950

The result is correct, everything seems to be fine. Nevertheless, the array

was used beyond its allocated regime. This can be seen by invoking valgrind

in addition to the program:

[hartmann@comphy01 debugging]$ valgrind memerror11

Memcheck, a memory error detector.2

Copyright (C) 2002-2005, and GNU GPL’d, by Julian Seward et al.3

Using LibVEX rev 1575, a library for dynamic binary translation.4

Copyright (C) 2004-2005, and GNU GPL’d, by OpenWorks LLP.5

Using valgrind-3.1.1, a dynamic binary instrumentation framework.6

Copyright (C) 2000-2005, and GNU GPL’d, by Julian Seward et al.7

For more details, rerun with: -v8

9

Invalid write of size 410

at 0x8048423: main (memerror1.c:10)11

Address 0x402A1B4 is 0 bytes after a block of size 396 alloc’d12

at 0x4004405: malloc (vg_replace_malloc.c:149)13

by 0x80483FF: main (memerror1.c:8)14

15

09-Oct- 2014



October 9, 2014 14:51 Big Practical Guide to Computer Simulations book4˙2nd page 126

126 Big Practical Guide to Computer Simulations

Invalid read of size 416

at 0x8048447: main (memerror1.c:12)17

Address 0x402A1B4 is 0 bytes after a block of size 396 alloc’d18

at 0x4004405: malloc (vg_replace_malloc.c:149)19

by 0x80483FF: main (memerror1.c:8)20

sum= 495021

22

ERROR SUMMARY: 2 errors from 2 contexts (suppressed: 13 from 1)23

malloc/free: in use at exit: 0 bytes in 0 blocks.24

malloc/free: 1 allocs, 1 frees, 396 bytes allocated.25

For counts of detected errors, rerun with: -v26

All heap blocks were freed -- no leaks are possible.27

[hartmann@comphy01 debugging]$28

Also the actual output of the program is printed (line 21 of the out-

put). All other lines are generated by valgrind. Note that the first

column shows always the ID (here ==16314==) of the process, which is

omitted here to fit the output into the page. Two errors are reported,

Invalid write of size 4 (line 10–14) and Invalid read of size 4

(line 16–20). Both errors consist of accesses to an array beyond the border.

For each error both the location in the source code where the memory has

been allocated (memerror1.c:8) and the location where the error occurred

(memerror1.c:10 and memerror1.c:12) are given. In the end (line 23-27

of the output) valgrind gives a summary of the errors.

A very convenient option of valgrind is that one can tell it to transfer the

control to the debugger once an error is detected. The debugger will show

the program in the state of the execution, where valgrind just detected

the error. This works by using the option --db-attach=yes. Once the

execution reaches the error point, valgrind will ask you whether you really

want to start the debugger. In the following example, ’y’+〈RETURN〉 was

hit when the first error was encountered (line 16):

[hartmann@comphy01 debugging]$ valgrind --db-attach=yes memerror11

Memcheck, a memory error detector.2

Copyright (C) 2002-2005, and GNU GPL’d, by Julian Seward et al.3

Using LibVEX rev 1575, a library for dynamic binary translation.4

Copyright (C) 2004-2005, and GNU GPL’d, by OpenWorks LLP.5

Using valgrind-3.1.1, a dynamic binary instrumentation framework.6

Copyright (C) 2000-2005, and GNU GPL’d, by Julian Seward et al.7

For more details, rerun with: -v8

9

Invalid write of size 410

at 0x8048423: main (memerror1.c:10)11
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Address 0x402A1B4 is 0 bytes after a block of size 396 alloc’d12

at 0x4004405: malloc (vg_replace_malloc.c:149)13

by 0x80483FF: main (memerror1.c:8)14

15

---- Attach to debugger ? --- [Return/N/n/Y/y/C/c] ---- y16

starting debugger17

starting debugger18

GNU gdb Red Hat Linux (6.3.0.0-1.132.EL4rh)19

Copyright 2004 Free Software Foundation, Inc.20

This GDB was configured as "i386-redhat-linux-gnu"...21

22

Attaching to program: /proc/16405/fd/1014, process 1640523

0x08048423 in main (argc=1, argv=0xbec1a684) at memerror1.c:1024

10 array[t] = t;25

(gdb) print t26

$1 = 9927

(gdb) quit28

The program is running. Quit anyway (and detach it)? (y or n) y29

Detaching from program: /proc/16405/fd/1014, process 1640530

31

Debugger has detached. Valgrind regains control. We continue.32

33

Invalid read of size 434

at 0x8048447: main (memerror1.c:12)35

Address 0x402A1B4 is 0 bytes after a block of size 396 alloc’d36

at 0x4004405: malloc (vg_replace_malloc.c:149)37

by 0x80483FF: main (memerror1.c:8)38

39

---- Attach to debugger ? --- [Return/N/n/Y/y/C/c] ---- n40

After the second error was encountered ‘n’+〈RETURN〉 was hit, and valgrind

terminated as above (not shown here).

Other common types of errors are memory leaks. They appear when

a previously used block of memory has been forgotten to be freed again.

Assume that this happens in a function which is called frequently in a pro-

gram. You can imagine that you will quickly run out of memory. This kind

of errors are detected by valgrind as well. In the above example, no memory

leak is present, as visible by lines 24–27 of the first example, culminating

in All heap blocks were freed -- no leaks are possible.
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GET SOURCE CODE

DIR: debugging
FILE(S): memerror2.c

Let us assume that the bug from above is re-

moved and instead the free(array) command

at the end of the program is omitted. After

compiling and running the program again un-

der valgrind, one obtains in the final part of the valgrind output

[hartmann@comphy01 debugging]$ valgrind --db-attach=yes memerror1

.....

searching for pointers to 1 not-freed blocks.

checked 51,748 bytes.

LEAK SUMMARY:

definitely lost: 400 bytes in 1 blocks.

possibly lost: 0 bytes in 0 blocks.

still reachable: 0 bytes in 0 blocks.

suppressed: 0 bytes in 0 blocks.

Use --leak-check=full to see details of leaked memory.

[hartmann@comphy01 debugging]$

Obviously, the memory leak has been found. You will obtain more infor-

mation on the valgrind options using valgrind -h. Complete instructions

are given at Ref. [valgrind].

A last advice: you should always (!) test a program with a memory

checker, even if everything seems to be fine. The reason is that many mem-

ory faults occur only occasionally, depending on the actual circumstances

of the run, such as memory usage. A memory checker on the other hand

detects memory faults always, even if the program seems to run fine.

4.4 Profiling with gprof

If one wants to speed up a simulation, it is useful to analyze the run-time

behavior of the program. The simplest way to do this is to measure the

total running time, for instance for different problem sizes. This can be

done easily under UNIX using the time command which can be followed

by any other call of a program plus its arguments, e.g. the invocation of a

simulation. After the execution is finished, time will report by default the

total elapsed time (in seconds), the CPU time used by the process created

by the command as well as the CPU time used by the operating system. In

particular, if many processes are running in parallel, the total elapsed time

might be much longer than the CPU time just consumed by the process of
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interest. Note that time (gnu version) may output some other non-timing-

related information about a process, e.g. the amount of memory used and

number of file I/O operations. These and many other output options can

be specified via the -f option followed by a format string, which is given

in a very similar format like the printf format string. More details can be

found in the man page.

Although the overall timing behavior is already interesting, it is even

better to know where a program spends most of its CPU time. This allows

the program optimization effort to be concentrated on the most crucial parts

of a program. To identify these parts, a profiler can be used. It basically

measures for each function how much CPU time is spent there. Note that

valgrind, which is presented in Sec. 4.3, is also capable of profiling. Here,

the gprof tool is explained.

GET SOURCE CODE

DIR: debugging
FILE(S): gproftest.c

To understand how gprof operates, the fol-

lowing simple and short program is consid-

ered. It calculates for an array of num-

bers a[0]...a[n-1] two matrices sum[][] and

prod[][] where sum[i][j] contains
∑j

k=ia[k] and prod[i][j] contains∏j
k=ia[k]. Note that this is achieved here in a very time-consuming way,

just because we want to have an interesting analysis for gprof while keep-

ing the example program short.3 The program consists of two functions

calc_sum() and calc_prod(), which do the main work. Both functions

take as arguments the array of numbers and two indices which identify the

subsequence for which the return value is calculated. Both functions return

the calculated value. The C source code of the functions is as follows

3For an efficient calculation of sums and products of subsequences one should use a
dynamic programming approach, see Sec. 6.4.
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double calc_sum(double *a, int i, int j)1

{2

int t; double sum= 0.0;3

for(t=i; t<=j ; t++)4

sum += a[t];5

return(sum);6

}7

8

double calc_prod(double *a, int i, int j)9

{10

int t; double prod= 1.0;11

for(t=i; t<=j ; t++)12

prod *= a[t];13

return(prod);14

}15

The main work, to calculate all entries of the matrices sum[][] and

prod[][], is done by the function all1(), which reads as follows

void all1(int n, double *a, double **sum, double **prod)1

{2

int i, j;3

4

for(i=0; i<n; i++)5

for(j=i; j<n; j++)6

{7

sum[i][j] = calc_sum(a, i, j);8

prod[i][j] = calc_prod(a, i, j);9

}10

}11

The main program is assumed to read in the size n of the array, to

initialize the array, to print the sums
∑j

k=0a[k] in advance and then call

all1(). Thus, it contains the following three lines

for(t=0; t<n; t++)

printf("%f\n", calc_sum(a,0,t));

all1(n, a, sum, prod);

To enable profiling, one has to use the option -pg when compiling. All
necessary libraries will be linked automatically. Assuming that the test
program is named gproftest.c, one can compile it via

gcc -o gproftest gproftest.c -pg
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Now the program can be run as usual, passing n as argument. In ad-

dition to the normal output, it will generate a profile file gmon.out, which

contains the run-time statistics of the execution. If you want a different

profile file name (for example, when collecting several profiles) you can

rename the file after the execution of program is finished. The run-time

overhead generated by the analysis is usually hardly measurable.

A human-readable analysis of the running time can be obtained by

calling gprof with the name of the executable as first argument (a.out by

default) and the name of the profile file as second argument (gmon.out by

default). gprof allows for several options, which are not needed for the basic

functionality. Information about the options can be obtained by reading the

man page of gprof, i.e. via man gprof on UNIX systems. For the example

program shown above, one obtains an analysis of the running times via

gprof gproftest gmon.out

The analysis of the running times is written to stdout. The head of
the default output looks as follows (for running the program with the size
of the array set to n=1000):

Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self self total

time seconds seconds calls s/call s/call name

93.16 24.59 24.59 500500 0.00 0.00 calc_prod

6.74 26.36 1.78 501500 0.00 0.00 calc_sum

0.09 26.39 0.03 1 0.03 26.39 all1

The “flat profile” (shown by default, or when using the option -p, sup-

pressed by -P or --no-flat-profile) basically states for each function,

listed in the last column (name), how much running time it consumes. The

first column (% time) states which percentage of the total running time is

spent in the function, while the third column (self seconds) contains the

running time measured in seconds consumed by the function. Note that

this number does not contain the running times used by calls to other func-

tions from this function, i.e. to descendants. The flat profile table is sorted

according to the third column. The second column (cumulative seconds)

contains the cumulative running times as obtained from the third column.

In the fourth column (calls), the number of times each function is invoked

is given. In the above example, the number of calls to calc_prof() and

calc_sum() are almost the same (calc_sum() exhibits some extra calls in
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the main program), but the running time spent in calc_prod() (15.08s)

is much larger than the time spent in calc_sum() (1.15s). The reason is

that calculating the product of two numbers takes more CPU cycles than

calculating the sum. The fifth column (self s/call) contains the average

number of seconds per call to a function, i.e. the value of the third column

divided by the value in the fourth column. The six column (total s/call)

states the average time spent in a function including its descendants. For

this reason, since all1() contains basically all calls to calc_sum() and

calc_prod(), the value for all1() contains almost the full running time.

The output of gprof contains, after the flat profile, a short explanation

of the different columns, equivalent to what was just explained. This can

be suppressed by using the options -b or --brief.

Next, the output contains the call graph (by default, or when using -q

or --graph, suppressed by -Q or --no-graph). This part of the output lists

for each function from which functions it was called and which functions it

calls itself. For our example, the output looks as follows:

Call graph

index % time self children called name

<spontaneous>

[1] 100.0 0.00 26.39 main [1]

0.03 26.36 1/1 all1 [2]

0.00 0.00 1000/501500 calc_sum [4]

-----------------------------------------------

0.03 26.36 1/1 main [1]

[2] 100.0 0.03 26.36 1 all1 [2]

24.59 0.00 500500/500500 calc_prod [3]

1.78 0.00 500500/501500 calc_sum [4]

-----------------------------------------------

24.59 0.00 500500/500500 all1 [2]

[3] 93.2 24.59 0.00 500500 calc_prod [3]

-----------------------------------------------

0.00 0.00 1000/501500 main [1]

1.78 0.00 500500/501500 all1 [2]

[4] 6.7 1.78 0.00 501500 calc_sum [4]

-----------------------------------------------

Index by function name

[2] all1 [3] calc_prod [4] calc_sum
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Each of the nodes, separated by horizontal lines, is for one current func-

tion. The functions are identified by index numbers given in the first col-

umn. These index numbers are also written in brackets next to the function

names in the sixth column and also summarized at the end of the output.

Each node may consist of several lines. First come the functions which call

the current function, i.e. its parents. For main() (index [1] here), which is

not called by any function, <spontaneous> is written in this case. Then,

for each node, comes a line for the current function (the name being in-

dented to the left in the name column) and finally lines for all functions

which are directly called by the current function, i.e. its children. This can

be translated into a directed graph (see Sec. 6.8) where the functions are

represented by nodes and where calls of one function to another are repre-

sented by directed edges. The resulting graph for the example program is

shown in Fig. 4.3.

main()

all1()

calc_sum() calc_prod()

Fig. 4.3 Call graph of the above sample program. Nodes represent functions and each
directed edge represents a call of one function to another.

The second column of each entry states the fraction of the total running

time which is spent in the current function including all calls to descendants.

In the above example, all running time is spent in main() and its children,

i.e. 100 %. For each function, the third column (self) lists the running

time spent inside the function, while the fourth column (children) states

the total running time for calls to all children. Thus, for main(), the self

contribution is zero within the given accuracy and all time is spent for calls

to children. In the line corresponding to the current function, the fifth

column (called) gives the total number ntot of times the function is called

during the execution of the program without recursive calls (see below). For

each parent the format of the fifth column is different. Here, it states how

often the current function was called by this parent and, after the slash /,

09-Oct- 2014



October 9, 2014 14:51 Big Practical Guide to Computer Simulations book4˙2nd page 134

134 Big Practical Guide to Computer Simulations

the value ntot. For each child, the fifth column shows how often the child

is called by the current function, again accompanied by /ntot. As example,

calc_sum() is called 501500 times, this is 1000 times by main() and 50500

times by all1().

Another output form is the annotated listing. It shows the source code of

the program. Next to the first line of each function, the number of times the

function has been called is printed. One has to compile additionally with

the -g option and call gprof with the -A or with the --annotated-source

option. Other output formats of gprof are discussed on its man page.

In case the program contains recursive calls, the output of gprof will

look slightly different. Here, we consider an recursive version of the cal-

culation of the sums, which is again artificially slow compared to dynamic

programming approach. The function reads as follows:

double calc_sum_rec(double *a, int i, int j)1

{2

if(i>=j)3

return(a[i]);4

else5

return(a[i]+calc_sum_rec(a,i+1,j));6

}7

When replacing the calls in main() and all1() to calc_sum() by calls

to calc_sum_rec() and running the program again for n=1000, the result-

ing flat profile will look as follows:

% cumulative self self total

time seconds seconds calls s/call s/call name

84.87 24.24 24.24 500500 0.00 0.00 calc_prod

14.99 28.52 4.28 501500 0.00 0.00 calc_sum_rec

0.14 28.56 0.04 1 0.04 28.55 all1

The running time spent in calc_prod() has basically not changed. Note

that small fluctuations are always observed, even between different runs

of identical programs. The reason is that the running time of a process

depends on the environment. Of particular importance is how often a

memory location can be found in the fast but small on-chip cache memory

and how often the comparable slower main memory has to be accessed.

The running time of calc_sum_rec() is much larger than that of

calc_sum() due to the much higher number of calls generated by the recur-

sion. Note that in column four (calls) only non-recursive calls are listed.
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The effect of the recursion can be seen much better from the call graph,

where the entry for calc_sum_rec() reads as follows:

-----------------------------------------------

167166000 calc_sum_rec [4]

0.01 0.00 1000/501500 main [1]

4.27 0.00 500500/501500 all1 [2]

[4] 15.0 4.28 0.00 501500+167166000 calc_sum_rec [4]

167166000 calc_sum_rec [4]

-----------------------------------------------

The number of recursive calls appears here three times: in the first line,

where calc_sum_rec() is a parent of itself,; in the fourth line where both

the number of non-recursive and of recursive calls (the latter behind the +

symbol) are shown; and in the fifth line, where calc_sum_rec() is shown

as child. For more complex structures of recursive calls like fA() calls fB()

and fB() calls fA(), these numbers might be different for the different

entries.

In some cases, only parts of the program are (fully) profiled. This can

happen, if the final program is linked from several object code files, where

some had not been compiled with the -pg option. Also, one can choose

some functions explicitly to be analyzed. Using (multiple times) the option

-p and/or -q followed by a function name will show only the entries which

involve the listed functions.

Finally, note that you can build in your own timing measurements into

your program. This is useful to measure the timing of some critical part

of your program during all simulations, and including the timing results in

your standard log files. For this purpose, the C standard library function

times can be used, declared in sys/times.h. It measures the time in units

of clock ticks, hence with the highest possible resolution. More information

on the usage of the function can be found in the UNIX man page via typing

“man 2 times” in a shell.
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Chapter 5

Object-oriented Software

Development

In recent years, object-oriented programming languages like C++,

Smalltalk or Eiffel became very popular. These programming languages

are usually used to implement programs which are designed in an object-

oriented way. But, using an object-oriented language and designing a sim-

ulation program in an object-oriented style are not necessarily the same.

For example, you can set up your whole project by applying object-oriented

methods even when using a traditional procedural programming language

like C, Pascal or Fortran. In general, taking an object-oriented viewpoint fa-

cilitates the analysis of problems and the development of suitable programs.

An introduction to object-oriented software development can be found for

example in Refs. [Rumbaugh et al. (1991); Johnsonbaugh and Kalin (1994);

Skansholm (1997)]. In the first section of this chapter, an introduction to

object-oriented concepts is given.

As already mentioned, the implementation of an object-oriented design

is still possible with a procedural language. This is shown in Sec. 5.2, where

histograms (see Sec. 8.3.3) are implemented in C.

In the final section of this chapter, the histograms are implemented

again, but now using C++. This section also serves as an introduction to

C++, which is basically an object-oriented extension of C. Furthermore,

C++ offers templates, which allow to implement algorithms for unspecified,

i.e. arbitrary, data types. This will be covered in another chapter (see Sec.

7.2). In general, the advantage of C++ is that is helps you to organize your

programs in terms of objects, but still you have the flexibility to do it in a

non-object-oriented way as well.

137
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5.1 Object-orientation principles

Here, we start by explaining the main principles of object-oriented design

and programming.

• Objects and methods

The real world is made of objects such as traffic-lights, books or com-

puters. According to some criteria, you can classify different objects

into classes . This means, different types of chairs belong to the class

“chair”. The objects of many classes can have internal states. For in-

stance, a traffic-light can be red, yellow or green. This is very simple.

But there are much more complex objects; for example the state of a

living cell is much more difficult to describe. To cope with this complex-

ity, one often uses a hierarchical description, which is explained below

under the item inheritance.

Furthermore, objects are not existing in isolation. Other objects inter-

act via operations with an object, i.e. it is possible to access the objects.

For example, you (belonging to the class “human”) can read the state

of a traffic light, some central computer may set the state of a traffic

light or even switch it off, or a car may hit the traffic light such that it

is “deleted”.

Similar to the real world, you can have objects in simulation programs

as well. The internal state of an object is given by the values of the

variables describing the object, called data members in C++. An ex-

ample is shown in Fig. 5.1. Also it is possible to access the objects or

to interact with them by calling subroutines (called methods in general,

in C++ also called member functions) associated with the objects.

Objects and the related methods are seen as coherent units. This means

you define, when using an object-oriented language, within one class

definition the way the objects look, i.e. the data structures, together

with the methods which access/alter the content of the objects. The

syntax of the class definition depends on the programming language

you use. Examples are shown in Sec. 5.3.

When you take the viewpoint of a pure object-oriented programmer,

then all programs can be organized as collections of objects which call

methods of each other. This is derived from the structure the real

world has: It is a large set of interacting objects. But for writing

good programs it is as in real life, taking an orthodox position im-

poses too many restrictions. You should take the best of both worlds,
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Fig. 5.1 An example for objects. There are objects of different type, here “atoms”,
“containers” and solvent “water”. Each object has internal states or variables and inter-
acts with the other objects via defined access interfaces. For example, in a simulation of
proteins dissolved in water, an atom has a position and a velocity, which are influenced
via forces from other atoms, the solvent and the container.

the object-oriented and the procedural world, depending on the actual

problem. In modern programming, usually only the basic functionality

is implemented as methods, while many algorithms are implemented

via standard subroutines.

• Data capsuling

When using a computer, you do not care about the implementation.

When you press a key on the keyboard, you would like to see the result

on the screen. You are not interested in how the key converts your

keystroke into an electrical signal, how this signal is sent to the input

ports of the chips, how the algorithm treats the signal and so on.

Similarly, a main principle of object-oriented programming is to hide the

actual implementation of the objects. Access to them is only allowed

via given interfaces, i.e. via methods. The internal data structures are

hidden, this is called private in C++. The data capsuling has several

advantages:

– You do not have to remember the implementation of your objects.

When using them later on, they just appear as a black box fulfilling
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some duties.

– You can change the implementation later on without the need to

change the rest of the program. Changes of the implementation may

be useful, for example, when you want to increase the performance

of the code or to include new features.

– Furthermore, you can have flexible data structures : Several differ-

ent types of implementations may coexist. Which one is chosen

depends on the requirements. An example is graphs (see Sec. 6.8)

which can be implemented via arrays, lists, hash tables or in other

ways. In the case of sparse graphs, the list implementation has a

better performance. When the graph is almost complete, the ar-

ray representation is favorable. For using flexible implementations,

you only have to provide the basic access methods, such as insert-

ing/removing/testing vertices/edges and iterating over them, for

the different internal representations. Therefore, higher-level algo-

rithms like computing a spanning tree1 can be written in a simple

way to work with all internal implementations. When using such a

class, the user just has to specify the representation he wants. The

rest of the program is independent of this choice.

– Last but not least, software debugging is made easier. Since you

have only defined ways, the data can be changed and undesired

side-effects become less common. Also the memory management is

easier to control.

Nevertheless, for the sake of flexibility, convenience or slight decrease of

running time, it is possible to declare internal variables as public. In

this case they can be accessed directly from outside. Thus, there is al-

ways a workaround for everything, but this should be used with extreme

caution. In general, the use of public variables is not recommended.

• Inheritance

This means lower level objects can be specializations of higher level

objects. For example, the class of (German) “ICE trains” is a child

class of “trains” which itself is a child class of “vehicles”.

In atomistic computer simulations, you may have a basic class of

“atoms” containing mass, position and velocity, and built upon this

a class of “charged atoms” by including the value of the charge. Then

you can use the subroutines you have written for the uncharged atoms,

like moving the particles or calculating correlation functions, for the

1This is a subgraph of a graph, which exhibits no loops but contains all nodes.
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charged atoms as well.

A similar form of hierarchical organization of objects works the other

way round: Higher level objects can be defined in terms of lower level

objects. This is called a composition [Meyers (2005)]. For example, a

book is composed of many objects belonging to the class “page”. Each

page can be regarded as a collection of many “letter” objects.

For the physical example above, when modeling chemical systems, you

can have “atoms” as basic objects and use them to define “molecules”.

Another level up would be the “system” object, which is a collection of

molecules.

• Function/operator overloading

The inheritance of methods (i.e. functions in C++) to lower level classes

is an example of operator overloading. It just means that you can have

methods for different classes having the same name, sometimes the same

code applies to several classes. This can happen also for classes, which

are not connected by inheritance. For example, you can define how

to add integers, real numbers, complex numbers or larger objects like

lists, graphs or documents. In languages like C or Pascal, you can define

subroutines to add numbers and subroutines to add graphs as well, but

they must have different names. In C++, you can define the operator

“+” for many different classes (see one example in Sec. 5.3). Hence, the

operator-overloading mechanism of object-oriented languages is just a

tool to make the code more readable and clearly structured.

• Software reuse

Once you have an idea of how to build a chair, you can do it several

times. Because you have a blueprint, the tools and the experience,

building another chair is an easy task.

This is true for building programs as well: Both data capsuling and

inheritance facilitate the reuse of software. For instance, once you have

written your class for treating lists, you can include the lists in other

programs as well. This is easy, because later on you do not have to

care about the implementation. With a class designed in a flexible way,

much time can be saved when realizing new software projects.

5.2 A sample using C

As mentioned before, when programming in an object-oriented way, you do

not necessarily have to use an object-oriented language. It is true that they
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are helpful for the implementation and the resulting programs will look

slightly more elegant and clearer, but you can program everything with a

language like C as well. In C, an object-oriented style can be achieved very

easily. As an example, a “class” histo implementing histograms is outlined

next. Histograms are needed for almost all types of computer simulations

as evaluation and analysis tools. Formally, histograms are introduced in

Sec. 8.3.3.

GET SOURCE CODE

DIR: oop
FILE(S): histo.h

Initially, you have to think about the data

you would like to store. The histogram itself is

an array table of bins. Each bin just counts the

number of events which fall into a small interval

of the corresponding histogram range. To achieve a high degree of flexibility,

the range and the number of bins must be variable. It is assumed here for

simplicity that all bins have the same width. Thus, the width delta of

each bin can be calculated easily. For convenience delta is stored as well.

To count the number of events which are outside the range of the table, the

entries low and high are introduced. Furthermore, statistical quantities

like mean and variance should be available quickly and with high accuracy.

Thus, several accumulated moments sum[] of the distribution are stored

separately as well. Here, the number of moments HISTO NOM is defined

as a macro, converting this macro to variable would be straightforward.

Altogether, this leads to the following C data structure:

#define _HISTO_NOM_ 9 /* No. of (statistical) moments */

typedef struct

{

double from, to; /* range of histogram */

double delta; /* width of bins */

int n_bask; /* number of bins */

double *table; /* bins */

int low, high; /* No. of data out of range */

double sum[_HISTO_NOM_]; /* sum of 1s, numbers, numbers^2 ...*/

} histo_t;

Here, the postfix t is used to stress the fact that the name histo t

denotes a type. The bins are variables of type double, which allows for

more general applications. Please note that it is still possible to access

the internal structures from outside, but it is not necessary and not recom-

mended. In C++, you could prevent this by declaring the internal variables
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as private, see below. Nevertheless, everything will be done here via spe-

cial subroutines without the need for a direct access.

GET SOURCE CODE

DIR: oop
FILE(S): histo.c

First of all, one must be able to create and

delete histograms. The function histo_new()

receives the range [from, to) of the interval

which is to be covered and the number of bins

as arguments. It returns a pointer to the newly created histogram:

histo_t *histo_new(double from, double to, int n_bins)1

{2

histo_t *his; /* histogram pointer */3

int t; /* loop counter */4

5

his = (histo_t *) malloc(sizeof(histo_t));6

if(his == NULL) /* enough memory ? */7

{8

fprintf(stderr, "out of memory in histo_new()");9

exit(1);10

}11

if(to < from) /* boundaries in wrong order ? */12

{13

double tmp;14

tmp = to; to = from; from = tmp;15

fprintf(stderr, "WARNING: exchanging from, to in histo_new()\n");16

}17

his->from = from;18

his->to = to;19

if( n_bins <= 0) /* number of bins should be positive */20

{21

n_bins = 10;22

fprintf(stderr, "WARNING: setting n_bins=10 in histo_new()\n");23

}24

his->delta = (to-from)/(double) n_bins; /* setup */25

his->n_bins = n_bins;26

his->low = 0;27

his->high = 0;28

for(t=0; t< _HISTO_NOM_ ; t++) /* init. accumulated moments */29

his->sum[t] = 0.0;30

his->table = (double *) malloc(n_bins*sizeof(double));31
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if(his->table == NULL) /* enough memory ? */32

{33

fprintf(stderr, "out of memory in histo_new()");34

exit(1);35

}36

else37

for(t=0; t<n_bins; t++) /* initalize bins */38

his->table[t] = 0;39

return(his);40

}41

The main data structure is allocated in line 6, while the array for the

moments is allocated in line 31. Some simple error-checking is included:

It is verified that enough memory is available for the main data structure

(lines 7–11) and for the moment array (line 32–36). Furthermore, it is

verified that from is smaller than to (line 12–17) and that the number of

bins is positive (lines 20–24). The histogram is initialized in lines 18–19,

25–28 and 37–39.

The function histo_delete() receives a pointer to a histogram, frees

the memory associated with the histogram and returns nothing:

void histo_delete(histo_t *his)1

{2

free(his->table);3

free(his);4

}5

All histogram objects are created dynamically by calling histo new(),

which corresponds to a call of the constructor or new in C++, as explained

in Sec. 5.3 The objects are addressed via pointers. Whenever a function

concerning an object of the histo class is called, the first argument will

always be a pointer to the corresponding histogram. When avoiding direct

access to the structure, the realization using C is perfectly equivalent to

C++ or other object-oriented languages. Inheritance can be implemented,

by including pointers to histo t objects in other type definitions. When

these higher level objects are created, a call to histo new() must be in-

cluded, while a call to histo delete(), corresponding to the destructor in

C++, is necessary, to implement a correct deletion of the more complex

objects.

As a final example, the functions for inserting an element into the table

and calculating the mean are presented. It is easy to figure out how other

functions can be realized, such as for calculating the variance/higher mo-
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ments or printing a histogram as probability density function (see exercise

(1)).

void histo_insert(histo_t *his, double number)1

{2

int t; /* counter to access moments */3

double value; /* auxiliary variable */4

value = 1.0;5

for(t=0; t< _HISTO_NOM_; t++)6

{7

his->sum[t]+= value; /* raw statistics */8

value *= number;9

}10

if(number < his->from) /* insert into histogram */11

his->low++;12

else if(number >= his->to)13

his->high++;14

else15

his->table[(int) floor( (number - his->from) / his->delta)]++;16

}17

double histo_mean(histo_t *his)1

{2

if(his->sum[0] == 0)3

return(0.0);4

else5

return(his->sum[1] / his->sum[0]);6

}7

5.3 Introduction to C++ and an example

The C++ language is, technically seen, an object-oriented extension of C.

It allows for complex object-oriented implementations, but you can write

pure C programs as well, if you like. For example, each executable must

contain a main() function, as in C. This section again presents an imple-

mentation of histograms, but now in C++. This serves also as introduction

to the programming language. For details, please consult the literature, for

example the standard reference [Stroustrup (2000)].

GET SOURCE CODE

DIR: oop
FILE(S): histo++.h

The most fundamental concept of C++ is

the class. A class is a description of the data

elements belonging to objects of this class, to-

gether with the functions which can be used to
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access and manipulate the objects. The functions are called member func-

tions. Header files (.h or .hpp) in C++ usually2 contain the class declara-

tions, while the code files (.cpp) usually contain the code of the member

functions. A possible class declaration for histograms reads as follows:

#include <iostream>1

2

class Histo3

{4

private:5

double from, to; // range of histogram6

double delta; // width of bins7

int low, high; // out of range numbers8

int n_bins; // number of bins9

double *table; // bins10

11

public:12

Histo(double from, double to, int n_bins); // constructor13

Histo(); // simple constructor14

Histo(const Histo& h); // copy constructor15

virtual ~Histo(); // destructor16

void insert(double number); // insert data point17

Histo &operator=(const Histo &h); // assignment operator18

19

friend std::ostream& operator<< (std::ostream& os, const Histo& h);20

};21

Similar to the C header file stdio.h, the header file iostream contains

standard types for in-/output. In line 1, this header file is included. Note

that in modern C++, the .h suffix is not used any more for standard system

header files.

The main part is the declaration of the class Histo. All the data mem-

bers of Histo objects are listed in lines 6–10. This is similar to the members

of a structure in C.3 Here, only members for the bins and for the data out-

side the histogram range are included. The data members for the moments,

which are present in the histo_t type in Sec. 5.2, are put into an inher-

ited class, see below. Note that in addition to /* ... */ comments, which

may extend over several lines, in C++ there are comments of style // ...,

which extend till the end of the current line. The lines 6–10 are headed

2Within the new C++ standard, the class declaration files and the C header files
carry no appendix .h, while the C header files are identified by a prefix letter ‘c’.

3In fact, a structure is class in C++ as well, where all members are declared by
default as public.
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by the keyword private. This means that these members are not visible

from outside the class. If h is a Histo object, it is not allowed to change

for example h.low, except h is passed to a function which is granted access

to objects of this class. This is the principle of data capsuling (see page

139). Mainly member functions are allowed to access these data members.

Member functions are functions which are also declared inside the class

declaration. The member functions of Histo are declared in lines 13–18.

These lines are preceded by the keyword public, which means that they

can be used from outside a class. Note that in principle, one can define

member functions private as well. In line 16, the keyword virtual is

important for the case that a class is derived by inheritance from Histo

(which we will do below).4 In line 20, a function is declared, which is not

a member function. The keyword friend means that the function is also

allowed to access privatemembers of the class Histo. This should be used

with caution, because it breaks encapsulation. There exists a third type of

access control for members, which is called protected. This means that

these members in general cannot be accessed from outside a class, but from

child classes which are inherited from the class.

Whenever a Histo object is created, the data elements should be ini-

tialized. This is done by a constructor. For the C example in the previous

section, this was done by the function histo_new(). A constructor has

always the same name as the class and is always called automatically, if an

object of the class is created.

GET SOURCE CODE

DIR: oop
FILE(S): histo.cpp

In the class declaration, there a three differ-

ent constructors declared in lines 13–15. This

multiple declaration is no problem in C++,

since the compiler can distinguish the three

variants, because they have different argument lists. This is called over-

loading. The first constructor requires as arguments the range [from, to)

of the histogram and the number of bins n_bins. Nothing (not even void)

is returned by a constructor. The implementation reads as follows:

4If a pointer points to objects both of the parent class and of the child class, automat-
ically the corresponding virtual function of the suitable class will be used, depending on
the type of the object. This is important when deallocating memory, to avoid memory
leaks.
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Histo::Histo(double h_from, double h_to, int h_n_bins)1

{2

from = h_from; to = h_to; // store parameters3

if(to < from) // boundaries in wrong order ?4

{5

double tmp;6

tmp = to; to = from; from = tmp;7

fprintf(stderr, "WARNING: exchanging from, to in Histo()\n");8

}9

low = 0;10

high = 0;11

n_bins = h_n_bins;12

delta = (to-from)/n_bins; // calculate bin width13

table = new double[n_bins]; // get memory for bins;14

15

for(int t=0; t<n_bins; t++) // Initialize bins16

table[t] = 0;17

}18

Note that in the function declaration (line 1), the function name is preceded

by the class name followed by a double colon. It must occur here, because

different classes may have members of the same name, hence the class name

must be given to distinguish them.5 The data members from and to are

initialized in line 3. Inside member functions, the data members can be

accessed directly, just like local variables in functions. In lines 4–9 it is

assured that from < to holds. In lines 10-13, additional data elements are

initialized. In line 14, the table of bins is allocated dynamically. In C++

this is done with the command new, which works like malloc() in C.6 After

the new command, the type of the array is written (double here) and the

number of requested elements is stated in [ ] brackets. If the brackets

are omitted, just one single variable is generated, no array. Finally (lines

16–17), the bins are initialized.

If you want to define an object his of the class Histo, with given values

for the parameters, you have to use

Histo his(0.0, 10, 100);

which creates a histogram with 100 bins [0, 0.1), [0.1, 0.2), . . . , [9.9, 10).

This looks like a variable definition in C, but with the object name followed

5You could, in principle, use the name of a constructor of one class as name for a
data member in another class, without conflict.

6You can use malloc() in C++ as well, if you like. More sophisticated is the use of
template vectors std::vector<>, see Sec. 7.2.
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by the arguments for the constructor in brackets. In case you are lazy and

do not want to state arguments, you can use a standard constructor, which

looks as follows:

Histo::Histo()1

{2

Histo(0, 1, 10); // Use standard values3

}4

Here you can see that, as for data members, member functions can be

directly used/called inside (other or the same) member functions, just as

local variables. If an object his2 is defined using the standard constructor,

it resembles a variable definition in C, for example:7

Histo his2;

A third type of constructor is the so called copy constructor. It is used

when an object is initialized by copying from another object:

Histo his3 = his;

In principle, you do not have to define your own copy constructor. If no

explicit copy constructor is given, the new object (his3) is just a mem-

berwise copy of the given object (his). But this means that the pointer

element table in his3 points exactly to the same memory area as in his.

This is usually not what you want. Instead, one wants that his3 has its

own table, but filled with the same numbers as his. This is achieved by

the following explicit copy constructor:

Histo::Histo(const Histo &h)1

{2

from = h.from; // store parameters3

to = h.to;4

low = h.low;5

high = h.high;6

n_bins = h.n_bins;7

delta = h.delta; // bin width8

table = new double[n_bins]; // get memory for bins;9

10

for(int t=0; t<n_bins; t++) // copy bin entries11

table[t] = h.table[t];12

}13

7You can also include empty brackets, indicating explicitly that no arguments are
passed.
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It looks pretty similar to the first constructor, but with some differences.

The initial values of the data members are taken from the object h passed to

the constructor. Formally, it is written as argument, although when using

it, the object where the data is taken from is written after an = assignment

operator. The variable declaration of h is preceded by the & character,

which means that the variable is passed by reference. This means that

only the address is passed, as if the object would be passed as a pointer.

Nevertheless, when passed by reference, the object can be accessed directly,

without using the * operator, in contrast to pointers. Note that the data

elements of the object h are accessed like elements in structures. This is

allowed here, since the copy constructor is a member function of the class,

although the object which is accessed is different from the object for which

the member function was called.

Objects which are created somewhere, must be deleted after usage. In

the C implementation presented in Sec. 5.2 this is done by the function

histo_delete(). In C++, the deletion of an object is the task of the

destructor, which is always a member function with the name of the class

preceded by a ~ character. Here, the destructor must free the table of bins:

Histo::~Histo()1

{2

delete[] table;3

}4

The effect of the delete in line 3 is equivalent to the function free() in

C. If an array is deleted, like here, one must write [] brackets after the

delete command.

Next, a member function insert() for inserting a number is considered.

As argument it takes the number to be inserted. Here, just as for ordinary

functions, a return type should be stated, void in this case. Note that the

histogram in which the number is inserted is not passed explicitly as argu-

ment, since the object for which a member function is called is accessible

inside the member function through “local” variables:
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void Histo::insert(double number)1

{2

if(number < from) // insert into histogram3

low++;4

else if(number >= to)5

high++;6

else7

table[(int) floor( (number - from) / delta)]++;8

}9

To print a histogram, you could define another member function, which

uses for example printf() functions to print the content of the array table.

Here, another C++-specific solution is shown. In C++, printing can be

done via streams. A standard stream for output, similar to stdout in C, is

std::cout. You can write the string "number: " to the standard output

followed by the content of the variable num followed by a new line, via:

std::cout << "number: " << num << std::endl;

This is equivalent to printf("number: %d\n", num). Hence, the operator

<< is used for output. Several objects to be printed can be separated by

multiple occurrences of <<. Note that std::cout belongs to the namespace

std. Thus, std:: does not refer to a class name. Namespaces are used in

C++ for allowing different objects to have the exactly same name, within

different namespaces. The standard namespace std contains many fre-

quently used objects. If you are lazy, you can write using namespace std

just below all #include commands at the top of the file. Now you can write

cout instead of std::cout, but only if there are no other objects, variables

or types with the name cout. Finally, std::endl is the end-of-line signa-

ture, equivalent to "\n".

If you want to write a histogram in the same way to std::cout like

a standard variable, for example by using the << operator. In this case

one has to define the operator << accordingly. This works as follows. The

operator obtains the stream (os) and the Histo object (h) to be printed as

arguments and returns the stream again. Note again that << has access to

h, because the operator is declared as friend in the header file.
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std::ostream& operator << (std::ostream& os, const Histo& h)1

{2

3

int i;4

os << "# below:" << h.from << std::endl;5

os << "# above: " << h.to << std::endl;6

os << "# from: " << h.from << " delta: " << h.delta;7

os << " nbins: " << h.n_bins << std::endl;8

for(i=0; i<h.n_bins; i++)9

os << i << " " << h.table[i] << std::endl;10

11

return(os);12

13

}14

Also the assignment operator = is often implemented explicitly for C++

classes. If no implementation is given, objects are copied bitwise, which may

not be desirable, similar to the case of the copy constructor. For Histo,

the assignment operator looks as follows:

Histo& Histo::operator=(const Histo &h)1

{2

if( this != &h ) // no self assignment3

{4

from = h.from; // store parameters5

to = h.to;6

n_bins = h.n_bins;7

delta = h.delta; // bin width8

delete[] table; // delete old table9

table = new double[n_bins]; // get memory for bins;10

low = h.low;11

high = h.high;12

13

for(int t=0; t<n_bins; t++) // copy bin entries14

table[t] = h.table[t];15

}16

return( *this);17

}18

The implementation looks very similar to the copy constructor.8 Note

that assignment of an object to “itself” should be prohibited. This is en-

sured in line 3 via the local variable this, which points inside all member

8Hence, one could use a private function do copying(), which does the copying
wherever needed.
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functions always to the object for which the member function is called. An-

other difference to the copy constructor is that the member table should

at first be deleted, and then created again, because it might change size.

Furthermore, the operator should return a reference to the object (Histo &

at the binning of line 1), since the result of an assignment in C/C++ is the

value assigned. For this purpose the object for which the member function

is called must be returned via *this in line 17.

Next, it is shown how the class Histo can be augmented via inheritance

by including a member array for storing the accumulated moments. For

this purpose, the class HistoM is declared as follows:

class HistoM: public Histo1

{2

private:3

int num_moments; // how many moments are stored4

double *sum; // sum of 1s, numbers, number^2, ...5

6

public:7

HistoM(double from, double to, int n_bins); // constructor8

HistoM(const HistoM& h); // copy constructor9

~HistoM(); // destructor10

11

void insert(double number); // insert data point12

double mean(); // return mean13

};14

The : public Histo in line 1 indicates that the class is inherited from

Histo. HistoM contains all members of Histo plus the members stated

here.9 The keyword public indicates that all public members of Histo

are public members of HistoM as well, otherwise they would be private.

Furthermore, one can access all public and all protected members of

Histo in member functions of histoM. The constructor for HistoM looks as

follows:

9Note that multiple inheritance is possible as well, if several parent classes are stated,
which are separated by commas.
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HistoM::HistoM(double h_from, double h_to, int h_n_bins) :1

Histo(h_from, h_to, h_n_bins)2

{3

num_moments = 8; // allocate moments4

sum = new double[num_moments];5

6

for(int m=0; m<num_moments; m++)7

sum[m] = 0;8

}9

Whenever an object of the class HistoM is initialized, first the members

of the part inherited from Histo are initialized, this is indicated by the

: Histo(h_from, h_to, h_n_bins) in lines 1–2. Nevertheless, all public

and protected members of Histo could be initialized explicitly inside this

constructor, which is not done here.

The destructor for HistoM deals only with the non-inherited members,

since the destructor for the parent class is called automatically:

HistoM::~HistoM()1

{2

delete[] sum;3

}4

You are asked to implement a copy constructor for HistoM in exercise (2).

Finally, it is shown how the member function insert() is augmented for

HistoM. Note that in principle it is not necessary to implement all member

functions of the parent class again. In the same way, you could be satisfied

with the << operator defined for Histo and just print the histogram when

printing an HistoM object. For insert(), we want to update the moments,

hence we need a new implementation, based on the implementation for

Histo:

void HistoM::insert(double number)1

{2

double value = 1.0; // auxiliary variable3

4

for(int m=0; m<num_moments; m++)5

{6

sum[m]+= value;; // raw statistics7

value *= number;8

}9

Histo::insert(number); // perform insert for parent class10

}11
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Note that the member function insert() of Histo can be called directly.

In this case it will be automatically called for the current object as well,

for which HistoM::insert() was called.

You are asked in exercise (2) to implement a simple member function

HistoM::mean() which returns the mean of the numbers stored in the

histogram. Within the scope of this book, it is impossible to go beyond the

fundamentals of C++. More details can be found in the C++ literature
[Stroustrup (2000)], in particular about templates, which are functions or

classes where the type of the arguments needs not to be specified. This

allows objects to be implemented which work with a wide range of types.

Of particular importance are container classes, which can store “anything”.

Some container classes are implemented in the standard template library,

which is introduced in Sec. 7.2.

09-Oct- 2014



October 9, 2014 14:51 Big Practical Guide to Computer Simulations book4˙2nd page 156

156 Big Practical Guide to Computer Simulations

Exercises
(solutions: can be downloaded from http://www.worldscientific.com/r/9019-supp)

(1) Histogram probability density function

Design, implement and test a function, which
for a histogram his writes to a file

• values of all moments (preceded by #)

• the number of outliers in his->low,
his->high (preceded by #)

• the histogram as probability density
function, see page 293 in Sec. 8.3.3.

SOLUTION SOURCE CODE

DIR: oop
FILE(S): main histo.c

histo fprint pdf.c

The function prototype reads as follows:

/************* histo_fprint_pdf() *********************/

/** Prints moments of histogram and bin counts for **/

/** outliers to file. **/

/** Prints also histogram as pdf **/

/** Prints also Gaussian standard error bars of **/

/** bin counts (normalized) **/

/** PARAMETERS: (*)= return-parameter **/

/** file: file pointer **/

/** histo: histogram **/

/** RETURNS: **/

/** (nothing) **/

/******************************************************/

void histo_fprint_pdf(FILE *file, histo_t *his)

Remark: You can include, for simplicity, the standard “Gaussian” error bar
for the bin entries, see Eq. (8.65).

You may use the main() function provided in main_histo.c to test your
function, if you compile with -DSOLUTION.

(2) C++

Design, implement and test a copy construc-
tor for the class HistoM. Use the copy con-
structor for Histo (see page 149) and the
constructor for HistoM (see page 153) as ex-
ample.

SOLUTION SOURCE CODE

DIR: oop
FILE(S): histoSOL.cpp

The function prototype reads as follows:
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/*********************** HistoM() *********************/

/** Copy Constructor: Creates a histogram (including **/

/** moments) as copy of argument histogram **/

/** PARAMETERS: (*)= return-parameter **/

/** h: histogram **/

/** RETURNS: **/

/** --- **/

/******************************************************/

HistoM::HistoM(const HistoM &h) : Histo(h)

Furthermore, write and test a member function for class HistoM, which re-
turns the mean of the numbers stored in the histogram.

The function prototype reads as follows:

/************************ mean() **********************/

/** Calculates mean from histogram **/

/** PARAMETERS: (*)= return-parameter **/

/** **/

/** RETURNS: **/

/** mean **/

/******************************************************/

double HistoM::mean()
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Chapter 6

Algorithms and data structures

If you ever want to change, extend, or even develop a full simulation pro-

gram, you could, in principle, just use the techniques you have learnt in the

previous chapters, and directly implement the simulation methods using

arrays and C structs as main data structures. Nevertheless, the efficiency

of such a simulation program can be greatly enhanced, if you know about

fundamental algorithms and data structures in computer science. There

are many cases in science, where researchers first used straightforward im-

plementations for their problem and even got some results which were pub-

lished in scientific papers. Later on, it was found out in these cases that

by using simple techniques as described in this chapter, the problem under

investigation could be tackled much better, i.e. larger system sizes could be

studied, and more data could be gathered, hence reducing the statistical

error bar of the data (c.f. Chap. 8). Then, using the better approach,

it turned out that the conclusions, which were previously drawn using the

straightforward program, were wrong. Hence, if you want to be among

those who write efficient programs which can simulate large systems, then

you should read this chapter carefully.

We begin by introducing the O notation, which is used to describe

how fast a program runs. In the next couple of following sections, five

basic programming techniques are introduced: iteration, recursion, divide-

and-conquer, dynamic programming, and backtracking. Although in these

chapters, the examples are given using the C programming languages, it

is important that you understand the basic principles behind the C code.

The basic recipe describing how a problem is solved, independent of an

implementation in a programming language, is called the algorithm. Almost

all clever algorithms known in computer science are based on one or more

of these five fundamental algorithmic techniques.

159
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In the final set of sections of this chapter, some sophisticated data struc-

tures are introduced. They allow in most cases to organize the simulation

data in a way that suits the given problem better and allows for a quicker

processing. Here, we present lists, trees, and graphs, together with some

sample algorithms to create, modify and use them.

Note, as always in this book, that only few introductory samples (al-

though covering a large fraction of the basic applications) can be given.

The important message is that you have to learn to think in terms of data

structures, which allows you to aim at looking for efficient implementations.

Once you have a little bit of experience, a kind of library of samples in your

head, this will become increasingly easier for you. In fact, many more

data structures, usually based on the basic data structures presented here,

and an overwhelming amount of algorithms acting on these data structures

exist. If you want to learn more, and later on you want to do this, you

should consult more specialized text books like Refs. [Aho et al. (1974);

Cormen et al. (2001); Sedgewick (1990)].

6.1 O notation

For an arbitrary algorithm, to describe the dependence between a suit-

ably chosen measure n of the problem size and the running time T , the O
notation is used.

Definition 6.1 Let T, g : N → R be two real-valued functions.

We write T (n) = O(g(n)), if there exist two positive numbers c1, c2 > 0

and an integer n0, such that c1g(n) ≤ T (n) ≤ c2g(n) is valid for all n > n0.

We say, T (n) is of order of g(n).

Since constants are ignored when using the O notation, one speaks of

the asymptotic running time or time complexity. In theoretical computer

science, usually one states an upper bound over all possible inputs of size

n, i. e., the worst-case running time.

As an example, we look at a function which adds up n numbers:
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double compute_sum(int n, double *number)1

{2

double sum=0.0; /* for summing up */3

int t; /* loop counter */4

5

for(t=0; t<n; t++) /* main loop */6

sum += number[t];7

8

return(sum);9

}10

GET SOURCE CODE

DIR: algorithms
FILE(S): sum.c

The loop lines 6–7 is executed n times. For

each loop iteration, the following operations are

performed (details might depend on the com-

piler, microprocessor used, etc.):

• The value of the variable t is read. Note that usually the compiler

produces code such that this value is stored in a register of the micro-

processor, i.e. the access is fast.

• The position in memory of the t’th element of the array number is

calculated (this is number+t*sizeof(real))

• The t’th element of the array nummber is fetched from memory. This

is a bit slower than the access to a register.1

• The value of sum is read.

• Then the sum of number[t] and sum is calculated.

• The result is stored again in sum.

• The value of t is increased (in the register) by one.

• It is checked whether t<n (n also assumed to be in a register, otherwise

it has to be fetched from memory as well).

On modern computers, all these operations take a running time which

is independent of n, hence, we can assume that the total running time of

one loop iteration is a sum of constant values, i.e. a constant C itself.2

Hence, the full running time of the function, i.e. the running time of the

1In modern computers, there are different levels of memory like 1st and 2nd level
cache, main memory and swap space. Cache memories are much faster than main mem-
ory, but also much smaller. Swap memory is located on hard disk and only used if the
main memory is too small for the program. Nevertheless, swapping is very slow and
should be avoided.

2The actual CPU time needed for one iteration also depends on external factors, like
whether the cache can be used or not, what other programs are running in multitasking
mode etc. For assessing the running time of an algorithm, this is not taken into account,
because it does not depend on the algorithm itself.
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“summation algorithm”, is C × n, i.e. O(n). Note that in this case the

running time basically does not depend on the actual numbers which are

summed up, i.e. the worst case running time equals the typical running time.

Nevertheless, there are examples where the running time might depend

drastically on the actual problem instance given.

In Table 6.1, orders of running times, which occur typically in the con-

text of algorithms, are presented, accompanied by the resulting values for

problem sizes 10, 100, and 1000.

Table 6.1 Growth of functions as a function of in-
put size n.

T (n) T (10) T (100) T (1000)

n 10 100 1000

n logn 10 200 3000

n2 102 104 106

n3 103 106 109

nlog n 10 104 109

2n 1024 1.3× 1030 1.1× 10301

n! 3.6× 106 10158 4× 102567

Usually one considers problems easy, if the running time is bounded by

a polynomial, all others are considered hard. The reason can be understood

from the table: Even if the polynomial functions may take higher values

for small n, asymptotically non-polynomial functions diverge much faster.

Let us consider, e. g. the relative performance of two computers, one being

twice as fast as the other one. In a linear-time problem, the faster computer

is able to solve a problem which is twice as large as the problem solvable in

the same time on the slower computer. If the running time grows, however,

as 2n, the faster computer is just able to go from n to n + 1 compared

with the slower one. We see that for such hard problems, the utility of

higher-speed computers is very limited – a substantial increase in the size

of solvable problems can only be achieved via the use of better algorithms.

6.2 Iteration and recursion

If a program has to perform many similar tasks, this can be expressed as

an iteration, also called a loop, e. g. with the for-statement from C/C++.

Sometimes it is more convenient to use the concept of recursion, especially

if the quantity to be calculated has a recursive definition. One speaks of
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recursion if an algorithm/function calls itself (maybe indirectly through

other algorithms/functions). As a simple example we present a C function

for the calculation of the factorial n! of a natural number n > 0. Its

recursive definition is given by:

n! =

{
1 if n = 0 or n = 1

n× (n− 1)! else
(6.1)

This definition can be translated directly into a C function:

int factorial(int n)1

{2

if(n <= 1)3

return(1);4

else5

return(n*factorial(n-1));6

}7

GET SOURCE CODE

DIR: algorithms
FILE(S): fac rec.c

In line 3 the test is whether n ≤1 instead of

testing for n = 0 or n = 1. Therefore, it is guar-

anteed that the algorithm returns something on

all inputs.

For n > 1, during the execution of factorial(n), a sequence of nested

calls of the function is created up to the point where the function is called

with argument 1. The call to factorial(n) begins before and is finished

after all other calls to factorial(i) with i < n. The hierarchy in Fig. 6.1

shows the calls for the calculation of factorial(4).

factorial(4)

factorial(3)

factorial(2)

factorial(1)

return 1

return 2x(1)

return 3x(2)

return 6x(4)

24

Fig. 6.1 Hierarchy of recursive calls for calculation of factorial(4).
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Note that the present implementation of the algorithm allows only for

small factorials to be calculated, due to the finite number of bits used to

store integers. For 32 bit (signed), the largest value for which the program

is correct is n = 13. In case you want to calculate the factorial of larger

numbers, you can e.g. use libraries which allow for arbitrary precision, see

Chap. 7.

GET SOURCE CODE

DIR: algorithms
FILE(S): fac seq.c

Every recursive algorithm can be rewritten

as a sequential algorithm, containing no calls to

itself. Instead loops are used. Usually, these

sequential versions of recursive algorithms are

faster by some constant factor but harder to understand, at least when the

algorithm is more complicated than in the present example. The sequential

version for the calculation of the factorial reads as follows:

int factorial(int n)1

{2

int t; /* loop counter */3

int fac; /* result */4

5

fac = 1;6

for(t=2; t<=n; t++) /* main loop */7

fac *= t;8

9

return(fac);10

}11

The sequential factorial algorithm contains one loop which is executed

n − 1 times. Thus, the algorithm runs in O(n) steps. For the recursive

variant the time complexity is not so obvious. For the analysis of recursive

algorithms, one has to write a recurrence equation for the execution time.

For n = 1, the factorial algorithm takes a constant time T (1). For n > 1 the

algorithm takes the time T (n−1) for the execution of factorial(n-1) plus

another constant time for the multiplication. Here and in the following, let

C be the maximum of all occurring constants. Then the running time is

bounded from above by T̃ (n) given by

T̃ (n) =

{
C for n = 1

C + T̃ (n− 1) for n > 1 .
(6.2)

One can verify easily that T̃ (n) = Cn is the solution of the recurrence,

i. e., both recursive and sequential algorithms have the same asymptotic

time complexities. There are many examples where a recursive algorithm
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is asymptotically faster than a straightforward sequential solution (i.e. se-

quential implementations of basically recursive algorithms are not meant

here). An example will be given in the following section, see also [Aho et al.

(1974)]. Exercise (1) at the end of the chapter provides another example

for a problem which can be solved very elegantly by recursion.

6.3 Divide-and-conquer approach

The basic idea of divide-and-conquer is to divide a problem into smaller

subproblems, solve the subproblems separately, and then combine their

solutions to form the final solution. Recursive calls of the algorithm are

usually applied here as well.

As an example we consider sorting problems. Given are n data sets

Ai (i = 1, 2, . . . , n). These can be, in the simplest case, natural numbers,

or strings or complex data structures having a key exhibiting a natural

ordering “<”. We want to find a permutation Bi of them such that they

are sorted in (say) increasing order: Bi < Bi+1 for all i < n. First, we

quickly explain a simple recursive algorithm for sorting elements, which

does not use the divide-and-conquer principle. This simple approach starts

by scanning through the array A and looks for the smallest element. It is

deleted from A and stored in B1. Then one again looks for the smallest

element in the remaining array A, removes it from A and stores it in B2.

This iteration is repeated, until all elements are treated. Since the iteration

is performed n times, and because looking for the smallest element each time

takes O(n) accesses to the array A, the full algorithm has a complexity of

O(n2).

Next, an approach based on the divide-and-conquer principle is pre-

sented, called mergesort. As it will be shown below, the algorithm will

require only O(n log n) steps. Note that no proof will be given that the

algorithm actually works, since this is beyond the scope of this book. Nev-

ertheless, the reason that the algorithm is correct should be obvious from

the following discussion: The basic idea of mergesort is to part the set which

is to be sorted into two subsets of roughly equal size, sort them recursively

and finally merge the two sorted sequences into one sorted sequence. The

merging is performed by iteratively removing the smallest element among

both sequences.
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GET SOURCE CODE

DIR: algorithms
FILE(S): mergesort.c

As an example, the approach is applied to

an array consisting of animal data, each animal

is described by an ID and by its weight. The

animals should be sorted in ascending weights.

The data is an array of type animal_t, which is defined via a structure:

typedef struct

{

int weight;

int animal_id;

} animal_t;

The function performing the actual sorting reads as follows:

animal_t *mergesort(int num, animal_t *data)1

{2

animal_t *result, *result1, *result2; /* sorted elements */3

int size1, size2; /* sizes of two subsets of data */4

int t; /* counter for putting elements into result array */5

int t1, t2; /* for getting elements from result1/2 arrays */6

7

result = (animal_t *) malloc(num*sizeof(animal_t));8

9

if(num==1) /* solve trivial case */10

result[0] = data[0];11

else /* main work */12

{13

size1 = num/2; size2 = num - size1;14

result1 = mergesort(size1, data); /* sort 1st half */15

result2 = mergesort(size2, data+size1); /* sort 2nd half */16

17

t=0, t1=0; t2=0;18

while(t<num) /* merge result1,result2 into result */19

if( (t2==size2) ||20

((t1 < size1) && (result1[t1].weight<result2[t2].weight)))21

result[t++] = result1[t1++];22

else23

result[t++] = result2[t2++];24

25

free(result1); free(result2);26

}27

return(result);28

}29

In line 11, the trivial case is treated, where only one element is to be
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sorted. The main part of the algorithm is in lines 14–24. In lines 14–16

the set of data is parted into two (almost) equal-sized subsets (the second

subset is by one element larger if the number of elements is odd).3 Then,

in lines 18–24, the two sorted subsets result1, result2 are merged into

result. The counter t indicates the position where the next element is to

be put in result, while t1 and t2 indicate always the smallest element not

yet treated in result1 and result2, respectively.

Please note that this implementation is just for the data type animal_t.

If you want to write a function which sorts general data, the function would

need also to be provided another function which allows to compare two

elements of the given set of data. In this way the C library function qsort()

is implemented, which is explained in Sec. 7.1.

As an example, in the upper part of Fig. 6.2 the hierarchy of recursive

calls of mergesort(4, {5, 2, 3, 1}) is displayed. In the lower part the merging

of the sorted subset is shown. For n = 2k one obtains k + 1 layers in the

hierarchy of calls.

mergesort(1,{2})

mergesort(2,{5,2}) mergesort(2,{3,1})

mergesort(1,{3})

mergesort(4,{5,2,3,1})

5 2 3 1
2
5

1
3

1
2
3
5

mergesort(1,{5}) mergesort(1,{1})

Fig. 6.2 Call of mergesort(4, {5, 2, 3, 1}).

The division of the sets and the merge-operation takes O(n) time, while

each recursive call takes T (n/2). Hence, the recurrence for this algorithms

3Note that in line 16, when calculating data+size1, the address of the element
data[size1] is calculated. Hence, it does not mean that size1 bytes are added to
data, instead sizeof(animal t)*size1 bytes are added to data.
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reads:

T (n) =

{
C (n = 1)

Cn+ 2T (n/2) (n > 1)
(6.3)

If n is large enough, this recurrence can be solved by T (n) = C
log 2n logn.

This can be seen by inserting the solution into the second line of the equa-

tion

T (2n) = C2n+ 2T (n)

= C2n+ 2
C

log 2
n logn

=
C

log 2
2n log 2 +

C

log 2
2n logn (6.4)

=
C

log 2
2n log(2n)

Consequently, the divide-and-conquer realization of sorting is asymptoti-

cally faster than the simple recursive sort-algorithm. Finally, note that the

general recurrence equation

T (n) =

{
k for n = 1

aT (n/c) + kn for n > 1
(6.5)

is, for a > c (!), solved by T (n) = O(nlog
c
(a)).

In exercise (2) a divide-and-conquer algorithm for quickly calculating

the power an (n an integer) of a number is considered.

6.4 Dynamic programming

Another problem where the application of divide-and-conquer and recur-

sion seems quite natural is the calculation of Fibonacci numbers fib(n).

Their definition is as follows:

fib(n) =

⎧⎨⎩
1 (n = 1)

1 (n = 2)

fib(n− 1) + fib(n− 2) (n > 2) .

(6.6)

Thus, for example, fib(4) = fib(3)+fib(2) = (fib(2)+fib(1))+fib(2) = 3,

fib(5) = fib(4) + fib(3) = 3 + 2 = 5. The functions grow very rapidly:

fib(10) = 55, fib(20) = 6765, fib(30) = 83204, fib(40) > 108. Let us
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assume that this definition is translated directly into a recursive algorithm.

Then a call to fib(n) would call fib(n−1) and fib(n−2). The recursive call

of fib(n− 1) would call again fib(n− 2) and fib(n− 3) [which is also called

from the two calls of fib(n − 2), etc.]. The total number of calls increases

rapidly with n, even more than fib(n) itself increases with n. In Fig. 6.3,

the top of a hierarchy of calls is shown. Obviously, every call to fib with

a specific argument is performed frequently, which is definitely a waste of

time.

fib(n-4) fib(n-4) fib(n-4) fib(n-4) fib(n-4)

fib(n-3) fib(n-3) fib(n-3)

fib(n-2)fib(n-2)

fib(n-1)

fib(n)

Fig. 6.3 Hierarchy of calls for fib(n).

GET SOURCE CODE

DIR: algorithms
FILE(S): fibonacci.c

Instead, one can apply the principle of dy-

namic programming. The basic idea is to start

with small problems, solve them and store the

solutions for later use. Then one proceeds with

larger problems by using divide-and-conquer. If, for the solution of a larger

problem, a smaller one is necessary, it is already available. Therefore, no

direct recursive calls are needed. As a consequence, the performance in-

creases drastically. The divide-and-conquer algorithm for the Fibonacci

numbers reads as follows, the array f[] is used to store the results:

double fib(int n)1

{2

double *f; /* stores Fibonacci numbers: f[k]=fib(k+1) */3

int t; /* loop counter */4

double result;5

6
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if(n<3)7

return(1.0);8

else9

{10

f = (double *) malloc(n*sizeof(double)); /* allocate memory */11

12

f[0] = 1; f[1] = 1; a /* start values for dynamic programming */13

for(t=2; t<n; t++) /* main loop: dynamic programming */14

f[t] = f[t-1] + f[t-2];15

result = f[n-1]; /* save final result */16

17

free(f);18

return(result);19

}20

}21

Note, since we have to free the array f[] before we return the final

result, we have to buffer it in the variable result. Since the function

contains just one loop in the lines 14–15, it runs in O(n) time.

Finally, we should point out that there is an explicit formula which

allows a direct calculation of the Fibonacci numbers:

fib(n) =
1√
5

((
1 +

√
5

2

)n

−
(
1 − √

5

2

)n)
. (6.7)

An example for a more sophisticated application of the dynamic pro-

gramming principle can be found in exercise (3).

6.5 Backtracking

The last basic programming principle which is presented here is backtrack-

ing. This method is applied when there is no direct way of computing a

solution. This is typical of many combinatorial problems, like optimization

of functions over discrete variables. The basic idea is that one has to try

some (sub-)solutions, discard them if they turn out not to be good enough

and try some other (sub-)solutions. Hence, all the time variables are as-

signed and later reassigned. This is done in a controlled way, such that all

interesting possible assignments are tried, until a solution is found. This is

the basic principle of backtracking.

As an example, in the following we will present a backtracking algorithm

for the solution of the N -queens problem.
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N -queens problem

N queens are to be placed on an N × N chess board in such a way that

no queen checks against any other queen. This means that, in each row, in

each column and in each diagonal at most one queen is placed, see Fig. 6.4.

Fig. 6.4 A standard 8×8 chess board with a queen placed near the center. The crosses
indicate the squares, where no other queen can be placed for the 8-queens problem.

A naive solution of the problem works by enumerating all possible con-

figurations of N queens and checking, for each configuration, whether any

queen checks against another queen. By restricting the algorithm to place

at most one queen per column, there are NN possible configurations. This

is a very strongly increasing running time, which can be decreased by back-

tracking.

The idea of backtracking is to place one queen after the other. One stops

placing further queens if a non-valid configuration is already obtained at an

intermediate stage. Then one goes one step back, removes the queen which

was placed at the step before, places it elsewhere, if possible, and continues

again. Note that it also will occur that several queens are removed again,

i.e., several steps are taken back, see the example below.

The algorithm starts in the last column and places a queen. Next a

queen is placed in the second last column by a recursive call and so forth.

If all columns are filled, a valid configuration has been found. If at any

stage it is not possible to place any further queen in a given column, then

the backtracking step is performed: the recursive call finishes, the queen

which was set in the recursion step before is removed. Then it is placed

elsewhere and the algorithm proceeds again. The argument n denotes the

column where the next queen is to be placed. To match the C standard
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of starting arrays at index 0, we number the rows and columns from 0 to

N − 1. Hence, initially the algorithm is called with n= N − 1.

We use an array pos[], where pos[c] stores the position of the queen in

column c. If pos[c]= 0, no queen has been placed in that column. Hence,

initially all pos[c] values are 0.

The array pos[] contains the complete information, hence it would suf-

fice to use this array. Then, if one wants to test whether a queen in column

c checks again any other queen, one has to run through the fields pos[c+1]

to pos[N-1]. Hence, any such test would require O(N) operations. The

test can be performed in O(1) steps, if additional arrays are used for all

rows and all diagonals of the chess board, which indicate whether a queen

is present or not in the row or diagonal. Hence, this is an example of how

one can save running time at the expense of memory and by using more

sophisticated data structures. This is a general balancing principle, which

you should always keep in mind when designing your simulations.

1

3

2

c

r

x+y=const

x−y=const

1 32

0

0

Fig. 6.5 “Up” and “down” diagonals {(c, r)} on the chessboard are characterized by
c− r =const and c+ r =const, respectively.

GET SOURCE CODE

DIR: algorithms
FILE(S): queens.c

Coming back to the N -queens problem, note

that diagonals come in two types. If we de-

note the coordinates by (c, r), “up diagonals”

are characterized by c− r =const, while “down

diagonals” are characterized by c + r =const, see Fig. 6.5. Here we use

row, diag_up and diag_down, a value 0 always indicates that no queen is

present, while a value 1 means that a queen has been placed. Note that

there are 2N − 1 diagonals of each kind, hence these arrays must be larger

(allocated in the main program, which is not shown here). Also note that

for the up diagonals, c− r can be as small as −(N − 1), hence we shift the

index of this array by this amount to start as usually at index 0. Using

these additional arrays, the backtracking function for the queens problem
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reads as follows:

void queens(int c, int N, int *pos, int *row,1

int *diag_up, int *diag_down)2

{3

int r, c2; /* loop counters */4

if(c == -1) /* solution found ? */5

{6

/* omitted here */ /* print solution */7

}8

for(r=N-1; r>=0; r--) /* place queen in all rows of column c */9

{10

if(!row[r]&&!diag_up[c-r+(N-1)]&&!diag_down[c+r]) /* place ? */11

{12

row[r] = 1; diag_up[c-r+(N-1)] = 1; diag_down[c+r] = 1;13

pos[c] = r;14

queens(c-1, N, pos, row, diag_up, diag_down);15

row[r] = 0; diag_up[c-r+(N-1)] = 0; diag_down[c+r] = 0;16

}17

}18

pos[c] = 0;19

}20

In Fig. 6.6 the way in which the algorithm solves the problem for N = 4

is shown. It starts by calling queens(3,. . . ) where a queen is placed in

column 3 and row 3. Then queens(2,. . .) is called. The positions where

no queen is allowed are marked with a cross. For column 2 no queens in row

3 and row 2 are allowed. Thus, a queen is placed in row 1 and queens(1,. . . )

is called. In column 1 it is now impossible to place any queen. Hence, the

call to queens(1,. . . ) finishes. The queen in column 2 is placed one row

below, i. e., row 0 (second line in Fig. 6.6). Then, by calling queens(1,. . . ),

a queen is placed in row 2 and queens(0,. . . ) is called. Now, no queen

can be placed in the first column, hence queens(0,. . . ) returns. Since

there was only one possible position in column 1, the queen is removed and

also the call queens(1,. . . ) finishes. Now, both possible positions for the

queen in column 2 have been tried. Therefore, the call for queens(2,. . . )

finishes as well and we are back at queens(3,. . .). Now, the queen in the

last column is placed in the row 2 (third line in Fig. 6.6). From here it is

straightforward to place queens in all columns and the algorithm succeeds.

Although this algorithm avoids many “dead ends”, it still has an ex-

ponential running time as a function of N . Nevertheless, there are better

but very specialized algorithms, where the running time increases only lin-
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queens(0,...)queens(1,...)queens(2,...)queens(3,...)

1

3

2

1 32

0

0

Fig. 6.6 How the algorithm solves the 4-queens problem.

early with N [Abramson and Yung (1986); Abramson and Yung (1989);

Sosic and Gu (1991)].

6.6 Lists

In the previous sections, elementary algorithms were presented. Now we

turn to data structures, which are special ways to arrange data in memory

such that algorithms can be implemented as efficiently as possible. Note

that for different types of tasks, different data structures are most suitable,

hence one always has to have the target application in mind. This also

explains why a careful planning of the simulation program before actually

starting programming is very recommendable, see Chap. 3. Furthermore,

note that usually data structures which allow for very fast operations some-

times require some degree of redundancy. Very often, the quicker the op-

erations are, the more memory you have to consume. Hence, efficiency

in terms of running time comes at the expenses of efficiency in terms of

memory, and vice versa.
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Assume that you are writing a simulation package for describing the

social interactions of persons. For each person, there is always a (sometimes

empty) set of other people who are currently interacting with the person.

This set may change in time. Hence, we would like to have a data structure

to store all current acquaintances in a flexible way, i.e., persons can be easily

added and removed from the set. Here, we present a data structure called a

list, which allows to solve this task. Lists are, for example, used in atomistic

simulation packages for implementing short-range interactions. In this case,

each atom interacts only with atoms not too far away. In this case, for each

atom a list is used (a so-called “Verlet table”) to store the atoms which

are currently in the neighborhood.4 Another example for lists are waiting

queues, which consist of tasks given in a linear order, where one task has

to be performed after the other. Here, also the order of the elements is

important, as for many applications, in contrast to acquaintance lists or

the Verlet tables. Note that the example applications and implementations

given below are rather simple, in contrast to the real applications just

mentioned, to keep the subject as simple as possible.

Lists are generalizations of arrays of elements (of arbitrary type). Lists

also exhibit a linear order like arrays, i.e., there is always a first element,

for each element there is a successor, except for the last element of the list.

For an array, the order of the elements is fixed. If you want to remove,

say, the 5th element in an array of 100 elements, and you want to keep the

order of the remaining elements, then you have to copy the 6th element to

the 5th position, then the 7th element to the 6th, and so on, see Fig. 6.7.

Hence, for a list of N elements, O(N) operations are needed to remove an

element from the list while keeping the order. Also O(N) operations are

required when an element is inserted into an array. Furthermore, the size

of an array is fixed, hence usually one stores the number of the last element

which is used and the maximum number of allowed elements. Now, if the

number of elements to be stored grows larger than the number of allowed

elements, one has to use realloc to obtain more memory, which might lead

to a considerable amount of memory copy operations, if the free amount of

memory right behind the array does not provide enough available memory

to satisfy the request.

4Usually, for better performance, the simulation volume is divided into boxes, which
are of the size of the interaction range. For each box, a list of the atoms currently in
this box is stored, which reduced the memory usage compared to Verlet tables [Allen
and Tildesley (1989)].
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GET SOURCE CODE

DIR: algorithms
FILE(S): list.h

For lists, on the other hand, the size and the

order are not fixed. Hence, they are designed in

such a way that insert and delete operations can

always be performed in constant running time.

The most natural implementation for this purpose is using pointers, see

Sec. 1.4. The basic idea is that each element carries a pointer, which points

to its successor. Here, we show a sample C structure, which implements

lists, and, for simplicity, just stores integer numbers.

17 5683 21 67 13

last

last

17 83 21 67 13

X

Fig. 6.7 Removing an element from an array, such that the order of the remaining
elements is conserved. Unused array elements are indicated by a line —. The last
element used in the array is stored in the variable last. Top: array before removing the
third element, which contains the number 56 (marked by an X). Bottom: final situation,
all elements to the right of the third position have moved one position to the left.

struct elem_struct1

{2

int info; /* holds "information" */3

struct elem_struct *next; /* pointer to successor (last: NULL) */4

};5

6

typedef struct elem_struct elem_t; /* new type for nodes */7

Each element consists of two variables. The actual data is stored in

info, while the successor in the list is stored in next. We have used also a

typedef command, which allows, for convenience, to refer to the new list

data type in the same way as for a predefined data type.

A list is a collection of elements, which are linked in a way such that

a linear order is represented, e.g. see Fig. 6.8. Such a list is denoted

as single-linked, because each element stores one pointer, i.e. link. Lists

where each element stores two pointers, one to its successor and one to

its predecessor, are also widespread and called double-linked lists. Double-

linked lists require more memory, due to the additional elements, but some
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4 7 5 6
list

Fig. 6.8 A list consisting of four elements containing the integer numbers 4, 7, 5 and 6.
The list is represented by a pointer list which points to the first element. Each element

contains a pointer to its successor (represented by arrows in the figure), except the last
element, which contains a NULL pointer, represented by a filled circle.

list operations can be performed faster, see below the remove_element()

operation. Here, for brevity, we only consider single-linked lists.

GET SOURCE CODE

DIR: algorithms
FILE(S): list.c

Next, we present some operations needed to

work with lists. Following an object-oriented

approach, we first consider functions which

create and delete elements. The function

create_element() receives the integer number the new element will store

as parameter and returns a pointer to the new element. The function al-

locates the memory (line 5), stores the number (line 6) and initializes the

next pointer to NULL (line 7).

elem_t *create_element(int value)1

{2

elem_t *elem;3

4

elem = (elem_t *) malloc (sizeof(elem_t));5

elem->info = value;6

elem->next = NULL;7

return(elem);8

}9

The delete_element() function receives a pointer to the element to be

deleted and returns an integer number indicating whether the operations

were performed successfully (0) or not (1).
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int delete_element(elem_t *elem)1

{2

if(elem == NULL)3

{4

fprintf(stderr, "attempt to delete ‘nothing‘\n");5

return(1);6

}7

else if(elem->next != NULL)8

{9

fprintf(stderr, "attempt to delete linked element!\n");10

return(1);11

}12

else13

{14

free(elem);15

return(0);16

}17

}18

The function contains two consistency checks. First, it is not allowed

to delete “nothing” (lines 3–7). Second, it is only allowed to delete isolated

elements (lines 8–12), which is indicated by a successor given by a NULL

pointer. The actual deletion consists just of the free() command (line 15).

4

4

7 5 6

8

7 5 6

8

list

list

Fig. 6.9 Inserting an element containing an 8 into the list from Fig. 6.8. Either the
element is inserted at the beginning (top) or elsewhere into the list (bottom). In both
cases the final situation after the insertion is shown.

To assemble lists from elements, we use the insert_element() func-

tion, which inserts an element (represented by a pointer elem) into a list

09-Oct- 2014



October 9, 2014 14:51 Big Practical Guide to Computer Simulations book4˙2nd page 179

Algorithms and data structures 179

(represented by a pointer list to the first element), after a given element

where, which is already member of the list. There are two cases to be con-

sidered. Either the new element is inserted at the beginning of the list, in

this case where contains the NULL pointer. Note that this case applies in

particular when the list is empty, hence the new element is used to create

a new list. The second case is the general case that where points to an

existing member of the list. The two cases are illustrated in Fig. 6.9.

The function insert_element() receives exactly the three pointers

list, elem, and where as arguments. Note that in the case the new ele-

ment is inserted at the beginning, the pointer to the first element of the list,

which represents the list itself and is defined outside insert_element(),

has to be changed. To allow for this update, the function returns always a

pointer to the current first element.

elem_t *insert_element(elem_t *list, elem_t *elem, elem_t *where)1

{2

if(where==NULL) /* insert at beginning ? */3

{4

elem->next = list;5

list = elem;6

}7

else /* insert elsewhere */8

{9

elem->next = where->next;10

where->next = elem;11

}12

return(list);13

}14

In the case where the element is inserted at the beginning (lines 3–7),

one has to change the pointer to the first element and to assign the successor

next of the inserted element elem, as indicated in Fig. 6.9. In the other

case (lines 8–12), also the successor of the inserted element is assigned, but

also the predecessor is assigned to point to elem. Note that many other

strategies for building lists are possible. One could, for example, insert

elements such that they are ordered according to some criterion. Also,

there are some special list types where inserting elements happens always

at the beginning (for so-called stacks) or at the end (for waiting queues).

For stacks, elements which arrived last are taken out first, this is called

last-in first-out (LIFO). For waiting queues, elements which arrived first

are taken out first, this is called first-in first-out (FIFO). As usual, we refer
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the reader to specialized textbooks for other types of inserting operations.

The use of the functions is illustrated by the following piece of code,

which exactly creates the list (4, 7, 5, 6) by inserting the elements in reverse

order all at the beginning of the list, one after the other.

elem_t *list, *elem;1

2

list = NULL;3

elem = create_element(6);4

list = insert_element(list, elem, NULL);5

elem = create_element(5);6

list = insert_element(list, elem, NULL);7

elem = create_element(7);8

list = insert_element(list, elem, NULL);9

elem = create_element(4);10

list = insert_element(list, elem, NULL);11

Once a list is created, one would like to do something with it. For

example one could just print all members in the given order from the first

to the last element. This is performed by the function print_list(), which

receives a pointer list to the first element and returns nothing.

void print_list(elem_t *list)1

{2

while(list != NULL) /* run through list */3

{4

printf("%d ", list->info);5

list = list->next;6

}7

printf("\n");8

}9

The function just prints the list to stdout. The functions illustrated

nicely the main operation for lists, the iteration over all members of the

list. This works (lines 3–7) by starting at the beginning of the list, and

moving the pointer along the list by iteratively assigning it to its successor

(line 6). Note that the pointer list is passed by value, hence its value

outside the function print_list() remains unaffected by changing list

inside the function.

Finally, we address the removal of an element from the list. This is

illustrated in Fig. 6.10. We assume that the pointer elem to the element

to be removed is given, as well as a pointer list to the first element of the

list. Now we face the difficulty that we have to know the predecessor of the
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4

4 7 5 6
list

elem

elem

7 5 6
list

Fig. 6.10 Removal of an element from a list. Either the element to be removed is the
first (top) or elsewhere inside the list (bottom). In both cases, the situation after the
removal has been completed is shown.

element to be removed: In case there is no predecessor, i.e., if element is

the first element of the list, list has to be changed (top of Fig. 6.10). If

elem is not the first element, we have to reconnect the predecessor of elem

to its successor (bottom of Fig. 6.10). In both cases, we have to run through

the list, starting at the first element, until we reach the predecessor of the

elem. This requires O(N) steps if the list containsN elements, i.e., does not

happen in constant O(1) time. This shows a drawback of single-linked lists,

as mentioned above. This can be cured either by using double-linked lists,

or by designing the remove_element() operation such that always a pointer

to the predecessor of the element to be removed is given (NULL if the first

element is to be removed). Note also that in the special case of stacks

and waiting queues, removal of elements happens always at the beginning,

hence can be performed in O(1) time as well. Instead of presenting a C

implementation for remove_element(), we leave this to you as exercise 5,

see end of the chapter.

Although we have presented in some detail how lists are implemented,

note that usually you do not have to program a complete and most flexible

lists package yourself. There are many freely available libraries, which

contain implementations of lists, e.g. see Sec. 7.2, where a very flexible

implementation using the Standard Template Library is explained. Still,

although these libraries are available, it is still very instructive to implement

one basic set of list operations at least once yourself. In this way you

learn how to think in terms of data structures and you get used to work
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with pointers. Everyone who wants to be an expert simulation program

developer should have implemented a rudimentary lists type at least once.

6.7 Trees

Now, we present trees, which are probably the most important advanced

data structure for computer programming, in particular for many types

of simulations. They help in many cases to replace operations which take

time O(N) for a simulation of “size” N by operations which only take time

O(logN). Hence, trees and other data structures which are derived from

trees help a great deal in speeding up simulations, thereby allowing for

larger systems to be treated.

For the data structures presented in the previous section, arrays and

lists, always a linear order was used or assumed. Very often, additionally a

hierarchical order is present or can be imposed. A very simple example of a

system exhibiting a hierarchy is a company or a governmental organization.

To consider a toy example, let us assume that a railway company consists

of a planning division, an accounting division and a division operating the

transportations. The planning division may be subdivided into a depart-

ment for planning the network, another one for planning the schedules, a

third for developing new pricing schemes, and a fourth responsible for buy-

ing new locomotives and wagons. The account division may be subdivided

into four departments responsible for personal, maintenance, purchasing,

and revenue, respectively. The operation division might be subdivided into

departments for the freight trains, for passenger trains, for night trains, for

busses, and one for actually performing the maintenance. The natural way

to represent the structure of the railway company in the computer is a tree,

as shown in Fig. 6.11.

Now we introduce some definitions. The elements of the tree are denoted

as nodes or as vertices, the latter one is more generally used for graphs, see

Sec. 6.8. For the railway company, e.g. “railway company”, “accounting”

and “night trains” are nodes. When two nodes A,B are connected by an

arrow A→B, usually called a link or an edge, node A is called predecessor or

parent of B, while B is called successor or child of A. In Fig. 6.11, “personal”

is a child of “accounting”. The children of a node A are also defined as

descendents of A. Furthermore, all children of descendents of A are also

defined as descendents of A. The single node without parent is called the

root of the tree. Hence, all nodes, where A is located on a path from the root
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accounting

planning

railway company

schedule

network

prices

personal

maintenance

freight

night trains

busses

purchasing

purchasing

revenue

operation

passenger

maintenance

Fig. 6.11 Example of a hierarchical structure, represented as a tree: a railway company.
Note that a tree is often drawn with the root node (here “railway company”) not located
at the bottom.

to the node, are descendents of A. In the example tree, “railway company”

is the root of the tree. On the other hand, each node A together with all

its descendents also forms a tree, called a subtree, with A being the root of

the subtree. Nodes without children are called leaves, e.g. “network” and

“busses”. In principle, the number of children per node, also for the non-

leaves, may vary within the tree. In case each node has at most two children,

the tree is called a binary tree. To reach a node A, one can always start at

the root of a tree and follow some links in the direction of the arrow, until

the node A is reached. The sequence of visited nodes is called a path.5 For

the example, “schedule” can be reached via the path “railway company”

→ “planning” → “schedule”. Note that for each node, the path to reach it

from the root is unique. The number of traversed links between the root

and node A is called the height or level of node A. Hence, the root has always

height zero. In the example tree Fig. 6.11, node “planning” has height one,

while node “prices” has height two. For this example, all leaves have the

same height. In general, the leaves of a tree can have different heights, for

example, if the railway company has a division “public relations” which is

not subdivided into departments. Finally, the height of the tree itself is the

largest height of any leaf.

5Equivalently, one can also call the sequence of traversed links a path.
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As a very simple example of useful and general-purpose data structures,

we consider binary search trees, where we want to store a set S of elements

e, which can be ordered according to some value of a key k(e), like in

Sec. 6.3, where the mergesort algorithm was presented. For simplicity,

we assume that for each possible value of the key at most one element is

present. Here, it is desirable to be able to test very quickly whether an

element with a certain value of the key is present in the data structure.

Also, we assume that constantly elements may be added or removed while

the elements should preserved sorted. It would be too slow to sort the data

again after each change. Thus, we cannot use the mergesort algorithm,

since it results only in a fixed linear order of the sorted elements. The basic

idea for overcoming this restriction is that one can introduce an artificial

hierarchy by picking any value k0 of the key and subdividing the set of

elements into elements which exhibit a smaller key k(e) < k0 (denoted as

subset S(−∞, k0)), another subset containing elements exhibiting k(e) > k0
(S(k0,∞)) and possibly one remaining element with k(e) = k0. The subsets

S(−∞, k0) and S(k0,∞) can be subdivided in the same way. For example,

using a key value k1,0 < k0, S(−∞, k0) can be subdivied into a subset

S(−∞, k1,0) containing elements smaller than k1,0, into a subset S(k1,0, k0)

containing elements between k1,0 and k0, and finally possibly the element

with exactly the key value k1,0. In the same way, the other subset S(k0,∞)

can be subdivided using a key k2,0 > k0. By this hierarchical splitting

of the set of elements a tree structure is generated. A binary tree can be

used to store the elements via representing this hierarchy. In this case,

for convenience, only the key values of existing elements are used for the

hierarchical subdivision of the set. Hence, at each node an element e is

stored. For this node, one subtree (usually denoted as left subtree) contains

all elements e′ with key values k(e′) < k(e) the other (right) subtree the

elements exhibiting k(e′) > k(e). A possible binary search tree containing

elements with key values 13, 15, 20, 23, 24, 25, 27 is shown in Fig. 6.12.

GET SOURCE CODE

DIR: algorithms
FILE(S): tree.h

A very natural way to represent trees in

memory is to use a C structure for each ele-

ment and pointers to represent the links. This

is similar to the way we have represented lists

in Sec. 6.6. The only difference is, since we are dealing with binary trees

where each node has up to two children, that we store two pointers for each

element. For leaves, both pointers have the value NULL. The following

data structure can be used:
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2313

15

20

25

27

24

tree

Fig. 6.12 A binary search tree containing elements with key values 13, 15, 20, 23, 24,
25, 27 (only key values shown). Each element has up to two children, i.e. subtrees. At
the root, the element with key value k0 = 20 is stored. The left subtree contains the
elements S(−∞, 20) with key values smaller than 20, while the right subtree contains
the elements S(20,∞).

struct node_struct1

{2

int key; /* holds key */3

struct node_struct *left; /* to left subtree (NULL: none) */4

struct node_struct *right; /* to right subtree (NULL: none) */5

};6

7

typedef struct node_struct node_t; /* define new type for nodes */8

We have defined a new data type node_t for convenience. For simplicity,

only the key values are stored here. Other data belonging to an element,

usually necessary for a real application, could be stored in other fields added

to the structure. Note that if one wants to have trees of several types, e.g.

one to store data of atoms and one to store data of full molecules (e.g.

each containing a set of atoms), one would need to define two different tree

node types. As a more flexible alternative, one could add one field with a

void *data pointer, which points to an arbitrary memory area, where the

actual data, independent of the tree structure, is stored. This would allow

for a tree containing arbitrary objects. Since there are existing excellent

libraries having data structures for this purpose, e.g. see Sec. 7.2, we do
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not go into details here.

Instead, we continue with our simple example.

Following the object-oriented spirit, first we

need functions which create and destroy iso-

lated elements, respectively, in the latter case

GET SOURCE CODE

DIR: algorithms
FILE(S): tree.c

under the assumption that they are not contained in any tree. The function

creating a node takes as argument the key value:

node_t *create_node(int value)1

{2

node_t *node;3

4

node = (node_t *) malloc (sizeof(node_t));5

node->key = value;6

node->right = NULL;7

node->left = NULL;8

return(node);9

}10

For creating a node, first one has to allocate the memory (line 5), then

the key value is assigned (line 6) and the pointers to the children are initial-

ized as NULL pointers (line 7–8). The function for deleting a given node

(passed as pointer) is also straightforward:

int delete_node(node_t *node)1

{2

if(node == NULL)3

{4

fprintf(stderr, "attempt to delete ‘nothing‘\n");5

return(1);6

}7

else if( (node->left != NULL)||(node->right != NULL))8

{9

fprintf(stderr, "attempt to delete linked node!\n");10

return(1);11

}12

else13

{14

free(node);15

return(0);16

}17

}18

For deleting a node, it is first tested whether actually something has
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been passed to the function (lines 3–7) and whether the node has no children

(lines 8–12). If these tests are passed successfully, the node is freed (line

15).

To actually create a sorted tree, we insert nodes (exhibiting keys) into

a sorted tree such that the order is always preserved. Note that the tree

can be empty as well, which will be the case in particular when a new tree

is created.

The basic idea is that the algorithm starts at the root of the tree and

searches for the occurrence of the key. Since the tree is sorted the search

can be performed very quickly: If the key value is stored at the root, it is

already present, hence the tree is not changed. If the given key is smaller

than the key at the root, the wanted key is for sure in the left subtree, hence

the algorithm continues to search there. If the wanted key value is larger

than the key at the root, the algorithm continues in the right subtree. The

search continues iteratively by branching either into left or right subtrees,

until the key is found or an empty subtree is reached. In the latter case,

it is clear that the key is not present in the tree, hence it can be attached

at the position, where the empty subtree was reached. As an example, in

Fig. 6.13 it is shown how a node with key value 22 is inserted into the tree

from Fig. 6.12.

The function insert_node() does the job of inserting a node in the

right order into the tree. It receives a pointer to the tree, i.e. to its root

node, and a pointer to the node to be inserted. It returns a pointer to the

root of the tree, which changes only if the tree is previously empty. Another

return parameter is a flag, which is one if the node is already contained in

the tree. A pointer to this flag is passed as last parameter. The C code for

the function reads as follows.
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node_t *insert_node(node_t *tree, node_t *node, int *in_p)1

{2

node_t *current;3

4

if(tree==NULL)5

return(node);6

current = tree;7

*in_p = 0; /* default: not contained */8

while( current != NULL) /* run through tree */9

{10

if(current->key==node->key) /* node already contained ? */11

{12

*in_p = 1;13

return(tree);14

}15

if( node->key < current->key) /* left subtree */16

{17

if(current->left == NULL)18

{19

current->left = node; /* add node */20

return(tree);21

}22

else23

current = current->left; /* continue searching */24

}25

else /* right subtree */26

{27

if(current->right == NULL)28

{29

current->right = node; /* add node */30

return(tree);31

}32

else33

current = current->right; /* continue searching */34

}35

}36

}37

To create a new tree, the function is called with tree=NULL (equivalently,

a given node can be used as the root of a new tree, without calling the

function). This case is treated in lines 5-6. The tree is searched for the

given key value in lines 7–33, starting at the root (line 7). If the key

value is found the function finishes, the tree remains as it is (lines 11–15).

Otherwise, the search continues in the left (lines 17–25) or right (lines 27–
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Fig. 6.13 Inserting a new key value 22 into the tree from Fig. 6.12. The dashed line
next to the tree indicates the path along which the tree is traversed in the search for key
value 22. The search stops at the left child of the node with key 23, hence the new node
becomes the new left child (indicated by a dashed arrow).

35) subtree. In case the corresponding subtree does not exist, the new node

is inserted into the tree (lines 19–22 and lines 29–33).

Note that another function which just tests whether a given key value

is contained in the tree can be written in a similar way. This is achieved by

first returning “yes” (1 in C) if the key value is found, second by leaving

out the lines which insert the given element into the tree, and third by

returning “no” (0 in C) in case the end of the function is reached. The

details are left to you as exercise (7).

During the search for a given key, the algorithm moves the current

pointer one level up in the tree per iteration of the main loop (lines 8–33).

Hence for a tree of height L it takes at most L iterations to locate a key in

a tree, the algorithm runs in O(L) time.

In case a tree with L+1 levels contains the maximum number 2l of nodes

per level l = 0, . . . , L, the tree can be considered as “full”. In this case the

tree contains a total of N = 2L+1 − 1 nodes, hence the number of levels

depends basically logarithmically on the number of nodes L = O(logN).

This is typically also true in case the tree is not “full”. Hence, in these cases
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inserting and locating elements in a binary search tree takes time O(logN).

For this reason it is usually very efficient to store data, which is annotated

with a key, in a tree.

Whether this is the case, depends on the order the key values are inserted

into the tree. For example, if the key values are inserted in already descend-

ing or ascending order, the resulting “tree” in fact will be a list, see Fig. 6.14,

where the number of levels grows linearly with the number of nodes, instead

of growing logarithmically. In this case, inserting and locating nodes would

take linear time again. A list is a special case of an unbalanced tree, which,

in general, contains nodes, whose two subtrees differ significantly in height,

for example at least by two. There are several extensions of binary search

trees, where the trees are always kept balanced, which guarantees that the

main tree operations, also removal of nodes, can be performed in O(logN)

time. The basic idea of these algorithms is that first elements are inserted

as explained above (or removed, see below), and the additional reorganiza-

tions are performed if the resulting tree is unbalanced. We do not go into

details here; please consider specialized literature [Cormen et al. (2001);

Sedgewick (1990)].

Instead, we discuss how a binary search tree can be printed using a

simple algorithm, such that all nodes are printed in increasing order. This

can be achieved by a recursive approach: First the left subtree is printed,

then the root, finally the right subtree. This job is done by the following

function, which obtains a pointer to the tree as argument.

void print_tree(node_t *tree)1

{2

if(tree != NULL)3

{4

print_tree(tree->left);5

printf("%d ", tree->key);6

print_tree(tree->right);7

}8

}9

This way to print a tree is also called inorder printing. Note that other

orders are possible, e.g. preorder, where first the root of the current subtree

is printed, then the left and finally the right subtree. For the tree shown in

Fig. 6.12, the inorder output looks as follows:

13 15 20 23 24 25 27
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24

23

20

15

13

25

27

tree

Fig. 6.14 A binary search tree containing elements with key values 13, 15, 20, 23, 24,
25, 27 (only key values shown), if the key values are inserted in ascending order. The
resulting tree is in fact a list.

Finally, we consider the case of node removal. Again, this has to be done

in a way such that the tree remains sorted. For this, we have to consider

three different cases. The simplest case is if the node to be removed is a

leaf, i.e. it has no children. In this case, the node can be simply removed

by setting the pointer of the parent to the node to NULL. As example, the

removal of a leaf (node 13) from the tree shown in Fig. 6.12 is presented in

Fig. 6.15.

Also the case when the node to be removed has exactly one child is

simple to treat. One just replaces the node by its child, i.e. the pointer

from the parent to the node is redirected to the child. As example, the

removal of a node 15 from the tree of Fig. 6.12 is presented in Fig. 6.16.

The most complicated case occurs when the node A to be removed has

two children. In this case, one searches in the right subtree of this node for

the node S with the smallest key, i.e. the leftmost key in the right subtree.

This can be achieved by starting at the root of the right subtree (i.e. the

right child of node A), moving iteratively to the left child until a node S

without left child has been reached. In this way it is guaranteed that S
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node
2313

15

20

25

27

24

treedelete 13

Fig. 6.15 Removing the node exhibiting key value 13 from tree of Fig. 6.12. Since this
node is a leaf, it can simply be removed while keeping the tree sorted.

node

2313

15

20

25

27

24

treedelete 15

Fig. 6.16 Removing the node exhibiting key value 15 from the tree of Fig. 6.12. Since
this node has one child, it can simply be replaced by its child via redirecting the pointer

20 → 15 to 20 → 13.

exhibits the smallest key in the subtree. Note that when printing the tree

in inorder fashion, node S would be printed right after node A. Next, the
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keys (and other possibly present data, except pointers to children) of the

nodes A and S are exchanged. Finally, node S is removed. Since it has no

left child, it has in particular at most one child. Thus, it can be removed

as described above for case one or two. As example, the removal of a node

20 (the root) from the tree of Fig. 6.12 is presented in Fig. 6.17.

node
13

15

23

25

27

24

tree

20

delete 20

Fig. 6.17 Removing the node exhibiting key value 20 from the tree of Fig. 6.12. Since
this node has two children, the node S exhibiting the smallest key within the right subtree
is located, i.e. the node with key 23. The contents of these two nodes are exchanged.
Finally, node S, which now contains the data of the target node, is removed.

In all three cases, the function remove_node() removing the node should

return a pointer to this node, since after the removal it will not have been

deleted from memory. For this purpose, the function delete_node() should

be used. We do not present the C implementation of remove_node(), but

leave this as exercise (8) to the reader. Note that there could be several

versions of remove_node(), e.g. depending on whether a pointer to the

node is already given, or whether only the key value is known. In the latter

case, the tree has to be searched for the key, which takes O(logN) time,

as discussed above. On the other hand, consider again the example of the

animals exhibiting weights (= keys) and IDs (Sec. 6.3). In this case, one

could, for example, store the animals additionally in an array indexed by

the animal ID. Now, it would help to store in the array along with the

animal data also pointers to the corresponding nodes in the tree. Hence,

if an animal with a given ID is to be deleted, one could access the tree
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node directly through the pointer stored in the array without searching

for the key, i.e. in time O(1). This way of storing data, a kind of double

bookkeeping, is an example of where faster implementation at the expense

of memory consumption can be achieved. Note that quite a few lines of

additional code are necessary in this case: since for deleting elements (or

when using the above mentioned operations for balancing trees) sometimes

nodes exchange content, the corresponding pointers from the array elements

to the nodes have to be updated as well. There are many cases where double

bookkeeping helps to speed up simulations considerably. Hence, you should

always ponder whether double bookkeeping is possible and meaningful.

6.7.1 Heaps

Sorted binary trees are useful if one wants to have ordered access to a set of

elements, e.g. for fast access to all elements. Nevertheless, sometimes it is

sufficient to have access only to the currently smallest (or largest) element.

One example where this is the case is an event-driven simulation. Consider,

for instance, a box filled with hard spheres like billiard balls. These spheres

move with constant velocity unless they collide with each other, where they

change direction and magnitude of velocities. A standard approach would

be to actually simulate the trajectories of spheres by moving the spheres

in little steps, i.e. by performing a Molecular dynamics simulation [Allen

and Tildesley (1989); Haile (1992); Rapaport (1995)]. This is very time-

consuming and indeed not necessary since the constant-velocity movement

between the collisions is trivial and can be calculated exactly. Hence, one

needs only to consider the events, given by pairs of spheres (i, j) which

collide and the corresponding times tij where this happens. An event-

driven simulation in this case consists of treating all collision events one

after the other in the order of increasing times ti,j . This order is important,

because after a collision (i, j) the participating spheres i and j move in

new directions. Hence, new collisions will usually be obtained, say i will

collide with particle k at tik > tij , see Fig. 6.18. Now, it might be that

previously a collision of sphere k with another sphere l had been calculated

with tlk > tik, hence now the collision (l, k) might actually not take place

since (i, k) will happen earlier.

Thus, at each stage of the event-driven simulation one has to deter-

mine the event with the smallest even time. For the simplest approach,

one would run through the list of all N events and pick the smallest one,

but this requires O(N) steps each time. One better uses a binary search
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i

j

k

l

t=0

l

j

i

k

t=t ij

Fig. 6.18 Collisions of hard spheres. Left: In the beginning two collisions are calculated:
(i, j) and (l, k) at times tij < tlk . Right: after the collision (i, j) has been evaluated,
a new collision (i, k) has been obtained, with tik < tlk , hence (k, l) does not take place
currently (but later it might turn out that sphere k might collide with sphere l anyway.
This can even happen at a collision time which is smaller than the initially calculated
time tlk , if the collision (i, k) accelerates sphere k towards the trajectory of l.

tree to store the events, where all operations can be performed in O(logN)

time. The next event to be considered will always be located at the left-

most entry of the tree. Nevertheless, since new events will be generated

typically in increasing times, a simple tree implementation would lead to

an unbalanced tree, basically a list, as discussed on page 190. Therefore,

additional algorithms for balancing the tree would be necessary.

Nevertheless, for the case one has to access always only the smallest

element of a set, there is a simpler way to achieve O(logN) running time for

each basic operation. This is achieved by so-called priority queues. There

are many different implementations of priority queues. Here, we consider

one which is based on a heap. This is also a binary tree, but it is partially

sorted such that for each subtree, the smallest (or largest, depending on the

application) element is located at the root of the subtree (heap property).

Hence, the root of the entire tree will always contain the smallest element

of the tree, which thus can be accessed in even O(1) time. In Fig. 6.19 a

heap containing some natural numbers is shown. Note that for each given

set of elements, many different valid heaps are possible.

We will consider a heap implementation where all levels of the heap

are completely filled except the highest level. The highest level will be

filled “from the left”, which is also the case in Fig. 6.19. This allows for

a very simple storage of a heap using an array: The elements are stored

consecutively level by level, starting at index 0 (C convention), where the

root is stored. Going from left to right within a level of a tree, the elements

are stored in the array one after the other.

Accessing the elements stored in the array is very simple: For the node
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9883 33

21

22

2329

34

15

41

24

73

19

level 3

level 2

level 1

level 0

Fig. 6.19 A heap containing the elements 15, 19, 21, 22, 23, 24, 29, 33, 34, 41, 73,
83, 98. For each subtree, the smallest element is stored at the root of the subtree. For
instance, number 22 is smallest among the numbers 22, 24, 29, 34, 41, 89, 98.
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01
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13 14

....

Fig. 6.20 How a heap (top) is stored in an array (bottom). For each node, the index of

the array entry is given, where the element is stored. The numbers shown in Fig. 6.19
would be stored in the order 15, 22, 19, 29, 24, 23, 21, 34, 83, 98, 41, 73, 33 in the array.

stored at array index i, the parent is located at index (i − 1)/2, where the

division is treated here as integer operation. Hence, for both nodes stored at

indices 3 and 4, the parent is stored at index 2/2 = 3/2 = 1. Furthermore,

the left and right children can be found at array indices 2i+ 1 and 2i+ 2,

respectively.

GET SOURCE CODE

DIR: algorithms
FILE(S): heap.h

Next, a small C implementation of a heap is

shown. As an example, the heap stores events,

characterized by some ID (which could be used,

for example to locate the events in an array)

and by the time of the event. Each element of the heap is of the following
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type

typedef struct1

{2

double t; /* time of event */3

int event; /* ID of event */4

} heap_elem_t;5

The heap consists here of an array heap of type heap_elem_t and of

a variable heap_num, which counts the current number of elements in the

heap. One could pack these two variables together with (say) a third vari-

able holding the maximum allowed number of elements, into another C

struct, which is not shown here for conciseness.

GET SOURCE CODE

DIR: algorithms
FILE(S): heap.c

The most fundamental operation is to insert

a new element into the heap. This works in the

following way: First, the element is placed in

the first empty entry of the array, i.e., at index

heap_num which is then increased by one. This guarantees that the level-

by-level organization is kept. Now, the heap property might be violated,

i.e., there might be subtrees where the new element is the smallest one,

but not located at the root of the subtree. To restore the heap property,

one iteratively compares the new element with the element stored at its

current parent. If the new element is smaller, it is exchanged with the

parent element. In this way, the new element moves toward the root of

the tree. This step is repeated, until the element at the current parent is

smaller than the new element. Now the heap property is restored. In Fig.

6.21 an example is given of how to insert a number into the heap from Fig.

6.19.

The function heap_insert() has the following arguments: the heap, a

pointer to the current number of elements, the time and the ID of the event

to be inserted. The C source looks as follows:

void heap_insert(heap_elem_t *heap, int *num_p, double time, int ev)1

{2

int pos, parent; /* heap positions */3

heap_elem_t elem; /* for exchangig elements */4

5

pos = (*num_p); /* insert at end */6

*num_p = pos+1;7

heap[pos].event = ev;8

heap[pos].t = time;9

parent = (pos-1)/2;10
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Fig. 6.21 Number 17 is inserted into the heap from Fig. 6.19. Since it is smaller than
the value 21 stored at is parent node, numbers 17 and 21 are exchanged. Next, the 17
is exchanged with number 19. Since 17 is not smaller than the number 15 stored at the
root, it comes to rest.

while((pos > 0)&& /* move up in heap */11

(heap[parent].t > heap[pos].t))12

{13

elem = heap[parent]; /* exchange parent/child */14

heap[parent] = heap[pos];15

heap[pos] = elem;16

pos = parent; /* move up */17

parent = (pos-1)/2;18

}19

}20

In lines 6–9 the new element is inserted at the end and the number of

elements is increased by one. In lines 10–19 the new element is moved (lines

14–16) towards the root until the current parent is smaller than the new

element or until the root is reached (lines 11–12). Note that in case one

wants to implement double bookkeeping (see page 194), one would have to

update the pointers, which point to an element in the heap from outside,

whenever an element is moved. Hence, in this case the data structure which

holds the pointers would have to be passed to the function as well.
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The next event having been treated, which is always located at the

root, it has to be removed from the tree. Furthermore, as explained for

the example of the hard spheres above, sometimes arbitrary events might

have to be removed from the tree in case they become obsolete. Thus,

removing elements, possibly the root, is discussed next: To keep the level-

by-level organization, the element to be removed is just replaced by the last

element L of the tree, i.e. the element which is located rightmost in the

highest level. Now the heap property might be violated again. There are

two cases

A) The element L is smaller than the element stored at its current parent

node. In this case, element L has to be moved towards the root, until

its current parent is smaller. This is similar to inserting an element into

the heap, see Fig. 6.22 for an example.

B) The element L is larger than the element stored at the current parent

node. Now, L might be also larger than one or both elements stored at

its one or two children. Hence L has to be exchanged with the smaller

of the elements stored at the children. This is again repeated, until L

is smaller than all elements present at its current children, see Fig. 6.23

for an example.

9883 33

19

22

2329

34

15

41

24

73

17

21

Fig. 6.22 Number 34 is deleted from the heap shown in Fig. 6.21. First, number 34 is
replaced by the last element in the heap, number 21. Since 21 is smaller than the number
29, stored at the parent, it starts moving towards the root until the current parent is
smaller.

Details of the implementation are left as exercise (9) to the reader. As

mentioned above, insertion and removal from the heap can be performed in

worst-case running time O(logN) for a heap containing N elements. The

reason is that the heap is a tree which is always balanced, hence its height

grows logarithmically with the number of nodes. This often results in a
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Fig. 6.23 Number 15 is deleted from the heap shown in Fig. 6.22. First, number 15
replaced by the last element in the heap, number 33. Since at least one of the elements
located at children is smaller, number 33 starts moving towards the leaves.

much faster simulation compared to the simple approach, hence much larger

systems can be treated. A recent example is the study of heat conduction

in one-dimensional systems of hard particles [Grassberger et al. (2002)],

where the use of heaps led to qualitatively improved results compared to

previous work [Dhar (2001)], where the simple approach had been applied.

Note that performing a simulation via collision events is not only pos-

sible for real hard particles but also for atoms with very short-ranged in-

teractions, in this case one speaks of binary-collision approximation, which

has been applied successfully for the simulations of ion impacts on surfaces

in molecular-beam epitaxy [Robinson and Torrens (1974)].

In general, heaps can be applied widely. Whenever you have to select

“the smallest” or “the largest” from a set of elements, you should always use

a priority queue, e.g., implemented as a heap. Similar to the case of lists, in

many cases you do not have to implement your own general-purpose priority

queue, since it is already contained in the Standard Template Library, see

Sec. 7.2. Nevertheless, in case you need double bookkeeping for highest

performance, you have to have access to the internal heap structure. In

this case you have to implement a heap yourself.

Nevertheless, before you change a part of your program and replace

some simple selection mechanism by a heap-based selection, you should use

gprof to analyze where your program spends most of its running time,

see Sec. 4.4. Maybe the bulk of running time of your program is spent

somewhere else. In this case you should optimize these parts first.
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6.8 Graphs

For many simulation problems in science, sociology or economy, the un-

derlying model can be represented by graphs. For this reason a short in-

troduction to graph theory is given here. Only the basic definitions, data

structures and few algorithms are presented. For more information, the

reader should consult a specialized textbook on graph theory, e.g. Refs.
[Bolobas (1998); Claiborne (1990); Swamy and Thulasiraman (1991)].

6.8.1 Basic definitions

Consider a map of a country where several towns, villages or other places

are connected by roads or railways. Mathematically, this setting can be

represented by a graph. A graph consists of nodes and edges. The nodes

represent the towns, villages or other places and the edges describe the

roads or railways. Formally, the definition of a graph is given by:

Definition 6.2 A graph G (also often called a network) is an ordered

pair G = (V,E) where V is a set and E ⊂ V × V . An element of V is

called a vertex or node. An element (i, j) ∈ E is called an edge or arc.

In a physical context, where edges represent interactions between particles,

edges are often called bonds.

If the pairs (i, j) ∈ E are ordered pairs, i.e. if the edge goes from i

to j, then G is called a directed graph. Otherwise G is called undirected,

then (i, j) and (j, i) denote the same edge. A graph G
′

= (V
′

, E
′

) is called

subgraph of G if it has the properties V
′ ⊂ V and E

′ ⊂ E (E
′ ⊂ V

′ × V
′

by definition). The empty graph (∅, ∅) is a subgraph of all graphs. Another

special graph is the (undirected) complete graph Kn which contains n nodes

and all possible n× (n− 1)/2 edges, i.e. Kn = (V, V × V ).

First, some further notations are given which apply to both directed and

undirected graphs. Some of the definitions are illustrated using an example

graph in Fig. 6.24. Usually, we restrict ourselves to finite graphs, i.e. the

set of nodes and edges are finite. In this case we denote by n = |V | the
number of vertices and by m = |E| the number of edges. Let i ∈ V be a

vertex. If (i, j) ∈ E we call j a neighbor of i (and vice versa). Both nodes

are endpoints of the edge and they are adjacent to each other. The set N(i)

of neighbors of i is given by N(i) = {j | (i, j) ∈ E ∨ (j, i) ∈ E}. The degree

d(i) of node i is the cardinality of the set of neighbors: d(i) = |N(i)|. A

vertex with degree 0 is called isolated .
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Fig. 6.24 The undirected graph. G = ({0, 1, 2, 3, 4, 5}, {(0, 1), (1, 3), (3, 4) (4, 1), (4, 2)})
is shown. The nodes are represented by circles and the edges by lines connecting the
circles. The graph has n = 6 vertices and m = 5 edges; e.g. nodes 3 and 4 are adjacent.
The set of neighbors of vertex 1 is N(1) = {0, 3, 4}. Thus, node 1 has degree 3, while
node 2 has only degree 1. Node 5 is isolated. The graph contains the path 0, 1, 4, 3 from
node 0 to node 3 of length 3 and the cycle 1, 3, 4, 1. Since the nodes 0, 1, 2, 3, and 4
are mutually connected by paths, they form a connected component. There is a second
connected component consisting only of node 5.

A path from v1 to vk is a sequence of vertices v1, v2, . . . , vk which are

connected by edges: (vr, vr+1) ∈ E ∀r = 1, 2, . . . , k − 1. The length of the

path is k − 1. If v1 = vk the path is called closed. If no node except the

first and the last one appears twice in a closed path, it is called a cycle.

Note that trees, as introduced in Sec. 6.7, are just graphs without cycles.

A set of nodes is called a connected component, if i) a path exists for each

pair of nodes between the nodes within the connected components and ii)

no nodes of the graph can be added such that i) still is true. Hence, a

connected component is of maximal size. A graph is called connected if it

has only one connected component.

Now some definitions are given which apply only to directed graphs.

For an edge e = (i, j), i is the head and j the tail of e. The edge e is

called outgoing from i and incoming to j. Please note that for a directed

path it is important that all edges point into the direction of the path,

formally the definition is the same as in the case of an undirected graph.

A set of nodes is called a strongly connected component (SCC), if i) from

each of its nodes a directed path to every other node of the set exists

within the set and ii) no nodes of the graph can be added such that i)

still is true. In a directed graph, the outgoing and incoming edges can

be counted separately. The indegree is given by id(i) = |{j | (j, i) ∈ E}|
and the outdegree is od(i) = |{j | (i, j) ∈ E}|. Obviously, for all vertices

d(i) = id(i) + od(i).
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Fig. 6.25 A directed graph. The edges (i, j) are represented by arrows pointing from
i to j. If one considers the example graph from Fig. 6.24 to be directed, one obtains
this figure. Here, the sequence 0, 1, 4, 3 is not a path since the edges (4, 1) and (3, 4)
point in the wrong direction. On the other hand, the graph contains the path 0, 1, 3, 4.
Node 1 has the outdegree od(1) = 1 and indegree id(1) = 2. The total degree is d(1) =
id(1) + od(1) = 3 as in the case of the undirected graph.

Graphs appear in many cases where simulation methods have been suc-

cessfully applied. Here we just list some examples, which have been studied

extensively in the literature:

• Citation networks: The nodes represent scientific papers. A directed

edge (i, j) means that in article i there is a citation of article j.

• Acquaintance networks: Nodes represent persons, an undirected edge

(i, j) means that i, j know each other personally (or they have coau-

thored a scientific article, or they have played in the same team, or

. . .).

• Protein regulation: Nodes represent proteins. A directed edge (i, j)

means that the presence (or absence) of protein i regulates the expres-

sion of protein j in a cell.

• World Wide Web: Nodes represent web pages. A directed edge (i, j)

means that on page i there is a link (URL) to page j.

• Magnetic systems: The nodes represent particles carrying a magnetic

moment (“spin”) and the edges represent interactions between the

spins.

Sometimes functions f : V → A (A an arbitrary set) on vertices or

functions f : E → A on edges are useful as well. An arbitrary function on

vertices or on edges is called labeling. A graph together with a labeling is

called a labeled graph. Typical labelings are distances, costs or capacities.

For instance, for a graph where the nodes represent cities connected by
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roads (edges), labels on the edges can be used to denote distances between

neighboring cities.

6.8.2 Data structures

Next, we consider how graphs can be represented in a computer program,

hence suitable data structures. In particular, we treat adjacency matrices

and adjacency lists. For simplicity, we consider unlabeled graphs within

the following C example implementations. All of these examples can be

extended to labeled graphs in a straightforward way.

The simplest way to represent a graph in a C program is first to use an

interval of natural ID numbers {0, 1, . . . , n− 1} to represent the nodes and

second, for the edges, an adjacency matrix {aij} with

aij =

{
1 ∃ edge (i, j)

0 else .
(6.8)

For the undirected graph shown in Fig. 6.24 and the directed version

shown in Fig. 6.25 the matrices look as follows, respectively:

{aij} =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0

1 0 0 1 1 0

0 0 0 0 1 0

0 1 0 0 1 0

0 1 1 1 0 0

0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
{aij} =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 1 1 0 0 0

0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
Note that in case of an undirected graph, the adjacency matrix is al-

ways symmetric. In a C program, an adjacency matrix can be used as

simply as every other matrix, see Sec. 1.4. Hence, after allocating an ad-

jacency matrix defined via short int **adj, one can add an edge (i, j)

to the graph by directly assigning adj[i][j]=1. Also the presence of an

edge can be tested in O(1) in the same way by reading adj[i][j]. On the

other hand, an adjacency matrix requires O(n2) memory for a graph with

n nodes. Therefore, a lot of memory is wasted for the large sparse graphs,

i.e., graphs where the number of edges is less than O(n2) (typically only

O(n)). In many applications of sparse graphs, a number n ∼ 106 of nodes

is present, hence an adjacency matrix would not fit into the main memory.

Furthermore, iterating over all neighbors of a given node, a typical oper-
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ation when performing graph algorithms, requires O(n) steps even if the

average number of neighbors is finite O(1).

For sparse graphs it is better to store only the

edges which are present. This can be done, for

example, using a neighbor list. Thus, for each

node of the graph, again represented by integer

GET SOURCE CODE

DIR: algorithms
FILE(S): graphs.h

ID numbers {0, 1, . . . , n − 1}, a list of neighbors is used. Thus, the full

graph is represented by an array of lists. For a C implementation, we can

use the following data types:

typedef struct1

{2

elem_t *neighbors; /* pointer to list of neighbors */3

} gs_node_t;4

5

typedef struct6

{7

int num_nodes; /* number of nodes */8

gs_node_t *node; /* array of nodes */9

} gs_graph_t;10

Here, a separate type gs_node_t (lines 1–4) is introduced for each node,

although it currently contains only one element. The reason for this ap-

proach is that it can be extended fairly simple, such as for introducing labels

on the vertices by just adding another element to the structure. When you

use the data structure for lists as presented on page 176, the edges do not

carry any label. The info is used to store the IDs of the neighboring nodes.

In Fig. 6.26 a list representation of the graphs from Figs. 6.24 and 6.25 is

shown, respectively. Note that for an undirected graph, an edge (i, j) ap-

pears as entry j in the list of node i and as entry i in the list of node

j.

6.8.3 Generation

GET SOURCE CODE

DIR: algorithms
FILE(S): graphs.c

To generate a graph, here the function

gs_graph_generate() is used, which receives

the number of nodes as parameter. Initially no

edges are present. The C implementation looks

as follows:
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Fig. 6.26 Neighbor-list based representation of the undirected graph shown in Fig. 6.24
(left) and of the directed graph shown in Fig. 6.25 (right).

gs_graph_t *gs_create_graph(int num_nodes)1

{2

gs_graph_t *g;3

int n;4

5

g = (gs_graph_t *) malloc(sizeof(gs_graph_t)); /* allocate */6

g->num_nodes = num_nodes; /* initialize */7

g->node = (gs_node_t *) malloc(num_nodes*sizeof(gs_node_t));8

9

for(n=0; n<num_nodes; n++)10

g->node[n].neighbors = NULL;11

12

return(g);13

}14

The function just has to allocate memory of the type gs_graph_t (line

6), store the number of nodes in the element num_nodes (line 7), and allo-

cate for the element node an array of this size (line 8). Finally all neighbor

lists are initialized as being empty (lines 10–11).

For an object-oriented design, one needs also a function which destroys
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a graph. One could split this task into two subtasks: first to remove all

edges, i.e., clear the graph, and second to free the data structures allocated

in gs_graph_generate(), i.e., to finally delete a cleared graph. We do not

show the details of the implementation, but mention that the source code of

these functions is also included in the packages which are available online.

Since it is convenient and failure-safe to hide the graph implementation,

next a function for inserting an edge in an undirected graph is presented.

The function gs_insert_edge() receives the graph (i.e. a pointer) and the

IDs of the endpoints of the edge as parameter. The C code looks as follows:

void gs_insert_edge(gs_graph_t *g, int from, int to)1

{2

elem_t *elem1, *elem2, *list;3

4

list = g->node[from].neighbors; /* edge exists? */5

while( list != NULL )6

{7

if(list->info == to) /* yes */8

return;9

list = list->next;10

}11

12

elem1 = create_element(to); /* create neighbor for ’from’ */13

g->node[from].neighbors =14

insert_element(g->node[from].neighbors, elem1, NULL);15

elem2 = create_element(from); /* create neighbor for ’to’ */16

g->node[to].neighbors =17

insert_element(g->node[to].neighbors, elem2, NULL);18

}19

First, it is checked whether the edge is already present in the graph

(lines 5–11). If so, nothing has to be done. Note that in lines 6–11, we

work directly on the implementation level of the lists. To hide the list im-

plementation, one would have to provide iterators, which allow us to access

the first and next elements, respectively. Since these examples are of illus-

trative nature mainly, we do not do this. For powerful general purpose lists,

the reader should use available libraries anyway, see Chap. 7. In lines 13–

15, the second endpoint is inserted into the neighbor list of the first, while

in lines 16–18 the first endpoint is inserted into the neighbor list of the sec-

ond. Note that the directed version of this function would be even simpler,

since one would have to create just one list element containing the second

endpoint and insert the list element into the neighbor list of the first one.
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The functions presented so far can be used to generate graphs. Here,

we consider a particular example, which has been studied quite a lot during

the past decade, a graph generated by preferential attachment [Albert and

Barabási (2002); Newman (2003)].

These graphs are grown step by step, starting from some small initial

graph. The basic idea is that the graph growth should reflect processes in

nature, society or technology, where existing members are contacted more

often if they have already many contacts. For example, for an acquaintance

network, people becoming members of some group are more likely to get in

contact to group members who already know many people. For a network

describing the growth of the Internet, one might assume that a well known

Internet page is more likely to be referred to by new web pages. This is

also called the Matthäus principle “Give to those more who have already”.

One simple algorithm to create such a graph works as follows: One starts

with a complete graph Km+1 having m + 1 nodes. This means each node

has initially d(i) = m neighbors. Then iteratively new nodes are added and

connected to exactly m different nodes, which are randomly chosen among

the currently existing nodes. The probability to connect to a certain node

i shall be proportional to its current degree d(i). In Fig. 6.27, an example

graph generated by preferential attachment is shown.

Note that initially all m+ 1 nodes have the same degree. But through

random fluctuations, some nodes will acquire more neighbors during the

iteration, hence they have a higher probability to acquire even more neigh-

bors. In this way few hubs are created which have a lot of neighbors.

The following C function creates random graphs through preferential

attachment. The function receives as parameters a graph (intended to

have no edges) and the number m. The main idea is to hold an array

pick, where each node i is contained exactly d(i) times at any stage of the

iteration. When for a new node the m neighbors are chosen randomly, they

are just picked randomly from pick. This ensures that the probability to

pick a node is proportional to d(i). The C code looks as follows:

void gs_preferential_attachment(gs_graph_t *g, int m)1

{2

int t;3

int n1, n2;4

int *pick; /* array which holds for each edge (n1,n2) */5

/* the IDs n1 and n2. Used for picking */6

/* nodes proportional to its current degree */7

int num_pick; /* number of entries in ’pick’ so far */8
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Fig. 6.27 Random graph generated by preferential attachment (m = 1) with n = 300
nodes. The graph was generated using gs preferential attachment() and drawn using
the fdb program from the dot package, see Sec. 9.2.3.

int max_pick; /* maximum number of entries */9

10

if(g->num_nodes < m+1)11

{12

printf("graph too small (at least %d edges per node)!\n", m);13

exit(1);14

}15

max_pick = 2*m*g->num_nodes- m*(m+1);16

pick = (int *) malloc(max_pick*sizeof(int));17

num_pick=0;18

19
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for(n1=0; n1<m+1; n1++) /* start: complete subgraph of m+1 nodes */20

for(n2=n1+1; n2<m+1; n2++)21

{22

gs_insert_edge(g, n1, n2);23

pick[num_pick++] = n1;24

pick[num_pick++] = n2;25

}26

27

for(n1=m+1; n1<g->num_nodes; n1++) /* add other nodes */28

{29

t=0;30

while(t<m) /* insert m edges */31

{32

do33

n2 = (int) pick[(int) floor(drand48()*num_pick)];34

while(n2==n1); /* chose pair of different nodes */35

if(!gs_edge_exists(g, n1, n2))36

{37

gs_insert_edge(g, n1, n2);38

pick[num_pick++] = n1;39

pick[num_pick++] = n2;40

t++;41

}42

}43

}44

free(pick);45

}46

First (lines 11–15), it is verified that the graph is large enough to have

at least m neighbors per node. Next (lines 16–18), the pick array is allo-

cated. The graph is initialized as the complete graph Km+1 in lines 20–26.

In the final part, for each of the remaining nodes (line 28), m new edges

are inserted (lines 30–43), such that the neighbor is picked from pick (lines

33–35). The function drand48() generates a (pseudo) random number

between 0 and 1 and floor() generates the largest integral number not

greater than the argument. Note that drand48() might not be defined

on all systems. In this case you can use (double) rand()/RAND_MAX in-

stead, which is standard C. More details on generation of (pseudo) random

numbers are presented in Chap. 8.

6.8.4 Connected Components

So far, we have been concerned with the storage and the generation of

graphs. Next, we present a particular algorithm for a simple, edge-traversal

09-Oct- 2014



October 9, 2014 14:51 Big Practical Guide to Computer Simulations book4˙2nd page 211

Algorithms and data structures 211

based analysis of graphs. As pointed out in Sec. 6.8.1, graphs may ex-

hibit several connected components, such that nodes belonging to the same

component are connected by paths, while for nodes belonging to different

components, there exist no path between them. For example, for a graph

describing a communication network, nodes belonging to the same compo-

nent can communicate among each other, while nodes belonging to different

components cannot.

Next, a simple algorithm is discussed which determines the connected

components of a graph. This discussion be performed in three steps: First

the basic idea is explained. Next the C code is given. Finally, the operation

of the algorithm for a small sample graph is discussed. The basic idea is

to start with any (“seed”) node. It is considered as first node of the first

component. Subsequently, all neighbors of the “seed” node, i.e. all nodes

connected by an ede to it, are attributed to the same component. In the

same way, the neighbors of these neighbors belong to the same component,

and so on. However, note that for a correct determination of the com-

ponents, each node does not need to be processed more than once. For

example, the “seed” node is processed first and there is no need to process

it again when the neighbours of any of its neighbors are considered. To

accomplish this, for each node an entry in the array comp is kept, which

indicates whether the node has not been encountered so far during the de-

termination of the components (then comp[node] = −1). Conveniently,

this variable will also store an ID, identifying the component to which the

node belongs. Initially this variable will be set to −1 for all nodes, indicat-

ing that each node has not been considered so far. Since for each node one

has to consider all neighbors once, the neighbors will be stored in a “bag”

once they are encountered, actually implemented as an array candidate,

During the component construction, the algorithm takes one node after

the other from the bag to check their neighbors. In this way, each node

connected to the seed node by a path will be considered and added to the

component at some point. Note that the order in which the nodes in the

bag are considered does not matter here. If the order is last-in first-out

(LIFO), as for a stack, then, after the first neighbor of the seed has been

considered, in turn its first neighbor will be considered, etc., before the

second neighbor of the seed node will be considered. Thus, the algorithm

will tend to go as far as possible directly. This is called depth-first search.

If on the other hand the bag is treated in first-in first-out (FIFO) fashion,

then all neighbors of the seed are taken from the bag before the neighbors of
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neighbors are considered, etc. In this case the strategy is called breadth-first

search.

When no nodes are left in the bag, the construction of the respective

component has been completed. Thereafter, the algorithm continues by

iterating over the nodes until it encounters one which is not part of any

component yet (i.e. comp is -1). Thus, the construction of the next compo-

nent starts. After the iteration over all nodes, with the purpose of finding

seeds of individual components, has finished, the component construction

is completed.

Next, the C code implementing the above procedure is discussed. It

utilizes the graph data structures introduced in Sec. 6.8.2. The function

gs components() receives as arguments the graph g and the array comp

where the IDs of the components to which a node belongs will be stored.

Initially all entries are set to −1 (lines 10–11). The function returns the

number of components found. Among the local variables, there is in par-

ticular the array candidate, which stores the (IDs of) nodes for which the

neighbors have still to be checked, i.e. the bag. The size of the array is

equal to the number n of nodes (line 9), because in principle a node can

be connected to all other nodes (actually n − 1 would be sufficient). The

variable num candidates counts the number of nodes which are currently

stored in candidate. The variable neighb is a pointer to a node (see data

structure on page 205), which is used to iterate over all neighbors of a node

taken from candidate.

int gs_components(gs_graph_t *g, int *comp)1

{2

int n1, n2, nn; /* nodes/loop counters */3

int *candidate; /* nodes still to treat */4

int num_candidates;5

int num_components = 0; /* number of components so far found */6

elem_t *neighb; /* for iterating over neighbors */7

8

candidate = (int *) malloc(g->num_nodes * sizeof(int));9

for(n1=0; n1<g->num_nodes; n1++)10

comp[n1] = -1; /* initializes as non-assigned */11

The main part of the function consists of a loop over all nodes. If a

node has not yet been assigned to a component (line 14), a new component

is found and the component construction performed (lines 16–35). Thus,

the node is put into the candidate array. The component construction
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continues while there are still candidates left (line 19). One after the other

the candidates are taken (line 21) and a loop over all neighbors is performed

(lines 22–32). For each neighbor it is checked (line 26) whether it has not

been assigned to a component yet. If not, it is added to the component and

to the bag of candidates (line 27–30).

for(n1=0; n1<g->num_nodes; n1++) /* all possible component seeds */12

{13

if(comp[n1] == -1) /* not yet part of a component ? */14

{15

comp[n1] = num_components;16

candidate[0] = n1;17

num_candidates = 1;18

while(num_candidates > 0) /* still nodes in current comp. ? */19

{20

n2 = candidate[--num_candidates]; /* next candidate */21

neighb = g->node[n2].neighbors;22

while(neighb != NULL) /* go through all neighbors */23

{24

nn = neighb->info;25

if(comp[nn] == -1) /* not yet part of component ? */26

{27

comp[nn] = num_components; /* add to candidates */28

candidate[num_candidates++] = nn;29

}30

neighb = neighb->next;31

}32

}33

num_components++;34

}35

}36

37

free(candidate);38

return(num_components);39

}40

To understand how the algorithm operates, we consider the small ex-

ample graph from Fig. 6.24. Initially all comp values are set to −1. The

variable num components is initialized as 0. The change of the variables

during the execution of the algorithm is shown in Fig. 6.28. Within the

loop over all nodes, first node 0 is encountered. Is has not been assigned to

a component, thus, a new component is started with ID 0. Node 0 is added

to candidate. Hence, during the iteration of the loop over all candidates
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n1=0: comp[0]=0

candidate={0} n2=0:

comp[1]=0

candidate={1} n2=1:

comp[3]=0

comp[4]=0

candidate={3,4} n2=4:

comp[2]=0

candidate={3,2} n2=2:

candidate={3} n2=3:

n1=1:

n1=2:

n1=3:

n1=4:

n1=5: comp[5]=1

candidate={5} n2=5:

Fig. 6.28 Operation of gs components() for the sample graph of Fig. 6.24. The graphs
consists of two components with IDs 0 (nodes 0,1,2,3,4) and 1 (node 5). The first column
shows the current node n1 of the main loop. Each entry in the second column represents
the start of a new component and the corresponding assignment of the component ID to
the seed node n1 (line 16 of the code). In the third column, the state of the candidate

array at the beginning of each iteration of the loop in line 19 is displayed. The fourth
column shows the current node n2 taken from the candidates. In the fifth column, all
neighbors of n2 which are added to the component are indicated via the corresponding
component ID assignment (line 28).

(lines 19–33), first node 0 is considered. It exhibits one neighbor, node 1,

which is added to the component. Therefore, next node 1 is considered in

the candidates loop. Node 1 has three neighbors, nodes 0, 3 and 4. Node

0 is already part of the component (comp[2]=0, i.e., �= −1), thus nothing

happens here. Nodes 3 and 4 are added to the component and to the can-

didates. Next, node 4 is considered. Its neighbors 1 and 3 are already part

of the component. Hence, only its neighbor node 2 is added to the com-

ponent and to the bag of candidates. Due to the FIFO operation on the

candidates, next node 2 is considered. Its only neighbor node 4 is already

part of the component, nothing happens. The same holds for node 3, which

has neighbors nodes 1 and 4. Now, the candidate array is empty and the

construction of the first component is finished. During the main loop, nodes

1, 2, 3, and 4 are encountered next. Since they have been already assigned

09-Oct- 2014



October 9, 2014 14:51 Big Practical Guide to Computer Simulations book4˙2nd page 215

Algorithms and data structures 215

to a component, no further component identification procedure is started.

Finally node 5 is encountered. It is the seed of a new component with ID

1. Since it has no neighbors, i.e., the condition in line 23 of the code is

immediately FALSE, no other nodes will be added to the component. At

this point, the main loop terminates and the full component identification

procedure is completed.
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Fig. 6.29 Average size S of the largest component of a random graphs, normalized by
the number n of nodes, as a function of the average connectivity c. Here, n = 10000.
The average was taken over 1000 independent random graph instances for each value of
c. The lines are guides to the eyes only.

As an example application of how the determination of components

is used in conjunction with graph models, we study Erdős-Rényi (ER)

random graphs. These are graphs, which here have n nodes and m edges,

which connect randomly and independently chosen pairs of nodes. Thus,
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each node has an average degree c = 2m/n.6 If c is very small, like 0.2

neighbors per node on average, the nodes are only sparsely connected, hence

the number of components will be large. Consequently, the size of the

components, even of the largest component, will be small. Actually, one

can show that the size of the largest components grows logarithmically in

the number n of nodes. If c is increased, more and more edges join the

graph. Thus, small components get to be connected, i.e., merge to form

larger components. For larger values of c (actually for c > 1) there will be

one large component which contains a finite fraction of all nodes plus many

remaining small components. This drastic change at the critical value c = 1

of the graph ensemble indicates a phase transition, since it is comparable in

principle to the drastic change of, e.g. water at the freezing temperature.

Note that S/n is called an order parameter since it allows to distinguish the

phases “many small components” (corresponding to “no order”) and “one

big component” (“ordered”). The order parameter for water is the density

which changes abruptly when freezing.

This phase transition can be studied by means of numerical simula-

tions. One generates, for any given number c many independent random

graph instances. For each instance, the components are calculated using

gs components(). Next, the component sizes are obtained, in particular

the size of the largest component (using the function gs comp largest()

which is also contained in graph comp.c). This is averaged over many, say

1000, different random graphs resulting in an average size S of the largest

components. In Fig. 6.29 the result, normalized by n, is displayed as a func-

tion of the average degree c for graphs with n = 10000. Clearly, for c < 1,

since S/n ∼ logn/n, a value close to zero is observed. In contrast, above

the critical threshold, the largest component comprises a finite fraction of

the graph nodes. Note that due to the finite number n of nodes, the behav-

ior of S/n is somehow smeared our around c = 1. For even smaller graphs,

this effect would be more pronounced. This is refered to as a finite-size

effect. For n → ∞, S/n is exactly zero below c = 1 and rises monotonously

to one for c > 1.

With this, we close our small introduction to graphs. For an exercise

concerning graph-related functions, see exercise (10).

6Alternatively, and more standard in mathematics, one can define ER graphs such
that for each pair of nodes an edge appears with some probability p, here p = c/(N −1).
In the limit n → ∞ the two definitions of ER random graphs show the same typical
behavior.
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Exercises
(solutions: can be downloaded from http://www.worldscientific.com/r/9019-supp)

(1) Permutations

Design, implement and test a recursive func-
tion permute() for obtaining and printing all
permutations of an integer array a[] in place,
i.e. no further array is needed.

SOLUTION SOURCE CODE

DIR: algorithms
FILE(S):
permutation.c

The function prototype reads as follows:

/******************* permutation() *************************/

/** Obtains all permutations of positions 0..n-1 of a **/

/** given array ’a’ of numbers and prints them, **/

/** including the higher index entries (from 0..n_max-1). **/

/** **/

/** Parameters: (*) = return parameter **/

/** n: current range **/

/** n_max: size of array **/

/** a: array **/

/** Returns: **/

/** (nothing) **/

/***********************************************************/

void permutation(int n, int n_max, int *a)

The basic idea is as follows: To solve the problem, for range n (initially
n_max), one puts into the last current element a[n-1], one after the other, all
elements from the indices 0. . .n-1, and calls each time recursively the function
for range n-1.

Hint: Do not forget to put back the numbers to their initial positions, either
right after the recursive call or at the end.

(2) Power of a number

Design, implement and test the function
fast_power() for calculating a power an (n
being an integer). Use a divide-and-conquer
approach by reducing the calculation of an to
the calculation of an/2 if n > 2. This leads
to a running time O(log n) instead of O(n)
for the trivial approach.

SOLUTION SOURCE CODE

DIR: algorithms
FILE(S): power.c

The function prototype reads as follows:
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/******************* fast_power() **************************/

/** Calculates the a^n (n being a natural number) using **/

/** a divide-and-conquer approach. **/

/** **/

/** Parameters: (*) = return parameter **/

/** a: base **/

/** n: power **/

/** Returns: **/

/** a^n **/

/***********************************************************/

double fast_power(double a, int n)

Hint: Design your function first for n ≥ 0 and then reduce the case n < 0 to
the case n > 0.

(3) Number Partitioning

The number-partitioning problem (NPP) is
defined as follows: Given a set of n non-
negative integers A = {a[0]. . .a[n-1]}, we
want to partition it into two subsets A1 ⊂ A

SOLUTION SOURCE CODE

DIR: algorithms
FILE(S): partition.c

and A2 ⊂ A such that the difference d = |
∑

a∈A1
a−

∑
a′∈A2

a′| is minimized.
For example, A = {2, 3, 4, 10} can be partitioned into two subsets A1 =
{2, 3, 4} and A = {10} with d = 1. Solve this problem, i.e. find the minimum
difference, using a dynamic programming approach. Design, implement and
test the resulting program.

Hint: Introduce the two-dimensional array part[][], where part[i][s]=1

if some subset of {a[0]. . .a[i]} has sum s (with i=0, . . . , n − 1 and
s=0, . . . ,

∑
a∈A a). The array part can be calculated (with some suitable

initialization for part[0][s]) using part[i][s]=1 if part[i-1][s]==1 or
part[i-1][s-a[i]]==1. Then, using |

∑
a∈A1

a −
∑

a′∈A2
a′| = |

∑
a∈A a −

2
∑

a′∈A2
a′|, the minimal difference can be obtained from part[n-1][s]

(s= 0..
∑

a∈A a). Note that this approach does not directly yield the two
subsets, just the minimum difference.

Technical hint: Pass the integers as parameters to your program.

(4) Tour of a knight

On a chessboard, a knight is allowed to move
from its current position into one of up to
eight possible positions in its neighborhood.
The possible moves of a knight are shown in
Fig. 6.30 (left).

SOLUTION SOURCE CODE

DIR: algorithms
FILE(S): knight.c

The Knight’s tour problem is to find a tour for a n× n chessboard, starting
in the upper left corner of the board, such that each square is visited exactly
once. A possible solution for a 8× 8 board is shown in Fig. 6.30 (right).

Write a C program solving this problem using a backtracking approach.

09-Oct- 2014



October 9, 2014 14:51 Big Practical Guide to Computer Simulations book4˙2nd page 219

Algorithms and data structures 219

0

0 2

0

0

06

0

x

y

0

1 2

3

4

56

7

1 38 55 34 3 36 19 22

54 47 2 37 20 23 4 17

39 56 33 46 35 18 21 10

48 53 40 57 24 11 16 5

59 32 45 52 41 26 9 12

44 49 58 25 62 15 6 27

31 60 51 42 29 8 13 64

50 43 30 61 14 63 28 7

Fig. 6.30 (left) The 8 possible moves of a knight. (right) A possible solution

of the knight’s tour problem for a 8× 8 chessboard.

Design, implement and test the resulting program. Hints: Use an ar-
ray visit[][], where initially visit[x][y]=0 everywhere, and where
visit[x][y]> 0 indicates at which stage of the tour the square is visited.
Furthermore, use arrays dx[] and dy[] which store the possible move, e.g.
(see left of Fig. 6.30) dx[0]=-2 and dy[0]=-1. Finally, you could use a func-
tion, which places exactly one knight and calls itself for placing the next
knight. The function prototype could look as follows:

/******************* move_knight() *************************/

/** Calculates recursively via backtracking a tour for **/

/** the knight, such that all squares with visit[x][y]=0 **/

/** are visited once. **/

/** **/

/** Parameters: (*) = return parameter **/

/** n: size of board **/

/** step: how many sites already visited? **/

/** x,y: current position of knight **/

/** visit: states whether and when square was visited **/

/** dx,dy: possible move directions **/

/** Returns: **/

/** (nothing) **/

/***********************************************************/

void move_knight(int n, int step, int x, int y,

short int **visit, int *dx, int *dy)

(5) Remove element from list

Design, implement and test the function
remove_node() for removing elements from
a list, as described on page 181. The func-
tion prototype reads as follows:

SOLUTION SOURCE CODE

DIR: algorithms
FILE(S): list rm e.c
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/*************** remove_element() *****************/

/** Remove element from list **/

/** PARAMETERS: (*)= return-parameter **/

/** list: first element of list **/

/** elem: to be removed **/

/** RETURNS: **/

/** (new) pointer to beginning of the list **/

/**************************************************/

elem_t *remove_node(elem_t *list, elem_t *elem)

(6) Mergesort for lists

Design, implement and test a function for
sorting a given list using the mergesort algo-
rithm (see Sec. 6.3). The main approach is as
follows: First you have to split the given list
into two lists of roughly half the size. Then

SOLUTION SOURCE CODE

DIR: algorithms
FILE(S):
list mergesort.c

the function is called recursively for each of the two lists. Finally, one has to
build the resulting list via merging the two sorted lists. (Good exercise for
pointer arithmetic !!) The function prototype reads as follows:

/***************** mergesort_list() ***************/

/** Sorts list using mergesort algorithm **/

/** PARAMETERS: (*)= return-parameter **/

/** list: first element of list **/

/** RETURNS: **/

/** (new) pointer to beginning of the list **/

/**************************************************/

elem_t *mergesort_list(elem_t *list)

(7) Find value in tree

Design, implement and test a function for
testing whether a given value for the key is
contained in the tree. The function proto-
type reads as follows:

SOLUTION SOURCE CODE

DIR: algorithms
FILE(S): tree find.c

/*********************** find_node() ******************/

/** Locates a node with a given ’key’ in a tree. **/

/** If the ’key’ is not contained in the tree, **/

/** NULL is returned **/

/** PARAMETERS: (*)= return-parameter **/

/** tree: pointer to root of tree **/

/** key: to be located **/

/** RETURNS: **/

/** pointer to node (NULL if key is not exisiting) **/

/******************************************************/

node_t *find_node(node_t *tree, int key)
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(8) Remove node from tree

Design, implement and test a function for re-
moving a node from a tree which has a given
value for the key. For the design, follow the
outline as given in Sec. 6.7.

SOLUTION SOURCE CODE

DIR: algorithms
FILE(S): tree rm.c

The function prototype reads as follows:

/******************** remove_node() *******************/

/** Removes node containung the ’key_rem’ from the **/

/** tree. **/

/** If the ’key’ is not contained in the tree, **/

/** nothing happens. **/

/** PARAMETERS: (*)= return-parameter **/

/** tree: pointer to root of tree **/

/** key_rem: to be removed **/

/** (*) node_p: address of ptr to removed node **/

/*+ (NULL if not found) **/

/** RETURNS: **/

/** (new) pointer to the root **/

/******************************************************/

node_t *remove_node(node_t *tree, int key_rem, node_t **node_p)

(9) Remove node from heap

Design, implement and test a function for
removing a node from a heap. For the design,
follow the outline as given in Sec. 6.7.1.
The function prototype reads as follows:

SOLUTION SOURCE CODE

DIR: algorithms
FILE(S):
heap remove.c

/******************** heap_remove() ******************/

/** Deletes event at position ’pos’ from heap **/

/** PARAMETERS: (*)= return-parameter **/

/** (*) heap: array containing heap **/

/** (*) num_p: ptr to: number of elements **/

/** pos: of element to be removed **/

/** RETURNS: **/

/** (nothing) **/

/*****************************************************/

void heap_remove(heap_elem_t *heap, int *num_p, int pos)
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(10) Random graph

Design, implement and test a function for
generating an Erdős-Rényi random graph.
This is a graph containing n nodes and m
edges. The edges are randomly drawn

SOLUTION SOURCE CODE

DIR: algorithms
FILE(S): graph r.c

with equal probability from all possible pairs i, j ∈ V . The function is similar
to gs_preferential_attachment(), but simpler. The function prototype
reads as follows:

/******************* gs_random_graph() *******************/

/** Function adds exactly m randomly chosen edges to **/

/** the graph. **/

/** No self loops are allowed. No edge is allowed to **/

/*+ appear twice! **/

/** PARAMETERS: (*)= return-parameter **/

/** (*) g: graph **/

/** m: number of edges to be added per node **/

/** RETURNS: **/

/** (nothing) **/

/*********************************************************/

void gs_random_graph(gs_graph_t *g, int m)
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Chapter 7

Libraries

Libraries are collections of data types and functions which can be used in

other programs. There are libraries for numerical methods such as inte-

gration or solving differential equations, for storing, sorting and accessing

data, for fancy data types like lists or trees, for generating colorful graphics

and for thousands of other applications. Some libraries can be obtained for

free, while other, usually specialized libraries have to be purchased. The

use of libraries speeds up the software development process enormously,

because you do not have to implement every standard method by yourself.

Hence, you should always check whether someone has done the jobs for you

already, before starting to write a program.

You have already learned about the basics of libraries in Chap. 1. For

instance, the library for mathematical functions was discussed, which is

included with all C/C++ compilers. Here, only few example libraries are

presented, which are freely available: The standard C library, the standard

template (C++) library (STL), and the GNU scientific library. Exam-

ples for other useful libraries, not discussed in detail here, are the boost li-

brary [Boost; Karlsson (2005)] and the LEDA library [Mehlhorn and Näher

(1999)]. The boost library is also freely available and is in fact a collection

of many libraries, which are based on the STL. There are, for example,

libraries for graphs, hash tables, interval arithmetics, parallel programming

(MPI), statistical distributions and random numbers, respectively. The

LEDA library, on the other hand, does not directly build on the STL. It

offers also data types for graphs, in particular many very efficient graph

algorithms, several container types, arbitrary-precision arithmetics, data

compression, encryption, and support for two- and three-dimensional geom-

etry. Unfortunately, the full version of the LEDA library is quite expensive.

Nevertheless, you can get a free version, which contains a comprehensive

223
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subset of the main functionality, including many container data types like

priority queues or trees.

Although many libraries are available, sometimes it is inevitable to im-

plement some specialized but basic functions by yourself. In this case, after

the code has been proven to be reliable and useful for some time, you can

put it in a self-created library. How to create libraries is explained in the

last part of this chapter.

Many libraries are dynamically linked. This means, when the linker as-

sembles the executable, no code will be included from the libraries. Only

when the program is executed, the executable functions from the corre-

sponding library will be loaded to the memory. This helps to keep the sizes

of the executables of your simulation programs small. Nevertheless, some-

times you have to force the linker to include the library functions in the

executable already when the program is linked. This is called static link-

ing. This may happen when you want to run your simulations on another

machine where the library is not installed. You can tell the linker to link

the executable code for the library function by using the linker/compiler

option -static.

7.1 Standard C library

You have already encountered many standard C library functions in Chap.

1, for example for allocating memory via malloc(), for calling shell func-

tions via system(), or converting strings to integers via atoi(). To use

functions from this library properly, you have to use the directive

#include <stdlib.h>

Note that you do not have to use a -l option for linking executables of

functions for the standard C library, because they are linked always.

Here, we are discussing only one more function, which is used quite

frequently in the context of simulations. It is qsort(), which allows to sort

in ascending order arrays of arbitrary data types. The function implements

the efficient quicksort algorithm [Sedgewick (1990); Cormen et al. (2001)],

which sorts n elements in typically O(n log n) comparison steps. The order

is determined by some sorting criterion, which has to be provided by the

program which calls qsort().

The function prototype of qsort() looks as follows:
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void qsort(void *base, size_t nel, size_t width,

int (*compare)(const void *, const void *));

Thus, it expects as argument a pointer base to the beginning of the array to

be sorted and the number nel of elements in the array. The third argument

specifies the number of bytes of one element. The last argument provides

the sorting criterion. Technically, it is a pointer to a function, which itself

has the prototype

int compare(const void *p1, const void *p2);

This function has to be provided by the program which calls qsort. It

should take two pointers p1, p2 as arguments, which point to two array el-

ements which have to be compared. The function compare() should return

the value -1, if the element indicated by p1 is “smaller” than the element

indicated by p2. In the opposite case, +1 should be returned, and 0 if the

two elements are equal. What “smaller” means is determined by the func-

tion; hence, if you want to sort in descending order, you can return -1 if

actually the second element is smaller. Note that the pointers are pointers

to void; thus, the compare() function usually has to perform an explicit

type conversion using a cast (see Sec. 1.1.2) to access the content of the

array elements. Also, the function compare() is not allowed to modify the

content of the array, indicated by the const qualifier (see Sec. 1.2).

GET SOURCE CODE

DIR: libraries
FILE(S): sorting.c

As example, sorting an array of numbers of

type double in ascending order is considered.

In this case, the function to compare two num-

bers may look like

int compare_double(const void *p1, const void *p2)1

{2

if( *(double *)p1 < *(double *)p2)3

return (-1);4

else if( *(double *)p1 == *(double *)p2 )5

return (0);6

else7

return(1);8

}9

Here, the casts to access the two elements indicated by p1 and p2 are di-

rectly included in the comparison expression. For more complex compare()

functions, it is usually more convenient (and readable) to create two vari-

ables of the corresponding type and assign the content of the two pointers
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to the variables.

Provided that you have an array val[] of n numbers of type double,

the call to qsort() should look as follows:

qsort(val, n, sizeof(double), compare_double);

Note that the sorting is performed in place. Thus, the original order

within the array is lost. You are asked to write a slightly more complicated

compare() function in exercise (1). In exercise (6) of Chap. 8, qsort() is

used to calculate a confidence interval from measured sample points.

7.2 Standard Template Library

The Standard (Template) Library (STL) [STL; Josuttis (1999)] is part of

the “standard” C++ library. The STL provides three main ingredients:

containers to store objects, iterators, which allow the programmer to ac-

cess the containers in different ways, and algorithms which perform more

complicated tasks such as sorting. Example containers are vectors, lists and

sets. You can store objects of nearly arbitrary type in these containers, one

type of objects per individual container. Thus, you can have vectors of

“something”, lists of “something”, or sets of “something”. This means that

the types of member data or of arguments in member functions for the con-

tainers cannot be determined in advance but have to be defined in each case

by the actual data type you want to use. This is achieved via templates. In

this section, it will be explained how to use templates by discussing below

two data structures from the STL, priority queues and maps. If you want

to learn how to implement your own templates, please refer to specialized

literature [Stroustrup (2000)].

In Sec. 6.7.1 priority queues were introduced. They allow objects to

be stored such that always the “smallest” object can be retrieved. This is

possible, because the objects are kept partially sorted in the priority queue.

In Sec. 6.7.1, a C implementation of events being stored in a priority queue

is presented, which is based on heaps. Unfortunately, that implementation

is for a specific data structure heap_elem_t. If you want to store other

objects of type (say) your_elem_t on a heap, you have to copy the code and

exchange all occurrences of heap_elem_t by your_elem_t. Furthermore,

you have to provide some basic operations, such as a function to compare

two objects of type your_elem_t to find out which is the smaller one. This

work is facilitated for you by using templates.
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GET SOURCE CODE

DIR: libraries
FILE(S): pqueue0.cpp

Let us start with a simple priority queue of

strings using the STL. Note that the STL con-

tains also a class string for strings. To use the

string class and the template class for priority

queues, you have to write in your program

#include <queue>

#include <string>

The following simple part of a program shows how a priority queue of

strings is defined and used:

priority_queue<string> q2;1

q2.push("hello"); // fill priority queue2

q2.push("you");3

q2.push("are");4

q2.push("welcome");5

6

while(!q2.empty()) // get events from queue7

{8

string s;9

s = q2.top(); // get "smallest" string10

q2.pop(); // remove it11

cout << s << endl;12

}13

In line 1, the priority queue q2 is defined, and initialized automatically

as empty queue. Behind the class name priority_queue, the template

arguments are given in angular brackets < >, here the type string of the

queue elements. In this way, for all templates the types and further argu-

ments (see below) are specified. In line 2, an auxiliary string variable is

declared. Some strings are put into the queue using the member function

push(), which receives as argument the object to be put into the queue

(technically it receives a reference to the object). In lines 8–13, the priority

queue is read out. Here, the following three other member functions are

used: empty() tests, whether the queue is empty. The function top() re-

turns a reference to the currently first element in the queue. Using pop(),

the currently first element is removed. For completeness, we note that the

member function size() returns the number of elements being currently

stored in the queue.

When running this program, the output will read:
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you

welcome

hello

are

Hence, the strings are returned by the queue in decreasing lexicographic

order. For simple predefined data types, one can specify other sorting

criteria as template parameters for the queue. We only consider here the

most general case: The sorting criterion is completely self-defined, which

will usually be the case for priority queues of more complex objects.

GET SOURCE CODE

DIR: libraries
FILE(S): pqueue.cpp

Let us assume that you want to create a pri-

ority queue for events. Each event describes

a collision of two atoms in a simulation of a

gas. Within an event-driven simulation (see

Sec. 6.7.1), one event will be treated after the other, in the order of in-

creasing event times. Thus, each event can be described by the IDs of the

two participating atoms and a time, where the collision takes place. The

following data structure is used here:

struct event_t

{

int part1, part2; // IDs of particles colliding

double time; // time of collision

};

A structure is used, which is a class where by default all members are

public. Everything shown in the following would work also if we defined

a class for events with data capsuling, member functions for access etc.

For the priority queue, we have to provide a function to compare two

events. For this purpose, no standard comparison operator can be used;

therefore, we have to provide one. To achieve maximum flexibility, this

comparison function must be a function object (also called functor). This

is an object obj of a class which provides the operator () as member func-

tion. Consequently, applying this operator to the object, i.e. writing obj(),

implements exactly a call to the function. The advantage over defining an

ordinary function is that object functions are C++ objects as well. Thus,

they can have all class properties like member data etc. In this way, one

can have different function objects of the same class, which behave in a

different way, because their internal data looks different. The following ex-

ample, which provides a comparison for events, should make it clear how

classes providing function objects are defined:
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class EventSortCriterion

{

public:

bool operator() (const event_t &e1, const event_t &e2)

{

return(e1.time > e2.time);

}

};

This looks like a standard class definition, without member data here, and

one member function is the () operator. The operator receives two argu-

ments and returns a variable of type bool, which is a special C++ type.

The type bool has the possible values true and false, being equivalent to 0

and non-zero, compatible with standard C. In front of the arguments const

is written, which prohibits that the values are modified by the operator.

Next, it is shown how a priority queue of events is defined and used:

priority_queue<event_t, vector<event_t>, EventSortCriterion> q;1

event_t e; // one event2

int i; // loop counter3

int num_events = 20;4

5

srand48(1000);6

for(i=0; i<num_events; i++) // put events into queue7

{8

e.part1 = i;9

e.part2 = i+10;10

e.time = 1000*drand48();11

q.push(e);12

}13

14

while(!q.empty()) // get events from queue15

{16

e = q.top(); // get smallest event17

q.pop(); // remove it18

cout << "(" << e.part1 << "," << e.part2 << ") at t="19

<< e.time << endl;20

}21

The most important line is the first line. Here, the priority queue is defined.

In comparison to the queue of strings example above, here two additional

template arguments are given. The second is the data type, which is used

to implement the queue. Here, a vector is used, which stores elements

of type event_t. Note that this is also a template, as visible from the
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fact that the type is written inside angular brackets. One can use other

classes to implement priority queues. Possible are container classes with

random access which provide member functions front(), push_back() and

pop_back(), such as a deque [Josuttis (1999)], which is defined in the STL

as well. The third and final template argument is the name of the class

which provides the sorting criterion via the operator (). The remaining

part of the program uses the standard priority queue member functions

push(), empty(), top() and pop() as in the above example: In lines 6–13,

events are initialized randomly and pushed into the queue, while in lines

15–20, the events are retrieved from the queue in increasing order.

Note that the STL priority queue does not allow objects to be easily

removed from within the queue, only the top object can be removed. This

is by purpose, because it must be guaranteed that the partial sorting of

the data remains. Nevertheless, this makes rescheduling difficult, i.e. the

change of event times during the simulation. If you need this, here two

options are stated. First, you can use your own implementation, like that

presented in Sec. 6.7.1. The STL implementation is also given completely

in 39 lines of code in [Josuttis (1999)]. It can be easily modified such that

you can access the underlying data structure directly. Nevertheless, this

is a bit laborious and not elegant, because you effectively write your own

class.

Second, the container used for an object of the class priority_queue

is accessible as protected member data. Hence, you can derive a child

class from priority_queue, which enables you to use all standard random-

access modes of the container, which is actually based on a heap for the

STL. You can use for example the erase() member function to remove

objects. After you have completed all changes, you have to make sure by

calling the function make_heap() that the partial sorting is restored. For

details, please refer to the STL documentation.

As next example, we consider a map, which allows N value objects of

arbitrary but fixed type to be stored via a key. Each element in a map is

a (key, value) pair. Using the key, it is possible to access the stored value

objects in almost random-access fashion. This means, one does not need

to iterate over O(N) value objects stored in the container to find a value

object with a specific key. Internally, the value objects are stored in the

current implementation in a balanced binary search tree. This means, all

important operations can be performed in O(logN) steps. Nevertheless,

iteration over all stored value objects is also possible, as we will see below.
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GET SOURCE CODE

DIR: libraries
FILE(S): maps.cpp

Here, a basic example is considered. The

simulation consists of some “agents” which are

distributed in the x-y plane. Each agent has a

position, serving as key. Furthermore, the data

associated with each agent consists of some “capacity” and of some “interac-

tion range”, the exact meaning is not important here. This is implemented

via the following two type definitions for agent_t and agentkey_t:

struct agent_t

{

int capacity; // how much an agent can process

int range; // interaction range

};

struct agentkey_t

{

int x,y; // position of agent

};

Since the implementation is based on search trees, one has to supply a

comparison criterion. Here, we assume that the x coordinates determine

the order at first. If the x coordinates of two agents are the same, the y

coordinates are compared next. The comparison is implemented as corre-

sponding function object class, similar to the priority queue shown above:

class AgentkeySortCriterion

{

public:

bool operator() (const agentkey_t &k1, const agentkey_t &k2) const

{

return( (k1.x < k2.x)||( (k1.x == k2.x)&&(k1.y < k2.y) ));

}

};

In the main() function, a map m1 is defined via

typedef map<agentkey_t, agent_t, AgentkeySortCriterion> agentmap_t;1

agentmap_t m1; // stores all agents2

The first template argument signifies the type of the keys, the second

refers to the type of the value objects to be stored, while the third is the

sorting criterion. The third argument is optional, if the operator < is defined

for the keys, as for example for integer keys.
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For inserting and removing elements, you can use the member functions

insert() and erase(). The insertion is a bit inconvenient. It is more

convenient to use an array notation, as in the following example:

int num_agents = 20; // number of agents3

int sizex=10, sizey= 10; // size of system4

agentkey_t k1; // one key5

agent_t a1; // one agent6

7

for(int i=0; i<num_agents; i++) // distrib. agents8

{ // random positions9

k1.x = static_cast<int>(floor(sizex*drand48()));10

k1.y = static_cast<int>(floor(sizey*drand48()));11

a1.capacity = 100;12

a1.range = 1 + static_cast<int>(floor(3*drand48()));13

m1[k1] = a1;14

}15

16

Two variables k1 and a1 are used (lines 5–6) to store the keys and agents,

respectively. The agent positions and range values are initialized randomly

(lines 10–11). Note that a static cast is used. This is a C++ operator,

which performs some checks to be performed by the compiler and prevents

meaningless type conversions. The agents are actually stored in line 14,

using the array notation. You can access the map elements in the same

way for reading, but, unlike for an array, if you ask for an element with a

key value, which does not exist, the element will be created with default

values.

For this reason, we use the find() member function in the following

example to test whether an element with a specific key exists. The code

loops over all elements in the map. For this purpose, one needs a special

object, an iterator, which is something like an internal pointer in the map.

There are some predefined iterators accessible via public member functions:

begin() and end(). The first one returns always an iterator to the cur-

rently first element of the map. The second one returns an iterator which

points behind the last element.
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agentmap_t::iterator pos, pos2; // to iterate in map17

for(pos=m1.begin(); pos != m1.end(); pos++) // print all agents18

{19

int r = pos->second.range;20

cout << "Agent (" << pos->first.x << "," << pos->first.y <<21

"): cap=" << pos->second.capacity << ", range=" << r << endl;22

printf("neighbors:\n");23

for(k1.x=pos->first.x-r; k1.x<=pos->first.x+r; k1.x++)24

for(k1.y=pos->first.y-r; k1.y<=pos->first.y+r; k1.y++)25

if( ((k1.x != pos->first.x)||(k1.y != pos->first.y))&&26

(k1.x>=0)&&(k1.x<sizex)&&(k1.y>=0)&&(k1.y<sizey))27

{ // look for neighbors near agent28

pos2 = m1.find(k1);29

if(pos2 != m1.end())30

cout << "(" << pos2->first.x << "," << pos2->first.y31

<< ")\n";32

}33

}34

The iterator pos is declared in line 17. The actual iteration takes place

in line 18 and looks very similar to a normal for loop. An iterator pos

points always to an element consisting of a key and a value. The key

of the element can be accessed via pos->first (see for example line 24),

while the value is accessible via pos->second (line 20). Here, we iter-

ate via k1 over a square of positions around the position of the current

agent (lines 24–25). If k1 contains a valid position inside the system [0,

sizex]×[0, sizey] (lines 26–27), then it is tested whether at this position

there exists another agent via the find() member function (lines 29–30).

If yes, the neighbor agent is printed (line 31). With these examples you

should have enough background to use maps efficiently. For more details,

please consult the online documentation [STL] also present on the website:

http://www.worldscientific.com/r/9019-supp.

The STL is under continuous development and extension [Karlsson

(2005); Becker (2007); Wilson (2007)]. In particular, some elements of

the boost library [Boost; Karlsson (2005)] have already found its way to the

technical report TR1, where future extensions of the C++ standard library

are scheduled. In TR1, you can find, for example, hash tables and smart

pointers.. Hash tables implement nearly constant-time access to objects

with arbitrary keys. Smart pointers are aware of the objects they point to,

which facilitates memory management and helps to avoid memory leaks.

For instance, if a pointer of type auto_ptr is deleted, the memory where

it points at is automatically deallocated.
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7.3 GNU scientific library

The GNU Scientific library (GSL) [Galassi et al. (2006)] contains a huge

number of subroutines that can be used to solve standard numerical prob-

lems. Amongst other things, the library features:

• complex numbers and functions

• polynomials

• evaluation, differentiation and integration of functions

• performing interpolations

• Fourier, wavelet and Hankel transforms

• minimizing functions

• diagonalization of matrices

• solving linear equations (through matrix inversion)

• random numbers

• statistics/histograms

• fitting data

• solving nonlinear equations

• solving ordinary and partial differential equations

• Monte Carlo simulation and simulated annealing

Some of the functionality comes through a C interface to the BLAS (basic

linear algebra subroutines) package, which is originally implemented using

Fortran. The library is under continuous development. Note that it comes

under the GNU General Public License (GPL). This means the library is

free, including the source code. You are allowed to extend and to modify

the library. You can include it into other software, provided it is also free

(GPL) if it is distributed as well.

We start to explain the usage via a simple example: We want to print a

table of the probability mass function of the Binomial distribution, defined

in Sec. 8.1.1. For this and related purposes, the GSL offers functions for

different distributions. When using any of these, one has to include the

header file gsl/gsl_randist.h. Similar header files exist for the other

sections of the GSL. The function to calculate the probability mass function

of the Binomial distribution has the following prototype:

double gsl_ran_binomial_pdf(const unsigned int x, const double p,

const unsigned int n);
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GET SOURCE CODE

DIR: libraries
FILE(S): binomial.c

The first argument contains the value, for

which the probability is to be calculated. The

second and third arguments contain the values

of the parameters p and x (with 0 ≤ p ≤ 1 and

x = 0, 1, . . . , n). This and all other functions of the GSL are explained

in the user guide, which can be downloaded from the web page or bought

as printed copy [Galassi et al. (2006)]. Next, the small sample C program

named binomial.c is shown, which reads in p and n from the command

line and prints a table with all feasible values of p(x):

#include <stdio.h>1

#include <gsl/gsl_randist.h>2

3

int main(int argc, char *argv[])4

{5

int n; /* parameters of distribution */6

double p;7

int x; /* argument of pdf */8

double prob; /* resulting probability and sum of all probs */9

int argz = 1; /* for treating command line arguments */10

11

sscanf(argv[argz++], "%lf", &p);12

n = atoi(argv[argz++]); /* get arguments */13

14

for(x=0; x<=n; x++) /* iterate to print full distribution */15

{16

prob = gsl_ran_binomial_pdf(x, p, n);17

printf("%d %f\n", x, prob);18

}19

return(0);20

}21

Line 2 contains the inclusion of the suitable GSL header file. Lines 6–10

contain the variable declarations. In lines 12 and 13, the command-line

arguments are read in, see Sec. 1.3. Lines 15–19 contain the main loop,

where the evaluation of the distribution is called (line 17) and the result

is printed to the standard output (line 18). The program can be compiled

using:

cc -o binomial binomial.c -lgsl -lgslcblas -lm

For linking, in addition to the GSL (-lgsl) also an auxiliary library

(-lgslcblas) and the standard math library (-lm) have to be stated. Note
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that we assume that the library is installed in standard places, such that

compiler and linker can find the needed header files and libraries. Other-

wise, corresponding paths have to be stated using the -I and -L options.

The program has to be called with parameter 〈p〉 as first and 〈n〉 as

second argument, e.g.

binomial 0.4 10

This call was used to generate the plot on page 254 via the gnuplot pro-

gram (see Sec. 8.4.1). The GSL offers also a function to generate random

numbers, which are distributed according to the Binomial distribution, see

also Sec. 8.2.2. Two ingredients are needed:

GET SOURCE CODE

DIR: libraries
FILE(S): randnum.c

First, the basis are general pseudo random

number generators, see Sec. 8.2.1. There are dif-

ferent high-quality generators provided by the

GSL. It is now explained how to use them. For

all dynamically generated data structures, one first has to allocate a gen-

erator, then one can use it. Finally, one has to deallocate the generator.

This is illustrated in the following example:

#include <stdio.h>1

#include <gsl/gsl_rng.h>2

3

int main()4

{5

gsl_rng *rng; /* pointer to a random number generator */6

int n = 100; /* number of random numbers */7

int i; /* loop counter */8

double r; /* a random number */9

10

rng = gsl_rng_alloc(gsl_rng_mt19937); /* allocate generator */11

gsl_rng_set(rng, 1000); /* set seed to 1000 */12

13

for(i=0; i<n; i++) /* generate numbers */14

{15

r = gsl_rng_uniform(rng);16

printf("%4.3f\n", r);17

}18

19

gsl_rng_free(rng); /* delete generator */20

21

return(0);22

}23
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All generators are of type gsl_rng, a corresponding pointer variable is

declared in line 6. The generator is actually allocated in line 11 us-

ing the function gsl_rng_alloc(), which expects an argument of type

gsl_rng_type *. Many different generators are predefined in the GSL, see

below. Here, the generator “gsl_rng_mt19937” is used, which is also the

default generator. All random number generators can be initialized with

a seed using the function gsl_rng_set(), which expects a generator and

an int number as arguments. Here, the seed value 1000 is used (line 12).

The actual generation of the numbers is performed in the loop in lines 14–

18. The generation of numbers is performed always by means of auxiliary

functions. They receive a pointer to the generator as argument, sometimes

also parameters of the corresponding distribution, and return a random

number. Here, we generate numbers which are uniformly distributed in the

interval [0, 1) via the function gsl_rng_uniform(), see line 16. Therefore,

the value 0 is included, but the value 1 is excluded. Finally, the generator

is destroyed (line 20).

The GSL offers several high-quality generators. Also other generators

are included for back compatibility. In total more than 27 different gener-

ator algorithms are implemented. The best known are

• gsl_rng_mt19937

The MT19937 generator [Matsumoto and Nishimura (1998)]. It has

a period of about 106000 and passed the Diehard statistical tests
[Marsaglia].

• gsl_rng_gfsr4

is a lagged-Fibonacci generator [Ziff (1998)]. In the present implemen-

tation, the generator has a period of about 102917.

• gsl_rng_ranlux

The ranlux 24 bit generator [Lüscher (1994)]. It has a period of 10171.

• gsl_rng_rand48

is the Unix linear congruential random number generator rand48(). It

is also included for compatibility and has lower quality compared to

modern generators, e.g. a period of about 1014. But this is sufficient

for small applications without the need for high-quality statistics.

• gsl_rng_rand

is the standard Unix (BSD) linear congruential random number gen-

erator rand(). It is included for compatibility (i.e. you can use it on

non-Unix system) and has a very bad quality compared to modern gen-

erators, e.g. a period of about 109.
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Note that it is not necessary to hard-code the type of the random num-

ber generator in the program. One can define an environment variable

GSL_RNG_TYPE and call in the program the function gsl_rng_env_setup()

(no arguments). Then the global variable gsl_rng_default of type

gsl_rng_type * will contain the current generator and can be used as

argument when calling gsl_rng_alloc(). If the environment variable is

not assigned, gsl_rng_default will contain gsl_rng_mt19937.

In addition to the functions discussed so far, the GSL enables us to

investigate the properties of random number generators, copy generators,

store the state of generators in files, and read them back in.

Now, to actually generate data which is distributed according to a Bi-

nomial distribution Bin(n, p), the following function is provided:

unsigned int gsl_ran_binomial(const gsl_rng * r, double p,

unsigned int n);

The first argument is a function pointer to a GSL random number generator

as described above. One has to pass the parameters p and n as second and

third arguments. Thus, to generate 10000 numbers which are distributed

according to a Binomial (10,0.4) distribution, one has to replace line 16 in

the above program by

r = (double) gsl_ran_binomial (rng, 0.4, 10);

Apart from the Binomial distribution, the GSL implements many dif-

ferent distributions. Usually the probability density function (or the prob-

ability mass function for discrete variables) and a function for generat-

ing (pseudo) random numbers according to the distribution are available.

Examples are the Gaussian distribution, the exponential distribution, the

Levy distribution, the Chi-squared distribution, the Pareto distribution,

the Weibull distribution, and the hyper-geometric distribution. See the

GSL documentation for more details.

To record histograms of the generated random numbers and of any

other data, the GSL offers histograms via the gsl_histogram data type.

Included are functions for creating, updating, accessing, printing, analyzing

and deleting histograms. Interestingly, the histograms can have bins of non-

uniform size, which is useful for logarithmic binning. Again, see the GSL

documentation for more details and exercise (2).

We close this section by showing how one can solve a system of linear

equations using the GSL. For this example already a couple of different data
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types and functions are needed: To represent vectors and matrices, GSL

offers the special data types gsl_vector and gsl_matrix. They are not

simply arrays, because they store the dimensions of the represented objects

as well. In the GSL manual, the internal structures of the data type is

explained, but we restrict ourselves here to use the objects through defined

access functions. Furthermore, for solving systems of linear equations, one

needs permutations as auxiliary data, which are just arrays of n integers

in the range 0 to n − 1 (data type gsl_permutation). Permutations are

needed to describe how rows and columns of matrices are permuted to

solve the linear system. The basic steps needed in the program to solve the

system Ax = b are

• allocation of the matrix A and vectors x and b,

• initializing the values of A and b,

• performing an LU decomposition of A such that PA = LU where P

is a permutation matrix, L a lower triangular matrix and U a upper

diagonal matrix,

• solving the system via forward and back substitution,

• and finally freeing all allocated memory.

As illustration, we solve the following system of linear equations:

x1 +2.5x2 +3x3 = 15

2x1 +5x2 +x3 +2x4 = 23

3.5x1 +3x2 +3x4 = 21.5

2x2 +x3 +4x4 = 15

This is done by the following small sample program

#include <stdio.h>1

#include <gsl/gsl_matrix.h>2

#include <gsl/gsl_vector.h>3

#include <gsl/gsl_permutation.h>4

#include <gsl/gsl_linalg.h>5

6

int main()7

{8

gsl_matrix *A; /* matrix */9

int i, j; /* row/column index */10

gsl_vector *b, *x; /* vectors */11

gsl_permutation *perm; /* a permutation */12

int signum; /* sign of permutation */13

14
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double values[4*4] = {1.0, 2.5, 3.0, 0.0, /* data */15

2.0, 5.0, 1.0, 2.0,16

3.5, 3.0, 0.0, 3.0,17

0.0, 2.0, 1.0, 4.0};18

double values2[4] = {15.0, 23.0, 21.5, 15.0};19

20

A = gsl_matrix_alloc(4,4); /* allocate and initialize */21

for(i=0; i<4; i++)22

for(j=0; j<4; j++)23

gsl_matrix_set(A, i, j, values[i*4+j]);24

x = gsl_vector_alloc(4);25

b = gsl_vector_alloc(4);26

for(i=0; i<4; i++)27

gsl_vector_set(b, i, values2[i]);28

perm = gsl_permutation_alloc(4);29

30

gsl_linalg_LU_decomp(A, perm, &signum); /* solve equation */31

gsl_linalg_LU_solve(A, perm, b, x);32

33

gsl_vector_fprintf(stdout, x, "%f");34

35

gsl_matrix_free(A); /* free memory */36

gsl_vector_free(b);37

gsl_vector_free(x);38

gsl_permutation_free(perm);39

return(0);40

}41

GET SOURCE CODE

DIR: libraries
FILE(S): lin eq.c

The variables are declared in lines 8–12. The

parameters describing the equations through A

and b are first put in two one-dimensional ar-

rays values and values2 (lines 14–18), be-

cause in this way the matrices can be initialized more easily. The al-

location and initialization of the matrix, of the vectors and of the per-

mutation is performed in lines 20–28. Note that the write access to

matrix and vector elements is through the functions gsl_matrix_set()

and gsl_vector_set(), respectively. These functions perform also checks

for bounds, i.e. whether an access outside the matrix dimensions is at-

tempted. To read data, the GSL offers also corresponding functions

gsl_matrix_get() and gsl_vector_get(), respectively, which are not

used in this example.1

1Note that one can access the i’th element of the vector b directly via b->data[i

* b->stride] and the i, j’th element of a matrix mat directly via mat->data[i *
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The actual calculation is performed in lines 30 and 31. Note that the

system is passed to gsl_linalg_LU_decomp() via the first argument, which

will also contain the resulting LU decomposition upon return in the left

lower and right upper triangles of the matrix; hence, the original content

is overwritten. The second argument points to the permutation where

P is stored. The function gsl_linalg_LU_solve() is used to perform

the forward and back substitution to actually obtain the solution which is

stored in the vector passed as last (pointer) argument. The result vector

is printed by gsl_vector_fprintf() line by line. Finally (lines 35-38) the

used memory is freed.

For more complex usage of the GSL, such as to solve differential equa-

tions, to optimize functions or to perform Monte Carlo simulations, please

refer to the GSL documentation.

7.4 Creating your own libraries

Although many useful libraries are available, sometimes you have to write

some code by yourself. Over the years you will collect many functions and

data structures, which – if properly designed – can be included in other

programs, in which case it is convenient to put these subroutines into a

library. Then you do not have to include the object file every time you

compile one of your programs. If your self-created library is put into a

standard search path, you can access it like a system library, you even do

not have to remember where the object file is stored.

To create a library you must have an object file, for example tasks.o,

and a header file such as tasks.h where all data types and function pro-

totypes are defined. Furthermore, to facilitate the use of the library, you

should write a man page, which is not necessary for technical reasons but

results in a more convenient usage of your library, particularly if other peo-

ple want to benefit from it. To learn how to write a man page you should

consult man man and have a look at the source code of some man pages,

they are stored, for example, in /usr/man.

A library is created with the UNIX command ar. To include tasks.o

in your library libmy.a, you have to enter

ar r libmy.a tasks.o

mat->tda + j], please refer to the GSL documentation for details.
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In a library several object files may be collected. The option “r” replaces

the given object files, if they already belong to the library, otherwise they

are added. If the library does not exist yet, it is created. For more options,

please refer to the man page of ar.

After including an object file, you have to update an internal object

table of the library. This is done by

ar s libmy.a

Now you can compile a program prog.c using your library via

cc -o prog prog.c libmy.a

In case libmy.a contains several object files, it saves some typing by

just writing libmy.a. Furthermore you do not have to remember the names

of all your object files.

To make the handling of the library more comfortable, you can create

a directory, e.g. ∼/lib and put your libraries there. Additionally, you

should create the directory ∼/include where all personal header files can

be collected. Then your compile command may look like this:

cc -o prog prog.c -I$HOME/include -L$HOME/lib -lmy

The option -I states the search path for additional header files, the

-L option tells the linker where your libraries are stored and via -lmy the

library libmy.a is actually included. Please note that the prefix lib and the

postfix .a are omitted with the -l option. Finally, it should be pointed out,

that the compiler command given above works for all working directories,

once you have set up the library structure as explained. Consequently, you

do not have to remember directories or names of object files.
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Exercises
(solutions: can be downloaded from http://www.worldscientific.com/r/9019-supp)

(1) Sorting vectors

Design, implement and test a program,
which generates an array of two-dimensional
vectors (x, y) sorts the vectors by ascending
lengths

√
(x2+y2) and finally prints the vec-

tors.

SOLUTION SOURCE CODE

DIR: libraries
FILE(S): vectorsort.c

Use the following type for the vectors:

typedef struct

{

double x,y; /* elements of vector */

} vector_t;

Use the qsort() function from the standard C library. For this purpose,
write a function compare_vector(), which should have the following proto-
type:

/******************* compare_vector() *****************/

/** Auxiliary function which compares two vectors **/

/** by its length. **/

/** Used to call qsort. **/

/** PARAMETERS: (*)= return-paramter **/

/** p1, p2: pointers to the two vectors **/

/** RETURNS: **/

/** -1 if *p1<*p2, 0 if *p1=*p2, +1 else **/

/******************************************************/

int compare_vector(const void *p1, const void *p2)

Hint: It is sufficient to calculate x2 + y2; thus, you do not need the mathe-
matical library.

(2) Histogram of random numbers

Design, implement and test a program,
which draws using the GSL n numbers from
an exponential distribution with probability
density function p(x) = 1

λ
exp(−x/λ), puts

the sample numbers into a histogram and
prints the histogram.

SOLUTION SOURCE CODE

DIR: libraries
FILE(S):
exponential.c

Hints:

• View the program randnum.c (page 236) as blueprint.
• Use the function gsl_ran_exponential() to generate exponentially dis-

tributed random numbers.
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• Consult the histogram section of the GSL manual. Use the
gsl_histogram data structure and corresponding GSL functions.

• Implement logarithmic binning with bins [0, x0), [x0, x0f), [x0f, x0f
2),

. . . for f > 1. Use the function gsl_histogram_set_ranges() to setup
the logarithmic binning.

Run the program for n = 106 and λ = 2.0. Use 30 bins defined by x0 = 0.2
and f = 1.2. View the histogram with a suitable program, e.g. gnuplot, see
Sec. 8.4.1.

Additional exercise:

The GSL function gsl_histogram_fprintf(), does not allow the result to
be printed as (normalized) probability density function. For this purpose
design, implement and test a function print_norm_histogram() for printing
the probability density function corresponding to a histogram. The function
prototype reads as follows:

/************** print_norm_histogram() *****************/

/** Prints histogram as probability density function. **/

/** For each bin [l,u) its mid point **/

/** (l+u)/2 and its count normalized by the **/

/** total count and by the bin width (u-l) is shown. **/

/** **/

/** Parameters: (*) = return parameter **/

/** h: histogram **/

/* **/

/** Returns: **/

/** (nothing) **/

/*******************************************************/

void print_norm_histogram(gsl_histogram *h)

Hints:

• Histograms allow for negative bin counts; hence, the function should
ignore them.

• For each bin i, you can print the midpoint (li + ui)/2 between its lower
end li and upper end ui. The normalized value for bin i is ci/(N(ui−li)),
where ci is the count of bin i and N is the sum of all nonzero counts.

• It is not necessary to access the internal data of a histogram. You
can use the functions gsl_histogram_bins() to obtain the num-
ber of bins, gsl_histogram_get() to get the count of a bin, and
gsl_histogram_get_range() to get the ranges of a bin; see the GSL
manual for descriptions.

Run the program as above and compare the result using gnuplot to the
analytical formula for the probability density function.
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Randomness and Statistics

In this chapter, we are concerned with statistics in a very broad sense. This

involves generation of (pseudo) random data, display/plotting of data and

the statistical analysis of simulation results.

Frequently, a simulation involves the explicit generation of random num-

bers, for instance, as auxiliary quantity for stochastic simulations. In this

case it is obvious that the simulation results are random as well. Although

there are many simulations which are explicitly not random, the resulting

behavior of the simulated systems may appear also random, for example

the motion of interacting gas atoms in a container. Hence, methods from

statistical data analysis are necessary for almost all analysis of simulation

results.

This chapter starts (Sec. 8.1) by an introduction to randomness and

statistics. In Sec. 8.2 the generation of pseudo random numbers according

to some given probability distribution is explained. Basic analysis of data,

i.e., the calculation of mean, variance, histograms and corresponding error

bars, is covered in Sec. 8.3. Next, in Sec. 8.4, it is shown how data can be

represented graphically using suitable plotting tools, gnuplot and xmgrace.

Hypothesis testing and how to measure or ensure independence of data is

treated in Sec. 8.5. How to fit data to functions is explained in Sec. 8.6. In

the concluding section, a special technique is outlined which allows to cope

with the limitations of simulations due to finite system sizes.

Note that some examples are again presented using the C programming

language. Nevertheless, there exist very powerful freely available programs

like R [R], where many analysis (and plotting) tools are available as addi-

tional packages.
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8.1 Introduction to probability

Here, a short introduction to concepts of probability and randomness is

given. The presentation here should be concise concerning the subjects

presented in this book. Nevertheless, more details, in particular proofs,

examples and exercises, can be found in standard textbooks [Dekking et

al (2005); Lefebvre (2006)]. Here often a sloppy mathematical notation is

used for brevity, e.g. instead of writing “a function g : X → Y, y = g(x)”,

we often write simply “a function g(x)”.

A random experiment is an experiment which is truly random (like ra-

dioactive decay or quantum mechanical processes) or at least unpredictable

(like tossing a coin or predicting the position of a certain gas atom inside

a container which holds a hot dense gas).

Definition 8.1 The sample space Ω is a set of all possible outcomes of a

random experiment.

For the coin example, the sample space is Ω = {head, tail}. Note that

a sample space can be in principle infinite, like the possible x positions of

an atom in a container. With infinite precision of measurement we have

Ω(x) = [0, Lx], where the container shall be a box with linear extents Lx

(Ly, Lz in the other directions, see below).

For a random experiment, one wants to know the probability that cer-

tain events occur. Note that for the position of an atom in a box, the

probability to find the atom precisely at some x-coordinate x ∈ Ω(x) is zero

if one assumes that measurements result in real numbers with infinite preci-

sion. For this reason, one considers probabilities P (A) of subsets A ⊂ Ω (in

other words A ∈ 2Ω, 2Ω being the power set which is the set of all subsets of

Ω). Such a subset is called an event. Therefore P (A) is the probability that

the outcome of a random experiment is inside A, i.e. one of the elements of

A. More formally:

Definition 8.2 A probability function P is a function P : 2Ω −→ [0, 1]

with

P (Ω) = 1 (8.1)

and for each finite or infinite sequence A1, A2, A3, . . . of mutual disjoint

events (Ai ∩ Aj = ∅ for i �= j) we have

P (A1 ∪ A2 ∪ A3 ∪ . . .) = P (A1) + P (A2) + P (A3) + . . . (8.2)
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For a fair coin, both sides would appear with the same probability, hence

one has P (∅) = 0, P ({head}) = 0.5, P ({tail}) = 0.5, P ({head, tail}) = 1.

For the hot gas inside the container, we assume that no external forces

act on the atoms. Then the atoms are distributed uniformly. Thus, when

measuring the x position of an atom, the probability to find it inside the

region A = [x, x+Δx] ⊂ Ω(x) is P (A) = Δx/Lx.

The usual set operations applies to events. The intersection A ∩ B of

two events is the event which contains elements that are both in A and

B. Hence P (A ∩ B) is the probability that the outcome of an experiment

is contained in both events A and B. The complement Ac of a set is the

set of all elements of Ω which are not in A. Since Ac, A are disjoint and

A ∪ Ac = Ω, we get from Eq. (8.2):

P (Ac) = 1 − P (A) . (8.3)

Furthermore, one can show for two events A,B ⊂ Ω:

P (A ∪B) = P (A) + P (B) − P (A ∩B) (8.4)

Proof. P (A) = P (A ∩ Ω)= P (A ∩ (B ∪ Bc))= P ((A ∩ B) ∪ (A ∩ Bc))
(8.2)
=

P (A∩B)+P (A∩Bc). If we apply this for A∪B instead of A, we get P (A∪B) =
P ((A∪B)∩B)+P ((A∪B)∩Bc)) = P (B)+P (A∩Bc). Eliminating P (A∩Bc)
from these two equations gives the desired result. �

Note that Eqs. (8.2) and (8.3) are special cases of this equation.

If a random experiment is repeated several times, the possible outcomes

of the repeated experiment are tuples of outcomes of single experiments.

Thus, if you throw the coin twice, the possible outcomes are (head,head),

(head,tail), (tail,head), and (tail,tail). This means the sample space is a

power of the single-experiment sample spaces. In general, it is also possible

to combine different random experiments into one. Hence, for the general

case, if k experiments with sample spaces Ω(1),Ω(2), . . . ,Ω(k) are considered,

the sample space of the combined experiment is Ω = Ω(1) × Ω(2) × . . . ×
Ω(k). For example, one can describe the measurement of the position of

the atom in the hot gas as a combination of the three independent random

experiments of measuring the x, y, and z coordinates, respectively.

If we assume that the different experiments are performed inde-

pendently, then the total probability of an event for a combined ran-

dom experiment is the product of the single-experiment probabilities:

P (A(1), A(2), . . . , A(k)) = P (A(1))P (A(2)) . . . P (A(k)).

For tossing the fair coin twice, the probability of the outcome (head,tail)
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is P ({(head,head)}) = P ({head})P ({head}) = 0.5 · 0.5 = 0.25. Similarly,

for the experiment where all three coordinates of an atom inside the con-

tainer are measured, one can write P ([x, x+Δx]×[y, y+Δy]×[z, z+Δz]) =

P ([x, x +Δx])P ([y, y +Δy])P ([z, z +Δz]) = (Δx/Lx)(Δy/Ly)(Δz/Lz) =

ΔxΔyΔz/(LxLyLz).

Often one wants to calculate probabilities which are restricted to special

events C among all events, hence relative or conditioned to C. For any other

event A we have P (C)= P ((A ∪ Ac) ∩ C)= P (A ∩ C) + P (Ac ∩ C), which

means P (A∩C)
P (C) + P (Ac∩C)

P (C) = 1. Since P (A∩C) is the joint probability of an

outcome in A and C and because P (C) is the probability of an outcome in

C, the fraction P (A∩C)
P (C) gives the probability of an outcome A and C relative

to C, i.e. the probability of event A given C, leading to the following

Definition 8.3 The probability of A under the condition C is

P (A|C) = P (A ∩ C)

P (C)
. (8.5)

As we have seen, we have the natural normalization P (A|C)+P (Ac|C) = 1.

Rewriting Eq. (8.5) one obtains P (A|C)P (C) = P (A ∩ C). Therefore,

the calculation of P (A ∩ C) can be decomposed into two parts, which are

sometimes easier to obtain. By symmetry, we can also write P (C|A)P (A) =
P (A ∩ C). Combining this with Eq. (8.5), one obtains the famous Bayes’

rule

P (C|A) = P (A|C)P (C)
P (A)

. (8.6)

This means one of the conditional probabilities P (A|C) and P (C|A) can

be expressed via the other, which is sometimes useful if P (A) and P (C) are

known. Note that the denominator in the Bayes’ rule is sometimes written

as P (A) = P (A ∩ (C ∪ Cc))= P (A ∩ C) + P (A ∩ Cc) = P (A|C)P (C) +
P (A|Cc)P (Cc).

If an event A is independent of the condition C, its conditional proba-

bility should be the same as the unconditional probability, i.e., P (A|C) =
P (A). Using P (A ∩ C) = P (A|C)P (C) we get P (A ∩ C) = P (A)P (C),

i.e., the probabilities of independent events have to be multiplied. This

was used already above for random experiments, which are conducted as

independent subexperiments.

So far, the outcomes of the random experiments can be anything like the

sides of coins, sides of a dice, colors of the eyes of randomly chosen people

or states of random systems. In mathematics, it is often easier to handle

09-Oct- 2014



October 9, 2014 14:51 Big Practical Guide to Computer Simulations book4˙2nd page 249

Randomness and Statistics 249

numbers instead of arbitrary objects. For this reason one can represent the

outcomes of random experiments by numbers which are assigned via special

functions:

Definition 8.4 For a sample space Ω, a random variable is a function

X : Ω −→ R.

For example, one could use X(head)=1 and X(tail) = 0. Hence, if one re-

peats the experiments k times independently, one would obtain the number

of heads by
∑k

i=1X(ω(i)), where ω(i) is the outcome of the i’th experiment.

If one is interested only in the values of the random variable, the con-

nection to the original sample space Ω is not important anymore. Con-

sequently, one can consider random variables X as devices, which output

a random number x each time a random experiment is performed. Note

that random variables are usually denoted by upper-case letters, while the

actual outcomes of random experiments are denoted by lower-case letters.

Using the concept of random variables, one deals only with numbers

as outcomes of random experiments. This enables many tools from math-

ematics to be applied. In particular, one can combine random variables

and functions to obtain new random variables. This means, in the simplest

case, the following: First, one performs a random experiment, yielding a

random outcome x. Next, for a given function g, y = g(x) is calculated.

Then, y is the final outcome of the random experiment. This is called a

transformation Y = g(X) of the random variable X . More generally, one

can also define a random variable Y by combining several random variables

X(1), X(2), . . . , X(k) via a function g̃ such that

Y = g̃
(
X(1), X(2), . . . , X(k)

)
. (8.7)

In practice, one would perform random experiments for the random vari-

ables X(1), X(2), . . . , X(k), resulting in outcomes x(1), x(2), . . . , x(k). The

final number is obtained by calculating y = g̃(x(1), x(2), . . . , x(k)). A simple

but the most important case is the linear combination of random variables

Y = α1X
(1) + α2X

(2)+ . . . +αkX
(k), which will be used below. For all

examples considered here, the random variables X(1), X(2), . . . , X(k) have

the same properties, which means that the same random experiment is re-

peated k times. Nevertheless, the most general description which allows for

different random variables will be used here.

The behavior of a random variable is fully described by the probabilities

of obtaining outcomes smaller or equal to a given parameter x:
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Definition 8.5 The distribution function of a random variable X is a

function FX : R −→ [0, 1] defined via

FX(x) = P (X ≤ x) (8.8)

The index X is omitted if no confusion arises. Sometimes the distribution

function is also named cumulative distribution function. One also says, the

distribution function defines a probability distribution. Stating a random

variable or stating the distribution function are fully equivalent methods to

describe a random experiment.

For the fair coin, we have, see left of Fig. 8.1

F (x) =

⎧⎪⎪⎨⎪⎪⎩
0 x < 0

0.5 0 ≤ x < 1

1 x ≥ 1

. (8.9)

For measuring the x position of an atom in the uniformly distributed

gas we obtain, see right of Fig. 8.1

F (x) =

⎧⎪⎪⎨⎪⎪⎩
0 x < 0

x/Lx 0 ≤ x < Lx

1 x ≥ Lx

. (8.10)

F(x)

1

0.5

0 1

F(x)

1

0 Lx
x x

Fig. 8.1 Distribution function of the random variable for a fair coin (left) and for the
random x position of a gas atom inside a container of length Lx.

Since the outcomes of any random variable are finite, there are no pos-

sible outcomes X ≤ x in the limit x → −∞. Also, all possible outcomes

fulfill X ≤ x for x → ∞. Consequently, one obtains for all random variables

limx→−∞ F (x) = 0 and limx→+∞ F (x) = 1. Furthermore, from Def. 8.5,
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one obtains immediately:

P (x0 < X ≤ x1) = FX(x1) − FX(x0) (8.11)

Therefore, one can calculate the probability to obtain a random number for

any arbitrary interval, hence also for unions of intervals.

The distribution function, although it contains all information, is some-

times less convenient to handle, because it gives information about cumu-

lative probabilities. It is more obvious to describe the outcomes of the

random experiments directly. For this purpose, we have to distinguish be-

tween discrete random variables, where the number of possible outcomes

is denumerable or even finite, and continuous random variables, where the

possible outcomes are non-denumerable. The random variable describing

the coin is discrete, while the position of an atom inside a container is

continuous.

8.1.1 Discrete random variables

We first concentrate on discrete random variables. Here, an alternative but

equivalent description to the distribution function is to state the probability

for each possible outcome directly:

Definition 8.6 For a discrete random variable X , the probability mass

function (pmf) pX : R → [0, 1] is given by

pX(x) = P (X = x) . (8.12)

Again, the index X is omitted if no confusion arises. Since a discrete

random variable describes only a denumerable number of outcomes, the

probability mass function is zero almost everywhere. In the following, the

outcomes x where pX(x) > 0 are denoted by x̃i. Since probabilities must

sum up to one, see Eq. 8.1, one obtains
∑

i pX(x̃i) = 1. Sometimes we also

write pi = pX(x̃i). The distribution function FX(x) is obtained from the

pmf via summing up all probabilities of outcomes smaller or equal to x:

FX(x) =
∑
x̃i≤x

pX(x̃i) (8.13)

For example, the pmf of the random variable arising from the fair coin

Eq. (8.9) is given by p(0) = 0.5 and p(1) = 0.5 (p(x) = 0 elsewhere). The

generalization to a possibly unfair coin, where the outcome “1” arises with

probability p, leads to:
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Definition 8.7 The Bernoulli distribution with parameter p (0 < p ≤ 1)

describes a discrete random variable X with the following probability mass

function

pX(1) = p, pX(0) = 1 − p . (8.14)

Performing a Bernoulli experiment means that one throws a generalized

coin and records either “0” or “1” depending on whether one gets head or

tail.

There are a couple of important characteristic quantities describing the

pmf of a random variable. Next, we describe the most important ones for

the discrete case:

Definition 8.8

• The expectation value is

μ ≡ E[X ] =
∑
i

x̃iP (X = x̃i) =
∑
i

x̃ipX(x̃i) (8.15)

• The variance is

σ2 ≡ Var[X ] = E[(X − E[X ])2] =
∑
i

(x̃i − E[X ])2pX(x̃i) (8.16)

• The standard deviation

σ ≡
√
Var[X ] (8.17)

The expectation value describes the “average” one would typically obtain

if the random experiment is repeated very often. The variance is a measure

for the spread of the different outcomes of random variable. As example,

the Bernoulli distribution exhibits

E[X ] = 0p(0) + 1p(1) = p (8.18)

Var[X ] = (0 − p)2p(0) + (1 − p)2p(1)

= p2(1 − p) + (1 − p)2p = p(1 − p) (8.19)

One can calculate expectation values of functions g(x) of random variables

X via E[g(X)] =
∑

i g(x̃i)pX(x̃i). For the calculation here, we only need

that the calculation of the expectation value is a linear operation. Hence,

for numbers α1, α2 and, in general, two random variables X1, X2 one has

E[α1X1 + α2X2] = α1 E[X1] + α2 E[X2] . (8.20)
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In this way, realizing that E[X ] is a number, one obtains:

σ2 = Var(X) = E[(X − E[X ])2] = E[X2] − 2E[X E[X ]] + E[E[X ]2]

= E[X2] − E[X ]2 = E[X2] − μ2 (8.21)

⇔ E[X2] = σ2 + μ2 (8.22)

The variance is not linear, which can be seen when looking at a lin-

ear combination of two independent random variables X1, X2 (implying

E[X1X2] = E[X1] E[X2] (�))

σ2
α1X1+α2X2

= Var[α1X1 + α2X2]

(8.21)
= E[(α1X2 + α2X2)

2] − E[α1X1 + α2X2]
2

(8.20)
= E[α2

1X
2
1 + 2α1α2X1X2 + α2

2X
2
2 ]

−(α1 E[X1] + α2 E[X2])
2

(8.20),(�)
= α2

1 E[X
2
1 ] + α2

2 E[X
2
2 ] − α2

1 E[X1]
2 + α2

2 E[X2]
2

(8.21)
= α2

1 Var[X1] + α2
2 Var[X2] (8.23)

The expectation values E[Xn] are called the n’th moments of the dis-

tribution. This means that the expectation value is the first moment and

the variance can be calculated from the first and second moments.

Next, we describe two more important distributions of discrete ran-

dom variables. First, if one repeats a Bernoulli experiment n times, one

can measure how often the result “1” was obtained. Formally, this can

be written as a sum of n random variables X(i) which are Bernoulli dis-

tributed: X =
∑n

i=1X
(i) with parameter p. This is a very simple example

of a transformation of a random variable, see page 249. In particular, the

transformation is linear. The probability to obtain x times the result “1”

is calculated as follows: The probability to obtain exactly x times a “1” is

px, the other n− x experiments yield “0” which happens with probability

(1−p)n−x. Furthermore, there are
(
n
x

)
= n!/(x!(n−x)!) different sequences

with x times “1” and n− x times “0”. Hence, one obtains:

Definition 8.9 The binomial distribution with parameters n ∈ N and p

(0 < p ≤ 1) describes a random variable X which has the pmf

pX(x) =

(
n

x

)
px(1 − p)n−x (0 ≤ x ≤ n) (8.24)

A common notation is X ∼ B(n, p).
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Note that the probability mass function is assumed to be zero for ar-

gument values that are not stated. A sample plot of the distribution for

parameters n = 10 and p = 0.4 is shown in the left of Fig. 8.2. The Binomial

distribution has expectation value and variance

E[X ] = np (8.25)

Var[X ] = np(1 − p) (8.26)

(without proof here). The distribution function cannot be calculated ana-

lytically in closed form.

0 2 4 6 8 10
x

0

0.05

0.1

0.15

0.2

0.25

p(
x)

0 2 4 6 8 10
x

0

0.1

0.2

0.3

0.4

0.5
p(

x)

Fig. 8.2 (Left) Probability mass function of the binomial distribution for parameters
n = 10 and p = 0.4. (Right) Probability mass function of the geometric distribution for
parameter p = 0.4.

In the limit of a large number of experiments (n → ∞), constrained

such that the expectation value μ = np is kept fixed, the pmf of a Binomial

distribution is well approximated by the pmf of the Poisson distribution,

which is defined as follows:

Definition 8.10 The Poisson distribution with parameter μ > 0 de-

scribes a random variable X with pmf

pX(x) =
μx

x!
e−μ (8.27)

Indeed, as required, the probabilities sum up to 1, since
∑

x
μx

x! is the Taylor

series of eμ. The Poisson distribution exhibits E[X ] = μ and Var[X ] = μ.

Again, a closed form for the distribution function is not known.
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Furthermore, one could repeat a Bernoulli experiment just until the first

time a “1” is observed, without limit for the number of trials. If a “1” is

observed for the first time after exactly x times, then the first x−1 times the

outcome “0” was observed. This happens with probability (1 − p)x−1. At

the x’th experiment, the outcome “1” is observed which has the probability

p. Therefore one obtains

Definition 8.11 The geometric distribution with parameter p (0 < p ≤
1) describes a random variable X which has the pmf

pX(x) = (1 − p)x−1p (x ∈ N) (8.28)

A sample plot of the pmf (up to x = 10) is shown in the right of Fig. 8.2.

The geometric distribution has (without proof here) the expectation value

E[X ] = 1/p, the variance Var[X ] = (1−p)/p2 and the following distribution

function:

FX(x) =

{
0 x < 1

1 − (1 − p)m m ≤ x < m+ 1 (m ∈ N)

8.1.2 Continuous random variables

As stated above, random variables are called continuous if they describe

random experiments where outcomes from a subset of the real numbers

can be obtained. One may describe such random variables also using the

distribution function, see Def. 8.5. For continuous random variables, an

alternative description is possible, equivalent to the pmf for discrete random

variables: The probability density function states the probability to obtain

a certain number per unit:

Definition 8.12 For a continuous random variable X with a continuous

distribution function FX , the probability density function (pdf) pX : R →
[0, 1] is given by

pX(x) =
dFX(x)

dx
(8.29)
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Consequently, one obtains, using the definition of a derivative and using

Eq. (8.11)

FX(x) =

∫ x

−∞
dx̃ pX(x̃) (8.30)

P (x0 < X ≤ x1) =

∫ x1

x0

dx̃ pX(x̃) (8.31)

Below some examples for important continuous random variables are

presented. First, we extend the definitions Def. 8.13 of expectation value

and variance to the continuous case:

Definition 8.13

• The expectation value is

E[X ] =

∫ ∞

−∞
dxx pX(x) (8.32)

• The variance is

Var[X ] = E[(X − E[X ])2] =

∫ −∞

∞
dx (x − E[X ])2pX(x) (8.33)

Expectation value and variance have the same properties as for the

discrete case, i.e., Eqs. (8.20), (8.21), and (8.23) hold as well. Also the

definition of the n’th moment of a continuous distribution is the same.

Another quantity of interest is the median, which describes the central

point of the distribution. It is given by the point such that the cumulative

probabilities left and right of this point are both equal to 0.5:

Definition 8.14 The median xmed = Med[X ] is defined via

FX(xmed) = 0.5 (8.34)

The simplest distribution is the uniform distribution, where the proba-

bility density function is nonzero and constant in some interval [a, b):

Definition 8.15 The uniform distribution, with real-valued parameters

a < b, describes a random variable X which has the pdf

pX(x) =

⎧⎪⎪⎨⎪⎪⎩
0 x < a
1

b−a x ≤ x < b

0 x ≥ b

(8.35)

One writes X ∼ U(a, b).
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The distribution function simply rises linearly from zero, starting at x = a,

till it reaches 1 at x = b, see for example Eq. 8.10 for the case a = 0

and b = Lx. The uniform distribution exhibits the expectation value

E[X ] = (a + b)/2 and variance Var[X ] = (b − a)2/12. Note that via the

linear transformation g(X) = (b− a) ∗X + a one obtains g(X) ∼ U(a, b) if

X ∼ U(0, 1). The uniform distribution serves as a basis for the generation

of (pseudo) random numbers in a computer, see Sec. 8.2.1. All distribu-

tions can be in some way obtained via transformations from one or several

uniform distributions, see Secs. 8.2.2–8.2.5.

Probably the most important continuous distribution in the context of

simulations is the Gaussian distribution:

Definition 8.16 The Gaussian distribution, also called normal distribu-

tion, with real-valued parameters μ and σ > 0, describes a random variable

X which has the pdf

pX(x) =
1√
2πσ2

exp

(
− (x− μ)2

2σ2

)
(8.36)

One writes X ∼ N(μ, σ2).

The Gaussian distribution has expectation value E[X ] = μ and variance

Var[X ] = σ2. A sample plot of the distribution for parameters μ = 5

and σ = 3 is shown in the left of Fig. 8.3. The Gaussian distribution

for μ = 0 and σ = 1 is called standard normal distribution N(0, 1). One

can obtain any Gaussian distribution from X0 ∼ N(0, 1) by applying the

transformation g(X0) = σX0 + μ. Note that the distribution function for

the Gaussian distribution cannot be calculated analytically. Thus, one uses

usually numerical integration or tabulated values of N(0, 1).

The central limit theorem describes how the Gaussian distribution arises

from a sum of random variables:

Theorem 8.1 Let X(1), X(2), . . . , X(n) be independent random vari-

ables, which follow all the same distribution exhibiting expectation value μ

and variance σ2. Then

X =

n∑
i=1

X(i) (8.37)

is in the limit of large n approximately Gaussian distributed with mean nμ

and variance nσ2, i.e. X ∼ N(nμ, nσ2).

09-Oct- 2014



October 9, 2014 14:51 Big Practical Guide to Computer Simulations book4˙2nd page 258

258 Big Practical Guide to Computer Simulations

-5 0 5 10 15
x

0

0.05

0.1

0.15

p(
x)

0 5 10 15 20
x

0

0.1

0.2

0.3

0.4

p(
x)

Fig. 8.3 (Left) Probability density function of the Gaussian distribution for parameters
μ = 5 and σ = 3. (Right) Probability density function of the exponential distribution
for parameter μ = 3.

Equivalently, the suitably normalized sum

Z =
1
n

∑n
i=1X

(i) − μ

σ/
√
n

(8.38)

is approximately standard normal distributed Z ∼ N(0, 1).

For a proof, please refer to standard text books on probability. Since sums

of random processes arise very often in nature, the Gaussian distribution is

ubiquitous. For instance, the movement of a “large” particle swimming in

a liquid called Brownian motion is described by a Gaussian distribution.

Another common probability distribution is the exponential distribu-

tion.

Definition 8.17 The exponential distribution, with real-valued parame-

ter μ > 0, describes a random variable X which has the pdf

pX(x) =

{
0 x < 0
1
μ exp (−x/μ) x ≥ 0

(8.39)

A sample plot of the distribution for parameter μ = 3 is shown in the right

of Fig. 8.3. The exponential distribution has expectation value E[X ] = μ

and variance Var[X ] = μ2. The distribution function can be obtained

analytically and is given by

FX(x) = 1 − exp (−x/μ) (8.40)
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The exponential distribution arises under circumstances where processes

happen with certain rates, i.e., with a constant probability per time unit.

Very often, waiting queues or the decay of radioactive atoms are modeled

by such random variables. Then the time duration till the first event (or

between two events if the experiment is repeated several times) follows Eq.

(8.39).

Next, we discuss a distribution, which has attracted recently [Newman

(2003); Newman et al. (2006)] much attention in various disciplines like

sociology, physics and computer science. Its probability distribution is a

power law:

Definition 8.18 The power-law distribution, also called Pareto distribu-

tion, with real-valued parameters γ > 0 and κ > 0, describes a random

variable X which has the pdf

pX(x) =

{
0 x < 1
γ
κ (x/κ)

−γ+1 x ≥ 1
(8.41)

A sample power-law distribution is shown in Fig. 8.4. When plotting

a power-law distribution with double-logarithmic scale, one sees just a

straight line.

A discretized version of the power-law distribution appears for exam-

ple in empirical social networks. The probability that a person has x

“close friends” follows a power-law distribution. The same is observed

for computer networks for the probability that a computer is connected

to x other computers. The power-law distribution has a finite expectation

value only if γ > 1, i.e. if it falls off quickly enough. In that case one

obtains E[X ] = γκ/(γ − 1). Similarly, it exhibits a finite variance only for

γ > 2: Var[X ] = κ2γ
(γ−1)2(γ−2) . The distribution function can be calculated

analytically:

FX(x) = 1 − (x/κ)−γ (x ≥ 1) (8.42)

In the context of extreme-value statistics, the Fisher-Tippett distribu-

tion (also called log-Weibull distribution) plays an important role.

Definition 8.19 The Fisher-Tippett distribution, with real-valued pa-

rameter λ > 0, describes a random variable X which has the pdf

pX(x) = λe−λxe−e−λx

(8.43)
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Fig. 8.4 (Left) Probability density function of the power-law distribution for parameters
γ = 3 and κ = 1. (Right) Probability density function of the Fisher-Tippett distribution
for parameter λ = 3 with logarithmically scaled y-axis.

In the special case of λ = 1, the Fisher-Tippett distribution is also called

Gumbel distribution.

A sample Fisher-Tippett distribution is shown in the right part of Fig. 8.4.

The function exhibits a maximum at x = 0. This can be shifted to any

value μ by replacing x by x − μ. The expectation value is E[X ] = ν/λ,

where ν ≡ 0.57721 . . . is the Euler-Mascheroni constant. The distribution

exhibits a variance of Var[X ] = π√
6λ
. Also, the distribution function is

known analytically:

FX(x) = e−e−λx

(8.44)

Mathematically, one can obtain a Gumbel (λ = 1) distributed ran-

dom variable from n standard normal N(0, 1) distributed variables X(i)

by taking the maximum of them and performing the limit n → ∞, i.e.

X = limn→∞max
{
X(1), X(2), . . . , X(n)

}
. The Gumbel distribution arises

by normalizing X to variance 1 and having the maximum probability at

x = 0. This is also true for some other “well-behaved” random variables

like exponential distributed ones, if they are normalized such that the max-

imum is at x = 0 and the variance is one. The Fisher-Tippett distribution

can be obtained from the Gumbel distribution via a linear transformation.

For the estimation of confidence intervals (see Secs. 8.3.2 and 8.3.3)

one needs the chi-squared distribution and the F distribution, which are

presented next for completeness.
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Definition 8.20 The chi-squared distribution, with ν > 0 degrees of free-

dom describes a random variable X which has the probability density func-

tion (using the Gamma function Γ(x) =
∫∞
0
tx−1e−t dt)

pX(x) =
1

2ν/2Γ(ν/2)
x

ν−2
2 e−

x

2 (x > 0) (8.45)

and pX(x) = 0 for x ≤ 0.

Distribution function, mean and variance are not stated here. A chi-squared

distributed random variable can be obtained from a sum of ν squared stan-

dard normal distributed random variables Xi: X =
∑ν

i=1X
2
i . The chi-

squared distribution is implemented in the GNU scientific library (see Sec.

7.3).

Definition 8.21 The F distribution, with d1, d2 > 0 degrees of freedom

describes a random variable X which has the pdf

pX(x) = d
d1/2
1 d

d2/2
2

Γ(d1/2 + d2/2)

Γ(d1/2)Γ(d2/2)

xd1/2−1

(d1x+ d2)d1/2+d2/2
(x > 0) (8.46)

and pX(x) = 0 for x ≤ 0.

Distribution function, mean and variance are not stated here. An F dis-

tributed random variable can be obtained from a chi-squared distributed

random variable Y1 with d1 degrees of freedom and a chi-squared distributed

random variable Y2 with d2 degrees of freedom via X = Y1/d1

Y2/d2
. The F dis-

tribution is implemented in the GNU scientific library (see Sec. 7.3).

Finally, note that also discrete random variables can be described us-

ing probability density functions if one applies the so-called delta function

δ(x − x0). For the purpose of computer simulations this is not necessary.

Consequently, no further details are presented here.

8.2 Generating (pseudo) random numbers

For many simulations in science, economy or social sciences, random num-

bers are necessary. Quite often the model itself exhibits random parameters

which remain fixed throughout the simulation; one speaks of quenched dis-

order. A famous example in the field of condensed matter physics are spin

glasses, which are random alloys of magetic and non-magnetic materials.

In this case, when one performs simulations of small systems, one has to

perform an average over different disorder realizations to obtain physical
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quantities. Each realization of the disorder consists of randomly chosen po-

sitions of the magnetic and non-magnetic particles. To generate a disorder

realization within the simulations, random numbers are required.

But even when the simulated system is not inherently random, very of-

ten random numbers are required by the algorithms, e.g. to realize a finite-

temperature ensemble or when using randomized algorithms. In summary,

the application of random numbers in computer simulations is ubiquitous.

In this section an introduction to the generation of random numbers is

given. First it is explained how they can be generated at all on a computer.

Then, different methods are presented for obtaining numbers which obey a

target distribution: the inversion method , the rejection method and Box-

Müller method . More comprehensive information about these and similar

techniques can be found in Refs. [Morgan (1984); Devroye (1986); Press et

al. (1995)]. In this section it is assumed that you are familiar with the basic

concepts of probability theory and statistics, as presented in Sec. 8.1.

8.2.1 Uniform (pseudo) random numbers

First, it should be pointed out that standard computers are determin-

istic machines. Thus, it is completely impossible to generate true ran-

dom numbers directly. One could, for example, include interaction

with the user. It is, for example, possible to measure the time inter-

val between successive keystrokes, which is randomly distributed by na-

ture. But the resulting time intervals depend heavily on the current

user which means the statistical properties cannot be controlled. On the

other hand, there are external devices, which have a true random phys-

ical process built in and which can be attached to a computer [Qantis;

Westphal] or used via the internet [Hotbits]. Nevertheless, since these num-

bers are really random, they do not allow to perform stochastic simulations

in a controlled and reproducible way. This is important in a scientific

context, because spectacular or unexpected results are often tried to be re-

produced by other research groups. Also, some program bugs turn up only

for certain random numbers. Hence, for debugging purposes it is important

to be able to run exactly the same simulation again. Furthermore, for the

true random numbers, either the speed of random number generation is

limited if the true random numbers are cheap, or otherwise the generators

are expensive.

This is the reason why pseudo random numbers are usually taken. They

are generated by deterministic rules. As basis serves a number generator
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function rand() for a uniform distribution. Each time rand() is called, a

new (pseudo) random number is returned. (Now the “pseudo” is omitted

for convenience) These random numbers should “look like” true random

numbers and should have many of the properties of them. One says they

should be “good”. What “look like” and “good” means, has to be specified:

One would like to have a random number generator such that each possible

number has indeed the same probability of occurrence. Additionally, if two

generated numbers ri, rk differ only slightly, the random numbers ri+1, rk+1

returned by the respective subsequent calls should differ substantially, hence

consecutive numbers should have a low correlation. There are many ways

to specify a correlation, hence there is no unique criterion. Below, the

simplest one will be discussed.

The simplest methods to generate pseudo random numbers are linear

congruential generators . They generate a sequence x1, x2, . . . of integer

numbers between 0 and m− 1 by a recursive rule:

xn+1 = (axn + c)modm. (8.47)

The initial value x0 is called seed. Here we show a simple C implementa-

tion lin_con(). It stores the current number in the local variable x which

is declared as static, such that it is remembered, even when the function

is terminated (see page 42 of Sec. 1.2). There are two arguments. The first

GET SOURCE CODE

DIR: randomness
FILE(S): rng.c

argument set_seed indicates whether one

wants to set a seed. If yes, the new seed should

be passed as second argument, otherwise the

value of the second argument is ignored. The

function returns the seed if it is changed, or the new random number. Note

that the constants a and c are defined inside the function, while the modu-

lus M is implemented via a macro RNG_MODULUS to make it visible outside

lin_con():

#define RNG_MODULUS 32768 /* modulus */1

2

int lin_con(int set_seed, int seed)3

{4

static int x = 1000; /* current random number */5

const int a = 12351; /* multiplier */6

const int c = 1; /* shift */7

8
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if(set_seed) /* new seed ? */9

x = seed;10

else /* new random number ? */11

x = (a*x+c) % RNG_MODULUS;12

13

return(x);14

}15

If you just want to obtain the next random number, you do not care

about the seed. Hence, we use for convenience rn_lin_con() to call

lin_con() with the first argument being 0:

int rand_lin_con()1

{2

return(lin_con(0,0));3

}4

If we want to set the seed, we also use for convenience a special trivial

function seed_lin_con():

void srand_lin_con(int seed)1

{2

lin_con(1, seed);3

}4

To generate random numbers r distributed in the interval [0, 1) one has

to divide the current random number by the modulus m. It is desirable to

obtain equally distributed outcomes in the interval, i.e. a uniform distri-

bution. Random numbers generated from this distribution can be used as

input to generate random numbers distributed according to other, basically

arbitrary, distributions. Below, you will see how random numbers obey-

ing other distributions can be generated. The following simple C function

generates random numbers in [0, 1) using the macro RNG_MODULUS defined

above:

double drand_lin_con()1

{2

return( (double) lin_con(0,0) / RNG_MODULUS);3

}4

One has to choose the parameters a, c,m in a way that “good” ran-

dom numbers are obtained, where “good” means “with less correlations”.

Note that in the past several results from simulations have been proven

09-Oct- 2014



October 9, 2014 14:51 Big Practical Guide to Computer Simulations book4˙2nd page 265

Randomness and Statistics 265

to be wrong because of the application of bad random number generators
[Ferrenberg et al. (1992); Vattulainen et al. (1994)].

Example 8.1 To see what “bad generator” means, consider as an exam-

ple the parameters a = 12351, c = 1,m = 215 and the seed value I0 = 1000.

10000 random numbers are generated by dividing each of them by m. They

are distributed in the interval [0, 1). In Fig. 8.5 the distribution of the ran-

dom numbers is shown.

0 0.2 0.4 0.6 0.8 1
x

0

0.2

0.4

0.6

0.8

1
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1.4

1.6

1.8

2

p(
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Fig. 8.5 Distribution of random numbers in the interval [0, 1) obtained from converting
a histogram into a pdf, see Sec. 8.3.3. The random numbers are generated using a linear
congruential generator with the parameters a = 12351, c = 1, m = 215.

The distribution looks rather flat, but by taking a closer look some reg-

ularities can be observed. These regularities can be studied by recording

k-tuples of k successive random numbers (xi, xi+1, . . . , xi+k−1). A good

random number generator, exhibiting no correlations, would fill up the k-

dimensional space uniformly. Unfortunately, for linear congruential gener-

ators, instead the points lie on (k− 1)-dimensional planes. It can be shown

that there are at most of the order m1/k such planes. A bad generator has

much fewer planes. This is the case for the example studied above, see top

part of Fig. 8.6

The result for a = 123450 is even worse: only 15 different “random”

numbers are generated (with seed 1000), then the iteration reaches a fixed

point (not shown in a figure).

If instead a = 12349 is chosen, the two-point correlations look like that

shown in the bottom half of Fig. 8.6. Obviously, the behavior is much more
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Fig. 8.6 Two point correlations xi+1(xi) between successive random numbers xi, xi+1.
The top case is generated using a linear congruential generator with the parameters
a = 12351, c = 1, m = 215, the bottom case has instead a = 12349.

irregular, but poor correlations may become visible for higher k-tuples.

A generator which has passed several empirical tests is a = 75 = 16807,

m = 231 − 1, c = 0. When implementing this generator you have to be

careful, because during the calculation numbers are generated which do

not fit into 32 bit. A clever implementation is presented in Ref. [Press

et al. (1995)]. Finally, it should be stressed that this generator, like all

linear congruential generators, has the low-order bits much less random
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than the high-order bits. For that reason, when you want to generate

integer numbers in an interval [1,N], you should use

r = 1+(int) (N*x_n/m);

instead of using the modulo operation as with r=1+(x n % N).

In standard C, there is a simple built-in random number generator called

rand() (see corresponding documentation), which has a modulus m = 215,

which is very poor. On most operating systems, also drand48() is available,

which is based on m = 248 (a = 25214903917, c = 11) and needs also

special arithmetics. It is already sufficient for simulations which no not

need many random numbers and do not require highest statistical quality.

In recent years, several high-standard random number generators have been

developed. Several very good ones are included in the freely available GNU

scientific library (see Sec. 7.3). Hence, you do not have to implement them

yourself.

So far, it has been shown how random numbers can be generated which

are distributed uniformly in the interval [0, 1). In general, one is inter-

ested in obtaining random numbers which are distributed according to a

given probability distribution with some density p(x). In the next sections,

several techniques suitable for this task are presented.

8.2.2 Discrete random variables

In case of discrete distributions with finite number of possible outcomes, one

can create a table of the possible outcomes together with their probabilities

pi = pX(xi) (i = 1, . . . , imax), assuming that the xi are sorted in ascending

order. To draw a number, one has to draw a random number u which is

uniformly distributed in [0, 1) and take the entry j of the table such that

for the sum sj ≡ ∑j
i=1 pX(xi) of the probabilities the condition sj−1 <

u < sj holds. For example, consider a discrete random variable with p1 =

1/8, p2 = 1/4, p3 = 1/2 and p4 = 1/8. Using this approach, e.g, if the

random number is contained in the interval ]1/8, 3/8], the second outcome

will be selected, see Fig. 8.7. Note that one can search the array quickly by

bisection search: The array is iteratively divided into two halves and each

time continued in that half where the corresponding entry j is contained. In

this way, generating a random number has a time complexity which grows

only logarithmically with the number imax of possible outcomes. This pays

off if the number of possible outcomes is very large.

In exercise (1) you are asked to write a function to sample from the
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p i

p i

1/8 1/4 1/2 1/8

0 1/8 3/8 7/8 1Σ i

Fig. 8.7 A discrete distribution with four outcomes with probabilities p1 = 1/8, p2 =
1/4, p3 = 1/2 and p4 = 1/8. The probabilities are represented in the interval [0, 1] by
sub intervals which have lengths equal to the probabilities, respectively. This allows to
draw random numbers according the distribution.

probability distribution of a discrete variable, in particular for a Poisson

distribution.

Although just a logarithmic growth with the number Nof possible out-

comes is already pretty efficient, there even exist an approach [Walker

(1977)] where the time to draw a random number is constant, indepen-

dent of N . This is explained next, following the implementation [Fukui

and Todo (2009)]:

We will consider as an example N = 5 possible outcomes with p1 = 0.1,

p2 = 0.25, p3 = 0.45, p4 = 0.1, p5 = 0.1. The basic idea is to distribute

the different outcomes to N “packages”. Each package represents a weight

pavg = 1/N . The main point is that each package contains only up to

two outcomes. Outcomes with small probabilities pi ≤ pavg will be repre-

sented in just one package, while outcomes with higher probabilities will be

contained in more than one package. For each package i one stores which

outcomes ai (and maybe also bi) are represented and what fraction qi be-

longs to outcome ai (outcome bi correspond to the fraction 1 − qi). This

information is stored in a table. Once the table is set up, drawing a ran-

dom outcome is now easy: First one selects randomly the package i, each

with the same probability 1/N . For this purpose one U(0, 1) uniformly dis-

tributed random number is required. Next a second U(0, 1) random number

r is drawn. If r < qi the outcome ai selected else bi.

One only has to set up the table before the actual simulation starts. This

works as follows: One starts by assigning event i in package i by setting

ai = i and qi = pi. During the computation of the table qi states how much

of the probability for outcome ai is still represented in package i. For the

example, this initial situation is shown in Fig. 8.8. Next, the outcomes are

partially sorted such that all outcomes with pi > pavg come first (to the

left), the other outcomes (pi ≤ pavg) come next, to the right. The partial

order can be generated conveniently by using two index counters t0 and

t1 which are put initially to the left at package 1 (entry 0 for a C array)

and to the right at package N (entry N − 1 for a C array). These counters
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event
1 2 3 4

prob.
0.4

0.2

5

Fig. 8.8 The initial representation of the table for the example, just containing the
probabilities of the outcomes. The heights of the bars correspond to the probabilities qi,
the numbers written in the bars to the outcomes ai.

are moved stepwise right and left, respectively, until each them points to

an elements such that the partial order is not fulfilled, i.e. qt0 > pavg and

qt1 < pavg. Those two elements are exchanged, hence the partial order is

restored and the pointers can move on. This is repeated until the two index

counters have passed each other, i.e. until t0 > t1 holds. After that t1 will

point to the rightmost outcome where the probability is larger than pavg.

For our example, the situation is shown in Fig. 8.9.

event
2 4 5

prob.
0.4

0.2

3 1

t1

average_prob

Fig. 8.9 After the table has been rearranged, all outcomes with qi > 1/N are located
to the left, all other outcomes to the right.

Now the final phase of the table setup starts. Starting from the right,

the packages are filled up such that each one represents a probability pavg.

For this purpose a corresponding share will be taken from package t1, i.e.

qt1 will be reduced by an amount (pavg − qt) and bt = at1 is assigned.

Since qt1 > pavg, the amount remaining in package t1 will be positive,

but it might now be smaller than pavg. In this case, the package from now

on belongs to those which have to be filled up. Thus, pointer t1 will be

moved one position to the left, i.e., t1 = t1 − 1 and then again point to

a package representing an amount larger than pavg. For the example, the

09-Oct- 2014



October 9, 2014 14:51 Big Practical Guide to Computer Simulations book4˙2nd page 270

270 Big Practical Guide to Computer Simulations

situation will look like shown in Fig. 8.10.

q=0.1

event
2 4 5

prob.
0.4

0.2

3 1
2

t1

average_prob

Fig. 8.10 Situation after the rightmost package t has been filled up to an amount

pavg = 1/N by taking the missing amount from the package that t1 pointed to. The
corresponding outcome is stored in bt, represented as number “2” on the top of the
rightmost package. Since the amount in package t1 has fallen below pavg = 1/N , t1 is
moved one position to the left.

This is repeated until all packages have been filled up to level pavg =

1/N . This results in the situation shown in Fig. 8.11 (with q1 = 0.2,

q2 = 0.15 and q3 = q4 = q5 = 0.1). Note that the leftmost package will

always just contain the outcome it already represented at the beginning,

hence q1 = 1/N .

event
2 5

prob.
0.4

0.2

3
2

average_prob
q=0.13 3

1 4

3

Fig. 8.11 Result for the table after all packages have been arranged to represent an
amount pavg = 1/N .

So far, the values of qi represent global probabilities for the outcomes bi.

To allow for drawing the random numbers as explained above, they have to

be turned into conditional probabilities, representing only the relative frac-

tion of outcome ai in package i. Since each package represents an amount

pavg = 1/N , due to Eq. (8.5) all values of qi have to be divided by pavg,

i.e., multiplied by N .

You are asked to implement this approach in exercise (2). Although

drawing random numbers using this approach takes only a constant amount
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of computation steps, it requires generating two (pseudo) random numbers

each time. Thus, the implementation is more efficient in comparison to the

straightforward approach, see the beginning of this section, only for large

numbers N of possible outcomes.

Since all possible discrete distributions can be generated using these

approaches, we concentrate on techniques for generating continuous random

variables in the following.

8.2.3 Inversion Method

Given is a random number generator drand() which is assumed to generate

random numbers U which are distributed uniformly in [0, 1). The aim

is to generate random numbers Z with probability density pZ(z). The

corresponding distribution function is

FZ(z) ≡ P (Z ≤ z) ≡
∫ z

−∞
dz′pZ(z′) (8.48)

The target is to find a function g(u), such that after the transformation

Z = g(U) the outcomes of Z are distributed according to (8.48). It is

assumed that g can be inverted and is strongly monotonically increasing.

Then one obtains

FZ(z) = P (Z ≤ z) = P (g(U) ≤ z) = P (U ≤ g−1(z)) (8.49)

Since the distribution function FU (u) = P (U ≤ u) for a uniformly dis-

tributed variable is just FU (u) = u (u ∈ [0, 1]), one obtains FZ(z) = g−1(z).

Thus, one just has to choose g(z) = F−1
Z (z) for the transformation func-

tion in order to obtain random numbers, which are distributed according

to the probability distribution FZ(z). Of course, this only works if FZ can

be inverted. If this is not possible, you may use the methods presented in

the subsequent sections, or you could generate a table of the distribution

function, which is in fact a discretized approximation of the distribution

function, and use the methods for generating discrete random numbers as

shown in Sec. 8.2.2. This can be even refined by using a linearized approxi-

mation of the distribution function. Here, we do not go into further details,

but present an example where the distribution function can be indeed in-

verted.

Example 8.2 Let us consider the exponential distribution with pa-

rameter μ, with distribution function FZ(z) = 1 − exp(−z/μ), see page
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258. Therefore, one can obtain exponentially distributed random num-

bers Z by generating uniform distributed random numbers u and choosing

z = −μ ln(1 − u).

0 2 4 6 8 10
z

10
−4

10
−3

10
−2

10
−1

10
0

p(
z)

Fig. 8.12 Histogram pdf (see page 293) of random numbers generated according to an
exponential distribution (μ = 1) compared with the probability density function (straight
line) in a logarithmic plot.

GET SOURCE CODE

DIR: random
FILE(S): expo.c

The following simple C function generates

a random number which is exponentially dis-

tributed. The parameter μ of the distribution

is passed as argument.

double rand_expo(double mu)1

{2

double randnum; /* random number U(0,1) */3

randnum = drand48();4

5

return(-mu*log(1-randnum));6

}7

Note that we use in line 4 the simple drand48() random number generator,

which is included in the C standard library and works well for applications

with moderate statistical requirements. For more sophisticated generates,

e.g. see the GNU scientific library (see Sec. 7.3).

In Fig. 8.12 a histogram pdf (see page 293) for 105 random numbers

generated in this way and the exponential probability function for μ = 1

are shown with a logarithmically scaled y-axis. Only for larger values are
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deviations visible. They are due to statistical fluctuations since pZ(z) is

very small there.

8.2.4 Rejection Method

As mentioned above, the inversion method works only when the distribution

function P can be inverted analytically. For distributions not fulfilling this

condition, sometimes this problem can be overcome by drawing several

random numbers and combining them in a clever way.

0 2 4 6 8 10
x

0.0

0.1

0.1

0.2

0.2

p(
x)

Fig. 8.13 The rejection method: Points (x, y) are scattered uniformly over a bounded
rectangle. The probability that y ≤ p(x) is proportional to p(x).

First the simple rejection method is presented which works for random

variables where the pdf p(x) fits into a box [x0, x1)× [0, ymax), i.e., p(x) = 0

for x �∈ [x0, x1] and p(x) ≤ ymax. A generalization to pdfs which cannot be

boxed is given below. For the simple approach, the basic idea of generating

a random number distributed according to p(x) is to generate random pairs

(x, y), which are distributed uniformly in [x0, x1]× [0, ymax] and accept only

those numbers x where y ≤ p(x) holds, i.e., the pairs which are located

below p(x), see Fig. 8.13. Therefore, the probability that x is drawn is

proportional to p(x), as desired.

GET SOURCE CODE

DIR: randomness
FILE(S): reject.c

The following C function realizes the rejec-

tion method for an arbitrary pdf. It takes as

arguments the boundaries of the box y_max, x0

and x1 as well as a pointer pdf to the function

realizing the pdf. For an explanation of function pointers, see page 59.
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double reject(double y_max, double x0, double x1,1

double (* pdf)(double))2

{3

int found; /* flag if valid number has been found */4

double x,y; /* random points in [x0,x1]x[0,p_max] */5

found = 0;6

7

while(!found) /* loop until number is generated */8

{9

x = x0 + (x1-x0)*drand48(); /* uniformly on [x0,x1] */10

y = y_max *drand48(); /* uniformly in [0,p_max] */11

if(y <= pdf(x)) /* accept ? */12

found = 1;13

}14

return(x);15

}16

In lines 10–11 the random point, which is uniformly distributed in the box,

is generated. Lines 12–13 contain the check whether a point below the pdf

curve has been found. The search in the loop (lines 8–14) continues until a

random number has been accepted, which is returned in line 15.

Example 8.3 The rejection method is applied to a pdf, which has density

1 in [0, 0.5) and rises linearly from 0 to 4 in [1, 1.5). Everywhere else it is

zero. This pdf is realized by the following C function:

double pdf(double x)1

{2

if( (x<0)||3

((x>=0.5)&&(x<1))||4

(x>1.5) )5

return(0.0);6

else if((x>=0)&&(x<0.5))7

return(1.0);8

else9

return(4.0*(x-1));10

}11

The resulting empirical histogram pdf is shown in Fig. 8.14.

The simple rejection method can always be applied if the probability

density is boxed, but it has the drawback that more random numbers have

to be generated than can be used: If A = (x1 − x0)ymax is the area of

the box, one has on average to generate 2A auxiliary random numbers to

obtain one random number of the desired distribution. If this leads to a
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Fig. 8.14 Histogram pdf (see page 293) of 105 random numbers generated using the
rejection method for an artificial pdf.

very poor efficiency, as a simple solution you can consider to use several

boxes for different parts of the pdf.

It is even better not to border the pdf p(x) by a box but by a shape which

resembles p(x) as close as possible. Again, the only requirement is that one

can distribute points uniformly within the shape. This is always possible if

the shape is given by a function cq(x) and q(x) is another pdf for which the

generation of random numbers can be done easily, e.g. using the inversion

method. The bordering condition p(x) ≤ cq(x) must be fulfilled for the

entire support of the pdf p(x). Note that this approach also allows in many

cases to generate random numbers for pdfs where the support stretches to

infinity. In detail, the approach works as follows: First a random number

x according the pdf q(x) is generated. Next, a random number y is gener-

ated, which is uniformly distributed in [0, cq(x)], i.e. via drawing a number

uniformly in [0, 1] and multiplying it by cq(x). Finally, the number x is

accepted if y < p(x). Thus, the probability for the acceptance is given by

p(x)/(cq(x)). Since the probability density for the generation of x in the

first step is q(x), the joint probability that x is generated and accepted is

p(x, accept) =
p(x)

cq(x)
q(x) =

p(x)

c
.

Thus, the probability is proportional to p(x). Again, the numbers x which

are not accepted are just ignored, i.e. the process is repeated until a number

is accepted. The probability that any number x is accepted is simple the

integral over p(x, accept), i.e.
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paccept =

∫ ∞

−∞
dx p(x, accept) =

∫ ∞

−∞
dx

p(x)

c
=

1

c

∫ ∞

−∞
dx p(x) =

1

c
,

where the last equality follows from the normalization of pdf p(x). Finally,

the probability that number x is generated under the condition that it is

accepted evaluates according to Eq. (8.5) as

p(x|accept) = p(x, accept)/paccept =
p(x)

c
/(1/c) = p(x) ,

as desired. Since for each iteration 2 random numbers x and y are gen-

erated, the average number of generated numbers per accepted number is

2/paccept = 2c.

As an example, we will consider the Gaussian distribution as shown in

Eq. (8.36), here for the choices of mean μ = 0 and variance σ = 1. The

generalization to arbitrary values of μ and σ > 0 is explained in Sec. 8.2.5,

where also a rejection-free approach specifically for Gaussian numbers is

presented. Here, we consider the case that a positive number x according

the Gaussian distribution is to be generated. For the general case, due to

the symmetry of the Gaussian distribution, one finally draws a uniformly

in [0, 1] distributed random number s and negates x if s < 1/2.

To border the Gaussian, we use for q(x) an exponential distribution with

parameter μ, the density given by Eq. (8.39). The value of the parameter

μ will be determined below. The exponential was chosen because the gen-

eration of exponentially distributed random numbers is particularly simple

using the rejection method as shown in Sec. 8.2.3. The multiplier c must be

chosen such that the pdf of the Gaussian distribution lies completely below

cq(x), see Fig. 8.15. To maximize the efficiency, c should be made as small

as possible. From inspection of Fig. 8.15 we read off that the best choice

of c is such that p(x) and cq(x) touch exactly in one point x (and neither

cross in two points nor do not touch at all). This leads to the following

condition:

p(x) = cq(x)

⇒ 1√
2π

exp
(−x2/2) = c

μ
exp (−x/μ)

⇒ −x2/2 = log(
√
2πc/μ) − x/μ

⇒ (x − 1/μ)2 = 1/μ2 − 2 log(
√
2πc/μ)

⇒ x = 1/μ±
√
1/μ2 − 2 log(

√
2πc/μ)
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Fig. 8.15 The pdf p(x) of the Gaussian distribution Eq. (8.36) together with a bordering
exponential distribution cq(x), where q(x) is given by Eq. (8.39). The constant c is chosen
such that p(x) and cq(x) touch in one point, thus p(x) is bordered by cq(x) and the area
under cq(x) is minimized, see text. For a larger constant c1 > c p(x) is also bordered
by c1q(x) but the area is larger, thus the method is less efficient. For c2 < c, p(x) is not
bordered by c2q(x), hence the approach does not work for this case.

Such that there is exactly one point where p(x) and cq(x) agree, the

expression under the square root must be identically zero,1 i.e.

1/μ2 = 2 log(
√
2πc/μ)

⇒ exp(1/(2μ2)) =
√
2πc/μ

⇒ c =
μ√
2π

exp(1/(2μ2)) . (8.50)

Still, c depends on μ, which is the parameter of the exponential. Since the

efficiency of the random number generation is maximal if the area under

1If the expression is larger than zero, there are two distinct intersections. If the
expression is smaller than zero, there is no intersection, i.e., the scaled exponential lies
above the Gaussian.
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the function cq(x) is minimal, we have to minimize c with respect to μ, i.e.

dc

dμ

!
= 0

⇒ 1√
2π

exp(1/(2μ2)) +
μ√
2π

−2

2μ3
exp(1/(2μ2)) = 0

⇒ 1 − 1

μ2
= 0

⇒ μ = ±1 .

Since μ is restricted to positive values (otherwise the exponential is not nor-

malized), we obtain μ = 1. Since c(μ) tends to infinity for both limits μ → 0

and μ → ∞, μ = 1 is indeed the optimum choice minimizing c. Hence, for

the bordering function we obtain the simple exponential q(x) = exp(−x)
and from Eq. (8.50) we get via inserting μ = 1 the constant c =

√
e/(2π).

Note that this calculation and the result are specific to the generation of

Gaussian random numbers via bordering the pdf by an exponential. Never-

theless, the general approach of finding a suitable function q(x) is similar:

One has to choose a function q(x) such that random numbers can be easily

generated. Also one has to determine the constant c such that cq(x) bor-

ders the pdf as close as possible. Usually this involves minimizing c with

respect to one or several parameters of q(x).

To illustrate the results, in Fig. 8.16, the Gaussian is shown together

with the optimum bordering function exp(1/2 − x)/
√
2π and some points

uniformly distributed under the the bordering function. In Exercise (4) you

are asked to implement a C function which realizes the rejection method

for the Gaussian.

The rejection method can also be generalized to higher dimensions. As

example, here the generation of random numbers is considered which are

distributed uniformly in a hypersphere or on it’s surface. Therefore, we

consider a circle in two dimensions or a sphere in three dimensions. This is

useful, e.g, when studying random movements in real space, like in random

walk models. One can, in principle, also use the inversion method via suit-

able coordinate transformations. This is rather simple in two dimensions,

slightly more difficult in three dimensions, but can become quite cumber-

some in even higher dimensions. In contrast, the present approach is very

simple and suitable for all dimensions d. Here we consider the unit hyper-

sphere, i.e., with radius one. The basic idea is to generate uniform vectors

�x = (x1, x2, . . . , xd) in the hypercube [−1, 1]d, calculate the squared length
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Fig. 8.16 The pdf p(x) of the standard Gaussian for the positive x-axis together with it’s
bordering function cq(x) = exp(1/2− x)/

√
2π and 100 points (x, y) which are scattered

with uniform probability under the bordering function. Points below the curve p(x) are
accepted, i.e., the x-coordinate will be taken as sample result.

|�x|2 =
∑

i x
2
i and reject all vectors where |�x|2 > 1. Thus, the hypersphere

is “cut out” of the hypercube. Since the distribution in the hypercube is

uniform, so is the distribution in the hypersphere. If you aim at a uniform

distribution on the surface of the hypersphere, you can project all values

inside the sphere onto the surface, by taking �x′ = �x/|�x|, among those which

are not rejected.
GET SOURCE CODE

DIR: randomness
FILE(S): sphere.c

Below, a C function generating random num-

bers in or on the surface of the hypersphere is

shown. It takes the dimension of the system,

the vector �x to be generated (i.e., a pointer) and a flag surface as argu-

ments. When surface is 0, the points are generated inside the hypersphere,

else on the surface of the hypersphere. The function returns the number of

trials needed to generate the returned vector.2

2Note that this can be used to numerically estimate the value of π: In two dimensions,
the area of the unit circle is π, while the area of the square is 4. Thus, averaged over
many calls, the fraction of successful trials should converge to π/4 ≈= 0.7854.
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int generate_sphere(int dim, double *x, int surface)1

{2

int num_trials;3

int d; /* loop counter */4

double magnitude; /* square magnitude of vector */5

6

num_trials = 0;7

do8

{9

num_trials++;10

magnitude = 0;11

for(d=0; d<dim; d++) /* generate point in [0,1]^dim */12

{13

x[d] = 2*drand48()-1.0;14

magnitude += x[d]*x[d];15

}16

} while(magnitude > 1.0); /* until in unit sphere ? */17

18

magnitude = sqrt(magnitude);19

if(surface)20

for(d=0; d<dim; d++) /* normalize point to length 1 */21

x[d] /= magnitude;22

return(num_trials);23

}24

The main loop lines 8–17 is performed until a point �x inside the hyper-

sphere is obtained. Therein, the loop (lines 12–16) generates a uniformly

distributed point inside the hypercube [−1, 1]d and calculates the length of

the vector on the fly. In the final part (lines 19–22) the projection onto the

surface of the hypersphere is performed in case the flag surface is set.

As numerical experiment, 1000 points were generated inside the unit

circle and 200 points on it’s circumference. The resulting scatter plot of

the points is shown in Fig. 8.17.

8.2.5 The Gaussian Distribution

In case neither the distribution function can be inverted nor the probability

fits into a box, special methods have to be applied. As an example, a

method for generating random numbers distributed according to a Gaussian

distribution is considered. Other methods and examples of how different

techniques can be combined are collected in [Morgan (1984)].

The probability density function for the Gaussian distribution with

mean μ and variance σ2 is shown in Eq. (8.36), see also Fig. 8.18. It is,
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Fig. 8.17 Distribution of 1000 randomly generated points inside a circle and 200 points
on its circumference.

apart from uniform distributions, the most common distribution occurring

in simulations.

Here, the case of a standard Gaussian distribution (μ = 0, σ = 1)

is considered. If you want to realize the general case, you have to draw

a standard Gaussian distributed number z and then use σz + μ which is

distributed as desired.

Since the Gaussian distribution extends over an infinite interval and be-

cause the distribution function cannot be inverted, the methods from above

are not applicable. The simplest technique to generate random numbers

distributed according to a Gaussian distribution makes use of the central

limit theorem 8.1. It tells us that any sum of K independently distributed

random variables Ui (with mean μ and variance v) will converge to a Gaus-

sian distribution with mean Kμ and variance Kv. If again Ui is taken to

be uniformly distributed in [0, 1) (which has mean μ = 0.5 and variance

v = 1/12), one can chooseK = 12 and the random variable Z =
∑K

i=1 Ui−6

will be distributed approximately according to a standard Gaussian distri-

bution. The drawbacks of this method are that 12 random numbers are

needed to generate one final random number and that numbers larger than

6 or smaller than -6 will never appear.
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Fig. 8.18 Gaussian distribution with zero mean and unit width. The circles represent
a histogram pdf (see page 293) obtained from 104 numbers drawn with the Box-Müller
method.

In contrast to this technique the Box-Müller method is exact. You need

two random variables U1, U2 uniformly distributed in [0, 1) to generate two

independent Gaussian variablesN1, N2. This can be achieved by generating

u1, u2 from U1, U2 and assigning

n1 =
√

−2 log(1 − u1) cos(2πu2)

n2 =
√

−2 log(1 − u1) sin(2πu2)

A proof that n1 and n2 are indeed distributed according to (8.36) works

as follows: Let us write n1, n2 in polar coordinates (r, θ), i.e., (r, θ) =

f(n1, n2). Thus, the inverse is:

n1 = r cos(θ)

n2 = r sin(θ) . (8.51)

Now we have to find the probability density for (r, θ).

In general, for any two random variables R,Θ connected to two other

random variablesN1, N2 via the transformation (R,Θ) = f(N1, N2), pN1,N2

being the (joint) pdf for (N1, N1), we have
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pR,Θ(r, θ) = pN1,N2
(f−1(r, θ))|J−1| , (8.52)

where |J−1| ist the Jacobi determinant of the inverse transformation.

Therefore, we have to calculate the Jacobi determinant of the inverse trans-

formation given in Eq. (8.51), for which we obtain:

|J−1| =
∣∣∣∣ ∂n1

∂r
∂n1

∂θ
∂n2

∂r
∂n2

∂θ

∣∣∣∣ = ∣∣∣∣ cos(θ) −r sin(θ)
sin(θ) r cos(θ)

∣∣∣∣ = r cos2(θ) + r sin2(θ) = r .

Since n1, n2 should be Gaussian distributed we obtain from Eq. (8.52)

pR,Θ(r, θ) =
r

2π
e−n2

1/2−n2
2/2 =

r

2π
e−r2/2 . (8.53)

This factorizes. We assume that θ is uniformly distributed in [0, 2π),

i.e., with density 1/2π (generated by setting θ = 2πu2). It remains

pR(r) = re−r2/2. On can easily see that the distribution function of this

pdf is FR(r) = 1 − exp(−r2/2) (r ≥ 0). You can check this by calculat-

ing the derivative of FR(r). Thus, one can use the inversion method to

generate number distributed according the pdf pR(r). For this we obtain

r =
√−2 log(1 − u1). The rules for generating θ and r, inserted into the

inverse transformation Eq. (8.51), result exactly in the formulas given by

the Box-Muller approach.

There exist other methods for generating Gaussian random numbers,

some even more efficient, see Refs. [Press et al. (1995); Morgan (1984)]. A

method which is based on the simulation of particles in a box is explained

in [Fernandez and Criado (1999)]. In Fig. 8.18 a histogram pdf of 104

random numbers drawn with the Box-Müller method is shown. Note that

you can find an implementation of the Box-Müller method in the solution

of Exercise (5).

8.3 Basic data analysis

The starting point is a sample of n measured points {x0, x1, . . . , xn−1} of

some quantity, as obtained from a simulation. Examples are the density

of a gas, the transition time between two conformations of a molecule, or

the price of a stock. We assume that formally all measurements can be
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described by random variables Xi representing the same random variable

X and that all measurements are statistically independent of each other

(treating statistical dependencies is treated in Sec. 8.5). Usually, one does

not know the underlying probability distribution F (x), having density p(x),

which describes X .

8.3.1 Estimators

Thus, one wants to obtain information about X by looking at the sample

{x0, x1, . . . , xn−1}. In principle, one does this by considering estimators

h = h(x0, x1, . . . , xn−1). Since the measured points are obtained from ran-

dom variables, H = h(X0, X1, . . . , Xn−1) is a random variable itself. Es-

timators are often used to estimate parameters θ of random variables, e.g.

moments of distributions. The most fundamental estimators are:

• The mean

x ≡ 1

n

n−1∑
i=0

xi (8.54)

• The sample variance

s2 ≡ 1

n

n−1∑
i=0

(xi − x)2 (8.55)

The sample standard deviation is s ≡
√
s2.

GET SOURCE CODE

DIR: randomness
FILE(S): mean.c

As example, next a simple C function is

shown, which calculates the mean of n data

points. The function obtains the number n of

data points and an array containing the data as

arguments. It returns the average:
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double mean(int n, double *x)1

{2

double sum = 0.0; /* sum of values */3

int i; /* counter */4

5

for(i=0; i<n; i++) /* loop over all data points */6

sum += x[i];7

return(sum/n);8

}9

10

You are asked to write a similar function for calculating the variance in

exercise (5).

The sample mean can be used to estimate the expectation value μ ≡
E[X ] of the distribution. This estimate is unbiased, which means that

the expectation value of the mean, for any sample sizes n, is indeed the

expectation value of the random variable. This can be shown quite easily.

Note that formally the random variable from which the sample mean x is

drawn is X = 1
n

∑n−1
i=0 Xi:

μX ≡ E[X] = E

[
1

n

n−1∑
i=0

Xi

]
=

1

n

n−1∑
i=0

E[Xi] =
1

n
nE[X ] = E[X ] = μ (8.56)

Here again the linearity of the expectation value was used. The fact

that the estimator is unbiased means that if you repeat the estimation of

the expectation value via the mean several times, on average the correct

value is obtained. This is independent of the sample size. In general, the

estimator h for a parameter θ is called unbiased if E[h] = θ.

Contrary to what you might expect due to the symmetry between Eqs.

(8.16) and (8.55), the sample variance is not an unbiased estimator for the

variance σ2 ≡ Var[X ] of the distribution, but is biased. The fundamental

reason is, as mentioned above, that X is itself a random variable which is

described by a distribution PX . As shown in Eq. (8.56), this distribution has

mean μ, independent of the sample size. On the other hand, the distribution

has the variance

σ2
X

≡ Var[X] = Var

[
1

n

n−1∑
i=0

Xi

]
(8.23)
=

1

n2

n−1∑
i=0

Var[Xi]

=
1

n2
nVar[X ] =

σ2

n
(8.57)
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Thus, the distribution of X gets narrower with increasing sample size n.

This has the following consequence for the expectation value of the sample

variance which is described by the random variable S2 = 1
n

∑n−1
i=0 (Xi−X)2:

E[S2] = E

[
1

n

n−1∑
i=0

(Xi −X)2

]
= E

[
1

n

n−1∑
i=0

(X2
i − 2XiX +X

2
)

]

=
1

n

(
n−1∑
i=0

E[X2
i ] − nE[X

2
]

)
(8.22)
=

1

n

(
n(σ2 + μ2) − n(σ2

X
+ μ2

X
)
)

(8.57)
=

1

n

(
nσ2 + nμ2 − n

σ2

n
− nμ2

)
=
n− 1

n
σ2 (8.58)

This means that, although s2 is biased, n
n−1s

2 is an unbiased estimator

for the variance of the underlying distribution of X . Nevertheless, s2 also

becomes unbiased for n → ∞.3

For some distributions, for instance a power-law distribution Eq. (8.41)

with exponent γ ≤ 2, the variance does not exist. Numerically, when

calculating s2 according Eq. (8.55), one observes that it will not converge

to a finite value when increasing the sample size n. Instead one will observe

occasionally jumps to higher and higher values. One says the estimator is

not robust. To get still an impression of the spread of the data points, one

can instead calculate the average deviation

D ≡ 1

n

n−1∑
i=0

|xi − x| (8.59)

In general, an estimator is the less robust, the higher the involved moments

are. Even the sample mean may not be robust, for instance for a power-law

distribution with γ ≤ 1. In this case one can use the sample median, which

is the value xm such that xi ≤ xm for half the sample points, i.e. xm is

the (n + 1)/2’th sample point if they are sorted in ascending order.4 The

sample median is clearly an estimator of the median (see Def. 8.14). It is

more robust, because it is less influenced by the sample points in the tail.

The simplest way to calculate the median is to sort all sample points in

ascending order and take the sample point at the (n/2 + 1)’th position.

3Sometimes the sample variance is defined as S� = 1
n−1

∑n−1
i=0 (xi − x)2 to make it

an unbiased estimator of the variance.
4If n is even, one can take the average between the n/2’th and the (n+1)/2’th sample

point in ascending order.
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This process takes a running time O(n log n). Nevertheless, there is an

algorithm [Press et al. (1995); Cormen et al. (2001)] which calculates the

median even in linear running time O(n).

8.3.2 Confidence intervals

In the previous section, we have studied estimators for parameters of a

random variable X using a sample obtained from a series of independent

random experiments. This is a so-called point estimator, because just one

number is estimated.

Since each estimator is itself a random variable, each estimated value

will be usually off the true value θ. Consequently, one wants to obtain an

impression of how far off the estimate might be from the real value θ. This

can be obtained for instance from:

Definition 8.22 The mean squared error of a point estimator H =

h(X0, X1, . . . , Xn−1) for a parameter θ is

MSE(H) ≡ E[(H − θ)2] = E[(H − E[H ] + E[H ] − θ)2]

= E[(H − E[H ])2] + E[2(H − E[H ])(E[H ] − θ)] + E[(E[H ] − θ)2]

= E[(H − E[H ])2] + 2 (E[H ] − E[H ])︸ ︷︷ ︸
=0

(E[H ] − θ) + (E[H ] − θ)2

= Var[H ] + (E[H ] − θ)2 (8.60)

If an estimator is unbiased, i.e., if E[H ] = θ, the mean squared error

is given by the variance of the estimator. Hence, if for independent sam-

ples (each consisting of n sample points) the estimated values are close to

each other, the estimate is quite accurate. Unfortunately, usually only one

sample is available (how to circumvent this problem rather ingeniously, see

Sec. 8.3.4). Also the mean squared error does not immediately provide a

probabilistic interpretation of how far the estimate is away from the true

value θ.

Nevertheless, one can obtain an estimate of the error in a probabilis-

tic sense. Here we want to calculate a so-called confidence interval also

sometimes named error bar.

Definition 8.23 For a parameter θ describing a random variable, two

estimators lα = lα(x0, x1, . . . , xn−1) and uα = uα(x0, x1, . . . , xn−1) which
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are obtained from a sample {x0, x1, . . . , xn−1} provide a confidence interval

if, for given confidence level 1 − α ∈ (0, 1) we have

P (lα < θ < uα) = 1 − α (8.61)

The value α ∈ (0, 1) is called conversely significance level.

This means, the true but unknown value θ is contained in the interval (l, u),

which is itself a random variable as well, with probability 1 − α. Typical

values of the confidence level are 0.68, 0.95 and 0.99 (α = 0.32, 0.05, 0.01,

respectively), providing increasing confidence. The more one wants to be

sure that the interval really contains the true parameter, i.e. the smaller

the value of α, the larger the confidence interval will be.

Next, it is quickly outlined how one arrives at the confidence interval for

the mean, for details please consult the specialized literature. First we recall

that according to its definition the mean is a sum of independent random

variables. For computer simulations, one can assume that usually (see

below for a counterexample) a sufficiently large number of experiments is

performed.5 Therefore, according to the central limit theorem 8.1 X should

exhibit (approximately) a pdf fX which is Gaussian with an expectation

value μ and some variance σ2
X

= σ2/n. This means, the probability α

that the sample means fall outside an interval I = [μ− zσX , μ+ zσX ] can

be easily obtained from the standard normal distribution. This situation

is shown in the Fig. 8.19. Note that the interval is symmetric about the

mean μ and that its width is stated in multiples z = z(α) of the standard

deviation σX . The relation between significance level α and half interval

width z is just
∫ z

−z dx fX(x) = 1 − α. Hence, the weight of the standard

normal distribution outside the interval [−z, z] is α. This relation can be

obtained from any table of the standard Gaussian distribution or from the

function gsl_cdf_gaussian_P() of the GNU scientific library (see Sec.

7.3). Usually, one considers integer values z = 1, 2, 3 which correspond

to significance levels α = 0.32, 0.05, and 0.003, respectively. So far, the

confidence interval I contains the unknown expectation value μ and the

5This is different for many empirical experiments, for example, when testing new
treatments in medical sciences, where often only a very restricted number of experiments
can be performed. In this case, one has to consider special distributions, like the Student
distribution.
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p  (x)

xμ−  σz μ+  σz
X X

X

1−α

μ

α/2 α/2

Fig. 8.19 Probability density function of the sample mean X for large enough sample
sizes n where the distribution becomes Gaussian. The true expectation value is denoted
by μ and σX is the variance of the sample mean. The probability that a random number
drawn from this distribution falls outside the symmetric interval [μ − zσX , μ + zσX ] is
α.

unknown variance σX . First, one can rewrite

1 − α = P (μ− zσX ≤ X ≤ μ+ zσX)

= P (−zσX ≤ X − μ ≤ zσX)

= P (−X − zσX ≤ −μ ≤ −X + zσX)

= P (X − zσX ≤ μ ≤ X + zσX) .

This now states the probability that the true value, which is estimated by

the sample mean x, lies within an interval which is symmetric about the

estimate x. Note that the width 2zσX is basically given by σX =
√
Var[X].

This explains why the mean squared error MSE(H) = Var[H ], as presented

in the beginning of this section, is a good measure for the statistical error

made by the estimator. This will be used in Sec. 8.3.4.

To finish, we estimate the true variance σ2 using n
n−1s

2, hence we get

σX = σ√
n

≈ S√
n−1

. To summarize we get:

P

(
X − z

S√
n− 1

≤ μ ≤ X + z
S√
n− 1

)
≈ 1 − α (8.62)

Note that this confidence interval, with lα = x − z(α)S/
√
n− 1 and uα =
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x+ z(α)S/
√
n− 1, is symmetric about x, which is not necessarily the case

for other confidence intervals. Very often in scientific publications, to state

the estimate for μ including the confidence interval, one gives the range

where the true mean is located in 68% of all cases (z = 1) i.e. x ± S√
n−1

,

this is called the standard Gaussian error bar or one σ error bar. Thus,

the sample variance and the sample size determine the error bar/confidence

interval.

For the variance, the situation is more complicated, because it is not

simply a sum of statistically independent sample points {x0, x1, . . . , xn−1}.
Without going into the details, here only the result from the corresponding

statistics literature [Dekking et al (2005); Lefebvre (2006)] is cited: The

confidence interval where with probability 1−α the true variance is located

is given by [σ2
l , σ

2
u] where

σ2
l =

ns2

χ2(1 − α/2, n− 1)

σ2
u =

ns2

χ2(α/2, n− 1)
. (8.63)

Here, χ2(β, ν) is the inverse of the cumulative chi-squared distribution with

ν degrees of freedom. It states the value where F (χ2, ν) = β, see page 261.

This chi-squared function is implemented in the GNU scientific library (see

Sec. 7.3) in the function gsl_cdf_chisq_Pinv().

Note that as one alternative, you could regard yi ≡ (xi − x)2 approx-

imately as independent data points and use the above standard error es-

timate described for the mean of the sample {yi}. Also, one can use the

bootstrap method as explained below (Sec. 8.3.4), which allows to calculate

confidence intervals for arbitrary estimators.

8.3.3 Histograms

Sometimes, you do not only want to estimate moments of an underlying

distribution, but you want to get an impression of the full distribution. In

this case you can use histograms.

Definition 8.24 A histogram is given by a set of disjoint intervals

Bk = [lk, uk) , (8.64)
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which are called bins and a counter hk for each bin. For a given sample of n

measured points {x0, x1, . . . , xn−1}, bin hk contains the number of sample

points xi which are contained in Bk.

Example 8.4 For the sample

{xi} = {1.2, 1.5, 1.0, 0.7, 1.4, 2.0,
1.5, 1.1, 0.9, 1.9, 1.2, 0.8}

the bins

[0, 0.5), [0.5, 1.0) [1.0, 1.5), [1.5, 2.0), [2.0, 2.5) [2.5, 3.0) ,

are used, resulting in

h1 = 0, h2 = 3, h3 = 5, h4 = 3, h5 = 1, h6 = 0

which is depicted in Fig. 8.20.

1 2 3 4 5 6
i

0

1

2

3

4

5

6

h i

Fig. 8.20 Histogram for the data shown in Ex. 8.4.

In principle, the bins can be chosen arbitrarily. You should take care

that the union of all intervals covers all (possible or actual) sample points.

Here, it is assumed that the bins are properly chosen. Note also that

the width bk = uk − lk of each bin can be different. Nevertheless, often

bins with uniform width are used. Furthermore, for many applications, for
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instance, when assigning different weights to different sample points6, it is

useful to consider the counters as real-valued variables. A simple (fixed-bin

width) C implementation of histograms is described in Sec. 5.2. The GNU

scientific library (see Sec. 7.3) contains data structures and functions which

implement histograms allowing for variable bin width.

Formally, for a given random variable X , the count hk in bin k can be

seen as a result of a random experiment for the binomial random variable

Hk ∼ B(n, pk) with parameters n and pk, where pk = P (X ∈ Bk) is the

probability that a random experiment for X results in a value which is

contained in bin Bk. This means that confidence intervals for a histogram

bin can be obtained in principle from a binomial distribution. Nevertheless,

for each sample the true value for a value pk is unknown and can only be

estimated by qk ≡ hk/n. Hence, the true binomial distribution is unknown.

On the other hand, a binomial random variable is a sum of n Bernoulli

random variables with parameter pk. Thus, the estimator qk is nothing

else than a sample mean for a Bernoulli random variable. If the number of

sample points n is “large” (see below), from the central limit theorem 8.1

and as discussed in Sec. 8.3.2, the distribution of the sample mean (being

binomial in fact) is approximately Gaussian. Therefore, one can use the

standard confidence interval Eq. (8.62), in this case

P

(
qk − z

S√
n− 1

≤ pk ≤ qk + z
S√
n− 1

)
≈ 1 − α (8.65)

Here, according to Eq. (8.19), the Bernoulli random variable exhibits a

sample variance s2 = qk(1 − qk) = (hk/n)(1 − hk/n). Again, z = z(α)

denotes the half width of an interval [−z, z] such that the weight of the

standard normal distribution outside the interval equals α. Hence, the

estimate with standard error bar (z = 1) is qk ± √
qk(1 − qk)/(n− 1).

The question remains: What is “large” such that you can trust this

“Gaussian” confidence interval? Consider that you measure for example

no point at all for a certain bin Bk. This can happen easily in the regions

where pk is smaller than 1/n but non-zero, i.e. in regions of the histogram

which are used to sample the tails of a probability density function. In

this case the estimated fraction can easily be qk = 0 resulting also in a

zero-width confidence interval, which is certainly wrong. This means, the

number of samples n needed to have a reliable confidence interval for a

bin Bk depends on the number of bin entries. A rule of thumb from the

6This occurs for some advanced simulation techniques.
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statistics literature is that nqk(1 − qk) > 9 should hold. If this condition

is not fulfilled, the correct confidence interval [qi,l, qi,u] for qk has to be

obtained from the binomial distribution and it is quite complicated, since

it uses the F distribution (see Def. 8.21 on page 261)

qi,l =
hk

hk + (n− hk + 1)F1

qi,u =
(hk + 1)F2

(hk + 1)F2 + n− hk
, (8.66)

where F1 = F (1 − α/2; 2n− 2hk + 2, 2hk)

F2 = F (1 − α/2; 2hk + 2, 2n− 2hk)

The value F (β; r1, r2) states the x value such that the distribution function

for the F distribution with number of degrees r1 and r2 reaches the value

β. This inverse distribution function is implemented in the GNU scientific

library (see Sec. 7.3). If you always use these confidence intervals, which are

usually not symmetric about qk, then you cannot go wrong. Nevertheless,

for most applications the standard Gaussian error bars are fine.

Finally, in case you want to use a histogram to represent a sample from

a continuous random variable, you can easily interpret a histogram as a

sample for a probability density function, which can be represented as a set

of points {(x̃k, p(x̃k))}. This is called the histogram pdf or the sample pdf.

For simplicity, it is assumed that the interval mid points of the intervals

are used as x-coordinate. For the normalization, we have to divide by the

total number of counts, as for qk = hk/n and to divide by the bin width.

This ensures that the integral of the sample pdf, approximated by a sum,

gives just unity. Therefore, we get

x̃k ≡ (lk + uk)/2

p(x̃k) ≡ hk/(nbk) . (8.67)

The confidence interval, whatever type you choose, has to be normalized

in the same way. A function which prints a histogram as pdf, with simple

Gaussian error bars, is shown in Sec. 5.2.

For discrete random variables, the histogram can be used to estimate

the pmf.7 In this case the choice of the bins, in particular the bin widths,

is easy, since usually all possible outcomes of the random experiments are

known. For a histogram pdf, which is used to describe approximately a

7For discrete random variables, the qk values are already suitably normalized.
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continuous random variable, the choice of the bin width is important. Ba-

sically, you have to adjust the width manually, such that the sample data

is represented “best”. Thus, the bin width should not be too small nor

too large. Sometimes a non-uniform bin width is the best choice. In this

case no general advice can be given, except that the bin width should be

large where few data points have been sampled. This means that each bin

should contain roughly the same number of sample points. Several different

rules of thumb exist for uniform bin widths. For example b = 3.49Sn−1/3

[Scott (1979)], which comes from minimizing the mean integrated squared

difference between a Gaussian pdf and a sample drawn from this Gaussian

distribution. Hence, the larger the variance S of the sample, the larger the

bin width, while increasing the number of sample points enables the bin

width to be reduced.

In any case, you should be aware that the histogram pdf can be only an

approximation of the real pdf, due to the finite number of data points and

due to the underlying discrete nature resulting from the bins. The latter

problem has been addressed in recent years by so-called kernel estimators
[Dekking et al (2005)]. Here, each sample point xi is represented by a so-

called kernel function. A kernel function k(x) is a peaked function, formally

exhibiting the following properties:

• It has a maximum at 0.

• It falls off to zero over some distance h.

• Its integral
∫
k(x) dx is normalized to one.

Often used kernel functions are, for example, a triangle, a cut upside-down

parabola or a Gaussian function. Each sample point xi is represented such

that a kernel function is shifted having the maximum at xi. The estimator

p̂(x) for the pdf is the suitably normalized sum (factor 1/n) of all these

kernel functions, one for each sample point:

p̂(x) =
1

n

∑
i

k(x− xi) (8.68)

The advantages of these kernel estimators are that they result usually in a

smooth function p̂ and that for a value p̂(x) also sample points more distant

from x may contribute, with decreasing weight for increasing distance. The

most important parameter is the width h. A too small value of h will result

in many distinguishable peaks, one for each sample point. A too large value

of h leads to a loss of important details. This is of similar importance as the

choice of the bin width for histograms. The choice of the kernel function
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(e.g. a triangle, an upside-down parabola or a Gaussian function) seems to

be less important.

8.3.4 Resampling using Bootstrap

As pointed out, an estimator for some parameter θ, given by a function

h(x0, x1, . . . , xn−1), is in fact a random variable H = h(X0, X1, . . . , Xn−1).

Consequently, to get an impression of how much an estimate differs from the

true value of the parameter, one needs in principle to know the distribution

of the estimator, e.g. via the pdf pH or the distribution function FH . In

the previous chapter, the distribution was known for few estimators, in

particular if the sample size n is large. For instance, the distribution of

the sample mean converges to a Gaussian distribution, irrespectively of the

distribution function FX describing the sample points {xi}.
For the case of a general estimator H , in particular if FX is not known,

one may not know anything about the distribution of H . In this case one

can approximate FX by the sample distribution function:

Definition 8.25 For a sample {x0, x1, . . . , xn−1}, the sample distribution

function (also called empirical distribution function) is

FX̂(x) ≡ number of sample points xi smaller than or equal to x

n
(8.69)

Note that this distribution function describes in fact a discrete random vari-

able (called X̂ here), but is usually (but not always) used to approximate

a continuous distribution function.

The bootstrap principle is to use FX̂ instead of FX . The name of this

principle was made popular by B. Efron [Efron (1979); Efron and Tibshirani

(1994)] and comes from the fairy tale of Baron Münchhausen, who dragged

himself out of a swamp by pulling on the strap of his boot.8 Since the

distribution function FX is replaced by the empirical sample distribution

function, the approach is also called empirical bootstrap, for a variant called

parametric bootstrap see below.

Now, having FX̂ one could in principle calculate the distribution func-

tion FĤ for the random variable Ĥ = h(X̂0, X̂1, . . . , X̂n−1) exactly, which

then is an approximation of FH . Usually, this is to cumbersome and

one uses a second approximation: One draws so-called bootstrap samples

{x̂0, x̂1, . . . , x̂n−1} from the random variable X̂. This is called resampling.

This can be done quite simply by n times selecting (with replacement) one

8In the European version, he dragged himself out by pulling his hair.
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of the data points of the original sample {xi}, each one with the same prob-

ability 1/n. This means that some sample points from {xi} may appear

several times in {x̂i}, some may not appear at all.9 Now, one can calculate

the estimator value h∗ = h(x̂0, x̂1, . . . , x̂n−1) for each bootstrap sample.

This is repeated K times for different bootstrap samples resulting in K

values h∗k (k = 1, . . . ,K) of the estimator. The sample distribution func-

tion FH∗ of this sample {h∗k} is the final result, which is an approximation

of the desired distribution function FH . Note that the second approxima-

tion, replacing FĤ by FH∗ can be made arbitrarily accurate by making K

as large as desired, which is computationally cheap.

You may ask: Does this work at all, i.e., is FH∗ a good approximation

of FH? For the general case, there is no answer. But for some cases

there are mathematical proofs. For example for the mean H = X the

distribution function FX
∗ in fact converges to FX . Here, only the subtlety

arises that one has to consider in fact the normalized distributions of X−μ

(μ = E[X ]) and X̂ − x (x =
∑n−1

i=0 xi/n). Thus, the random variables

are just shifted by constant values. For other cases, like for estimating

the median or the variance, one has to normalize in a different way, i.e.,

by subtracting the (empirical) median or by dividing by the (empirical)

variance. Nevertheless, for the characteristics of FH we are interested in,

in particular in the variance, see below, normalizations like shifting and

stretching are not relevant, hence they are ignored in the following. Note

that indeed some estimators exist, like the maximum of a distribution, for

which one can prove conversely that FH∗ does not converge to FH , even

after some normalization. On the other hand, for the purpose of getting

a not too bad estimate of the error bar, for example, bootstrapping is a

very convenient and suitable approach which has received high acceptance

during recent years.

Now one can use FH∗ to calculate any desired quantity. Most im-

portant is the case of a confidence interval [hl, hu] such that the total

probability outside the interval is α, for given significance level α, i.e.

FH∗(hu)− FH∗(hl) = 1− α. In particular, one can distribute the weight α

equally below and above the interval, which allows to determine hl, hu

FH∗(hu) = FH∗(hl) = 1 − α/2 . (8.70)

Similar to the confidence intervals presented in Sec. 8.3.2, [hl, hu] also re-

presents a confidence interval for the unknown parameter θ which is to

9The probability for a sample point not to be selected is (1− 1/n)n = exp(n log(1−
1/n)) → exp(n(−1/n)) = exp(−1) ≈ 0.367 for n → ∞.
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be estimated from the estimator (if it is unbiased). Note that [hl, hu] can

be non-symmetric about the actual estimate h(x0, x1, . . . , xn−1). This will

happen if the distribution FH∗ is skewed.

For simplicity, as we have seen in Sec. 8.3.2, one can use the variance

Var[H ] to describe the statistical uncertainty of the estimator. As men-

tioned on page 289, this corresponds basically to a α = 0.32 uncertainty.

The quantity corresponding to the standard error bar is
√
Var[H ].

GET SOURCE CODE

DIR: randomness
FILE(S): bootstrap.c
bootstrap test.c

The following C function calculates Var[H∗],
as approximation of the unknown Var[H ]. One

has to pass as arguments the number n of

sample points, an array containing the sample

points, the number K of bootstrap iterations,

and a pointer to the function f which represents the estimator. f has to

take two arguments: the number of sample points and an array containing a

sample. For an explanation of function pointers, see page 59. The function

bootstrap_variance() returns Var[H∗].

double bootstrap_variance(int n, double *x, int n_resample,1

double (*f)(int, double *))2

{3

double *xb; /* bootstrap sample */4

double *h; /* results from resampling */5

int sample, i; /* loop counters */6

int k; /* sample point id */7

double var; /* result to be returned */8

9

h = (double *) malloc(n_resample * sizeof(double));10

xb = (double *) malloc(n * sizeof(double));11

for(sample=0; sample<n_resample; sample++)12

{13

for(i=0; i<n; i++) /* resample */14

{15

k = (int) floor(drand48()*n); /* select random point */16

xb[i] = x[k];17

}18

h[sample] = f(n, xb); /* calculate estimator */19

}20

21

var = variance(n_resample, h); /* obtain bootstrap variance */22

free(h);23

free(xb);24

return(var);25

}26
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The bootstrap samples {x̂i} are stored in the array xb, while the sampled

estimator values {h∗k} are stored in the array h. These arrays are allocated

in lines 10–11. In the main loop (lines 12–20) the bootstrap samples are

calculated, each time the estimator is obtained and the result is stored in

h. Finally, the variance of the sample {h∗k} is calculated (line 22). Here,

the function variance() is used, which works similarly to the function

mean(), see exercise (5). Your are asked to implement a bootstrap function

for general confidence interval in exercise (6).

The most obvious way is to call bootstrap_variance() with the esti-

mator mean as forth argument. For a distribution which is “well behaved”

(i.e., where a sum of few random variables resembles the Gaussian distri-

bution), you will get a variance that is, at least if n_resample is reasonably

large, very close to the standard Gaussian (α = 0.32) error bar.

For calculating properties of the sample mean, the bootstrap approach

works fine, but in this case one could also be satisfied with the standard

Gaussian confidence interval. The bootstrap approach is more interesting

for non-standard estimators. One prominent example from the field of

statistical physics is the so-called Binder cumulant [Binder (1981)], which

is given by:

b(x0, x1, . . . , xn−1) = 0.5

(
3 − x4

[x2]2

)
(8.71)

GET SOURCE CODE

DIR: randomness
FILE(S):
binder L8.dat

binder L10.dat

binder L16.dat

binder L30.dat

where . . . is again the sample mean, for exam-

ple x2 = 1
n

∑n−1
i=0 x

2
i . The Binder cumulant is

often used to determine phase transitions via

simulations, where only systems consisting of a

finite number of particles can be studied. For

example, consider a ferromagnetic system held

at some temperature T . At low temperature,

below the Curie temperature Tc, the system will exhibit a macroscopic

magnetization m. On the other hand, for temperatures above Tc, m will on

average converge to zero when increasing the system size. This transition

is fuzzy, if the system sizes are small. Nevertheless, when evaluating the

Binder cumulant for different sets of sample points {m(T, L)i} which are

obtained at several temperatures T and for different system sizes L, the

bL(T ) curves for different L will all cross [Landau and Binder (2000)] (al-

most) at Tc, which allows for a very precise determination of Tc. A sample
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result for a two-dimensional (i.e. layered) model ferromagnet exhibiting

L×L particles is shown in Fig. 8.21. The Binder cumulant has been useful

for the simulation of many other systems like disordered materials, gases,

optimization problems, liquids, and graphs describing social systems.

2 2.1 2.2 2.3 2.4 2.5
T

0.5

0.6

0.7

0.8

0.9

1

b L
(T

)

L=8
L=10
L=16
L=30

Fig. 8.21 Plot of Binder cumulant of two-dimensional model ferromagnet as function
of temperature T (dimensionless units). Each system consists of L × L particles. The
curves for different system sizes L cross very close to the phase transition temperature
Tc = 2.269 (known from analytical calculations of this model). The error bars shown
can be obtained using a bootstrap approach.

A confidence interval for the Binder cumulant is very difficult (or

even impossible) to obtain using standard error analysis. Using boot-

strapping, it is straightforward. You can use simply the function

bootstrap_variance() shown above while providing as argument a func-

tion which evaluates the Binder cumulant for a given set of data points.

So far, it was assumed that the empirical distribution function FX̂ was

used to determine an approximation of FH . Alternatively, one can use some

additional knowledge which might be available. Or one can make additional

assumptions, via using a distribution function Fλ which is parametrized by

a vector of parameters λ. For an exponential distribution, the vector would

just consist of one parameter, the expectation value, while for a Gaussian

distribution, λ would consist of the expectation value and the variance.

In principle, arbitrary complex distributions with many parameters are
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possible. To make Fλ a “good” approximation of FX , one has to adjust

the parameters such that the distribution function represents the sample

{xi} “best”, resulting in a vector λ̂ of parameters. Methods and tools to

perform this fitting of parameters are presented in Sec. 8.6.2. Using Fλ̂ one

can proceed as above: Either one calculates FĤ exactly based on Fλ̂, which

is most of the time too cumbersome. Instead, usually one performs simu-

lations where one takes repeatedly samples {x̂0, x̂1, . . . , x̂n−1} from simu-

lating Fλ̂ and calculates each time the estimator h∗ = h(x̂0, x̂1, . . . , x̂n−1).

This results, as in the case of the empirical bootstrap discussed above, in a

sample distribution function FH∗ which is further analyzed. This approach,

where Fλ is used instead of FX̂ , is called parametric bootstrap.

Note that the bootstrap approach does require that the sample points

are statistically independent of each other. For instance, the sample could

be generated using a Markov chain Monte Carlo simulation [Newman and

Barkema (1999); Landau and Binder (2000); Robert and Casella (2004);

Liu (2008)], where each data point xi+1 is calculated using some random

process, but also depends on the previous data point xi. More details on

how to quantify correlations are given in Sec. 8.5. For example, a confidence

interval will depend on the fraction of “independent” data points. One

can see this easily by assuming that you replace each data point in the

original sample {xi} by 10 copies, hence making the sample 10 times larger

without adding any information. This will affect the following bootstrap

calculations, since the fluctuations of the bootstrap sample will be reduced.

Assume, e.g., your original sample has only two independent sample points

x1 6= x2. Thus, bootstrap samples may exhibit two times x1 or two times

x2, or each one once. Thus, the bootstrap average will fluctuate strongly.

On the other hand, if you had 10 times data point x1 and 10 times x2
in the sample, the bootstrap sample will contain most of the times about

10 times the point x1 and about 10 times x2, only very rarely you see

only (i.e., 20 times) the value x2. Thus, the bootstrap mean will fluctuate

less. With this respect, bootstrapping is similar to the classical calculation

of confidence intervals explained in Sec. 8.3.2, where also independence of

data is assumed and the number of independent data points enters formulas

like Eq. (8.62). Hence, to correct for this, one can increase the obtained

bootstrap error bars by a factor
√
λc where λc is the typical number of

sequentially correlated sample points.

It should be mentioned that bootstrapping is only one of several resam-

pling techniques. Another well known approach is the jackknife approach,

where one does not sample randomly using FX̂ or a fitted Fλ. Instead the
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sample {xi} is divided into B blocks of equal size nb = n/B (assuming that

n is a multiple of B). Note that choosing B = n is possible and not un-

common. Next, a number B of so-called jackknife samples b = 1, . . . , B are

formed from the original sample {xi} by omitting exactly the sample points

from the b’th block and including all other points of the original sample.

Therefore, each of these jackknife samples consists of n−nb sample points.

For each jackknife sample, again the estimator is calculated, resulting in a

sample {h(j)k } of size B. Note that the sample distribution function F (j) of

this sample is not an approximation of the estimator distribution function

FH ! Nevertheless, it is useful. For instance, the variance Var[H ] can be

estimated from (B − 1)S2
h, where S2

h is the sample variance of {h(j)k }. No

proof of this is presented here. It is just noted that when increasing the

number B of blocks, i.e., making the different jackknife samples more alike,

because fewer points are excluded, the sample of estimators values {h(j)k }
will fluctuate less. Consequently, this dependence on the number of blocks

is exactly compensated via the factor (B − 1). Note that for the jackknife

method, in contrast to the boostrap approach, the statistical independence

of the original sample is required. If there are correlations between the data

points, the jackknife approach can be combined with the so-called blocking

method [Flyvbjerg (1998)]. More details on the jackknife approach can be

found in [Efron and Tibshirani (1994)].

Finally, you should be aware that there are cases where resampling

approaches clearly fail. The most obvious example is the calculation of

confidence intervals for histograms, see Sec. 8.3.3. A bin which exhibits no

sample points, for example, where the probability is very small, will never

get a sample point during resampling either. Hence, the error bar will be of

zero width. This is in contrast to the confidence interval shown in Eq. 8.66,

where also bins with zero entries exhibit a finite-size confidence interval.

Consequently, you have to think carefully before deciding which approach

you will use to determine the reliability of your results.

8.4 Data plotting

So far, you have learned many methods for analyzing data. Since you do

not just want to look at tables filled with numbers, you should visualize the

data in viewgraphs. Those viewgraphs which contain the essential results

of your work can be used in presentations or publications. To analyze and

plot data, several commercial and non-commercial programs are available.

Here, two free programs are discussed, gnuplot , and xmgrace. Gnuplot is
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small, fast, allows two- and three-dimensional curves to be generated and

transformed, as well as arbitrary functions to be fitted to the data (see Sec.

8.6.2). In the interactive mode, gnuplot uses a command line interface. On

the other hand, with a bit of additional effort, also publication-ready plots

can be generated, optimally using gnuplot scripts. For people who prefer

to use menues, buttons and the mouse to generate a plot, xmgrace is the

better choice. It is very flexible and produces easily nice publication-ready

plots.

8.4.1 gnuplot

The program gnuplot is invoked by entering gnuplot in a shell, or from

a menu of the graphical user interface of your operating system. For a

complete manual see [Texinfo].

As always, our examples refer to a UNIX window system like X11, but

the program is available for almost all operating systems. After startup,

in the window of your shell or the window which pops up for gnuplot

the prompt (e.g. gnuplot>) appears and the user can enter commands in

textual form, results are shown in additional windows or are written into

files. For a general introduction you can type just help.

Before giving an example, it should be pointed out that gnuplot

scripts can be generated by simply writing the commands into a file, e.g.

command.gp, and calling gnuplot command.gp.

GET SOURCE CODE

DIR: randomness
FILE(S): sg e0 L.dat

The typical case is that you have available

a data file of x − y data or with x − y − dy

data (where dy is the error bar of the y data

points). Your file might look like this, where

the “energy” e0 of a system10 is stored as a function of the “system size”

L. The filename is sg e0 L.dat. The first column contains the L values,

the second the energy values and the third the standard error of the energy.

Please note that lines starting with “#” are comment lines which are ignored

on reading:

# ground state energy of +-J spin glasses

# L e_0 error

3 -1.6710 0.0037

4 -1.7341 0.0019

5 -1.7603 0.0008

10It is the ground-state energy of a three-dimensional ±J spin glass , a protypical
system in statistical physics. These spin glasses model the magnetic behavior of alloys
like iron-gold.
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6 -1.7726 0.0009

8 -1.7809 0.0008

10 -1.7823 0.0015

12 -1.7852 0.0004

14 -1.7866 0.0007

To plot the data enter

gnuplot> plot "sg_e0_L.dat" with yerrorbars

which can be abbreviated as p "sg e0 L.dat" w e. Please do not forget

the quotation marks around the file name. Next, a window pops up, show-

ing the result, see Fig. 8.22.

Fig. 8.22 Gnuplot window showing the result of a plot command.

For the plot command many options and styles are available, e.g. with

lines produces lines instead of symbols. It is not explained here how to set

line styles or symbol sizes and colors, because this is usually not necessary

for a quick look at the data. For “nice” plots used for presentations, we

recommend xmgrace, see next section. Anyway, help plot will tell you all

you have to know about the plot command.

Sometimes you want to add lines to the data points, as a guide to the

eyes. The most simple option is to use the option with lines (shortcut w

l), which shows lines connecting the points, but not the points. If you want
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Fig. 8.23 Gnuplot window showing the result of a plot command using the smooting
options csplines and bezier, respectively.

to see both points and lines, you can use with linespoints (shortcut w

lp). More sophisticated is to use cubic splines for interpolation or Bézier

curves for approximation of the data, e.g.

gnuplot> plot "sg_e0_L.dat" with yerrorbars, \

"sg_e0_L.dat" smooth csplines title "splines", \

"sg_e0_L.dat" smooth bezier title "bezier"

which results in the plot shown in Fig. 8.23. Here, the command is dis-

tributed over several lines: The “\” indicates that the command is contin-

ued on the next line. Using the title option, different names are given to

the different lines plotted. Note that other options for smoothing the data

are available see help smooth. Alternatively, one can fit a function to the

data and plot the fitted function, see Sec. 8.6.2.

Among the important options of the plot command is that one can

specify ranges. This can be done by specifying the range directly after the

command, e.g.

gnuplot> plot [7:20] "sg_e0_L.dat" with yerrorbars

will only show the data for x ∈ [7, 20]. Also an additional y range can be



December 31, 2014 10:44 Big Practical Guide to Computer Simulations book4˙2nd page 305

Randomness and Statistics 305

specified like in

plot [7:20][-1.79:-1.77] "sg_e0_L.dat" with yerrorbars

If you just want to set the y range, you have to specify [ ] for the x-

range. You can also fix the ranges via the set xrange and the set yrange

commands, such that you do not have to give them each time with the

plot command, see help set xrange or help unset xrange for unsetting

a range.

Gnuplot knows a lot of built-in functions like sin(x), log(x), powers,

roots, Bessel functions, error function,11 and many more. For a complete

list type help functions. These function can be also plotted. Further-

more, using these functions and standard arithmetic expressions, you can

also define your own functions, e.g. you can define a function ft(x) for the

Fischer-Tippett pdf (see Eq. (8.43)) for parameter λ (called lambda here)

and show the function via

gnuplot> ft(x)=lambda*exp(-lambda*x)*exp(-exp(-lambda*x))

gnuplot> lambda=1.0

gnuplot> plot ft(x)

You can also include arithmetic expressions in the plot command. To plot

a shifted and scaled Fischer-Tippett pdf you can type:

gnuplot> plot [0:20] 0.5*ft(0.5*(x-5))

The Fischer-Tippett pdf has a tail which drops off exponentially. This

can be better seen by a logarithmic scaling of the y axis.

gnuplot> set logscale y

gnuplot> plot [0:20] 0.5*ft(0.5*(x-5))

will produce the plot shown in Fig. 8.24.

Furthermore, it is also possible to plot several functions in one plot, via

separating them via commas, e.g. to compare a Fischer-Tippett pdf to the

standard Gaussian pdf, here the predefined constant pi is used:

gnuplot> plot ft(x), exp(-x*x/2)/sqrt(2*pi)

It is possible to read files with multi columns via the using data modi-

fier, e.g.

gnuplot> plot "test.dat" using 1:4:5 w e

11The error function is erf(x) = (2/
√
π)

∫ x
0
dx′ exp(−x′2).
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Fig. 8.24 Gnuplot window showing the result of plotting a shifted and rescaled Fischer-
Tippett pdf with logarithmically scaled y-axis.

displays the fourth column as a function of the first, with error bars given

by the 5th column. The elements behind the using are called entries.

Within the using data modifier you can also perform transformations and

calculations. Each entry, where some calculations should be performed have

to be embraced in ( ) brackets. Inside the brackets you can refer to the

different columns of the input file via $1 for the first column, $2 for the

second, etc. You can generate arbitrary expressions inside the brackets, i.e.

use data from different columns (also combine several columns in one entry),

operators, variables, predefined and self-defined functions and so on. For

example, in Sec. 8.6.2, you will see that the data from the sg_e0_L.dat

file follows approximately a power law behavior e0(L) = e∞ + aLb with

e∞ ≈ −1.788, a ≈ 2.54 and b ≈ −2.8. To visualize this, we want to show

e0(L)− e∞ as a function of Lb. This is accomplished via:

gnuplot> einf=-1.788

gnuplot> b=-2.8

gnuplot> plot "sg_e0_L.dat" u ($1**b):($2-einf)

Now the gnuplot window will show the data as a straight line (not shown,

but see Fig. 8.33).
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GET SOURCE CODE

DIR: randomness
FILE(S):
vector field.dat

It is also possible to display vector fields us-

ing gnuplot. They have to be given, for planar

fields, in four column format in the form x po-

sition, y position, Δx, Δy. When plotting a

vector field, the plot command has to be used

with the style vectors, e.g.

gnuplot> plot "vector_field.dat" u 1:2:($3/10):($4/10) with vectors

Note that the vector lengths (columns three and four) have been rescaled

by a factor 1/10 to prevent that the vectors are intersecting. The resulting

plot is shown in Fig. 8.25.

Fig. 8.25 Gnuplot window showing the result of plotting a two-dimensional function
using splot.

Vectors can also specified individually on the gnuplot command line or

in a gnuplot script. Here one uses the set arrow command, the arrow

will appear the next time a plot (or splot) command is issued. One has

to specifiy a tag, which identifies the arrow, a starting position using from

and a destination using to, e.g.

gnuplot> set arrow 1 from 0,0 to 1,0.5

09-Oct- 2014



October 9, 2014 14:51 Big Practical Guide to Computer Simulations book4˙2nd page 308

308 Big Practical Guide to Computer Simulations

More options, like relative coordinates, line styles, etc., can be obtained by

typing help set arrow.

So far, all output has appeared on the screen. It is possible to redi-

rect the output, for example, to an encapsulated postscript file (by set-

ting set terminal postscript and redirecting the output set output

"test.eps"). When you now enter a plot command, the corresponding

postscript file will be generated.

Note that not only several functions but also several data files or a

mixture of both can be combined into one figure. To remember what a

plot exported to files means, you can set axis labels of the figure by typ-

ing set xlabel "L", which becomes active when the next plot command

is executed. Also you can use set title or place arbitrary labels via

set label. Use the help command to find out more.

Also three-dimensional plotting (in fact a projection into two dimen-

sions) is possible using the splot command (enter help splot to obtain

more information). Here, as example, we plot a two-dimensional Gaussian

distribution:

gnuplot> x0=3.0

gnuplot> y0=-1.0

gnuplot> sx=1.0

gnuplot> sy=5.0

gnuplot> gauss2d(x,y)=exp(-(x-x0)**2/(2*sx)-(y-y0)**2/(2*sy))\

> /sqrt(4*pi**2*sx**2*sy**2)

gnuplot> set xlabel "x"

gnuplot> set ylabel "y"

gnuplot> splot [x0-2:x0+2][y0-4:y0+4] gauss2d(x,y) with points

gnuplot>

Note that the long line containing the definition of the (two-argument)

function gauss2d() is split up into two lines using a backslash at the end

of the first line. Furthermore, some of the variables are used inside the

interval specifications at the beginning of the splot command. Clearly,

you also can plot data files with three-dimensional data. The resulting plot

appearing in the output window is shown in Fig. 8.26. You can drag the

mouse inside the window showing the plot, which will alter the view.

Finally, to stop the interactive execution of gnuplot, enter the command

exit. These examples should give you already a good impression of what

can be done with gnuplot. More can be found in the documentation or

the online help. How to fit functions to data using gnuplot is explained

in Sec. 8.6.2. So far, the plots were quickly made to get an impression
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Fig. 8.26 Gnuplot window showing the result of plotting a two-dimensional function
using splot.

of the data, but they did not look nice. It is also possible to make, with

some effort, publication-suitable figures using gnuplot, see Sec. 9.2.1. On

the other hand, if you prefer a direct and interactive tool, you can achieve

this with xmgrace, which is presented in the following section.

8.4.2 xmgrace

The xmgrace (X Motiv GRaphing, Advanced Computation and Exploration

of data) program is much more powerful than gnuplot and produces nicer

output, commands are issued by clicking on menus and buttons and it offers

WYSIWYG. The xmgrace program offers almost every feature you can

imagine for two-dimensional data plots, including multiple plots (insets),

fits, fast Fourier transform, interpolation. The look of the plots may be

altered in any kind of way you can imagine like choosing fonts, sizes, colors,

symbols, styles for lines, bar charts etc. Also, you can create manifold

types of labels / legends and it is possible to add elements like texts, labels,

lines or other geometrical objects in the plot. The plots can be exported

to various format, in particular encapsulated postscript (.eps) Advanced

users also can program it or use it for real-time visualization of simulations.

On the other hand, its handling is a little bit slower compared to gnuplot
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and the program has the tendency to fill your screen with windows. For full

information, please consult the online help, the manual or the program’s

web page [xmgrace].

[E]

[B]

[F]

[C]

[A]

[D]

Fig. 8.27 The Grace:Read Set window of the xmgrace program. Among others, you can
select a file [A], choose the type of the input file [B], choose the format of the data [C],
what axes should be rescaled automatically on input [D]. You can actually load the data
by hitting on the OK button [E] and closing the window by hitting on the Cancel button
[F].

Here, just the main steps to produce a simple but nice plot are shown

and some further directions are mentioned. You will be given here the

most important steps to create a similar plot to the first example, shown

for the gnuplot program, but ready for publication. First you have to start

the program by typing xmgrace into a shell (or to start it from some win-

dow/operating system menu). Then you choose the Data menu12, next the

12The underlined character appears also in the menu name and refers to the key one
has to hit together with Alt button, if one wants to open the menu via key strokes.
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Import sub menu and finally the ASCII.. sub sub menu. Then a “Grace:Read

Set” window will pop up (see Fig. 8.27) and you can choose the data file to

be loaded (here sg_e0_L.dat) [A], the type of the input file (Single Set) [B],

the format of the data (XYDY) [C]. This means you have three columns,

and the third one is an error bar for the second. Then you can hit on the

OK button [E]. The data will be loaded and shown in the main window (see

Fig. 8.28). The axis ranges have been adjusted to the data, because the

“Autoscale on read” is set by default to “XY” [D]. You can quickly change

the part of the data shown by the buttons (magnifier, AS, Z, z, ←, →, ↓,
↑) on the left of the main window just below the Draw button.

Fig. 8.28 The main xmgrace window after the data set has been loaded (with auto
scale).

Note that another important input file type is “Block data” where the

files consist of many columns of which you only want to show some. When

you hit the OK button [E], another window (Grace:Edit block data) will

pop up, where you have to select the columns which you actually want to

display. For the data format (also when loading block data), some other

important choices are XY (no error bars) and XYDYDY (full confidence
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interval, maybe non-symmetric). Finally, you can close the file selection

window, by hitting on the Cancel button [F]. The OK and Cancel buttons

are common to all xmgrace windows and will not be mentioned explicitly

in the following.

In the form the loaded data is shown by default, it is not suitable for

publication purposes, because the symbols, lines and fonts are usually too

small/ too thin. To adjust many details of your graph, you should go to

the Plot menu. First, you choose the Plot appearance... sub menu. A

corresponding window will pop up. Here, you should just unselect the

“Fill” toggle box (upper right corner), because otherwise the bounding

box included in the .eps file will not match the plot and your figure will

overwrite other parts of your manuscript. The fact that your plot has no

background now becomes visible through the appearance of some small dots

in the main xmgrace window, but this does not disrupt the output when

exporting to .eps.

Next, you choose the Set appearance... sub menu from the Plot menu.

The corresponding window will pop up, see Fig. 8.29. You can pop this

window also by double-clicking inside the graph. This window allows to

change the actual display style of the data. You have to select the data

set or sets [A] to which the changes will be be applied to when hitting the

Apply button at the lower left of the window. Note that the list of sets in

this box will contain several sets if you have imported more than one data

set. Each of them can have (and usually should) its own style. The box

where the list of sets appears is also used to administrate the sets. If you

hit the right mouse button, while the mouse pointer is inside this box, a

menu will pop up, where you can for instance copy or delete sets, hide or

unhide them, or rearrange them.

The options in this window are arranged within different tabs, the most

important is the “Main” tab [B]. Here you can choose whether you want to

show symbols for your data points and which type [C], also the symbol sizes

and colors. If you want to show lines as well (Line properties area at the

right), you can choose the style like “straight” and others, but also “none”

is no lines should be displayed. The style can be full, dotted, dashed,

and different dotted-dashed styles. For presentations and publications it

is important that lines are well visible, in this example a line width of 2

is chosen [D] and a black color [E]. For presentations you can distinguish

different data sets also by different colors, but for publications in scientific

journals you should keep in mind that the figures are usually printed in
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[D]

[F]

[C]

[B]

[A]

[E]

Fig. 8.29 The Grace:Set Appearance window of the xmgrace program. First you have
to select the set or sets which should be addressed by the changes [A]. Due to the large
amount of adjustable parameters, the window is organized into different tabs. The most
import one is “Main” [B], which is shown here. Among others, you can select a symbol
type [C] (below: symbol size, symbol color), choose the width of the lines [D] (also:
line type, style) and the color [E]. Furthermore, the label for this data appearing in the
legends can be states [F].

black and white, hence light colors are not visible.13

Each data set can have a legend (see below how to activate it). Here,

the legend string can be stated. You can enter it directly, with the help of

some formatting commands which are characters preceded by a backslash

\. The most important ones are

• \\ prints a backslash.

13Acting as referee reading scientific papers submitted to journals, I experienced many
times that I could not recognize or distinguish some data because they were obviously
printed in a light color, or with a thin line width, or with tiny symbols . . . .
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• \0 selects the Roman font, which is also the default font. A font is

active until a new one is chosen.

• \1 selects the italic font, used in equations.

• \x selects a symbol font, which contains Greek characters. For exam-

ple \xabchqL will generate αβχηθΛ, just to mention some important

symbols.

• \s generates a subscript, while \N switches back to normal. For ex-

ample \xb\s2\N\1(x) generates β2(x).

• \S generates a superscript, for instance \1A\S3x\N-5 generatesA3x−5.

• The font size can be changed with \+ and \-.

• With \o and \O one can start and stop overlining, respectively, for

instance \1A\oBC\OD generates ABCD. Underlining can be controlled

via \u and \U.

By default, error bars are shown (toggle box lower right corner). At

least you should increase the line width for the symbols (Symbols tab) and

increase the base and rise line widths for error bars (Error bars tab).

You should know that, when you are creating another plot, you do

not have to redo all these and other adjustments of styles. Once you have

found your standard, you can save it using the Save Parameters... sub menu

from the Plot menu. You can conversely load a parameter set via the Load

Parameters... sub menu of the same menu.

Next, you can adjust the properties of the axes, by choosing the Set

appearance... sub menu from the Plot menu or by double-clicking on an

axis. The corresponding window will pop up, see Fig. 8.30. You have

to select the axis where the current changes apply to [A]. For the x axis

you should set the range in the fields Start [B] and Stop [C], here to the

values 1 and 15. Below these two fields you find the important Scale field,

where you can choose linear scaling (default), logarithmic or reciprocal, to

mention the important ones.

The most important adjustments you can perform within the Main tab

[D]. Here you enter the label shown below the axis in the Label string field

[E]. The format of the string is the same as for the data set legends. Here

you enter just \1L, which will show as L. The major spacing of the ma-

jor (with labels) and minor ticks can be chosen in the corresponding fields

[F,G]. Below there is a Format field, where you can choose how the tick

labels are printed. Among the many formats, the most common are Gen-

eral (1, 5, 10, . . .), Exponential (1.0e+00, 5.0e+00, 1.0e+01,. . . ), and Power,

which is useful for logarithmic scaled axes (101, 102, 103, . . .). For the tick
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[B]

[G]
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[A]

[D]

[F]

[E]

Fig. 8.30 The Grace: Axes window of the xmgrace program. First you have to select
the axis which should be addressed by the changes [A]. Among others, you can change
the range in the Start [B] and Stop [C] fields. Here the Main tab [D] is shown. You can
enter an axis label in the Label string field [E] and select the spacing of the major and
minor ticks [F,G]

labels, you can also choose a Precision. This and other fields of this tab

you can leave at their standard values here. Nevertheless, you should also

adjust the Char size of the axis labels (tab Axis label & bar) and of the tick

labels (tab Tick labels). For publications, character sizes above 150% are

usually well readable. Note that in the Axis label & bar tab, there is a field

Axis transform where you can enter formulas to transform the axis more or

less arbitrarily, see the manual for details. All tabs have many other fields,

which are useful as well, but here we stay with the standard choices. Note

that sometimes the Special tab is useful, where you can enter all major and

minor ticks individually.
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To finish the design of the axes, you can perform similar changes to the

y axis, with Start field −1.8, Stop field −1.6, Label string field \1E\s0\N(L)

and the same character sizes as for the x axis for axis labels and tick labels

in the corresponding tabs. Note that the axis label will be printed vertically.

If you do not like this, you can choose the Perpendicular to axis orientation

in the Layout field of the Axis label & bar tab.

Now you have already a nice graph. To show you some more of the

capabilities of xmgrace, we refine it a bit. Next, you generate an inset, i.e.

a small subgraph inside the main graph. This is quite common in scientific

publications. For this purpose, you select the underlineEdit menu and there

the Arrange graph... sub menu. The corresponding window appears. We

want to have just one inset, i.e. in total 2 graphs. For this purpose, you

select in the Matrix region of the window the Cols: field to 1 and the Rows:

field to 2. Then you hit on the Accept button which applies the changes and

closes the window. You now have two graphs, one containing the already

loaded data, the other one being empty. These two graphs are currently

shown next to each other, one at the top and one at the bottom.

To make the second graph an inset of the first, you choose the Graph

appearance... sub menu from the Plotmenu. At the top a list of the available

graphs is shown [A]. Here you select the first graph G0. You need only the

Main tab [B], other tabs are for changing styles of titles, frames and legends.

We recommend to choose Width 2 in the Frame tab. In the Main tab, you

can choose the Type of graph [C], e.g. XY graph, which we use here (default),

Polar graph or Pie chart. You only have to change the Viewport coordinates

[D] here. These coordinates are relative coordinates, i.e. the standard full

viewport including axes, labels and titles is [0, 1] × [0, 1]. For the main

graph G0, you choose Xmin and Ymin 0.15 and Xmax and Ymax 0.85. Note

that below there is a toggle box Display legend [E], where you can control

whether a legend is displayed. If you want to have a legend, you can control

its position in the Leg. box tab. Now the different graphs overlap. This

does not bother you, because next you select graph G1 in the list at the

top of the window. We want to have the inset in the free area of the plot,

in the upper right region. Thus, you enter the viewport coordinates Xmin

0.38, Ymin 0.5, Xmax 0.8 and Ymax 0.8.

Now the second graph is well placed, but empty. We want to show a

scaled version of the data in the inset. Hence, you import the data again in

the same way as explained above, while choosing Read to graph G1 in the

Grace: Read sets window. In Sec. 8.6.2, you will see that the data follows
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[C]

[D]

[E]

Fig. 8.31 The Grace: Graph Appearance window of the xmgrace program. At the top
one can select to which graph changes should apply [A]. The window is divided into
different tabs [B], here the Main tab is shown. The Type of the graph can be selected
[C], also Title and Subtitle (empty here). The extensions of the graph can be selected
in the Viewport area [D]. This allows to make one graph an inset of another. Using the
Display legend toggle [E] the legend can be switched on and off.

approximately a power law behavior e0(L) = e∞ + aLb with e∞ ≈ −1.788,

a ≈ 2.54 and b ≈ −2.8. To visualize this, we want to show e0(L)− e∞ as a

function of Lb. Hence, we want to transform the data. You choose from the

Data menu the Transformations sub menu and there the Evaluate expression

sub sub menu. Note that here you can also find many other transformations,

e.g. Fourier transform, interpolation and curve fitting. Please consult the

manual for details. In this case, the evaluateExpression window pops up,

see Fig. 8.32 (if you did not close the windows you have used before, your

screen will be already pretty populated). A transformation always takes the

data points from one source set, applies a formula to all data points (or to

a subset o points) and stores the result in a destination set. These sets can

be selected at the top of the window in the Source [A] and Destination [B]

fields for graph and set separately. Note that the data in the destination
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[C]

[A] [B]

Fig. 8.32 The evaluateExpression window of the xmgrace program. At the top you can
select Source [A] and Destination [B] sets of the transformation. The actual transforma-
tion is entered at the bottom [C].

set is overwritten. If you want to write the transformed data to a new

set, you can first copy an existing set (click on the right mouse button in

the Destination Set window and choose Duplicate). In our case, we want

to replace the data, hence you select for source and destination the data

set from graph G1. The transformation is entered below [C], here you first

enter y=y+1.788 to shift the data. The you hit the Apply button at the

bottom. Next you change the transformation to x=x^(-2.8) and hit the

Apply button again. When you now select the second graph by clicking into

it, and hit the AS (auto scale) button on the left of the main window, you

will see that the data points follow a nice straight line in the inset, which

confirms the behavior of the data.

Again you should select symbols, line stiles, and axis labels for the inset.

Usually smaller font sizes are used here. Note that all operations always

apply to the current graph, which can be selected for example by clicking

near the corners of the boundary boxes of the graph (which does not always

work, depending on which other windows are open) or by double clicking on

the corresponding graph in the graph list in the Grace: Graph Appearance
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Fig. 8.33 The main xmgrace window after all adjustments have been made.

window. The final main window is shown in Fig. 8.33. Note that the left

axis label is not fully visible. This is no problem when exporting the file as

encapsulated postscript; everything will be shown. But if you do not like

it, you can adjust the Xmin value of graph G0.

Finally, if you choose the menu Window and the sub menu Drawing

objects a window will pop up which enable many graphical elements like

texts, lines, boxes and ellipses (again with a variety of choices for colors,

styles, sizes etc.) tobe added/changed and deleted in your plot. We do not

go into details here.

Now you should save your plot using the File

menu and the Save as... sub menu, e.g. with

file name sg_e0_L.agr, where .agr is the

typical postfix of xmgrace source files. When

GET SOURCE CODE

DIR: randomness
FILE(S): sg e0 L.dat

you want to create another plot with similar layout later, it is convenient

to start from this saved file by copying it to a new file and subsequently

using again xmgrace to modify the new file.

To export your file as encapsulated postscript, suitable for including it
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into presentations or publications (see Sec. 9.3), you have to choose the

File menu and the Print setup... sub menu. In the window, which pops

up, you can select the Device EPS. The file name will automatically switch

to sg_e0_L.eps (this seems not to work always, in particular if you edit

several files, one after the other, please check the file names always). Having

hit on the Accept button, you can select the File menu and the Print sub

menu, which will generate the desired output file.14

Now you have a solid base for viewing and plotting, hence we can con-

tinue with advanced analysis techniques. You can experiment with plotting

using xmgrace in exercise (7).

8.5 Hypothesis testing and (in-)dependence of data

In the previous section, you have learned how to visualize data, mainly data

resulting from the basic analysis methods presented in Sec. 8.3. In this

section, we proceed with more elaborate analysis methods. One important

way to analyze data of simulations is to test hypotheses concerning the

results. The hypothesis to be tested is usually called null hypothesis H0.

Examples for null hypotheses are:

(A) In a traffic system, opening a new track will decrease the mean value of

the travel time tA→B for a connection A→B below a target threshold

ttarget.

(B) Within an acquaintance network, a change of the rules describing how

people meet will change the distribution of the number of people each

person knows.

(C) The distribution of ground-states energies in disordered magnets fol-

lows a Fisher-Tippett distribution.

(D) Within a model of an ecological system, the population size of foxes is

dependent on the population size of beetles.

(E) For a protein dissolved in water at room temperature, adding a certain

salt to the water changes the structure of the protein.

One now can model these situations and use simulations to address the

above questions. The aim is to find methods which tell us whether or not,

depending on the results of the simulations, we should accept a null hy-

pothesis. There is no general approach. The way we can test H0 depends

14Using the tool epstopdf you can convert the postcript file also to a pdf file. With
other tools like convert or gimp you can convert to many other styles.
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on the formulation of the null hypothesis. In any case, our result will

again be based on a set of measurements, such as a sample of independent

data points {x0, x1, . . . , xn−1}, formally obtained by sampling from ran-

dom variables {X0, X1, . . . , Xn−1} (here again, all described by the same

distribution function FX). To get a solid statistical interpretation, we use a

test statistics, which is a function of the sample t = t(x0, x1, . . . , xn−1). Its

distribution describes a corresponding random variable T . This means, you

can use any estimator (see page 284), which is also a function of the sample,

as test statistics. Nevertheless, there are many test statistics, which usually

are not used as estimators.

To get an idea of what a test statistics t may look like, we discuss now

test statistics for the above list of examples. For (A), one can use obviously

the sample mean. This has to be compared to the threshold value. This will

be performed within a statistical interpretation, enabling a null hypothesis

to be accepted or rejected, see below. For (B) one needs to compare the

distributions of the number of acquaintances before and after the change,

respectively. Comparing two distributions can be done in many ways. One

can just compare some moments, or define a distance between them based

on the difference in area between the distribution function, just to mention

two possibilities. For discrete random variables, the mean-squared differ-

ence is particularly suitable, leading to the so-called chi-squared test, see

Sec. 8.5.1. For the example (C), the task is similar to (B), only that the

empirical results are compared to a given distribution and that the cor-

responding random variables are continuous. Here, a method based on

the maximum distance between two distribution functions is used widely,

called Kolmogorov-Smirnov (KS) test (see Sec. 8.5.2). To test hypothesis

(D), which means to check for statistical independence, one can record a

two-dimensional histogram of the population size of foxes and beetles. This

is compared with the distribution where both populations are assumed to

be independent, i.e. with the product of the two single-population distribu-

tion functions. Here, a variant of the chi-squared test is applied, see Sec.

8.5.4. In the case (E), the sample is not a set of just one-dimensional num-

bers, instead the simulation results are conformations of proteins given by

3N−dimensional vectors of the positions ri (i = 1, . . . , N) of N particles.

Here, one could introduce a method to compare two protein conformations

{rAi }, {rBi } in the following way: First, one “moves” the second protein

towards the first one such that the positions of the center of masses agree.

Second, one considers the axes through the center of masses and through

the first atoms, respectively. One rotates the second protein around its
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center of mass such that these axes become parallel. Third, the second pro-

tein is rotated around the above axis such that the distances between the

last atoms of the two proteins are minimized. Finally, for these normalized

positions {rB�
i }, one calculates the squared difference of all pairs of atom

positions d =
∑

i(r
A
i − rB�

i )2 which serves as test function. For a statisti-

cal analysis, the distribution of d for one thermally fluctuating protein can

be determined via a simulation and then compared to the average value

observed when changing the conditions. We do not go into further details

here.

The general idea to test a null hypothesis using a test statistics in a

statistical meaningful way is as follows:

(1) You have to know, at least to an approximate level, the probability

distribution function FT of the test statistics under the assumption that

the null hypothesis is true. This is the main step and will be covered

in detail below.

(2) You select a certain significance level α. Then you calculate an interval

[al, au] such that the cumulative probability of T outside the interval

equals to α, for instance by distributing the weight equally outside

the interval via F (al) = α/2, F (au) = 1 − α/2. Sometimes one-sided

intervals are more suitable, e.g. [∞, au] with F (au) = 1 − α, see below

concerning example (A).

(3) You calculate the actual value t of the test statistics from your simula-

tion. If t ∈ [al, au] then you accept the hypothesis, otherwise you reject

it. Correspondingly, the interval [al, au] is called acceptance interval.

Since this is a probabilistic interpretation, there is a small probability α

that you do not accept the null hypothesis, although it is true. This is

called a type I error (also called false negative), but this error is under

control, because α is known.

On the other hand, it is important to realize that in general the fact

that the value of the test statistics falls inside the acceptance interval does

not prove that the null hypothesis is true! A different hypothesis H1 could

indeed hold, just your test statistics is not able to discriminate between

the two hypotheses. Or, with a small probability β, you might obtain

some value for the test statistics which is unlikely for H1, but likely for

H0. Accepting the null hypothesis, although it is not true, is called a type

II error (also called false positive). Usually, H1 is not known, hence β

cannot be calculated explicitly. The different cases and the corresponding

possibilities are summarized in Fig. 8.34. To conclude: If you want to prove
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a hypothesis H (up to some confidence level 1 − α), it is better to use the

opposite of H as null hypothesis, if this is possible.

H0 is true H1 is true

H0reject

H0accept

decision
test

reality

1−α
correct decision type II error

correct decisiontype I error
α 1−β

β

Fig. 8.34 The null hypothesis H0 might be true, or the alternative (usually unknown)
hypothesis H1. The test of the null hypothesis might result in an acceptance or in
a rejection. This leads to the four possible scenarios which appear with the stated
probabilities.

Indeed, in general the null hypothesis must be suitably formulated, such

that it can be tested, i.e. such that the distribution function FT describing

T can be obtained, at least in principle. For example (A), since the test

statistics T is a sample mean, it is safe to assume a Gaussian distribution

for T : One can perform enough simulations rather easily, such that the

central limit theorem applies. We use as null hypothesis the opposite of the

formulated hypothesis (A). Nevertheless, it is impossible to calculate an

acceptance interval for the Gaussian distribution based on the assumption

that the mean is larger than a given value. Here, one can change the

null hypothesis, such that instead an expectation value equal to ttarget is

assumed. Hence, the null hypothesis assumes that the test statistics has

a Gaussian distribution with expectation value ttarget. The variance of

T is unknown, but one can use, as for the calculation of error bars, the

sample variance s2 divided by n − 1. Now one calculates on this basis an

interval [al,∞] with FT (al) = α. Therefore, one rejects the null hypothesis

if t < al, which happens with probability α. On the other hand, if the

true expectation value is even larger than ttarget, then the probability of

finding a mean with t < al becomes even smaller than α, i.e. less likely.

Hence, the hypothesis (A) can be accepted or rejected on the basis of a

fixed expectation value.

For a general hypothesis test, to evaluate the distribution of the test

statistics T , one can perform a Monte Carlo simulation. This means one

draws repeatedly samples of size n according to a distribution FX deter-

mined by the null hypothesis. Each time one calculates the test statistics t

and records a histogram of these values (or a sample distribution function
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FT̂ ) which is an approximation of FT . In this way, the corresponding statis-

tical information can be obtained. To save computing time, in most cases

no Monte Carlo simulations are performed, but some knowledge is used to

calculate or approximate FT .

In the following sections, the cases corresponding to examples (B), (C),

(D) are discussed in detail. This means, it is explained how one can test for

equality of discrete distributions via the chi-squared test and for equality

of continuous distributions via the KS test. Finally, some methods for

testing concerning (in-)dependence of data and for quantifying the degree

of dependence are stated.

8.5.1 Chi-squared test

The chi-squared test is a method to compare histograms and discrete prob-

ability distributions. The test works also for discretized (also called binned)

continuous probability distributions, where the probabilities are obtained

by integrating the pdf over the different bins. The test comes in two vari-

ants:

• Either you want to compare the histogram {hk} for bins Bk (see Sec.

8.3.3) describing the sample {x0, x1, . . . , xn−1} to a given discrete or

discretized probability mass function with probabilities {pk} = P (x ∈
Bk). The null hypothesis H0 is: “the sample follows a distribution given

by {pk}”.
Note that the probabilities are fixed and independent of the data sam-

ple. If the probabilities are parametrized and the parameter is de-

termined by the sample (e.g. by the mean of the data) such that the

probabilities fit the data best, related methods as described in Sec. 8.6.2

have to be applied.

• Alternatively, you want to compare two histograms {hk}, {ĥk} ob-

tained from two different samples {x0, x1, . . . , xn−1} and {x̂0, x̂1, . . . ,
x̂n−1} defined for the same bins Bk. The null hypothesis H0 is: “the

two samples follow the same distribution”.15

In case the test is used to compare intrinsically discrete data, the in-

tervals Bk can conveniently be chosen such that each possible outcome

15Note that here we assume that the two samples have the same size, which is usually
easy to achieve in simulations. A different case occurs when also the number of sample
points is a random variable, hence a difference in the number of sample points makes
the acceptance of H0 less likely, see [Press et al. (1995)].
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corresponds to one interval. Note that due to the binning process, the test

can be applied to high-dimensional data as well, where the sample is a set

of vectors. Also non-numerical data can be binned. In these cases each bin

represents either a subset of the high-dimensional space or, in general, a

subset of the possible outcomes. For simplicity, we restrict ourselves here

to one-dimensional numerical samples.

i

h , npi i

Fig. 8.35 Chi-squared statistics: A histogram (solid line) is compared to a discrete
probability distribution (dashed line). For each bin, the sum of the squared differences
of the bin counter hk to the expected number of counts npk is calculated (dotted vertical
lines), see Eq. (8.72). In this case, the differences are quite notable, thus the probabil-
ity that the histogram was obtained via random experiments from a random variable
described by the probabilities {pk} (null hypothesis) will be quite small.

We start with the first case, where a sample histogram is compared to

a probability distribution, corresponding to example (C) on page 320. The

test statistics, called χ2, is defined as:

χ2 =
∑
k

′ (hk − npk)
2

npk
(8.72)

with npk being the expected number of sample points in bin Bk. The prime

at the sum symbol indicates that bins with hk = npk = 0 are omitted. The

number of contributing bins is denoted by K ′. If the pmf pk is nonzero for

an infinite number of bins, the sum is truncated for terms npk � 1. This

means that the number of contributing bins will be always finite. Note

that bins exhibiting hk > 0 but pk = 0 are not omitted. This results in an

infinite value of χ2, which is reasonable, because for data with hk > 0 but

pk = 0, the data cannot be described by the probabilities pk.

The chi-squared distribution with ν = K ′−1 degrees of freedom (see Eq.

(8.45)) describes the chi-squared test statistics, if the number of bins and
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the number of bin entries is large. The term −1 in the number of degrees

of freedom comes from the fact that the total number of data points n is

equal to the total number of expected data points
∑

k nkpk = n
∑

k pk = n,

hence the K ′ different summands are not statistically independent. The

probability density of the chi-squared distribution is given in Eq. (8.45).

To perform the actual test, it is recommended to use the implementation

in the GNU scientific library (GSL) (see Sec. 7.3).

Next, a C function chi2_hd() is shown

which calculates the cumulative probability

(p-value) that a value of χ2 or larger is ob-

tained, given the null hypothesis that the

GET SOURCE CODE

DIR: randomness
FILE(S): chi2.c

sample was generated using the probabilities pk. Arguments of chi2_hd()

are the number of bins, and two arrays h[] and p[] containing the his-

togram hk and the probabilities pk, respectively:

double chi2_hd(int n_bins, int *h, double *p)1

{2

int n; /* total number of sample points */3

double chi2; /* chi^2 value */4

int K_prime; /* number of contributing bins */5

int i; /* counter */6

7

n = 0;8

for(i=0; i<n_bins; i++)9

n += h[i]; /* calculate total number of sample_points */10

11

chi2 = 0.0; K_prime = 0;12

for(i=0; i<n_bins; i++) /* calculate chi^2 */13

{14

if(p[i] > 0)15

{16

chi2 += (h[i]-n*p[i])*(h[i]/(n*p[i])-1.0);17

K_prime ++;18

}19

else if(h[i] >0) /* bin entry for zero probability ? */20

{21

chi2 = 1e60;22

K_prime ++;23

}24

}25

return(gsl_cdf_chisq_Q(chi2, K_prime-1));26

}27
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First, in lines 8–10, the total number of sample points is obtained from

summing up all histogram entries. In the main loop, lines 12–25, the value

of χ2 is calculated. In parallel, the number of contributing bins is deter-

mined. Finally (line 26) the p-value is obtained using the GSL function

gsl_cdf_chisq_Q(). This p-value can be compared with the significance

level α. If the p-value is larger, the null hypothesis is accepted, otherwise

rejected.

Note that the result for the p-value clearly depends on the number

of bins, and, if applicable, on the actual choice of bins. Nevertheless, all

reasonable choices, although maybe leading to somehow different numerical

results, will lead to the same decisions concerning the null hypothesis in

most cases.

Next, we consider the case, where we want to compare two histograms

{hk}, {ĥk} corresponding to example (B) on page 320. In this case the χ2

statistics reads

χ2 =
∑
k

′ (hk − ĥk)
2

hk + ĥk
(8.73)

The sum runs over all bins where hk �= 0 or ĥk �= 0, and K ′ being the

corresponding number of contributing bins. Consequently, the bins which

should be included are uniquely defined, in contrast to the case where a his-

togram is compared to a distribution defined for infinitely many outcomes.

Note that in the denominator the sum of the bin entries occurs, not the av-

erage. The reason is that the chi-squared distribution is a sum of standard

Gaussian distributed numbers (variance 1) and here, where the differences

of two (approximately) Gaussian quantities are taken, the resulting vari-

ance is the sum of the individual variances, approximated roughly by the

histogram entries. To calculate the p-value, again the chi-squared distri-

bution with ν = K ′ − 1 degrees of freedom is to be applied. Here, no C

implementation is shown, rather we refer the reader to exercise (8). In case

the two sample sizes are different, e.g, n and n̂, respectively, Eq. (7.69)

must be changed to [Gagunashvili (2009)]

χ2 =
1

nn̂

∑
k

′ (n̂hk − nĥk)
2

hk + ĥk

09-Oct- 2014



October 9, 2014 14:51 Big Practical Guide to Computer Simulations book4˙2nd page 328

328 Big Practical Guide to Computer Simulations

8.5.2 Kolmogorov-Smirnov test

Next, we consider the case where the statistical properties of a sample

{x0, x1, . . . , xn−1}, obtained from a repeated experiment using a continuous

random variable, is to be compared to a given distribution function FX .

One could, in principle, compare a histogram and a correspondingly binned

probability distribution using the chi-squared test explained in the previous

section. Unfortunately, the binning is artificial and has an influence on the

results (imagine few very large bins). Consequently, the method presented

in this section is usually preferred, since it requires no binning. Note that if

the distribution function is parametrized and if the parameter is determined

by the sample (e.g. by the mean of the data) such that the FX fits the data

best, the methods from Sec. 8.6.2 have to be applied.

The basic idea of the Kolmogorov-Smirnov test is to compare the distri-

bution function to the empirical sample distribution function FX̂ defined in

Eq. (8.69). Note that FX̂(x) is piecewise constant with jumps of size 1/n

at the positions xi (assuming that each data point is contained uniquely in

the sample).

Here again, one has several choices for the test statistics. For instance,

one could calculate the area between FX and FX̂ . Instead, usually just the

maximum difference between the two functions is used:

dmax ≡ max
x

∣∣FX(x) − FX̂(x)
∣∣ (8.74)

Since the sample distribution function changes only at the sample

points, one has to perform the comparison just before and just after the

jumps. Thus, Eq. (8.74) is equivalent to

dmax ≡ max
xi

{∣∣FX(xi) − 1/n− FX̂(xi)
∣∣ , ∣∣FX(xi) − FX̂(xi)

∣∣}
This sample statistics is visualized in Fig. 8.36.

The p-value, i.e. the probability of a value of dmax as measured

(dmeasured
max ) or worse, given the null hypothesis that the sample is drawn

from FX , is approximately given by (see [Press et al. (1995)] and references

therein):

P (dmax ≥ dmeasured
max ) = QKS

(
[
√
n+ 0.12 + 0.11/

√
n]dmeasured

max

)
(8.75)

This approximation is already quite good for n ≥ 8. Here, the following
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F (x)XF (x)X

x

d max

,

Fig. 8.36 Kolmogorov-Smirnov test: A sample distribution function (solid line) is com-

pared to a given probability distribution function (dashed line). The sample statistics
dmax is the maximum difference between the two functions.

auxiliary probability function is used:

QKS(λ) = 2

∞∑
i=1

(−1)i+1e−2i2λ2

(8.76)

GET SOURCE CODE

DIR: randomness
FILE(S): ks.c

with QKS(0) = 1 and QKS(∞) = 0. This func-

tion can be implemented most easily by a direct

summation [Press et al. (1995)]. The function

Q_ks() receives the value of λ as argument and

returns QKS(λ):

double Q_ks(double lambda)1

{2

const double eps1 = 0.0001; /* relative margin for stop */3

const double eps2 = 1e-10; /* relative margin for stop */4

int i; /* loop counter */5

double sum; /* final value */6

double factor; /* constant factor in exponent */7

double sign; /* of summand */8

double term, last_term; /* summands, last summand */9

10

sum = 0.0; last_term = 0.0; sign = 1.0; /* initialize */11

factor = -2.0*lambda*lambda;12
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for(i=1; i<100; i++) /* sum up */13

{14

term = sign*exp(factor*i*i);15

sum += term;16

if( (fabs(term) <= eps1*fabs(last_term)) ||17

(fabs(term) <= eps2*sum))18

return(2*sum);19

sign =- sign;20

last_term = term;21

}22

return(1.0); /* in case of no convergence */23

}24

The summation (lines 13–22) is performed for at most 100 iterations. If the

current term is small compared to the previous one or very small compared

to the sum obtained so far, the summation is stopped (line 17–18). If this

does not happen within 100 iterations, the sum has not converged (which

means λ is very small) and Q(0) = 1 is returned.

This leads to the following C implementation for the KS test. The

function ks() expects as arguments the number of sample points n, the

sample x[] and a pointer F to the distribution function:

double ks(int n, double *x, double (*F)(double))1

{2

double d, d_max; /* (maximum) distance */3

int i; /* loop counter */4

double F_X; /* empirical distribution function */5

6

qsort(x, n, sizeof(double), compare_double);7

8

F_X = 0; d_max = 0.0;9

for(i=0; i<n; i++) /* scan through F_X */10

{11

d = fabs(F_X-F(x[i])); /* distance before jump of F_X */12

if( d> d_max)13

d_max = d;14

F_X += 1.0/n;15

d = fabs(F_X-F(x[i])); /* distance after jump of F_X */16

if( d> d_max)17

d_max = d;18

}19

return(Q_ks( d_max*(sqrt(n)+0.12+0.11/sqrt(n))));20

}21

First the sample is sorted (line 7). This allows for a simple implementation
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of the sample distribution function, because at each sample data point,

in the order of occurrence, the value of FX̂ is increased by 1/n. When

obtaining the maximum distance (lines 10–19), one has to compare FX̂

to the distribution function FX just before (lines 12–14) and after (lines

15–18) the jumps. Note that this implementation works also for samples,

where some data points occur multiple times.

For the actual test, one calculates the p-value for the given sample

using ks(). If the p-value exceeds the indented significance level α, the null

hypothesis is accepted, i.e. the data is compatible with the distribution with

high probability. Usually quite small significances are used, e.g. α = 0.05.

This means that even substantial values of dmax are accepted. Thus, one

rejects the null hypothesis only, as usual, in case the probability for an error

of type I is quite small.

It is also possible to compare two samples of sizes n1, n2 via the KS

test. The test statistics for the two sample distribution functions is again

the maximum distance. The probability to find a value of dmax as obtained

or worse, given the null hypothesis that the samples are drawn from the

same distribution, is as above in Eq. (8.75), only one has to replace n by

the “effective” sample size neff = n1n2/(n1 + n2), for details see [Press et

al. (1995)] and references therein. It is straightforward to implement this

test when using the C function ks() shown above as template.

8.5.3 ROC analysis

The Receiver-operator characteristics (ROC) is a method to evaluate a

classification test. We assume that there are two types A and B of objects

and we measure some quantity Q in order to establish whether an object

is of type A or B (null hypothesis H0 in Fig. 8.34). As an experimental

example, we measure the weight of an animal in order to find out whether

the animal is grown up or not. Or, in the field of computer simulations,

one could simulate the evolution of proteins, compare different proteins via

so called alignment algorithms, and use the resulting alignment score to

find out whether two proteins picked from the population are evolutionary

related or not [Wolfsheimer et al. (2012)].

Usually, the distributions of the measured quantity Q follow for type A

and B different distributions. These distributions might differ by shape or

by the values of the parameters, e.g., two Gaussians centered at different

values μA and μB (and exhibiting variances σ2
A and σ2

B). Now, when mea-

suring Q, to decide whether the object belongs to A or B, a threshold θ can
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A B

Q

P(Q)

FP
TP

θ

Fig. 8.37 Distributions of quantity Q for objects of type A and B, respectively. A test
using a threshold θ is used to classify the objects. All objects where Q > θ is measured
are assumed to be of type B. For a good choice of θ a large fraction TP (“true positive”)
is correctly classified as type B, while a small fraction FP (“false positive”) of A objects
is also classified by the test as B.

be used, see Fig. 8.37. If Q > θ holds, it is assumed that the object belongs

to type B (“positive”), otherwise to type A (“negative”). This type of test,

with a threshold value θ, is the same as for example (A) from page 320.

In case the two distributions overlap, there will not only be objects of type

B which exhibit Q > θ (null-hypothesis H0 true, “true positive”) but also

objects of type A where Q is above the threshold (“false positive”). Clearly

both true and false positive will increase when decreasing the threshold θ.

To evaluate the test, within an ROC analysis one draws the fraction TP of

true positive as a function of false positive FP while varying the threshold.

Therefore, the curve is given by (1 − FB(θ), 1 − FA(θ)), while varying θ,

where FA and FB are the cumulative distribution functions for type A and

B, respectively. Such curves look typically like as shown in Fig. 8.38, where

the simple case of two Gaussian distributions (μA = 0, σ2
A = 1, σ2

B = 1) is

shown for three selected values of μB.

A good choice of the threshold corresponds to that part of the curve,

where the true positives are large while the false positive are still low, hence,

where the curve is close to its upper left corner. As visible from Fig. 8.38,

quite intuitively, the quality of the test increases when the two distributions

are better separated, i.e., when μB increases. For this example, since it was

assumed the distributions are Gaussian, the ROC curve could be obtained

exactly. To evaluate such tests for general cases, simulations are the most

natural choice to obtain the ROC curve.
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Fig. 8.38 Receiver-operator characteristic for the case where a random population con-
sists of two types A,B. Some quantity Q is measured. For elements of type A, Q is N(0,1)
distributed while for type B, the quantity Q is N(μB ,1) distributed. A test is used, where
elements are classified as type B (Null hypothesis) if Q > θ, θ being a adjustable thresh-
old. The ROC plot displays the true positive (TP) as a function of the false positive
(FP) when varying θ. Here, three curves for different value μB are shown. Also the
diagonal TP=FP is shown, which represents the case where no meaningful classification
is possible, corresponding to μB = 0 = μA.

8.5.4 Statistical (in-)dependence

Here, we consider samples, which consist of pairs (xi, yi) (i = 0, 1, . . . , n−1)

of data points. Generalizations to higher-dimensional data is straightfor-

ward. The question is, whether the yi values depend on the xi values (or

vice versa). In this case, one also says that they are statistically related. If

yes, this means that if we know one of the two values, we can predict the

other one with higher accuracy. The formal definition of statistical (in-)

dependence was given in Sec. 8.1. An example of statistical dependence oc-

curs in weather simulations: The amount of snowfall is statistically related

to the temperature: If it is too warm or too cold, it will not snow. This also

shows, that the dependence of two variables it not necessarily monotonous.

In case one is interested in monotonous and even linear dependence, one

usually says that the variables are correlated, see below.
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Fig. 8.39 Scatter plots for n data points (xi, yi) where the xi numbers are generated
from a standard Gaussian distribution (expectation value 0, variance 1), while each yi
number is drawn from a Gaussian distribution with expectation value κxi (variance 1).

GET SOURCE CODE

DIR: randomness
FILE(S): points0A.dat
points0B.dat

points1A.dat

points1B.dat

It is important to realize that we have to

distinguish between statistical significance of a

statistical dependence and the strength of the

dependence. Say that our test tells us that the

x values are statistically related with high prob-

ability. This usually just means that we have a

large sample. On the other hand, the strength

of the statistical dependence can be still small. It could be, for example,

that a given value for x will influence the probability distribution for y only
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slightly. One the other hand, the strength can be large, which means, for

example, knowing x almost determines y. But if we have only few sample

points, we cannot be very sure whether the data points are related or not.

Nevertheless, there is some connection: the larger the strength, the easier

it is to show that the dependence is significant. For illustration consider a

sample where the xi numbers are generated from a standard Gaussian dis-

tribution (expectation value 0, variance 1), while each yi number is drawn

from a Gaussian distribution with expectation value κxi (variance 1).16

Hence, if κ = 0, the data points are independent. Scatter plots, where each

sample point (xi, yi) is shown as dot in the x− y plane are exposed in Fig.

8.39. Four possibilities are presented, κ = 0/1 combined with n = 50/5000.

Below, we will also present what the methods we use here will tell us about

these data sets.

In this section, first a variant of the chi-squared test is presented, which

enables us to check whether data is independent. Next, the linear corre-

lation coefficient is given, which states the strength of linear correlation.

Finally, it is discussed how one can quantify the dependence within a sam-

ple, for example between sample points xi, xi + τ .

To test statistical dependence for a sample {(x0, y0), (x1, y1), . . . ,

(xn−1, yn−1)}, one considers usually the null hypothesis: H0 = “The x

sample points and the y sample points are independent.” To test H0 one

puts the pairs of sample points into two-dimensional histograms {hkl}. The
counter hkl receives a count, if for data point (xi, yi) we have xi ∈ B

(x)
k

and yi ∈ B
(y)
l , for suitably determined bins {B(x)

k } and {B(y)
l }. Let kx

and ky be the number of bins in x and y direction, respectively. Next, one

calculates single-value (or one-dimensional) histograms {ĥ(x)k } and {ĥ(y)l }
defined by

ĥ
(x)
k =

∑
l

hkl

ĥ
(y)
l =

∑
k

hkl (8.77)

These one-dimensional histograms describe how many counts in a certain

bin arise for one variable, regardless of the value of the other variable. It

is assumed that all entries of these histograms are not empty. If not, the

bins should be adjusted accordingly. Note that n =
∑

k ĥ
(x)
k =

∑
l ĥ

(y)
l =∑

kl hkl holds.

16This is an example, where the random variables Yi which described the sample are
not identical.
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Relative frequencies, which are estimates of probabilities, are obtained

by normalizing with n, i.e. ĥ
(x)
k /n and ĥ

(y)
l /n. If the two variables xi, yi

are independent, then the relative frequency to obtain a pair of values

(x, y) in bins {B(x)
k } and {B(y)

l } should be the product of the single-value

relative frequencies. Consequently, by multiplying with n one obtains the

corresponding expected number nkl of counts, under the assumption that

H0 holds:

nkl = n
ĥ
(x)
k

n

ĥ
(y)
l

n
=
ĥ
(x)
k ĥ

(y)
l

n
(8.78)

These expected numbers are compared to the actual numbers in the two-

dimensional histogram {hkl} via the χ2 test statistics, comparable to Eq.

(8.72):

χ2 =
∑
kl

(hkl − nkl)
2

nkl
(8.79)

The statistical interpretation of χ2 is again provided by the chi-squared

distribution. The number of degrees of freedom is determined by the num-

ber of bins (kxky) in the two-dimensional histogram minus the number of

constraints. The constraints are given by Eq. (8.77), except that the to-

tal number of counts being n is contained twice, resulting in kx + ky − 1.

Consequently, the number of degrees of freedom is

ν = kxky − kx − ky + 1 . (8.80)

Therefore, under the assumption that the x and y sample points are in-

dependent, p = 1 − F (χ2, ν) gives the probability (p-value) of observing

a test statistics of χ2 or larger. F is here the distribution function of the

chi-squared distribution, see Eq. (8.45). This p-value has to be compared

to the significance level α. If p < α, the null hypothesis is rejected.

GET SOURCE CODE

DIR: randomness
FILE(S): chi2indep.c

The following C function implements the

chi-squared independence test chi2_indep().

It receives the number of bins in x and y direc-

tion as arguments, as well as a two-dimensional

array, which carries the histogram:
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double chi2_indep(int n_x, int n_y, int **h)1

{2

int n; /* total number of sample points */3

double chi2; /* chi^2 value */4

int k_x, k_y; /* number of contributing bins */5

int k, l; /* counters */6

int *hx, *hy; /* one-dimensional histograms */7

8

hx = (int *) malloc(n_x*sizeof(int)); /* allocate */9

hy = (int *) malloc(n_y*sizeof(int));10

11

n = 0; /* calculate total number of sample_points */12

for(k=0; k<n_x; k++)13

for(l=0; l<n_y; l++)14

n += h[k][l];15

16

k_x = 0; /* calculate 1-dim histogram for x */17

for(k=0; k<n_x; k++)18

{19

hx[k] = 0;20

for(l=0; l<n_y; l++)21

hx[k] += h[k][l];22

if(hx[k] > 0) /* does x bin contribute ? */23

k_x++;24

}25

26

k_y = 0; /* calculate 1-dim histogram for y */27

for(l=0; l<n_y; l++)28

{29

hy[l] = 0;30

for(k=0; k<n_x; k++)31

hy[l] += h[k][l];32

if(hy[l] > 0) /* does y bin contribute ? */33

k_y++;34

}35

36

chi2 = 0.0;37

for(k=0; k<n_x; k++) /* calculate chi^2 */38

for(l=0; l<n_y; l++)39

if( (hx[k] != 0)&&(hy[l] != 0) )40

chi2 += pow(h[k][l]-(double) hx[k]*hy[l]/n, 2.0)/41

((double) hx[k]*hy[l]/n);42

free(hx);43

free(hy);44

return(gsl_cdf_chisq_Q(chi2, k_x*k_y - k_x -k_y + 1));45

}46
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First, the one-dimensional histograms are allocated (lines 9–10). Then the

total number of counts, i.e. the sample size, is calculated (lines 12–15). In

lines 17–26, the one-dimensional histogram for the x direction is obtained.

Also the effective number of bins in that direction is calculated. In lines

27–35, the same happens for the y direction. The actual value of the χ2

test statistics is determined in lines 37–42. After being used, the allocated

memory is freed (lines 43–44). Finally, the p-value is calculated (line 45),

again the GSL function gsl_cdf_chisq_Q() is used for this purpose.

The p-values for the sample sets shown in Fig. 8.39 are as follows: p(κ =

0, n = 50) = 0.077, p(κ = 0, n = 5000) = 0.457, p(κ = 1, n = 50) = 0.140,

p(κ = 1, n = 5000) < 10−100. Hence, the null hypothesis of independence

would not be rejected (say α = 0.05) for the case κ = 1, n = 50, which is

actually correlated. On the other hand, if the number of samples is large

enough, there is no doubt.

Once it is established that a sample contains dependent data, one can

try to measure the strength of dependence. A standard way is to use the

linear correlation coefficient (also called Pearson’s r) given by

r ≡
∑

i(xi − x)(yi − y)√∑
i(xi − x)2

√∑
i(yi − y)2

. (8.81)

This coefficient assumes, as indicated by the name, that a linear correlation

exists within the data. The implementation using a C function is straight

forward, see exercise (9). For the data shown in Fig. 8.39, the following

correlation coefficients are obtained: r(κ = 0, n = 50) = 0.009, r(κ = 0, n =

5000) = 0.009, r(κ = 1, n = 50) = 0.653, r(κ = 1, n = 5000) = 0.701. Here,

also in the two cases, where the statistics is low, the value of r reflects

whether or not the data is correlated. Nevertheless, this is only the case

because we compare strongly correlated data to uncorrelated data. If we

compare weakly but significantly correlated data, we will still get a small

value of r. Hence, to test for significance, it is better to use the hypothesis

test based on the χ2 test statistics.

Finally, note that a different type of correlation may arise: So far it was

always assumed that the different sample points xi, xj (or sample vectors)

are statistically independent of each other. Nevertheless, it could be the

case, for instance, that the sample is generated using a Markov chain Monte

Carlo simulation [Newman and Barkema (1999); Landau and Binder (2000);

Robert and Casella (2004); Liu (2008)], where each data point xi+1 is cal-

culated using some random process, but also depends on the previous data

point xi, hence i is a kind of artificial sample time of the simulation. This
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dependence decreases with growing time distance between sample points.

One way to see how quickly this dependence decreases is to use a variation

of the correlation coefficient Eq. (8.81), i.e. a correlation function:

C̃(τ) =
1

n− τ

n−1−τ∑
i=0

xixi+τ

−
(

1

n− τ

n−1−τ∑
i=0

xi

)
×
(

1

n− τ

n−1−τ∑
i=0

xi+τ

)
(8.82)

The term 1
n−τ

∑n−1−τ
i=0 xi× 1

n−τ

∑n−1−τ
i=0 xi+τ will converge to x2 for n → ∞

if it can be assumed that the distribution of the sample points is stationary,

i.e. does not depend on the sample time. Therefore, C̃(τ) is approximately
1

n−τ

∑n−1−τ
i=0 (xi − x)(xi+τ − x), comparable to the nominator of the linear

correlation coefficient Eq. (8.81). Usually one normalizes the correlation

function by C̃(0), which is just the sample variance in the stationary case,

see Eq. (8.55):

C(τ) = C̃(τ)/C(0) . (8.83)

0 500 1000 1500 2000
τ

0.2

0.4

0.6

0.8

1

C
(τ

)

Fig. 8.40 Correlation function C(τ) for a simulation of a ferromagnetic system, xi being
the magnetization at time step i. (For experts: Ising system of size 16×16 spins simulated
with single-spin flip Metropolis Monte Carlo at a (reduced) temperature T = 2.269 close
to the phase transition temperature, where correlation times τc are large).
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Consequently, for any data, for example obtained from a Markov chain

Monte Carlo simulation, C(0) = 1 will always hold, Then C(τ) decreases

with increasing difference τ , see for example Fig. 8.40. Very often the

functional form is similar to an exponential ∼ exp(−τ/τc). In theory, C(τ)

should converge to zero for τ → ∞, but due to the finite size of the sample,

usually strong fluctuations appear for τ approaching n. A typical time τc
which measures how fast the dependence of the sample points decreases

is given by C(τc) = 1/e, which is consistent with the above expression, if

the correlation function decreases exponentially. At twice this distance, the

correlation is already substantially decreases (to 1/e2). Consequently, if you

want to obtain error bars for samples obtained from dependent data, you

could include for instance only points x0, x2τc , x4τc , x6τc , . . . in a sample, or

just use n/(2τc) instead of n in any calculation of error bars. Although these

error bars are different from those if the sample was really independent, it

gives a fairly good impression of the statistical error.

Alternatively, to obtain a typical time τc without calculating a corre-

lation function, you can also use the blocking method [Flyvbjerg (1998)].

Within this approach, you iteratively merge neighboring data points via

x
(z+1)
i = (x

(z)
2i + x

(z)
2i+1)/2 and n(z+1) = n(z)/2 (iteration level z = 0 cor-

responds to the original sample). You calculate the standard error bar

σ(z)/
√
n(z) − 1 for each iteration level. Once it reaches a plateau at level

zc, the data is (almost) independent and the true error bar is given by the

level value. Then τc = 2zc is a typical time of independence of the data

points.

If you are really just interested in error bars, i.e. you do not need to

know the value of τc, you could also use the bootstrap approach which is

not susceptible to dependence of data, see Sec. 8.3.4.

8.5.5 Principal Component Analysis

A different way to analyse statistical dependencies in data is the principal

component analysis. We are studying samples (“clouds”) of n real-valued

d-dimensional data points {x̃(i)} (i = 0, . . . , n − 1), with each data point

x̃(i) = (x̃
(i)
1 , . . . , x̃

(i)
d )T . Similar to Eq. (8.54), the sample mean, or the

“center” of the cloud, is

x =
1

n

∑
i

x̃(i) ,
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where the sum
∑

i here and in the following runs from 0 to n − 1. Since

we will be interested in the spread of the cloud, i.e., in the variance of the

data, it is sufficient to consider the center of the cloud shifted to the origin.

Therefore, we normalize the data points by the mean:

x(i) ≡ x̃(i) − x . (8.84)

An example of such a sample for d = 3 dimensions, shifted to the origin, is

shown in Fig. 8.41.

-6
-4

-2
 0

 2
 4

 6-6
-4

-2
 0

 2
 4

 6

-8

-6

-4

-2

 0

 2

 4

 6

x3

x1

x2

x3

Fig. 8.41 A sample of random three-dimensional vectors (x1, x2, x3)T (“+” symbols).
The “×” symbols show the same sample projected on the x1, x2 plane. The two arrows
indicate to the most important principal components, i.e., the two eigenvectors of the
covariance matrix corresponding to the two largest eigenvalues. The length of the vectors
are the square roots of the corresponding eigenvalues.

The basic idea is to find directions r (with length |r| = 1) in the cloud

which characterize the data sample most, i.e., along which the variance of

the data is largest. These are the principal components. For the sample

data, the two most important directions are indicated in Fig. 8.41 by arrows.

Now we will see step by step that obtaining the principal components

can be actually performed via calculating eigenvectors and eigenvalues of
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the (empirical) covariance matrix of the sample of data points. For this

purpose we project each normalized data point on the direction r, i.e.,

calculate the scalar products q(i) ≡ r · x(i). Thus, for the sample variance

in direction r we obtain using Eq. (8.55):

Varr({x(i)}) = 1

n

∑
i

(q(i) − q)2
q=0
=

1

n

∑
i

(q(i))2 =
1

n

∑
i

(r · x(i))2 ,

where the average q = 1
n

∑
i q

(i) vanishes because the data points have been

normalized by their mean. Using the transpose . . .T a scalar product can

be written as a · b = aT b. When additionally using the symmetry of the

scalar product a · b = b · a we can rewrite the above expression as

Varr({x(i)}) = 1

n

∑
i

rTx(i)(x(i))T r . (8.85)

The expression 1
n

∑
i x

(i)(x(i))T denotes a d× d matrix which is called

the (sample) covariance matrix C, which has the entries

Ckl ≡ 1

n

∑
i

x
(i)
k x

(i)
l =

1

n

∑
i

(x
(i)
k − xk)(x

(i)
l − xl)

=
1

n

∑
i

x
(i)
k x

(i)
l − xkxl . (8.86)

The covariance matrix is real, symmetric and positive semi-definite,17 i.e., it

exhibits only non-negative eigenvalues λz (z = 1, . . . , d) and corresponding

normalized eigenvectors ez, i.e.,

Cez = λzez (λz ≥ 0) . (8.87)

Without loss of generality, we can assume that the eigenvalues are or-

dered in descending order λ1 > λ2 > . . . > λd and that the eigenvectors

form an orthonormal (ez · ez′ = δz,z′) basis of the d-dimensional vector

space.18 This means, any vector can be represented as linear combination

of the eigenvectors. Thus, we can write r =
∑

z rzez, where here and in

the following sums
∑

z run from 1 to d, and rz ≡ r · ez. This we can insert

into Eq. (8.85), resulting in

17Any matrix of the form AAT is semi-definite.
18In case of degeneracy, i.e., if some eigenvalues appear multiple times, one can turn

the set of eigenvectors into an orthonormal basis.
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Varr({x(i)}) = rTCr =

(∑
z

rzez

)T

C

(∑
z′

rz′ez′

)

(8.87)
=

(∑
z

rzez

)T (∑
z′

rz′λz′ez′

)
=

∑
z

r2zλz . (8.88)

where for the last equality, we have used the orthonormality of the basis of

eigenvectors. As mentioned in the beginning, we are interested in the direc-

tion which maximizes the variance of the projection of the data sample onto

the r direction, hence in the maximum of (8.88). Due to the normaliza-

tion of r we have 1 = r2 = (
∑

z rzez)
2 =

∑
z r

2
z . Since the eigenvalues are

sorted in descending order, we obtain the maximum for Varr({x(i)}) simply

by setting r1 = 1 and rz = 0 for z = 2, . . . , d, thus r = e1. The direction

of the maximum spread of the data, i.e., the first principal component, is

simply the direction of the eigenvector corresponding to the largest eigen-

value of the (sample) covariance matrix, and the variance in that direction

is the largest eigenvalue itself.

Thus, it is straightforward to see that the direction of the second largest

spread of the data (orthogonal to the direction of the largest spread), i.e.,

the second principal component, is the eigenvector corresponding to eigen-

value λ2 and so on. Finally, the total spread (variance) of the data is

simply the sum λ =
∑

z λz of all eigenvalues and the amount λz/λ denotes

the relative amount of the spread corresponding to the zth eigenvector, i.e.,

corresponding to the zth most important principal component. Thus, us-

ing the eigenvalues one can somehow estimate how many really important

independent degrees of freedom the data exhibits. For example, if in a sam-

ple of d = 10 dimensional data points, the first three eigenvalues sum up

to 99% of the total variance λ of the sample, then in fact the data can be

represented by three more or less independent variables. The dependencies

inherent in the variables are described by the eigenvectors, which are often,

unfortunately, hard to interpret.

GET SOURCE CODE

DIR: randomness
FILE(S): princ comp.c

The C function principal components()

calculates the principal components of a data

sample. Here we again use some data types

and functions from the GNU scientific library,
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in particular for the calculation of the eigenvalues and eigenvectors, which

keeps the code compact. Thus, we use the GSL data types gsl vector and

gsl matrix, see page 239 in Sec. 7.3.

The function receives a matrix data which contains the data points,

{x̃(i)}, each column of the matrix contains one data point. To return the

eigenvalues, a vector eval is used. The corresponding eigenvectors are

returned in the matrix evec, again one vector per column.

void principal_components(gsl_vector *eval, gsl_matrix *evec,1

gsl_matrix *data)2

{3

int t,d1, d2; /* loop counters */4

int dim; /* number of components of data point vectors */5

int num_points; /* number of data points */6

gsl_matrix *cov; /* covariance matrix */7

gsl_vector *avg; /* averages */8

gsl_eigen_symmv_workspace *w; /* memory for eigenvalues etc */9

Locally, we need a vector avg to hold the averages of the different com-

ponents of the data points, and a matrix cov which stores the covariance

matrix. These are allocated next, using the dimension d which is read off

from the number of rows of data and stored in variable dim. The number

n of data points is stored in variable num points:

num_points = data->size2; /* initialize */10

dim = data->size1;11

avg = gsl_vector_alloc(dim);12

cov = gsl_matrix_alloc(dim, dim);13

Next, the averages are calculated. Here, the following two GSL func-

tions are used: gsl vector set(), which sets an entry in the vector

(taking the vector, the index of the entry and the value as arguments)

and gsl vector get(), which returns the value of an entry (taking the

vector and the index of the entry as arguments). The GSL function

gsl vector scale() (line 21) multiplies every entry of a given vector with

some number.

for(d1=0; d1<dim; d1++) /* calculate averages */14

{15

gsl_vector_set(avg, d1, 0);16

for(t=0; t<num_points; t++)17

gsl_vector_set(avg, d1, gsl_vector_get(avg, d1)18

+gsl_matrix_get(data, d1, t));19

}20
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gsl_vector_scale(avg, 1.0/ num_points);21

Using these averages, the covariance matrix can be calculated according to

Eq. (8.86). Similar to the corresponding vector functions, the GSL matrix

access functions gsl matrix get() and gsl matrix set() are used, where

in both cases a row (2nd argument) and a column index (3rd argument)

have to be supplied.

for(d1=0; d1<dim; d1++) /* calculate covariance matrix */22

for(d2=d1; d2<dim; d2++)23

{24

gsl_matrix_set(cov, d1, d2,25

-gsl_vector_get(avg, d1)*gsl_vector_get(avg, d2));26

for(t=0; t<num_points; t++)27

gsl_matrix_set(cov, d1, d2, gsl_matrix_get(cov, d1, d2)+28

gsl_matrix_get(data, d1, t)29

*gsl_matrix_get(data, d2, t)/num_points);30

gsl_matrix_set(cov, d2, d1, gsl_matrix_get(cov, d1, d2));31

}32

The actual calculation of the eigenvalues and eigenvectors is now very sim-

ple using the GSL build-in functions. First, one has to provide some “work

space” w (line 33) and then the actual calculation is performed and the

results are stored in the eigenvalue vector eval and in the matrix evec of

eigenvectors:

w = gsl_eigen_symmv_alloc(dim); /* calculate eigenvectors/values */33

gsl_eigen_symmv(cov, eval, evec, w);34

Finally, the eigenvalues and the corresponding eigenvectors are sorted in

descending eigenvalue order. For brevity, a simple neighbor exchange al-

gorithm is used here. Since the dimension d is typically small, there is no

benefit in using a more complicated algorithm which pays off only asymp-

totically. Finally, all locally used memory is freed.

for(t=0; t<dim; t++) /* order eigenvalues (and corresp. vectors) */35

for(d1=0; d1<dim-1; d1++)36

if(gsl_vector_get(eval, d1) < gsl_vector_get(eval, d1+1))37

{38

gsl_matrix_swap_columns(evec, d1, d1+1);39

gsl_vector_swap_elements(eval, d1, d1+1);40

}41

42

gsl_eigen_symmv_free(w);43
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gsl_vector_free(avg);44

gsl_matrix_free(cov);45

}46

8.5.6 Clustering Data

Often one wants to find similarities in a set of n objects, characterized

by “feature vectors”. As in the case of principal component analysis (Sec.

8.5.5), we assume that the data is given by n d-dimensional real-valued data

points {x(i)} (i = 0, . . . , n−1), with each data point x(i) = (x
(i)
1 , . . . , x

(i)
d )T .

Furthermore, let the data exhibit some substructure, i.e., one can organize

the data into groups, called clusters, such that the objects within the groups

are more similar to each other compared to objects belonging to different

groups. Note that this is not a precise definition. In fact, a good defini-

tion does not exist. Thus, what is a good clustering always depends on

the application and on the data. This is already illustrated by the two

sample data sets A and B, which are shown in Fig. 8.42. For a detailed

discussion of clustering, see Ref. [Jain and Dubes (1988)]. Here, we discuss

three approaches, the k-means algorithm, neighbor-based clustering, and an

agglomerative clustering method.
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Fig. 8.42 Two sample sets A (n = 200, left) and B (n = 200, right) for sets of two-
dimensional data points, which will subsequently be used to test clustering algorithms,
aiming at identifying subsets of similar data points.

Following the k-means approach, one wants to partition the data set into

k clusters, k being a somehow given parameter. Below we discuss shortly
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the influence of the choice of k on the resulting clustering. The k-means

approach is based on a geometric point of view. Each cluster c = 0 . . . , k−1

shall be represented by a center vector ξ(c). Let us assume that each data

point with index i ∈ {0, . . . , n − 1} is assigned to some (initially possibly

randomly chosen) cluster c(i) ∈ {0, . . . , k − 1}.
We calculate the mean-squared difference (or “spread”) χ2 of all data

points to the center of its cluster:

χ2 =
1

n

n−1∑
i=0

(
ξ(c(i)) − x(i)

)2

.

We assume that the best choice of the center vectors and of the assignment

to the clusters is the one which minimizes the spread. Thus, for a fixed

assignment of data points to clusters and any cluster c ∈ {0, . . . , k − 1}
we have for each direction a ∈ {1, . . . , d} the condition that the partial

derivative of the spread with respect to the a’th component of the center

vector ξ(c) vanishes:

0
!
=
∂χ2

∂ξca
=

2

n

n−1∑
i=0

δc,c(i)

(
ξ(c(i))a − x(i)a

)
= 2

nc

n
ξ(c)a − 2

n

n−1∑
i=0

δc,c(i)x
(i)
a ,

where nc =
∑n−1

i=0 δc,c(i) is the size of cluster c. Thus, each center vector ξ(c)

is, as the name suggest, the geometric center of the data points assigned to

cluster c:

ξ(c) =
1

nc

n−1∑
i=0

δc,c(i)x
(i) . (8.89)

On the other hand, for fixed centers ξ(c), minimizing χ2 can be achieved

by assigning each data point to its closest cluster:

c(i) = argminc=0,...,k−1

{(
ξ(c) − x(i)

)2
}
. (8.90)

Thus, a very simple algorithm can be obtained by starting with a random

assignments of the data points to clusters and then iterating Eqs. (8.89)

and (8.90) until convergence, e.g. until the relative change of the center

vectors is less than a small given threshold ε. Note that this approach does

not guarantee a convergence to a solution where the spread χ2 assumes its

global minimum. See below for an example.
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GET SOURCE CODE

DIR: randomness
FILE(S): cluster.c

Next, we discuss a short C implementa-

tion of the k-means approach. Note that

the file cluster.c also contains auxiliary and

test functions, like cluster test data1() and

cluster test data2() which generate the test sets A and B, respectively.

You can just use the code it as it is, or use it as a starting point for a

more refined approach, e.g. by introducing additional weights signifying

the importance of the data points. The function cluster k means() re-

ceives a matrix data, which contains the data points as column vectors,

and the number k of clusters. For convenience, we use the GSL data types

gsl vector and gsl matrix, see page 239 in Sec. 7.3. Also we use a GSL

random number generator rng for the initial assignment of the data points

to the clusters, see page 236 in Sec. 7.3. The function returns an array,

which contains for each data point an integer specifying its cluster. The

array is created inside the function. Furthermore, the function returns the

final spread, via a pointer spread p which is passed as argument.

int *cluster_k_means(gsl_matrix *data, int k, gsl_rng *rng,1

double *spread_p)2

{3

int *cluster; /* holds for each point its cluster ID */4

gsl_matrix *center; /* holds for each cluster its center */5

int *cluster_size; /* holds for each cluster its #points */6

int dim; /* number of components of data point vectors */7

int num_points; /* number of data points */8

int t, d, c; /* loop counters */9

double spread, spread_old; /* total distance to centers */10

double dist, dist_min; /* (minimum) dist. between point/center */11

double diff; /* lateral distance between point/center */12

int c_min; /* center which is closest to a point */13

int do_print = 0; /* for debugging */14

For initializing, the number num points of data points and the number dim

of entries are take from the GSL matrix data structure (lines 15 and 16).

Using this, the array cluster, which is returned, the array cluster size,

which holds for each cluster the number of assigned data points, and a GSL

matrix for the centers are allocated (lines 17–19). Also, each data point is

assigned initially to a randomly chosen cluster (lines 21,22):

num_points = data->size2; /* initialize */15

dim = data->size1;16

cluster = (int *) malloc(num_points*sizeof(int));17
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cluster_size = (int *) malloc(k*sizeof(int));18

center = gsl_matrix_alloc(dim, k);19

20

for(t=0; t<num_points; t++) /* intial assignments to clusters */21

cluster[t] = (int) k*gsl_rng_uniform(rng);22

The main loop (lines 25–66) is performed until the spread changes by less

than one percent (line 25). In each iteration, for the given assignments

of the data points to clusters, the cluster sizes and the cluster centers are

updated (lines 27–42) according to Eq. (8.89). This is achieved by first

initializing centers and cluster sizes to zero (lines 27–29), by next iterating

over all data points (lines 30–37), and by finally normalizing the centers by

the cluster sizes nc (lines 38–42). Note that in C, the entries 1, . . . , d of the

data points run from 0 to dim−1.

For each iteration, second, for each data point its closest cluster is de-

termined and the spread is recalculated (lines 44–65). This involves in

particular iterating for each data point over all cluster centers (lines 49–

62), determining the distance between the data point and a center (lines

51–56) and determining the closest center (lines 57–61).

spread = 1e100;23

spread_old = 2e100;24

while ( (spread_old-spread)>0.01*spread_old) /* main loop */25

{26

gsl_matrix_set_all(center, 0.0);27

for(c=0; c<k; c++)28

cluster_size[c] = 0;29

for(t=0; t<num_points; t++) /* determine centers */30

{31

cluster_size[cluster[t]]++;32

for(d=0; d<dim; d++)33

gsl_matrix_set(center, d, cluster[t],34

gsl_matrix_get(center, d, cluster[t])+35

gsl_matrix_get(data, d, t));36

}37

for(c=0; c<k; c++)38

if(cluster_size[c] > 0)39

for(d=0; d<dim; d++)40

gsl_matrix_set(center, d, c,41

gsl_matrix_get(center, d, c)/cluster_size[c]);42

43

spread_old = spread;44
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spread = 0;45

for(t=0; t<num_points; t++) /* determine closest center */46

{47

c_min = -1;48

for(c=0; c<k; c++) /* test with all centers */49

{50

dist = 0; /* calculate distance point/center */51

for(d=0; d<dim; d++)52

{53

diff = gsl_matrix_get(center,d,c)-gsl_matrix_get(data,d,t);54

dist += diff*diff;55

}56

if( (c_min == -1)||(dist_min > dist)) /* closest center ? */57

{58

c_min = c;59

dist_min = dist;60

}61

}62

cluster[t] = c_min;63

spread += dist_min;64

}65

}66

At the end of the function, the current spread is stored in the external

variable which is given by the pointer spread p. Also the memory for the

center vectors and the cluster sizes is freed and finally the cluster array

containing the result is returned:

*spread_p = spread;67

gsl_matrix_free(center);68

free(cluster_size);69

return(cluster);70

}71

In the upper left of Fig. 8.43 the result for the cluster analysis of data

set A is shown for the choice k = 3. Also shown are the “paths” the centers

have taken during the iteration of the algorithm. Obviously, the clustering

represents the structure of the data well. This changes in case the value

of k does not represent the data well, see upper right of Fig. 8.43, where

the result for k = 5 is shown. Since the algorithm is forced to have five

clusters, it subdivides the cluster around (1, 0)T into three clusters. This

case where k is not well adapted serves also as an example to show that

the simple iterative algorithm does not necessarily converge to the global

minimum spread. When repeating the clustering for k = 5 with different
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Fig. 8.43 Upper left: Result of the clustering of sample set A with the k-means al-
gorithm for k = 3. Different symbols correspond to different clusters. The lines show
how the centers have moved during the iterations of the algorithm. Upper right: result
of the k-means algorithm for sample set B and k = 5. Here, the algorithm mistakenly
subdivides the cluster around (1, 0)T into three sub clusters. Lower left: spread χ2 as
function of the number of clusters k. Above the most suitable number k = 3 the spread
decreases only slightly when increasing the number of clusters. Lower right: For sample
set B, k-means fails even if the most suitable number k = 2 is chosen.

seeds for the random number generator, different spreads and thus different

cluster assignments will occur. Such a non-unique convergence, observed

after restarting the cluster k means() function, may also be used as an

indicator that k is not well chosen.

Often, the most suitable number k of clusters is in fact not known

in advance. In this case, it helps sometimes to perform the clustering for

several values of k and observe the spread χ2 as a function of k, see lower left

of Fig. 8.43. The spread shrinks monotonously when increasing k. When
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the spread does not decrease significantly any more, a suitable number of

clusters is found. Nevertheless, this does not work always, e.g. when the

clusters exhibit a sub-cluster structure.

There are also cluster structures, where the basic assumption that each

cluster can be represented by its geometric center fails, as for sample set B

(right of Fig. 8.42) where two cluster are present. Whatever value of k is

chosen, the k-means algorithm will not converge to the correct result. The

reason is that both clusters, although being quite distinct, exhibit very

similar geometric means. Here, clustering approaches are needed, which

take the local neighbor relations of data points into account, rather than

the global positions of the data points.

As a first step, one needs for all pairs i, j of data points the notion of a

“distance” d(i, j). The best choice for a distance function depends heavily

on the data set and the nature of the clustering problem. For the sample

sets A and B (see Fig. 8.42), which are just points in the two-dimensional

plane, the Euclidean distance appears to be suitable:

d(i, j) ≡
√√√√ d∑

a=1

(
x
(i)
a − x

(j)
a

)2

(8.91)

Next, we present a C function which turns the set of data vectors into a

matrix of pair-wise distances. The function receives a matrix data (GSL

data type gsl matrix) of column vectors and returns a matrix of pair-wise

distances. Note that the number of data points and the dimensions, i.e.,

the number of entries, can be taken from the matrix data (lines 9 and 10).

The main loop over all pairs of data points is performed in lines 13–24.

The calculation of the distance is done in lines 16–21. As usually in C, the

elements 1, . . . , d of the data points are stored in entries 0 through dim−1.

gsl_matrix *cluster_distances(gsl_matrix *data)1

{2

gsl_matrix *dist; /* matrix containing distances */3

int dim; /* number of components of data point vectors */4

int num_points; /* number of data points */5

int t1, t2, d; /* loop counters */6

double distance, diff; /* auxiliary distance variables */7

8

dim = data->size1;9

num_points = data->size2; /* initialize */10

dist = gsl_matrix_alloc(num_points, num_points);11

12
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for(t1=0; t1<num_points; t1++) /* iterate over all pairs */13

for(t2=0; t2<=t1; t2++)14

{15

distance = 0;16

for(d=0; d<dim; d++) /* calculate distance */17

{18

diff = gsl_matrix_get(data,d,t1) - gsl_matrix_get(data,d,t2);19

distance += diff*diff;20

}21

gsl_matrix_set(dist, t1, t2, sqrt(distance)); /* set */22

gsl_matrix_set(dist, t2, t1, gsl_matrix_get(dist, t1, t2));23

}24

25

return(dist);26

}27

The basic idea of the neighbor-based clustering is to translate the data

set into a graph, see Sec. 6.8. For each data point x(i), there is a node

i in the graph. Furthermore, all pairs i, j of nodes are connected by an

(undirected) edge {i, j}, if the distance between the corresponding data

points is smaller than some given threshold θ, i.e., if d(i, j) < θ. This is

achieved by the following function, which uses the graph data structures

as previously introduced in Sec. 6.8.2. The function receives the matrix of

distances and the threshold value θ. The code is rather concise, because one

needs only to determine the number of nodes (line 8), set up the nodes of

the graph (line 9) and iterate over all pairs of nodes to set an edge whenever

the distance is below the threshold (lines 10–13):

gs_graph_t *cluster_threshold_graph(gsl_matrix *distance,1

double threshold)2

{3

gs_graph_t *g;4

int num_nodes;5

int n1, n2; /* node counter */6

7

num_nodes = distance->size1;8

g = gs_create_graph(num_nodes);9

for(n1=0; n1<num_nodes; n1++) /* loop over all pairs of nodes */10

for(n2=n1+1; n2<num_nodes; n2++)11

if(gsl_matrix_get(distance, n1, n2) < threshold) /* edge ? */12

gs_insert_edge(g, n1, n2);13

14

return(g);15

}16
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Fig. 8.44 Result of the clustering of sample set B with the neighbor-based clustering.
Upper left: result for threshold θ = 0.2. Upper right: result for threshold θ = 0.3. Lower
left: result for threshold θ = 0.7. Lower right: Number of clusters as a function of the
threshold θ.

Finally, the actual clustering is fairly simple: one just determines the

connected components using the function gs components() as presented

in Sec. 6.8.4. Each connected component corresponds to one cluster!

As example, the neighbor-based clustering algorithm is applied to sam-

ple set B, where the k-means approach failed. As visible from Fig. 8.44,

the result depends on the choice of the threshold θ: If the threshold is too

small, too many clusters will be detected, while for a threshold being too

large, just one cluster is found. For intermediate values of the threshold, the

most suitable result of two clusters is found. If the correct threshold is not

known in advance, on can, e.g., study the number of clusters as a function

of the threshold θ. As visible from the lower right of Fig. 8.44, the number
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of clusters does not change for a large range of thresholds θ ∈ [0.26, 0.6],

indicating that the most natural number of clusters for sample set B is two.

However, be aware that also neighbor-based clustering might fail. Imag-

ine that for sample set B there is a small “bridge” of data points between

the two clusters. In this case, neighbor-based clustering will also not be

able to distinguish the two clusters. In this case, more advanced techniques

are needed, which are based on the idea that a group of several close-by

points should influence the outcome of the clustering as a group (similar

to the k means clustering) but in terms of distances to other points or

groups of points (unlike k-means clustering where only absolute positions

are relevant). This is the fundamental notion underlying hierarchical clus-

tering methods. These methods are also often able to detect substructures,

like clusters inside clusters etc. Here, we will focus on an agglomerative

clustering approach, namely the average-linkage approach.

A
B

C

D

E A
B

C

D

E

Fig. 8.45 Example for agglomerative clustering: Initially one has a set of n = 5 data
points corresponding to n clusters A, B, C, D, and E (bottom part). Iteratively the closest
clusters are merged (illustrated by ellipses). For each merger, a branch in a dendrogram
(tree) is generated (top part). Left: Situation after the first two single-point clusters D,E
have been merged into a two-point cluster DE. Right: Final situation, after the merger
of B with C, followed by the merger of BC with DE and finally the merger of A with
BCDE. The dendrogram represents the hierarchical cluster structure.

The basic idea of agglomerative clustering is that one considers the

initial set of n data points as a set of n clusters C = {c1, . . . , cn} with

ci = {x(i)}. One defines cluster distances dc(i, j) between pairs of the

initial clusters ci and cj as given by the selected point-to-point distance

function d(i, j), like the Euclidean distance Eq. (8.91) or any other suit-

able distance function. Within agglomerative clustering iteratively the two
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closest clusters cimin
and cjmin

, i.e., where

imin, jmin = argmini,j dc(i, j) ,

are merged into one new single cluster k = cimin
∪ cjmin

. Thus, within the

first step, two clusters containing a single data point each will be merged.

During the next steps, single-data point clusters or multiple-data point clus-

ters will be merged. This is illustrated in Fig. 8.45. During each iteration

the number of clusters will be decreased by one, hence, this process stops

after n− 1 iterations when all data points are collected in one single clus-

ter. The merging process can be represented by a tree, called dendrogram:

The leaves of the tree are given by the initial data points, i.e., the clus-

ters c1, . . . , cn. Whenever two cluster are merged, a new (non-leaf) node

is created, which has the two clusters as descendants. Therefore, the root

of the tree is the node which has those two clusters as descendants, which

were joined during the last iteration. Note when drawing the tree, it is

convenient to order the leaves on the x-axis according to their appearance

during a tree traversal, e.g. an inorder traversal (see page 190 in Sec. 6.7).

The most important point is that when creating a cluster ck through a

merger of cimin
and cjmin

, one has to provide new distances dc(k, l) of the

new cluster ck to all other clusters cl with l �= imin and l �= jmin. Different

approaches are possible. Here, we use the average-linking clustering, where

the distance between two cluster ck, cl is the average distance of the data

points in the two clusters:

dc(k, l) =
1

|ck||cl|
∑

i∈ck,j∈cl
d(i, j) ,

where |ck| and |cl| represent the number of data points in the clusters ck and

cl, respectively. Thus, when cluster ck is created by merging cimin
and cjmin

,

the distance of new cluster ck to all other clusters cl can be conveniently

calculated via

dc(k, l) =
1

|ck| {|cimin
|d(imin, l) + |cjmin

|d(jmin, l)} .

Many other choices for calculating cluster distances exists, basically they

only have to have the property that the distances between clusters are

monotonically increasing when merging. Common examples are taking the

minimum or the maximum of the point-wise distances between the nodes of

the cluster, specifying single-linkage and complete-linkage clustering. An-

other widely used method is Ward’s approach, where the geometric centers
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of the clusters are also taken into account. For details about many cluster-

ing algorithms, see Ref. [Jain and Dubes (1988)].

Once the clustering procedure is completed and the dendrogram cal-

culated, the full clustering information is contained in the dendrogram, in

particular the hierarchical structure, i.e., if clusters contain sub clusters

that in turn contain sub clusters etc. To obtain a single set of clusters,

a common approach is to use a threshold θ such that all inter-cluster dis-

tances are larger than θ and all intra-cluster distances are smaller or equal

to θ. This is similar to the neighbor-based clustering presented before, only

that the intra-cluster distances for agglomerative clustering represent joint

properties of sub clusters instead of single pairs of nodes. When drawing

the dendrogram, one usually uses the δ = 0 (height) position for the leaves.

For all other nodes, representing mergers of two clusters imin, jmin , one uses

a height δ ∼ dc(imin, jmin), i.e., the distance of the two clusters which are

merged. Thus, using a threshold θ corresponds to drawing a horizontal line

at δ = θ and cutting off all nodes above this line, c.f. Fig. 8.47. The remain-

ing trees located below the line represent the clusters. Often a meaningful

choice of θ is to cut the tree at a height value inside the largest interval

where no node has its height in. This correspond to the iteration where

the difference between the distances of the last and the current mergers is

largest.

GET SOURCE CODE

DIR: randomness
FILE(S): cluster.c

In the following, we discuss the C implemen-

tation of the single-linkage agglomerative clus-

tering. First, we need a data structure for the

nodes of the dendrogram. Each node stores the

ID of the corresponding cluster and the size of the cluster. If the cluster

was merged from two clusters, the node stores pointers (left and right)

to nodes corresponding to these clusters as well as the distance of these

two clusters, otherwise the corresponding entries are NULL (or 0). For this

structure a new type name cluster node t is introduced:

typedef struct cluster_node

{

int ID; /* ID of cluster */

int size; /* number of members */

double dist; /* distance of sub clusters */

struct cluster_node *left; /* sub cluster */

struct cluster_node *right; /* sub cluster */

} cluster_node_t;

The function cluster agglomerative()performs the actual clustering.
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It receives a matrix distance (GSL type gsl matrix) of point-to-point

distances, as calculated, e.g. by the function cluster distances(). The

function returns a pointer to the root of the dendrogram, which represents

the clustering.

cluster_node_t *cluster_agglomerative(gsl_matrix *distance)1

{2

cluster_node_t *tree; /* root of dendrogram */3

cluster_node_t *node; /* nodes of dendrogram */4

int num_points; /* number of points to be clustered */5

int num_clusters; /* current number of clusters */6

int next_ID; /* ID of next cluster */7

int ID_curr; /* ID of current cluster */8

int ID_min1, ID_min2; /* IDs of clusters having min distance */9

int last_ID; /* ID of cluster in last row/column */10

int entry_min1, entry_min2; /* entry having min distance */11

int c1, c2; /* loop counters */12

int *pos; /* position of cluster in distance matrix */13

int *cluster; /* ID of cluster in each row/colum, inv. of ’pos’ */14

double delta; /* auxiliary distance */15

The distances among the data points as well as all cluster created during

the process will be stored in the matrix distance. Since there are at most

n clusters existing at any time, the matrix distance is large enough. When

two clusters are merged, the entries of one cluster will be used to store the

distances of the merged cluster, while the entries of the other cluster will

be disregarded; they will be exchanged with the distances stored in the last

column and row. Thus, after a merger, the last column and row will not

be used any more. In this way, the matrix distance is overwritten. The

current number of used columns and rows, equal to the current number of

clusters is stored in the variable num clusters. Note that the cluster IDs

are allocated in increasing manner, i.e., the IDs 0 to n−1 are for the single-

data point clusters, the ID n is for the first cluster created by a merger,

the ID n + 1 for the second, and so forth. Since the rows and columns of

distance contain entries for all clusters, also for those which are created by

mergers, i.e., with IDs larger than n−1, two additional arrays are used: The

array pos stores for each cluster in which row and column the corresponding

distances are stored currently. Inversely to pos, the array cluster stores

for each row and column, which cluster is currently represented there. Thus,

we have always pos[cluster[i]]==i and cluster[pos[i]]==i. The data

arrangement is illustrated in Fig. 8.46.

In the C code, the number of data points is determined from the size
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cluster

pos

imin minj

Fig. 8.46 When merging clusters with IDs imin and jmin (imin < jmin), the distances
of the new merged cluster are stored in the row and column where the distances of imin

were stored, while the entries corresponding to cluster with ID jmin are swapped with
the last row and column. Top part: for each cluster, the current column and row is
stored in the array pos, while for each column and row the current cluster is stored in
the array cluster.

of the matrix distance (line 16). Next, memory is allocated for the arrays

cluster, pos and nodes (line 18–21). The latter two have 2n − 1 entries

since this is the total number of clusters considered during the construction

procedure. The initialization is completed by setting up the entries of pos

and cluster and the nodes for the original data points (lines 23–32):

num_points = distance->size1;16

17

cluster = (int *) malloc(num_points*sizeof(int));18

pos = (int *) malloc( (2*num_points-1)*sizeof(int));19

node = (cluster_node_t *)20

malloc( (2*num_points-1)*sizeof(cluster_node_t));21

22
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for(c1=0; c1<num_points; c1++) /* initialize */23

{24

pos[c1] = c1;25

cluster[c1] = c1;26

node[c1].left = NULL;27

node[c1].right = NULL;28

node[c1].dist = 0.0;29

node[c1].ID = c1;30

node[c1].size = 1;31

}32

Initially, the number of clusters is equal to the number of data points n

(line 33) and the next available cluster ID will be n (line 34). The main

loop (lines 35–81) will be performed while there are clusters left for being

merged. In the main loop, first the smallest current inter-cluster distance

is determined (lines 37–44) and the corresponding clusters are obtained via

the cluster array (lines 46,47):

num_clusters = num_points;33

next_ID = num_clusters;34

while(num_clusters > 1) /* until all clusters are merged */35

{36

entry_min1=0; entry_min2=1; /* search min. off-diag distance */37

for(c1=0; c1<num_clusters; c1++)38

for(c2=c1+1; c2<num_clusters; c2++)39

if(gsl_matrix_get(distance, c1, c2) <40

gsl_matrix_get(distance, entry_min1, entry_min2))41

{42

entry_min1=c1, entry_min2=c2;43

}44

45

ID_min1 = cluster[entry_min1]; /* determine cluster IDs */46

ID_min2 = cluster[entry_min2];47

Now, a new node can be set up. It contains pointers to its two sub clusters,

its ID, its size which is the sum of the sizes of the two sub clusters, and the

distance of the two sub clusters:

node[next_ID].left = &(node[ID_min1]); /* merge clusters */48

node[next_ID].right = &(node[ID_min2]);49

node[next_ID].ID = next_ID;50

node[next_ID].size = node[ID_min1].size + node[ID_min2].size;51

node[next_ID].dist =52

gsl_matrix_get(distance, entry_min1, entry_min2);53
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Next, the distances of the remaining clusters to the new clusters are cal-

culated. These distances are stored in the entries of the first of the two

merged clusters:

for(c1=0; c1<num_clusters; c1++) /* distances to new cluster */54

if(c1 == entry_min1)55

gsl_matrix_set(distance, entry_min1, c1, 0);56

else if(c1 != entry_min2)57

{58

ID_curr = cluster[c1];59

delta = node[ID_min1].size*60

gsl_matrix_get(distance, entry_min1, c1)+61

node[ID_min2].size*62

gsl_matrix_get(distance, entry_min2, c1);63

delta /= node[next_ID].size;64

gsl_matrix_set(distance, entry_min1, c1, delta);65

gsl_matrix_set(distance, c1, entry_min1, delta);66

}67

Finally, the current number of clusters is reduced by one (line 68), the root

of the dendrogram is set if necessary (lines 69 and 70) the entries of the last

current row and column are put to the row and column where previously

the distances of the second cluster were stored (lines 71–75), the entries

of pos and cluster for the new cluster are set (lines 77 and 78), and the

counter for the next available cluster ID is increased by one (line 79). After

the main loop has finished, the memory which is associated to those data

structures which are not used any more is freed (lines 83 and 84):

num_clusters--;68

if(num_clusters == 1)69

tree = &(node[next_ID]); /* set root of tree */70

last_ID = cluster[num_clusters];/* last cluster -> entry_min2 */71

pos[last_ID] = entry_min2;72

cluster[entry_min2] = last_ID;73

gsl_matrix_swap_rows(distance, num_clusters, entry_min2);74

gsl_matrix_swap_columns(distance, num_clusters, entry_min2);75

76

cluster[entry_min1] = next_ID;77

pos[next_ID] = entry_min1;78

next_ID++;79

80

}81

82

free(pos); /* clean up */83
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free(cluster);84

85

return(tree);86

}87
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Fig. 8.47 Results of the clustering of sample set B with agglomerative clustering. Up-
per left: dendrogram using average linkage clustering for sample set A. Upper right:
dendrogram using average linkage clustering for sample set B. Lower left: clusters for
sample set B obtained when cutting the dendrogram at height δ = 1.12. Lower right:
dendrogram using single-linkage clustering for sample set B.

In Fig. 8.47 the resulting dendrograms for sample sets A and B are

shown. When cutting the dendrogram for sample set A at the most obvious

height, indeed three clusters emerge. On the other hand, one has to cut

the dendrogram for sample set B at a lower height to obtain a clustering

where the cluster in the middle is separate from the “ring”, resulting in

five clusters. When considering a height where four clusters emerge, the

“central” cluster will be merged with the cluster to the left indicated by
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the symbol ×, thus “ring” and “central” part are not separated. More

successful is the single-linkage agglomerative approach (not shown here),

but this is essentially equivalent to the neighbor-based clustering. The

difference (and improvement) is that also a dendrogram is obtained which

allows to obtain the most natural threshold and to analyze hierarchical sub

structures.

Note that the source code cluster.c also contains the function

cluster list tree() which prints for a given dendrogram and a given

threshold θ the positions of the data points ordered by the clusters, i.e., be-

tween every cluster there will be printed two empty lines.19 This function

can be easily extended that, e.g. cluster IDs are assigned to the initial data

points.

8.6 General estimators

In Sec. 8.3, different methods are presented of how to estimate param-

eters which can be obtained directly and simply from the given sample

{x0, x1, . . . , xn−1}. In this section, a general method is considered which

enables estimators to be obtained for arbitrary parameters of probability

distributions. The method is based on the maximum-likelihood principle,

which is exposed in Sec. 8.6.1. This principle can be extended to the mod-

eling of data, where often a sample of triplets {(x0, y0, σ0), (x1, y1, σ1),
. . . , (xn−1, yn−1, σn−1)} is given. Typically the xi data points represent

some control parameter, which can be chosen in the simulation, such as

the temperature of a gas. It is assumed that all xi values are different.

Consequently, the simulation has been carried out at n different values of

the control parameter. The yi data points are averages of measurements

(e.g. the density of the gas) obtained in the simulations for the fixed value

xi of the control parameter. The σi values are the corresponding error

bars.20 Modeling the data means that one wants to determine a relation-

ship y = y(x). Usually some assumptions or knowledge about the rela-

tionship are available, which means one has available one parametrized test

function yθ(x). Consequently, the set of parameters θ has to be adjusted

such that the function yθ(x) fits the sample “best”. This is called data

fitting and will be explained in Sec. 8.6.2. This approach can also be used

19This can be used in gnuplot using the index plot keyword to plot the data points
of different clusters using different symbols.

20Sometimes also the xi data points are measured quantities which are also character-
ized by error bars. The generalization of the methods to this case is straightforward.

09-Oct- 2014



October 9, 2014 14:51 Big Practical Guide to Computer Simulations book4˙2nd page 364

364 Big Practical Guide to Computer Simulations

to compare several fitted test functions to determined which represents the

most suitable model.

8.6.1 Maximum likelihood

Here, we consider the following task: For a given sample {x0, x1, . . . , xn−1}
and a probability distribution represented by a pmf pθ(x) or a pdf fθ(x),

we want to determine the parameters θ = (θ1, . . . , θnp
) such that the pmf

or pdf represents the data “best”. This is written in parentheses, because

there is not unique definition what “best” means, or even a mathematical

way to derive a suitable criterion. If one assumes no prior knowledge about

the parameters, one can use the following principle:

Definition 8.26 The maximum-likelihood principle states that the pa-

rameters θ should be chosen such that the likelihood of the data set, given

the parameters, is maximal.

In case of a discrete random variable, if it can be assumed that the

different data points are independent, the likelihood of the data is just

given by the product of the single data point probabilities. This defines the

likelihood function

L(θ) ≡ pθ(x1)pθ(x2) . . . pθ(xn−1) =

n−1∏
i=0

pθ(xi) (8.92)

For the continuous case, the probability is zero that one obtains during

a random experiment a certain sample exactly. Nevertheless, for a small

uncertainty parameter ε, the probability to obtain a value in the interval

[x̃ − ε, x̃ + ε] is P (x̃ − ε ≤ X < x̃ + ε) =
∫ x̃+ε

x̃−ε fθ(x) dx ≈ fθ(x̃)2ε. Since

2ε enters just as a factor, it is not relevant to determining the maximum.

Consequently, for the continuous case, one considers the following likelihood

function

L(θ) ≡ fθ(x1)fθ(x2) . . . fθ(xn−1) =

n−1∏
i=0

fθ(xi) (8.93)

To find the maximum of a likelihood function L(θ) analytically, one has

to calculate the first derivatives with respect to all parameters, respectively,

and requires them to be zero. Since calculating the derivative of a product

involves the application of the product rule, it is usually more convenient
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to consider the log-likelihood function

l(θ) ≡ logL(θ) . (8.94)

This turns the product of single-data-points pmfs or pdfs into a sum, where

the derivatives are easier to obtain. Furthermore, since the logarithm is a

monotonous function, the maximum of the likelihood function is the same

as the maximum of the log-likelihood function. Hence, the parameters

which suit “best” are determined within the maximum-likelihood approach

by the set of equations

∂l(θ)

∂θk

!
= 0 (k = 1, . . . , np) (8.95)

Note that the fact that the first derivatives are zero only assures that an

extremal point is obtained. Furthermore, these equations often have several

solutions. Therefore, one has to check explicitly which solutions are indeed

maxima, and which is the largest one. Note that maximum-likelihood esti-

mators, since they are functions of the samples, are also random variables

MLθk,n(X0, . . . , Xn−1).

As a toy example, we consider the exponential distribution with the pdf

given by Eq. (8.39). It has one parameter μ. The log-likelihood function

for a sample {x0, x1, . . . , xn−1} is in this case

l(μ) = log

n−1∏
i=0

fμ(xi)

=

n−1∑
i=0

log

{
1

μ
exp

(
−xi
μ

)}

=

n−1∑
i=0

(
log

{
1

μ

}
− xi
μ

)
= n log

{
1

μ

}
− n

μ
x

Taking the derivative with respect to μ we obtain:

0
!
=
∂L(θ)

∂μ
= n

−1

μ2
μ− −n

μ2
x =

−n
μ2

(μ− x)

This implies μ = x. It is easy to verify that this corresponds to a maximum.

Since the expectation value for the exponential distribution is just E[X ] =
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μ, this is compatible with the result from Sec. 8.3, where it was shown that

the sample mean is an unbiased estimator of the expectation value.

If one applies the maximum-likelihood principle to a Gaussian distribu-

tion with parameters μ and σ2, one obtains (not shown here, see for example
[Dekking et al (2005)]) as maximum-likelihood estimators the sample mean

x (for μ) and the sample variance s2 (for σ2), respectively. This means

(see Eq. (8.58)) that the maximum-likelihood estimator for σ2 is biased.

Fortunately, we know that the bias disappears asymptotically for n → ∞.

Indeed, it can be shown, under rather mild conditions on the underlying dis-

tributions, that all maximum-likelihood estimators MLθk,n(X0, . . . , Xn−1)

for a parameter θk are asymptotically unbiased, i.e.

lim
n→∞

E[MLθk,n] = θk (8.96)

In contrast to the exponential and Gaussian cases, for many applications

the maximum-likelihood parameter is not directly related to a standard

sample estimator. Furthermore, MLθk,n can often even not be determined

analytically. In this case, one has to optimize the log-likelihood function

numerically, for example, using the corresponding methods from the GNU

scientific library (GSL) (see Sec. 7.3).

GET SOURCE CODE

DIR: randomness
FILE(S): max likely.c

As example, we consider the Fisher-Tippett

distribution, see Eq. (8.43), shifted to exhibit

the maximum at x0 instead of at 0. Hence, we

have two parameters λ and x0 to adjust. The

function to be optimized (the target function), i.e. the log-likelihood func-

tion here, must be of a special format when using the minimization func-

tions of the GSL. This first argument of the target function contains the

pdf parameters to be adjusted, i.e. the main argument vector of the target

function. This argument must be of the type gsl_vector, which is a GSL

type for vectors. One needs to include <gsl/gsl_vector.h> to use this

data type. These vectors are created using gsl_vector_alloc(), set ele-

ments via gsl_vector_set(), access elements via gsl_vector_get() and

delete the vectors via gsl_vector_free(). The usage of these functions

should be self-explanatory from the examples below, but you may also have

a look at the GSL documentation [Galassi et al. (2006)].

The second argument of the target function contains one pointer to all

additional data needed to calculate the target function, i.e. the sample in

this case. Thus, the sample must be stored in one chunk of memory. For

this purpose, we use the following structure type:
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typedef struct

{

int n; /* number of sample points; */

double *x; /* sample */

}

sample_t;

Since the GSL package contains actually minimization functions, while

we are interested in a maximum, the actual log-likelihood function returns

minus the log-likelihood. The log-likelihood function reads as follows:

double ll_ft(const gsl_vector *par, void *param)1

{2

double lambda, x0; /* parameters of pdf */3

sample_t *sample; /* sample */4

double sum; /* sum of log-likelihood contributions */5

int i; /* loop counter */6

7

lambda = gsl_vector_get(par, 0); /* get data */8

x0 = gsl_vector_get(par, 1);9

sample = (sample_t *) param;10

11

sum = sample->n*log(lambda); /* calculate log likelihood */12

for(i=0; i<sample->n; i++)13

sum -= lambda*(sample->x[i]-x0) +14

exp(-lambda*(sample->x[i]-x0));15

16

return(-sum); /* return - log likelihood */17

}18

First, we convert the pointers passed as arguments to the data format

that we find useful (lines 8–10). Next, the actual log likelihood

l(λ, xo) = n logλ− λ

n−1∑
i=0

(xi − x0) −
n−1∑
i=0

exp(−λ(xi − x0))

is calculated in lines 12–15 and finally returned with inverted sign (line 17).

The GSL has built in several minimization algorithms. They are all

put under one of two frameworks. One framework is for algorithms which

require the target function and its first derivatives. The other framework

contains algorithms where just the target function is sufficient. Here we

use the simplex algorithm, which belongs to the latter form. It works by

spanning a simplex,21 evaluating the target functions at the corners of the
21A simplex is a convex set in an n-dimensional space generated by n+1 corner points.
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simplex, and iteratively changing the simplex until it is very small and con-

tains the solution. Note that the algorithm is only able to find local minima,

and only one of them. If several minima exist, the choice of the initial pa-

rameters strongly influence the final results; Here, one maybe has to try

several parameters. For details see [Galassi et al. (2006)]. Here we only

show how to use the minimizer. The minimizer itself is stored in a special

data structure of type gsl_multimin_fminimizer. The target function has

to be put into a “surrounding” variable of type gsl_multimin_function.

Furthermore, one needs two gsl_vector variables to store the current esti-

mate for the optimum (specifying the position of the simplex) and to store

the size of the simplex. Also, par is used here to state the dimension of the

target function argument (2) and sample to store the sample.

These variables are declared as follows:

int num_par; /* number of parameters */

sample_t sample; /* sample */

gsl_multimin_fminimizer *s; /* the full mimimizer */

gsl_vector *simplex_size; /* (relative) simplex size */

gsl_vector *par; /* params to be optimized = args of target */

gsl_multimin_function f; /* holds function to be optimized */

The actual allocation and initialization of these variables may look as

follows:

sample.n = 10000; /* initilization */

sample.x = (double *) malloc(sample.n*sizeof(double));

num_par = 2;

f.f = &ll_ft; /* initialize minimization */

f.n = num_par;

f.params = &sample;

simplex_size = gsl_vector_alloc(num_par); /* alloc simplex */

gsl_vector_set_all(simplex_size, 1.0); /* init simplex */

par = gsl_vector_alloc(num_par); /* alloc + init arguments */

gsl_vector_set(par, 0, 1.0);

gsl_vector_set(par, 1, 1.0);

s =

gsl_multimin_fminimizer_alloc(gsl_multimin_fminimizer_nmsimplex,

num_par);

gsl_multimin_fminimizer_set(s, &f, par, simplex_size);

The set-up of the minimizer object comes in two steps, first allo-

cation using gsl_multimin_fminimizer_alloc(), then initialization via
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gsl_multimin_fminimizer_set() while passing the target function, the

starting point par and the (initial) simplex size.22 The sample.x[] array

has to be filled with the actual sample (not shown here).

The minimization loop looks as follows:

do /* perform minimization */

{

iter++;

status = gsl_multimin_fminimizer_iterate(s); /* one step */

if(status) /* error ? */

break;

size = gsl_multimin_fminimizer_size(s); /* converged ? */

status = gsl_multimin_test_size(size, 1e-4);

}

while( (status == GSL_CONTINUE) && (iter<100) );

The main work is done in gsl_multimin_fminimizer_iterate().

Then it is checked whether an error has occurred. Next, the size of the

simplex is calculated and finally tested whether the size falls below some

limit, 10−4 here.

The actual estimate of the parameters can be obtained via

gsl_vector_get(s->x, 0) and gsl_vector_get(s->x, 1). Note that fi-

nally all allocated memory should be freed:

gsl_vector_free(par); /* free everything */

gsl_vector_free(simplex_size);

gsl_multimin_fminimizer_free(s);

free(sample.x);

As an example, n = 10000 data points were generated according to

a Fisher-Tippett distribution with parameters λ = 3.0, x0 = 2.0. With

the above starting parameters, the minimization converged to the values

λ̂ = 2.995 and x̂0 = 2.003 after 39 iterations.

8.6.2 Data fitting

In the previous section, the parameters of a probability distribution are

chosen such that the distribution describes the data best. Here, we consider

a more general case, called modeling of data. As explained above, here

22The simplex is spanned by par and the n vectors given by par plus (0, . . . , 0,
simplex size[i], 0, . . . , 0) for i = 1, . . . , n.
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a sample of triplets {(x0, y0, σ0), (x1, y1, σ1), . . . , (xn−1, yn−1, σn−1)} is

given. Typically, the yi are measured values obtained from a simulation

with some control parameter (e.g. the temperature) fixed at different values

xi; σi is the corresponding error bar of yi. Here, one wants to determine

parameters θ = (θ1, . . . , θnp
) such that the given parametrized function

yθ(x) fits the data “best”, one says one wants to fit the function to the

data. Similar to the case of fitting a pmf or a pdf, there is no general

principle of what “best” means.

Let us assume that the yi are random variables, i.e. comparing different

simulations. Thus, the measured values are scattered around their “true”

values yθ(xi). This scattering can be described approximately by a Gaus-

sian distribution with mean yθ(xi) and variance σ2
i :

qθ(yi) ∼ exp

(
− (yi − yθ(xi))

2

2σ2
i

)
. (8.97)

This assumption is often valid, e.g. when each sample point yi is itself a

sample mean obtained from a simulation performed at control parameter

value xi, and σi is the corresponding error bar. The log-likelihood function

for the full data sample is

l(θ) = log

n−1∏
i=0

qθ(yi)

∼ −
n−1∑
i=0

1

2

(
yi − yθ(xi)

σi

)2

Maximizing l(θ) is equivalent to minimizing −2l(θ), hence one minimizes

the mean-squared difference

χ2
θ =

n−1∑
i=0

(
yi − yθ(xi)

σi

)2

(8.98)

This means the parameters θ are determined such that function yθ(x)

follows the data points {(x0, y0), . . . (xn−1, yn−1)} as close as possible, where

the deviations are measured in terms of the error bars σi. Hence, data points

with smaller error bar enter with more weight. The full procedure is called

least-squares fitting.

The minimized mean-squared difference is a random variable. Note that

the different terms are not statistically independent, since they are related

by the np parameters θ̂ which are determined via minimizing χ2
θ. As a

09-Oct- 2014



October 9, 2014 14:51 Big Practical Guide to Computer Simulations book4˙2nd page 371

Randomness and Statistics 371

consequence, the distribution of χ2
θ̂
is approximately given by chi-squared

distribution (see Eq. (8.45) for the pdf) with n − np degrees of freedom.

This distribution can be used to evaluate the statistical significance of a

least-squares fit, see below.

In case, one wants to model the underlying distribution function for

a sample as in Sec. 8.6.1, say for a continuous distribution, it is possible

in principle to use the least-squares approach as well. In this case one

would fit the parametrized pdf to a histogram pdf, which has also the

above mentioned sample format {(xi, yi, σi)}. Nevertheless, although the

least-squares principle is derived using the maximum-likelihood principle,

usually different parameters are obtained if one fits a pdf to a histogram pdf

compared to obtaining these parameters from a direct maximum-likelihood

approach. Often [Bauke (2007)], the maximum-likelihood method gives

more accurate results. Therefore, one should use a least-squares fit mainly

for a fit of a non-pmf/non-pdf function to a data set.

Fortunately, to actually perform least-squares fitting, you do not have

to write your own fitting functions, because there are very good fitting

implementations readily available. Both programs presented in Sec. 8.4,

gnuplot and xmgrace, offer fitting to arbitrary functions. It is advisable to

use gnuplot , since it offers higher flexibility for that purpose and gives you

more information useful to estimate the quality of a fit.

As an example, let us suppose that you want to fit an algebraic function

of the form f(L) = e∞+ aLb to the data set of the file sg e0 L.dat shown

on page 302. First, you have to define the function and supply some rough

(non-zero) estimations for the unknown parameters. Note that the expo-

nential operator is denoted by ** and the standard argument for a function

definition is x, but this depends only on your choice:

gnuplot> f(x)=e+a*x**b

gnuplot> e=-1.8

gnuplot> a=1

gnuplot> b=-1

The actual fit is performed via the fit command. The program uses

the nonlinear least-squares Levenberg-Marquardt algorithm [Press et al.

(1995)], which allows a fit data to almost all arbitrary functions. To issue

the command, you have to state the fit function, the data set and the

parameters which are to be adjusted. First, we consider the case where

just two columns of the data are used or available (in this case, gnuplot

assumes σi = 1). For our example you enter:
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gnuplot> fit f(x) "sg_e0_L.dat" via e,a,b

Then gnuplot writes log information to the output describing the fitting

process. After the fit has converged it prints for the given example:

After 8 iterations the fit converged.

final sum of squares of residuals : 7.55104e-06

rel. change during last iteration : -2.54894e-10

degrees of freedom (FIT_NDF) : 5

rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.00122891

variance of residuals (reduced chisquare) = WSSR/ndf : 1.51021e-06

Final set of parameters Asymptotic Standard Error

======================= ==========================

e = -1.78786 +/- 0.0008548 (0.04781%)

a = 2.54248 +/- 0.2282 (8.976%)

b = -2.80103 +/- 0.08264 (2.951%)

correlation matrix of the fit parameters:

e a b

e 1.000

a 0.708 1.000

b -0.766 -0.991 1.000

The most interesting lines are those where the results θ̂ for your pa-

rameters along with the standard error bar are printed.23 Additionally, the

quality of the fit can be estimated by the information provided in the three

lines beginning with “degree of freedom”. The first of these lines states

the number of degrees of freedom, which is just n − np. As visible in the

brackets, within gnuplot this is available in the variable FIT NDF:

gnuplot> print FIT_NDF

5

The mean-squared difference χ2
θ̂
is denoted as WSSR in the gnuplot output.

The root of this mean-squared difference per degree of freedom is stored in

the gnuplot variable FIT STDFIT.

23These “error bars” are calculated in a way which is in fact correct only when fitting
linear functions; hence, they have to be taken with care.
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A measure of quality of the fit is the probability Q that the value of

the mean-squared difference is equal or larger compared to the value from

the current fit, given the assumption that the data points are distributed

as in Eq. (8.97) [Press et al. (1995)]. The larger the value of Q, the better

is the quality of the fit. As mentioned above, Q can be evaluated from

a chi-squared distribution with n − np degrees of freedom. Since the cu-

mulative chi-squared distribution is related to the normalized incomplete

gamma function, which is available in gnuplot, one can evaluate Q directly

in gnuplot:

gnuplot> Q = 1 - igamma(0.5 * FIT_NDF, 0.5 * FIT_NDF*FIT_STDFIT**2)

Note that in this case we obtain Q = 1, which is so large, because σi = 1

was used, see below.

To watch the result of the fit along with the original data, just enter

gnuplot> plot "sg_e0_L.dat" w e, f(x)

Fig. 8.48 Gnuplot window showing the result of a fit command along with the input
data.

The result is displayed in Fig. 8.48. Please note that the convergence

depends on the initial choice of the parameters. The algorithm may be

trapped into a local minimum in case the parameters are too far away from

the best values. Try the initial values e=1, a=-3 and b=1! Furthermore, not
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all function parameters have to be subjected to the fitting. Alternatively,

you can set some parameters to fixed values and omit them from the via

list at the end of the fit command. Remember that in the above example

all data points enter into the result with the same weight, i.e. σi = 1 ∀i is
assumed. You can tell the algorithm to consider the error bars, for example

supplied in the third column, by typing

gnuplot> fit f(x) "sg_e0_L.dat" using 1:2:3 via e,a,b

Then, data points with larger error bars have less influence on the results.

In this case a different result whith smaller value of Q will arise (try it !).

You can also restrict the data points which are considered for the fit,

which is applicable if only a subset of the sample follows the function law

you are considering. This can be done in the same way as restricting the

range of plotted values, for instance using

gnuplot> fit [5:12] f(x) "sg_e0_L.dat" using 1:2:3 via e,a,b

GET SOURCE CODE

DIR: randomness
FILE(S): parabola.dat
fit restricted.gp

In some cases, it is clear that some param-

eters to be fitted fall into a certain range, e.g.

a parameter must be larger than zero. Within

gnuplot, one cannot explicitly state constraints

to fitting parameters. Instead, this can be

achieved via using suitable functions.

Consider for example that you measure in a simulation the magnetiza-

tion m of a metal as function of an applied field B. Clearly, the magneti-

zation can on average only increase with the field. But due to statistical

fluctuations, for very small fields, you may sometimes actually measure a

small decrease, as visible in the example data file parabola.dat. Now,

you want to extract the so-called susceptibility χ = dm
dB |B→0 via fitting a

parabola m(B) = m0 + bB + cB2:

gnuplot> m(x)=m0+b*x+c*x*x

gnuplot> m0=1

gnuplot> b=1

gnuplot> c=1

gnuplot> fit m(x) "parabola.dat" u 1:2:3 via m0,b,c

This will result in a negative value for the susceptibility χ =b:

Final set of parameters Asymptotic Standard Error

======================= ==========================
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m0 = 1.20905 +/- 0.03342 (2.765%)

b = -0.0576451 +/- 0.25 (433.6%)

c = 3.0935 +/- 0.3017 (9.753%)

Notice the large error bar given for b which is compatible with zero. One can

restrict the coefficient of the linear term via using the exponential function,

which can only take positive values:

m2(x)=m2+exp(b2)*x+c2*x*x

m2=1

b2=-10

c2=1

fit m2(x) "parabola.dat" u 1:2:3 via m2,b2,c2

resulting in

Final set of parameters Asymptotic Standard Error

======================= ==========================

m2 = 1.20357 +/- 0.03354 (2.786%)

b2 = -10.5721 +/- 9840 (9.308e+04%)

c2 = 3.02815 +/- 0.3027 (9.996%)

Thus, the resulting value of b2 will be negative, i.e., the effective value of

the linear coefficient is close to zero but positive: b= exp(b2) = 2.6× 10−5.

Note that here the effect is rather small, the resulting function m2(B) cannot

be distinguished from m(B). But for other cases, in particular when the fit

converges to something completely off the data, which sometimes happens,

restricting the values of fitting parameters as shown above can help a lot.

For stronger restrictions, e.g. within an interval [b0, b1], the application

of other functions may help. For example, the tanh(), which is available

in gnuplot as well, is limited to the range [-1,1]. Therefore, identifying

b ≡ (b0+(b1−b0)(tanh(b̂)+1)/2) and fitting b̂ will give the desired restriction

for b.

GET SOURCE CODE

DIR: randomness
FILE(S): exp1.dat
multi fit.gp

Finally, we discussmulti-branch fitting. This

means that several function sharing one or more

parameters, possibly having also individual pa-

rameters in addition, are fitted to several inde-

pendent data sets.

As an example, we consider the case of three exponential functions

fi(x) = ai exp(−x/μ) (i = 1, 2, 3), which have different prefactors but share

the same parameter μ. We want to fit the three functions, i.e., determine
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the values of the parameters a0, a1, a2, and μ, to three sets of data gener-

ated from exponential distributions with three different values of a lower

cutoff, but all exhibiting the parameter μ = 1. To make this multi-branch

fitting work within gnuplot, all three data sets have to be contained in one

single file, exp1.dat here, separated by blank lines. First, we define the

three functions:

gnuplot> f0(x)=a0*exp(-x/mu)

gnuplot> f1(x)=a1*exp(-x/mu)

gnuplot> f2(x)=a2*exp(-x/mu)

Next, we have to combine these three functions into a single function,

f(x,s) where the first argument is the same argument as to the functions

f1(x), f2(x), f3(3). The second argument s is used to select among

the three functions. For this purpose, we first define an auxiliary function

delta(a,b), which returns 1 is a=b and 0 else. The definition of the

function uses the conditional operator (see page 20) as known from the

programming language C. This delta(a,b) is used for the actual definition

of f(x,s):

gnuplot> delta(a,b) = (a==b) ? 1 : 0

gnuplot> f(x,s) = delta(s,0)*f0(x)+delta(s,1)*f1(x)+delta(s,2)*f2(x)

From gnuplot 4.4 onwards, you can use as an alternative the value

command, which takes any string as the name of a variable and returns the

value assigned currently to the variable. For our example the command can

be used in the following way:

gnuplot> f(x,s) = value(sprintf("a%d",s))*exp(-x/mu)

Note that all given gnuplot commands are collected in multi fit.gp

and can be executed using gnuplot multi fit.gp. The fit is performed

such that the first column is used as x argument. The argument s is the

index of the current data file expo1.dat. This can be taken automatically

from the data file via stating the “column number” -2 in the second column

of the using part of the fit command, stating the function value at the

third column, and the error bars as fourth column24

gnuplot> fit f(x,y) "expo1.dat" using 1:-2:2:3 via a0,a1,a2,mu

24Apparently, the multi-branch fit seems not to work if no error bars are included.
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which results in a joint fit of all three functions (combined into one) to all

three data sets:

Final set of parameters Asymptotic Standard Error

======================= ==========================

a0 = 1.00658 +/- 0.003899 (0.3874%)

a1 = 2.75671 +/- 0.01422 (0.5157%)

a2 = 7.54958 +/- 0.05115 (0.6775%)

mu = 0.992714 +/- 0.001955 (0.1969%)

Note that the error bar to the parameter μ is smaller compared to fitting

any of the functions of just one of the data sets (please try), which does

not necessarily mean that the obtained parameter is actually closer to the

real value.

Finally, the original data, containing all three sets, is plotted together

with the three different exponentials:

gnuplot> set logscale y

gnuplot> plot "expo1.dat" u 1:2:3 w e, \

f(x,0) title sprintf("a0=%f", a0),\

f(x,1) title sprintf("a1=%f", a1), \

f(x,2) title sprintf("a2=%f", a2)

Note that here also the sprintf() C-like command is used to allow for

formatted printing of strings and labels.

More information on how to use the fit command, such as fitting

higher-dimensional data, can be obtained when using the gnuplot online

help via entering help fit.
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Exercises
(solutions: can be downloaded from http://www.worldscientific.com/r/9019-supp)

(1) Simple sampling from discrete distribution

Design, implement and test a function, which
returns a random number which is dis-
tributed according to some discrete distribu-
tion function stored in an array F. Use the
simple approach as described in Sec. 8.2.2.

SOLUTION SOURCE CODE

DIR: randomness
FILE(S): poisson.c

The function prototype reads as follows:

/******************** rand_discrete() *****************/

/** Returns natural random number distributed **/

/** according a discrete distribution given by the **/

/** distribution function in array ’F’ **/

/** Uses search in array to generate number **/

/** PARAMETERS: (*)= return-parameter **/

/** n: number of entries in array **/

/** F: array with distribution function **/

/** RETURNS: **/

/** random number **/

/******************************************************/

int rand_discrete(int n, double *F)

For simplicity, you can use the drand48() function from the standard C
library to generate random numbers distributed according to U(0, 1).

Furthermore, design, implement and test a function, which allocates and ini-
tializes the array F for a Poisson distribution with parameter μ, see Eq. (8.27)
for the probability mass function. The function should determine automati-
cally how many entries of F are needed, depending on the paramater μ. The
function prototype reads as follows:

/********************* init_poisson() *****************/

/** Generates array with distribution function **/

/** for Poisson distribution with mean mu: **/

/** p(k)=mu^k*exp(-mu)/k! **/

/** The size of the array is automatically adjusted. **/

/** PARAMETERS: (*)= return-parameter **/

/** (*) n_p: p. to number of entries in table **/

/** mu: parameter of distribution **/

/** RETURNS: **/

/** pointer to array with distribution function **/

/******************************************************/

double *init_poisson(int *n_p, double mu)
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Hints: To determine the array sizes, you can first loop over the probabilities
and take the first value k_0 where p(k_0) = 0 within the precision of the
numerics. This value of k_0 serves as array size. Alternatively, you start
with some size and extend the array if needed by doubling its size. For
testing purposes, you can generate many numbers, calculate the mean and
compare it with μ. Alternatively, you could record a histogram (see Chap.
5) and compare with Eq. (8.27).

(2) Constant-time sampling from discrete distribution

Correspondingly to exercise (1), implement the approach for drawing random
numbers from a discrete distribution in constant time. You should first setup
the table representing the pmf of the Poisson distribution with parameter μ,
see Eq. (8.27) with a function double *init poisson pmf(int *n p, double

mu), similar to the function double *init poisson() from exercise (1), which
sets up the distribution function.

For representing the table, you can use the following data structure:

typedef struct

{

int num_entries; /* number of outcomes */

double *q; /* splitting probabilities */

int *a; /* events for rand<=q */

int *b; /* events for rand>q */

} discrete_variate_t;

Set up the table according Walker’s method as shown in the second part of
Sec. 8.2.2. YOu can use the following prototype:

/******************* setup_table() *********************/

/** Sets up table to generate discrete random numbers **/

/** in constant time using the Walker’s method , as **/

/** implemented in K. Fukui & S. Todo, J. Comp. Phys. **/

/** 228 (2009) 2629-2642 **/

/** PARAMETERS: (*)= return-paramter **/

/** num_entries: number of possible results **/

/** p: original probabilities **/

/** RETURNS: **/

/** table with auxiliary variables **/

/*******************************************************/

discrete_variate_t setup_table(int num_entries, double *p)

You should also implement a function for drawing a random number:
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/******************* draw_number() *********************/

/** Draw discrete number using the Walker’s method. **/

/** PARAMETERS: (*)= return-paramter **/

/** table: for drawing discrete random numbers **/

/** RETURNS: **/

/** random number **/

/*******************************************************/

int draw_number(discrete_variate_t * table)

Test your implementation, as in exercise 1, by drawing many random num-
bers, calculating the mean and compare it with μ, or, even better, by record-
ing a histogram (see Chap. 5) and comparing it with Eq. (8.27).

(3) Inversion Method for Fisher-Tippett distribution

Design, implement and test a function, which
returns a random number which is dis-
tributed according to the Fisher-Tippett dis-
tribution Eq. (8.43) with parameter λ. Use
the inversion method.

SOLUTION SOURCE CODE

DIR: randomness
FILE(S):
fischer tippett.c

The function prototype reads as follows:

/******************** rand_fisher_tippett() ***********/

/** Returns random number which is distributed **/

/** according the Fisher-Tippett distribution **/

/** PARAMETERS: (*)= return-parameter **/

/** lambda: parameter of distribution **/

/** RETURNS: **/

/** random number **/

/******************************************************/

double rand_fisher_tippett(double lambda)

Remarks: For simplicity, you can use the drand48() function from the stan-
dard C library to generate random numbers distributed according to U(0, 1).
To test your function, you can calculate the mean of the generated numbers,
for instance, and compare it with the expectation value ∼ 0.57721/λ.

(4) Rejection Method for Gaussian

Implement a function which returns a Gaus-
sian distributed (pseudo) random number
using the rejection approach via bordering
the Gaussian by an exponential exp(−x), as
shown in Sec. 8.2.4.

SOLUTION SOURCE CODE

DIR: randomness
FILE(S):
gauss reject.c

The function prototype reads as follows:
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/**************** reject_gaussian() *******************/

/** Generates Gaussian distributed random number **/

/** using the rejection method via bordering the **/

/** positive part of the Gaussian by exp(-x). With **/

/** probability 1/2 the sign is negated. **/

/** PARAMETERS: (*)= return-paramter **/

/** none **/

/** RETURNS: **/

/** random number **/

/******************************************************/

double reject_gaussian()

Remarks: For simplicity, you can use the drand48() function from the stan-
dard C library to generate random numbers distributed according to U(0, 1).
To test your function, you can make a histogram pdf and compare with the
pdf of the Gaussian distribution Eq. (8.36).

(5) Variance of data sample

Design, implement and test a function, which
calculates the variance s2 of a sample of data
points. Use directly Eq. (8.55), i.e. do not use
an equivalent form of Eq. (8.21), since this
form is more susceptible to rounding errors.

SOLUTION SOURCE CODE

DIR: randomness
FILE(S): variance.c

The function prototype reads as follows:

/********************** variance() ********************/

/** Calculates the variance of n data points **/

/** PARAMETERS: (*)= return-parameter **/

/** n: number of data points **/

/** x: array with data **/

/** RETURNS: **/

/** variance **/

/******************************************************/

double variance(int n, double *x)

Remark: The so-called corrected double-pass algorithm [Chan et al. (1983)]

aims at further reducing the rounding error. It is based on the equation

s2 =
1

n

⎡
⎣n−1∑

i=0

(x− x)2 −
1

n

(
n−1∑
i=0

(xi − x)

)2
⎤
⎦ .

The second square would be zero for exact arithmetic and accounts for round-
ing errors occurring in the calculation. It becomes important in particular
if the expectation value is large. Perform experiments for generating Gaus-
sian distributed number with σ2 = 1 and μ = 1014, without and with the
correction.

09-Oct- 2014



October 9, 2014 14:51 Big Practical Guide to Computer Simulations book4˙2nd page 382

382 Big Practical Guide to Computer Simulations

(6) Bootstrap

Design, implement and test a function, which
uses bootstrapping to calculate the confi-
dence interval at significance level α given
in Eq. (8.70).

SOLUTION SOURCE CODE

DIR: randomness
FILE(S):
bootstrap ci.c

The function prototype reads as follows:

/***************** bootstrap_ci() *********************/

/** Calculates a confidence interval by ’n_resample’ **/

/** times resampling the given sample points **/

/** and each time evaluation the estimator ’f’ **/

/** PARAMETERS: (*)= return-parameter **/

/** n: number of data points **/

/** x: array with data **/

/** n_resample: number of bootstrap iterations **/

/** alpha: confidence level **/

/** f: function (pointer) = estimator **/

/** (*) low: (p. to) lower boundary of conf. int.**/

/** (*) high: (p. to) upper boundary of conf. int.**/

/** RETURNS: **/

/** (nothing) **/

/******************************************************/

void bootstrap_ci(int n, double *x, int n_resample,

double alpha, double (*f)(int, double *),

double *low, double *high)

Hints: Use the function bootstrap_variance() as example. To get the en-
tries at the positions defined via Eq. (8.70), you can sort the bootstrap sample
first using qsort(), see Sec. 7.1.

You can test your function by using the provided main file bootstrap_test.c,
the auxiliary files mean.c and variance.c and by compiling with
cc -o bt bootstrap_test.c bootstrap_ci.c mean.c variance.c -lm

-DSOLUTION. Note that the macro definition -DSOLUTION makes the main()

function to call bootstrap_ci() instead of bootstrap_variance().

(7) Plotting data

Plot the data file FTpdf.dat using xmgrace.
The file contains a histogram pdf generated
for the Fisher-Tippett distribution. The file
format is 1st column: bin number, 2nd: bin
midpoint, 3rd: pdf value, 4th: error bar. Use

SOLUTION SOURCE CODE

DIR: randomness
FILE(S): FTplot.agr

the “block data” format to read the files (columns 2,3,4). Create a plot with
inset. The main plot should show the histogram pdf with error bars and
logarithmically scaled y axis, the inset should show the data with linear axes.
Describe the plot using a text label placed in the plot. Choose label sizes,
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line width and other styles suitably. Store the result as .agr file and export
it to a postscript (eps) file.

The result should look similar to:
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)
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Fisher-Tippett
distribution

(8) Chi-squared test

Design, implement and test a function, which
calculates the χ2 test statistics for two his-
tograms {hi}, {ĥi} according Eq. (8.73). The
function should return the p-value, i.e. the

SOLUTION SOURCE CODE

DIR: randomness
FILE(S): chi2hh.c

cumulative probability (“p-value”) that a value of χ2 or larger is obtained
under the assumption that the two histograms were obtained by sampling
from the same (discrete) random variable.

The function prototype reads as follows:
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/********************* chi2_hh() ***********************/

/** For chi^2 test: comparison of two histograms **/

/** to probabilities: Probability to **/

/** obtain the corresponding chi2 value or worse. **/

/** It is assumed that the total number of data points**/

/*+ in the two histograms is equal ! **/

/** **/

/** Parameters: (*) = return parameter **/

/** n_bins: number of bins **/

/** h: array of histogram values **/

/** h2: 2nd array of histogram values **/

/** **/

/** Returns: **/

/** p-value **/

/*******************************************************/

double chi2_hh(int n_bins, int *h, int *h2)

Hints: Use the function chi2_hd() as example. Include a test, which verifies
that the total number of counts in the two histograms agree.

To test the function: Generate two histograms according to a binomial distri-
bution with parameters n = par_n= 10 and p = 0.5 or p = par_p. Perform
a loop for different values of par_p and calculate the p-value each time using
the gsl_cdf_chisq_Q() function of the GNU scientific library (GSL) (see
Sec. 7.3).

(9) Linear correlation coefficient

Design, implement and test a function, which
calculates the linear correlation coefficient r
to measure the strength of a correlation for a
sample {(x0, y0), (x1, y1), . . . , (xn−1, yn−1)}.

SOLUTION SOURCE CODE

DIR: randomness
FILE(S): lcc.c

The function prototype reads as follows:

/**************************** lcc() ********************/

/** Calculates the linear correlation coefficient **/

/** **/

/** Parameters: (*) = return parameter **/

/** n: number of data points **/

/** x: first element of sample set **/

/** y: second element of sample set **/

/** **/

/** Returns: **/

/** r **/

/*******************************************************/

double lcc(int n, double *x, double *y)

Remark: Write a main() function which generates a sample in the following
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way: the xi numbers are generated from a standard Gaussian distribution
N(0, 1) while each yi number is drawn from a Gaussian distribution with
expectation value κxi (variance 1). Study the result for different values of κ
and n.

(10) Least-squares fitting

Copy the program from exercise (3) to a new
program and change it such that numbers
for a shifted Fisher-Tippett with parameters
λ and peak position x0 are generated. The
numbers should be stored in a histogram and
a histogram pdf should be written to the
standard output.

SOLUTION SOURCE CODE

DIR: randomness
FILE(S): fitFT.gp
fisher tippett2.c

• Choose the histogram parameters (range, bin range) such that the his-
tograms match the generated data well.

• Run the program to generate n = 105 numbers for parameters x0 = 2.0
and λ = 3.0. Pipe the histogram pdf to a file (e.g. using > ft.dat at the
end of the call).

• Plot the result using gnuplot.
• Define the pdf for the Fisher-Tippett distribution in gnuplot and fit the

function to the data with x0 and λ as adjustable parameters. Choose a
suitable range for the fit.

• Plot the data together with the fitted function.
• How does the result compare to the maximum-likelihood fit presented in

Sec. 8.6.1?
• Does the fit (in particular for λ) get better if you increase the number of

sample points to 106?

Hints: The shift is implemented by just adding x0 to the generated random
number. Use either the histograms from Chap. 5, or implement a “poor-
mans histogram” via an array hist ( see also in the main() function of the
reject.c program partly presented in Sec. 8.2.4).
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Chapter 9

Information Retrieval, Publishing and

Presentations

When you need the information given in this chapter, you have advanced

very far, congratulations! You have almost completed a full cycle of a

scientific computer simulation project. The results of your simulations are

analyzed and now you want to prepare a publication or give a talk.

In this chapter, some basic information about preparing your own pre-

sentations and publications is given. Since it fits best here, it is also ex-

plained how to search for literature and other science-related information,

although you need to do this at all stages of a project.

The tools described in this section, should allow you to solve all technical

problems occurring in the process of preparing a publication (a “paper”).

Once you have prepared the paper, usually together with some coauthors,

you should give it to at least one other person, who should read it carefully.

Probably, he/she will find some errors or indicate passages which might

be difficult to understand or misleading. You should always take such

comments very seriously, because the average reader knows much less about

your problem than you do.

When all necessary changes have been performed, and you and other

readers are satisfied with the publication, you can submit it to a scientific

journal. You should choose a journal which suits the content of your paper.

Where actually to submit, you should discuss with experienced researchers,

often your coauthors. It is not possible to give general advice on this issue.

Nevertheless, technically the submission can be performed electronically

over the Internet for almost all journals. Submitting one paper to several

journals in parallel is not allowed. However, you should consider submitting

also to a preprint server [arXiv] to make your results quickly available to

the science community. Most journals allow that you make a preliminary

version available in advance. Read the submission conditions carefully! You

387
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can find an overview of the publisher copyright policies for most important

scientific journals in the data base Romeo [Romeo].

9.1 Searching for Literature

Before starting a project, having the goal to contribute to the science com-

munity and even to publish your results, you should be aware of what exists

already. This prevents you from redoing something which has been done

before by someone else. Furthermore, knowing previous results and many

simulation techniques allows you to conduct your own research projects

much better. Unfortunately, much information cannot be found in text-

books. The information is scattered over the world and changes continu-

ously. On any working day, the scientific output is much larger than one

scientist can read in his whole life. Thus, you must start to look system-

atically for literature. With modern techniques like the Internet this can

be achieved very quickly. Within this section, it is assumed that you are

familiar with the Internet in general and are able to use a browser. Several

sources of information are stated in the following list.

• Your local (university) library

Although the amount of literature is limited due to space constraints,

you should always check your local library for suitable books concerning

your area of research. Many old issues of scientific journals are not yet

available through the Internet either. Thus, you may have to copy some

articles in the library.

• Scientific journals

Journals are the most important resources of information in science.

Most of them can be accessed conveniently via the Internet, at least if

your university or institute has subscribed to them. This is the primary

source of information. You should consult the most important journals

in your field regularly to see what is going on.

• Preprint server

In the time of the Internet, speed of publication becomes increasingly

important. Meanwhile, many researchers put their publications on the

Los Alamos Preprint server [arXiv], where they become available world-

wide mostly 72 (usually 24) hours after submission. The database is free

of charge and can be accessed from almost everywhere via a browser.

The preprint database is divided into several sections such as physics,
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mathematics or computer science, and corresponding subsections. Sim-

ilar to a conventional literature database, you can search the database,

eventually restricted to a section, for author names, publication years

or keywords in the title/abstract. After you have found an interesting

article, you can download it and print it immediately. File formats are

postscript and pdf . The submission should be usually in TEX/LATEX

(see Sec. 9.3).

Please note that there is no editorial processing at all, that means you

do not have any guarantee on the quality of a paper. If you like, you can

submit a poem describing the beauty of your garden. Nevertheless, the

aim of the server is to make important scientific results available very

quickly. Thus, before submitting an article, you should be sure that it

is correct and interesting, otherwise you might get a poor reputation.

The preprint server also offers access via email. It is possible to sub-

scribe to a certain subject. Then every working day you will receive a

list of all new papers which have been submitted. This is a very conve-

nient way of keeping track of recent developments. But be careful, not

everyone submits to the preprint server. Hence, you still have to read

scientific journals regularly.

• Literature databases

In case you want to obtain a list of all articles written by a specific

author or of all articles on a certain subject, you should consult a liter-

ature database. Unfortunately, the access to these data bases is usually

not free of charge. But usually your library should provide access to the

most important ones via the Internet. If your library/university does

not offer an access to the data base you are interested in, you should

complain.

There are many specialized data bases. In technical sciences and en-

gineering, the INSPEC [INSPEC] data base is the appropriate source

of information. INSPEC frequently surveys almost all scientific jour-

nals in the areas of physics, electronics and computers. For each paper

that appears, all bibliographic information along with the abstract are

stored. You can search the data base, for example, for author names,

keywords (in the abstract or title), publication years or journals. Via

INSPEC it is possible to keep track of recent developments in a certain

field.

Depending on your field of research, a different data base might suit

you better. You should consult the web page of your library to find out

which of them you can access. Modern scientific work is not possible

09-Oct- 2014



October 9, 2014 14:51 Big Practical Guide to Computer Simulations book4˙2nd page 390

390 Big Practical Guide to Computer Simulations

without regularly checking literature data bases.

• Citation data bases

In every scientific paper, some other articles are cited. Sometimes it

is interesting to get the reverse information, i.e. to obtain all papers

which are citing a given article A. This can be useful, if one wants

to learn about the most recent developments which are triggered by

article A. In that case you have to access a citation index . For science,

probably the most important is the Science Citation Index (SCI) which

can be accessed via the Web of Science [Web of Science]. There is also

a version for social sciences. You have to ask your system administrator

or your librarian, whether and how you can access it from your site.

The American Physical Society (APS) [APS] also includes links to

citing articles with the online versions of recent papers. If the citing

article is available via the APS as well, you can immediately access the

article from the Internet. This works not only for citing papers, but

also for cited articles.

• Papercore summary database

Papercore [Papercore] is an online data base for summaries of scien-

tific journals, see screenshot in Fig. 9.1. The data base also contains

review-type documents which introduce a scientific field and collect

links to corresponding summaries. The summaries go much beyond ab-

stracts, since they are about 1/10 of the length of the corresponding

papers. They should contain all necessary information one would re-

member long-time after thoroughly reading a paper. In particular the

summaries may contain formulas, figures and links to other summaries,

as well as the full bibliographic information of the papers. Thus, when

reading summaries, a scientist can save a lot of time, e.g. when getting

an overview over a field. Also writing summaries is very beneficial, be-

cause it forces the summary author to understand a paper much deeper

compared to just reading it. This is particular useful for PhD students,

who in this way learn their field as well as scientific writing much bet-

ter. The author of this book himself has summarized more than 100

papers and also the students of his group have been benefiting much

from contributing to Papercore.

Papercore can be accessed online from everywhere and is free of charge.

Everybody can immediately read summaries. After free registration,

everybody can submit summaries and alter already existing summaries,

similar to the Wikipedia encyclopedia. An important difference is that

the summaries can be submitted conveniently as LATEX files. One can
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Fig. 9.1 A screenshot of the Papercore database. The screen shows the (beginning of
a) summary of a famous paper about an percolation algorithm, widely used in statistical
physics.

download a special summary.cls class, which allows the summary au-

thor to compile the summary on his own computer before finally sub-

mitting.

Note that in the mathematical community such summaries are well

established, since they are contained in the online-accessible Mathe-

matical Reviews (MR) database, which is operated by the American

Mathematical Society. MR was founded in 1940 as a printed summary

journal by Otto Neugebauer, who was a mathematical historian who

emigrated in 1933 from Germany. In contrast to Papercore, the access
[Math. Rev.] to MR is not free of charge, summaries can be written

only by researchers who are addressed by the editors, and all summaries
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are static, i.e., cannot be changed afterwards.

• Web browsing

Except for the sources mentioned so far, nowadays much information is

available online. Many researchers present their work, their results and

their publications on their home pages. Quite often, talks or computer

codes can be downloaded.

In case you cannot find a specific page through your library, or if you are

interested in obtaining all web pages concerning a specific subject, you

should ask a search engine. There are some very popular all-purpose

engines like Google [Google], Yahoo [Yahoo] or Alta Vista [Alta Vista].

Note that Google has a science-specific branch called Google scholar ,

which provides also Internet citation counts. To obtain quick informa-

tion in a field you do not know well, Wikipedia [Wikipedia] is also a

good source.

9.2 Visualization

In many cases, when explaining your results in presentations or publica-

tions, you want to show supporting diagrams, for example, to explain the

model or your simulation algorithm. Such diagrams can conveniently be

drawn using the xfig tool, which is introduced in Sec. 9.2.2.

Special tools exist for some drawing problems. As an example, here the

GraphViz package is presented in Sec. 9.2.3, which can be used to draw

graphs. This is useful in particular if the output of your simulation is some

graph which should be printed nicely.

In many cases, three-dimensional situations are to be displayed. For this

purpose, xfig is not powerful enough. Here, the Povray package is quickly

presented in Sec. 9.2.4.

9.2.1 Presentation-ready figures using gnuplot

GET SOURCE CODE

DIR: literature
FILE(S):
plot PW integrand.gp

integrand.dat

B.dat

Using gnuplot as it comes with a command line

interface, is good for visualizing data quickly.

Nevertheless, the plots will not look very nice

immediately, e.g. the fonts are very small, the

lables will be very simple. With a bit of effort,

it is possible to make plots such that they can

be used in scientific publications. Next, the most important commands and
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options are shown via one specific example. Here, the plot consist of a main

plot (showing file integrand.dat) and an inset (B.dat). The resulting plot

is shown in Fig. 9.2. The gnuplot script plot PW integrand.gp generating

this plot reads as follows:

108700

108750

108800

108850

108900

108950

109000

109050

109100

-48000 -47000 -46000

P
(W

)e
-W

/T

W

N=1282, Bmax=3

0

0.1

0.2

 0  1  2  3

ΔF
/N

-B
m

ax

Bmax

Fig. 9.2 Example plot generated using gnuplot, containing big fonts, different font types,
subscripts, superscripts, additional labels and an inset.

set terminal postscript enhanced "Times-roman" 22 portrait1

set output "PW_integrand.eps"2

3

set multiplot4

5

set size square 16

set nokey7

set label "{/Times-Italic N}=128^2,{/Times-Italic B}_{max}=3"\8

at -47500, 90609

set xtics 100010

set xlabel "{/Times-Italic W}"11

set format y "10^{%4.0f}"12

set ylabel "{/Times-Italic P(W)}e^{/Times-Italic -W/T}"\13

offset 1,014
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plot [-48600:-46000] [8700:9100] "integrand.dat" u 1:($2/log(10.0))15

16

set size square 0.5317

set origin 0.22, 0.17518

set xlabel "{/Times-Italic B_{/Times-Roman max}}" offset -0.3,0.619

set xtics 120

set ylabel "{/Symbol D}{/Times-Italic F/N-B}_{max}" offset 1.5,021

set ytics 0.122

set format y "%g"23

f(x)=a*x24

a=-128*12825

plot [0:3.5][0:0.2] "B.dat" u 1:(($2-f($1))/(128*128)) ps 2 lw 226

In the first line, the output format postscript is chosen. In the

enhanced mode, sub-, superscripts and mixed fonts are available. Next,

the name of the main font and the standard font size 22 points are given,

finally the orientation of the plot. A large font size of 22pt is necessary,

because in scientific journals the plots are usually quite small. Many more

options are available, please enter help terminal postscript in gnuplot

to learn more. In line 2, the name of the output file is stated, as explained

already on page 308.

For enabling several plots in one figure, the command set multiplot

is used in line 4. The combination of a large plot plus a small plot located

inside the large plot results in an inset. Anyway, arbitrary combinations

and nested plots are possible.

The first plot starts in line 6. The plot is squared and has scale factor 1

(including labels and margins). In line 6 it is stated that no key is shown.

Instead, in line 8, directly a label is set. Some parts of the label are printed

with mixed fonts. Here also a superscript 1282 and a subscript Bmax are

generated. The position of the label is determined via at -47500,9060, i.e.,

in coordinates of the data space. Note that one could also state a unique

font valid for the complete label, including a size, via the font option of

the set label command, e.g., via including font "/Times-Italic,22".

More information you will obtain via entering help set label.

In line 10 of the script, the spacing between the tics of the x-axis is set,

followed by the label for this axis in line 11. For the y-axis, the tic labels

have a special format. One can state, more or less, arbitrary formats,

similar to the formats of the fprint() C command. All possible format

options can be obtained via entering help set format. Here, see line 12,

10 to the power of the actual y value is printed. The reason is that in the

file to be plotted the log values of the actual y values are shown, since the
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y values are really huge. Note that %f is a floating point number with 4

digits, none after the decimal point. The label for the y axis, see lines 13

and 14, make use of mixed fonts and subscripts again. Note that the label

is slightly shifted to the right via the offset 1,0 option, to reduce the

space between the label and the axis.

The actual plotting is issued in line 15. Here, first the ranges to be

plotted in x and y direction, are specified, respectively. The file to be

plotted is stated. Note that the data in the second column was calculated

as natural logarithms, while the axis labels are given to with respect to the

base 10. For this reason the data is divided by log(10).

In line 17, the inset is started. It should be squared size, but smaller.

The position of the lower left is stated in canvas coordinates in line 18. In

lines 19 to 22 the labels and the tics spacing for x and y axes are specified,

similar to the main plot, again with slight shifts for better visibility. The

format of the y axis is reset to the standard value, indicated by the format

%g. The data is plotted relative to the function f(x), which is specified in

lines 24 and 25. The actual plot is performed in line 26. Note that here

large symbols (“points size” ps 2) with thicker lines (“line width” lw 2) are

used. There are many other options to changes the style of the symbols or

lines, like color (“line color” lc), or symbol type (“point type” pt). Please

refer to help style for a complete list of options.

9.2.2 Drawing figures using xfig

Most scientific texts do not only contain text, formulas and data plots, but

also schematic figures showing the models, algorithms or devices covered

in the publication. A very convenient but also easy-to-use tool to create

such figures is xfig. It is a window-based vector-oriented drawing program.

Among its features are the creation of simple objects like lines, arrows, poly-

lines, splines, arcs as well as rectangles, circles and other closed, possibly

filled, areas. Furthermore, you can create text strings or include arbitrary

(eps, Jpeg, . . . ) picture files. You may place the objects on different layers

which allows complex sceneries to be created. Different simple objects can

be combined into more complex objects. For editing you can move, copy,

delete, rotate or scale objects. To give you an impression of what xfig looks

like, in Fig. 9.3 a screen-shot is shown, displaying xfig with the picture that

is shown in Fig. 1.1. Again, for further help, please consult the online help

function or the man pages.
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Fig. 9.3 A sample screen-shot showing the xfig program.

The figures can be saved in the internal fig format, and exported in

several file formats such as (encapsulated) postscript , LATEX, Jpeg, Tiff or

bitmap. The xfig program can be called in a way that it produces just an

output file with a given fig input file. This is very convenient for larger

projects where some small picture objects are contained in other pictures

and for changing the appearance of the small objects in all other files. With

the help of the make program, pretty large projects can be realized.

Last but not least, please note that xfig is vector-oriented, but not pixel-

oriented. Therefore, you cannot treat pictures like jpg files (e.g. photos)

and apply operations like smoothing, sharpening or filtering. For these

purposes, the package gimp is suitable. It is freely available again from

GNU [Loukides and Oram (1996)].

9.2.3 Drawing graphs

As we have seen in Sec. 6.8, many simulations are based on graph repre-

sentations. In these cases, it is very useful to visualize graphs for debug-
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ging purposes and also to present results. Here, the GraphViz package
[GraphViz] is explained. It works basically in the following way:

(1) One generates an ASCII file, which describes the graph and its prop-

erties. This is the so-called dot file.

(2) A filter program is used to generate an image from the dot file.

The dot file is human readable and editable. This has some advantages:

You can generate graphs either using a normal text editor or you can write

simple C functions to output a graph in dot format, which is stored using

your own data structures within your simulation package. This will be de-

scribed below for the graph data structures used in Sec. 6.8. There is also

the interactive program dotty, which allows graphs to loaded, displayed,

modified and saved in the dot format. First, we explain the general prop-

erties of the dot file and of the commands to generate an image from a dot

file. Here, only short ready-to-run examples are given. Some details can be

found in the man page when entering man dot on a Unix system or, more

complete and up-to-date, at Ref. [GraphViz].

The undirected graph shown in Fig. 6.24 can be described by the fol-

lowing dot file, called testgraph.dot:

graph test1

{2

03

14

25

36

47

58

0 -- 19

1 -- 310

1 -- 411

2 -- 412

}13

On line 1, graph shows that the file describes an undirected graph, test

being the ID of the graph. An ID can be a string composed of alphabetic

characters, digits or underscores. Also more complex IDs are possible, in

particular if they are double-quoted strings ". . ." or html strings < . . . >.

Note that the key words strict, graph, digraph, node and edge are not

allowed as IDs. Between the braces (line 2 and 14) the graph is described,

this is the so-called statement part. For this example, first (lines 5-10)
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comes a list of node IDs (node statements). These IDs follow the same

rules as the ID of the graph. Then (lines 11-14) comes a list of edges (edge

statements), which are composed of two IDs joint by the edge operator --.

Several statements per line are possible, if they are separated by spaces or

tabs or semicolons.
To generate an image, say a postscript file from the dot file, one uses a

filter program, e.g. dot. It can be called using a command line like

dot -Tps testgraph.dot > testgraph.eps

The output of dot is always to stdout. Therefore, it is redirected to a

file testgraph.eps here. The option -Tps means that the output format

is postscript. Other formats are given below. The resulting postscript file

is shown in Fig. 9.4.

0

1

3 4

2

5

Fig. 9.4 The graph of Fig. 6.24, as plotted by the dot program.

Also lists of edges of the form node1 -- node2 -- node3 -- node4

can be given. Note that the order of nodes and edges is arbitrary within

the statement list. Consequently, one can mix or alternate node and edge

statements. In particular, for nodes appearing in edges, it is not necessary

to include them explicitly as node statements, unless one wants to state ad-

ditional attributes. These optional attributes can be written in [. . .] brack-

ets behind the nodes and edges using a comma-separated list of attribute

assignments of the form <attribute>=<value>. There are many different

attributes for shape, color, (minimum) size, fonts, positions etc. We do not

list them here for conciseness, but give just an example below. Please refer

to the man page for details. Here we state only that attributes can be set

also globally for all nodes or all edges by writing node [<attribute list>]

or edge [<attribute list>]. Attributes which apply to the full graph are
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just given without brackets in the <attribute list> form. Here we show an

example which uses some attributes:

graph test21

{2

node [shape=box]3

0 [label=Milk, style=bold ]4

Butter [shape=house,height=2, color=blue]5

Cheese [fontname="Palatino-Italic"]6

Wheat -- Sandwich7

Cheese -- 0 -- Butter Butter -- Cake [label = bakery]8

Butter -- Sandwich [style = dashed]9

Cheese -- Sandwich10

}11

Line 3 contains a global node attribute. Lines 4–6 contain node state-

ments with some attributes. Note that the shape=house assignment over-

rides the global shape=box just for the node Butter. Lines 7–10 contain

edge statements with some attributes. The resulting image made by dot is

shown in Fig. 9.5.

Milk

Butter

SandwichCake

bakery

Cheese

Wheat

Fig. 9.5 Another graph defined by a plot file with several attributes (see text) as plotted
by the dot program.
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Any filter program must have some algorithm included, which places

the nodes in the image. The program could, for example, try to minimize

the number of crossing edges. The filter dot used above works very well

in particular for graphs which can be drawn as hierarchies, such as trees.

Other filters currently available are

• fdp and neato

Different “spring models” are used to generate pretty images. The

springs virtually connect nodes and edges to keep them apart. The

filters relax the system of springs such that the overall stress is mini-

mized.

• twopi

All nodes are arranged using a radial layout. One node is placed in

the center of the image, all other nodes on sequences of concentric

circles around the center.

• circo

The filter generates a circular layout where nodes belonging to the

same biconnected component1 are drawn on the same circle.

There are also filter-depended attributes, which control the algorithm

calculating the graph layout. For example, for fdb and neato, nodes

where the position is given in the attribute list including a final ’ !’, like

in pos="3,2!", or where pin=true is set, will be kept in the initial posi-

tions during the layout process. Also, the filters are able to generate output

formats other than postscript, like xfig files (option -Tfig), bitmap graphics

(-Tpng and -Tgif), structured vector graphics (-Tsvg and -Tsvgz), and

some more. If no output format is given, the output is again in dot format,

but with positions of nodes and edges added.

To plot a directed graph, one uses the keyword digraph instead of graph

and the edge operator -> instead of the edge operator --. Furthermore,

one can define and use subgraphs within a dot file; for details again see the

documentation [GraphViz].

Finally, we show an example of how you can write your own graph

drawing functions using the GraphViz package. The function is based

on the data structures for graphs as presented is Sec. 6.8. The function

gs_dot_graph() receives as arguments the graph, a file stream and a vari-

able which tells whether the graph is directed. The function outputs the

graph in dot format to the file. The C source looks as follows:

1A biconnected component is a maximal set of nodes, where two independent paths
within the biconnected component exist between each pair of nodes of the set.
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void gs_dot_graph(gs_graph_t *g, FILE *file, int dir)1

{2

int n;3

elem_t *elem;4

5

if(dir)6

fprintf(file, "digraph test {\n");7

else8

fprintf(file, "graph test {\n");9

fprintf(file,10

"node [height=0.2,width=0.2,label=\"\",fixedsize=true]\n");11

12

for(n=0; n<g->num_nodes; n++) /* go through all node */13

{14

fprintf(file, "%d\n", n);15

elem = g->node[n].neighbors;16

while(elem != NULL) /* loop over all neighbors */17

{18

if(dir)19

fprintf(file, "%d -> %d\n", n, elem->info);20

else21

if(n <= elem->info) /* print each pair only once */22

fprintf(file, "%d -- %d\n", n, elem->info);23

elem = elem->next; /* next neighbor */24

}25

}26

fprintf(file, "}\n");27

}28

Depending on the variable dir, a directed or an undirected graph is

printed (lines 6–9). Here, the graph is always called “test”. If you prefer to

have a variable name, you have to include the graph name as parameter (or

include it in the data structure of the graph). Next (line 10), some global

node properties are set. In lines 12–26 the graph is printed by iterating

over all nodes. First the node is printed (line 15), then all neighbors are

visited (lines 16–25) and the corresponding directed or undirected edge is

printed. Finally (line 27), the closing bracket of the dot file is written.

You could also in your C program automatically convert the dot file to

an image file by using the system command to call, for example, dot with

the name of the written file as a parameter, as exemplified in the following

lines (assuming that name contains the prefix of the filename and g the

graph):
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char filename[1000], command[1000];1

FILE *file;2

3

sprintf(filename, "%s.dot", name);4

file = fopen(filename, "w");5

gs_dot_graph(g, file, 0);6

fclose(file);7

sprintf(command, "dot -Tps %s.dot > %s.ps", name, name);8

system(command);9

9.2.4 Three-dimensional figures with Povray

It is also possible to draw three-dimensional figures with xfig, but there is no

special support for this task. This means, xfig has only a two-dimensional

coordinate system. A very convenient and powerful tool for making three-

dimensional figures is Povray (Persistence Of Vision RAYtraycer). Here,

again, only a short example is given; for a detailed documentation please

refer to the home page [Povray], where the program can be downloaded for

many operating systems free of charge.

Povray is, as can be realized from its name, a raytracer . This means, you

present a scene consisting of several objects to the program. These objects

have characteristics like color, reflectivity or transparency. Furthermore,

the position of one or several light sources and a virtual camera have to be

defined. The output of a raytracer is a photo-realistic picture of the scene,

seen through the camera. The name “raytracer” originates from the fact

that the program creates a picture by starting several rays of light at the

light sources and traces their way through the scene, where they may be

absorbed, reflected or refracted, until they hit the camera, disappear into

infinity or become too weak. Hence, the creation of a picture may take a

while, depending on the complexity of the scene.

GET SOURCE CODE

DIR: literature
FILE(S): test1.pov

A scene is described in a human readable

file. It can be entered with any text editor. But

for more complex scenes, special editors exist,

which allow a scene to be created interactively.

Also several tools for making animations are available on the Internet. Here,

a simple example is given. The scene consists of three spheres connected by

two cylinders, forming a molecule. Furthermore, a light source, a camera,

an infinite plane and the background color are defined. Please note that a

sphere is defined by its center and a radius and a cylinder by two end points
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and a radius. Additionally, the corresponding color information has to be

included for all objects. Here, the center sphere is slightly transparent. The

scene description file test1.pov reads as follows:

#include "colors.inc"

background { color White }

sphere { <10, 2, 0>, 2

pigment { Blue } }

cylinder { <10, 2, 0>, <0, 2, 10>, 0.7

pigment { color Red } }

sphere { <0, 2, 10>, 4

pigment { Green transmit 0.4} }

cylinder { <0, 2, 10>, <-10, 2, 0>, 0.7

pigment { Red } }

sphere { <-10, 2, 0>, 2

pigment { Blue } }

plane { <0, 1, 0>, -5

pigment { checker color White, color Black}}

light_source { <10, 30, -3> color White}

camera {location <0, 8, -20>

look_at <0, 2, 10>

aperture 0.4}

Fig. 9.6 A sample scene created with Povray .
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The creation of the picture is started by calling (here on a Linux sys-

tem via command line) povray +Itest1.pov +P. The program can have

a different name on your system, e.g. x-povray. Note that there is no

space between the +I (input) option and the name of the file describing the

scene. An image will appear on your screen. The pause option +P makes

Povray to wait for a mouse klick in the image to quit. In addition to show-

ing the image on the screen, a file in the portable network graphic format

test1.png will be created, when using Povray 3.7 (.bmp for version 3.6.2).

The resulting picture is shown in Fig. 9.6. Please note the shadows on the

plane.

Also other names for the output file can be given with the +O option,e.g.

+Oimagewill let Povray generate image.png. A summary of these and other

important options, often followed by a value or another argument without

a space, is as follows

• +I<File> input file <File>

• +O<File> output file <File> (without appendix .png)

• +P pause: wait for click before finishing

• +Q<Quality> quality of output, the higher the better

• +W width of image

• +H height of image

• +f<format> use other output file format, e.g. jpg (<format>=j), ppm

(<format>=p), bmp (<format>=b).

Povray is really powerful. You can create almost arbitrarily shaped

objects, combine them into complex objects and impose many transfor-

mations. Also special effects like blurring or fog are available. All fea-

tures of Povray are described in a 400-page manual. The use of Povray is

widespread in the artists’ community. For scientists, it is very convenient

as well, because you can easily convert configuration files of molecules or

three-dimensional domains of magnetic systems into nice-looking perspec-

tive pictures. This can be accomplished by writing a small program which

reads, for example, your configuration file containing a list of positions of

atoms and a list of links, and puts for every atom a sphere and for every link

a cylinder into a Povray scene file. Finally the program must add suitably

chosen light sources and a camera. Then, a three-dimensional pictures is

created by calling Povray. This is quite similar to the automatic creation

of dot files, as explained in Sec. 9.2.3.
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GET SOURCE CODE

DIR: literature
FILE(S): atoms.c

Here, we consider the example of a three

dimensional box with atoms, which are going

to be represented as spheres. The actual atom

data is stored in an arry where the elements are

of type atom t which is defined as follows:

/* stores data of one atom: */

typedef struct

{

double m; /* mass of atom */

double sigma; /* ’size’ of atom for LJ */

double epsilon; /* LJ energy parameter */

double *x; /* position of atom */

double *v; /* velocity of atom */

double *f; /* force on atom */

} atom_t;

Note that not all data, like the force array f, is necessary for just gener-

ating a configuration. Nevertheless, here we state the actual data struc-

ture which was used to perform Molecular dynamics simulations , i.e. the

integration of Newton’s equations of motion. There is also the data struc-

ture glas system t which holds global information of the model. Here

we only need the entries dim, which holds the dimension (here 3) of the

system, the entries l[3], l[1], l[2] which store the lateral sizes and N

which holds the total number of atoms. The program atoms.c contains

a function glas setup() which takes a pointer to a structure of type

glas system t, initializes everything, generates a random configuration

and returns a pointer to it.

Below, a function is shown which generates a Povray file from the cur-

rent configuration:

void atoms_plot_cfg(atoms_system_t *system, atom_t *atom)1

{2

char filename[1000];3

FILE *povfile;4

int t, d; /* loop counters */5

double *r; /* position */6

7

r = (double *) malloc(system->dim*sizeof(double));8

sprintf(filename, "cfg.pov");9

povfile = fopen(filename, "w"); /* open file */10

fprintf(povfile, "#include \"colors.inc\"\n" /* header etc */11
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"#include \"shapes.inc\"\n\n");12

fprintf(povfile, "background { color Yellow }\n\n");13

fprintf(povfile, "camera {\n location <%f, %f, %f>\n",14

0.5*system->l[0], -1.5*system->l[1], 0.5*system->l[2]);15

fprintf(povfile, " sky <0,0,1>\n");16

fprintf(povfile, " look_at <%f, %f, %f>\n}\n\n",17

0.5*system->l[0], 0.5*system->l[1], 0.5*system->l[2]);18

fprintf(povfile,19

" light_source { <%f, %f, %f> color White}\n\n",20

0.5*system->l[0], -0.5*system->l[1], 1.5*system->l[2]);21

fprintf(povfile,22

" light_source { <%f, %f, %f> color White}\n\n",23

-0.5*system->l[0], -0.5*system->l[1], 1.5*system->l[2]);24

25

fprintf(povfile, /* print system boundaries */26

"cylinder{ <%f, %f, %f>, <%f, %f, %f>, 0.25\n"27

" pigment { Red } }\n",28

0.0, 0.0, 0.0,29

system->l[0], 0.0, 0.0);30

/* continued for 11 other boundary ’bars’, see atoms. c */31

32

The function takes the global system data and an array to atom data

as arguments (line 1). In lines 2–6, the local variables are declared. In

line 8, memory for an auxiliary vector is allocated, which is used to realize

periodic boundary conditions. A file named, for simplicity, cfg.pov is

opended (lines 9–10). Some standard definitions are made (lines 11–13).

A camera is put a bit away from the system such that it is directed at

the center of the box (lines 14–17). Two light sources ar introduced such

that they are positioned above the camera and left of the camera (lines

19–24). Furthermore, 12 small cylinders are included such that they mark

the boundaries of the system cube (from line 26 on). In the second part of

the function, the atoms are included in the Povray file:

for(t=0; t<system->N; t++) /* print atoms */87

{88

for(d=0; d<system->dim; d++)89

{90

r[d] = atom[t].x[d];91

if(r[d] < 0) /* fold positions into box */92

r[d] += floor(-r[d]/system->l[d]+1)*system->l[d];93

if(r[d] > system->l[d])94

r[d] -= floor(r[d]/system->l[d])*system->l[d];95

}96
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if(system->dim == 3)97

fprintf(povfile,98

"sphere { <%f,%f,%f>, %f\n pigment { Blue }}\n",99

r[0], r[1], r[2], 2.0*atom[t].sigma);100

else if(system->dim == 2)101

fprintf(povfile,102

"sphere { <%f,%f,%f>, %f\n pigment { Blue }}\n",103

r[0], r[1], 0.0, 2.0*atom[t].sigma);104

}105

fclose(povfile);106

free(r);107

}108

The main loop runs over all atoms, see line 97. For all atoms, the

positions have to be subjected to periodic boundary conditions, i.e., they

are folded back into the box (lines 89–96). Finally, the atom positons are

converted to positions of balls in the Povray file (lines 97–104). Finally the

output file is closed (line 106) and the memory used for the variable r is

released.

Fig. 9.7 A sample configuration of atoms, randomly placed. The configuration is con-
verted to a Povray file using the function atom plot cfg() and printed into an image
file using Povray.
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The above sample program can be easily extend to draw, e.g. molecules,

by adding small cylinders which connect spheres corresponding to atoms

joint by chemical bounds.

After one ore several files have been generated, they can be transformed

using Povray into figure files, like in the above example. In Fig. 9.7 a

sample configuration generated by using this function is shown.

If many subsequent configurations are converted into images, they can

be merged into a video. The most simple way to do this is to use the

convert tool available under Linux and create an animated gif , e.g.

convert -delay 20 frame*.png -loop 0 animated.gif

The -delay option makes convert to produce a sequence of images, the

number (here 20) denotes the pause between two images in milliseconds.

Here, the set of images is stored in the files frame*.png. The -loop op-

tion states how often the movie is to be repeated, a zero means an infinite

number of times. The final argument is the name of the output file. An an-

imated gif can be easily viewed by loading it into a browser or by including

it like static gif images in html webpages.

9.3 Preparing Publications

In this section, tools for two types of presenting your results are presented:

Either you want to write a paper/report or to give a talk supported by a

set of slides displayed via a laptop and a projector. For both cases, it is

recommended to use TEX/LATEX.

This section explains how manuscripts, including raw texts, tables, lists,

mathematical formulas, bibliography and external figure files can be created

using a system called LATEX. How to make the figure files has been discussed

already: Data plots can be produced using the programs explained in Chap.

8. How to create other types of diagrams is explained in Sec. 9.2

9.3.1 LATEX

TEX/LATEX is a typesetting system rather than a word processor. The

basic program is TEX; LATEX is an extension to facilitate the application.

In many areas of science, in particular those where many formulas occur,

the combination of TEX and LATEX is a widespread standard. Nevertheless,

even for publications in humanities, LATEX is the most professional tool.
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When electronically submitting an article to a scientific journal, LATEX has

to be used in many cases. This book was completely written in LATEX.

Unlike the conventional office packages, with LATEX you do not see

immediately the text in the form it will be printed, i.e. LATEX is not

a WYSIWYG (“What you see is what you get”) program. The text

is entered in a conventional text editor (like Emacs) and all format-

ting is done via special commands. An introduction to the LATEX lan-

guage can be found, for example, in Refs. [Lamport and Bibby (1994);

TUG]. Although you have to learn some special commands, using LATEX

has several advantages:

• The quality of the typesetting is excellent. It is much better than self-

made formats. You do not have to care about the layout. But still,

you are free to change everything according to your requirements.

• Large projects do not give rise to any problems, in contrast to many

commercial office programs. When treating a LATEX text, your com-

puter will never complain when your text is more than 500 pages or

contains many huge post-script figures.

• Typesetting of formulas is very convenient and fast. You do not have

to care about sizes of indices appearing themselves in indices etc. Fur-

thermore, in case you want to replace all α in your formulas with β, for

example, this can be done with a conventional replace, by replacing

all \alpha strings by \beta strings. For the case of an office system,

please do not ask how to do this conveniently.

• There are many additional packages for enhanced styles such as letters,

transparencies or books. The Bibtex package is very convenient, which

allows the user to build up large literature data bases conveniently.

• Since you can use a conventional editor, the writing process is very

fast. You do not have to wait for a huge packet to come up.

• On the other hand, if you still prefer a WYSIWYG (“what you see

is what you get”) system, there is a program called lyx [Lyx] which

operates like a conventional word processor but creates LATEX files as

output. Nevertheless, once you get used to LATEX, you will never want

to write a publication with something else, unless someone points a

gun at your head and forces you to use an office package.

Since LATEX is a type setting language, you have to compile your text

to create the actual output. Now, an example is given of what a LATEX text

looks like and how it can be compiled. This example will give you a first

impression of how the system operates. After that, some important ele-
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ments like fonts, chapters, tables, lists, mathematical formulas, figures and

the bibliography are presented using some examples from this book. Fur-

thermore, for these style elements, the most important options and variants

are given, such that 95% of all scientific writing is covered. For a complete

reference, please consult the literature mentioned above.

9.3.1.1 Getting started

GET SOURCE CODE

DIR: literature
FILE(S): example.tex

The following file example.tex produces a text

with different fonts and a formula. We first

show the complete file, then we explain the

meaning of the different elements and show how

to get the actual typeset document from it.

\documentclass[12pt]{article}

\begin{document}

This is just a small sample text. You can write some words

\emph{emphasized}\/, or in {\textbf bold face}. Also different

{\small sizes} are possible.

An empty line generates a new paragraph. \LaTeX\ is very convenient

for writing formulae, e.g.

\begin{equation}

M_i(t) = \frac{1}{L^3} \int_V x_i \rho(\vec{x},t) d^3\vec{x}

\end{equation}

\end{document}

}

The first line introduces the type of the text, here article, which is the

standard, and the font size. You should note that all TEX commands be-

gin with a backslash (\), in case you want to write a backslash in your

text see Sec. 9.3.1.2. There are few exceptions like the dollar symbol ’$’

which switches the mathematical in-line mode on and off. Arguments

to commands are given in { } braces, like the type of the text for the

\documentclass command, which should always be the first command in

your file. Optional arguments are given in [ ] braces, such as the font

size here (the default is 10pt). Note that the { } are also used to group

words together. Sometimes it is necessary to group an empty word, e.g.

if a command specifies a special character and you want that immediately
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another letter follows. An example is the word “Straße”, which has to be

set as Stra\ss{}e to tell the LATEXcompiler that not the command \sse is

meant, which does not exist, anyway.2

The actual text is written between the lines starting with

\begin{document} and ending with \end{document}. In the example

you see some commands such as \emph, which switches highlighting on,

\textbf, which switches to bold font, or \small, which switches to a small

font, see also Sec. 9.3.1.2. Changes of fonts or sizes are only effective within

one group of words, or until the choice is overwritten by a different one.

Mathematical formulas can be written, for example, in between

\begin{equation} and \end{equation}. This is a so-called environment.

There are many other environments, see below. The name of the environ-

ment is always an argument to the \begin and \end. LATEX will create in

this case a formula which is separated from the text and contains an auto-

matically created equation number. To learn how to address these numbers

via labels, see below. If you want a separate formula without equation num-

ber, use \begin{equation*} and \end{equation*}. For inline formulas,

write the formula inside a pair of dollar symbols $ $. For mathematical

formulas, a huge number of commands exists. Below, the most important el-

ements like Greek letters (\alpha), operators (+, \Rightarrow), subscripts

(x_i), fractions (\frac), integrals (\int), functions (\sin), vectors (\vec),

and multi-line formulas (\begin{eqnarray} . . . \end{eqnarray}) will be

explained.

The text can be compiled by entering

latex example

in a shell (the suffix .tex can be omitted). This is the command for UNIX,

but LATEX exists for all operating systems. There exist also development

environments, which combine editor, latex compilation and display of the

final document. Examples for these environments are Kile, which is in-

cluded in most Linux distributions, or TeXworks, which is available for

all big operating systems. Please consult the documentation of your local

installation.

The output of the compiling process is the file example.dvi, where “dvi”

means “device independent”. The .dvi file can be inspected on screen by a

viewer via entering xdvi example.dvi. Alternatively, it can be converted

into a postscript file via typing dvips -o example.ps example.dvi or to

2In this case LATEX would complain.
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a pdf file via typing dvipdf example.dvi. In the first case, the -o op-

tion is necessary on many systems, because otherwise the file is directly

printed. For the dvipdf command, always the corresponding pdf file (here:

example.pdf) is generated. The result will look like this:

This is just a small sample text. You can write some words

emphasized , or in bold face. Also different sizes are possible.

An empty line generates a new paragraph. LATEX is very conve-

nient for writing formulae, e.g.

Mi(t) =
1

L3

∫
V

xiρ(�x, t)d
3�x (9.1)

LATEX takes care of the full formatting business for you. This means,

you do not have to care about spacings, justification, hyphenation, font

sizes, numbering of pages, sections and so on. In particular the way you

format your source .tex file has not much influence on the final output.

You could have, e.g. in each line just one word, or you can put many words

in one line of the source file. Important are spaces and tabs, which separate

words. The number of spaces or tabs between two words has no influence on

the output. Furthermore, as mentioned in the first example, one or several

empty lines in the source file start a new paragraph. This usually means

that the first line of the new paragraph in the output file is a little bit

indented. This can be avoided by including globally \parindent0pt in the

beginning of the source file, or by using \noindent to avoid indentation

just for the next paragraph. Starting new lines without starting a new

paragraph can be forced by using \\ or by using \newline. This is also

used to indicate new lines in tables etc., see below. Page breaks can be

forced using \newpage or \clearpage.

Hyphenation works well, but not always, in particular if language-

specific symbols appear. You can help LATEX by providing possible (or

wanted) hyphenation positions via inserting \- in the corresponding posi-

tions as, e.g. in si\-mu\-la\-tion. For each word you can decide yourself

what position you want to specify. If a word is not hyphenated, it will

appear normal. Otherwise, it will be hyphenated at one the given posi-

tions, the one which created the best layout. You can also state a list of

words with possible hyphenation positons (each indicated just by a −) at

the begin of the source file via the \hyphenation command. If a word in

the list contains no possible hyphenation point, it will never be hyphenated

in the resulting document. Also you can prevent words or sentenced from
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being hyphenated or split over several lines by using the \mbox command

with the text as argument.

The appearance of the final document is controlled by many parameters,

like for spaces between lines, width of the text, size of indices in formulas,

etc. Depending on the document and on the font size, default values exists,

which you can alter, if you like. This will not be covered here, because

for most cases the default values are sufficient and give perfectly looking

results. Note that most scientific journals offer special packages, which

will format your paper draft such that it looks like a printed paper in the

journal. Just look at the homepage of the journal where you intend to

submit your paper.

You can add comments to a LATEX source file via the % symbol: in

a line everything including and after the symbol will be ignored by the

compilation.3 For example, for scientific journals you can often download

journal-taylored classes and corresponding templates for manuscripts. The

templates show how the special class commands are used, e.g. to specify

title, authors, affiliations, abstracts and keywords. Within the templates,

comments are used to explain the meanings of these commands.

Although LATEX contains already a lot of design elements, there are

many extensions available, called packages. They can be made available in

the source file via the \usepackage command with the name of the pack-

age given as argument in { . . . } brackets. Any \usepackage must appear

after the \documentclass command and before \begin{document}, i.e. in

the preamble. Often used packages are graphicx for including figures, see

Sec. 9.3.1.7, the babel package for language specific settings, like special

hyphenation rules, or the amsmath package of the American Mathemati-

cal Society including many additional math commands. Important is the

inputenc package, which enables the user to specify the coding system such

as to write special characters of their language directly in a source file. For

example

\usepackage[latin1]{inputenc}

selects the iso-latin-1 coding system. Another common coding system is

utf8. Other packages which are important in the scientific context are

geometry, which implements different paper layouts like DinA4, ifthen,

which allows for conditional compiling, makeidx, which enables the user

3This is a rare example where the actual formatting of the source file has an influence
on the output.
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to create an index, and fp which makes simple floating-point calculations

available in LATEX. Please refer to the documentation supplied with these

packages.

Next, we introduce the most important standard LATEX elements using

examples actually from this book. Each LATEX command usually offers

many options and variants, which cannot be shown completely in this little

chapter. Please consult the LATEX documentation for details.

9.3.1.2 Fonts, special characters and symbols

All text can be set in different fonts. The simplest way is to change the

font via \bf to bold, via \it to italic or via \sf to sans-serif. The change

of the font is active until it is changed again, or inside a {...} group.

There are alternative versions, where the text to be shown in a different

font has to be given as argument, like \texttt{typewriter} will result

in typewriter. Similarly, \textsf, \textbf, \textit can be used. Even

more commands like \textsc for small caps exist, please consult the

detailed LATEX documentation.

Also different font-sizes, relative to the chosen font size are available,

again valid until the end of a group or until another font size is chosen:

\tiny tiny

\scriptsize very small

\footnotesize quite small

\small small

\normalsize normal

\large a bit larger

\Large even larger

\LARGE very large
Often used, there is also the command \emph to emphasize the text given

as argument, and \underline to underline the text given as argument.

LATEX knows four different types of dashes. The first three types ap-

pear as - (called “hyphen”), -- (“en-dash”), and --- (“em-dash”) in the

source file. The first form is for combined words like in “direct-simulation

approach”. The second is used to specify ranges like “page 21–45”. The

third is used to create long dashes like in “to be — or not to be?”. The

forth form is the minus sign in mathematical formulas, also appearing as a

single dash - in the source file.
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There are several symbols which have special meanings in LATEX:

# & $ { } % ^ _ ~ \

If you actually want these symbols to appear in your text, you have to

write, respectively

\# \& \$ \{ \} \% \^ \_ \~{} \textbacklash

For creating quotes it is not allowed you use the " character. Instead,

you have to use ‘‘ for opening and ’’ for closing quotation marks. For

example, ‘‘This is a quote’’ will generate “this is a quote”. These

characters can be used also in single-character quotes, , e.g. to quote ‘c’.

An ellipsis . . . is not produced by writing three dots, this would look

like ..., instead the command \ldots should be used.

As mentioned above, LATEXautomatically creates spaces as necessary,

i.e. to align with the right border, it may distribute extra space over the

line. If you want to prevent this at a certain position, i.e. to keep the space

short, use a backslash in front of a space. This also works when using a

tilde ˜, but in addition prevents a line break at this position. Usually, the

space after the end of a sentence is longer. But when the last letter before

a period is an upper case letter, LATEX assumes that it is an abbreviation.

In this case you can use \@ before the period if it is actual the end of a

sentence.

Sometimes you want to give extra spaces. For this purpose a couple

of commands are defined: tiny, small, medium and large spaces are added

by \, (backslash and comma), \; , \quad, \qquad, respectively. This is in

particular useful for mathematical formulas, where usually no extra spaces

are put by LATEX. The command \hfill means horizontal filling. It will

cause everything written after it, till the end of the printed line, to be

formatted such that it is aligned with the right border of the page. In

the same way \vfill will shift everything after it to the bottom of the

current page, which may have to be given, e.g. using \newpage. Arbitrary

horizontal spaces can be created using the command \hspace*. The length

of the space has to be supplied as argument in { } brackets either in real

units, e.g. 1.3cm, or in units of a given length, e.g. 0.5\linewidth. Note

that you can define your own lengths, see Sec. 9.3.1.9. The * indicates that

the space always is to be included, even if it appears at the beginning of

a line. Without the * the space is only created inside a line. For vertical

spaces, there exist the corresponding commands \vspace and \vspace*.
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In many languages letter with different accents exist, like in the French,

or with umlauts, like in German, or other special characters. Here, the

most important accents are listed acting on the letter ‘o’, some of them

work for other letters as well:

ò \‘o ó \’o ȯ \. o õ \~o

ô \^o ŏ \u o ǒ \v o �oo \t oo

ö \"o ő \H o o. \d o ß \ss

ō \=o o
¯

\b o ç \c c o̧ \c o

œ \oe Œ \OE ø \o Ø \O

æ \ae Æ \AE å \aa Å \AA

	l \l 	L \L ı \i j \j

¡ !‘ ¿ ?‘

Note that many more language-specific adjustments are available, like

hyphenation rules, other alphabets, right-to-left writing, etc. For more

information, please refer to the documentation of the babel package.

9.3.1.3 Chapters, sections and footnotes

You can structure your documents using chapters (for the class type book),

sections, subsections etc. For example, Sec. 8.3 (see page 283) was started

using

\section{Basic data analysis\label{sec:statistics}}

while the following subsection (page 284) was started with

\subsection{Estimators}

In the article class, also \subsubsection, \paragraph and

\subparagraph are available. LATEX does the numbering of the sec-

tions, subsections etc. automatically for you. You can reference these

numbers if you attach labels with arbitrary names using the \label

command and the name (here sec:statistics) as argument. Then you

can reference the section everywhere in the document with the \ref com-

mand, i.e. \ref{sec:statistics} in this case. In the printed docu-

ment, you will see just the section number. You can also reference the

number of the page (in print) where the label occurs via \pageref, i.e.
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\pageref{sec:statistics}here. Labels are also frequently used for equa-

tion numbers. If you place a \label command inside an equation environ-

ment, the printed value of the label will be the equation number. Note that

LATEX needs usually at least two runs to write the labels correctly. Within

the first run, it learns the corresponding values of the labels, in the next

run, it can use the values to include them in the printed document.

Also very convenient is that LATEX will keep track of chapters, sections

and subsection in an ordered way, such that simply by including the com-

mand \tableofcontents, a full table of contents will appear in the output

document.

Finally, footnotes can be generated using the command \footnote

which the footnote text as argument. The command must be placed in

the source file at the position where the footnote should be referenced. The

actual placement of the footnote, starting on the same page as the reference

point, will be done automatically by LATEX.

9.3.1.4 Lists

You can structure your documents even more by using lists. A list without

numbers is created by an itemize environment. The different items are

indicated by bullets (and other symbols if several lists are nested). For

example, the list starting on page 313 is created using

\begin{itemize}

\item \verb!\\! prints a backslash.

\item \verb!\0! selects the {\rm Roman} font, which is also

the default font. A font

is active until a new one is chosen.

\item \verb!\1! selects the {\it italic} font, used in equations.

... (left out) ...

\end{itemize}

Each list element is preceded by a \item command. Another impor-

tant list environment is enumerate, which puts numbers instead of bullets.

For nested enumerate environments, this results in a sub numbering with

letters. Since this does not appear elsewhere this book, we give a special

example here:

\begin{enumerate}

\item Write program

\begin{enumerate}
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\item Design data types and functions

\item Code in C

\item Test and debug

\end{enumerate}

\item Perform simulations and analyse data

\begin{enumerate}

\item For standard case, to compare with analytics

\item For the two-dimensional case

\item For the three-dimensional case.

\end{enumerate}

\end{enumerate}

This will result in:

(1) Write program

(a) Design data types and functions

(b) Code in C

(c) Test and debug

(2) Perform simulations and analyse data

(a) For standard case, to compare with analytics

(b) For the two-dimensional case

(c) For the three-dimensional case.

Arbitrary lists can be defined using the list environment; please have a

look at the LATEX documentation.

The \verb command used in the above list allows an arbitrary string to

be printed in typewriter font as it stands. Here, the string to be printed is

not given as an argument, but is embraced in ! !. In this way arbitrary

symbols can be contained in the string, also ’{’ and ’}’. Always the first

symbol after the \verb is taken as bracketing symbol here. Hence, one could

write also \verb?\\? in the above example. The string is not allowed to

extend beyond the limits of one line. For longer texts which should be

printed verbatim, there is the verbatim environment. Thus, you have to

embrace the text by \begin{verbatim} and \end{verbatim}, which is

used in this book, for example, to display the C source codes.4

4The line numbers which are frequently shown next to the source code can be gen-
erated using the lineno package, which has to be included using the \usepackage com-
mand.
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9.3.1.5 Mathematical formulas

The biggest advantage over conventional office packages shows LATEX when

setting mathematical formulas. It is much simpler to enter them using a

standard editor (once you know the few most important LATEXcommands)

and the resulting typesetting looks just professional. As mentioned

above formulas can appear within the main text (inside a pair $ . . . $

of dollar symbols) or as separated equations with equations numbers

(\begin{equation} . . . \end{equation}) or without (\begin{equation*}

. . . \end{equation*}). For the former one, the short form \[ . . .\]) ex-

ists, for the latter one $$ . . . $$. Note that many formulas will be typeset

“tighter” inside a line as compared to a separate formula:

A formula printed in a line appears like

$\lim_{n\to\infty} \sum_{k=0}^n \frac{1}{n!} = e$

while as a separate formula it appears as

$$

\lim_{n\to\infty} \sum_{k=0}^n \frac{1}{n!} = e

$$

will result in

A formula printed in a line appears like limn→∞
∑n

k=0
1
n! = e while

as a separate formula it appears as

lim
n→∞

n∑
k=0

1

n!
= e

Here, \sum and \lim are mathematical operators, where upper and lower

bounds or limits can be stated via the underscore _ or the caret ^ character,

respectively. Please note that by default only one symbol is taken as bound

or limit. If a more complex string should appear, it has to be presented as

{ . . . } group. There are several other important operators which can be

used in this, in particular for integrals (\int) or products (prod):∑
\sum

∏
\prod

∐
\coprod⋃

\bigcap
⋃

\bigcup
⊎

\biguplus∧
\bigwedge

∨
\bigvee

⊔
\bigsqcup⊕

\bigoplus
⊗

\bigotimes
⊙

\bigodot∫
\int

∮
\oint
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The underscore and the caret are most often used to denote subscripts

or superscripts. LATEX takes are of the correct font sizes even for nested

sub- and superscripts, as, e.g.,

$$

A_y^k = \prod_{i=1}^n B_{y,z_i}^k

$$

will be set as

Ak
y =

n∏
i=1

Bk
y,zi

As in the above formula, variables are always denoted by single letters.

This means a sequence of several letters like in $velocity$ will be always

interpreted as several variables in a row, i.e., printed as velocity, which

contains slightly more spaces between the letters as compared to italics

printing of velocity. To increase the space of available variables, Greek let-

ters are used exhaustively in mathematical formulas. The following tables

shows the available letters:

α \alpha β \beta γ \gamma

δ \delta ε \epsilon ε \varepsilon

ζ \zeta η \eta θ \theta

ϑ \vartheta ι \iota κ \kappa

λ \lambda μ \mu ν \nu

ξ \xi o o π \pi

� \varpi ρ \rho � \varrho

σ \sigma ς \varsigma τ \tau

υ \upsilon φ \phi ϕ \varphi

χ \chi ψ \psi ω \omega

Furthermore, letters can be decorated with several addition symbols like

tildes, dots, vectors etc:

Clearly, also standard binary operator symbols like ‘+’, ‘−’ and / or

relational symbols like ‘=’ will be used often and can be directly entered

into equations. Furthermore, many less common operators are available as

the following table shows:
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Γ \Gamma Δ \Delta Θ \Theta

Λ \Lambda Ξ \Xi Π \Pi

Σ \Sigma Υ \Upsilon Φ \Phi

Ψ \Psi Ω \Omega

â \hat{a} ă \breve{a} ǎ \check{a}

ȧ \dot{a} ä \ddot{a} å \mathring{a}

ā \bar{a} �a \vec{a} a \underline{a}

à \grave{a} á \acute{a} âaa \widehat{aaa}

ã \tilde{a} ãaa \widetilde{aaa}

+ + − - · \cdot

× \times ∗ \ast � \star

/ / ÷ \div \ \setminus

± \pm ∓ \mp � \amalg

� \diamond � \lhd " \triangleleft

♦ \Diamond � \rhd # \triangleright

� \Box � \unlhd � \bigtriangleup

 \wr � \unrhd ! \bigtriangledown

◦ \circ • \bullet © \bigcirc

⊕ \oplus % \ominus ⊗ \otimes

† \dagger ‡ \ddagger ' \oslash

∩ \cap ∪ \cup ( \uplus

∨ \vee ∧ \wedge

* \sqcap + \sqcup

In the amsmath package many more (less common) operator symbols

are available. Please refer to the corresponding documentation. In standard

LATEX predefined binary relations are listed in the following table:
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= = < < > >

≤ \le ≥ \ge ∼ \sim

� \ll , \gg
.
= \doteq

- \simeq ≈ \approx . \asymp

⊂ \subset ⊃ \supset $ \smile

⊆ \subseteq ⊇ \supseteq % \frown

� \sqsubset 	 \sqsupset ∼= \cong

2 \sqsubseteq 3 \sqsupseteq ≡ \equiv

∈ \in 4 \ni ∝ \propto

6 \vdash 7 \dashv ⊥ \perp

‖ \parallel | \mid |= \models

≺ \prec ; \succ #" \bowtie

< \preceq = \succeq

Each binary relation command can be preceeded by \not which will result

in a negated symbol, e.g. \not= will result in �=. For some of the negated

relation operators, special commands are defined, like \neq. Sometimes the

special form will appear differently like \notin appearing as /∈ compared to

\not\in appearing as �∈. Sometimes it is necessary to write two symbols on

top of each other, here the command \stackrel can be used. For example,

$a^2\stackrel{(*)}{=}b^2+c^2$ will be shown as a2
(∗)
= b2 + c2.

Furthermore, LATEX offers a variety of arrow symbols, as collected in the

following table:

← \leftarrow or \gets → \rightarrow or \to

←− \longleftarrow −→ \longrightarrow

↔ \leftrightarrow ←→ \longleftrightarrow

⇐ \Leftarrow ⇒ \Rightarrow$

⇐= \Longleftarrow =⇒ \Longrightarrow

@→ \mapsto @−→ \longmapsto

←↩ \hookleftarrow ↪→ \hookrightarrow

↼ \leftharpoonup ⇀ \rightharpoonup

↽ \leftharpoondown ⇁ \rightharpoondown
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 \rightleftharpoons ⇐⇒ \iff

↑ \uparrow ↓ \downarrow

⇑ \Uparrow ⇓ \Downarrow

C \updownarrow D \Updownarrow

↗ \nearrow ↘ \searrow

↙ \swarrow ↖ \nwarrow

� \leadsto

LATEXcontains also a variety of other symbols:

∀ \forall ∃ \exists ∂ \partial

I \Re J \Im ı \imath

� \hbar j \jmath 0 \ell

· · · \cdots . . . \dots
... \vdots

. . . \ddots ℵ \aleph ℘ \wp

∇ \nabla ∅ \emptyset ∞ \infty

′ ’ ′ \prime ¬ \neg

� \triangle ∠ \angle
√

\surd

⊥ \bot N \top ♦ \diamondsuit

♥ \heartsuit ♣ \clubsuit ♠ \spadesuit

2 \flat 3 \natural 4 \sharp

Often used important elements are fractions (\frac), and roots (\sqrt).

The first commands takes two arguments, the second command one, plus

an optional value [n] for the n’th root. Both commands can be nested, as

the following example shows:

\begin{equation*}

\sqrt[3]{\frac{a+\sqrt{b+c}}{\frac{1}{x^2}+\sin(x)}}

\end{equation*}
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This result appears as follows:

3

√
a+

√
b+ c

1
x2 + sin(x)

Binomials can be used in the following rather nonstandard5 way:

\begin{equation*}

{r \choose k-1}+ {r \choose k} = {r+1 \choose k}\,.

\end{equation*}

result ins (
r

k − 1

)
+

(
r

k

)
=

(
r + 1

k

)
.

There exists also the command \atop which works in the same way but

omits the brackets

In the above example for fractions also the function \sin is used. Note

that function names are not printed in italic but in Roman font. Within

LATEX a couple of functions are predefined as the following list shows:

\arccos \arcsin \arctan \arg \cos \cosh

\cot \coth \csc \deg \det \dim

\exp \gdc \hom \inf \ker \lg

\lim \liminf \limsup \ln \log \max

\min \Pr \sec \sin \sinh \sup

\tan \tanh

You can declare your own functions using the command

\DeclareMathOperator!{}\verb!{\operator}{}!\verb!{text}

which takes two argument, the name of your operator and the text which

shall be printed. The \DeclareMathOperator can be used only in the

preamble of your source file before the begin{document}.

Complicated formulas can be structured using brackets and other delim-

iters. Vertical arrows can be used as delimiters. Apart from those, LATEX

knows the following brackets and delimiters:

5The two “arguments” are not given after the command but before and after it.
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( ( ) ) T \lfloor U \rfloor

[ [ ] ] V \lceil W \rceil

{ \{ } \} 〈 \langle 〉 \rangle

| | ‖ \|

By default, the delimiters are printed in the standard font size. If larger
elements are to be put inside delimiters, one can precede the opening de-
limiters by \left and the closing delimiter by \right as in

\begin{equation*)

\left(z+\frac{x+y}{x-y}\right)\,.

\end{equation*}

which results in (
z +

x+ y

x− y

)
.

In combination with the array environment and two large delimiters, ma-

trices or determinants can be created, see Sec. 9.3.1.6. Note that the left

and right delimiters do not have to match, so mixed pairs are possible.

One can omit even one of the two delimiters by writing a dot instead of

a bracket, see the example for using an array on page 429. Instead of

using \left and \right one can specify larger delimiters explicitly using

commands such as \big, \Big, \bigg, and \Bigg in front of the delimiter.

Another way to group parts of the forumla are lines above (\overline)

below (\underline) as well as curly brackets above (overbrace) and below

(underbrace) the formula. The following example

\begin{equation*}

\overbrace{\overline{(x-\overline x)^2}}^{\mbox{variance}}

= \underbrace{\overline{x^2}}_{\mbox{mean(squared)}} -

\overbrace{{\overline x}^2}^{\mbox{square(mean)}}

\end{equation*}

will result in:

variance︷ ︸︸ ︷
(x− x)2 = x2︸︷︷︸

mean(squared)

−
square(mean)︷︸︸︷

x2
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Note that you can use the braces also without the additional part which is

printed above or under the braces, respectively. The \underline command

is also allowed outside mathematical formulas.
Also different fonts are available for formulas. Here in particular the

caligraphic font, e.g.

\begin{equation*}

\mathcal{A,B,\ldots,Y,Z}\,.

\end{equation*}

will result in

A,B, . . . ,Y,Z .

Also standard text, e.g. using the Roman font, can be used in formulas.

Here the \mbox command with the wanted text as argument can be used.

Alternative, one can switch via \textrm by hand to the Roman font. Note

that the sizes of the fonts when used as indices will differ:

\begin{equation*}

x_{\textrm{critical}} \quad x_{\mbox{critical}}\,.

\end{equation*}

results in

xcritical xcritical .

Even more fonts can be used when the amsmath (or just the amsfonts)
package is used. Here, the Gothic font mathfrak is available. Very useful
is the blackboard font, which allows to write, e.g.

\begin{equation*}

\mathbb{C},\; \mathbb{N},\; \mathbb{R},\; \mathbb{Z}\,.

\end{equation*}

which yields

C, N, R, Z .

The equations considered so far contain one single line. Formulas which

extend over several lines can be generated using the \begin{eqnarray}

. . . \end{eqnarray} environment, or the corresponding * version without

equation numbers. Each line consist of three parts, separated by & symbols.

A line is terminated by \\. The first part will be printed right aligned, the
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second part centered and the third part left aligned. For example the

formula shown on page 290 was generated using

\begin{eqnarray}

\sigma^2_l & = & \frac{ns^2}{\chi^2(1-\alpha/2, n-1)} \nonumber \\

\sigma^2_u & = & \frac{ns^2}{\chi^2(\alpha/2, n-1)}\,.

\end{eqnarray}

Note the \nonumber prevents an equation number being printed in the

corresponding line of the formula. Finally, it should be emphasized that

the American Mathematical Society’s LATEX add-on amsmath offers several

additional types of multi-line formula environments.

9.3.1.6 Minipages, tables and arrays

Even more structure can be created by subdividing paragraphs horizontally.

For this purpose, the minipage environment can be used. Inside a minipage,

one can put almost everything which can be put onto a normal page, also

nested minipages. From outside, a minipage is treated like a single symbol,

but a possibly large symbol. As example, we show the source for one item

of the list on page 15, where a small paragraph and a little table are shown

next to each other:

\begin{minipage}[t]{0.65\textwidth}

Calculates a bitwise OR of the two operands, defined as

shown in the table on the right: The result is 1 if $a$ OR $b$

are 1. Hence, for the numbers 201 and

158 one will obtain the result 223 (binary \verb!11011111!).

\end{minipage}

\hfill

\begin{minipage}[t]{0.2\textwidth}

\vspace*{-1mm}

\begin{tabular}{cc|c}

$a$ & $b$ & $a$\verb!|!b\\\hline

0 & 0 & 0\\

0 & 1 & 1\\

1 & 0 & 1\\

1 & 1 & 1

\end{tabular}

\end{minipage}

A minipage environment receives always one argument, its width. You

can give the width relative to some predefined lengths, such as \textwidth

in this example. Another important length is the \columnwidth, which is
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for a two column format, quite common in scientific journals, about half

of the textwidth. Alternatively one can give lengths also in real units, like

3cm, 30mm or 15pt, where pt is the size of a point.

Here, the minipages get the optional argument [t], which means that

the minipages are aligned at the top. Other possibilities are [b] and [c]

for alignment at bottom and center, respectively.

In the second minipage, a table is used, which is also a widespread LATEX

element. Note that the full table is shifted upwards by \vspace*{-1mm}.

Also the command \hfill is used, see Sec. 9.3.1.2. A table is defined using

the tabular environment. It expects as arguments the format of the table.

For each column of the table a format has to be given. In this case, there

are two columns with centered content (indicated by the letter ‘c’), followed

by a vertical line (‘|’), followed by another centered line. Other formats are

left (‘l’) and right (‘r’) justified columns. A column which always looks the

same can be given via @{ content }, where content has to be substituted

by the actual content. This can be also a space, e.g. @{\hspace*{5mm}}.

If you want to have a frame around your table, you have should also use

vertical lines at the beginning and at the end of the format line. As for the

minipages, one can give options [t], [b], or [c] for alignment of tables

at top, bottom or center, respectively. Such an option, as usual, can be

written between the tabular and the {. . . } argument.

The actual entries of the table come next. The entries for different

columns of each row are separated by ‘&’ symbols. Here, where we have

three columns, we need two ‘&’ symbols per row. A row is finished by \\. If

you want to have a horizontal line under a row, use \hline. For the above

mentioned frame around the table, you need a horizontal line before the

first and after the last line. Note that each table row of the c, r, or l format

is restricted to one line on the printed page. To overcome this you can put

a minipage in an entry, which, as mentioned above is treated by LATEX as

a single symbol. Since this is a bit cumbersome, the tabular environment

offer as alternative the paragraph column format. This is indicated by

the format letter p where the width of the column has to be specified as

argument, as in p{0.2\textwidth}. The entry will be formatted possibly

over several lines to fit into the given width. Furthermore, it is also possible

to create entries which span several columns in a row. For this purpose,

use a \multicolumn entry, which takes three arguments, the number of

columns, the format of the column (as for the full table, e.g. |c|) and the

actual content of the entry. The following example table (not occurring

in this book) provides an example for the use of the paragraph and multi
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column formats, as well how to create a frame around the table:

\begin{quote}

\begin{tabular}{|l|cccp{0.3\textwidth}|}

\hline

System & $T^{\star}$ & $\rho$ & $\mu$ & comment \\

\hline

A & 32.7K & 35g/cm$^3$ & 12 A/V & \\

B & 12.5K & 48g/cm$^3$ & 9.3 A/V &

only measured under very high pressure\\

C & 24.2K & 18g/cm$^3$ & 17.3 A/V & \\

D & $\sim$ 40K & \multicolumn{2}{c}{not measured} &

from literature \\ \hline

\end{tabular}

\end{quote}

When latexing this table, the result looks like this:

System T � ρ μ comment

A 32.7K 35g/cm3 12 A/V

B 12.5K 48g/cm3 9.3 A/V only measured under

very high pressure

C 24.2K 18g/cm3 17.3 A/V

D ∼ 40K not measured from literature

Within the mathematical formulas, like in the equation environment,

one can use a similar environment called array. For example, Eq. (6.1) on

page 163 was created using:

\begin{equation}

n! = \left\{\begin{array}{ll} 1 & \mbox{if } n=0 \mbox{ or } n=1\\

n \times (n-1)! & \mbox{else}\\

\end{array} \right.

\end{equation}

The \mbox command is used (see alsp page 426) to display a normal text

string within a formula, such that the string is not formatted like a formula.

For the formatting, the array is treated also like one single symbol. Using

the \left\{, a curly bracket (open to the right) is created, where the size is

adjusted such that everything next to the bracket until the closing \right

is embraced. Note that the ‘.’ in \right. means that the closing bracket

is “invisible”, but you can use a closing bracket instead. For example, if

you use a \left( and a \right) enclosing an array environment, you get
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a matrix. When using \left| . . . \right| one can get a determinant, as

the following examples shows:

\begin{equation*}

\left|

\begin{array}{ccc}

a_1 & b_1 & c_1 \\

a_2 & b_2 & c_2 \\

a_3 & c_3 & c_3

\end{array}

\right|\,.

\end{equation*}

will be typeset as ∣∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a3 c3 c3

∣∣∣∣∣∣ .
You might have noticed that many tables or figures presented in this

book are centered left-right in the middle of the page. This can be done

with any text or more complex LATEX-objects like minipages, figures (see

below) or arrays via the center environment. For example

\begin{center}

This is an example of\\

a centered text.

\end{center}

will result in

This is an example of

a centered text.

9.3.1.7 Figures

To include figure files in your document, such as plots generated with xm-

grace or images drawn using xfig, you can use the \includegraphics com-

mand provided by the graphicx package. To make this package available

to your LATEX file you have to write in the preamble, i.e., between the

\documentclass and \begin{document} commands:

\usepackage{graphicx}
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The figures you want to include can be available most conve-

niently in the encapsulated postscript (.eps) format. When using just

\includegraphics, the figure will appear right where the command ap-

pears, even if the figure does not fit on the page. It is usually better to

use the figure environment, which lets the figures “float” and places them

“close” to the current position. For example, Fig. 8.36 (page 329 of this

book) is generated using:

\begin{figure}[!ht]

\begin{center}

\includegraphics[width=0.8\textwidth]{pic_random/ks_example.eps}

\end{center}

\caption{Kolmogorov-Smirnov test: A sample distribution function

(solid line) is compared to a given probability distribution

function (dashed line). The sample statistics $d_{\max}$ is

the maximum difference between the two functions.

\label{fig:KSExample}}

\end{figure}

The figure environment carries the optional argument [!ht], which

tells LATEX that the figure should be placed preferentially here (h). If this

is not possible, it should be placed at the top (t) of the next possible page.

Also ’b’ for bottom is often used. The figure appears centered on the page,

because it is put inside a center environment. The caption of the figure

is given via the \caption command. Here, also a label is given, which

enables us to reference the figure number via \ref or the page where the

figure appears via \pageref.

9.3.1.8 Bibliography

Next, we show how a bibliography is generated. There are two versions:

One can either put all cited literature into the document, or one can use

the ibtex package which uses an external ASCII file as literature database,

where the cited literature is automatically picked from and sorted.

First, we explain how the literature is included directly with the docu-

ment. Not surprisingly, the thebibliography environment is used for this.

The bibliography of the current book reads as follows

\begin{thebibliography}{}

\bibitem[Abramson and Yung (1986)]{abramson1986}

Abramson, B. and Yung, M. (1986).
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Construction through decomposition: a divide-and-conquer algorithm for

the N-queens problem, {\it CM ’86: Proceedings of 1986 ACM Fall joint

computer conference}\/, pp 620--628

(IEEE Computer Society Press, Los Alamitos)

\bibitem[Abramson and Yung (1989)]{abramson1989}

Abramson, B. and Yung, M. (1989).

Divide and conquer under global constraints: A solution to the

N-queens problem, {\it Journal of Parallel and Distributed

Computing}\/ {\bf 6}, pp 649--662

... (left out) ...

\end{thebibliography}

The argument of the \begin{thebibliography} is empty here. Usu-

ally, it should contain a sample of what the citation labels look like. By

default, labels are enumerated 1,2,3 . . . . In this case, one could write {11}

as argument, if you have less than 100 entries in the bibliography, because

this creates two-digit labels.

Each entry is given after a \bibitem command. If you want to use

your individual labels, you can state them as optional arguments in [ ]

brackets, like here. Each \bibitem carries as argument a marker, which

can be used via the \cite command to refer to the publication, for example

\cite{abramson1989}, see page 174 of this book.

Next, it is shown how Bibtex can be used to maintain a literature

database with just a small effort. Here you have one or several separate

Bibtex files, ending with .bib, e.g. mycitations.bib, containing the bib-

liographic entries. The main idea is that these entries contain all possibly

necessary information, see below. At the position where the bibliography is

to be placed, one writes the \bibliography command and gives the names

of the bibtexfiles (without the ending .bib) as argument in {. . . } braces,

e.g.

\bibliography{mycitations}

The way the bibliograph and the citations actually look like is deter-

mined in the manuscript via a \bibliographystyle command, with the

name of the style as argument in {. . . } braces. Standard styles of Bibtex

are plain (alphabetical order in the bibliography, citations as numbers),

unsrt (like plain but order of occurrence), alpha (like plain, citations

as author name plus year) and abbrv (like plain but very compact bibli-
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ography). There exists many more style files, in particular many journals

offer custom-made style files which make the bibliography look exactly like

in the journal, i.e., order of entries, fonts, journal articles with or without

titles, etc. Please have a look at the web page of the journal you would like

to publish in.

Within the main body of the text, the references are again given

via the \cite command, as when using the thebibliography environ-

ment. To compile the bibliography into your article, say simulation.tex,

you have to latex your manuscript first, then you call (e.g. in a shell)

bibtex simulation (without the suffix .tex), followed by (usually) two

more latex runs, i.e. you can enter in your shell:

latex simulation

bibtex simulation

latex simulation

latex simulation

When using a LATEX environment, e.g. Kile or TeXworks, Bibtex can be

called via corresponding buttons or menus.

Using Bibtex has three advantages compared to explicitly giving the

bibliography:

• Bibtex picks automatically those entries from the Bibtex files which are

cited, the others are not included in the bibliography. Note that you

can force an entry to be included in the bibliography via the \nocite

command placed somewhere in the LATEX file.

• Bibtex puts the citations in the right order, e.g. order of occurrence or

alphabetical order.

• The way the citations and the bibliographic looks like is completely

determined by the style file. You do not have to reformat if you write

a manuscript for a different journal.

To understand the format of the Bibtexfile, we start with an example

with two entries:

@Book{practical_guide2009,

author = {A. K. Hartmann},

title = {{Practical Guide to Computer Simulations}},

publisher = {World Scientific},

address = {Singapore},

year = {2008},

}
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@Article{aspect-ratio2002,

author = {A. K. Hartmann and A. J. Bray and A. C. Carter and

M. A. Moore and A. P. Young},

title = {The stiffness exponent of two-dimensional {I}sing

spin glasses for non-periodic boundary conditions

using aspect-ratio scaling},

journal = {Phys. Rev. B},

volume = {66},

pages = {224401},

year = {2002},

}

The Bibtex file is a pure ASCII file. Each entry starts with an @ character.

Next follows the type of the entry. For scientific publications the types

Book, InBook, Article, Proceedings, InProceedings, Unpublished and

Misc are most important. The type can be written in any mixture of

upper and lower case letters (not case sensitive). The actual entries is

embraced by { and }. Next comes the citation key, which is to be used in

the \cite command, followed by a comma. Then comes a list of comma

separated tags. Each tag consists of a tag name, followed by a = symbol,

followed by the actual tag text embraced either by a { } or a " " pair.

For scientific publications, important tag names are author (or editor),

title, and year. For the author tag, names can be given in the format

first names followed by family name, or family name followed by a comma

followed by the first names. Names of several authors are separated by

an and, respectively. Note that one can form groups via { } braces, e.g.

when names consist of several words. These braces can also be used to

prevent one or several upper case letter in the title tag to be converted to

lower case letters, which might be the default for some style files. For the

aspect-ratio2002 entry, this is used to make sure that the name “Ising”

starts with an upper case letter.

For the type article the tags journal, volume, and pages are impor-

tant. For the type Book you also need the tag publisher, and optional

the tag address. In principle arbitrary tags are possible. Some journal

bibliography styles recognize tags like article-number, url (giving a link

to the article) or doi (digital object identifier). Tags with unknown names

(depending on the style) are ignored by Bibtex. Thus, you have to have a

look at the style file of the journal you want to submit to. Note that many

journals offer on their web page also the possibility to download a Bibtex

entry for each of the papers you would like to cite. This saves you a bit of
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time and avoids mistakes in the bibliographic information.

9.3.1.9 Self-defined commands and lengths

Finally, we note that you can create your own commands or lengths or your

own environments. Here, we show one example for a self-defined command,

which can be used in math mode:

\newcommand{\pd}[2]{\frac{\partial #1}{\partial #2}}

The new command is called \pd, as shown by the first argument of

\newcommand. The new command itself has two arguments, indicated by

the option [2]. The arguments can be addressed using #1 and #2 in the

command definition, which comes last. Here, the \pd command is used to

construct a formula for a partial derivative, using the two arguments. For

example, Eq. (8.95) on page 365 was generated using:

\begin{equation}

\pd{l(\myvec{\theta})}{\theta_k} \stackrel{!}{=} 0 \quad

(k=1,\ldots,n_{\rm p})

\end{equation}

A new length can be introduced anywhere in the source file via using

the \newlength command with the name of the new length, including a

leading backslash, as argument, e.g.

\newlength{\fieldwidth}

The length, a self-defined or a LATEX-predefined one, can be set using

\setlength with the name of the length (with backslash) and the actual

length as arguments. The latter one can be given in real units or in multiples

of an existing length:

\setlength{\fieldwidth}{0.3\columnwidth}

Alternatively, one can set the length to the width of a text element using

\settowidth with the name of the length (with backslash) and the text

element as arguments, e.g.

\settowidth{\fieldwidth}{simulation tool}

will assign to \fieldwidth the length the expression “simulation tool”

will have in the final document. Similar commands for setting lengths are

\settoheight and \settodepth. Furthermore, you can alter lengths via
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the command \addtolength. For example, to half the self-defined length

you can use:

\addtolength{\fieldwidth}{-0.5\fieldwidth}

9.3.1.10 More information

These examples should be sufficient to give you an impression of

the philosophy of LATEX. The amount of information given here

should be even enough to enable you to write papers or theses with

some additional help from online resources. Comprehensive instruc-

tions are beyond the scope of this section, so please consult the lit-

erature [Lamport and Bibby (1994); TUG]. Note that many exten-

sions are available in addition to the standard LATEX, for example, to

have text floating around small figures (\usepackage{wrapfig}), to dis-

play algorithms (\usepackage{algorithms}), to have more flexible dis-

play of formulas (\usepackage{amsmath}) or to include line numbers

(\usepackage{lineno}). All of these packages and many more, includ-

ing the required documentation, can be found on the Comprehensive TeX

Archive Network [CTAN].

Under UNIX/Linux, the spell checker ispell is available. It allows a

simple spell check to be performed. The tool is built on a dictionary, i.e.

a huge list of known words. The program scans any given text and also a

special LATEX mode is available. Every time a word occurs, which is not

contained in the list, ispell stops. Should similar words exist in the list,

they are suggested. Now the user has to decide whether the word should

be replaced, changed, accepted or even added to the dictionary. The whole

text is treated in this way. Please note that many mistakes cannot be found

in this way, especially when a misspelled word is equal to another word in

the dictionary. However, at least ispell finds many spelling mistakes quickly

and conveniently, so you should use the tool.

9.3.2 Beamer class

With the LATEX package it is also possible to prepare slides for presentations

in high quality. This is particularly easy using the beamer class [Beamer].

Here, a short introduction is given. We will create two sample slides, which

are actually taken, with small modifications, from a talk of the author of

this book. These slides feature the most basic beamer class elements, such

that you can start preparing your own slides quickly. The beamer class has
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everything adjusted already such that it results in nice-looking slides, when

showing the resulting pdf file using acroread . You do not have to worry

about slide sizes, fonts or spacings.

GET SOURCE CODE

DIR: literature
FILE(S): testtalk.tex

To use the class, you have to set the class

to beamer in the corresponding LATEX source

file. Furthermore, you should use the pack-

ages graphicx to include graphics, babel and

inputenc for input coding, as well as times and fontenc for font coding.

This leads to the following:

\documentclass{beamer}

\usepackage{graphicx}

\usepackage[english]{babel}

\usepackage[latin1]{inputenc}

\usepackage{times}

\usepackage[T1]{fontenc}

To generate a pdf file from the input file, you should use the pdflatex

command on a Unix-like system, i.e. you just type pdflatex testtalk in

this case, or the corresponding command for a different operating system.

This directly generates the final output file testtalk.pdf, which can be

presented on a laptop using acroread in the full screen mode.

Fig. 9.8 The title page of the test presentation using LATEX together with the beamer
class. Note that the thin black frame is not part of the presentation. It is just shown
here to indicate the limits of the slide.
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Next, in the source file, you have to choose the style of presentation. For

this purpose, there are some predefined themes and color themes . Here, we

use the theme default and the color theme crane:

\usetheme{default}

\usecolortheme{crane}

The default theme is rather puristic, see Figs. 9.8 and 9.9. Other themes

tend to fill the screen. For example, Luebeck provides additional boxes,

which show the name of the talk, the name of the author, the name of the

current section and of the current subsection on each slide. This leaves

less space for the actual information and the name of the speaker should

be known by the second slide. Thus, a more puristic theme is recom-

mended here. Anyway, among the predefined themes, there are, for exam-

ple, Bergen , Marburg, Berkeley, and many more. To name just a few of

the color themes: beetle, fly and whale. For details, please consult the

documentation and try which themes suit your style best.

Within the default settings, all slides include some navigation symbols

in the lower right. If you do not like this, and if you prefer to have page

numbers instead, you should use

\setbeamertemplate{navigation symbols}{}

\setbeamertemplate{footline}[frame number]

The first slide of the talk is usually the title page. For this purpose you

can use the macros \title, \author, \date and \logo, for example:

\title{Why $10^{-6}$ is not improbable enough:\\

nature is not fully random}

\author{Alexander K. Hartmann}

\institute[University of Oldenburg] % (optional, but mostly needed)

{

Institute of Physics\\

University of Oldenburg

}

\date{Bielefeld, 3. July 2008}

\logo{\includegraphics[width=0.11\textwidth]{mylogo.pdf}}

Here, a figure file is included using the \includegraphics command, pro-

vided by the graphicx package. Note that the included file must be basi-

cally a pdf as well, for technical reasons. This means, if you only have other

file formats available, you must first convert the figures, for example using

epstopdf in case you have encapsulated postscript (.eps) figures.

A slide within a beamer source file is defined by a frame environment.

Inside the \begin{frame} and \end{frame} brackets in principle any valid
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LATEX code can be written. For the title page, this is particularly simple,

because one just has to write \titlepage. The remaining part of the source

file looks as follows:

\begin{document}

\begin{frame}

\titlepage

\end{frame}

\logo{} % show logo only on first page

\section{Group}

\subsection{Overview}

\include{slide_group/group}

\end{document}

Note that the logo will be shown by default on every slide, unless you

change the logo after the title slide to the empty logo, as it is done here.

To structure the presentation, one uses the standard LATEX commands

\section and \subsection. It is recommended to create for each slide

a corresponding subdirectory, where all source material is collected. This

makes it easier to exchange complete slides between talks. This will hap-

pen once you start to present your results on different occasions. Here, the

second slide (see Fig. 9.9) is stored in the subdirectory slide_group in the

file group.tex.

This slide is also implemented using the frame environment. Now a

title of the slide is given:

\begin{frame}

\frametitle{Computational Physics Group}

The top of the slide is composed of a centered text in blue and a centered
picture:

\centerline{

\textcolor{blue}{‘‘Complex behavior of disordered systems’’}}

\centerline{

\includegraphics[width=0.6\textwidth]{slide_group/physics_cs}}

Most of the slide is implemented using standard LATEX elements, in

particular you can tune your presentation a lot using the minipage envi-

ronment. Please have a look at the source file. Nevertheless, the beamer

class offers some additional features, which allow the slides to be changed
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Fig. 9.9 The second slide of the test presentation using LATEX together with the beamer
class. Note that this slide changes dynamically. The current situation is the first stage

of this slide. The next one (see text) will show a different figure in the lower right corner,
after you hit the space bar on your computer when viewing the file.

dynamically. Here, we mention in particular the overprint environment.

In our example, this looks like

\begin{overprint}

\onslide<1>\centerline{

\includegraphics[width=0.8\textwidth,height=0.6\textwidth]

{slide_group/opt_problem}}

\onslide<2>

\centerline{\includegraphics[width=0.9\textwidth,height=0.5\textwidth]

{slide_group/function2dB}}

\end{overprint}

Note that some of the arguments to beamer-class commands are given in

angular brackets < >, like in this example: As indicated by the onslide<1>

command, initially the figure file opt_problem.pdf will be shown on the

slide.6 When you hit the space bar on your laptop during the presentation,

next, the figure file function2db.pdf will be shown at the same place.

Technically, the testtalk.pdf file just contains two different slides, which

are identical except the areas tagged by the \onslide commands. You

6Note that the suffix .pdf can be omitted, because only pdf files are allowed.
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will notice this immediately if you look at testtalk.pdf in non-full-screen

mode, but when using full-screen mode, it looks like the slides change dy-

namically. Note that the numbers given along the \onslide commands are

always only for the current frame. Thus, for the next frame, it starts with

1 again. Furthermore, you can give also ranges such as onslide<1-3> or

onslide<2->. Thus presentations can be created, which change dynam-

ically in a quite complex way. You can, for example, explain how your

simulation algorithm works, by showing how it performs on a small sam-

ple. For this purpose, you prepare different figures showing the sample at

different stages of the algorithm and use the overprint environment as

shown above. To avoid that the figures “wiggle” during the presentation,

you should make sure that all figure files which are shown on the same

position have exactly the same size.7

You should know that you can give these ranges also along with stan-

dard \item commands in an itemize environment, such as \item<1>

. . . item<2> . . . \item<3->. This allows a slide to be unfolded stepwise,

one or several items at a time.8 Finally, please do not forget to close each

frame environment by \end{frame}.

These examples should be enough to enable you to create nice-looking

standard presentations rather quickly. To learn more about other features

of the beamer class and to become an expert, please consult the beamer

manual.

7If you prepare the figures using xfig , you can, for example, use a small box, which has
in all figures the same size and is drawn using the background color around the actual
content of the figures, respectively.

8Please do not exaggerate. The author has experienced presentations that were un-
folded almost word by word, which was quite annoying.
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Supplementary Materials

From the website: http://www.worldscientific.com/r/9019-supp, you will

find all example programs and scripts used throughout this book, as well

as the solutions to exercises.

We assume that you have a standard C compiler available. In any case,

all programs run under a Linux environment, which is available free of

charge. For some applications, you need further tools. All tools used in

this book can be obtained free of charge.

The content of the supplementary materials is as follows:

The directory programs contains the source codes of the C/C++ pro-

grams and some scripts, as well as the solutions to exercises. For each

chapter, there is a corresponding subdirectory, in the order of appearance

in the book:

c-programming

scripts

se

debugging

oop

algorithms

libraries

randomness

literature

Each directory contains a README file, which shortly describes the con-

tend of the programs and how to compile and run them.

443
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? operator, 20, 376

acceptance interval, 322
acquaintance network, 203
acroread, 437
adjacency matrix, 204–205
adjacent node, 201
algorithm, 159

backtracking, 170–174
divide-and-conquer, 165–168
dynamic-programming, 168–170
factorial, 164
mergesort, 165–168
N-queens, 173
recursive, 162–165
sequential, 164

Alta Vista, 392
American Physical Society, 390
analyzing data, 283–301, 320–377
AND operation, 15
animal t, 166
animated gif, 408
--annotated-source option, 134
-A option, 134
Apache server, 116
APS, 390
arc, 201
arithmetic expressions, 12–18
arithmetic operators, 12–18
array, 25–31, 96, 124, 195
assignment, 7
asymptotic running time, 160

atoi(), 30
awk, 52

backtracking, 170
basic operations, 96
Bayes’ rule, 248
beamer class, 436–441
Bernoulli distribution, 252
Bessel function, 17
Bézier curves, 304
bin, 291
binary inversion operator, 16
binary representation, 15
binary tree, 183
Binder cumulant, 298–299
binned probability distributions, 324
Binomial distribution, 234–236, 253
bisection search, 267
bitmap, 396, 400
block, 20, 23, 25

variables, 21
bond, 201
boost library, 223
bootstrap approach, 89–91, 295–300,

340, 382
parametric, 299–300

-b option, 132
bottom up approach, 96
breadth-first search, 212
break statement, 24
--brief option, 132
Brownian motion, 258

451
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by reference, 41, 150

C programming language, xi, 1–79,
137
long double data type, 10
AND operation, 15
arithmetic expressions, 12–18
arithmetic operators, 12–18
array, 25–31
assignment, 7
block, 20
cast, 13
char data type, 9
compiler, 3
compiler options, 63–64
constant, 8
decrement operator, 14
double data type, 9
dynamic linking, 17
file pointer, 48
function, 6, 34–44
header files, 5
if statement, 18–22
#include, 6
increment operator, 14
input/output, 44–58
int data type, 7–9
linking, 3, 4
macro, 65, 70
main(), 5
malloc(), 59
matrix, 30–31
operator

arithmetic, 12–18
options, 4, 63–64
OR operation, 15
pointer, 10, 11, 14
precedence rules, 12
preprocessor, 64
printf(), 6, 8, 44–47
return statement, 24
scope of variable, 41–44
shift operation, 15
short int data type, 9
sizeof(), 11
strings, 27, 30

structure, 31–32
switch statement, 24
type conversion, 13
typedef, 32–33
variable, 7, 8
while loop, 23, 24
XOR operation, 15

C++, 1, 145–155
capsuling, 139
cast, 13, 59, 225
central limit theorem, 257, 281, 288
char data type, 9
child, 182
chi-squared distribution, 261
chi-squared test, 324–327, 383
circo, 400
citation data base, 390
citation network, 203
class, 95, 98, 138, 145

container, 155
Histo, 146
HistoM, 153

clean, 77
closed path, 202
clustering, 346–363

average-linkage, 355–363
hierarchical, 355–363
k-means, 346–352
neighbor-based, 352–355

color theme, 438
comment, 80, 100, 104–107

function, 34
compiler, 3
complement, 247
complete graph, 201
complex numbers, 234
complexity

time, 160
component

connected, 202
strongly-connected, 202

composition, 141
computational provenance, 54, 56,

101
compute sum(), 160
conditional expressions, 18–20
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conditional operator, 20, 376
conditional probability, 248, 276
confidence interval, 287, 288

expectation value, 289
histogram, 292
variance, 290

confidence level, 288
configuration file, 94
conflicts in subversion, 113, 114
connected component, 202
connected graph, 202
conservation

of energy, 99
of momentum, 99

const, 41, 100, 225
constant, 8
constrained fits, 374
constructor, 144, 147–150

copy, 149
container, 226
container class, 155
continue statement, 24
conversion specification, 29, 45
convert, 408
coordinates

polar, 282
-c option, 4, 63
copy constructor, 149
covariance matrix, 342
create element(), 177
create node(), 186
critical value, 216
cubic splines, 303
cumulant

Binder, 298–299
cumulative distribution function, see

distribution function
Curie temperature, 298
Cython, 81

data
analysis, 283–301, 320–377
capsuling, 139
plotting, 301–320, 382
structures, 95, 140, 174–222
types, 7–12

data clustering, 346–363
data display debugger (ddd), 123–124
data fitting, 369–377
data member, 138, 146
data modeling, 369
--db-attach=yes option, 126, 128
debugging, 98, 117–128

tools, 117–128
decrement operator, 14
#define, 65, 67, 69
degree, 201, 216

of freedom, 372
delete element(), 178
delete node(), 186
Delphi, 1
dendrogram, 356
dependency, 76
depth-first search, 211
descendent, 182
destructor, 144, 150, 154
dictionary, 86
diff format, 113
differential equation, 234
differentiation, 234
directed graph, 201
directive

#define, 65, 67, 69
#ifdef, 66
#ifndef, 66
#include, 6, 64
#undef, 66

discrete random variable, 251–255,
378, 379

disorder
quenched, 261

distributing work, 97
distribution

Bernoulli, 252
Binomial, 234–236
binomial, 253
chi-squared, 261
exponential, 243, 258, 271, 276
exponentials, 380
F, 261
Fisher-Tippett, 259, 380
Gaussian, 257, 280–283, 288, 380
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Gumbel, 260
normal, see Gaussian distribution
Pareto, see power-law distribution
Poisson, 254, 378, 379
power-law, 259
standard normal, 257
uniform, 256

distribution function, 250
empirical, 295
sample, 295, 328

divide-and-conquer principle, 165,
168, 169

documentation, 100
-Wall option, 64
-D option, 66
double bookkeeping, 194, 198, 200
double data type, 9
drand48(), 267
dynamic linking, 17, 224
dynamic programming, 169

easy problem, 162
edge, 182, 201

head, 202
incoming, 202
operator, 398, 400
outgoing, 202
tail, 202

eigenvalue, 341
eigenvector, 341
elem t, 176
empirical distribution function, 295
endpoint, 201
energy

conservation, 99
environment variable

PATH, 6
Erdős-Rényi graph, 215
erf(), 17
error

type I, 322
type II, 322

error bar, 101, 287, 290, 372
error function, 17
escape sequence, 45
estimator, 284

kernel, 294
robust, 286
unbiased, 285

Euler-Mascheroni constant, 260
event, 194, 246
event-driven simulation, 194
exp(), 17
expectation value, 252, 256

confidence interval, 289
exponential distribution, 243, 258,

271, 276, 380

F distribution, 261
fabs(), 17
factorial, 163
factorial(), 163, 164
false negative, 322
false positive, 322
fclose(), 49
fdp filter, 400
ferromagnet, 298
fflush(), 49
fgets(), 50, 52
fib(), 169
Fibonacci numbers, 168–170
FIFO, 179, 211
file pointer, 48, 49
finite graph, 201
finite-size effect, 216
Fisher-Tippett distribution, 259, 380
fit, 300

constraints, 374
multi branch, 375

fitting, 369–377
least-squares, 370–377, 385
quality of, 373

fitting data, 234
float data type, 9
floor(), 17
fmax(), 17
fmin(), 17
fopen(), 47, 50
-f option, 129
Fortran, 1
Fortran programming language, xi,

137
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Fourier transform, 234
fprintf(), 49
frame environment, 438
friend, 147
fscanf(), 52
fseek(), 53
ftell(), 53
function, 6, 34–44

inline, 63, 67
kernel, 294

function prototype, 36

gamma(), 17
Gamma function, 261
gamma function

incomplete, 373
Gaussian distribution, 257, 280–283,

288, 380
gdb debugger, 117–122
getchar(), 49
gets(), 52
gif format, 400
global variable, 104
GNU General Public License, 234
GNU scientific library, 234–241, 261,

267, 272, 288, 290, 292, 293, 326,
343–350, 366, 384
eigenvalue, 343–346
histogram, 238, 243
LU decomposition, 239
matrix, 239
vector, 239

gnuplot, 302–309
data fitting, 369–377
script, 302
vectors, 307

Google, 392
-g option, 63, 118, 125, 134
goto statement, 24, 104
GPL, 234
gprof profiler, 129–135
graph, 95, 201–216

complete, 201
connected, 202
connected components, 210–216
create, 206

definition, 201
directed, 201
drawing, 396–402
Erdős-Rényi, 215
examples, 203
finite, 201
insert edge, 207
labeled, 203
sparse, 140

GraphViz, 396–402
ground state

energy, 302
gs create graph(), 206
gs dot graph(), 400
gs graph t, 205
gs insert edge(), 207
GSL, see GNU scientific library
gs node t, 205
gs preferential attachment(), 208
Gumbel distribution, 260

Hankel transform, 234
hard problem, 162
hash table, 233
head of edge, 202
header file, 5, 37, 66, 103
heap, 96, 194–200
heap elem t, 197
heap insert(), 197
height, 183
-help option, 100
hierarchy of calls, 164, 167
histo delete(), 144
histogram, 142, 234, 238, 243,

290–295
confidence interval, 292
pdf, 293

Histo::Histo(), 147, 149
Histo::insert(), 150
histo insert(), 145
histo mean(), 145
HistoM::HistoM(), 153
HistoM::~HistoM(), 154
histo new(), 144
hist t, 142
Histo::~Histo(), 150
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hooks in subversion, 112

hypersphere, 278
hypothesis, 320

testing, 320–340

#ifdef, 66
#ifndef, 66

if statement, 18–22

implementation, 98
#include, 6, 64

incoming edge, 202
incomple gamma function, 373

increment operator, 14

indegree, 202
independence, 248

inheritance, 140, 153–155
initialization of variables, 8, 25, 27, 28

inline function, 63, 67
inorder tree traversal, 190

input, 94

insert element(), 179
insert node(), 188

INSPEC data base, 389
int data type, 7–9

integration, 234

interface, 139
interpolation, 234

intersection, 247
inversion method, 271–273

-I option, 64, 236, 242

isolated node, 201
ispell spell checker, 436

iterator, 207, 232

jackknife technique, 300–301
JAVA programming language, xi, 49

jn(), 17
Jpeg format, 396

kernel

estimator, 294

function, 294
key, 165, 184, 230

knight’s tour, 218
Kolmogorov-Smirnov test, 328–331

labeled graph, 203
labeling, 203
LATEX , 396, 408–436

array, 429
arrow symbols, 422
bibliography, 431
Bibtex, 432
binary relations, 421
binomial, 424
brackets, 424
chapters, 416
cite, 432, 433
dashes, 414
emphazise, 414
enumerate, 417
environment, 411
figure, 430
font size, 414
fonts, 414
footnote, 417
foreign characters, 416
formulas, 419
fraction, 423
functions, 424
greek letters, 420
hyphen, 414
itemize, 417
label, 416
list, 417
mathematical fonts, 426
mathematical formulas, 419
mathematical operators, 419, 420
mathematical symbols, 420
mbox, 429
minipage environment, 427
newcommand, 435
overline, 425
quotes, 415
root, 423
sections, 416
self-defined command, 435
spaces, 415
special symbols, 415
subscripts, 420
superscripts, 420
table, 428
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underline, 414, 425

verbatim, 418
lattice

square, 67–70

leaf, 183
least-squares fitting, 370–377, 385

LEDA library, 223
length of path, 202

level, 183
-lgslcblas option, 235
-lgsl option, 235

library, 96, 223–242, 388
boost, 223

create, 241–242
GNU scientific, 234–241, 343–350

LEDA, 223
Standard C, 224–226

Standard Template, 226–233
LIFO, 179, 211
likelihood function, 364

lin con(), 263
linear congruential generators, 263

linear correlation coefficient, 338, 384
linear equation, 234, 238–241

link, 182
linking, 3, 4, 64

dynamic, 224

static, 224
Linux, xi

list, 95, 96, 174–182
insert element, 178–180

print, 180
Python, 82–84
remove element, 180

literature databases, 389
-lm option, 235

local variables, 41
lock, 107

log-likelihood function, 365
logfile, 102

long double data type, 10
long int data type, 10
-L option, 64, 236, 242

-l option, 63, 242
LU decomposition, 239

macro, 65–70, 97

main(), 5
make, 75–79

makefile, 75–79, 98
malloc(), 59

man page, 75, 241
map, 230–233

Maple, 2
Mathematica, 2

mathematical functions, 16
math.h header file, 16
Matlab, 2

matrix, 30–31, 239
covariance, 342

diagonalization, 234
inversion, 234

maximum likelihood, 364–369
principle, 364

mean, 284
mean-squared difference, 370

mean-squared error, 287
median, 256

sample, 286
member

function, 147
of structure, 31

memory checker, 26, 124
memory leak, 62, 127

mergesort, 165–168
mergesort(), 166

meta rule, 76
methods for objects, 138

minimizing functions, 234
modeling of data, 369

Modula 2, 1
module, 98, 102

comment, 104
Molecular Dynamics simulation, 54,

99, 194, 405

moment
n’th, 253, 256

momentum conservation, 99
Monte Carlo simulation, 234, 323

movies, 408
multi-branch fit, 375
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namespace, 151
neato filter, 400
neighbor node, 201
network, 201

acquaintance, 203
citation, 203

node, 201
adjacent, 201
isolated, 201
neighbor, 201

node t, 185
--no-flat-profile option, 131
nonlinear equation, 234
normal distribution, see Gaussian

distribution
NPP, 218
N-queens

algorithm, 173
problem, 170–174

null hypothesis, 328, 331
number-partitioning problem, 218

O notation, 160
object, 94, 137–157
object-oriented programming,

137–157
-O option, 63
-o option, 63
operation, 96

basic, 96
operator

?, 20, 376
AND, 15
arithmetic, 12–18
binary inversion, 16
conditional, 20, 376
decrement, 14
increment, 14
OR, 15
shift, 15
XOR, 15

operator overloading, 141
operator <<, 151
operator =, 152
option

-A, 134

--annotated-source, 134
-b, 132
--brief, 132
-c, 4, 63
-D, 64
--db-attach=yes, 126, 128
-f, 129
-g, 63, 118, 125, 134
--graph, 132
-I, 64, 236, 242
-L, 64, 236, 242
-l, 63, 242
-lgsl, 235
-lgslcblas, 235
-lm, 235
--no-flat-profile, 131
--no-graph, 132
-O, 63
-o, 4, 63
-P, 131
-p, 131, 135
-pg, 63, 130, 135
-Q, 132
-q, 132, 135
-static, 17, 224
-Wall, 4, 16, 63, 100
-Wshadow, 44, 63

-o option, 4
OR operation, 15
order parameter, 216
outdegree, 202
outgoing edge, 202
overloading, 147

p-value, 326, 336, 338, 383
parameters, 94
parametric bootstrap approach,

299–300
parent, 182
Pareto distribution, see power-law

distribution
Pascal programming language, xi, 1,

137
path, 202

closed, 202
length of, 202
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PATH environment variable, 6
pdf, 255, 293

histogram, 293
sample, 293

pdf file format, 389
Pearson’s r, 338
periodic boundary conditions, 67
perl programming language, 2, 80
permutations, 239
-pg option, 63, 130, 135
phase transition, 216
phyton programming language, 80
plotting data, 301–320, 382
pmf, see probability mass function
png format, 400
point estimator, 287
pointer, 10, 11, 14, 26, 29, 38, 40, 41

smart, 233
Poisson distribution, 254, 378, 379
polar coordinates, 282
polynomial running time, 162
polynomials, 234
-P option, 131
-p option, 131, 135
postscript file format, 308, 389, 396,

411
Povray, 402
Povray, 408
pow(), 17
power set, 246
power-law distribution, 259
precedence rules, 12
predecessor, 182
preferential attachment, 208
preorder tree traversal, 190
preprint server, 388
preprocessor, 64
principal component analysis,

340–346
principle

backtracking, 170
divide-and-conquer, 165, 168, 169
dynamic programming, 169
recursion, 162

print tree(), 190
printf(), 6, 8, 28, 44–47

print list(), 180
priority queue, 195, 226–230
private, 139, 147
probability, 246–248

conditional, 248, 276
density function, 255, 293
distribution, 250

binned, 324
function, 246
joint, 248, 275
mass function, 234, 251

problem
easy, 162
hard, 162
N queens, 170–174
sorting, 165

procedural programming, 137
programming

dynamic, 169
style, 102–107

protected, 147
protein regulation, 203
public, 140, 147
Python, 81–91

arithmetic statement, 83
command-line arguments, 88
Cython, 81
dictionary, 86
for loop, 82
functions, 88
list, 82–84
string, 83
strings, 85
tuple, 90
while loop, 84

--no-graph option, 132
-Q option, 132
-q option, 132, 135
--graph option, 132
qsort(), 224–226
quality of fit, 373
queens(), 173
quenched disorder, 261
queue, 179, 181
quicksort, 224
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R, 2
rand lin con(), 264
random experiment, 246
random number generator, 236–238,

262–283

seed, 263
random numbers, 234
random variable, 248–261

continuous, 251, 255–261
discrete, 251, 251–255, 378, 379
transformation, 249, 253

raytracer, 402
README, 101
Receiver-Operator Characteristics,

331
Receiver-operator characteristics, 332
recurrence equation, 164, 168
recursion, 162, 168
rejection method, 273–280, 380
repository, 108
resampling, 295–301
return statement, 24, 35, 40
revisions, 108
robust estimator, 286
ROC, 331–332
root, 182
running time

asymptotic, 160
polynomial, 162
table of, 162
worst-case, 160

sample, 283, 291, 295
distribution function, 295, 328
median, 286
pdf, 293
space, 246, 247
standard deviation, 284
variance, 284, 381

scanf(), 52
SCC, 202
SCI, 390
Science Citation Index, 390
scientific journals, 388
scope of variable, 41–44
script, 79–81, 93

search engine, 392
search tree, 184
seed, 263
segmentation fault, 124
self-averaging, 101
sequential algorithm, 164
shift operation, 15
short int data type, 9
significance level, 288
simplex algorithm, 367
simulated annealing, 96, 234
simulation

event-driven, 194
Molecular Dynamics, 99, 194, 405
Monte Carlo, 234

sizeof(), 11, 59
small tasks, 96
smart pointer, 233
software

cycle, 102
development, 94
engineering, 93–102
reuse, 95, 141

sorting, 165
source-code debugger, 98, 117
sparse graph, 140
sphere, 278
spin, 96
spin glass, 261, 302
splines, 303
sprintf(), 29, 47
square lattice, 67–70
srand lin con(), 264
stack, 96, 179, 181
Standard C library, 224–226
standard deviation, 252

sample, 284
standard normal distribution, 257
Standard Template Library, 155,

226–233
static cast, 232
static linking, 224
static variable, 42
-static option, 17, 224
statistical dependence, 333–363
statistics, 234
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stderr, 49
stdio.h header file, 5
stdout, 48
strcmp(), 29
strcpy(), 28
stream, 48, 151
strings

C language, 27–30
Python, 85

strongly-connected component, 202
struct, 31–32, 95
structure, 31–32
style, 102–107
subgraph, 201
subroutine, see function
subtree, 183
subversion, 108–116

check out files, 110
commit changes, 112
conflicts, 113, 114
create repository, 109
differences, 112
hook, 112
import directory, 109
list repository, 110
remote access, 115
revision history, 114
status of files, 111
update files, 113
URL syntax, 109

successor, 182
svn program, 109
svnadmin program, 109
switch statement, 24

table of running times, 162
tail of edge, 202
target, 76
tasks, 96
temperature, 298

Curie, 298
test

chi-squared, 324–327, 383
Kolmogorov-Smirnov, 328–331

test statistics, 321
testing, 98

tools, 117–135
TEX, 408
tgamma(), 17
theme, 438
theorem

central limit, 281
Tiff, 396
time command, 128
time complexity, 160
time measurement, 128–135
times(), 135
top-down approach, 96
TR1, 233
tree, 182–200, 202, 230, 356

balanced, 190
binary, 183, 230
definitions, 182
example, 182
insert node, 187–189
print, 190
remove node, 191–194
unbalanced, 190

tree traversal
inorder, 190
preorder, 190

twopi filter, 400
type conversion, 13
type I error, 322
type II error, 322
typedef, 32–33

unbiased estimator, 285
#undef, 66
uniform distribution, 256
UNIX, xi, 124

valgrind, 124–128
variable, 7–12, 103

global, 104
local, 41
static, 42

variance, 252, 256
confidence interval, 290
sample, 284

vector, 239
vector graphics, 400
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version control system, 97, 108
vertex, 95, 201

adjacent, 201
degree, 95
isolated, 201
neighbor, 201

void, 40

-Wall option, 4, 16, 63, 100
wavelet, 234
while loop

C language, 23–24
Python, 84

working cycle, 110
World Wide Web, 203
worst-case running time, 160
-Wshadow option, 44, 63

xfig plotting program, 395–396, 400,
402

xmgrace, 309–320, 382
XOR operation, 15

Yahoo, 392

zlib library, 58
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