
www.allitebooks.com

http://www.allitebooks.org

Bootstrap Site Blueprints
Volume II

Maximize the potential of Bootstrap with a collection
of real-world site projects for better, faster, more
responsive web applications

Matt Lambert

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Bootstrap Site Blueprints Volume II

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2015

Production reference: 1211215

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-109-9

www.packtpub.com

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Matt Lambert

Reviewer
Sherwin Robles

Commissioning Editor
Sarah Crofton

Acquisition Editor
Aaron Lazar

Content Development Editor
Sumeet Sawant

Technical Editor
Utkarsha S. Kadam

Copy Editor
Vikrant Phadke

Project Coordinator
Shweta H Birwatkar

Proofreader
Safis Editing

Indexer
Tejal Daruwale Soni

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

www.allitebooks.com

http://www.allitebooks.org

About the Author

Matt Lambert is a designer and developer with more than 15 years of experience.
He currently works full time as a senior software engineer for CA Technologies in
Vancouver, British Columbia, Canada. In his free time, he is an author, artist, and
musician. In 2005, Matt founded Cardeo Creative, which is a small web design studio
based in Vancouver. He works with a select list of clients on a part-time basis while
producing his own products side by side. To date, Matt has self-published three
additional development books titled Mastering Bootstrap, CSS3 Handbook, and the
Freelance Startup Guide.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewer

Sherwin Robles is a web application developer from the Philippines with a
solid 4 years of experience in designing, developing, and implementing automated
solutions. Most of his projects have been built with the CakePHP framework with
the help of Bootstrap, which makes development even faster. In April 2015, he joined
INIGOTECH, a company aimed at making people's ideas into reality.

Sherwin's expertise is rooted in research and development endeavors on how to
achieve improved levels of dependability on the Internet and computing systems.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

[i]

Table of Contents
Preface ix
Chapter 1: Advanced Bootstrap Development Tools 1

Theming is hard!@ 2
Harp.js – the static web server with built-in preprocessing 2

Creating a development environment 3
Installing Node.js 3
Installing Harp.js 3

Setting up a boilerplate project 4
Setting up the CSS 6
Setting up the fonts 7
Setting up the JavaScript 7
Setting up the partials 7
Setting up _harp.json 8
Configuring _data.json 8
Setting up the layout 9
Inserting the variables 10
Setting up the header 11
Setting up the footer 12
Compiling for the first time 13
Running the local server 13

Configuring Less 14
Defining your Less variables 15
Colors 15
Backgrounds 16
Text 16
Links 16

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Borders 17
Typography 17
Layout 18
Mixins 18
Border radius 18
Animations and transitions 19
Setting up your theme 19

SMACSS overview 20
Base rules 20
Layout rules 20
Module rules 20
State rules 20
Theme rules 20
Setting up the base 21
Setting up the layout 22
Setting up the modules 22
Setting up the states 24
Setting up the theme 24
Finishing up theme.less 25

Summary 26
Chapter 2: Building a Restaurant Website 27

Building our development environment 28
Adding more pages 28
Expanding the layout 28

Adding Google Web Fonts 29
Updating the Less variables 30

Backgrounds 31
Links 31

Updating the header 31
Setting up the page title 33
Setting up the navigation 34
Setting up the reservations modal 35
Setting up the footer 37

The footer layout 37
Home page 40

Adding the primary header image 41
Adding the about text to the home page 42
Setting up the food tiles 43

Adding the review carousel 44

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

The About page 51
Changing the feature image 52
Setting up the large subtitle 52
Adding the social media icons 53
Adding the address 53
Reviewing the layout 54
Inserting the About text 54
Don't forget the modal 55
Recompiling your project 57

The Menu page 59
Customizing the .page-header class 60
Setting up the layout 60
Adding the featured modal 62
Multiple modals 65

The Contact page 68
Inserting the Google Map 70

Inserting the Google Map code 70
Setting up the body of the page 71
The reservation modal 72

Summary 73
Chapter 3: Mobile First Bootstrap 75

Setting up the template 78
Adding a new web font 78
Adding the JavaScript to _layout.ejs 78
Updating the Less variables 80
Updating the text colors 80
Setting up the header 83
Navbar 84
Modal triggers 85
Search bar 88
Search bar jQuery 90
Filters 90
Setting up the footer 94

Single page apps 95
Setting up the index page 96

Feed 96
Adding the feed header 98
Filling in the posts section 99
Adding pagination to the feed 101

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iv]

Adding the feed count and the next button 102
Sidebar 103
About modal 104
The Contact modal 107
Login modal 110

Summary 117
Chapter 4: Bootstrap Wiki 119

Customizing the template 121
Updating _layout.ejs 121
Adding a new partial 122

Setting up the Less variables 123
Adding new colors 123
Background colors 124
Text colors 124
Link and border colors 124
Typography 125
Rounder corners 125

Updating the header and footer 127
Coding the header 127
Coding the header nav 129
Coding the header search bar 130
Adding custom button styles 130
Adding custom well styles 131
Finishing off the header search 132

Adding the navigation modal 134
Adding the footer 136

Coding the homepage 139
Setting up the page title section 139
Setting up the type styles 140
Coding the page body 141
Coding the sidebar 142
Coding the home page feed 143

The article page template 149
Coding the article page body 150
Adding the body content 151

The search results page template 154
Updating the page title 155
Updating the post-meta class 155
Adding search posts 155
Coding the search sidebar 156

Table of Contents

[v]

The Profile template 160
Adding an avatar 161

Mobile-specific styling 165
Summary 167

Chapter 5: Bootstrap News Magazine 169
Customizing the template 171

Updating _layout.ejs 171
Setting up the Less variables 173

Background colors 173
Text colors 173
Link colors 173
Borders 174
Typography 174
Border radius 174

Coding the header and footer 177
Updating the header 177
Inserting the logo 177
Adding the filters 178
Adding the search field 179
Adding the form Less component 180
Updating the footer 181
Coding the top of the footer 181
Adding the first two columns 182
Adding the newsletter form 183
Updating the button styles 184
Coding the advertisement section 184
Updating the well styles 185
Coding the bottom of the footer 186

Coding the home page 188
Creating a post grid with flexbox 189
Adding the pagination section 191

Coding the article template 194
Adding the article title 195
Adding the article metadata 196
Adding the article content 196
Adding the comment section 197
Creating the custom article layout 197
Adding the trigger button 198
Adding the Disqus content component 198

Summary 201

Table of Contents

[vi]

Chapter 6: Bootstrap Dashboard 203
Customizing the template 205

Updating _layout.ejs 205
Setting up the Less variables 207
Background colors 207
Text colors 207
Link colors 207
Borders 208
Typography 208

Coding the header and footer 210
Updating the header 210
Customizing the navbar component 212
Updating the footer 214

Coding the dashboard 215
Setting up the layout 215
Creating the sidebar 216
Customizing the nav pills component 217
Creating the content section 218
Customizing the typography 219
Writing the pie chart HTML 220
Writing the pie chart JavaScript 221
Creating a Less component for the charts 224
Setting up the widgets section 225
Writing the widgets HTML 225
Reviewing the success panel 227
Reviewing the danger panel 229
Writing the panels HTML 230
Customizing the table component 231
Adding the button 232
Customizing the button component 233
Inserting a line chart 233
Adding the HTML for the line chart 234
Updating the chart JavaScript 235
Updating the chart CSS 236
Mobile considerations 243

Summary 243
Chapter 7: Bootstrap Social Network 245

Customizing the template 247
Updating _layout.ejs 247

Table of Contents

[vii]

Setting up the Less variables 249
Background colors 249
Text colors 249
Link colors 249
Border colors 249
Typography 250
Border radius 250

Coding the header and footer 252
Updating the header 252
Inserting the brand 253
Creating the navbar Less file 253
Setting up the icon navigation 254
Adding the search bar 255
Adding the utility drop-down menu 256
Adding some mobile-specific styles 256
Updating the footer 257

Coding the profile page 258
Setting up the left sidebar 259
Adding the avatar 259
Adding the name and description 260
Adding the content column 261
Customizing the well component 263
Adding the third column 264
Completing the template 266

Coding the activity feed 269
Customizing the first column 271
Adding button styles 272
Adding the post form 272
Adding the new post notification bar 274
Styling the alert bar 274

Coding the notifications section 279
Updating the center column 281
Adding an alert bar 282
Adding a notification entry 282

Coding the private messages section 285
Adding a conversation 287

Coding the friends section 292
Adding a friend entry 293

Summary 297
Index 299

[ix]

Preface
In 2011, Mark Otto and Jacob Thornton were working at Twitter on a number of
projects. The two creators of the Bootstrap framework needed a way to achieve
consistency across them all. The solution they developed was the Bootstrap CSS
framework. Over time, more developers came on board and the project quickly
became the most popular repository on GitHub. As time has passed, the framework
has become the backbone of websites and web applications across the Internet.
Other companies have tried to emulate their success by creating their own internal
frameworks, but Bootstrap still remains the gold standard of open source CSS
frameworks.

Bootstrap provides developers with all the CSS tools that they need to quickly develop
websites. It has a deep feature set, is easy to learn, is mobile-first, and is cross-browser
compatible. Hundreds of additional components and plugins have been developed by
programmers, making it the go-to tool for web designers everywhere.

Bootstrap Site Blueprints Volume II provides you with detailed instructions on how
to develop some of the most common website and web application types on the
Internet. If you have struggled with using Bootstrap in the past or applying a custom
look and feel to your projects, this book will give you the foundation that you need
to become a Bootstrap master.

What this book covers
Chapter 1, Advanced Bootstrap Development Tools, is a quick introduction to Bootstrap.
This chapter also covers some advanced development tools that can be used to make
Bootstrap site development easier, such as Less, Node.js, EJS, and Harp.js.

Chapter 2, Building a Restaurant Website, is where we take our Harp.js development
environment and build a restaurant website. This will include building more page
templates, introducing Google web fonts, customizing Bootstrap components, and
much more.

Preface

[x]

Chapter 3, Mobile-First Bootstrap, covers how to do the following: create a mobile-first
website using Bootstrap, design a mobile-first website, use Google material design
colors and styles, do advanced customizations on the Bootstrap modal component,
use jQuery to make a search bar hide/show effect, and create a static, single-page
app using Bootstrap.

Chapter 4, Bootstrap Wiki, tells us how to create a wiki layout with Bootstrap and
how to add multiple templates to a project in Harp. You also get to learn how to
customize the navigation modal you made in the previous chapter, how to use Harp
partials for more than just the header and footer, and how to code your template in
a modular fashion to save time and produce Less code.

Chapter 5, Bootstrap News Magazine, illustrates the creation of a magazine website
using Bootstrap, and a new way to lay out a header using inline divs. Here, we see
how to construct a complex footer using multiple parts, how to use flexbox with
a Bootstrap grid, and how to use a basic jQuery to improve the experience of your
article page. We also implement a Disqus-powered comments section.

Chapter 6, Bootstrap Dashboard, teaches you how to code a dashboard using Bootstrap,
how to create a project with a dark look and feel, and how to implement and
customize the Chartist JavaScript library. In this chapter, we customize the Bootstrap
panels component, the Bootstrap table component, and the Boostrap nav and navbar
components. We also see how to use a mobile nav outside of the default navbar.

Chapter 7, Bootstrap Social Network, covers the coding of a social network using
Bootstrap. We customize the Bootstrap well component, the Bootstrap navbar
component, and the Bootstrap alert and button components. Finally, we see
how to create a highly modular design for easy reuse of code and components.

What you need for this book
To run the pieces of example code outlined in this book, you'll need a modern
browser, such as Google Chrome, Apple Safari, Mozilla Firefox or Microsoft Internet
Explorer. To work with the projects outlined in each chapter, you'll also need
the following:

• A text editor tool, such as Notepad or Sublime Text 2
• The full code package for each chapter
• You'll need to install Node.js and Harp.js
• A command-line tool such as a terminal or Cygwin

Preface

[xi]

Who this book is for
This book is for developers who are interested in learning how to build common
website and web application projects with the Bootstrap CSS framework. Basic
knowledge of HTML, CSS, and JavaScript is required to get the most out of this
book. It will also be helpful to have some experience with a command-line tool.

By reading this book, you'll learn the syntax and inner workings of Bootstrap
(the latest version 3.3.4 at the time of publishing this book), Less, Harp.js, HTML,
and CSS. You'll also learn a bit about JavaScript and jQuery.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, folder names, filenames, file extensions, pathnames, and dummy
URLs s are shown as follows:

A block of code is set as follows:

.red1 {
 color: @red1;
}

.red1-bg {
 background: @red1;
}

.red2 {
 color: @red2;
}

.red2-bg {
 background: @red2;
}

Any command-line input or output is written as follows:

$ harp server --port 9000

Preface

[xii]

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"Choose the Share or Embed Map option from the menu."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[xiii]

Downloading the color images of this book
We also provide you a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in
the output. You can download this file from: https://www.packtpub.com/sites/
default/files/downloads/1099OS_ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

www.allitebooks.com

https://www.packtpub.com/sites/default/files/downloads/1099OS_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/1099OS_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support
http://www.allitebooks.org

Chapter 1

[1]

Advanced Bootstrap
Development Tools

Although Bootstrap is the most popular CSS framework on the block, which
polarizes web developers of all skill levels, one of the main complaints against
it is that it's too large and hard to use. The primary goal of this book is to give
you an advanced set of tools to make building websites with Bootstrap easier
and even enjoyable. We'll start out by showing you how to create a development
environment and workflow that is easy to set up and reuse in all your Bootstrap
projects. From there on, we'll tackle a number of common website designs to
get you comfortable with the advanced techniques. Finally, we'll include some
JavaScript libraries and really take our Bootstrap projects to the next level. Sit
back, fire up your code editor of choice, and get ready to dive into some advanced
Bootstrap blueprints.

In this chapter, you'll learn:

• How to create a development environment with Harp.js
• How to run a localhost server with Node.js to preview your project
• How to write templates with EJS and use variables and partials
• How to set up your theme with Less in the most efficient manner
• How to compile your project for production

Advanced Bootstrap Development Tools

[2]

Theming is hard!@
I won't lie. Bootstrap theming can be really challenging. There is a large library
of components that take some time to understand, and learning the best ways to
customize them also takes time. But what if there was an easier way? I'm happy
to say that I've designed a workflow using some modern frontend development
tools that make it much easier to work with Bootstrap. The problem with frontend
languages such as HTML and CSS is that they lack some core programming features,
such as variables and includes. Thanks to tools such as Less for CSS and Harp.js for
templating, these missing features are now available for building static websites.

Harp.js – the static web server with
built-in preprocessing
The title says it all, and it is taken from the official http://harpjs.com/ website.
Harp is an open source project from some of the same people who brought us
PhoneGap, and it is my tool of choice for any static website project I work on.
Why is Harp so great? Here are just a few reasons:

• It includes automatic preprocessing of languages such as EJS, Jade,
Markdown, CoffeeScript, Less, Sass, and Stylus

• Harp converts the aforementioned languages into vanilla HTML, CSS,
and JavaScript and feeds it to the browser

• It allows powerful templating through the use of common layouts and
partials or includes for PHP people

• It includes a lightweight web server that compiles your code in the
background for quick and easy testing

• It passes in custom metadata through JSON to save your time
• It compiles all of your code into production-friendly files that you can

deploy on your server.

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.com.
If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed
directly to you.

http://harpjs.com/
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Chapter 1

[3]

Creating a development environment
Everything that I outlined earlier basically creates a development environment for
your Bootstrap websites. The advantage of using a development environment is
that you can use tools such as Harp to make your website development faster and
easier. It provides you with a working copy on your local computer, and you can use
that copy to develop your projects. When you're done, you can compile it into the
production version and deploy it on the Internet. It's a good idea to get into the habit
of creating a development environment because it's a better coding practice and
makes it easier to maintain your project in the future. This is because the production
code is totally separate from the source development files. Running a localhost server
for testing also allows you to build new features without having to worry about
negatively affecting your live production website.

Installing Node.js
The web server that is built into Harp runs on Node.js. Therefore, you will need to
install Node on your computer before you can set up Harp. If you don't have Node
already installed, head over to the following link to download the version you need:

http://nodejs.org/download/

Once you've downloaded and installed Node, you'll have to open and use the
command line to test the installation. If you're on a Mac, I'd recommend that you use
the terminal or an app such as iTerm to access the command line. If you're working
on Windows, you can use Cygwin. Once you've opened up your command-line app,
type in the following line:

$ node -v

If you have installed Node correctly, the number of the version you have installed
should be printed on the terminal. You should see something like this:

$ v0.10.33

Great! Now we can move on to installing Harp.

Installing Harp.js
Actually, setting up Harp.js is really easy. If you have closed your terminal, open it
again. Insert this command if you're on a Mac:

$ sudo npm install -g harp

http://nodejs.org/download/

Advanced Bootstrap Development Tools

[4]

If you're on Windows, use the following command:

$ npm install -g harp

After you execute this command, you should see a bunch of packages being installed
in the terminal window. Once everything stops loading, Harp is installed. To verify
that it has worked, enter the following in the terminal and hit Enter:

$ harp version

This should give you the version number, which means that Harp was successfully
installed.

Since Less preprocessing is included with Harp, we don't need to install anything
special to use Less. This is great news, because we don't need to rely on less.js or a
standalone compiler app. Once we compile our Harp project and run the web server,
any changes to Less files will be picked up automatically. For now, just celebrate, and
we'll cover compiling Less in more detail a little later.

Setting up a boilerplate project
For the rest of this chapter, I'm going to teach you how to set up a Bootstrap
boilerplate project in Harp. Moving forward, this boilerplate will be the basis for all
the projects in the book. One of the great things about Harp is that you can simply
copy and paste a project to create a new instance of it on your local machine. There
are also some other commands that you can run to generate project scaffolding,
and I welcome you to check them out at http://harpjs.com/docs/. However,
for this book, we aren't going to take any shortcuts, and I'm going to show you
how to manually set up a project. The best practice is to do it the hard way first
so that you learn how it works. This will save you a headache down the road if
you are troubleshooting a problem. The first thing you should do is navigate to a
directory on your computer where you want to store your project. In the directory
you created the following files and sub directories. For the time being, just leave
the .json and .ejs files blank. We'll fill them in a little later. Take a look at the
following image to see how your project directory should look.

Note that there is a project boilerplate available for download or forking
from GitHub at https://github.com/cardeo/booterator.

http://harpjs.com/docs/
https://github.com/cardeo/booterator

Chapter 1

[5]

This is the root of our project, and here we'll find everything at a high level:

• /css: This directory will contain all our custom CSS and the Bootstrap
framework CSS files.

• /fonts: This directory will be for holding any web fonts or icon web fonts.
The directory isn't totally necessary, but I always include Font Awesome
with all my projects so that I have an icon library to pull from.

• /img: This directory will hold all the images for the project. For the
boilerplate, we won't actually need any images, but we're setting this up for
future projects too.

• /js: This directory will hold any custom libraries and the Bootstrap
framework's JavaScript file.

• /partial: This directory will hold the pieces of code that we want to reuse in
our templates, such as our header and footer.

• _data.json: This is the file in which we will define any metadata that we
want to use in our template. An example of this could be the page title for
each web page.

• _harp.json: This is a file for setting global properties, such as the title of the
website, which is used on all pages.

• _layout.ejs: This file is the scaffolding for our page. It includes the <head>
and <body> sections of our document. At the very least, you need one layout
in every Harp project. It is possible to have multiple layouts if you want to
load in JavaScript libraries to only some pages.

Advanced Bootstrap Development Tools

[6]

• index.ejs: This file holds the actual code for our boilerplate home page.
This is the body or content of the page minus the wrapping template pieces
that are held in _layout.ejs.

The Embedded JavaScript (EJS) template language is very similar
to HTML and is therefore really easy to grasp. The advantage of
using EJS is that it allows the use of elements such as variables.

Setting up the CSS
Now that the root of our project is set up, let's set up the subdirectories. We'll start
with the CSS directory by adding the following files. Now would be a good time to
download the latest version of Bootstrap from http://getbootstrap.com if you
haven't done so already. Again, just leave theme.less blank for now.

Within the components directory, create a Less file and name it _variables.less.
Leave this file blank for the time being.

Starting a file with an underscore in Harp will mark it as a template
file that should not be a straight copy to the production directory.
It is file that should be compiled into another to create a full HTML
page or CSS style sheet.

Let's quickly walk through the files in the /css directory:

• bootstrap.min.css: This is the Bootstrap CSS framework. When you
download the Bootstrap package, there are a number of other CSS files.
We don't need any of those files; we only need the minified version of the
framework.

• /components: This is a directory for storing the Bootstrap component's Less
files. If you are customizing a Bootstrap component, you should create a Less
file for it and enter the custom CSS.

http://getbootstrap.com

Chapter 1

[7]

• theme.less: This is the master file for our CSS. All our components should
be imported into this file so that upon compilation, it will be a single theme.
css file for our project.

Setting up the fonts
Bootstrap comes with Glyphicons out of the box, which is fine. I, however, prefer to
use font awesome because their license is more flexible. To add font awesome to your
project, head to http://fontawesome.io and download the package. Unzip it into
your computer after downloading and copy the contents of the /fonts directory to
your project's /fonts directory. Next, go to the /css folder and copy font-awesome.
min.css to your project's /css directory. For now, that's all you need to do; we'll
hook up everything else a little later. The /fonts directory should now look like this:

Setting up the JavaScript
For our boilerplate, all that we need to do is copy bootstrap.min.js to our /js
directory. Like the Bootstrap CSS, there are a few JavaScript files included in the
download package. You can ignore the other files as we won't need them.

Setting up the partials
The last directory that we need to set up is our partials. If you come from the PHP
world, note that partials are includes. They are little snippets of code that are reused
across all or many of your pages, such as your header, footer, and navigation.
Partials are one of the best features of Harp because you can update these template
pieces in one place when changes occur, instead of updating on every page! For now,
create two files in your /partial directory, called _header.ejs and _footer.ejs.

Now that we've finished setting up the basic structure of our project, we can move
on to actually filling in some code for our .json and .ejs files.

http://fortawesome.io

Advanced Bootstrap Development Tools

[8]

Setting up _harp.json
I'm going to start with _harp.json before _data.json. This is because the first
file deals with the global settings for our project. In this case, we're going to use
_harp.json to set up a global variable that will map to the website name for our
project. Later on, we'll insert this variable into our layout so that it appears on every
page of our website. Enter the following code and save it:

{
 "globals": {
 "siteTitle": "My Bootstrap Boilerplate"
 }
}

What we've done here is set up a global variable named siteTitle and set its value
to My Bootstrap Boilerplate. Once we insert this variable into our layout, the title
will be shown on every page of our project.

This is only a fraction of what you can do here. Check out
http://harpjs.com/docs/development/globals
to learn more about globals.

Configuring _data.json
If _harp.json applies to all the pages in our website, _data.json contains page-
specific data for our project. In this case, I'm going to set up a variable that can be
used to insert the page name for each page of my project:

{
 "index": {
 "pageTitle": "Home"
 }
}

Here's how this data works:

• The index refers to the name of my ejs template that I want to target.
Currently, we have only one, called index.ejs.

• The pageTitle is a variable I created for the title of each of my pages. We'll
need to insert this variable into the layout later on.

• Finally, I entered a value of Home for my variable.

Again, there is more that you can do with metadata in Harp, but at this point, this
is all that we need. To learn more about Harp metadata, visit http://harpjs.com/
docs/development/metadata.

http://harpjs.com/docs/development/globals
http://harpjs.com/docs/development/metadata
http://harpjs.com/docs/development/metadata

Chapter 1

[9]

Setting up the layout
As I mentioned previously, _layout.ejs is the wrapper file for my index.ejs page
template. Layouts can be reused, and pages will always default to using _layout.
ejs unless you tell them otherwise. If you want to create a second layout for use on
a specific page, you simply have to create a new file called something like _layout-
two.ejs. Then, in your _data.json file, you have to add a second line to your
template declaration that points to the new layout:

{
 "index": {
 "pageTitle": "Home",
 "layout": "_layout-two"
 }
}

When you're working with your .json file, file extensions
are not required.

Now, that's an example of how to use multiple layouts. For our boilerplate, we'll
need only one layout. A layout file can be written in mostly normal HTML, but we
need to insert a yield property to tell Harp where to insert the content from the page
file (index.ejs). We also need to insert the variables that we defined in _harp.json
and _data.json. Open up your _layout.ejs file in the root of the project and insert
the following <head> code:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta name="viewport" content="width=device-width, initial-
 scale=1">
 <title><%- pageTitle %> | <%- siteTitle %></title>

 <link rel="stylesheet" type="text/css"
 href="css/bootstrap.min.css">
 <link rel="stylesheet" type="text/css" href="css/font-
 awesome.min.css">
 <link rel="stylesheet" type="text/css" href="css/theme.css">

 <!-- HTML5 shim and Respond.js for IE8 support of HTML5 elements
 and media queries -->

www.allitebooks.com

http://www.allitebooks.org

Advanced Bootstrap Development Tools

[10]

 <!-- WARNING: Respond.js doesn't work if you view the page via
 file:// -->
 <!--[if lt IE 9]>
 <script
 src="https://oss.maxcdn.com/html5shiv/3.7.2/html5shiv.min.js">
 </script>
 <script
 src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js">
 </script>
 <![endif]-->
</head>

The preceding code is the standard Bootstrap header with some small changes:

• Always load the Bootstrap CSS first, as you may want to overwrite
something in your theme

• Include the font awesome CSS file so that you can use the icons in
your projects

• Insert your theme CSS file, which will contain all your custom CSS

Make sure you use the CSS extension here for all your files. Once
theme.less is compiled, it will turn into theme.css. Therefore,
we need to name it correctly so that it's picked up by the browser.

Inserting the variables
If you look at the <title> tag in <head>, you'll notice a couple of variables. These
are the two variables that we set up in _harp.json and _data.json. On compiling,
pageTitle and siteTitle will be inserted into the page layout. Depending on the
page, the proper pageTitle variable will be inserted.

Now that we have the <head> element of our layout set up, let's enter the code for
<body>:

<body>
 <%- partial("partial/_header") %>

 <%- yield %>

 <%- partial("partial/_footer") %>

 <!-- javascript //-->

Chapter 1

[11]

 <script
 src="//ajax.googleapis.com/ajax/libs/jquery/1.11.1/jquery.min.
js"></script>
 <script src="js/bootstrap.min.js"
 type="text/javascript"></script>
</body>
</html>

Now, the <body> code is going to look a little different from what we are used to
with Bootstrap and HTML. Let me go through each part of the layout:

• The header partial will include our header code, which we haven't set
up yet.

• The yield tag is the marker for loading in the contents of our pages. In this
case, it will load index.ejs.

• Like the header, the footer partial will be included wherever the tag
is inserted.

• At the bottom, I've included jQuery and a link to the Bootstrap JavaScript
framework that is in our project.

Setting up the header
To set up the header, we need to edit the _header.ejs file that we created earlier in
this chapter. Head to the /partial directory and open up _header.ejs. Then paste
the following in the Bootstrap navbar code:

<nav class="navbar navbar-default" role="navigation">
 <div class="container-fluid">
 <div class="navbar-header">
 <button type="button" class="navbar-toggle collapsed" data-
 toggle="collapse" data-target="#navbar1">
 Toggle navigation

 </button>
 <%- siteTitle
 %>
 </div>

 <div class="collapse navbar-collapse" id="navbar1">
 <ul class="nav navbar-nav">

Advanced Bootstrap Development Tools

[12]

 Home

 </div>
 </div>
</nav>

The code for the header is pretty straightforward, except for one thing; it's your
standard Bootstrap navbar. One more thing that is different is that I've used the
siteTitle global variable again so that siteTitle will automatically be inserted
into the navbar brand for each page upon compilation. This is a simple example of
how you can reuse variables in your templates.

Setting up the footer
Next, open up the _footer.ejs file, which is in the same /partial directory.
Here, we'll just want to insert some super simple footer code that can be used as
a placeholder. Notice how I'm wrapping my footer in a container-fluid class.
It's a good idea to componentize the pieces of your theme so that they are easily
interchangeable and don't rely on markup in other components or partials:

<div class="container-fluid">
 <div class="row">
 <div class="col-lg-12">
 © 2015 Matt Lambert
 </div>
 </div>
</div>

As you can see, it is super simple! The last template or HTML/EJS work that we
need to do is set up the body of our page, which lives inside of index.ejs. For our
boilerplate, let's create a super simple piece of page content:

<div class="container-fluid">
 <div class="row">
 <div class="col-lg-12">
 <h1>Bootstrap Boilerplate</h1>
 <p>This is a Bootstrap starter template built with Harp,
 Less, CSS, EJS, and HTML</p>
 <p>Made in Vancouver by @cardeo</p>
 </div>
 </div>
</div>

Chapter 1

[13]

This chunk of code should be self-explanatory. I've purposely kept it simple so that
you can easily see where the lines between page templates and partials are. Now that
the base of our project is set up, let's compile and preview it!

Compiling for the first time
Now that our initial project is set up, it's time to compile it and test it out to make
sure that everything works. When we compile our project for the first time, Harp
creates a directory in the root of our project, called /www. Within this directory, it
will dump all the compiled HTML, CSS, and JavaScript files. When you are ready to
publish your project, simply upload the contents of this directory to your server. See
how simple and clean it is? Your development and production files live in the same
project directory but are totally separate.

You should never manually edit any of the files in your
/www directory. If you do, on the next compilation, any
changes you make will be overwritten.

The compilation of your project is done from the command line or terminal app. If
you have closed it, open it again and navigate to your project directory. Once you get
there, run the following command:

$ harp compile

If all goes well, a new line should appear in the terminal. If there is an error, Harp
will give you an error message with a clue to the problem. Let's assume that all has
gone well and everything has worked fine. Go to your project directory and look for
the /www directory. If it's there, it means that the compile worked fine.

Running the local server
The next thing you'll want to do is actually test your project in a browser. To do
this, we can use Harp's built-in web server to test the website locally. This is a great
feature because you can test drive your project locally without having to upload it to
the Internet. To fire up the server, enter the following command in the terminal from
your project directory:

$ harp server --port 9000

This will deploy your project locally on port 9000. Open up a web browser and go
to http://localhost:9000 to view the website.

Advanced Bootstrap Development Tools

[14]

Your page should look like this:

Now that you have the server running, you can take advantage of one of Harp's
other awesome features. Every time you make a change to a template file, CSS file,
and so on, you don't have to recompile your project. You can simply save the file and
refresh the browser, and you'll see the updated version. This will save you so much
time! One thing to remember, however, is to make sure you compile when you're
done so that the changes are applied to the /www directory.

I encourage you to memorize the preceding commands, but if you want something
easier to remember, you can use $ harp server www to run the local server. The
only problem with this command, however, is that I've found it to be a bit buggy.
It will start the server but updates to templates in the background won't always be
picked up. A more reliable method is to manually declare which port to use when
you fire up the server. Now that our project is all set up and running, it's time to set
up our Less configuration to theme our project.

Configuring Less
A great advantage of using Harp is that it has a built-in Less compiler. When you
run the $ harp compile command, it compiles both your .ejs templates and your
.less files into regular HTML and CSS. This is much easier than using something
like less.js, which you would have to remove from production. When you're
compiling your project for the first time, ensure that you include some code inside
your theme.less file. Otherwise, theme.css will not be written.

Chapter 1

[15]

Defining your Less variables
Head back to the css/components directory that you created earlier and open up
the _variables.less file. Within this file, we'll configure what I call global CSS
variables. Moreover, within this file, we'll define only those variables that apply
across our entire website. Component-specific variables have no place in this file.
I know that some developers like to have one big file for variables, but I prefer to
keep the component-specific ones out in their own Less files. We will see more on
that later, when we dive into custom components. For now, let's start pasting the
following code in _variables.less.

Colors
Let's start by inserting some color variables that can be used throughout all our
Bootstrap projects:

@black: #000;
@dark-grey: #333;
@grey: #ccc;
@light-grey: #ebebeb;
@off-white: #f5f5f5;
@white: #ffffff;
@blue1: #3498db;
@blue2: #2980b9;
@red1: #e74c3c;
@red2: #c0392b;
@yellow1: #f1c40f;
@yellow2: #f39c12;
@green1: #2ecc71;
@green2: #27ae60;
@orange1: #e67e22;
@orange2: #d35400;
@aqua1: #1abc9c;
@aqua2: #16a085;
@purple1: #9b59b6;
@purple2: #8e44ad;
@navy1: #34495e;
@navy2: #2c3e50;

As you'll see, I like to define a fairly large color palette. But this doesn't mean that all
my projects will use all of these colors. However, like a good typography, it's a good
idea over time to develop a library of colors that work well together. We can then
easily include them in all our projects so that we have colors that work well together
right at our fingertips. When you are diving deep into theming, this is really valuable
because you don't have to go and look for a new color palette with every new theme.
You already have a collection of colors that you can pull from, which will speed up
your theming process.

Advanced Bootstrap Development Tools

[16]

Backgrounds
Lets add the background variables:

@primary-background: @white;
@secondary-background: @off-white;
@third-background: @light-grey;
@fourth-background: @grey;
@inverse-background: @dark-grey;

The preceding code is my boilerplate for backgrounds. Note how these
colors use a variable name for their value and not a hexadecimal value.
The reason that this is done is to speed up theming. Instead of having
to change a color in two places, we only have to change it in one, and
then it inherits throughout our other variables. Here are a few more
key points about backgrounds.
The variable naming convention here is similar to that of Bootstrap,
for consistency. This also makes it easier to remember a variable name,
such as primary, as against something like white-background.
At the very least, you should have a primary, a secondary, and an
inverse background. I like to include a couple more, but feel free to
scale this back a bit if it makes it easier for you.

Text
As with our backgrounds, we are following the Bootstrap naming conventions for
our text colors:

@primary-text: @dark-grey;
@light-text: @light-grey;
@loud-text: @black;
@inverse-text: @white;
@heading-text: @dark-grey;

Consistency is the key as it makes it easier to remember variable names. It is critical
when you're dealing with a large framework that you make things as easy as
possible to remember. Again, make sure you use color variables for the values here
and not actual hexadecimal numbers.

Links
Defining the link colors is pretty straightforward:

@primary-link-color: @blue1;
@primary-link-color-hover: @blue2;

Chapter 1

[17]

One thing that I'll point out here is that this is the first example where you'll see why
you should have at least two versions of every color that you use in your palette.
Things such as hover states usually require a base color and a darker or lighter
version of the same color to indicate a change in hovering. You may want to expand
this section to include a second or even third-link color variation.

Borders
The border variable is the first place where you'll see some values that aren't only
color-based:

@border-color: @light-grey;
@border-size: 1px;
@border-type: solid;
@border-focus: @grey;
@secondary-border-color: @blue1;

In this case, you should always set your size to 1px. The reason for this is that you
can use a Less operation like the following to increase the size of your border.
Starting from 1px makes your operations simple and easy to follow for other
developers who may be maintaining or editing your code:

.good-class {
 border-size: (@border-size + 1);
}

.bad-class {
 border-size: 2px;
}

Never use pixel values in any of your custom CSS! You would
want to use variables so that you can make any units relative and,
therefore, controlled by a variable. This will allow you to quickly
spin up a new theme by only editing the variable's Less file.

Typography
Next we need to setup the global settings for our typography variables. We'll set our
body and heading font stacks, a base font size and line height.

@body-copy: "Helvetica Neue", helvetica, arial, verdana, sans-serif;
@heading-copy: "Helvetica Neue", helvetica, arial, verdana, sans-
serif;
@base-font-size: 14px;
@font-size: 1em;
@base-line-height: 1.5;

Advanced Bootstrap Development Tools

[18]

When I set up typography for a theme, I like to follow a few simple rules:

• Make sure you define at least a body and a heading copy variable.
• Set the base font size as a pixel value.
• Set the actual font size to 1em and use this variable throughout your custom

CSS. In this way, you will be using a relative value that is easier with
operations. This is exactly the same as the preceding border example.

• I personally prefer to reset Bootstrap's line-height to 1.5 for easier math.

Layout
The only layout variables that you should be setting in your globals are margin and
padding:

@margin: 1em;
@padding: 1em;

Both should be set to 1em for easy relative operations. This follows the same unit of
measurement patterns set with borders and typography.

Mixins
The other element that I recommend including in your global Less file is mixins. In
my opinion, there are only two of them (and maybe only one) that you definitely
need to include to speed up your Bootstrap theming.

Border radius
The border radius is by far the most important as it is used a ton through Bootstrap
components:

.round-corners (@radius: 2px) {
 -moz-border-radius: @radius;
 -ms-border-radius: @radius;
 border-radius: @radius;
}

Make sure you set this up and use it for everything. If you are thorough, you can
change the border radius of all elements in one place. An example of this would
look like the following:

.btn {
 /* fill in the rest of the styles here */

Chapter 1

[19]

 .round-corners;
}

Now, if I change my @radius value to a different pixel amount, it will inherit down
to my button corners. Do this for all your Bootstrap components!

Animations and transitions
Another property that I use heavily in my themes is the animations or transitions
property:

.transition (@transition: background .1s linear) {
 -moz-transition: @transition;
 -webkit-transition: @transition;
 transition: background @transition;
}

I find that a little transition, when added, can add a lot to a UI. Instead of defining
this from the ground up on every component, use this simple mixin. It will speed up
your theming time and also ensure that transitions are consistent across your entire
theme. That's just good design and coding. Here's an example that shows you how
to apply the round corners and transition mixins to a button:

.btn {
 /* fill in the rest of the styles here */
 .round-corners;
 .transition;
}

This completes your _variables.less file. Save the file and close it. Next, we'll
cover the setup of the master theme file for our project.

Setting up your theme
Now that we've set up our variables file, we need to set up the master theme that
we'll import it into. The master theme file, or theme.less, is the primary file that
we will link in the <head> section of our pages. I've organized the theme using the
Scalable and Modular CSS (SMACSS) system. Using a modular approach while
coding the CSS will make the job easier and the code more maintainable over time.

Advanced Bootstrap Development Tools

[20]

SMACSS overview
The scalable and modular CSS system was created by Jonathan Snook, who is
currently a product manager at Shopify. It divides your style sheet into five sections
in order to make it easier to categorize your CSS. Let's review each SMACSS category
to see how it applies to our Bootstrap theme structure.

Base rules
A base rule applies to any element that is an element selector, descendent selector,
child selector, or pseudo-class. It doesn't apply to CSS classes or IDs. These are
basically all your core HTML tags.

Layout rules
The layout section is dedicated to any custom classes that you've written for
the layout of your project. This could be something simple, such as a header, or
something more complex, such as a widget. If you're following best practices, your
layout should only use classes. However, if you have used some IDs, you should
include them here as well.

Module rules
This is the big one for Bootstrap, because this is where you should import all your
component Less files. Later on, I'll explain how you should break down each
Bootstrap component into its own Less file and then import it into the master theme.
The code for this will look a little something like the following:

@import "components/_badges.less";
@import "components/_typography.less";
@import "components/_tables.less";

State rules
These styles refer to anything that applies to a state change, such as form validation
or alert bars.

Theme rules
This part of your style sheet is optional. You may cover it in the preceding sections.
However, if you find yourself needing a section for styles specific to your theme, this
is where you should insert them.

Chapter 1

[21]

Now that I've explained how we'll organize our master theme, let's actually start
putting it together. The first thing we need to do is import the _variables.less file
that we created. We want this to be the first thing that we load into the theme, so we
place the following line of code at the top:

@import "components/_variables";

With the variables file in Harp, you shouldn't include the file
extension. The reason behind this is that multiple preprocessor
types are supported and variables is a keyword.

Setting up the base
The next section that we want to set up in our theme is the base. Insert the following
boilerplate CSS. We want to keep this really basic so that we have a starting point for
our future projects:

body {
 background: @primary-background;
 font-family: @body-copy;
 font-size: @base-font-size;
 line-height: @base-line-height;
 color: @primary-text;
}

ul,
ol {
}

li {
}

a, a:link, a:visited {
}

a:hover {
}

p {
}

hr {
}

Advanced Bootstrap Development Tools

[22]

I'm not even going to fill in any of the tags at this point, as they will be defined in the
actual project. The only tag I will fill in is <body>. Let's review the properties that we
have added to the body tag at the top of the preceding section of code:

• We'll set our background to the @primary-background variable. The @
primary-background variable should be set to the color you want for the
background of your project.

• We set the font-family property to our @body-copy variable.
• Set the font-size property to the @base-font-size variable. Remember

that this is the one that has the pixel value, and it should be a value of this
type on the body tag. In any future use of the font-size property, you
should use the @font-size variable.

• The line-height is set using the @base-line-height variable.
• Finally, we'll set the font color to our @primary-text variable.

As I mentioned earlier, we'll leave the rest of this section blank as it will be filled in to
match the actual project that we will be designing in the future.

Setting up the layout
Since this is a boilerplate project, we don't really have a layout. We can fall back on
the Bootstrap's grid and we don't need anything custom. Therefore, just leave this
section blank for now, but you might want to insert a comment to show where the
layout code should be inserted for future projects:

/*
02. LAYOUT
Styles specific to your layout or website
*/

Setting up the modules
This section should be a list of @import keywords that load into our Less component
files. As I mentioned earlier, you should break down any custom Bootstrap
component CSS into its own Less file and save it in the /components directory. This
is the way to keep your CSS neat and tidy in the development version of your theme.
On compile, all of these Less files will be combined into a single CSS file called
theme.css. However, for development purposes, it makes a ton of sense to break
down the CSS for easier maintenance and writing.

Chapter 1

[23]

As you create a project, you may not need to overwrite code in every Bootstrap
component. Personally, I think it's good practice to customize everything, but it's not
always practical to do this. The following is a list of potential Less component files
that you can make with Bootstrap:

• badges

• breadcrumbs

• buttons

• button groups
• button dropdowns
• carousel

• code

• collapse

• dropdown

• forms

• icons

• input groups
• images

• helpers

• jumbotron

• labels

• The list group
• The media object
• modal

• navs

• navbar

• pager

• The page header
• pagination

• panels

• pills

Advanced Bootstrap Development Tools

[24]

• popover

• progress bars
• scrollspy

• tables

• tabs

• thumbnails

• tooltip

• typography

• well

When you're creating a component Less file, first save it at css/components, and
then use the @import keyword to import it into theme.less. You need a different
@import statement for each file to load it in:

@import "components/_badges.less";
@import "components/_typography.less";
@import "components/_tables.less";

Setting up the states
With Bootstrap, the States section works much like modules, but I like to divide the
following two components into the states section:

@import "components/_alerts.less";
@import "components/_form-validation.less";

These two make sense from a Bootstrap component standpoint. If you are using
a different JavaScript library to perform your form validation, you should include
the corresponding styles here. This should also apply for any component that has
a state change.

Setting up the theme
The final section is the theme, and it is totally optional. One thing that would be
theme-specific is your color palette. I break my color palette into another Less file
and import it under the modules section.

Chapter 1

[25]

You may be wondering what goes into this colors.less file, since we have
defined our colors in the _variables.less file. In the variables file, we only assign
hexadecimal numbers to variables. In the colors.less file, I assign these variable
names to actual CSS classes so that we can use them in our layouts. In this way, we
stay more modular because we can assign a color class to a widget instead of putting
the color in the widget's CSS layout code. I usually define a text and background
color class for each color in my palette:

.red1 {
 color: @red1;
}

.red1-bg {
 background: @red1;
}

.red2 {
 color: @red2;
}

.red2-bg {
 background: @red2;
}

Now, those class names are way easier to remember than hexadecimal numbers, and
this allows you to apply them to a widget, as follows:

<div class="custom-box red1-bg">this is a custom box with a red
background</div>

Using this method, I can leave out any color styles in my custom-box class and only
worry about layout styles. I can then apply the color using a CSS class, which is
much more modular and reusable.

Finishing up theme.less
Now that we've finished the last section of theme.less, our style sheet is ready
to roll. Go back to the terminal and compile your project again. Once that's done,
go to www/css and you should see theme.css. Our boilerplate CSS development
environment is ready to roll for an actual project.

Advanced Bootstrap Development Tools

[26]

Summary
In this chapter, you learned how to—and why it's important to—build a
development environment with Harp.js. You also learned how to write templates
in EJS using variables and partials. Lastly, you got to know how to set up your
theme with Less and compile your project for production.

In the next chapter, we'll begin our first project, where we'll build a full-fledged
restaurant website. Eager to get started? Flip those pages and dive right in!

[27]

Building a Restaurant Website
In the previous chapter, we laid down the foundation that will be used in all our
blueprints moving forward. In the second chapter, we'll use our Harp.js development
environment and build an actual restaurant website. This will include building more
page templates, introducing Google Web Fonts, customizing Bootstrap components,
and much more. But before we jump right into it by expanding on the files we set up
in the first chapter, let's preview the home page for our new restaurant website:

Building a Restaurant Website

[28]

Building our development environment
In the first chapter, we kept our Harp.js development environment pretty basic.
We did this because we want to be able to use it as a boilerplate for all our projects.
The first thing that we need to do in this chapter is expand on our original work to
customize and extend it for our restaurant website.

Adding more pages
Now, the first thing we should do is update _data.json with all the new pages that
we'll be building for our restaurant website. Along with our home page, let's add
three new pages: Menu, About, and Contact. Our file should look like this:

{
 "index": {
 "pageTitle": "Home"
 },
 "menu": {
 "pageTitle": "Menu"
 },
 "about": {
 "pageTitle": "About"
 },
 "contact": {
 "pageTitle": "Contact"
 }
}

As you can see, I've added three new sections to our JSON file. Make sure you name
your files to match the first part. Then, I've defined a pageTitle value for each page.
Save the file and close it.

The _harp.json doesn't require any updates for this project.

Expanding the layout
We need to make a couple of additions to _layout.ejs for our restaurant website.
We're going to load a secondary web icon font library and some Google Web Fonts.

Chapter 2

[29]

Adding Google Web Fonts
I don't want our restaurant website to look like every other Bootstrap website, so
I'm going to import some Google Web Fonts to give it a more original look. If you're
unfamiliar with this service, remember that it's an open source library of web fonts
provided for free from Google. You can even download the actual font files on your
computer for use in programs such as Photoshop or Illustrator. For this project, I've
selected the Raleway font and I'll need four weights: light (300), normal (400), bold
(700), and ultra-bold (900). To import the fonts, simply add this line of code to the
<head> tag of _layout.ejs:

<link
href='//fonts.googleapis.com/css?family=Raleway:400,300,700,900'
rel='stylesheet' type='text/css'>

Now that we've imported the fonts from Google's CDN, we need to hook them
up in our Less theme. Pop open the _variables.less component located at css/
components. Locate the Typography section of the file and add Raleway as the first
option in your font stack:

@body-copy: "Raleway", "Helvetica Neue", helvetica, arial,
verdana, sans-serif;
@heading-copy: "Raleway", "Helvetica Neue", helvetica, arial,
verdana, sans-serif;

Now our fonts are all set to use Raleway. In the current configuration, Raleway
will be the only font used across the entire website. In some cases, you might want
to use something like Helvetica Neue for the body copy and Raleway for the
heading copy. If that's the case, just remove Raleway from the @body-copy variable.
However, for my design, I'm going to use Raleway for both copy types.

Our updates to _layout.ejs are now complete. The entire file should look like this:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta name="viewport" content="width=device-width, initial-
 scale=1">
 <title><%- pageTitle %> | <%- siteTitle %></title>

 <link type="text/css" href="css/bootstrap.min.css"
 rel="stylesheet">
 <link type="text/css" href="css/font-awesome.min.css"
 rel="stylesheet">

www.allitebooks.com

http://www.allitebooks.org

Building a Restaurant Website

[30]

 <link type="text/css" href="css/theme.css" rel="stylesheet">
 <link
 href='//fonts.googleapis.com/css?family=Raleway:400,300,700,900'
 rel='stylesheet' type='text/css'>

 <!-- HTML5 shim and Respond.js for IE8 support of HTML5 elements
 and media queries -->
 <!-- WARNING: Respond.js doesn't work if you view the page via
 file:// -->
 <!--[if lt IE 9]>
 <script
src="https://oss.maxcdn.com/html5shiv/3.7.2/html5shiv.min.js"></
script>
 <script
src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script>
 <![endif]-->
</head>
<body>

 <%- partial("partial/_header") %>

 <%- yield %>

 <%- partial("partial/_footer") %>

 <!-- javascript //-->
 <script
 src="//ajax.googleapis.com/ajax/libs/jquery/1.11.1/jquery.min.
js"></script>
 <script src="js/bootstrap.min.js"
 type="text/javascript"></script>
</body>
</html>

Updating the Less variables
Before we go any further with this project, we should update a few of the global
variables to match the look and feel of our restaurant website.

Chapter 2

[31]

Backgrounds
I'm going to change the primary background to be light gray and the secondary
background to be white. The main background of the website will be light gray. It
will have a centered section that holds the majority of the content, which will be
white for easy readability:

// background colors
@primary-background: @off-white;
@secondary-background: @white;

Links
I'm also going to move away from the default Bootstrap link colors by setting them
to red. The basic color palette for our website will be white, light grey, dark grey,
and red:

// link colors
@primary-link-color: @red1;
@primary-link-color-hover: @red2;

That's all the updates that our global variables will need. Let's move on to editing
our header, which will require us to write some new CSS in our theme.

Updating the header
The next thing that we need to update is the header partial. Open up _header.ejs,
located in the /partial directory. Select the contents of the file and delete them all.
For this project, it's going to be easier to create custom header navigation instead
of using Bootstrap's. When creating Bootstrap websites or themes, it's important to
remember that you don't have to use all the native components. This is actually a
good way to avoid a generic-looking Bootstrap website. This is also a technique that
you will start to see throughout this book, for creating a unique look and feel. Here's
the code for our new header:

<div class="header">
 <div class="container">
 <div class="row">
 <div class="col-lg-3">
 <h1>Public</h1>
 </div>
 <div class="col-lg-9 right">
 <div class="main-nav pull-right">
 <ul class="list-inline">
 Home

Building a Restaurant Website

[32]

 <li class="divider">/
 Menu
 <li class="divider">/
 About
 <li class="divider">/
 Contact
 <button type="button" class="btn btn-default"
 data-toggle="modal" data-target="#reservation-
 modal">Reservations</button>

 </div>
 </div>
 </div>
 </div>
</div>

As you can see, I may not be using the default Bootstrap navbar component, but I'm
still using the basic grid classes to build a new custom header. Let's go through each
part and talk about the custom CSS that goes with it.

The first thing that I've done is added a wrapping class around a container so that I
can apply some styles to this specific chunk of layout. Let's update theme.less by
adding the following styles:

.header .container {
 background: @primary-background;
 padding-left: 0;
 padding-right: 0;
}

In a future step, we're going to set our default container to use our secondary-
background variable, which is white. However, for this header, we want the
background to be light gray, so we'll set it to the @primary-background variable. We
also want the text in our header to line up vertically with our layout box, so we've
removed the left and right padding.

I'm a big supporter of minimal layouts with lots of white space, so let's add some
vertical padding to our header to give it some breathing room:

.header {
 padding: (@padding * 4) 0;
}

Chapter 2

[33]

I've used a Less operation here to render the padding value. Instead of writing
something like 4em, I've used (@padding * 4). This is very powerful because we
can control the overall global padding values from our global Less variables. In our
actual theme, we are simply creating a relative measurement. This will save you a
ton of time. You don't need to go through your entire theme while making edits; you
can simply update the variables file. I hope it's clearer now why we set the margin
and padding to 1em. It makes doing the math in your head super easy when you
are multiplying, adding, dividing, or subtracting from a base value of 1.

Setting up the page title
The next thing that I'll do is set up the page title with a <h1> to optimize it for SEO.
For this tag, we're going to write some custom CSS to change the font size and use
our Google web font. I'll also use this as an example to create a new Less component.

Open a new file and save it to the css/components folder with the filename as
_typography.less. We're going to break all of our custom type out into its own Less
component file, which we will then import back into theme.less. This keeps our
Less files small and easier to read. Once you've created the file, paste the following
code in it:

h1 {
 font-weight: 900;
 height: 36px;
 margin: 0;
 line-height: 1;
}

Remember that we're using the Raleway web font, so I'm setting font-weight to a
value of 900 to apply the ultra-bold font option. I've also changed the font size to
36px, removed the margin and set line-height to 1. The reason I've normalized
these values is that this will make it easier to line up the page title with the nav links
unordered list, which we haven't added yet.

Before we can apply these styles, we need to import _typography.less back into
theme.less. Head back to that file and scroll down to the modules section of the file.
Once you're there, insert the following line of code to import the type component file.

@import "components/_typography.less";

That's all we need to do for the page title. For the purposes of the project, I've named
the restaurant public. Feel free to keep this name or rename it to something else.
The next step is to set up the navigation component.

Building a Restaurant Website

[34]

Setting up the navigation
You'll notice that I've set up a custom div to wrap an inline list named main-nav.
What I'm doing here is using Bootstrap's built-in inline list component and then
building on it a bit more to get the look that I want. This is the power of using
a framework. I don't have to write the whole unordered list component; I can
use what is provided and customize it. The main-nav component has a few CSS
customizations, so let's jump into them all:

.main-nav {
 line-height: 36px; // vertical center with logo
}

The first thing that we'll do is set line-height to 36px, which matches the height of
the public page title. This will vertically center the page title and the navigation. It's
basically a quick and easy way to apply vertical centering in CSS:

.main-nav ul {
 margin-bottom: 0;
}

Next, we'll remove the bottom margin from the tag to maintain the same
vertical alignment. If we were to leave that in, then it would push the next container
down and ruin our nice equal space above and below our header, which we set
to 4ems:

.main-nav li.divider {
 color: @grey;
}

You'll notice that in our unordered list, every other tag has a class of .divider.
This is a quick and easy way to add a little design element to your nav to make it
look different. I've styled the color of these dividers to be a bit lighter so that they're
an accent and don't clash with the page links, which are the main thing that we want
your user to notice:

.main-nav a {
 text-decoration: none;
}

The last thing we need to cover is the appearance of the links in our navigation.
For our static state, I've simply removed the underline. On hover of the link,
things get a little more interesting:

.main-nav a:hover {
 border-bottom: (@border-size * 5) @border-type @grey;
 transition: border-color 0.2s ease;
}

Chapter 2

[35]

I've used a CSS3 transition to fade in the border bottom color of each link. I've also
increased the border size to five pixels, using a Less operation, to make it stand out
more. This is purely a design element, so feel free to play around with it to get the
effect you want.

Setting up the reservations modal
The last part of the header and navigation is the Reservations button. Clicking on
this button will launch a modal popup where the user can fill in and submit a form
to request a reservation at the restaurant. We'll need to insert our button into our
header. Then, the corresponding modal code will have to be inserted into every
page template. Here's what the modal will look like:

Next, let's start with the code for the button:

<button type="button" class="btn btn-default" data-toggle="modal"
data-target="#reservation-modal">

There's nothing out of the ordinary here. Just be sure to note the data-target value,
or ID, as we'll need it when we set up our modal code in the page template.

Once we've inserted our button, we need to open up index.ejs and insert the
modal code, which will be executed once the button is clicked on. Paste the following
snippet of code in your index file. I prefer to insert my modal code at the bottom of
the file so that it doesn't confuse other developers.

Building a Restaurant Website

[36]

Make sure that you also comment what the modal is for:

<!-- reservation modal //-->
<div class="modal fade" id="reservation-modal">
 <div class="modal-dialog">
 <div class="modal-content">
 <div class="modal-header">
 <button type="button" class="close" data-dismiss="modal"
 aria-label="Close"><span aria-
 hidden="true">×</button>
 <h4 class="modal-title">Book Reservation</h4>
 </div>
 <div class="modal-body">
 <form>
 <div class="form-group">
 <label>Name</label>
 <input type="text" class="form-control"
 placeholder="Enter your name">
 </div>
 <div class="form-group">
 <label>Date</label>
 <input type="text" class="form-control"
 placeholder="Enter your date">
 </div>
 <div class="form-group">
 <label>Guests</label>
 <input type="text" class="form-control"
 placeholder="Enter the number of guests">
 </div>
 </form>
 </div>
 <div class="modal-footer">
 <button type="button" class="btn btn-default" data-
 dismiss="modal">Close</button>
 <button type="button" class="btn btn-
 primary">Submit</button>
 </div>
 </div><!-- /.modal-content -->
 </div><!-- /.modal-dialog -->
</div><!-- /.modal -->

Chapter 2

[37]

Let's review the key parts of this modal for reservations:

• In the first line of the modal code, make sure that the CSS ID matches the
data-target that was entered on the button code in the previous step. In
this case, it should be reservation-modal. If you change the name, make
sure that it is something descriptive, as we'll be adding more modals on the
menu page.

• Insert the code for a basic form in the modal-body, and you're done. If you
save the file and fire up the Harp.js server, you can test out the header and
the modal. On a click of the reservations button, the modal should launch
over the top of your page.

This concludes the setup of the header for this project. Before we jump into page
templates, let's set up the global footer.

Setting up the footer
The last part of our base template that we need to update is the footer. We're going
to give the footer a unique new look, use some Font Awesome social media icons,
and define our first utility CSS classes.

The footer layout
First, open up _footer.ejs, which is located in the /partial directory. Delete the
existing code in there and replace it with the following snippet:

<div class="footer">
 <div class="container">
 <div class="col-lg-12">
 <h1>Public</h1>
 <p>1234 Street Name / Vancouver, BC / 604.123.1234</p>
 <p>Hours: Open 12pm to 9pm 7 days a week</p>
 <div class="social-media">
 <i class="fa fa-facebook"></i>
 <i class="fa fa-twitter"></i>
 <i class="fa fa-pinterest"></i>
 <i class="fa fa-instagram"></i>
 </div>
 <p>© 2015 Public Restaurant</p>
 </div>
 </div>
</div>

Building a Restaurant Website

[38]

Like our header, I've wrapped the footer section in a .footer class so that I can
target all of the code within it. The first thing that we'll do is set up the following
styles on the wrapping class:

.footer {
 text-align: center;
 color: @inverse-text;
 padding-bottom: (@padding * 4);
}

I'm using the @inverse-text variable here to set the text to white. In the next step,
the background color will be reversed, so that's why we are also reversing the text
color. I've also added some bottom padding to the footer and centered the contents
of the section.

If you prefer, you can choose to use the <footer> HTML5 tag here
instead of a .footer class.

Next, we need to make some customizations to the .container class, which
is nested inside of .footer. As with our header, we'll want to customize this
container without affecting the primary container used in the body of the page:

.footer .container {
 background: @inverse-background;
 padding: (@padding * 4) 0;
}

Here, I've used the @inverse-background variable to reverse the background footer
color. I've also applied some top and bottom padding to the section.

Now that we've set up our wrapping styles, we can go through the actual HTML
code for our footer. First off, we've reused our <h1> tag and added in the name of
the restaurant. Following that, we add in the address and hours of operation for the
restaurant. All that is straightforward. The next section is the social media icons,
which will require some special styles. First of all, we'll add some vertical padding
around the icons to give them some breathing space:

// add padding around social media links
.social-media {
 padding: @padding 0;
}

Chapter 2

[39]

Next, we'll set up some custom link states for the icons. The default red links would
be a bit loud here, so we'll go with a more subtle light gray treatment. I've also added
some horizontal padding to each icon link for additional breathing room:

// space out social media icons and change link color
.social-media a {
 padding: 0 (@padding - 0.5);
 color: @white;
}

// hover link color for social media icons
.social-media a:hover {
 color: @grey;
}

You may have noticed that the HTML for the icons is using some new classes. These
are the Font Awesome icons that we set up in our header. As I mentioned, the
Glyphicon library that comes with Bootstrap doesn't provide social media icons,
so we've also added them in Font Awesome:

<i class="fa fa-facebook"></i>
<i class="fa fa-twitter"></i>
<i class="fa fa-pinterest"></i>
<i class="fa fa-instagram"></i>

That's it for our footer. We've now finished expanding all the template files that we
created in Chapter 1, Advanced Bootstrap Development Tools. In the next step, we'll work
on customizing index.ejs and build the home page of our restaurant website.

Building a Restaurant Website

[40]

Home page
The home page for the restaurant website will be split into four main parts: a
primary image banner, an "about the restaurant" statement, a few food thumbnails
that will link to our menu page, and a Bootstrap reviews carousel. Here's what the
page that we'll be creating will look like:

Chapter 2

[41]

Adding the primary header image
We're going to set up some reusable styles for this image banner, which will be present
across multiple pages of the website. Here's the code for the home page banner:

<div class="public-banner">
 <div class="row">
 <div class="col-lg-12">
 <img src="img/banner.jpg" width="1170" height="500"
 alt="Public Restaurant Banner">
 </div>
 </div>
 </div>

The primary image for the design will stretch the entire width of the layout. The
problem is that Bootstrap provides some padding here by default. Using the
.public-banner class, we'll remove that default padding:

// here - allows image to go right to the edge
.public-banner .col-lg-12 {
 padding-left: 0;
 padding-right: 0;
}

We also need to add a couple of styles to the primary header image so it will look
correct on mobile devices. The actual image is larger than the default container size,
but width is set to 100%, so it fills the width of the container. The height property is
set to auto, so the image will automatically resize at smaller screen resolutions:

.public-banner img {
 width: 100%;
 height: auto;
}

Now we'll insert the actual image into our layout with the following line of code:

<img src="img/banner.jpg" width="1170" height="500" alt="Public
Restaurant Banner">

We provide some set dimensions here so that our HTML code will validate.
However, this is just a starting point. The image will automatically resize depending
on the viewport size. The first part of our home page is done; the next thing that we'll
cover is the About text section.

Building a Restaurant Website

[42]

Adding the about text to the home page
Let's add the About text section. This is a place to add a tagline or a quick description
about the restaurant. Here's what the code looks like:

<div class="home-about">
 <div class="row">
 <div class="col-lg-12">
 <div class="text-center">
 <h2>About</h2>
 <div class="row">
 <div class="col-lg-6 col-lg-offset-3">
 <h4>Pellentesque habitant morbi tristique senectus
 et netus et malesuada fames ac turpis
 egestas.</h4>
 </div>
 </div>
 </div>
 </div>
 </div>
 </div>

You'll notice that this section has a wrapping class called .home-about. This is
similar to the approach we took with the header and footer. I'm reusing this
pattern because I want to apply some padding to the section of the text in the
about section:

// add some padding around the about headline
.home-about {
 padding: (@padding * 4) 0 (@padding * 6) 0;
}

For the actual text in this section, I don't want it to stretch the width of the layout,
so I'll get a little creative with the Bootstrap grid. Consider the following code:

<div class="col-lg-6 col-lg-offset-3">
 <h4>Pellentesque habitant morbi tristique senectus et netus et
 malesuada fames ac turpis egestas.</h4>
</div>

I'd like the width of the text column to be half the width of the layout, so I'll use
the .col-lg-6 grid class. To center the text column in the layout, I'll use the offset
class .col-lg-offset-3. Using the offset class, I can now center my paragraph
in the layout.

Chapter 2

[43]

Setting up the food tiles
The next part of this page is the four food tiles that show some featured restaurant
items. Each of these images will be a link that leads to our menu page. Here's what
the code for the section looks like:

<div class="home-food">
 <div class="row">
 <div class="col-lg-3">

 <img src="img/food-feature1.jpg" width="250"
 height="250" alt="Food Feature 1">

 <h4>Sandwich</h4>
 </div>
 <div class="col-lg-3">

 <img src="img/food-feature2.jpg" width="250"
 height="250" alt="Food Feature 2">

 <h4>Dessert</h4>
 </div>
 <div class="col-lg-3">

 <img src="img/food-feature3.jpg" width="250"
 height="250" alt="Food Feature 3">

 <h4>Salad</h4>
 </div>
 <div class="col-lg-3">

 <img src="img/food-feature4.jpg" width="250"
 height="250" alt="Food Feature 4">

 <h4>Coffee</h4>
 </div>
 </div>
 </div>

Again I've wrapped the section in its own class; this time, it is called .home-food.
You're likely seeing a pattern emerge here of wrapping sections in their own classes.
This is a good practice to follow as it allows you to componentize sections of a
page. This will make it easier to apply specific styles to these sections if needed.
You should strive to avoid being too specific in your CSS, but sometimes it will be
necessary to get the look and feel you are going for.

Building a Restaurant Website

[44]

In this case, we're going to use the wrapping class to center everything within it:

// center all items
.home-food {
 text-align: center;
}

The second customization that we want to add to this section is the application of
some bottom padding to each of the images. Since we have the wrapping class, it's
easy to target the contained images without worrying about negatively affecting
other images on our page:

// add a little extra padding under images
.home-food img {
 padding-bottom: @padding;
}

The rest of the code here is basic Bootstrap grid code, and it should be easy to
decipher. If you need a refresher, check out the complete code for the preceding
section.

Adding the review carousel
The final piece for this page will be a review carousel. Using this component here
allows you to add multiple social proof examples for the website in a slick-looking
execution. Here's the code for the carousel:

 <div class="reviews">
 <div class="row">
 <div class="col-lg-12">
 <div class="text-center">
 <h2>Reviews</h2>
 <div id="carousel-reviews" class="carousel slide" data-
 ride="carousel">
 <!-- Indicators -->
 <ol class="carousel-indicators">
 <li data-target="#carousel-reviews" data-slide-
 to="0" class="active">
 <li data-target="#carousel-reviews" data-slide-
 to="1">
 <li data-target="#carousel-reviews" data-slide-
 to="2">

Chapter 2

[45]

 <!-- Wrapper for slides -->
 <div class="carousel-inner" role="listbox">
 <div class="item active">
 <p>This is the best sandwich I've ever had! I
 Highly recommend trying the chicken sandwich
 for lunch.</p>
 </div>
 <div class="item">
 <p>The desserts are to die for. Make sure you
 save enough room after you eat your dinner.</p>
 </div>
 <div class="item">
 <p>They have some of the best locally brewed
 coffee I have ever tasted. So fresh and eye
 opening early in the morning.</p>
 </div>
 </div>

 <!-- Controls -->
 <a class="left carousel-control" href="#carousel-
 reviews" role="button" data-slide="prev">
 <span class="glyphicon glyphicon-chevron-left"
 aria-hidden="true">
 Previous

 <a class="right carousel-control" href="#carousel-
 reviews" role="button" data-slide="next">
 <span class="glyphicon glyphicon-chevron-right"
 aria-hidden="true">
 Next

 </div>
 </div>
 </div>
 </div>
 </div>

Like all our previous sections, I've wrapped this one in a class called .reviews. I'll
simply use this class to add some vertical padding around the review carousel:

// add review padding consistent with about
.reviews {
 padding: (@padding * 4) 0 (@padding * 6) 0;
}

Building a Restaurant Website

[46]

From here on, the rest of the HTML is stock Bootstrap markup. I've added in some
of my own made-up reviews to give you an idea. What we need to do, however,
is customize the look and feel of this component so that it matches our website's
design. In this case, we are going to customize a Bootstrap component, so we'll create
another component Less file to hold the styles. First things first, create a new Less file
called _carousel.less and save it in the css/components directory. Next, import
that file into theme.less with the following line of code:

@import "components/_carousel.less";

Now that we've imported our file, we need to add in some custom styles. Let's go
through each declaration, explaining what it does:

.carousel .item {
 padding: @padding (@padding * 12) (@padding * 4) (@padding * 12);
 font-size: (@font-size * 1.5);
}

The first thing that we'll do is add some padding to the carousel. I don't want the text
to stretch the width of the layout, so I'll add some generous horizontal padding to
condense the paragraph size. Next, I want to increase font-size 1.5 times so that
the reviews are nice and easy to read:

.carousel-control.right,

.carousel-control.left {
 background-image: none;
}

The default Bootstrap carousel has a gradient behind the left and right sides of the
carousel on hover. I personally don't like this treatment as I'm more of a minimalist.
The preceding snippet of CSS will remove the default gradient:

a.carousel-control {
 color: @light-grey;
}

Now that we've removed the background gradient, the CSS that you just saw will
change the color of the carousel arrows to match the new color scheme. Little things
like this might seem tedious, but they are the small details that will make your
website look unique and not like a generic Bootstrap website:

.carousel-indicators li {
 border: @border-size @border-color @border-type;
}

Chapter 2

[47]

This declaration is about consistency. Let's simply reset the borders on the carousel
indicators to use our border variables' names and values. We do this so that if we
change the global variable's value, it will automatically be picked up through the
component. This saves us the effort of coming to the actual component CSS to make
an edit:

.carousel-indicators .active {
 background: @light-grey;
}

The last step is to change the color of the indicators to match the left/right arrow
colors. Consistency is the name of the game, and paying attention to these little
details will take your website from good to great. But your home page is not
complete! Recompile your files using the $ harp compile command, then launch
the local server, and inspect your work. Just in case something doesn't look quite
right, here's the entire page template for reference:

<div class="container">
 <!-- img banner //-->
 <div class="public-banner">
 <div class="row">
 <div class="col-lg-12">
 <img src="img/banner.jpg" width="1170" height="500"
 alt="Public Restaurant Banner">
 </div>
 </div>
 </div>
 <!-- about //-->
 <div class="home-about">
 <div class="row">
 <div class="col-lg-12">
 <div class="text-center">
 <h2>About</h2>
 <div class="row">
 <div class="col-lg-6 col-lg-offset-3">
 <h4>Pellentesque habitant morbi tristique senectus
 et netus et malesuada fames ac turpis
 egestas.</h4>
 </div>
 </div>
 </div>
 </div>
 </div>
 </div>
 <!-- food thumbs //-->

Building a Restaurant Website

[48]

 <div class="home-food">
 <div class="row">
 <div class="col-lg-3">

 <img src="img/food-feature1.jpg" width="250"
 height="250" alt="Food Feature 1">

 <h4>Sandwich</h4>
 </div>
 <div class="col-lg-3">

 <img src="img/food-feature2.jpg" width="250"
 height="250" alt="Food Feature 2">

 <h4>Dessert</h4>
 </div>
 <div class="col-lg-3">

 <img src="img/food-feature3.jpg" width="250"
 height="250" alt="Food Feature 3">

 <h4>Salad</h4>
 </div>
 <div class="col-lg-3">

 <img src="img/food-feature4.jpg" width="250"
 height="250" alt="Food Feature 4">

 <h4>Coffee</h4>
 </div>
 </div>
 </div>
 <!-- reviews slider //-->
 <div class="reviews">
 <div class="row">
 <div class="col-lg-12">
 <div class="center">
 <h2>Reviews</h2>
 <div id="carousel-reviews" class="carousel slide" data-
 ride="carousel">
 <!-- Indicators -->
 <ol class="carousel-indicators">
 <li data-target="#carousel-reviews" data-slide-
 to="0" class="active">

Chapter 2

[49]

 <li data-target="#carousel-reviews" data-slide-
 to="1">
 <li data-target="#carousel-reviews" data-slide-
 to="2">

 <!-- Wrapper for slides -->
 <div class="carousel-inner" role="listbox">
 <div class="item active">
 <p>This is the best sandwich I've ever had! I
 Highly recommend trying the chicken sandwich
 for lunch.</p>
 </div>
 <div class="item">
 <p>The desserts are to die for. Make sure you
 save enough room after you eat your dinner.</p>
 </div>
 <div class="item">
 <p>They have some of the best locally brewed
 coffee I have ever tasted. So fresh and eye
 opening early in the morning.</p>
 </div>
 </div>

 <!-- Controls -->
 <a class="left carousel-control" href="#carousel-
 reviews" role="button" data-slide="prev">
 <span class="glyphicon glyphicon-chevron-left"
 aria-hidden="true">
 Previous

 <a class="right carousel-control" href="#carousel-
 reviews" role="button" data-slide="next">
 <span class="glyphicon glyphicon-chevron-right"
 aria-hidden="true">
 Next

 </div>
 </div>
 </div>
 </div>
 </div>
</div>

Building a Restaurant Website

[50]

<!-- reservation modal //-->
<div class="modal fade" id="reservation-modal">
 <div class="modal-dialog">
 <div class="modal-content">
 <div class="modal-header">
 <button type="button" class="close" data-dismiss="modal"
 aria-label="Close"><span aria-
 hidden="true">×</button>
 <h4 class="modal-title">Book Reservation</h4>
 </div>
 <div class="modal-body">
 <form>
 <div class="form-group">
 <label>Name</label>
 <input type="text" class="form-control"
 placeholder="Enter your name">
 </div>
 <div class="form-group">
 <label>Date</label>
 <input type="text" class="form-control"
 placeholder="Enter your date">
 </div>
 <div class="form-group">
 <label>Guests</label>
 <input type="text" class="form-control"
 placeholder="Enter the number of guests">
 </div>
 </form>
 </div>
 <div class="modal-footer">
 <button type="button" class="btn btn-default" data-
 dismiss="modal">Close</button>
 <button type="button" class="btn btn-
 primary">Submit</button>
 </div>
 </div><!-- /.modal-content -->
 </div><!-- /.modal-dialog -->
</div><!-- /.modal -->

Chapter 2

[51]

The About page
The next page for our restaurant website is the About page. This page will feature
a two-column layout and some custom text styles to give it a unique look. Here's a
screenshot of what we'll be building:

Building a Restaurant Website

[52]

Changing the feature image
The first thing that we need to do is create a new file called about.ejs. Next, we'll
change the feature image as displayed in the preceding screenshot. To do this, we'll
simply update this image line of code:

<img src="img/banner-about.jpg" width="1170" height="500"
alt="Public Restaurant About Banner">

Make sure you update the alt text to optimize your image for search results. The
next thing we need to do is set up our two-column layout. I'm going to wrap a <div>
with a class of .page-body around the row, as we've done in the past:

<div class="page-body">

This will allow us to apply some padding around our main page body:

.page-body {
 padding: (@padding * 4);
}

I do this to add some whitespace and give the layout room to breathe.

Setting up the large subtitle
Let's start with the column on the left first, and we'll set up the oversized subtitle
with the following line of code:

<h2 class="large">Great food, great people, good times.</h2>

We're using the <h2> tag here; I've applied a class of .large to it. This class is a
reusable utility that you can add to any text tag to increase its size four times. Open
up the type component named _typography.less in css/components and add in
the following styles:

h2 {
 font-weight: 900;
}

.large {
 font-size: (@font-size * 4);
}

Now you can see how I've set up the .large class to multiply font-size by 4. I've
also changed the font weight of the <h2> tag to 900, which will trigger the heaviest
weight of our Google web font that we previously imported.

Chapter 2

[53]

Adding the social media icons
For the About page, I think it's important to move the links to the restaurant's social
media profiles more to the forefront. We can also combine them with our large
headline to create a nice visual element without the use of any images, thus creating
a nice, lightweight effect. Let's reuse the social media icon code that we set up in our
footer, as follows:

<div class="about-social-media">
 <i class="fa fa-facebook"></i>
 <i class="fa fa-twitter"></i>
 <i class="fa fa-pinterest"></i>
 <i class="fa fa-instagram"></i>
</div>

Note that there is one small but critical difference in this code compared to the footer,
which is the class name on the wrapping <div>. In this case, I've applied a class
called .about-social-media. It's a great practice to reuse our HTML code and
then simply apply some different styling to it with a new class name:

.about-social-media {
 margin: (@margin * 2) 0;
 font-size: (@font-size * 2);
}

For these icons, I'm going to apply top and bottom margins to give them some
vertical space. I'm also going to increase the font size a bit so that they stand
out more.

Adding the address
The last part of the left-hand-side column is a repetition of the restaurant's address.
No special classes here, but I'm using the <small> tag to give this section a unique
look, like this:

<p>
 <small>
 Public Restaurant

 1234 Street Name

 Vancouver, BC

 604.123.1234
 </small>
</p>

Building a Restaurant Website

[54]

I'm using a simple <p> tag here with a number of line breaks to create the text layout.
You may want to use an unordered list with the list-unstyled class, but that is a
little more code heavy.

This completes the left column. Let's move on to the right column in the next step.

Reviewing the layout
Before we jump to the next column, we should review the layout code. Here's the
code for the two columns:

<div class="row">
 <div class="col-lg-5">left col</div>
 <div class="col-lg-6 col-lg-offset-1">right col</div>
</div>

You'll notice that I haven't divided the columns into two equal widths. I've followed
this layout for two reasons:

• I want to use an asymmetric layout. Uneven layouts are more pleasing to
the eye and will give your design some personality. Wherever possible, you
should always shoot to create asymmetric layouts. This is a rule taken from
the print design world that, when used properly in web design, can create a
very nice-looking layout.

• I want to provide some extra horizontal space between my two columns.
As we've done with the vertical space, it can be nice to give our text some
horizontal breathing space. This makes the text easier to read and breathes
some life into your layout. Following some simple design tips like this will
also prevent your website from looking like a generic Bootstrap site.

Inserting the About text
Now that we've set up our layout, it's a simple exercise to insert our text. Here's my
code for this:

<h3>Our Story</h3>
<h4>Pellentesque habitant morbi tristique senectus et netus et
malesuada fames ac turpis egestas. Vestibulum tortor quam,
feugiat vitae, ultricies eget, tempor sit amet, ante. Donec eu
libero sit amet quam egestas semper. Aenean ultricies mi vitae
est. Mauris placerat eleifend leo.</h4>
<p>Pellentesque habitant morbi tristique senectus et netus et
malesuada fames ac turpis egestas. Vestibulum tortor quam,
feugiat vitae, ultricies eget, tempor sit amet, ante. Donec eu
libero sit amet quam egestas semper. Aenean ultricies mi vitae

Chapter 2

[55]

est. Mauris placerat eleifend leo. Quisque sit amet est et sapien
ullamcorper pharetra. Vestibulum erat wisi, condimentum sed,
commodo vitae, ornare sit amet, wisi. Aenean fermentum, elit eget
tincidunt condimentum, eros ipsum rutrum orci, sagittis tempus
lacus enim ac dui. Donec non enim in turpis pulvinar facilisis.
Ut felis. Praesent dapibus, neque id cursus faucibus, tortor
neque egestas augue, eu vulputate magna eros eu erat. Aliquam
erat volutpat. Nam dui mi, tincidunt quis, accumsan porttitor,
facilisis luctus, metus</p>

You'll notice that I'm using some header tags here, specifically <h3> and <h4>. Again,
taking the time to use some other text tags will give your design some life and
differentiate it from regular Bootstrap sites. I've also customized the <h3> tag
a bit to give it a different look:

h3 {
 font-weight: 700;
 color: @red1;
}

I've upped font-weight to 700, or bold, and I've applied one of our Less color
variables (@red1 in this case) to change the color of the header tag. I've also
made a small change to the <h4> tag:

h4 {
 line-height: 1.5
}

By default, header tags in Bootstrap are set to 1.1 for the line-height property. The
reason for this is that headers are usually on one line only, so you don't necessarily
want to add a ton of extra vertical spacing. However, in this case, I'm using an <h4>
across multiple lines, so I want to increase line-height to match the default for
my regular paragraphs of text. Otherwise, the <h4> text will be cramped and too
hard to read.

Don't forget the modal
The last thing that we need to do for this page is copy and paste the reservation
modal code at the bottom. If we leave this out, our reservation modal won't work on
the About page. If I were smart, I would actually drop this modal code into a new
partial and then just import it into the page. In that way, we only have to manage
one reservation modal component. Why don't we do that right now? Take the
following code and create a new file at /partial called _reservation-modal.ejs:

<!-- reservation modal //-->
<div class="modal fade" id="reservation-modal">

Building a Restaurant Website

[56]

 <div class="modal-dialog">
 <div class="modal-content">
 <div class="modal-header">
 <button type="button" class="close" data-dismiss="modal"
 aria-label="Close"><span aria-
 hidden="true">×</button>
 <h4 class="modal-title">Book Reservation</h4>
 </div>
 <div class="modal-body">
 <form>
 <div class="form-group">
 <label>Name</label>
 <input type="text" class="form-control"
 placeholder="Enter your name">
 </div>
 <div class="form-group">
 <label>Date</label>
 <input type="text" class="form-control"
 placeholder="Enter your date">
 </div>
 <div class="form-group">
 <label>Guests</label>
 <input type="text" class="form-control"
 placeholder="Enter the number of guests">
 </div>
 </form>
 </div>
 <div class="modal-footer">
 <button type="button" class="btn btn-default" data-
 dismiss="modal">Close</button>
 <button type="button" class="btn btn-
 primary">Submit</button>
 </div>
 </div><!-- /.modal-content -->
 </div><!-- /.modal-dialog -->
</div><!-- /.modal -->

Once you've saved the file, go back to about.ejs and paste this line of code at the
very bottom of your file:

<%- partial("partial/_reservation-modal") %>

Chapter 2

[57]

Recompiling your project
Now is a great time to talk about recompiling your project. One of the great things
about Harp is that it will pick up changes as you make them and display them in the
browser. However, if you make a significant change, such as adding a new partial,
it's a good idea to recompile your code. The best practice would be to recompile after
each new page that you create. You'll want to make sure that you test each page as
you go. If you have a typo in your filename, it will throw an error in the terminal
until you correct it. It's easier to do this one page at a time compared to trying to
figure out which page is wrong once you've created ten of them. Anyhow, head back
to your command-line tool and stop the web server by hitting Ctrl + C. Next enter
the Harp compile command again:

$ harp compile

If all is good, you shouldn't see any errors. If you do see an error, make sure you
check the page filename against what you entered in the _data.json file. Most of the
time, it will be a simple typo here that needs to be corrected to get your production
site to compile properly again. After you've completed your compile, fire up the
server again, as follows:

$ harp server –port 9000

Then head back to your browser and refresh the About page. Click on the
Reservations button in the header and the modal should launch. You're now using a
partial to import a chunk of code that is reused across multiple pages. This is one of
the awesome parts of Harp!

This concludes the design and coding of the About page. Next, let's tackle one of the
most important pages of our restaurant website—the menu! However, before we do
that, here's the complete code for the About page:

<div class="container">
 <!-- img banner //-->
 <div class="public-banner">
 <div class="row">
 <div class="col-lg-12">
 <img src="img/banner-about.jpg" width="1170" height="500"
 alt="Public Restaurant About Banner">
 </div>
 </div>
 </div>
 <!-- about //-->
 <div class="page-body">
 <div class="row">
 <div class="col-lg-5">

Building a Restaurant Website

[58]

 <h2 class="large">Great food, great people, good
 times.</h2>
 <div class="about-social-media">
 <i class="fa fa-facebook"></i>
 <i class="fa fa-twitter"></i>
 <i class="fa fa-pinterest"></i>
 <i class="fa fa-instagram"></i>
 </div>
 <p>
 <small>
 Public Restaurant

 1234 Street Name

 Vancouver, BC

 604.123.1234
 </small>
 </p>
 </div>
 <div class="col-lg-6 col-lg-offset-1">
 <h3>Our Story</h3>
 <h4>Pellentesque habitant morbi tristique senectus et
netus et malesuada fames ac turpis egestas. Vestibulum tortor
quam, feugiat vitae, ultricies eget, tempor sit amet, ante. Donec
eu libero sit amet quam egestas semper. Aenean ultricies mi vitae
est. Mauris placerat eleifend leo.</h4>
 <p>Pellentesque habitant morbi tristique senectus et
netus et malesuada fames ac turpis egestas. Vestibulum tortor
quam, feugiat vitae, ultricies eget, tempor sit amet, ante. Donec
eu libero sit amet quam egestas semper. Aenean ultricies mi vitae
est. Mauris placerat eleifend leo. Quisque sit amet est et sapien
ullamcorper pharetra. Vestibulum erat wisi, condimentum sed,
commodo vitae, ornare sit amet, wisi. Aenean fermentum, elit eget
tincidunt condimentum, eros ipsum rutrum orci, sagittis tempus
lacus enim ac dui. Donec non enim in turpis pulvinar facilisis.
Ut felis. Praesent dapibus, neque id cursus faucibus, tortor
neque egestas augue, eu vulputate magna eros eu erat. Aliquam
erat volutpat. Nam dui mi, tincidunt quis, accumsan porttitor,
facilisis luctus, metus</p>
 </div>
 </div>
 </div>
</div>

<%- partial("partial/_reservation-modal") %>

Chapter 2

[59]

The Menu page
It's time to code the tastiest part of our restaurant website (sorry, that was a terrible
pun). For our menu page, we'll use a three-column layout combined with some
additional modal popups for our featured dishes. The following is a preview of
what the page will look like:

Building a Restaurant Website

[60]

As you can see, I've kept the layout pretty minimal, which is my style and will
transfer well to the mobile view. Let's start by going over the page header style
that is used for each section of the menu.

Customizing the .page-header class
For each section of the menu, I'm using a <h2> tag with the Bootstrap .page-header
class to make it stand out. Here's what the code looks like:

<h2 class="page-header">Appetizers</h2>

Since we don't want our site to look like a generic Bootstrap project, I'm going to
customize the look and feel of the page-header component:

.page-header {
 padding-bottom: (@padding * 1.5);
 margin: @margin 0;
 border-bottom: (@border-size * 5) @border-type @border-color;
}

As you can see, I've inserted some additional bottom padding, increased the vertical
margin around the title, and beefed up the bottom border to give it a unique look. The
fatter border also fits in better with the overall look and feel of the restaurant site.

Setting up the layout
Before we jump into the menu items, let's quickly talk about the page layout. Make
sure you wrap the page in the page-body class that you created for the About page.
Each section of the menu has a col-lg-12 for the section title, and after that is a
three-column layout that uses the col-lg-4 grid classes. In this case, I'm choosing a
symmetrical layout as it makes sense for a menu. Here's some sample layout code:

<div class="row">
 <div class="col-lg-12">
 <h2 class="page-header">Appetizers</h2>
 </div>
</div>
<div class="row">
 <div class="col-lg-4">
 <h3>Item Name</h3>
 <p>Item description goes here.</p>
 <p class="price">$5</p>

Chapter 2

[61]

 </div>
 <div class="col-lg-4">
 <h3>Item Name</h3>
 <p>Item description goes here.</p>
 <p class="price">$5</p>
 </div>
 <div class="col-lg-4">
 <h3>Item Name</h3>
 <p>Item description goes here.</p>
 <p class="price">$5</p>
 </div>
</div>

The grid here should be pretty straightforward. Let's talk a bit more about the menu
items. I'm using an <h3> tag for the title of each menu item. This allows them to
stand out and will help optimize our food titles for searching. You'll notice a new
class named .price that is attached to a <p> tag and wrapped around a dollar price.
I've created it because I want the price to stand out but don't want to use a header tag
here. This is purely for readability of the menu and has nothing to do with searching,
so a class is a better call:

.price {
 color: @red1;
 font-weight: 700;
}

As you can see, I'm using the @red1 color variable again and I've upped font-
weight to bold, or 700. This will allow the price to stand out easily when read.

Building a Restaurant Website

[62]

Adding the featured modal
Near a few of the menu items, you'll notice a View link. This link will launch a
modal to show an image of the food item. You could also add more information
about the food item here if you like. For the purposes of this demo, I've added this
modal to only a couple of the items, but you might want to add it for all food items
on your restaurant website. Here's what our modal will look like once launched:

Now let's take a look at the code that is required to launch our food modal:

<div class="col-lg-4">
 <h3>Green Salad</h3>
 <p>A great healthy start to your meal. <a href="#" data-
 toggle="modal" data-target="#salad-modal">View</p>
 <p class="price">$9</p>
</div>

The code here is exactly the same, with only an addition of the View link that will
trigger the modal:

<a href="#" data-toggle="modal" data-target="#salad-
modal">View

Chapter 2

[63]

Now that we've set up the trigger, let's create the actual modal code. Here it is
for review:

<!-- salad modal //-->
<div class="modal fade" id="salad-modal">
 <div class="modal-dialog">
 <div class="modal-content">
 <div class="modal-header">
 <button type="button" class="close" data-dismiss="modal"
 aria-label="Close"><span aria-
 hidden="true">×</button>
 <h4 class="modal-title">Appetizer</h4>
 </div>
 <div class="modal-body">
 <div class="text-center">
 <p><img src="img/salad.jpg" width="400" height="267"
 alt="Salad"></p>
 <h2>Green Salad</h2>
 <p>A great healthy start to your meal.</p>
 <p class="price">$9</p>
 </div>
 </div>
 </div><!-- /.modal-content -->
 </div><!-- /.modal-dialog -->
</div><!-- /.modal -->

You'll notice that this modal code is a bit simpler than the reservations one. That's for
a couple of reasons. Firstly, we could be reusing this code on a number of items, so
we should try and keep it simple if we can. Secondly, I don't want this to look like a
generic Bootstrap modal. I want it to look like a nicer popup geared for a restaurant.
So, by removing some of the default parts that aren't needed, we can provide a more
customized look and feel. Let's go over what has changed:

<div class="modal-body">
 <div class="text-center">
 <p><img src="img/salad.jpg" width="400" height="267"
 alt="Salad"></p>
 <h2>Green Salad</h2>
 <p>A great healthy start to your meal.</p>
 <p class="price">$9</p>
 </div>
 </div>

Building a Restaurant Website

[64]

First, you'll notice that I've inserted an image. The width is set to 400 pixels, which
is a bit smaller than the overall width of our modal. Make sure you keep your image
size within that limit. If you'd like to use a larger image, increase the size of your
modal. You may even want to experiment with making your modal full screen.

The other big difference with this modal is that I have deleted the .modal-footer
section. Remember that with Bootstrap, some of these parts are optional. Just because
they are in the core code doesn't mean you can't experiment with them. In the case
of the footer, the default content is a submit or cancel button. This doesn't make a
ton of sense in the context of how we are using the modal, so just delete that part.
We still have the Close button in the header of the modal, or the user can click
outside the modal window to close it. Again, this is another example of customizing
a Bootstrap component to make it your own. I encourage you to push the design of
your modals even further.

You'll notice that on the menu, I've added a second modal under the Sandwich
heading. Here's the code for that modal:

<!-- sandwich modal //-->
<div class="modal fade" id="sandwich-modal">
 <div class="modal-dialog">
 <div class="modal-content">
 <div class="modal-header">
 <button type="button" class="close" data-dismiss="modal"
 aria-label="Close"><span aria-
 hidden="true">×</button>
 <h4 class="modal-title">Sandwiches</h4>
 </div>
 <div class="modal-body">
 <div class="center">
 <p><img src="img/sandwich.jpg" width="400" height="274"
 alt="Sandwich"></p>
 <h2>Veggie Sandwich</h2>
 <p>tomatoes, lettuce, cheese, salsa.</p>
 <p class="price">$12</p>
 </div>
 </div>
 </div><!-- /.modal-content -->
 </div><!-- /.modal-dialog -->
</div><!-- /.modal -->

Chapter 2

[65]

Multiple modals
In your own restaurant website, if you do go by the route of the popup for every menu
item, you may want to consider a cleaner approach for all your modal code. Currently,
you need to create a new instance of the modal HTML for each food item. This could
become quite long if you have a big menu. A better technique would be to create a
template for the modal into which you can load your values. One way you can do this
is with a JavaScript MVC library, such as Backbone or Angular. They will allow you
to create a view for that page, with a template (such as a Handlebar template) that you
can then load in the different values. This book isn't about JavaScript MVCs, so I won't
go further into that subject, but this is just something to keep in mind as you build
your production-ready restaurant website. The way that I've shown you will work
for a large menu, but using an MVC may be a cleaner solution.

This concludes the Menu section. Before we move on to our last page, the Contact
page, here's all the code for the menu:

<div class="container">
 <!-- page body //-->
 <div class="page-body">
 <!-- appetizers //-->
 <div class="row">
 <div class="col-lg-12">
 <h2 class="page-header">Appetizers</h2>
 </div>
 </div>
 <div class="row">
 <div class="col-lg-4">
 <h3>Garlic Bread</h3>
 <p>Delicious pan fried bread with olive oil.</p>
 <p class="price">$7</p>
 </div>
 <div class="col-lg-4">
 <h3>Chicken Wings</h3>
 <p>One dozen wings, come in hot or bbq flavour.</p>
 <p class="price">$12</p>
 </div>
 <div class="col-lg-4">
 <h3>Nachos</h3>
 <p>Great for sharing with friends. Tons of cheese and all
 the toppings.</p>
 <p class="price">$14</p>
 </div>
 </div>

Building a Restaurant Website

[66]

 <div class="row">
 <div class="col-lg-4">
 <h3>Yam Fries</h3>
 <p>Servied with garlic mayo for dipping.</p>
 <p class="price">$8</p>
 </div>
 <div class="col-lg-4">
 <h3>Green Salad</h3>
 <p>A great healthy start to your meal. <a href="#" data-
 toggle="modal" data-target="#salad-modal">View</p>
 <p class="price">$9</p>
 </div>
 <div class="col-lg-4">
 <h3>Chips & Salsa</h3>
 <p>Crisp tortilla chips and dip.</p>
 <p class="price">$6</p>
 </div>
 </div>
 <!-- sandwiches //-->
 <div class="row">
 <div class="col-lg-12">
 <h2 class="page-header">Sandwiches <small>All sandwiches
 are served with yam fries or salad.</small></h2>
 </div>
 </div>
 <div class="row">
 <div class="col-lg-4">
 <h3>Veggie</h3>
 <p>tomatoes, lettuce, cheese, salsa. <a href="#" data-
 toggle="modal" data-target="#sandwich-
 modal">View</p>
 <p class="price">$12</p>
 </div>
 <div class="col-lg-4">
 <h3>Turkey</h3>
 <p>turkey, lettuce, cranberry, cheese, tomato.</p>
 <p class="price">$14</p>
 </div>
 <div class="col-lg-4">
 <h3>Roast Beef</h3>
 <p>roast beef, mustard, pickles.</p>
 <p class="price">$14</p>
 </div>
 </div>

Chapter 2

[67]

 <!-- burgers //-->
 <div class="row">
 <div class="col-lg-12">
 <h2 class="page-header">Burgers <small>All burgers are
 served with yam fries or salad.</small></h2>
 </div>
 <div class="row">
 <div class="col-lg-4">
 <h3>Beef</h3>
 <p>tomatoes, lettuce, cheese, pickles.</p>
 <p class="price">$16</p>
 </div>
 <div class="col-lg-4">
 <h3>Chicken</h3>
 <p>lettuce, cucumber, pickles.</p>
 <p class="price">$16</p>
 </div>
 <div class="col-lg-4">
 <h3>Veggie</h3>
 <p>lettuce, mushrooms, salsa.</p>
 <p class="price">$14</p>
 </div>
 </div>
 </div>
 </div>
</div>

<%- partial("partial/_reservation-modal") %>

<!-- salad modal //-->
<div class="modal fade" id="salad-modal">
 <div class="modal-dialog">
 <div class="modal-content">
 <div class="modal-header">
 <button type="button" class="close" data-dismiss="modal"
 aria-label="Close"><span aria-
 hidden="true">×</button>
 <h4 class="modal-title">Appetizer</h4>
 </div>
 <div class="modal-body">
 <div class="text-center">
 <p><img src="img/salad.jpg" width="400" height="267"
 alt="Salad"></p>
 <h2>Green Salad</h2>

Building a Restaurant Website

[68]

 <p>A great healthy start to your meal.</p>
 <p class="price">$9</p>
 </div>
 </div>
 </div><!-- /.modal-content -->
 </div><!-- /.modal-dialog -->
</div><!-- /.modal -->

<!-- sandwich modal //-->
<div class="modal fade" id="sandwich-modal">
 <div class="modal-dialog">
 <div class="modal-content">
 <div class="modal-header">
 <button type="button" class="close" data-dismiss="modal"
 aria-label="Close"><span aria-
 hidden="true">×</button>
 <h4 class="modal-title">Sandwiches</h4>
 </div>
 <div class="modal-body">
 <div class="text-center">
 <p><img src="img/sandwich.jpg" width="400" height="274"
 alt="Sandwich"></p>
 <h2>Veggie Sandwich</h2>
 <p>tomatoes, lettuce, cheese, salsa.</p>
 <p class="price">$12</p>
 </div>
 </div>
 </div><!-- /.modal-content -->
 </div><!-- /.modal-dialog -->
</div><!-- /.modal -->

The Contact page
We're down to the final page of our restaurant website. The last thing do is set
up our Contact page, which will include an actual Google map along with some
required content that all restaurants should ideally list on their website. Here's
what the Contact page will look like once we're done:

Chapter 2

[69]

www.allitebooks.com

http://www.allitebooks.org

Building a Restaurant Website

[70]

Inserting the Google Map
If you haven't done this before, you should note that Google actually makes it quite
easy to generate maps that you can insert into your website. First, let's head over to
http://google.com/maps. Once it loads up, enter the address of your restaurant. I
don't have an actual restaurant, so I'm just using Vancouver as my search term. After
the map is generated, there will be a little Settings gear icon near the bottom-right
corner of the window. Click on this icon and you'll see a pop-up menu. Choose the
Share or Embed Map option from the menu.

Clicking on this link will launch a modal. Make sure you click on the second tab,
called Embed Map. The first thing in the modal is the size of the map that you want
to embed; this will default to Medium. Click on this dropdown and choose Custom
size. For the width, make sure you enter 1170. You can make the height whatever
you want, but I've decided to make my map 500 pixels high.

After you've entered the size values, copy the iframe code given in the next section
and go back to the contact.ejs file.

Inserting the Google Map code
Under the <div> with the .public-banner class that you set up on the home page,
you'll want to insert your Google Map code like this:

<div class="public-banner">
 <div class="row">
 <div class="col-lg-12">
 <iframe
src="https://www.google.com/maps/embed?pb=!1m18!1m12!1m3!1d20822.3905
3484898!2d-123.11777955000004!3d49.28020924999999!2m3!1f0!2f0!3f0!3m
2!1i1024!2i768!4f13.1!3m3!1m2!1s0x5486717f41ba2fb1%3A0xc6952794560a4
4aa!2sDowntown%2C+Vancouver%2C+BC!5e0!3m2!1sen!2sca!4v1434608605144"
width="1170" height="500" frameborder="0" style="border:0"></iframe>
 </div>
 </div>
</div>

Save the file and your map code is complete. You may want to recompile it at this
point and test it out before moving on to the rest of the Contact page. Note that in the
iframe code, you can see the width and height values. Feel free to tweak them in the
file if you want to perhaps change the height. You don't need to go back to Google
Maps to do that.

http://google.com/maps

Chapter 2

[71]

Setting up the body of the page
After we finish setting up the map in the header of the page, we need to set up
some content in the body. As in our other pages, we use the .page-body class to
wrap the entire section. For the remainder of the page, we're going to use the same
three-column layout that we had in our menu page.

I'm also going to reuse the .text-center utility class here to center all of the content
in the child <div> of this section. Let's take a look at all of the code and then we'll
review it:

<div class="page-body">
 <div class="row text-center">
 <div class="col-lg-4">
 <h3>Hours</h3>
 <p>Open 7 days a week 12pm to 9pm.</p>
 </div>
 <div class="col-lg-4">
 <h3>Location</h3>
 <p>
 1234 Street Name

 Vancouver, BC

 604.123.1234
 </p>
 </div>
 <div class="col-lg-4">
 <h3>Reservations</h3>
 <p>For reservations, please call 604.123.1234. 24 hours
 notice required to cancel a reservation.</p>
 </div>
 </div>
 </div>

As you can see, I've wrapped the entire section in the page-body class. I've also
added the .center class to the .row <div> so that everything is centered:

• The first column should display the hours for the restaurant. As with the
menu page, I'm using an <h3> tag here for the heading. It's good to try
and keep your headings consistent from a design standpoint.

• For the center column, you should insert the address of your restaurant.
• The last column has some additional information about how a person can

book a reservation. Not everyone may want to book online, so it's a good
idea to also provide a phone number for the Internet illiterate.

Building a Restaurant Website

[72]

The reservation modal
Like all your other pages, don't forget to add the partial to load in the reservation
modal at the bottom of the page:

<%- partial("partial/_reservation-modal") %>

That brings the final page of our restaurant website to a close.
Let's review all of the code for the Contact page before we move
onto the chapter summary.
<div class="container">
 <!-- img banner //-->
 <div class="public-banner">
 <div class="row">
 <div class="col-lg-12">
 <iframe src="https://www.google.com/maps/embed?pb=!1m18!1m12!
1m3!1d20822.39053484898!2d-123.11777955000004!3d49.28020924999999!2m
3!1f0!2f0!3f0!3m2!1i1024!2i768!4f13.1!3m3!1m2!1s0x5486717f41ba2fb1%3
A0xc6952794560a44aa!2sDowntown%2C+Vancouver%2C+BC!5e0!3m2!1sen!2sca!
4v1434608605144"
width="1170" height="500" frameborder="0"
style="border:0"></iframe>
 </div>
 </div>
 </div>
 <!-- about //-->
 <div class="page-body">
 <div class="row text-center">
 <div class="col-lg-4">
 <h3>Hours</h3>
 <p>Open 7 days a week 12pm to 9pm.</p>
 </div>
 <div class="col-lg-4">
 <h3>Location</h3>
 <p>
 1234 Street Name

 Vancouver, BC

 604.123.1234
 </p>
 </div>
 <div class="col-lg-4">
 <h3>Reservations</h3>

Chapter 2

[73]

 <p>For reservations, please call 604.123.1234. 24 hours
 notice required to cancel a reservation.</p>
 </div>
 </div>
 </div>
</div>

<%- partial("partial/_reservation-modal") %>

Summary
That brings the second chapter to a close. We built on what you learned in Chapter
1, Advanced Bootstrap Development Tools, and used it to create a restaurant website.
Let's review what we learned. We learned how to build out actual pages with our
Harp development environment; import and use the Font Awesome web icon
library; import and use open source Google Web Fonts; use and customize Bootstrap
components such as the modal, page header, and carousel; create a Harp partial that
is used within a page template; use design principles when laying out grids and type
to create a unique look with Bootstrap; and create and insert a custom Google map
into our website.

[75]

Mobile First Bootstrap
Being the seasoned developer you are, you probably know that Bootstrap is actually
a mobile first CSS framework. Up until now, we haven't focused that much on the
mobile first philosophy. However, that will change in this chapter, as I teach you
how to build a mobile first aggregator website template. Along with taking the
mobile first approach for the first time, I'll cover using some custom JavaScript
to improve the UI and use a flat Google material inspired design.

Mobile First Bootstrap

[76]

First of all, let's take a look at what the mobile website will look like when completed:

Chapter 3

[77]

Let's also take a look at what the desktop version of this project will look like:

Mobile First Bootstrap

[78]

As you can see in the preceding screenshot, the layout is going to change depending
on our viewport size. I've optimized the mobile layout to make sure it's easy to use
on a phone or tablet. This is done through the use of buttons and text links that are
easy to touch. We also aren't relying on any hover states for our links or buttons since
you cannot hover on mobile devices. Finally, I've kept the layout pretty minimal to
allow for easy reading no matter which device is being used.

Setting up the template
Before we get too far, let's create a new project called Chapter 3 by copying over
our boilerplate code we created in the first chapter. Let's update some of the basic
template files for this new project.

Adding a new web font
I mentioned that we are going to use some Google material design principals and
styles in this project. The first thing I'd like you to do is to use the material design
font called Roboto. It's available for free from the Google web fonts website or you
can simply include the following line of code in the _layout.ejs file:

<link href='http://fonts.googleapis.com/css?family=Robo
to:400,300,700,900' rel='stylesheet' type='text/css'>

You'll notice I'm using the light, regular, bold, and super bold weights of the
web font.

Adding the JavaScript to _layout.ejs
For this project, I've written a little custom jQuery that we'll use in our search bar.
I'll cover that a little later but for now, just insert the following code at the bottom
of _layout.ejs after jQuery:

<script>
 $(document).ready(function() {
 $("#header-search").hide();
 $("#search-trigger").on("click", function() {
 $("#header-search").toggle();
 });
 });
 </script>

Chapter 3

[79]

After pasting that snippet in, the _layout.ejs file is ready to go. Here's what the full
file should now look like:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta name="viewport" content="width=device-width, initial-
 scale=1">
 <title><%- pageTitle %> | <%- siteTitle %></title>

 <link rel="stylesheet" type="text/css"
 href="css/bootstrap.min.css">
 <link rel="stylesheet" type="text/css" href="css/font-
 awesome.min.css">
 <link rel="stylesheet" type="text/css" href="css/theme.css">
 <link
 href='http://fonts.googleapis.com/css?family=Robo
to:400,300,700,900' rel='stylesheet' type='text/css'>

 <!-- HTML5 shim and Respond.js for IE8 support of HTML5 elements
 and media queries -->
 <!-- WARNING: Respond.js doesn't work if you view the page via
 file:// -->
 <!--[if lt IE 9]>
 <script src="https://oss.maxcdn.com/html5shiv/3.7.2/html5shiv.min.
js"></script>
 <script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.
js"></script>
 <![endif]-->
</head>
<body>

 <%- partial("partial/_header") %>

 <%- yield %>

 <%- partial("partial/_footer") %>

 <!-- javascript //-->
 <script src="//ajax.googleapis.com/ajax/libs/jquery/1.11.1/jquery.
min.js"></script>
 <script src="js/bootstrap.min.js"
 type="text/javascript"></script>

Mobile First Bootstrap

[80]

 <!-- show and hide search bar //-->
 <script>
 $(document).ready(function() {
 $("#header-search").hide();
 $("#search-trigger").on("click", function() {
 $("#header-search").toggle();
 });
 });
 </script>
</body>
</html>

Updating the Less variables
The next template file we need to make some changes to is our Less variables file.
If you've forgotten, you can find that file at:

/css/components/_variables.less

Open the file and paste in the following color variables. We're not going to replace
our existing colors, we're going to simply add more for this project. It's not a good
idea to replace the base colors as that won't make your theme interchangeable:

@md-black: #212121;
@md-dark-blue: #303f9f;
@md-blue: #3f51b5;
@md-light-blue: #c5cae9;
@md-pink: #ff4081;
@md-grey: #727272;
@md-light-grey: #b6b6b6;

I've name spaced each of the colors with md- so it's easy to tell the difference between
our base color palette and our new material design colors. By the way, if you're
looking for a great tool to generate material design color palettes, check out
http://www.materialpalette.com/.

Updating the text colors
Next, let's update our text color variables to use the new material design colors:

@primary-text: @md-black;
@light-text: @md-grey;
@loud-text: @md-black;
@inverse-text: @white;
@heading-text: @md-dark-blue;

http://www.materialpalette.com/

Chapter 3

[81]

I'll also update the link colors to use or you can use new colors:

@primary-link-color: @md-blue;
@primary-link-color-hover: @md-grey;

The last colors we need to update are the border colors:

@border-focus: @md-blue;
@secondary-border-color: @md-blue;

That's it for color updates. The last thing we need to change in this file is our typeface
properties. Let's update our text variables to use Roboto:

@body-copy: "Roboto", helvetica, arial, verdana, sans-serif;
@heading-copy: "Roboto", helvetica, arial, verdana, sans-serif;
@heading-copy-bold: "Roboto", helvetica, arial, verdana, sans-serif;

That's it, that's all. Let's take a look at the entire _variables.less file to make sure
we haven't missed anything:

// color palette
@black: #000;
@dark-grey: #333;
@grey: #ccc;
@light-grey: #ebebeb;
@off-white: #f5f5f5;
@white: #ffffff;

@blue1: #3498db;
@blue2: #2980b9;
@red1: #e74c3c;
@red2: #c0392b;
@yellow1: #f1c40f;
@yellow2: #f39c12;
@green1: #2ecc71;
@green2: #27ae60;
@orange1: #e67e22;
@orange2: #d35400;
@aqua1: #1abc9c;
@aqua2: #16a085;
@purple1: #9b59b6;
@purple2: #8e44ad;
@navy1: #34495e;
@navy2: #2c3e50;

Mobile First Bootstrap

[82]

// material design colors materialpalette.com
@md-black: #212121;
@md-dark-blue: #303f9f;
@md-blue: #3f51b5;
@md-light-blue: #c5cae9;
@md-pink: #ff4081;
@md-grey: #727272;
@md-light-grey: #b6b6b6;

// background colors
@primary-background: @white;
@secondary-background: @off-white;
@third-background: @md-light-grey;
@fourth-background: @md-grey;
@inverse-background: @md-dark-blue;

// text colors
@primary-text: @md-black;
@light-text: @md-grey;
@loud-text: @md-black;
@inverse-text: @white;
@heading-text: @md-dark-blue;

// link colors
@primary-link-color: @md-blue;
@primary-link-color-hover: @md-grey;

// primary border properties
@border-color: @md-light-grey;
@border-size: 1px;
@border-type: solid;
@border-focus: @md-blue;
@secondary-border-color: @md-blue;

// typography
@body-copy: "Roboto", helvetica, arial, verdana, sans-serif;
@heading-copy: "Roboto", helvetica, arial, verdana, sans-serif;
@heading-copy-bold: "Roboto", helvetica, arial, verdana, sans-serif;
@base-font-size: 14px;
@font-size: 1em;
@base-line-height: 1.5;

// layout
@margin: 1em;

Chapter 3

[83]

@padding: 1em;

// MIXINS

// round corners or Border radius
.round-corners (@radius: 2px) {
 -moz-border-radius: @radius;
 -ms-border-radius: @radius;
 border-radius: @radius;
}

// animation transitions
.transition (@transition: background .1s linear) {
 -moz-transition: @transition;
 -webkit-transition: @transition;
 transition: background @transition;
}

Our project's look and feel is now updated. By the way, isn't it great that we can
create a new visual design so easily? That's why it's really important to have a base
theme, as in Chapter 1, Advanced Bootstrap Development Tools, which you can use as a
boilerplate for all your projects. Why reinvent the wheel each time? We'll be adding a
bunch of additional CSS as we work through this chapter. For now, let's finish up the
header and the footer. We'll jump back to the CSS as it comes up.

Setting up the header
For the projects header, we are going to use the default Bootstrap navbar and style it
to match our look and feel. We are also going to expand are header to use a couple of
custom sections. The first will be a collapsible search bar section and the second will
be some feed filters. We'll start off by wrapping the entire header in a <div> with the
class of .header:

<div class="header">

We are wrapping the entire header so we can apply some bottom-margin to the
entire section:

.header {
 margin-bottom: (@margin * 2);
}

Mobile First Bootstrap

[84]

We'll also wrap the default Bootstrap navbar in another <div> with a class of
.header-nav:

<div class="header-nav">

This additional <div> will allow us to set the background color for the entire width
of the section. Otherwise, there would be a few pixels on either side that aren't
covered by styling the .navbar class:

.header-nav {
 background: @md-blue;
}

The next section I'll setup is the collapsible search bar. I'm going to wrap this section
in a <div> tag with an ID of #header-search. In this case, I'm going to use an ID
because I want to target this section with jQuery a little later:

<div id="header-search">

I'll go into full detail on the search bar a little later. For now, just set up the section.
The last section of our header that we need to set up is the filters. For this part, insert
a third <div> tag with the class name .header-filters:

<div class="header-filters">

Close that section off and the skeleton for our header is complete. You should enter
all this code into our _header.ejs partial if you're wondering. Let's jump back to
the Bootstrap navbar section and go over the HTML and CSS.

Navbar
The actual markup for this is pretty straightforward. If you've coded a Bootstrap
header before, then this will look very familiar. Here's the entire section of code:

<nav class="navbar navbar-default">
 <div class="container">
 <!-- Brand and toggle get grouped for better mobile
 display -->
 <div class="navbar-header">
 <button type="button" class="navbar-toggle collapsed"
 data-toggle="collapse" data-target="#bs-example-
 navbar-collapse-1" aria-expanded="false">
 Toggle navigation

 </button>

Chapter 3

[85]

 Agger
 </div>

 <!-- Collect the nav links, forms, and other content for
 toggling -->
 <div class="collapse navbar-collapse" id="bs-example-
 navbar-collapse-1">
 <ul class="nav navbar-nav">
 <a href="#" data-toggle="modal" data-
 target="#about-modal">About
 <a href="#" data-toggle="modal" data-
 target="#contact-modal">Contact
 <a href="#" data-toggle="modal" data-
 target="#login-modal">Login / Register
 <i class="fa fa-
 search"></i>

 </div>
 </div>
 </nav>

As I mentioned, this should be pretty straightforward. However, let's go over the
parts that aren't right out of the Bootstrap box. I've added a name for our .navbar-
brand, which is Agger. This is the name of the fictional aggregator product.

Modal triggers
In the navigation list of links, you'll notice I'm using modals for About, Contact,
and Login/Register. I'm doing this because we are going to make this a one page
app. The homepage or feed will be the primary view where the user can see their
aggregated feeds. When they click on, say, About in the nav tag, a full page modal
will appear over the top of the main page and contain the content for the About
page. This way we can keep everything on one page instead of having to navigate
away. For now, simply add in the link code and we'll go over the modals more in
detail later:

<ul class="nav navbar-nav">
 <a href="#" data-toggle="modal" data-
 target="#about-modal">About
 <a href="#" data-toggle="modal" data-
 target="#contact-modal">Contact
 <a href="#" data-toggle="modal" data-
 target="#login-modal">Login / Register
 <i class="fa fa-
 search"></i>

Mobile First Bootstrap

[86]

That concludes the setup of the primary navigation HTML for the project. To get the
look and feel we want, we're going to need to do some customization to the navbar
styles in our theme. Let's go over each part as follows:

.navbar {
 margin-bottom: 0;
}

First of all, I've removed the bottom margin from the navbar. This is done
because once we reveal the hidden search field, we don't want a space between
the two sections:

.navbar-default,

.navbar-default .navbar-collapse,

.navbar-default .navbar-form {
 background: @md-blue;
 text-transform: uppercase;
}

Next, I've changed the default navbar tag to use our material design blue. I've also
converted the links to uppercase to match the material design style:

.navbar-default .navbar-brand {
 color: @inverse-text;
 font-weight: 700;
}

For the navbar brand, I want it to stick out a bit from the actual navigation links.
To do that, I've set the color to c, which is set to @white. I've also bumped up the
font-weight tag to bold or 700 to give it some extra emphasis:

.navbar-default .navbar-brand:focus,

.navbar-default .navbar-brand:hover {
 color: @md-light-blue;
}

I've also changed the focus and hover states for the navbar brand to use a material
design color:

.navbar-default {
 border-color: @md-blue;
}

Chapter 3

[87]

We need to set the border-color for the default navbar to the same color as the
background. I don't want a different border color here, so just set it to this to
match the flat design style:

.navbar-default .navbar-nav > li > a {
 color: @md-light-blue;
 text-transform: uppercase;
}

For our navigation links, I've set them to the material design light blue color. This is
slightly subdued compared to our brand color, creating some typographic hierarchy.
I've also converted the text to uppercase to match the material design style:

.navbar-default .navbar-nav > li > a:focus,

.navbar-default .navbar-nav > li > a:hover {
 color: @inverse-text;
}

For the hover state of the navbar links, I've gone with something a little more bold,
which is the @inverse-text color again. Remember that is set to @white:

.navbar-default .navbar-toggle,

.navbar-default .navbar-toggle .icon-bar {
 border-color: @md-blue;
}

The preceding styles are the first ones that are mobile specific to our navbar tag.
If the viewport is small enough, the nav will be rolled into a menu automatically
that has a toggle button to open or close it. To make our design look a little less
Bootstrap-y, I've actually set the border color of the toggle to the same color as the
background. That way, you won't see the border and it will help to give you a more
unique look. This is also more inline with the material design style:

.navbar-default .navbar-toggle .icon-bar {
 background-color: @md-light-blue;
}

The bars within the mobile toggle switch are actually drawn with code. Therefore,
I'm changing their default color to use our color palette:

.navbar-default .navbar-toggle:focus,

.navbar-default .navbar-toggle:hover {
 background-color: @md-dark-blue;
}

Mobile First Bootstrap

[88]

The last part of this mobile toggle button is the hover state. I've set the background
to our dark blue but I've left the lines the same. This way only the background of
the button changes, which creates a nice subtle effect:

.navbar-default .navbar-collapse,

.navbar-default .navbar-form {
 border-color: @md-dark-blue;
}

These last styles control the bottom border of the mobile navbar once it's opened.
I've set this to dark blue to add a simple visual treatment to divide the header from
the list of links. That's it for our header styles, let's move onto the next section of the
header, which is the search bar.

Search bar
One thing I didn't cover previously is the Search icon in the primary navigation.
I'm using the Font Awesome, which we covered in the previous chapter, to insert a
magnifying glass icon. This icon is wrapped in a link with the #search-trigger ID.
As it's named, clicking on this link will be the trigger that reveals the search field:

<i class="fa fa-search"></i></
li>

Go back to the <div> tag we setup earlier with the #header-search ID, and insert
the following section of code:

<div class="container">
 <div class="row">
 <div class="col-lg-12">
 <div class="input-group">
 <input type="text" class="form-control"
 placeholder="Search for...">

 <button class="btn btn-default"
 type="button">Go!</button>

 </div>
 </div>
 </div>
 </div>

Chapter 3

[89]

Before I jump into this code, let's actually review the styles for the #header-search
ID:

#header-search {
 height: 60px;
 background: @secondary-background;
 padding: 0 (@padding * 1.5);
}

I want the height of the search section to match the navbar tag so I've manually set
it to 60px. I'd like the background color to be different, though, so I'm using the @
secondary-background color variable. Finally, I've added some additional padding
to the section.

Back to the code within our main section. First of all, I'm wrapping the whole thing
in a container class so we can componentize this section. Next, I'll insert a full
width column using the largest view port. In this case, we only need that one class
because we want this column to stretch the width of our layout.

Before I jump further into the Search bar, I should mention that I've added 100px
of horizontal padding to the container class to add some breathing space in
the layout:

.container {
 padding: 0 100px;
}

Within the column, you'll see I'm using a Bootstrap .input-group component. This
component combines a form input with a button. They butt up right next to each
other and give the feeling that they are actually one component. There is only one
custom style that is needed on this input-group:

#header-search .input-group {
 margin-top: 13px;
}

I want the search field to be centered vertically in the section, so I've had to add 13px
of top margin to achieve this layout. That's it for the search section styles. Let's go
over the jQuery that will trigger the toggle.

Mobile First Bootstrap

[90]

Search bar jQuery
Open up _layout.ejs and head to the bottom of the file. There you'll find the script
we inserted when we setup this file a little while ago:

<script>
 $(document).ready(function() {
 $("#header-search").hide();
 $("#search-trigger").on("click", function() {
 $("#header-search").toggle();
 });
 });
 </script>

I'll assume that you have a basic understanding of jQuery and not cover document.
ready. Here's a breakdown of what this script is doing:

• Once the DOM is ready on page load, #header-search <div> is being hidden.
• If the #search-trigger link in the navigation is clicked, the click function

is called and the #header-search section is shown using the .toggle()
method.

• This method will also hide the section if the trigger button is clicked
on again.

I'm not a jQuery master so you should be able to follow along pretty easily here. Save
your file, fire up the Harp server and give this a try. Make sure you get this working
before you go any further because you don't want to be troubleshooting JavaScript
issues once the project is done. It's much easier to do it now before we add a bunch
of additional code.

That completes the search bar section of the header. Click on the Search icon in
the main nav bar a few times to ensure you are happy with the effect. You could
consider adding a .fadeIn() jQuery method if you want to polish the transition
further. If not, then move onto the final section of the header, which is our filters.

Filters
The filters section of the header is also pretty simple to setup. Let's start by looking at
the CSS for wrapping the .header-filters class:

.header-filters {
 background: @primary-background;
 height: 60px;
 line-height: 60px;
}

Chapter 3

[91]

I'm using a third color here for this section. If the search bar is visible, we want a
different color for each section so you can see where the division is. I've also set the
height of this section to 60px to match the previous two. Finally, the line-height
property is also set to 60px as this will center anything in this area vertically. Let's
take a look at the HTML for this section:

<div class="container">
 <div class="row">
 <div class="col-lg-12">
 <ul class="list-inline">
 Top
 Posts
 Recent
 Posts

 </div>
 </div>
 </div>

You'll notice the structure of this section is very similar to the previous one. The
exception here is that I'm using an unordered list to display the content instead of
the input group. It's worth mentioning that you should strive to be as consistent
as possible when planning the structure of sections like this. It makes your code
much more modular and easier to scale and understand for other developers.

At this point, I'm using the default Bootstrap inline list component. Within each
list item, we have a small button that will be used as a filter. You'll notice that the
buttons are pink so I have definitely customized the primary button class. Let's
take a look at the CSS:

.btn-primary {
 background: @md-pink;
 border-color: @md-pink;
 text-transform: uppercase;
}

The background color and border color have both been set to the Material Design
pink from our palette. I've also converted the text to uppercase:

.btn-primary:hover {
 background: (@md-pink - #111);
 border-color: (@md-pink - #111);
}

Mobile First Bootstrap

[92]

Our button hover state is using a Less operator to change our background and
border colors. You could insert a different color value here if you like. However,
with buttons, you generally want a subtle change on hover. Using an operator like
this will adjust the hex color slightly and give you a different shade of your primary
color, which is a nice trick to have in your bag.

With this, we have completed the markup and styles for our header. Let's take a look
at the complete HTML for the header partial before we move onto the footer:

<div class="header">
 <!-- main nav //-->
 <div class="header-nav">
 <nav class="navbar navbar-default">
 <div class="container">
 <!-- Brand and toggle get grouped for better mobile
 display -->
 <div class="navbar-header">
 <button type="button" class="navbar-toggle collapsed"
 data-toggle="collapse" data-target="#bs-example-
 navbar-collapse-1" aria-expanded="false">
 Toggle navigation

 </button>
 Agger
 </div>

 <!-- Collect the nav links, forms, and other content for
 toggling -->
 <div class="collapse navbar-collapse" id="bs-example-
 navbar-collapse-1">
 <ul class="nav navbar-nav">
 <a href="#" data-toggle="modal" data-
 target="#about-modal">About
 <a href="#" data-toggle="modal" data-
 target="#contact-modal">Contact
 <a href="#" data-toggle="modal" data-
 target="#login-modal">Login / Register
 <i class="fa fa-
 search"></i>

 </div>
 </div>
 </nav>

Chapter 3

[93]

 </div>
 <!-- search field //-->
 <div id="header-search">
 <div class="container">
 <div class="row">
 <div class="col-lg-12">
 <div class="input-group">
 <input type="text" class="form-control"
 placeholder="Search for...">

 <button class="btn btn-default"
 type="button">Go!</button>

 </div>
 </div>
 </div>
 </div>
 </div>
 <!-- top filters //-->
 <div class="header-filters">
 <div class="container">
 <div class="row">
 <div class="col-lg-12">
 <ul class="list-inline">
 Top
 Posts
 Recent
 Posts

 </div>
 </div>
 </div>
 </div>
</div>

Remember to make sure you are breaking the Less code for each
component into its own .less file. Those component files should be
living in a subdirectory of /css called /components. You should then
be importing the component files into your master theme file.

Mobile First Bootstrap

[94]

Setting up the footer
For the project footer, we're going to keep things pretty simple. I'll be inserting some
social media icon links using the Font Awesome and a simple copyright statement.
Open up the _footer.ejs partial and paste in the following HTML:

<footer>
 <div class="container-fluid">
 <div class="row">
 <div class="col-lg-12">
 <ul class="list-inline">
 <i class="fa fa-facebook-
 official"></i>
 <i class="fa fa-twitter-
 square"></i>
 <i class="fa fa-pinterest-
 square"></i>
 <i class="fa fa-linkedin-
 square"></i>

 <p>© 2015 Agger</p>
 </div>
 </div>
 </div>
</footer>

The layout here is pretty basic. We only need to set the large viewport grid class as
this section will always span the width of the layout. I'm using the Bootstrap inline
list component to display the social media icons. You'll notice I'm using the Font
Awesome icon classes for the social media links. Finally, I've wrapped the entire
section in the <footer> tag and am using it to apply some global footer styles:

footer {
 margin-top: (@margin * 6);
 padding-bottom: (@padding * 6);
 padding-top: (@padding * 2);
 background: @md-grey;
 color: @md-light-grey;
 text-align: center;
}

Here's a breakdown of the styles for the header section of the project:

• I've added a healthy top margin of 6 ems to allow for some breathing room
from the body of the page.

• I've also added a good amount of bottom padding so the text is not butted
up right against the bottom of the browser window.

Chapter 3

[95]

• I've also added a little bit of top padding so that our icons will have some
space above them.

• I've set the background color to use the material design dark grey from our
palette.

• To create a nice subtle effect, I've set the text color to the light grey from our
palette. This will also be the color for our social media icons.

• Finally, I've set the alignment to center for the entire section.

The other styles we need to apply to the footer are for the links:

footer a {
 font-size: (@font-size * 2);
 color: @md-light-grey;
}

footer a:hover {
 color: @inverse-text;
}

I've bumped up the font size of the links to double the normal size so that the social
media icons are more noticeable. I also set the link color to the same as the text color.
Finally, the hover color is set to @inverse-text or @white. That concludes the footer
section and our template is now ready to go. Next, we'll focus on the body of our
page and the modals that will be used for the About, Contact, and Login sections.

Single page apps
A popular trend in web development today is the single page app. From a static
website design standpoint, that might sound a little scary. How do I approach an
app that is only one page when I'm used to dealing in multiple pages? It's actually
not that tough if you are strategic in how you design your project.

For this chapter, our project has the following pages or sections: Home, About,
Contact, and Login/Registration. Normally, you would treat those as four different
pages. With my design, home is the only actual page. The other elements will be
built off the home page. A little later, we'll do some heavy customization to the
Bootstrap modal component for the other sections we need.

For now, don't worry about this. I'm bringing it up because this project will only
have one actual page template, which is index.ejs.

Mobile First Bootstrap

[96]

Setting up the index page
The layout for the body of the page is the first place where we will use some different
grid classes. When the project is viewed on the desktop, there will be a main feed on
the left and a sidebar on the right. If we switch to viewing this on a mobile device,
there will be only one column with the sidebar sliding in below the main feed.
Here's the grid code we'll use to set this up:

<div class="col-xs-12 col-lg-8">
…
</div>
<div class="col-xs-12 col-lg-3 col-lg-offset-1">
…
</div>

The first column uses the col-lg-8 class for the desktop, which will set the feed to
roughly three-fourth of the width of the layout. However, for mobile devices, I'm
using the col-xs-12 class because I want it to span the width of the layout. The
second column is the sidebar and for the desktop I'm offsetting it by one column
with the col-lg-offset-1 class, then I'm using the col-lg-3 class to fill in the rest
of the row. This will set the sidebar to be roughly the remaining one-fourth of the
layout. For mobile devices, I'm using the col-xs-12 class again. This will cause the
sidebar to slide in below the feed on mobile viewport.

Feed
Let's now look at the HTML for the feed section of the page. Within the feed
section, I'm going to create a new reusable class called .post that we'll use
for each aggregator entry:

<div class="feed">
 <div class="well">
 <h4>Aggregate your feeds with Agger.</h4>
 </div>
 <div class="row">
 <div class="col-lg-12">
 <div class="post">
 <h4>Link Title Here
 <small>(url.com/goes/here)</small></h4>
 <p><small>Posted 5 hours ago on Facebook</small></p>
 </div>
 <div class="post">

Chapter 3

[97]

 <h4>Link Title Here Longer
 <small>(url.com/goes/here)</small></h4>
 <p><small>Posted 5 hours ago on Twitter</small></p>
 </div>
 <div class="post">
 <h4>Link Title Here Much Longer
 <small>(url.com/goes/here)</small></h4>
 <p><small>Posted 5 hours ago on Pintrest</small></p>
 </div>
 <div class="post">
 <h4>Link Title Here And Stuff
 <small>(url.com/goes/here)</small></h4>
 <p><small>Posted 5 hours ago on Linkedin</small></p>
 </div>
 <div class="post">
 <h4>Link Title Here Like Really Long
 One <small>(url.com/goes/here)</small></h4>
 <p><small>Posted 5 hours ago on Facebook</small></p>
 </div>
 <div class="post">
 <h4>Link Title Here For Days
 <small>(url.com/goes/here)</small></h4>
 <p><small>Posted 5 hours ago on Twitter</small></p>
 </div>
 <div class="post">
 <h4>Link Title Here All-Time Longest
 Title <small>(url.com/goes/here)</small></h4>
 <p><small>Posted 5 hours ago on Pintrest</small></p>
 </div>
 <div class="post">
 <h4>Link Title Here
 <small>(url.com/goes/here)</small></h4>
 <p><small>Posted 5 hours ago on Linkedin</small></p>
 </div>
 </div>
 </div>
 <!-- nav //-->
 <div class="row">

Mobile First Bootstrap

[98]

 <div class="col-lg-6 col-xs-6">
 <div class="feed-pages">
 <small>Page 1 of 21</small>
 </div>
 </div>
 <div class="col-lg-6 col-xs-6q">
 <div class="feed-nav pull-right">
 <button class="btn btn-primary">Next</button>
 </div>
 </div>
 </div>
 </div>

This section is pretty long so let me break down each part for you. We'll start with
the wrapping feed class. The entire feed is contained in a <div> tag with a class of
.feed on it. We'll use this section to hold all of our aggregator entries. Here are the
styles for this wrapping section:

.feed {
 background: @primary-background;
 padding: (@padding * 2);
 margin-bottom: (@margin * 2);
 .round-corners;
}

The background color of the entire page is light-grey. I want the feed section to
pop so I'm going to set it to white using the @primary-background color variable.
Since we're using a different background color here, let's add some padding to the
section to apply some whitespace. I'll also add a little bit of a bottom margin so if you
were to add another section, it will be spaced out properly. Finally, I've added the
border-radius mixin to give the whole white section round corners.

Adding the feed header
Primarily, for visual design reasons, I've decided to add a subheader inside the feed
that you can use to enter a little marketing message. In this case, I've entered a basic
description of what the web app would do: "Aggregate your feeds with Agger". To
make this stick out, I've stuck it inside a Bootstrap well component:

<div class="well">
 <h4>Aggregate your feeds with Agger.</h4>
</div>

Chapter 3

[99]

I've also added some custom well styles so that it matches our look and feel. Create a
new component Less file in css/components called _well.less. Then, update your
master theme to import this new file. Within the less file, add the following styles:

.well {
 border: 0;
 box-shadow: none;
 .round-corners;
}

.feed .well {
 background-color: @md-grey;
 color: @white;
}

First of all, I've removed the well border and box-shadow so that it matches the
material design style. I've also applied the border-radius mixin so that the value
of the round corners is consistent throughout the project.

The second section creates some styles specific to the well that appears inside the
feed section. The reason I've done so that incase you want to use a well outside of the
feed. You might not want to apply the same colors, so it's good to make these colors
specific to this section. I've set the background-color to the Material Design grey and
the text color to white.

Filling in the posts section
The following section is the actual feed of social media posts. Within this section,
I've created a reusable class called .post for each entry. I've also wrapped the entire
section in a new row that has another column class on it:

<div class="col-lg-12">

You'll notice that I've only applied a desktop specific column class here and it's set to
span the width of the layout. Remember, this is a nested row within the three-fourth
layout, so in this case we always want it to span the width of the section. Therefore,
it doesn't matter if you're viewing this on a desktop or mobile, you want the feed
to fill in the entire parent column.

Mobile First Bootstrap

[100]

Within this new row and column, we have a collection of <div> with the new
.post class on them. Let's take a look at a single post and breakdown the markup
and styles:

<div class="post">
 <h4>Link Title Here <small>(url.com/
goes/here)</small></h4>
 <p><small>Posted 5 hours ago on Facebook</
a></small></p>
 </div>

First off, I've wrapped the entire section in a <div> tag with the class of .post:

.post {
 padding-bottom: @padding;
 border-bottom: @border-size @light-grey @border-type;
 margin-top: (@margin * 2);
}

For each post, we want to space them out a bit so I've added some bottom padding.
I also want a bottom border to help divide each post so I've added that in. Finally,
I've added a top margin so the contained text doesn't bump up right against the
bottom border. One problem with this layout is that the first feed post doesn't need
the top margin. The well component has already provided the necessary spacing.
So, what we need to do is apply a pseudo selector to the first post and remove that
top margin:

.post:first-child {
 margin-top: 0;
}

We can do that easily enough by targeting the first post child with the first-child
pseudo selector. Then, we can remove the margin for that post only.

Now, let's cover the contents of each post section. We'll start off by wrapping
the post title in a <h4> tag and making it a link to the actual post or story on the
appropriate social network. Nesting the <small> tag within the <h4> tag, we can
take advantage of some default Bootstrap typography styles. Within the <small> tag,
I've inserted the URL to the page for the user's reference. Following the post title, I've
used a <p> tag with a nested <small> tag for the post meta.

Chapter 3

[101]

I've used the <small> tag a few times in this section and I've also applied some
custom CSS for the tag:

.post small {
 color: @md-light-grey;
}

.post small a {
 color: @md-light-grey;
 text-decoration: underline;
}

.post small a:hover {
 color: @md-grey;
}

Let's take a closer look at what's happening with the CSS in this section.

• I've changed the text color of the <small> tag to use the light grey from our
Material Design palette.

• I've also changed the link color within a <small> tag to use the same
light grey.

• The link underline has also been removed from any hrefs inside a
<small> tag.

• The hover color for links nested in a <small> tag has also been updated
to use a Material Design color.

• Also note that I'm only targeting <small> tags nested inside .post.
Therefore, if you use the tag outside of a post, it will fall back to the default
Bootstrap styling.

That concludes the markup and styles for the posts in the feed. The last thing we
need to add to the feed is some pagination.

Adding pagination to the feed
Once you've closed off the post's row, we need to add another row that will hold the
pagination for the feed. Pagination will consist of a post count and a next button to
load the next ten posts:

<div class="row">
 <div class="col-lg-6 col-xs-6">
 <div class="feed-pages">
 <small>Page 1 of 21</small>
 </div>
 </div>

Mobile First Bootstrap

[102]

 <div class="col-lg-6 col-xs-6q">
 <div class="feed-nav pull-right">
 <button class="btn btn-primary">Next</button>
 </div>
 </div>
 </div>

For pagination, we're going to use some mobile column classes again. The reason
for this is that we want the post count and the next button to stay on their respective
sides of the layout. I don't want the button to slide in under the post count on mobile
devices. To do this, we simply have to split the columns into two equals halves:

<div class="col-lg-6 col-xs-6">
…
</div>
<div class="col-lg-6 col-xs-6">
…
</div>

The code here should be pretty straightforward based on the previous explanation of
the feed. One thing to keep in mind is that if your count gets really large, like several
thousand posts, you might need to rebalance this a bit to make the first column
wider to allow for the large numbers. Otherwise, the count might break onto two
lines. However, I think it would be pretty hard to get it that wide.

Adding the feed count and the next button
For the feed count part of the pagination, I've wrapped the count in a <div> tag with
a class of .feed-pages. This will allow me to style this a bit. The styling for this
section is actually the same as the next button, which has a <div> tag with a class
of .feed-nav:

.feed-nav,

.feed-pages {
 margin-top: (@margin * 2);
}

All I've done here is add the same top margin to the pagination that the post entries
had. This will keep the flow of the layout consistent. Within the .feed-pages
section, I'm using the <small> tag again to make this text subtle. In the .feed-nav
section, I've added a primary button and the wrapping class takes advantage of
the Bootstrap .pull-right utility class to align the button on the right side of the
column. That concludes the feed section of the layout. The last part of the homepage
we need to go over is the sidebar.

Chapter 3

[103]

Sidebar
The sidebar of the web app is designed to be a deeper filters section for controlling
what content shows up. This is all static so you need to use your imagination a bit.
The idea is that you would check or uncheck boxes and the feed would automatically
update to show the changes. Here's the full markup for the section:

<div class="col-xs-12 col-lg-3 col-lg-offset-1">
 <h4>Channels</h4>
 <div class="checkbox">
 <label>
 <input type="checkbox" checked> Facebook
 </label>
 </div>
 <div class="checkbox">
 <label>
 <input type="checkbox" checked> Twitter
 </label>
 </div>
 <div class="checkbox">
 <label>
 <input type="checkbox" checked> Pintrest
 </label>
 </div>
 <div class="checkbox">
 <label>
 <input type="checkbox" checked> Linkedin
 </label>
 </div>
 <div class="checkbox">
 <label>
 <input type="checkbox"> Google+
 </label>
 </div>
 <hr />
 <h4>Filters</h4>
 <div class="checkbox">
 <label>
 <input type="checkbox" checked> Comments
 </label>
 </div>
 <div class="checkbox">
 <label>

Mobile First Bootstrap

[104]

 <input type="checkbox"> Recent Comments
 </label>
 </div>
 <div class="checkbox">
 <label>
 <input type="checkbox"> Top Posts
 </label>
 </div>
 <div class="checkbox">
 <label>
 <input type="checkbox"> Recent Posts
 </label>
 </div>
 <hr />
 <p>RSS Feed</p>
 </div>

This section is actually pretty easy to breakdown. I'm using all default Bootstrap
styling and components here. Each filter section has a title wrapped in a <h4> tag.
Below that is a collection of checkbox form components that would be used to toggle
posts on and off. Finally, at the bottom, there is a simple text link to an RSS Feed of
the master feed. The RSS Feed link should be a standard feature with any aggregator
app incase the user wants to subscribe to your feed.

That concludes the sidebar design and the markup for the homepage view of the
project. The last sections we need to review are all the modals. To make this a one-page
app, we're going to include the markup for the modals at the bottom of index.ejs.
This contains all of our views to one file, which is really handy. If you wanted to get
a bit more fancy, you could break each modal into its own partial and simply import
them into the bottom of index.ejs. However, for this exercise, I'm going to keep it
simple and add the markup right into the file.

About modal
The first modal we're going to tackle is the About section. What I'm doing here
is wrangling the modal component to make it fill the entire screen, giving it the
appearance of a page floating over the top of the homepage. The actual HTML
structure of the modal doesn't change very much, but we will be doing some
advanced styling. Here's the markup for the modal:

<div class="modal fade" id="about-modal">
 <div class="modal-dialog">
 <div class="modal-content">
 <div class="modal-header">

Chapter 3

[105]

 <button type="button" class="close" data-dismiss="modal"
 aria-label="Close"><span aria-
 hidden="true">×</button>
 <h4 class="modal-title">About</h4>
 </div>
 <div class="modal-body">
 <div class="row">
 <div class="col-lg-8">
 <p></p>
 <p>Pellentesque habitant morbi...</p>
 <p>Pellentesque habitant morbi...</p>
 <p>Pellentesque habitant morbi...</p>
 </div>
 </div>
 </div>
 </div><!-- /.modal-content -->
 </div><!-- /.modal-dialog -->
</div><!-- /.modal -->

The first thing you should do is give the modal a unique ID on the first <div>. In
this case, I've given it an ID of #about-modal. Each modal needs a unique ID so
that the browser knows which one to trigger on the button press. From there, the
modal markup is out-of-the-box Bootstrap with one exception. The only difference
is that we are going to remove the .modal-footer section. This section contains the
Close and Submit buttons, which don't really fit our design. We want to give the
appearance that this is a page floating over the homepage, not a modal. We keep
the closing X in the .modal-header tag, which is how we will dismiss the modal.

Now that we've laid out the markup for the modal, let's go over all the styles that
need customization. Create a new Less component file in css/components called
_modal.less. Make sure you import this file into your master theme:

.modal-dialog {
 margin: 0;
 width: auto;
}

The first thing we're going to do is edit the .modal-dialog class. We'll remove the
margin and set the width to auto, which will make the modal span the width of the
browser:

.modal-backdrop {
 background: @md-pink;
 opacity: 0.9!important;
}

Mobile First Bootstrap

[106]

Next, we need to edit the .modal-backdrop class. This class controls the semi-
transparent black background that shows in the default modal. I've made a couple
of changes here that are important. First, I've changed the background to @md-pink
to fit in with our color palette. Second, I've set the opacity function of the backdrop
to 0.9. By default, the opacity is much lower and that makes text on top of it harder
to read. We want to darken this for readability. You'll also notice, I'm using the
!important helper here. Normally, this should be avoided at all costs. The reason it's
acceptable here is because this property is applied in Bootstrap.min,js. I don't
really want to start editing the library JavaScript so we're going to overwrite this
property once the DOM loads using !important:

.modal-content {
 background: none;
 color: @inverse-text;
 box-shadow: none;
 border: 0;

 -moz-border-radius: 0px;
 border-radius: 0px;
}

The next part we need to customize is the .modal-content class. We're going to
remove the background here so that the pink we set in the backdrop shows through.
This will make the overlay look more like a page and Less like a modal. Since the
background is pink, I've changed the text color to @inverse-text or white. I've also
removed the box-shadow, borders, and border-radius from the modal to make it
look like a page. These changes are more about resetting the default component to
wrestle it into something new. This is a great example of how you can make websites
unique using Bootstrap. I constantly hear the complaint that all Bootstrap sites look
the same. That couldn't be more false if you put a little effort and creativity in:

.modal-content p {
 margin-bottom: (@margin * 1.5);
}

The default modal isn't really designed to hold paragraphs of content. Therefore,
the spacing between <p> tags is really tight. This customization is adding in spacing
more consistent to what you'd see on a regular text page. It's all about making the
content more readable:

.modal-header {
 border-bottom: 0;
}

Chapter 3

[107]

For the .modal-header class, I've removed the bottom border to, once again, make
this look more like a page, not a modal:

.close {
 color: @inverse-text;
 text-shadow: none;
 opacity: 1;
}

The last part of the header we need to change is the .close class. This is the X button
in the top-right corner of the modal. I've changed the color to @inverse-text so that
it matches our body copy color. I've removed the text-shadow to make it fit into the
material design style. Finally, I bumped up the opacity of the button. We want it to
be really noticeable as this is the only way to close the modal:

.modal a {
 color: @inverse-text;
 text-decoration: underline;
}

.modal a:hover {
 color: @md-black;
}

I've also updated the link styles for the modal to better match the overall new look
and feel. I've set the link color to @inverse-text and added the link underline back
in so they stand out from the regular text. I've also added a really contrasting hover
color so that it's really clear when you hover over a link.

That's the final CSS we need to customize for the first modal. There are a few
other form styles we'll need to update for the Contact and Login modals. I'll
cover those next.

The Contact modal
The Contact modal is setup exactly like the About modal, with the exception that we
are going to include a form in this section. Insert the following modal code below the
About modal in index.ejs:

<div class="modal fade" id="contact-modal">
 <div class="modal-dialog">
 <div class="modal-content">
 <div class="modal-header">
 <button type="button" class="close" data-dismiss="modal"
 aria-label="Close"><span aria-
 hidden="true">×</button>

Mobile First Bootstrap

[108]

 <h4 class="modal-title">Contact</h4>
 </div>
 <div class="modal-body">
 <div class="row">
 <div class="col-lg-6">
 <p>Pellentesque habitant morbi tristique senectus et
 netus et malesuada fames ac turpis egestas.
 Vestibulum tortor quam, feugiat vitae, ultricies
 eget, tempor sit amet, ante. Donec eu libero sit
 amet quam egestas semper. Aenean ultricies mi
 vitae est. Mauris placerat eleifend leo.</p>
 <form>
 <div class="form-group">
 <label>Name</label>
 <input type="text" class="form-control">
 </div>
 <div class="form-group">
 <label>Email</label>
 <input type="text" class="form-control">
 </div>
 <div class="form-group">
 <label>Message</label>
 <textarea class="form-control"
 rows="10"></textarea>
 </div>
 <button type="submit" class="btn btn-
 default">Send</button>
 </form>
 </div>
 </div>
 </div>
 </div><!-- /.modal-content -->
 </div><!-- /.modal-dialog -->
</div><!-- /.modal -->

The first thing you should do with this second modal is give it a unique ID. For the
example, I've called the modal #contact-modal. For the body of this modal, I've
included a new row with a column class of col-lg-6. The reason I've done that
is because I don't want the form inputs to stretch the width of the layout. That would
look a bit weird so I'm going to limit their width.

Chapter 3

[109]

At the top of the body section, I've included a <p> tag where you can enter a message
or description for the Contact form. Below that, I've inserted a basic Bootstrap form.
There are a few styles for the form that we need to customize, which are outlined
as follows:

.modal form {
 margin-bottom: (@margin * 2);
}

I've added a bottom margin to our form so that it doesn't bump up against the bottom
of the browser window. This will insert a little bit of whitespace for readability:

.modal .form-control {
 border: 0;
 box-shadow: none;

 .round-corners;
}

For the form control or input, I've reset a few styles to make the form fit our look
and feel. First off, I've removed the border around the inputs. Since the background
is pink, we don't really need these borders to make the fields stand out. I've also
removed the box-shadow because that doesn't jive with our flat design style.
Finally, I've reset the border-radius of the inputs to match our other components
for consistency:

.modal .btn-default {
 border: 0;
}

Similar to the input borders, we don't really need the button border here since it's
sitting on a pink background. I'm also using the default button here, which is white,
instead of using the pink primary button. That button type wouldn't work very well
on a pink background. That concludes the customizations we need to make to the
form styles inside of a modal. Let's move onto the following modal, which is for
the Login and Registration section.

Mobile First Bootstrap

[110]

Login modal
The last modal or section we need to cover is the Login and Registration modal. This
one is going to be very similar to the Contact modal because it's a form. Let's jump
in and look at the HTML markup:

<div class="modal fade" id="login-modal">
 <div class="modal-dialog">
 <div class="modal-content">
 <div class="modal-header">
 <button type="button" class="close" data-dismiss="modal"
 aria-label="Close"><span aria-
 hidden="true">×</button>
 <h4 class="modal-title">Login</h4>
 </div>
 <div class="modal-body">
 <div class="row">
 <div class="col-lg-6">
 <p>Pellentesque habitant morbi tristique senectus et
 netus et malesuada fames ac turpis egestas.
 Vestibulum tortor quam, feugiat vitae, ultricies
 eget, tempor sit amet, ante. Donec eu libero sit
 amet quam egestas semper. Aenean ultricies mi
 vitae est. Mauris placerat eleifend leo.</p>
 <form>
 <div class="form-group">
 <label>Email</label>
 <input type="text" class="form-control">
 </div>
 <div class="form-group">
 <label>Password</label>
 <input type="password" class="form-control">
 </div>
 <p><small>Forgot
 Password?</small></p>
 <button type="submit" class="btn btn-default">Sign
 Up</button>
 </form>
 <p>If you don't have an account, you can Register Here.</p>
 </div>
 </div>
 </div>
 </div><!-- /.modal-content -->
 </div><!-- /.modal-dialog -->
</div><!-- /.modal -->

Chapter 3

[111]

Like we did with the previous modals, make sure you give this one a unique ID. I've
named the Login modal #login-modal. Like with the Contact modal, I've made
the form span only half of the page with the col-lg-6 column class. I've inserted
a new form that uses the same inputs as the previous modal. We're not using any
new components here, so we don't actually need to add anymore CSS. That brings
our single page app layout to its completion. Let's take a look at all of the markup
together for reference purposes:

<div class="container">
 <div class="row">
 <div class="col-xs-12 col-lg-8">
 <div class="feed">
 <div class="well">
 <h4>Aggregate your feeds with Agger.</h4>
 </div>
 <div class="row">
 <div class="col-lg-12">
 <div class="post">
 <h4>Link Title Here
 <small>(url.com/goes/here)</small></h4>
 <p><small>Posted 5 hours ago on Facebook</small></p>
 </div>
 <div class="post">
 <h4>Link Title Here Longer
 <small>(url.com/goes/here)</small></h4>
 <p><small>Posted 5 hours ago on Twitter</small></p>
 </div>
 <div class="post">
 <h4>Link Title Here Much Longer
 <small>(url.com/goes/here)</small></h4>
 <p><small>Posted 5 hours ago on Pintrest</small></p>
 </div>
 <div class="post">
 <h4>Link Title Here And Stuff
 <small>(url.com/goes/here)</small></h4>
 <p><small>Posted 5 hours ago on Linkedin</small></p>
 </div>
 <div class="post">
 <h4>Link Title Here Like Really Long
 One <small>(url.com/goes/here)</small></h4>

Mobile First Bootstrap

[112]

 <p><small>Posted 5 hours ago on Facebook</small></p>
 </div>
 <div class="post">
 <h4>Link Title Here For Days
 <small>(url.com/goes/here)</small></h4>
 <p><small>Posted 5 hours ago on Twitter</small></p>
 </div>
 <div class="post">
 <h4>Link Title Here All-Time Longest
 Title <small>(url.com/goes/here)</small></h4>
 <p><small>Posted 5 hours ago on Pintrest</small></p>
 </div>
 <div class="post">
 <h4>Link Title Here
 <small>(url.com/goes/here)</small></h4>
 <p><small>Posted 5 hours ago on Linkedin</small></p>
 </div>
 </div>
 </div>
 <!-- nav //-->
 <div class="row">
 <div class="col-lg-6 col-xs-6">
 <div class="feed-pages">
 <small>Page 1 of 21</small>
 </div>
 </div>
 <div class="col-lg-6 col-xs-6q">
 <div class="feed-nav pull-right">
 <button class="btn btn-primary">Next</button>
 </div>
 </div>
 </div>
 </div>
 </div>
 <!-- right //-->
 <div class="col-xs-12 col-lg-3 col-lg-offset-1">
 <h4>Channels</h4>
 <div class="checkbox">
 <label>
 <input type="checkbox" checked> Facebook
 </label>

Chapter 3

[113]

 </div>
 <div class="checkbox">
 <label>
 <input type="checkbox" checked> Twitter
 </label>
 </div>
 <div class="checkbox">
 <label>
 <input type="checkbox" checked> Pintrest
 </label>
 </div>
 <div class="checkbox">
 <label>
 <input type="checkbox" checked> Linkedin
 </label>
 </div>
 <div class="checkbox">
 <label>
 <input type="checkbox"> Google+
 </label>
 </div>
 <hr/>
 <h4>Filters</h4>
 <div class="checkbox">
 <label>
 <input type="checkbox" checked> Comments
 </label>
 </div>
 <div class="checkbox">
 <label>
 <input type="checkbox"> Recent Comments
 </label>
 </div>
 <div class="checkbox">
 <label>
 <input type="checkbox"> Top Posts
 </label>
 </div>
 <div class="checkbox">
 <label>
 <input type="checkbox"> Recent Posts
 </label>
 </div>
 <hr />

Mobile First Bootstrap

[114]

 <p>RSS Feed</p>
 </div>
 </div>
</div>

<!-- modals //-->

<!-- about modal //-->
<div class="modal fade" id="about-modal">
 <div class="modal-dialog">
 <div class="modal-content">
 <div class="modal-header">
 <button type="button" class="close" data-dismiss="modal"
 aria-label="Close"><span aria-
 hidden="true">×</button>
 <h4 class="modal-title">About</h4>
 </div>
 <div class="modal-body">
 <div class="row">
 <div class="col-lg-8">
 <p></p>
 <p>Pellentesque habitant morbi tristique senectus et netus
et malesuada fames ac turpis egestas. Vestibulum tortor quam, feugiat
vitae, ultricies eget, tempor sit amet, ante. Donec eu libero sit amet
quam egestas semper. Aenean ultricies mi vitae est. Mauris placerat
eleifend leo. Quisque sit amet est et sapien ullamcorper pharetra.
Vestibulum erat wisi, condimentum sed, commodo vitae, ornare sit amet,
wisi. Aenean fermentum, elit eget tincidunt condimentum, eros ipsum
rutrum orci, sagittis tempus lacus enim ac dui. Donec non enim in
turpis pulvinar facilisis. Ut felis. Praesent dapibus, neque id cursus
faucibus, tortor neque egestas augue, eu vulputate magna eros eu erat.
Aliquam erat volutpat. Nam dui mi, tincidunt quis, accumsan porttitor,
facilisis luctus, metus</p>
 <p>Pellentesque habitant morbi tristique senectus et netus
et malesuada fames ac turpis egestas. Vestibulum tortor quam, feugiat
vitae, ultricies eget, tempor sit amet, ante. Donec eu libero sit amet
quam egestas semper. Aenean ultricies mi vitae est. Mauris placerat
eleifend leo. Quisque sit amet est et sapien ullamcorper pharetra.
Vestibulum erat wisi, condimentum sed, commodo vitae, ornare sit amet,
wisi. Aenean fermentum, elit eget tincidunt condimentum, eros ipsum
rutrum orci, sagittis tempus lacus enim ac dui. Donec non enim in
turpis pulvinar facilisis. Ut felis. Praesent dapibus, neque id cursus
faucibus, tortor neque egestas augue, eu vulputate magna eros eu erat.
Aliquam erat volutpat. Nam dui mi, tincidunt quis, accumsan porttitor,
facilisis luctus, metus</p>

Chapter 3

[115]

 <p>Pellentesque habitant morbi tristique senectus et netus
et malesuada fames ac turpis egestas. Vestibulum tortor quam, feugiat
vitae, ultricies eget, tempor sit amet, ante. Donec eu libero sit amet
quam egestas semper. Aenean ultricies mi vitae est. Mauris placerat
eleifend leo. Quisque sit amet est et sapien ullamcorper pharetra.
Vestibulum erat wisi, condimentum sed, commodo vitae, ornare sit amet,
wisi. Aenean fermentum, elit eget tincidunt condimentum, eros ipsum
rutrum orci, sagittis tempus lacus enim ac dui. Donec non enim in
turpis pulvinar facilisis. Ut felis. Praesent dapibus, neque id cursus
faucibus, tortor neque egestas augue, eu vulputate magna eros eu erat.
Aliquam erat volutpat. Nam dui mi, tincidunt quis, accumsan porttitor,
facilisis luctus, metus</p>
 </div>
 </div>
 </div>
 </div><!-- /.modal-content -->
 </div><!-- /.modal-dialog -->
</div><!-- /.modal -->

<!-- contact modal //-->
<div class="modal fade" id="contact-modal">
 <div class="modal-dialog">
 <div class="modal-content">
 <div class="modal-header">
 <button type="button" class="close" data-dismiss="modal"
 aria-label="Close"><span aria-
 hidden="true">×</button>
 <h4 class="modal-title">Contact</h4>
 </div>
 <div class="modal-body">
 <div class="row">
 <div class="col-lg-6">
 <p>Pellentesque habitant morbi tristique senectus et
 netus et malesuada fames ac turpis egestas.
 Vestibulum tortor quam, feugiat vitae, ultricies
 eget, tempor sit amet, ante. Donec eu libero sit
 amet quam egestas semper. Aenean ultricies mi
 vitae est. Mauris placerat eleifend leo.</p>
 <form>
 <div class="form-group">
 <label>Name</label>
 <input type="text" class="form-control">
 </div>
 <div class="form-group">
 <label>Email</label>

Mobile First Bootstrap

[116]

 <input type="text" class="form-control">
 </div>
 <div class="form-group">
 <label>Message</label>
 <textarea class="form-control"
 rows="10"></textarea>
 </div>
 <button type="submit" class="btn btn-
 default">Send</button>
 </form>
 </div>
 </div>
 </div>
 </div><!-- /.modal-content -->
 </div><!-- /.modal-dialog -->
</div><!-- /.modal -->

<!-- login modal //-->
<div class="modal fade" id="login-modal">
 <div class="modal-dialog">
 <div class="modal-content">
 <div class="modal-header">
 <button type="button" class="close" data-dismiss="modal"
 aria-label="Close"><span aria-
 hidden="true">×</button>
 <h4 class="modal-title">Login</h4>
 </div>
 <div class="modal-body">
 <div class="row">
 <div class="col-lg-6">
 <p>Pellentesque habitant morbi tristique senectus et
 netus et malesuada fames ac turpis egestas.
 Vestibulum tortor quam, feugiat vitae, ultricies
 eget, tempor sit amet, ante. Donec eu libero sit
 amet quam egestas semper. Aenean ultricies mi
 vitae est. Mauris placerat eleifend leo.</p>
 <form>
 <div class="form-group">
 <label>Email</label>
 <input type="text" class="form-control">
 </div>
 <div class="form-group">
 <label>Password</label>
 <input type="password" class="form-control">
 </div>

Chapter 3

[117]

 <p><small>Forgot
 Password?</small></p>
 <button type="submit" class="btn btn-default">Sign
 Up</button>
 </form>
 <p>If you don't have an account, you can Register Here.</p>
 </div>
 </div>
 </div>
 </div><!-- /.modal-content -->
 </div><!-- /.modal-dialog -->
</div><!-- /.modal -->

Summary
That brings the third chapter to a close. We've covered how to create mobile first
websites using Bootstrap. We covered how to design a mobile first website, how to
use Google material design colors and styles, how to make advanced customizations
to the Bootstrap modal component, how to use some jQuery to make a search bar
hide/show effect, and how to create static single page apps using Bootstrap.

[119]

Bootstrap Wiki
In this chapter, we're going to use Bootstrap to create a project that you might
not usually think would be suited for the framework. I'm a firm believer that you
can use the power of Bootstrap to create any type of web application, so we're
going to build a wiki. I'll take you through the process of building pages such as
the wiki home page, content page, and search results page. We'll also touch on
creating some mobile-specific styles using media queries to optimize the layout
for phones and tablets.

Bootstrap Wiki

[120]

Before we jump into creating the home page, let's take a look at what we'll be
building:

Chapter 4

[121]

Customizing the template
As in our previous projects, let's update our Harp templates, theme, and Less files
before we start with the actual pages. Make a copy of your boilerplate from chapter
1 and rename it to chapter 4 or Bootstrap Wiki. Open up the _data.json file and
insert the following code into it:

{
 "index": {
 "pageTitle": "Bootstrap Wiki"
 },
 "article": {
 "pageTitle": "Article"
 },
 "search-results": {
 "pageTitle": "Search Results"
 },
 "profile": {
 "pageTitle": "Profile"
 }
}

For this project, we'll have four different page templates, so we need to create an
entry for each of them. Remember that the first portion is the actual .ejs filename
and the pageTitle variable is what we'll use to set the <title> of each page. Go
ahead and create these four .ejs files in the root of your project directory. You can
just leave them blank for now:

• index.ejs

• article.ejs

• search-results.ejs

• profile.ejs

Updating _layout.ejs
The next thing that we'll do is update _layout.ejs, adding in any new code that is
specific to our new wiki project. I'm going to use a different Google web font for this
project, called Source Sans Pro. Insert the following line of code after theme.css in
the <head> of the file:

<link href='http://fonts.googleapis.com/css?family=Source+Sans+P
ro:300,400,700' rel='stylesheet' type='text/css'>

This will import three type weights: light (300), regular (400), and bold (700).

Bootstrap Wiki

[122]

Adding a new partial
We're going to add something else new to the layout for this project. Just as we did in
the previous project, I'm going to use the modal component for the main navigation
menu. The difference here is that this will be a multipage app, compared to the last
project, which was a single-page app.

We don't want to insert the same modal code at the bottom of each page template.
This is excess of work, and it exposes you to possible errors or inconsistencies. It's
a better, more modular practice to create a new partial and put the modal code into
it. We'll then include it in the layout so that it is available for all page templates in
the wiki. We'll go over the actual modal code a little later; for now, just enter the
following line of code below the footer partial:

<%- partial("partial/_nav-modal") %>

You might as well create the new partial file at this point. Create a new file called
_nav-modal.ejs. You can leave it blank for now, and save it in the /partial
directory in the root of the project. This completes the updates that you need
to make to the layout file. Here's what the entire file looks like when completed:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta name="viewport" content="width=device-width, initial-
 scale=1">
 <title><%- pageTitle %> | <%- siteTitle %></title>

 <link rel="stylesheet" type="text/css"
 href="css/bootstrap.min.css">
 <link rel="stylesheet" type="text/css" href="css/font-
 awesome.min.css">
 <link rel="stylesheet" type="text/css" href="css/theme.css">
 <link
href='http://fonts.googleapis.com/css?family=Source+Sans+P
ro:300,400,700' rel='stylesheet' type='text/css'>

 <!-- HTML5 shim and Respond.js for IE8 support of HTML5 elements
 and media queries -->
 <!-- WARNING: Respond.js doesn't work if you view the page via
 file:// -->
 <!--[if lt IE 9]>

Chapter 4

[123]

 <script
src="https://oss.maxcdn.com/html5shiv/3.7.2/html5shiv.min.js"></
script>
 <script
src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script>
 <![endif]-->
</head>
<body>

 <%- partial("partial/_header") %>

 <%- yield %>

 <%- partial("partial/_footer") %>

 <%- partial("partial/_nav-modal") %>

 <!-- javascript //-->
 <script src="//ajax.googleapis.com/ajax/libs/jquery/1.11.1/jquery.
min.js"></script>
 <script src="js/bootstrap.min.js"
 type="text/javascript"></script>
</body>
</html>

Setting up the Less variables
As in our previous projects, the next step is to update our Less variables for our new
project. Open _variables.less, which is located in /css/components. Let's go
through each new part section by section.

Adding new colors
I've added a few new colors that I want to use in the project. Each of these colors is
prepended with bw- so that we can easily identify that they are project-specific; bw-
stands for Bootstrap wiki, if it's not obvious. Here are the new colors:

@bw-dark-primary: #00796b;
@bw-primary: #009688;
@bw-light-primary: #b2dfdb;
@bw-black: #212121;
@bw-grey: #727272;
@bw-light-grey: #b6b6b6;

Bootstrap Wiki

[124]

You might notice a different naming convention here. I've changed it to use primary
instead of the actual color name for the main color. This is simply to show you that
there is more than one way to organize your colors and you don't have to do it the
same way each time. For this project, there is one primary color, so it makes sense
to use this type of naming convention.

Background colors
As I mentioned earlier, the color palette for this project is pretty simple, so I've
eliminated some of the background color options because we won't need them:

@primary-background: @white;
@secondary-background: @light-grey;
@inverse-background: @bw-primary;

I'm using white and light grey from our base palette, and then the primary color is
used for the inverse background. The reason I didn't use the Bootstrap Wiki light
grey here is that it has a darker value than I want. It's perfectly fine to combine color
palettes in this way. That's why we have a base palette. The base colors should be
your regular go-to colors that you feel comfortable using.

Text colors
The updates to the text colors are straight forward. I've simply changed the values
to use the new color palette:

@primary-text: @bw-black;
@light-text: @bw-grey;
@inverse-text: @white;
@heading-text: @bw-primary;

Link and border colors
The same goes for the link and border colors. We're just replacing the values with the
new color palette:

@primary-link-color: @bw-primary;
@primary-link-color-hover: @bw-dark-primary;

@border-color: @light-grey;
@border-size: 1px;
@border-type: solid;
@border-focus: @bw-primary;

Chapter 4

[125]

Typography
For the typography variables, you'll need to update the copy to use the new typeface,
which is called Source Sans Pro. I've also bumped up the base font-size to 16px. This
is done to increase the readability of the text; since this is a wiki, we want it to be
easy to read!

@body-copy: "Source Sans Pro", helvetica, arial, verdana, sans-serif;
@heading-copy: "Source Sans Pro", helvetica, arial, verdana, sans-
serif;
@base-font-size: 16px;

Rounder corners
The final update needed in this file is bumping up the border-radius value to 5px. I
thought I'd mix it up and make the round corners more obvious in this design:

.round-corners (@radius: 5px) {
 -moz-border-radius: @radius;
 -ms-border-radius: @radius;
 border-radius: @radius;
}

The updates here should be pretty simple for you. Let's check out what the entire file
looks like:

// color palette
@black: #000;
@dark-grey: #333;
@grey: #ccc;
@light-grey: #ebebeb;
@off-white: #f5f5f5;
@white: #ffffff;

@blue1: #3498db;
@blue2: #2980b9;
@red1: #e74c3c;
@red2: #c0392b;
@yellow1: #f1c40f;
@yellow2: #f39c12;
@green1: #2ecc71;
@green2: #27ae60;
@orange1: #e67e22;
@orange2: #d35400;
@aqua1: #1abc9c;

Bootstrap Wiki

[126]

@aqua2: #16a085;
@purple1: #9b59b6;
@purple2: #8e44ad;
@navy1: #34495e;
@navy2: #2c3e50;

// custom colors prepended with bw-
@bw-dark-primary: #00796b;
@bw-primary: #009688;
@bw-light-primary: #b2dfdb;
@bw-black: #212121;
@bw-grey: #727272;
@bw-light-grey: #b6b6b6;

// background colors
@primary-background: @white;
@secondary-background: @light-grey;
@inverse-background: @bw-primary;

// text colors
@primary-text: @bw-black;
@light-text: @bw-grey;
@inverse-text: @white;
@heading-text: @bw-primary;

// link colors
@primary-link-color: @bw-primary;
@primary-link-color-hover: @bw-dark-primary;

// primary border properties
@border-color: @light-grey;
@border-size: 1px;
@border-type: solid;
@border-focus: @bw-primary;

// typography
@body-copy: "Source Sans Pro", helvetica, arial, verdana, sans-serif;
@heading-copy: "Source Sans Pro", helvetica, arial, verdana, sans-
serif;
@base-font-size: 16px;
@font-size: 1em;
@base-line-height: 1.5;

Chapter 4

[127]

// layout
@margin: 1em;
@padding: 1em;

// MIXINS

// round corners or Border radius
.round-corners (@radius: 5px) {
 -moz-border-radius: @radius;
 -ms-border-radius: @radius;
 border-radius: @radius;
}

// animation transitions
.transition (@transition: background .1s linear) {
 -moz-transition: @transition;
 -webkit-transition: @transition;
 transition: background @transition;
}

Updating the header and footer
Now that our Less variables are ready to go, let's move on to updating our template
partials. At this point, we'll set up a new header and footer. We'll also create a couple
of more placeholder files for sidebars, which will be added a little later. For now,
create the following blank files for later use:

• _nav-modal.ejs (if you haven't already)
• _sidebar.ejs

• _sidebar-search.ejs

As explained earlier, the nav modal will be our primary navigation component.
The sidebar partial will be used on almost every page, so I've broken it down into
a partial. Thus, it can be easily edited. Our search results page will have a different
sidebar, so a partial has been created for that as well.

Coding the header
As we've done in a past project, we're not going to use the default Bootstrap header
here. We're going to use the basic grid, the inline list component, and some wrapper
classes to create a custom header. The header will be divided into two sections. The
first will be the logo and actual navigation links. The second will be the full-width
search bar.

Bootstrap Wiki

[128]

One thing to keep in mind is that this is a wiki. The links along the top are not the
primary navigation. They are simply a collection of useful links that help the user
find what they are looking for faster. I wanted to mention this so that you don't get
confused when we cover the nav modal. First things first, let's insert the wrapper
code for the entire header:

<div class="container">
 <div class="header">
 ..
 </div>
</div>

We're using the default Bootstrap container here, but I have added some custom
styles to it as I want to squish the width a little:

.container {
 padding: 0 100px;
}

The .header class will be our wrapper for the entire header. It has the following
basic styles applied to it:

.header {
 margin-top: (@margin * 2);
}

.header a {
 color: @bw-black;
 font-weight: bold;
}

.header a:hover {
 color: @bw-grey;

}

Let's take a closer look at the CSS for our header and what's going on:

• I've added a top margin to the header to move it off the top edge of the
browser.

• I don't want to use the default link colors here, so I've changed them. I've also
made the header links bold.

Chapter 4

[129]

Coding the header nav
Let's code the first portion of the header, which is the logo and header links. Insert
the following markup inside .header <div>:

<div class="header-nav">
 <div class="row">
 <div class="col-lg-12">
 <ul class="list-inline">
 <img src="img/logo.png"
width="90" height="43" alt="Bootstrap Wiki Logo">
 <li class="desktop-only">Main Page
 <li class="desktop-only">Categories
 <li class="desktop-only">Favorites
 <a href="#" data-toggle="modal" data-target="#nav-
modal"><i class="fa fa-bars"></i>

 </div>
 </div>
 </div>

The nav is wrapped in a class called .header-nav. Within this <div>, I'm using the
Bootstrap inline list component to create the layout of the logo and header links. For
this project, I thought I'd mix it up and use an image for the logo.

You'll notice that the text link tags have a class of .desktop-only on them.
That is there because we are going to hide them in the mobile view. The reason
I'm doing this is to make the header work for phones. You'll also remember that
these text links are not our actual nav; they are just helpers. The final list item is a
hamburger menu icon that triggers the nav. This icon/link will not be hidden in
the mobile view. Let's review the styles that construct this part of the page:

.header-nav {
 margin-bottom: (@margin * 2);
}

I've added a little margin at the bottom of the header nav; this is equal to the margin
I added at the top of the header wrapper:

.header ul {
 margin-bottom: 0;
}

.header ul.list-inline li {
 margin-right: (@margin * 1.25);
}

www.allitebooks.com

http://www.allitebooks.org

Bootstrap Wiki

[130]

We need to tweak the list component a bit so that it works for our layout:

• I've removed the bottom margin from so that it doesn't give me extra
spacing. Remember that we set the spacing on .header-nav.

• I want more horizontal spacing than what comes out of the box with this
component, so I've bumped up the right margin.

Coding the header search bar
Now that the logo and header links are complete, let's insert the full-width search
bar. After .header-nav <div>, insert the following code:

<div class="header-search">
 <div class="row">
 <div class="col-lg-12">
 <div class="well">
 <div class="input-group">
 <input type="text" class="form-control"
 placeholder="Search">

 <button class="btn btn-primary"
 type="button">Go!</button>

 </div>
 </div>
 </div>
 </div>
 </div>

The section is wrapped in a <div> with the class of .header-search. Contained
within, we're using a well component that has an input-group nested inside.
But before we can totally finish this, we need to update a couple of Bootstrap
components, namely the button and well components.

Adding custom button styles
Create a new file called _buttons.less and save it in the /css/components
directory. Next, pop open theme.less and insert this line of code in the
Modules section:

@import "components/_buttons.less";

Chapter 4

[131]

Go back to the _buttons.less file and insert the following code:

.btn {
 text-transform: uppercase;
}

.btn-primary {
 background: @bw-primary;
 border-color: @bw-primary;
 color: @white;
}

.btn-primary:hover {
 background: @bw-dark-primary;
 border-color: @bw-dark-primary;
}

Let's review the CSS code for our buttons:

• I want to capitalize the labels of all my buttons, so I've transformed the text
to uppercase in the .btn class.

• For the primary button, I'll use the primary color from the palette. The hover
state will use the dark version of the primary color.

Adding custom well styles
Next, we need to add some custom well styles for the search bar section. Create a
new file called _well.less in /css/components. Open up theme.less and insert
the following line of code after the button one you just added:

@import "components/_well.less";

Head back to _well.less and insert this code:

.well {
 border: 0;
 box-shadow: none;
 background-color: @secondary-background;
 .round-corners;
}

Bootstrap Wiki

[132]

Let's review the CSS in more detail for the well component:

• I've removed the border and box-shadow from the well
• I've set the background-color to use one of our colors
• I've inserted the round-corners or border-radius mixin so that the well uses

our 5px value

Finishing off the header search
Now that we've updated those two components, let's finish off going through the
header search section. Here's the code again, for reference:

<div class="header-search">
 <div class="row">
 <div class="col-lg-12">
 <div class="well">
 <div class="input-group">
 <input type="text" class="form-control"
 placeholder="Search">

 <button class="btn btn-primary"
 type="button">Go!</button>

 </div>
 </div>
 </div>
 </div>
 </div>

The entire section is wrapped in the .header-search class, which actually doesn't
have any styles applied to it—mostly just for organization at this point. Within the
section, insert a well component and then insert an input group. That will finish off
this section, and the header will be complete. Here's what the full header partial code
should look like:

<div class="container">
 <div class="header">
 <!-- nav //-->
 <div class="header-nav">
 <div class="row">
 <div class="col-lg-12">
 <ul class="list-inline">

Chapter 4

[133]

 <img src="img/logo.png"
 width="90" height="43" alt="Bootstrap Wiki
 Logo">
 <li class="desktop-only">Main
 Page
 <li class="desktop-only">Categories
 <li class="desktop-only">Favorites
 <a href="#" data-toggle="modal" data-
 target="#nav-modal"><i class="fa fa-
 bars"></i>

 </div>
 </div>
 </div>
 <!-- search bar //-->
 <div class="header-search">
 <div class="row">
 <div class="col-lg-12">
 <div class="well">
 <div class="input-group">
 <input type="text" class="form-control"
 placeholder="Search">

 <button class="btn btn-primary"
 type="button">Go!</button>

 </div>
 </div>
 </div>
 </div>
 </div>
 </div>
</div>

Bootstrap Wiki

[134]

Adding the navigation modal
Before we move on to coding the footer, I think this would be a good time to set up
the navigation modal. As in the previous chapter, we're going to use a Bootstrap
modal component and customize it to look like a full page overlay when you click on
the hamburger icon in the header links. Let's start by opening up _nav-modal.ejs,
which is in the /partial directory. Once you have it open, insert the following code:

<div class="modal fade" id="nav-modal">
 <div class="modal-dialog">
 <div class="modal-content">
 <div class="modal-header">
 <button type="button" class="close" data-dismiss="modal"
 aria-label="Close"><span aria-
 hidden="true">×</button>
 </div>
 <div class="modal-body">
 <div class="row">
 <div class="col-lg-12">
 <div>+ Add Content</div>
 <div>Profile</div>
 <div>About</div>
 <div>Contact</div>
 <div>Logout</div>
 </div>
 </div>
 </div>
 </div><!-- /.modal-content -->
 </div><!-- /.modal-dialog -->
</div><!-- /.modal -->

The code here is very similar to what we did in the last chapter, but with one
exception; I've removed the modal title section as I don't want to display a title when
this opens up. Aside from this, we have a collection of links within the body of the
modal, with some custom styles. Let's go over the styles next by popping up modal.
less, which is located inside /css/components:

.modal-dialog {
 margin: 0;
 width: auto;
}

.modal-backdrop {
 background: @white;

Chapter 4

[135]

 opacity: 0.9!important;
}

.modal-content {
 background: none;
 box-shadow: none;
 border: 0;
 text-align: center;

 -moz-border-radius: 0px;
 border-radius: 0px;
}

.modal-header {
 border-bottom: 0;
}

.close {
 color: @bw-black;
 text-shadow: none;
 opacity: 1;
}

.modal a {
 color: @bw-black;
 text-decoration: none;
 font-weight: 700;
 font-size: (@font-size * 4);
}

.modal a:hover {
 color: @bw-primary;
}

Let's go over all the CSS in depth for the modal component:

• The .modal-dialog is unchanged from the previous chapter
• In the .modal-backdrop class, I've changed the background color to @white
• In the .modal-content class, I've set text-align to center
• The only other things that have changed are the color and font-size in the

.modal a declaration

Bootstrap Wiki

[136]

This completes the updates that you need to perform for the navigation modal. It
would probably be a good idea to compile your code and test it out before moving
on. However, you may want to complete the footer first and then test out the entire
page template at once.

Adding the footer
Like the header, the footer of this project is divided into two sections. The top section
has the language selector links. The second part has the footer links and copyright
statement. Open up _footer.ejs, which is located in the /partial directory, and
insert the following code:

<div class="footer-languages">
 <div class="container">
 <div class="row">
 <div class="col-lg-12">
 <ul class="list-inline">
 Language:
 English
 French
 German
 Italian
 Spanish

 </div>
 </div>
 </div>
</div>

The entire section is wrapped inside a class of .footer-language. Within this
section is another inline list component for displaying all the available languages.
Let's review the wrapper class styles first:

.footer-languages {
 background: @inverse-background;
 color: @bw-black;
 padding: (@padding * 2) 0;
}

.footer-languages ul {
 margin-bottom: 0;
}

Chapter 4

[137]

.footer-languages a {
 color: @white;
}

.footer-languages a:hover {
 color: @bw-black;
}

Let me summarize what is happening with the footer CSS:

• I've set the background of this section to use the @inverse-background color
variable

• The text color is set to our custom black so that it really pops out of the
background

• I've added some top and bottom padding to give the section some breathing
space

• As with the header links, I've removed the bottom margin from so that
the spacings above and below the list are equal

• Finally, I've set the links in the section to white, and the hover color is black

The rest of this section depends on default Bootstrap styles, so this part is complete.
Let's add the second half of the footer, which is the utility links and the copyright
statement. Insert the following markup below the language section:

<div class="footer">
 <div class="container">
 <div class="row">
 <div class="col-lg-12">
 <ul class="list-inline">
 RSS
 Terms & Conditions
 About
 Contact
 Copyright 2015 Bootstrap Wiki

 </div>
 </div>
 </div>
</div>

This section is actually the true footer of the project. However, I wanted the
language picker to appear on every page, so I included it with the footer partial,
again saving me some effort if I want to customize it with more languages.

Bootstrap Wiki

[138]

I've wrapped this entire section in a class of .footer. Within that, I'm using—you
guessed it—another inline list component to lay out the links. The list component is
actually a really powerful/flexible piece of code that you can use for many things.
Before you start laying out a bunch of <div>, I encourage you to consider it for your
layout challenges. Let's review the .footer styles:

.footer {
 color: @bw-light-grey;
 margin: (@margin * 2) 0;
}

.footer a {
 color: @bw-light-grey;
}

.footer a:hover {
 color: @bw-grey;
}

The last thing we need to do is review the CSS for the links in the footer:

• I've set the text color for the footer to use our palette's light grey. I've also
added some top and bottom margin for whitespace reasons.

• I set the footer links to the same light grey color to make them subtle. On
hovering, they will change to darker grey so that they are easy to read.

This completes the footer code. Let's see what the entire thing should look like:

<!-- footer //-->
<div class="footer-languages">
 <div class="container">
 <div class="row">
 <div class="col-lg-12">
 <ul class="list-inline">
 Language:
 English
 French
 German
 Italian
 Spanish

 </div>
 </div>
 </div>

Chapter 4

[139]

</div>
<div class="footer">
 <div class="container">
 <div class="row">
 <div class="col-lg-12">
 <ul class="list-inline">
 RSS
 Terms & Conditions
 About
 Contact
 Copyright 2015 Bootstrap Wiki

 </div>
 </div>
 </div>
</div>

This completes the updates to the Harp template files for the new project. We'll come
back in a moment and fill in the new partials. Next, let's move on to setting up the
new home page.

Coding the homepage
The first page that we will tackle in this project is the wiki home page. It consists of a
two-column layout. The left side will be a feed of updated pages, and the right side
will be our sidebar, which contains a list of categories. We'll also set up a page title
and button for adding new content or pages.

Setting up the page title section
Let's go ahead and set up the page title section first. It consists of an <h1> heading
and an Add Content button:

<div class="page-title">
 <div class="row">
 <div class="col-lg-6">
 <h1>Featured Pages</h1>
 </div>
 <div class="col-lg-6 add-content">
 <ul class="list-inline pull-right">

 <button type="button" class="btn btn-primary">+ Add
 Content</button>

Bootstrap Wiki

[140]

 </div>
 </div>
 </div>

I've divided each side into equal-width columns with the .col-lg-6 class. You may
want to increase the size of the page title <div> if you anticipate having longer page
titles. You'll notice that with the Add Content button, I'm using another inline list
even though there is only one button. In other pages, there will be multiple buttons,
so I'm just being consistent here. Let's review the CSS for this section:

.page-title {
 border-bottom: (@border-size * 5) @border-type @border-color;
 padding-bottom: @padding;
}

Let me explain how the .page-title CSS works:

• The page title section has a bottom border of 5px so as to divide it from the
page content

• I've also added some padding at the bottom of the section so that the border
doesn't bump right up against the text:
.add-content {
 line-height: 36px;
}

I've set the line-height for the add-content section to 36px, which matches the
font-size of our <h1> tag. This will force the button to be vertically centered with
the page title. Setting the wrapping <div> line-height to match the height of the
text is a simple way to achieve the ever-tricky vertical centering. That finishes up
this section, but before we go any further, we should add a Less component for
our typography styles.

Setting up the type styles
Create a new file called _typography.less and save it in the /css/components
directory. Next, open up theme.less and enter the following line of code in the
Modules section:

@import "components/_typography.less";

Chapter 4

[141]

Save theme.less and head back to _typography.less. Enter this code in the file
and save it:

h1 {
 margin: 0;
 color: @bw-primary;
 font-weight: 300;
}

h5 {
 color: @bw-grey;
 text-transform: uppercase;
 font-weight: 700;
}

small {
 color: @bw-light-grey;
}

Let's review the values for the typography styles:

• For the <h1> tag, I've removed bottom-margin so that the true height of the
tag is 36px. In this way, it will line up perfectly with the Add Content button.

• I've set the color of <h1> to our primary hue and font-weight will be the light
version of Source Sans Pro.

• The <h5> tag will be used in the sidebar, and I'm customizing it to use one of
the palette's grey values. I've also converted it to uppercase, and font-weight
will be bold.

• Finally, we'll be using the <small> tag in the content feed, and we've set it to
use one of our colors.

Coding the page body
Let's move on to coding the main body of our home page. It's divided into two
columns and the wrapping code looks like this:

<div class="page-content">
 <div class="row">
 <div class="col-lg-8">
 ..
 </div>
 <%- partial("partial/_sidebar") %>
 </div>
</div>

Bootstrap Wiki

[142]

You'll notice that I've included a partial here for the sidebar. Let's go ahead and set
up the code for that now.

Coding the sidebar
Open up _sidebar.ejs, which is in the /parital directory. Once you have it open,
insert the following code:

<div class="col-lg-4">
 <div class="sidebar">
 <h5>Categories</h5>
 <ul class="list-unstyled">
 Arts
 Cars
 Computers
 Education
 Family
 Finance
 Food
 Health
 Hobbies
 Holidays
 Home & Garden
 Pets
 Philosophy
 Relationships
 Sports
 Technology
 Travel
 Work

 </div>
</div>

Make sure you include the grid <div> in the partial so that it's a fully contained
component. The sidebar makes use of the Bootstrap unstyled list component. We've
already set up the custom styles for the <h5> header tag, but we do need to add some
sidebar styles to theme.less:

.sidebar {
 background: @secondary-background;
 padding: @padding;
 margin-bottom: (@margin * 2);
}

Chapter 4

[143]

Let me explain further how the sidebar CSS works:

• I'm using the secondary background color here, which is a light grey.
• I've added some padding to the sidebar so that the text has some

breathing space.
• Finally, I've added a little margin-bottom in case the sidebar becomes longer

than the feed. And we don't want it to bump up right against the footer.

That concludes the setup of the sidebar. Let's move on to setting up the feed portion
of the home page.

Coding the home page feed
Head back to the first column that has the class of .col-lg-8 on it, and insert the
following feed code:

<div class="feed">
 <div class="post">
 <h3><i class="fa fa-heart"></i> Page name
 goes here</h3>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing
 elit. Proin feugiat sit amet sapien nec tristique.
 Morbi vitae odio mi. Praesent vitae diam ac
 libero tristique viverra. More</p>
 </div>
 <div class="post">
 <h3><i class="fa fa-heart favorite"></i> Page name goes here</h3>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing
 elit. Proin feugiat sit amet sapien nec tristique.
 Morbi vitae odio mi. Praesent vitae diam ac
 libero tristique viverra. More</p>
 </div>
 <div class="post">
 <h3><i class="fa fa-heart favorite"></i> Page name goes here</h3>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing
 elit. Proin feugiat sit amet sapien nec tristique.
 Morbi vitae odio mi. Praesent vitae diam ac
 libero tristique viverra. More</p>
 </div>
 <div class="post">

Bootstrap Wiki

[144]

 <h3><i class="fa fa-heart favorite"></i> Page name goes here</h3>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing
 elit. Proin feugiat sit amet sapien nec tristique.
 Morbi vitae odio mi. Praesent vitae diam ac
 libero tristique viverra. More</p>
 </div>
 <div class="post">
 <h3><i class="fa fa-heart"></i> Page name
 goes here</h3>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing
 elit. Proin feugiat sit amet sapien nec tristique.
 Morbi vitae odio mi. Praesent vitae diam ac
 libero tristique viverra. More</p>
 </div>
 <div class="post">
 <h3><i class="fa fa-heart"></i> Page name
 goes here</h3>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing
 elit. Proin feugiat sit amet sapien nec tristique.
 Morbi vitae odio mi. Praesent vitae diam ac
 libero tristique viverra. More</p>
 </div>
 <div class="post">
 <h3><i class="fa fa-heart"></i> Page name
 goes here</h3>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing
 elit. Proin feugiat sit amet sapien nec tristique.
 Morbi vitae odio mi. Praesent vitae diam ac
 libero tristique viverra. More</p>
 </div>
 <div class="post">
 <h3><i class="fa fa-heart"></i> Page name
 goes here</h3>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing
 elit. Proin feugiat sit amet sapien nec tristique.
 Morbi vitae odio mi. Praesent vitae diam ac libero
 tristique viverra. More</p>
 </div>
 <div class="feed-pagination">
 <button class="btn btn-primary" type="button">Next
 Page</button>
 </div>
 </div>

Chapter 4

[145]

The feed wrapping class has a little padding added to it, as I wanted to put some
additional whitespace:

.feed {
 padding: @padding;
}

Within the feed, I've created a new custom component called .post. Each page
or piece of content is wrapped in this .post class. Let's break down an individual
instance of this code:

<div class="post">
 <h3><i class="fa fa-heart"></i> Page name
 goes here</h3>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing
 elit. Proin feugiat sit amet sapien nec tristique.
 Morbi vitae odio mi. Praesent vitae diam ac
 libero tristique viverra. More</p>
 </div>

The .post itself has some styles applied to each entry in the feed:

.post {
 margin-top: (@margin * 2);
 border-bottom: @border-size @border-type @border-color;
 padding-bottom: (@padding * 1.5);
}

Let's review how the CSS for the .post class works:

• I want to space out the posts, so I've adding some margin-top and
padding-bottom

• I've also added a bottom border to each post to create a separator

I don't want to add the top margin to the first post in the feed, so I'm using a pseudo-
selector to remove it:

.post:firs-child {
 margin-top: 0;
}

Within each post, there's an <h3> tag with a nested icon and link. Each post has a
heart that is inserted from the font awesome library:

<i class="fa fa-heart"></i>

Bootstrap Wiki

[146]

If you want to make the heart look selected, you need to add the .favorite class
to the <i> tag:

<i class="fa fa-heart favorite"></i>

The styles for both states of the heart icon are as follows:

.post i {
 color: @light-grey;
}

i.favorite {
 color: @red1;
}

That's the full breakdown for each post or entry in our feed. The last thing that we
need to go over is the pagination for the feed. At the very bottom of the feed, after
the last post, you'll see this code:

<div class="feed-pagination">
 <button class="btn btn-primary" type="button">Next
 Page</button>
</div>

I'm using a next page type pagination to show the next 10 entries in the feed. The
following styles are used for the layout:

.feed-pagination {
 margin-top: (@margin * 2);
 padding-bottom: (@padding * 2);
 text-align: right;
}

Let's breakdown what's happening with the pagination CSS:

• As with the Post component, I'm applying some margin and padding for
vertical consistency

• I've set the alignment of this section to right as I want the button to float on
the right-hand side of the <div>

This completes the layout of the homepage. Here's the code for the entire page for
reference:

<div class="container">
 <div class="page-title">
 <div class="row">

Chapter 4

[147]

 <div class="col-lg-6">
 <h1>Featured Pages</h1>
 </div>
 <div class="col-lg-6 add-content">
 <ul class="list-inline pull-right">

 <button type="button" class="btn btn-primary">+ Add
Content</button>

 </div>
 </div>
 </div>
 <div class="page-content">
 <div class="row">
 <div class="col-lg-8">
 <div class="feed">
 <div class="post">
 <h3><i class="fa fa-heart"></i> Page name goes
here</h3>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing
elit. Proin feugiat sit amet sapien nec tristique. Morbi vitae
odio mi. Praesent vitae diam ac libero tristique viverra. More</p>
 </div>
 <div class="post">
 <h3><i class="fa fa-heart favorite"></i> Page
name goes here</h3>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing
elit. Proin feugiat sit amet sapien nec tristique. Morbi vitae
odio mi. Praesent vitae diam ac libero tristique viverra. More</p>
 </div>
 <div class="post">
 <h3><i class="fa fa-heart favorite"></i> Page
name goes here</h3>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing
elit. Proin feugiat sit amet sapien nec tristique. Morbi vitae
odio mi. Praesent vitae diam ac libero tristique viverra. More</p>
 </div>
 <div class="post">
 <h3><i class="fa fa-heart favorite"></i> Page
name goes here</h3>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing
elit. Proin feugiat sit amet sapien nec tristique. Morbi vitae

Bootstrap Wiki

[148]

odio mi. Praesent vitae diam ac libero tristique viverra. More</p>
 </div>
 <div class="post">
 <h3><i class="fa fa-heart"></i> Page name goes
here</h3>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing
elit. Proin feugiat sit amet sapien nec tristique. Morbi vitae
odio mi. Praesent vitae diam ac libero tristique viverra. More</p>
 </div>
 <div class="post">
 <h3><i class="fa fa-heart"></i> Page name goes
here</h3>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing
elit. Proin feugiat sit amet sapien nec tristique. Morbi vitae
odio mi. Praesent vitae diam ac libero tristique viverra. More</p>
 </div>
 <div class="post">
 <h3><i class="fa fa-heart"></i> Page name goes
here</h3>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing
elit. Proin feugiat sit amet sapien nec tristique. Morbi vitae
odio mi. Praesent vitae diam ac libero tristique viverra. More</p>
 </div>
 <div class="post">
 <h3><i class="fa fa-heart"></i> Page name goes
here</h3>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing
elit. Proin feugiat sit amet sapien nec tristique. Morbi vitae
odio mi. Praesent vitae diam ac libero tristique viverra. More</p>
 </div>
 <div class="feed-pagination">
 <button class="btn btn-primary" type="button">Next Page</
button>
 </div>
 </div><!-- feed end //-->
 </div>
 <!-- sidebar //-->
 <%- partial("partial/_sidebar") %>
 </div>
 </div>
</div>

Chapter 4

[149]

The article page template
Now that we've set up the homepage, let's tackle setting up a page for a single article
or wiki topic. Here's what the page we're going to build will look like:

Bootstrap Wiki

[150]

First, create a new file called article.ejs and save it to the root of your project. If
you remember, earlier in this chapter, we added this page to the _data.json file. If
you name it differently, make sure that the filename matches what was entered in the
_data.json file. Once you have saved the file, you may want to compile the project
to ensure that everything is working correctly. It's a good idea to do a compile every
so often so that you catch errors before you are done. Waiting until the very end will
make it more complicated to troubleshoot compile errors if you have them.

Start off your new page template by coding a wrapping .container <div> for the
entire page:

<div class="container">
 ..
</div>

The first section that we will insert into the container is the page title. This is identical
to the page title from the index template, with the addition of one button. First of all,
you'd want to update the <h1> tag with the title of your page:

<h1>Page Title</h1>

Next, we'll insert an Edit button that will allow the user to edit this wiki page. We're
going to insert this button next to the Add Content button. Now you see why I
decided to use an inline list here. I'm inserting an additional button as a new :

 <button type="button" class="btn btn-default">Edit</button>

I've used the .btn-default class here as I want the Add Content button to stand
out more than the Edit button. This is a simple design trick to set the hierarchy of
our two buttons.

This concludes the changes that we need to make to the page title section of
the template.

Coding the article page body
Let's move on to coding the body of the article page. We're going to reuse the
.page-content and the .feed <div> structure that we set up on the index template
here. A new addition to the page is the .post-meta section, where will add some
metadata about this page. After opening .feed <div>, add the following block
of code:

<div class="post-meta">
 <p>
 <small>23 <i class="fa fa-heart favorite"></i> Last edited:

Chapter 4

[151]

 January 1, 2015 by John Smith</small>
 </p>
</div>

The .post-meta class doesn't actually have any custom styles attached to it. It's
simply an identifier for the section. However, if you'd like to customize this part
of the page, you can easily use the presetup class to do so.

Within the .post-meta section, I've added a <p> tag; this tag actually holds the
content. Using the <p> tag here will give us a bottom margin to space out the text
from the body copy that we'll be adding next. The metadata should be secondary
to the actual body text, so I've wrapped it in a <small> tag. This will lighten the
text and make it a bit smaller. The favorite icon and link at the end will still use the
default styles and stand out a bit more, which is what I want. This concludes the
.post-meta section of the template.

Adding the body content
The next part of the layout is the addition of body content for the page. Here, I'm
going to reuse the .post class that I created in the previous template. Within that
<div>, simply enter the content for the page. This can include text tags, headers,
images, videos, or whatever you want. I've included some <p> tags in the example
(shown later) to keep things simple. After you close the .post <div>, make sure
you keep the pagination section so that users can navigate from page to page on
your wiki:

<div class="feed-pagination">
 <button class="btn btn-primary" type="button">Next
 Page</button>
</div>

That concludes the setup of the content section of the page. The last thing that
you need to add is the sidebar partial. This is exactly the same as the index template.
Insert the partial code in the same location. You can also see the entire page
template here:

<div class="container">
 <div class="page-title">
 <div class="row">
 <div class="col-lg-6">
 <h1>Page Title</h1>
 </div>
 <div class="col-lg-6 add-content">
 <ul class="list-inline pull-right">

Bootstrap Wiki

[152]

 <button type="button" class="btn btn-default">Edit</
button>

 <button type="button" class="btn btn-primary">+ Add
Content</button>

 </div>
 </div>
 </div>
 <div class="page-content">
 <div class="row">
 <div class="col-lg-8">
 <div class="feed">
 <div class="post-meta">
 <p>
 <small>23 <i class="fa fa-heart favorite"></i> Last
edited: January 1, 2015 by John Smith</small>
 </p>
 </div>
 <div class="post">
 <p>Pellentesque habitant morbi tristique senectus et netus
et malesuada fames ac turpis egestas. Vestibulum tortor quam, feugiat
vitae, ultricies eget, tempor sit amet, ante. Donec eu libero sit amet
quam egestas semper. Aenean ultricies mi vitae est. Mauris placerat
eleifend leo. Quisque sit amet est et sapien ullamcorper pharetra.
Vestibulum erat wisi, condimentum sed, commodo vitae, ornare sit amet,
wisi. Aenean fermentum, elit eget tincidunt condimentum, eros ipsum
rutrum orci, sagittis tempus lacus enim ac dui. Donec non enim in
turpis pulvinar facilisis. Ut felis. Praesent dapibus, neque id cursus
faucibus, tortor neque egestas augue, eu vulputate magna eros eu erat.
Aliquam erat volutpat. Nam dui mi, tincidunt quis, accumsan porttitor,
facilisis luctus, metus</p>
 <p>Pellentesque habitant morbi tristique senectus et netus
et malesuada fames ac turpis egestas. Vestibulum tortor quam, feugiat
vitae, ultricies eget, tempor sit amet, ante. Donec eu libero sit amet
quam egestas semper. Aenean ultricies mi vitae est. Mauris placerat
eleifend leo. Quisque sit amet est et sapien ullamcorper pharetra.
Vestibulum erat wisi, condimentum sed, commodo vitae, ornare sit amet,
wisi. Aenean fermentum, elit eget tincidunt condimentum, eros ipsum
rutrum orci, sagittis tempus lacus enim ac dui. Donec non enim in
turpis pulvinar facilisis. Ut felis. Praesent dapibus, neque id cursus
faucibus, tortor neque egestas augue, eu vulputate magna eros eu erat.
Aliquam erat volutpat. Nam dui mi, tincidunt quis, accumsan porttitor,
facilisis luctus, metus</p>

Chapter 4

[153]

 <p>Pellentesque habitant morbi tristique senectus et netus
et malesuada fames ac turpis egestas. Vestibulum tortor quam, feugiat
vitae, ultricies eget, tempor sit amet, ante. Donec eu libero sit amet
quam egestas semper. Aenean ultricies mi vitae est. Mauris placerat
eleifend leo. Quisque sit amet est et sapien ullamcorper pharetra.
Vestibulum erat wisi, condimentum sed, commodo vitae, ornare sit amet,
wisi. Aenean fermentum, elit eget tincidunt condimentum, eros ipsum
rutrum orci, sagittis tempus lacus enim ac dui. Donec non enim in
turpis pulvinar facilisis. Ut felis. Praesent dapibus, neque id cursus
faucibus, tortor neque egestas augue, eu vulputate magna eros eu erat.
Aliquam erat volutpat. Nam dui mi, tincidunt quis, accumsan porttitor,
facilisis luctus, metus</p>
 <p>Pellentesque habitant morbi tristique senectus et netus
et malesuada fames ac turpis egestas. Vestibulum tortor quam, feugiat
vitae, ultricies eget, tempor sit amet, ante. Donec eu libero sit amet
quam egestas semper. Aenean ultricies mi vitae est. Mauris placerat
eleifend leo. Quisque sit amet est et sapien ullamcorper pharetra.
Vestibulum erat wisi, condimentum sed, commodo vitae, ornare sit amet,
wisi. Aenean fermentum, elit eget tincidunt condimentum, eros ipsum
rutrum orci, sagittis tempus lacus enim ac dui. Donec non enim in
turpis pulvinar facilisis. Ut felis. Praesent dapibus, neque id cursus
faucibus, tortor neque egestas augue, eu vulputate magna eros eu erat.
Aliquam erat volutpat. Nam dui mi, tincidunt quis, accumsan porttitor,
facilisis luctus, metus</p>
 </div>
 <div class="feed-pagination">
 <button class="btn btn-primary" type="button">Next Page</
button>
 </div>

 </div><!-- feed end //-->
 </div>
 <!-- sidebar //-->
 <%- partial("partial/_sidebar") %>
 </div>
 </div>
</div>

This concludes the coding of the article page template. Compile your project and fire
up the server. Then enter the following URL in a browser to test it out:

http://localhost:9000/article.html

Once you're happy with how everything looks, move on to the next section, where
I'll show you how to create the search results template.

http://localhost:9000/article.html

Bootstrap Wiki

[154]

The search results page template
It's time to create the third template for our wiki project. Create a new file and name
it search-results.ejs. As with the previous template, make sure you keep the
name the same or update the value in _data.json for this template. Before we
jump into coding the page, let's see what it will look like when we're done:

Chapter 4

[155]

You'll notice that the search results page is similar to our other pages, but with one
major difference. It has a different sidebar. Previously, I had you creating a second
sidebar file and as part of this section. We will code it and insert it into the layout.
In the case of the search results page, it has some specific search-related content and
filters that we want to show in place of the regular categories. That's why I've created
a second sidebar for this template.

Updating the page title
Before you jump into the body of the page, you'd want to change the <h1> tag to
search results. In this case, we won't have an Edit button, so the only button to the
right will be the add content one. Aside from the change in the page title, everything
should be the same as that in the index template.

Updating the post-meta class
Here, I'm again going to use the .post-meta section that I set up in the article
template. In this case, we'll insert some search-specific data into the section:

<div class="post-meta">
 <p>
 <small>About 2,003 results found in 0.45 seconds</small>
 </p>
</div>

Adding search posts
Each search entry in our feed will use the same .post <div> structure that we set up
on the home page, but with one exception. I've put an additional <p> tag after the
page title; it includes the URL of the page:

<div class="post">
 <h3><i class="fa fa-heart"></i> Page name goes
 here</h3>
 <p><small>http://bootstrapwiki.com/path/to/page/here</small></p>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit.
 Proin feugiat sit amet sapien nec tristique. Morbi vitae odio
 mi. Praesent vitae diam ac libero tristique viverra. More</p>
</div>

Bootstrap Wiki

[156]

Coding the search sidebar
The last part of this template that we need to code is the unique sidebar. First of all,
update the partial to use the right file:

<%- partial("partial/_sidebar-search") %>

Next, open the _sidebar-search.ejs file in /partial and enter the following code:

<div class="col-lg-4">
 <div class="sidebar">
 <h5>Related Searches</h5>
 <ul class="list-unstyled">
 Keyword something
 Keyword something
 else
 Keyword maybe
 this

 <hr>
 <h5>Related Tags</h5>
 <ul class="list-unstyled">
 Tag 01
 Tag 02
 Tag 03
 Tag 04
 Tag 05

 <hr>
 <h5>Related Topics</h5>
 <ul class="list-unstyled">
 Topic 01
 Topic 02
 Topic 03
 Topic 04
 Topic 05

 </div>
</div>

Chapter 4

[157]

The code here should be pretty straightforward. Each section of the sidebar has
a heading that uses an <h5> tag. Under each heading, I'm using an unstyled list
component to list a search-related filter. Finally, each section is divided by an <hr>. I
have customized the color of the <hr> tag on the sidebar with the following styles:

.sidebar hr {
 border-color: @bw-light-grey;
}

Here's what the entire page template code looks like:

<div class="container">
 <div class="page-title">
 <div class="row">
 <div class="col-lg-6">
 <h1>Search Results</h1>
 </div>
 <div class="col-lg-6 add-content">
 <ul class="list-inline pull-right">

 <button type="button" class="btn btn-primary">+ Add
Content</button>

 </div>
 </div>
 </div>
 <div class="page-content">
 <div class="row">
 <div class="col-lg-8">
 <div class="feed">
 <div class="post-meta">
 <p>
 <small>About 2,003 results found in 0.45 seconds</small>
 </p>
 </div>
 <div class="post">
 <h3><i class="fa fa-heart"></i> Page name goes
here</h3>
 <p><small>http://bootstrapwiki.com/path/to/page/here</
small></p>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing
elit. Proin feugiat sit amet sapien nec tristique. Morbi vitae
odio mi. Praesent vitae diam ac libero tristique viverra. More</p>

Bootstrap Wiki

[158]

 </div>
 <div class="post">
 <h3><i class="fa fa-heart"></i> Page name goes
here</h3>
 <p><small>http://bootstrapwiki.com/path/to/page/here</small></p>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing
elit. Proin feugiat sit amet sapien nec tristique. Morbi vitae
odio mi. Praesent vitae diam ac libero tristique viverra. More</p>
 </div>
 <div class="post">
 <h3><i class="fa fa-heart"></i> Page name goes
here</h3>
 <p><small>http://bootstrapwiki.com/path/to/page/here</
small></p>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing
elit. Proin feugiat sit amet sapien nec tristique. Morbi vitae
odio mi. Praesent vitae diam ac libero tristique viverra. More</p>
 </div>
 <div class="post">
 <h3><i class="fa fa-heart"></i> Page name goes
here</h3>
 <p><small>http://bootstrapwiki.com/path/to/page/here</
small></p>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing
elit. Proin feugiat sit amet sapien nec tristique. Morbi vitae
odio mi. Praesent vitae diam ac libero tristique viverra. More</p>
 </div>
 <div class="post">
 <h3><i class="fa fa-heart"></i> Page name goes
here</h3>
<p><small>http://bootstrapwiki.com/path/to/page/here</small></p>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing
elit. Proin feugiat sit amet sapien nec tristique. Morbi vitae
odio mi. Praesent vitae diam ac libero tristique viverra. More</p>
 </div>
 <div class="post">
 <h3><i class="fa fa-heart"></i> Page name goes
here</h3>
<p><small>http://bootstrapwiki.com/path/to/page/here</small></p>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing
elit. Proin feugiat sit amet sapien nec tristique. Morbi vitae
odio mi. Praesent vitae diam ac libero tristique viverra. More</p>
 </div>

Chapter 4

[159]

 <div class="post">
 <h3><i class="fa fa-heart"></i> Page name goes
here</h3>
<p><small>http://bootstrapwiki.com/path/to/page/here</small></p>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing
elit. Proin feugiat sit amet sapien nec tristique. Morbi vitae
odio mi. Praesent vitae diam ac libero tristique viverra. More</p>
 </div>
 <div class="post">
 <h3><i class="fa fa-heart"></i> Page name goes
here</h3>
 <p><small>http://bootstrapwiki.com/path/to/page/here</
small></p>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing
elit. Proin feugiat sit amet sapien nec tristique. Morbi vitae
odio mi. Praesent vitae diam ac libero tristique viverra. More</p>
 </div>
 <div class="post">
 <h3><i class="fa fa-heart"></i> Page name goes
here</h3>
<p><small>http://bootstrapwiki.com/path/to/page/here</small></p>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing
elit. Proin feugiat sit amet sapien nec tristique. Morbi vitae
odio mi. Praesent vitae diam ac libero tristique viverra. More</p>
 </div>
 <div class="feed-pagination">
 <button class="btn btn-primary" type="button">Next Page</
button>
 </div>

 </div><!-- feed end //-->
 </div>
 <!-- sidebar //-->
 <%- partial("partial/_sidebar-search") %>
 </div>
 </div>
</div>

This completes the Search Results page template. You'll notice that we didn't
really need to update much CSS for this template. The HTML was also quite
straightforward! That was by design and it's an example of making your project
modular. When you're coding a project, make sure you think about how to reuse your
CSS classes. We could have easily called .post, .feed, or .post-meta something
more page-specific, which would have resulted in more CSS than we need. Keep it
clean and it will be easier to manage down the road as the project grows.

Bootstrap Wiki

[160]

The Profile template
The last template that we need to create for our wiki is the Profile page. This
template will reuse some of the classes that we have already set up and add a
bit more to create a complete user profile page. Take a look at this screenshot
to understand what we'll be building:

Chapter 4

[161]

Adding an avatar
We're going to update our page title section to include a user avatar for this page.
Update the <h1> tag to include an image, as shown in this example:

<h1><img src="http://fillmurray.com/36/36" width="36" height="36"
alt="Avatar"> John Smith</h1>

Also make sure you change the page title to be your user's name. In this case, I'm
using John Smith. After you've finished this, add the Edit button back to the inline
list so that you can allow the user to edit their profile:

 <button type="button" class="btn btn-default">Edit</button>

This concludes the page title setup. Let's move on to the body of the page. It is going
to use the same <div> structure as all our other templates. In this case, however, we
are going to use multiple .post <div> to separate a few different chunks of content.
The first piece of content that we'll insert is a bio for the user:

<div class="post">
 <h3>Bio</h3>
 <p>Pellentesque habitant morbi tristique senectus et netus
et malesuada fames ac turpis egestas. Vestibulum tortor quam, feugiat
vitae, ultricies eget, tempor sit amet, ante. Donec eu libero sit amet
quam egestas semper. Aenean ultricies mi vitae est. Mauris placerat
eleifend leo.</p>
 <p>23 contributions to Bootstrap wiki.</p>
 <p><small>Profile page has been viewed 1,454 times.</
small></p>
 </div>

The next .post section will contain a list of the user's favorite pages—pages that they
have bookmarked across the wiki:

<div class="post">
 <h3>Favorite Pages</h3>
 <p><small>John Smith has favorited 11 pages.</small></p>
 <ul class="list-unstyled">
 Page name goes here
 Page name goes here
 Page name goes here
 Page name goes here
 Page name goes here
 Page name goes here
 Page name goes here

Bootstrap Wiki

[162]

 Page name goes here
 Page name goes here
 Page name goes here
 Page name goes here

 </div>

The final section of our page body actually doesn't use the .post class. It uses a new
.social-media class and it will contain links to the user's social media websites. I've
created a new section here because I'm going to bump up the size of the icons and I
want to isolate these styles:

<div class="social-media">
 <h3>Social Media</h3>
 <ul class="list-inline">
 <i class="fa fa-facebook-official"></
i>
 <i class="fa fa-twitter-square"></i></
a>
 <i class="fa fa-github-square"></i></
a>
 <i class="fa fa-linkedin-square"></i></
a>
 <i class="fa fa-google-plus-square"></
i>
 <i class="fa fa-pinterest-square"></i></
a>

 </div>

There are a few custom styles associated with this section, as shown in the
following code:

.social-media {
 margin-top: (@margin * 2);
 padding-bottom: (@padding * 1.5);
}

.social-media i {
 font-size: (@font-size * 2);
}

Chapter 4

[163]

Let's review the CSS for the .social-media section:

• The .social-media class has some simple margin and padding added to it
to match the post layout styles

• I've bumped up the size of the icons with the next declaration so they really
stand out on the page

The last thing we need to add to this page is the regular sidebar partial, as we did on
the index template. Here's what the entire template looks like:

<div class="container">
 <div class="page-title">
 <div class="row">
 <div class="col-lg-6">
 <h1><img src="http://fillmurray.com/36/36" width="36"
height="36" alt="Avatar"> John Smith</h1>
 </div>
 <div class="col-lg-6 add-content">
 <ul class="list-inline pull-right">

 <button type="button" class="btn btn-default">Edit</
button>

 <button type="button" class="btn btn-primary">+ Add
Content</button>

 </div>
 </div>
 </div>
 <div class="page-content">
 <div class="row">
 <div class="col-lg-8">
 <div class="feed">
 <div class="post">
 <h3>Bio</h3>
 <p>Pellentesque habitant morbi tristique senectus et netus
et malesuada fames ac turpis egestas. Vestibulum tortor quam, feugiat
vitae, ultricies eget, tempor sit amet, ante. Donec eu libero sit amet
quam egestas semper. Aenean ultricies mi vitae est. Mauris placerat
eleifend leo.</p>
 <p>23 contributions to Bootstrap wiki.</p>

Bootstrap Wiki

[164]

 <p><small>Profile page has been viewed 1,454 times.</
small></p>
 </div>
 <div class="post">
 <h3>Favorite Pages</h3>
 <p><small>John Smith has favorited 11 pages.</small></p>
 <ul class="list-unstyled">
 Page name goes here
 Page name goes here
 Page name goes here
 Page name goes here
 Page name goes here
 Page name goes here
 Page name goes here
 Page name goes here
 Page name goes here
 Page name goes here
 Page name goes here

 </div>
 <div class="social-media">
 <h3>Social Media</h3>
 <ul class="list-inline">
 <i class="fa fa-facebook-official"></
i>
 <i class="fa fa-twitter-square"></i></
a>
 <i class="fa fa-github-square"></i></
a>
 <i class="fa fa-linkedin-square"></i></
a>
 <i class="fa fa-google-plus-square"></
i>
 <i class="fa fa-pinterest-square"></i></
a>

 </div>
 </div><!-- feed end //-->
 </div>
 <!-- sidebar //-->
 <%- partial("partial/_sidebar") %>
 </div>
 </div>
</div>

Chapter 4

[165]

Mobile-specific styling
The last thing I'll cover in this chapter is some specific mobile styles that I applied
to the layout. You will need to insert these styles at the bottom of theme.less in the
/css directory. Before I explain the code, here's a preview of what the mobile version
will look like on a phone:

Bootstrap Wiki

[166]

Now, let's review the custom styles that go into the making of this layout:

@media (max-width: 768px) {
 .container {
 padding-right: @padding;
 padding-left: @padding;
 }

 .add-content {
 float: left;
 margin-top: @margin;
 }

 li.desktop-only {
 display: none;
 }

 .modal a {
 font-size: (@font-size * 2);
 }
}

Let me explain how the mobile specific styles work for this project:

• I'm using the value of 768px in the media query to target tablets and phones
with these mobile-specific styles.

• The styles in the .container class reset the left and right padding. I've
added more padding to our desktop containers to squeeze the layout.

• I want the Add Content button to left align in mobiles, so adding the float
will accomplish this. The margin will ensure that the button doesn't bump
into the page title.

• The .desktop-only class will hide some of the header links that aren't as
important. Those links are only for the desktop version of the user will have
to rely on the navigation modal to navigate on a phone.

• I've shrunk the text down for the links that appear in the modal to make it
more suitable for smaller view ports.

Chapter 4

[167]

Summary
That brings the fourth chapter to a close. We've successfully created our own wiki
layout using Bootstrap. Anything is possible with this framework if you use a little
creativity. Let's review what you learned: how to create a wiki layout with Bootstrap,
how to add multiple templates to a project in Harp, how to customize the navigation
modal that we made in the previous chapter, how to use Harp partials for more than
just the header and footer, and how to code our template in a modular fashion to
save time and produce Less code.

[169]

Bootstrap News Magazine
In this chapter, I'm going to show you how to create an art-and-design Bootstrap
magazine website. We'll be creating a home page and an article template that you
can use to create your own blog or magazine. As part of this chapter, I'm going to
show you how to use a flexbox layout within the Bootstrap grid. Like the previous
projects, I'll use a minimal design with lots of whitespace, and to make things
interesting, I'll you show you how to implement Disqus comments.

Bootstrap News Magazine

[170]

Before we jump into updating our template, let's take a look at the home page:

Chapter 5

[171]

Customizing the template
As in our previous projects, we start by copying our Boilerplate project and
create a new one called Chapter 5. Open up the _data.json file and insert
the following code:

{
 "index": {
 "pageTitle": "Home"
 },
 "article": {
 "pageTitle": "Article",
 "layout": "_layout-article"
 }
}

For this project, we are going to create two page templates. Let's start by creating
two new files in the root of our project. For now, they can just be blank and we'll
start to fill them in a little later:

• index.ejs

• article.ejs

Updating _layout.ejs
Let's start by updating the _layout.ejs file in the root of our new project. The
layout for the home page is pretty straightforward. Make sure you include the line
of code that will import Source Sans Pro as our web font. Yep, we're going to use it
again in this project:

<link
href='http://fonts.googleapis.com/css?family=Source+Sans+Pro:300,
400,700' rel='stylesheet' type='text/css'>

This will import three type weights: Light (300), Regular (400), and Bold (700). When
we get to the article template, we're actually going to create a unique layout for it.
However, we'll cover that a little later, after the home page. For now, simply create
another file in the root of the project, called _layout-article.ejs. This completes
the customizations of our base layout file. Here's what the entire file should look like:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">

Bootstrap News Magazine

[172]

 <meta name="viewport" content="width=device-width, initial-
 scale=1">
 <title><%- pageTitle %> | <%- siteTitle %></title>

 <link rel="stylesheet" type="text/css"
 href="css/bootstrap.min.css">
 <link rel="stylesheet" type="text/css" href="css/font-
 awesome.min.css">
 <link rel="stylesheet" type="text/css" href="css/theme.css">
 <link
 href='http://fonts.googleapis.com/css?family=Source+Sans+Pro:
 300,400,700' rel='stylesheet' type='text/css'>

 <!-- HTML5 shim and Respond.js for IE8 support of HTML5 elements
 and media queries -->
 <!-- WARNING: Respond.js doesn't work if you view the page via
 file:// -->
 <!--[if lt IE 9]>
 <script
 src="https://oss.maxcdn.com/html5shiv/3.7.2/html5shiv.min.js">
 </script>
 <script
 src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js">
 </script>
 <![endif]-->
</head>
<body>

 <%- partial("partial/_header") %>

 <%- yield %>

 <%- partial("partial/_footer") %>

 <!-- javascript //-->
 <script
 src="//ajax.googleapis.com/ajax/libs/jquery/1.11.1/
 jquery.min.js"></script>
 <script src="js/bootstrap.min.js"
 type="text/javascript"></script>
</body>
</html>

Chapter 5

[173]

Setting up the Less variables
The next step will be to set up the new Less variables for the magazine project. Open
the _variables.less file, which is found in css/components. Let's go through each
section that you need to update:

@bm-primary: #673ab7;
@bm-dark-primary: #512da8;
@bm-light-primary: #d1c4e9;
@bm-accent: #e040fb;
@bm-black: #212121;
@bm-grey: #727272;
@bm-light-grey: #b6b6b6;

As we did in the previous wiki project, we're going to use the primary naming
convention for our custom colors. Each one is prepended with bm- in order to
make it easily identifiable.

Background colors
Next, let's update our background color variables to use our new color values:

@primary-background: @white;
@secondary-background: @bm-grey;
@inverse-background: @bm-black;

Text colors
After setting up the background, let's move on to updating our text color variables
to use the new values:

@primary-text: @bm-grey;
@light-text: @bm-light-grey;
@loud-text: @bm-black;
@inverse-text: @white;
@heading-text: @bm-black;

Link colors
For the links, we're going to use our primary color for the link and the dark primary
color for the hover state:

@primary-link-color: @bm-primary;
@primary-link-color-hover: @bm-dark-primary;

Bootstrap News Magazine

[174]

Borders
For the project's borders, we're only going to update the colors for the primary and
focus border states. The size and type values will stay the same:

@border-color: @light-grey;
@border-size: 1px;
@border-type: solid;
@border-focus: @bm-accent;

Typography
The typography values will more or less be the same, but with one change. Since
this is a magazine, I'm going to bump up the base font size to 16px. We want our
magazine to be easy to read, so it makes sense that we should make the type larger.
Also make sure that the font stack is set up properly, with Source Sans Pro
spelled properly:

@body-copy: "Source Sans Pro", "Helvetica Neue", helvetica, arial,
verdana, sans-serif;
@heading-copy: "Source Sans Pro", "Helvetica Neue", helvetica,
arial, verdana, sans-serif;
@base-font-size: 16px; //new
@font-size: 1em;
@base-line-height: 1.5;

Border radius
The last thing that I'm going to do is change the border-radius value to 5px. I
thought I'd mix up the look a little by making our corners more rounded:

.round-corners (@radius: 5px) {
 -moz-border-radius: @radius;
 -ms-border-radius: @radius;
 border-radius: @radius;
}

This completes the updates that you need to make to the variables' Less file. Before
we move on to setting up the header and footer, let's review the entire content of
the file:

// color palette
@black: #000;
@dark-grey: #333;
@grey: #ccc;

Chapter 5

[175]

@light-grey: #ebebeb;
@off-white: #f5f5f5;
@white: #ffffff;

@blue1: #3498db;
@blue2: #2980b9;
@red1: #e74c3c;
@red2: #c0392b;
@yellow1: #f1c40f;
@yellow2: #f39c12;
@green1: #2ecc71;
@green2: #27ae60;
@orange1: #e67e22;
@orange2: #d35400;
@aqua1: #1abc9c;
@aqua2: #16a085;
@purple1: #9b59b6;
@purple2: #8e44ad;
@navy1: #34495e;
@navy2: #2c3e50;

// custom colors prepended with bm-
@bm-primary: #673ab7;
@bm-dark-primary: #512da8;
@bm-light-primary: #d1c4e9;
@bm-accent: #e040fb;
@bm-black: #212121;
@bm-grey: #727272;
@bm-light-grey: #b6b6b6;

// background colors
@primary-background: @white;
@secondary-background: @bm-grey;
@inverse-background: @bm-black;

// text colors
@primary-text: @bm-grey;
@light-text: @bm-light-grey;
@loud-text: @bm-black;
@inverse-text: @white;
@heading-text: @bm-black;

Bootstrap News Magazine

[176]

// link colors
@primary-link-color: @bm-primary;
@primary-link-color-hover: @bm-dark-primary;

// primary border properties
@border-color: @light-grey;
@border-size: 1px;
@border-type: solid;
@border-focus: @bm-accent;

// typography
@body-copy: "Source Sans Pro", "Helvetica Neue", helvetica, arial,
verdana, sans-serif;
@heading-copy: "Source Sans Pro", "Helvetica Neue", helvetica,
arial, verdana, sans-serif;
@base-font-size: 16px;
@font-size: 1em;
@base-line-height: 1.5;

// layout
@margin: 1em;
@padding: 1em;

// MIXINS

// round corners or Border radius
.round-corners (@radius: 5px) {
 -moz-border-radius: @radius;
 -ms-border-radius: @radius;
 border-radius: @radius;
}

// animation transitions
.transition (@transition: background .1s linear) {
 -moz-transition: @transition;
 -webkit-transition: @transition;
 transition: background @transition;
}

Chapter 5

[177]

Coding the header and footer
The header for this project is fairly minimal in design. It will include a logo, some
post filter links, and a search field. The footer for this project, however, is the most
complex one we've done yet. It will include two sections, a number of links, an
e-mail sign-up form, and space for an advertisement—any good magazine design
will include some space for ads.

Updating the header
Let's start with updating the header first. For this project, I'm going to use a couple
of HTML5 tags to mix things up. For each project in this book, I try to change how
I build the header to show you that there are several ways by which you can
construct a header. Some will use the default Bootstrap header, but some will be
totally custom. The first thing that we're going to do is wrap the entire header in
the <header> tag:

<header>
 …
</header>

Everything contained within the header is going to be centered horizontally, so let's
apply a single style to this tag:

header {
 text-align: center;
}

Inserting the logo
Next we'll insert a new <div> tag for the logo. Once you've inserted the following
HTML, open up the theme.less file and insert the corresponding styles:

<div class="logo">
 <img src="img/bootmag-logo.png" width="234"
 height="67" alt="Bootmag">
</div>

The logo needs a top margin so that it doesn't bump against the top edge of the
browser. It will inherit the center styling from the <header> tag:

.logo {
 margin-top: (@margin * 2);
}

Bootstrap News Magazine

[178]

Adding the filters
Directly after the logo, we are going to insert a second <div> tag for our filters.
Within the wrapping parent <div> tag, I've inserted a number of child <div>
tags, one for each filter:

<div class="filters">
 <div class="selected">All</div>
 <div>Design</div>
 <div>Illustration</div>
 <div>Painting</div>
 <div>Web</div>
</div>

For the wrapping .filters <div>, we are going to add top and bottom margins:

.filters {
 margin: (@margin * 2) 0;
}

We want the child <div> tags to be displayed in a line horizontally and centered
within the overall layout. To achieve this, we will use the display property with
a value of inline-block. We'll then add left and right margins to each to space
them out:

.filters div {
 display: inline-block;
 margin: 0 (@margin * 2);
}

I'm going to change the appearance of the filter links to be different from that of our
primary links. Add the following styles to theme.less:

.filters a {
 color: @bm-black;
}

.filters a:hover {
 color: @bm-accent;
}

Chapter 5

[179]

Adding the search field
The last piece of the header that we need to add is the search field. Immediately after
the filters <div> tag, insert the following block of code:

<div class="search">
 <form>
 <div class="form-group">
 <input type="text" class="form-control"
 placeholder="Search">
 </div>
 </form>
 </div>

For this component, we're wrapping a generic Bootstrap form within a <div> tag
with a class of .search on it. We'll need to add some custom styles to the form to
achieve the look that we want:

.search form {
 width: 200px;
 margin: 0 auto;
}

.search input {
 width: 200px;

 -moz-border-radius: 20px;
 border-radius: 20px;
}

Let's breakdown the CSS for the search form:

• I've set width of form and input to 200px, so it isn't too long.
• Setting text-align to center won't work with a form. So, I've set the left

and right margin to auto to center it in the layout.
• I've bumped up the border-radius on the actual input to 20px so that I get

the circular look at the ends of the field.

Bootstrap News Magazine

[180]

Adding the form Less component
For the search field, we need to customize one of the default Bootstrap form styles.
When the input is in focus, I want the border to use our color palette. Create a new
file in css/components called _forms.less and insert the following code:

.form-control:focus {
 border-color: @border-focus;
 box-shadow: none;
}

Don't forget to @import the new _forms.less file into theme.less. That completes
the design of our header. As I explained, this should've been pretty straightforward.
Before we move on to the footer, let's review the entire code for the header:

<header>
 <div class="container">
 <div class="row">
 <div class="col-lg-12">
 <div class="logo">
 <img src="img/bootmag-logo.png" width="234"
 height="67" alt="Bootmag">
 </div>
 <div class="filters">
 <div class="selected">All</div>
 <div>Design</div>
 <div>Illustration</div>
 <div>Painting</div>
 <div>Web</div>
 </div>
 <div class="search">
 <form>
 <div class="form-group">
 <input type="text" class="form-control"
 placeholder="Search">
 </div>
 </form>
 </div>
 </div>
 </div>
 </div>
</header>

Chapter 5

[181]

Updating the footer
As I mentioned early in this chapter, the footer for this project is the most
complicated one yet. It will be divided into a top and a bottom section and the design
is in line with footers that you would see on other magazine-style websites. Similar
to the header design, I want to strive to give you something that is a little different in
each project. As we did with the header, we're going to wrap the entire footer in the
HTML5 <footer> tag:

<footer>
 ..
</footer>

The actual <footer> tag doesn't have any styles attached to it, but it's a good way
to group the top and bottom sections of the overall section. Before we jump into
the footer sections, let's customize the links styles for both in theme.less:

.footer-top a,

.footer-bottom a {
 color: @white;
 text-decoration: none;
}

.footer-top a:hover,

.footer-bottom a:hover {
 color: @bm-light-grey;
}

Coding the top of the footer
The top section of the footer is divided into four columns. The first two columns
contain unordered lists of links, the third column will hold a newsletter sign-up
form, and the final column will be a placeholder for an advertisement. We want
the footer to stretch across the full width of the browser, so we won't use the
.container <div> here. I'll wrap the top section in a .footer-top <div>
and then start a regular Bootstrap grid within it:

<div class="footer-top">
 <div class="row">
 <div class="col-lg-2">
 ..
 </div>
 <div class="col-lg-2">
 ..
 </div>

Bootstrap News Magazine

[182]

 <div class="col-lg-3">
 ..
 </div>
 <div class="col-lg-4 col-lg-offset-1 advertisement">
 ..
 </div>
 </div>
</div>

Let's breakdown the CSS for the footer:

• The first two columns use the .col-lg-2 class. They don't need to be very
wide as they just have a list of links.

• The third column is a bit wider in order to allow more space for our
newsletter sign-up form. As part of this section, we'll update our
Button styles.

• The final column is the widest and is offset by 1 to give some space around
for our ad. As part of this section, we'll update our Well styles.

At this point, let's set up the styles for the .footer-top class, which wraps this
entire section. We're going to set the background to black, set the text to white, and
add some padding:

.footer-top {
 background: @bm-black;
 color: @white;
 padding: (@padding * 2);
}

Adding the first two columns
The first two columns are pretty simple—just a couple of unordered lists that use the
Bootstrap unstyled list class:

<div class="col-lg-2">
 <h5>Categories</h5>
 <ul class="list-unstyled">
 Art
 Design
 Illustration
 Painting
 Web
 Street Art

Chapter 5

[183]

 Mixed Media

</div>
<div class="col-lg-2">
 <h5>Help & Support</h5>
 <ul class="list-unstyled">
 FAQ
 Terms of Use
 Contact Support
 About
 Advertise
 Meetups

</div>

This section is straightforward, but I will add some custom styles to the <h5> tag,
which are shown here:

.footer-top h5 {
 text-transform: uppercase;
 color: @bm-accent;
 font-size: (@font-size - 0.25);
 letter-spacing: 1px;
}

Adding the newsletter form
Let's move on to the third column and add the form for the newsletter. Insert the
following code after the first two columns:

<div class="col-lg-3">
 <h5>Newsletter</h5>
 <p>Sign up for the Bootmag email list to keep up to date on all
 the latest news.</p>
 <form>
 <div class="form-group">
 <input type="text" class="form-control">
 </div>
 <button type="submit" class="btn btn-primary">Sign Up</button>
 </form>
</div>

This section should also be pretty easy to understand. We're using a basic Bootstrap
form combined with some type tags. One thing that we need to do here is update our
button styles.

Bootstrap News Magazine

[184]

Updating the button styles
The button used in the form is the first instance in this project, so let's go ahead
and update our styles. Create a new file called _buttons.less and save it in
css/components. Next, head to theme.less and @import it into theme.less.
Once that's set up, insert the following code into the new Less file:

.btn {
 text-transform: uppercase;
}

.btn-primary {
 background: @bm-primary;
 border-color: @bm-primary;
 color: @white;
}

.btn-primary:hover {
 background: @bm-dark-primary;
 border-color: @bm-dark-primary;
}

Let's breakdown the CSS for the button component:

• All the buttons are going to be uppercase
• I have reset the primary button static and hover states to use the color palette

This completes the third column in the first part of footer. Let's move on to the final
column, which holds the advertisement.

Coding the advertisement section
We're going to make the advertisement section the widest so that it can support a
larger ad if needed. We're also going to offset it by 1 to add some space. This will
make the ad more noticeable, which is what you would want if you're using an ad
on your magazine website:

<div class="col-lg-4 col-lg-offset-1 advertisement">
 <h5>Advertisement</h5>
 <div class="well">
 ad
 </div>
</div>

Chapter 5

[185]

I'm using a .advertisement class here and some other custom styles, so let's take a
look at what's going on:

.advertisement {
 text-align: center;
}

.advertisement .well {
 margin: 0 (@margin * 4);
}

Let's breakdown the CSS for the .advertisement class:

• I want to center this section, so I've added the text-align property to the
.advertisement class.

• I also want to add some more margin to the Well component that holds the
advertisement. Speaking of the Well component, we need to update it.

Updating the well styles
Create a new file named _well.less and save it in css/components. Next, open
theme.less and @import the new Less file into theme.less. Once you've done
that, insert the following styles:

.well {
 border: 0;
 box-shadow: none;
 background-color: @secondary-background;
 .round-corners;
}

Let's breakdown the CSS for the .well component:

• I've removed the well's border and box-shadow
• Next, we'll want to use our background-color variable
• Finally, let's reset border-radius to use our Less mixin

This brings the fourth column to a close, as well as the top of the footer. Let's move
on to the bottom of this section to finish it.

Bootstrap News Magazine

[186]

Coding the bottom of the footer
The bottom part of the footer is simpler than its top. This section is divided into two
equal columns. On the left, we have the standard copyright statement, and on the
right, we have social media icon links. Let's take a look at the code:

<div class="footer-bottom">
 <div class="row">
 <div class="col-lg-6">
 Copyright 2015 Bootmag
 </div>
 <div class="col-lg-6">
 <div class="social-media">
 <div><i class="fa fa-facebook-
 official"></i></div>
 <div><i class="fa fa-twitter-
 square"></i></div>
 <div><i class="fa fa-github-
 square"></i></div>
 <div><i class="fa fa-linkedin-
 square"></i></div>
 <div><i class="fa fa-google-plus-
 square"></i></div>
 <div><i class="fa fa-pinterest-
 square"></i></div>
 </div>
 </div>
 </div>
</div>

As with the top of the footer, we have some styles specific to the bottom. The
background will use our primary color, white text, and the same padding as the top:

.footer-bottom {
 background: @bm-primary;
 color: @white;
 padding: (@padding * 2);
}

The last thing that we should cover is the social media links. As with the header
section, I'm using a collection of <div>s here, which are displayed as inline-block.
This <div> tag also floats to the right, so it aligns to the right side of the column:

.social-media div {
 display: inline-block;
 margin: 0 (@margin - 0.5);
 float: right;
}

Chapter 5

[187]

This brings the footer to a close. Let's review all of the markup together before we
move on to coding the Homepage template:

<footer>
 <div class="footer-top">
 <div class="row">
 <div class="col-lg-2">
 <h5>Categories</h5>
 <ul class="list-unstyled">
 Art
 Design
 Illustration
 Painting
 Web
 Street Art
 Mixed Media

 </div>
 <div class="col-lg-2">
 <h5>Help & Support</h5>
 <ul class="list-unstyled">
 FAQ
 Terms of Use
 Contact Support
 About
 Advertise
 Meetups

 </div>
 <div class="col-lg-3">
 <h5>Newsletter</h5>
 <p>Sign up for the Bootmag email list to keep up to date
 on all the latest news.</p>
 <form>
 <div class="form-group">
 <input type="text" class="form-control">
 </div>
 <button type="submit" class="btn btn-primary">Sign
 Up</button>
 </form>
 </div>
 <div class="col-lg-4 col-lg-offset-1 advertisement">
 <h5>Advertisement</h5>
 <div class="well">

Bootstrap News Magazine

[188]

 ad
 </div>
 </div>
 </div>
 </div>
 <div class="footer-bottom">
 <div class="row">
 <div class="col-lg-6">
 Copyright 2015 Bootmag
 </div>
 <div class="col-lg-6">
 <div class="social-media">
 <div><i class="fa fa-facebook-
 official"></i></div>
 <div><i class="fa fa-twitter-
 square"></i></div>
 <div><i class="fa fa-github-
 square"></i></div>
 <div><i class="fa fa-linkedin-
 square"></i></div>
 <div><i class="fa fa-google-plus-
 square"></i></div>
 <div><i class="fa fa-pinterest-
 square"></i></div>
 </div>
 </div>
 </div>
 </div>
</footer>

One last thing before you move on to the next section—it would be a good idea to
compile and test your project to make sure that you aren't getting any Harp errors.
Once you have confirmed that your project is set up properly, you can move on to
the Homepage layout.

Coding the home page
The first of two templates for this project is the home page. This page is made up
of a flexbox grid that is wrapped into the Bootstrap grid code. Following the grid,
we'll add a pagination section. The entire body of the page is wrapped in the
following HTML:

<div class="page-body">
 ..
</div>

Chapter 5

[189]

This section has top and bottom margins attached to it. This is the same spacing that
we'll use on the article page, so you'll see .article class in there as well:

.page-body,

.article {
 margin: (@margin * 2) 0;
}

Creating a post grid with flexbox
Before we jump fully into the flexbox code, let's outline the basic structure of a row
of posts. Each row of our grid will have four posts in it. As with the footer, we want
rows to stretch across the width of the layout, so we'll be omitting the .container
<div>. Here's the basic structure of a row:

<div class="row">
 <div class="col-lg-12">
 <div class="flex-parent">
 <div class="flex-child">
 ..
 </div>
 <div class="flex-child">
 ..
 </div>
 <div class="flex-child">
 ..
 </div>
 <div class="flex-child">
 ..
 </div>
 </div>
 </div>
</div>

Let's breakdown the CSS for the flexbox layout:

• We're wrapping a full-width Bootstrap grid around our flexbox layout
• The .flex-parent is the wrapper for this row of posts
• The .flex-child is the class for every post or child of .flex-parent

Bootstrap News Magazine

[190]

The code for each flex child <div> looks like what is shown next. It's made up of an
image and a post title. You can easily add more content to the section if you like:

<div class="flex-child">

 <h3>Article Title</h3>
</div>

Let's take a look at the styles that power this section of the layout. There are a few
things that we need to review to get our flexbox to work properly. First, create a new
file called _flexbox.less and save it in css/components. After that, open theme.
less and @import the new file. Go back to the Less file and insert the following code:

.flex-parent {
 display: flex;
 display: -webkit-flex;
}

.flex-child {
 width: 100%;
 flex: 1;
 background: @off-white;
 margin: 10px;
 height: auto;
 padding: 10px;

 .round-corners;
}

.flex-child img {
 width: 100%;

 .round-corners;
}

Let's breakdown the CSS for the flexbox layout:

• Our .flex-parent class simply needs to have its display property set to
flex. Don't forget the webkit value too.

• The child needs a little more work. Set width to 100% so that the @off-white
background fills the width of the column. We set flex to 1, and we'll need
to add some margin and padding since this is not a regular Bootstrap grid.
Finally, set height to auto so that the background will grow to fit its content.
Don't forget to reset border-radius too.

Chapter 5

[191]

• We also need to add some styles for the image that appears in each column.
It's a good idea to use a larger image here as the width of this column is fluid.
By setting the image width to 100%, we can be sure that the image will fit in
the box properly. Setting height to auto will allow it to resize properly.

Now that we've finished a single row of four posts, it's just a matter of adding more
rows of four. We need to add the pagination controls to this layout next. Then I'll
show you what all of the markup should look like.

Adding the pagination section
For the pagination of this project, we're going to use a mobile pattern. Instead of
traditional pagination, which has a page count, we're just going to insert a Load
More button and use an infinite scrolling pattern. Start by adding the following
HTML after the grid code:

<div class="container">
 <div class="row">
 <div class="col-lg-12 pagination">
 <div class="">
 <button class="btn btn-primary">Load More</button>
 </div>
 </div>
 </div>
</div>

You'd see that I'm using a container here, which is perfectly fine. I don't need this
part of the layout to stretch the width of the browser. You'll notice that on the grid
class <div>, I've also added a class of .pagination. The following styles apply to
this class:

.pagination {
 text-align: center;
 margin: (@margin * 2) 0;
}

I've centered the entire section and added top and bottom margins for spacing. This
brings the pagination section to an end. The idea here is that you would click on the
button and another row or two of posts would load in. This will go on infinitely or
until you run out of posts to show. Let's take a look at the entire HTML code for this
template:

<div class="page-body">
 <div class="row">
 <div class="col-lg-12">
 <div class="flex-parent">

Bootstrap News Magazine

[192]

 <div class="flex-child">

 <h3>Article Title</h3>
 </div>
 <div class="flex-child">

 <h3>Article Title</h3>
 </div>
 <div class="flex-child">

 <h3>Article Title</h3>
 </div>
 <div class="flex-child">

 <h3>Article Title</h3>
 </div>
 </div>
 </div>
 </div>
 <div class="row">
 <div class="col-lg-12">
 <div class="flex-parent">
 <div class="flex-child">

 <h3>Article Title</h3>
 </div>
 <div class="flex-child">

 <h3>Article Title</h3>
 </div>
 <div class="flex-child">

 <h3>Article Title</h3>
 </div>
 <div class="flex-child">

 <h3>Article Title</h3>
 </div>
 </div>
 </div>
 </div>
 <div class="row">

Chapter 5

[193]

 <div class="col-lg-12">
 <div class="flex-parent">
 <div class="flex-child">

 <h3>Article Title</h3>
 </div>
 <div class="flex-child">

 <h3>Article Title</h3>
 </div>
 <div class="flex-child">

 <h3>Article Title</h3>
 </div>
 <div class="flex-child">

 <h3>Article Title</h3>
 </div>
 </div>
 </div>
 </div>

 <!-- pagination //-->
 <div class="container">
 <div class="row">
 <div class="col-lg-12 pagination">
 <div class="">
 <button class="btn btn-primary">Load More</button>
 </div>
 </div>
 </div>
 </div>
</div>

Bootstrap News Magazine

[194]

Coding the article template
The second template in this project is the article or post template. It will contain the
detailed view and content for a magazine story. Before we start coding the page, let's
see what it will look like:

Chapter 5

[195]

The layout here is narrower, which allows easier readability of a large amount of
content. I've also followed my regular minimal style to keep the page looking really
clean. The entire page template is wrapped in a <div> tag with a class of .article
so that we can apply some styling:

<div class="article">
 ..
</div>

We had already added the styles for this when we set up our .page-body class in the
previous template. However, there is a container class inside of the .article class
that needs some customization:

.article .container {
 padding-left: (@padding * 18);
 padding-right: (@padding * 18);
}

This might look like a decent amount of padding, and it is. This is how we will
achieve the narrower column layout that we want for better readability.

Adding the article title
First things first, let's add our page title. Like any good page title, ours is wrapped in
an <h1> tag:

<h1>This is the title for the story it can get kinda big if we want it
to eh.</h1>

Let's take a look at the styles that are being applied to this header tag:

.article h1 {
 text-align: center;
 margin: 0;
 margin-bottom: (@margin - 0.5);
 line-height: 1.3;
 font-weight: 700;
 color: @bm-black;
}

Bootstrap News Magazine

[196]

Let's breakdown the CSS for our article section of the page:

• The text-align is set to center for the entire title
• I've removed the default Bootstrap margin on the <h1> tag and then

re-added a bottom margin
• I've tweaked the default line-height a bit to make it more readable
• Finally, the type is set to bold and our black

Adding the article metadata
After finishing the page title, let's cover the article or post meta markup. The meta
section lists the post category as a link, and the author's name:

<div class="article-meta">
 Posted in Design by John Smith
</div>

There are also a few styles that you need to add for the metadata section:

• I've added a bottom margin to the section
• The text-align here is centered again, and the text color is set to use

our palette

.article-meta {
 margin-bottom: (@margin * 2);
 text-align: center;
 color: @bm-light-grey;
}

Adding the article content
We're now ready to jump into the actual content section of a post. There is no special
wrapper for this section, but I will add a bottom margin to each image in this section
to create more space:

.article img {
 margin-bottom: (@margin * 2);
}

Following this, it's simply an exercise of entering content for the actual article. At the
end of this section, I'll insert the entire page code so that you can see some sample
content. For now, let's move on to the comments section of the post.

Chapter 5

[197]

Adding the comment section
The comment section of the article template is going to be a two-part exercise. First,
we're going to use some jQuery to reveal the comment feed at the click of a button.
Then we're going to implement a Disqus comment system. Let's start with the
custom jQuery that we'll need to power the button effect.

Creating the custom article layout
To start, open the _layout-article.ejs file in the root of the project that I had you
create earlier in the chapter. Also open up _layout.ejs. Copy the entire content of
the file and then paste it in the new layout file. Scroll to the bottom of the template,
and after the line where we import bootstrap.min.js, insert a new <script>
tag. Within the <script> tag, insert the following jQuery code. Then we'll go
over each line:

<script>
 $(document).ready(function() {
 $("#comment-container").hide();
 $("#comment-trigger").click(function(){
 $("#comment-container").fadeIn();
 $("#comment-trigger").fadeOut();
 });
 });
 </script>

I'm going to assume that you know a little bit about jQuery and know what
(document).ready does. If not, just insert that line and move on to the next one.
You're going to see some IDs here that we haven't set up yet in our template.
After I review the jQuery, we'll insert the related code into article.ejs:

$("#comment-container").hide();

In this line, we're going to target the #comment-container <div> and hide it using
the .hide() method. When the page first loads, we don't want the comment section
to show up, so we need to hide it:

$("#comment-trigger").click(function(){
 ..
});

Bootstrap News Magazine

[198]

Next, we need to set up a click function that will be attached to a button with the
#comment-trigger ID. The code inside this function will be executed once the
user clicks on the button. Here's what the entire function looks like:

$("#comment-trigger").click(function(){
 $("#comment-container").fadeIn();
 $("#comment-trigger").fadeOut();
 });

We're doing two things here on the button click. The first thing we want to do is
reveal the #comment-container <div>, and I'm using the .fadeIn() method for
a subtle effect. The next thing I'm going to do is remove the Load Comments button,
and I'll use the .fadeOut() method to do this. This completes the jQuery code that
you need to include in the layout. Let's save the file, get back to the article.ejs
template, and insert the corresponding HTML code.

Adding the trigger button
Scroll to the bottom of the template, and at the end of your post content, insert the
following code:

<div class="center">
 <button id="comment-trigger" class="btn btn-primary">Load
 Comments</button>
</div>

The first thing I've done here is creating a new <div> with a class of .center on
it. This is a new utility class that you can use to center anything in your templates.
Jump over to theme.less quickly and insert this CSS for the utility class:

.center {
 text-align: center;
}

Since the button is inside of our post column, this class will center the button in the
layout. Next, I've created a button, and note that it's using the #comment-trigger
ID that we added in the layout. This part is critical for the button click to work.

Adding the Disqus content component
Now that the button is ready to roll, let's set up the comments container <div>. After
our button code, we insert the following markup:

<div id="comment-container">
 ..
</div>

Chapter 5

[199]

As I mentioned, this is going to be the container for our comments. Note that the
ID matches the one that we set up in the layout. Again, this is critical to making the
effect work. The next thing you need to do is register for a Disqus account to get
the code that will generate your comments feed for you. Head over to https://
publishers.disqus.com and sign up for an account if you don't already have one.
Once you've signed up, follow these steps:

• Enter your website details when prompted to do so
• Click on the Universal Code option
• Copy the code that appears and paste it in the #comments-container <div>
• Insert the second piece of code from the Disqus page in _layout-article.

ejs, at the bottom right before the closing </body> tag

Now save your template and the layout and compile your code. Open the article
template in the browser and refresh the page. Hit the Load Comments button and
wait for a couple seconds the first time for the comment feed to load. If all goes well,
your Disqus comments feed should load, and you now have a great component that
you can use. Here's an example of what the entire section should look like in your
template. Please keep in mind that this code is configured for my website, so you
can't do a straight copy and paste. You need to use the code snippet that is provided
when you sign up for your account:

<div class="center">
 <button id="comment-trigger" class="btn btn-primary">Load Comments</
button>
</div>
<div id="comment-container">
 <div id="disqus_thread"></div>
 <script type="text/javascript">
 /* * * CONFIGURATION VARIABLES * * */
 var disqus_shortname = 'bootstrapblueprints';

 /* * * DON'T EDIT BELOW THIS LINE * * */
 (function() {
 var dsq = document.createElement('script'); dsq.type =
 'text/javascript'; dsq.async = true;
 dsq.src = '//' + disqus_shortname +
 '.disqus.com/embed.js';
 (document.getElementsByTagName('head')[0] ||
 document.getElementsByTagName('body')[0])
 .appendChild(dsq);
 })();
 </script>

https://publishers.disqus.com
https://publishers.disqus.com

Bootstrap News Magazine

[200]

 <noscript>Please enable JavaScript to view the comments
 powered by Disqus.</noscript>
</div>

That completes the article template and the project. Before we move on to the
chapter's summary, let's review the code for the entire article.ejs file:

<div class="article">
 <div class="container">
 <div class="row">
 <div class="col-lg-12">
 <h1>This is the title for the story it can get kinda big
 if we want it to eh.</h1>
 <div class="article-meta">
 Posted in Design by John Smith
 </div>
 <img src="/img/article1.jpg" width="600" height="335"
 alt="image 1" class="border">
 <p>Lorem ipsum dolor ...</p>
 <p>Quisque luctus eget ...</p>
 <p>Mauris turpis justo ...</p>
 <img src="/img/article2.jpg" width="600" height="466"
 alt="image 2" class="border">
 <p>Quisque luctus eget ...</p>
 <p>Mauris turpis justo ...</p>
 <div class="center">
 <button id="comment-trigger" class="btn btn-
 primary">Load Comments</button>
 </div>
 <div id="comment-container">
 <div id="disqus_thread"></div>
 <script type="text/javascript">
 /* * * CONFIGURATION VARIABLES * * */
 var disqus_shortname = 'bootstrapblueprints';

 /* * * DON'T EDIT BELOW THIS LINE * * */
 (function() {
 var dsq = document.createElement('script');
 dsq.type = 'text/javascript'; dsq.async =
 true;
 dsq.src = '//' + disqus_shortname +
 '.disqus.com/embed.js';

Chapter 5

[201]

 (document.getElementsByTagName('head')[0] ||
 document.getElementsByTagName('body')[0]).
appendChild(dsq);
 })();
 </script>
 <noscript>Please enable JavaScript to view the <a
 href="https://disqus.com/?ref_noscript"
 rel="nofollow">comments powered by
 Disqus.</noscript>
 </div>
 </div>
 </div>
 </div>
</div>

Summary
That brings the fifth chapter to a close. Let's review what you learned: how to create
a magazine website using Bootstrap, a new way to lay out a header using inline div,
how to construct a complex footer using multiple parts, how to use flexbox with
a Bootstrap grid, how to use some basic jQuery to improve the experience of your
article page, and how to implement a Disqus-powered comments section.

[203]

Bootstrap Dashboard
In this chapter, I'm going to show you how to create a dashboard using Bootstrap.
For a change, we'll make a dark-colored design and implement a number of
components commonly found on a dashboard. Part of this exercise will teach you
how to integrate a third-party chart library and customize it to work in Bootstrap.
We'll also cover customizations of a few components that we have not used yet,
such as navigation pills, panels, and tables.

Bootstrap Dashboard

[204]

Before we dive into updating our template, let's take a look at what we'll be creating:

Chapter 6

[205]

Customizing the template
As in our other projects, we start by copying our boilerplate project to a new
directory called chapter6. Open the _data.json file and insert the following code:

{
 "index": {
 "pageTitle": "Dashboard"
}

For this project, we're only creating one page template. Let's start by creating a file
in the root of our project. For now, just leave the file blank; we'll fill it in a bit later:
index.ejs.

Updating _layout.ejs
Next, let's update the _layout.ejs file in the root of our new project. The layout
for this project will need a few more things that we haven't seen before. First of all,
insert the following line of code to import the Google web font Roboto, which we'll
be using for our dashboard:

<link href='https://fonts.googleapis.com/
css?family=Roboto:400,300,700' rel='stylesheet' type='text/css'>

For this project, we're going to use a third-party chart library to draw some pie charts
and line graphs. I've decided to use a library called Chartist. This library
is a simple, responsive charts option that will give us exactly what we need. Head
over to the following URL and download the library:

https://gionkunz.github.io/chartist-js/

Once you've downloaded the library, unzip it and then copy a couple of files to your
project. Locate the file named chartist.min.css and copy it to your /css directory.
Also, find the file named chartist.min.js and copy it to the /js directory. Once
you've copied the files, you need to insert them into the layout. Add the following
line of code to the layout after font-awesome.min.css. Also make sure that your
theme.css is inserted after the Chartist CSS. Later on, we're going to overwrite some
of the styles in the library:

<link rel="stylesheet" type="text/css" href="css/chartist.min.css">

Next, we need to include the JavaScript library file. Insert the following line of code
after bootstrap.min.js:

<script src="js/chartist.min.js" type="text/javascript"></script>

https://gionkunz.github.io/chartist-js/

Bootstrap Dashboard

[206]

We also need to include another JavaScript file. This file will hold our custom
code that will render our charts on the dashboard page. First, create a file named
bootboard-charts.js in the /js directory. You can leave it blank for now. Next,
go back to the layout and insert the following line of code after chartist.min.js:

<script src="js/bootboard-charts.js" type="text/javascript"></script>

This completes the updates we need for the layout. Let's check out what the entire
file looks like:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <title><%- pageTitle %> | <%- siteTitle %></title>

 <link rel="stylesheet" type="text/css" href="css/bootstrap.min.css">
 <link rel="stylesheet" type="text/css" href="css/font-awesome.min.
css">
 <link rel="stylesheet" type="text/css" href="css/chartist.min.css">
 <link rel="stylesheet" type="text/css" href="css/theme.css">
 <link href='https://fonts.googleapis.com/
css?family=Roboto:400,300,700' rel='stylesheet' type='text/css'>

 <!-- HTML5 shim and Respond.js for IE8 support of HTML5 elements and
media queries -->
 <!-- WARNING: Respond.js doesn't work if you view the page via
file:// -->
 <!--[if lt IE 9]>
 <script src="https://oss.maxcdn.com/html5shiv/3.7.2/html5shiv.min.
js"></script>
 <script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.
js"></script>
 <![endif]-->
</head>
<body>

 <%- partial("partial/_header") %>

 <%- yield %>

 <%- partial("partial/_footer") %>

Chapter 6

[207]

 <!-- javascript //-->
 <script src="//ajax.googleapis.com/ajax/libs/jquery/1.11.1/jquery.
min.js"></script>
 <script src="js/bootstrap.min.js" type="text/javascript"></script>
 <script src="js/chartist.min.js" type="text/javascript"></script>
 <script src="js/bootboard-charts.js" type="text/javascript"></
script>
</body>
</html>

Setting up the Less variables
Now that we've finished our layout, it's time to move on to updating our Less
variables. For this project, I'm not going to add any new colors. We're going to fall
back to the colors from our original boilerplate. I want to give you a good example
of how it's useful to have these stock colors for use on a project.

Background colors
Let's start by updating our background colors to use our boilerplate color values. As
you'll see, I'm using @black for the primary background. This is because we're going
to make this a dark colored design:

@primary-background: @black;
@secondary-background: @dark-grey;
@inverse-background: @white;

Text colors
Next, let's update our text colors and invert them to be readable on a dark
background:

@primary-text: @white;
@light-text: @dark-grey;
@loud-text: @white;
@inverse-text: @white;
@heading-text: @light-grey;

Link colors
The same inverse color approach will be used to set the values for our links:

@primary-link-color: @light-grey;
@primary-link-color-hover: @white;

Bootstrap Dashboard

[208]

Borders
Again, we'll update the border colors to match our new dark design:

@border-color: @dark-grey;
@border-size: 1px;
@border-type: solid;
@border-focus: @light-grey;

Typography
For the typography of this project, I've decided to switch the font to Roboto. You'll
need to update the two typeface variables to reflect this:

@body-copy: "Roboto", helvetica, arial, verdana, sans-serif;
@heading-copy: "Roboto", helvetica, arial, verdana, sans-serif;

This completes the updates that you need to make to the variables Less file. Look
how easy it was using the stock color values! You didn't even need to think about
the colors; you only had to think how you wanted to apply them. That process was
super easy too! If you are working on a large number of projects or themes, this type
of time saver will be invaluable to you. Let's take a look at the entire variables file
before we move on to the header and footer:

// color palette

@black: #000;
@dark-grey: #333;
@grey: #777;
@light-grey: #ebebeb;
@off-white: #f5f5f5;
@white: #ffffff;

@blue1: #3498db;
@blue2: #2980b9;
@red1: #e74c3c;
@red2: #c0392b;
@yellow1: #f1c40f;
@yellow2: #f39c12;
@green1: #2ecc71;
@green2: #27ae60;
@orange1: #e67e22;
@orange2: #d35400;
@aqua1: #1abc9c;
@aqua2: #16a085;
@purple1: #9b59b6;

Chapter 6

[209]

@purple2: #8e44ad;
@navy1: #34495e;
@navy2: #2c3e50;

// background colors
@primary-background: @black;
@secondary-background: @dark-grey;
@inverse-background: @white;

// text colors
@primary-text: @white;
@light-text: @dark-grey;
@loud-text: @white;
@inverse-text: @white;
@heading-text: @light-grey;

// link colors
@primary-link-color: @light-grey;
@primary-link-color-hover: @white;

// primary border properties
@border-color: @dark-grey;
@border-size: 1px;
@border-type: solid;
@border-focus: @light-grey;

// typography NEW fonts
@body-copy: "Roboto", helvetica, arial, verdana, sans-serif;
@heading-copy: "Roboto", helvetica, arial, verdana, sans-serif;
@base-font-size: 14px;
@font-size: 1em;
@base-line-height: 1.5;

// layout
@margin: 1em;
@padding: 1em;

// MIXINS

// round corners or Border radius
.round-corners (@radius: 2px) {
 -moz-border-radius: @radius;
 -ms-border-radius: @radius;
 border-radius: @radius;

Bootstrap Dashboard

[210]

}

// animation transitions
.transition (@transition: background .1s linear) {
 -moz-transition: @transition;
 -webkit-transition: @transition;
 transition: background @transition;
}

Coding the header and footer
Let's now proceed to code the header and footer for the project. The header will use
the default Bootstrap navbar with some color customizations. We'll also be inserting
a search form and some other text into the header. Our footer will be super basic,
with only a few social media icons and a copyright statement.

Updating the header
Let's start out by creating the header, and then we'll customize it. Here's the code
for the entire thing:

<nav class="navbar navbar-default" role="navigation">
 <div class="container">
 <div class="navbar-header">
 <button type="button" class="navbar-toggle" data-
toggle="collapse" data-target="#bootboard-nav">
 Toggle navigation

 </button>
 BootstrapDashboard</
span>
 </div>

 <form class="navbar-form navbar-right" role="search">
 <div class="form-group">
 <input type="text" class="form-control" placeholder="Search">
 </div>
 </form>

 <ul class="nav navbar-nav navbar-right">

 <i class="fa fa-user"></i>

Chapter 6

[211]

 John Smith

 </div>
</nav>

The first important thing to note here is the responsive button line of code. You'll
notice the data-target attribute is pointing to #bootboard-nav. This nav is not
actually in the header; it will be the sidebar navigation. If you're viewing this on a
mobile device, the sidebar will disappear and the links will be rolled into the mobile
navigation list of links:

<button type="button" class="navbar-toggle" data-toggle="collapse"
data-target="#bootboard-nav">

The next part that we should review is the markup for the search input:

<form class="navbar-form navbar-right" role="search">
 <div class="form-group">
 <input type="text" class="form-control" placeholder="Search">
 </div>
</form>

This is our standard navbar search field, but I've applied some custom styles to the
field to give it round corners. Create a new file called _navbar.less and save it
in the css/components directory. Also, don't forget to import _navbar.less into
theme.less. In _navbar.less, insert the following code:

.navbar-form input {
 -moz-border-radius: 20px;
 border-radius: 20px;
 border: 0;
 background: @dark-grey;
 color: @white;
 margin-top: -5px;
}

Here, you'll see that I've set border-radius to 20px to get that rounded ends look.
I've also customized the colors to match our dark color scheme, and I need to apply
a bit of negative margin to vertically center the field in the navbar. I'll get deeper
into the customization of the navbar component a little later. The last things that we
should review are the username and icon on the right-hand side of the navbar:

<ul class="nav navbar-nav navbar-right">

 <i class="fa fa-user"></i>

Bootstrap Dashboard

[212]

 John Smith

On the tag, I've added the .navbar-right Bootstrap utility class, which will
align the list on the right-hand side of the page. I'm also using a Font Awesome
icon here for the user. The last three points are the key things you need to keep in
mind while coding this component. Now, let's move on to all the styles required
to customize the look and feel of the navigation bar.

Customizing the navbar component
Go back to the _navbar.less file that you recently created. We're going to insert
some more styles for our component:

.navbar {
 background: @primary-background;
 margin-bottom: @margin;
}

I've set the background of the navbar to use our primary background color, which
is black. I've also reset the margins to use our global value. We're going to use the
default Bootstrap navbar, but we'll need to make a bunch of changes:

.navbar-default .navbar-brand {
 font-family: @heading-copy;
 font-weight: 400;
 font-size: (@font-size * 2);
 height: 72px;
 line-height: 72px;
 padding: 0;
}

Let's breakdown the CSS for the .navbar component:

• Using the .brand class, I'm going to set it to use our heading copy variable.
• We'll set font-weight to regular and double the font-size.
• I'm going to set the height and line-height of the brand to 72px. This is

a little trick to vertically center everything in our navbar.
• Finally, I'm going to remove the default padding so that everything lines

up vertically.

Chapter 6

[213]

Let's continue editing the brand by setting up some hover and color styles. You'll
notice in the HTML that part of the title is wrapped in a tag. This will allow
me to target that word and give it a different color:

.navbar-default .navbar-brand:hover,

.navbar-default .navbar-brand:hover span {
 color: @blue1;
}

.navbar-default .navbar-brand span {
 color: @blue1;
 font-weight: 300;
}

I've also reduced the font-weight of the brand to light or 300. On hovering
over the brand, both words will turn blue. This creates a subtle but attractive little
effect. Let's continue and customize the actual default navbar styles:

.navbar-default {
 border: 0;
 border-bottom: @border-size @border-type @border-color;
 margin: 0;
 margin-bottom: (@margin * 2);
 line-height: 72px;
 height: 72px;

 border-radius: 0;
 -moz-border-radius: 0;
}

Let's breakdown the CSS for the .navbar a little more:

• I've removed all borders from the navbar, but then I've added the bottom-
border back in. I did it this way because I first want to neutralize the
Bootstrap styles before I apply my own.

• I've also removed the margin so that the vertical centering doesn't get messed
up. However, I've added some bottom-margin to create some space below
the navbar.

• Again, I set the height and line-height to 72px so that everything is centered
vertically.

Bootstrap Dashboard

[214]

• Finally, I removed border-radius. This is because I want the navbar and
background to blend in together perfectly:
.navbar-collapse {
 padding-left: 0;
 padding-right: 0;
}

I've removed the default left and right padding from the collapsible navbar for the
same reasons as I removed border-radius. There's one last style that we need to add:

.navbar-form {
 margin: 0;
}

Finally, I've removed the margin from the navbar form so that it doesn't mess
up the vertical centering of the component. This brings the navbar component
customization to an end. Let's proceed to set up the footer, and then we can move
on to the actual body of our dashboard.

Updating the footer
The footer for the dashboard project is pretty straightforward. It's made up of a
copyright statement and social media links. Let's take a look at the HTML:

<!-- footer //-->
<footer>
 <div class="container">
 <div class="row">
 <div class="col-lg-12">
 <ul class="list-inline">
 <i class="fa fa-facebook-official"></i></
a>
 <i class="fa fa-twitter-square"></i></
li>
 <i class="fa fa-pinterest-square"></i></
li>
 <i class="fa fa-linkedin-square"></i></
li>
 © 2015 Bootstrap Dashboard

 </div>
 </div>
 </div>
</footer>

Chapter 6

[215]

I've wrapped the entire footer in the HTML5 <footer> tag. Within that is a container
with a Bootstrap inline list. Each list item uses the Font Awesome icon set and then a
copyright statement. There are also a few footer styles to review:

footer {
 margin-top: (@padding * 6);
 padding-bottom: (@padding * 2);
 padding-top: (@padding * 2);
 border-top: @border-size @border-color @border-type;
 color: @light-text;
}

Let's breakdown the CSS for the footer:

• I've added a top margin in order to add some spacing between the content
and the footer

• I've also added a little bottom padding for breathing space
• Then, I've added a top border to act as a divider
• There is some top padding so as to add space between the list and the border
• Finally, I set the text color to light

This completes the updates to all our standard template pieces. Next, we'll move on
to coding the main content section of the dashboard.

Coding the dashboard
The main body of the dashboard is going to hold the main portion of this project.
We'll start by setting up the two-column layout, followed by inserting the sidebar
with pill-based navigation. Next, we'll update the typography styles and insert pie
charts. Finally, we'll customize the Bootstrap panel and table components and add
a line chart for good measure.

Setting up the layout
The dashboard is going to use a two-column layout. The left column will be our
sidebar navigation, and it will use the Bootstrap pill component. The right-side will
hold our page content with charts, panels, and tables. If you haven't already done so,
create a file named index.ejs in the root of your project and enter the layout code:

<div class="container">
 <div class="row">

Bootstrap Dashboard

[216]

 <div class="col-lg-3">
 <!-- sidebar //-->
 </div>
 <div class="col-lg-9">
 <!-- content //-->
 </div>
 </div>
</div>

This layout code is very straightforward. I've created a 1:4 grid system. Let's move on
to setting up the sidebar.

Creating the sidebar
The sidebar is going to use the Bootstrap pill navigation component. Let's start by
coding a basic list of pages first. Then, we'll add the custom pill styles that we need
to update:

<div class="col-lg-3">
 <div class="collapse navbar-collapse" id="bootboard-nav">
 <ul class="nav nav-pills nav-stacked">
 <li class="navigation-header">Control Panel
 <li class="active">Dashboard
 Applications
 Documentation
 Analytics
 Discussion
 Users
 <li class="navigation-header">Account
 Profile
 Settings
 Help
 Logout

 </div>
</div>

Chapter 6

[217]

• Within the parent <div>, there is <div> with the Bootstrap collapsible
navigation classes. In a mobile viewport, this list of links will be grabbed
and inserted into the mobile menu. It's important to note that you can grab
any list of links and make it a mobile navigation if you use the write code
structure. You aren't restricted to using only the default navigation bar.

• Inside that collapsible <div>, there is a with some nav pill classes on
the . These are the classes that will change the regular list into a pill
navigation.

• Some tags have a class of .navigation-header on them. These are the
category names for our navigation, and they will be styled differently.

Customizing the nav pills component
Thus, we have completed the HTML for the navigation. Let's now take a look at the
custom styles that we need to add. Start by creating a new Less file called _navs.
less and save it to the css/components directory. Before we code the pill-specific
CSS, we need to update this global nav component. We'll customize the actual pill
styles next. For now, insert the following CSS into the nav file:

.nav-stacked > li + li {
 margin-top: @margin;
}

.nav > li > a:focus,

.nav > li > a:hover {
 background-color: @blue1;
 color: @white;
}

Let's breakdown the CSS for the navigation links:

• The first selector will add a top margin to each list item.
• The second set of styles will set the link colors for our navigation list. As you

can see, we're using our color palette variables here.

Bootstrap Dashboard

[218]

Next, let's create the pills CSS. Create another Less file and name it _pills.less.
Import it into theme.less. Within _pills.less, insert the following CSS:

.nav-pills > li > a {
 color: @grey;
}

.nav-pills > li.active > a,

.nav-pills > li.active > a:focus,

.nav-pills > li.active > a:hover {
 background-color: @dark-grey;
}

These styles set the link text and background colors for the active pill or page in our
navigation. You can set the active link by adding a class of .active to the tag for
the current page. In this case, it should be set to Dashboard.

Before we can complete the sidebar, we need to add styles for our navigation
category headers. Open theme.less, scroll down to the Layout section, and
insert the following CSS:

li.navigation-header {
 color: @blue1;
 text-transform: uppercase;
 font-size: (@font-size - 0.25);
 letter-spacing: 1px;
 font-weight: 700;
 margin-bottom: @margin 0;
 padding-left: 15px;
}

These styles will give the navigation category headers a unique look so that they
stand out from the regular navigation links.

That completes the sidebar navigation portion of the dashboard. Next, I'll go over
how to build the content section of the project.

Creating the content section
The content section of the dashboard will be made up of pie charts, panels, tables,
and line charts. We'll also use the Bootstrap page header component and customize
some other text styles. Let's start with the page section headers.

Chapter 6

[219]

Customizing the typography
There is a page header component in Bootstrap that will add some spacing and a
border to a section header so that it stands out more. Let's take a look at the HTML
for this component:

<div class="row">
 <div class="col-lg-12">
 <div class="page-header">
 <h3>Charts <small>A quick view of your website stats</small></
h3>
 </div>
 </div>
</div>

Let's breakdown the CSS for the project's typography:

• Within my content section, using the col-lg-9 grid class, I'm going to insert
a number of new row classes for each part of the page body. Since we want
the section header to span the entire width of the parent <div>, we'll use the
col-lg-12 grid class here.

• Within that <div>, we'll use the .page-header class to invoke that
component.

• Then, within the page header, I'll use an <h3> tag for my section title.
• You'll also notice a <small> tag nested in <h3>, which is a feature of the page

header component. This allows you to add a smaller piece of text next to the
title. This is great for adding a short description, as I've done here.

Before we move on to the pie charts, we need to customize the page header
styles a little. Create a new Less file called _typography.less and save it to
the css/components directory. Don't forget to import it into theme.less. Within
_typography.less, insert the following CSS:

.page-header {
 border-bottom: @border-size @border-type @border-color;
}

All I've done here is normalized the border for this component so that it uses our
look and feel. Let's move on to the pie chart section of the dashboard.

Bootstrap Dashboard

[220]

Writing the pie chart HTML
The pie chart portion of the dashboard is rendered using a JavaScript chart library
called Chartist. We previously included the Chartist library when we set up our
layout. Now we actually need to use it. We're going to divide the section into three
equal columns and then insert a chart into each:

<div class="charts">
 <div class="row">
 <div class="col-lg-4">
 <div class="ct-chart-one ct-perfect-fourth"></div>
 Impressions
 </div>
 <div class="col-lg-4">
 <div class="ct-chart-two ct-perfect-fourth"></div>
 Clicks
 </div>
 <div class="col-lg-4">
 <div class="ct-chart-three ct-perfect-fourth"></div>
 Sales
 </div>
 </div>
</div>

Let's breakdown the HTML for the pie charts:

• I've wrapped the entire row in a class of .charts, which we'll use to add
some styling a little later.

• I divided the row into three equal columns using the col-lg-4 grid class.
• Within each column is a <div> for a chart. These <div> will be empty as we'll

be loading in the chart with JavaScript.
• Note that each <div> has a unique class for each chart, for example, ch-

chart-one. This is required so that we can make each chart different.
• There is a second class called ct-perfect-fourth that defines the type

of chart we want to use. Check out the Chartist documentation for more
information on how this works at https://gionkunz.github.io/
chartist-js/getting-started.html.

Now that we've coded the HTML for the pie charts, we need to move on to the
JavaScript. Following that, we'll customize the pie chart look and feel with some CSS.

https://gionkunz.github.io/chartist-js/getting-started.html
https://gionkunz.github.io/chartist-js/getting-started.html

Chapter 6

[221]

Writing the pie chart JavaScript
This project marks the first time we'll write some custom JavaScript. Start by creating
a new file called bootboard-chart.js and save it to the /js directory in your
project. Next, we insert the following JavaScript for our first chart:

// first pie chart
var data = {
 series: [5, 3, 4]
};

var sum = function(a, b) { return a + b };

new Chartist.Pie('.ct-chart-one', data, {
 labelInterpolationFnc: function(value) {
 return Math.round(value / data.series.reduce(sum) * 100) + '%';
 }
});

Let's breakdown the JavaScript for the chart:

• Don't let the JavaScript intimidate you. There is actually very little that we
need to change here.

• Take a look at the series: line of code and you'll see three numerical values.
This is how our chart will be divided. It doesn't really matter what these
numbers are; you just need three of them.

• Next, jump to the new Chartist.Pie line. Notice that there is a CSS class on
this line. This is the class that we entered in our first chart <div>. Make sure
that the class name matches and save your file. That's all you need to update.

Let's take a look at the JavaScript for the second pie chart. It's very similar to the first
pie chart, but we're going to change a few values:

// second pie chart
var data = {
 series: [8, 1, 7]
};

var sum = function(a, b) { return a + b };

new Chartist.Pie('.ct-chart-two', data, {
 labelInterpolationFnc: function(value) {

Bootstrap Dashboard

[222]

 return Math.round(value / data.series.reduce(sum) * 100) + '%';
 }
});

Let's breakdown the second pie chart:

• Note that the values in the series: array have changed, so the chart will be
divided differently

• I've also changed the class to point to our second <div>

Finally, let's check out the JavaScript for the last chart:

// third pie chart
var data = {
 series: [7, 3, 9]
};

var sum = function(a, b) { return a + b };

new Chartist.Pie('.ct-chart-three', data, {
 labelInterpolationFnc: function(value) {
 return Math.round(value / data.series.reduce(sum) * 100) + '%';
 }
});

Let's breakdown the last pie chart:

• Like the previous two, I've updated the numbers in the series: array to be
different

• I've also changed the class name to make it unique and match our third
<div>

Let's take a look at all of the chart code together:

// first pie chart
var data = {
 series: [5, 3, 4]
};

var sum = function(a, b) { return a + b };

new Chartist.Pie('.ct-chart-one', data, {

Chapter 6

[223]

 labelInterpolationFnc: function(value) {
 return Math.round(value / data.series.reduce(sum) * 100) + '%';
 }
});

// second pie chart
var data = {
 series: [8, 1, 7]
};

var sum = function(a, b) { return a + b };

new Chartist.Pie('.ct-chart-two', data, {
 labelInterpolationFnc: function(value) {
 return Math.round(value / data.series.reduce(sum) * 100) + '%';
 }
});

// third pie chart
var data = {
 series: [7, 3, 9]
};

var sum = function(a, b) { return a + b };

new Chartist.Pie('.ct-chart-three', data, {
 labelInterpolationFnc: function(value) {
 return Math.round(value / data.series.reduce(sum) * 100) + '%';
 }
});

That's it! The pie chart JavaScript is done. Pretty straightforward if you ask me!
Keep the file open as we'll add a line chart later on in this chapter. At this point,
I'd recommend that you save all your files and compile them. Open up the project
in the browser and make sure that your charts are loading in. If they are, it's great!
However, you'll notice that they don't quite look right. We need to apply some
custom CSS styles.

Bootstrap Dashboard

[224]

Creating a Less component for the charts
Just like all of our Bootstrap components, we're going to create a new Less file named
_charts.less and save it to the css/components directory. Also, don't forget to
import all of these new Less files into theme.less. Otherwise, the CSS changes won't
be overwritten. Within the new charts less file, insert the following code:

// pie charts

.ct-series-a .ct-area,

.ct-series-a .ct-slice-pie {
 fill: @blue1;
}

.ct-series-b .ct-area,

.ct-series-b .ct-slice-pie {
 fill: (@blue1 - #222);
}

.ct-series-c .ct-area,

.ct-series-c .ct-slice-pie {
 fill: @blue2;
}

Let's breakdown the CSS for the customizing the chart colors:

• We're using pie charts with three sections, so note the class naming: ct-
series-a, ct-series-b, and ct-series-c. Each one of these will map to a
piece of pie.

• For each different piece of pie, I've assigned a unique color: @blue1 for the
first piece, (@blue1 - #222) for the second piece (this is by using a Less
operator), and @blue2 for the third piece.

That's all you need to change to adjust the look and feel. Compile your code again
and test it in your browser. You can also keep this file open, as we'll be adding
more styles for our line chart later. Before we move on to the widgets section of the
dashboard, we don't want to forget about styling the .charts container that we
previously set up. Open theme.less and scroll down to the Layout section of the
theme. Once you get there, insert the following CSS:

.charts {
 text-align: center;
}

Chapter 6

[225]

I want each chart to be centered in its <div>, so I've set text-align to center for
everything nested under .charts.

That completes the pie chart section of the dashboard. Let's move on to the next
section—widgets.

Setting up the widgets section
The widgets section of the dashboard is going to be built using the Bootstrap panels
component. However, before we get that far, let's insert another page header
component for this new section. This will be just like the pie charts section but
with a new title and description:

<div class="row">
 <div class="col-lg-12">
 <div class="page-header">
 <h3>Widgets <small>Important stats about your websites</small></
h3>
 </div>
 </div>
</div>

Writing the widgets HTML
With that complete, let's move on to the content of this section. The widget row is
going to be divided into four equal columns using the col-lg-3 Bootstrap grid class.
Within each column, we'll insert one panel component, which we'll then customize.
Let's check out the HTML for the entire section:

<div class="row widgets">
 <div class="col-lg-3">
 <div class="panel panel-success">
 <div class="panel-heading">Impressions</div>
 <div class="panel-body">
 <h2>2,338</h2>
 <i class="fa fa-arrow-circle-up"></i>
 </div>
 </div>
 </div>
 <div class="col-lg-3">
 <div class="panel panel-danger">
 <div class="panel-heading">Conversion Rate</div>
 <div class="panel-body">
 <h2>2.3%</h2>

Bootstrap Dashboard

[226]

 <i class="fa fa-arrow-circle-down"></i>
 </div>
 </div>
 </div>
 <div class="col-lg-3">
 <div class="panel panel-danger">
 <div class="panel-heading">Mobile Visits</div>
 <div class="panel-body">
 <h2>1,453</h2>
 <i class="fa fa-arrow-circle-down"></i>
 </div>
 </div>
 </div>
 <div class="col-lg-3">
 <div class="panel panel-success">
 <div class="panel-heading">New Visits</div>
 <div class="panel-body">
 <h2>52.4%</h2>
 <i class="fa fa-arrow-circle-up"></i>
 </div>
 </div>
 </div>
</div>

Let's breakdown the HTML for the widgets/:

• I've added a class of .widgets to the .row <div> so that I can add some
styling later.

• You'll notice that I'm using two types of panels here: .panel-success and
.panel-danger. We're going to be creating some simple analytics widgets,
so if a value is up, with positive and down with negative.

• Within the body of each panel, we have a value and a Font Awesome up
or down arrow icon, depending on whether the number has increased or
decreased based on the previous day. Of course, this content is fictional,
but it can easily be applied to an actual dashboard.

Chapter 6

[227]

Reviewing the success panel
Let's take a closer look at the success panel HTML and the styles that we need to
customize for this component:

<div class="panel panel-success">
 <div class="panel-heading">Impressions</div>
 <div class="panel-body">
 <h2>2,338</h2>
 <i class="fa fa-arrow-circle-up"></i>
 </div>
 </div>
</div>

Let's breakdown the HTML for the panel component:

• As you can see, the first <div> has a class of .panel and .panel-success.
The .panel class is required, and the second class can change depending on
what type you want to use.

• Each panel has a .panel-heading <div>, which is the title for that panel. In
this case, I've named it Impressions.

• Each panel also has a .panel-body <div> for the body of the component.
• The first thing that I inserted in the body is an <h2> tag with a value. I used

<h2> so that the text would be larger in size. Feel free to use a different tag
if you like.

• Next, there is a Font Awesome up arrow icon, since this is a success panel.

Before we can move on to the danger panel, we need to add some custom styles for
the success version. Create a new Less file called _panels.less and save it in the
css/components directory. Also, don't forgot to import this file into theme.less.
Insert the following code into the new panel Less file:

.panel {
 background: transparent;
}

.panel h2 {
 margin-top: 0;
}

.panel i {
 font-size: (@font-size * 4);
}

Bootstrap Dashboard

[228]

Let's breakdown the CSS for the .panel component:

• Let's start with some styles consistent in all panel components. By default,
the background of all panels is white, but I want to remove that. So, I've reset
it to transparent.

• I removed the top margin for the <h2> in the body of the panel so that the
vertical alignment is equal.

• Finally, I set the font-size of the icon to four times the normal size, as I want
the arrows to be quite large.

Now, let's add a few more styles that are specific to the success panel:

.panel-success {
 border-color: @green1;
}

.panel-success > .panel-heading {
 color: @white;
 background: @green1;
 border-color: @green1;
}

.panel-success i {
 color: @green1;
}

Let's review the CSS for setting up the different panel colors:

• The first selector will reset the border of the success panel to use the color
green from our palette

• We'll also reset the colors of the panel heading to use our palette's colors
• Finally, I'll set the arrow icon color to green to match the rest of the panel

Chapter 6

[229]

Reviewing the danger panel
The danger panel is just like the success one, but it will be red. This panel styling
should be used for an analytical value that has gone down since the last time of
measure. The only change in HTML here will be the .panel-danger class on the
parent <div>:

<div class="panel panel-danger">
 <div class="panel-heading">Conversion Rate</div>
 <div class="panel-body">
 <h2>2.3%</h2>
 <i class="fa fa-arrow-circle-down"></i>
 </div>
 </div>
</div>

We will need to add some more custom CSS to our panels component. Go back to
_panels.less and insert the following danger panel styles:

.panel-danger {
 border-color: @red1;
}

.panel-danger > .panel-heading {
 color: @white;
 background: @red1;
 border-color: @red1;
}

.panel-danger i {
 color: @red1;
}

As with the success panel, these styles will reset the panel to use the red shade from
our color palette. This will also set the down arrow icon that appears in the body of
the component to red.

This completes the widgets section of the dashboard. Next, I'll teach you how to code
the Panels section (not to be confused with the panels component).

Bootstrap Dashboard

[230]

Writing the panels HTML
The next section of the dashboard will also use the panel component, but we will
extend it further by including a table. Let's first look at the HTML for the first panel.
Then, we'll go over the styles that need customizing. First of all, we'll include a
full-width row with our section header:

<div class="row">
 <div class="col-lg-12">
 <div class="page-header">
 <h3>Panels <small>Detailed information about your website</
small></h3>
 </div>
 </div>
</div>

This is the same as the previous section headers. Next, we'll divide a row into two
equal columns and insert our first panel with a table inside:

<div class="panel panel-default">
 <div class="panel-heading">Top Referals</div>
 <table class="table table-striped table-bordered table-hover">
 <tbody>
 <tr>
 <td>google.com</td>
 <td>1,656</td>
 </tr>
 <tr>
 <td>facebook.com</td>
 <td>1,453</td>
 </tr>
 <tr>
 <td>twitter.com</td>
 <td>945</td>
 </tr>
 <tr>
 <td>pinterest.com</td>
 <td>922</td>
 </tr>
 <tr>
 <td>linkedin.com</td>
 <td>844</td>
 </tr>
 <tr>
 <td>buffer.com</td>

Chapter 6

[231]

 <td>817</td>
 </tr>
 <tr>
 <td>bing.com</td>
 <td>767</td>
 </tr>
 <tr>
 <td>yahoo.com</td>
 <td>672</td>
 </tr>
 <tr>
 <td>msn.com</td>
 <td>454</td>
 </tr>
 <tr>
 <td>cbc.com</td>
 <td>231</td>
 </tr>
 </tbody>
 </table>
</div>

Let's breakdown the HTML for the table:

• I'm using the .panel-default class again.
• Inside my panel body, I inserted a <table> with some classes in it. The

.table-striped will zebra stripe the table, .table-bordered will add
borders, and .table-hover will add a hover state to each row.

Next, let's review the styles that we need to add for this variation of the panel
component.

Customizing the table component
Start by creating a new file called _tables.less and save it at css/components
directory. Next, open up theme.less and import the table component Less file.
Let's start breaking down the custom table styles:

table,
tr,
tbody {
 border-color: @dark-grey;
}

Bootstrap Dashboard

[232]

I've reset the table borders to use a color from our palette. Otherwise, they'll be the
default light gray, which we don't want:

.table-bordered > tbody > tr > td,

.table-bordered > tbody > tr > th,

.table-bordered > tfoot > tr > td,

.table-bordered > tfoot > tr > th,

.table-bordered > thead > tr > td,

.table-bordered > thead > tr > th {
 border: @border-size @border-type @border-color;
}

We also need to customize the border values for the .table-bordered class, which
we added to our <table> tag. We'll want those values to match the global variables
that we set up previously:

.table-striped > tbody > tr:nth-of-type(odd) {
 background-color: @dark-grey;
}

For the .table-striped class, which adds the zebra striping effect, we need to
change background-color to use the dark gray shade from our color palette.
Again, if you don't change this, it will be a light gray background:

.table-hover > tbody > tr:hover {
 background-color: @blue1;
}

Finally, we need to set a hover color for the .table-hover class. In this case, I'm
going to use the same blue that I used for the global links. This will give us some
color consistency throughout the dashboard.

Adding the button
You'll notice below the panel that I've inserted a button. This could allow the user to
go to an inside page that shows an expanded report. Insert the following button code
after the panel:

<button class="btn btn-primary">Show More</button>

I'm using a basic primary button here. We'll need to update the CSS for the buttons
to match our design.

Chapter 6

[233]

Customizing the button component
Create a new file called _buttons.less and save it at css/components directory.
Next, open up theme.less and import the new button component into the master
theme. Insert the following styles into the button style sheet to apply the proper look
and feel:

.btn-primary {
 background: @black;
 border: (@border-size * 2) @border-type @blue1;
 color: @blue1;
}

.btn-primary:hover {
 background-color: @black;
 border: (@border-size * 2) @border-type @blue1;
 color: @white;
}

Let's breakdown the CSS for the button component:

• I've set background-color to black so that it blends with our page
background. You can set it to transparent if you prefer.

• I've increased the border-width a bit so that it really pops.
• The border-color is set to the same blue that we've been using throughout

the dashboard.
• On hover, the only thing that will change is the color of the text in the button,

which will go from blue to white. This creates a nice, subtle button effect.

Inserting a line chart
We've made it to the last part of the dashboard project. Now we're going to step back
and insert another chart here using the chartist library. However, in this case, we are
going to insert a line chart instead of a pie chart. The first thing that we need to do
is code the HTML for the chart. Next, we'll add some more JavaScript to render the
chart. Finally, we'll need to update some more CSS to control the look and feel of the
lines in our chart.

Bootstrap Dashboard

[234]

Adding the HTML for the line chart
This final section of the dashboard is made up of three parts. The first is the section
header, the second is the line chart, and the third is a table that will appear below the
line chart. Let's start by first inserting the section header. Insert the following HTML
after the panel tables section that you just completed:

<div class="row">
 <div class="col-lg-12">
 <div class="page-header">
 <h3>Table <small>More detailed information about your website</
small></h3>
 </div>
 </div>
</div>

This section is the same as that of the previous headers. I'm just changing the name
and description. Let's move on to the next part of this section, which is the line chart
container. Remember that as in our previous charts, we just need to code a container
<div> in which the chart will be loaded via our JavaScript. Insert the following
HTML after the section header code:

<div class="row">
 <div class="col-lg-12">
 <div class="ct-chart-table ct-golden-section"></div>
 </div>
</div>

Let's breakdown the HTML for the line chart:

• For this chart, I'm using the .ct-chart-table class, which will render
a line chart.

• I'm also using the .ct-golden-section class, which determines what aspect
ratio should be used for the chart. There are many different options that
you can use here. For more information, check out the documentation at
https://gionkunz.github.io/chartist-js/getting-started.html.

Finally, let's insert the HTML for the table that will appear below the line chart. Also
note that there is a button directly below the table in the layout:

<div class="row">
 <div class="col-lg-12">
 <div class="panel panel-default">
 <div class="panel-heading">Traffic Sources</div>

https://gionkunz.github.io/chartist-js/getting-started.html

Chapter 6

[235]

 <table class="table table-striped table-bordered table-hover">
 <tbody>
 <tr>
 <td>Organic Search</td>
 <td>1,656</td>
 </tr>
 <tr>
 <td>Referral</td>
 <td>1,453</td>
 </tr>
 <tr>
 <td>Direct</td>
 <td>945</td>
 </tr>
 </tbody>
 </table>
 </div>
 <button class="btn btn-primary">Show More</button>
 </div>
</div>

As in the previous section, I'm using a panel here with a table nested inside. The only
difference is that this table stretches the width of the layout to fill the entire column.
The Show More button at the bottom is also the same as that in the previous section.
Now that all of the HTML is written, let's move on to coding the JavaScript for the
line chart.

Updating the chart JavaScript
For the line chart, we'll need to insert some additional code into the bootboard-
charts.js file, which is found in the /js directory. This is the same file that we
created when we made the pie charts earlier in this chapter. Open it again and
insert the following JavaScript code:

// table chart
new Chartist.Line('.ct-chart-table', {
 labels: ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday'],
 series: [
 [12, 9, 7, 8, 5],
 [2, 1, 3.5, 7, 3],
 [1, 3, 4, 5, 6]
]
}, {
 fullWidth: true,

Bootstrap Dashboard

[236]

 chartPadding: {
 right: 40
 }
});

Let's breakdown the CSS for the line chart:
• The labels array contains the labels that will appear along the x axis of the

chart. They are displayed at the bottom of the chart.
• The series array will plot the dots for your line. In this chart, there will be

three lines, so there are three sets of values. Feel free to use more or less.
• I've included the fullWidth property as I want the chart to span the width

of its container.
• Finally, I've added some padding around the chart with the chartPadding

property.

After you've finished customizing these values, save your JavaScript file and
compile. Let's do a compilation here to make sure that everything is working before
we do the CSS updates. Take a look at your page to make sure that a line chart is
being loaded in. It will likely look messed up, but don't worry about that. The last
step will be to customize the CSS and get our chart to look right.

Updating the chart CSS
So, the last thing that we need to do for our line chart is update the associated CSS
so that it matches the look and feel of the dashboard. Open _charts.less, which
is located in the css/components directory. Let's go step by step through the CSS
changes that are required:

.ct-series-a .ct-line,

.ct-series-a .ct-point {
 stroke: @blue1;
}

Similar to the pie charts, each section of our line chart will be represented by a
letter—a, b, and c—and we can assign a color to each one of them. The first line in
our chart will be blue. You'll also notice there is a class for the line and the point. The
line should be self-explanatory, but you could break that point class out to be on its
own if you want to give the chart points a color different from that of the line. In this
case, I'm making them the same:

.ct-series-b .ct-line,

.ct-series-b .ct-point {

Chapter 6

[237]

 stroke: @aqua1;
}

The second line in the chart will use the aqua color from the global color palette. Let's
move on to the third and final line:

.ct-series-c .ct-line,

.ct-series-c .ct-point {
 stroke: @purple1;
}

We'll set the final point to purple from the global color palette. Don't forget that the
second line used -b in the class name and the third used -c. Save the CSS, compile
again, and go back to the dashboard in your browser. Refresh the page, and your line
chart should load in and match the proper color scheme.

That brings the dashboard design and coding to a close! Let's now take a look at the
code for the entire page:

<div class="container">
 <div class="row">
 <!-- sidebar //-->
 <div class="col-lg-3">
 <div class="collapse navbar-collapse" id="bootboard-nav">
 <ul class="nav nav-pills nav-stacked">
 <li class="navigation-header">Control Panel
 <li class="active">Dashboard
 Applications
 Documentation
 Analytics
 Discussion
 Users
 <li class="navigation-header">Account
 Profile
 Settings
 Help
 Logout

 </div>
 </div>
 <!-- content //-->
 <div class="col-lg-9">
 <!-- chart row //-->
 <div class="row">
 <div class="col-lg-12">
 <div class="page-header">

Bootstrap Dashboard

[238]

 <h3>Charts <small>A quick view of your website stats</
small></h3>
 </div>
 </div>
 </div>
 <div class="charts">
 <div class="row">
 <div class="col-lg-4">
 <div class="ct-chart-one ct-perfect-fourth"></div>
 Impressions
 </div>
 <div class="col-lg-4">
 <div class="ct-chart-two ct-perfect-fourth"></div>
 Clicks
 </div>
 <div class="col-lg-4">
 <div class="ct-chart-three ct-perfect-fourth"></div>
 Sales
 </div>
 </div>
 </div>
 <!-- widget row //-->
 <div class="row">
 <div class="col-lg-12">
 <div class="page-header">
 <h3>Widgets <small>Important stats about your websites</
small></h3>
 </div>
 </div>
 </div>
 <div class="row widgets">
 <div class="col-lg-3">
 <div class="panel panel-success">
 <div class="panel-heading">Impressions</div>
 <div class="panel-body">
 <h2>2,338</h2>
 <i class="fa fa-arrow-circle-up"></i>
 </div>
 </div>
 </div>
 <div class="col-lg-3">
 <div class="panel panel-danger">
 <div class="panel-heading">Conversion Rate</div>
 <div class="panel-body">

Chapter 6

[239]

 <h2>2.3%</h2>
 <i class="fa fa-arrow-circle-down"></i>
 </div>
 </div>
 </div>
 <div class="col-lg-3">
 <div class="panel panel-danger">
 <div class="panel-heading">Mobile Visits</div>
 <div class="panel-body">
 <h2>1,453</h2>
 <i class="fa fa-arrow-circle-down"></i>
 </div>
 </div>
 </div>
 <div class="col-lg-3">
 <div class="panel panel-success">
 <div class="panel-heading">New Visits</div>
 <div class="panel-body">
 <h2>52.4%</h2>
 <i class="fa fa-arrow-circle-up"></i>
 </div>
 </div>
 </div>
 </div>
 <!-- panels //-->
 <div class="row">
 <div class="col-lg-12">
 <div class="page-header">
 <h3>Panels <small>Detailed information about your
website</small></h3>
 </div>
 </div>
 </div>
 <div class="row">
 <div class="col-lg-6">
 <div class="panel panel-default">
 <div class="panel-heading">Top Referals</div>
 <table class="table table-striped table-bordered table-
hover">
 <tbody>
 <tr>
 <td>google.com</td>
 <td>1,656</td>
 </tr>

Bootstrap Dashboard

[240]

 <tr>
 <td>facebook.com</td>
 <td>1,453</td>
 </tr>
 <tr>
 <td>twitter.com</td>
 <td>945</td>
 </tr>
 <tr>
 <td>pinterest.com</td>
 <td>922</td>
 </tr>
 <tr>
 <td>linkedin.com</td>
 <td>844</td>
 </tr>
 <tr>
 <td>buffer.com</td>
 <td>817</td>
 </tr>
 <tr>
 <td>bing.com</td>
 <td>767</td>
 </tr>
 <tr>
 <td>yahoo.com</td>
 <td>672</td>
 </tr>
 <tr>
 <td>msn.com</td>
 <td>454</td>
 </tr>
 <tr>
 <td>cbc.com</td>
 <td>231</td>
 </tr>
 </tbody>
 </table>
 </div>
 <button class="btn btn-primary">Show More</button>
 </div>
 <div class="col-lg-6">
 <div class="panel panel-default">
 <div class="panel-heading">Popular Pages</div>
 <table class="table table-striped table-bordered table-
hover">

Chapter 6

[241]

 <tbody>
 <tr>
 <td>/</td>
 <td>1,433</td>
 </tr>
 <tr>
 <td>/store</td>
 <td>1,211</td>
 </tr>
 <tr>
 <td>/blog</td>
 <td>1,032</td>
 </tr>
 <tr>
 <td>/store/product</td>
 <td>984</td>
 </tr>
 <tr>
 <td>/contact</td>
 <td>898</td>
 </tr>
 <tr>
 <td>/blog/post</td>
 <td>872</td>
 </tr>
 <tr>
 <td>/blog/post2</td>
 <td>734</td>
 </tr>
 <tr>
 <td>/about</td>
 <td>711</td>
 </tr>
 <tr>
 <td>/blog/post3</td>
 <td>454</td>
 </tr>
 <tr>
 <td>/store/product2</td>
 <td>349</td>
 </tr>
 </tbody>
 </table>
 </div>
 <button class="btn btn-primary">Show More</button>

Bootstrap Dashboard

[242]

 </div>
 </div>
 <!-- table row 2 //-->
 <div class="row">
 <div class="col-lg-12">
 <div class="page-header">
 <h3>Table <small>More detailed information about your
website</small></h3>
 </div>
 </div>
 </div>
 <div class="row">
 <div class="col-lg-12">
 <div class="ct-chart-table ct-golden-section"></div>
 </div>
 </div>
 <div class="row">
 <div class="col-lg-12">
 <div class="panel panel-default">
 <div class="panel-heading">Traffic Sources</div>
 <table class="table table-striped table-bordered table-
hover">
 <tbody>
 <tr>
 <td>Organic Search</td>
 <td>1,656</td>
 </tr>
 <tr>
 <td>Referral</td>
 <td>1,453</td>
 </tr>
 <tr>
 <td>Direct</td>
 <td>945</td>
 </tr>
 </tbody>
 </table>
 </div>
 <button class="btn btn-primary">Show More</button>
 </div>
 </div>
 </div>
 </div>
</div>

Chapter 6

[243]

Mobile considerations
To optimize the dashboard for mobiles, we need to insert a few mobile-specific
styles into theme.less. Head over to the bottom of the stylesheet and insert the
following code:

@media (max-width: 768px) {
 .container {
 padding-right: @padding;
 padding-left: @padding;
 }

 .navbar-form {
 display: none;
 }

 ul.nav.navbar-nav.navbar-right {
 display: none;
 }
}

Let's breakdown the mobile specific CSS for the project:

• I've added some left and right padding to the overall layout for tablets
and phones

• I've removed the search field, username, and icon in the navbar for
mobile devices

Summary
This brings the sixth chapter to a close. We covered how to code your own
dashboard using Bootstrap. Let's review what you learned, which is as follows—
how to code a dashboard using Bootstrap; how to create a project with a dark look
and feel; how to implement and customize the Chartist JavaScript library; how to
customize the Bootstrap panels component, table component, nav component, and
navbar component; and how to use a mobile nav outside of the default navbar.

[245]

Bootstrap Social Network
Welcome to the last chapter of this book, where you're going to learn how to build
a social networking site using Bootstrap! This project will include a public profile,
an activity feed, notifications, friends, and private message pages. As part of this
chapter, we'll use much of what you learned in the book to create a complex project
with a minimal look.

Bootstrap Social Network

[246]

Before we jump into updating our template, let's take a look at the public profile
page, which will be like this:

Chapter 7

[247]

Customizing the template
Let's start the last blueprint by copying our boilerplate project and creating a new
one called Chapter 7. Open the _data.json file and insert the following code:

{
 "index": {
 "pageTitle": "Home"
 },
 "activity-feed": {
 "pageTitle": "Activity Feed"
 },
 "notifications": {
 "pageTitle": "Notifications"
 },
 "messages": {
 "pageTitle": "Messages"
 },
 "friends": {
 "pageTitle": "Friends"
 }
}

For this project, we are going to create five page templates. Let's start by creating the
files in the root of our project. For now, they can just be blank, and we'll start to fill
them in a little later:

• index.ejs

• activity-feed.ejs

• notifications.ejs

• messages.ejs

• friends.ejs

Updating _layout.ejs
Next, let's update the _layout.ejs file in the root of our new project. The layout for
the profile page doesn't have any major differences. Make sure you include the line
of code that will import Roboto as your web font:

<link
href='https://fonts.googleapis.com/css?family=Roboto:400,700,300'
rel='stylesheet' type='text/css'>

Bootstrap Social Network

[248]

This will import three type weights: light (300), regular (400), and bold (700). That's
all we need to do to customize the layout for this project. Here's what the entire file
should look like:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <title><%- pageTitle %> | <%- siteTitle %></title>

 <link rel="stylesheet" type="text/css"
href="css/bootstrap.min.css">
 <link rel="stylesheet" type="text/css" href="css/font-awesome.min.
css">
 <link
href='https://fonts.googleapis.com/css?family=Roboto:400,700,300'
rel='stylesheet' type='text/css'>
 <link rel="stylesheet" type="text/css" href="css/theme.css">

 <!-- HTML5 shim and Respond.js for IE8 support of HTML5 elements
and media queries -->
 <!-- WARNING: Respond.js doesn't work if you view the page via
file:// -->
 <!--[if lt IE 9]>
 <script
src="https://oss.maxcdn.com/html5shiv/3.7.2/html5shiv.min.js"></
script>
 <script
src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script>
 <![endif]-->
</head>
<body>

 <%- partial("partial/_header") %>

 <%- yield %>

 <%- partial("partial/_footer") %>

 <!-- javascript //-->
 <script
src="//ajax.googleapis.com/ajax/libs/jquery/1.11.1/jquery.min.js"></
script>

Chapter 7

[249]

 <script src="js/bootstrap.min.js"
type="text/javascript"></script>
</body>
</html>

Setting up the Less variables
The process of setting up your Less variables should feel pretty familiar now. Let's
go ahead and set up the Less variables for the social network. As in the previous
project, we're going to use the colors included with the boilerplate.

Background colors
For the background color section, we only need to update the value of the inverse
background variable:

@inverse-background: @navy1;

Text colors
The only text color that we are going to change is the heading text variable:

@heading-text: @navy1;

Link colors
Let's change both the link color variables to match the color scheme for our
new project:

@primary-link-color: @aqua1;
@primary-link-color-hover: @aqua2;

Border colors
For the borders, everything will stay the same except for the focus color. This is
the property that controls the border color of an input when it is in focus:

@border-focus: @aqua1;

Bootstrap Social Network

[250]

Typography
Earlier, we imported Roboto from Google Web Fonts. Let's now set up our text
variables to use the typeface:

@body-copy: "Roboto", "Helvetica Neue", helvetica, arial, verdana,
sans-serif;
@heading-copy: "Roboto", "Helvetica Neue", helvetica, arial,
verdana, sans-serif;

Border radius
Finally, let's update the border-radius variable to 5px, which will make our buttons
a little rounder:

.round-corners (@radius: 5px) { // new
 -moz-border-radius: @radius;
 -ms-border-radius: @radius;
 border-radius: @radius;
}

These are all the updates for the Less variables. Let's take a look at the entire file
before we move on to setting up the header and footer:

// color palette

@black: #000;
@dark-grey: #333;
@grey: #ccc;
@light-grey: #ebebeb;
@off-white: #f5f5f5;
@white: #ffffff;

@blue1: #3498db;
@blue2: #2980b9;
@red1: #e74c3c;
@red2: #c0392b;
@yellow1: #f1c40f;
@yellow2: #f39c12;
@green1: #2ecc71;
@green2: #27ae60;
@orange1: #e67e22;
@orange2: #d35400;
@aqua1: #1abc9c;
@aqua2: #16a085;

Chapter 7

[251]

@purple1: #9b59b6;
@purple2: #8e44ad;
@navy1: #34495e;
@navy2: #2c3e50;

// background colors
@primary-background: @white;
@secondary-background: @off-white;
@inverse-background: @navy1;

// text colors
@primary-text: @dark-grey;
@light-text: @light-grey;
@loud-text: @black;
@inverse-text: @white;
@heading-text: @navy1;

// link colors
@primary-link-color: @aqua1;
@primary-link-color-hover: @aqua2;

// primary border properties
@border-color: @light-grey;
@border-size: 1px;
@border-type: solid;
@border-focus: @aqua1;

// typography
@body-copy: "Roboto", "Helvetica Neue", helvetica, arial, verdana,
sans-serif;
@heading-copy: "Roboto", "Helvetica Neue", helvetica, arial, verdana,
sans-serif;
@base-font-size: 14px;
@font-size: 1em;
@base-line-height: 1.5;

// layout
@margin: 1em;
@padding: 1em;

// MIXINS

// round corners or Border radius
.round-corners (@radius: 5px) {

Bootstrap Social Network

[252]

 -moz-border-radius: @radius;
 -ms-border-radius: @radius;
 border-radius: @radius;
}

// animation transitions
.transition (@transition: background .1s linear) {
 -moz-transition: @transition;
 -webkit-transition: @transition;
 transition: background @transition;
}

Coding the header and footer
Let's set up the header and footer for our social networking website. It's going
to be made up of the regular Bootstrap navbar component, with some new
customizations. The main new items will be an icon-based navigation, a search
bar, a utility drop-down menu, and some mobile-specific styling.

Updating the header
I'll start out by showing you the code for the entire header, and then we'll dissect
the parts that we need to update. Start off by creating a file called _header.ejs,
and save it in the /partial directory. Then, insert this code:

<nav class="navbar navbar-default" role="navigation">
 <div class="container-fluid">
 <div class="navbar-header">
 <button type="button" class="navbar-toggle collapsed" data-
toggle="collapse" data-target="#navbar1">
 Toggle navigation

 </button>
 Soc</
span>Strap
 </div>

 <div class="collapse navbar-collapse" id="navbar1">
 <ul class="nav navbar-nav">
 <i class="fa fa-home"></i></
a>

Chapter 7

[253]

 <i class="fa fa-bell"></i></
a>
 <i class="fa fa-envelope"></i></
a>
 <i class="fa fa-user"></i>

 <form class="navbar-form navbar-right" role="search">
 <div class="form-group">
 <input type="text" class="form-control"
placeholder="Search">
 </div>
 </form>
 <ul class="nav navbar-nav navbar-right">
 <li class="dropdown">
 <a href="#" class="dropdown-toggle" data-toggle="dropdown"
role="button" aria-haspopup="true" aria-expanded="false">Username

 <ul class="dropdown-menu">
 View Profile
 Settings
 Help
 Logout

 </div>
 </div>
</nav>

Inserting the brand
Head down to the Soc Strap brand line of code as shown in the following code.
You'll notice that part of the brand is wrapped in a tag. This is for styling
reasons, which I'll cover next:

SocStrap

Creating the navbar Less file
We need to create a new Less file for the navbar component. Open up a new file,
name it _navbar.less, and save it in the css/components directory. Insert the
following styles into the file and save it:

//navbar
.navbar-default {
 background-color: @inverse-background;

Bootstrap Social Network

[254]

 border-color: transparent;

 -moz-border-radius: 0;
 border-radius: 0;
}

This first section of styles is actually for the navbar, not the brand. I've set the
background to a different color and removed the bottom border and round corners:

// brand
.navbar-default .navbar-brand {
 font-weight: 300;
 color: @inverse-text;
}

Here's our base brand class. I've set the font weight to light and set the color to use
the inverse variable for the text:

.navbar-default .navbar-brand:focus,

.navbar-default .navbar-brand:hover {
 color: @aqua1;
}

At the same time, let's set up the hover and focus states for the brand to use our
color palette:

.navbar-brand span {
 font-weight: 700;
 color: @aqua1;
}

Finally, I've set some different styles for the portion of the brand text that appears
in the tag. This will make the text bold and give it a different color. This is a
easy way of making your brand or logo look a little unique without having to use an
image. Once you've saved the file, don't forget to import it back into theme.less in
the modules section:

@import "components/_navbar.less";

Setting up the icon navigation
For this project, we're going to use Font Awesome icons for the primary navigation
links. Check out the following HTML for rendering the icons:

<ul class="nav navbar-nav">
 <i class="fa fa-home"></i>
 <i class="fa fa-bell"></i>

Chapter 7

[255]

 <i class="fa fa-envelope"></i>
 <i class="fa fa-user"></i>

The HTML portion here should be easy to understand. However, we need to add
some custom styles for our navbar links as well. Head back to the navbar Less file
and insert the following styles:

// navbar links
.navbar-default .navbar-nav > li > a {
 color: @aqua1;
}

.navbar-default .navbar-nav > li > a:focus,

.navbar-default .navbar-nav > li > a:hover {
 color: @inverse-text;
}

These styles will simply customize the icons and all the links in the navbar to use
our color palette.

Adding the search bar
For the search bar in the navbar, we're going to insert a form. This is a basic
Bootstrap navbar form, but I'll go over what's happening:

<form class="navbar-form navbar-right" role="search">
 <div class="form-group">
 <input type="text" class="form-control" placeholder="Search">
 </div>
</form>

I've inserted a basic Bootstrap form. Make sure you include the navbar-form class
to get some custom header styling. Also, don't forget the navbar-right class as we
want the form to be aligned right in the header. From there on, it is just your basic
Bootstrap form code, with the exception of a couple of custom styles:

// search form
.navbar-form .form-control {
 border-color: @navy1;
}

.form-control:focus {
 border-color: @border-focus;
}

Bootstrap Social Network

[256]

Let's take a closer look at what's happening with the search bar:

• I've changed the border color of the form input to navy blue
• The next class applies the custom border-focus variable that we previously

set up

Adding the utility drop-down menu
The last piece of HTML that we need to include is the portion that will include the
utility drop-down menu. Here's what it looks like:

<ul class="nav navbar-nav navbar-right">
 <li class="dropdown">
 <a href="#" class="dropdown-toggle" data-toggle="dropdown"
role="button" aria-haspopup="true" aria-expanded="false">Username

 <ul class="dropdown-menu">
 View Profile
 Settings
 Help
 Logout

Like the search field, the HTML here is straight out of the Bootstrap box. If you need
more of an explanation, check out the docs at http://getbootstrap.com.

Adding some mobile-specific styles
The final thing that we need to do before finishing our header is include some
mobile-specific styles. Head back to the navbar Less file and paste the following
code in it:

// mobile trigger
.navbar-default .navbar-toggle {
 border-color: @white;
}

.navbar-toggle {
 background: @navy2;
 border: none;
 .round-corners;
}

http://getbootstrap.com

Chapter 7

[257]

.navbar-default .navbar-toggle:focus,

.navbar-default .navbar-toggle:hover {
 background-color: @aqua1;
}

.navbar-default .navbar-toggle .icon-bar {
 background-color: @white;
}

The preceding styles control the color of the mobile toggle button that will appear on
tablets and phones. I'm simply switched them to match the project's color scheme.
Before we move on to the footer, we need to add some more mobile styles to theme.
less. Open up that file and head to the bottom, where the media queries appear.
Then, insert the following:

@media (max-width: 767px) {
 .navbar-default .navbar-nav .open .dropdown-menu > li > a {
 color: @primary-link-color;
 }

 .navbar-default .navbar-nav .open .dropdown-menu > li >a:focus,
 .navbar-default .navbar-nav .open .dropdown-menu > li >a:hover {
 color: @white;
 }
}

We need to switch some of the utility drop-down menu's colors when it's in the
mobile view. Otherwise, the colors will be lost in the background. That's it for our
header; let's move on to the footer:

Updating the footer
The footer for this project is purposely simple. Create a new file called _footer.ejs
and save it in the /partial directory. Then, insert the following code:

<!-- footer //-->
<div class="container-fluid">
 <div class="row">
 <div class="col-lg-12">
 <div class="footer">
 © SocStrap
 </div>
 </div>
 </div>
</div>

Bootstrap Social Network

[258]

As I mentioned, the footer is really simple. We do need to add a few custom styles,
however, to give it a proper look and feel. Insert the following code into theme.less:

.footer {
 margin-top: (@padding * 6);
 padding-bottom: (@padding * 6);
 padding-top: @padding;
 border-top: @border-size @border-color @border-type;
 color: @grey;
}

Here, I'm giving the footer some margin and padding. I've also added a top border
and set the text to a lighter color. That completes the setup of the header and the
footer. Let's move on to the first template for our project, which will be the public-
facing profile page.

Coding the profile page
The profile page is the public-facing page of your social network. If someone is
searching for you on the website, this is the page that they will see. In this first
template, we will define a three-column layout that will be used through all the
pages of this project. We'll also set up some new partials for the sidebar elements of
the profile. In this way, we can modularize the design and reuse some of the parts
where it makes sense. Let's start by creating a new file called index.ejs and saving
it to the root of the project. As I mentioned, our project will have a three-column
layout built upon the following grid:

• I'm using the container-fluid class here because I want the layout to span
the entire width of the viewport

• I'm using a three-column grid of 25%, 50%, and 25%
<div class="container-fluid">
 <div class="row">
 <!-- left side //-->
 <div class="col-lg-3">
 ..
 </div>
 <div class="col-lg-6">
 ..
 </div>
 <div class="col-lg-3">

Chapter 7

[259]

 ..
 </div>
 </div>
</div>

Setting up the left sidebar
The left sidebar of our project is going to have a couple of versions. One will be for
public-facing pages such as this profile. The second will be for internal pages, which
only the logged-in user can see. This second version will have some different actions
that make sense for the user. First of all, let's insert the code for the first column into
the profile page:

<div class="col-lg-3">
 <div class="sidebar-left">
 <%- partial("partial/_sidebar-left-home") %>
 </div>
</div>

To make the code more modular, I've broken the sidebar into a partial. Create a new
file called _sidebar-left-home.ejs and save it in the /partial directory. Let's
open the file and go over the code.

Adding the avatar
This first line of the code will render the user's avatar for their profile. Here's
the code:

<div></div>

It's linking to an image that has a class of .main-avatar on it. We need to add some
custom styles for this class:

• I've set the width of the image to 100% so that it will stretch the entire width
of the column. It's a good idea to make sure that your image is a little bigger
than you think the maximum size will be so that no pixelation occurrs.

• The height property is set to auto so that the image will automatically resize
depending on the width the column.

Bootstrap Social Network

[260]

• I've added a border-radius to the image to give it a more polished look.

img.main-avatar {
 width: 100%;
 height: auto;

 .round-corners;
}

Adding the name and description
The next block of code will render our user's name and description. Here's the
HTML code:

<h2>John Smith</h2>
<p>Pellentesque habitant morbi tristique senectus et netus et
malesuada fames ac turpis egestas. Vestibulum tortor quam, feugiat
vitae, ultricies eget, tempor sit amet, ante. Donec eu libero sit
amet quam egestas semper. Aenean ultricies mi vitae est. Mauris
placerat eleifend leo.</p>
<ul class="list-unstyled">
 <i class="fa fa-map-marker"></i> Vancouver, BC
 <i class="fa fa-desktop"></i> website.com

The first line is our user's name, and there are a couple of styles that we need to add
to theme.less. I'm going to remove line-height and manually set the top and
bottom margins that are exact:

.sidebar-left h2 {
 margin-top: (@margin * 1.5);
 margin-bottom: (@margin * 1.5);
 line-height: 0;
}

We also need to add a few styles for the unordered list of properties at the bottom of
the description. The following are some simple layout tweaks meant to tighten up
the look and feel:

.sidebar-left li {
 margin-bottom: (@margin - 0.5);
}

Chapter 7

[261]

.sidebar-left li i {
 margin-right: 5px;
}

This completes all of the code for the first sidebar partial. Let's take a look at the
entire thing before we move on:

<div></div>
<h2>John Smith</h2>
<p>Pellentesque habitant morbi tristique senectus et netus et
malesuada fames ac turpis egestas. Vestibulum tortor quam, feugiat
vitae, ultricies eget, tempor sit amet, ante. Donec eu libero sit
amet quam egestas semper. Aenean ultricies mi vitae est. Mauris
placerat eleifend leo.</p>
<ul class="list-unstyled">
 <i class="fa fa-map-marker"></i> Vancouver, BC
 <i class="fa fa-desktop"></i> website.com

Adding the content column
Let's move on to the second column in the layout, which will hold the main content
(or feed) for the page. Here's the basic structure of the column:

<div class="col-lg-6">
 <div class="content-feed">
 <!-- post //-->
 <div class="well">
 ..
 </div>
 </div>
</div>

Let's take a closer look at what's happening with the structure of the column:

• Within the column, there is a <div> with a wrapping class of content-feed.
• Inside the content feed will be a series of well. Each post on the feed will be a

new well component.

The following code shows the contents of a single well post in the feed:

<div class="well">
 <div class="row">
 <div class="col-lg-2">

Bootstrap Social Network

[262]

 <p><img src="img/avatar1.jpg" width="70" height="70"
class="avatar"></p>
 </div>
 <div class="col-lg-10">
 <h3>Mike Michaels</h3>
 <p>Pellentesque habitant morbi tristique senectus et netus
et malesuada fames ac turpis egestas.</p>
 <div class="feed-meta">
 <ul class="list-inline">
 About 3 minutes ago
 <i class="fa fa-reply"></i>
Reply
 <i class="fa fa-heart"></i>
Like

 </div>
 </div>
 </div>
</div>

Let's take a closer look at the contents of a single well post in the feed:

• Each well is divided into two-column grid
• The left column holds the user's avatar image
• The right column holds the content of the post
• Within the content section, there is some post metadata at the bottom

Each well comes with some custom styling that we need to add. Let's first start with
the global styles that we need to add to theme.less:

.content-feed h3 {
 margin-top: 0;
 margin-bottom: (@margin - 0.5);
}

The following margin styles tweak the default Bootstrap margins on an <h3> tag to
make them work with our layout:

img.avatar {
 .round-corners;
}

Chapter 7

[263]

Like our main profile avatar, we want each of the post avatars to also have round
corners. However, this image doesn't need to stretch the width of its column, so I've
created a more general .avatar class to apply border-radius:

.feed-meta {
 font-size: (@font-size - 0.25);
}

The preceding style will shrink the font-size of the meta text by 25%:

.feed-meta ul {
 margin-bottom: 0;
}

Finally, I've removed the bottom margin from the meta unordered list so that I don't
have extra spacing on the inside of the well component. Before we can finish this
column, we need to customize the well component.

Customizing the well component
We'll be using the well on multiple pages, so let's create a new Less file named
_well.less and save it in /css/components. Once you've completed that, insert
the following code into the Less file:

.well {
 background: @secondary-background;
 border: none;
 padding: (@padding * 2);
 box-shadow: none;

 .round-corners;
}

Let's take a closer look at what's happening in the Less file:

• I've updated the background color to use our palette
• I've removed the well's border
• I added some more padding to the well
• I've also removed the default box-shadow and added round corners using

the property value of 5px

Bootstrap Social Network

[264]

Now this well component can be used across multiple templates. We will come back
a little later and add an alternate styling option for a different well. Once you've
saved the file, don't forget to import it back into theme.less in the modules section:

@import "components/_well.less";

Adding the third column
The third column of the profile page is similar to the first. It will also use a partial
to make our project more modular. Here's the HTML code:

<div class="col-lg-3">
 <div class="sidebar-right">
 <%- partial("partial/_sidebar-right") %>
 </div>
</div>

I've created another sidebar partial here that we need to fill in. Create a new file
called _sidebar-right.ejs and save it to the /partial directory. Here's the
code for the right sidebar:

<div class="well">
 <h5>Trends</h5>
 <div>
 <p>#Trend1</p>
 <p><small>Pellentesque habitant morbi tristique senectus et
netus et malesuada fames ac turpis egestas.</small></p>
 </div>
 <div>
 <p>#Trend1</p>
 <p><small>Pellentesque habitant morbi tristique senectus et
netus et malesuada fames ac turpis egestas.</small></p>
 </div>
 <div>
 <p>#Trend1</p>
 <p><small>Pellentesque habitant morbi tristique senectus et
netus et malesuada fames ac turpis egestas.</small></p>
 </div>
 <div>
 <p>#Trend1</p>
 <p><small>Pellentesque habitant morbi tristique senectus et
netus et malesuada fames ac turpis egestas.</small></p>
 </div>
</div>
<div class="well">

Chapter 7

[265]

 <h5>Linkage</h5>
 <ul class="list-unstyled">
 About
 Help
 Terms
 Privacy
 Ads
 Apps
 Jobs
 Advertise
 Contact

</div>

The same well component is being used to create a boxed or card-type layout feel
for our profile page. However, there are some custom styles that we need to apply
to these wells. Open up theme.less and insert the following CSS under the layout
section:

.sidebar-right .well div {
 margin-bottom: @margin;
}

I want to space out each <div> element within the well consistently, so I've added
the preceding styling to do this:

.sidebar-right .well div p {
 margin-bottom: 0;
}

Since I've added a margin to the wrapping <div>, I've removed the bottom margin
from any <p> tags in these wells. This is because I don't want extra spacing there:

.sidebar-right h5 {
 font-weight: 700;
 margin-top: 0;
 margin-bottom: (@margin * 1.5);
 color: @heading-text;
}

Finally, I added some custom styling to the <h5> tag that is used for the header in
each well.

Bootstrap Social Network

[266]

Completing the template
The rest of the HTML in the template is basic Bootstrap code. Save the index.ejs file
and the first template is complete! Let's take a look at the entire file together:

<div class="container-fluid">
 <div class="row">
 <!-- left side //-->
 <div class="col-lg-3">
 <div class="sidebar-left">
 <%- partial("partial/_sidebar-left-home") %>
 </div>
 </div>
 <!-- content //-->
 <div class="col-lg-6">
 <div class="content-feed">
 <!-- post //-->
 <div class="well">
 <div class="row">
 <div class="col-lg-2">
 <p><img src="img/avatar1.jpg" width="70" height="70"
class="avatar"></p>
 </div>
 <div class="col-lg-10">
 <h3>Mike Michaels</h3>
 <p>Pellentesque habitant morbi tristique senectus et
netus et malesuada fames ac turpis egestas.</p>
 <div class="feed-meta">
 <ul class="list-inline">
 About 3 minutes ago
 <i class="fa fa-reply"></i>
Reply
 <i class="fa fa-heart"></i>
Like

 </div>
 </div>
 </div>
 </div>
 <!-- post //-->
 <div class="well">
 <div class="row">

Chapter 7

[267]

 <div class="col-lg-2">
 <p><img src="img/avatar2.jpg" width="70" height="70"
class="avatar"></p>
 </div>
 <div class="col-lg-10">
 <h3>John Smith</h3>
 <p>Pellentesque habitant morbi tristique senectus et
netus et malesuada fames ac turpis egestas.</p>
 <div class="feed-meta">
 <ul class="list-inline">
 About 3 minutes ago
 <i class="fa fa-reply"></i>
Reply
 <i class="fa fa-heart"></i>
Like

 </div>
 </div>
 </div>
 </div>
 <!-- post //-->
 <div class="well">
 <div class="row">
 <div class="col-lg-2">
 <p><img src="img/avatar3.jpg" width="70" height="70"
class="avatar"></p>
 </div>
 <div class="col-lg-10">
 <h3>Chris Christopher</h3>
 <p>Pellentesque habitant morbi tristique senectus et
netus et malesuada fames ac turpis egestas.</p>
 <div class="feed-meta">
 <ul class="list-inline">
 About 3 minutes ago
 <i class="fa fa-reply"></i>
Reply
 <i class="fa fa-heart"></i>
Like

 </div>
 </div>
 </div>

Bootstrap Social Network

[268]

 </div>
 <!-- post //-->
 <div class="well">
 <div class="row">
 <div class="col-lg-2">
 <p><img src="img/avatar4.jpg" width="70" height="70"
class="avatar"></p>
 </div>
 <div class="col-lg-10">
 <h3>Matt Matthews</h3>
 <p>Pellentesque habitant morbi tristique senectus et
netus et malesuada fames ac turpis egestas.</p>
 <div class="feed-meta">
 <ul class="list-inline">
 About 3 minutes ago
 <i class="fa fa-reply"></i>
Reply
 <i class="fa fa-heart"></i>
Like

 </div>
 </div>
 </div>
 </div>
 <!-- post //-->
 <div class="well">
 <div class="row">
 <div class="col-lg-2">
 <p><img src="img/avatar5.jpg" width="70" height="70"
class="avatar"></p>
 </div>
 <div class="col-lg-10">
 <h3>John Johnson</h3>
 <p>Pellentesque habitant morbi tristique senectus et
netus et malesuada fames ac turpis egestas.</p>
 <div class="feed-meta">
 <ul class="list-inline">
 About 3 minutes ago
 <i class="fa fa-reply"></i>
Reply
 <i class="fa fa-heart"></i>
Like

Chapter 7

[269]

 </div>
 </div>
 </div>
 </div>
 <div class="center">
 <p><button class="btn btn-primary">Load More
Posts</button></p>
 </div>
 </div>
 </div>
 <!-- right side //-->
 <div class="col-lg-3">
 <div class="sidebar-right">
 <%- partial("partial/_sidebar-right") %>
 </div>
 </div>
 </div>
</div>

Before you move on to the activity feed template, it would be a good idea to compile
your project and make sure that there are no errors. Also make sure you test the first
page in the browser to ensure that it looks good.

Coding the activity feed
The next template in the project that we're going to tackle is the activity feed. This is
the page that you would see when you log in to your account. The main differences
compared to the public profile are the form for posting an update and some changes
to the right sidebar.

Bootstrap Social Network

[270]

Let's see what this page will look like:

Chapter 7

[271]

Customizing the first column
As I mentioned earlier, the first column in this template is going to be different
compared to the public profile. The second left sidebar will be the one used for the
remaining templates as they are all pages that are viewable by the logged-in user
only. Start by creating a new file called _sidebar-left.ejs and save it to the /
partial directory. The top of the sidebar, which includes the avatar and description,
will remain the same. Here's the code again, or you can copy it from the first file:

<div></div>
<h2>John Smith</h2>
<p>Pellentesque habitant morbi tristique senectus et netus et
malesuada fames ac turpis egestas. Vestibulum tortor quam, feugiat
vitae, ultricies eget, tempor sit amet, ante. Donec eu libero sit
amet quam egestas semper. Aenean ultricies mi vitae est. Mauris
placerat eleifend leo.</p>

The new portion of this file is a set of action buttons. These buttons are designed as a
quick way to get to other pages or sections of the social network. Insert the following
HTML after the avatar and description code:

<div>
 <button class="btn btn-primary btn-block"><i class="fa fa-user"></i>
Friends</button>
</div>
<div>
 <button class="btn btn-primary btn-block"><i class="fa fa-bell"></i>
Notifications</button>
</div>
<div>
 <button class="btn btn-primary btn-block"><i class="fa fa-
envelope"></i> Messages</button>
</div>
<div>
 <button class="btn btn-primary btn-block"><i class="fa fa-cog"></i>
Edit Profile</button>
</div>

This is your standard Bootstrap button code. However, note that I'm using the
.btn-block class on each button as I want them to be treated as block elements
that will span the width of the column.

Bootstrap Social Network

[272]

Adding button styles
Since we're using the Bootstrap button component, we need to create a new Less
component file to style its look and feel. Create a new file called _buttons.less
and save it to the /css/components directory. Insert the following code into the
file and save:

.btn-primary {
 background-color: @navy1;
 border-color: @navy1;
}

.btn-primary.active,

.btn-primary.focus,

.btn-primary:active,

.btn-primary:focus,

.btn-primary:hover,

.open > .dropdown-toggle.btn-primary {
 background-color: @navy2;
 border-color: @navy2;
}

I'm only going to customize the .btn-primary button variation. This is because we'll
only be using one button style in the project. All I've done here is changed the colors
to match our palette. Note that I've also included some dropdown classes so that the
navbar dropdown will have the same colors. Once you've saved the file, don't forget
to import it back into theme.less in the modules section:

@import "components/_buttons.less";

Adding the post form
The second main element of the activity feed is the form for posting an update. This
will be inserted at the top of the center column above the feed of updates. The update
list code is the same as that for the public profile, so feel free to paste that in. Next,
you'll want to insert the following code above the feed entries:

<!-- post form //-->
<div class="well alternate">
 <form>
 <div class="form-group">
 <input type="text" class="form-control" placeholder="What's
Up?">
 </div>
 <div class="row">

Chapter 7

[273]

 <div class="col-lg-6">
 <ul class="list-inline">
 <i class="fa fa-camera"></i>
Media
 <i class="fa fa-map-marker"></i>
Location

 </div>
 <div class="col-lg-6">
 <div class="pull-right">
 <button class="btn btn-primary">Post Update</button>
 </div>
 </div>
 </div>
 </form>
</div>

The entire form is wrapped inside a well component. However, note that there is
also a .alternate class on that <div> element. What I've done here is created a
variation of the well with a different look and feel for the form. This will require you
to add some more styles to your well component. Open _well.less again and paste
the following code:

.well.alternate {
 background: @inverse-background;
}

First, I've set the alternate well to use the inverse-background color variable, which
happens to be the navy blue color:

.well.alternate ul.list-inline {
 margin-top: 10px;
 margin-bottom: 0;
}

Next, note the Media and Location links in the form. These are displayed using an
inline list component, and I had to adjust their margins so that they fit perfectly
in the well. These two items also take advantage of using a Font Awesome icon to
improve the design. Finally, we're using our button again and the .pull-right
Bootstrap class to align it on the right within the well.

Bootstrap Social Network

[274]

Adding the new post notification bar
The last element that we need to add to this template is the new post notification bar.
This is the aqua colored bar that appears below the form in the layout. The idea here
is similar to Twitter, where you likely have an Ajax call updating you if there are
new posts to view while you are on this page. We're going to implement this using
the Bootstrap alert component. First of all, insert the following HTML code after the
form you just created:

<div class="alert alert-info">
 <i class="fa fa-arrow-down"></i> View 10 new
posts
</div>

This should be straightforward. We're using the alert-info variation of the
component, which we will style next. Within the alert, there is a link that wraps
another Font Awesome icon and a label indicating how many new posts are available.

Styling the alert bar
Create another Less file called _alert.less and save it to /css/components.
Next, insert the following code into the file and save it:

.alert {
 .round-corners;
 padding: @padding;
}

Let's take a closer look at what's happening with the alert bar:

• I've added our border-radius mixing to normalize the round corners
• I've also added our padding variable so that it is a consistent value

throughout the project:
.alert-info {
 background: @aqua1;
 text-align: center;
 border-color: @aqua1;
 color: @white;
}

Chapter 7

[275]

• I reset the background to use the aqua color from our palette
• I've set the text alignment as center for the entire bar
• I've also set the border color to the same as the background, as I want them

to be the same
• The text color is set to white so that it's easy to read on the aqua background

.alert-info a {
 color: @white;
}

• Any links within the alert bar have also been set to white for consistency

Once you've saved the file, don't forget to import it back into theme.less in the
modules section:

@import "components/_alert.less";

All the templates in this project will use the same partial for the third column. Thus,
you're done with the activity feed template. Compile your code and make sure that
you don't have any errors. If all is good, test the page in the browser. Then, let's start
off with the notifications template. Before we go there, however, here's the code for
the entire activity feed page:

<div class="container-fluid">
 <div class="row">
 <!-- left side //-->
 <div class="col-lg-3">
 <div class="sidebar-left">
 <%- partial("partial/_sidebar-left") %>
 </div>
 </div>
 <!-- content //-->
 <div class="col-lg-6">
 <div class="content-feed">
 <!-- post form //-->
 <div class="well alternate">
 <form>
 <div class="form-group">
 <input type="text" class="form-control"
placeholder="What's Up?">
 </div>

Bootstrap Social Network

[276]

 <div class="row">
 <div class="col-lg-6">
 <ul class="list-inline">
 <i class="fa fa-camera"></i>
Media
 <i class="fa fa-map-marker"></i>
Location

 </div>
 <div class="col-lg-6">
 <div class="pull-right">
 <button class="btn btn-primary">Post
Update</button>
 </div>
 </div>
 </div>
 </form>
 </div>
 <div class="alert alert-info">
 <i class="fa fa-arrow-down"></i> View 10 new
posts
 </div>
 <!-- post //-->
 <div class="well">
 <div class="row">
 <div class="col-lg-2">
 <p><img src="img/avatar1.jpg" width="70" height="70"
class="avatar"></p>
 </div>
 <div class="col-lg-10">
 <h3>Mike Michaels</h3>
 <p>Pellentesque habitant morbi tristique senectus et
netus et malesuada fames ac turpis egestas.</p>
 <div class="feed-meta">
 <ul class="list-inline">
 About 3 minutes ago
 <i class="fa fa-reply"></i>
Reply
 <i class="fa fa-heart"></i>
Like

 </div>
 </div>

Chapter 7

[277]

 </div>
 </div>
 <!-- post //-->
 <div class="well">
 <div class="row">
 <div class="col-lg-2">
 <p><img src="img/avatar2.jpg" width="70" height="70"
class="avatar"></p>
 </div>
 <div class="col-lg-10">
 <h3>John Smith</h3>
 <p>Pellentesque habitant morbi tristique senectus et
netus et malesuada fames ac turpis egestas.</p>
 <div class="feed-meta">
 <ul class="list-inline">
 About 3 minutes ago
 <i class="fa fa-reply"></i>
Reply
 <i class="fa fa-heart"></i>
Like

 </div>
 </div>
 </div>
 </div>
 <!-- post //-->
 <div class="well">
 <div class="row">
 <div class="col-lg-2">
 <p><img src="img/avatar3.jpg" width="70" height="70"
class="avatar"></p>
 </div>
 <div class="col-lg-10">
 <h3>Chris Christopher</h3>
 <p>Pellentesque habitant morbi tristique senectus et
netus et malesuada fames ac turpis egestas.</p>
 <div class="feed-meta">
 <ul class="list-inline">
 About 3 minutes ago
 <i class="fa fa-reply"></i>
Reply
 <i class="fa fa-heart"></i>
Like

Bootstrap Social Network

[278]

 </div>
 </div>
 </div>
 </div>
 <!-- post //-->
 <div class="well">
 <div class="row">
 <div class="col-lg-2">
 <p><img src="img/avatar4.jpg" width="70" height="70"
class="avatar"></p>
 </div>
 <div class="col-lg-10">
 <h3>Matt Matthews</h3>
 <p>Pellentesque habitant morbi tristique senectus et
netus et malesuada fames ac turpis egestas.</p>
 <div class="feed-meta">
 <ul class="list-inline">
 About 3 minutes ago
 <i class="fa fa-reply"></i>
Reply
 <i class="fa fa-heart"></i>
Like

 </div>
 </div>
 </div>
 </div>
 <!-- post //-->
 <div class="well">
 <div class="row">
 <div class="col-lg-2">
 <p><img src="img/avatar5.jpg" width="70" height="70"
class="avatar"></p>
 </div>
 <div class="col-lg-10">
 <h3>John Johnson</h3>
 <p>Pellentesque habitant morbi tristique senectus et
netus et malesuada fames ac turpis egestas.</p>
 <div class="feed-meta">
 <ul class="list-inline">
 About 3 minutes ago

Chapter 7

[279]

 <i class="fa fa-reply"></i>
Reply
 <i class="fa fa-heart"></i>
Like

 </div>
 </div>
 </div>
 </div>
 <div class="center">
 <p><button class="btn btn-primary">Load More
Posts</button></p>
 </div>
 </div>
 </div>
 <!-- right side //-->
 <div class="col-lg-3">
 <div class="sidebar-right">
 <%- partial("partial/_sidebar-right") %>
 </div>
 </div>
 </div>
</div>

Coding the notifications section
The notifications template for the social network is a collection of actions that apply
directly to the user. Here, you might see things such as the confirmation of a new
friend following you, someone who has liked one of your posts, or a public reply to
a post from another user. Like the previous template, we are going to use the same
code for the first column. The main changes will be to the second column, where the
content will change to reflect the types of notifications you might receive.

Bootstrap Social Network

[280]

Before we start, let's see what this page will look like:

Open the notifications.ejs file and insert the partial for the first column. Here's
the code again, just in case you need it:

<!-- left side //-->
<div class="col-lg-3">
 <div class="sidebar-left">
 <%- partial("partial/_sidebar-left") %>
 </div>
</div>

Chapter 7

[281]

Updating the center column
The layout code for this column will not change. However, the content of the column
will be different. The first new part will be the introduction of a page header for this
template. Insert the following code at the top of the column:

<h1 class="page-header">Notifications</h1>

You'll notice that I'm using the Bootstrap .page-header class here. Before we move
on, let's style this component to match our design. Create a new Less file called
_typography.less and save it to /css/components. Then, paste the following code:

.page-header {
 margin-top: 0;
}

h1 {
 font-weight: 300;
 color: @heading-text;
}

.center {
 text-align: center;
}

Let's take a closer look at what's happening with the center column:

• I've removed the top margin from the page-header class, as I want my title
to align horizontally with the top of the avatar.

• I customized the <h1> tag to use the lightweight of our font and applied the
heading-text color variable.

• Lastly, I added a utility centering class that can be used anywhere in the
project. We're not actually using this in the header, but this is a good time
to add it since we're creating the typography Less file.

Save the Less file, and don't forget to import it to theme.less under the modules
section:

@import "components/_typography.less";

Bootstrap Social Network

[282]

Adding an alert bar
As we did with the activity feed, we're going to add a new notification alert bar to
the top of the feed for this page. Insert the following code after the page header:

<div class="alert alert-info">
 <i class="fa fa-bell"></i> 5 New Notifications
</div>

I've swapped in a different Font Awesome icon and label here, but otherwise the
code is the same as that of the previous page.

Adding a notification entry
There are multiple types of notifications that you could have on your social
networking website. However, the code for all of them will be the same, with only
the content changing. Let's check out what one of them will look like, in this case,
when a new friend adds you. Insert the following code after the alert bar:

<!-- notification //-->
<div class="well">
 <div class="row">
 <div class="col-lg-2">
 <img src="img/avatar1.jpg" width="70" height="70"
class="avatar">
 </div>
 <div class="col-lg-10">
 <h3>Mike Michaels</h3>
 <div>Added you as a friend. <small>About 3 minutes
ago</small></div>
 </div>
 </div>
</div>

We're using the same two-column grid here as in the other templates. On the avatar
 tag, I've applied the .avatar class to give the image round corners. Make sure
that you add these styles to theme.less so that the styles are applied:

img.avatar {
 .round-corners;
}

Chapter 7

[283]

The rest of the CSS for this section has been set up in previous templates, so this is
just an exercise of changing the content to be notification-specific. Let's take a look
at the entire page code before we move on to the private messages section:

<div class="container-fluid">
 <div class="row">
 <!-- left side //-->
 <div class="col-lg-3">
 <div class="sidebar-left">
 <%- partial("partial/_sidebar-left") %>
 </div>
 </div>
 <!-- content //-->
 <div class="col-lg-6">
 <div class="content-feed">
 <h1 class="page-header">Notifications</h1>
 <div class="alert alert-info">
 <i class="fa fa-bell"></i> 5 New Notifications
 </div>
 <!-- notification //-->
 <div class="well">
 <div class="row">
 <div class="col-lg-2">
 <img src="img/avatar1.jpg" width="70" height="70"
class="avatar">
 </div>
 <div class="col-lg-10">
 <h3>Mike Michaels</h3>
 <div>Added you as a friend. <small>About 3 minutes
ago</small></div>
 </div>
 </div>
 </div>
 <!-- notification //-->
 <div class="well">
 <div class="row">
 <div class="col-lg-2">
 <img src="img/avatar3.jpg" width="70" height="70"
class="avatar">
 </div>
 <div class="col-lg-10">

Bootstrap Social Network

[284]

 <h3>Chris Christopher</h3>
 <div>Liked your post. <small>About
33 minutes ago</small></div>
 </div>
 </div>
 </div>
 <!-- notification //-->
 <div class="well">
 <div class="row">
 <div class="col-lg-2">
 <img src="img/avatar4.jpg" width="70" height="70"
class="avatar">
 </div>
 <div class="col-lg-10">
 <h3>Matt Matthews</h3>
 <p>"Pellentesque habitant morbi tristique senectus
et netus et malesuada fames ac turpis egestas."</p>
 <div>Replied to your post.
<small>About 56 minutes ago</small></div>
 </div>
 </div>
 </div>
 <!-- notification //-->
 <div class="well">
 <div class="row">
 <div class="col-lg-2">
 <img src="img/avatar5.jpg" width="70" height="70"
class="avatar">
 </div>
 <div class="col-lg-10">
 <h3>John Johnson</h3>
 <div>Added you as a friend. <small>About 2 hours
ago</small></div>
 </div>
 </div>
 </div>
 <!-- notification //-->
 <div class="well">
 <div class="row">
 <div class="col-lg-2">

Chapter 7

[285]

 <img src="img/avatar4.jpg" width="70" height="70"
class="avatar">
 </div>
 <div class="col-lg-10">
 <h3>Matt Matthews</h3>
 <p>"Pellentesque habitant morbi tristique senectus
et netus et malesuada fames ac turpis egestas."</p>
 <div>Replied to your post.
<small>About 2 days ago</small></div>
 </div>
 </div>
 </div>
 <div class="center">
 <p><button class="btn btn-primary">Load Older
Notifications</button>
 </div>
 </div>
 </div>
 <!-- right side //-->
 <div class="col-lg-3">
 <div class="sidebar-right">
 <%- partial("partial/_sidebar-right") %>
 </div>
 </div>
 </div>
</div>

Coding the private messages section
The next page that we are going to tackle is the private messages template. This is
where you would come to send a direct message to one of your friends on the social
network—a message that you want to keep private and hidden from other users. The
left and right sidebars will remain the same; only the content of the center column
will change.

Bootstrap Social Network

[286]

Before we start, let's see what this page will look like:

Chapter 7

[287]

Open the messages.ejs file and paste the page-header code at the top of
the column:

<h1 class="page-header">
 Messages

 <button class="btn btn-primary">New Message</button>

</h1>

Note that in this header, I've added a tag that is right aligned with a button
inside of it. This is the button that a user would click on to start a new message. The
span needs to be nested inside the <h1> tag as it's a block element, but we don't want
to break the button onto a new line.

Adding a conversation
In previous templates, we were happy to have a single entry in a single well
component. For a conversation, however, there may be multiple entries and
we would want to group them all into one well so that the user can see where
conversations start and end. To do this, I've decided to use the Bootstrap media
component. This is a flexible component that can be used to display different types
of content, such as feeds, conversations, and card-type layouts. Let's start by looking
at the code for a single conversation:

<!-- message//-->
<div class="well">
 <div class="media">
 <div class="media-left">

 </div>
 <div class="media-body">
 <h4 class="media-heading">Mike Michaels</h4>
 <p>Pellentesque habitant morbi tristique senectus et netus
et malesuada fames ac turpis egestas. Vestibulum tortor quam,
feugiat vitae, ultricies eget, tempor sit amet, ante. Donec eu
libero sit amet quam egestas semper. Aenean ultricies mi vitae
est. Mauris placerat eleifend leo.</p>
 </div>
 </div>
 <hr />
 <div class="media">
 <div class="media-left">

Bootstrap Social Network

[288]

 </div>
 <div class="media-body">
 <h4 class="media-heading">John Smith</h4>
 <p>Pellentesque habitant morbi tristique senectus et netus
et malesuada fames ac turpis egestas. Vestibulum tortor quam,
feugiat vitae, ultricies eget, tempor sit amet, ante. Donec eu
libero sit amet quam egestas semper. Aenean ultricies mi vitae
est. Mauris placerat eleifend leo.</p>

 <button class="btn btn-primary"><i class="fa fa-reply"></i>
Reply</button>
 <button class="btn btn-danger"><i class="fa fa-trash"></i>
Delete</button>

 </div>
 </div>
</div>

Let's take a closer look at what's happening with the single conversation:

• Note that there is a well component that wraps the entire conversation.
• Each entry or response in the conversation is wrapped into a media

component. In the case of this component, you don't need to use the standard
Bootstrap grid classes; you can simply use the predefined class names.

• At the bottom of the well are some action buttons. They are wrapped in a
 tag with the pull-right class in order to right-align them.

• I'm using the primary button style for the Reply button and the danger
button style as a "delete this conversation" button.

• Each button makes use of a Font Awesome icon to better indicate its
assigned action.

That completes the design of the private messages section. Let's look at all of the
HTML before moving on to the final friends template:

<div class="container-fluid">
 <div class="row">
 <!-- left side //-->
 <div class="col-lg-3">
 <div class="sidebar-left">
 <%- partial("partial/_sidebar-left") %>
 </div>
 </div>
 <!-- content //-->

Chapter 7

[289]

 <div class="col-lg-6">
 <div class="content-feed">
 <h1 class="page-header">
 Messages

 <button class="btn btn-primary">New Message</button>

 </h1>
 <!-- message//-->
 <div class="well">
 <div class="media">
 <div class="media-left">
 <img src="img/avatar1.jpg" class="media-object
avatar">
 </div>
 <div class="media-body">
 <h4 class="media-heading">Mike
Michaels</h4>
 <p>Pellentesque habitant morbi tristique senectus et
netus et malesuada fames ac turpis egestas. Vestibulum tortor
quam, feugiat vitae, ultricies eget, tempor sit amet, ante. Donec
eu libero sit amet quam egestas semper. Aenean ultricies mi vitae
est. Mauris placerat eleifend leo.</p>
 </div>
 </div>
 <hr />
 <div class="media">
 <div class="media-left">
 <img src="img/avatar2.jpg" class="media-object
avatar">
 </div>
 <div class="media-body">
 <h4 class="media-heading">John
Smith</h4>
 <p>Pellentesque habitant morbi tristique senectus et
netus et malesuada fames ac turpis egestas. Vestibulum tortor
quam, feugiat vitae, ultricies eget, tempor sit amet, ante. Donec
eu libero sit amet quam egestas semper. Aenean ultricies mi vitae
est. Mauris placerat eleifend leo.</p>

 <button class="btn btn-primary"><i class="fa fa-
reply"></i> Reply</button>
 <button class="btn btn-danger"><i class="fa fa-
trash"></i> Delete</button>

Bootstrap Social Network

[290]

 </div>
 </div>
 </div>
 <!-- message//-->
 <div class="well">
 <div class="media">
 <div class="media-left">
 <img src="img/avatar3.jpg" class="media-object
avatar">
 </div>
 <div class="media-body">
 <h4 class="media-heading">Chris
Christopher</h4>
 <p>Pellentesque habitant morbi tristique senectus et
netus et malesuada fames ac turpis egestas. Vestibulum tortor
quam, feugiat vitae, ultricies eget, tempor sit amet, ante. Donec
eu libero sit amet quam egestas semper. Aenean ultricies mi vitae
est. Mauris placerat eleifend leo.</p>
 </div>
 </div>
 <hr />
 <div class="media">
 <div class="media-left">
 <img src="img/avatar2.jpg" class="media-object
avatar">
 </div>
 <div class="media-body">
 <h4 class="media-heading">John
Smith</h4>
 <p>Pellentesque habitant morbi tristique senectus et
netus et malesuada fames ac turpis egestas. Vestibulum tortor quam,
feugiat vitae, ultricies eget, tempor sit amet, ante. Donec
eu libero sit amet quam egestas semper. Aenean ultricies mi vitae
est. Mauris placerat eleifend leo.</p>
 </div>
 </div>
 <hr />
 <div class="media">
 <div class="media-left">
 <img src="img/avatar3.jpg" class="media-object
avatar">
 </div>
 <div class="media-body">
 <h4 class="media-heading">Chris
Christopher</h4>

Chapter 7

[291]

 <p>Pellentesque habitant morbi tristique senectus et
netus et malesuada fames ac turpis egestas. Vestibulum tortor
quam, feugiat vitae, ultricies eget, tempor sit amet, ante. Donec
eu libero sit amet quam egestas semper. Aenean ultricies mi vitae
est. Mauris placerat eleifend leo.</p>
 </div>
 </div>
 <hr />
 <div class="media">
 <div class="media-left">
 <img src="img/avatar2.jpg" class="media-object
avatar">
 </div>
 <div class="media-body">
 <h4 class="media-heading">John
Smith</h4>
 <p>Pellentesque habitant morbi tristique senectus et
netus et malesuada fames ac turpis egestas. Vestibulum tortor
quam, feugiat vitae, ultricies eget, tempor sit amet, ante. Donec
eu libero sit amet quam egestas semper. Aenean ultricies mi vitae
est. Mauris placerat eleifend leo.</p>

 <button class="btn btn-primary"><i class="fa fa-
reply"></i> Reply</button>
 <button class="btn btn-danger"><i class="fa fa-
trash"></i> Delete</button>

 </div>
 </div>
 </div>
 <div class="center">
 <p><button class="btn btn-primary">Load Older
Messages</button>
 </div>
 </div>
 </div>
 <!-- right side //-->
 <div class="col-lg-3">
 <div class="sidebar-right">
 <%- partial("partial/_sidebar-right") %>
 </div>
 </div>
 </div>
</div>

Bootstrap Social Network

[292]

Coding the friends section
Time to start the final template of this project and the book! The last page that we'll
cover is a friends page for our social networking website. It will include a list of all
our friends, their bios or descriptions, and a way to delete them:

Chapter 7

[293]

Like the previous templates, the left and right sidebars won't be changed for this one.
We'll only need to edit the middle column, so open up friends.ejs and insert this
page-header code at the top of the column:

<h1 class="page-header">
 Friends
 <small>134 Friends</small>
</h1>

I'm using the same pattern here as that of the other page headers. But within the
 tag on this <h1> tag, we are going to use the <small> tag to indicate the
number of friends the user has. A <small> tag with a header tag in Bootstrap
provides some built-in styles you can take advantage of.

Adding a friend entry
As in the previous templates, let's dissect a single friend entry and figure out how
it's built. Insert the following code below the page-header in the center column:

<!-- friend //-->
<div class="well">
 <div class="row">
 <div class="col-lg-2">
 <img src="img/avatar1.jpg" width="70" height="70"
class="avatar">
 </div>
 <div class="col-lg-10">
 <h3>
 Mike Michaels

 <button class="btn btn-danger btn-xs"><i class="fa fa-
trash"></i></button>

 </h3>
 Pellentesque habitant morbi tristique senectus et netus et
malesuada fames ac turpis egestas. Vestibulum tortor quam, feugiat
vitae, ultricies eget, tempor sit amet, ante. Donec eu libero sit
amet quam egestas semper. Aenean ultricies mi vitae est. Mauris
placerat eleifend leo.
 </div>
 </div>
</div>

Bootstrap Social Network

[294]

Let's take a closer look at how a friend entry is built:

• We're back to using our regular Bootstrap grid column classes again.
No need to use the media component here!

• The entire entry is wrapped in a well component.
• At the top of the right-hand-side column, I've inserted a with the

pull-right class again. This time, it includes a button with a Font Awesome
trash icon. The idea here is that clicking on this button would delete the
friend from your list.

• The remaining content in the right-hand-side column is the friend's name,
with a link to their profile and the description that appears on their profile.

This template should be really easy to understand and code. Before we finish this,
let's take a look at the code for the entire page:

<div class="container-fluid">
 <div class="row">
 <!-- left side //-->
 <div class="col-lg-3">
 <div class="sidebar-left">
 <%- partial("partial/_sidebar-left") %>
 </div>
 </div>
 <!-- content //-->
 <div class="col-lg-6">
 <div class="content-feed">
 <h1 class="page-header">
 Friends
 <small>134
Friends</small>
 </h1>
 <!-- friend //-->
 <div class="well">
 <div class="row">
 <div class="col-lg-2">
 <img src="img/avatar1.jpg" width="70" height="70"
class="avatar">
 </div>
 <div class="col-lg-10">
 <h3>
 Mike Michaels

Chapter 7

[295]

 <button class="btn btn-danger btn-xs"><i
class="fa fa-trash"></i></button>

 </h3>
 Pellentesque habitant morbi tristique senectus et
netus et malesuada fames ac turpis egestas. Vestibulum tortor
quam, feugiat vitae, ultricies eget, tempor sit amet, ante. Donec
eu libero sit amet quam egestas semper. Aenean ultricies mi vitae
est. Mauris placerat eleifend leo.
 </div>
 </div>
 </div>
 <!-- friend //-->
 <div class="well">
 <div class="row">
 <div class="col-lg-2">
 <img src="img/avatar3.jpg" width="70" height="70"
class="avatar">
 </div>
 <div class="col-lg-10">
 <h3>
 Chris Christopher

 <button class="btn btn-danger btn-xs"><i
class="fa fa-trash"></i></button>

 </h3>
 Pellentesque habitant morbi tristique senectus et
netus et malesuada fames ac turpis egestas. Vestibulum tortor
quam, feugiat vitae, ultricies eget, tempor sit amet, ante. Donec
eu libero sit amet quam egestas semper. Aenean ultricies mi vitae
est. Mauris placerat eleifend leo.
 </div>
 </div>
 </div>
 <!-- friend //-->
 <div class="well">
 <div class="row">
 <div class="col-lg-2">
 <img src="img/avatar4.jpg" width="70" height="70"
class="avatar">
 </div>
 <div class="col-lg-10">
 <h3>
 Matt Matthews

Bootstrap Social Network

[296]

 <button class="btn btn-danger btn-xs"><i
class="fa fa-trash"></i></button>

 </h3>
 Pellentesque habitant morbi tristique senectus et
netus et malesuada fames ac turpis egestas. Vestibulum tortor
quam, feugiat vitae, ultricies eget, tempor sit amet, ante. Donec
eu libero sit amet quam egestas semper. Aenean ultricies mi vitae
est. Mauris placerat eleifend leo.
 </div>
 </div>
 </div>
 <!-- friend //-->
 <div class="well">
 <div class="row">
 <div class="col-lg-2">
 <img src="img/avatar5.jpg" width="70" height="70"
class="avatar">
 </div>
 <div class="col-lg-10">
 <h3>
 John Johnson

 <button class="btn btn-danger btn-xs"><i
class="fa fa-trash"></i></button>

 </h3>
 Pellentesque habitant morbi tristique senectus et
netus et malesuada fames ac turpis egestas. Vestibulum tortor
quam, feugiat vitae, ultricies eget, tempor sit amet, ante. Donec
eu libero sit amet quam egestas semper. Aenean ultricies mi vitae
est. Mauris placerat eleifend leo.
 </div>
 </div>
 </div>
 <div class="center">
 <p><button class="btn btn-primary">Load More
Friends</button>
 </div>
 </div>
 </div>
 <!-- right side //-->

Chapter 7

[297]

 <div class="col-lg-3">
 <div class="sidebar-right">
 <%- partial("partial/_sidebar-right") %>
 </div>
 </div>
 </div>
</div>

Summary
That brings the seventh and final chapter to a close. Thanks for reading this book! We
just covered how to design and code your own social network site using Bootstrap.
Let's review what you learned: how to code a social network using Bootstrap; how
to customize the Bootstrap well component, navbar component, and alert and
button components; and how to create a highly modular design for easy reuse of
code and components.

[299]

Index
A
About modal 104-106
About page, restaurant website

about 51
About text, inserting 54, 55
address, adding 53
feature image, modifying 52
large subtitle, setting up 52
layout, reviewing 54
modal 55, 56
project, recompiling 57
social media icons, adding 53

activity feed, social networking site
alert bar, styling 274
button styles, adding 272
coding 269
first column, customizing 271
new post notification bar, adding 274
post form, adding 272, 273

advertisement section, Bootstrap magazine
website

adding 184
animations 19
article page template

about 149, 150
article page body, coding 150, 151
body content, adding 151-153

article template, Bootstrap magazine
 website

article content, adding 196
article metadata, adding 196
article title, adding 195
coding 194, 195
comment section, adding 197

custom article layout, creating 197
Disqus content component, adding 198-200
trigger button, adding 198

B
background colors 124
boilerplate project

_data.json, setting up 8
_harp.json, setting up 8
compiling, for first time 13
CSS, setting up 6
fonts, setting up 7
footer, setting up 12, 13
header, setting up 11, 12
JavaScript, setting up 7
layout, setting up 9
local server, running 13
partials, setting up 7
reference link 4
setting up 4, 5
variables, inserting 10

Bootstrap
about 1, 75
references 6, 256

Bootstrap dashboard
about 203
footer, coding 210
footer, updating 214, 215
header, coding 210
header, updating 210-212
Less variables, setting up 207
navbar component, customizing 212-214
template, customizing 205

[300]

Bootstrap dashboard, coding
about 215
button, adding 232
button component, customizing 233
chart CSS, updating 236, 237
chart JavaScript, updating 235, 236
content section, creating 218
danger panel, reviewing 229
HTML, adding for line chart 234, 235
layout, setting up 215
Less component, creating for charts 224
line chart, inserting 233
mobile considerations 243
nav pills component, customizing 217, 218
panels HTML, writing 230, 231
pie chart HTML, writing 220
pie chart JavaScript, writing 221-223
sidebar, creating 216, 217
success panel, reviewing 227, 228
table component, customizing 231, 232
typography, customizing 219
widgets HTML, writing 225, 226
widgets section, setting up 225

Bootstrap magazine website
about 169
advertisement section, coding 184
article template, coding 194, 195
bottom of footer, coding 186-188
button styles, updating 184
filters, adding 178
first two columns, adding 182
footer, coding 177
footer, updating 181
form Less component, adding 180
header, coding 177
home page, coding 188
Less variable, setting up 173
logo, inserting 177
newsletter form, adding 183
pagination section, adding 191
post grid, creating with flexbox 189-191
search field, adding 179
template, customizing 171
top section of footer, coding 181
well styles, updating 185

brand, social networking site
inserting 253

button styles, Bootstrap magazine website
adding 184

C
Chartist

about 220
references 205, 220

colors
adding 123
background colors 124
link and border colors 124
text colors 124

Contact modal 107-109
Contact page, restaurant website

about 68
body of page, setting up 71
Google Map code, inserting 70
Google Map, inserting 70
reservation modal 72

custom button styles
adding 130, 131

custom well styles
adding 131

D
development environment

building 28
creating 3

E
Embedded JavaScript (EJS) 6

F
feed

pagination, adding for 101
feed header

adding 98, 99
feed section

about 96-98
feed count, adding 102
next button, adding 102

[301]

filters, Bootstrap magazine website
adding 178

Font Awesome
reference link 7

footer
updating 127

footer, Bootstrap dashboard
coding 210
updating 214, 215

footer, Bootstrap magazine website
bottom, coding 186-188
coding 177
updating 181

footer, restaurant website
footer layout 37-39
setting up 37

footer, social networking site
coding 252
updating 257, 258

form Less component, Bootstrap magazine
website

adding 180
friends section, social networking site

coding 292, 293
friend entry, adding 293, 294

G
Google Map

URL 70

H
Harp 2
Harp.js

about 2
installing 3
reference link 2

Harp metadata
reference link 8

header
coding 127, 128
updating 127

header, Bootstrap dashboard
coding 210
updating 210-212

header, Bootstrap magazine website
coding 177
updating 177

header nav
coding 129

header, restaurant website
updating 31, 32

header search
finishing off 132

header search bar
coding 130

header, social networking site
coding 252
updating 252

home page, Bootstrap magazine website
coding 188

home page feed
coding 143-146

home page, restaurant website
about 40
about text, adding 42
food tiles, setting up 43
primary header image, adding 41
review carousel, adding 44-47

I
icon navigation, social networking site

setting up 254, 255
index page

setting up 96
installation, Harp.js 3
installation, Node.js 3

L
layout, restaurant website

expanding 28
Google Web Fonts, adding 29

Less
background variables, inserting 16
border radius, defining 18, 19
borders, defining 17
color variables, inserting 15
configuring 14
layout variables, defining 18
link colors, defining 16
mixins, defining 18

[302]

text colors, defining 16
typography, setting up 18

Less variables
defining 15
setting up 123

Less variables, Bootstrap dashboard
about 207
background colors 207
border colors 208
link colors 207
text colors 207
typography 208

Less variables, Bootstrap magazine website
background color variables, updating 173
border radius 174
borders 174
link colors 173
setting up 173
text color variables, updating 173
typography 174

Less variables, restaurant website
backgrounds 31
links 31
updating 30

Less variables, social networking site
about 249
background colors 249
border colors 249
border radius 250
link colors 249
text colors 249
typography 250

link and border colors 124
Login modal 110, 111
logo, Bootstrap magazine website

inserting 177

M
material design color palettes

reference link 80
Menu page, restaurant website

.page-header class, customizing 60
about 59, 60
featured modal, adding 62-64
layout, setting up 60, 61
multiple modals 65

mobile first aggregator website template
about 75-78
filters section 90-93
footer, setting up 94, 95
header, setting up 83, 84
JavaScript to _layout.ejs, adding 78
Less variables, updating 80
modal triggers 85-87
navbar, adding 84, 85
search bar 88, 89
search bar jQuery 90
setting up 78
text colors, updating 80-83
web font, adding 78

mobile-specific styles, social networking
site

adding 256, 257
mobile-specific styling 165, 166

N
navbar component, Bootstrap dashboard

customizing 212-214
navbar Less file, social networking site

creating 253, 254
navigation modal

adding 134-136
footer, adding 136-139

navigation, restaurant website
setting up 34

newsletter form, Bootstrap magazine
website

adding 183
Node.js

download link 3
installing 3

notifications section, social networking site
alert bar, adding 282
center column, updating 281
coding 279, 280
notification entry, adding 282

P
page title, restaurant website

setting up 33
pagination

adding, for feed 101

[303]

pagination section, Bootstrap magazine
website

adding 191
posts section 99-101
private messages section, social networking

site
about 285-287
conversation, adding 287, 288

profile page, social networking site
avatar, adding 259
coding 258
content column, adding 261, 262
description, adding 260
left sidebar, setting up 259
name, adding 260
template, finishing 266, 269
third column, adding 264, 265
well component, customizing 263, 264

Profile template
about 160
avatar, adding 161, 162

R
reservations modal, restaurant website

setting up 35-37
restaurant website

About page 51
Contact page 68
footer, setting up 37
header, updating 31, 32
home page 40
layout, expanding 28
Less variables, updating 30
Menu page 59, 60
navigation, setting up 34
pages, adding 28
page title, setting up 33
reservations modal, setting up 35-37

Roboto 78
rounder corner 125

S
search bar, social networking site

adding 255
search field, Bootstrap magazine website

adding 179

search results page template
about 154, 155
page title, updating 155
post-meta class, updating 155
search posts, adding 155
search sidebar, coding 156-159

sidebar, of web app 103, 104
single page apps 95
SMACSS

base rules 20
base, setting up 21, 22
layout rules 20
layout, setting up 22
module rules 20
modules, setting up 22-24
overview 20
state rules 20
states, setting up 24
theme.less, finishing up 25
theme rules 20, 21
theme, setting up 24, 25

social networking site
about 245
activity feed, coding 269
brand, inserting 253
footer, coding 252
footer, updating 257, 258
friends section, coding 292, 293
header, coding 252
header, updating 252
icon navigation, setting up 254, 255
Less variables, setting up 249
mobile-specific styles, adding 256, 257
navbar Less file, creating 253, 254
notifications section, coding 279, 280
private messages section, coding 285-287
profile page, coding 258
search bar, adding 255
template, customizing 247
utility drop-down, adding 256

T
template

_layout.ejs, updating 121
customizing 121
new partial, adding 122

[304]

template customization, Bootstrap
dashboard

_layout.ejs, updating 205, 206
about 205

template customization, Bootstrap magazine
website

_layout.ejs, updating 171
about 171

template customization, social networking
site

_layout.ejs, updating 247, 248
about 247

text colors 124
theme

setting up 19
theming 2
transitions 19
typography 125

U
ultra-bold font option 33
utility drop-down menu, social networking

site
adding 256

W
well styles, Bootstrap magazine website

updating 185

Thank you for buying
Bootstrap Site Blueprints Volume II

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Bootstrap Site Blueprints
ISBN: 978-1-78216-452-4 Paperback: 304 pages

Design mobile-first responsive websites with
Bootstrap 3

1. Learn the inner workings of Bootstrap 3 and
create web applications with ease.

2. Quickly customize your designs working
directly with Bootstrap's LESS files.

3. Leverage Bootstrap's excellent JavaScript
plugins.

Extending Bootstrap
ISBN: 978-1-78216-841-6 Paperback: 88 pages

Understand Bootstrap and unlock its secrets to build
a truly customized project!

1. Learn to use themes to improve your user
experience.

2. Improve your workflow with LESS and
Grunt.js.

3. Get to know the most useful third- party
Bootstrap plugins.

Please check www.PacktPub.com for information on our titles

Mobile First Bootstrap
ISBN: 978-1-78328-579-2 Paperback: 92 pages

Develop advanced websites optimized for mobile
devices using the Mobile First feature of Bootstrap

1. Get to grips with the essentials of mobile-first
development with Bootstrap.

2. Understand the entire process of building
a mobile-first website with Bootstrap from
scratch.

3. Packed with screenshots that help guide you
through how to build an appealing website
from a mobile-first perspective with the help
of a real-world example.

Bootstrap for ASP.NET MVC
ISBN: 978-1-78398-728-3 Paperback: 198 pages

Incorporate Bootstrap into your ASP.NET MVC
projects and make your websites more user friendly
and dynamic.

1. Grasp the intricacies of Bootstrap and how
to use it with ASP.NET MVC.

2. Build your own tools and helpers to assist
you in creating ASP.NET MVC Bootstrap sites
in an easy and fast way.

3. Master the use of Bootstrap components and
plugins with ASP.NET MVC.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Advanced Bootstrap Development Tools
	Theming is hard!@
	Harp.js – the static web server with
built-in preprocessing
	Creating a development environment
	Installing Node.js
	Installing Harp.js

	Setting up a boilerplate project
	Setting up the CSS
	Setting up the fonts
	Setting up the JavaScript
	Setting up the partials
	Setting up _harp.json
	Configuring _data.json
	Setting up the layout
	Inserting the variables
	Setting up the header
	Setting up the footer
	Compiling for the first time
	Running the local server

	Configuring Less
	Defining your Less variables
	Colors
	Backgrounds
	Text
	Links
	Borders
	Typography
	Layout
	Mixins
	Border radius
	Animations and transitions
	Setting up your theme

	SMACSS overview
	Base rules
	Layout rules
	Module rules
	State rules
	Theme rules
	Setting up the base
	Setting up the layout
	Setting up the modules
	Setting up the states
	Setting up the theme
	Finishing up theme.less

	Summary

	Chapter 2: Building a Restaurant Website
	Building our development environment
	Adding more pages
	Expanding the layout
	Adding Google Web Fonts

	Updating the Less variables
	Backgrounds
	Links

	Updating the header
	Setting up the page title
	Setting up the navigation
	Setting up the reservations modal
	Setting up the footer
	The footer layout

	Home page
	Adding the primary header image
	Adding the about text to the home page
	Setting up the food tiles
	Adding the review carousel

	The About page
	Changing the feature image
	Setting up the large subtitle
	Adding the social media icons
	Adding the address
	Reviewing the layout
	Inserting the About text
	Don't forget the modal
	Recompiling your project

	The Menu page
	Customizing the .page-header class
	Setting up the layout
	Adding the featured modal
	Multiple modals

	The Contact page
	Inserting the Google Map
	Inserting the Google Map code

	Setting up the body of the page
	The reservation modal

	Summary

	Chapter 3: Mobile First Bootstrap
	Setting up the template
	Adding a new web font
	Adding the JavaScript to _layout.ejs
	Updating the Less variables
	Updating the text colors
	Setting up the header
	Navbar
	Modal triggers
	Search bar
	Search bar jQuery
	Filters
	Setting up the footer

	Single page apps
	Setting up the index page
	Feed
	Adding the feed header
	Filling in the posts section
	Adding pagination to the feed
	Adding the feed count and the next button
	Sidebar
	About modal
	The Contact modal
	Login modal

	Summary

	Chapter 4: Bootstrap Wiki
	Customizing the template
	Updating _layout.ejs
	Adding a new partial

	Setting up the Less variables
	Adding new colors
	Background colors
	Text colors
	Link and border colors
	Typography
	Rounder corners

	Updating the header and footer
	Coding the header
	Coding the header nav
	Coding the header search bar
	Adding custom button styles
	Adding custom well styles
	Finishing off the header search

	Adding the navigation modal
	Adding the footer

	Coding the homepage
	Setting up the page title section
	Setting up the type styles
	Coding the page body
	Coding the sidebar
	Coding the home page feed

	The article page template
	Coding the article page body
	Adding the body content

	The search results page template
	Updating the page title
	Updating the post-meta class
	Adding search posts
	Coding the search sidebar

	The Profile template
	Adding an avatar

	Mobile-specific styling
	Summary

	Chapter 5: Bootstrap News Magazine
	Customizing the template
	Updating _layout.ejs

	Setting up the Less variables
	Background colors
	Text colors
	Link colors
	Borders
	Typography
	Border radius

	Coding the header and footer
	Updating the header
	Inserting the logo
	Adding the filters
	Adding the search field
	Adding the form Less component
	Updating the footer
	Coding the top of the footer
	Adding the first two columns
	Adding the newsletter form
	Updating the button styles
	Coding the advertisement section
	Updating the well styles
	Coding the bottom of the footer

	Coding the home page
	Creating a post grid with flexbox
	Adding the pagination section

	Coding the article template
	Adding the article title
	Adding the article metadata
	Adding the article content
	Adding the comment section
	Creating the custom article layout
	Adding the trigger button
	Adding the Disqus content component

	Summary

	Chapter 6: Bootstrap Dashboard
	Customizing the template
	Updating _layout.ejs

	Setting up the Less variables
	Background colors
	Text colors
	Link colors
	Borders
	Typography

	Coding the header and footer
	Updating the header
	Customizing the navbar component
	Updating the footer

	Coding the dashboard
	Setting up the layout
	Creating the sidebar
	Customizing the nav pills component
	Creating the content section
	Customizing the typography
	Writing the pie chart HTML
	Writing the pie chart JavaScript
	Creating a Less component for the charts
	Setting up the widgets section
	Writing the widgets HTML
	Reviewing the success panel
	Reviewing the danger panel
	Writing the panels HTML
	Customizing the table component
	Adding the button
	Customizing the button component
	Inserting a line chart
	Adding the HTML for the line chart
	Updating the chart JavaScript
	Updating the chart CSS
	Mobile considerations

	Summary

	Chapter 7: Bootstrap Social Network
	Customizing the template
	Updating _layout.ejs

	Setting up the Less variables
	Background colors
	Text colors
	Link colors
	Border colors
	Typography
	Border radius

	Coding the header and footer
	Updating the header
	Inserting the brand
	Creating the navbar Less file
	Setting up the icon navigation
	Adding the search bar
	Adding the utility drop-down menu
	Adding some mobile-specific styles
	Updating the footer

	Coding the profile page
	Setting up the left sidebar
	Adding the avatar
	Adding the name and description
	Adding the content column
	Customizing the well component
	Adding the third column
	Completing the template

	Coding the activity feed
	Customizing the first column
	Adding button styles
	Adding the post form
	Adding the new post notification bar
	Styling the alert bar

	Coding the notifications section
	Updating the center column
	Adding an alert bar
	Adding a notification entry

	Coding the private messages section
	Adding a conversation

	Coding the friends section
	Adding a friend entry

	Summary

	Index

