

Build	watchOS	Apps
Develop	and	Design

Mark	Goody
Maurice	Kelly

WWW.PEACHPIT.COM

http://WWW.PEACHPIT.COM

Build	watchOS	Apps:	Develop	and	Design
Mark	Goody	and	Maurice	Kelly

Peachpit	Press
www.peachpit.com
To	report	errors,	please	send	a	note	to	errata@peachpit.com.
Peachpit	Press	is	a	division	of	Pearson	Education.

Copyright	©	2016	by	Mark	Goody	and	Maurice	Kelly

Editor:	Connie	Jeung-Mills
Production	editors:	Maureen	Forys	and	Lisa	Brazieal
Development	editor:	Robyn	G.	Thomas
Compositor:	Kim	Scott,	Bumpy	Design
Technical	editor:	Stepan	Hruda
Copyeditor:	Scout	Festa
Proofreader:	Liz	Welch
Indexer:	James	Minkin
Cover	design:	Mimi	Heft
Interior	Design:	Mimi	Heft

Notice	of	Rights

All	rights	reserved.	No	part	of	this	book	may	be	reproduced	or	transmitted	in	any	form	by
any	means,	electronic,	mechanical,	photocopying,	recording,	or	otherwise,	without	the
prior	written	permission	of	the	publisher.	For	information	on	getting	permission	for
reprints	and	excerpts,	contact	permissions@peachpit.com.

Notice	of	Liability

The	information	in	this	book	is	distributed	on	an	“As	Is”	basis,	without	warranty.	While
every	precaution	has	been	taken	in	the	preparation	of	the	book,	neither	the	author	nor
Peachpit	shall	have	any	liability	to	any	person	or	entity	with	respect	to	any	loss	or	damage
caused	or	alleged	to	be	caused	directly	or	indirectly	by	the	instructions	contained	in	this
book	or	by	the	computer	software	and	hardware	products	described	in	it.

Trademarks

Apple,	Objective-C,	OS	X,	iOS,	watchOS,	Swift,	CocoaTouch,	and	Xcode	are	registered
trademarks	of	Apple	Inc.,	registered	in	the	U.S.	and	other	countries.	Many	of	the
designations	used	by	manufacturers	and	sellers	to	distinguish	their	products	are	claimed	as
trademarks.	Where	those	designations	appear	in	this	book,	and	Peachpit	was	aware	of	a
trademark	claim,	the	designations	appear	as	requested	by	the	owner	of	the	trademark.	All
other	product	names	and	services	identified	throughout	this	book	are	used	in	editorial
fashion	only	and	for	the	benefit	of	such	companies	with	no	intention	of	infringement	of
the	trademark.	No	such	use,	or	the	use	of	any	trade	name,	is	intended	to	convey
endorsement	or	other	affiliation	with	this	book.

ISBN-13:	978-0-13-417517-1
ISBN-10:								0-13-417517-4

http://www.peachpit.com
mailto:errata@peachpit.com
mailto:permissions@peachpit.com

9	8	7	6	5	4	3	2	1

Printed	and	bound	in	the	United	States	of	America

To	my	darling	wife,	Rebecca,	and	our	sons,
Reuben	and	Joel,	who	give	us	so	much	joy.	Thank	you	for	your	love,	patience,

and	support	as	I	kept	disappearing	to	“work	on	the	book”	at	what
turned	out	to	be	a	particularly	busy	time	in	our	family’s	life.

The	three	of	you	are	my	world.
—Mark	Goody

I	am	ever	grateful	once	more	to	my	beautiful	wife,	Fiona,
who	showed	me	so	much	support	in	getting	through	another

one	of	these	books,	and	for	giving	us	our	sensitive	angel	Aoibhínn,
and	our	cheeky	little	monkey	Caoimhe.

—Maurice	Kelly

Acknowledgments

We	would	like	to	thank	the	engineering	management	chain	at	our	employers,	ShopKeep
Inc.,	particularly	Joshua	Vickery,	Duncan	Grazier,	Jason	Ordway,	and	Miriam	Kerbache.
They	supported	this	endeavor	by	giving	us	the	permission	and	space	to	work	on	it,	and	by
giving	us	an	enjoyable	and	progressive	engineering	environment	to	return	to.	They	also
gave	us	access	to	Stepan	Hruda,	one	of	the	most	awesome	engineers	we’ve	worked	with
and	a	fearsome	force	when	it	comes	to	reviewing	code	as	our	tech	editor.	We	also	can’t
forget	our	fellow	iOS	engineers	in	ShopKeep:	Robert	and	Team	Charlie	(Kieran,	Wes,
Zack,	and	Jordan)	in	Belfast,	as	well	as	James	and	Gabe	in	New	York	City.	You	all	make
us	much	better	developers.

Once	again,	we	have	had	the	utmost	pleasure	in	working	with	Robyn	Thomas	on	this
book.	This	time,	we	ganged	up	on	Robyn	and	tried	to	force	the	UK/US	English	matter,	but
she	along	with	our	copyeditor,	Scout	Festa,	held	firm.	We	sympathise	greatly	with	them.

This	time	around,	we	had	a	new	project	editor:	Connie	Jeung-Mills.	We’re	very	pleased
to	have	had	the	opportunity	to	work	with	Connie	and	extremely	grateful	that	she	was	able
to	wrangle	us	some	more	pages	when	we	couldn’t	stick	to	our	page	budget.	Thanks	also	to
Clifford	Colby	for	starting	the	project	off	(twice,	actually);	we	miss	you	in	our	weekly
conference	calls,	though	you	still	owe	Robyn	an	Apple	Watch.

About	the	Authors

Mark	Goody	spends	most	of	his	time	writing	software,	concentrating	on	Apple	platforms
—though	he	can	be	tempted	to	experiment	with	most	things.	He	lives	just	outside	Belfast,
Northern	Ireland,	with	his	wife	and	two	sons.	They	look	after	him	by	making	sure	he
remembers	to	step	away	from	his	computer	from	time	to	time.	Mark	blogs	sporadically	at
marramgrass.org.uk	and	more	reliably	tweets	as	@marramgrass.

Maurice	Kelly	has	been	engineering	software	since	leaving	university	in	2001.	After
spending	many	years	working	on	server	software	for	mobile	telecoms,	he	took	a	change	of
direction	to	work	at	the	user-facing	end	by	becoming	an	iOS	developer.	He	has	a	love	for
synthesizers	and	music,	and	still	dreams	of	owning	a	Land	Rover	Defender	someday.	He
lives	with	his	wife	and	children	just	outside	Dromara,	a	small	village	in	Northern	Ireland.

http://marramgrass.org.uk

Contents

Introduction

Welcome	to	watchOS

Part	I	Getting	Started

CHAPTER	1	CREATING	A	WATCHKIT	PROJECT

Lifelong	Companions

Adding	Code	to	Your	WatchKit	App

Updating	the	Watch	Interface

Writing	Code	for	the	Watch	App

“I’m	Sorry,	But	I	Don’t	Have	a	Watch”

What	Do	You	Want	to	Test?

Trying	Out	HelloWrist!

Wrapping	Up

CHAPTER	2	ANATOMY	OF	A	WATCHOS	APP

Apps	and	Extensions

What	Is	a	WatchKit	App?

What	Is	a	WatchKit	Extension?

Why	Do	We	Need	This	Convoluted	System?

WatchKit	App	Project	Layout

Creating	WatchKit	Apps	and	Extensions

Using	Project	Templates

Using	Target	Templates

Using	Old-School	Techniques

Wrapping	Up

CHAPTER	3	IMPLEMENTING	NAVIGATION

Navigating	the	Apple	Watch

Navigation	Types

Page-based	Navigation

Hierarchical	Navigation

The	WKInterfaceController

The	Circle	of	Life

Supporting	Navigation

The	Context	Menu

And	So	Much	More

Wrapping	Up

CHAPTER	4	EXPLORING	CONTROLS

House	Rules

WatchKit	Controls

Simple	Display	Controls

Interactive	Controls

Structural	Controls

User	Input

Wrapping	Up

Part	II	Creating	Apps

CHAPTER	5	DESIGNING	YOUR	APP’S	USER	INTERFACE

Thinking	About	Design

Meeting	the	Challenge

“Phenomenal	Cosmic	Power,	Itty-Bitty	Living	Space”

Tap	Targets,	Fat	Fingers,	and	Small	Screens

Bringing	a	Little	Color

Be	Prepared

Gesture	and	Touch

Wrapping	Up

CHAPTER	6	BUILDING	YOUR	APP’S	USER	INTERFACE

Laying	Out	the	User	Interface

Grouping	Interface	Objects	Together

Handling	the	Different	Screen	Sizes

Images	and	Animation

Content	vs.	Chrome

Getting	Images	onto	the	Watch

Displaying	Images

Controlling	Animation

Picker-Linked	Animation

The	Settings	Interface

Accessibility

Why	Accessibility?

Dynamic	Type

VoiceOver

Wrapping	Up

CHAPTER	7	WORKING	WITH	COMPLICATIONS

Introducing	Complications

Timelines	and	Time	Travel

Complicated	Arrangements

Adding	Complications

Including	a	Complication	in	a	New	App

Adding	a	Complication	to	an	Existing	App

Including	Image	Assets

ClockKit

Timeline	Settings

Complication	Timeline	Entries

Providing	Timeline	Entries

Testing	Complications

Creating	the	Test	Scheme

Running	the	Test	Scheme

Triggering	Complication	Updates

Update	Methods

Budgeting

Wrapping	Up

CHAPTER	8	WORKING	WITH	GLANCES

What	Is	a	Glance?

Manufacturing	a	Glance

Creating	a	Glance	in	a	New	Project

Adding	a	Glance	to	an	Existing	Project

Developing	the	Glance

Visual	Customization

Working	with	WKInterfaceController

Sneaking	a	Glance

Wrapping	Up

CHAPTER	9	WORKING	WITH	NOTIFICATIONS

What	Are	Notifications?

iPhone	Notifications

Watch	Notifications

Creating	a	Notification	Scene

Creating	a	Notification	in	a	New	Project

Adding	a	Notification	to	an	Existing	Project

Designing	Your	Notifications

Notification	Layout

Static	Notifications

Dynamic	Notifications

The	WKUserNotificationInterfaceController

Testing	Notifications

Notification	Payloads

Notification	Test	Schemes

Actioning	Notifications

Tapping	the	Notification

Text	Responses

Local	Notifications

Wrapping	Up

Part	III	Making	the	Most	of	the	Platform

CHAPTER	10	COMMUNICATING	WITH	THE	OUTSIDE	WORLD

Network	Requests	with	NSURLSession

The	Watch	and	the	Network

Making	the	Request

Handling	Premature	Deactivation

Talking	to	the	Phone	with	WatchConnectivity

Background	Transfer

Live	Message	Transmission

Making	the	Most	of	Inter-Device	Communication

Continuing	User	Activity	with	Handoff

Wrapping	Up

CHAPTER	11	ACCEPTING	USER	INPUT

Speech	to	Text

The	Text	Input	Controller

Input	Types

Trying	Out	the	Interface

Preparing	Suggestions

Input	from	Notifications

Wrapping	Up

CHAPTER	12	PLAYING	AND	RECORDING	MEDIA

Working	with	Media

Media	Types	and	Encodings

Storing	Media

Foreground	Playback

Using	WKInterfaceMovie

Presenting	a	Player	Programmatically

Background	Audio	Playback

Audio	Recording

Making	a	Recording

Handling	Recorded	Audio

Wrapping	Up

CHAPTER	13	DEPLOYING	TO	PHYSICAL	DEVICES

Managing	Devices

Configuring	Provisioning	Profiles

Automagic	Setup

Manual	Setup

Deploying	to	a	Device

Wrapping	Up

CHAPTER	14	USING	HARDWARE	APIS

Using	Sensor	Data

Accessing	Heart	Rate	Data	via	HealthKit

Reading	Accelerometer	Data	with	CoreMotion

Providing	Haptic	Feedback

Playing	with	Haptics

Tap	Carefully

Wrapping	Up

CHAPTER	15	SHIPPING	YOUR	WATCHKIT	APP

Preparing	Your	App	for	Distribution

Device	Support

Icons	and	Image	Resources

Back	to	the	Developer	Center

iTunes	Connect

Creating	an	App	Record

Uploading	Your	App

Distributing	the	App

TestFlight	Distribution

App	Store	Distribution

Wrapping	Up

Index

Introduction

For	some,	the	idea	of	a	smartwatch	is	characterized	by	the	wrist-borne	communicator
devices	in	Dick	Tracy	cartoons,	but	for	a	child	of	the	eighties	few	pop-culture	memories
remain	as	vivid	as	seeing	Michael	Knight	communicating	with	his	car	K.I.T.T.	through	his
wristwatch.	The	idea	of	being	able	to	see	information	that	had	been	beamed	to	your	wrist,
to	talk	with	an	intelligent	car,	and	to	sport	such	a	perm	was	to	remain	a	symbol	of	the
future	for	many	children	who	grew	up	as	fans	of	the	TV	show	Knight	Rider.

The	Watch	of	Our	Dreams
The	announcement	that	Apple	had	been	working	on	a	watch	that	could	respond	to	voice
commands	and	also	run	apps	and	communicate	with	the	Internet	via	an	iPhone	set	the	Mac
and	iOS	developer	community	alight.	Not	only	did	it	signal	the	potential	for	yet	another
app	gold	rush,	but	it	tickled	the	imaginations	of	those	former	children	for	whom	the
wristwatch	was	the	perfect	device	on	which	to	control	your	digital	life.

Sure,	the	iPhone	was	revolutionary,	but	it	was	still	just	a	phone,	and	we’ve	always	had
phones	(depending	on	your	age,	of	course).	The	iPad	has	changed	the	face	of	personal
computing,	but	it’s	still	just	a	computer,	albeit	a	lot	smaller	than	the	ones	we	had	when	we
were	kids.

The	Apple	Watch	is	different.	We	never	needed	the	other	devices	in	the	same	way	that
we	wanted	the	ability	to	talk	to	our	watches.	We	dreamed	of	being	able	to	tap	the	watch
face	and	have	it	respond	to	the	commands.	We	yearned	for	the	day	that	critical	information
would	arrive	directly	to	our	wrists.

The	Apple	Watch	of	Our	Realities
As	developers,	we	have	been	spoiled	by	what	we	can	achieve	using	iOS.	The	first	iPhones
were	not	accessible	to	developers	(at	least	not	officially),	but	with	the	release	of	iPhoneOS
2.0	in	2008,	Apple	gave	third-party	developers	the	ability	to	create	fully	fledged	apps	that
took	advantage	of	the	full	hardware	of	the	devices.

In	many	ways,	watchOS	has	followed	the	same	pattern;	the	first	release	of	watchOS
(which	wasn’t	even	called	watchOS	at	the	time)	provided	a	somewhat	restricted	subset	of
functionality.	Rather	than	running	full	apps,	the	watch	ran	iOS	app	extensions	that	were
much	more	restricted	in	the	level	of	processing	they	could	do	and	the	range	of	interactivity
available	to	them.

watchOS	2	is	the	release	that	developers	have	really	been	waiting	for.	We	now	get
access	to	fully	native	apps	that	run	directly	on	the	watch	and	have	access	to	much	more	in
the	way	of	software	APIs	and	hardware	features.

About	This	Book
In	this	book,	we	aim	to	get	you	up	to	speed	on	how	to	create	and	design	watchOS	apps.
We’ll	guide	you	through	the	process	of	creating	apps	and	illustrate	how	to	visualize	and
interact	with	user	interfaces	for	the	Apple	Watch	using	storyboards.	We	delve	into
communications	between	the	Apple	Watch	and	the	iPhone	and	how	to	present	quick
summaries	of	information	to	the	user	using	glances.

This	book	is	not	an	introduction	to	iOS	or	CocoaTouch	programming	and	is	instead
aimed	at	existing	developers	who	want	a	guide	to	the	features	available	in	watchOS.	We’ll
also	be	presenting	most	of	our	code	samples	in	Apple’s	new	Swift	programming	language.
In	many	cases,	it	will	be	apparent	what	the	code	is	doing	and	how	it	can	be	re-
implemented	in	Objective-C	if	necessary.	If	you	have	not	yet	delved	into	the	world	of
Swift,	you	may	find	Swift	Translation	Guide	for	Objective-C	Developers	(also	published
by	Peachpit)	to	be	a	helpful	companion.

How	to	Use	This	Book
Writing	and	distributing	watchOS	apps	requires	that	you	have	a	solid	foundation	in	iOS
development.	We	assume	that	you	have	intermediate	knowledge	of	iOS	development	as
well	as	of	provisioning	and	configuring	iOS	devices	in	the	Apple	Developer	Center.

Organization
We	have	split	this	book	into	three	main	sections:

Part	1,	“Getting	Started”

We	start	with	a	quick	example	project	before	taking	the	time	to	examine	the	structure	of
watchOS	apps	in	more	detail,	and	then	we	provide	an	overview	of	the	main	user	interface
controls	available	to	your	apps.

Part	2,	“Creating	Apps”

This	section	begins	a	deeper	examination	of	what	you	can	do	with	WatchKit,	and	it	offers
guidance	on	how	to	design	and	optimize	the	interface	of	your	app,	as	well	as	how	to	entice
your	users	through	glances,	complications,	and	notifications.

Part	3,	“Making	the	Most	of	the	Platform”

In	the	third	section,	we	go	deeper	into	the	platform	and	look	at	how	to	take	advantage	of
the	hardware	and	software	features	that	make	watchOS	the	most	compelling	developer
platform	that	Apple	has	produced	in	many	years.

Code	Samples
Many	of	the	chapters	feature	short	example	projects	that	you	can	follow	along	with	in
order	to	gain	a	better	understanding	of	the	material.	We	have	published	the	source	code
repositories	to	the	GitHub	account	that	accompanies	the	book,	at	github.com/bwa-book.
Each	chapter	that	has	a	sample	project	has	a	companion	repository,	and	we	have
endeavored	to	make	the	commits	to	the	repositories	logically	follow	the	progress	in	the
book.

http://github.com/bwa-book

Text	Formats
Code	samples	that	you	should	enter	will	be	marked	as	follows:
Click	here	to	view	code	image

@IBAction	func	saySomething()	{
				messageLabel.setText(“Hello	Wrist!”)
}

Highlighted	code	identifies	changes	to	a	snippet	of	code	or	is	meant	to	draw	your
attention	to	specific	sections	of	code:
Click	here	to	view	code	image

@IBAction	func	buttonTapped()	{
				spinnerImage.startAnimating()
}

You’ll	also	find	notes	containing	additional	information	about	the	topics:

	Note

The	Utility	face	(and	others)	actually	features	a	fourth	complication	when	you
enter	its	customization	mode.	It	corresponds	to	the	date	display	in	Figure	7.3,
and	we	won’t	consider	it	here	because	it	can	show	only	the	date	(in	a	number
of	styles)	or	be	turned	off.	It	is	not	yet	open	to	third-party	developers.

Software	Versions
All	the	code	samples	have	been	tested	with	watchOS	2.0	and	iOS	9.0.	To	follow	along
with	the	examples	in	the	book,	you	should	ensure	that	you	are	using	at	least	Xcode	7.0.
Where	there	are	incompatibilities	with	future	versions	of	watchOS,	we	will	endeavor	to
post	corrections	to	our	website,	http://watchosapps.build.

http://watchosapps.build

Welcome	to	watchOS

Apple’s	watchOS	could	be	its	most	exciting	new	operating	system	since	the	introduction
of	iOS	in	2007.	It	introduces	new	ways	for	users	to	interact	with	your	applications	and
provides	you	with	new	and	improved	methods	of	getting	up-to-date	information	in	front	of
your	users.

GLANCES

Present	critical	information	to	your	users	at	a	glance.	A	summary	of	everything	they	need
to	know	is	just	a	swipe	away.

COMPLICATIONS

Display	small	pieces	of	information	directly	on	the	main	watch	face.	Complications	also
provide	a	compelling	way	to	quickly	launch	your	application.

NOTIFICATIONS

With	a	push	notification	service,	you	can	send	the	latest	data	directly	to	your	users.	With	a
flick	of	their	wrist	they	can	see,	and	even	act	upon,	the	information	as	they	receive	it.

HARDWARE	INTEGRATION

New	APIs	allow	for	interaction	with	watch	hardware	features,	such	as	the	accelerometer,
the	heart	rate	sensor,	and	the	Taptic	feedback	engine.

Part	I:	Getting	Started

Chapter	1.	Creating	a	WatchKit	Project

Apple	frequently	refers	to	Watch	apps	as	standalone	entities:	miniature	equivalents	of	iOS
apps	that	can	exist	independently	of	your	iPhone,	iPad,	or	iPod	touch.	Although	Watch
apps	are	becoming	more	independent,	creating	a	watchOS	app	means	creating	a	new	iOS
project	and	giving	it	a	few	extras.

Lifelong	Companions
The	first	generation	of	third-party	WatchKit	apps	required	that	you	have	an	extension	to	an
iOS	app	running	on	an	iOS	device.	The	extension	acted	as	the	brains	of	the	app	while	the
user	interface	ran	on	the	watch.	In	watchOS	2	the	split	nature	still	exists,	but	the	extension
and	the	interface	now	both	run	on	the	watch.	Therefore,	to	create	your	Watch	app	you’ll
need	to	create	a	new	iOS	project	in	Xcode	and	add	a	companion	watchOS	target	to	it.

	Note

The	next	chapter	explains	the	split	nature	of	watchOS	apps	more	fully	so	you
can	understand	the	implications	of	using	it.	For	now,	we	focus	on	getting	a
watchOS	app	up	and	running	as	soon	as	possible,	and	we	skip	over	some	of
the	finer	details	here	and	there.

1.	Open	Xcode,	and	create	a	new	iOS	project	by	selecting	File	>	New	>	Project	from
the	main	menu.

2.	In	the	project	template	chooser	(Figure	1.1),	navigate	to	the	watchOS	Application
category,	select	the	iOS	App	with	WatchKit	App	template,	and	click	Next.

FIGURE	1.1	The	WatchKit	App	target	template

3.	Give	your	project	a	name	(we	use	HelloWrist),	choose	Swift	from	the	Language
menu,	and	choose	Universal	as	the	Devices	type	(Figure	1.2).

FIGURE	1.2	The	WatchKit	App	target	options

4.	Ensure	that	the	Include	Notification	Scene,	Include	Glance	Scene,	and	Include
Complication	options	are	selected,	and	click	Next.

5.	Choose	a	location	to	save	your	project,	and	click	Create	to	finish	creating	the
project.

When	the	project	has	been	created,	you’ll	have	what	looks	like	a	standard	iOS	project
but	with	a	number	of	extra	items	in	the	File	Navigator,	the	list	of	targets,	and	the	list	of
schemes	in	your	project.	Chapter	2	explains	the	significance	of	these	new	items	in	detail.

Adding	Code	to	Your	WatchKit	App
You	now	have	a	working	app	that	you	could	easily	try	running	at	this	point;	jump	ahead	to
the	section	“Trying	Out	HelloWrist!”	if	you	feel	so	inclined.	However,	you	may	be	a	bit
underwhelmed	if	you	do	because	there	isn’t	much	to	the	default	templates.	Instead	let’s
add	some	extra	code	to	some	of	the	template	files	created	by	Xcode	to	demonstrate	a	little
more	of	the	watch	functionality.

Updating	the	Watch	Interface
The	main	interface	to	the	WatchKit	app	is	defined	as	a	scene	in	a	storyboard	file.	WatchKit
has	its	own	selection	of	UI	components	designed	to	work	on	the	restricted	interface,	so
let’s	see	what	we	can	do	with	them.

1.	In	the	Xcode	File	Navigator,	expand	the	HelloWrist	WatchKit	App	folder,	and	click
the	Interface.storyboard	file	to	load	the	WatchKit	App	user	interface	in	the

Storyboard	editor	of	Interface	Builder.

When	the	storyboard	file	loads,	it	displays	four	scenes	(Figure	1.3).

FIGURE	1.3	The	Watch-Kit	App	Interface.	storyboard	file

2.	Select	the	Interface	Controller	Scene	option.

3.	In	the	Object	Library,	search	for	the	user	interface	element	named	Label	(or
WKInterfaceLabel)	(Figure	1.4).

FIGURE	1.4	The	WatchKit	Label	element	in	the	Object	Library

This	is	the	equivalent	of	a	UILabel	in	a	full	iOS	app,	but	as	you’ll	see	later,	it
comes	with	some	limitations	compared	to	its	more	fully	featured	counterpart.

	Note

The	Label	element	uses	the	underlying	WKInterfaceLabel	class.	If	you	need
more	information	about	any	element,	you	can	click	it	in	the	Object	Library	to
show	a	popover	with	more	information,	including	the	class	name.

4.	Drag	the	Label	element	from	the	Object	Library	onto	the	interface	controller	scene
(Figure	1.5).

FIGURE	1.5	A	freshly	placed	Label	element

5.	Use	the	Attribute	inspector	to	style	the	element	as	you	please.

Figure	1.6	shows	the	full	range	of	customization	options	available	to	you	for	a
WatchKit	Label	element.	We	have	chosen	to	center	the	label	horizontally	(Figure
1.7).

FIGURE	1.6	Customization	options	for	a	Label	element

FIGURE	1.7	A	customized	Label	element

	Note

Unlike	in	a	regular	iOS	storyboard,	you	cannot	place	the	label	anywhere	you
choose.	WatchKit	uses	a	flow-layout	system	in	which	elements	are	placed	in
the	order	they	should	appear.	Chapter	5	covers	this	in	more	detail.

Writing	Code	for	the	Watch	App
What	you	have	created	so	far	is	pretty	much	a	vanilla	“Hello	World!”	introduction.	Again,
if	you	want	to	run	it	right	now,	you	can	skip	ahead	to	the	“Trying	Out	HelloWrist!”
section,	but	let’s	add	some	more	interactivity	before	running	it.

As	with	UIKit	apps,	WatchKit	relies	on	a	button	user	interface	element	to	provide	a	lot
of	its	interactive	capabilities.

1.	In	the	Object	Library,	search	for	a	Button	(or	WKInterfaceButton)	element
(Figure	1.8),	and	drag	it	onto	the	interface	controller	scene.

FIGURE	1.8	The	WatchKit	Button,	or	WKInterfaceButton,	element

Figure	1.9	highlights	that,	due	to	the	flow-layout	system,	the	Button	element	cannot
be	absolutely	positioned	on	the	interface,	but	can	be	placed	relative	only	to	the
existing	Label	element.	The	button	can	be	styled	using	the	Attribute	inspector;	we’ll
set	the	Button	title	to	Say	Hello.

FIGURE	1.9	Dropping	the	Button	element	after	the	label

To	make	the	button	do	something	useful,	you	need	to	hook	it	up	to	an	action	method;
this	process	is	identical	to	that	which	would	be	carried	out	with	a	regular	iOS
storyboard.	The	easiest	way	to	create	the	action	is	to	enable	the	assistant	editor,
which	should	cause	the	InterfaceController.swift	file	from	the
HelloWrist	WatchKit	Extension	folder	to	be	displayed.

2.	Control-click	your	new	button,	and	drag	it	into	the	assistant	editor.	When	Xcode
displays	an	insertion	line	and	the	text	“Insert	Outlet	or	Action”	(Figure	1.10),
release	the	drag	operation.

FIGURE	1.10	Inserting	the	saySomething	action

3.	In	the	popover	that	appears,	select	Action	as	the	Connection	type,	and	name	it
saySomething.

Our	intention	is	to	have	the	Label	element	start	blank	and	be	populated	by	pressing
the	button.

4.	Select	the	label	in	the	storyboard,	and	change	the	Text	attribute	to	be	empty	in	the
Attribute	inspector.

To	be	able	to	change	the	label	text	programmatically,	the	label	must	have	an	outlet
that	you	can	access	from	the	InterfaceController	class.

5.	Control-click	the	label,	and	drag	it	into	the	assistant	editor,	releasing	when	Xcode
shows	the	insertion	line.

6.	This	time	select	Outlet	as	the	Connection	type,	and	name	the	outlet	messageLabel.
Update	the	saySomething	method	to	match	the	following	code:

Click	here	to	view	code	image
@IBAction	func	saySomething()	{
				messageLabel.setText(“Hello	Wrist!”)
}

Now	that	you	can	change	the	label	text,	let’s	make	the	message	change	between
“Hello	Wrist!”	and	“Bye	Wrist!”	on	tapping	the	button.

7.	Add	an	outlet	named	button	so	you	can	programmatically	change	the	button	text.

An	easy	way	to	toggle	the	label	text	on	tapping	the	button	would	be	to	inspect	the
current	text	value	and	change	it	accordingly.

8.	Replace	the	saySomething	method	with	the	following	code:
Click	here	to	view	code	image

@IBAction	func	saySomething()	{
				if	messageLabel.text	==	“Hello	Wrist!”	{
								messageLabel.setText(“Bye	Wrist!”)

				}	else	{

								messageLabel.setText(“Hello	Wrist!”)

				}

}

Unfortunately	this	highlights	a	fundamental	difference	between	regular	UIKit
elements	and	those	from	WatchKit.	A	UILabel	has	a	property	named	text	that
you	can	use	to	set	and	inspect	the	label	text,	whereas	WatchKit	has	only	one	method:
setText.	If	you	want	to	track	the	state	of	elements	in	a	WatchKit	app,	it’s	up	to
you	to	handle	it	yourself	in	the	extension.

9.	Create	a	Boolean	property	in	the	extension:
Click	here	to	view	code	image

private	var	sayingHello	=	true

The	saySomething	method	now	needs	to	track	the	state	of	the	Boolean	instead	of
trying	to	inspect	the	label	text.

10.	Use	the	button	outlet	to	update	the	button	text	while	you	are	updating	this
method:

Click	here	to	view	code	image
@IBAction	func	saySomething()	{
				if	sayingHello	{

								button.setTitle(“Say	Goodbye”)

								messageLabel.setText(“Hello	Wrist!”)

								sayingHello	=	false

				}	else	{

								button.setTitle(“Say	Hello”)

								messageLabel.setText(“Bye	Wrist!”)

								sayingHello	=	true

				}

}

If	you	have	been	exercising	patience	so	far	and	have	not	skipped	ahead	to	run	the	app
already,	then	it	is	time	for	your	patience	to	be	rewarded.

“I’m	Sorry,	But	I	Don’t	Have	a	Watch”
As	it	has	done	in	the	past	with	other	iOS	devices,	Apple	has	provided	the	ability	to
develop	apps	for	the	Apple	Watch	without	access	to	the	physical	hardware.	Although
testing	against	a	simulator	is	never	going	to	be	as	foolproof	as	using	the	real	device,	it	can
often	be	a	timesaver	in	terms	of	workflow	and	invaluable	when	limited	access	to	the
physical	devices	would	otherwise	slow	down	development.

The	Apple	Watch	line	is	quite	possibly	the	most	diverse	product	range	that	Apple	has
ever	produced.	At	the	time	of	launch,	there	were	38	different	models	available	across	the
Apple	Watch,	Sport,	and	Edition	product	options.	The	prices	range	from	(relatively)	cheap
at	$349	for	the	Sport	variant	up	to	an	eye-wateringly	expensive	$17,000	for	the	Edition
watches.	So	how	do	you	safely	test	all	the	variations	your	app	could	be	run	on	without
breaking	the	bank?	Thankfully,	although	the	products	may	be	cosmetically	different,	the
entire	range	has	only	two	real	differences:	the	38mm	watch	and	the	42mm	watch.

What	Do	You	Want	to	Test?
The	first	step	to	running	your	watch	code	is	to	decide	what	your	entry	point	is	going	to	be.
When	your	app	is	installed	on	a	physical	device,	it	can	be	invoked	in	four	ways:

	By	launching	the	app	directly	from	the	home	screen	of	the	watch

	By	displaying	a	complication	on	the	watch	face

	By	viewing	a	notification

	By	viewing	a	glance

The	Watch	simulator	provided	with	Xcode	7	is	capable	of	testing	all	these	interactions,
but	it	is	not	always	immediately	apparent	how	you	might	do	so.	While	running	your	app
you	can	choose	Hardware	>	Home	(or	press	Control-Command-H)	to	simulate	pressing
the	digital	crown,	which	returns	the	simulator	to	a	watch	face.	At	this	point	it	is	possible	to
drag	down	to	display	the	Notification	Center,	or	drag	up	to	display	glances,	but
unfortunately	your	notifications	and	glances	will	not	be	displayed.	Given	this,	how	are	you
supposed	to	test	your	code	in	the	same	ways	your	users	will	be	able	to?

Choosing	Your	(Hopefully	Not	So	Evil)	Scheme

Fortunately,	the	iOS	App	with	WatchKit	App	project	template	has	you	covered.	While
creating	the	project	files,	Xcode	also	created	a	number	of	extra	schemes	that	allow	you	to
run	your	app	in	a	variety	of	ways.	To	inspect	them,	choose	Product	>	Scheme	>	Manage
Schemes	from	the	main	menu,	and	note	the	four	extra	schemes	that	Xcode	created	(Figure
1.11).

FIGURE	1.11	The	Manage	Schemes	dialog—more	schemes	than	a	supervillain
convention

The	standard	iOS	app	scheme	(HelloWrist)	is	present,	as	you	would	expect,	but	there	is
also	a	scheme	named	HelloWrist	WatchKit	App,	which	is	created	for	all	WatchKit	apps.
This	is	the	scheme	you	need	to	build	and	run	to	execute	the	app	as	though	it	had	been
launched	from	the	home	screen	of	the	watch.	This	corresponds	to	the	interface	controller
scene	in	the	Interface.storyboard	file	(Figure	1.12).

FIGURE	1.12	The	main	interface	to	your	watch	app

Of	the	three	remaining	schemes,	the	first	two—Notification	-	HelloWrist	WatchKit	App
and	Glance	-	HelloWrist	WatchKit	App—were	created	because	you	selected	the	options
Include	Notification	Scene	and	Include	Glance	Scene	when	you	were	creating	the
WatchKit	App	target	(Figure	1.2).	These	schemes	allow	you	to	run	the	app	as	though	the

watch	had	received	a	glance	or	a	notification.	You	can	customize	the	appearance	of	these
views	using	the	Glance	Interface	Controller	Scene	(Figure	1.13),	the	Static	Notification
Interface	Controller	Scene,	and	the	Notification	Controller	Scene	(Figure	1.14).

FIGURE	1.13	The	Glance	Interface	Controller	Scene

FIGURE	1.14	The	Notification	Interface	Controller	Scenes

	Note

Chapters	8	and	9	delve	into	the	details	of	how	to	work	with	glances	and
notifications,	respectively.

The	final	scheme—Complication	-	HelloWrist	WatchKit	App—was	created	in	response
to	enabling	the	Include	Complication	option	when	choosing	the	project	options	(Figure
1.2).	This	scheme	allows	you	to	run	the	simulator	to	test	your	complication.	This	is	a
simpler	proposition	than	it	may	sound—it	simply	launches	the	simulator	directly	to	a
watch	face	on	which	you	can	configure	your	complication	to	be	displayed.	Creating	and
testing	your	complications	is	examined	in	detail	in	Chapter	7.

Accessing	the	Watch	Simulators

Choosing	a	simulator	for	running	your	iOS	app	requires	that	you	open	the	scheme
selection	menu	and	choose	a	simulator	from	the	list	of	options	currently	available	to	you.
It	stands	to	reason	that	the	Watch	simulators	can	be	found	in	the	same	place:

1.	Click	the	device	portion	(the	right	side)	of	the	scheme	selection	button	to	view	the
list	of	simulators	(Figure	1.15).

FIGURE	1.15	With	an	iOS	scheme	selected,	the	Watch	simulators	are	not	available	to
select.

Unfortunately,	although	there	are	plenty	of	iPhone	and	iPad	simulation	options
presented,	there	are	no	Watch	simulation	options.	That	is	because	we	currently	have
the	HelloWrist	App	scheme	selected,	and	the	target	for	that	scheme	is	an	iOS	app.
To	see	the	Watch	simulators	we	need	to	select	a	different	target.

2.	Click	the	scheme	portion	(the	left	side)	of	the	scheme	selection	button	to	display	the
list	of	available	schemes.

3.	Select	one	of	the	four	HelloWrist	WatchKit	App	schemes	to	switch	to	a	scheme	with
a	WatchKit	app	target.

The	device	portion	of	the	scheme	selection	button	will	change	to	indicate	that
running	the	selected	scheme	will	launch	both	iPhone	and	Watch	simulators.	It’s	not
possible	to	launch	a	Watch	simulator	in	isolation,	so	the	selection	will	include
iPhone	and	Watch	simulator	combinations	(Figure	1.16).

FIGURE	1.16	The	iPhone	and	Apple	Watch	simulator	combinations

4.	Select	the	simulator	combination	that	you	want	to	launch.

The	default	configuration	includes	iPhone	6	and	6	Plus,	as	well	as	38mm	and	42mm
Apple	Watch	options.	These	should	be	enough	to	satisfy	most	test	requirements,	but
if	you	really	need	to,	you	can	create	more	combinations	in	the	Devices	section	of
Xcode.

The	Watch	simulator	shares	some	of	the	limitations	of	the	iOS	simulator.	You	cannot

run	the	same	app	in	both	an	iPad	and	iPhone	simulator	at	the	same	time,	and	you	cannot
display	both	the	38mm	simulator	and	the	42mm	watchOS	simulators	at	the	same	time.
Also,	you	cannot	run	the	watchOS	simulator	along	with	the	iPad	simulator—the	Apple
Watch	has	an	intimate	relationship	with	iPhones	but	cannot	be	used	with	iPads.	Not	even
simulated	ones.

Trying	Out	HelloWrist!
You’ve	shown	a	commendable	amount	of	patience,	and	now	it’s	time	to	actually	run	your
app.

1.	Select	the	HelloWrist	WatchKit	App	scheme	from	the	scheme	portion	of	the	scheme
selector	button.

2.	Click	the	Run	button	to	launch	the	Watch	app.

3.	This	will	spawn	the	iOS	app	in	a	process	called	Simulator,	and	the	watchOS	app	in
a	process	called	Simulator	(Watch).	The	iOS	simulator	won’t	run	an	active	app,	but
it	is	available	for	the	Watch	simulator	to	communicate	with.

Your	app	should	be	prompting	you	to	“Say	Hello”	(Figure	1.17).	Tap	the	button,	and
say	hello	to	your	future	in	watchOS	development.

FIGURE	1.17	Someone	wants	to	say	hello…

Wrapping	Up
You’ve	come	to	the	end	of	your	initial	tour	of	WatchKit.	In	many	ways	it’s	remarkably
similar	to	regular	old	iOS	development,	but	it	has	just	enough	caveats	and	new	ways	of
doing	things	to	justify	buying	a	book	on	the	subject.	Lucky	you!

In	the	next	chapter,	we’ll	take	a	look	at	the	layout	of	a	WatchKit	App	project	template.
We’ll	also	discuss	how	you	can	go	about	adding	a	watchOS	companion	app	to	your
existing	iOS	projects.

Chapter	2.	Anatomy	of	a	watchOS	App

Although	a	watchOS	app	may	seem	like	a	miniature	version	of	an	iOS	app,	the	underlying
architecture	is	subtly	different.	It	isn’t	essential	to	know	the	difference,	but	it	can	help	in
understanding	how	your	watchOS	app	works	and	performs.

Apps	and	Extensions
A	major	limitation	of	the	first	generation	of	watchOS	apps	was	that	they	could	not	run
their	code	directly	on	the	device.	To	circumvent	this	limitation,	Apple	allowed	a	watchOS
app	to	run	its	code	in	the	background	on	the	user’s	iPhone,	by	taking	advantage	of	iOS
extensions.

For	the	second	generation	of	watchOS	apps,	Apple	has	retained	the	same	extension-
based	execution	model	but	with	the	distinction	that	the	extension	now	runs	on	the	watch
instead	of	on	the	iPhone.	In	most	respects	the	code	that	now	runs	on	the	watch	is	the	same
as	that	which	ran	on	the	iPhone,	but	with	some	changes	to	the	APIs	and	to	the
performance	characteristics.

When	you	created	an	iOS	App	with	WatchKit	App	project	in	Chapter	1,	it	included	a
number	of	extra	elements	in	your	project	that	you	might	not	have	encountered	before.
There	are	some	additional	targets	and	schemes,	but	perhaps	the	most	obvious	differences
are	the	addition	of	two	new	file	groups	in	the	Project	Navigator:	WatchKit	App	and
WatchKit	Extension.

	Tip

We’re	aware	that	we	use	the	terms	WatchKit	and	watchOS	in	a	seemingly
interchangeable	fashion	in	this	book.	We’ve	tried	to	match	the	terminology
that	Apple	has	used	in	any	specific	dialog	or	documentation.

What	Is	a	WatchKit	App?
A	WatchKit	app	is	the	binary	application	that	gets	executed	on	your	watch.	The	main
responsibility	of	the	app	is	to	load	the	user	interface,	and	for	that	reason	the	storyboard	file
that	represents	your	app	is	located	within	the	WatchKit	App	file	group.	This	group	is	also
the	ideal	place	to	include	images	and	other	resources	that	will	be	used	within	your	user
interface.	Although	storyboards	themselves	can	contain	a	degree	of	conditional	logic,	the
WatchKit	App	file	group	is	limited	to	relatively	static	content.	The	layout	of	the
storyboard	scenes	can	be	controlled	through	code,	yet	there	is	no	code	in	the	WatchKit
App	file	group.	To	remedy	this,	during	the	compilation	process	the	app	bundle	will	be
augmented	with	another	bundle:	the	WatchKit	Extension	file	group.

What	Is	a	WatchKit	Extension?
A	WatchKit	extension	is	a	collection	of	code	and	other	compiled	resources	that	form	the
application	logic	that	drives	the	user	interface	presented	by	the	WatchKit	app.	When	the
app	is	launched,	the	extension	host	can	load	the	app	extension	and	marshal	the
communications	between	the	user	interface	and	the	extension.

Although	you	can	add	as	many	files	as	you	wish	to	your	WatchKit	extension,	there	are	a
number	of	files	worth	noting	in	the	output	of	the	iOS	App	with	WatchKit	App	project
template:

	InterfaceController.swift:	This	is	the	controller	file	that	is	associated
with	the	main	interface	scene	of	your	storyboard.	It	implements	the
WKInterfaceController	class—the	WatchKit	equivalent	of
UIViewController—and	is	explored	in	detail	in	Chapter	3.

	ComplicationController.swift:	This	file	is	used	to	support	a
complication	on	the	watch	face.	It	implements	the
CLKComplicationDataSource	that	is	used	to	provide	information	to	a	watch
face	that	includes	the	complication.	It	is	covered	in	Chapter	7.

	Assets.xcassets:	This	is	a	standard	Xcode	asset	catalog	file	that	is	pre-
populated	with	a	folder	for	managing	the	assets	associated	with	complications
(Chapter	7).	You	can	use	it	for	storing	other	image	assets	beyond	complications.

	GlanceController.swift:	The	GlanceController	class	is	used	to
support	the	glance	that	the	template	creates	for	you.	It’s	a	fairly	standard	subclass	of
WKInterfaceController,	and	its	use	is	documented	in	Chapter	8.

	NotificationController.swift:	The	NotificationController
class	is	a	subclass	of	WKUserInterfaceController	and	is	used	to	provide
extra	functionality	required	by	dynamic	notification	scenes.	Notifications	are
intimately	examined	in	Chapter	9.

	PushNotificationPayload.apns:	This	file	is	a	sample	payload	for	testing
notifications.	It	is	also	detailed	in	Chapter	9.

One	file	that	we	have	not	mentioned	yet	is	ExtensionDelegate.swift.	This	file
is	special	because	it’s	the	main	entry	point	for	your	app	and	is	analogous	to	the
UIApplicationDelegate	in	your	iOS	app.	It	contains	a	class	named
ExtensionDelegate,	which	implements	a	protocol	named
WKExtensionDelegate.	By	implementing	the	protocol,	the	class	assumes	three	main
responsibilities:

	Stage	Change	Monitoring:	The	lifecycle	callback	methods
applicationDidFinishLaunching(),
applicationDidBecomeActive(),	and
applicationWillResignActive()	are	defined	here.	These	give	you	the
opportunity	to	prepare	your	app	as	it	launches,	and	tidy	up	as	it’s	about	to	shut
down.

	Notification	Handling:	Your	app	can	respond	to	notifications	both	while	it	is
running	and	when	response	action	buttons	are	pressed.	This	protocol	allows	you	to
implement	didReceive…	methods	to	handle	notifications	as	they	come	in,	and
handleActionWithIdentifier…	methods	to	respond	to	notification	actions
taken	when	your	app	isn’t	running.	Refer	to	Chapter	9	for	everything	you’ll	ever
want	to	know	about	notifications.

	Handoff	Coordindation:	When	your	app	is	launched	as	a	result	of	a	handoff	event,
this	protocol	provides	a	method,	handleUserActivity(_:),	that	you	can
implement	to	respond	to	the	event.	Handoff	is	explored	in	Chapter	10.

Why	Do	We	Need	This	Convoluted	System?
It’s	hard	to	know	why	Apple	has	presented	us	with	what	is	seemingly	a	quite	convoluted
system.	After	all,	iOS	apps	bundle	the	user	interface	and	application	logic	into	the	one
app,	so	why	doesn’t	watchOS?

It	may	simply	be	that,	as	we	evolve	from	the	extension-on-iPhone	model	of	watchOS	1,
we	are	at	a	stepping-stone	on	the	way	to	completely	bundled	watchOS	apps.	Alternatively,
an	extension	running	within	an	extension	host	written	by	Apple	can	be	more	tightly
controlled;	this	provides	watchOS	with	more	ways	to	enforce	security	and	energy
efficiency	measures.

WatchKit	App	Project	Layout
Adding	any	additional	targets	to	an	iOS	app	greatly	increases	the	complexity	of	your
Xcode	project	setup.	Adding	a	WatchKit	app	goes	even	further;	if	you	followed	the
walkthrough	in	Chapter	1,	you	noticed	that	creating	a	WatchKit	app	target	can	lead	to	an
explosion	of	targets,	schemes,	and	files	in	your	project.	These	may	seem	intimidating—
after	all,	you	just	want	to	write	an	app,	not	get	a	lesson	in	(Xcode)	project	management—
but	there	is	a	method	to	the	madness.

In	Chapter	1	we	created	a	project	using	the	iOS	App	with	WatchKit	App	template,	with
the	Include	Notification	Scene,	Include	Glance	Scene,	and	Include	Complication	options
selected	(Figure	1.2).	This	resulted	in	the	generation	of	extra	file	groups	and	targets	for	the
HelloWrist	WatchKit	app	and	for	the	HelloWrist	WatchKit	extension	(Figure	2.1).	It	also
resulted	in	the	generation	of	four	new	schemes;	one	allows	you	to	directly	build	and	run
the	full	WatchKit	app,	and	the	other	three	allow	you	to	run	the	notification,	glance,	and
complication	features	directly	(Figure	2.2).

FIGURE	2.1	Project	and	targets	for	an	iOS	App	with	WatchKit	App	project

FIGURE	2.2	Schemes	for	an	iOS	App	with	WatchKit	App	project

You	have	some	control	over	the	number	of	schemes	that	are	being	created;	you	can
deselect	the	Notification,	Glance,	and	Complication	options	in	the	template	options
(Figure	1.2)	if	you	don’t	need	the	functionality	they	provide.	Notable	by	its	absence	is	a
scheme	that	allows	you	to	directly	build	and	run	the	WatchKit	extension;	the	only	options
are	for	building	the	WatchKit	app	and	the	notification,	glance,	and	complication	schemes.
Your	WatchKit	Extension	target	will	be	built	as	part	of	the	WatchKit	app	scheme;	the	tight
integration	between	app	and	watch	means	you	should	never	need	to	run	the	extension	in
isolation.

Creating	WatchKit	Apps	and	Extensions
We	have	already	established	that	watchOS	apps	result	in	a	lot	of	extra	files,	schemes,	and
targets	to	manage	in	Xcode,	but	how	do	you	go	about	bringing	that	extra	complexity	into
your	life?

Xcode	project	and	target	templates	come	in	many	flavors	and	have	differing	options
that	affect	how	much	of	your	app	configuration	you	get	for	free	and	how	much	you	need
to	configure	yourself.	Your	route	through	this	maze	is	determined	by	your	requirements—
and	yours	alone—but	with	the	following	sections	we	hope	to	point	out	some	of	the	options
available	to	you	and	help	you	make	a	decision.

Using	Project	Templates
The	important	thing	to	remember	when	creating	a	watchOS	app	is	that	it	requires	an	iOS
app	in	order	to	live.	This	has	the	potential	to	be	confusing;	iOS	apps	have	their	own	set	of
templates,	and	attempting	to	create	a	standard	iOS	app	project	will	not	furnish	you	with
the	artifacts	you	need	to	build	a	watchOS	app.	Conversely,	creating	a	watchOS-specific
app	may	not	necessarily	provide	an	iOS	app	that	meets	your	immediate	requirements.

When	you	start	to	create	a	new	app	project	(using	File	>	New	>	Project	from	the	Xcode
main	menu),	you	should	decide	whether	the	watchOS	app	is	the	primary	focus	for	your
development.

If	the	iOS	app	is	intended	only	as	a	delivery	mechanism,	or	will	be	very	light	in
features,	then	you	are	unlikely	to	need	a	particularly	complex	iOS	app,	and	your	logical
next	move	is	to	select	the	watchOS	section	in	the	template	chooser	dialog	(Figure	2.3).
Selecting	the	option	iOS	App	with	WatchKit	App	provides	you	with	a	basic	iOS	app	that
is	functionally	equivalent	to	a	Single	View	application	from	the	iOS	project	templates.

FIGURE	2.3	The	watchOS	project	template	selection

	Note

The	other	options	available	in	the	watchOS	section	are	for	creating	a
framework	or	a	static	library.	We’re	not	going	to	cover	these	here;if	you’re
the	kind	of	developer	who	wants	to	create	a	framework	for	your	watchOS
app,	you’re	probably	already	in	the	advanced	developer	category.	Thanks	for
buying	the	book,	though!

When	you	select	an	iOS	App	with	WatchKit	App	template	you	are	presented	with	a	set
of	options	relating	to	both	the	iOS	and	watchOS	apps	(Figure	2.4).	They	may	seem
straightforward,	but	there	are	a	few	things	to	be	aware	of	so	we’ll	run	through	the	options
one	by	one.

FIGURE	2.4	The	template	options	for	the	iOS	App	with	WatchKit	App	project

	Product	Name:	This	is	the	same	as	the	Product	Name	option	in	any	normal	Xcode
project,	with	the	caveat	that	it	is	the	name	of	your	iOS	app	only.	The	watchOS	app
will	be	given	a	name	of	the	form	ProductName	WatchKit	App.

	Organization	Name	and	Organization	Identifier:	These	options	are	the	same	as
they	would	be	in	any	Xcode	project.

	Bundle	Identifier:	Although	not	editable,	Bundle	Identifier	is	displayed	as	it	is
generated	from	some	of	the	previous	options.	The	significance	of	the	identifier	here
is	that	it	refers	to	the	iOS	target	and	not	the	WatchKit	App	target,	which	gets	its	own

identifier	of	the	format	ios-bundle-identifier.watchkitapp.

	Language:	The	Language	option	can	be	Swift	or	Objective-C,	and	this	setting	will
be	applied	to	the	generated	code	for	both	the	iOS	and	watchOS	targets.

	Devices:	Unlike	a	normal	iOS	project	template,	the	Devices	pop-up	menu	offers
only	the	choice	of	Universal	or	iPhone;	you	can’t	bundle	a	watchOS	app	with	an
iPad-only	app.

	Include	Notification	Scene:	Selecting	this	option	creates	a	scheme,	storyboard
scene,	and	source	file	for	including	basic	notification	handling	support	in	your	watch
app.

	Include	Glance	Scene:	Selecting	this	option	creates	a	scheme,	storyboard	scene,
and	source	file	for	including	a	glance	in	your	watch	app.

	Include	Complication:	Selecting	this	option	creates	a	scheme	and	source	file	for
including	a	complication	in	your	watch	app.

	Include	Unit	Tests	and	Include	UI	Tests:	Selecting	these	options	adds	the
necessary	configuration	to	create	test	targets,	though	the	test	targets	are	only
applicable	to	your	iOS	app;	watchOS	doesn’t	fully	support	unit	or	UI	testing	yet.

Maybe	you	don’t	want	to	start	with	a	Single	View	application	for	your	iOS	app	and
require	a	bit	more	in	the	way	of	complexity.	For	example,	if	your	iOS	app	is	intended	to
be	a	fully	featured	app	with	a	companion	watchOS	app,	then	you	may	find	the	Single
View	application	to	be	somewhat	lacking.	Or	maybe	you	could	be	satisfied	with	a	Single
View	application	but	have	a	requirement	to	use	Core	Data;	in	that	case,	you	will	find	that
the	iOS	App	with	WatchKit	App	project	template	is	lacking	a	Use	Core	Data	option,
which	means	you	may	be	better	served	by	creating	a	dedicated	iOS	app	and	adding	a
watchOS	target	at	a	later	stage.

Using	Target	Templates
Creating	a	watchOS	app	from	scratch	is	simple,	but	what	happens	when	you	already	have
an	iOS	app	and	you	want	to	add	a	watchOS	app	to	it?	You	have	two	main	options:	Create
a	new	project	based	on	the	iOS	App	with	WatchKit	App	template	and	painstakingly	copy
your	existing	iOS	app	code	across	by	hand	(losing	any	commit	history	you	might	have	had
on	the	way);	or	add	a	WatchKit	App	target	to	your	existing	iOS	app	project.	Although	you
may	want	to	do	the	former	(everyone	wants	a	fresh	start	sometimes!),	we	definitely
recommend	the	latter.

To	add	a	watchOS	app	to	your	existing	iOS	app	project	you	should	select	File	>	New	>
Target	from	the	Xcode	main	menu	to	display	the	target	template	chooser	dialog.	One
potentially	confusing	item	is	an	entry	named	Apple	Watch,	under	the	iOS	heading	in	the
left-hand	column.	Clicking	the	Apple	Watch	option	reveals	more	(Figure	2.5);	this	is	how
you	can	create	an	older-style	WatchKit	app	for	watchOS	1.	At	the	time	of	this	writing	we
can’t	see	many	good	reasons	for	going	down	this	route,	but	if	you	happen	to	have	a
stubborn	customer	base	who	refuse	to	upgrade	to	watchOS	2,	this	is	where	your	world	of
pain	begins.

FIGURE	2.5	The	WatchKit	App	for	watchOS	1	target	template—probably	best
avoided

For	modern	watchOS	development,	select	the	watchOS	section	to	see	the	options
available	to	you	for	creating	a	watchOS	2	app	(Figure	2.6).	Unlike	with	the	project
template	options,	this	time	you	don’t	get	iOS	App	with	WatchKit	App	as	a	choice—
instead	you	get	a	boring	old	WatchKit	App.	At	this	stage	Apple	is	making	the	assumption
that	you	already	have	an	iOS	app	target	in	your	project.	If	you	don’t	(maybe	this	is	an	OS
X	project),	you’ll	need	to	go	back	and	create	an	iOS	app	target	first.

FIGURE	2.6	The	watchOS	target	template	selection

If	you	select	the	WatchKit	App	template	and	click	Next,	you	are	presented	with	a	series
of	options	for	the	target	that	are	similar	to	those	shown	for	the	iOS	App	with	WatchKit
App	project	(Figure	2.7).	There	are	a	few	differences	worth	highlighting:

	Product	Name:	In	this	dialog,	Product	Name	is	the	name	of	the	watchOS	app	and
can	be	distinct	from	the	iOS	app.

	Organization	Identifier:	This	cannot	be	changed	here	because	Xcode	must	set	to
the	Bundle	Identifier	of	the	companion	iOS	app.

	Bundle	Identifier:	This	also	can’t	be	changed	but	is	formed	from	the	Organization
Identifier	and	the	Product	Name.

	Language:	Interestingly,	when	creating	your	WatchKit	app	target	you	can	choose	to
use	a	different	language	than	the	one	you	used	when	creating	your	iOS	app	project.
This	is	good	for	developers	with	existing	iOS	apps	that	were	created	in	Objective-C
but	wish	to	perform	ongoing	development	in	Swift.

	Include	Notification	Scene,	Include	Glance	Scene,	and	Include	Complication:
These	options,	when	selected,	create	the	appropriate	extra	artifacts	in	your	project.

	Project:	If	you	are	working	in	a	multi-project	workspace,	this	option	allows	you	to
select	which	project	the	new	target	should	be	created	within.

	Embed	in	Companion	Application:	The	WatchKit	app	must	be	associated	with	an
companion	iOS	app;	if	you	have	only	one	iOS	app	in	your	project,	this	is	an	easy
choice	to	make,	but	if	you	have	more	than	one	iOS	app	target	in	your	project	(or

workspace),	you	have	to	decide	which	app	will	be	the	official	companion.	This
determines	which	iOS	app	the	user	has	to	install	to	get	the	WatchKit	app	onto	their
watch.

FIGURE	2.7	The	template	options	for	the	WatchKit	App	target

	Note

The	iOS	App	with	WatchKit	App	project	template	will	generate	two
targets:Product	Name	WatchKit	App	and	Product	Name	WatchKit	Extension.
This	is	different	from	the	WatchKit	App	target	template,	which	creates	targets
named	Product	Name	and	Product	Name	Extension.	These	subtle	naming
differences	can	be	confusing,	especially	if	you	are	following	the	instructions
in	this	book,	where	we	will	often	start	our	examples	with	the	iOS	App	with
WatchKit	App	project	template.

Using	Old-School	Techniques
You	can,	of	course,	do	things	the	hard	way.	This	is	also	known	as	“hand-crafting”	or
“taking	the	hipster	route.”	Although	there	are	always	some	people	who	think	they	can	do
it	better	themselves,	sometimes	it	really	is	necessary	to	create	targets,	schemes,	and	code
without	the	aid	of	Xcode.	For	example,	you	may	have	created	your	WatchKit	App	target	at
a	time	when	you	thought	you	wouldn’t	need	a	complication	with	your	app,	but	now
you’ve	identified	such	a	need.	For	those	circumstances,	we’ll	cover	the	manual	creation	of
such	project	artifacts	in	the	appropriate	chapters	later	in	the	book:	Chapter	7,	“Working
with	Complications,”	Chapter	8,	“Working	with	Glances,”	and	Chapter	9,	“Working	with
Notifications.”

However,	what	if	you	need	to	tweak	some	settings	that	the	templates	created	on	your
behalf?	Most	of	the	settings	you	need	to	worry	about	can	be	found	hidden	under	the
settings	for	the	WatchKit	App	and	WatchKit	Extension	targets.	It’s	rare	that	you’ll	need	to
change	these	settings	too	much,	but	if	you	find	you	have	a	need,	make	sure	you	have	a
recent	source	control	commit	to	revert	to,	or	a	recent	backup	of	your	project.	Just	in	case.

Wrapping	Up
This	completes	our	discussion	of	WatchKit	apps	and	extensions.	After	the	hands-on
approach	of	Chapter	1,	this	has	been	quite	the	theoretical	run	through	the	way	WatchKit
apps	are	created	and	configured,	but	we	feel	that	it	is	worth	knowing	how	they	are
organized	and	behave	so	you	can	work	with	confidence	when	building	them.

The	next	chapter	dives	back	into	WatchKit	itself	to	explore	how	to	work	with	the	APIs
that	are	provided	by	watchOS	to	allow	you	to	interact	with	your	watch	app.

Chapter	3.	Implementing	Navigation

Apps	on	the	Apple	Watch,	and	the	watchOS	APIs	that	we	use	to	work	with	them,	are	very
obviously	siblings	of	iOS.	As	you	work	with	the	watch,	you	see	lots	of	similarities	in	the
interface	and	in	the	code—but	you’ll	also	see	significant	differences.	When	the	iPhone
introduced	us	to	what	was	then	iPhoneOS,	it	was	presented	as	relying	on	the	same
technologies	as	OS	X,	but	developed	in	a	way	that	works	better	on	smaller	devices.
watchOS	is	like	that,	but	it	moves	iOS	to	a	new	device.

Navigating	the	Apple	Watch
When	you’re	coming	to	the	Apple	Watch	from	other	iOS	devices,	the	main	differences
you’ll	encounter	are	in	simplification,	which	only	makes	sense	when	you	consider	that
you’re	dealing	with	much	less	space	for	display	and	interaction,	and	much	more
constrained	resources.	Strong	conventions	are	even	more	important	than	on	larger	devices.
Perhaps	in	the	future	there	will	be	scope	for	the	great	innovation	in	UI	we’ve	seen	in	iOS
(with	its	misses	as	well	as	its	hits),	but	in	these	early	days	of	watchOS	it’s	worth	looking
first	to	the	interface	paradigms	Apple	has	provided	for	us.

And	that’s	not	a	bad	thing.	Constraints	encourage	creativity,	and	users	of	these	brand-
new	devices	will	be	helped	by	learning	what	to	expect.

Chief	among	those	constraints	are	the	four	ways	available	to	watchOS	apps	to	present
to	the	user:	Apple	Watch	apps,	with	their	own	UIs	and	interactions;	complications,	which
allow	your	apps	to	add	their	most	important,	at-a-glance	piece	of	information	to	the	watch
face;	glances,	which	show	a	chosen	set	of	information	without	allowing	for	interaction;
and	notifications,	which	may	or	may	not	allow	the	user	to	respond	with	an	action.

We’ll	spend	more	time	on	complications,	glances,	and	notifications	in	Chapters	7,	8,
and	9,	respectively,	but	for	now	we’ll	explore	some	of	the	capabilities	of	apps	on	the
watch	as	we	take	a	tour	of	the	available	navigation	options.

Navigation	Types
iOS	has	given	us	several	different	approaches	to	navigation	within	an	app,	some	designed
by	Apple	and	directly	supported	in	the	frameworks	(navigation	controllers,	page	view
controllers,	various	modal	view	controllers,	the	hidden	reverse	of	the	Utility	app,	tab	bars,
popovers),	and	some	dreamed	up	by	third-party	developers	(the	stacked	cards	of	Twitter’s
first	iPad	app,	various	kinds	of	sliding	view	controllers,	and	the	sometimes	fashionable
and	often	controversial	burger	menu).

On	the	watch,	however,	are	really	only	two	options:

	Page-based	navigation	is	reminiscent	of	the	scroll	view	or	page	view	controller-
based	navigation,	such	as	in	Apple’s	Weather	app	on	iOS.

	Hierarchical	navigation	is	analogous	to	the	drill-down	walk	of	a	navigation
controller.

What’s	more,	when	creating	your	interface	you	must	decide	which	of	these	two	options

will	be	the	basis	for	your	navigation;	an	app	may	use	one	or	the	other.

Additionally,	an	app	may	present	a	modal	interface,	which	may	include	page-based
navigation	of	its	own.

It	doesn’t	sound	like	much,	but	we	think	you’ll	find	that	it’s	not	as	restrictive	as	it
sounds.

Page-based	Navigation
Let’s	take	a	quick	look	at	how	page-based	navigation	works	in	practice.

1.	Open	Xcode,	and	create	a	new	project,	selecting	the	Watch	OS	>	Application	>	iOS
App	with	WatchKit	App	template.

2.	Choose	Swift	as	the	language	for	the	project.

	Note

This	book	uses	Swift,	so	selecting	it	as	the	language	for	the	project	will	allow
you	to	follow	along	with	the	code.

3.	Leave	the	Include	Notification	Scene,	Include	Glance	Scene,	and	Include
Complication	options	unselected	(unlike	in	Chapter	1)	(Figure	3.1).	We’re	not	going
to	be	using	them	in	this	example.	Click	Next,	and	choose	where	to	save	your	project.

FIGURE	3.1	WatchKit	target	options

4.	Open	Interface.storyboard	from	the	WatchKit	App’s	group	in	the	Project
Navigator.	You’ll	see	just	one	scene,	something	like	that	in	Figure	3.2.

FIGURE	3.2	A	lone	scene	in	the	storyboard

5.	Add	another	interface	controller	scene	to	the	storyboard	by	finding	the	Interface
Controller	entry	in	the	Object	Library	(Figure	3.3)	and	dragging	it	onto	the
storyboard	next	to	the	existing	one.

FIGURE	3.3	Xcode’s	Object	Library

6.	Control-click	and	drag	from	the	first	interface	controller	scene	to	the	one	you	just
placed	(Figure	3.4),	then	select	“next	page”	from	the	popup	(Figure	3.5)	that
appears	when	you	release	your	click.

FIGURE	3.4	Creating	a	segue	relationship

FIGURE	3.5	Selecting	the	segue

You	could	run	the	app	now	to	see	how	the	pages	work,	but	it	would	be	difficult	to
distinguish	the	pages.

7.	Add	a	couple	of	labels	to	your	interface	controller	scenes	(perhaps	identifying	them
as	shown	in	Figure	3.6—these	have	Alignment	set	to	Center	in	both	horizontal	and
vertical	directions),	then	run	the	WatchKit	App	scheme	in	one	of	the	iPhone	+	Watch
simulator	pairs.

FIGURE	3.6	Storyboard	scenes	ready	to	page

In	the	Apple	Watch	simulator	window,	you	should	be	able	to	happily	swipe	back	and
forth	between	your	two	interface	controllers	(Figure	3.7).

FIGURE	3.7	The	first	page	in	the	simulator

Swiping	between	full-screen	pages	is	an	interface	approach	that	is	very	well	established
on	iOS,	going	all	the	way	back	to	the	original	Weather	app	installed	as	standard	on	the
first	iPhone.	You	may	be	well	used	to	working	with	these	interfaces,	either	by	working
with	UIScrollView	yourself	or	via	the	UIPageViewController	class	introduced
in	iOS	5.	When	working	with	WatchKit,	you	must	keep	a	number	of	key	differences	in
mind.

	Although	you	may	be	accustomed	to	dynamically	providing	the	pages	of	your	iOS
navigation	on	demand,	things	are	very	different	when	dealing	with
WKInterfaceControllers	as	pages:	The	number	of	pages,	and	the	classes	of
the	controllers,	is	provided	in	advance.	This	is	done	either	by	connecting	a	chain	of
scenes	in	the	storyboard,	as	you’ve	just	done,	or	by	calling
WKInterfaceController’s
reloadRootControllersWithNames(_:contexts:)	class	method.	The

array	of	names	provided	to	that	method	contains	NSStrings	to	match	the	names	of
scenes	in	the	storyboard,	while	contexts	is	an	optional	array	of	AnyObjects.
The	arrays	correspond	to	each	other,	with	the	first	context	object	being	passed	to	the
first	controller,	the	second	context	to	the	second	controller,	and	so	on.

	All	the	interface	controllers	represented	by	the	pages	are	instantiated	and	initialized
at	once,	before	the	interface	is	displayed.	Your	extension	code	manages	the	content
displayed	in	response	to	events	in	the	WKInterfaceController	lifecycle,
which	you’ll	learn	more	about	later	in	this	chapter.

	If	you	want	to	include	more	than	one	interface	controller	in	a	modal	presentation,
they	must	be	handled	as	page-based	rather	than	in	a	drill-down	hierarchy.	This	is
accomplished	with	the	presentControllerWithNames(_:contexts:)
method.

Hierarchical	Navigation
The	drill-down	method	through	a	series	of	table	views,	presented	in	a	navigation
controller,	is	possibly	the	most	used	approach	to	navigation	on	the	iPhone—and	the
master-detail	split	view,	originally	seen	on	the	iPad,	is	often	best	understood	as	a	variant
of	this	style.	On	the	phone,	think	of	the	Music	app,	browsing	albums	and	then	tracks.	Or
remember	browsing	in	Mail	from	Mailboxes	to	Inbox	to	a	thread	to	a	specific	email.	Even
the	humble	Phone	app	displays	this	approach:	groups	to	contacts	list	to	a	single	contact.

Although	table	views	tend	to	be	a	big	part	of	a	hierarchical	structure,	your	iOS	view
controllers	can	trigger	navigation	to	the	next	layer	however	you	like.	On	the	watch,	you’ll
probably	find	navigation	being	triggered	by	user	interaction	with	a	table	row,	a	button,	or
perhaps	the	context	menu	(more	on	that	later	in	this	chapter).

As	with	the	paged	navigation,	each	screen	in	the	user’s	journey	is	managed	by	a
subclass	of	WKInterfaceController.	Navigation	up	the	stack	is	provided	by	the
system-supplied	and	managed	back	button,	just	like	the	standard	Back	button	item	of	a
UINavigationController.	You	can	customize	the	string	displayed	by	setting	the
controller’s	title	in	the	storyboard	editor.

To	experiment	with	hierarchical	navigation	in	an	app,	return	to	your	page-based	app	and
make	the	following	changes:

1.	Delete	the	“next	page”	segue	between	the	two	scenes.

2.	Delete	the	label	from	the	first	scene,	and	replace	it	with	a	button.

3.	Control-click	and	drag	from	the	button	to	the	second	scene	in	the	storyboard.

4.	Select	“push”	from	the	popup	that	appears	when	you	release	the	click.

The	storyboard	should	now	look	something	like	Figure	3.8;	note	the	icon,
embedded	in	the	segue	arrow,	that	identifies	the	type	of	segue,	and	how	it	differs
from	the	simple	“linked	objects”	icon	that	was	used	for	the	“next	page”	segue	in
Figure	3.6.

FIGURE	3.8	Hierarchical	navigation	in	the	storyboard

When	you	run	your	app,	you’ll	be	able	to	click	back	and	forth	between	the	two	screens
(Figures	3.9	and	3.10).	Notice	that	the	back	arrow	in	the	second	screen	is	just	a	small,
anonymous	arrow.	You	can	add	a	custom	title	using	the	scene’s	Title	property	in	the
storyboard	editor,	or	in	code	using	the	WKInterfaceController’s	setTitle(_:)
method.	“What’s	WKInterfaceController?”	you	ask.	This	is	a	good	time	to	find
out.

FIGURE	3.9	The	button	in	the	Watch	simulator

FIGURE	3.10	The	second	controller	in	the	Watch	simulator

The	WKInterfaceController
By	now	you	have	figured	out	that	when	you’re	working	with	WatchKit	interfaces	you
spend	lots	of	time	in	subclasses	of	WKInterfaceController.	As	suggested	by	the
name,	this	class	is	somewhat	analogous	to	the	UIViewController	of	iOS,	although
(as	is	the	case	throughout	WatchKit)	the	interface	it	presents	to	the	developer	is	much
simpler.	WKInterfaceController	feels	a	little	like	the	essence	of
UIViewController	in	a	smaller,	lighter	package.

Perhaps	the	most	significant	way	this	is	achieved	is	in	the	very	close	relationship
between	WKInterfaceController	and	UI	storyboards.	Wherever	you	might	seek	to
“instantiate”	an	interface	controller,	you	reference	it	by	its	identifier	from	the	storyboard.

We	say	“instantiate,”	but	even	that	isn’t	something	you’ll	ever	do	directly	in	code.	You
might	provide	the	identifier	as	a	member	of	an	array	passed	to
reloadRootControllersWithNames(_:contexts:)	or	provide	it	to
presentControllerWithName(_:context:),	but	the	system	will	take	it	from
there.

If	you	haven’t	gotten	Apple’s	very	large	hint	by	now,	take	heed:	There	is	no	laying	out
your	interface	in	code,	however	much	fun	you	might	have	found	that	in	the	past.	When
preparing	interfaces	for	Apple	Watch,	your	options	are	to	define	your	interface	elements	in
the	storyboard	editor	or	to	define	your	interface	elements	in	the	storyboard	editor.	The
future	will	be	storyboarded.

The	Circle	of	Life
In	a	manner	that	will,	again,	be	familiar	from	UIViewController,	the	lifecycle	of	a
WKInterfaceController	is	marked	with	callbacks.	Following	a	theme	with	which
you	are	very	familiar,	the	callbacks	are	many	fewer	than	on	iOS.

init()

The	init()	method	is	the	designated	initializer	for	WKInterfaceController	and
is	ready	to	be	overridden.	As	you’d	expect,	your	override	should	always	make	sure	to	call
super.init().	The	init()	method	is	also	the	first	place	your	approach	to
controllers	will	diverge	from	your	experience	with	UIViewController.

Although	UIViewController	has	the	special	designated	initializer
init(nibName:bundle:),	the	WKInterfaceController	has	only	init().
And	as	noted	previously,	you’ll	never	be	calling	it	from	your	own	code.	Instead,	you	can
override	init()	for	when	it’s	called	by	the	system.	Also,	although	you	might	be
accustomed	to	waiting	until	viewDidLoad()	is	called	before	you	can	access	interface
elements	loaded	from	a	storyboard,	by	the	time	init()	has	been	called	on	your	interface
controller,	the	objects	referred	to	by	your	@IBOutlets	are	ready	and	waiting	for	your
attention.

That	being	said,	updating	your	UI	is	best	done	in	awakeWithContext(_:).

	Note

The	normal	pattern	in	Swift	is	to	call	super.init()	last	in	your	override.
In	WKInterfaceController,	it	is	that	call	to	super	that	hooks	up	any
@IBOutlets	in	your	controller.	So	you	want	to	make	sure	to	call	super
before	trying	to	address	any	interface	elements.	However,	you	should	still
make	sure	that	any	non-optional	properties	are	initialized	before	calling
super.init().

awakeWithContext(_:)

Once	the	interface	controller	is	initialized,	its	awakeWithContext(_:)	method	will
be	called.	This	is	the	method	from	which	you	are	likely	to	make	most	of	the	initial	UI
updates	for	the	controller.

The	context	received	is	typed	as	an	AnyObject?	and	is	provided	by	the	interface
controller	which	passes	control	to	the	receiver.	As	an	AnyObject?,	the	context	is
whatever	you	want	to	pass	from	one	interface	controller	to	the	next—or	nil	if	there’s
nothing	needed.

Bear	in	mind	that	WKInterfaceController	does	not	have	a	context	property,
so	if	you	want	to	be	able	to	access	the	received	object	outside	of	this	method,	then	your
subclass	will	need	to	have	its	own	property	or	properties	in	which	to	stash	the	received
information.

willActivate(),	didDeactivate(),	didAppear(),	and
willDisappear()

WKInterfaceController	has	a	set	of	lifecycle	callbacks	that	are	reminiscent	of
UIViewController’s	methods	viewWillAppear(),	viewDidAppear(),
viewWillDisappear(),	and	viewDidDisappear().	The
WKInterfaceController	versions	are	usually	called	exactly	when	you’d	expect:

	willActivate()	is	called	before	the	interface	controller’s	UI	is	displayed	on	the
watch	screen.

	didDeactivate()	is	called	when	the	interface	controller’s	UI	has	been	removed
from	the	screen.

You	should	do	as	little	work	as	possible	in	these	methods.	For	example,	it	may	seem
logical	to	perform	your	UI	updates	in	willActivate(),	much	as	you	might	employ
viewWillAppear(_:)	in	UIViewController,	but	the	documentation	stresses	that
as	much	as	possible	should	be	done	at	initialization,	with	only	necessary	last-minute
updates	performed	in	this	method.	Note	as	well	that	some	time	may	pass	between	the	call
to	willActivate()	and	the	interface	appearing	onscreen.

Once	didDeactivate()	has	been	called	on	your	interface	controller,	the	system

considers	it	inactive—and	may	deallocate	it	at	any	time	to	reclaim	resources.	In	case	this
happens,	you	should	perform	any	necessary	cleanup	here,	including	any	state-persistence
your	app	needs.	The	key	word	here	is	necessary.	Any	work	in	this	method	should	be	kept
as	quick	as	possible.

One	further	nuance	is	that	by	the	time	didDeactivate()	has	been	called	and	the
interface	controller	is	regarded	as	inactive,	the	system	will	not	act	on	any	attempts	to
update	the	controller’s	UI,	including	the	values	of	controls.	This	will	be	the	case	until	the
next	time	the	controller	receives	a	call	to	its	willActivate()	method.

	didAppear()	is	called	just	after	the	interface	controller’s	interface	has	been
displayed	on	the	screen.

	willDisappear()	is	called	shortly	before	the	interface	controller’s	interface	is
removed	from	display.

As	these	methods	coincide	closely	with	the	display	and	removal	of	your	interface
controller’s	UI,	they	are	a	good	place	to	perform	tasks	like	the	configuration	of	UI
animations.

Supporting	Navigation
The	methods	on	WKInterfaceController	related	to	navigating	between	controllers
can	be	grouped	as	follows:

	Methods	that	directly	drive	hierarchical	navigation

	Methods	that	help	manage	page-based	navigation

	Methods	to	support	storyboarded	navigation	managed	with	segues

	Methods	to	present	interface	controllers	modally

	Methods	related	to	interactions	in	table	views

Navigating	in	a	hierarchy	from	code

As	demonstrated	earlier	in	this	chapter,	the	hierarchical	navigation	on	Apple	Watch	is	very
similar	in	approach	to	using	a	UINavigationController	on	iOS.	The	methods	used
to	navigate	between	interface	controllers	have	a	straightforward	equivalence	to	the	ones
you	know	and	love	so	well	from	the	larger	devices.

	pushControllerWithName(_:context:)	is	used	to	push	a	new	interface
controller	to	the	top	of	the	navigation	stack—note	again	that	the	controller	is
referenced	by	the	name	it	has	been	assigned	in	your	storyboard	file.

	popController()	and	popToRootController()	behave	exactly	as	you
would	expect,	to	trigger	navigation	back	through	the	stack	of	previous	interface
controllers.

In	addition	to	using	the	storyboard	editor	to	set	the	interface	controller’s	title,	and	so
control	the	text	shown	by	the	back	button,	the	controller	has	the	method
setTitle(_:),	which	you	can	use	to	update	the	back	text	at	run	time.

To	try	working	with	these	transitions	from	code,	you	can	replace	the	storyboard-based
push	segue	of	our	earlier	hierarchical	navigation	with	an	action	method	in	our	custom
controller	code.

Notice	that	when	your	project	was	created,	Xcode	added	an
InterfaceController.swift	file	to	the	WatchKit	Extension	group	in	the	Project
Navigator	(Figure	3.11).	This	is	also	set	as	the	custom	class	of	the	interface	controller	in
the	first	scene	that	was	added	to	the	storyboard	(Figure	3.12).

FIGURE	3.11	The	WatchKit	Extension	group	in	the	Project	Navigator

FIGURE	3.12	The	custom	class	in	the	storyboard	editor

1.	Add	the	following	code	to	the	InterfaceController	class	in
InterfaceController.swift:

Click	here	to	view	code	image
@IBAction	func	helloTapped()	{
				pushControllerWithName(“World”,	context:	nil)
}

2.	Delete	the	push	segue	from	the	storyboard	file.

3.	Find	the	InterfaceController	custom	class	in	the	storyboard	editor’s	sidebar
(Figure	3.13),	then	Control-click	and	drag	from	the	button	to	that	class	in	the	list.

FIGURE	3.13	The	custom	class	in	the	storyboard	sidebar

4.	Select	helloTapped	from	the	popup	that	appears.

5.	Select	the	second	scene	in	the	storyboard	editor,	and	set	its	identifier	to	the	string
World	(Figure	3.14).

FIGURE	3.14	The	interface	controller	identifier

6.	Run	the	app.	It	should	behave	exactly	as	it	did	before—only	without	the	segue	in
the	storyboard!

Creating	page-based	navigation	from	code

When	experimenting	earlier	with	page-based	navigation,	we	mentioned	briefly	that	we	are
not	limited	to	setting	up	chains	of	paged	interface	controllers	in	the	storyboard.	Although
all	controllers	still	have	their	interface	defined	in	the	storyboard	file,	it	is	possible	to	forgo
connecting	them	in	order	there,	and	rather	load	the	set	of	pages	in	code.	You	could	do	this
with	the	initial	interface	controller	of	your	app,	to	set	up	the	pages	at	load,	or	you	could	do
this	at	any	time	in	response	to	received	data—whether	it’s	information	that	your	app’s
collection	of	controllers	needs	to	be	changed,	or	in	response	to	a	user	interaction.

The	method	for	re-creating	the	pages	is	the	class	method	on
WKInterfaceController
reloadRootControllersWithNames(_:contexts:),	which	instantiates	and
initializes	a	whole	new	collection	of	interface	controllers	and	uses	it	to	replace	any	current
collection.

The	other	method	available	for	interacting	with	the	page-based	navigation	from	code	is
becomeCurrentPage(),	which	an	interface	controller	can	call	on	itself	to	be
animated	into	view.

Responding	to	segues

Where	segues	are	used	in	the	storyboard	to	define	navigation,	the	methods
contextForSegueWithIdentifier(_:)	and
contextsForSegueWithIdentifier(_:)	will	be	called,	with	the	returned
context	objects	passed	to	the	incoming	interface	controllers’	awakeWithContext(_:)
methods.	These	methods	allow	up-to-date	data	to	be	passed	to	the	incoming	controller	or
controllers.

Creating	a	modal	presentation

If	your	Watch	app	needs	to	present	one	or	more	interface	controllers	modally,	you	may
define	the	presentation	in	the	storyboard	or	in	code.	If	you	are	performing	the	presentation
explicitly	in	code,	use	the	method	presentControllerWithName(_:context:)
to	present	a	single	controller,	but	use
presentControllerWithNames(_:contexts:)	to	present	a	paging	navigation
between	interface	controllers.	(Note	again	the	method
contextsForSegueWithIdentifier(_:)	for	handling	presentation	of	multiple
interface	controllers.)

In	either	case,	a	call	to	dismissController()	will	end	the	modal	presentation.

Touching	on	table	views

Table	views	may	be	employed	as	they	often	are	on	iOS—as	part	of	the	navigation	in	an
app.	In	this	case,	there	is	the	very	familiar-looking	method
table(_:didSelectRowAtIndex:)	and	two	table	view-specific	segue	methods,
contextForSegueWithIdentifier(_:inTable:rowIndex:)	and
contextsForSegueWithIdentifier(_:inTable:rowIndex:).	Chapter	4
explores	table	views	and	their	interactions	in	detail.

The	Context	Menu
So	far	we’ve	skipped	over	an	important	part	of	the	interface	controller’s	standard	user
interface.

When	the	user	performs	a	force	touch	on	the	interface	of	a
WKInterfaceController,	that	interface	controller’s	context	menu	(something	like
that	in	Figure	3.15)	will	be	displayed.	(This	is	the	only	way	a	third-party	app	can	respond
to	a	force	touch,	because	there	is	currently	no	public	API	for	its	detection.)

FIGURE	3.15	Interface	controller	context	menu

The	context	menu	can	show	a	maximum	of	four	options,	each	of	which	is	displayed	as
an	image	(either	a	custom	image	from	your	WatchKit	app’s	bundle	or	one	from	the	set	of
standard	icons	provided	by	WatchKit)	with	a	short	title	below	it.	The	options	may	be
defined	either	in	the	storyboard	or	in	code	in	the	interface	controller,	and	in	either	case	a

tap	on	the	option	will	send	an	action	message	to	the	interface	controller.

To	experiment	with	the	context	menu,	return	to	the	example	app	from	earlier	in	this
chapter.

1.	Add	another	interface	controller	scene	to	your	watch	app’s	storyboard,	drag	in	a
label,	and	give	it	an	identifier	of	Info.

2.	Find	the	Menu	object	(Figure	3.16)	in	the	Object	Library,	and	drag	it	onto	the	first
interface	controller	in	your	app.	Note	that	when	you	release	the	drag,	there	will	be
no	sign	of	the	menu	on	the	storyboard	canvas,	but	it	will	appear	in	the	storyboard
editor’s	left	sidebar	(Figure	3.17).

FIGURE	3.16	Menu	object

FIGURE	3.17	The	menu	in	place

The	menu	is	created	with	a	single	menu	item	already	in	place.

3.	Select	the	menu	item,	and	give	it	a	title	and	image	of	Info,	as	in	Figure	3.18.

FIGURE	3.18	Menu	item	configuration

4.	Make	the	menu	item	trigger	a	navigation	to	your	new	interface	controller	by	adding
the	following	method	to	InterfaceController.swift:

Click	here	to	view	code	image
@IBAction	func	contextInfoTapped()	{
				pushControllerWithName(“Info”,	context:	nil)
}

5.	Connect	the	action	of	the	menu	item	to	that	method,	then	run	the	app.

6.	Activate	an	interface	controller’s	context	menu	in	the	simulator	by	clicking	and
holding	in	the	Apple	Watch	window.

After	a	moment,	the	context	menu	will	appear.	Clicking	the	menu	item	will	trigger

the	navigation	to	your	new	interface	controller.

We’re	going	to	add	one	more	item	to	the	context	menu,	but	this	time	we’ll	do	it	from
our	interface	controller	in	code.

7.	Open	InterfaceController.swift	again,	and	add	the	following	method:
Click	here	to	view	code	image

func	contextMoreTapped()	{
				presentControllerWithNames([“World”,	“Info”],	contexts:	nil)
}

8.	Add	the	following	method	at	the	top	of	the	InterfaceController	class:
Click	here	to	view	code	image

override	init()	{
				super.init()

				addMenuItemWithItemIcon(.More,	title:	“More”,	action:
Selector(“contextMoreTapped”))
}

9.	Run	the	app.

10.	Activate	the	context	menu.

You	should	see	another	option:	More.

11.	Click	the	More	menu	item,	and	the	eagle-eyed	will	spot	the	use	of	modal
presentation	of	paged	navigation	back	and	forth	between	two	interface	controllers.

And	So	Much	More
Because	WKInterfaceController	is	a	core	class	in	watchOS,	you	will	find	that	a
great	deal	of	what	you	need	to	do	in	your	code	will	happen	in—or	not	far	removed	from—
its	subclasses.	The	excitement	and	opportunity	presented,	especially	with	the	release	of
watchOS	2,	include:

	Alerts	(Chapter	4)

	Interface	animations	(Chapter	6)

	Integration	with	other	platforms	via	the	Handoff	APIs	(covered	in	Chapter	10	along
with	other	cross-device	communication	topics)

	Responding	to	the	user’s	interaction	with	notifications	(Chapter	9)

	Audio	recording	and	media	playback	(Chapter	12)

	Accepting	user	input	(Chapter	11)

Wrapping	Up
This	chapter	has	been	a	quick	overview	of	the	navigation	options	available	to	your
WatchKit	app,	with	a	longer	look	at	some	of	the	navigation-specific	API	provided	by
WKInterfaceController.	We	have	explored	enough	to	be	able	to	instantiate	a
whole	gang	of	interface	controllers	and	hook	them	together	with	a	variety	of	navigational
approaches	for	use	in	different	ways.

Yet	all	the	interface	controllers	we	could	come	up	with	would	end	up	being	pretty
boring	and	useless	without	ways	of	communicating	with	the	user:	presenting	information
and	detecting	interaction.	Chapter	4	surveys	the	UI	controls	available	in	WatchKit	and
gives	some	examples	of	their	use.

Chapter	4.	Exploring	Controls

iOS	has	always	had	a	place	for	innovative	custom	UIs,	but	it’s	often	a	good	idea	to	start
with	the	standard	controls	provided	by	the	platform.	On	Apple	Watch,	standard	controls
are	(for	now)	the	only	option—but	as	we	take	a	tour	of	the	available	interface	elements,
you’ll	see	that	there’s	still	plenty	to	work	with	on	the	new	platform.

House	Rules
As	we	take	a	look	through	the	Object	Library	and	the	APIs,	almost	everything	has	a
similar	and	direct	analog	available	on	the	larger	iOS	devices.	But	let’s	pause	for	a	moment
and	review	some	small	but	important	differences	in	the	Watch	environment	(which	we	are
sure	will	be	no	trouble	to	an	intelligent,	creative,	and	insightful	developer	such	as	you,
dear	reader).

	The	user	interface	and	the	controls	it	contains	are	defined	during	development	using
the	storyboard	editor.	In	contrast	to	iOS,	you	can’t	create	the	UI	in	code.	If	you	are
one	of	those	developers	who	prefer	to	avoid	the	visual	editor,	then	you’ll	find	it’s
time	to	dip	your	proverbial	toe	in	its	waters.

	Even	so,	some	properties	of	the	controls	can	be	set	at	run	time	(how	else	would	you
update	a	label	to	give	your	user	information	that	you	didn’t	have	at	build	time?),	but
only	some.	Others	can	be	set	only	in	the	storyboard	editor.	We’ll	identify	which
properties	on	each	control	can	be	dynamically	updated	as	we	examine	each.

	Where	values	can	be	set	to	controls,	they	cannot	be	read	by	your	Watch	app.	For
example,	you	can	set	a	switch	to	on	from	your	interface	controller,	but	you	cannot
read	from	it	whether	it	is	on	or	off.	Instead,	you	must	wire	up	the	switch’s	change
event	to	an	@IBAction	method	in	your	controller	and	keep	track	of	state	changes
in	a	property.

This	might	sound	like	the	Watch	presents	an	even	more	restrictive	environment	than
we’re	used	to	as	developers	for	iOS	platforms,	but	as	you	saw	when	exploring	the
available	navigation	options	(Chapter	3),	you	can	do	a	lot	with	what’s	available.

WatchKit	Controls
All	interface	objects	(what	we	refer	to	as	“controls”)	in	WatchKit	are	subclasses	of
WKInterfaceObject.	Apps	are	limited	to	using	and	configuring	the	standard	controls,
so	we	can’t	work	with	our	own	subclasses	of	WKInterfaceObject—or	of	any	of	its
subclasses	(which	are	the	controls	in	the	following	sections).	Any	configuration	is	done	in
the	storyboard	editor	or	via	@IBOutlet	properties	in	your	interface	controllers.

WKInterfaceObject	provides	common	methods	for	hiding	and	showing	the
control,	changing	its	size,	and	setting	its	accessibility	attributes.	We’ll	refer	to	hiding,
showing,	and	changing	size	methods	as	you	learn	about	the	available	controls,	and	we’ll
look	in	detail	at	the	accessibility	options	in	Chapter	6.

Simple	Display	Controls
The	following	controls	are	for	displaying	data	to	the	user.	They	do	not	accept	user
interaction.

Labels

Where	would	we	be	without	labels	in	our	user	interfaces?	The	humble	label	is	the	first
option	to	display	text	to	the	user	in	any	iOS	app,	and	it’s	the	first	option	in	your	Watch	app
as	well.

The	WKInterfaceLabel	is	analogous	to	UILabel	and	is	configurable	in	some	of
the	same	ways:	text	(of	course),	text	color,	font,	minimum	scale	and	maximum	number	of
lines	(to	handle	long	text	values),	and	alignment.	Additionally,	text	color	can	be	set	at	run
time	with	the	label’s	setTextColor(_:)	method.	The	text	displayed	by	the	label	can
be	updated	with	the	setText(_:)	and	setAttributedText(_:)	methods.	The
latter,	as	you’d	expect,	allows	configuration	of	the	text’s	style.

WKInterfaceDate	and	WKInterfaceTimer	(Figures	4.1	and	4.2)	are	two
special	label	classes	that	are	a	new	idea	to	WatchKit.

FIGURE	4.1	WKInterfaceDate

FIGURE	4.2	WKInterfaceTimer

WKInterfaceDate	always	displays	the	current	date,	the	current	time,	or	both.	The
storyboard	editor	is	used	to	configure	the	format	of	the	displayed	date–time	information,
using	setTextColor(_:),	setTimeZone(_:),	and	setCalendar(_:),	which
are	available	at	run	time.	This	control	makes	it	trivial	to	display	the	current	date	and	time
in	your	app.

WKInterfaceTimer	is	equally	specialized.	It	manages,	displays,	and	updates	a
countdown	timer,	with	the	format	and	displayed	units	configurable	in	the	storyboard
editor.	The	Enabled	check	box	in	the	Timer	(Figure	4.3)	specifies	whether	the	timer	starts
counting	down	immediately	when	the	interface	is	initialized.

FIGURE	4.3	The	timer’s	Enabled	setting

The	timer	label	is	managed	programmatically	using	its	setDate(_:),
setTextColor(_:),	start(),	and	stop()	methods.	Once	started,	the	timer	will
count	down	to	its	target	date	without	any	further	management	from	your	app.

	Tip

Your	app	receives	no	notification	or	callback	when	the	timer	reaches	zero.	If
your	app	needs	to	take	any	action	when	the	timer	is	up,	you	should	run	an
NSTimer	object	set	to	the	same	target	date.	Remember	that	your	interface
control	has	no	way	to	communicate	with	the	code	running	in	your	WatchKit
extension.

Images

The	WKInterfaceImage	is	used	to	display	an	image,	or	an	animation	made	up	of	a
series	of	images,	in	your	Watch	app’s	interface.	Use	the	storyboard	editor	to	configure	the
initial	image,	its	content	mode,	the	tint	color	for	template	images,	and	whether	the	control
is	able	to	animate.	At	run	time,	a	number	of	methods	are	available	to	set	the	image	or
images,	to	set	the	tint	color,	and	to	start	and	stop	animation.

As	has	been	the	case	since	the	early	days	of	the	web	(on	iOS	and	other	platforms),	the
humble	image	control	is	a	very	powerful	tool	for	setting	the	look	and	feel	of	your	app,
communicating	information,	or	even	adding	a	little	whimsy	or	delight	for	the	user.	We’ll
spend	significant	time	in	Chapters	5	and	6	looking	at	how	to	get	the	best	out	of
WKInterfaceImage.

Maps

The	WKInterfaceMap	control	(Figure	4.4)	takes	much	of	the	pain	out	of	displaying	a
map	to	the	user.	Its	output	is	essentially	a	specialized	image—the	map	is	not	interactive.
However,	you	can	configure	it	to	launch	the	Maps	app	to	the	location	in	the	map	control—
simply	set	it	to	Enabled	in	the	storyboard	editor.

FIGURE	4.4	WKInterfaceMap

The	Enabled	property	is	the	only	configuration	available	in	the	storyboard	editor—all
other	configuration	must	be	made	at	run	time	from	your	interface	controller.

The	area	covered	by	the	map	is	set	either	with	its	setVisibleMapRect(_:)
method	or	with	setRegion(_:).	Which	you	use	depends	on	how	your	app	defines	its
areas—with	an	MKMapRect	or	with	an	MKCoordinateRegion.	In	either	case,	the
map	control	adjusts	the	area	it	displays	and	its	zoom	level	to	make	sure	the	area	specified
is	visible.

It	is	also	possible	to	add	image	annotations	to	the	map
(addAnnotation(_:withImage:centerOffset:)	and
addAnnotation(_:withImageNamed:centerOffset:))	or	to	add	pins
(addAnnotation(_:withPinColor:)).	The	method
removeAllAnnotations()	does	what	it	says,	clears	the	map	of	annotations.

	Note

Remember	that	the	map	will	not	display	if	the	user’s	phone	doesn’t	have	a
network	connection.	As	with	the	Maps	apps	on	iPhone	and	on	the	Watch,	map
data	is	downloaded	as	needed.

Interactive	Controls
Displaying	information	to	the	user	is,	of	course,	only	half	the	story.	WatchKit	offers
buttons,	switches,	and	sliders	for	all	your	users’	tapping	needs.

Buttons

WKInterfaceButton	is	a	tappable	control	that	should	be	connected	to	an
@IBAction	method	in	an	interface	controller.	The	signature	of	this	method	is	slightly
different	from	the	equivalent	on	iOS,	taking	no	parameters:

@IBAction	func	buttonTapped()

The	other	notable	difference	is	that	a	button	can	contain	multiple	other	interface	objects,
acting	as	a	group	(see	the	“Control	Groups”	section	later	in	this	chapter	for	a	discussion	of
WKInterfaceGroup),	as	well	as	the	expected	single	text	label.	This	is	configured
using	the	Content	property	in	the	storyboard	editor.

You	can	configure	buttons	with	different	fonts,	text	colors,	background	colors,	and
background	images,	as	well	as	with	the	title	text	itself.	You	may	also	enable	or	disable	the
button.	These	properties	can	be	set	programmatically	as	well	as	in	the	storyboard—title
color	and	font	being	managed	via	the	setAttributedTitle(_:)	method,	whereas
the	background	is	updated	using	the	setBackgroundColor(_:),
setBackgroundImage(_:),	setBackgroundImageData(_:),	and
setBackgroundImageNamed(_:)	methods.	Figure	4.5	shows	examples	of	how	a
button	can	be	configured.

FIGURE	4.5	Examples	of	differently	configured	buttons

Switches

WKInterfaceSwitch	is	a	control	that	displays	the	familiar	on/off	switch	with	a	label
beside	it.	The	class	and	its	properties	manage	both	the	switch	itself	and	the	label	for	you
(Figure	4.6).

FIGURE	4.6	A	switch	and	its	title

Because	it’s	not	possible	to	query	controls	for	their	state,	the	switch’s	action	method
takes	the	following	form:
Click	here	to	view	code	image

@IBAction	func	switchSwitched(value:	Bool)

When	the	method	is	called,	your	interface	controller	should	stash	the	state	of	the	switch
in	a	property	if	necessary.	When	creating	the	switch	in	the	storyboard	editor,	you	may
configure	its	initial	state,	the	color	of	the	switch’s	On	state,	whether	it	is	initially	enabled,
and	the	text,	color,	and	font	for	the	switch’s	label.

At	run	time	you	can	use	setTitle(_:)	or	setAttributedTitle(_:)	to
update	the	switch’s	label,	setOn(_:)	and	setEnabled(_:)	to	update	its	state	and
whether	it’s	active,	and	setColor(_:)	to	update	its	On	color.

Sliders

WKInterfaceSlider	allows	the	user	to	select	a	value	within	a	defined	range—think
of	the	volume	slider	in	iPhone’s	Music	app	or	the	volume	control	in	the	Watch’s	Now
Playing	glance	(Figure	4.7).

FIGURE	4.7	The	slider	in	the	Now	Playing	glance

The	minus	and	plus	buttons	visible	in	Figure	4.7	are	provided	by	default.	They	can	be
replaced	with	custom	images,	which	must	be	part	of	the	WatchKit	App	bundle	when
distributed.

The	value	of	the	slider	is	represented	as	a	Float	and	is	delivered	to	your	interface
controller	via	an	action	method	with	the	following	signature:
Click	here	to	view	code	image

@IBAction	func	sliderSlid(value:	Float)

As	with	the	switch	control,	your	interface	controller	should	store	the	state	value	as
necessary.

The	slider	presents	quite	a	number	of	configuration	options,	most	of	which	must	be
managed	in	the	storyboard	editor:

	The	value	of	the	slider	is	initially	set	in	the	storyboard	and	can	be	updated	at	run
time	with	the	setValue(:_)	method.

	The	minimum	and	maximum	possible	values.

	The	number	of	steps	the	slider	recognizes	between	those	two	values.	This	can	also
be	set	in	code	with	setNumberOfSteps(_:).

	Whether	the	slider	displays	as	a	continuous,	solid	bar	or	as	a	row	of	segments.

	The	color	of	the	slider	bar,	also	configurable	with	the	setColor(_:)	method	at
run	time.

	Custom	min	image	and	max	image	for	the	slider’s	minus	and	plus	buttons.

	Whether	or	not	the	slider	is	enabled.	You	can	update	this	state	at	run	time	with
setEnabled(_:).

Movies

Your	app	can	play	video	via	a	WKInterfaceMovie	control.	This	control	displays	a
poster	image	and	a	play	button	for	the	video	file	(Figure	4.8);	tapping	the	play	button
plays	the	video	in	a	modal	presentation.

FIGURE	4.8	A	WKInterfaceMovie	control

We’ll	demonstrate	using	WKInterfaceMovie	when	exploring	the	media	capabilities
of	Apple	Watch	in	Chapter	12.

Structural	Controls
A	WKInterfaceController’s	user	interface	is	arranged	quite	differently	from	a	view
hierarchy	on	iOS	in	that	it	takes	a	series	of	controls	and	flows	them	down	the	screen.	If
you’ve	ever	written	HTML	for	a	webpage,	this	might	feel	familiar.	As	with	HTML,	there
are	options	(although	not	nearly	as	many	as	on	the	web)	for	managing	this	flow	by	using
some	structure	controls.

Control	Groups

WKInterfaceGroup	is	an	interface	object	designed	to	contain	other	interface	objects,
and	although	it	may	not	sound	very	exciting	(it’s	a	box!),	this	control	enables	a	great	deal
of	customization	for	how	its	members	are	displayed	(Figure	4.9).

FIGURE	4.9	An	interface	group	in	the	storyboard

Figure	4.10	shows	the	configuration	options	available	for	an	interface	group.	A	group
can	display	a	background	of	a	solid	color	or	an	image—the	image	can	even	be	animated!
If	used,	the	background	has	a	default	corner	radius	of	6	points.	Modifying	the	group’s
edge	insets	and	spacing	will	vary	how	much	of	the	background	is	visible	around	and
between	items	in	the	group.	The	interface	group’s	layout	can	also	be	configured	to	flow	its
contained	items	horizontally	or	vertically.

FIGURE	4.10	Interface	group	configuration

The	properties	that	can	be	updated	at	run	time	are

	Background	color,	with	setBackgroundColor(_:).

	Background	image,	with	setBackgroundImage(_:),
setBackgroundImageData(_:),	and
setBackgroundImageNamed(_:).

	Corner	radius,	with	setCornerRadius(_:).

	Background	image	animation	can	be	controlled	with	methods	that	mirror	those	on
WKInterfaceImage:	startAnimating(),

startAnimatingWithImagesInRange(_:duration:repeatCount:),
and	stopAnimating().

Separators

After	the	whirl	of	options	available	on	an	interface	group,	WKInterfaceSeparator	is
delightfully	simple.	It’s	a	horizontal	line	to	separate	controls,	and	you	can	set	its	color	in
the	storyboard	editor	and	in	code	via	its	setColor(_:)	method.	That’s	it.

Tables

Working	with	table	views	is	the	bread	and	butter	of	many	iOS	developers.
WKInterfaceTable	is	different	enough	from	UITableView	that	we’ll	take	some
time	to	work	with	it	and	its	API.

1.	In	Xcode,	create	a	new	iOS	project,	and	add	a	WatchKit	App	target.

2.	In	the	WatchKit	App’s	storyboard,	add	a	table	to	the	interface	controller	scene
(Figures	4.11	and	4.12).

FIGURE	4.11	The	table	in	the	storyboard	editor

FIGURE	4.12	The	table	in	the	interface	controller	scene

3.	Add	the	source	file	for	a	class	named	RowController	to	the	WatchKit	extension.
It	should	be	a	subclass	of	NSObject	(Figure	4.13).

FIGURE	4.13	Creating	a	row	controller

4.	Update	the	contents	of	RowController.swift	to	the	following:
Click	here	to	view	code	image

import	WatchKit

class	RowController:	NSObject	{

				@IBOutlet	weak	var	listLabel:	WKInterfaceLabel!	{

								didSet(oldValue)	{

												listLabel.setTextColor(UIColor.greenColor())

								}

				}

}

5.	In	the	WatchKit	App’s	Interface.storyboard,	select	the	table’s	table	row
controller	in	the	left	sidebar.	Open	the	Identity	inspector	and	set	the	table	row
controller’s	Class	setting	to	RowController	(Figure	4.14).	The	Module	setting
will	update	automatically.

FIGURE	4.14	Setting	the	table	row	controller’s	class

6.	Open	the	table	row	controller’s	Attribute	inspector,	and	set	its	Identifier	to
RowController.

7.	Add	a	label	to	the	row	controller’s	group,	and	connect	it	to	the	row	controller’s
listLabel	property	(Figure	4.15).

FIGURE	4.15	The	interface	controller’s	hierarchy	of	interface	objects

8.	Replace	the	contents	of	InterfaceController.swift	with	the	following:
Click	here	to	view	code	image

import	WatchKit
import	Foundation

class	InterfaceController:	WKInterfaceController	{
				@IBOutlet	weak	var	listTable:	WKInterfaceTable!
}

9.	Connect	the	table	in	the	storyboard	to	the	@IBOutlet	you	have	just	defined.

10.	Add	the	following	two	methods	to	the	InterfaceController	class:
Click	here	to	view	code	image

override	func	awakeWithContext(context:	AnyObject?)	{
				super.awakeWithContext(context)
				updateTableItems()
}

func	updateTableItems()	{
				let	listOfThings	=	[
								“Apple”,	“Banana”,	“Pear”,	“Orange”,	“Lemon”,
								“Guava”,	“Melon”,	“Starfruit”,	“Grape”
]
				let	numberOfThings	=	listOfThings.count

				listTable.setNumberOfRows(numberOfThings,	withRowType:
“RowController”)

				for	i	in	0..<numberOfThings	{
								let	rowController	=	listTable.rowControllerAtIndex(i)	as!
RowController
								rowController.listLabel.setText(listOfThings[i])
				}
}

11.	Add	the	following	method	to	the	same	class:
Click	here	to	view	code	image

override	func	table(table:	WKInterfaceTable,	didSelectRowAtIndex	rowIndex:
Int)	{
				let	rowController	=	listTable.rowControllerAtIndex(rowIndex)	as!
RowController
				rowController.listLabel.setTextColor(UIColor.redColor())
}

12.	Run	the	WatchKit	App,	you	should	see	a	list	of	fruit	(Figure	4.16).	Tapping	a	row
will	turn	its	label	red.

FIGURE	4.16	The	table	in	the	Watch	simulator

This	example	demonstrates	the	basics	of	setting	up	and	populating	a
WKInterfaceTable.	Note	the	following	details	of	using	a	table:

	The	table	is	populated	all	at	once	when	the	data	is	available.	This	is	in	contrast	to	the
approach	taken	on	iOS,	where	the	UITableView	asks	its	data	source	for	each	cell
to	display	in	turn	as	needed.

	Access	to	an	individual	row,	perhaps	to	update	some	property	of	its	UI,	is	simple
using	rowControllerAtIndex(_:).

	The	idea	of	a	“row	controller”	is	implemented	in	two	parts.	First,	in	the	storyboard,
the	row	controller	is	created	and	its	UI	is	defined.	Then,	it’s	necessary	to	create	a
custom	class	(RowController	in	our	example)	to	associate	with	that	UI.
Instances	of	this	class	are	how	you	interact	with	the	interface	items	of	a	given	row.
The	table	identifies	the	row	controller	types	by	their	Identifier	properties	and
instantiates	them	according	to	their	Class	settings.

In	this	example,	we	have	used	only	a	single	type	of	row	in	the	table.	However,	you	can
define	multiple	row	controllers	on	a	table	by	increasing	its	Rows	attribute	in	the
storyboard	editor.	Interface	controller	code	can	then	reference	the	different	row	controller
types	by	their	differing	Identifier	attributes.

	Tip

In	the	storyboard,	a	table’s	Rows	attribute	represents	the	number	of	different
row	controllers,	whereas	the	actual	number	of	rows	in	the	table	at	run	time	is
provided	by	your	interface	controller.

Three	methods	on	WKInterfaceTable	allow	you	to	specify	which	row	types	to	use:

	setNumberOfRows(_:withRowType:),	the	method	used	in	the	example,
specifies	the	number	of	rows	in	the	table	and	assigns	the	same	row	type	to	each	of
them.

	setRowTypes(_:)	takes	an	array	of	strings	that	are	the	identifiers	for	the	row
controllers.	The	array	should	contain	one	string	for	each	row	that	should	be
displayed	in	the	table.

	insertRowsAtIndexes(_:withRowType:)	takes	the	identifier	of	the	row
controller	to	use	for	the	inserted	rows.

In	each	case,	as	seen	in	the	example,	you	access	the	row	controller	object	for	a	given
row	using	the	table’s	rowControllerAtIndex(_:)	method.

It’s	possible	to	add	and	remove	table	rows	without	re-creating	the	row	set	for	the	whole
table.	This	is	done	using	the	methods	insertRowsAtIndexes(_:withRowType:)
and	removeRowsAtIndexes(_:).	The	interface	controller	can	trigger	a	scroll	to	a
specified	row	by	calling	scrollToRowAtIndex(_:)	on	the	table.

Finally,	it’s	possible	to	define	segues	in	the	storyboard	that	are	triggered	by	taps	on
table	rows.	(This	will	be	familiar	to	you	if	you’ve	ever	configured	a	UITableView	to
trigger	a	segue	on	iOS.)	When	one	of	these	segues	is	triggered,	the	table’s	interface
controller	receives	one	of	the	table	segue	callbacks	asking	for	the	context	to	be	received
by	the	incoming	interface	controller’s	awakeWithContext(_:)	method.	These
callback	methods	are
contextForSegueWithIdentifier(_:inTable:rowIndex:)	and
contextsForSegueWithIdentifier(_:inTable:rowIndex:).	Which	is
called	depends	on	the	target	and	type	of	the	segue,	the	latter	being	the	method	called	when
transitioning	to	a	modal	presentation	of	paged	interface	controllers.

Pickers

One	of	the	features	of	Apple	Watch	most	talked	about	when	it	was	announced	was	its
digital	crown,	which	provides	a	smooth,	intuitive	hardware	interface	for	the	user	to	scroll
onscreen	content.	Developer	access	to	the	digital	crown’s	scrolling	action	is	via	the
WKInterfacePicker	control.

WKInterfacePicker	allows	your	app	to	define	a	series	of	options	(represented	by
instances	of	the	class	WKPickerItem),	providing	text,	an	image,	or	both	for	each.	The
user	selects	the	picker	by	tapping	it.	They	can	then	use	the	digital	crown	to	scroll	through
the	available	options,	and	then	tap	the	control	again	to	select	the	current	option.

	Tip

Interacting	with	pickers	in	the	Apple	Watch	simulator	is	delightfully	intuitive.
Simply	click	the	picker	to	give	it	focus	(if	it	is	not	already	focused),	then	use
your	normal	scrolling	action	via	the	trackpad	or	mouse	to	simulate	the
movement	of	the	digital	crown.

There	are	three	types	of	picker	your	app	can	use:

	The	List	picker	(Figure	4.17)	displays	a	list	of	options	and	allows	the	user	to	scroll
through	them	and	select	one.	Each	item	may	have	an	accessory	image,	a	title,	both
an	accessory	image	and	a	title,	or	a	content	image.

FIGURE	4.17	A	List	picker	with	a	focus	highlight

	The	Stacked	picker	animates	through	a	virtual	stack	of	cards,	displaying	one	at	a
time	onscreen,	with	a	whimsical	transition	between	items.	Each	item	should	be
assigned	a	content	image.

	The	Image	Sequence	picker	cycles	through	a	series	of	images	according	to	the	user’s
scrolling	of	the	digital	crown,	displaying	one	at	a	time.	The	images	are	supplied	via
the	picker	items’	contentImage	properties.	This	picker	type	differs	from	the
behavior	of	the	Stacked	picker	in	that	the	transition	isn’t	animated.	If	the	picker’s
focus	highlight	(the	green	outline	visible	in	Figure	4.17)	is	disabled	and	the
sequence	of	images	is	constructed	with	care,	this	option	might	give	you	all	kinds	of
ideas	for	custom	UI.	(See	Chapter	6	for	another	approach	to	using	a	picker	to	control
an	animation:	with	its	setCoordinatedAnimations(_:)	method.)

Note	that	the	Stacked	and	Image	Sequence	pickers	(Figures	4.18	and	4.19)	look
identical.	The	difference	is	in	the	transition—or	lack	of	transition,	in	the	Image	Sequence
picker—between	the	items.

FIGURE	4.18	A	Stacked	picker	with	a	focus	highlight

FIGURE	4.19	An	Image	Sequence	picker	with	a	focus	highlight

Each	type	of	picker	is	configurable	in	two	ways	in	the	storyboard	editor:

	The	Focus	property	of	the	picker	in	the	storyboard	editor	controls	whether	the	picker
is	outlined	to	show	when	it	is	in	focus	(responding	to	digital	crown	input),	whether	it
shows	its	caption	in	addition	to	its	focus	ring	(Figure	4.20),	or	whether	there	is	no
indication	that	the	picker	has	focus.

FIGURE	4.20	A	List	picker	with	a	caption

	The	Indicator	property	specifies	whether	or	not	the	picker	gives	an	indication	of	its
current	display	in	the	list	of	items.	The	indicator	can	be	seen	in	Figure	4.17,	and	is
reminiscent	of	UIScrollView’s	scroll	indicators	on	iOS.

As	with	other	controls,	WKInterfacePicker	has	a	setEnabled(_:)	method	to
set	whether	or	not	it	is	available	for	the	user	to	interact	with.	It	can	be	given	focus
programmatically	with	a	call	to	its	regally	named	focusForCrownInput()	method.

The	picker’s	items	are	set	via	its	setItems(_:)	method,	which	accepts	an	array	of
WKPickerItem	instances.	The	currently	selected	item	is	specifiable	by	its	index,	via	the
setSelectedItemIndex(_:)	method.	Each	picker	item	has	the	following
properties	available	for	configuration:

	contentImage	is	available	to	all	three	types	of	picker:	it’s	the	only	property	used
by	Stacked	and	Image	Sequence	pickers,	and	if	it’s	set	in	the	WKPickerItems	to
be	consumed	by	a	List	picker,	then	the	other	properties	should	not	be	set.

	title	is	the	text	used	by	a	List	picker.

	accessoryImage	is	the	small	image	used	by	a	List	picker,	displayed	next	to	its
title.

	caption	is	the	text	used	in	the	picker’s	caption	area,	if	it’s	enabled	(Figure	4.20).

	Note

The	images	accepted	by	WKPickerItem’s	image	properties	are	of	the	type
WKImage.	These	can	be	created	from	instances	of	UIImage	by	calling
WKImage’s	init(image:)	initializer.

Finally,	to	let	your	app	respond	to	the	changing	selection	of	the	picker,	the	picker	can
send	an	action	method	to	its	interface	controller.	The	method	takes	the	form	@IBAction
func	pickerAction(index:	Int)	and	receives	the	index	of	the	picker	item
selected	by	the	user.

Alerts

It’s	possible	to	display	an	alert,	with	options	for	the	user,	in	much	the	same	way	as	using
UIAlertController	(or	the	older,	deprecated	API	UIAlertView)	on	iOS.
Although	alerts	don’t	involve	subclasses	of	WKInterfaceObject,	we	include	them
here	because	they	are	a	natural	fit	in	our	tour	of	UI	controls.

An	alert	is	triggered	with	a	call	to	WKInterfaceController’s	method
presentAlertControllerWithTitle(_:message:preferredStyle:actions:)
The	actions	parameter	takes	an	array	of	WKAlertAction	instances.

To	see	the	alerts	in	action,	carry	out	the	following	steps:

1.	Create	a	new	iOS	App	with	WatchKit	App	project	(File	>	New	>	Project).

2.	In	the	WatchKit	App’s	Interface.storyboard,	add	a	button	as	shown	in
Figure	4.21.

FIGURE	4.21	The	DANGER!	button

3.	Update	your	InterfaceController.swift	file	to	have	an	empty
implementation,	as	follows:

Click	here	to	view	code	image
import	WatchKit
import	Foundation

class	InterfaceController:	WKInterfaceController	{

}

The	button	will	be	updated	depending	on	the	option	chosen	by	the	user	when	the
alert	is	presented.

4.	Add	the	following	enum	and	property	inside	(since	Swift	allows	nested	types,	and
this	enum	is	of	interest	only	inside	the	class—yay!)	the	curly	brackets	of	the
InterfaceController	class:

Click	here	to	view	code	image
enum	ButtonState	{
				case	OutOfDanger,	Danger,	Exploded
}

var	buttonState	=	ButtonState.Danger

5.	Create	the	following	@IBAction	and	@IBoutlet	in
InterfaceController,	and	connect	both	to	the	button	in	the	storyboard:

Click	here	to	view	code	image
@IBOutlet	var	dangerButton:	WKInterfaceButton!

@IBAction	func	dangerTapped()	{
				presentAlertControllerWithTitle(“Danger!”,
								message:	“What	will	you	do?”,
								preferredStyle:	.Alert,
								actions:	alertActions())
}

We	then	need	to	define	the	actions	for	the	alert.

6.	Define	the	method	referenced	in	the	previous	call:
Click	here	to	view	code	image

func	alertActions()	->	[WKAlertAction]	{
				return	[
								WKAlertAction.init(title:	“Deal	with	it”,
												style:	.Default)	{self.buttonState	=	.OutOfDanger},
								WKAlertAction.init(title:	“Ignore	it”,
												style:	.Cancel)	{self.buttonState	=	.Danger},
								WKAlertAction.init(title:	“Explode	it”,
												style:	.Destructive)	{self.buttonState	=	.Exploded}
]
}

Next,	the	button	needs	to	be	updated	according	to	the	value	of	the	buttonState
property.	The	time	to	do	this	is	in	the	willActivate()	method.

7.	Add	the	following	code	to	the	interface	controller:
Click	here	to	view	code	image

override	func	willActivate()	{
				super.willActivate()
				updateButton()
}

func	updateButton()	{
				switch	buttonState	{
				case	.OutOfDanger:	outOfDanger()
				case	.Danger:	danger()
				case	.Exploded:	exploded()
				}
}

8.	Add	the	following	three	methods	to	set	the	different	button	states:
Click	here	to	view	code	image

func	outOfDanger()	{
				dangerButton.setTitle(“Phew”)
				dangerButton.setEnabled(false)
}

func	danger()	{
				dangerButton.setTitle(“DANGER!”)
				dangerButton.setEnabled(true)

}

func	exploded()	{
				dangerButton.setTitle(“BOOM!”)
				dangerButton.setBackgroundColor(.redColor())
				dangerButton.setEnabled(false)
}

	Tip

The	InterfaceController	class	here	uses	an	enumeration	to	track	the	state	of
the	button	and	update	the	UI	accordingly	because	the	interface	controller	will
be	deactivated	while	the	alert	is	shown.	This	means	the	button	will	not
respond	to	the	calls	to	its	setters	in	the	alert	handlers,	and	needs	to	be	updated
when	willActivate()	is	called	on	the	controller.	To	save	future-you	some
debugging	pain,	you	might	want	to	remember	this	moment.

9.	Run	the	app	and	tap	the	button.	You	should	see	the	alert	appear,	as	in	Figure	4.22.

FIGURE	4.22	An	alert,	asking	the	important	question

The	preferredStyle	parameter	in	the	call	to
presentAlertControllerWithTitle(_:message:preferredStyle:actions:)
step	5	is	a	case	of	the	WKAlertControllerStyle	enumeration.	The	available	cases
are

	Alert	dispays	a	simple,	flexible	alert	with	a	variable	number	of	actions.	This	is	the
style	used	in	the	example.

	SideBySideButtonsAlert	accepts	only	two	actions	and	displays	their	buttons
side	by	side	(Figure	4.23).

FIGURE	4.23	An	alert	of	style	SideBySideButtonsAlert

	ActionSheet	accepts	either	one	or	two	custom	actions	and	comes	with	a	standard
Cancel	button	in	its	top	corner	(Figure	4.24).

FIGURE	4.24	An	alert	of	style	ActionSheet

As	an	exercise,	we	suggest	you	try	modifying	the	previous	example	to	display	alerts
matching	those	in	Figures	4.23	and	4.24.

User	Input
You	might	have	noticed	that	none	of	the	interface	objects	is	anything	like	our	old	friends
UITextField	or	UITextView	from	iOS.	Textual	input	on	the	Watch	is	a	very
different	proposition	from	other	devices.	We’ll	look	at	it	in	detail	in	Chapter	11.

Wrapping	Up
This	chapter	skimmed	over	all	the	interface	controls	available	from	WatchKit.	Knowing
the	blocks	from	which	you	build	your	user	interface	is	only	part	of	the	story.	Designing	UI
for	the	Watch	is	a	very	different	prospect	from	doing	so	for	larger	devices.	Read	on	to
Chapter	5	to	learn	how	to	effectively	combine	these	pieces	in	your	app.

Part	II:	Creating	Apps

Chapter	5.	Designing	Your	App’s	User	Interface

Every	platform	has	its	own	idioms,	the	ways	of	presenting	content	and	performing	actions
that	users	of	that	platform	come	to	expect	over	time.	Some	of	these	conventions	may	be
set	by	the	platform’s	vendor	(for	example,	the	use	of	tab	bar	controllers	and	navigation
controllers	in	iOS,	as	demonstrated	by	Apple	right	from	the	launch	of	iPhone),	while
others	come	from	third-party	developers	and	designers,	gain	traction,	and	become	popular
across	the	platform	(the	pull-to-refresh	interaction	on	iOS,	for	example,	was	first
implemented	and	used	by	a	third-party	developer).

The	conventions	of	a	platform	change	and	develop	over	time.	Some	elements	endure,
whereas	others	turn	out	to	be	gimmicks	that	hinder	rather	than	help.	Sometimes	the
platform’s	owner	decides	it’s	time	for	a	change	(what	did	you	think	the	first	time	you	saw
the	look	and	feel	of	iOS	7?).	Sometimes	the	community	insists.

Apple	Watch	is	a	very	young	platform,	and	few	conventions	have	been	established	or
user	expectations	set.	It’s	an	exciting	time	when	the	world	is	your	digital	rotary	input
mechanism.

You’re	not	all	on	your	own,	though.	The	best	place	to	start	when	deciding	how	to	take
advantage	of	the	platform	is,	of	course,	the	Apple	Watch	“Human	Interface	Guidelines”
(HIG),	published	by	Apple	at	http://bit.ly/bwa-hig.	Every	developer	working	in	watchOS
should	get	to	know	those	guidelines	very	well.	In	this	chapter,	we’re	not	going	to	repeat
what’s	in	the	HIG,	but	we	will	highlight	some	of	the	developing	best	practices	on	the
platform.

Thinking	About	Design
In	comparison	with	the	rest	of	the	Apple	ecosystem,	Apple	Watch	provides	a	drastically
different	way	for	users	to	interact	with	your	software.	The	watch	is,	of	course,	closest	in
philosophy	and	in	size	to	iPhone,	but	it	still	requires	a	change	in	thinking	and	approach	as
you	design	your	apps.	Every	aspect	of	an	app’s	design,	be	it	visual	layout,	interaction
design,	information	architecture,	even	use	of	color,	is	very	different	in	this	little	window
on	your	wrist.

Consider:

	Apple	Watch	is	smaller	than	iPhone.	Much	smaller.	(Well,	obviously.	You’re	glad
you	bought	this	book,	aren’t	you,	for	insights	like	that	one?)	In	terms	of	how	much
and	what	can	be	onscreen	at	a	given	time,	and	of	the	size	of	your	tapping	digit
against	the	screen,	there’s	just	less	of	it.

	iPhones	have	bigger	screens	than	the	Apple	Watch.	The	iPhone’s	screen	is	great	for
long	periods	watching	out	for	fave	notifications	from	Twitter	or	browsing	your
library	of	cat-fail	GIFs,	but	Apple	Watch	excels	at	the	short,	sharp,	focused
interaction.	Don’t	expect	to	be	too	comfortable	reading	through	your	ebook	library
on	your	wrist.

	Being	small,	but	being	a	class	of	device	that	you	expect	to	always	be	there	and
always	be	ready	when	you	need	it,	the	watch	is	very	frugal	with	its	resources—

http://bit.ly/bwa-hig

which	all,	eventually,	comes	down	to	power.	Talking	to	the	network	costs	power,
having	the	screen	lit	up	costs	power,	performing	any	computation	costs	power,	so
the	less	time	spent	doing	any	of	these	things,	the	better.

	Apple	Watch	introduces	physical,	tactile	ways	to	connect	with	the	user	that	are	new
to	the	Apple	ecosystem:	the	Taptic	engine	(discussed	in	Chapter	14),	force	touch,
and	the	digital	crown.

	Many	of	us	might	have	our	phones	with	us	pretty	much	all	the	time,	but	your	watch
is	right	there	strapped	to	your	wrist.	There’s	no	need	to	fish	around	in	your	pocket	or
purse.	Just	lift	your	arm	a	little	and	look	down.	The	watch	brings—and	expects—a
whole	new	immediacy	to	the	use	of	software.

This	all	provides	us	with	an	interesting	set	of	challenges:	how	to	focus	on	the	quick,
simple	interaction	while	still	providing	a	beautiful	and	graceful	experience?	How	to	be
immediate	and	responsive	to	the	user,	minimizing	lag,	while	being	careful	and	economical
with	system	resources?	How	to	show	off	as	a	developer	without	the	opportunity	to	create
awesome	new	custom	controls?	Maybe	we	can	help	with	that.

Meeting	the	Challenge
Some	pieces	of	information,	developing	best	practices,	techniques,	and	tips	can	help	you
provide	the	best	experience	possible	for	the	user.	These	are	based	on	the	foundation
provided	by	the	HIG	and	will	be	useful	as	you	work	and	flourish	within	the	constraints	of
the	platform.

“Phenomenal	Cosmic	Power,	Itty-Bitty	Living	Space”
Apple	Watch	comes	in	two	sizes:	42mm	and	38mm	(or,	as	we	like	to	call	them,	Small	and
Smaller).	Those	numbers,	which	may	seem	arbitrary,	are	conventional	sizes	to	watch
makers,	and	refer	to	the	height	of	the	watch.	The	display	on	the	42mm	watch	is	312	pixels
wide	by	390	pixels	tall,	while	that	of	the	38mm	watch	is	272	pixels	wide	by	340	pixels
tall.

That’s	not	a	lot	of	room,	even	on	the	larger	watch.	A	number	of	techniques	and
principles	will	help	you	make	the	most	of	the	space	available.

Wall-to-Wall	User	Interface

If	you	look	at	an	Apple	Watch	while	its	display	is	off,	you	might	notice	that	it’s	quite
difficult	to	tell	where	the	screen	itself	ends	and	the	black	bezel	of	the	device	begins.	This
is	a	great	advantage	when	laying	out	your	user	interface.	Figure	5.1	is	a	screenshot	taken
from	the	Music	app	running	on	a	42mm	Apple	Watch.	Notice	how	much	of	the	width	of
the	screen	is	filled	by	the	table	rows.

FIGURE	5.1	Screenshot	of	the	Music	app

This	layout	looks	tight	in	the	screenshot.	If	you’re	anything	like	us,	then	your	hands	are
probably	itching	to	add	some	margin	around	the	edges.	But	when	run	on	the	device,	this
UI	looks	completely	natural.	The	black	of	the	watch	face	around	the	screen	provides	the
needed	margin,	leaving	the	full	size	of	the	screen	itself	available	to	UI	elements.

Of	course,	to	take	advantage	of	this	bonus	visual	space,	your	app	will	need	to	keep	to
the	watchOS	standard	of	a	black	background.	That	said,	with	current	hardware	and
software,	you’d	need	to	have	a	very	good	reason	not	to:	It	would	take	significant	effort	to
provide	a	colored	background	for	your	app’s	display.	Doing	so	would	be	a	major	break
from	the	current	design	language	of	watchOS,	and	on	an	OLED	(organic	LED)	display
such	as	that	of	the	Apple	Watch,	black	pixels	consume	no	power,	leading	to	longer	battery
life	for	the	user.

Content	Before	Chrome

If	you’ve	been	developing	software	for	Apple	platforms	for	more	than	a	couple	of	years,
then	we’re	sure	you	have	an	opinion	on	gradients	in	title	bars.	Or	green	felt.	Or	what	about
brushed	metal?	Pinstripes?	Cheerful	blue	pills	for	buttons?	We	could	go	on.	These	are	all
examples	of	the	evolving	design	language	used	on	iOS	and	OS	X	over	the	years,	and	they
all	have	one	thing	in	common:	They	take	up	space	on	the	screen.	(They	all	have	other
things	in	common,	as	well,	starting	with	where	you	might	think	each	falls	in	the	spectrum
of	good	taste—but	let’s	not	dwell	on	the	past!)

Of	course,	when	we	say	“chrome”	we	don’t	just	mean	the	nonfunctional	aspects	of
what’s	onscreen.	Compare	Figure	5.2	with	Figure	5.3.	The	first	shows	the	Maps	app
running	on	an	iPhone	6,	while	the	second	shows	the	Maps	app	on	the	Apple	Watch.	On
iOS,	there	is	plenty	of	screen	space	to	expose	much	of	the	app	functionality	in	persistent
UI:	search,	current	location,	the	info	menu,	and	more.	On	the	other	hand,	almost	all	the
available	screen	space	on	the	watch	is	given	over	to	the	map	itself.	Most	functionality	is
accessed	via	the	context	menu	or	via	Siri.

FIGURE	5.2	Maps	running	on	an	iPhone	6

FIGURE	5.3	The	watchOS	Maps	app

As	Much	As	You	Need—And	No	More

Complementary	to	the	principle	of	content	before	chrome	is	that	of	paring	content	down	to
the	absolute	minimum	needed	for	your	app	to	perform	its	function	for	the	user.	Figure	5.4
shows	a	contact	card	from	the	watchOS	Phone	app.	Almost	none	of	the	information
available	in	the	equivalent	screen	on	iOS	is	displayed	on	the	watch.

FIGURE	5.4	Screenshot	of	the	watchOS	Phone	app

A	key	principle	here	is	to	carefully	consider	the	use	cases	for	your	watchOS	app,
bearing	in	mind	the	following:

	Apple	Watch	is	not	suited	to	lengthy	perusal	of	huge	chunks	of	data.	In	fact,	its
display	will	go	to	sleep	after	only	a	few	seconds	of	inactivity,	leaving	the	wearer
with	very	little	time	to	contemplate	the	variety	of	options	you	give	them.	Fewer
possibilities	will	make	for	a	more	effective	interaction.

	Some	of	the	most	essential	features	of	smartphones	(especially	iPhone)	are	their
immediacy	and	convenience	when	compared	with	more	traditional	computing
devices,	and	Apple	Watch	emphasizes	these	even	more.	In	order	to	play	to	these
strengths,	you	will	need	to	identify	the	key	information	to	present	to	your	user,	and
the	key	actions	they	might	then	take	with	your	app.	Look	again	at	Figure	5.4.	The
contact’s	name	and	image	(if	one	is	set)	are	the	key	pieces	of	information	for	quick
identification,	and	two	big	buttons	enable	the	most	common	actions:	make	a	call	or

send	a	message.

	Of	course,	some	apps	require	a	fuller	navigational	structure	to	provide	all	the	value
they	can	for	the	user	(see	Chapter	3	for	the	options).	In	these	cases,	you	will	need	to
decide	which	approach	or	approaches	are	most	appropriate.	Does	paging	between
controllers	make	sense,	to	divide	up	chunks	of	functionality?	Or	are	you	presenting
structured	data	that	would	be	best	handled	in	a	drill-down	hierarchy?	Would	the
scrolling	provided	via	the	digital	crown	help	the	user	as	they	try	to	get	into	your	app,
find	what	they	need,	and	get	out	again?

	Getting	data	to	the	watch	is	costly.	It	is	time	consuming,	via	the	Bluetooth	link	to	the
host	iPhone.	Using	those	radios	to	send	and	receive	drinks	up	available	power,	as
does	the	computational	work	of	processing	input	and	output.	Users	don’t	enjoy
discovering	that	their	hot	new	app	is	also	the	reason	they	need	to	charge	their	device
by	lunchtime.

We’re	not	saying	that	your	app	shouldn’t	do	anything—if	we	were,	we	could	all	just	go
home	now.	All	the	potential	that	Apple	Watch	presents	for	wonder,	delight,	and	utility
would	be	wasted	if	we	were	afraid	to	make	our	apps	do	anything	because	of	something	we
read	in	a	book.	However,	designing	great	software	is	every	bit	as	much	about	deciding
what	to	leave	out	as	it	is	about	deciding	what	to	put	in.

Tap	Targets,	Fat	Fingers,	and	Small	Screens
Back	in	the	mists	of	time,	at	the	Dawn	of	the	iPhone	SDK,	Apple	recommended	that	all
tap	targets	in	an	iPhone	app	be	at	least	44pt	square—the	size	they	had	identified	as	the
minimum	that	could	be	tapped	accurately	with	a	fingertip.	With	the	release	of	Apple
Watch,	the	screens	we’re	tapping	may	be	smaller,	but	our	tapping	digits	are	as	big	and
inaccurate	as	ever.	You	might	even	find	that	trying	to	tap	at	a	little	screen	on	your	wrist
makes	for	even	less	coordination	and	accuracy,	so	it’s	useful	to	think	about	what	controls
the	user	will	absolutely	need	in	your	app,	and	whether	it	is	more	useful	to	make	them
bigger	targets	than	it	is	to	have	them	all	onscreen	at	the	same	time.

Figure	5.5	shows	the	watchOS	screen	displayed	when	an	alarm	is	going	off.	Consider
the	circumstances	in	which	users	encounter	this	interface:	An	alarm	is	going	off,	and	they
need	to	silence	it	quickly	and	easily.	Nice	big	buttons	make	this	as	simple	as	possible,
which	is	a	definite	plus	if	your	alarm	has	just	gone	off	during	an	orchestral	performance.

FIGURE	5.5	Screenshot	of	Apple	Watch’s	alarm	screen

In	the	excitement	of	developing	your	watch	app,	make	sure	to	test	it	on	a	physical
device	on	your	wrist—and	to	do	so	in	the	kind	of	situations	where	you	imagine	it	might	be
used,	be	that	when	you’re	walking	down	the	street	or	when	you’re	lounging	on	your
couch.

Bringing	a	Little	Color
With	the	standard	black	background	and	the	limited	scope	for	visual	flourish,	the	use	of
color	is	a	key	way	to	establish	the	character	and	identity	of	your	app.

Each	app	can	specify	a	global	tint	color,	which	is	used	by	the	OS	to	set,	for	example,
the	color	of	the	text	in	the	Watch’s	status	bar	while	your	app	is	running	(Figure	5.6)	or	the
color	of	the	app	name	text	in	a	short-look	notification.

FIGURE	5.6	Screenshots	of	the	Music	app,	World	Clock	app,	and	Weather	app

To	set	the	global	tint	color	for	your	app	in	Xcode:

1.	Select	the	app’s	Interface.storyboard.

2.	Open	the	File	inspector.

3.	Set	the	global	tint	color	using	the	color	selector	(Figure	5.7).

FIGURE	5.7	Setting	an	app’s	global	tint	color

Rather	than	take	up	valuable	screen	space	with	your	logo	or	other	branding,	Apple
recommends	using	the	global	tint	color	of	your	app	to	reflect	the	product’s	identity.	This	is
good	advice—it’s	a	simple,	effective	approach.	Consider	also	the	other	places	where	the
color	could	be	introduced:	button	text	or	backgrounds,	table	row	backgrounds,	or	other
small	interface	elements.	Look,	for	example,	at	the	city	location	markers	in	the	World
Clock	app	in	Figure	5.6.	The	app’s	identifying	color	is	used	in	such	a	small	visual	element,
yet	it	is	prominent	enough	that	it	strengthens	the	identity	of	the	app	as	a	whole.

Be	Prepared
Waiting	can	be	a	frustrating	experience.	Waiting	on	a	device	that	was	meant	to	provide
instant	and	immediate	convenience	is	an	even	more	frustrating	experience.	A	poorly
placed	“Please	Wait…”	or	an	activity	spinner	blocking	the	UI	can	be	enough	to	turn	a	user
right	off	your	app	and	send	them	to	the	delete	button.	Yet	sometimes,	especially	when
accessing	remote	resources,	a	wait	is	inevitable.	So	what	is	a	developer	to	do?

Readiness

Do	what	you	can	to	make	sure	your	app	has	the	data	it	needs	in	advance	of	when	the	user
expects	it.	You	might	find	limitations	to	your	ability	to	predict	the	future,	but	sensible
background	loading	and	caching	of	data	can	greatly	reduce	the	wait	time	when	the	user
launches	your	app.	See	Chapter	10	for	how	to	load	data	from	the	network	and	transfer	it
between	the	watch	and	its	host	iPhone.

The	Impression	of	Readiness

Perhaps	your	app	is	such	that	it’s	not	practical	or	possible	to	have	everything	preloaded
and	ready	for	users	whenever	they	come	along.	In	that	case,	all	is	still	not	lost.	If	data	is
your	thing,	is	there	a	minimal,	or	approximate,	data	set	that	you	can	use,	and	then	refine
once	the	app	is	active?	Alternatively,	is	there	an	idle	state	that	the	user	interface	can
display	while	being	fully	set	up?

Our	eyes	and	our	minds	are	very	willing	to	receive	suggestion	and	to	be	lulled	into
satisfaction.	A	spinner	might	appear	only	for	a	second	or	two	before	being	replaced	with	a
fully	active	and	interactive	UI,	but	those	seconds	will	seem	much	shorter	to	the	user	if	they
are	spent	looking	at	a	nearly	ready	UI	that	then	becomes	ready.

Gesture	and	Touch
The	range	of	available	gestures	is	one	of	the	defining	characteristics	of	a	touch-based
interface.	If	you’ve	spent	much	time	as	a	user	of	iOS	devices,	you’ll	have	encountered	a
tremendous	range	of	gestures—some	more	useful	and	usable	than	others:	taps	with
varying	numbers	of	digits,	double	taps,	triple	taps,	pinches,	swipes,	long	presses,
rotations…	they’ve	all	been	put	to	myriad	uses.

The	watchOS,	as	you	probably	expect	by	now,	has	fewer	options	available:	taps	to
trigger	actions	on	controls	(for	example,	the	tap	of	a	button),	swipes	for	exploring	content
and	for	triggering	navigation,	and	the	force	touch	to	trigger	a
WKInterfaceController’s	context	menu.	Add	in	the	occasional	use	of	the	digital
crown	to	control	zoom	level	(as	in	the	Maps	app,	for	example),	and	those	are	the
possibilities.

From	the	developer’s	point	of	view,	the	gestures	themselves	are	understood	and
received	only	via	watchOS	controls	and	interface	controllers,	with	the	recognition	and
response	to	the	gestures	themselves	being	the	business	of	the	operating	system.
Unfortunately,	there	is	no	equivalent	of	the	various	UIGestureRecognizer
subclasses	available	on	iOS.	The	smaller	screen	sizes	of	Apple	Watch	do	not	leave	enough
room	(literally)	for	the	variety	and	experimentation	that	has	been	seen	on	the	larger
devices,	enforcing	a	standard	approach	to	touch	and	gesture.

Wrapping	Up
Several	points	in	this	chapter	have	made	reference	to	the	differences	between	watchOS
and	iOS—and,	in	particular,	to	the	more	restrictive	environment	offered	by	the	watch.	We
encourage	you	to	view	these	differences	positively	and	to	approach	the	constraints
creatively.	Apple	Watch	is	a	new	platform	in	the	Apple	ecosystem,	and	this	is	the	first	time
many	of	us	have	developed	software	for	the	new	category	of	“wearable”	devices.	These
are	still	the	early	days	of	learning	and	internalizing	the	patterns	and	conventions	of	the
platform,	and	users’	understanding	and	expectations	will	only	develop	and	become	more
flexible	over	time.

We	have	been	quite	opinionated	in	this	chapter	and	have	sought	to	present	current
understanding	of	best	practice	in	designing	for	watchOS.	Remember,	though,	that	the
magic	exists	not	only	in	knowing	when	to	follow	the	rules,	but	also	in	knowing	when	to
break	them.	So	experiment,	play,	and	see	where	your	taps	and	swipes	can	take	you!

Chapter	6.	Building	Your	App’s	User	Interface

There	is	a	lot	to	remember	when	planning	and	designing	the	user	interface	of	any	app,	and
if	it’s	done	right	then	it	can	be	the	work	that	turns	a	mediocre	app	into	a	good	one—or	a
good	app	into	one	that	is	truly	great!	But	the	planning	is	still	only	part	of	what	needs	to	be
done.	Even	the	best	ideas	are	meaningless	until	they’re	put	into	practice.	In	this	chapter,
we	will	take	a	tour	of	the	tools	and	techniques	that	are	available	to	get	an	interface	up	and
running	and	ready	to	interact	with.

Laying	Out	the	User	Interface
When	it	comes	time	to	actually	create	the	user	interface	of	your	app,	you	will	do	so	in
Xcode’s	storyboard	editor.	This	is	familiar	territory	for	many	iOS	developers,	but	the
controls	are	positioned	on	the	storyboard	in	a	way	that	is	quite	different	from	what	you
may	be	used	to.	Whereas	on	iOS	you	may	place	controls	wherever	you	like	in	a	view—
defining	their	positions	either	in	absolute	terms	or	by	defining	layout	constraints	to	control
their	positions	relative	to	other	objects—when	laying	out	an	interface	for	a	watchOS	app,
you	are	essentially	describing	a	list	of	interface	elements	that	will	then	be	placed	in	the
interface	controller’s	view	in	the	order	in	which	they	are	listed.

To	see	how	this	works	in	practice,	open	Xcode	and	do	the	following:

1.	Create	a	new	project	by	selecting	File	>	New	>	Project	and	choosing	iOS	App	with
WatchKit	App.

2.	Select	Interface.storyboard	from	the	WatchKit	App	group	in	the	Project
Navigator.

3.	Drag	a	Label	object	from	the	Object	Library	onto	the	interface	controller	scene	in
the	storyboard.

Note	that	wherever	on	the	scene	you	drop	the	label,	even	if	you	drag	it	around,	it
will	end	up	positioned	as	in	Figure	6.1.

FIGURE	6.1	The	label	in	the	storyboard	scene

4.	Drag	and	drop	two	more	labels	onto	the	scene.	They	will	position	themselves	in	a
tight	column	in	the	upper-left	corner	of	the	view,	as	in	Figure	6.2.

FIGURE	6.2	Three	labels	in	a	scene

This	demonstrates	the	main	principle	of	UI	layout	for	watchOS:	As	you	add	interface
elements	in	the	storyboard	editor,	they	are	added	to	the	end	of	the	interface	controller’s
scene.	If	you	were	to	continue	merrily	dragging	labels	(or	other	objects)	from	the	Object
Library	and	dropping	them	into	the	scene,	you	would	see	that	the	scene	itself	will	start	to
grow	in	height	to	accommodate	the	extra	objects.	This	translates	to	a	vertical	scroll	when
the	interface	is	displayed.	Please	take	a	moment	to	enjoy	the	thought	of	not	having	to
manage	the	vertical	size	of	a	scroll	view’s	content.

If	you	select	one	of	the	labels	in	the	scene,	the	Attributes	inspector	will	show	the
options	available	for	controlling	its	layout	(Figure	6.3).	These	are	the	layout	controls	used
for	controlling	the	configurable	size	and	layout	options	for	any	interface	object.

FIGURE	6.3	The	storyboard	layout	options	for	a	label

Under	the	View	heading	are	three	items	you	can	configure:

	The	Alpha	setting	is	a	number	between	0	and	1	that	controls	the	transparency	of	the
object.	The	setting	0	is	completely	transparent	(and	therefore	invisible),	and	1	is
completely	opaque.

	Selecting	the	Hidden	option	will	hide	the	object.	Try	selecting	a	label	and	selecting
the	Hidden	check	box.	Note	that	the	remaining	objects	in	the	interface	will	reflow	to
fill	the	space	left	by	the	hidden	item;	this	is	in	contrast	to	the	behavior	on	iOS,	where

a	hidden	object	still	participates	in	the	layout	system	and	so	still	occupies	its	space.

	The	Installed	check	box	appears	to	have	the	same	effect	as	the	Hidden	option:
Deselecting	Installed	makes	the	selected	object	disappear	(it	is	no	longer	“installed”
in	the	view).	However,	there	is	a	key	difference.	An	object	that	is	hidden	in	the
interface	still	exists,	whereas	one	that	is	not	installed	is	never	instantiated.	If	you
have	an	@IBOutlet	to	an	interface	object,	it	can	be	shown	and	hidden	at	runtime,
and	that	outlet	will	continue	to	reference	the	object,	even	if	it	is	initially	hidden.	Any
interface	object	that	is	not	installed	will	never	be	connected	to	an	@IBOutlet	and
so	cannot	be	controlled	from	your	code.	You	will	discover	shortly	why	this	is	useful.

The	options	under	the	Alignment	heading	control	the	placement	of	the	object	in	two
dimensions	(Figure	6.4):

	In	the	Horizontal	dimension,	the	options	are	Left,	Center,	and	Right.	These	are
straightforward	and	behave	as	you	might	expect,	setting	the	object	to	hug	the	left	or
right	edge	of	its	container	(either	the	main	view	of	the	interface	controller	or	a
containing	interface	group)	or	to	keep	itself	centered.

	In	the	Vertical	dimension,	the	available	options	are	Top,	Center,	and	Bottom.	These
are	a	little	more	complex	than	the	Horizontal	setting	and	provide	rough	control	over
the	ordering	of	the	objects	in	the	flow	of	the	layout.	Those	items	configured	to	be
positioned	to	Top	come	first	in	the	layout,	followed	by	those	configured	to	Center,
and	finally	the	objects	that	have	been	configured	to	be	placed	at	the	Bottom	come
last.

FIGURE	6.4	Labels	aligned	around	an	interface

The	best	way	to	understand	how	the	Alignment	options	interact	is	to	add	a	few	more
labels	to	the	storyboard	scene,	change	the	text	and	colors	of	the	labels	so	you	can
differentiate	them,	and	start	experimenting.	Believe	us	when	we	say	that	it	takes	longer	to
describe	the	behavior	than	it	does	to	get	the	feel	of	it	in	practice—it’s	pretty	intuitive.

The	third	set	of	layout	options	is	under	the	Size	heading.	You	can	set	three	possible
behaviors	independently	in	the	Horizontal	and	Vertical	dimensions:

	Size	To	Fit	Content	is	the	default	behavior.	As	the	name	suggests,	the	interface
object	will	size	itself	to	be	big	enough	to	display	everything	it	contains,	but	no
bigger.	For	example,	a	label	will	expand	to	show	its	text,	or	an	interface	group	will

grow	along	with	its	contents.

	If	you	select	the	behavior	Relative	to	Container,	two	new	fields	appear	(Figure	6.5).
The	first	input	takes	a	number	between	0	and	1,	which	is	a	factor	applied	to	the	size
of	the	containing	view	or	group.	For	example,	if	a	label	is	set	to	have	its	width
Relative	to	Container,	and	this	input	is	set	to	0.5,	then	the	label	will	be	one	half	the
width	of	its	container.	The	second	input	is	labeled	Adjustment	and	takes	an	absolute
value	expressed	in	points.	As	the	label	suggests,	this	is	a	value	that	will	be	added	to
the	size	calculated	by	applying	the	factor	above	it.	A	negative	value	will	result	in	a
reduction	in	the	final	calculated	size.	With	these	options,	it	is	possible	to	configure
an	interface	object	to	have,	for	example,	a	width	that	is	three	quarters	(0.75)	of	the
width	of	its	container,	minus	another	10	points.

FIGURE	6.5	Options	for	Relative	to	Container	sizing

	The	third	possible	sizing	behavior	is	to	define	a	Fixed	size.	When	selecting	this
behavior	for	a	dimension,	one	additional	input	appears	(Figure	6.6).	This	input	takes
a	number	that	is	used	as	the	size,	in	points,	at	which	the	interface	object	is	fixed	in
that	dimension.	These	dimensions	can	also	be	set	and	changed	at	runtime,	using	the
WKInterfaceObject’s	setWidth(_:)	and	setHeight(_:)	methods.

FIGURE	6.6	Options	for	Fixed	sizing

Using	these	options	gives	you	a	great	deal	of	flexibility	in	laying	out	your	app’s	user
interface,	and	it’s	very	straightforward	to	manage.	Sizing	interface	objects	to	their	content
and	making	sure	that	the	interface	doesn’t	get	mangled	as	content	length	changes	can	all
be	taken	care	of	by	the	OS.

Grouping	Interface	Objects	Together
In	Chapter	4,	we	briefly	mentioned	the	power	of	the	WKInterfaceGroup	control.	It	is
worth	getting	to	know	a	little	better.

1.	Return	to	your	Xcode	project	from	earlier	in	this	chapter,	or	create	a	new	one	to
work	with.	In	Interface.storyboard,	update	the	layout	to	contain	six	labels,
each	placed	Top-Left	and	edited	so	that	you	can	tell	them	apart.	See	Figure	6.7	for
how	we’ve	done	it.

FIGURE	6.7	A	rainbow	of	an	interface

2.	Drag	a	Group	object	to	the	scene,	and	drop	it	above	the	top	label	(Figure	6.8).

FIGURE	6.8	A	group	added	to	the	scene

3.	Now	drag	the	first	three	labels	into	the	group	(Figure	6.9).

FIGURE	6.9	Labels	added	to	the	group

You	can	use	these	interface	objects	to	experiment	with	how	the	group	and	its
configuration	affect	the	layout	of	the	interface.	Make	sure	the	group	is	the	selected

interface	object,	and	open	the	Attributes	inspector	(Figure	6.10).

FIGURE	6.10	Interface	Group	configuration	options

The	first	options	under	the	Group	heading	are	the	ones	that	control	the	layout	of	the
group’s	members.

	Layout	has	two	possibilities:	Horizontal	and	Vertical.	This	determines	how	the
group’s	members	will	flow;	they	can	be	added	one	after	the	other	either	across	the
group	or	down	the	group.	Note	that	if	the	group’s	members	are	too	wide	to	be
displayed	in	a	horizontal	layout,	they	will	not	flow	onto	a	new	line.	Rather,	the
group	will	clip	horizontally.	When	laying	out	vertically,	however,	the	group	will
grow	as	necessary.

	Insets	can	be	set	to	Default	or	Custom.	If	you	select	Custom,	four	inputs	display:
one	for	each	edge	of	the	group.	These	inputs	take	absolute	point	values,	which
cannot	be	negative.	The	values	are	used	to	pad	the	dimensions	of	the	group,
providing	clear	space	around	its	edges.	Note,	again,	that	if	a	group	is	set	to	lay	out
horizontally,	then	the	combination	of	its	padding	and	the	widths	of	its	members	can
lead	to	clipping	(Figure	6.11).

FIGURE	6.11	Clipping	in	an	interface	group	with	insets

	The	Spacing	between	the	members	of	a	group	can	either	be	left	to	its	default	or	have
a	custom	value	(in	points)	set.	In	a	Horizontal	group,	this	also	introduces	the
possibility	of	clipping.

As	with	other	interface	objects,	you	can	set	alignment	and	sizing	behaviors	for	groups.
Consider	also	that	you	can	nest	interface	groups,	and	you	will	discover	how	they	can	be
combined	to	provide	a	great	deal	of	control	over	some	quite	complex	interfaces.

Handling	the	Different	Screen	Sizes
As	mentioned,	Apple	Watch	is	available	in	two	screen	sizes:	38mm	and	42mm.	The
screens	differ	not	only	in	their	physical	size	but	also	in	their	point	dimensions.	Your	app
may	be	such	that	you	don’t	need	to	make	any	adjustments	to	your	user	interface	to
accommodate	the	differences	in	screen	size,	or	you	may	decide	that	some	adjustments	are
necessary.	This	differentiation	is	handled	in	the	storyboard	editor.

Figure	6.12	shows	the	options	available	for	an	instance	of	WKInterfaceLabel.
Note	that	many	of	the	options	are	preceded	by	a	small	plus	icon	(+).	Clicking	this	icon
displays	the	menu	shown	in	Figure	6.13.

FIGURE	6.12	A	label’s	options	in	the	storyboard	editor

FIGURE	6.13	Screen	size	customization	options

Selecting,	for	example,	the	Apple	Watch	42mm	customization	as	a	configuration	option
adds	an	alternative	input	for	that	option	(Figure	6.14),	allowing	you	to	specify	a	different

value	that	will	be	applied	specifically	when	your	app	runs	on	a	42mm	device.

FIGURE	6.14	An	alternative	configuration	for	a	42mm	watch

When	an	alternative	has	been	added,	it	can	be	removed	again	by	clicking	the	small	×
beside	it.

Alternative	configurations	are	applied	by	giving	preference	to	the	more	specific	option.
When	there	are	no	alternatives,	the	value	supplied	is	that	for	a	device	of	any	screen	size.
Where	an	alternative	has	been	supplied	for	the	size	of	device	on	which	the	app	is	running,
it	is	the	one	that	is	used.	(If	you	have	used	adaptive	UI	and	size	classes	for	layout	on	iOS,
this	behavior	is	familiar	to	you.)

This,	by	the	way,	is	where	the	previously	mentioned	Installed	attribute	comes	into	its
own.	By	specifying	whether	or	not	an	object	is	installed	for	a	given	screen	size,	you	can
define	whole	chunks	of	interface	that	aren’t	even	instantiated	on	a	certain	size	of	device.

Finally,	where	you	have	defined	different	layout	attributes	for	different	screen	sizes,	it	is
possible	to	view	the	interface	in	the	storyboard	editor	as	if	it	were	one	or	the	other.	To	do
so,	click	the	Any	Screen	Size	indicator	at	the	bottom	of	the	editor	window.	The	menu	that
displays	(Figure	6.15)	allows	you	to	select	which	layout	to	display.

FIGURE	6.15	Previewing	different	layouts	in	the	storyboard	editor

Images	and	Animation
Images	have	been	a	secret	weapon	in	interface	design	for	a	long	time.	Many	times	we’ve
looked	at	an	inventive—or	flashy—bit	of	UI	work	and	wondered,	“How	did	they	do	that?”
and	gone	on	to	discover	that	carefully	applied	image	assets	(a	gradient	here,	a	simulated
shadow	there,	a	subtle	bit	of	visual	noise	in	the	background)	have	been	a	vital	ingredient.
Images	are	a	way	to	accomplish	much	with	little.

But	as	Peter	Parker’s	uncle	was	known	to	say,	“With	great	power	comes	great
responsibility,”	and	it	is	the	responsibility	of	the	developer	to	be	frugal	with	the	resources
available	to	a	user’s	device.	watchOS	allows	us	to	delight	with	images,	stills	and
animation,	but	asks	us	to	do	so	as	efficiently	as	possible.

Content	vs.	Chrome
Broadly	speaking,	there	are	two	ways	to	use	an	image	in	an	app	(and	this	applies	whether
the	image	is	a	single	still	frame	or	a	sequence	presented	as	an	animation).

	As	mentioned,	images	can	be	used	to	provide	a	range	of	flourish	and	embellishment
in	the	user	interface,	from	the	subtle	to	the	ostentatious.	We	often	refer	to	this	aspect
of	the	interface	as	part	of	the	“chrome”—those	elements	that	surround	the	content
presented,	rather	than	being	part	of	the	content	themselves.

	Conversely,	images	can	be	part	of	the	content	of	the	app.	This	doesn’t	necessarily
mean	only	the	images	in,	for	example,	a	photo	sharing	or	browsing	app.	We	consider
images	content	if	their	presentation	is	in	some	way	part	of	the	purpose	of	the	app.

watchOS	enables	both	uses	of	images	and	animation,	but	it	is	wise	to	remember	our
earlier	principle	of	remaining	as	lightweight	and	uncluttered	as	possible.	We	suggest
sticking	to	images	as	content,	and	thinking	very	carefully	about	the	costs	and	benefits
before	doing	otherwise.

Getting	Images	onto	the	Watch
You	have	two	ways	to	make	images	available	to	your	watch	app.	The	first	and	simplest
way	is	to	include	the	images	in	an	asset	catalog	in	your	app’s	bundle.	Of	course,	this	is	a
bit	restrictive;	is	your	app	one	where	every	image	it	might	need	to	display	can	be
anticipated,	prepared	in	advance,	and	shipped	along	with	the	app?

The	alternative,	of	course,	is	to	obtain	the	image	data	at	runtime.	This	will	probably
mean	either	asking	the	user	to	select	an	image	from	the	photo	library	on	their	phone	or
downloading	an	image	from	the	Internet.	In	either	case,	importing	an	image	from	outside
your	watch	app	means	communication	with	the	host	iPhone,	with	the	associated	costs	in
time,	power,	and	bandwidth.

Whichever	way	your	app	obtains	and	accesses	its	images,	you	should	bear	a	few
principles	in	mind:

	watchOS,	like	iOS	before	it,	likes	to	deal	with	PNGs.	PNG	(Portable	Network
Graphics)	is	an	image	format	that	provides	pretty	effective	compression,	is	lossless,
provides	some	support	for	transparency,	and	is	widely	supported.	We	suggest
defaulting	to	PNG	when	you	have	a	choice	of	image	formats,	except	when	you	have
a	specific	reason	to	do	otherwise	(such	as	when,	for	example,	a	file	such	as	a	large
photograph	would	be	better	handled	in	a	lossy	format	like	JPEG).

	As	with	iOS	apps,	it	is	best	to	work	with	image	files	that,	as	far	as	is	possible,	are
already	sized	appropriately	for	their	use.	There	are	two	reasons	for	this.	First,	files
that	are	larger	than	needed	take	up	unnecessary	space	in	the	device’s	limited	storage
(and,	if	being	transferred	wirelessly,	consume	bandwidth	too).	Second,	and	more
noticeable	to	your	users,	large	images	require	more	memory	to	display	and	take
more	processing	cycles	to	move	around	the	screen.	If	you’ve	ever	made	the	mistake
of	throwing	full-resolution	photographs	into	a	UICollectionView,	then	you
know	what	we	mean.	If	not,	then	please	learn	from	the	mistakes	of	(at	least	one	of)
your	authors.

	When	shipping	image	assets	with	your	app,	use	Xcode’s	asset	catalog	feature	to
package	them.	Not	only	does	this	provide	a	useful	structure	for	the	image	assets	in
your	project,	but	it	also	makes	it	very	easy	to	provide	and	manage	alternative	image

files	for	the	two	different	watch	sizes.	When	loading	images	using	the	various
imageNamed(_:)	methods	and	passing	the	name	assigned	to	the	image	in	the
asset	catalog,	the	system	will	take	care	of	loading	the	correct	one.

	If	using	images	as	icons	in	the	user	interface,	the	asset	catalogs’	Render	As	Template
Image	setting	(Figure	6.16)	is	a	convenient	option.	When	this	mode	is	selected,	you
can	use	the	image	control’s	setTintColor(_:)	method	to	change	the	color	of
the	image	when	it	is	displayed.	This	is	most	effective	with	line-art	icons	like	those
commonly	used	in	iOS	tab	bars.

FIGURE	6.16	The	Render	As	Template	Image	option

Displaying	Images
You	can	display	an	image	in	watchOS	in	two	ways:	Your	interface	can	include	a
WKInterfaceImage	control	that	shows	the	image,	or	the	image	can	be	set	as	the
background	image	on	another	control	(such	as	a	WKInterfaceButton	or,	commonly,	a
WKInterfaceGroup)	using	one	of	the	setBackgroundImage…	methods.	Both
approaches	allow	for	single	images	or	for	multiple	images	together	running	as	an
animation.

WatchKit	deals	with	images	mostly	as	instances	of	the	UIKit	class	UIImage,	which
can	encapsulate	still	and	animated	images.	(The	exceptions	to	this	are	images	intended	for
use	in	a	WKPickerItem,	which	must	be	supplied	as	instances	of	WKImage—see	the
“Pickers”	section	in	Chapter	4.)	UIImages	can	be	instantiated	by	loading	an	image	or
images	from	a	file	or	by	supplying	the	data	as	NSData.

WatchKit	controls	that	take	images	or	background	images	provide	three	methods	to	do
so:

	setImage(_:)	and	setBackgroundImage(_:)	accept	a	UIImage
argument,	which	may	contain	multiple	frames	of	an	animation.

	setImageData(_:)	and	setBackgroundImageData(_:)	accept	an
instance	of	NSData.	If	your	app	already	has	the	PNG	or	JPEG	data	available	(from,
say,	a	download	operation),	then	using	these	methods	provides	better	performance
than	loading	and	decoding	a	file.

	setImageNamed(_:)	and	setBackgroundImageNamed(_:)	take	a	string
that	contains	the	name	of	an	image	in	the	app’s	bundle.	The	file	will	be	loaded	and
the	image	data	used.

Which	of	these	methods	you	end	up	using	depends	on	whether	the	images	are	bundled
with	your	app,	downloaded	for	immediate	use,	or	downloaded	and	stored	for	later.

Controlling	Animation
Two	kinds	of	animation	are	available	in	watchOS:	Image-based	animations,	as	described
earlier,	display	a	sequence	of	images	over	a	specified	time,	and	interface	animations
provide	the	ability	to	animate	select	properties	of	interface	objects.	Let’s	walk	through	an
example	of	these	techniques.	(To	follow	along	with	this	example,	download	a	zip	archive
of	the	animation’s	images	from	http://bit.ly/bwa-assets.)

1.	In	Xcode,	create	a	new	project	based	on	the	iOS	App	with	WatchKit	App	template,
and	give	it	a	name	of	your	choice.	Don’t	include	the	Glance,	Notification,	and
Complication	options.

2.	Open	the	Assets.xcassets	asset	catalog	in	the	WatchKit	Extension	group.
(Note	that	the	other	groups	in	the	project	also	contain	a	file	named
Assets.xcassets.	Make	sure	you’ve	opened	the	one	belonging	to	the	WatchKit
Extension.)

3.	Select	the	image	files	spinner0@2x.png	through	spinner11@2x.png,	and
drag	them	into	the	left	column	of	the	asset	catalog	view.	You	should	end	up	with	a
list	like	that	in	Figure	6.17.

FIGURE	6.17	Animation	frames	in	the	asset	catalog

4.	If	the	spinnerX	images	aren’t	selected,	Command-click	them	all	to	make	sure
you	have	them	selected.	Then,	in	the	Attributes	inspector,	select	the	Apple	Watch
check	box	under	Devices,	and	deselect	the	Universal	check	box	(Figure	6.18).

FIGURE	6.18	Image	Devices	settings	in	the	asset	catalog

5.	Work	through	the	spinner	images,	ensuring	that	each	image	is	assigned	to	the	2x

http://bit.ly/bwa-assets

slot	in	the	asset	catalog	(Figure	6.19).

FIGURE	6.19	Image	assignments	in	the	asset	catalog

6.	Open	the	WatchKit	App’s	Interface.storyboard,	and	add	an	Image	object
and	a	Button	object	to	the	interface	controller	(Figure	6.20).	Set	the	image’s
horizontal	alignment	to	Center.

FIGURE	6.20	The	image	and	button	in	the	storybard	scene

7.	Open	InterfaceController.swift	from	the	WatchKit	Extension	group,
and	replace	its	contents	with	the	following:

Click	here	to	view	code	image
import	WatchKit
import	Foundation

class	InterfaceController:	WKInterfaceController	{
				@IBOutlet	var	spinnerImage:	WKInterfaceImage!
				@IBOutlet	var	button:	WKInterfaceButton!

				@IBAction	func	buttonTapped()	{

				}
}

8.	Return	to	Interface.storyboard,	and	connect	the	image	and	button	to	their
outlets	and	action.

9.	Add	the	following	method	to	the	InterfaceController:
Click	here	to	view	code	image

override	func	awakeWithContext(context:	AnyObject?)	{
				super.awakeWithContext(context)

				let	spinnerAnimation	=	UIImage.animatedImageNamed(“spinner”,	duration:
2)!
				spinnerImage.setImage(spinnerAnimation)
}

10.	Update	the	InterfaceController’s	buttonTapped()	method	to	read	as
follows:

Click	here	to	view	code	image
@IBAction	func	buttonTapped()	{
				spinnerImage.startAnimating()
}

11.	Run	the	app,	then	tap	the	button,	and	you	should	see	the	spinner	animating.

Delightful,	but	it	won’t	stop!	For	that	to	happen,	you	need	to	modify	the	code	a	bit.

Just	as	it	isn’t	possible	to	query	WKInterfaceObject	subclasses	for	their	state
(Chapter	4),	the	interface	controller	cannot	query	the	WKInterfaceImage	to	see
if	its	animation	is	currently	running.	This	means	you	have	to	add	a	property	to	the
controller.

12.	Make	the	following	changes	to	InterfaceController.swift,	adding	a
property	and	updating	the	implementation	of	buttonTapped():

Click	here	to	view	code	image
private	var	animating	=	false

@IBAction	func	buttonTapped()	{
				if	animating	{
								spinnerImage.stopAnimating()

								button.setTitle(“Spin”)

								animating	=	false

				}	else	{

								spinnerImage.startAnimating()

								button.setTitle(“Freeze”)

								animating	=	true

				}

}

13.	Run	the	app,	and	try	tapping	the	button	a	few	times.

Note	the	behavior	of	the	animation	when	it	is	stopped:	It	immediately	resets	to	the
last	frame	in	its	sequence.

You	can	add	a	bit	of	color	now	and	use	an	interface	animation	to	do	so.

14.	Add	the	following	to	InterfaceController:
Click	here	to	view	code	image

private	func	updateButtonToStopped()	{
				let	goColor	=	UIColor.init(red:4/255,	green:222/255,	blue:13/250,
alpha:0.28)

				button.setBackgroundColor(goColor)
				button.setTitle(“Spin”)
}

private	func	updateButtonToGoing()	{

				let	stopColor	=	UIColor.init(red:250/255,	green:17/255,	blue:79/250,
alpha:0.34)

				button.setBackgroundColor(stopColor)
				button.setTitle(“Freeze”)
}

15.	Modify	buttonTapped()	to	read	as	follows:
Click	here	to	view	code	image

@IBAction	func	buttonTapped()	{
				if	animating	{
								spinnerImage.stopAnimating()
								animating	=	false
								animateWithDuration(0.2,	animations:	updateButtonToStopped)
				}	else	{
								spinnerImage.startAnimating()
								animating	=	true
								animateWithDuration(0.2,	animations:	updateButtonToGoing)
				}
}

16.	Add	the	highlighted	line	to	awakeWithContext(_:):
Click	here	to	view	code	image

override	func	awakeWithContext(context:	AnyObject?)	{
				super.awakeWithContext(context)
				let	spinnerAnimation	=	UIImage.animatedImageNamed(“spinner”,	duration:
2)!
				spinnerImage.setImage(spinnerAnimation)
				updateButtonToStopped()
}

17.	Run	the	app,	and	try	the	button.

You	see	it	make	a	smooth	transition	between	its	“Spin”	and	“Freeze”	states.

Using	WKInterfaceController’s
animateWithDuration(_:animations:)	method	is	as	simple	as	that.	And,	we
must	admit,	this	example	gives	an	impression	of	the	extent	of	its	capabilities	too.	The
animations	parameter	takes	a	closure	containing	the	changes	to	be	animated.	Not	all
properties	of	a	WKInterfaceObject	can	be	animated.	Those	method	calls	that	can	be
animated	are:

	setAlpha(_:)

	setWidth(_:)	and	setHeight(_:)

	setHorizontalAlignment(_:)	and	setVerticalAlignment(_:)

	setBackgroundColor(_:)

	setContentInset(_:)	on	a	WKInterfaceGroup

Changes	to	properties	that	cannot	be	animated	will	be	applied	without	a	transition.

Picker-Linked	Animation
Apple	Watch’s	digital	crown	provides	another	control	for	animation,	and	an	interesting
one.	A	picker	can	have	any	number	of	animations	associated	with	it,	via	its
setCoordinatedAnimations(_:)	method.	The	method	parameter	is	an	array	of
objects	that	conform	to	the	WKImageAnimatable	protocol—which,	of	course,	includes
WKInterfaceImage.

As	the	user	scrolls	through	the	picker’s	items,	any	coordinated	animations	update	in
parallel	with	the	picker’s	current	position	in	its	array	of	items.	The	frames	of	the	animation
are	automatically	apportioned	according	to	the	number	of	items	in	the	list.	Where	there	are
more	frames	than	items,	the	animation	will	proceed	by	multiple	frames	per	item.	If	there
are	fewer	frames	than	items,	then	the	picker	must	progress	by	multiple	items	to	move	to
the	next	frame.

This	technique	is	easy	to	work	with	and	powerful.	Return	to	the	spinner	project	from
the	previous	section,	and	make	the	following	changes:

1.	In	Interface.storyboard,	delete	the	button	from	the	Interface	Controller
scene.	Add	a	Picker	object	to	replace	the	button,	and	make	sure	that	it	is	styled	as	a
List	with	a	Focus	Style	setting	of	None,	and	that	its	Indicator	is	Disabled	(Figure
6.21).	You	will	be	adding	empty	items	to	the	picker,	and	these	settings	ensure	that	it
has	no	visible	user	interface	of	its	own.

FIGURE	6.21	Interface	configuration	for	an	invisible	picker

The	picker	must	be	present	in	the	interface	to	receive	updates	from	the	digital	crown,
but	it	won’t	be	visible—so	it	doesn’t	matter	where	it	is	placed.	However,	other
controls	will	need	to	be	fitted	around	it.	In	this	case,	for	neatness,	we	put	it	at	the
bottom	of	the	scene	(Figure	6.22).

FIGURE	6.22	The	image	and	picker	in	the	storyboard	scene

2.	Open	InterfaceController.swift,	and	add	the	following	@IBOutlet
and	method:

Click	here	to	view	code	image
@IBOutlet	var	picker:	WKInterfacePicker!

private	func	setupPicker()	{
				var	items:	[WKPickerItem]	=	[]
				if	let	itemCount	=	spinnerAnimation.images?.count	{
								for	_	in	1…itemCount	*	2	{
												items.append(WKPickerItem())
								}
				}

				picker.setItems(items)
				picker.setCoordinatedAnimations([spinnerImage])
				picker.focus()
}

3.	Connect	the	picker	in	the	storyboard	scene	to	the	new	@IBOutlet.

4.	Delete	the	animating	variable	and	the	methods	buttonTapped(),
updateButtonToStopped(),	and	updateButtonToGoing().	Also	delete
the	button’s	@IBOutlet.

5.	Replace	awakeWithContext(_:)	with	the	following,	noting	the	extraction	of
spinnerAnimation	to	a	lazy	property:

Click	here	to	view	code	image
lazy	var	spinnerAnimation:	UIImage	=	UIImage.animatedImageNamed(“spinner”,

duration:	2)!

override	func	awakeWithContext(context:	AnyObject?)	{
				super.awakeWithContext(context)

				spinnerImage.setImage(spinnerAnimation)
				setupPicker()
}

When	the	interface	controller	is	prepared	for	display,	the	invisible	picker	is	activated	by
the	call	to	its	focus()	method	in	setupPicker().	Scrolling	with	the	digital	crown

will	then	update	the	animation.

The	Settings	Interface
An	oft-neglected	part	of	an	app’s	user	interface	is	how	settings	and	preferences	are
exposed	to	the	user.	iOS	provides	an	easy-to-use	API	to	make	simple	settings	available
through	the	system	Settings	app,	which	includes	screens	for	installed	apps.	watchOS	has	a
very	similar	capability,	with	the	app-specific	settings	accessed	via	the	Watch	app	on	the
host	iPhone.

As	with	iOS,	settings	are	accessed	programmatically	via	the	NSUserDefaults	API.
However,	there	are	some	differences	in	how	the	defaults	are	managed	for	a	watchOS	app:

	The	watchOS	app	has	its	own	settings	bundle,	separate	from	that	of	the	iOS	app.	It
is	up	to	you	to	create	this	bundle,	and	it	should	be	named	Settings-
Watch.bundle.

	To	allow	the	settings	bundle	to	be	shared	between	the	two	devices,	it	must	belong	to
an	App	Group	container,	with	the	iOS	app	and	WatchKit	extension	having	the	App
Group	capability	and	belonging	to	the	same	container.	The	Root.plist	file	in
Settings-Watch.bundle	should	include	the	key
ApplicationGroupContainerIdentifier,	with	the	matching	value	set	to
the	container’s	identifier.

	Code	in	the	WatchKit	extension	can	read	values	from	the	settings	bundle	but	cannot
write	values.

	On	iOS	it’s	common	to	use	the	object	returned	by
NSUserDefaults.standardUserDefaults()	to	read	and	write	values	in
the	app’s	settings	bundle,	but	the	container-based	approach	needed	by	watchOS
means	that	the	user	defaults	object	is	obtained	via	a	call	to
NSUserDefaults.init(suiteNamed:),	passing	the	identifier	of	the	App
Group	container.

	The	data	in	the	user	defaults	will	be	available	only	to	your	WatchKit	extension	when
running	on	an	actual	device—not	on	the	simulator.	See	Chapter	13	for	a	guide	to
deploying	to	the	hardware.

The	settings	to	show	in	the	host	phone’s	Watch	app	are	defined	by	editing	the
Root.plist	file	in	Settings-Watch.bundle.	The	example	property	list	shown	in
Figure	6.23	produces	the	settings	shown	in	Figure	6.24.

FIGURE	6.23	An	example	settings	Root.plist

FIGURE	6.24	Settings	displayed	in	Watch.app

Accessing	these	settings	from	the	WatchKit	extension	is	as	simple	as	using	code	like	the
following:
Click	here	to	view	code	image

if	let	userDefaults:	NSUserDefaults	=	NSUserDefaults.init(suiteName:
“group.build.watchosapps.In-A-Spin”)	{
				let	showIndex	=	userDefaults.boolForKey(“show_index”)
				let	bookTitle	=	userDefaults.stringForKey(“title”)
}

The	combination	of	defining	options	in	the	settings	bundle’s	property	list	file	and
accessing	them	via	NSUserDefaults	makes	for	a	very	convenient	way	to	manage
simple	settings	for	your	apps.

Accessibility
In	recent	years,	Apple’s	systems	have	gained	a	reputation	for	excellent	accessibility
features	that	meet	the	needs	of	a	wide	range	of	users.	This	is	especially	true	of	iOS,	even
though	it	is	a	platform	that	does	away	with	most	physical	controls	and	relies	very	heavily
on	visual	cues	for	interaction.	Many	of	the	accessibility	features	of	iOS	are	also	present	in
watchOS,	making	the	Apple	Watch	an	impressively	accessible	device.

Most	of	the	accessibility	features	of	the	operating	system	require	no	special	effort	on	the
part	of	app	developers.	Features	such	as	Zoom,	Mono	Audio,	Grayscale,	and	the	extra
on/off	labels	on	switches	will	just	work	for	your	app	when	enabled	by	the	user.	Others,
such	as	VoiceOver	and	Dynamic	Type	support,	may	require	a	little	effort	on	your	part
when	developing	the	app.	However,	Apple	has	done	an	excellent	job	of	making	these
technologies	easy	to	adopt.

Why	Accessibility?
As	developers,	we	don’t	often	talk	in	terms	of	the	ethics	of	the	software	that	we	build,	but
perhaps	the	first	reason	to	spend	time	on	the	accessibility	of	your	apps	is	an	ethical	one.
Making	our	software	accessible	and	usable	to	as	many	people	as	possible,	regardless	of
any	accommodation	they	need,	is	a	good	thing	to	do.	From	a	more	pragmatic	point	of
view,	the	more	people	can	use	your	app,	the	more	people	will	use	your	app.	And	when	the
cost	of	making	your	app	accessible	via	the	technologies	available	in	the	OS	is	so	low,	the
benefit	looks	even	greater.

The	first	task,	then,	is	to	think	about	how	your	app	displays	information	and	makes
interactions	available	to	the	user.	For	example,	if	your	app	uses	color	to	convey	meaning
(see	the	red	and	green	of	the	button	in	the	animation	example	in	the	“Controlling
Animation”	section	of	this	chapter),	is	that	meaning	also	clear	to	users	who	perceive	color
differently	or	who	have	their	watch	set	to	display	in	grayscale?	Is	the	same	meaning
communicated	in	some	other	way	as	well?	Does	your	app	rely	on	audio	cues?	Can	it	use
the	Taptic	engine	as	well,	to	provide	a	tap	on	the	user’s	wrist?

These	are	simple	yet	important	principles.	A	little	advance	thought	can	have	a
substantial	impact.

Dynamic	Type
The	Dynamic	Type	system	was	introduced	to	iOS	in	version	7	and	is	available	in
watchOS.	It	allows	developers	to	identify	the	use	of	a	piece	of	text,	and	have	that	text
sized	according	to	the	user’s	system-wide	preference	for	text	size.

In	watchOS,	this	system	is	made	available	via	UIFont	and	UIFontDescriptor.
For	example,	a	font	can	be	instantiated	with	the	class	method
preferredFontForTextStyle(_:),	which	will	return	the	font	for	the	passed	style
in	the	user’s	current	preferred	size.	The	styles	are:

	UIFontTextStyleHeadline

	UIFontTextStyleSubheadline

	UIFontTextStyleBody

	UIFontTextStyleFootnote

	UIFontTextStyleCaption1

	UIFontTextStyleCaption2

The	equivalent	method	on	UIFontDescriptor,
preferredFontDescriptorWithTextStyle(_:),	returns	a	font	descriptor	that
can	be	used	when	instantiating	a	font.

You	can	use	these	fonts	in,	for	example,	constructing	an	attributed	string	to	set	to	an
interface	label.	It	is	also	possible	to	apply	these	styles	to	a	label	via	the	Font	Style	selector
in	the	storyboard	editor	(Figure	6.25).

FIGURE	6.25	Using	text	styles	in	the	storyboard	editor

Using	this	system	to	style	the	text	your	app	displays	gives	the	user	control	over	the	text
size	in	your	app,	allowing	them	to	increase	or	decrease	it	as	necessary.

VoiceOver
VoiceOver	is	the	most	well-known	accessibility	system	in	iOS	and	watchOS,	and	it	is	the
one	that	requires	the	most	effort	from	the	developer—but	that’s	still	not	very	much.

VoiceOver	is	a	screen	reader	and	alternative	set	of	gestures	that	users	can	use	to
navigate	an	app’s	interface.	When	VoiceOver	is	activated,	a	single	tap	selects	an	element
of	the	interface,	and	any	associated	accessibility	information	is	read	out	loud.	The	user
may	then	double	tap	to	activate	the	control.	Flicking	left	and	right	with	one	finger	moves
the	VoiceOver	focus	through	the	interface,	and	sliding	one	finger	around	reads	aloud	the
information	for	each	control	as	your	finger	passes	over	it.	Many	other	gestures	are
available	with	VoiceOver,	including	some	alternatives,	but	the	ones	mentioned	are	the
basic	ones.	The	best	way	to	get	to	know	it	is	to	go	to	the	Settings	app	on	your	Apple
Watch,	open	the	Accessibility	section,	and	activate	VoiceOver.

VoiceOver	relies	on	interface	objects	being	identified	as	accessibility	elements.	Labels
and	interactive	controls	are	identified	as	such	by	default;	images,	for	example,	are	not.
You	configure	this	in	an	object	using	the	method
setIsAccessibilityElement(_:),	which	is	available	on	all	subclasses	of
WKInterfaceObject.	Objects	with	this	set	to	false	are	invisible	to	VoiceOver.

Each	object	then	has	a	series	of	properties	to	expose	different	data	to	VoiceOver,	set
with	the	following	methods:

	setAccessibilityLabel(_:)	sets	the	string	that	is	used	to	describe	the
object	to	the	user.	If	none	is	set,	the	system	uses	the	title	of	the	object	(or	text,	in	the
case	of	a	label);	the	title	is	often	a	sensible	default,	which	means	that	in	many	cases
your	buttons,	labels,	and	table	rows	will	have	the	correct	accessibility	label	already!

	setAccessibilityHint(_:)	allows	you	to	provide	a	string	that	describes
what	the	element	does.	For	example,	a	good	accessibility	hint	for	a	button	might	be
“Makes	the	widget	go	ding.”	This	phrase	should	be	as	brief	as	possible	while	still
being	sensible;	it	should	start	with	a	verb	(“Does	this”),	and	it	should	include	neither
what	the	element	is	nor	how	to	activate	it	(don’t	say,	“Button	you	tap	to	make	the
widget	go	ding”).

	setAccessibilityValue(_:)	allows	you	to	update	a	changing	value	on	a
control	that	has	one.	For	example,	it	could	be	the	value	associated	with	a	slider	or
with	the	state	of	a	switch.

	setAccessibilityTraits(_:)	allows	you	to	provide	context	for	the	other
accessibility	information	by	providing	a	bitmask	of	traits	such	as	Static	Text,	Search
Field,	Button,	Link,	Plays	Sound,	Updates	Frequently,	Causes	Page	Turn,	and	many
others.	See	the	documentation	for	the	full	list	of	available	traits.

Additionally,	there	is	a	method,	setAccessibilityIdentifier(_:),	that	does
not	expose	additional	information	to	the	user.	Rather,	it	allows	you	to	set	an	identifier	that
your	app	can	use.

As	noted,	WKInterfaceImage	objects	default	to	not	being	active	as	accessibility
elements.	If	you	use	an	image	to	communicate	information	that	your	user	needs,	your	app
may	enable	it	as	an	accessibility	element	and	set	the	various	properties	listed	earlier	as
necessary.	To	provide	even	more	flexibility,	the	method
setAccessibilityRegions(_:)	allows	you	to	define	multiple	accessibility
elements	in	a	single	image.

One	final	thing	to	consider	is	sensible	and	useful	grouping	of	elements.	If,	for	example,
you	have	an	interface	group	containing	many	labels	that	make	little	sense	in	isolation,	it
may	be	better	to	disable	the	contained	labels	as	accessibility	elements	and	instead	make
the	group	the	accessibility	element,	with	appropriate	label,	hint,	and	traits.

Using	the	principles	and	APIs	described	here,	we	hope	you	find	that	with	only	a	little
thought	and	care	it	is	very	straightforward	to	make	your	Apple	Watch	app	fully	accessible
to	all	users.

Wrapping	Up
In	this	chapter,	you’ve	seen	some	of	the	tools	and	techniques	that	you	can	use	to	assemble
a	user	interface	for	an	Apple	Watch	app.	The	diverse	library	of	standard	controls	can	go	a
very	long	way,	and	there	is	potential	to	do	even	more	with	the	creative	use	of	images	and
animation	and	the	availability	of	the	digital	crown—all	while	still	keeping	apps
completely	accessible.

In	complications,	glances,	and	notifications,	Apple	Watch	provides	opportunities	to	put
these	tools	to	use	outside	the	app	itself.	Read	on	through	the	next	chapters	to	learn	more.

Chapter	7.	Working	with	Complications

If	the	release	of	the	Apple	Watch	does	not	go	down	in	history	for	revolutionizing	the	field
of	wearable	computing,	at	the	very	least	it	will	go	down	in	history	for	inspiring	countless
bloggers	to	pretend	that	they’ve	always	known	what	a	watch	complication	was.

In	this	chapter,	we	will	bring	you	up	(or	down)	to	the	level	of	the	bloggers	by
explaining	what	a	complication	is,	why	your	users	might	want	you	to	add	one	to	your	app,
and	how	you	might	go	about	doing	so.

Introducing	Complications
Watches	started	life	with	a	simple	purpose—to	help	people	tell	the	current	time	in	terms	of
hours	and	minutes.	Although	the	internals	of	a	watch	that	solely	tells	the	time	can	be	tiny
and	complex,	telling	time	is	considered	the	simplest	function	that	a	watch	can	perform.
Anything	else—a	date	indicator,	a	stopwatch,	a	calculator	function—is	considered	a
complication.	Despite	the	fact	that	the	standard	Apple	Watch	faces	actually	include
numerous	complications,	Apple,	in	its	inimitable	fashion,	decided	to	co-opt	the	name
complication	to	describe	any	additional	widgets	that	can	be	configured	to	slot	into
designated	areas	around	the	rest	of	the	watch	face.

Although	there	were	numerous	Apple-supplied	complications	in	watchOS	1,	it’s	only
with	the	introduction	of	ClockKit	(a	new	framework	included	in	watchOS	2)	that	it’s	now
possible	for	third-party	developers	to	include	their	own	complications	as	part	of	their
Watch	app.

As	one	of	those	third-party	developers,	you	have	an	amazing	opportunity	to	get	data
from	your	app	directly	onto	the	face	of	your	users’	watches.	It	might	seem	like	the
equivalent	of	a	notification	or	a	glance,	but	this	is	something	way	more.	Notifications	need
you	to	push	the	data	to	the	user,	and	glances	need	the	user	to	initiate	a	request	for
information.	A	complication	is	a	part	of	your	app	that	is	always	right	there	on	their	watch
face	and	can	be	kept	up	to	date	through	the	magic	of	timelines	and	time	travel—without
having	to	reach	a	speed	of	88mph.

Timelines	and	Time	Travel
Although	it	may	sound	like	some	sort	of	magic,	or	like	Apple	has	achieved	some	feat	from
the	realms	of	science	fiction,	the	ability	to	provide	up-to-the-minute	data	for	your
complication	is	actually	just	some	very	clever	software	engineering	and	data	caching.

Each	complication	on	a	watch	face	needs	to	have	up-to-date	data	at	the	precise	moment
the	user	raises	her	wrist	to	look	at	her	watch.	Rather	than	continuously	fetching	data	on
request,	a	complication	expects	the	associated	app	to	provide	a	timeline	of	data,	such	as	a
sequence	of	calendar	appointments	or	predicted	temperatures	at	intervals	throughout	the
day.	Your	app	will	be	requested	to	provide	up	to	three	different	types	of	information:	for
the	current	time,	for	the	future,	and	for	the	past.

The	most	important	information	is	that	for	the	current	time.	You	don’t	have	to	provide
data	for	the	future	or	the	past—it	may	not	even	be	possible	to	do	so—but	if	you	do

provide	future	data,	it	can	allow	your	complication	to	display	information	without
resorting	to	repeated	requests	to	your	app	every	time	the	current	information	becomes
outdated.

A	further	advantage	of	providing	past	and	future	data	is	that	it	allows	the	user	to	take
advantage	of	the	Time	Travel	feature	of	watchOS	2.	Time	Travel	can	be	achieved	by
turning	the	digital	crown	while	viewing	the	watch	face;	the	watch	will	emit	a	brief	tap,	and
Time	Travel	mode	will	be	indicated	on	the	screen	(Figure	7.1).

FIGURE	7.1	Time	Travel:	It’s	like	we’re	living	in	the	future.

Rotating	the	digital	crown	clockwise	goes	forward	in	time	(appropriately	enough),	and
it	scrubs	through	the	timeline	of	future	data	that	apps	have	provided	to	their	complications.
Whenever	future	data	is	not	available,	the	complication	is	shown	as	disabled	while	in
Time	Travel	mode.	Rotating	counterclockwise	goes	backward,	of	course,	through	the	data
timeline	for	the	complications.	Again,	if	historical	data	is	not	available,	the	complication
will	be	shown	as	disabled.

You	don’t	have	to	support	Time	Travel	with	your	complication	(and	depending	on	your
app,	you	may	not	even	be	able	to),	but	it	is	a	delightful	feature	of	the	Apple	Watch	in
general,	and	worth	supporting	if	you	can.

Complicated	Arrangements
If	you	have	browsed	the	available	faces	on	an	Apple	Watch,	you	have	seen	a	number	of
different	complications	that	may,	from	a	high	level,	seem	like	a	complete	mishmash	of
styles.	Fortunately,	they	actually	break	down	into	just	five	main	families,	some	of	which
have	their	own	customizations,	which	can	be	broken	down	into	data	layouts.

Families

The	complication	families	are	broadly	grouped	by	the	watch	faces	that	they	are	primarily
associated	with,	and	each	of	those	watch	faces	dictates	different	form	factors	that	are
possible.	You	do	not	have	to	support	all	the	families—and	we	encourage	you	not	to	abuse
the	space	that	has	been	made	available	to	you—but	bear	in	mind	that	the	more	families
you	support,	the	more	chance	you	have	of	getting	your	complication	onto	a	relatively
sparse,	but	invaluable,	piece	of	real	estate.

Modular

The	Modular	watch	face	lends	its	name	to	two	families:	Modular	Small	and	Modular
Large.	Figure	7.2	shows	an	example	Modular	watch	face.

FIGURE	7.2	Modular	Large	(left)	and	Modular	Small	(right)	complications

The	highlighted	area	in	the	Modular	Large	complication	in	Figure	7.2	(left)	is	the
single,	large,	and	horizontally	oriented	rectangle	that	dominates	the	middle	of	the	Modular
face.	Its	size	and	orientation	make	it	particularly	suitable	for	displaying	relatively
intensive	textual	information.

The	remaining	complications	on	the	Modular	face	are	all	examples	of	the	Modular
Small	complication	family	(including	a	calendar,	stopwatch,	moon	phase	indicator,	and
sunrise/sunset	indicator).	They	share	a	rounded	rectangular	shape	(as	highlighted	in	the
screenshot	on	the	right),	and	as	a	result	Modular	Small	complications	can	be	used
interchangeably	in	the	four	available	spaces	on	the	Modular	watch	face.

Utilitarian

Although	it	may	sound	like	a	sci-fi	cult,	the	Utilitarian	complication	families	are	named
for	their	inclusion	in	the	Utility	watch	face	(Figure	7.3)	as	well	as	in	the	Mickey,
Chronograph,	and	Simple	faces.	Unfortunately,	for	reasons	known	only	to	them,	Apple
seems	reluctant	to	let	developers	customize	the	“Mickey	butt-wiggle/foot-tap,”	which	is
arguably	the	best	complication	there	is.	Our	personal	idea	for	Morse	code–style	message
delivery	through	Mickey’s	foot	taps	is	currently	on	the	shelf.

FIGURE	7.3	Utilitarian	Large	(left)	and	Utilitarian	Small	(right)	complications

The	line	of	information	on	the	bottom	of	the	face	(the	sunrise/sunset	time)	is	the	sole
Utilitarian	Large	complication	slot	available.	It	is	well	suited	to	data	that	needs	to	be
formatted	with	a	reasonable	amount	of	width,	but	don’t	worry	if	your	data	output	is	a	bit
on	the	narrow	side,	because	the	complication	data	will	be	sensibly	centered.

The	Utility	face	features	two	other	parcels	of	screen	space	that	can	accommodate	a
complication—at	the	upper-left	and	upper-right	corners,	meeting	at	the	center	of	the
screen.	This	complication	type	is	named	Utilitarian	Small,	and	you	are	not	restricted	to
using	the	entire	width	of	the	space	available	to	you.	You	can	use	simple	icons	that	will	be
pushed	to	the	far-left	or	far-right	side	of	their	respective	spaces.

	Note

The	Utility	face	(and	others)	actually	features	a	fourth	complication	when	you
enter	its	customization	mode.	It	corresponds	to	the	date	display	in	Figure	7.3.
We	won’t	consider	it	here	because	it	can	show	only	the	date	(in	a	number	of
styles)	or	be	turned	off.	It’s	not	yet	open	to	third-party	developers.

Circular

The	Circular	family	is	not	named	for	a	watch	face,	and	is	a	bit	of	a	misnomer	considering
that	it	occupies	a	space	that	is	actually	a	rectangle	(Figure	7.4).	They	can	be	displayed	on
the	Color	watch	faces.

FIGURE	7.4	Circular	complications	on	a	Color	watch	face

In	the	four	corners	of	Figure	7.4,	you	can	see	four	examples	of	the	Circular
complication	in	action.	Although	they	appear	in	similar	positions	to	the	Utilitarian	Small
complications,	they	do	not	have	the	same	flexibility	to	occupy	a	rectangular	shape;	they
can	take	only	the	form	of	a	square	and	are	best	suited	to	round	graphical	complications.

Data	layouts

The	complications	you’ve	seen	so	far	have	varied	by	the	watch	face	they	can	be
configured	with,	but	also	in	the	presentation	of	their	data.	Each	of	the	families	can	be
subdivided	into	a	number	of	data	layouts;	you	need	to	choose	the	layout	that	best	suits
your	data	and	specify	that	layout	when	writing	the	code	to	support	your	complications.
The	full	range	of	complication	families,	their	available	data	layouts,	and	the	template
identifiers	you	can	use	to	reference	them	in	code	are	shown	in	Table	7.1.

Table	7.1

With	more	than	20	different	options	to	present	your	data	in	a	complication	(including
tabular	layouts,	open	and	closed	rings,	and	images),	all	that	remains	to	be	done	is	to
choose	the	variations	you	want	to	support	and	introduce	some	complications	to	your	life.
Rather	than	display	all	the	available	styles	here,	we	encourage	you	to	browse	the	existing
complications	supplied	by	watchOS	and	find	the	styles	that	best	suit	your	data.

Adding	Complications
So	you’ve	decided	that	life	isn’t	simple	enough	and	you	want	to	introduce	some
complications.	How	you	include	a	complication	in	your	app	depends	on	when	you	decide
you	want	to	do	it.	As	you’ll	see	here,	and	in	later	chapters	for	glances	and	notifications,
it’s	always	easier	to	include	a	complication	when	you	are	creating	your	watchOS	app	than
it	is	to	retrofit	it	to	one.	It’s	worth	giving	careful	consideration	to	your	project	needs	at
creation	time.

Including	a	Complication	in	a	New	App
You	can	start	from	scratch	and	create	a	complication	in	a	new	iOS	and	watchOS	app	in
one	fell	swoop,	but	you	can	also	include	a	complication	when	creating	a	new	watchOS
target	if	your	iOS	app	already	exists.

Creating	a	project	and	app	with	a	complication

Here	are	the	steps	to	create	a	complication	when	you	create	your	project	and	app.

1.	From	the	Xcode	main	menu,	select	File	>	New	>	Project.

2.	In	the	new	project	template	chooser	dialog,	select	watchOS	>	iOS	App	with
WatchKit	App	(Figure	7.5).

FIGURE	7.5	The	project	template	chooser	dialog

3.	Click	Next	to	choose	the	template.

4.	In	the	template	options	dialog,	set	Product	Name	to	I	Said	What?	and	ensure	that
the	Include	Complication	option	is	selected	(Figure	7.6).

FIGURE	7.6	watchOS	project	settings	with	Include	Complication	selected

5.	Click	Next	to	confirm	your	options.

6.	Choose	a	location	in	which	to	save	the	project—we’ll	leave	it	to	you	to	decide
where—and	click	Create	to	finish	the	process.

Now	that	you’ve	created	a	project	with	a	complication,	we’ll	take	a	short	diversion	to
look	at	the	file	artifacts	and	configuration	associated	with	complications.	This	is	important
so	that	you	can	work	with	them,	and	also	understand	how	to	create	them	by	hand	or	to
disable	them	if	you	no	longer	want	to	include	one	in	your	app.

Configuring	the	complication

Unlike	glances	and	notifications,	complications,	when	added	to	your	project,	don’t	make	a
change	to	the	Interface.storyboard	file	that	defines	your	app	interface.	This	may
seem	unusual,	but	glances	and	notifications	are	displayed	as	complete,	self-contained
views	that	your	app	needs	to	specify	and	control.	Complications,	on	the	other	hand,	are
displayed	on	the	watch	face	and	can	be	supplied	by	many	different	apps,	so	it	is	watchOS
that	needs	to	manage	them.	You	just	get	to	supply	the	data	and	resources	that	they	rely
upon.

Like	many	modern	Apple	frameworks,	the	data	needs	to	be	supplied	by	a	data	source.
As	part	of	the	project	template,	a	file	named	ComplicationController.swift	is
created	in	the	WatchKit	Extension	file	group.	This	file	is	strangely	named,	because	it	does
not	inherit	from	WKInterfaceController,	as	the	class	name

ComplicationController	suggests.	Instead,	it	implements	a	protocol	named
CLKComplicationDataSource;	it’s	this	protocol	that	defines	the	data	source
methods	that	your	code	must	implement	in	order	to	render	your	complications	on	the
watch	face.	We’ll	take	a	closer	look	at	the	methods	that	need	to	be	implemented	to	satisfy
this	protocol	later	in	this	chapter.

You’ll	need	to	include	image	resources	if	the	complication	templates	you	decide	to	use
include	images.	To	make	this	easier	for	you,	the	project	template	adds	a	complication	set
to	the	Assets.xcassets	file	in	the	WatchKit	Extension	file	group.	The	complication
set	contains	three	image	groups—one	each	for	the	Circular,	Modular,	and	Utilitarian
families—and	each	image	group	takes	two	size	variations	for	the	38mm	and	42mm	watch
sizes	(Figure	7.7).	We’ll	add	some	image	resources	in	the	“Including	Image	Assets”
section	later.

FIGURE	7.7	The	Circular	complication	image	asset	group

The	final	changes	made	by	the	project	template	to	enable	complication	support	can	be
found	in	the	settings	for	the	WatchKit	Extension	target.	For	this	sample	project,	we	would
like	to	support	only	Modular	Large,	and	here	is	how	you	can	achieve	this.

1.	Click	the	I	Said	What?	project	group	in	the	Project	Navigator	to	open	the	Settings
editor.

2.	Select	the	I	Said	What?	WatchKit	Extension	target	in	the	Settings	editor.

3.	Open	the	General	settings	tab.

4.	Scroll	down	to	view	the	Complications	Configuration	settings	group	(Figure	7.8).

FIGURE	7.8	The	Complications	Configuration	section	of	the	target	settings

5.	Deselect	the	complication	families	until	only	the	Modular	Large	family	remains
selected	(Figure	7.8).

While	you	are	here,	it	is	worth	exploring	the	configuration	settings	in	this	group:

	Data	Source	Class:	This	setting	is	a	combined	text-entry	field	and	popup	menu.
Clicking	the	popup	menu	control	presents	a	list	of	the	classes	found	in	the	WatchKit
Extension	target	that	implements	the	CLKComplicationDataSource	protocol.
Pick	a	class	from	the	list,	or	type	the	name	of	one	directly	into	the	text	field,	in	order
to	tell	watchOS	the	class	it	should	use	as	a	data	source.

In	the	project	template,	it	is	set	to
$(PRODUCT_MODULE_NAME).ComplicationController	by	default.	If
you	are	setting	it	yourself,	be	aware	that	Xcode	can	sometimes	drop	the
$(PRODUCT_MODULE_NAME)	portion.	This	will	cause	your	app	to	have	problems
finding	the	data	source,	so	make	sure	to	replace	it	if	necessary.

	Supported	Families:	This	setting	is	a	series	of	checkboxes	that	represent	the	five
different	complication	types.	By	default,	they	are	all	enabled,	but	you	can	disable
specific	checkboxes	to	indicate	to	watchOS	that	you	do	not	wish	to	support	that
complication	family.

	Complications	Group:	The	final	setting	is	a	standard	popup	menu	that,	when
clicked,	presents	a	list	of	complication	sets	found	in	asset	groups	contained	within
the	WatchKit	Extension	target.	By	default,	it’s	set	to	use	the	complication	set	within
Assets.xcassets	in	the	WatchKit	Extensions	file	group,	but	if	you	want	to
include	a	different	set	of	images,	you	can	select	them	here.

	Tip

The	Data	Source	Class	and	Supported	Families	settings	are	mirrored	within
the	Info.plist	of	the	WatchKit	Extension	target.	This	could	be	useful	if
you	have	a	complex	build	system	and	wish	to	change	these	settings	for
specific	builds	(for	example,	paid	and	free	versions	of	your	app).	The
Complications	Group	setting	is	held	within	the	main	project	settings	and	is
not	so	easily	changed	at	build	time.

If	you	added	complication	support	when	you	created	your	project,	you	can	also	use
these	settings	to	disable	that	support.	Remove	the	Data	Source	Class	setting	or	deselect	all
the	Supported	Families	options	to	stop	your	app	from	offering	complications.

Adding	a	Complication	to	an	Existing	App
Sometimes	it	is	hard	to	predict	exactly	what	you’ll	need	in	your	app	when	you	are	creating
the	project,	and	it’s	highly	likely	that	at	some	stage	you’ll	need	to	add	complication
support	to	an	existing	watchOS	app	that	doesn’t	have	one.	Although	it	isn’t	as	easy	as
selecting	a	checkbox,	it	still	isn’t	too	difficult	to	achieve.

1.	From	the	Xcode	main	menu,	select	File	>	New	>	Project.

2.	In	the	new	project	template	chooser	dialog,	select	watchOS	>	iOS	App	with
WatchKit	App	(Figure	7.5).

3.	Click	Next	to	choose	the	template.

4.	In	the	template	options	dialog,	set	Product	Name	to	Simple	Life	and	ensure	that	the
Include	Complication	option	is	not	selected	(Figure	7.9).

FIGURE	7.9	watchOS	project	settings	with	Include	Complication	deselected

5.	Click	Next	to	confirm	your	options.

6.	Choose	a	location	to	save	the	project,	and	click	Create	to	finish	the	process.

You	are	now	the	proud	owner	of	a	complication-free	project	named	Simple	Life.
Let’s	make	it	more	complicated	by	adding	a	data	source	class.

7.	In	the	Project	Navigator,	click	the	WatchKit	Extension	file	group	to	select	it.

8.	From	the	Xcode	main	menu,	select	File	>	New	>	File.

9.	In	the	new	file	template	chooser	dialog,	select	the	watchOS	>	Source	category,	click
the	WatchKit	Class	template	to	select	it,	and	click	Next	to	continue	(Figure	7.10).

FIGURE	7.10	The	new	file	template	chooser	dialog	showing	the	WatchKit	Class
template

10.	In	the	new	file	options	dialog,	set	the	Class	name	to
ComplicationDataSource,	and	click	Next	to	continue	(Figure	7.11).

FIGURE	7.11	The	new	file	options	dialog	for	ComplicationDataSource

Apple	named	this	class	ComplicationController,	but	we	want	to
acknowledge	its	true	purpose	in	life.

11.	In	the	save	dialog,	navigate	to	the	Simple	Life	WatchKit	Extension	folder,	ensure
that	the	Target	for	the	new	file	is	set	to	Simple	Life	WatchKit	extension,	and	click
Create	to	finish	creating	the	new	file.

12.	Update	the	newly	created	ComplicationDataSource.swift	file	to	import
the	ClockKit	module	(more	on	this	framework	very	soon),	and	add
CLKComplicationDataSource	as	a	protocol.

Click	here	to	view	code	image
import	WatchKit
import	ClockKit

class	ComplicationDataSource:	NSObject,	CLKComplicationDataSource	{

}

This	causes	the	ComplicationDataSource.swift	file	to	report	an	error;	it
implements	a	protocol	that	it	doesn’t	completely	conform	to	yet.	We’re	not	worried
about	that	right	now,	but	if	you	want	to	populate	it,	see	the	section	“Providing
Timeline	Entries”	later	in	this	chapter.

You	now	need	to	create	an	asset	catalog	entry	that	you	can	set	as	the	Complications
Group	setting.

13.	In	the	WatchKit	Extension	file	group,	select	the	asset	catalog	named
Assets.xcassets.

14.	From	the	Xcode	main	menu,	select	Editor	>	Add	Assets	>	New	Watch
Complication.

This	creates	a	new	complication	set	named	Complication,	and	completes	the	process
of	artifact	creation.	All	that	remains	is	to	configure	the	WatchKit	Extension	target
settings	to	reference	the	artifacts.

15.	In	the	Project	Navigator,	click	the	Simple	Life	project	folder	to	open	the	Settings
editor.

16.	Click	the	Simple	Life	WatchKit	Extension	target	to	view	its	settings,	and	scroll
down	to	the	Complications	Configuration	section.

17.	Set	the	Data	Source	Class	setting	to
$(PRODUCT_MODULE_NAME).ComplicationDataSource.

18.	Select	one	or	more	complication	families	for	the	Supported	Families	setting.

19.	Set	the	Complications	Group	setting	to	Complication.

It’s	time	you	updated	your	résumé	to	say	that	you’re	a	traditional	watchmaker;	you	have
just	handcrafted	a	complication.

Including	Image	Assets
Given	the	lack	of	space	in	any	of	the	complication	templates,	it	can	be	very	difficult	to
convey	a	lot	of	information.	The	old	adage	“a	picture	is	worth	a	thousand	words”	is	rarely
as	appropriate	as	it	is	here.	Many	of	the	standard	watchOS	complications	include	images
to	help	include	as	much	data	as	possible.

Although	it	may	be	tempting	to	just	throw	a	collection	of	images	into	your	project,
using	just	any	old	images	in	your	complication	will	result	in	unexpected	behavior.	This	is
because	Apple	wants	the	complications	to	have	a	very	uniform	look	and	feel,	and	this	is	a
lot	harder	to	achieve	if	every	developer	has	a	different	color	scheme.

To	prevent	this,	the	images	provided	by	your	complication	are	expected	to	use	a
monochrome	image	with	varying	alpha	levels	that	can	then	be	rendered	into	any	color
scheme	that	watchOS	chooses.	The	best	way	to	achieve	this	is	to	create	a	black	and	white
grayscale	image	and	use	an	image	conversion	tool	to	convert	the	grayscale	into	different
levels	of	transparency.	Figure	7.12	shows	a	comparison	between	a	grayscale	image	and
the	same	converted	image.	We’ve	created	some	images	that	you	can	use	without	having	to
get	into	image	manipulation.

FIGURE	7.12	The	monochrome	image	(left)	and	the	alpha-channel	image	(right)

1.	Download	the	compressed	modular	file	from	bit.ly/bwa-modular-assets,	and
decompress	the	file.

Once	you	have	your	images,	you	can	include	them	in	the	asset	catalog	file	named
Assets.xcassets	in	the	WatchKit	Extension	folder.	As	shown	earlier	(Figure
7.7),	this	asset	catalog	comes	prepopulated	with	a	group	named	Complication	that
contains	three	predefined	image	assets	(for	Circular,	Modular,	and	Utilitarian
complications).	Each	of	the	assets	can	supply	images	for	38mm	and	42mm	watch
form	factors.

2.	In	the	Project	Navigator,	open	the	WatchKit	Extension	file	group,	and	click	the	file
named	Assets.xcassets	to	open	it.

3.	Click	the	Complication	group	in	the	asset	catalog	editor	to	expand	it,	then	click	the
Modular	image	asset	to	select	it	(Figure	7.13).

FIGURE	7.13	The	empty	Modular	image	asset

4.	In	the	Finder,	navigate	to	the	folder	where	you	downloaded	the	image	assets,	or
locate	your	own	assets	if	you	wish	to	use	them.

5.	Drag	the	file	named	modular-38mm.png	into	Xcode,	and	drop	it	onto	the	image
well	named	38	mm	2x	(Figure	7.14).

FIGURE	7.14	Adding	an	image	to	the	asset	catalog

6.	Repeat	step	5	for	the	file	named	modular-42mm.png,	and	drop	it	onto	the	image
well	named	42	mm	2x.

The	image	assets	are	now	included	in	the	project	and	can	be	loaded	into	a	UIImage
using	their	path	within	the	asset	catalog.	For	example:
Click	here	to	view	code	image

let	asset	=	UIImage(named:	“Complication/Modular”)

The	UIImage	class	will	choose	which	of	the	two	images	to	use	based	on	the	size	of	the
device	the	code	is	actually	running	on.

	Tip

For	more	information	on	the	sizing	of	the	various	image	assets	that
complications	can	take	advantage	of,	have	a	look	at	the	Complication	Images
section	of	Apple’s	Human	Interface	Guidelines,	at	bit.ly/bwa-comp-hig.

ClockKit
Working	with	complications	requires	that	you	dive	into	a	new	framework	introduced	in
watchOS	2:	ClockKit.	It	is	ClockKit	that	defines	the	CLKComplicationDataSource
protocol	that	your	app	must	implement	in	order	to	support	complications.	As	you	start	to
implement	this	protocol,	you’ll	quickly	need	to	start	pulling	in	other	classes	and	types
from	ClockKit,	including	some	interesting	new	classes	for	dealing	with	text	and	images.

First,	though,	you’ll	look	at	the	data	source	itself	in	the	context	of	creating	your	sample
app	named	I	Said	What?	The	purpose	of	this	app	is	simple;	it	provides	a	complication	to
tell	you	what	you	said	on	Twitter	exactly	one	year	ago.

Working	with	the	CLKComplicationDataSource	protocol	will	feel	familiar	to
you	if	you	have	dabbled	even	briefly	with	table	views	on	iOS	(and	specifically	with	the
UITableViewDataSource	protocol).	It’s	a	comprehensive	protocol	that	provides	a	lot
of	flexibility,	but	with	that	flexibility	comes	a	degree	of	complexity.	Fortunately,	the

default	project	template	contains	most	of	the	protocol	methods	pre-implemented.	We	will
work	through	them,	filling	them	in	as	we	go	and	giving	extra	details	where	necessary.

Timeline	Settings
Before	the	data	source	can	provide	entries	for	your	timeline,	you	need	to	provide	some
basic	information	to	ClockKit	so	that	subsequent	requests	for	data	make	sense.	For
example,	if	your	complication	can’t	provide	information	for	times	in	the	future,	you	can
indicate	this	and	spare	future	requests	for	future	timeline	entries.

In	the	case	of	our	example	app,	because	the	data	will	be	one	year	old,	you	do	have	both
future	and	past	information.	You	communicate	this	to	ClockKit	through	the	required
protocol	method
getSupportedTimeTravelDirectionsForComplication(_:withHandler:)
Happily,	the	default	implementation	in	the	template	covers	this	already,	but	we	will
replicate	it	here	to	discuss	some	general	techniques	that	apply	to	most	of	these	protocol
methods.
Click	here	to	view	code	image

func	getSupportedTimeTravelDirectionsForComplication(complication:
CLKComplication,
				withHandler	handler:	(CLKComplicationTimeTravelDirections)	->	Void)	{
				handler([.Forward,	.Backward])
}

Two	parameters	are	common	to	many	of	these	methods:

	complication:	This	parameter	is	a	reference	to	an	instance	of	a
CLKComplication	class.	The	parameter	is	passed	in	so	that	you	can	ask	to	which
family	the	complication	belongs.	CLKComplication	has	just	one	property
(family),	which	returns	a	CLKComplicationFamily	enum	indicating	whether
the	complication	is	ModularSmall,	ModularLarge,	UtilitarianSmall,
UtilitarianLarge,	or	CircularSmall.

	handler:	This	parameter	is	a	reference	to	a	closure	that	is	passed	to	the	method	by
ClockKit.	It’s	your	responsibility	to	call	this	handler	at	the	end	of	the	method	and
pass	it	the	appropriate	information.	The	type	of	information	to	be	passed	to	the
handler	varies	between	the	protocol	methods,	but	the	signature	of	the	protocol
method	will	give	you	the	necessary	guidance	in	each	instance.

	Note

If	you	support	more	than	one	type	of	complication,	you	should	use	the
family	property	on	CLKComplication	to	let	you	construct	custom
responses	for	each	family	you	support.	In	our	sample	project	we	have
indicated	that	we	only	support	the	Modular	Large	family,	so	we	have	skipped
any	family-specific	handling	for	the	sake	of	brevity.

In	the	previous	sample,	we	are	calling	the	handler	with	a	set	of	supported	directions
([.Forward,	.Backward])	that	our	complication	supports.	If	you	wanted	to	support
time	travel	only	to	the	past,	you	would	pass	.Backward;	to	support	time	travel	only	to
the	future,	then	pass	.Forward;	or	to	indicate	no	time	travel	support	at	all,	pass	.None.

When	a	specific	time	travel	direction	has	been	indicated	as	supported,	your	data	source
will	then	be	asked	to	specify	exactly	how	far	forward	or	back	it	can	go.	You	can	indicate
your	supported	dates	by	implementing	the	methods
getTimelineStartDateForComplication(_:withHandler:)	and
getTimelineEndDateForComplication(_:withHandler:).	The	handler
parameter	for	both	methods	can	be	passed	an	optional	NSDate.	The	date	specified
indicates	the	point	beyond	which	the	complication	should	be	dimmed	during	Time	Travel;
supplying	the	current	time	is	another	way	to	say	that	Time	Travel	is	not	supported	in	the
specified	direction,	whereas	passing	nil	indicates	that	there	is	no	limit	to	Time	Travel
capabilities	in	this	direction.

For	your	app,	you	want	to	support	12	hours	of	past	timeline	entries	and	6	hours	of
future	timeline	entries.

1.	Update	the	methods	as	follows:
Click	here	to	view	code	image

func	getTimelineStartDateForComplication(complication:	CLKComplication,
				withHandler	handler:	(NSDate?)	->	Void)	{
				let	twelveHours	=	NSDate(timeIntervalSinceNow:	-12	*	60	*	60)

				handler(twelveHours)
}

func	getTimelineEndDateForComplication(complication:	CLKComplication,
				withHandler	handler:	(NSDate?)	->	Void)	{
				let	sixHours	=	NSDate(timeIntervalSinceNow:	6	*	60	*	60)

				handler(sixHours)
}

If	your	complication	deals	with	sensitive	data,	then	you	need	to	consider	whether
your	complication	should	be	displayed	when	the	watch	has	not	been	unlocked.	To
disable	your	complication	from	being	displayed	when	the	watch	is	locked,	pass	the
HideOnLockScreen	value	to	the	handler	in	the	protocol	method
getPrivacyBehaviorForComplication(_:withHandler:).	If	your
data	is	not	sensitive,	then	you	can	return	ShowOnLockScreen	instead.	For	our
sample	app,	we	would	like	to	respect	the	privacy	status	of	the	original	Twitter
account,	so	you	will	programmatically	determine	which	option	to	return.

Click	here	to	view	code	image
func	getPrivacyBehaviorForComplication(complication:	CLKComplication,
				withHandler	handler:	(CLKComplicationPrivacyBehavior)	->	Void)	{
				let	privateAcct	=	TwitterAccount.isPrivate()

				handler(privateAcct	?	.HideOnLockScreen	:	.ShowOnLockScreen)
}

	Note

The	ClockKit	documentation	states	that	the
getPrivacyBehaviorForComplication(_:withHandler:)
method	is	required,	yet	the	protocol	definition	specifies	it	as	optional.	In
matters	of	privacy,	it	is	always	best	to	be	explicit,	so	we	recommend	that	you
always	implement	this	method	for	the	security	of	your	users.

You	need	an	implementation	for	the	TwitterAccount	type	that	you	used	in	the
previous	code.

2.	Create	a	Swift	file	named	TwitterAccount.swift	in	your	WatchKit
Extension	file	group,	and	add	the	following	code:

Click	here	to	view	code	image
struct	TwitterAccount	{
				static	internal	func	isPrivate()	->	Bool	{
								return	true
				}
}

You’ll	use	this	fake	data	source	for	the	purposes	of	example	only,	and	you	will	flesh
it	out	as	you	progress	through	the	chapter.

You	have	now	implemented	most	of	the	configuration	that	you	need	to	tell	ClockKit	in
what	directions	you	support	Time	Travel	and	for	how	long.	Now	you	need	to	start
providing	ClockKit	with	the	data	to	display.

Complication	Timeline	Entries
When	ClockKit	asks	your	data	source	for	timeline	entries,	it	expects	to	receive	collections
of	CLKComplicationTimelineEntry	objects.	These	are	a	combination	of	a	date
and	the	data	for	the	timeline	from	that	date	onward.	The	data	is	represented	by	a
CLKComplicationTemplate	subclass	that	corresponds	to	a	complication	family	and
the	layout	it	uses.	The	full	list	of	subclasses	can	be	seen	in	Table	7.1	earlier	in	the	chapter.

Each	template	subclass	has	its	own	very	specific	set	of	properties	that	correspond	to	the
type	of	data	it	is	capable	of	displaying.	For	our	example,	we	would	like	to	utilize	a	large
complication	on	the	Modular	watch	face	to	show	a	portion	of	a	tweet	in	the	body	area,
along	with	the	exact	time	and	date	it	was	posted	in	the	header	area.	To	do	this	you	can	use
the	CLKComplicationTemplateModularLargeStandardBody	complication
template.	Creating	one	is	very	simple,	but	attempting	to	set	a	time	and	date	directly	into
the	header	and	the	tweet	text	in	the	body	unveils	the	new	concept	of	providers.

Rather	than	deal	directly	in	text	strings	and	images,	ClockKit	instead	demands	that	you
use	a	set	of	provider	types	that	are	more	capable	of	adapting	their	content	to	the	confines
of	a	complication.	ClockKit	defines	two	main	provider	types:	CLKImageProvider	and
CLKTextProvider,	though	it	provides	a	number	of	subclasses	of

CLKTextProvider	that	you	should	use	in	preference.

For	our	complication	template,	you	need	a	provider	capable	of	formatting	a	date	string,
another	to	present	the	tweet	text,	and	a	third	to	display	an	icon	to	represent	the	app.	For
these	you	can	use	a	CLKDateTextProvider,	a	CLKSimpleTextProvider,	and	a
CLKImageProvider.	The	following	code	shows	how	these	providers	could	be	created;
we’ll	use	this	code	later	in	the	chapter	to	implement	the	functionality	in	our	example	app.
Click	here	to	view	code	image

let	tweetDate	=	NSDate(timeIntervalSinceNow:	-365	*	24	*	60	*	60)
let	dateProvider	=	CLKDateTextProvider(date:	tweetDate,	units:	.Year)
let	textProvider	=	CLKSimpleTextProvider(text:	“An	entertaining	tweet”)
let	image	=	UIImage(named:	“Complication/Modular”)!
let	imageProvider	=	CLKImageProvider(onePieceImage:	image)

In	this	example,	we	have	used	the	simpler	form	for	creating	the	image	provider	that
takes	a	single	image.	If	you	want	more	control	over	how	your	image	interacts	with
complication	color	changes,	you	should	take	a	look	at	the	alternative	init	methods	in	the
Apple	documentation.

With	the	providers	created,	they	can	be	combined	in	the	creation	of	the
CLKComplicationTemplateModularLargeStandardBody	complication
template:
Click	here	to	view	code	image

let	complication	=	CLKComplicationTemplateModularLargeStandardBody()
complication.headerTextProvider	=	dateProvider
complication.body1TextProvider	=	textProvider
complication.headerImageProvider	=	imageProvider

	Tip

We’ve	taken	advantage	of	the	fact	that	not	setting	the
body2TextProvider	property	will	allow	the	body1TextProvider	to
use	more	of	the	available	space	and	wrap	around.

Once	a	complication	template	has	been	created,	the	actual	complication	timeline	entry
can	finally	be	created.	Along	with	the	complication	template,	you	need	to	supply	a	date
that	represents	when	the	timeline	entry	becomes	valid:
Click	here	to	view	code	image

let	timelineEntry	=	CLKComplicationTimelineEntry(
				date:	NSDate(),
				complicationTemplate:	modularLargeComplication)

	Note

Only	the	date	used	in	creating	the	timeline	entry	is	relevant	to	its	position	in
the	timeline.	The	dates	used	in	creating	date	providers	are	for	display
purposes	only.

This	gives	you	a	timeline	entry	that	has	a	starting	point	of	right	now,	but	you	may	be
wondering	how	to	define	the	end	of	a	timeline	entry—after	all,	a	calendar	appointment
would	have	an	end	time	as	well	as	a	start	time.	Timeline	entries	are	valid	from	their
starting	point	until	the	starting	point	of	the	next	timeline	entry	supplied	by	your	data
source.

This	may	mean	that	the	source	of	your	data	(for	example,	a	calendar	API)	may	not	map
directly	onto	complication	timeline	entries.	You	may	wish	to	represent	non-appointment
time	in	your	complication	by	displaying	the	text	“Free.”	To	do	this,	you	need	to	map	each
calendar	appointment	into	two	timeline	entries:	one	to	represent	the	start	of	the
appointment,	and	one	to	represent	the	end	of	the	appointment.	It	can	take	a	little	time	to
get	your	head	around	the	idea,	but	a	little	pen-and-paper	planning	can	go	a	long	way	in
helping	to	map	your	existing	data	onto	a	timeline.

Providing	Timeline	Entries
You	now	know	how	to	create	a	timeline	entry	so	that	you	can	supply	one	on	request,	and
the	CLKComplicationDataSource	protocol	contains	a	collection	of	related	methods
that	you	can	implement	to	provide	the	entries	when	ClockKit	decides	that	your
complication	needs	more	information.

When	working	with	other	data	sources,	such	as	those	for	requesters	like	table	or
collection	views,	you	are	probably	used	to	a	pattern	whereby	you	tell	the	requester	how
many	items	you	have,	and	it	asks	you	for	them	one	by	one	as	needed.	ClockKit	takes	a
different	approach	and	can	make	three	different	types	of	request:

	Supply	a	current	timeline	entry.

	Supply	a	collection	of	timeline	entries	before	a	given	date;	these	form	your	past	data.

	Supply	a	collection	of	timeline	entries	after	a	given	date;	these	form	your	future
data.

The	reason	for	doing	it	the	ClockKit	way	is	straightforward:	If	you	don’t	support	Time
Travel,	you	need	to	supply	only	the	current	entry	request,	and	you	need	to	implement	the
past	and	future	requests	only	if	you	support	those	directions.	ClockKit	may	request	past
and	future	data	multiple	times	with	varying	before/after	dates—it	does	this	to	request	more
data	in	the	appropriate	direction	if	it	needs	it.

Getting	the	data

When	ClockKit	is	preparing	to	update	your	complication	for	display	on	the	watch	face,	it
executes	the
getCurrentTimelineEntryForComplication(_:withHandler:)	method
implemented	by	your	CLKComplicationDataSource.	This	is	a	required	method,	so
it	must	be	implemented,	though	your	implementation	can	return	an	optional	timeline	entry.
If	you	decide	to	return	nil,	ClockKit	takes	this	as	an	indication	that	you’re	having	trouble
getting	the	data,	and	does	not	ask	for	more.	We’ll	discuss	the	implications	of	this	later,	in
the	“Budgeting”	section.

You	worked	through	the	theory	behind	constructing	a	timeline	entry	in	the	previous
section,	so	you’ll	use	this	knowledge	to	create	and	return	an	entry.	First,	though,	let’s
create	a	helper	method	just	to	make	timeline	entry	creation	a	bit	quicker.

1.	Open	the	file	named	ComplicationController.swift,	and	add	the
following	method:

Click	here	to	view	code	image
func	createTimelineEntryOnTweetDate(tweetDate:	NSDate,	currentDate:
NSDate,
				tweetText:	String)	->	CLKComplicationTimelineEntry	{

				let	units:	NSCalendarUnit	=	[.Year,	.Month,	.Day]
				let	dateProvider	=	CLKDateTextProvider(date:	tweetDate,	units:	units)
				let	textProvider	=	CLKSimpleTextProvider(text:	tweetText)

				let	image	=	UIImage(named:	“Complication/Modular”)!
				let	imageProvider	=	CLKImageProvider(onePieceImage:	image)

				let	complication	=	CLKComplicationTemplateModularLargeStandardBody()
				complication.headerTextProvider	=	dateProvider
				complication.body1TextProvider	=	textProvider
				complication.headerImageProvider	=	imageProvider

				return	CLKComplicationTimelineEntry(
								date:	currentDate,	complicationTemplate:	complication)
}

2.	Implement	the	protocol	method	with	the	following	code:
Click	here	to	view	code	image

func	getCurrentTimelineEntryForComplication(complication:	CLKComplication,
				withHandler	handler:	((CLKComplicationTimelineEntry?)	->	Void))	{
				let	tweetDate	=	NSDate(timeIntervalSinceNow:	-365	*	24	*	60	*	60)
				let	timelineEntry	=	createTimelineEntryOnTweetDate(tweetDate,
								currentDate:	NSDate(),	tweetText:	“An	entertaining	tweet”)
				handler(timelineEntry)
}

If	you	have	the	ability	to	display	future	or	past	timeline	entries	and	have	indicated
that	your	complication	will	do	so,	ClockKit	will	make	further	requests	for	this
information	using	the
getTimelineEntriesForComplication(_:beforeDate:limit:withHandler:)
and
getTimelineEntriesForComplication(_:afterDate:limit:withHandler:)

methods.	They	both	work	in	the	same	way,	so	we’ll	just	talk	about	the
beforeDate	variant	for	now.	The	methods	take	a	number	of	parameters:

	complication:	This	parameter	is	the	same	as	in	the	other	method	calls—it
contains	a	reference	to	the	complication	so	that	you	can	determine	what	family	it
is	and	tailor	your	response	accordingly.

	beforeDate:	This	is	an	NSDate	object	specifying	a	time	and	date	that
represents	the	most	recent	point	in	time	for	which	ClockKit	currently	has	entries.
When	you	provide	timeline	entries,	they	must	occur	before	this	date	in	the
timeline.

	This	may	seem	strange;	you	could	just	give	every	possible	timeline	entry	prior	to
the	current	date,	so	why	specify	a	date?	ClockKit	specifies	a	date	because	it	may
call	this	method	multiple	times	and	the	date	will	allow	it	to	ask	for	different
segments	of	your	timeline.	Subsequent	calls	will	include	the	date	of	the	last	entry
in	the	previous	response	so	that	it	can	grab	another	batch	of	entries	from	the
timeline.

	For	the	companion	future	timeline	method,	afterDate	represents	the	last	point
in	time	for	which	ClockKit	has	entries.	Your	response	should	contain	only	entries
that	occur	after	this	date	in	the	timeline.

	limit:	This	parameter	is	an	integer	that	indicates	the	maximum	number	of
timeline	entries	that	you	should	supply	to	ClockKit.	This	is	another	essential
component	in	the	time	budgeting	process	for	your	complication,	designed	to
prevent	you	from	spending	too	long	preparing	a	large	number	of	timeline	entries
that	are	not	needed	immediately.

	handler:	As	per	the	other	data	source	method	calls,	this	is	the	handler	that	you
should	call	at	the	end	of	the	method	to	signal	ClockKit	that	you	are	finished.	You
execute	the	handler	with	an	optional	array	of
CLKComplicationTimelineEntry	objects.	The	array	should	contain
entries	that	are	no	closer	together	in	time	than	a	minute	and	in	chronological	order
up	to	the	limit	specified.	Returning	nil	or	an	empty	array	is	your	way	to	tell
ClockKit	that	you	have	no	more	data,	so	there	is	no	point	in	requesting	any	more
right	now.

Having	discussed	how	the	method	works	and	the	parameters	involved,	you	can	now
attempt	to	implement	it	and	generate	some	past	timeline	entries.	First,	though,	we
need	a	quick	way	to	generate	some	sample	data.

3.	Update	the	TwitterAccount.swift	file	to	include	a	line	that	reads	import
Foundation,	then	add	the	following	method	to	the	TwitterAccount	struct:

Click	here	to	view	code	image
static	func	tweetsBeforeDate(date:	NSDate)	->	[(date:	NSDate,	text:
String)]	{
				var	tweets:	[(date:	NSDate,	text:	String)]	=	[]
				for	i	in	1…5	{
								let	interval	=	arc4random_uniform(UInt32(i	*	10))
								let	timelineDate	=	date.dateByAddingTimeInterval	(-1	*

Double(interval)	*	60)
								let	tweetText	=	“My	tweet	at	\(timelineDate)”
								tweets.append((timelineDate,	tweetText))
				}
				return	tweets
}

The	method	is	very	simple	and	adds	five	tweets	with	increasingly	older	dates.

4.	Update	the
getTimelineEntriesForComplication(_:beforeDate:limit:withHandler:)
method	in	the	data	source	to	take	advantage	of	the	tweetsBeforeDate(_:)
method:

Click	here	to	view	code	image
func	getTimelineEntriesForComplication(complication:	CLKComplication,
				beforeDate	date:	NSDate,	limit:	Int,
				withHandler	handler:	(([CLKComplicationTimelineEntry]?)	->	Void))	{

				let	entries	=	TwitterAccount.tweetsBeforeDate(date).map	{
								(date:	NSDate,	text:	String)	->	CLKComplicationTimelineEntry	in
								let	tweetDate	=	date.dateByAddingTimeInterval(-365	*	24	*	60	*	60)
								return	createTimelineEntryOnTweetDate(tweetDate,	currentDate:
												date,	tweetText:	text)
				}
				handler(entries)
}

	Note

We	haven’t	taken	the	trouble	here	to	limit	the	number	of	entries	we	return	for
this	very	simple	example.	While	experimenting	with	small	numbers	of
entries,	it	is	unlikely	to	cause	problems,	but	it	is	worth	sticking	to	the	value	of
the	limit	parameter	for	production	code.

Placeholder	templates

When	users	of	your	app	are	configuring	their	watch	face,	they	will	want	to	see	your
complication	with	some	representative	data	so	that	they	can	see	how	it	would	look	should
they	use	it.	This	might	sound	like	an	afterthought,	but	if	your	complication	doesn’t	convey
just	how	useful	an	addition	it	will	be	in	your	users’	daily	lives,	then	it	is	less	likely	that
they	will	want	to	add	it	to	their	watch	face.

ClockKit	generously	gives	you	the	opportunity	to	supply	a	presentation	template	for
display	when	the	user	is	scrolling	through	the	range	of	complications	available	to	them.
This	is	just	a	normal	CLKComplicationTemplate	but	should	be	configured	with
static	data.	Your	data	source	will	be	asked	for	this	only	occasionally,	so	the	data	you
supply	should	be	applicable	to	more	than	just	the	instant	it	was	requested.

The	method	you	should	implement	to	support	this	is
getPlaceholderTemplateForComplication(_:withHandler:).	As	per
most	of	the	data	source	methods,	you	will	be	supplied	a	complication	parameter	to

determine	the	complication	family	to	work	with,	as	well	as	a	handler	that	should	be
executed	at	the	end	of	the	method,	with	the	template	as	a	parameter.
For	the	example	application,	add	the	following	method	to	the

ComplicationController	class:
Click	here	to	view	code	image

func	getPlaceholderTemplateForComplication(complication:	CLKComplication,
				withHandler	handler:	(CLKComplicationTemplate?)	->	Void)	{

				let	tweetDate	=	NSDate(timeIntervalSince1970:	499138500)
				let	units:	NSCalendarUnit	=	[.Year,	.Month,	.Day]
				let	dateProvider	=	CLKDateTextProvider(date:	tweetDate,	units:	units)

				let	tweetText	=	“Drove	Delorian.	Traveled	in	time.”
				let	textProvider	=	CLKSimpleTextProvider(text:	tweetText)

				let	image	=	UIImage(named:	“Complication/Modular”)!
				let	imageProvider	=	CLKImageProvider(onePieceImage:	image)

				let	placeholder	=	CLKComplicationTemplateModularLargeStandardBody()
				placeholder.headerTextProvider	=	dateProvider
				placeholder.body1TextProvider	=	textProvider
				placeholder.headerImageProvider	=	imageProvider

				handler(placeholder)
}

Testing	Complications
Once	again,	we	have	made	you	wait	a	long	time	to	actually	try	out	the	code	you	have
written.	This	is	the	point	on	your	personal	timeline	when	you	finally	get	to	see	your
complication	in	action.

If	you	created	your	complication	with	a	new	project	(or	target)	template,	then	you	will
already	have	the	test	scheme	that	you	need	to	start	testing	your	complication—feel	free	to
jump	ahead	to	the	“Running	the	Test	Scheme”	section.	If	you	manually	created	your
complication	(possibly	by	following	the	steps	in	the	earlier	section	“Adding	a
Complication	to	an	Existing	App”),	then	you	will	need	to	set	up	a	test	scheme.

Creating	the	Test	Scheme
Thankfully,	the	process	for	creating	a	test	scheme	is	not	an	arduous	one.	If	you	still	have
the	Simple	Life	project	from	earlier,	you	can	follow	along	with	these	steps:

1.	From	the	Xcode	main	menu,	select	File	>	Product	>	Scheme	>	New	Scheme.

2.	In	the	scheme	creation	dialog,	set	the	Target	to	Simple	Life	WatchKit	Extension,
and	replace	the	generated	Name	setting	with	the	more	concise	Complication
(Figure	7.15).

FIGURE	7.15	Scheme	creation	settings	for	the	Simple	Life	complication

3.	Click	OK	to	finish	creating	the	scheme.

4.	From	the	Xcode	main	menu,	select	File	>	Product	>	Scheme	>	Edit	Scheme	to	open
the	scheme	you	just	created.

5.	Select	the	Run	action,	and	open	the	Info	tab.

6.	Click	the	Executable	popup	menu,	and	select	Simple	Life	WatchKit	App.app.

This	will	cause	additional	options	to	appear	below	the	Executable	popup	menu.

7.	Click	the	Watch	Interface	popup	menu,	and	select	Complication	(Figure	7.16).

FIGURE	7.16	The	scheme	settings	required	to	test	a	complication

8.	Click	Close	to	save	the	changes.

Running	the	Test	Scheme
Now	you’re	ready	to	actually	start	testing	the	complication.

1.	Click	the	scheme	selector	popup	menu	to	display	the	full	list	of	available	schemes
(Figure	7.17).

FIGURE	7.17	Scheme	selection	popup	menu	showing	the	Complication	test	scheme

2.	Click	the	complication	test	scheme	to	select	it;	ours	is	named	Complication	-	I	Said
What?	WatchKit	App,	but	yours	may	be	named	something	else	(if,	for	example,	you
created	it	yourself).

3.	Click	the	Run	button	to	start	testing	the	complication.

Xcode	should	build	your	app,	then	launch	the	Watch	Simulator	to	the	watch	face.
Unfortunately,	it	doesn’t	go	to	the	trouble	of	configuring	the	watch	face	to	display	a
complication,	so	you’ll	need	to	do	that	yourself.

As	with	a	real	device,	you	need	to	force	touch	the	watch	face	to	start	configuring	it.

4.	In	the	simulator,	press	Command-Shift-2	to	switch	the	simulator’s	Force	Touch
Pressure	mode	to	Deep	Press.

5.	Click	the	watch	face	to	enter	configuration	mode.

6.	Press	Command-Shift-1	to	switch	the	Force	Touch	Pressure	mode	to	Shallow	Press.

7.	If	necessary,	swipe	left	or	right	until	you	find	the	Modular	watch	face.

8.	Click	the	Customize	button	to	edit	the	Modular	watch	face.

9.	Swipe	from	right	to	left	to	move	into	the	complication	configuration	screen	(Figure
7.18).

FIGURE	7.18	The	complication	configuration	screen

10.	Click	the	large	complication	in	the	center	of	the	watch	face—this	is	the	Modular
Large	complication	family—and	change	the	selected	complication	until	it	shows	the
I	SAID	WHAT?	WATCHKIT	APP	complication	(Figure	7.19).

FIGURE	7.19	Your	complication	when	selected

You	can	change	the	complication	by	two-finger	scrolling	with	a	trackpad,	or	by
using	the	up	and	down	arrow	keys	on	the	keyboard.

	Tip

If	you	don’t	like	the	I	SAID	WHAT?	WATCHKIT	APP	name	that	is
presented,	you	can	change	it	by	navigating	to	the	General	settings	tab	for	the	I
Said	What?	WatchKit	App	target.	Expand	the	Identity	section	and	update	the
Display	Name	field.

11.	Confirm	your	selection	by	pressing	Command-Shift-2	and	clicking	the	screen	with
a	force	touch.

12.	Press	Command-Shift-1,	and	click	the	Modular	face	to	return	to	the	watch	face.

The	Modular	watch	face	will	be	displayed,	and	your	complication	will	be	displayed.
Witness	its	magnificence	(Figure	7.20).

FIGURE	7.20	The	I	Said	What?	complication	in	action

Now	that	you	have	the	complication	running	in	the	watch	simulator,	it	would	be	nice	to
try	out	the	Time	Travel	feature.	To	step	back	in	time,	use	the	down	arrow	key	on	the
keyboard,	or	use	a	downward	scroll	gesture	on	your	mouse	or	trackpad	(Figure	7.21).

FIGURE	7.21	A	historic	tweet.	Purely	in	terms	of	time,	not	significance.

You	should	be	able	to	navigate	through	multiple	“historic”	tweets;	however,	when	you
go	beyond	12	hours	in	the	past,	the	complication	will	dim.	This	is	because	you	told
ClockKit	that	you	intended	to	supply	only	12	hours	of	past	timeline	entries	with	your
implementation	of	the
getTimelineStartDateForComplication(_:withHandler:)	method.

If	you	try	to	go	forward	in	time,	you’ll	notice	that	the	complication	data	does	not
change	past	the	current	timeline	entry.	This	is	because	you	haven’t	yet	implemented	the
getTimelineEntriesForComplication(_:afterDate:limit:withHandler)
method.	You	have	two	choices	for	how	to	handle	this:	either	implement	the	method	or
change	the
getSupportedTimeTravelDirectionsForComplication(_:withHandler:)
method	to	return	.Backward	only.

If	there’s	one	thing	we’ve	learned	about	time	travel,	it’s	that	meddling	with	the	past	can
break	future	timelines,	so	we’ll	leave	that	decision	to	you.

Triggering	Complication	Updates
You	know	how	ClockKit	gets	the	timeline	entries	from	your	data	source,	but	when	does	it
make	those	requests?	And	what	happens	if	your	data	changes?	Fortunately,	ClockKit	has	a
number	of	mechanisms	for	scheduling	updates,	as	well	as	for	requesting	updates	on
demand.

Update	Methods
The	simplest	way	to	get	ClockKit	to	check	back	with	you	for	additional	timeline	entries	is
to	tell	it	when	you	next	think	you’ll	have	the	information	it	requires.	When	the	various
timeline	entry	request	methods	have	finished,	ClockKit	will	call	the
getNextRequestedUpdateDateWithHandler(_:)	method	on	your	data	source.
When	calling	the	handler,	you	can	supply	a	date	object	that	specifies	a	point	in	time	after
which	you	would	like	to	provide	more	timeline	entries.

In	your	complication,	you	said	you	would	supply	6	hours’	worth	of	data,	so	it	makes
sense	to	have	your	data	source	be	queried	again	after	6	hours.	To	do	this,	you	would
implement	the	method	as	follows:
Click	here	to	view	code	image

func	getNextRequestedUpdateDateWithHandler(handler:	(NSDate?)	->	Void)	{
				let	sixHours	=	NSDate(timeIntervalSinceNow:	6	*	60	*	60)
				handler(sixHours);
}

Of	course,	you	can’t	always	be	sure	that	the	data	you	currently	have	will	always	be
valid.	There	will	be	occasions	when	your	user	makes	a	change	in	their	app	(either	on	the
watch	or	the	phone)	or	when	a	push	notification	alerts	you	to	the	fact	that	the	data	has
changed.	You	don’t	want	your	user	to	have	an	out-of-date	complication,	so	it’s	vital	that
you	have	a	way	to	tell	ClockKit	that	the	timeline	entries	it	currently	has	may	be	outdated
or	need	to	be	supplemented.

To	do	this,	ClockKit	provides	you	with	a	way	to	contact	the	complications	server	and
ask	it	for	references	to	any	active	complications	your	app	currently	has.	You	can	instruct
the	server	to	either	reload	the	entire	timeline	or	simply	extend	the	current	timeline	for	a
specific	complication	instance.	You	should	be	aware	that	if	a	user	has	configured	multiple
instances	of	your	complication	on	the	current	watch	face,	you’ll	have	multiple
complication	references	to	deal	with.	The	following	example	shows	how	you	could	extend
the	existing	timeline:
Click	here	to	view	code	image

let	server	=	CLKComplicationServer.sharedInstance()
let	complications	=	server.activeComplications
for	complication	in	complications	{
				server.extendTimelineForComplication(complication)
}

In	some	circumstances	you	may	realize	that	your	entire	timeline	has	become	invalid,
and	simply	extending	the	existing	data	will	not	be	enough	to	remove	the	stale	information.
ClockKit	provides	a	separate	method	on	the	complication	server	that	you	can	use	to	force
a	reload	of	the	entire	timeline:	reloadTimelineForComplication(_:).

We	mentioned	earlier	that	if	you	return	nil	from	the
getCurrentTimelineEntryForComplication(_:withHandler:)	method,
ClockKit	would	stop	asking	for	future	data.	You	can	get	yourself	back	on	the	request	list
by	calling	the	reloadTimelineForComplication(_:)	against	the
CLKComplicationServer.

Using	this	method	is	a	somewhat	drastic	measure,	and	it’s	important	that	you	use	it	with
restraint.	If	you	fail	to	do	so,	you	might	soon	find	out	that	your	time	budget	will	be
exhausted.

Budgeting
We’re	all	used	to	budgeting	in	various	aspects	of	our	lives,	but	what	exactly	do	we	mean
by	budgeting	when	it	comes	to	complications?	Simply	put,	your	data	source	gets	only	a
certain	amount	of	time	with	which	to	respond	to	requests	from	timeline	entries.	If
ClockKit	determines	that	you	have	exhausted	your	time	budget,	it	will	stop	asking	you	for
more	entries.

The	purpose	of	budgeting	is	to	encourage	developers	to	respond	promptly	to	timeline
entry	requests.	Prompt	responses	make	the	complication	usage	more	fluid—especially
when	engaging	in	Time	Travel—and	reduce	CPU	usage	and	therefore	power	consumption.
Power	is	a	precious	resource	on	the	Apple	Watch,	and	anything	that	can	reduce
consumption	is	a	good	thing.

Now	that	you	know	what	happens	if	your	complication	data	source	misbehaves,	you’ll
be	on	your	best	behavior,	but	what	happens	if	your	data	source	takes	longer	than	expected
on	a	few	occasions	and	your	time	budget	is	exhausted?	Is	that	it	for	your	complication?

Fortunately	not;	your	budget	is	reset	every	day,	so	even	if	you	have	a	bad	time	one	day
and	run	out	of	budget,	you’ll	still	get	a	chance	to	run	again	tomorrow.	Just	be	careful,
though;	if	it	happens	too	frequently	it	may	be	a	sign	that	your	data	source	is	badly	written
or	that	your	data	is	just	not	suited	to	being	displayed	as	part	of	a	complication.

Of	course,	the	big	question	is	this:	How	much	time	do	you	get	in	your	daily	budget?
Unfortunately,	Apple	is	not	telling,	so	you’ll	just	have	to	be	on	your	very	best	behavior!
Don’t	you	understand	how	Apple	works	by	now?

Wrapping	Up
If	you	feel	exhausted,	you	are	not	alone.	For	something	so	insignificant	and	simple
looking,	complications	can	be	very	complicated.	We	think	it	has	been	worth	it,	though.	A
well-designed	complication	can	display	enough	of	your	app’s	information	to	keep	your
user	informed	about	your	app	without	your	user	having	to	go	in	search	of	it.	You	might
think	it	a	bad	thing,	but	trust	us—your	users	will	thank	you	for	it.

In	the	next	chapter,	we	take	a	look	at	a	more	detailed	way	for	users	to	see	a	summary	of
your	app	information:	glances.

Chapter	8.	Working	with	Glances

If	you	were	to	look	up	the	word	glance	in	the	OS	X	dictionary	application,	you	would	see
that	the	first	definition	(to	“take	a	brief	or	hurried	look”)	is	followed	by	an	example	usage:
“Ginny	glanced	at	her	watch.”	Glances	and	watches	are	inextricably	linked;	the	size	and
position	of	a	wristwatch	makes	it	ideal	to	glance	at	for	quick	information.	It	seems	fitting
then	that	Apple	has	used	the	word	as	the	name	for	this	feature.

What	Is	a	Glance?
Whereas	a	normal	glance	is	a	quick	look	at	anything,	a	glance	in	Apple	Watch	terms	is	a
short	summary	of	information	provided	by	an	app	that	can	be	accessed	quickly	by	swiping
upward	from	the	main	watch	face.	Glances	are	displayed	as	a	horizontal	sequence	of	pages
that	bears	a	resemblance	to	a	basic	UIPageViewController	layout	in	iOS.	Once	the
sequence	is	accessed,	the	user	can	swipe	from	side	to	side	to	switch	between	the	glances
that	they	have	configured	for	display	(Figure	8.1).

FIGURE	8.1	A	sequence	of	three	glances	from	Apple-supplied	apps

The	content	provided	in	a	glance	is	intended	to	be	a	quick	summary	of	your	Watch	app.
It	is	restricted	to	a	single	screen	of	information;	nothing	happens	when	attempting	to
swipe	upward,	swiping	downward	dismisses	the	glances	completely,	and	swiping
sideways	switches	between	glances.	This	limitation	may	provide	something	of	a	challenge
to	modern	developers,	providing	an	experience	that	may	seem	closer	to	the	early	days	of
mobile	web	browsers	and	WML	(Wireless	Markup	Language)	decks	than	to	the	expansive
apps	they	are	used	to	developing	on	iOS.

Not	only	is	screen	real	estate	in	short	supply,	but	so	is	the	level	of	interaction	you	can
offer	to	the	user.	Your	glance	is	not	a	place	to	load	with	buttons	as	a	jumping-off	point	for
different	parts	of	your	app.	Although	you	can	customize	and	even	animate	and	update	the
information	in	your	glance,	it	is	sadly	lacking	in	the	customizability	that	you	might	take
for	granted	elsewhere	in	WatchKit.	You	do	have	one	option	available	to	you,	however—
tapping	anywhere	in	the	glance	will	take	you	straight	to	the	corresponding	Watch	app.

A	glance	seems	similar	in	concept	to	a	notification;	both	are	intended	to	convey	a	small
amount	of	pertinent	information	for	your	app.	However,	the	delivery	of	this	information
has	a	fundamental	difference:	A	notification	is	delivered	to	the	user	as	a	push	model,
whereas	a	glance	is,	in	effect,	a	pull	of	information.

Notifications	can	be	delivered	to	the	Watch	through	local	channels	(such	as	calendar	or
timer	alerts)	or	from	a	remote	source	(such	as	a	push	notification	service).	This	means	that
you	as	a	developer	have	a	degree	of	control	over	when	the	notification	is	displayed.	You
may	be	in	control	of	the	push	notifications	being	sent	to	the	user’s	phone,	or	you	may	have
configured	the	local	notifications.	Regardless	of	how	the	information	is	being	sent	to	the
device,	you	are	in	control	of	the	content	and	the	timing	of	the	delivery.

Glances	are	different	in	that	they	are	completely	user-driven.	You	have	no	say	as	to
when	users	of	your	app	will	raise	their	wrists	and	swipe	upward	to	start	viewing	glances.
As	a	result,	you	cannot	accurately	predict	when	a	glance	will	happen	and	prepare	the
information	to	be	displayed	in	advance.	This	has	an	effect	on	how	you	develop	your
glance;	the	lack	of	foresight	means	you	need	to	produce	your	glance	quickly	so	that	the
user	gets	the	information	when	they	are	ready,	not	when	you	are.

Manufacturing	a	Glance
A	glance	is	a	combination	of	artifacts,	such	as	a	storyboard	scene	to	present	the	UI	and
source	files	to	control	the	data	that	is	presented	to	the	user	in	the	storyboard	scene.	You
need	to	add	these	to	your	project	and	set	them	up	appropriately	for	your	Watch	app	to
properly	furnish	a	glance.	You	can	add	a	glance	to	your	project	in	two	ways:	You	can
either	add	one	while	creating	the	initial	Watch	app	target	or	add	one	to	an	existing	target.

Creating	a	Glance	in	a	New	Project
To	add	a	glance	to	a	project	as	you	are	creating	a	new	project,	you	need	to	ensure	that	the
Include	Glance	Scene	option	has	been	selected	in	the	iOS	App	with	WatchKit	App	target
options	dialog.	You	did	this	in	Chapter	1,	but	you	may	not	have	realized	at	the	time	the
significance	of	selecting	the	option,	so	we’ll	repeat	it	here	to	refresh	your	memory.

1.	Create	a	new	project	by	selecting	File	>	New	>	Project	from	the	Xcode	main	menu.

2.	In	the	project	template	selection	dialog,	navigate	to	the	watchOS	Application
category,	select	the	iOS	App	with	WatchKit	App	template,	and	click	Next.

3.	Name	the	project	GlanceCommander,	and	ensure	that	the	Include	Glance	Scene
option	is	selected	in	the	template	options	(Figure	8.2).

FIGURE	8.2	WatchKit	App	target	options	with	the	Include	Glance	Scene	option
selected

4.	Click	Next.

5.	Choose	a	location	on	disk,	and	click	Create	to	save	your	iOS	app	project,	which
includes	a	WatchKit	app	target	with	a	glance.

This	is	the	easiest	way	to	create	a	glance,	because	the	iOS	App	with	WatchKit	App
project	template	sets	up	everything	for	you.	It’s	definitely	worth	taking	the	time	to	create
the	glance	when	you	create	your	project	if	you	need	a	glance	as	part	of	your	Watch	app.

Adding	a	Glance	to	an	Existing	Project
If	you	have	a	change	in	requirements	and	need	to	add	a	glance	to	an	existing	Watch	app,	it
is	still	possible	to	get	in	on	the	action,	although	with	a	few	more	hoops	to	jump	through.
The	following	walkthrough	assumes	you	have	an	existing	project	that	contains	a	WatchKit
app	target.

1.	Open	your	existing	project	containing	a	WatchKit	App	target.

2.	In	the	Project	Navigator,	select	the	file	group	containing	the	WatchKit	extension.

3.	Select	File	>	New	>	File	from	the	Xcode	main	menu.

4.	In	the	new	file	template	selection	dialog,	choose	watchOS	>	Source	>	WatchKit
Class,	and	click	Next.

5.	Adjust	the	new	file	template	options	so	that	the	file	is	named

GlanceController	and	is	a	subclass	of	WKInterfaceController	(Figure
8.3),	then	click	Next.

FIGURE	8.3	Creating	a	glance	controller	class	by	hand

6.	Choose	a	location	in	which	to	save	the	new	file,	and	ensure	that	the	target	is	set	to
the	WatchKit	extension	(Figure	8.4)

FIGURE	8.4	Select	the	WatchKit	extension	as	the	target	for	your	glance	controller.

7.	Click	Create	to	finish	the	process.

At	this	point	you	have	a	basic	controller	class	that	is	capable	of	supporting	the
glance	scene	that	you	will	create	in	the	Watch	app	storyboard	file.

8.	In	the	Project	Navigator,	expand	the	file	group	containing	the	WatchKit	App,	and
click	the	Interface.storyboard	file	to	open	it	in	Interface	Builder.

9.	Open	the	Object	Library,	and	find	the	Glance	Interface	Controller	option	(Figure
8.5).

FIGURE	8.5	The	glance	interface	controller	in	the	Object	Library

10.	Drag	the	glance	interface	controller	onto	the	storyboard	canvas.

11.	Ensure	that	the	new	glance	scene	is	selected,	open	the	Identity	inspector,	and	enter
GlanceController	as	the	custom	class	(Figure	8.6).

FIGURE	8.6	The	Custom	Class	setting	for	the	glance	scene

Everything	is	ready	from	a	code	perspective,	but	one	aspect	of	the	new	target
template	isn’t	quite	matched	yet;	you	still	need	to	create	a	scheme	so	that	it’s
possible	to	directly	execute	and	test	the	glance.

12.	From	the	Xcode	main	menu,	choose	Product	>	Scheme	>	New	Scheme.

13.	In	the	Target	menu,	choose	the	target	that	corresponds	to	the	WatchKit	app,	and
give	the	scheme	a	name	that	identifies	it	as	relating	to	a	glance	(Figure	8.7).

FIGURE	8.7	Settings	for	creating	a	scheme	capable	of	running	a	glance

We	have	named	our	scheme	“Glance	-	GlanceEpidemic	WatchKit	App”	to	keep	it
consistent	with	the	Apple	naming	conventions,	but	you	are	free	to	choose	something
shorter	if	you	wish.

14.	Click	OK	to	create	the	scheme.

15.	From	the	Xcode	main	menu	choose	the	Product	>	Scheme	>	Edit	Scheme
command.

16.	Select	the	Run	action	in	the	left	panel,	then	select	the	Info	tab,	and	change	the
Watch	Interface	pop-up	menu	from	Main	to	Glance	(Figure	8.8).

FIGURE	8.8	Changing	the	Run	options	to	execute	the	scheme	as	a	glance

17.	Repeat	step	15	for	the	Profile	action,	then	click	Close	to	save	the	changes.

Although	it’s	somewhat	more	complex	to	set	up	glances	this	way,	it	does	have	the
added	advantage	of	giving	you	a	better	understanding	of	how	the	glance	(and	the
components	that	compose	it)	integrate	into	your	project.	It	also	gives	you	the	opportunity
to	slap	a	hipster	statement	like	“artisanally	created”	on	your	app	website.	After	all,	you
just	handcrafted	your	glance.

Developing	the	Glance
Now	that	your	app	contains	a	minimal	glance,	the	next	step	is	to	decide	what	it	should
look	like,	what	to	put	in	it,	and	how	to	keep	it	up	to	date.

Visual	Customization
The	visual	appearance	of	your	glance	is	defined	by	what	you	can	squeeze	into	the	confines
of	the	glance	scene	you	created.	The	scene	is	a	small	rectangle,	just	312	by	390	pixels	for
the	larger	watch	size,	and	272	by	340	pixels	for	the	smaller	watch.	Combined	with	the	lack
of	scrolling,	these	screen	sizes	mean	that	every	pixel	counts,	and	only	the	most	critical
information	can	be	accommodated.

Layout	Options

When	you	first	view	a	new	glance	interface	controller	scene	in
Interface.storyboard,	it	may	contain	either	two	empty	group
(WKInterfaceGroup)	elements	or	a	cornucopia	of	controls	(Figure	8.9).	Although	it
may	be	tempting	to	delete	them	and	give	yourself	a	blank	canvas	to	work	with,	it’s	not	so
easily	done.	It’s	not	possible	to	delete	these	elements,	and	they	cannot	be	resized	or
moved.	This	is	somewhat	limiting,	but	the	empty	groups	can	be	populated	with	other
controls,	allowing	you	to	personalize	your	app.

FIGURE	8.9	The	default	glance	layout	containing	two	group	elements

Additionally,	it	is	possible	to	choose	from	a	collection	of	preset	layouts	that	can	be
selected	independently	for	the	upper	and	lower	portions	of	the	glance.	To	access	the
presets,	select	the	glance	scene	in	Interface	Builder	and	open	the	Attributes	inspector
(Figure	8.10).	You	can	click	the	Upper	and	Lower	groups	to	present	a	set	of	alternative
layouts	that	provide	enough	variety	to	cover	many	app	designs	(Figure	8.11).	When	the
canned	layouts	provided	do	not	suit	your	design,	you	can	customize	them	by	using
included	subgroups.

FIGURE	8.10	The	predefined	Upper	and	Lower	groups	in	the	default	glance	scene

FIGURE	8.11	The	preset	customization	options	for	the	glance	groups

Strict	Controls

A	fundamental	limitation	of	glances	is	that	they	are	restricted	to	a	single	interaction,	in	the
form	of	a	tap.	Tapping	the	glance	launches	the	full	Watch	app,	although	without	any
context;	you	can’t	know	if	the	user	tapped	a	specific	control.

To	reinforce	this	limitation,	Apple	does	not	support	the	use	of	some	controls	in	a	glance
scene.	Adding	any	of	these	restricted	elements	causes	Xcode	to	display	an	error	in	the	Log
Navigator,	and	you’ll	be	unable	to	compile	and	run	your	application	(Figure	8.12).	On	the
list	of	prohibited	controls	are	buttons,	pickers,	movies,	sliders,	and	switches.

FIGURE	8.12	Adding	an	interactive	element	to	a	glance	is	an	illegal	configuration.

Not	so	strictly	controlled	are	maps	and	tables,	though	both	come	with	big	limitations.
Maps	(as	discussed	in	Chapter	4)	are	restricted	to	a	non-interactive	view	of	a	specified
location.	Unlike	the	Apple-supplied	Maps	glance,	you	cannot	pan	or	zoom	a	map	control
in	your	own	glance.	Even	tapping	the	map	will	not	cause	the	map	app	to	open.	Instead,
your	app	will	be	invoked	as	though	you’d	tapped	anywhere	else	in	the	glance.

Similarly,	you	can	take	advantage	of	the	table	row	controller	to	help	you	with
presenting	tabular	data,	but	you	are	restricted	to	showing	static	data	that	will	fit	on	the
limited	amount	of	space	available	to	you.	Any	attempts	by	the	user	to	scroll	the	table	will
result	in	a	tap	being	registered	by	the	glance,	and	the	full	Watch	app	will	launch.

Given	that	you	cannot	use	interactive	controls	to	directly	invoke	part	of	your	glance,
there	is	no	value	in	creating	actions	in	the	glance	controller	to	handle	interactions.	You	can

still	insert	outlets	to	get	programmatic	interaction	with	elements	such	as	labels	and	images
that	cannot	be	manipulated	by	the	user.

The	Glance	Commander

As	a	practical	example	of	glance	user	interface	creation,	you’re	going	to	start	creating	a
small	glance	with	an	express	purpose:	let	a	glance	commander	tell	you	whether	an	activity
should	be	stopped	or	is	safe	to	continue.	If	you’re	not	a	fan	of	the	six-piece	band	Electric
6,	we	apologize	for	this	otherwise	seemingly	foolish	example.

The	glance	commander	UI	is	a	simple	one	containing	the	name	of	the	app	and	two
elements	indicating	the	current	status.	The	active	element	will	appear	larger	and	colored,
whereas	the	inactive	element	will	be	smaller	and	gray.	To	manually	duplicate	this
behavior,	open	the	GlanceCommander	project	that	you	created	in	the	“Creating	a
Glance	in	a	New	Project”	section,	and	follow	these	steps:

1.	Expand	the	GlanceCommander	WatchKit	App	group	in	the	Project	navigator,	and
select	the	Interface.storyboard	file	to	open	the	storyboard.

2.	Select	the	glance	scene	in	Interface	Builder,	and	open	the	Attributes	inspector	to
display	the	Upper	and	Lower	group	templates	(Figure	8.10).

3.	Change	the	Upper	group	to	display	a	small	label	on	top	and	a	larger	label	on	the
bottom.	Leave	the	Lower	group	as	a	plain	group	(Figure	8.13).

FIGURE	8.13	The	Upper	and	Lower	groups	for	the	glance	commander

4.	Double-click	the	first	label	to	change	the	text	from	Label	to	Glance.	Change	the
text	in	the	second	label	from	Label	to	COMMANDER.

5.	Set	the	Min	Scale	value	to	0.6	in	the	Attributes	inspector	to	make	sure	the	label	fits
horizontally	within	the	containing	group.

6.	Open	the	Object	Library,	locate	the	Table	element,	and	drag	it	onto	the	lower	group
in	the	glance	scene	(Figure	8.14).

FIGURE	8.14	Dragging	a	Table	element	to	the	lower	group

7.	In	the	Attributes	inspector,	increase	the	number	of	Prototype	Rows	for	the	table	to
2.

If	the	Table	element	is	not	selected	after	adding	it	in	the	previous	step,	you	may	need
to	use	the	document	outline	to	select	it.	You	can	show	the	document	outline	by
choosing	Editor	>	Show	Document	Outline	from	the	main	Xcode	menu.

8.	Select	the	first	table	row	controller,	and	set	the	Identifier	to
GlanceCommandActive	in	the	Attributes	Inspector.

9.	Select	the	second	table	row	controller,	and	set	the	Identifier	to
GlanceCommandInactive.

To	introduce	some	color	and	enlarge	the	active	row	so	that	it	stands	out	some	more,
you	need	to	make	modifications	to	the	groups	contained	within	the	table	rows.

10.	Select	the	group	in	the	first	table	row	so	that	the	configurable	attributes	are
displayed	in	the	Attributes	inspector	(Figure	8.15).

FIGURE	8.15	Configurable	attributes	for	the	Group	element

11.	Change	the	Height	setting	from	Default	to	Fixed.

12.	In	the	new	field	that	appears,	change	the	value	to	60.

13.	Select	the	group	in	the	second	table	row.

14.	Change	the	Color	setting	to	the	Dark	Gray	Color	preset.

15.	Change	the	Height	setting	from	Default	to	Fixed,	and	this	time	set	the	value	to	40.

We	now	want	to	add	some	controls	to	the	two	table	rows,	as	well	as	perform	some
basic	styling.

16.	In	the	Object	Library,	find	the	Label	element,	and	drag	one	to	the	first	table	row.

17.	Select	the	label	in	the	first	table	row	so	that	the	configurable	attributes	are	displayed
in	the	Attributes	inspector	(Figure	8.16).

FIGURE	8.16	Configurable	attributes	for	the	Label	element

18.	Change	the	Text	field	from	Label	to	Active.

19.	In	the	Font	drop-down	menu,	choose	the	Headline	option.

20.	Change	the	Alignment	control	to	the	Centered	option.

21.	Under	the	Size	section,	set	both	the	Width	and	Height	options	to	Relative	to
Container.

22.	Repeat	steps	16	through	21	to	make	the	changes	for	the	second	table	row	(changing
the	Text	setting	from	Label	to	Inactive),	resulting	in	a	layout	like	that	shown	in
Figure	8.17.

FIGURE	8.17	A	basic	Active/Inactive	configuration

Later,	when	using	the	glance,	we	want	the	ability	to	change	the	label	text	as	well	as	the
color	of	the	groups.	We	also	want	to	be	able	to	specify	the	type	and	order	of	the	table	rows
to	be	displayed,	so	you	need	to	create	some	outlets	to	your	glance	controller,	a	subclass	of
WKInterfaceController.

Working	with	WKInterfaceController
A	glance	that	is	completely	configured	through	a	storyboard	is	useless	to	the	user	of	your
app.	To	be	useful	on	more	than	one	occasion	it’s	important	that	the	glance	is	capable	of
being	updated	with	fresh	data.	As	you	might	expect,	this	requires	a	companion	controller,
and	a	glance	scene	uses	exactly	the	same	type	of	WKInterfaceController	as	a
standard	interface	scene.

Customizing	Your	Commands

When	you	first	open	your	example	glance,	you	don’t	know	yet	what	the	glance
commander	is	going	to	instruct	you	to	do.	You	also	don’t	have	any	meaningful
information	to	show	the	user,	because	you	need	to	populate	the	table	with	inactivate	rows.
To	access	the	table,	we	need	to	have	an	outlet	through	which	you	can	programmatically
control	it.

1.	Select	the	glance	scene	in	Interface	Builder,	and	click	the	Assistant	button	in	the
toolbar,	ensuring	that	the	assistant	editor	is	displaying	the	GlanceController
class.

2.	Control-click	the	table	element	in	the	scene,	and	drag	the	mouse	pointer	across	to
the	GlanceController	class.	Release	the	click	when	the	Insert	Outlet
instruction	appears	where	you	want	the	outlet	to	be	created.

3.	In	the	popover	that	appears,	name	the	outlet	commandTable,	and	click	Connect
(Figure	8.18).

FIGURE	8.18	Create	the	table	outlet	in	the	GlanceController	class.

To	allow	customization	of	the	table	rows,	you	need	to	define	a	class	that	you	can	use
to	connect	to	some	outlets.	Chapter	4	covers	this	in	greater	detail,	so	this	will	be	a
whistle-stop	tour	with	the	express	purpose	of	getting	set	up	for	the	next	section.

4.	Right-click	the	GlanceCommander	WatchKit	Extension	group	in	the	Project
Navigator,	and	select	New	File.

5.	In	the	new	file	template	chooser,	navigate	to	watchOS,	select	Source,	and	select	the
WatchKit	Class	template.	Click	Next	to	continue.

6.	Name	the	class	GlanceCommand,	and	ensure	that	it	is	a	subclass	of	NSObject
and	that	the	language	is	Swift.	Click	Next	to	continue.

7.	Choose	a	location	to	save	the	file,	and	ensure	that	the	target	is	set	to
GlanceCommander	WatchKit	Extension.	Click	Create	to	finish.

8.	Replace	the	contents	of	the	new	file	with	the	following	code:
Click	here	to	view	code	image

import	WatchKit

class	GlanceCommand:	NSObject	{
				@IBOutlet	weak	var	group:	WKInterfaceGroup!
				@IBOutlet	weak	var	label:	WKInterfaceLabel!

				func	activateStop()	{
								updateWithText(“STOP!”,	UIColor.redColor())
				}

				func	deactivateStop()	{
								updateWithText(“STOP!”,	UIColor.darkGrayColor())
				}

				func	activateContinue()	{
								updateWithText(“CONTINUE!”,	UIColor.greenColor())
				}

				func	deactivateContinue()	{
								updateWithText(“CONTINUE!”,	UIColor.darkGrayColor())
				}

				private	func	updateWithText(text:	String,	_	color:	UIColor)	{
								label.setText(text)
								group.setBackgroundColor(color)
				}
}

Now,	let’s	use	the	new	class.

9.	Open	the	Interface.storyboard	file,	and	in	the	document	outline	select	the
GlanceCommandActive	table	row	controller.

10.	Open	the	Identity	inspector,	and	enter	GlanceCommand	as	the	Custom	Class
(Figure	8.19).

FIGURE	8.19	Set	the	Custom	Class	for	a	table	row	controller	to	GlanceCommand.

11.	Open	the	assistant	editor,	and	ensure	that	the	GlanceCommand.swift	file	is
displayed	as	the	counterpart.

12.	In	the	document	outline,	expand	the	GlanceCommandActive	table	row	controller.

13.	Control-click	the	Group	element,	and	drag	the	pointer	over	the	@IBOutlet
definition	for	the	WKInterfaceGroup	(Figure	8.20).

FIGURE	8.20	Connect	the	Group	element	to	the	group	outlet.

14.	Connect	the	Label	element	to	the	WKInterfaceLabel	outlet.

15.	Repeat	steps	9	to	14	for	the	GlanceCommandInactive	table	row	controller.

Controlling	the	Glance

Now	that	you	have	access	to	the	glance	from	your	controller,	you	can	start	to	think	about
how	you	can	manipulate	the	interface	and,	just	as	importantly,	when	you	can	manipulate
the	interface.	Glances	are	intended	to	be	very	quick	interactions,	and	this	needs	to	be
accounted	for	in	their	programming.	Your	priority	will	always	be	to	make	the	user	wait	for
as	little	time	as	possible	to	get	information.	If	your	glance	is	populated	primarily	by	the
app	running	on	your	watch,	the	wait	should	be	quick.	If,	on	the	other	hand,	your	glance
requires	information	from	the	network,	then	a	perceptible	delay	is	possible	due	to	the
nature	of	Bluetooth	communication	with	the	iPhone	(which	the	watch	will	mostly	use	for
network	access).

The	best	approach	is	to	make	the	user	feel	that	things	are	happening	even	when	they	are
not.	Although	you	could	use	a	classic	spinner	to	indicate	progress,	this	is	often	the	kiss	of
death	for	user	attention.	A	better	approach	is	to	present	the	basic	user	interface	as	soon	as
possible,	and	update	it	when	the	required	information	becomes	available.

For	the	example	app,	you	want	to	ensure	that	the	table	will	default	to	displaying	two
inactive	rows	while	you	wait	for	guidance	to	come	from	the	glance	commander.

1.	Create	a	method	named	activateCommands(stop:continue:)	in	the
GlanceController.swift	file	that	does	the	heavy	lifting:

Click	here	to	view	code	image
private	func	activateCommands(stop	stop:	Bool,	kontinue:	Bool)	{
				var	commands	=	[String]()
				commands.append(stop	?	“GlanceCommandActive”	:
“GlanceCommandInactive”)
				commands.append(kontinue	?	“GlanceCommandActive”	:
“GlanceCommandInactive”)

				commandTable.setRowTypes(commands)
				let	command1	=	commandTable.rowControllerAtIndex(0)	as!	GlanceCommand
				let	command2	=	commandTable.rowControllerAtIndex(1)	as!	GlanceCommand
				stop	?	command1.activateStop()	:	command1.deactivateStop()
				kontinue	?	command2.activateContinue()	:	command2.deactivateContinue()
}

	Note

Because	continue	is	a	reserved	word	in	Swift,	we’ve	taken	the	traditional
approach	of	substituting	the	C	for	a	K	(for	example,	class	becomes	klass	and
continue	becomes	kontinue).

2.	Initialize	both	rows	as	inactive	by	adding	the	following	code	to	the
willActivate()	method:

Click	here	to	view	code	image
override	func	willActivate()	{
				super.willActivate()
				activateCommands(stop:	false,	kontinue:	false)

}

Sneaking	a	Glance
You’ve	spent	quite	a	bit	of	time	preparing	the	glance,	but	you	have	yet	to	see	it	in	action.
Running	a	glance	in	the	Watch	simulator	is	not	quite	as	straightforward	as	accessing	the
glances	directly	on	the	hardware.	Although	you	can	swipe	upward	to	view	glances	in	a
running	simulator,	you	won’t	find	your	glance	among	them.	Fortunately,	it’s	possible	to
launch	a	Watch	app	directly	to	a	specific	interface	mode	(Main,	Glance,	or	Notification)
that	can	be	configured	through	the	Scheme	editor.	For	more	information,	refer	to	the
“Manufacturing	a	Glance”	section	earlier	in	this	chapter.	Let’s	run	the	GlanceCommander
example.

1.	Choose	the	Glance	-	GlanceCommander	WatchKit	App	scheme	from	the	scheme
selector	pop-up	menu.

2.	Click	Run,	and	prepare	to	await	your	command.

Although	it’s	nice	to	finally	see	the	glance	in	action,	we	currently	find	ourselves
waiting	for	a	command	that	never	comes	(Figure	8.21).	Remember	that	feeling,
because	that	is	what	you	want	the	users	of	your	glance	to	never	experience.

FIGURE	8.21	Awaiting	instructions	from	the	glance	commander…

To	simulate	an	update,	you’ll	create	an	updateCommands()	method	that
randomly	chooses	a	command	to	be	issued	to	the	user.	To	further	simulate	waiting,
you’ll	use	Grand	Central	Dispatch	(GCD)	to	delay	the	execution	of	this	update	by
one	second.

3.	Add	the	following	code	to	handle	the	updates:
Click	here	to	view	code	image

private	func	updateCommands()	{
				let	delayTime	=	dispatch_time(DISPATCH_TIME_NOW,
								Int64(1	*	Double(NSEC_PER_SEC)))
				dispatch_after(delayTime,	dispatch_get_main_queue())	{
								if	(arc4random_uniform(2)	!=	0)	{
												self.activateCommands(stop:	false,	kontinue:	true)
								}	else	{
												self.activateCommands(stop:	true,	kontinue:	false)
								}
				}
}

4.	Add	the	following	highlighted	code	to	the	willActivate()	method	to	cause	the
update	to	be	triggered:

Click	here	to	view	code	image
override	func	willActivate()	{
				super.willActivate()
				activateCommands(stop:	false,	kontinue:	false)
				updateCommands()

}

5.	Try	it	for	yourself.	Run	the	app,	and	see	if	you	should	stop	or	continue	(Figure
8.22).

FIGURE	8.22	Stop!	or	Continue!

This	is	a	very	simple	example,	but	the	pattern	it	illustrates	can	be	extrapolated	out	to
handle	real-world	data.	Initiating	a	costly	(in	terms	of	time)	task	as	soon	as	the	glance	is
ready,	and	updating	the	UI	when	the	required	data	has	been	received,	is	the	ideal	way	to
ensure	that	your	user	feels	like	something	is	happening	and	that	the	glance	hasn’t	just
silently	failed.

Wrapping	Up
In	this	chapter,	you	learned	how	to	add	a	glance	to	your	WatchKit	app	and	what	you	can,
and	can’t,	do	within	that	glance.	We’ve	also	discussed	the	techniques	that	you	can	apply	to
make	the	user	experience	of	viewing	your	glance	as	pleasant	as	possible.

Next,	we’ll	look	at	notifications,	the	push	operation	to	a	glance’s	pull.	Whereas	a	glance
has	to	request	data	to	be	displayed,	a	notification	is	fed	some	initial	information,	which
adjusts	the	dynamic	of	how	it’s	designed	and	implemented.

Chapter	9.	Working	with	Notifications

The	ability	to	receive	notifications	directly,	and	discreetly,	to	your	wrist	is	a	top	selling
point	of	the	Apple	Watch	for	many	users.	Although	every	notification	that	an	iPhone
receives	can	be	displayed	on	the	watch,	it	requires	a	bit	more	effort	to	make	sure	the
notifications	your	app	users	receive	are	tailored	to	the	new	device	and	its	capabilities.

What	Are	Notifications?
Although	using	apps,	browsing	the	web,	or	scanning	a	Twitter	timeline	are	actions
initiated	and	driven	by	the	users	of	mobile	devices,	notifications	are	how	the	devices,	or
the	sites	and	services	they	subscribe	to,	can	get	your	attention—usually	when	you’re	about
to	settle	down	to	a	productive	writing	session.	The	nature	of	the	relationship	between	the
Apple	Watch	and	the	iPhone	means	that	notifications	follow	something	of	a	two-tier
existence—starting	life	on	the	phone	and	making	their	way	to	the	watch.

iPhone	Notifications
Notifications	on	the	iPhone	are	by	no	means	a	new	experience	to	most	users,	but	there’s	a
good	chance	that	users	are	not	completely	aware	of	where	they	come	from	and	who,	or
what,	creates	them.	They	can	be	broken	down	into	two	general	categories:	remote	and
local.

Remote	Notifications

A	remote	notification	is	one	that	has	been	created	by	an	online	system	and	has	been
pushed	to	a	device.	The	concept	of	push	notifications	to	mobile	devices	was	established	in
the	late	1990s	through	the	use	of	UP.Notify	and	WAP	Push	technologies,	but	the	modern
equivalent	for	iOS	devices	is	the	Apple	Push	Notification	Service	(APNS).

When	an	iPhone	has	network	access	(via	Wi-Fi	or	cellular)	it	establishes	a	long-lived
connection	to	servers	maintained	by	Apple.	While	connected	to	these	servers,	the	APNS
has	a	direct	connection	to	the	iPhone	and	can	send	it	information	such	as	new	mail
notifications	and	iMessages	received.	The	APNS	also	has	a	public	interface	that	trusted
third-party	developers	can	use;	the	developers	can	send	to	the	APNS	carefully	formatted
messages	that	have	been	targeted	for	a	specific	app	on	a	specific	user’s	device.	If	the
message	is	valid,	and	the	sender	is	authorized,	the	APNS	will	deliver	a	notification
directly	to	the	device	if	it	is	currently	connected,	or	dispatch	it	later	if	the	device	is	offline.

Local	Notifications

When	most	people	think	about	iOS	notifications,	they	tend	to	focus	on	remote
notifications	and	overlook	the	obvious:	local	notifications.	If	you	have	ever	created	a
calendar	event	with	an	alert,	or	a	reminder	with	an	alarm,	you	have	received	a	local
notification	on	your	device.	Local	notifications	are	not	limited	to	first-party	apps	created
by	Apple;	third-party	developers	have	access	to	a	local	notification	API	that	they	can	use
to	trigger	timed	or	scheduled	notifications,	or	even	to	provide	an	alert	as	part	of	a
background	job.

It’s	therefore	important	to	consider	locally	originated	notifications	in	the	same	way	as
remote	notifications.	As	far	as	the	user	is	concerned,	notifications	arrive	at	their	phone	in
the	same	way,	and	so	local	notifications	are	dispatched	similarly	to	the	watch	regardless	of
origin.

Watch	Notifications
Apple	Watch	does	not	have	the	ability	to	receive	direct	notifications	from	third-party	apps
by	itself;	any	notifications	you	wish	your	watch	app	to	display	must	originate	from	a
remote	service	via	APNS	or	be	triggered	locally	on	the	user’s	iPhone.	So	how	does	the
notification	get	from	the	phone	to	the	watch?

Getting	a	Notification	to	the	Watch

On	receipt	of	a	notification,	iOS	and	the	target	phone	app	have	a	number	of	decisions	to
make.	Is	the	app	that	the	message	is	intended	for	still	installed	on	the	device?	Does	the
user	have	Do	Not	Disturb	enabled?	Is	the	app	currently	running?	Is	the	app	in	the
foreground	or	the	background?	And	of	course,	iOS	now	has	an	additional	decision:	Does
the	iPhone	have	an	Apple	Watch	paired?	As	a	developer,	you	have	no	say	over	the
decision-making	process,	but	it	certainly	helps	to	be	aware	of	what	is	happening.

When	a	notification	is	received	by	the	iPhone,	iOS	performs	a	number	of	checks:

	If	the	user	is	using	the	phone	at	the	time	and	is	using	the	target	app,	the	app	accepts
and	handles	the	notification	directly.

	If	the	user	is	using	the	phone	at	the	time	and	is	not	using	the	target	app,	the
notification	is	displayed	at	the	top	of	the	screen	in	a	notification	banner.

	If	the	user	is	not	using	the	phone	at	the	time	and	is	also	not	wearing	the	watch,	then
the	notification	is	displayed	on	the	lock	screen	of	the	phone.

	If	the	user	is	not	using	the	phone	at	the	time	and	is	wearing	the	watch,	then	the
wearer	will	feel	a	“tap”	from	the	haptic	feedback	mechanism,	though	the	screen	will
not	light	up.

	Tip

When	it	comes	to	testing	both	local	and	remote	notifications	using	real
devices,	make	sure	to	put	your	phone	to	sleep	or	you	won’t	get	the
notifications	delivered	to	your	watch!

Although	it	may	seem	like	a	miracle	that	a	notification	gets	to	the	watch	at	all,	it	really
happens	quite	often,	so	it’s	time	to	think	about	how	you	want	to	present	your	notifications
to	your	users.

While	the	App	Is	Active

One	annoyance	many	users	had	with	watchOS	1	was	that	notifications	were	an
interruption	even	while	they	were	actively	using	the	app	that	had	received	the	notification.
This	was	a	source	of	frustration	for	developers	as	well;	if	you	had	an	app	with	a	stream	of
information	(like	a	Twitter	client,	a	messaging	service,	or	a	podcast	feed),	your	users
would	be	interrupted	with	a	notification	when	what	you	really	wanted	was	to	simply
update	the	UI	in	response.

Thankfully,	Apple	has	remedied	this	in	watchOS	2,	and	it’s	now	possible	for	your	app
to	respond	directly	to	incoming	notifications	if	it’s	already	active.	To	achieve	this,	you
must	implement	one	or	more	optional	methods	on	the	class	that	implements	the
WKExtensionDelegate	protocol—in	most	templates	this	will	be	the
ExtensionDelegate	class.

The	methods	you	need	to	implement	are	didReceiveRemoteNotification()
or	didReceiveLocalNotification().	They	receive	a	copy	of	the	notification	and
can	pass	the	information	off	to	whichever	part	of	the	app	is	active	at	the	time.

The	Short	Look

If	the	user	is	not	actively	using	the	app	receiving	the	notification,	they	will	feel	a	haptic
“tap”	of	a	notification	arriving,	and	will	commonly	respond	by	raising	the	watch	to	see
what	app	or	service	the	notification	was	for.	At	this	point,	the	watch	will	display	a	simple
view	that	Apple	has	named	a	short	look.

The	short	look	is	an	almost	completely	static	view	that	is	displayed	for	just	a	few
seconds.	It	consists	of	three	interface	elements:	the	app	icon,	a	title	string	for	the
notification,	and	the	app	name	(Figure	9.1).	Your	only	customization	option	here	is	the
title	string.	It’s	defined	in	the	notification	itself,	so	if	your	app	supports	Apple	Watch,	you
should	endeavor	to	make	sure	there	is	enough	information	in	the	title—usually	the	first
two	or	three	words—to	adequately	inform	the	user.

FIGURE	9.1	The	short-look	interface

The	Long	Look

Should	the	user	continue	to	keep	their	watch	raised	while	the	short	look	is	being
displayed,	it	will	be	replaced	with	a	view	named	the	long	look.	So	far,	notifications	have
been	fairly	inflexible	with	regard	to	customization,	but	this	is	where	it	all	changes.	The
long	look	comes	in	two	further	flavors:	static	and	dynamic.

The	static	notification	is	a	single	page	of	information	that	cannot	be	programmatically
updated.	That	is	not	to	say	that	the	notification	does	not	change	at	all—the	message	body
and	the	action	buttons	can	vary	according	to	the	payload	of	the	notification—but	the
customization	must	all	be	carried	out	in	the	static	interface	scene	in	the
Interface.storyboard	file	and	is	baked	into	your	application	at	compile	time.

If	you	want	to	customize	your	static	interface	scene	based	on	the	type	of	notification	to
be	handled,	you	can	take	advantage	of	notification	categories.	Notification	payloads
contain	a	category	field,	and	you	as	a	developer	can	set	this	to	whatever	you	want;	for
example,	you	might	want	to	have	a	calendarInvite	category	for	new	meeting
requests	and	a	calendarAlert	category	to	remind	the	user	to	attend	an	imminent
meeting.	Static	interface	scenes	can	specify	a	category	to	which	they	should	respond,	and
you	can	create	multiple	static	interface	scenes	for	handling	different	notification
categories.

Alternatively,	a	dynamic	notification	can	be	displayed	by	including	a	dynamic	interface
scene	in	your	storyboard;	this	is	an	optional	extra	to	the	static	interface	scene,	and	it	comes
with	a	whole	lot	more	capability.	The	interface	scene	for	a	dynamic	notification	can	be
customized	to	a	much	greater	extent	than	the	static	notification,	and	more	importantly	it
can	be	updated	programmatically	by	implementing	a	subclass	of	the
WKUserNotificationInterfaceController	(described	in	more	detail	later).

As	a	developer,	you	have	only	one	way	that	you	can	force	which	type	of	long-look
notification	to	display	and	that	is	by	implementing	only	the	static	interface	scene.
Otherwise,	it	is	up	to	watchOS	to	determine	the	type	of	long	look	to	display.	The
predetermined	nature	of	the	static	interface	scene	means	that	it	can	be	displayed	in	many
more	situations	than	the	dynamic	interface	scene.	When	battery	life	is	limited,	or	the
network	connection	to	the	paired	iPhone	is	not	functioning	correctly,	the	watch	may	stick
with	the	static	interface	scene	so	that	the	user	experience	is	not	compromised.

Given	the	large	amount	of	customization	that	you	can	perform	to	both	static	and
dynamic	interface	scenes,	how	do	you	add	this	capability	to	Watch	apps?	If	your
development	schedule	is	tight,	you’ll	be	pleased	to	know	that	any	iOS	app	that	runs	on	the
iPhone	is	capable	of	delivering	a	plain	notification	style	to	the	watch.	Although	this	is
perfectly	functional,	it	employs	a	very	standard	template	and	doesn’t	allow	your	app	to
stand	out.	To	really	make	the	notification	your	own,	you	need	to	create	a	notification
interface	scene	in	your	storyboard.

Creating	a	Notification	Scene
As	with	glances,	there	are	two	ways	to	create	a	notification	scene	in	your	own	app:	at
target	creation	time	and	as	a	storyboard	modification.	Unlike	with	glances,	however,	it’s
possible	to	create	more	than	one	notification	scene	per	app,	so	although	you’ll	often	create
a	notification	scene	up	front,	it’s	very	possible	that	you’ll	want	to	create	an	additional
notification	scene	by	hand	at	a	later	stage.

Creating	a	Notification	in	a	New	Project
Adding	a	notification	to	a	new	project	requires	that	you	select	the	Include	Notification
Scene	option	in	the	options	dialog	for	the	iOS	App	with	WatchKit	App	project	template.

1.	Create	a	new	project	by	selecting	File	>	New	>	Project	from	the	Xcode	main	menu.

2.	In	the	project	template	selection	dialog,	navigate	to	the	watchOS	Application
category,	select	the	iOS	App	with	WatchKit	App	template,	and	click	Next.

3.	Give	the	project	a	name,	and	customize	the	template	options	to	ensure	that	the
Include	Notification	Scene	option	is	selected	(Figure	9.2).

FIGURE	9.2	WatchKit	App	target	options	with	the	Include	Notification	Scene	option
selected

We’re	going	to	name	this	project	Heres	Me;	it’s	a	location-	and	status-sharing
project	for	natives	of	Belfast,	Northern	Ireland.

4.	Click	Next	to	proceed	to	the	save	dialog.

5.	Choose	a	location	on	disk,	and	click	Create	to	save	it.

The	result	of	this	process	will	be	two	additional	scenes	in	Interface.storyboard
that	provide	both	static	and	dynamic	notification	capabilities	(Figure	9.3).	You’ll	also	be
the	proud	owner	of	a	Swift	file	named	NotificationController.swift	in	the
Heres	Me	WatchKit	Extension	group,	and	a	file	named
PushNotificationPayload.apns	under	Supporting	Files	in	the	same	group.	We’ll
talk	more	about	this	file	later	when	it	comes	to	testing	notifications.

FIGURE	9.3	Freshly	minted	static	and	dynamic	notification	scenes

Adding	a	Notification	to	an	Existing	Project
Maybe	you	forgot	to	add	a	notification	when	you	first	created	your	Watch	app,	or	maybe
you	just	want	to	add	an	additional	notification	handler.	Adding	notification	handling	is	a
relatively	painless	process,	so	let’s	add	an	additional	notification	type	to	the	scene	you
created	in	the	previous	section:

1.	In	the	Project	Navigator,	expand	the	WatchKit	App	group,	and	click	the
Interface.storyboard	file	to	open	it	in	Interface	Builder.

2.	Open	the	Object	Library,	and	find	the	Notification	Interface	Controller	(Figure	9.4).

FIGURE	9.4	The	Notification	Interface	Controller	in	the	Object	Library

3.	Drag	the	Notification	Interface	Controller	onto	the	storyboard	canvas.

Be	aware	that	the	Notification	Interface	Controller	always	produces	a	static/dynamic
notification	pairing	when	added	to	the	storyboard.

If	you	don’t	want	them	all	and	only	want	an	additional	static	scene,	add	the	pair,	select
the	static	scene,	open	the	Attributes	inspector,	and	deselect	the	Has	Dynamic	Interface
option.

To	add	a	dynamic	scene	to	a	static	scene,	select	the	Has	Dynamic	Interface	option
again.	You	can	even	connect	two	or	more	static	scenes	to	a	single	dynamic	scene	(thus
sharing	code)	by	Control-clicking	the	unpaired	static	scene	and	dragging	to	the	body	of
the	dynamic	scene—a	popup	will	be	displayed	offering	you	the	opportunity	to	create	a
dynamic	notification	relationship	segue.

You	now	have	two	static	notification	scenes	and	a	dynamic	scene	all	ready	to	be	worked
with.	Before	you	can	start	writing	any	code,	you	need	to	determine	what	the	notification
interactions	will	be	and	how	they	can	be	presented	to	the	user.

Designing	Your	Notifications
The	Heres	Me	app	can	receive	two	types	of	notifications:	location	updates	and	status
updates.	The	key	information	for	each	type	varies—location	updates	need	to	display	the
location,	whereas	status	updates	need	to	display	the	status—so	you	need	to	customize	the
notification	layout	accordingly.

Notification	Layout
Understanding	the	layout	of	the	notification	can	help	you	make	the	most	of	the	space
available	to	you.	The	default	static	notification	layout	can	be	seen	in	Figure	9.5.	The
position	of	the	sash	(the	area	containing	the	app	icon	and	the	app	name)	is	fixed,	and	the
action	buttons	(not	shown	while	in	Interface	Builder)	will	move	up	or	down	depending	on
the	size	of	the	content	area	you	create.	The	number	of	buttons	and	their	labels	are
controlled	by	registering	notification	actions	in	your	iOS	app.

FIGURE	9.5	The	static	notification	interface	layout

Notification	actions	are	a	means	by	which	your	iOS	app	can	specify	the	action	buttons
to	display	alongside	a	notification.	The	buttons	can	be	customized	on	a	per-notification

category	basis	if	you	wish,	and	the	same	actions	will	be	passed	down	to	the	watch	if	the
notification	is	not	going	to	be	displayed	on	the	phone.	For	more	information	about
notification	actions,	have	a	look	at	the	Apple	documentation	for	local	and	remote
notification	programming	(bit.ly/bwa-notif-guide).

The	content	area	is	where	the	real	customization	takes	place.	As	with	glances,	there	are
limitations	to	what	can	be	included	in	the	content	area;	once	again,	you	cannot	take
advantage	of	interactive	controls	such	as	sliders,	switches,	and	buttons,	though	you	do	of
course	get	a	set	of	buttons	for	free	if	you	have	registered	notification	actions	in	your	iOS
app.

If	you	are	using	a	static	notification	scene,	you	must	include	a	label	that	is	linked	to	a
notificationAlertLabel	outlet	by	default	(Figure	9.6).	You	are	free	to	delete	the
existing	label	(or	simply	reconfigure	it),	but	your	project	will	fail	to	build	unless	a	label	is
connected	to	the	outlet.

FIGURE	9.6	The	notificationAlertLabel	outlet	is	essential.

	Note

Although	the	dynamic	notification	scene	also	has	the	same
notificationAlertLabel	outlet,	you	won’t	get	in	trouble	if	it	isn’t
hooked	up.

This	label	is	your	only	way	to	display	content	from	the	notification	payload	in	a	static
notification	scene,	because	it	isn’t	possible	to	change	the	underlying	view	controller	for	a
static	scene.	When	the	scene	is	displayed,	the	alert	label	is	updated,	as	are	the	action
buttons,	and	everything	else	remains,	well,	static!

If	you	want	to	be	able	to	customize	and	programmatically	update	the	notification	scene,
you	instead	have	to	rely	on	a	dynamic	notification	scene,	which	we	will	examine	in	a	later
section	of	this	chapter.

Static	Notifications
The	basic	notification	that	your	app	needs	to	deal	with	is	the	status	update	notification.
Although	a	status	update	could	contain	a	lot	of	distinct	information,	which	your	main
Watch	app	should	be	capable	of	handling	at	some	stage,	we’re	going	to	assume	that	the
notification	will	send	a	simple	string	that	contains	both	the	name	of	the	sender	and	its
status.	For	example,	a	user	named	Wez	could	send	a	status	notification	like	this:	“Wez
says:	headin	downa	art	callidge	wimme	glubeg!”

If	your	notification	payload	contains	the	status	message	as	the	body	property,	it	will

replace	the	content	of	the	label	currently	displaying	the	text	“Alert	Label.”	If	you	use	the
default	configuration	for	the	static	scene,	you	will	quickly	be	disappointed	because	the
text	will	be	truncated.	You	would	also	like	the	status	message	to	be	right-aligned,	which	is
the	convention	that	makes	it	look	as	though	it	was	said	by	someone	else:

1.	Select	the	alert	label	on	the	static	notification	scene	that	has	no	dynamic	scene
associated	with	it.

2.	Open	the	Attributes	inspector	to	show	the	normal	attributes	available	for	a
WKInterfaceLabel.

3.	Change	the	Width	attribute	to	Relative	to	Container.

4.	Change	the	Alignment	attribute	to	right-aligned.

5.	Change	the	Lines	attribute	to	0.

It	would	be	useful	to	have	a	clear	indicator	that	this	message	is	something	that	was
said	by	someone	else,	so	you	will	add	a	custom	label	to	the	content	area.

6.	Open	the	Object	Library,	and	find	a	Label	element.

7.	Drag	the	Label	element	over	the	static	scene,	and	make	sure	it	is	located	above	the
alert	label.

8.	Open	the	Attributes	inspector.

9.	Change	the	Text	attribute	to	Yer	mucker	sez:.

10.	Click	the	Font	attribute,	and	change	it	from	Body	to	System	Italic.

11.	Change	the	font	size	to	12.

So	the	user	can	immediately	tell	what	type	of	notification	has	been	received,	you
will	use	different	sash	colors	to	distinguish	the	status	notification	from	a	location
notification.

12.	Select	the	notification	category	for	the	scene	(the	arrow	that	points	into	the	scene
from	the	left	side).

13.	Open	the	Attributes	inspector.

14.	Change	the	Sash	Color	attribute	to	a	hex	value	of	#D00000—you	can	do	this
through	the	RGB	sliders	on	the	standard	color	picker.

15.	Change	the	Name	attribute	to	statusNotification.	You	will	use	this	later	to
customize	your	notification	payload.

You	now	have	a	distinct	style	and	layout	for	your	status	notification	(Figure	9.7),
but	the	other	static	notification	for	location	updates	looks	a	bit	plain	in	comparison.

FIGURE	9.7	The	static	status	update	notification	design

16.	Repeat	steps	1	through	15	for	the	other	static	notification	scene	but	with	the
following	changes:

	For	step	9,	set	the	label	text	to	Yer	muckers	at:.

	For	step	14,	set	the	Sash	Color	attribute	to	#00D000.

	For	step	15,	set	the	Name	attribute	to	locationNotification.

The	location	update	notification	now	has	a	layout	that’s	consistent	with	the	status
notification	(Figure	9.8).

FIGURE	9.8	The	static	location	update	notification	design

Dynamic	Notifications
At	a	bare	minimum,	the	location	update	will	display	a	textual	representation	of	the	user’s
location,	but	ideally	it	would	also	feature	a	map	representation,	where	network	access
permits.	You	could	include	the	map	in	the	static	notification,	but	we	would	like	to	reserve
the	static	notification	for	quick	information	that	doesn’t	require	loading	of	extra	data	(for
example,	map	tiles).

Instead,	you’ll	take	advantage	of	the	dynamic	notification,	which	can	perform	live
processing	of	the	notification	information	to	determine	exactly	what	to	display.	If	the
location	update	contains	a	geolocation	field,	you	can	choose	to	display	a	Map	element	that

can	be	hidden	otherwise.

Start	by	replicating	the	location	update	labels	in	the	dynamic	notification	scene.

1.	Select	the	dynamic	interface	scene	in	the	Interface.storyboard	file.

2.	From	the	Object	Library,	drag	two	Label	elements	to	the	dynamic	scene.

3.	Select	the	first	Label	element,	and	open	the	Attributes	inspector.

4.	Change	the	Text	attribute	to	Yer	muckers	at:.

5.	Click	the	Font	attribute,	and	change	it	from	Body	to	System	Italic.

6.	Change	the	font	size	to	12.

7.	Select	the	second	Label	element.

8.	Change	the	Width	attribute	to	Relative	to	Container.

9.	Change	the	Alignment	attribute	to	right-aligned.

10.	Change	the	Lines	attribute	to	0.

Your	dynamic	notification	now	matches	the	static	location	notification,	but	you	still
need	the	map.

11.	From	the	Object	Library,	drag	a	Map	element	onto	the	dynamic	notification	scene,
ensuring	it’s	located	below	the	two	labels	(Figure	9.9).

FIGURE	9.9	The	dynamic	location	update	notification	design

The	scene	has	been	set,	but	the	dynamic	aspect	of	the	dynamic	notification	needs	to	be
controlled	by	something.	As	you	would	expect,	there’s	a	controller	for	that.

The	WKUserNotificationInterfaceController
Because	you	selected	the	Include	Notification	Scene	option	at	project	creation	time,
Xcode	created	a	file	named	NotificationController.swift	in	the	Heres	Me
WatchKit	Extension	file	group.	It	contains	a	class	named
NotificationController,	which	is	a	subclass	of
WKUserNotificationInterfaceController	(itself	a	specialized	subclass	of
WKInterfaceController).

As	well	as	having	access	to	the	normal	lifecycle	methods	of
WKInterfaceController	(covered	in	detail	in	Chapter	3),	it	also	has	two	extra
callback	methods	that	you	can	use	to	customize	your	dynamic	notification	scene	in
response	to	the	local	or	remote	notification.	The	method
didReceiveRemoteNotification(_:withCompletion:)	will	be	called	when
watchOS	has	received	a	remote	notification	destined	for	your	app,	and	the	method
didReceiveLocalNotification(_:withCompletion:)	can	be	used	in	the
same	way	for	local	notifications.	In	both	cases,	you	should	remember	to	execute	the
supplied	completion	block	to	ensure	that	watchOS	knows	you	have	finished	processing
the	notification.

	Tip

In	the	default	templates,	these	methods	will	be	commented	out	and	will	need
to	be	uncommented	in	order	to	take	effect.	You	can	use	this	as	a	crude	means
of	enabling	support	for	one	or	the	other	of	the	notification	types.

To	achieve	the	best	results,	you	should	perform	any	initial	setup	in	the	init()	method
as	usual,	process	the	notification	in	the	appropriate	callback	method,	and	perform	any
additional	setup	in	the	willActivate()	method.

In	addition,	you	have	two	other	optional	methods	that	can	be	implemented:
suggestionsForResponseToActionWithIdentifier(_:forRemoteNotification:inputLanguage:)
and
suggestionsForResponseToActionWithIdentifier(_:forLocalNotification:inputLanguage:)
These	can	be	implemented	when	handling	notifications	that	require	a	text	response	from
the	user.	This	is	covered	in	the	section	“Text	Responses”	later	in	this	chapter.

For	our	example,	you	need	to	have	access	to	the	lower	Label	element	and	the	Map
element	to	change	their	values	in	response	to	the	notification	payload.	You	can	do	this	by
adding	some	outlets	to	NotificationController	that	are	connected	to	the	UI
elements.

1.	Open	the	Interface.storyboard	file,	and	ensure	that	the	assistant	editor	is
open	and	displaying	the	NotificationController.swift	file.

2.	Control-click	the	lower	Label	element,	and	drag	it	into	the	assistant	editor	to	create
an	outlet	named	alertLabel	(Figure	9.10).

FIGURE	9.10	Creating	an	outlet	for	the	Label	element

3.	Control-click	the	Map	element,	and	drag	it	into	the	assistant	editor	to	create	an
outlet	named	locationMap.

You	now	have	the	ability	to	change	the	UI,	but	you	need	to	extract	payload	data	in
order	to	do	so.

4.	Replace	the	commented-out
didReceiveRemoteNotification(:withCompletion:)	method	with
the	following	code:

Click	here	to	view	code	image
override	func	didReceiveRemoteNotification(remoteNotification:	[NSObject	:
AnyObject],	withCompletion	completionHandler:
((WKUserNotificationInterfaceType)	->	Void))	{
				let	apsDictionary	=	remoteNotification[“aps”]	as!	NSDictionary
				let	alertDictionary	=	apsDictionary[“alert”]	as!	NSDictionary
				let	bodyText	=	alertDictionary[“body”]	as!	String
				let	locationCoord	=	alertDictionary[“locationCoord”]	as!	String
				let	(location,	region)	=
createLocationAndRegionFromCoordinate(locationCoord)

				alertLabel.setText(bodyText)
				locationMap.setRegion(region)
				locationMap.addAnnotation(location,	withPinColor:	.Red)

				completionHandler(.Custom)
}

Most	of	the	method	involves	the	extraction	of	data	from	the	notification,	which	is
received	as	a	dictionary.	You	already	know	that	the	dictionary	contains	a	property
named	aps,	which	references	another	dictionary	and	which	in	turn	contains	a
property,	named	alert,	that	contains	yet	another	dictionary	of	properties.	These
properties	are	parsed	to	extract	the	data	that	is	needed	to	populate	the	label	and	the
map.

5.	Add	a	helper	method	named
createLocationAndRegionFromCoordinate()	to	the	same	file	using	the
following	code:

Click	here	to	view	code	image
func	createLocationAndRegionFromCoordinate(coordinate:	String)
				->	(CLLocationCoordinate2D,	MKCoordinateRegion)	{

				let	coordinateArray	=
								coordinate.characters.split	{	$0	==	“,”	}.map(String.init)
				let	lat	=	(coordinateArray[0]	as	NSString).doubleValue
				let	long	=	(coordinateArray[1]	as	NSString).doubleValue
				let	location	=	CLLocationCoordinate2DMake(lat,	long)

				let	span	=	MKCoordinateSpanMake(0.1,	0.1)
				let	region	=	MKCoordinateRegionMake(location,	span)

				return	(location,	region)
}

Now	you’re	ready	to	test	the	code	and	view	the	notification	you’ve	just	created,	but
how	exactly	do	you	do	that?

Testing	Notifications
Testing	the	notification-handling	capabilities	of	your	app	requires	that	you	have	a
notification	payload	to	send	and	a	means	of	sending	it	to	your	app.	When	testing	with	a
real	device,	it’s	advantageous	to	have	access	to	an	APNS,	but	in	the	early	stages	of
development	you’ll	likely	be	using	a	simulator,	which	is	more	difficult	to	send	pushes	to.
Fortunately,	Xcode	and	the	watchOS	SDK	provide	a	way	to	directly	launch	your	app	in
notification-handling	mode	with	a	specific	payload.

Notification	Payloads
Xcode	helpfully	provided	a	file	named	PushNotificationPayload.apns	when
you	created	your	project;	you	can	find	this	file	in	the	Supporting	Files	subgroup	of	the
WatchKit	Extension	file	group	in	the	Project	Navigator.	This	file	contains	an	example	of
the	data	that	your	app	can	receive	when	it	receives	a	push	notification.

It	takes	the	format	of	a	JSON	dictionary	containing	two	properties	that	will	be
processed	by	the	simulator	when	the	payload	is	received:	aps	and	WatchKit
Simulator	Actions.	The	sample	contains	a	third	property	(customKey)	that	exists
solely	as	a	comment	and	is	not	actively	processed	by	the	simulator.	We	have	reproduced
the	sample	content	that	follows	(without	customKey)	for	ease	of	reference	as	we	discuss
it	further.
Click	here	to	view	code	image

{
				“aps”:	{
								“alert”:	{
												“body”:	“Test	message”,
												“title”:	“Optional	title”
								},
								“category”:	“myCategory”
				},

				“WatchKit	Simulator	Actions”:	[
								{
												“title”:	“First	Button”,
												“identifier”:	“firstButtonAction”
								}
]
}

The	aps	Property

The	aps	property	represents	the	data	that	would	be	received	by	a	real	device	when	a	push
notification	has	been	received.	Associated	with	the	property	is	another	dictionary
containing	two	more	properties:	alert	and	category.

	alert

The	alert	property	contains	yet	another	dictionary	that	is	home	to	the	real
substance	of	the	notification—two	properties	named	body	and	title.	The	use	of
these	properties	depends	on	the	way	the	notification	is	being	displayed:

	Short	look:	The	title	property	is	optional,	but	it	is	worth	including	whenever
you	can	do	so;	if	watchOS	finds	that	property	in	your	payload,	it	will	substitute	it
into	a	short-look	notification.	This	makes	the	difference	between	your	app
displaying	just	the	name	of	your	app	or	instead	displaying	some	useful
information.	Figure	9.11	shows	the	difference	between	short-look	displays	for
notifications	that	do	and	don’t	include	title.	It	also	highlights	the	fact	that	the
title	property	has	limited	space	to	occupy	(and	is	displayed	for	a	short	time),
so	keep	the	title	short	but	meaningful!

FIGURE	9.11	Short-look	notifications	without	title	(left)	and	with	title	(right)

	Static	long	look:	If	you	have	included	a	static	notification	scene	in	your
storyboard,	then	the	body	property	is	the	bare	minimum	that	you	should	include
in	your	test	data.	The	value	associated	with	this	key	is	a	text	string	that	watchOS
will	inject	into	the	notificationAlertLabel	in	the	static	notification
scene.

	Dynamic	long	look:	A	dynamic	notification	scene	does	not	actually	require	either
the	body	or	title	property;	you	write	the	code,	so	you	are	free	to	extract
whatever	data	you	wish	from	the	notification	payload.	However,	we	still
recommend	including	the	properties	because	there	is	no	guarantee	that	your
dynamic	scene	will	be	displayed.	Remember	that	watchOS	can	decide	when	to
show	the	static	and	dynamic	scenes,	and	the	short	look	can	be	displayed	as	well.

	category

When	creating	your	static	notification	scenes	earlier	(in	the	section	“Designing	Your
Notifications”),	you	did	so	with	the	intention	of	having	two	different	notification
types:	status	and	location.	You	were	able	to	do	this	by	updating	the	Name	attribute	in
the	Notification	Category	element	in	the	storyboard	(Figure	9.12).

FIGURE	9.12	Configuring	the	status	update	notification	category

The	category	property	in	the	alert	dictionary	corresponds	directly	to	the	value
entered	in	the	Name	attribute	of	the	Notification	Category	element	in	the	storyboard.
When	a	notification	is	received	by	a	watchOS	app,	it	can	inspect	the	category
property	value	and	direct	the	payload	to	the	static	notification	scene	with	the	same
Name	attribute.

WatchKit	Simulator	Actions

The	aps	property	of	the	payload	file	is	included	to	simulate	the	data	received	as	part	of	a
push	notification,	but	the	WatchKit	Simulator	Actions	property	is	unique	to	the
payload	file	created	by	Xcode,	and	will	not	be	sent	to	a	real	device	from	the	APNS.	The
purpose	of	this	property	is	to	allow	you	to	add	a	collection	of	actions	to	your	device	based
on	the	actions	that	your	parent	iOS	app	would	respond	to.

This	may	seem	confusing—after	all,	we’re	talking	about	the	watch	so	why	are	we
concerned	with	the	iOS	app—but	it	makes	more	sense	when	you	consider	that
notifications	are	part	of	the	larger	ecosystem.	At	the	beginning	of	the	chapter	we	explained
that	notifications	are	first	delivered	to	the	iPhone,	which	makes	the	decision	to	display	or
forward	to	the	watch.	iOS	apps	have	an	API	that	allows	developers	to	register	actions	that
are	associated	with	a	notification	for	display	to	the	user.	For	example,	Apple’s	own	Mail
app	offers	the	user	an	opportunity	to	reply	to	or	archive/delete	an	email	from	the	lock
screen	or	when	a	banner	notification	is	tapped.

The	sample	payload	in	Xcode	includes	the	WatchKit	Simulator	Actions	so
that	the	simulator	can	receive	and	parse	a	collection	of	actions	as	though	they	had	come
from	the	iOS	device.	The	property	value	itself	is	composed	of	an	array,	each	element
of	which	represents	an	action	in	the	form	of	a	dictionary.	Each	action	requires	a	title
property—the	text	displayed	on	the	button—and	an	identifier	property—the	unique
identifier	that	is	passed	to	watchOS	so	that	it	knows	which	button	the	user	actually	tapped.
An	additional,	optional	property	named	destructive	can	be	supplied;	it	takes	a	1	or	a
0	to	indicate	whether	the	button	should	be	displayed	in	a	way	that	indicates	a	destructive
action	(where	1	represents	the	destructive	action).

	Note

watchOS	automatically	adds	a	Dismiss	button	for	you,	so	there	is	no	need	to
create	it	for	yourself.

To	handle	notification	actions,	you	must	implement	a	number	of	optional	methods	on
the	ExtensionDelegate	class—this	is	a	class	that	implements	the
WKExtensionDelegate	protocol	and	is	found	in	the	file	named
ExtensionDelegate.swift	in	the	default	Xcode	project	templates.	The	methods
are	named	handleActionWithIdentifier(_:forRemoteNotification:)
and	handleActionWithIdentifier(_:forLocalNotification:),	and,	as
the	names	suggest,	they	apply	to	remote	and	local	notifications,	respectively.

How	you	handle	the	actions	is	up	to	you	and	your	application	logic,	but	a	suggested
pattern	would	be	to	use	a	switch	statement	using	the	identifier	parameter.	This
parameter	tells	you	which	button	the	user	tapped,	and	you	can	call	for	each	identifier	a
separate	method	that	contains	logic	specific	to	the	type.	The	identifier	parameter	can
be	an	empty	string	in	the	circumstance	where	the	user	didn’t	tap	an	action	button	but
instead	tapped	elsewhere	on	the	notification	to	launch	the	app.	You	also	receive	a	copy	of
the	notification	so	that	you	have	some	context	on	what	the	user	has	responded	to.

An	additional	pair	of	methods	can	be	implemented	if	you	have	allowed	the	user	to	make
a	text	response	to	the	notification.	These	methods	have	the	same	format	as	those	listed
previously,	but	also	include	the	text	response	from	the	user	as	an	additional	parameter.	The
methods	are	named
handleActionWithIdentifier(_:forRemoteNotification:withResponseInfo:)
and
handleActionWithIdentifier(_:forLocalNotification:withResponseInfo:)
You	can	learn	more	about	text	responses	in	the	“Text	Responses”	section	later	in	this
chapter.

Creating	Additional	Payloads

You	have	more	than	one	notification	category	for	your	app,	so	you’ll	need	more	than	one
payload	file	to	test	with.	Rather	than	just	editing	the	existing	file,	you	will	instead	create
two	new	files	and	populate	them	with	test	data—you	can	delete	the	existing	one	if	you
wish.	To	create	a	new	payload	file:

1.	Right-click	the	Supporting	Files	subgroup	within	the	Heres	Me	WatchKit	Extension,
and	select	the	New	File	command	from	the	popup	menu.

2.	In	the	new	file	template	chooser,	choose	iOS	>	Apple	Watch,	select	the	Notification
Simulation	File	option,	and	click	Next	(Figure	9.13).

FIGURE	9.13	The	Notification	Simulation	File	template	in	the	new	file	template
chooser

	Note

The	location	of	the	Notification	Simulation	File	option	in	the	iOS	category
may	be	a	mistake	in	the	current	version,	and	it’s	possible	that	it	may	have
been	moved	by	the	time	you	read	this.	If	so,	you	may	find	it	under	the
watchOS	category	instead.

3.	Choose	a	location	to	save	the	file,	give	it	a	name—we	used
PushNotificationPayload-status.apns—and	click	Next.

You	don’t	need	to	worry	about	including	the	file	in	a	target;	it	isn’t	going	to	be
bundled	with	any	of	the	app	or	test	targets.

4.	Repeat	steps	1	to	3	to	create	a	second	file;	this	time	we	named	it
PushNotificationPayload-location.apns.

5.	Open	the	first	payload	(for	the	status	category),	and	update	it	with	the	following	test
data:

Click	here	to	view	code	image
{
				“aps”:	{

								“alert”:	{
												“body”:	“Headin	downa	snooks”,
												“title”:	“Status	Update”
								},
								“category”:	“statusNotification”
				},
				“WatchKit	Simulator	Actions”:	[
								{
												“title”:	“Reply”,
												“identifier”:	“statusReplyAction”
								}
]
}

You’ve	added	the	status	message	to	the	body	property,	and	set	the	title	property
to	“Status	Update”	so	that	the	type	of	notification	is	clearer	on	a	short	look.	The
category	property	has	been	set	to	statusNotification	so	that	it	matches
the	status	notification	scene.

You	also	added	a	single	action	to	the	Watch	Simulator	Actions	property.
The	Reply	button	is	intended	to	trigger	a	statusReplyAction	so	that	the	user
can	instantly	reply	to	their	friend’s	status	and	attempt	to	top	it.

6.	Repeat	step	5	for	the	second	payload	(for	the	location	category)	with	the
following	test	data:

Click	here	to	view	code	image
{
				“aps”:	{
								“alert”:	{
												“body”:	“Already	downa	Art	Callidge”,
												“title”:	“Location	Update”,
												“locationCoord”:	“54.603264,	-5.929300”
								},
								“category”:	“locationNotification”
				},
				“WatchKit	Simulator	Actions”:	[{
												“title”:	“Post	Location”,
												“identifier”:	“postLocationAction”
								},	{
												“title”:	“Reply”,
												“identifier”:	“locationReplyAction”
								}
]
}

Again	you’ve	added	the	body	and	title	properties,	and	set	the	category	property
to	be	locationNotification	so	that	it	matches	the	location	scene.	You	have
also	added	a	custom	property	named	locationCoord	with	a	value	containing	a
coordinate	that	can	be	extracted	by	the	dynamic	notification.

Notification	Test	Schemes
Now	that	you	know	how	to	get	the	data	into	a	payload	file,	how	do	you	go	about	sending
it	to	the	simulator	for	testing?	Apple	has	solved	this	problem	with	schemes	in	Xcode.
When	you	created	the	project,	the	template	included	a	scheme	named	Notification	-	Heres
Me	WatchKit	App.	Selecting	and	running	the	scheme	will	cause	Xcode	to	start	the
watchOS	simulator,	launch	the	Heres	Me	app	in	a	notification	handling	mode,	and	inject	a
payload	file	to	be	handled.

To	use	the	one	of	the	new	payload	files	you	just	created,	you	need	to	update	the	scheme.

1.	Select	Product	>	Scheme	>	Manage	Schemes	from	the	Xcode	main	menu.

2.	Click	the	scheme	name—Notification	-	Heres	Me	WatchKit	App—and	change	it	to
Status	Notification;	a	bit	of	brevity	never	hurt	nobody.

3.	Ensure	that	the	Status	Notification	scheme	is	highlighted,	and	click	the	Edit	button.

4.	Select	the	Run	action,	click	the	Watch	Interface	popup	menu,	and	select	the	Static
Notification	option,	if	it	is	not	already	selected	(Figure	9.14).

FIGURE	9.14	The	Run	action	for	the	status	notification	scene

5.	Click	the	Notification	Payload	popup	menu,	and	select	the
PushNotificationPayload-status.apns	option.

6.	Click	Close.

7.	Click	Run	to	test	the	status	notification.

The	iOS	and	watchOS	simulators	should	start	up,	and	after	a	little	initialization	time,
the	status	notification	will	be	displayed	(Figure	9.15).	Not	only	is	the	correct	status
message	displayed,	but	your	Reply	button	shows	and	the	correct	static	notification
scene	is	selected	(as	evidenced	by	the	red	sash).

FIGURE	9.15	The	status	notification	running	in	the	watchOS	simulator

It	has	been	quite	the	journey,	but	you	have	finally	tested	your	status	notification.	Of
course	there	is	still	the	location	notification	to	test,	and	an	easy	way	to	do	so	would
be	to	edit	the	Status	Notification	scheme,	changing	the	Notification	Payload	setting
to	select	the	location	payload	instead.	Although	it	would	be	quite	quick	to	do	this,	it
would	become	tedious,	so	instead	you	will	create	a	new	scheme	for	the	location
notification.

8.	Select	Product	>	Scheme	>	New	Scheme	from	the	Xcode	main	menu.

9.	In	the	dialog,	select	the	Heres	Me	WatchKit	App	target,	enter	the	name	Location
Notification,	and	click	OK	(Figure	9.16).

FIGURE	9.16	The	scheme	creation	dialog

10.	Select	Product	>	Scheme	>	Manage	Schemes	from	the	Xcode	main	menu.

11.	Select	the	Location	Notification	scheme,	and	click	Edit.

12.	In	the	Run	action,	click	the	Watch	Interface	popup	menu,	and	select	the	Static
Notification	option.

13.	Click	the	Notification	Payload	popup	menu,	and	select	the
PushNotificationPayload-location.apns	option.

14.	Click	Close.

15.	Click	Run	to	test	the	location	notification.

Again,	the	simulators	should	start	up	and	the	location	notification	should	be
displayed	(Figure	9.17).	The	appropriate	location	information	should	be	displayed,
and	the	green	sash	confirms	that	the	location	scene	is	correctly	displayed.	The	Post
Location	and	Reply	action	buttons	also	show	that	the	WatchKit	Simulator

Actions	data	has	been	successfully	extracted	from	the	payload.

FIGURE	9.17	The	location	notification	running	in	the	watchOS	simulator

There	is	one	thing	missing,	however.	When	you	created	the	location	notification
scene,	you	added	a	dynamic	notification	that	included	a	map.	The	notification
displayed	in	Figure	9.17	doesn’t	contain	a	map,	so	you	are	displaying	only	the	static
notification	right	now.	That	is	because	you	set	the	Watch	Interface	setting	to	Static
Notification;	you	really	wanted	Dynamic	Notification	instead.

16.	Select	Product	>	Scheme	>	Edit	Scheme	from	the	Xcode	main	menu.

17.	In	the	Run	action,	click	the	Watch	Interface	popup	menu,	and	select	the	Dynamic
Notification	option.

18.	Click	Close.

19.	Click	Run	to	test	the	dynamic	notification.

This	time	you	can	see	the	map	view	appear	in	the	notification	(Figure	9.18),
confirming	that	the	dynamic	notification	scene	is	displayed.

FIGURE	9.18	The	dynamic	location	notification

	Note

Unfortunately,	the	watchOS	simulator	is	unable	to	load	the	map	view
correctly	at	the	time	of	this	writing.	Trust	us	that	it	will	work	on	a	physical
device,	and	hopefully	Apple	will	correct	this	soon.

Actioning	Notifications
So	what	happens	when	your	user	actions	a	notification?	Ultimately,	actioning	a
notification	will	end	up	dismissing	it,	but	what	happens	after	the	dismissal	is	determined
by	how,	and	where,	you	tap	the	notification.

Tapping	the	Notification
The	result	of	tapping	a	notification	can	be	roughly	divided	into	three	categories:

	Tapping	the	Dismiss	button.

	Tapping	the	action	buttons.

	Tapping	the	main	notification	area;	this	includes	the	sash	and	any	non–action-button
UI	components.

The	easiest	tap	to	understand	is	that	of	the	Dismiss	button—this	will	very	simply
dismiss	the	notification	with	no	other	action.	Your	app	will	not	be	launched	at	all,	and	you
are	free	to	go	about	your	business.	This	is	the	notification	equivalent	of	saying,	“These
aren’t	the	droids	you’re	looking	for.”

Tapping	the	action	buttons	causes	your	app	to	launch,	and	if	you	have	taken	the	time	to
implement	it,	either	the
handleActionWithIdentifier(_:forRemoteNotification:)	or	the
handleActionWithIdentifier(_:forLocalNotification:)	method	will
be	executed.	Tapping	an	action	button	causes	the	associated	action	identifier	name	to	be
passed	as	a	string	through	the	identifier	parameter.	An	exception	to	this	behavior	is
described	in	the	“Text	Responses”	section.

Tapping	elsewhere	in	the	main	notification	area	and	not	on	a	button	will	also	cause	your
app	to	launch,	and	these	methods,	if	implemented,	will	be	executed.	This	time,	however,
the	identifier	parameter	will	remain	as	an	empty	string.

The	following	code	shows	how	you	might	handle	actioning	a	notification	in	your	Heres
Me	app.	Add	these	methods	to	the	ExtensionDelegate.swift	file:
Click	here	to	view	code	image

func	handleActionWithIdentifier(identifier:	String?,	forRemoteNotification
remoteNotification:	[NSObject	:	AnyObject])	{
				guard	let	identifier	=	identifier	else	{	return	}
				switch	(identifier)	{
								case	“statusReplyAction”:
												handleStatusReplyForNotification(remoteNotification)

								case	“locationReplyAction”:
												handleLocationReplyForNotification(remoteNotification)
								case	“postLocationAction”:
												handlePostLocationForNotification(remoteNotification)
								default:
												handleGeneralTapForNotification(remoteNotification)
				}
}
func	handleStatusReplyForNotification(notification:	[NSObject:AnyObject])	{	}
func	handleLocationReplyForNotification(notification:	[NSObject:AnyObject])	{
}
func	handlePostLocationForNotification(notification:	[NSObject:AnyObject])	{
}
func	handleGeneralTapForNotification(notification:	[NSObject	:	AnyObject])	{
}

	Note

As	of	Xcode	7	beta	6,	tapping	the	main	notification	area	attempts	to	launch
the	app,	but	the
handleActionWithIdentifier(_:remoteNotification:)
method	is	not	executed,	and	the	app	eventually	exits.	We’re	assuming	this	to
be	a	bug	in	the	simulator	right	now.

Text	Responses
With	the	introduction	of	watchOS	2,	interaction	with	notifications	took	on	a	whole	new
dimension.	It	is	now	possible	to	mark	a	specific	action	as	expecting	a	text	response—
doing	so	causes	the	normal	flow	to	be	interrupted,	and	watchOS	will	prompt	the	user	for	a
personal	response.	The	response	can	take	the	form	of	a	dictated	message,	emoji,	or
choosing	from	a	selection	of	predefined	messages.

Your	statusReplyAction	and	locationReplyAction	buttons	are	the	perfect
candidates	for	a	text	response.	You	set	this	up	to	reply	to	a	location	notification	as	follows:

1.	Open	the	file	PushNotificationPayload-location.apns.

2.	Replace	the	existing	WatchKit	Simulator	Actions	property	with	the
following:

Click	here	to	view	code	image
“WatchKit	Simulator	Actions”:	[
				{
								“title”:	“Post	Location”,
								“identifier”:	“postLocationAction”
				},	{
								“title”:	“Reply”,
								“identifier”:	“locationReplyAction”,
								“behavior”:	“textInput”
				}
]

3.	Click	the	Scheme	Selection	popup	menu,	and	choose	the	Location	Notification
scheme.

4.	Click	Run	to	execute	the	scheme.

5.	Click	the	Reply	action	button.

Instead	of	switching	to	the	main	app,	watchOS	instead	displays	the	inline-text
response	screen	(Figure	9.19).

FIGURE	9.19	The	inline-text	response	screen

At	this	point	the	options	available	are	a	bit	sparse—the	dictation	button	is
understandably	disabled	within	the	simulator,	but	there	are	also	no	canned	responses
for	the	user	to	choose	from.	The	reason	for	this	is	simple:	You	haven’t	provided	any
yet!

To	provide	a	canned	response,	you	need	to	implement	the
suggestionsForResponseToActionWithIdentifier(_:forRemoteNotification:inputLanguage:)
method	on	the	NotificationController	class.	You	can	remedy	that	by
presenting	some	very	generic	responses.

6.	Open	the	NotificationController.swift	file,	and	add	the	following
method	to	the	class:

Click	here	to	view	code	image
override	func	suggestionsForResponseToActionWithIdentifier(identifier:
String,	forRemoteNotification	remoteNotification:	[NSObject	:	AnyObject],
inputLanguage:	String)	->	[String]	{
				return	[“Swet”,	“Na	mate!”]
}

7.	Run	the	scheme	again,	and	you	should	see	a	populated	response	like	that	shown	in
Figure	9.20.

FIGURE	9.20	A	more	useful	inline-text	response	screen

Such	generic	responses	are	rarely	going	to	cover	everything	your	users	might	want	to
say,	so	you	can	use	the	parameters	passed	to	the	method	to	make	better	decisions.	Use	the
identifier	to	know	what	type	of	action	the	user	has	taken,	and	the
remoteNotification	parameter	will	give	you	the	context	in	which	the	user	is
replying.	You	could	parse	the	notification	for	keywords,	use	time	and	location	information
for	ideas,	or,	if	you’re	feeling	particularly	adventurous,	you	could	have	your	push	service
pass	a	list	of	potential	responses	down	to	the	user	through	the	notification	payload.

When	the	user	has	picked	or	dictated	a	response,	the	flow	of	control	will	return	to	your
app;	this	time	the	optional	methods
handleActionWithIdentifier(_:forRemoteNotification:withResponseInfo:)
and
handleActionWithIdentifier(_:forLocalNotification:withResponseInfo:)
will	be	called	if	implemented.	The	responseInfo	parameter	will	contain	a	dictionary;
a	key	named	UIUserNotificationActionResponseTypedTextKey	can	be
used	to	access	the	response	as	a	string	of	text.

Local	Notifications
Most	of	what	we’ve	discussed	so	far	has	dealt	primarily	with	remote	notifications.	This	is
understandable	given	that	remote	notifications	are	the	most	commonly	used	type.	Every
app	is	different,	though,	and	you	may	rely	on	the	creation	and	receipt	of	local	notifications
for	your	core	functionality,	whether	that	be	reminders,	timed	events,	or	geolocation
triggers.

Handling	a	local	notification	differs	only	in	the	names	of	the	methods	you	need	to
implement	and	in	the	format	of	the	notification	parameter.	A	remote	notification	handler
will	receive	a	dictionary,	whereas	a	local	notification	receives	a
UILocalNotification	object.

The	local	notification	is	dispatched	to	watchOS	from	the	companion	iOS	app	running
on	the	user’s	iPhone.	A	notification	is	created	and	scheduled	for	fireDate—a	time	in
the	future	when	it	should	fire.	When	the	notification	fires,	it	will	follow	the
aforementioned	rules	for	determining	where	it	should	be	displayed;	if	the	user	is	not	using
his	phone	and	is	wearing	his	watch	(and	it	is	unlocked!),	the	notification	will	be	displayed

on	the	watch.

It	isn’t	possible	to	create	a	local	notification	on	the	watch.	Instead,	you	need	to	use	the
Watch	Connectivity	framework	to	send	a	request	to	the	iOS	app	on	the	iPhone.	Your	iOS
app	should	understand	this	request	and	use	any	data	sent	with	it	to	construct	a	local
notification	and	schedule	it.	The	Watch	Connectivity	framework	was	covered	in	detail	in
Chapter	6.

Wrapping	Up
This	has	been	quite	the	chapter—and	with	good	reason:	Although	your	main	app	and
glances	are	important,	the	primary	entry	point	to	your	app	will	likely	be	notifications.
Apple	has	recognized	this	and	has	given	you	a	tremendous	level	of	control	over	your
users’	experience.	Ensuring	they	get	the	right	level	of	information	at	the	right	time	is
essential	in	a	device	that	is	so	much	about	the	moment.

This	also	ends	the	section	on	the	core	technologies	in	watchOS.	In	the	next	part,	we
show	you	how	to	make	the	most	of	the	platform	by	delving	deeper	into	some	of	the
frameworks	that	let	you	take	input	from	users	and	their	environment,	and	we	give	you
some	guidance	on	working	with	physical	devices.

Part	III:	Making	the	Most	of	the	Platform

Chapter	10.	Communicating	with	the	Outside	World

What	is	it	that	makes	a	smartwatch	“smart”?	When	your	authors	were	but	young	lads	of
fewer	than	10	years,	one	had	a	digital	watch	that,	as	well	as	telling	the	current	time	in	his
chosen	alternate	time	zone,	had	an	alarm	function,	included	a	couple	of	very	basic	games,
and	could	be	used	as	a	calculator—complete	with	a	fiddly,	rubbery	keypad!	Best	of	all—
unless	you	were	a	schoolteacher,	that	is—it	could	be	set	to	play	two	quick	pips	at	the	top
of	every	hour.

At	the	time,	that	author	and	his	peers	thought	that	watch	was	pretty	smart.	(Let’s	be
honest.	We	still	do.)	But	it	was	no	smartwatch.	The	defining	characteristic	of	the	modern
smartwatch	is	its	communication	with	the	outside	world,	particularly	via	the	Internet.

In	this	chapter,	we	examine	how	watchOS	enables	your	watch	apps	to	communicate
with	the	world	outside	the	watch	itself.	There	are	two	aspects	to	this:	making	network
requests	via	the	Internet,	and	communicating	with	the	host	iOS	app	installed	on	the	user’s
iPhone.	By	the	end	of	this	chapter,	your	apps	will	be	merrily	doing	both.

Network	Requests	with	NSURLSession
Apple	introduced	the	NSURLSession	networking	API	with	iOS	7,	updating	the
longstanding,	familiar	NSURLConnection—which	is	deprecated	as	of	iOS	9.	This
being	the	case,	NSURLSession	is	the	API	available	for	use	by	watchOS	apps.

The	Cocoa	URL	loading	system	is	flexible	and	powerful,	but	in	this	chapter	we	cover
only	the	basics	of	making	network	requests	from	Apple	Watch.	For	more	on	all	you	can	do
with	this	family	of	APIs,	check	out	Apple’s	documentation	on	the	URL	loading	system,	at
http://bit.ly/bwa-url.

The	Watch	and	the	Network
Apple	Watch’s	primary	connection	with	the	outside	world	is	via	its	host	iPhone,	connected
over	Bluetooth.	The	phone’s	network	connection,	whether	Wi-Fi	or	cellular,	is	available	to
the	watch	to	make	requests	to	any	server	accessible	over	that	connection.	Additionally,	if
the	watch	is	in	range	of	a	known	Wi-Fi	network,	it	can	connect	directly	without
communicating	via	its	host	phone.	(These	“known	networks”	are	those	that	the	watch’s
host	phone	is	able	to	connect	to	automatically.)

Many	use	cases	require	an	app	to	connect	to	a	server	for	which	you,	as	the	developer	of
both	the	client	and	the	server,	control	the	response	that	is	returned.	Where	that	is	the	case,
there	are	a	couple	of	things	to	think	about	as	you	define	the	communication	between	your
app	and	your	server.

	Reduce	the	information	in	the	response	to	only	that	needed	by	the	watch	app.
Receiving	and	decoding	data	takes	time	and	power,	and	the	less	of	each	you	can	use,
the	better	the	experience	will	be	for	your	users.

	App	Transport	Security,	introduced	with	iOS	9	and	watchOS	2,	requires	that	all
network	requests	be	made	over	HTTPS,	with	servers	supporting	TLS	1.2.	Although

http://bit.ly/bwa-url

it	is	possible	to	exclude	requests	from	the	oversight	of	App	Transport	Security—and
developers	using	third-party	APIs	may	need	to	do	so—you	have	no	excuse	for	not
ensuring	that	your	own	servers	meet	the	requirements	of	the	system.

	As	with	any	network-connected	app,	remember	to	handle	the	case	where	the	server
is	unreachable,	whether	the	watch	and	its	host	phone	are	out	of	range	of	a
connection	or	the	server	itself	is	down.

Making	the	Request
A	great	number	of	moving	parts	are	involved	in	requesting	and	receiving	data	from	a
remote	server,	but	NSURLSession	makes	the	most	common	cases	very	quick	and	easy
for	the	developer.

Requests	are	managed	by	an	NSURLSession	and	its	delegate	and	are	represented	as
tasks.	A	task	is	a	subclass	of	NSURLSessionTask	and	may	be	of	one	of	three	types:

	NSURLSessionDataTask	sends	and	receives	arbitrary	data,	working	with
instances	of	NSData.

	NSURLSessionDownloadTask	saves	its	received	data	to	a	file.

	NSURLSessionUploadTask	provides	the	ability	to	use	a	file	as	the	source	of	its
request	body,	such	as	when	uploading	a	file	or	storage.

Initializing	an	NSURLSession	requires	an	NSURLSessionConfiguration
object,	which	provides	a	great	deal	of	control	over	the	behavior	of	the	session.
Additionally,	for	even	more	control,	it	is	possible	to	provide	a	custom	delegate	to	the
session.	However,	the	simplest	uses	are	satisfied	by	using	the	system	shared	session,
obtained	by	calling	NSURLSession.sharedSession().	This	shared	session	uses
the	system	session	delegate,	which	is	also	available	to	your	app’s	own	NSURLSession
instances.	Some	forms	of	the	various	NSURLSessionTasks	take	completion	handler
blocks;	these	are	the	forms	that	must	be	used	if	not	providing	a	custom	delegate.

To	try	out	the	basic	use	of	NSURLSession,	create	a	simple	app	with	the	following
steps:

1.	Open	Xcode,	and	create	a	new	WatchKit	App	project.	Deselect	the	options	for
Notification,	Glance,	Complication,	Unit	Testing,	and	UI	Testing.	We	named	this
project	Humoji,	for	reasons	that	will	become	clear.

2.	In	the	WatchKit	App’s	Interface.storyboard,	select	the	interface	controller
scene,	and	add	an	image	and	a	picker	as	in	Figure	10.1.

FIGURE	10.1	The	image	and	picker	in	the	storyboard	scene

Here,	the	image	is	configured	to	Center-Top	and	the	picker	to	Center-Bottom.	The
image	has	a	fixed	width	and	height	of	64pt	in	each	dimension.

3.	In	the	WatchKit	Extension	group,	open	InterfaceController.swift	and
replace	its	contents	with	the	following	empty	implementation:

Click	here	to	view	code	image
import	WatchKit
import	Foundation

class	InterfaceController:	WKInterfaceController	{
}

//	MARK:	Emoji	list	loading

extension	InterfaceController	{
}

//	MARK:	Emoji	image	loading

extension	InterfaceController	{to
}

Note	that	this	project	won’t	be	an	example	of	perfectly	architected	software.	We’re
keeping	everything	together	in	one	class	for	ease	of	demonstration	and	using	Swift
extensions	to	break	it	up	into	logical	parts.

4.	Add	the	following	two	@IBOutlets	to	the	main	class	block,	and	connect	them
to	the	interface	objects	in	the	storyboard	scene:

Click	here	to	view	code	image
@IBOutlet	var	image:	WKInterfaceImage!
@IBOutlet	var	picker:	WKInterfacePicker!

Now	you	need	to	add	a	few	more	properties	and	a	couple	of	methods	to	coordinate
the	behavior	of	the	interface	and	the	loading	content.

5.	Add	the	following	properties	to	the	main	class	block	of
InterfaceController:

Click	here	to	view	code	image
private	var	pickerIndex	=	0

private	var	imageLoadTimer:	NSTimer?
private	var	emojiList:	[(String,	String)]	=	[]

private	var	pickerItems:	[WKPickerItem]	=	[]	{
				didSet	{
								picker.setItems(pickerItems)
								picker.focus()
				}
}

You’re	using	Swift’s	didSet	feature	on	the	pickerItems	property	so	that	when
it	is	set	it	will	automatically	update	the	items	on	the	picker	itself.

6.	Add	the	following	@IBAction	method	to	the	class	block,	and	connect	it	to	the
picker	in	the	storyboard	scene:

Click	here	to	view	code	image
@IBAction	func	emojiSelected(value:	Int)	{
				pickerIndex	=	value

				imageLoadTimer?.invalidate()
				imageLoadTimer	=	NSTimer(
								timeInterval:	0.3,
								target:	self,
								selector:	“imageTimerFired:”,
								userInfo:	nil,
								repeats:	false
)
				NSRunLoop.mainRunLoop().addTimer(imageLoadTimer!,	forMode:
NSDefaultRunLoopMode)
}

7.	Add	the	method	that	the	timer	calls:
Click	here	to	view	code	image

func	imageTimerFired(timer:	NSTimer)	{
				timer.invalidate()
				loadImageFromAddress(emojiList[pickerIndex].1)
}

To	keep	this	example	simple,	you’ll	be	triggering	the	download	of	an	image
depending	on	the	value	of	the	picker.	This	timer	makes	sure	that	the	download	isn’t
triggered	for	each	value	as	the	user	scrolls	the	picker;	instead,	it	inhibits	the	action
by	putting	a	0.3-second	delay	on	the	start	of	the	download.

8.	Complete	the	implementation	of	the	main	class	by	adding	the	following	three
methods:

Click	here	to	view	code	image
override	func	awakeWithContext(context:	AnyObject?)	{
				super.awakeWithContext(context)

				if	pickerItems.isEmpty	{
								pickerItems	=	[loadingPickerItem()]
								requestData()
				}
}

private	func	loadingPickerItem()	->	WKPickerItem	{
				let	item	=	WKPickerItem()

				item.title	=	“Loading…”

				return	item
}

private	func	pickerItems(emoji:	[(String,	String)])	->	[WKPickerItem]	{
				return	emoji.map	{	(name,	_)	in
								let	item	=	WKPickerItem()
								item.title	=	name
								return	item
				}
}

At	this	point,	Xcode	will	be	complaining	about	some	unknown	methods.	To	fill	out
the	functionality	here,	you	need	to	complete	the	two	extensions	in
InterfaceController.swift.

The	first	extension	handles	making	a	request	to	the	GitHub	API.	The	endpoint
you’re	using	is	unauthenticated	and	returns	a	JSON	dictionary	of	the	names	and
URLs	of	all	the	emoji	supported	in	GitHub’s	issues	and	comments.

9.	Add	the	following	method	to	the	Emoji	list	loading	extension.

It	handles	the	data	received	from	the	API	request	and	uses	it	to	populate	the	picker
with	the	names	of	the	emoji.

Click	here	to	view	code	image
private	func	processData(data:	NSData?,	error:	NSError?)	{
				guard	let	data	=	data	else	{
								if	let	error	=	error	{
												print(error.description)
								}
								return
				}

				do	{
								if	let	receivedEmojiList	=	try	NSJSONSerialization.
JSONObjectWithData(data,	options:.AllowFragments)	as?	[String:String]	{
												emojiList	=	receivedEmojiList.map	{	name,	address	in	(name,
address)	}
												picker.setItems(pickerItems(emojiList))
								}
				}
				catch	{
								print(“Error	decoding	emoji	list”)
				}
}

The	JSON	is	an	array	of	dictionaries	of	the	form	{“emoji_name”:
“emoji_image_url”},	which	this	method	maps	to	an	array	of	tuples	containing
the	names	and	URLs.

The	other	method	to	add	to	this	extension	is	the	one	that	makes	the	actual	API
request.

10.	Add	the	following	method	to	make	the	API	request:
Click	here	to	view	code	image

private	func	requestData()	{

				let	url	=	NSURL.init(string:	“https://api.github.com/emojis”)!
				let	urlSession	=	NSURLSession.sharedSession()
				let	task	=	urlSession.dataTaskWithURL(url)	{	data,	response,	error	in
								self.processData(data,	error:	error)
				}

				task.resume()
}

This	method	gets	the	shared	NSURLSession	and	then	uses	it	to	create	an
NSURLSessionDataTask.	This	is	the	simplest	use	of	NSURLSession:	The
data	task	asynchronously	performs	an	HTTP	GET	to	the	URL	provided,	then	passes
the	response	to	the	completion	handler	provided.	Note	that	all
NSURLSessionTasks	are	created	in	a	suspended	state	and	must	be	started	with	a
call	to	their	resume()	method.

The	second	extension	to	the	InterfaceController	class	handles	the	loading
and	display	of	the	emoji	images	in	the	WKInterfaceImage	added	earlier	to	the
storyboard	scene.

11.	Add	the	following	method	to	the	Emoji	image	loading	extension:
Click	here	to	view	code	image

private	func	loadImageFromAddress(address:	String?)	{
				guard	let	address	=	address	else	{
								image.setImage(nil)
								return
				}

				let	url	=	NSURL.init(string:	address)!
				let	urlSession	=	NSURLSession.sharedSession()
				let	task	=	urlSession.downloadTaskWithURL(url)	{	tempFileUrl,
response,	error	in
								if	let	tempFileUrl	=	tempFileUrl,
															imageData	=	NSData.init(contentsOfURL:tempFileUrl),
															downloadedImage	=	UIImage.init(data:imageData)	{
												self.image.setImage(downloadedImage)
								}	else	{
												self.image.setImage(nil)
								}
				}

				task.resume()
}

This	method	creates	an	NSURLSessionDownloadTask	used	to	download	the
image	for	the	currently	chosen	emoji.	Although	the	data	task	in	the	code	passes	an
instance	of	NSData	to	its	completion	handler,	a	download	task	provides	the	URL	of
a	temporary	file	in	which	the	download	is	stored.	The	file	is	not	guaranteed	to	be
available	at	the	temporary	URL	when	the	completion	handler	has	finished	executing,
so	you	need	to	make	sure	that	you	have	processed	the	downloaded	file	before	the
handler	returns.	This	will	often	mean	copying	the	file	to	a	more	permanent	location
(your	app’s	Documents,	or	Caches,	directory).	For	simplicity	in	demonstration,	this
implementation	simply	loads	the	downloaded	image	into	memory	and	sets	it	to	the
WKInterfaceImage.

You	can	run	the	app	is	it	now	stands,	but	when	the	emoji	list	loads,	no	image
displays	until	you	have	scrolled	the	picker.

12.	To	load	the	first	image	in	the	list	when	it	becomes	available,	add	the	following	in
the	body	of	the	processData(_:error:)	method:

Click	here	to	view	code	image
do	{
				if	let	receivedEmojiList	=	try	NSJSONSerialization.
JSONObjectWithData(data,	options:.AllowFragments)	as?	[String:String]	{
								emojiList	=	receivedEmojiList.map	{	name,	address	in	(name,
address)	}
								picker.setItems(pickerItems(emojiList))
								loadImageFromAddress(emojiList[0].1)
				}
}
catch	{
				print(“Error	decoding	emoji	list”)
}

Now	you	can	run	the	app	and	explore	all	the	emoji	options	available	to	GitHub	users
(Figure	10.2).	We,	being	cheerful	authors,	are	particularly	fond	of	expressionless.

FIGURE	10.2	Humoji	in	action

Although	any	production	app	would	give	more	attention	to	a	number	of	obvious	areas
than	we	have	in	this	example	(caching	of	the	downloaded	data	and	images,	for	one),	we
really	should	go	into	one	detail	specifically.

Handling	Premature	Deactivation
Because	of	the	nature	of	Apple	Watch	and	watchOS,	it	is	possible—even	likely—that	your
app	will	be	deactivated	at	some	time.	With	the	basic	use	of	the	default	NSURLSession
shown	here,	this	would	mean	that	the	completion	handler	isn’t	called	and	the	received	data
is	never	processed.

One	option	to	handle	this	situation	is	to	use	a	custom	background	NSURLSession	and
treat	the	request	as	a	download,	but	there	is	another	approach	whereby	your	app	can
request	a	little	extra	time	to	complete	the	task	before	it	exits.	NSProcessInfo	provides
the	method	performExpiringActivityWithReason(_:usingBlock:),
which	asks	the	system	to	allow	the	provided	block	to	complete	execution	before

suspending	the	process.	This	block,	as	with	the	completion	handlers	of	the
NSURLSessionTasks	earlier,	is	executed	asynchronously	on	a	concurrent	queue.
Consequently,	a	little	bit	of	work	is	required	to	coordinate	the	execution	of	the	different
blocks.
Return	to	the	example	project,	and	make	the	following	updates:

1.	Add	the	following	property	to	the	main	class	block	of
InterfaceController:

Click	here	to	view	code	image
private	var	emojiListDataTask:	NSURLSessionDataTask?

This	property	will	be	used	to	store	the	task	that	is	in	progress.	Checking	the	state	of
this	task	makes	it	possible	to	avoid	creating	a	repeat	task	for	one	that	is	already	in
progress.

	Note

For	the	purposes	of	this	demonstration,	we	will	be	updating	only	the	behavior
of	the	initial	request	for	the	emoji	list.	The	image	downloads	would	be	better
handled	by	a	background	NSURLSession	working	together	with	a	sensible
approach	to	caching	the	downloaded	images.

2.	Add	the	following	two	methods	to	the	Emoji	list	loading	extension:
Click	here	to	view	code	image

private	func	beginBackgroundTask(semaphore:	dispatch_semaphore_t)	{
				NSProcessInfo.processInfo().performExpiringActivityWithReason
(“emojiListRequest”)	{	expired	in
								if	!expired	{
												let	fifteenSecondsFromNow	=	dispatch_time(DISPATCH_TIME_NOW,
Int64(15	*	NSEC_PER_SEC))
												dispatch_semaphore_wait(semaphore,	fifteenSecondsFromNow)
								}	else	{
												print(“No	more	background	activity	permitted”)
												self.endBackgroundTask(semaphore)
								}
				}
}

private	func	endBackgroundTask(semaphore:	dispatch_semaphore_t)	{
				dispatch_semaphore_signal(semaphore)
}

The	closure	provided	for	execution	simply	blocks	until	a	provided	semaphore	is
signaled.	If	the	signal	is	sent	when	the	data	task	and	its	completion	handler	have
finished,	this	closure	waits	to	return	until	that	task’s	asynchronous	work	is	done.	The
15-second	delta	provided	to	dispatch_semaphore_wait	is	an	effective
timeout	for	the	request.	If	that	period	passes	and	the	process	is	suspended,	then	it
will	be	as	if	the	request	never	happened.

The	closure	passed	to

performExpiringActivityWithReason(_:usingBlock:)	takes	a
Boolean	parameter	named	expired.	This	parameter	is	used	to	indicate	to	the
closure	whether	its	work	can	be	extended	into	the	background.	The	same	closure
may	be	called	a	second	time	if	the	process	is	to	be	suspended,	so	you	should	handle
that	case.	In	this	example,	this	situation	is	handled	by	signaling	the	semaphore.

Now,	you	need	to	make	use	of	this	mechanism.

3.	Make	the	following	updates	to	the	requestData()	method:
Click	here	to	view	code	image

private	func	requestData()	{
				guard	emojiListDataTask?.state	!=	.Running	else	{return}

				let	semaphore	=	dispatch_semaphore_create(0)

				beginBackgroundTask(semaphore)

				let	url	=	NSURL.init(string:	“https://api.github.com/emojis”)!
				let	urlSession	=	NSURLSession.sharedSession()
				emojiListDataTask	=	urlSession.dataTaskWithURL(url)	{	data,	response,
error	in
								self.processData(data,	error:	error)
								self.endBackgroundTask(semaphore)

				}

				emojiListDataTask?.resume()
}

The	initial	guard	clause	in	this	implementation	makes	sure	that	a	request	in	progress	is
allowed	to	carry	on	rather	than	being	duplicated.

Running	the	app	now	will	demonstrate	apparently	unchanged	behavior.	However,	the
request	to	the	GitHub	API	is	now	much	more	robust	in	the	face	of	process	suspension.

The	most	complicated	aspect	of	this	approach	to	sustaining	an	NSURLSessionTask
is	the	coordination	of	the	two	asynchronously	executed	blocks	of	code.	However,	in	this
case	where	there	are	only	two	blocks	to	be	coordinated,	semaphores	provide	a
straightforward	and	simple	way	to	manage	the	problem.

NSURLSession	has	many	capabilities	beyond	those	demonstrated	in	this	simple	app,
ranging	from	highly	configurable	handling	of	authentication	challenges	and	encrypted
connections	to	making	download	requests	in	the	background	and	pausing	and	resuming
downloads.	It’s	an	API	that	is	definitely	worth	getting	to	know	well.

Talking	to	the	Phone	with	WatchConnectivity
With	watchOS	2	and	iOS	9,	Apple	introduced	a	new	way	for	the	WatchKit	extension
running	on	an	Apple	Watch	to	communicate	with	its	companion	app	on	the	watch’s	host
iPhone:	the	WatchConnectivity	framework.	(Although	the	communication	is	with	the
WatchKit	extension	running	on	the	Apple	Watch,	for	brevity	we	will	mostly	refer	to	it	as
the	app.)

	Note

In	order	to	use	WatchConnectivity,	the	framework	must	be	available	to	both
the	WatchKit	extension	and	the	iOS	app.	This	means	that	it	is	only	possible	if
the	watch	is	running	at	least	watchOS	version	2	and	the	host	iPhone	is
running	at	least	iOS	version	9.

It	is	pleasingly	straightforward	to	use	WatchConnectivity	for	inter-device
communication.	The	process	relies	on	both	the	WatchKit	extension	and	the	iOS	app	each
maintaining	a	WCSession	and	providing	it	with	a	delegate	(conforming	to	the
WCSessionDelegate	protocol).	Because	each	app	sends	data	via	the	WCSession,	its
counterpart	receives	that	data	and	acts	on	it	via	calls	to	its	session	delegate.

	Note

All	calls	to	methods	specified	in	the	WCSessionDelegate	protocol	are
guaranteed	to	be	made	on	a	background	queue.	Remember	to	make	sure	that
any	code	called	in	response	to	a	received	transfer	is	executed	on	the	correct
queue	(for	example,	if	UI	updates	are	necessary	or	if	a	Core	Data	model	will
be	involved).

Communication	using	WatchConnectivity	can	take	place	when	one	or	both	apps	are	in
the	background	on	their	respective	devices,	or	can	also	be	run	in	real	time	using	the
message-sending	methods.	The	key	characteristics	of	the	two	types	are	as	follows:

	Background	transfer	is	for	cases	where	the	information	isn’t	needed	immediately	by
the	counterpart	app.	With	a	little	care,	this	can	cover	most	cases	for	data	transfer
between	devices.

	Background	transfers	are	handled	by	the	OS,	which	means	that	once	the	call	to	the
WCSession	has	been	made,	the	sending	app	can	be	safely	backgrounded	or
terminated	and	the	transfer	will	still	take	place.

	Background	transfers	are	handled	by	the	OS,	so	the	system	optimizes	the	sending	of
data	by	considering	device	battery	levels,	current	device	load	and	user	activity,	and
the	use	pattern	of	the	app.

	When	background	transfers	are	made	to	a	receiving	app	that	is	inactive,	they	are
queued	and	the	receiving	delegate	methods	are	called	when	the	app	is	launched	and
its	WCSession	is	activated.	(On	the	host	iPhone	side,	this	doesn’t	necessarily	mean
the	app	is	in	the	foreground.)

	Live	message	sending	can	take	place	when	the	app	on	the	watch	is	running	in	the
foreground.	If	a	message	is	sent	to	the	iPhone	app	and	it	is	not	running,	it	will	be
launched	in	the	background	to	receive	the	message.

	Both	types	of	communication	allow	for	the	transmission	of	dictionaries,	which
makes	it	trivial	to	send	any	property	list–compatible	type.	Because	this	includes
NSData,	it	is	possible	to	send	anything	you	can	encode	as	such.	Additionally,	the
background	transfer	type	has	methods	that	allow	for	the	convenient	sending	of	files
referenced	by	local	file	URLs,	and	the	live	messaging	methods	can	take	NSData
instances	without	wrapping	them	in	dictionaries.

Background	Transfer
Three	types	of	background	transfer	are	available:	Application	context	updates	are	useful
for	synchronizing	application	state;	user	info	transfer	permits	the	transmission	of
dictionaries	of	arbitrary	data;	and	file	transfer	simplifies	sending	files.

Application	context	updates

An	application	context	update	is	sent	with	updateApplicationContext(_:)
method	of	WCSession	and	triggers	a	call	to	the	receiving	WCSessionDelegate’s
session(_:didReceiveApplicationContext:)	method.	The	context	to	send
is	a	dictionary	of	the	form	[String	:	AnyObject].

The	WCSession	has	two	properties	related	to	the	application	context:
applicationContext	is	the	last	context	dictionary	sent	to	the	app’s	counterpart,	and
receivedApplicationContext	is	the	last	context	dictionary	received	from	the
app’s	counterpart.	If	a	context	update	is	called	while	a	previous	update	is	queued	to	send,
then	the	most	recent	call	replaces	the	previous	one.	In	this	way,	the	application	context	is
best	used	as	some	state	that	can	be	updated.

User	info	transfer

Similarly	to	the	application	context,	user	info	transfer	allows	your	apps	to	send
dictionaries	of	arbitrary	data	to	their	counterparts.	Unlike	with	the	application	context
method,	successive	transfers	are	queued	for	delivery	in	order	when	the	receiving	app	is
launched.

User	info	dictionaries	are	sent	via	the	WCSession	using	its
transferUserInfo(_:)	method.	On	delivery,	the	WCSessionDelegate	method
session(_:didReceiveUserInfo:)	is	called.

A	call	to	transferUserInfo(_:)	returns	an	instance	of
WCSessionUserInfoTransfer	that	can	be	used	to	monitor	the	status	of	the	transfer
and	cancel	it	if	necessary.	Additionally,	when	a	transfer	finishes	(either	successfully	or	in
failure),	the	sending	app’s	session	delegate	will	receive	a	call	to
session(_:didFinishUserInfoTransfer:error:).

File	transfer

Although	it	would	be	perfectly	possible	to	transfer	files	between	devices	by	reading	them
into	memory	and	storing	them	as	NSData	in	a	transmitted	user	info	dictionary,
WCSession	provides	a	method	to	directly	send	a	file	referenced	by	URL:
transferFile(_:metadata:).

File	transfers	are	queued	in	a	manner	similar	to	user	info	transfers,	with	the	difference
that	in	the	case	of	files,	the	order	of	delivery	is	not	guaranteed.

When	creating	a	file	transfer,	the	metadata	parameter	accepts	an	optional	dictionary
to	deliver	alongside	the	file,	and	the	method	returns	a	WCSessionFileTransfer
object	that	can	be	used	to	monitor	and,	if	necessary,	cancel	the	transfer.	When	the	file	has
been	transferred,	the	sending	app’s	session	delegate	will	receive	a	call	to	its
session(_:didFinishFileTransfer:error)	method	and	the	receiving	app’s
delegate	will	be	informed	with	a	call	to	session(_:didReceiveFile:).

When	the	receiving	delegate	method	is	called,	the	URL	it	receives	(contained,	along
with	any	metadata	dictionary,	in	a	WCSessionFile	instance)	refers	to	a	temporary	copy
of	the	received	file,	which	will	be	deleted	when	the	delegate	method	returns.	As	a
consequence,	the	file	must	be	read	or	moved	to	more	permanent	storage	before	the	method
exits	and	the	URL	becomes	invalid.	(This	behavior	is	very	similar	to	that	of	the
completion	handler	on	an	NSURLSessionDownloadTask,	as	discussed	earlier	in	this
chapter.)

As	with	the	other	background	transfer	methods,	queued	file	transfers	are	handled	by	the
system	with	sympathy	to	current	system	state	and	activity.	Larger	files	will,	of	course,	take
longer	to	transfer	and	expend	more	energy	doing	so.

Live	Message	Transmission
Although	background	transfers	are	queued	and	delivered	at	the	system’s	discretion,	it	is
also	possible	to	use	the	WatchConnectivity	session	to	send	messages	for	immediate
delivery.	In	order	to	do	so,	the	recipient	device	must	be	available	to	receive	the	message.
This	is	determined	with	WCSession’s	reachable	property,	which	will	be	true	if	the
paired	device	is	able	to	receive	a	message,	and	false	otherwise.

Reachability	depends	on	two	factors:

	For	the	app	on	the	phone	to	be	reachable	from	the	watch,	the	phone	and	the	watch
need	to	be	connected.	If	the	companion	app	on	the	phone	is	not	running,	it	will	be
launched	in	the	background	to	receive	the	incoming	message.

	For	the	watch	app	to	receive	a	message	from	the	app	running	on	the	iPhone,	not	only
must	the	devices	currently	be	connected	and	in	range,	but	the	watch	app	must	be
running	in	the	foreground.	(Unlike	iOS	apps,	WatchKit	extensions	do	not	have	a
background	execution	state.)

Attempting	to	send	a	message	for	delivery	to	a	companion	app	that	is	not	reachable	will
result	in	an	error,	with	a	call	to	any	error	handler	provided	to	the	message-sending	method.
It	is,	of	course,	also	possible	for	a	counterpart	that	was	reachable	to	become	unreachable

while	a	message	is	being	sent,	which	will	result	in	the	same	call	to	the	error	handler.

When	multiple	messages	are	sent	in	sequence,	they	are	delivered	in	the	order	that	they
are	sent.

Two	methods	on	WCSession	may	be	used	to	send	messages.	The	first	method,
sendMessage(_:replyHandler:errorHandler:),	takes	a	dictionary	to	send,
and	the	other,	sendMessageData(_:replyHandler:errorHandler:),	takes
an	instance	of	NSData	to	send	to	the	counterpart	app.	The	replyHandler	and
errorHandler	parameters	are	optional,	and	if	handlers	are	provided,	they	are	used	as
follows:

	The	reply	handler	is	a	block	with	a	signature	of	either	([String	:
AnyObject])	->	Void	or	(NSData)	->	Void	that	is	called	if	the	receiving
app’s	WatchConnectivity	session	delegate	sends	a	reply—in	the	form	of	the
dictionary	passed	to	this	handler.

	The	error	handler	is	a	block	of	the	form	(NSError)	->	Void,	called	if	an	error
occurs	when	sending	the	message.

Receipt	of	a	message	will	result	in	a	call	to	one	of	four	methods	on	the
WCSessionDelegate:

	If	the	message	was	in	the	form	of	a	dictionary,	the	possible	methods	are
session(_:didReceiveMessage:)	and
session(_:didReceiveMessage:replyHandler:).

	If	the	message	was	an	NSData	object,	then	the	methods	are
session(_:didReceiveMessageData:)	and
session(_:didReceiveMessageData:replyHandler:).

In	each	case,	the	shorter	form	is	used	when	the	sender	did	not	provide	a	reply	handler,
and	the	longer	form	is	called	when	a	reply	handler	was	provided.	The	reply	handler	will
accept	either	a	dictionary	or	an	instance	of	NSData	according	to	the	form	of	the	message
that	was	received,	and	the	delegate	method	must	call	the	reply	handler	if	one	is	provided.

Preparing	the	iPhone	app

In	order	to	try	out	WatchConnectivity-based	messaging	between	devices,	you	will	return
to	the	Humoji	project	from	earlier	in	this	chapter	and	build	a	basic	companion	iPhone	app.

1.	From	the	iPhone	app’s	group	in	the	Project	Navigator,	open	Main.storyboard
(Figure	10.3).

FIGURE	10.3	The	storyboard	file

The	storyboard	will	contain	one	blank	scene,	corresponding	to	the
ViewController	class	created	from	the	project	template.

2.	Add	an	image	view	to	this	blank	scene	by	dragging	an	image	view	from	the	Object
Library.

3.	Select	the	image	view	and	apply	layout	constraints	to	center	it	in	its	containing
view.	Do	this	by	clicking	the	Align	button	at	the	bottom	of	the	canvas	pane	and
selecting	both	Horizontally	in	Container	and	Vertically	in	Container.	Then	click	the
Add	2	Constraints	button	(Figure	10.4).

FIGURE	10.4	Setting	alignment	constraints

4.	Again,	select	the	image	view.	To	apply	constraints	to	give	it	a	fixed	width	and
height,	click	the	Pin	button	(next	to	the	Align	button).	Select	the	options	for	Width
and	Height	and	set	the	value	for	each	to	64.	Click	the	Add	2	Constraints	button
(Figure	10.5).

FIGURE	10.5	Setting	size	constraints

Selecting	the	image	view	will	cause	its	constraints	to	show,	and	the	scene	should
appear	as	in	Figure	10.6.

FIGURE	10.6	The	completed	scene

5.	Open	ViewController.swift,	and	replace	the	contents	with	the	following:
Click	here	to	view	code	image

import	UIKit

class	ViewController:	UIViewController	{
				@IBOutlet	weak	var	imageView:	UIImageView!
}

6.	Connect	the	image	view	in	the	storyboard	scene	to	the	@IBOutlet	in
ViewController.

Receiving	WatchConnectivity	messages

We	now	have	a	very	simple	iPhone	app	that	displays	an	image.	The	phone	app	will	receive
the	image	in	a	WatchConnectivity	message	from	the	watch.

	Note

Although	the	two	apps	will	be	using	different	methods	of	the
WatchConnectivity	delegate,	in	this	simple	example	we’ll	keep	them	together
in	one	class	that	is	present	in	both	apps.

1.	Create	a	new	group	at	the	top	level	of	the	project,	and	name	it	Inter-Device
Communication.	Create	a	new	Swift	file	in	this	group,	and	name	it
CommunicationManager.swift.

2.	Replace	the	contents	of	CommunicationManager.swift	with	the	following:
Click	here	to	view	code	image

import	Foundation
import	WatchConnectivity

class	CommunicationManager	:	NSObject	{
				static	let	sharedInstance	=	CommunicationManager()
				private	override	init()	{
								super.init()
				}
}

This	class	will	act	as	the	delegate	to	the	app’s	WCSession—and	because	there	can
be	only	one	instance	of	WCSession,	this	implementation	ensures	that	you	will
always	know	where	to	find	its	delegate.

3.	Add	the	following	property	to	CommunicationManager:
var	session:	WCSession?

4.	Add	the	following	extension	to	the	file:
Click	here	to	view	code	image

extension	CommunicationManager	:	WCSessionDelegate	{
				private	func	setupSession()	{
								if	(WCSession.isSupported())	{
												session	=	WCSession.defaultSession()
												if	let	session	=	session	{
																session.delegate	=	self
																session.activateSession()
												}
								}	else	{
												print(“WCSession	unsupported”)
								}
				}
}

5.	Add	the	following	to	the	class’s	initializer:
private	override	init()	{
				super.init()
				setupSession()
}

6.	Make	sure	that	CommunicationManager.swift	belongs	to	both	the	iPhone
app’s	target	and	to	the	WatchKit	Extension	target	by	selecting	the	file	in	the	Project
Navigator	and	ensuring	that	the	File	inspector	matches	Figure	10.7.

FIGURE	10.7	Target	membership	for	CommunicationManager.swift

7.	Return	to	ViewController.swift,	and	add	the	following	property	to	the
ViewController	class:

Click	here	to	view	code	image
internal	var	communicationManager:	CommunicationManager?

8.	In	AppDelegate.swift,	add	the	following	to	the	implementation	of
application(_:didFinishLaunchingWithOptions:):

Click	here	to	view	code	image
if	let	rootViewController	=	window?.rootViewController	as?	ViewController
{
				rootViewController.communicationManager	=	CommunicationManager.
sharedInstance
}

9.	Returning	to	CommunicationManager.swift,	add	the	following	property	to
the	class	block:

Click	here	to	view	code	image
var	onReceivedMessageData:	(NSData	->	Void)?

10.	Add	the	following	method	to	the	extension:
Click	here	to	view	code	image

func	session(session:	WCSession,	didReceiveMessageData	messageData:
NSData)	{
				onReceivedMessageData?(messageData)
}

11.	In	ViewController.swift,	add	the	following	didSet	block	to	the
communicationManager	property:

Click	here	to	view	code	image
internal	var	communicationManager:	CommunicationManager?	{
				didSet	{
								communicationManager?.onReceivedMessageData	=	{	data	in
												self.dataReceived(data)
								}
				}
}

12.	To	complete	the	work	in	the	phone	app,	add	the	following	method	to
ViewController.swift:

Click	here	to	view	code	image
private	func	dataReceived(data:	NSData)	{
				dispatch_async(dispatch_get_main_queue())	{
								if	let	image	=	UIImage(data:	data)	{
												self.imageView.image	=	image

								}
				}
}

Sending	WatchConnectivity	messages

With	the	phone	app	complete	(we	did	say	it	was	basic),	you	need	to	make	a	few	changes
to	the	watch	app	to	send	the	image	data	when	an	emoji	is	selected.

1.	In	the	WatchKit	Extension	group	in	the	Project	Navigator,	open
ExtensionDelegate.swift	and	add	the	following	property:

Click	here	to	view	code	image
var	communicationManager:	CommunicationManager?

2.	Instantiate	the	CommunicationManager	by	adding	the	following	line	to	the
extension	delegate’s	applicationDidFinishLaunching()	method:

Click	here	to	view	code	image
func	applicationDidFinishLaunching()	{
				communicationManager	=	CommunicationManager.sharedInstance
}

3.	Once	again,	open	CommunicationManager.swift	and	add	the	following
method	to	the	class	block:

Click	here	to	view	code	image
func	sendMessageData(data:	NSData)	{
				if	let	session	=	session	where	session.reachable	{
								session.sendMessageData(data,	replyHandler:	nil,	errorHandler:
nil)
				}
}

4.	Add	the	following	property	to	InterfaceController.swift:
Click	here	to	view	code	image

private	var	communicationManager:	CommunicationManager?

5.	Still	in	InterfaceController.swift,	add	the	following	to
awakeWithContext(_:):

Click	here	to	view	code	image
if	let	extensionDelegate	=	WKExtension.sharedExtension().delegate	as?
ExtensionDelegate	{
				communicationManager	=	extensionDelegate.communicationManager
}

6.	Finally,	in	InterfaceController’s	Emoji	image	loading	extension,
update	loadImageFromAddress(_:)	as	follows:

Click	here	to	view	code	image
private	func	loadImageFromAddress(address:	String?)	{
				guard	let	address	=	address	else	{
								image.setImage(nil)
								return
				}

				let	url	=	NSURL.init(string:	address)!

				let	urlSession	=	NSURLSession.sharedSession()
				let	task	=	urlSession.downloadTaskWithURL(url)	{	tempFileUrl,
response,	error	in
								if	let	tempFileUrl	=	tempFileUrl,
															imageData	=	NSData.init(contentsOfURL:tempFileUrl),
															downloadedImage	=	UIImage.init(data:imageData)	{
												self.image.setImage(downloadedImage)
												self.communicationManager?.sendMessageData(imageData)
								}	else	{
												self.image.setImage(nil)
								}
				}

				task.resume()
}

Run	the	apps,	making	sure	that	both	the	phone	app	and	the	watch	app	are	active.	When
an	emoji	image	is	loaded	in	the	watch	app,	you	will	see	the	same	image	appear	in	the
phone	app.	Feels	good,	doesn’t	it?

This	is	the	simplest	demonstration	of	WatchConnectivity’s	power.	When	the	watch
app’s	interface	controller	downloads	and	displays	an	image,	it	then	uses	the
CommunicationManager	to	access	the	app’s	WCSession	and	send	a	message	with
the	NSData-encoded	image	as	the	payload.	On	receipt	in	the	counterpart	app,	the
CommunicationManager,	acting	as	the	WCSession’s	delegate,	calls	its
onReceivedMessageData	block.	The	called	code	displays	the	image	on	the	phone.

Making	the	Most	of	Inter-Device	Communication
If	you	have	an	app	in	which	data	received	from	a	server	needs	to	be	shared	between	the
Watch	app	and	its	iPhone	companion	app,	there	are	a	couple	of	possible	approaches	to
making	sure	both	devices	have	all	the	data	they	need.

Often	the	simplest	way	is	for	both	devices	to	download	their	own	copy	of	the
information	from	the	server	and	use	WatchConnectivity	to	synchronize	their	state.	When
user-generated	data	is	not	available	from	the	server,	then	it	will,	of	course,	need	to	be
transferred	directly	between	the	devices.	Another	case	may	be	that	there	is	substantial
expensive	(in	time	or	power)	processing	that	needs	to	be	performed	on	received	data;	in
this	circumstance,	the	most	effective	technique	might	be	to	download	the	data	to	the
phone,	process	it,	and	then	transfer	it	to	the	watch.

Perhaps	most	likely,	a	combination	of	these	techniques	could	work	best	for	your	app—it
all	depends	on	what	you	need	to	achieve.

Continuing	User	Activity	with	Handoff
An	Apple	Watch	app	can	communicate	with	its	counterpart	on	the	iPhone	using	Handoff,
but	it	is	quite	different	from	WatchConnectivity	in	intent	and	in	how	it	is	put	to	use.
Handoff	is	a	part	of	the	Continuity	feature	set	introduced	in	iOS	8.0	and	OS	X	10.10	and
has	been	available	in	watchOS	since	the	Apple	Watch	was	introduced.

Handoff	allows	the	user	to	begin	a	task	in	a	watch	app	and	then	seamlessly	continue	that
task	from	an	iPhone,	as	long	as	the	devices	are	connected.	For	example,	if	you	were	to
launch	the	Maps	app	on	your	Apple	Watch	and	browse	to	find	a	location,	then	look	to	the

lock	screen	on	your	iPhone,	you	would	see	a	Handoff	icon	in	the	lower-left	corner	(Figure
10.8).	Swiping	up	from	that	icon	will	launch	the	phone’s	Maps	app	and	open	it	to	the
location	being	viewed	on	the	watch.

FIGURE	10.8	The	Maps	Handoff	icon

The	key	to	making	the	most	of	Handoff	is	remembering	that	it	is	not	an	active
communication	on	the	part	of	your	app.	Rather,	it	provides	the	opportunity	to	maintain	a
lightweight	snapshot	of	the	user’s	current	activity	and	use	it	to	respond	appropriately	if	the
user	decides	to	continue	that	activity	on	another	device.

In	a	watch	app,	it	is	very	simple	to	make	a	task	available	to	be	handed	off	to	its
companion	app—or	even	to	a	webpage,	if	that	makes	sense	for	your	app.
WKInterfaceController	provides	the	method
updateUserActivity(_:userInfo:webpageURL:),	which	your	subclasses	call
to	register	the	current	user	activity	for	handoff.	The	parameters	are:

	A	string	indicating	the	type	of	activity,	which	will	be	received	and	used	by	the
counterpart	app	to	take	over	the	activity.	This	string	is	defined	by	the	developer	and
should	not	be	blank,	and	Apple’s	documentation	recommends	it	be	in	the	normal
reverse-DNS	style	for	app-specific	identifiers—for	example,
"build.watchosapps.humoji.view-emoji".

	A	userInfo	dictionary	providing	any	information	needed	by	the	receiving	app	to
correctly	resume	the	activity.	Being	a	dictionary,	this	can	contain	any	property	list–
compatible	type.	However,	the	usual	admonition	applies:	Keep	this	as	lightweight	as
possible	to	help	with	transfer	and	decoding	time.

	A	web	URL	(with	a	scheme	of	either	http	or	https)	can	be	provided	as	well	as	or
in	place	of	the	userInfo,	which	will	allow	the	handoff	to	take	place	to	the
browser	rather	than	to	the	counterpart	app.

Your	app’s	controller	classes	should	call	this
updateUserActivity(_:userInfo:webpageURL:)	method	as	often	as
necessary	to	keep	the	current	registered	user	activity	up	to	date	and	ready	to	be	handed	off
to	the	user’s	phone.	Whenever	the	current	activity	state	should	no	longer	be	available	to
hand	off,	the	WKInterfaceController	method	invalidateUserActivity()
should	be	called	to	cancel	the	activity.

	Tip

The	Handoff	APIs	are	also	useful	to	pass	information	to	your	app	when	it	is
launched	from	its	glance.	The	glance	controller	may	also	call
updateUserActivity(_:userInfo:webpageURL:),	and	when	the
user	taps	the	glance	to	launch	the	app,	then	the	WKExtensionDelegate
will	receive	a	call	to	handleUserActivity(_:)	with	the	userInfo
dictionary.	If	the	extension	delegate	doesn’t	implement	that	method,	then	the
app’s	initial	interface	controller	may	do	so	instead.

When	your	watch	app’s	user	opts	to	continue	activity	with	the	iPhone	companion	app,
the	phone	app	is	notified	via	its	UIApplicationDelegate.	A	number	of	application
delegate	methods	may	be	involved:

	If	the	app	is	launching,	it	is	not	already	in	memory,	and	its
application(_:willFinishLaunchingWithOptions:)	and
application(_:didFinishLaunchingWithOptions:)	methods	are
called,	the	launchOptions	dictionary	will	contain	the
UIApplicationLaunchOptionsUserActivityTypeKey	and
UIApplicationLaunchOptionsUserActivityDictionaryKey	keys.
These	methods	may	return	false	to	indicate	that	they	will	not	be	continuing	the
user	activity.	In	that	case,	neither	of	the	following	methods	will	be	called.

	application(_:willContinueUserActivityWithType:)	is	called	to
warn	your	app	that	the	user	has	opted	to	continue	an	activity.	Note	the	absence	of
any	information	beyond	the	activity	type;	the	data	associated	with	the	activity	may
not	yet	be	available	when	this	method	is	called.

	application(_:continueUserActivity:restorationHandler:)	is
the	main	method	for	picking	up	an	activity	from	Handoff.	The	userActivity
parameter	is	of	type	NSUserActivity.	This	class	provides	a	great	deal	of
functionality	useful	for	managing	Handoff	between	iOS	and	OS	X.	For	the	purposes
of	a	watch	app,	it	contains	the	activity’s	type	identifier,	its	userInfo	dictionary,
and	any	web	URL	that	was	provided.	The	restorationHandler	is	a	block	that
your	app	can	call	with	an	array	of	instances	of	UIResponder	subclasses	that	need
to	be	informed	of	the	user	activity	(for	example,	UIViewControllers).	Each
will	receive	a	call	to	restoreUserActivityState(:_).	Note	that	it	is	your
code’s	responsibility	to	call	the	restorationHandler	if	needed—but	it	is	not
compulsory	to	do	so.	Indeed,	if	appropriate,	your	application	code	may	copy	the
block	and	call	it	at	a	later	date.

Beyond	its	use	in	watch	apps,	Handoff	is	a	powerful	and	detailed	feature	to	enable	silky

smooth	transition	between	activity	on	iOS	and	OS	X.	If	this	is	relevant	to	your	apps,	and
even	if	it	may	be	relevant	in	the	future,	we	suggest	digging	into	the	documentation	to	learn
more	about	how	your	apps	can	use	it	to	delight	your	users.

Wrapping	Up
This	chapter	has	been	a	quick	demonstration	of	the	options	available	for	getting	data	in
and	out	of	an	Apple	Watch	app—at	least	in	those	cases	where	the	data	is	sent	and	received
by	other	devices.

There	is	more	to	the	story	of	getting	information	into	your	app,	though.	Until	the	day
when	we	are	all	assimilated	into	the	Digital	Robotic	Overmind,	users	will	also	want	to
provide	their	own	input	directly	to	the	apps	that	they	use.	Read	on	to	get	to	know	the
possibilities	for	user	input	on	watchOS.

Chapter	11.	Accepting	User	Input

Taps	of	the	finger	and	clicks	of	the	digital	crown	can	go	a	long	way	to	getting	all	the	input
needed	from	your	app’s	users,	but	sometimes	it’s	necessary	to	capture	a	word,	a	sentence,
or	more	of	textual	input.	With	larger	devices,	this	is	trivial;	whether	a	keyboard	has
physical	keys	or	is	presented	onscreen,	we’re	used	to	tapping	away	quickly	to	“say”	what
we	need.	Apple	Watch	is	different.	It	simply	does	not	have	enough	room	for	a	keyboard,
but	through	some	clever	ideas	and	technology	we	can	receive	our	users’	words	all	the
same.

Speech	to	Text
In	the	absence	of	a	keyboard,	there	are	three	ways	to	provide	text	input	to	a	watch	app:

	The	app	can	provide	prepared	strings	that	are	presented	to	the	user	as	options.	The
user	can	select	one	by	tapping	it.

	The	user	can	select	an	emoji	from	a	range	of	options	that	include	the	standard	Apple
set	and	the	animated	emoji	introduced	in	watchOS	1.

	The	user	can	speak	into	the	watch’s	microphone	and	have	their	speech	transcribed	to
text.

The	third	option	is	by	far	the	most	versatile	and	is	the	one	that	has	the	benefit	of	letting
your	app’s	users	feel	a	bit	like	secret	agents	sending	the	message	that	will	save	the	world.
Or	perhaps	just	self-consciously	adding	chocolate-hazelnut	spread	to	their	shopping	list.
But	then,	even	secret	agents	need	to	take	a	chocolaty	meal	break	every	now	and	then.

The	dictation	capability	of	watchOS	is	powerful	and	easy	to	use—both	for	users	and	for
developers.	From	the	users’	point	of	view,	all	they	have	to	do	is	tap	the	dictation	button
when	it’s	presented,	speak,	and	confirm	that	the	dictation	has	been	correctly	captured.	For
the	developer,	very	little	needs	to	be	done	to	enable	dictation	input.	The	system	handles
the	capture	of	audio,	its	transcription,	and	the	user’s	confirmation,	passing	the	resulting
string	to	your	app	to	deal	with	as	you	wish.	All	the	hard	work	is	done	for	you.

The	dictation	input	on	watchOS	has	one	limitation:	The	transcription	takes	place	on
Apple’s	servers,	with	the	captured	audio	uploaded	for	processing.	This	means	that
dictation	input	is	not	available	when	the	watch	has	no	network	connection.

The	reliance	on	remote	processing	raises	two	other	considerations	that	may	be	relevant
to	your	app:

	There	is	a	slight	delay	while	the	audio	is	uploaded	and	the	transcription	received,
although	in	our	experience	the	process	is	impressively	quick.

	The	transmission	of	your	users’	input	to	a	third	party	for	processing	might	be	a
privacy	or	security	concern.	We	expect	that	this	isn’t	an	issue	for	most	apps,	but	it’s
something	you	should	consider	during	development.

All	this	possibility	for	input	is	provided	through	one	simple	interface	supplied	by	the
system:	the	text	input	controller.

The	Text	Input	Controller
Text	input	on	watchOS	is	handled	via	a	modal	text	input	controller	(Figure	11.1).	This
modal	controller	is	created	and	managed	by	the	system	and	invoked	with	a	call	to	one	of
these	WKInterfaceController’s	methods:

presentTextInputControllerWithSuggestions(_:allowedInputMode:completion:)

presentTextInputControllerWithSuggestionsForLanguage(_:allowedInputMode:completion:)

FIGURE	11.1	A	text	input	controller

The	first	method	accepts	an	optional	array	of	strings	as	suggestions,	whereas	the	second
takes	a	suggestionHandler	block	that	receives	a	string	representing	the	user’s
currently	selected	language	and	should	return	an	array	of	suggestions	for	that	language.

These	two	WKInterfaceController	methods	are	executed	asynchronously,	and
their	completion	blocks	are	called	when	the	user	either	confirms	their	input	or	cancels	the
task,	dismissing	the	text	input	controller.	The	completion	block	will	receive	an	optional
array	that	may	contain	a	string	containing	the	user’s	input	or—in	the	case	of	an	animated
emoji	input—an	image	packaged	as	NSData.

Because	the	calls	to	present	text	input	controller	are	made	asynchronously,	it	is	also
possible	to	force	the	input	controller	to	dismiss	without	input	from	the	user,	via
WKInterfaceController’s	dismissTextInputController()	method.	Be
aware,	though,	that	if	you	dismiss	the	input	controller	programmatically,	then	its
completion	block	will	not	be	called,	in	contrast	to	the	behavior	when	the	controller	is
dismissed	by	the	user.

Input	Types
As	mentioned	earlier	in	this	chapter,	the	text	input	controller	allows	users	to	provide	their
input	in	three	ways.	Your	app	can	define	which	of	these	input	types	are	available	using	the
constant	provided	to	the	allowedInputMode	parameter	of	the	invoking	method.	This
parameter	is	an	enumeration	of	type	WKTextInputMode,	with	the	following
possibilities	available:

	Plain	specifies	text	from	the	provided	suggestions	or	from	dictation.

	AllowEmoji	includes	text	suggestions	and	dictation,	plus	selection	from	the
standard	set	of	non-animated	emoji.

	AllowAnimatedEmoji	augments	the	possible	inputs	with	a	selection	from
Apple’s	animated	emoji.

Availability	of	suggestions	is	controlled	by	the	optional	array	or	the
suggestionHandler	provided	when	the	text	input	controller	is	invoked.	Passing	nil
presents	no	suggestions	to	the	user.

The	combination	of	the	allowedInputMode	and	the	provided	suggestions	modifies
the	behavior	of	the	input	controller.	Ordinarily,	the	input	controller	is	presented	and	the
user	can,	for	example,	tap	the	dictation	button	(Figure	11.2)	to	trigger	dictation.	However,
if	the	input	mode	is	specified	as	Plain	and	no	suggestions	are	provided,	then	the
controller	will	present	directly	in	dictation	mode	(Figure	11.3),	with	only	a	haptic	tap	to
notify	the	user.	In	this	case	you	may	want	to	present	an	initial	alert	to	prepare	the	user.

FIGURE	11.2	The	dictation	button

FIGURE	11.3	Text	entered	in	dictation	mode

Trying	Out	the	Interface
The	best	way	to	get	to	know	the	different	parts	of	the	text	input	controller	interface	is	to
try	it	out.

1.	In	Xcode,	create	a	new	project	with	the	iOS	App	with	WatchKit	App	template.	For
this	example,	leave	the	Complication,	Glance,	and	Notification	options	deselected.

2.	Open	the	WatchKit	App’s	Interface.storyboard	and	add	an	image,	a	label,
and	a	button	to	the	interface	controller	scene.	Align	the	image	and	label	to	Center-
Top	and	the	button	to	Center-Bottom.	Set	the	label’s	text	alignment	to	Center	and	its
number	of	lines	to	0.	The	scene	should	resemble	that	shown	in	Figure	11.4.

FIGURE	11.4	The	interface	controller	storyboard	scene

3.	Open	InterfaceController.swift	and	replace	its	contents	with	the
following:

Click	here	to	view	code	image
import	WatchKit
import	Foundation

class	InterfaceController:	WKInterfaceController	{
				@IBOutlet	var	image:	WKInterfaceImage!
				@IBOutlet	var	label:	WKInterfaceLabel!

				@IBAction	func	buttonTapped()	{
				}
}

4.	Connect	the	image,	label,	and	button	in	the	storyboard	scene	to	the	@IBOutlets
and	the	@IBAction	in	InterfaceController.swift.

5.	Add	the	following	property	and	method	to	the	interface	controller:
Click	here	to	view	code	image

private	var	text	=	“Tap	the	button	to	say	something”

override	func	willActivate()	{
				super.willActivate()

				label.setText(text)
}

6.	Update	the	buttonTapped()	method	to	have	the	following	implementation:
Click	here	to	view	code	image

@IBAction	func	buttonTapped()	{
				let	suggestions	=	[
								“Game	over,	man!	Game	over!”,
								“Hello.	My	name	is	Inigo	Montoya.”,
								“That's	a	big	Twinkie.”,
								“Let's	see	what	happens	when	we	take	away	the	puppy.”,
								“In	the	end	there	can	be	only	one.”
]

				presentTextInputControllerWithSuggestions(suggestions,
allowedInputMode:	.Plain)	{	responses	in

								if	let	responses	=	responses	where	responses.count	>	0	{
												if	let	response	=	responses.first	as?	String	{
																self.text	=	response
																self.label.setText(self.text)
												}
								}
				}
}

Running	this	app	and	tapping	the	button	will	display	the	text	input	controller	shown
in	Figure	11.5.	Selecting	a	suggested	response	or	dictating	your	own	will	update	the
label	once	the	input	controller	has	dismissed.	The	dictation	option	will	be	disabled
when	running	the	app	in	the	simulator.	To	try	out	the	dictation,	you’ll	need	to	run	the
app	on	a	physical	device.	See	Chapter	13	for	a	guide	to	getting	up	and	running	with
the	hardware.

FIGURE	11.5	The	plain	input	controller

7.	To	handle	emoji	input,	add	the	following	property	to	InterfaceController:
Click	here	to	view	code	image

private	var	imageData:	NSData?

8.	Make	the	following	changes	to	buttonTapped():
Click	here	to	view	code	image

@IBAction	func	buttonTapped()	{
				let	suggestions	=	[
								“Game	over,	man!	Game	over!”,
								“Hello.	My	name	is	Inigo	Montoya.”,
								“That's	a	big	Twinkie.”,
								“Let's	see	what	happens	when	we	take	away	the	puppy.”,
								“In	the	end	there	can	be	only	one.”
]

				presentTextInputControllerWithSuggestions(suggestions,
allowedInputMode:	.AllowAnimatedEmoji)	{	responses	in
								if	let	responses	=	responses	where	responses.count	>	0	{
												if	let	response	=	responses.first	as?	String	{
																self.text	=	response
																self.label.setText(self.text)
												}	else	if	let	response	=	responses.first	as?	NSData	{
																self.imageData	=	response

																self.image.setImageData(self.imageData)

												}

								}
				}
}

Run	the	app	and	try	selecting	an	emoji	as	your	response.	Note	that	“normal,”	non-
animated	emoji	are	handled	as	a	text	response,	whereas	it	is	the	animated	emoji	that	are
handled	as	image	data.	At	the	time	of	this	writing,	it	appears	that	the	received	data	is	not
sufficient	to	animate	the	emoji.	Instead,	its	first	frame	is	displayed	(Figure	11.6).

FIGURE	11.6	Displaying	the	chosen	emoji

Preparing	Suggestions
Dictation	is	useful	for	free	text	input,	but	it	is	limited	by	its	reliance	on	network
connectivity	and	the	need	for	the	user	to	be	in	a	relatively	quiet	environment	where
background	noise	won’t	overshadow	their	voice.	There’s	also	the	social	factor:	Although
such	practice	may	soon	become	commonplace	and	unremarkable,	for	the	moment	not
everyone	is	comfortable	talking	into	their	wrist	in	public.	And	although	the	dictation	is
surprisingly	accurate	and	effective,	some	regional	accents	can	present	it	with	quite	a
challenge.	Your	authors	hail	from	a	small	country	with	a	range	of	accents	that	are
sometimes	difficult	for	human	ears	to	understand,	never	mind	digital	ones!

The	ability	of	the	text	input	controller	to	present	suggested	responses	for	the	user	to
choose	from	is	a	way	to	work	around	these	limitations.	In	their	most	simple	use,	as	in	the
previous	example,	suggested	responses	can	be	hardcoded	in	the	app,	but	it	is	perfectly
possible	to	generate	them	at	runtime.	How	you	do	so,	and	the	question	of	whether	it	is
even	necessary,	will	depend	on	the	app.

For	example,	a	messaging	app	could	suggest	certain	phrases	based	on	the	content	of
previous	messages.	A	social	media	update	app	could	learn	what	you	regularly	have	for
lunch	and	have	those	phrases	ready	to	post.	An	app	that	lets	you	record	what	you	watch	at
the	cinema	might	cross-reference	your	location	with	a	list	of	showtimes	and	have	current
films	ready	to	be	entered.	You	can	do	a	lot	with	a	network-connected,	location-aware	wrist
computer.

You	could	even	consider	allowing	the	user	to	define	their	own	suggested	responses	for
different	uses,	be	it	in	the	companion	iPhone	app	or	via	settings	exposed	in	the	iOS	Watch
app	(see	Chapter	6	for	more	on	that	functionality).

Input	from	Notifications
One	more	indirect	way	to	trigger	the	text	input	controller	is	available.	Notifications,	local
or	remote,	forwarded	to	a	watchOS	app	can	be	configured	so	that	they	can	accept	a	text
response.	This	is	analogous	to	how	iOS	9	can	present	interactive	notifications	that	accept
text	input.

We	spent	some	time	in	Chapter	9	discussing	how	to	make	a	text-based	response	to	a
notification,	so	if	you	skipped	ahead	to	here,	you	may	want	to	go	back	for	a	quick	read	of
the	section	“Text	Responses.”

Wrapping	Up
Although	it	is	true	that	text	input	is	more	restricted	on	Apple	Watch	than	it	is	on	an	iOS
device,	it	is	still	very	capable—albeit	with	a	little	creativity,	both	from	the	watchOS
development	team	and	from	third-party	developers	working	with	the	platform.	As	has
been	a	theme	in	previous	chapters,	careful	planning	to	match	the	use	of	your	app	to	the
strengths	of	the	platform	is	the	key	to	a	quality	user	experience.

It	is	unlikely	anyone	will	want	to	compose	their	next	best-selling	novel	by	speaking	at
their	wrist,	but	for	a	great	many	shorter	pieces	of	text	input,	watchOS	apps	are	ready	and
waiting.

Chapter	12.	Playing	and	Recording	Media

“Media	player”	may	not	be	the	first	phrase	that	comes	to	mind	to	describe	Apple	Watch,
but	with	its	high-quality	screen	and	native	support	for	Bluetooth	audio,	it	is	surprisingly
capable	of	useful	audio	and	video	playback.	You	may	not	be	settling	down	to	watch	eleven
and	a	half	hours	of	fantasy	epic	on	your	wrist,	but	the	watch	is	very	well	suited	to	quick
bites	of	video	and	audio	from	messages	or	social	media.	These	same	media-handling
capabilities	are	available	to	third-party	apps.

Working	with	Media
watchOS	provides	the	ability	to	play	audio	and	video	content	while	your	app	is	running	in
the	foreground,	to	play	audio	in	the	background	while	your	app	isn’t	in	active	use,	and	to
record	audio.

Audio	is	played	over	the	watch’s	built-in	speaker	or	is	automatically	routed	to	Bluetooth
headphones	if	any	are	connected.

Media	Types	and	Encodings
If	you	will	be	controlling	the	media	that	your	watch	app	will	be	playing	(whether	by
providing	the	media	yourself	or	by	processing	user-supplied	content	on	a	server),	it’s
worth	making	sure	that	the	media	files	match	Apple’s	recommendations.	The
recommendations	are	in	the	WatchKit	documentation	for	WKInterfaceMovie,	and	the
highlights	are	as	follows:

	Video	should	be	encoded	as	H.264	at	a	bit	rate	of	160	kbps	and	30	frames	per
second.	Video	that	has	larger	dimensions	than	the	screen	of	the	watch	hardware	will
result	in	unnecessarily	large	files,	so	limit	the	files	to	a	width	of	320	pixels	and	a
height	of	260	pixels.

	Audio	should	be	in	stereo,	at	32	kbps.

Of	course,	the	watch	can	handle	files	at	greater	resolution	than	these,	but	without
benefiting	from	the	extra	resolution.

Storing	Media
Where	and	how	video	and	audio	files	are	stored	for	access	by	your	app	depends	primarily
on	whether	the	files	are	bundled	with	the	app	or	are	provided	later.	For	example,	your	app
may	download	content	from	the	network	or	work	with	user-supplied	content.	In	either
case,	remember	the	storage	limitations	of	Apple	Watch—media	files	tend	to	be	large,	and
there	isn’t	much	space	to	store	them	locally	on	the	watch.	You	may	be	able	to	cache	files
locally	for	only	a	short	time,	or	you	may	be	able	to	use	WatchConnectivity	to	transfer	files
to	and	from	the	host	iPhone	(see	Chapter	10	for	an	introduction	to	the	WatchConnectivity
framework).

When	files	are	provided	with	the	app,	they	should	be	added	to	the	WatchKit	extension’s
bundle.	In	this	way	they	can	be	easily	accessed	by	your	extension	code.	When	a	file	is

downloaded	from	the	network	or	is	otherwise	received	at	runtime,	it	should	be	saved	into
a	shared	App	Group	container	accessible	to	both	the	WatchKit	extension	and	the	WatchKit
app.

If	necessary,	WKInterfaceMovie	also	has	the	ability	to	load	a	file	from	a	remote
URL.	Note,	though,	that	the	entire	file	will	have	to	be	downloaded	before	playback	can
begin.

Foreground	Playback
The	simplest	use	of	media	in	a	watch	app	is	playing	it	while	the	app	is	in	the	foreground.
Most	of	the	hard	work	for	this	is	done	for	us,	with	easy	access	to	a	player	interface	via	the
WatchKit	APIs.	You	can	trigger	the	player	programmatically	or,	even	more	simply,	with	a
WKInterfaceMovie	control.

Using	WKInterfaceMovie
The	WKInterfaceMovie	control	displays	a	simple	interface	to	the	user,	showing	a
poster	image	with	a	Play	button	superimposed	(Figure	12.1).	When	the	user	taps	the	Play
button,	a	modal	player	displays	(Figure	12.2).

FIGURE	12.1	A	WKInterfaceMovie	control

FIGURE	12.2	The	video	player	interface

WKInterfaceMovie	can	play	audio	content	as	well	as	video.

You	manage	the	control	with	the	following	methods:

	setMovieURL(_:)	takes	the	URL	of	the	media	file	to	be	played	by	the	control.

	setVideoGravity(_:)	decides	how	the	video	should	be	sized	to	fit	the	screen
on	playback.	Possible	values	are	the	cases	of	the	WKVideoGravity	enumeration
type.	These	are	.ResizeAspect,	.ResizeAspectFill,	and	.Resize.	The
video	gravity	property	can	also	be	set	in	the	storyboard	editor.

	setPosterImage(_:)	takes	an	optional	WKImage	to	be	used	as	the	poster
image	for	the	control.	A	nil	value	clears	the	image.	This	can	also	be	set	in	the
storyboard	editor.

	setLoops(_:)	takes	a	Bool	to	control	whether	the	media	file	will	be	played	in	a
continuous	loop	or	played	once	and	stopped.

To	demonstrate	the	use	of	WKInterfaceMovie,	the	following	example	uses	media
files	available	for	download	at	bit.ly/bwa-media-assets.

1.	In	Xcode,	create	a	new	project	from	the	watchOS	>	iOS	App	with	WatchKit	App
template.	When	creating	the	project,	leave	the	options	for	complications,	glances,
notifications,	and	tests	unselected.

2.	In	the	WatchKit	Extension	project	group,	add	the	file	poster.png	(downloaded
from	bit.ly/bwa-media-assets)	to	the	Assets.xcassets	asset	catalog.

3.	Add	the	file	FirstSnow.m4v	to	the	WatchKit	Extension	group,	selecting	“Copy
items	if	needed”	and	ensuring	that	the	file	is	added	to	the	WatchKit	Extension	target
(Figure	12.3).

FIGURE	12.3	Adding	the	video	file

4.	In	the	WatchKit	App	project	group,	open	Interface.storyboard,	and	add	a
WKInterfaceMovie	control	to	the	interface	controller	scene	(Figure	12.4).

FIGURE	12.4	The	storyboard	scene

5.	Use	the	Attributes	inspector	to	set	the	WKInterfaceMovie’s	Video	Gravity
setting	to	Resize	Aspect.

6.	Open	the	WatchKit	Extension’s	InterfaceController.swift,	replace	it
with	the	following,	and	then	connect	the	movie	control	to	the	@IBOutlet:

Click	here	to	view	code	image
import	WatchKit
import	Foundation

class	InterfaceController:	WKInterfaceController	{
				@IBOutlet	var	player:	WKInterfaceMovie!
}

7.	Add	the	following	method	to	InterfaceController:
Click	here	to	view	code	image

override	func	awakeWithContext(context:	AnyObject?)	{
				super.awakeWithContext(context)

				var	posterImage:	WKImage?
				if	let	image	=	UIImage(named:	“poster”)	{
								posterImage	=	WKImage(image:	image)
				}
				player.setPosterImage(posterImage)

				let	bundle	=	NSBundle(forClass:	InterfaceController.self)
				if	let	movieUrl	=	bundle.URLForResource(“FirstSnow”,	withExtension:
“m4v”)	{
								player.setMovieURL(movieUrl)
				}
}

8.	Run	the	app,	and	you	will	be	able	to	play	the	movie	via	the	WKInterfaceMovie
in	the	interface.

Exactly	the	same	approach	can	be	used	to	play	audio	files.

Presenting	a	Player	Programmatically
WKInterfaceMovie	is	very	easy	to	use,	but	it	also	takes	up	a	lot	of	screen	space,	even
in	its	initial	state.	It	is	also	possible	to	trigger	the	player	UI	programmatically,	perhaps	in
response	to	a	button	press.

1.	Return	to	Interface.storyboard,	and	delete	the	WKInterfaceMovie
from	the	interface	controller	scene.

2.	Add	a	button	to	the	storyboard	scene,	and	give	it	the	title	Play	(Figure	12.5).

FIGURE	12.5	The	button	in	the	storyboard	scene

3.	In	InterfaceController.swift,	replace	the	existing	@IBOutlet	with	the
following,	and	connect	it	to	the	button	in	the	storyboard	scene:

Click	here	to	view	code	image
@IBOutlet	var	button:	WKInterfaceButton!

Because	you	removed	the	movie	control	from	the	interface,	the	code	to	configure	it
is	no	longer	needed.

4.	Delete	the	awakeWithContext(_:)	method	from	InterfaceController.

5.	Add	the	following	method	to	InterfaceController:
Click	here	to	view	code	image

@IBAction	func	play()	{
				let	bundle	=	NSBundle(forClass:	InterfaceController.self)
				if	let	movieUrl	=	bundle.URLForResource(“FirstSnow”,	withExtension:
“m4v”)	{
								presentMediaPlayerControllerWithURL(movieUrl,	options:	nil)
{finished,	endTime,	error	in
								}
				}
}

6.	Connect	the	button	in	the	storyboard	scene	to	the	@IBAction.

7.	Run	the	app,	and	tap	the	button.

You	will	see	the	same	player	interface	displayed	for	the	video.

The	method

presentMediaPlayerControllerWithURL(_:options:completion:)	of
WKInterfaceController	allows	you	to	refine	the	user	experience	using	its
options	and	completion	parameters.	The	options	parameter	is	an	optional
dictionary	that	can	have	any	or	all	of	the	following	keys:

	WKMediaPlayerControllerOptionsAutoplayKey	takes	a	Boolean	value
indicating	whether	the	media	should	be	automatically	played	on	presentation	rather
than	requiring	the	user	to	tap	to	play.

	WKMediaPlayerControllerOptionsStartTimeKey	takes	an
NSTimeInterval	value,	indicating	the	point	in	the	file	from	which	playback
should	begin.

	WKMediaPlayerControllerOptionsVideoGravityKey	corresponds	to
the	Video	Gravity	setting	on	WKInterfaceMovie	and	takes	the	same
enumeration	values.

	WKMediaPlayerControllerOptionsLoopsKey	takes	a	Boolean	value	to
control	whether	the	media	will	play	once	through	or	continuously	on	a	loop	until
dismissed—either	programmatically	or	by	the	user.

The	completion	handler	will	receive	three	arguments:	a	Bool	indicating	whether	or	not
the	media	file	played	to	its	end,	an	NSTimeInterval	with	the	time	index	of	playback
when	the	player	was	dismissed,	and	an	optional	NSError	that	will	be	populated	if	an
error	occurs.

The	completion	handler	is	called	when	the	user	dismisses	the	player	interface.	It	is	also
called	if	the	player	interface	is	dismissed	programmatically.	This	is	done	with	a	call	to	the
WKInterfaceController	method	dismissMediaPlayerController().

You	need	to	make	some	changes	to	InterfaceController.swift.

1.	Add	the	following	property	to	InterfaceController:
Click	here	to	view	code	image

private	var	playbackPosition:	NSTimeInterval	=	0

2.	Update	the	play	method:
Click	here	to	view	code	image

@IBAction	func	play()	{
				let	bundle	=	NSBundle(forClass:	InterfaceController.self)
				if	let	movieUrl	=	bundle.URLForResource(“FirstSnow”,	withExtension:
“m4v”)	{
								let	playerOptions	=	[
												WKMediaPlayerControllerOptionsStartTimeKey:	playbackPosition

]

								presentMediaPlayerControllerWithURL(movieUrl,	options:

playerOptions)	{finished,	endTime,	error	in

												self.playbackPosition	=	finished	?	0	:	endTime

								}

				}
}

The	completion	handler	on

presentMediaPlayerControllerWithURL(_:options:completion:)
makes	sure	that	when	the	player	is	dismissed	and	then	presented	again,	playback	will
resume	where	it	left	off.

Background	Audio	Playback
Any	media	playing	in	the	foreground	by	a	WatchKit	app	is	paused	when	the	app	is	no
longer	running—and	remember	that	the	system	will	stop	the	app	after	a	period	of	user
inactivity.	In	keeping	with	the	nature	of	the	watch,	foreground	playback	is	best	suited	to
short	pieces	of	content.

If	your	app	needs	to	play	a	longer	piece	of	audio,	it	can	handle	this	limitation	by
handing	the	file	off	to	the	system	to	be	played	in	the	background.	It	will	even	appear	in	the
Now	Playing	glance	(Figure	12.6).	However,	background	audio	playback	is	available	only
when	a	Bluetooth	audio	device	is	connected	to	the	watch.

FIGURE	12.6	The	Now	Playing	glance

To	play	background	audio,	the	app	needs	to	register	for	the	audio	background	mode.
Let’s	return	to	the	media	playback	app	from	earlier	in	this	chapter.

1.	Open	Info.plist	from	the	WatchKit	App	project	group	(not	the	WatchKit
Extension	project	group).

2.	Add	the	key	UIBackgroundModes	with	a	value	of	audio.

These	values,	when	entered,	will	be	translated	by	Xcode	and	displayed	as	shown	in
Figure	12.7.

FIGURE	12.7	The	audio	background	mode	setting

3.	Add	an	audio	file	to	the	WatchKit	Extension	group	by	dragging	and	dropping	it
from	the	Finder.	Make	sure	that	“Copy	items	if	needed”	is	selected	and	that	the	file
is	assigned	to	the	extension’s	target	(as	in	Figure	12.3).

If	you	need	to	find	a	suitable	audio	file	for	this	exercise,	we	suggest	browsing
http://freemusicarchive.org.	(In	this	example,	we	will	proceed	on	the	assumption	that

http://freemusicarchive.org

the	file	you	have	just	added	is	named	music.mp3.	You	should	substitute	the	actual
name	of	your	file.)

4.	Open	Interface.storyboard,	and	add	a	second	button	to	the	interface
controller	scene,	as	in	Figure	12.8.	Give	it	a	title	of	Play	Music.

FIGURE	12.8	Adding	the	second	button

5.	Add	the	following	@IBOutlet	and	@IBAction	to
InterfaceController.swift,	connecting	them	both	to	the	button	that	you
just	added.

Click	here	to	view	code	image
@IBOutlet	var	backgroundButton:	WKInterfaceButton!
@IBAction	func	toggleBackgroundPlayback()	{
}

6.	Add	the	following	property	and	method	to	InterfaceController.swift.
Click	here	to	view	code	image

private	var	isPlaying	=	false
private	func	updatebackgroundButton()	{
				if	(isPlaying)	{
								backgroundButton.setTitle(“Stop	Music”)
				}	else	{
								backgroundButton.setTitle(“Play	Music”)
				}
}

7.	Add	an	implementation	of	awakeWithContext(_:)	as	follows:
Click	here	to	view	code	image

override	func	awakeWithContext(context:	AnyObject?)	{
				super.awakeWithContext(context)
				updatebackgroundButton()
}

8.	Add	the	following	to	the	implementation	of	InterfaceController:
Click	here	to	view	code	image

//	MARK:	Background	audio
private	var	musicItem:	WKAudioFilePlayerItem?
private	var	backgroundPlayer:	WKAudioFilePlayer?

private	func	startBackgroundPlayback()	{
}

private	func	stopBackgroundPlayback()	{
}

private	func	prepareAudioItemAndPlayer()	{
}

9.	Update	toggleBackgroundPlayback()	with	the	following:
Click	here	to	view	code	image

@IBAction	func	toggleBackgroundPlayback()	{
				isPlaying	=	!isPlaying

				if	(isPlaying)	{

								startBackgroundPlayback()

				}	else	{

								stopBackgroundPlayback()

				}

				updatebackgroundButton()

}

10.	Update	the	background	audio	methods	to	read	as	follows:
Click	here	to	view	code	image

private	func	startBackgroundPlayback()	{
				prepareAudioItemAndPlayer()
				guard	let	_	=	musicItem,	backgroundPlayer	=	backgroundPlayer	else

{return}

				backgroundPlayer.play()

}

private	func	stopBackgroundPlayback()	{
				guard	let	backgroundPlayer	=	backgroundPlayer	else	{return}

				backgroundPlayer.pause()

}

private	func	prepareAudioItemAndPlayer()	{
				guard	musicItem	==	nil	else	{return}

				let	bundle	=	NSBundle(forClass:	InterfaceController.self)

				if	let	audioUrl	=	bundle.URLForResource(“music”,	withExtension:	“mp3”)

{

								let	asset	=	WKAudioFileAsset(

												URL:	audioUrl,

												title:	“Music!”,

												albumTitle:	“Build	watchOS	Apps”,

												artist:	“Emandem”

)

								musicItem	=	WKAudioFilePlayerItem(asset:	asset)

								if	let	musicItem	=	musicItem	{

												backgroundPlayer	=	WKAudioFilePlayer(playerItem:	musicItem)

								}

				}

}

11.	Run	the	app.

You’ll	be	able	to	start	and	stop	the	background	audio	playback	using	the	button	in
the	app	or	via	the	Now	Playing	glance.

Note	the	use	in	the	example	of	the	WKAudioFileAsset	initializer
init(URL:title:albumTitle:artist:).	This	is	a	simpler	intializer	that
requires	only	the	URL	of	the	file,	init(URL:).	If	the	audio	asset	is	initialized	with	only
the	URL,	the	other	properties	can	be	set	after	initialization.	Any	properties	that	do	not
have	values	will	be	set	from	the	metadata	of	the	audio	file,	if	available.

	Tip

The	media	files	used	as	examples	in	this	chapter	are	much	larger	than	we
recommend	shipping	in	the	bundle	of	a	production	watch	app.	If	you	need	to
bundle	such	large	files,	we	recommend	including	them	in	the	companion
iPhone	app	and	transferring	them	to	the	watch	on	demand	using	the
WatchConnectivity	framework	(see	Chapter	10).

Audio	Recording
Any	subclass	of	WKInterfaceController	may	use	that	class’s	method
presentAudioRecorderControllerWithOutputURL(_:preset:options:completion:)
to	present	a	simple	interface	for	recording	short	clips	of	audio	via	Apple	Watch’s
microphone	(Figure	12.9).

FIGURE	12.9	The	audio	recording	interface

That	method’s	URL	parameter	specifies	the	file	to	which	the	audio	recording	will	be
saved.	The	URL	has	two	restrictions:

	The	provided	URL	must	be	a	file	URL	in	a	shared	app	group’s	container,	to	which
both	the	WatchKit	app	and	extension	have	access.

	The	final	segment	of	the	URL	is	the	name	of	the	file,	and	the	extension	of	the	file	is
used	to	determine	its	format.	Valid	extensions	are	.wav,	.mp4,	and	.m4a.	Using
any	other	file	extension	will	result	in	an	error.

The	preset	parameter	takes	one	of	three	cases	of	the	WKAudioRecorderPreset
enumeration:

	.NarrowBandSpeech	is	for	standard-quality	speech	recording.

	.WideBandSpeech	is	suitable	for	high-quality	recordings	of	speech.

	.HighQualityAudio,	as	its	name	suggests,	is	the	highest-quality	recording
available.

The	options	dictionary	may	be	set	to	nil,	which	accepts	the	default	recording	setup,
but	it	can	accept	any	of	the	following	keys:

	WKAudioRecorderControllerOptionsActionTitleKey	is	used	to	set
an	alternative	label	to	the	Save	button	of	the	recording	modal.

	WKAudioRecorderControllerOptionsAlwaysShowActionTitleKey
is	a	Bool	that	controls	whether	the	Save	button	is	shown	even	before	the	user	has
made	a	recording.	The	default	value	is	true.

	WKAudioRecorderControllerOptionsAutorecordKey	is	a	Bool
specifying	whether	or	not	recording	will	begin	automatically	once	the	recording
interface	is	presented.	This	defaults	to	true,	and	the	user	is	prompted	with	a	tap
from	the	watch’s	haptic	motor.

	WKAudioRecorderControllerOptionsMaximumDurationKey	takes	an
NSTimeInterval	specifying	the	maximum	length	of	the	recording.	If	this	is
unspecified,	then	it	has	no	maximum	length.

The	default	values	of	the	various	options	are	practical	for	many	recording	scenarios.

Finally,
presentAudioRecorderControllerWithOutputURL(_:preset:options:completion:)
completion	handler	receives	two	arguments.	The	first	is	a	Bool	indicating	whether	or	not
an	audio	recording	was	saved	(perhaps	the	user	canceled	without	saving),	and	the	second
is	an	optional	NSError	containing	details	of	any	error	encountered.

The	first	time	a	watch	app	presents	the	recording	interface,	an	alert	will	be	displayed	on
the	host	iPhone,	requesting	access	to	the	microphone.	This	is	easy	to	miss,	so	it	may	be
appropriate	to	present	an	alert	in	the	watch	app	prompting	the	user	to	look	to	their	phone.

Making	a	Recording
Using	watchOS’s	recording	interface	requires	only	a	little	effort	from	you	as	the
developer.

1.	In	Xcode,	create	a	new	project	using	the	watchOS	>	iOS	App	with	WatchKit	App
template.	This	example	will	use	none	of	complications,	glances,	notifications,	or

tests,	so	leave	the	options	for	those	unselected.

In	preparation	for	saving	a	recording,	you	need	to	create	an	App	Group	identifier.
This	is	done	in	the	App	Groups	section	of	the	Certificates,	Identifiers	&	Profiles
screen	in	the	Developer	Center.

2.	In	a	browser,	go	to	http://bit.ly/bwa-adc-groups.	Create	a	new	group	by	clicking	the
+	button	shown	in	Figure	12.10.

FIGURE	12.10	Adding	an	app	group

3.	Specify	a	description	and	identifier	for	the	group.	Note	that	the	form	will	enforce
that	the	group	identifier	be	prefixed	with	group.	(Figure	12.11).

FIGURE	12.11	Setting	up	the	app	group

4.	Click	Continue,	then	click	Register,	then	click	Done	to	move	through	the	screens.

http://bit.ly/bwa-adc-groups

5.	Back	in	Xcode,	select	the	top-level	project	from	the	Project	Navigator,	then	select
the	WatchKit	App	target.	Navigate	to	the	Capabilities	tab,	and	switch	the	App
Groups	setting	to	On	(Figure	12.12).

FIGURE	12.12	Enabling	app	groups

Xcode	will	access	your	developer	account	and	retrieve	the	available	app	groups.

6.	Select	the	checkbox	beside	the	identifier	you	created	in	steps	2–4.

Xcode	will	make	sure	that	the	app	has	a	specific	bundle	identifier	and	will	register	it
in	the	developer	portal	for	you.	When	the	process	is	complete,	you	should	see	three
checkmarks,	as	in	Figure	12.13.

FIGURE	12.13	A	correctly	set	up	app	group

7.	Repeat	steps	5	and	6	for	the	WatchKit	Extension	target.

8.	Open	the	WatchKit	App’s	Interface.storyboard,	and	populate	the	default
scene	with	two	button	like	the	ones	in	Figure	12.14.

FIGURE	12.14	The	buttons	in	the	storyboard	scene

9.	Open	InterfaceController.swift,	and	replace	its	contents	with	the
following,	connecting	the	buttons	in	the	storyboard	to	the	two	@IBOutlets:

Click	here	to	view	code	image
import	WatchKit
import	Foundation

class	InterfaceController:	WKInterfaceController	{

				@IBOutlet	var	recordButton:	WKInterfaceButton!
				@IBOutlet	var	playButton:	WKInterfaceButton!
}

10.	Add	the	following	property	and	method	to	InterfaceController:
Click	here	to	view	code	image

private	var	audioUrl:	NSURL?
private	func	updatePlayButtonState()	{
				playButton.setEnabled(audioUrl	!=	nil)
}

11.	Add	an	implementation	of	willActivate()	as	follows:
Click	here	to	view	code	image

override	func	willActivate()	{
				super.willActivate()

				updatePlayButtonState()
}

In	order	to	save	an	audio	file,	you	need	to	find	the	App	Group	container	and	specify
the	URL	to	a	target	file	there.

12.	Add	the	following	method	to	specify	the	URL:
Click	here	to	view	code	image

private	func	generateAudioUrl()	{
				let	containerUrl	=	NSFileManager.defaultManager().containerURLFor
SecurityApplicationGroupIdentifier(“group.build.watchosapps”)!
				let	filename	=	String(NSDate().timeIntervalSince1970)

				audioUrl	=	containerUrl.URLByAppendingPathComponent(“\(filename).m4a”)
}

13.	Add	two	@IBAction	methods	as	follows,	and	connect	them	to	the	appropriate
buttons	in	the	storyboard	scene:

Click	here	to	view	code	image
@IBAction	func	record()	{
				generateAudioUrl()

				if	let	url	=	audioUrl	{
								presentAudioRecorderControllerWithOutputURL(
												url,
												preset:	.NarrowBandSpeech,
												options:	nil)	{	didSave,	error	->	Void	in
																if	!didSave	{
																				self.audioUrl	=	nil
																}

																self.updatePlayButtonState()
								}
				}
}

@IBAction	func	play()	{
				guard	let	url	=	audioUrl	else	{return}

				presentMediaPlayerControllerWithURL(url,	options:	nil)	{	finished,
endTime,	error	->	Void	in

								if	finished	{
												do	{
																try	NSFileManager.defaultManager().removeItemAtURL(url)
																self.audioUrl	=	nil
																self.updatePlayButtonState()
												}	catch	{}
								}
				}
}

In	the	completion	handler	of	the	media	player,	this	example	checks	whether	the	file
was	played	to	its	end.	If	it	was,	the	file	is	deleted	to	save	on	storage.

14.	Run	the	example.

You	will	be	able	to	record	audio	and	play	it	back.	Note	that	if	you	are	running	the
example	in	a	simulator,	everything	will	work	as	it	should,	except	that	the	recorded
audio	track	will	consist	only	of	silence.	This	is	a	limitation	of	the	simulator.
Deploying	to	a	physical	device,	as	described	in	Chapter	13,	will	allow	you	to
experience	this	app	in	all	its	glory.

Handling	Recorded	Audio
As	noted,	audio	recordings	should	be	saved	to	a	shared	container	to	which	both	the
WatchKit	app	and	the	WatchKit	extension	have	access.	This	provides	flexibility	in
accessing	the	saved	file,	but	you	should	consider	what	your	app	should	do	with	the	audio.

Depending	on	the	duration	and	quality	of	the	recording,	files	can	get	quite	large.	Apple
Watch’s	storage	space	is	constrained,	so	these	files	should	be	dealt	with	and	deleted	as
soon	as	possible.	Your	app	might	need	to	upload	the	file	to	a	server,	which	can	be	done
directly	from	the	watch,	but	if	it	is	to	be	stored	for	later	access,	consider	transferring	it	to
the	host	iPhone	using	the	WatchConnectivity	framework	(see	Chapter	10).	Any	intensive
processing	can	be	carried	out	on	the	more	powerful	phone,	or	it	can	be	used	as	a	place	to
keep	the	file	and	retrieve	it	later.	Remember,	though,	that	the	larger	the	file,	the	longer	it
will	take	to	transfer	between	devices.	And	since	the	transfer	takes	place	over	a	Bluetooth
connection,	the	larger	the	file	the	more	power	will	be	consumed.

Ultimately,	of	course,	how	an	app	handles	the	recorded	audio	will	be	decided	by	the
reason	it	was	recorded	in	the	first	place—be	that	for	sharing	online	or	storing	for	later	use.

Wraapping	Up
The	media	handling	facilities	offered	by	Apple	Watch	may	be	limited,	but	there	is	great
strength	in	their	ubiquity.	A	screen,	a	speaker,	and	a	microphone	are	right	there	on	the
user’s	wrist,	ready	to	be	called	into	action	at	the	shortest	of	notice	and	with	a	minimum	of
hassle.

These	media	capabilities	are	much	less	impressive	in	the	simulator	than	they	are	when
displayed	by	an	actual	watch	on	your	wrist.	In	Chapter	13,	we	will	walk	through	how	to
deploy	your	watchOS	apps	to	a	physical	device.	Then	you	can	see	just	how	impressive
these	media	capabilities	can	be	in	reality.

Chapter	13.	Deploying	to	Physical	Devices

We	have	spent	most	of	the	book	running	the	example	code	in	the	Watch	simulator	supplied
with	Xcode.	Although	this	is	invaluable	in	terms	of	time	and	cost	efficiency,	nothing	beats
the	feeling	of	deploying	your	app	to	a	physical	device.	And	no	matter	how	good	a
simulator	is,	there’s	always	the	chance	that	what	works	in	the	simulator	may	not	work	on	a
real	device.

Managing	Devices
Apple	Watch	devices	cannot	be	directly	connected	to	your	Mac	in	order	to	be	deployed
onto,	so	instead	you	must	connect	the	iPhone	that	the	watch	has	been	paired	with.	Once
it’s	connected,	you	can	open	the	Device	Manager	by	selecting	Window	>	Device	Manager
from	the	Xcode	main	menu.

When	you	do	so,	you	may	be	surprised	to	see	that	your	iPhone	has	appeared	in	the
device	list	but	the	watch	has	not.	Strangely,	there	are	also	no	watch	devices	configured	in
the	list	of	simulators.	This	is	to	be	expected—given	the	close	bond	between	iPhone	and
Watch,	you	can	only	see	watch	devices	in	the	Device	Manager	by	viewing	the	details	for
the	iPhone	that	it	has	been	paired	with.	Select	your	iPhone	in	the	device	list	to	see	the
information	for	the	watch	(Figure	13.1).

FIGURE	13.1	Viewing	your	iPhone	and	paired	watch	in	the	Device	Manager

Most	of	the	information	shown	in	the	Device	Manager	is	of	little	use	to	you	during	the
development	process,	but	it	is	worth	recording	the	Identifier	property	in	case	you	need	to
add	it	manually	through	the	online	Developer	Center	at	some	stage.

	Note

The	watch	details	will	only	be	shown	if	your	watch	is	currently	paired	with
the	iPhone.	If	the	watch	is	moved	out	of	range	of	the	iPhone,	the	details	will
disappear	from	the	Device	Manager,	and	you	may	need	to	deselect	and
reselect	the	iPhone	to	refresh	them.

Simulator	devices	that	are	configured	with	a	paired	watch	simulator	are	not	easily
identifiable	in	the	list,	but	you	can	find	them	by	clicking	a	simulator	in	the	list	and
navigating	using	the	Up	and	Down	Arrow	keys.	When	you	encounter	a	phone	and	watch
combination,	the	device	information	will	show	the	paired	watch	information	as	well.	If
you	want	to	configure	more	combinations,	click	the	plus	(+)	button	to	start	creating	a	new
simulator	and	choose	an	iPhone	5	or	higher	as	the	Device	Type.	You	will	then	get	the
option	to	assign	a	paired	Apple	Watch.

Configuring	Provisioning	Profiles
If	you	want	to	run	your	watchOS	app	on	a	physical	device,	you	need	to	make	sure	your
project	is	configured	with	a	development	team.	We’ll	assume	that	you	already	have	a
development	team	set	up	in	the	Developer	Center	as	part	of	your	iOS	development
workflow,	but	you	should	ensure	that	your	copy	of	Xcode	is	configured	with	an	Apple	ID
to	make	the	team	available	to	your	projects.	You	can	do	this	by	adding	your	Apple	ID	as
an	account	in	the	Accounts	tab	in	the	Xcode	settings.

As	of	version	6.0,	Xcode	learned	a	few	tricks	that	involved	the	magic	Fix	Issue(s)
buttons	that	would	often	appear	in	response	to	device	provisioning	issues.	Although
clicking	the	button	often	results	in	success,	it	can	regularly	result	in	a	partially	configured
nightmare	that	no	amount	of	“fixing	issues”	can	resolve.	To	account	for	this,	we	will	take
a	trip	through	the	manual	process	in	a	later	section.

	Tip

If	your	Apple	ID	belongs	to	multiple	development	teams,	you	can	explicitly
choose	which	one	to	use	for	a	target	by	opening	the	project	settings	and
changing	the	Team	pop-up	menu	setting	to	the	correct	one.

Automagic	Setup
Let	Xcode	do	a	lot	of	the	work	for	you.

1.	Select	Xcode	>	Preferences	from	the	Xcode	main	menu,	then	select	the	Accounts
tab.

If	you	already	have	an	account	set	up,	then	you	can	jump	ahead	to	step	3.

2.	Click	the	plus	(+)	button	to	create	an	account,	and	select	Add	Apple	ID	from	the
pop-up	menu	to	enter	your	Apple	ID	and	password.

After	you	sign	in,	Xcode	will	contact	the	Developer	Center	and	retrieve	the	list	of
teams	to	which	you	belong	and	display	them	in	the	right	pane	of	the	Accounts	tab.

3.	Close	the	Preferences	window,	pick	a	WatchKit	App	scheme	from	the	scheme
selector	pop-up	menu,	and	then	select	a	physical	phone	and	watch	combination	as
the	destination	(Figure	13.2).

FIGURE	13.2	Selecting	the	scheme	and	devices

4.	Press	Command-B	to	start	a	build	of	the	WatchKit	App	scheme.

The	build	process	will	quickly	stop	and	present	you	with	a	warning	that	it	was
unable	to	code	sign	the	WatchKit	extension	(Figure	13.3).	To	code	sign	an
executable,	Xcode	needs	two	things:	a	valid	development	certificate	and	a
provisioning	profile	that	can	include	the	bundle	identifier	of	the	WatchKit	extension.

FIGURE	13.3	The	warning	message	displayed	when	a	valid	provisioning	profile
cannot	be	found

5.	Click	the	Fix	Issue	button	to	let	Xcode	attempt	to	fix	the	issue	for	you.

It	is	hard	to	specify	exactly	what	Xcode	will	do	in	response	to	clicking	the	Fix	Issue
button.	Some	things	it	might	do	include:

	Prompt	you	to	choose	a	development	team.	If	you	are	a	member	of	multiple	teams,
you	will	need	to	choose	one	to	continue	the	process	with.

	Prompt	you	to	import	a	developer	profile	from	another	computer.	If	you	have	a	valid
development	certificate	in	the	Developer	Center	but	do	not	have	the	necessary	keys
in	your	local	keychain,	you	can	import	a	developer	profile	from	the	machine	you
created	the	profile	on.

	Prompt	you	to	reset	the	development	certificate.	If	you	have	a	valid	development
certificate	in	the	Developer	Center	but	do	not	have	the	necessary	keys	in	your	local

keychain,	you	can	instead	revoke	the	existing	certificate	and	create	a	new	one.

	Prompt	you	to	create	a	new	provisioning	profile.	If	there	is	a	valid	provisioning
profile	but	it	does	not	contain	the	correct	device	identifiers	or	development
certificate,	Xcode	can	delete	the	existing	profile	and	create	a	new	one	for	you.

Manual	Setup
Unfortunately,	sometimes	Xcode	will	not	quite	manage	to	complete	the	process,	so	it	helps
to	be	aware	of	what	actually	needs	to	happen	at	the	Developer	Center	in	order	to	repair	a
partially	completed	provisioning	attempt.	In	the	following	steps,	we	illustrate	the	entire
process	from	scratch.	Where	Xcode	has	performed	some	of	the	actions,	you	may	need	to
check	the	validity	of	the	output.

1.	In	a	web	browser,	navigate	to	the	Certificates,	Identifiers	&	Profiles	section	of	the
Apple	Developer	Center	(bit.ly/bwa-adc-certs).

Unless	you	have	visited	the	Developer	Center	very	recently,	you	will	be	prompted	to
sign	in	using	your	Apple	ID.	If	you	are	a	member	of	multiple	teams,	you	will	be
prompted	to	select	a	team	to	use	as	well.

2.	Under	the	iOS	Apps	column,	click	the	link	to	Certificates.

3.	In	the	Certificates	section,	check	to	see	if	you	have	a	valid	(non-expired)	iOS
Development	certificate	for	which	you	have	the	original	signing	keys.

If	you	have	a	valid	certificate	with	the	signing	keys,	you	can	jump	ahead	to	step	8.

If	your	certificate	is	invalid	or	you	no	longer	have	access	to	the	keys	used	to	sign	the
certificate	in	the	past,	you	may	need	to	create	a	new	certificate	instead.

4.	Click	the	plus	(+)	button	near	the	upper	right	of	the	screen	to	start	the	process	of
creating	a	certificate.

5.	In	response	to	the	question	“What	type	of	certificate	do	you	need?”	you	should
choose	iOS	App	Development	(Figure	13.4)	and	click	Continue	at	the	bottom	of	the
screen.

FIGURE	13.4	Creating	an	iOS	App	Development	certificate

6.	Create	a	Certificate	Signing	Request	(CSR)	by	following	the	instructions	provided
onscreen	(they’re	good	instructions	so	why	try	to	better	them?)	and	then	click
Continue.

7.	Upload	the	CSR	to	the	Developer	Center,	and	click	Generate.

The	result	of	this	process	is	a	new	valid	certificate.	You	can	download	this	certificate
and	directly	install	it	by	double-clicking	it	in	the	Finder,	or	you	can	let	Xcode
retrieve	it	later.	With	the	certificate	resolved,	you	can	now	move	on	to	registering
your	development	devices	in	the	Devices	section.

	Tip

If	you	intend	to	use	the	certificate	on	more	than	one	Mac,	you	will	need	to
export	the	signing	keys	created	when	you	generated	the	CSR.	The	Keychain
Access	application	can	be	used	to	export	these	from	one	Mac	and	import
them	to	another.	Refer	to	the	in-app	documentation	for	more	guidance.

8.	Click	the	All	link	under	the	Devices	section	of	the	page.

9.	Check	whether	your	iPhone	and	your	Apple	Watch	need	to	be	registered	by	looking
for	their	name	and	device	identifier	in	the	list	of	devices.

The	device	identifier	for	your	phone	and	watch	can	be	found	in	the	Device	Manager

when	they	are	connected	(Figure	13.1).	If	they	already	exist,	you	can	jump	ahead	to
step	13.	If	they	don’t	exist	in	the	list	of	registered	devices,	you	will	need	to	register
them.

10.	Click	the	plus	(+)	button	near	the	upper	right	of	the	page,	and	enter	the	name	of
your	watch—make	it	meaningful	so	that	you	understand	what	it	is	when	you	see	it
again	(Figure	13.5).

FIGURE	13.5	Registering	a	new	device

11.	Enter	the	device	identifier	(found	in	the	Device	Manager	in	Xcode)	in	the	UDID
field,	click	Continue	to	submit	the	details,	and	then	click	Register	to	confirm	your
decision.

Apple	recently	increased	the	limit	for	the	number	of	devices	you	can	register;	you
can	now	have	up	to	100	devices	for	each	of	the	following	categories:	iPhone,	iPad,
iPod	touch,	Apple	Watch,	and	Apple	TV.	Yes,	Apple	TV.	Now	there’s	another	book.

12.	Repeat	steps	10	and	11	for	your	iPhone.

By	this	stage,	you	should	have	both	your	watch	and	phone	registered	as	devices.
This	means	that	you	will	be	able	to	include	them	both	in	a	provisioning	profile
(along	with	the	development	certificate).

13.	Click	the	Development	link	under	the	Provisioning	Profiles	section	to	view	the	list
of	existing	profiles.

If	you	already	have	a	profile	that	you	wish	to	amend	with	extra	devices,	you	can
choose	to	edit	and	regenerate	it	instead	of	creating	a	new	one	from	scratch.	You
cannot,	however,	change	the	development	certificate	associated	with	a	provisioning
profile.

14.	Click	the	plus	(+)	button	to	add	a	new	provisioning	profile,	and	select	the	iOS	App
Development	profile	type	(Figure	13.6).

FIGURE	13.6	Creating	a	new	provisioning	profile

15.	Click	Continue	to	confirm	your	choice.

16.	Unless	you	need	something	more	specific,	choose	the	Xcode	iOS	Wildcard	App	ID,
and	click	Continue.

At	this	stage,	we	don’t	need	to	be	more	specific,	and	so	we’re	creating	a
provisioning	profile	that	will	match	the	bundle	identifier	in	any	app.	If	you	want	to
be	more	specific,	you	should	create	an	App	ID	in	the	Identifiers	section	for	your
specific	app	and	select	it	instead.	You	will	have	to	do	this	later	in	Chapter	15	in
order	to	produce	provisioning	profiles	for	app	distribution.

17.	Select	the	certificates	you	wish	to	include	in	the	profile.

This	example	includes	the	certificate	you	created	in	steps	2	through	7,	but	you	can
opt	for	any	that	may	already	exist	(Figure	13.7).

FIGURE	13.7	Selecting	a	development	certificate	for	inclusion	with	a	provisioning
profile

18.	Click	Continue.

19.	Select	the	registered	devices	that	you	wish	to	include	in	the	provisioning	profile.

The	provisioning	profile	will	be	usable	only	with	the	devices	that	you	specify	at	this
stage.	Note	that	you	can	edit	the	devices	at	a	later	stage	(causing	the	profile	to	be
regenerated),	but	it	usually	makes	sense	to	just	click	the	Select	All	checkbox.
Having	too	many	devices	included	in	a	profile	doesn’t	do	any	harm.	At	the	bare
minimum,	make	sure	your	iPhone	and	Apple	Watch	devices	are	selected.

20.	Click	Continue.

21.	Give	your	profile	a	meaningful	name,	and	click	Generate	to	complete	the	process
(Figure	13.8).

FIGURE	13.8	The	final	steps	in	creating	your	provisioning	profile

You	can	download	the	profile	and	double-click	it	in	the	Finder	to	install	it	to	Xcode
directly,	or	you	can	follow	along	and	get	Xcode	to	refresh	the	certificates	and
profiles	from	the	Developer	Center.

22.	Return	to	Xcode,	and	select	Xcode	>	Preferences	from	the	Xcode	main	menu.

23.	In	the	Accounts	tab,	select	your	Apple	ID,	and	then	select	the	appropriate	team
name.

24.	Click	View	Details.

Xcode	will	connect	to	the	Developer	Center	and	show	the	list	of	Signing	Identities
(certificates)	and	Provisioning	Profiles	belonging	to	you	for	that	team	(Figure	13.9).

FIGURE	13.9	Xcode’s	view	of	your	certificates	and	profiles

25.	If	the	Signing	Identity	or	Provisioning	Profile	has	a	Download	button	beside	it,
click	it	to	download	it	from	the	Developer	Center.

Now	that	you’ve	got	everything	you	need	to	deploy	onto	a	physical	device,	it’s	time	to
start	testing	your	apps	for	real.

Deploying	to	a	Device
The	line	that	determines	when	you	should	switch	between	using	a	simulator	and	a	real
device	for	watchOS	app	development	is	not	a	clear	one.	In	fact,	there	is	another	point	to
consider:	distribution	of	beta	test	versions	of	your	app	to	a	wider	audience.	The	decision	to
use	a	simulator	or	a	real	device	is	analogous	to	the	decision	to	use	CPU	cache,	main
memory,	or	a	solid	state	drive	(SSD)	in	computing.

Working	with	the	simulator	is	very	much	like	relying	on	CPU	cache:	It	is	fast	and
convenient	because	it	lives	right	on	the	machine	you	are	developing	on.	But	it	isn’t	as
practical	for	demonstrations	because	it	is	tied	to	your	Mac,	and	simulators	never	impress
as	much	as	running	on	a	physical	device.	Working	with	a	real	watch	(paired	with	a	phone

connected	to	your	Mac)	is	the	equivalent	of	working	with	main	memory:	The	testing	cycle
is	somewhat	extended,	but	it	is	more	convenient	for	getting	“fingertips-on”	experience
with	the	real	device.	Finally,	wider	distribution	is	much	like	using	a	bigger	but	much
slower	SSD:	Although	it	is	better	for	getting	test	versions	of	your	app	out	to	many	beta
testers,	it	really	suffers	from	latency	between	build	and	deploy	to	devices	(especially	if
you	use	Apple’s	TestFlight	system).

Although	it	does	not	have	the	same	kind	of	instant	feedback	as	working	with	a
simulator,	running	your	app	on	a	physical	device	isn’t	so	challenging	once	you	have	the
necessary	provisioning	steps	set	up.

1.	Pair	your	Apple	Watch	with	your	development	iPhone,	if	it	has	not	already	been
paired.

2.	Connect	the	iPhone	to	your	Mac	by	plugging	it	into	a	USB	port.

All	being	well,	the	scheme	selection	pop-up	menu	updates	to	indicate	that	the	device
pairing	has	been	correctly	picked	up.

3.	Click	the	scheme	selection	menu,	and	select	the	pairing	as	the	destination	for
running	any	of	the	watchOS	specific	schemes	(Figure	13.2).

4.	Click	the	Run	button	to	start	the	build	and	deploy	to	the	device.

This	process	can	take	some	time	because	it	has	a	number	of	things	to	do.	The	first
task	is	to	rebuild	the	iOS	app	and	the	watchOS	app	for	physical	devices	instead	of
simulators	(building	for	the	ARM	architecture	instead	of	Intel).

Once	it’s	built,	Xcode	begins	the	process	of	copying	the	app	bundles	to	the	devices.	The
iOS	app	will	first	be	copied	to	the	iPhone;	this	is	relatively	quick	because	it	is	being
copied	over	the	USB	connection.	The	slower	phase	is	extracting	the	watchOS	app	and
copying	it	over	the	Bluetooth	connection	between	the	phone	and	watch.	This	can	take
some	time,	and	you	may	soon	get	used	to	seeing	messages	such	as	those	in	Figure	13.10.

FIGURE	13.10	Copying	the	watchOS	app	to	the	device

	Note

The	process	of	deploying	to	the	watch	may	be	interrupted	by	Xcode
prompting	you	to	unlock	your	phone;if	your	phone	is	locked	the	deployment
cannot	be	completed.	If	you’re	going	to	be	settling	down	for	a	long	session	of
device	testing,	it	may	be	wise	to	disable	the	automatic	locking	of	the	phone
for	the	duration	of	the	session.	We’ve	also	experienced	fewer	failures	to
launch	the	app	on	the	watch	when	its	PIN	has	also	been	disabled.

The	wait	is	worth	it—running	your	own	app	on	a	physical	device	is	exciting,	and	it

seems	even	more	magical	when	it	is	running	on	a	mini	computer	mounted	on	your	wrist.

Wrapping	Up
Testing	your	app	on	a	physical	device	is	always	an	exciting	experience,	and	running
watchOS	apps	on	an	Apple	Watch	is	particularly	exciting.	It	is	also	a	vital	part	of	the
testing	process	and	can	make	the	difference	between	the	first	view	of	a	prototype	app
being	of	merely	passing	interest	to	a	customer	and	thrilling	them.

In	the	next	chapter,	we	take	advantage	of	our	newfound	ability	to	run	the	app	on	a
physical	device	and	examine	the	Apple	Watch	hardware	capabilities	that	are	available	to
you	as	a	developer.

Chapter	14.	Using	Hardware	APIs

Since	iPhone	SDK	was	first	made	available	to	developers,	in	2008,	one	of	the	most
exciting	aspects	of	developing	for	Apple	platforms	has	been	access	to	the	varied
capabilities	of	the	hardware	itself.	Apple	Watch	and	watchOS	are	no	different,	allowing
developers	access	to	the	potential	of	the	heart	rate	sensor,	the	accelerometer,	and	the
much-vaunted	haptic	feedback	system	dubbed	the	Taptic	Engine.

Using	Sensor	Data
WatchKit	apps	can	access	data	from	two	of	the	watch’s	sensors:	the	heart	rate	sensor	on
the	underside	of	the	watch	and	the	internal	accelerometer.	The	data	from	these	sensors	is
available	via	the	HealthKit	and	CoreMotion	frameworks.

Accessing	Heart	Rate	Data	via	HealthKit
In	iOS	8,	Apple	introduced	the	Health	app,	backed	by	the	HealthKit	framework.	The
intention	is	to	provide	a	central	repository	of	health-related	data,	populated	by	any	app
(and	informed	by	any	device)	to	which	the	user	grants	access.

The	core	design	principle	for	HealthKit	is	to	keep	the	user	in	control	of	their	data	at	all
times.	This	is	enforced	at	the	API	and	interface	level	by	requiring	an	app	to	request	access
to	each	type	of	data	(weight,	heart	rate,	or	step	count,	for	example),	with	the	user	being
able	to	authorize	or	deny	each	app’s	ability	to	read	or	write	each	type	of	data.	As	a	matter
of	policy,	Apple	insists	that	only	apps	with	a	clear	health	and	fitness	purpose	may	access
health	data.

Another	example	of	how	seriously	Apple	takes	user	privacy	in	the	implementation	of
HealthKit	and	the	Health	app	is	that	the	database	is	stored	and	encrypted	on	the	user’s
iPhone	rather	than	in	a	cloud-based	repository.	Of	course,	there	are	by	now	plenty	of	apps
and	services	that	can	synchronize	HealthKit	data	to	their	own	database,	and	this	is	a	valid
and	permitted	use	of	the	data,	but	again,	this	is	only	possible	after	the	user	has	explicitly
granted	those	apps	access	to	the	data.

When	an	app	has	received	the	necessary	permission	from	the	user,	it	can	query	the
HealthKit	database	for	a	wide	variety	of	types	of	data	(and,	with	the	right	permissions,
write	data	to	the	database).	The	query	engine	is	detailed	and	powerful,	providing	a
mechanism	for	very	fine-grained	queries	according	to	timeframe	and	data	type,	but	a
proper	exploration	of	its	facilities	is	outside	the	scope	of	this	book.

Instead,	we	will	look	at	how	to	access	streaming	heart	rate	data	during	a	workout.	In	the
context	of	HealthKit	and	watchOS,	a	workout	is	a	period	of	focused	activity	that
contributes	to	the	user’s	daily	Exercise	total	(the	green	ring	in	the	Activity	app).	It	is
possible	to	access	recorded	heart	rate	data	without	initiating	a	workout,	but	for	our
purposes	here,	a	workout	provides	two	benefits:	It	allows	the	app	to	stay	in	the	foreground
rather	than	being	deactivated	after	a	short	time	without	user	interaction,	and	it	provides
frequent,	streamed	updates	of	the	user’s	activity.

In	the	following	example,	we	will	work	through	the	various	points	of	contact	with	the

HealthKit	APIs.	There	are	quite	a	few,	so	prepare	yourself	for	a	workout	indeed!

Preparing	the	user	interface

This	app	will	have	a	very	simple	interface.	It	will	use	a	HealthKit	workout	to	access	heart
rate	data,	so	it	will	need	a	button	to	start	and	stop	the	workout.	You	will	also	include	a
label	for	your	output.

1.	In	Xcode,	create	a	new	app	using	the	watchOS	>	Application	>	iOS	App	with
WatchKit	App	template.	Do	not	select	the	options	for	notification,	glance,
complication,	or	tests,	since	you	won’t	be	using	them	here.

2.	Open	the	WatchKit	app’s	Interface.storyboard,	and	add	a	button	and	a
label	as	shown	in	Figure	14.1.

FIGURE	14.1	The	button	and	label	in	the	storyboard	scene

3.	Open	the	WatchKit	extension’s	InterfaceController.swift,	and	replace
its	contents	with	the	following;	then	connect	the	button	and	the	label	in	the
storyboard	scene	to	the	relevant	@IBOutlets	and	@IBAction:

Click	here	to	view	code	image
import	WatchKit
import	Foundation

class	InterfaceController:	WKInterfaceController	{
				@IBOutlet	var	button:	WKInterfaceButton!
				@IBOutlet	var	label:	WKInterfaceLabel!

				@IBAction	func	buttonTapped()	{
				}
}

4.	Add	the	following	property	and	method	to	InterfaceController:
Click	here	to	view	code	image

private	var	readingHeartRate	=	false	{
				didSet	{
								updateButton()
				}
}

private	func	updateButton()	{

				if	readingHeartRate	{
								button.setTitle(“Stop”)
				}	else	{
								button.setTitle(“Start”)
				}
}

5.	Add	the	following	implementation	of	awakeWithContext(_:)	to	initialize	the
user	interface	when	the	app	launches:

Click	here	to	view	code	image
override	func	awakeWithContext(context:	AnyObject?)	{
				super.awakeWithContext(context)

				label.setText(“-“)
				updateButton()
}

6.	Add	the	following	two	methods.	For	now	they	will	simply	trigger	the	UI	updates	by
changing	the	value	of	readingHeartRate:

Click	here	to	view	code	image
private	func	beginReadingHeartRate()	{
				readingHeartRate	=	true
}

private	func	endReadingHeartRate()	{
				readingHeartRate	=	false
}

7.	Update	the	implementation	of	buttonTapped	to	read	as	follows:
Click	here	to	view	code	image

@IBAction	func	buttonTapped()	{
							if	readingHeartRate	{
											endReadingHeartRate()

							}	else	{

											beginReadingHeartRate()

							}

}

Now	that	you	have	the	user	interface	in	place	and	the	necessary	@IBOutlets	and
@IBAction	connected,	the	next	task	is	to	request	access	to	heart	rate	data	from
HealthKit.

Setting	up	HealthKit	access

In	order	to	access	heart	rate	data	through	a	HealthKit	workout,	some	preparation	is
required.	First,	the	app	must	check	that	HealthKit	data	is	available	and	request	access	to
heart	rate	data.	If	the	access	request	is	successful,	then	the	workout	can	be	created	and
started.

In	order	to	access	HealthKit	data,	the	WatchKit	Extension	must	have	the	necessary
entitlement.

1.	In	Xcode’s	Project	Navigator,	select	the	top-level	project.	Then	select	the	WatchKit
Extension	target,	and	navigate	to	the	Capabilities	tab.	Switch	on	the	HealthKit
capability	(Figure	14.2).	Do	the	same	for	the	iPhone	app	target.

FIGURE	14.2	Selecting	the	HealthKit	entitlement

2.	In	InterfaceController.swift,	add	the	following	line	at	the	top	of	the	file:
import	HealthKit

3.	Still	in	InterfaceController.swift,	add	the	following	extension	at	the	end
of	the	file:

Click	here	to	view	code	image
//	MARK:	HealthKit	access
extension	InterfaceController:	HKWorkoutSessionDelegate	{
				//	MARK:	HKWorkoutSessionDelegate

				func	workoutSession(
								workoutSession:	HKWorkoutSession,
								didChangeToState	toState:	HKWorkoutSessionState,
								fromState:	HKWorkoutSessionState,
								date:	NSDate
)	{
				}

				func	workoutSession(
								workoutSession:	HKWorkoutSession,
								didFailWithError	error:	NSError
)	{
				}
}

4.	In	the	main	body	of	the	InterfaceController	class,	add	the	following
properties:

Click	here	to	view	code	image
let	healthStore	=	HKHealthStore()
var	quantityType:	HKQuantityType?
var	workoutSession:	HKWorkoutSession?	{
				didSet	{
								workoutSession?.delegate	=	self
				}
}

5.	Add	the	following	method	to	the	main	body	of	the	class	(it	will	be	used	to	signal	the
various	error	conditions):

	Tip

Using	emoji	in	source	code	is	one	of	the	more	whimsical	things	enabled	by
the	Swift	programming	language’s	Unicode	support.	You	can	insert	them
using	the	OS	X	symbol	picker,	triggered	by	pressing	Ctrl+Cmd+Space.

Click	here	to	view	code	image
private	func	updateWithNoAccess()	{
				label.setText(“ “)
				endReadingHeartRate()
}

6.	To	request	HealthKit	access,	add	the	following	method	to	the	HealthKit
access	extension	in	InterfaceController.swift:

Click	here	to	view	code	image
private	func	beginWorkout()	{
				guard	HKHealthStore.isHealthDataAvailable()	else	{
								updateWithNoAccess()
								print(“HealthKit	unavailable”)
								return
				}

				quantityType	=	HKQuantityType.quantityTypeForIdentifier(HKQuantity
TypeIdentifierHeartRate)
				if	let	quantityType	=	quantityType	{
								healthStore.requestAuthorizationToShareTypes(
												nil,
												readTypes:	Set([quantityType]),
												completion:	accessRequestReturned
)
				}	else	{
								updateWithNoAccess()
								print(“No	quantity	type”)
				}
}

HealthKit	supports	a	number	of	different	sample	and	query	types.	Heart	rate	is	an
HKQuantityType,	and	you	will	be	using	an	HKAnchoredObjectQuery	to
access	it.	See	Apple’s	HealthKit	documentation	for	information	on	the	other
possibilities.

7.	Add	the	following	method	to	the	HealthKit	access	extension	to	handle	the
authorization	request:

Click	here	to	view	code	image
private	func	accessRequestReturned(allowed:	Bool,	error:	NSError?)	{
				guard	allowed	else	{
								updateWithNoAccess()
								print(error?.description)
								return

				}

				workoutSession	=	HKWorkoutSession(activityType:	.Other,	locationType:
.Indoor)

				if	let	workoutSession	=	workoutSession	{
								healthStore.startWorkoutSession(workoutSession)
				}
}

8.	Add	one	more	method	to	the	extension:
Click	here	to	view	code	image

private	func	endWorkout()	{
				if	let	workoutSession	=	workoutSession	{
								healthStore.endWorkoutSession(workoutSession)
				}
}

9.	Update	beginReadingHeartRate()	and	endReadingHeartRate()	to
call	the	beginWorkout()	and	endWorkout()	methods	you	just	added:

Click	here	to	view	code	image
private	func	beginReadingHeartRate()	{
				readingHeartRate	=	true
				beginWorkout()
}

private	func	endReadingHeartRate()	{
				readingHeartRate	=	false
				endWorkout()
}

When	the	user	is	prompted	to	allow	access	to	HealthKit	data,	the	interface	is
presented	by	the	iPhone	app.	This	requires	the	addition	of	one	method	to	the	iPhone
app’s	application	delegate.

10.	Open	AppDelegate.swift,	and	add	the	import	for	HealthKit:
import	HealthKit

11.	Add	the	following	method	to	AppDelegate:
Click	here	to	view	code	image

func	applicationShouldRequestHealthAuthorization(application:
UIApplication)	{
				HKHealthStore().handleAuthorizationForExtensionWithCompletion	{
(success,	error)	->	Void	in
				}
}

Responding	to	heart	rate	updates

As	mentioned	in	the	previous	section,	this	example	queries	for	heart	rate	data	using	an
HKAnchoredObjectQuery.	This	type	of	query	is	so	named	because	it	has	an	anchor
—a	point	in	time	that	acts	as	a	boundary	on	the	results.	Only	data	from	after	the	anchor
will	be	returned.

Once	the	query	is	created,	it	is	possible	to	add	an	update	handler	that	is	called	when

new	data	that	match	the	query	is	added	to	the	HealthKit	store.	You	will	use	this	technique
to	receive	heart	rate	data	as	it	becomes	available.

1.	Returning	to	InterfaceController.swift,	add	three	new	properties	to
InterfaceController:

Click	here	to	view	code	image
var	unit:	HKUnit?
var	queryAnchor:	HKQueryAnchor?
var	query:	HKAnchoredObjectQuery?

2.	Update	the	two	HKWorkoutSessionDelegate	methods	as	follows:
Click	here	to	view	code	image

func	workoutSession(
				workoutSession:	HKWorkoutSession,
				didChangeToState	toState:	HKWorkoutSessionState,
				fromState:	HKWorkoutSessionState,
				date:	NSDate
)	{
				if	toState	==	.Running	{
								workoutStarted()

				}	else	if	toState	==	.Ended	{

								workoutEnded()

				}

}

func	workoutSession(
				workoutSession:	HKWorkoutSession,
				didFailWithError	error:	NSError
)	{
				print(error.description)
				endReadingHeartRate()

				label.setText(“Error!”)

}

3.	Add	the	following	method	to	stop	the	query	(which	you	will	be	creating	shortly)
when	the	user	ends	the	workout:

Click	here	to	view	code	image
private	func	workoutEnded()	{
				if	let	query	=	query	{
								healthStore.stopQuery(query)
				}
}

4.	Add	the	workoutStarted(_:)	method,	which	is	where	you	will	create	and
execute	the	query,	as	follows:

Click	here	to	view	code	image
private	func	workoutStarted()	{
				unit	=	HKUnit(fromString:	“count/min”)

				if	queryAnchor	==	nil	{
								queryAnchor	=	HKQueryAnchor(fromValue:	Int(HKAnchoredObject
QueryNoAnchor))
				}

				query	=	HKAnchoredObjectQuery(
								type:	quantityType!,

								predicate:	nil,
								anchor:	queryAnchor,
								limit:	Int(HKObjectQueryNoLimit),
								resultsHandler:	queryUpdateReceived
)

				if	let	query	=	query	{
								query.updateHandler	=	queryUpdateReceived
								healthStore.executeQuery(query)
				}
}

Two	more	methods	are	required.	The	first	is	the	callback	for	the	query.

5.	Add	the	following	callback	method:
Click	here	to	view	code	image

private	func	queryUpdateReceived(
				query:	HKAnchoredObjectQuery,
				samples:	[HKSample]?,
				deletedSamples:	[HKDeletedObject]?,
				updatedAnchor:	HKQueryAnchor?,
				error:	NSError?
)	->	Void	{
				if	let	updatedAnchor	=	updatedAnchor	{
								self.queryAnchor	=	updatedAnchor
								self.heartRateSamplesReceived(samples)
				}
}

Finally,	add	the	method	to	update	the	user	interface	as	heart	rate	data	is	received.
Callbacks	from	HealthKit	are	executed	on	a	background	queue,	so	you	need	to	make
sure	that	UI	updates	are	properly	dispatched	to	the	main	queue.

6.	Add	the	following	to	update	the	user	interface:
Click	here	to	view	code	image

private	func	heartRateSamplesReceived(samples:	[HKSample]?)	{
				guard	let	quantitySamples	=	samples	as?	[HKQuantitySample]	else	{
return	}

				dispatch_async(dispatch_get_main_queue())	{
								guard	let	sample	=	quantitySamples.first,	unit	=	self.unit	else	{
return	}
								self.label.setText(“\(sample.quantity.doubleValueForUnit(unit))”)
				}
}

7.	Run	the	app	on	your	watch,	and	tap	the	Start	button.

An	alert	on	the	paired	iPhone	will	prompt	you	to	allow	the	app	to	access	your	heart
rate	data	(Figure	14.3).	Once	you	allow	access,	the	interface	will	start	to	update	as
the	app	receives	heart	rate	data	from	HealthKit.	If	you	stop	and	start	the	workout
session,	the	queryAnchor	property	will	make	sure	that	only	new,	up-to-date	data
is	received	in	each	session.

FIGURE	14.3	Authorizing	access	to	HealthKit	data

Reading	Accelerometer	Data	with	CoreMotion
HealthKit	is	only	one	of	the	new	(to	the	watch)	frameworks	that	were	made	available	in
watchOS	2.	CoreMotion	has	been	giving	developers	bright	ideas	since	the	first	iPhone
SDK	release	(iPhoneOS	2),	and	watchOS	2	has	brought	it	to	the	watch.	Although
CoreMotion	on	the	iPhone	has	access	to	an	exciting	variety	of	sensors,	apps	running	on
Apple	Watch	have	only	the	accelerometer.	It	is	possible	to	access	both	the	raw
accelerometer	data	and	to	read	step	counts	calculated	by	the	system.

Reading	raw	accelerometer	data

You’ll	be	glad	to	hear	that	accessing	accelerometer	data	requires	much	less	work	than
using	HealthKit.

1.	Open	Xcode	and	create	a	new	app	using	the	watchOS	>	Application	>	iOS	App
with	WatchKit	App	template.	Don’t	select	the	options	for	notification,	glance,
complication,	or	tests.

2.	Open	the	WatchKit	app’s	Interface.storyboard,	and	add	three	labels	to	the
interface	controller	scene,	as	in	Figure	14.4.

FIGURE	14.4	Labels	for	the	accelerometer	data

3.	Open	the	WatchKit	Extension’s	InterfaceController.swift,	and	replace
its	contents	with	the	following:

Click	here	to	view	code	image
import	WatchKit
import	Foundation
import	CoreMotion

class	InterfaceController:	WKInterfaceController	{
				@IBOutlet	var	xLabel:	WKInterfaceLabel!
				@IBOutlet	var	yLabel:	WKInterfaceLabel!
				@IBOutlet	var	zLabel:	WKInterfaceLabel!
}

4.	Connect	the	labels	in	the	storyboard	scene	to	the	matching	@IBOutlets	in
InterfaceController.swift.

This	app	will	take	the	simple	approach	of	starting	to	read	accelerometer	data	when
the	interface	controller	becomes	active,	and	stopping	when	it	becomes	inactive.	To
do	so,	it	needs	an	instance	of	CMMotionManager.

5.	Add	one	more	property	to	InterfaceController:
Click	here	to	view	code	image

let	manager	=	CMMotionManager()

6.	Add	the	following	implementation	of	willActivate()	to	the	interface
controller:

Click	here	to	view	code	image
override	func	willActivate()	{
				super.willActivate()

				guard	manager.accelerometerAvailable	else	{
								xLabel.setText(“ “)

								yLabel.setText(“ “)

								zLabel.setText(“ “)
								return
				}

				manager.accelerometerUpdateInterval	=	0.2
				manager.startAccelerometerUpdatesToQueue(NSOperationQueue.
currentQueue()!)	{	data,	error	in
								if	let	data	=	data	{
												self.xLabel.setText(“X:	\(data.acceleration.x)”)
												self.yLabel.setText(“Y:	\(data.acceleration.y)”)
												self.zLabel.setText(“Z:	\(data.acceleration.z)”)
								}	else	{
												print(error?.description)
								}
				}
}

7.	Add	the	didDeactivate()	method:
Click	here	to	view	code	image

override	func	didDeactivate()	{
				super.didDeactivate()

				manager.stopAccelerometerUpdates()
}

When	you	run	the	app	on	your	watch,	you	will	be	able	to	see	the	accelerometer	data
update	rapidly	as	you	swing	your	arm	around.	Go	on—try	it!

Reading	pedometer	data

The	raw	data	produced	by	the	accelerometer	is	precise	and	updates	quickly,	but	such
unprocessed	data	needs	interpretation.	CoreMotion	provides	one	such	interpretation	of	the
data,	provided	via	the	CMPedometer	class.

You	can	use	CMPedometer	to	query	historical	data	or	to	receive	live	streaming
updates.	It	provides	instances	of	CMPedometerData,	which	can	include	a	variety	of
information,	each	relative	to	the	object’s	startDate	and	endDate	properties:

	numberOfSteps

	distance,	estimated	in	meters

	currentPace,	estimated	as	seconds	per	meter	(available	only	in	live	updates)

	currentCadence,	in	steps	per	second	(available	only	in	live	updates)

	floorsAscended	while	walking	or	running

	floorsDescended	while	walking	or	running

Much	like	the	previous	example,	accessing	pedometer	data	requires	only	a	little	code.
The	following	example	measures	the	user’s	maximum	number	of	steps	per	second	while
the	app	is	running.

1.	Open	Xcode,	and	create	a	new	app,	selecting	the	watchOS	>	Application	>	iOS	App
with	WatchKit	App	template.	Don’t	select	the	options	for	notification,	glance,
complication,	or	tests.

2.	Open	the	WatchKit	app’s	Interface.storyboard,	and	add	a	label	to	the
interface	controller	scene	(Figure	14.5).

FIGURE	14.5	The	label	in	the	storyboard	scene

3.	Replace	the	contents	of	the	WatchKit	extension’s
InterfaceController.swift	with	the	following,	then	connect	the	label	in
the	storyboard	scene	to	the	@IBOutlet:

Click	here	to	view	code	image
import	WatchKit
import	Foundation
import	CoreMotion

class	InterfaceController:	WKInterfaceController	{
				@IBOutlet	var	label:	WKInterfaceLabel!
}

4.	Add	the	following	properties	and	method	to	InterfaceController:
Click	here	to	view	code	image

let	pedometer	=	CMPedometer()
var	maxCadence:	Double	=	0

private	func	updateLabel()	{
				label.setText(String(maxCadence))
}

5.	Add	the	following	implementation	of	willActivate()	to
InterfaceController:

Click	here	to	view	code	image
override	func	willActivate()	{
				super.willActivate()

				guard	CMPedometer.isCadenceAvailable()	else	{
								label.setText(“ “)
								return
				}

				updateLabel()

				pedometer.startPedometerUpdatesFromDate(NSDate())	{	data,	error	in
								guard	let	data	=	data	else	{
												print(error?.description)
												self.label.setText(“ “)
												return

								}

								if	let	cadence	=	data.currentCadence?.doubleValue
												where	cadence	>	self.maxCadence	{
												self.maxCadence	=	cadence
												self.updateLabel()
								}
				}
}

6.	Add	the	following	didDeactivate()	method	to	the	interface	controller:
Click	here	to	view	code	image

override	func	didDeactivate()	{
				super.didDeactivate()
				pedometer.stopPedometerUpdates()
}

When	you	first	install	and	run	this	app,	keep	an	eye	on	the	screen	of	your	iPhone;	you
will	be	prompted	to	allow	the	app	access	to	your	motion	activity.	Upon	authorization,	the
app	will	display	your	maximum	cadence	in	steps	per	second	as	you	move	around.

Cadence	is	only	one	of	the	pieces	of	information	available	via	CMPedometer,	and—
as	with	the	raw	accelerometer	data—it	is	possible	to	query	for	historical	data	as	well	as
receive	updates	with	live	data.	Although	Apple	Watch	has	fewer	sensors	available	than	the
iPhone,	hopefully	this	small	taste	of	what	is	there	will	start	you	thinking	of	what	you	can
achieve	with	this	data.

Providing	Haptic	Feedback
One	of	the	most	intriguing	hardware	features	of	the	Apple	Watch	is	undoubtedly	the	haptic
feedback	engine.	Although	the	screen	and	audio	capabilities	of	the	device	are	the	principal
forms	of	interactive	output,	it	is	the	haptic	feedback	engine	that	will	provide	much	of	the
asynchronous	communication	between	the	watch	and	its	wearer.	In	watchOS	2,	Apple	has
given	developers	the	ability	to	trigger	the	haptic	engine	directly;	this	provides	us	with	a
wonderful	opportunity	to	give	feedback	straight	to	the	user’s	wrist.

Playing	with	Haptics
Experimenting	with	the	haptic	engine	is	trivial	from	an	API	perspective.	A	single	method,
named	playHaptic(_:),	is	available	for	you	to	call	against	the
WKInterfaceDevice	class.	The	playHaptic(_:)	method	takes	a	single	parameter
of	the	enum	type	WKHapticType.	The	enum	defines	the	complete	range	of	feedback
styles	available	for	you	to	use.	Each	has	a	different	character,	and	they	(almost)	all	have
corresponding	audio	tones.

	Notification	is	the	default	tap	that	you	feel	when	your	watch	has	a	notification
to	display	to	you.	If	you	supply	an	enum	value	that	is	outside	the	currently	defined
range,	this	will	also	be	“played.”

	DirectionUp	consists	of	two	discrete	taps.	The	name	DirectionUp	comes
from	the	audio	tone	that	accompanies	the	taps;	the	watch	plays	two	ascending	tones.

	DirectionDown	also	consists	of	two	discrete	taps.	This	time	the	tone	that

accompanies	the	taps	consists	of	two	descending	tones.

	Success	consists	of	three	quick	taps	of	equal	duration.	The	accompanying	audio
consists	of	three	ascending	notes.

	Failure	also	has	three	quick	taps,	but	the	audio	consists	of	two	equal	tones
following	by	a	tone	at	a	lower	pitch.

	Retry	features	three	quick	taps	accompanied	by	three	tones	at	the	same	pitch.

	Start	is	a	single	strong	tap	accompanied	by	a	single	tone.

	Stop	has	two	strong	taps	accompanied	by	two	tones;	these	tones	are	further	apart
that	those	for	the	preceding	styles.

	Click	is	a	very	short	tap	and	is	unique	in	that	it	has	no	accompanying	tone.

It’s	not	that	easy	to	mentally	imagine	the	differences	between	the	haptic	styles,	so	it	is
worth	creating	a	small	example	project;	the	sample	app	will	include	a	Picker	control	to
allow	you	to	select	between	the	different	styles.	On	selection,	the	style	will	play	for	you.

1.	From	the	Xcode	main	menu,	select	File	>	New	>	Project.

2.	In	the	new	project	template	chooser	dialog,	navigate	to	our	old	favorite	watchOS	>
Application	>	iOS	App	with	WatchKit	App,	and	click	Next.

3.	Enter	the	Product	Name	as	PlayHaptic,	set	the	Language	as	Swift,	and	click	Next.

Feel	free	to	choose	whichever	Devices	setting	you	wish.	We	won’t	be	worrying
about	notifications,	glances,	or	complications,	so	you	can	deselect	those	as	well.

4.	Choose	a	location	to	save	the	project,	and	click	Create.

Now	you	have	your	familiar	project	template,	so	let’s	update	the	user	interface	to
contain	a	Picker	control.

5.	In	the	Project	Navigator,	open	the	file	group	named	PlayHaptic	WatchKit	App,	and
click	the	file	named	Interface.storyboard	to	open	it	in	Interface	Builder.

6.	In	the	Object	Library,	search	for	the	Picker	control,	and	drag	it	onto	the	interface
controller	scene.

You	need	to	hook	the	Picker	control	up	to	a	controller	class	so	that	you	can	supply	it
with	data	and	monitor	its	changes.

7.	Open	the	assistant	editor,	ensuring	that	it	displays	the	file	named
InterfaceController.swift.

8.	Control-click	and	drag	from	the	Picker	control	onto	the	InterfaceController
class,	and	create	an	outlet	named	hapticPicker.

9.	Repeat	step	8,	but	instead	create	an	action	named	stylePicked.

You	now	need	to	create	the	data	for	the	Picker	control.

10.	In	the	InterfaceController	class,	add	a	read-only	property	that	points	to	an
array	of	tuples	containing	pairs	of	String	and	WKHapticType	values:

Click	here	to	view	code	image
let	styles:[(String,	WKHapticType)]	=	[
				(“Notification”,	.Notification),
				(“DirectionUp”,	.DirectionUp),
				(“DirectionDown”,	.DirectionDown),
				(“Success”,	.Success),
				(“Failure”,	.Failure),
				(“Retry”,	.Retry),
				(“Start”,	.Start),
				(“Stop”,	.Stop),
				(“Click”,	.Click)
]

With	the	data	created,	you	can	populate	it	into	the	Picker	control.

11.	Update	the	awakeWithContext(_:)	method	with	the	following:
Click	here	to	view	code	image

override	func	awakeWithContext(context:	AnyObject?)	{
				let	pickerItems:	[WKPickerItem]	=	styles.map	{	style	->	WKPickerItem
in

								let	pickerItem	=	WKPickerItem()

								pickerItem.title	=	style.0

								return	pickerItem

				}

				hapticPicker.setItems(pickerItems)

				super.awakeWithContext(context)
}

You	now	need	to	be	able	to	play	the	selected	haptic	when	the	Picker	control	has	been
changed.

12.	Edit	the	stylePicked(_:)	method	with	the	following	code:
Click	here	to	view	code	image

@IBAction	func	stylePicked(value:	Int)	{
				let	hapticStyle	=	styles[value].1
				WKInterfaceDevice.currentDevice().playHaptic(hapticStyle)

}

Everything	is	ready	to	go,	although	you	need	to	test	this	on	a	device	because	the
Watch	simulator	cannot	do	justice	to	haptic	feedback.

13.	Plug	your	iPhone	into	your	Mac,	choose	PlayHaptic	WatchKit	App	as	the	scheme,
and	choose	your	iOS	device	and	watch	combination	in	the	scheme	selector	pop-up
menu.

The	project	will	build	and	the	app	will	eventually	be	transferred	to	the	watch,
presenting	the	Picker	control	with	a	list	of	haptic	styles	when	it	has	loaded	(Figure
14.6).	Scrolling	with	the	digital	crown	will	cause	the	different	haptics	to	play—make
sure	to	enable	sound	on	the	watch	to	hear	them	as	well	as	feel	them!

FIGURE	14.6	Playing	with	haptics

Tap	Carefully
Unlike	the	vibration	motors	within	many	phones,	the	haptic	feedback	engine	in	the	Apple
Watch—or	the	Taptic	Engine,	as	it	is	known	from	a	marketing	perspective—is	inside	a
device	that	is	in	permanent	physical	contact	with	the	user.	Instead	of	providing	jarring
actions	designed	to	be	felt	through	clothing	or	to	vibrate	through	desks,	the	Taptic	Engine
can	instead	provide	extremely	discreet	taps	directly	to	the	wrist.

The	beauty	of	such	a	system	is	that	because	it	can	be	felt	directly	rather	than	being
heard	or	transferred	through	layers	of	clothing,	the	patterns	of	feedback	can	be
distinguished	and	these	patterns	can	be	ascribed	meanings.	This	is	what	allows	wearers	to
know	whether	the	watch	is	telling	you	to	stand	up	or	turn	right	or	that	an	urgent
notification	has	been	received.

This	gives	you	a	great	opportunity	for	your	app	to	establish	a	truly	intimate	relationship
with	your	users.	It	is	also	something	that	you	should	be	wary	of;	just	having	the	ability	to
trigger	a	vibration	on	your	user’s	wrist	does	not	mean	that	you	have	to	take	advantage	of
it.

In	those	circumstances	in	which	haptic	feedback	is	appropriate,	always	strive	to	make
those	haptics	meaningful.	The	value	of	such	feedback	can	be	severely	diminished	through
overuse	and	can	lead	to	notification	fatigue	in	your	users.	You	should	also	be	aware	that
although	you	may	have	sounds	turned	off	on	your	watch,	your	users	may	not	have	made
the	same	decision.	Excessive	haptics	can	result	in	a	barrage	of	noise	coming	from	your
app,	and	could	result	in	it	being	deleted	from	the	watch	by	a	frustrated	user.	Too	many
haptics	will	also	have	a	detrimental	effect	on	battery	life;	every	vibration	requires	power,
and	it	may	not	take	long	for	users	to	connect	your	trigger-happy	tendency	toward	haptic
feedback	with	the	quick	depletion	of	their	precious	battery.

Wrapping	Up
Apple	Watch	is	a	very	capable	piece	of	hardware,	and	some	of	its	best	bits	are	hidden	from
view	as	sensors	and	haptic	motors.	By	now	you	have	covered	almost	all	the	capabilities	of
the	device	and	its	SDK,	and	in	the	next	chapter	you	will	venture	into	what	might	be	the
most	exciting—and	daunting—territory	yet:	shipping	an	app	to	the	App	Store.

Chapter	15.	Shipping	Your	WatchKit	App

At	the	end	of	the	app	development	journey	comes	arguably	the	most	satisfying	stage:
shipping	your	app.	Distribution	of	your	app	to	paying	customers	takes	place	through	the
iOS	App	Store,	but	you	have	a	surprising	number	of	potential	obstacles	to	consider	along
the	way	before	you	get	to	spend	your	App	Store	millions.

Preparing	Your	App	for	Distribution
Before	you	can	take	the	plunge	and	release	your	app	to	the	public,	ask	yourself	the
following	questions:	Have	I	tried	it	on	device?	Have	I	done	enough	testing?	Have	I	done
external	testing?	Does	it	run	efficiently?	Have	I	done	all	the	due	diligence	to	make	sure	I
really	want	to	release	it?

Because	the	pre-release	checklist	will	vary	from	developer	to	developer	and	even	from
app	to	app,	you	should	not	see	the	following	guidance	as	exhaustive,	and	it	may	not	even
be	applicable	in	all	situations.	However,	we	still	think	it	is	worth	reading	if	only	to	check
that	you’ve	covered	all	bases	and	maybe	to	prompt	yourself	to	think	more	about	your
specific	scenarios.

Device	Support
In	recent	years,	Apple	has	made	huge	strides	in	extending	the	life	of	older	hardware	by
ensuring	that	the	latest	versions	of	iOS	work	on	relatively	ancient	devices.	Your	opinion
on	that	may	be	positive	or	negative,	depending	on	whether	you	own,	or	are	forced	to
support,	an	iPhone	4S	or	an	iPad	2!

To	use	an	Apple	Watch	with	your	app,	your	customers	need	to	have	at	least	an	iPhone	5
or	5C.	Even	though	the	4S	is	supported	by	iOS	9	in	software,	it	does	not	have	the
hardware	support	that	would	allow	it	to	pair	with	an	Apple	Watch.	It	is	also	worth
reiterating	that	no	currently	available	iPads	have	the	ability	to	work	with	an	Apple	Watch.

For	this	reason,	you	should	ensure	that	you	carefully	consider	the	types	of	devices	used
by	your	customers	if	you	have	access	to	such	data.	The	Apple	Watch	is	an	amazingly
useful	device,	but	be	careful	when	making	the	assumption	that	everyone	who	downloads
your	iOS	app	is	intending	to	run	your	watch	app.	The	key	is	to	remember	that,	in	the
overwhelming	majority	of	cases,	a	watch	app	is	a	companion	to	the	iOS	app.

A	further	point	to	bear	in	mind	is	that	many	of	the	frameworks	and	APIs	used	in	this
book	are	applicable	to	watchOS	2	only.	Although	watchOS	2	is	a	free	upgrade,	it	is	not
mandatory,	and	some	of	your	potential	customers	may	still	be	running	the	original
watchOS	release.	watchOS	2	is	compatible	only	with	iOS	9	and	higher,	so	if	large
numbers	of	your	customers	are	holding	out	on	iOS	8.4,	you	may	need	to	consider
supporting	watchOS	1	as	well.

Icons	and	Image	Resources
Although	it	is	not	a	critical	task,	making	sure	that	your	use	of	icons	and	other	image
resources	is	appropriate	can	be	of	great	benefit	to	your	users.	Fortunately,	all	Apple	Watch
devices	are	Retina	quality,	which	means	you	don’t	need	to	worry	about	including	anything
but	@2x-quality	images.	This	is	a	benefit	to	customers	because	you	don’t	have	to	include
unnecessary	extra	images	in	the	app	bundle.

Icons

When	creating	an	icon	for	your	iOS	app,	you	now	need	to	produce	even	more	variations,
to	satisfy	the	new	requirements	for	app	icons	under	watchOS.	You	might	want	to	start
saving	up	to	pay	that	designer	for	some	extra	work,	because	there	are	now	eight	additional
icons	to	be	produced	for	all	the	extra	new	places	they	can	be	displayed.	You	can	take	a
look	at	the	placeholders	for	the	icons	by	navigating	to	the	Assets.xcassets	file
within	a	WatchKit	App	file	group	in	the	Project	Navigator	(Figure	15.1).

FIGURE	15.1	The	range	of	required	watchOS	app	icons

App	icons	are	displayed	without	a	name	on	the	watch	home	screen,	so	you	are	relying
on	a	familiarity	with	your	iOS	icon	to	help	your	users	recognize	and	launch	your	app.
Although	it	may	be	tempting	to	compensate	by	adding	some	text	to	your	icon,	or	even	just
by	shrinking	your	iOS	icons	to	the	watchOS	sizes,	it	is	a	temptation	worth	resisting.

The	Apple	Watch	has	a	small	and	dense	display.	These	factors	conspire	to	make	the
icon	size	much	smaller	than	the	iOS	equivalent.	Adding	text	to	your	icon	will	rarely	result
in	easily	readable	results,	and	scaling	down	your	existing	icon	could	cause	it	to	look	like	a

cluttered	mess.	To	make	matters	worse,	watchOS	icons	have	a	circular	theme—as	opposed
to	the	“squircles”	employed	on	iOS—and	the	average	iOS	icon	could	be	subjected	to	some
unflattering	cropping.

Redesigning	your	existing	icon	to	fit	the	new	dimensions	would	be	a	lot	more	sensible.
Take,	for	example,	the	icons	for	PCalc,	a	successful	calculator	app	for	Mac,	iOS,	and	now
watchOS.	When	developer	James	Thomson	was	putting	together	the	icons	for	the
watchOS	version,	he	took	the	time	to	redesign	the	iOS	icon	to	fit	the	new	circular	aesthetic
and	to	promote	the	most	distinctive	part	of	his	icon:	the	number	42	(Figure	15.2).	You	can
find	more	information	about	PCalc	at	the	developer’s	website:	www.pcalc.com/iphone.

FIGURE	15.2	The	distinctive	square	icon	of	PCalc	on	iOS	was	translated	to	a	circle	for
watchOS.

Image	assets

watchOS	comes	prepared	with	the	ability	to	support	multiple	devices	with	different	screen
sizes	and	resolutions.	To	make	this	possible,	watchOS	gives	you	the	ability	to	configure
individual	user	interface	elements	to	have	different	property	values	depending	on	the	size
of	the	screen	that	the	app	runs	on.	For	example,	this	allows	you	to	configure	your	user
interface	elements	to	have	different	sizes,	or	even	text	contents,	according	to	the	available
screen	space.

Although	the	best	user	interfaces	do	not	heavily	rely	on	pixel-perfect	images	for	their
design,	it	is	still	possible	that	you	will	want	to	customize	your	image	assets	to	have
different	sizes	depending	on	the	display	size.	You	can	of	course	customize	the	actual
dimensions	of	the	image	so	that	it	uses	the	available	space	most	appropriately.	Figure	15.3
shows	the	image	size	properties	customized	to	allow	the	42mm	devices	to	use	more	of	the
space.

http://www.pcalc.com/iphone

FIGURE	15.3	Customizing	the	image	properties	to	override	size	dimensions	on	42mm
devices

This	is	a	very	useful	capability,	but	it	does	pose	a	problem	for	the	app	user.	Using	a
single	image	for	multiple	sizes	can	lead	to	scaling	artifacts	as	the	image	is	stretched	to	fit	a
dimension	it	was	not	optimized	for.	Using	asset	catalogs	to	manage	multiple	images	for
the	different	screen	sizes	is	the	best	solution	to	this	problem.

1.	In	the	Project	Navigator,	open	the	asset	catalog	named	Assets.xcassets	in	the
WatchKit	App	file	group.

Take	care	to	open	the	asset	catalog	in	the	file	group	named	WatchKit	App,	not
WatchKit	Extension.

2.	In	the	Xcode	main	menu,	select	Editor	>	Add	Assets	>	New	Image	Set.

This	creates	a	new	image	set	named	Image	with	a	default	set	of	image	placeholders
(Figure	15.4).	Unfortunately,	the	default	placeholders	(for	1x,	2x,	and	3x	images)	do
not	suit	our	watchOS	app,	so	we	need	to	change	them.

FIGURE	15.4	A	default	image	set

3.	Open	the	Attributes	inspector,	deselect	the	Universal	checkbox,	and	select	the	Apple
Watch	checkbox	(Figure	15.5).

FIGURE	15.5	The	Attributes	inspector	properties	for	the	image	set

This	causes	the	previous	placeholders	to	be	replaced	with	placeholders	marked	2x,
38	mm	2x,	and	42	mm	2x	(Figure	15.6).

FIGURE	15.6	Placeholders	for	a	watchOS-specific	image

The	next	step	is	to	place	images	in	the	appropriate	placeholders.	If	you	have	only
one	image	for	all	device	sizes,	then	you	can	use	the	2x	placeholder.	For	our	example,
we	want	to	use	two	images.	We	have	created	these	so	you	don’t	have	to,	and	you	can
obtain	them	from	our	assets	repository	(bit.ly/bwa-image-assets).

4.	Download	the	sample	assets,	and	expand	the	file	named	image-assets.zip	to
create	a	folder	containing	two	image	files.

5.	Drag	the	file	named	app-image-38.png	over	the	placeholder	named	38	mm	2x
(Figure	15.7).

FIGURE	15.7	Dragging	the	38mm	image	over	the	placeholder

6.	Drag	the	file	named	app-image-42.png	to	the	placeholder	named	42	mm	2x.

You	should	now	have	two	similar	but	differently	sized	images	in	the	image	set.
We’ve	created	the	images	with	different	numbers	on	them	so	that	they	can	be	more
readily	distinguished	(Figure	15.8).

FIGURE	15.8	A	fully	configured	image	set

7.	Using	the	Attributes	inspector,	change	the	name	of	the	image	set	to	multi-image;
you	don’t	have	to,	but	it	makes	the	whole	process	feel	slightly	less	generic.

You	should	now	have	a	nicely	configured	image	set,	ready	to	use	in	the	app.

8.	Open	the	file	named	Interface.storyboard,	and	select	the	interface
controller	scene.

9.	In	the	Object	Library,	find	the	Image	object,	and	drag	it	onto	the	interface	controller
scene.

10.	In	the	Attributes	inspector,	set	the	Image	property	to	multi-image,	and	the
Horizontal	and	Vertical	Alignment	properties	to	Center.

Strangely,	when	you	specify	the	multi-image	image	set,	the	image	placeholder	is
replaced	with	a	question	mark.	Although	this	may	suggest	that	Xcode	cannot	find
the	image	set,	it	actually	indicates	that	it	can’t	decide	which	image	to	display	right
now	because	Interface	Builder	is	currently	using	the	Any	Screen	Size	option.	If	you
switch	to	a	specific	size	class,	the	correct	image	will	be	shown	for	that	size	class.

Now	we	are	ready	to	check	the	results.

11.	In	the	scheme	selector	pop-up	menu,	choose	the	HelloWrist	WatchKit	App	as	the
scheme	and	iPhone	6	+	Apple	Watch	–	38mm	as	the	destination,	and	then	build	and
run	the	app.

Once	built,	the	app	should	run	and	display	the	correct	image	for	the	38mm	size	class
(Figure	15.9).

FIGURE	15.9	The	app	running	in	38mm	(left)	and	42mm	modes

12.	Repeat	step	11	for	the	destination	iPhone	6	Plus	+	Apple	Watch	–	42mm.

Again,	the	app	should	run,	and	this	time	it	will	display	the	correct	image	for	the
42mm	size	class	(Figure	15.9).

This	technique	may	seem	over	the	top,	and	we	readily	concede	that	it	will	not	be
necessary	for	every	image	in	your	app.	But	it	is	good	to	be	aware	of	its	availability,
especially	as	you	move	into	beta	testing	and	distribution—a	phase	of	app	development
that	often	highlights	problems	on	a	wider	range	of	devices	than	you	may	have	access	to,
and	a	phase	when	you’ve	got	more	eyes	on	your	software	than	ever	before.

Back	to	the	Developer	Center
Despite	the	hassles	you	put	up	with	in	Chapter	13	to	enable	on-device	testing	of	your	app,
we	have	some	bad	news	for	you:	You	need	to	go	back	to	the	Developer	Center	to	do	some
more	work	if	you	want	to	be	able	to	release	your	app.

App	identifiers

If	you	have	ever	released	an	iOS	app	before,	you	are	aware	of	the	need	to	create	an	app
identifier	in	the	Developer	Center.	The	app	identifier	is	a	unique	string	that	Apple	requires
for	every	app	that	is	to	be	released,	and	it	is	specified	as	part	of	the	provisioning	profile
that	you	create	to	sign	your	app	for	installation	onto	physical	devices.

During	the	development	process,	you	can	specify	a	wildcard	app	identifier	for	your
development	provisioning	profile.	This	allows	you	to	include	your	provisioning	profile	in
any	app	whose	bundle	identifier	matches	the	wildcard.	For	release,	you	must	use	a
distribution	provisioning	profile—we’ll	cover	that	in	the	next	section—one	of	the
requirements	for	which	is	that	a	wildcard	app	identifier	cannot	be	used.

For	your	HelloWrist	app,	you	need	to	create	an	app	identifier	that	matches	the	bundle
identifier	that	was	generated	when	you	created	the	project	way	back	in	Chapter	1	(Figure
1.2).	The	bundle	identifier—build.watchosapps.HelloWrist—was	generated
from	the	organization	identifier	(build.watchosapps)	and	product	name
(HelloWrist)	that	you	supplied.	Knowing	this,	you	can	log	in	to	the	Developer	Center
and	create	the	corresponding	app	identifier.

	Note

Unfortunately,	app	identifiers	must	be	unique	across	all	developers,	so	you
won’t	be	able	to	follow	along	with	these	exact	instructions.	You	can	instead
change	the	bundle	identifier	in	the	target	settings	so	that	it	maps	onto	an
identifier	of	your	own.

1.	In	a	web	browser,	navigate	to	the	App	IDs	subsection	of	the	Identifiers	section	of
the	Developer	Center	(bit.ly/bwa-adc-appids).

If	you	are	a	member	of	multiple	development	teams,	be	sure	to	sign	in	to	the	correct
team	if	prompted.

2.	Click	the	plus	(+)	button	near	the	upper	right	of	the	page.

3.	Enter	an	App	ID	Description	for	the	App	Identifier;	for	ours,	we	will	use
HelloWrist	App.

4.	In	the	App	ID	Suffix	field,	choose	Explicit	App	ID,	and	enter	your	bundle	ID;	for
ours	we	will	enter	build.watchosapps.HelloWrist.

If	you	have	any	specific	app	services	that	you	need	to	include,	you	can	do	so	now.
Your	selection	will	be	specific	to	your	app,	and	they	can	be	edited	later	anyway,	so
we’ll	skip	this	section.

5.	Click	Continue.

The	Developer	Center	will	validate	your	proposed	settings,	and	if	everything	is
acceptable	it	will	display	a	summary	of	your	request.

6.	Click	Submit	to	register	your	app	identifier.

You	now	have	an	identifier	that	you	can	use	when	you	want	to	create	a	distribution
provisioning	profile	for	your	app.

Unfortunately,	the	identifier	we	just	created	applies	only	to	the	iOS	app.	We	also
need	identifiers	for	the	WatchKit	App	and	WatchKit	Extension	targets	as	well,	and
they	should	match	the	bundle	identifiers	that	the	project	templates	set	up.

7.	Repeat	steps	2	through	6	for	the	WatchKit	App	target.	We	will	use	an	App	ID
Description	of	HelloWrist	Watch	App	and	an	Explicit	App	ID	of
build.watchosapps.HelloWrist.watchkitapp.

8.	Repeat	steps	2	through	6	for	the	WatchKit	Extension	target.	We	will	use	an	App	ID
Description	of	HelloWrist	Watch	Extension	and	an	Explicit	App	ID	of
build.watchosapps.HelloWrist.watchkitapp.watchkitextension.

Production	certificates

We	went	through	the	process	of	creating	a	development	certificate	in	Chapter	13.	This	was
enough	to	code	sign	your	app	for	installation	on	a	local	device,	but	to	distribute	through
TestFlight	or	the	App	Store,	you	must	use	a	production	certificate.

1.	In	your	web	browser,	navigate	to	the	Certificates	section	of	the	Developer	Center
(bit.ly/bwa-adc-cert).

2.	Click	the	plus	(+)	button	near	the	upper	right	of	the	page.

3.	Scroll	down	the	page	to	the	Production	section,	and	select	App	Store	and	Ad	Hoc	as
the	certificate	type.

4.	Click	Continue.

5.	Create	a	certificate	signing	request	by	following	the	instructions	provided,	and	click
Continue.

If	you	did	this	in	Chapter	13	and	kept	the	CSR	file,	you	can	use	the	same	file	instead
of	creating	a	new	one.

6.	Choose	the	CSR	file,	and	click	Generate.

7.	Download	the	generated	certificate	or	refresh	the	developer	team	in	the	Accounts
section	of	the	Xcode	preferences.

Distribution	provisioning	profile

Although	we	mentioned	it	in	previous	sections,	it	bears	repeating	that	if	you	wish	to
distribute	your	app	to	the	wider	world,	you	need	to	bundle	it	with	a	distribution
provisioning	profile.	The	development	profile	you	created	in	Chapter	13	is	for	use	only
with	devices	to	which	you	have	direct	physical	access,	so	if	you	want	to	get	your	app	onto
devices	via	TestFlight	or	the	App	Store,	you	need	to	move	up	to	a	distribution	profile
instead.

1.	In	your	web	browser,	navigate	to	the	Distribution	subsection	of	the	Provisioning
Profiles	section	of	the	Developer	Center	(bit.ly/bwa-adc-profs).

2.	Click	the	plus	(+)	button	near	the	upper	right	of	the	page.

3.	Scroll	down	the	page	to	the	Distribution	section,	and	choose	App	Store	as	the
profile	type.

4.	Click	Continue.

To	create	the	distribution	profile,	you	need	to	include	an	app	identifier.

5.	Choose	the	app	identifier	you	created	in	the	section	“App	identifiers,”	and	click
Continue.

6.	Choose	a	production	certification	to	include	in	the	provisioning	profile;	the
certificate	created	in	the	previous	section	will	be	sufficient.

7.	Click	Continue.

8.	Give	the	profile	a	meaningful	name	so	that	you	can	identify	its	purpose	when	you
stumble	across	it	again	in	the	future;	we	will	call	ours	HelloWrist	Distribution
Profile.

9.	Click	Generate.

The	result	is	a	profile	that	can	be	downloaded	and	installed	directly	to	Xcode,	or	it

can	be	pulled	down	by	refreshing	the	developer	team	in	the	Accounts	section	of	the
Xcode	preferences.

However,	we’re	not	finished	yet;	we	need	to	create	similar	distribution	profiles	for
the	WatchKit	App	and	WatchKit	Extension	targets.

10.	Repeat	steps	2	through	9	for	the	App	target.	We	will	use	the	app	identifier
build.watchosapps.HelloWrist.watchkitapp	that	we	created	earlier	and	give	the
profile	a	name	of	HelloWrist	Watch	App	Distribution	Profile.

11.	Repeat	steps	2	through	9	for	the	Extension	target.	We	will	use	the	app	identifier
build.watchosapps.HelloWrist.watchkitapp.watchkitextension	that	we	created
earlier	and	a	profile	name	of	HelloWrist	Watch	Extension	Distribution	Profile.

You	now	have	all	the	pieces	you	need	to	build	your	app	for	distribution.

12.	From	the	scheme	selector	pop-up	menu,	choose	iOS	Device	+	watchOS	Device	as
the	destination.

13.	Choose	Product	>	Archive	from	the	Xcode	main	menu.

Xcode	will	start	the	process	of	building	for	release.	This	differs	from	a	normal	build
and	run	action	because	the	release	configuration	settings	are	used.	This	allows	the
compiler	to	do	its	optimization	magic	to	get	your	apps	running	faster	than	normal
debug	builds.

At	the	end	of	the	Archive	action,	Xcode	will	display	its	Organizer	window,	opened
to	the	Archives	tab	(Figure	15.10).	This	will	show	you	the	local	builds	that	you	have
available	and	give	you	the	option	to	upload	them	to	the	App	Store.	Before	you	can
do	that,	though,	you	need	to	make	sure	the	App	Store	is	ready	to	receive	them.

FIGURE	15.10	The	Xcode	Organizer	window

	Tip

When	archiving,	Xcode	should	use	the	Automatic	setting	to	choose	the
correct	provisioning	profile	for	each	target.	If	the	Automatic	setting	does	not
pick	the	correct	profiles,	you	can	set	them	manually	in	the	target	settings.

iTunes	Connect
Whether	you	are	aiming	straight	for	release	or	are	going	to	embark	on	beta	distribution
first,	you	need	to	sign	in	to	iTunes	Connect	to	prepare	your	app	before	it	can	be	uploaded
from	Xcode.	We	mentioned	way	back	in	the	mists	of	Chapter	1	that	watchOS	apps	are
distributed	along	with	their	companion	iOS	apps—like	a	welcome	Trojan	Horse.	This
means	that	a	lot	of	what	needs	to	be	done	in	iTunes	Connect	is	actually	for	the	benefit	of
your	iOS	app,	so	we	will	skate	over	some	of	the	sections	quite	quickly	in	an	effort	to	focus
on	what	you	need	to	do	for	your	watch	app.

Creating	an	App	Record
The	first	stage	is	to	create	an	iTunes	Connect	entry	for	your	app.

1.	Sign	in	to	iTunes	Connect	through	your	web	browser	(bit.ly/bwa-itc).

2.	Click	My	Apps.

3.	Click	the	plus	(+)	button	to	display	the	add	menu,	and	select	New	App	when	it
appears.

4.	Fill	in	the	app	details,	ensuring	that	you	include	the	bundle	identifier	you	created
earlier.

5.	Click	Create.

A	new	app	record	will	be	created,	ready	to	be	fleshed	out	with	some	extra
information.	First,	though,	you	need	to	send	a	build	to	iTunes	Connect	from	Xcode.

Uploading	Your	App
To	upload	your	build	to	iTunes	Connect:

1.	Open	the	Xcode	Organizer	by	selecting	Window	>	Organizer	from	the	Xcode	main
menu.

2.	In	the	left	panel,	select	the	app	(HelloWrist	for	us),	and	then	select	the	specific	build
you	wish	to	upload	(Figure	15.10).

3.	Click	the	Upload	to	App	Store	button.

If	you	are	a	member	of	more	than	one	development	team,	Xcode	presents	a	list	of

teams	(Figure	15.11).

FIGURE	15.11	The	development	team	selection	dialog

4.	Choose	the	development	team	that	corresponds	to	the	app	identifier,	and	click
Choose.

Xcode	will	now	attempt	to	sign	the	build	for	App	Store	distribution.	If	the
provisioning	profile	for	the	app	is	incorrect,	Xcode	will	display	an	error	and	some
information	to	guide	you	to	resolution.	Once	it’s	resolved,	you	will	need	to	repeat
the	archiving	process	and	then	go	back	to	step	1.

If	the	provisioning	profile	is	correct,	Xcode	will	display	a	confirmation	screen	to
indicate	that	it	is	ready	to	upload	the	build	(Figure	15.12).

FIGURE	15.12	The	upload	confirmation	screen

5.	Click	Submit	to	send	the	build	to	the	App	Store.

Xcode	will	perform	some	additional	processing	and	then	start	transmitting	the
archive	to	the	App	Store.	When	the	upload	is	completed,	you	should	see	a
confirmation	message,	and	you’re	now	ready	to	prepare	for	distribution	to	TestFlight
beta	testers	or	to	put	it	up	for	sale	on	the	App	Store.

Distributing	the	App
The	best	way	to	be	ready	to	ship	is	to	ensure	that	you’ve	done	enough	on-device	testing.	A
good	QA	team	can	go	a	long	way	toward	ensuring	that	your	app	is	ready,	but	if	you	want
to	be	really	sure	that	your	code	covers	all	the	edge	cases	that	your	customers	can	throw	at
it,	then	beta	testing	with	a	wider	audience	is	a	must.

If	you’re	not	interested	in	doing	so,	or	you	simply	want	to	get	your	app	out	there	more
quickly,	you	can	jump	straight	into	preparing	your	app	for	sale	(see	the	“App	Store
Distribution”	section).	However,	we	recommend	you	give	the	following	sections	a	read	at
some	stage,	if	only	to	know	what	the	rest	of	the	Apple	developer	community	is	talking
about.

TestFlight	Distribution
One	of	the	biggest	barriers	to	beta	testing	iOS	(and	now	watchOS)	apps	with	a	wider
range	of	customers	has	always	been	the	restrictions	placed	on	deploying	builds	to	physical
devices.	Until	fairly	recently,	Apple	restricted	you	to	being	able	to	install	onto	just	100
devices;	when	taking	into	account	the	fact	that	testers,	who	are	often	developers	as	well,
can	have	iPhones	and	iPads,	and	over	the	course	of	a	year	will	often	have	multiple	phones,
those	100	devices	are	eaten	up	pretty	quickly.

Fortunately,	Apple	recently	bought	a	beta	testing	service	named	TestFlight	and	brought
the	process	in-house;	it	is	now	offered	for	free	as	part	of	your	developer	program
membership.	TestFlight	is	still	a	little	rough	around	the	edges	(and	lacking	some	of	the
more	advanced	crash	reporting	features	of	paid	competitors	like	HockeyApp),	but	for	the
starting	developer	it	is	a	good	value	for	the	money,	and	so	we	will	focus	on	it	here.

Accessing	TestFlight

TestFlight	builds	can	be	created	through	the	iTunes	Connect	interface.	When	you’re
viewing	the	information	page	for	a	specific	app,	TestFlight	will	be	presented	as	an	option
along	the	top	of	the	page.

TestFlight	builds	can	be	one	of	two	flavors:

	Internal	TestFlight	builds	are	intended	for	you	to	distribute	to	testers	within	your
own	organization.	You	are	limited	to	25	individual	testers,	although	they	have	the
ability	to	test	the	app	on	multiple	devices.	Internal	builds	are	not	subject	to	any	form
of	app	review,	and	so	they	are	a	good	way	to	get	your	app	out	to	a	small	group	of
trusted	testers	for	immediate	feedback.	Internal	testers	can	be	added	only	if	they
have	iTunes	Connect	accounts.

	External	TestFlight	builds	are	intended	for	distribution	to	a	wider	audience	outside
your	own	organization.	The	tester	limit	is	significantly	higher,	at	1000	individuals,
and	again	they	are	free	to	test	the	app	on	multiple	devices.	Due	to	the	wider
distribution,	external	builds	are	subject	to	beta	app	review.	Although	this	is	not	quite
as	stringent	as	the	full	App	Store	review	process,	it	does	mean	that	your	test	builds
will	be	placed	in	a	queue	to	await	review	and	can	be	delayed	and	even	rejected	if
they	fail	the	review	process.	This	can	be	useful,	though;	beta	reviews	can	highlight
potential	failures	before	you	submit	for	full	App	Store	review.	External	testers	can

be	added	simply	by	adding	their	email	address	to	a	tester	management	form,	but	you
should	make	sure	you	have	their	permission	first.

It	is	possible	to	maintain	different	internal	and	external	builds	at	the	same	time;	this
gives	you	a	way	to	provide	a	stable	beta	to	your	external	testers	while	the	internal	testers
could	have	access	to	daily	test	builds	that	have	varying	quality	levels.

Guidance	for	your	testers

So	what	happens	when	you	release	a	build	of	your	app	to	your	testers?	If	they’ve	not
received	a	build	before,	they	will	be	sent	an	email	to	invite	them	to	join	your	test	program.
To	complete	the	signup	they	will	need	to	install	the	TestFlight	app	from	the	App	Store;
this	is	not	your	app	but	an	app	produced	by	Apple	to	help	TestFlight	users	maintain	their
test	builds	on	their	devices.

Following	the	link	in	the	email	will	open	the	TestFlight	app	on	their	device	and	present
some	information	about	the	app.	When	an	app	comes	with	a	bundled	Apple	Watch	app,
the	information	page	will	display	a	banner	that	reads	“Offers	Apple	Watch	App”	(Figure
15.13).

FIGURE	15.13	TestFlight	information	for	HelloWrist

Once	the	tester	taps	the	Install	button,	the	test	build	will	be	downloaded	and	installed	on
the	device.	When	installation	has	completed,	the	user	can	return	to	the	TestFlight	app	to
view	the	information	for	the	app;	this	time	the	“Offers	Apple	Watch	App”	banner	will	be
updated	to	say	“Install	on	Apple	Watch”	and	will	feature	a	switch	control	(Figure	15.14).
If	the	user	taps	the	switch,	the	process	of	installing	the	app	to	the	Apple	Watch	will	begin.
Once	that’s	completed,	the	user	can	start	experimenting	with	your	creation.

FIGURE	15.14	The	test	build	installation	switch

It	is	important	that	your	testers	(especially	external	testers)	are	aware	of	the	implications
of	running	beta	versions	of	your	software.	Although	many	beta	testers	may	simply	want
access	to	an	early	preview	of	your	app,	they	may	be	disappointed	to	find	that	it	isn’t	as
stable	as	they	would	like.	It	is	in	your	best	interests	to	find	testers	who	are	enthusiastic
about	the	testing	process	and	not	just	wanting	access	to	previews.	Enthusiastic	testers	are
more	forgiving	of	bugs	and	more	likely	to	give	you	useful	feedback.

Builds	are	time-limited	to	30	days	and	will	need	to	be	replaced	by	App	Store	releases	or
by	further	test	builds.	If	your	users	can	create	their	own	data	within	your	apps,	you	should
strive	to	keep	providing	them	with	a	usable	build	before	the	current	build	has	expired.	You
should	also	do	your	best	to	protect	the	data	they	create;	although	they	know	they	are
taking	a	risk	using	beta	software,	it	still	reflects	badly	upon	you	if	every	beta	version
destroys	their	data.

If	the	testers	want	to	stop	using	the	test	builds,	they	can	either	remove	the	build	from
their	device	completely	or	replace	it	with	an	App	Store	release	build.	If	they	want	to	stop
receiving	notifications	of	new	builds,	the	TestFlight	app	has	a	Stop	Testing	button	at	the
bottom	of	the	page	that	provides	more	detail	about	your	app.	Tapping	the	button	will	start
the	process	of	leaving	your	test	program.

App	Store	Distribution
The	endgame	of	this	whole	process	is	to	release	your	app	to	the	world	via	the	App	Store.
As	we’ve	said	before,	your	watch	app	is	delivered	to	users	inside	the	iOS	app	bundle,	so
the	process	of	releasing	your	watch	app	is	almost	identical	to	that	which	you	will	be	used
to	for	iOS	app	release.

The	only	addition	to	the	process	is	the	additional	screenshots	and	icons.	The	app
information	page	in	iTunes	Connect	has	an	expandable	section	named	Apple	Watch.	When
you	expand	the	section,	it	reveals	two	new	fields.	The	first	field	is	for	the	watchOS	app
icon;	it	should	be	a	PNG	file	of	1024	by	1024	pixels.	The	second	field	can	be	used	to	add
up	to	five	screenshots	from	the	42mm	version	of	your	watch	app	(312	by	390	pixels).
More	guidelines	are	available	at	the	app	submission	guide	for	Apple	Watch:	bit.ly/bwa-
store-guide.	With	this	additional	data	in	place,	users	browsing	iTunes	or	the	App	Store	will
see	more	about	the	watchOS	app	that	you	are	offering.

	Tip

The	standard	product	page	on	the	iOS	App	Store	will	show	the	first	two
screenshots	without	scrolling,	so	Apple	recommends	that	you	provide	at	least
two	screenshots	to	take	advantage	of	this.

Wrapping	Up
We	have	reached	the	end	of	our	watchOS	journey	together,	but	we	hope	that	your	journey
is	only	just	beginning.	The	Apple	Watch	is	an	exciting	new	platform,	and	although	there
are	numerous	restrictions	right	now—some	artificial,	some	natural—it	has	always	been
within	the	confines	of	restriction	that	iOS	and	Mac	developers	have	created	magical	and
innovative	apps	that	continue	to	push	the	boundaries	of	their	platforms.	We	look	forward
to	seeing	what	you	can	do	with	watchOS.

Index

A
about	this	book,	xiv–xv

accelerometer	data,	233–237

pedometer	data,	235–237

reading	raw,	233–235

accessibility	features,	83–86

Dynamic	Type,	84–85

reason	for	adding,	84

VoiceOver,	85–86

action	buttons,	155

action	methods,	8

actioning	notifications,	154–157

tapping	notifications,	154–155

text	responses,	156–157

actions

archive,	252

notification,	149

ActionSheet	alert,	56

activateCommands(stop:continue:)	method,	130

afterDate	parameter,	107

alert	property,	147

alerts,	52–56

Alignment	options,	69–70,	175

anchors,	queries	with,	230

animateWithDuration()	method,	80

animation,	76–82

controlling,	76–80

picker-linked,	80–82

App	Group	identifier,	205

app	identifiers,	249–250

app	records,	253

App	Store

distributing	your	app	via,	257

uploading	your	app	to,	253–254

App	Transport	Security,	162

Apple	Developer	Center,	215

Apple	Push	Notification	Service	(APNS),	134

Apple	Watch

deploying	apps	to,	219–220

device	management,	212–213

distributing	apps	for,	243–257

Human	Interface	Guidelines,	60

iPhone	communications,	171–183

model	diversity,	10

network	connectivity,	162

screen	sizes,	10,	61,	72

storage	limitations,	194,	208

uniqueness	of,	xiii

application	context	updates,	172–173

application	delegate	methods,	182–183

applicationDidBecomeActive()	method,	17

applicationDidFinishLaunching()	method,	17

applicationWillResignActive()	method,	17

aps	property,	147–148

Archive	action,	252

asset	catalogs,	246

Assets.xcassets	file,	17,	76,	100

assistant	editor,	8

Attributes	inspector,	7,	68–70

Alignment	options,	69–70

Image	Set	options,	247,	248

Size	options,	70

View	options,	69

audio

background	playback	of,	199–203

encoding	recommendations,	194

handling	recorded,	208

recording,	203–208

resource	for	free,	200

storage	of,	194,	208

See	also	media

awakeWithContext(_:)	method,	32,	50,	80

B
background	audio	playback,	199–203

background	color,	43,	46

background	images,	46,	75,	76

background	loading,	65

background	transfer,	172–173

application	context	updates,	172–173

file	transfer,	173

user	info	transfer,	173

beforeDate	parameter,	107

best	practices,	61–67

beta	testing,	254,	255–257

Bluetooth	connection,	162

Boolean	properties,	9

budgeting,	115

building	the	user	interface,	67–86

accessibility	features,	83–86

images	and	animation,	74–82

laying	out	the	interface,	68–73

settings	interface,	82–83

See	also	designing	the	user	interface

Bundle	Identifier	option

project	template,	20

target	template,	22

Button	element,	7–8

buttons,	43

buttonTapped()	method,	78–79

C
category	property,	147–148

Certificate	Signing	Request	(CSR),	216

chrome	vs.	content,	62,	74

Circular	complications,	91,	92

CLKComplicationDataSource	protocol,	94,	101

CLKImageProvider,	104

CLKTextProvider,	104

ClockKit	framework,	88,	101–109

placeholder	templates,	109

timeline	entries,	104–109

timeline	settings,	101–103

CMMotionManager	class,	234

CMPedometer	class,	235

Cocoa	URL	loading	system,	162

code	samples,	xiv–xv

color

background,	43,	46

global	tint,	64–65

Color	watch	face,	91

communications,	161–183

inter-device,	171–183

network	request,	162–171

complication	parameter,	102,	107

ComplicationController.swift	file,	17,	94,	98

ComplicationDataSource	class,	98

ComplicationManager.swift	file,	177–178,	179,	180

complications,	xvi,	87–115

adding	to	existing	apps,	96–99

budgeting	related	to,	115

ClockKit	framework	for,	88,	101–109

configuration	process	for,	94–96

data	layouts	for,	91–92

explanation	of,	88

families	of,	89–92

image	assets	in,	99–101

including	in	new	apps,	93–96

placeholder	templates	for,	109

testing,	110–113

Time	Travel	mode,	88–89

timeline	entries	for,	104–109

update	methods	for,	113–114

Complications	Group	setting,	96

configuring	provisioning	profiles,	213–219

automatic	setup	for,	213–215

manual	setup	for,	215–219

constraints

Apple	Watch,	26

layout,	175–176

content	vs.	chrome,	62,	74

context	menu,	36–37

contextForSegueWithIdentifier(_:)	method,	35,	50

continue	reserved	word,	130

Continuity	feature	set,	181

control	groups,	45–46

controls,	40–56

display,	41–42

interactive,	43–45

rules	for	using,	40

structural,	45–56

CoreMotion,	233–237

pedometer	data,	235–237

raw	accelerometer	data,	233–235

createLocationAndRegionFromCoordinate()	method,	145

D
data

caching	of,	65

sensor,	224–237

Data	Source	Class	setting,	95

date	label,	41

deactivation	issues,	169–171

deploying	apps

device	management	and,	212–213

overview	of	process	for,	219–220

provisioning	profiles	for,	213–219

designing	the	user	interface,	59–66

challenges	related	to,	61–66

points	to	consider	for,	60–61

See	also	building	the	user	interface

destructive	property,	148

Developer	Center

app	identifiers,	249–250

development	certificates,	215–216

production	certificates,	250–251

provisioning	profiles,	213–219,	251–252

development	certificates,	215–216

development	teams,	213,	253–254

Device	Manager,	212–213

devices

communication	between,	171–183

deploying	apps	to,	219–220

ensuring	app	support	on,	244

managing	in	Device	Manager,	212–213

registering	new,	216

See	also	Apple	Watch;	iPhone

Devices	option,	21

dictation	button,	188

dictation	input,	186,	188,	191

didActivate()	method,	32,	33

didAppear()	method,	33

didReceiveLocalNotification()	method,	136,	143

didReceiveRemoteNotification()	method,	136,	143

Dismiss	button,	148,	154

dismissController()	method,	35

dismissMediaPlayerController()	method,	199

dismissTextInputController()	method,	187

display	controls,	41–42

images,	42

labels,	41

maps,	42

distributing	your	app,	243–257

App	Store	used	for,	257

creating	an	app	record	for,	253

Developer	Center	requirements	for,	249–252

iTunes	Connect	process	for,	253–254,	257

preparation	process	for,	244–252

TestFlight	distribution	and,	255–257

upload	process	for,	253–254

distribution	provisioning	profiles,	251–252

dynamic	notifications,	137,	138,	142–143,	147

Dynamic	Type	system,	84–85

E
Embed	in	Companion	Application	option,	23

emoji

input	handling,	190–191

list	project	example,	163–168

source	code	using,	228

encoding	media,	194

error	handler,	174

ethical	issues,	84

expired	parameter,	170

ExtensionDelegate.swift	file,	17,	179

extensions.	See	WatchKit	extensions

external	TestFlight	testers,	255

F
families,	complication,	89–91

file	transfer,	173

Fixed	sizing,	70

flow-layout	system,	7

Focus	property,	51

focusForCrownInput(_:)	method,	52

fonts,	Dynamic	Type,	84–85

foreground	media	playback,	195–199

freemusicarchive.com	website,	200

G
generic	text	responses,	157

gestures,	66,	85

getCurrentTimelineEntryForComplication(_:withHandler:)	method,
106

getPlaceholderTemplateForComplication(_:withHandler:)	method,
109

getPrivacyBehaviorForComplication(_:withHandler:)	method,	103

getTimelineEntriesForComplication(_:)	methods,	107,	108

GitHub	API,	166,	168,	171

glance	commander,	125–127

Glance	Interface	Controller,	12,	121

GlanceController	class,	128

GlanceController.swift	file,	17,	130

glances,	xvi,	117–132

adding	to	existing	projects,	120–122

controlling,	129–130

creating	in	new	projects,	119–120

customizing	commands	for,	127–129

explanation	of,	118–119

glance	commander	and,	125–127

layout	options	for,	123–124

notifications	vs.,	118

seeing	in	action,	131–132

simulating	updates	for,	131–132

strict	controls	for,	124–125

visual	customization	of,	123–127

WKInterfaceController	and,	127–130

global	tint	color,	64–65

Grand	Central	Dispatch	(GCD),	131

grouping	interface	objects,	71–72

groups,	app,	205–206

H
H.264	video	format,	194

handleActionWithIdentifier(_:)	methods,	17,	149,	155

handler	parameter,	102,	107

handleUserActivity(_:)	method,	17,	182

handoff	coordination,	17

Handoff	feature,	181–183

haptic	feedback	engine,	237–241

careful	use	of,	240–241

experimenting	with,	238–240

feedback	styles,	238

hardware	APIs,	xvi,	223–241

CoreMotion,	233–237

haptic	feedback	engine,	237–241

Health	app,	224

HealthKit,	224–233

preparing	the	user	interface,	224–226

responding	to	heart	rate	updates,	230–233

setting	up	access,	226–230

heart	rate	sensor,	224–233

HelloWrist	WatchKit	App	scheme,	14

HideOnLockScreen	value,	103

hiding	objects,	69

hierarchical	navigation,	26,	30–31,	33–34

HKAnchoredObjectQuery,	229,	230

horizontal	alignment,	69

Human	Interface	Guidelines	(HIG),	60

I
icons,	watchOS	app,	245–246

Identity	inspector,	121

Image	Sequence	picker,	51

image-based	animations,	76

images,	74–76

background,	46,	75,	76

complication,	99–101

displaying,	42,	75–76

getting	onto	the	watch,	74–75

methods	for	working	with,	76

placeholders	for	WatchOS-specific,	247

preparing	for	distribution,	246–249

principles	for	using,	75

two	ways	of	using,	74

Include	Complication	option

project	template,	21

target	template,	23

Include	Glance	Scene	option

project	template,	21

target	template,	23,	119

Include	Notification	Scene	option

project	template,	21

target	template,	23

Include	UI	Tests	option,	21

Include	Unit	Tests	option,	21

Indicator	property,	52

Info.plist	file,	96,	200

init()	method,	32

inline-text	response	screen,	156

input.	See	text	input

insertRowsAtIndexes(_:withRowType:)	method,	50

interactive	controls,	43–45

buttons,	43

movies,	45

sliders,	44

switches,	43–44

inter-device	communication,	171–183

background	transfer	for,	172–173

Handoff	feature	for,	181–183

live	message	transmission	for,	173–181

making	the	most	of,	181

interface.	See	user	interface

interface	animations,	76

interface	controllers

context	menu	and,	36–37

hierarchical	navigation	and,	30–31

page-based	navigation	and,	28–29

See	also	WKInterfaceController	class

interface	groups,	45–46

Interface.storyboard	file,	5,	27,	121

InterfaceController.swift	file,	8,	17,	34,	180

internal	TestFlight	testers,	255

invalidateUserActivity()	method,	182

iOS	9.0	software,	xv,	171,	244

iOS	App	Store.	See	App	Store

iOS	Development	certificate,	215–216

iOS	projects

creating	new,	4

development	certificate,	215–216

iOS	simulator,	13

iPhone

communicating	with,	171–183

deploying	apps	to,	219–220

device	management,	212–213

network	connections	via,	162

notifications	received	on,	134

iTunes	App	Store.	See	App	Store

iTunes	Connect,	253–254,	257

K
Keychain	Access	application,	216

L
Label	element,	6–7

labels,	41,	69

Language	option

project	template,	20

target	template,	23

laying	out	the	user	interface,	68–73

grouping	interface	objects	together,	71–72

handling	different	screen	sizes,	72–73

layout	options

for	complications,	91–92

for	glances,	123–124

for	notifications,	139–141

limit	parameter,	107,	108

List	picker,	50

live	message	transmission,	173–181

preparing	the	iPhone	app,	175–177

receiving	WatchConnectivity	messages,	177–179

sending	WatchConnectivity	messages,	179–181

local	notifications,	134,	158

location	notifications,	142–143,	153–154

locationReplyAction	button,	156

Log	Navigator,	124

long-look	interface,	136–137

M
Manage	Schemes	dialog,	11

maps

display	controls	for,	42

glance	restrictions	on,	124

media,	193–209

audio	recording,	203–208

background	playback	of,	199–203

foreground	playback	of,	195–199

storing	video	and	audio,	194,	208

types	and	encodings,	194

See	also	audio;	video

messages

receiving	WatchConnectivity,	177–179

sending	WatchConnectivity,	179–181

modal	presentation	code,	35

Modular	complications,	89–90,	91–92

movies.	See	video

music.	See	audio

N
navigation,	25–38

context	menu,	36–37

hierarchical,	26,	30–31

page-based,	26,	27–29

WKInterfaceController,	31–35

network	connections,	162–171

Apple	Watch	and,	162

dictation	input	and,	186

maps	display	requiring,	42

premature	deactivation	and,	169–171

requests	made	for,	163–169

Notification	Controller	Scene,	12

Notification	Interface	Controller,	139

Notification	Simulation	File	option,	149–150

notificationAlertLabel	outlet,	140

NotificationController	class,	17,	143

NotificationController.swift	file,	17,	138,	143

notifications,	xvi,	133–158

actioning,	154–157

adding	to	existing	projects,	138–139

creating	in	new	projects,	137–138

designing,	139–143

dynamic,	137,	138,	142–143,	147

explanation	of,	134–137

glances	vs.,	118

interface	controller,	143–145

iPhone,	134

layout	for,	139–141

local,	134,	158

location,	142–143,	153–154

payloads	for,	146–151

protocol	for	handling,	17

remote,	134,	158

short	vs.	long	look,	136–137,	147

static,	136,	138,	141–142,	147

status	update,	141–142

tapping,	154–155

testing,	146–154

text	responses	to,	156–157,	192

Watch,	135–137

Now	Playing	glance,	199,	200

NSURLSession	networking	API,	162–171

NSURLSession.sharedSession	method,	163

NSURLSessionConfiguration	object,	163

NSURLSessionDataTask,	162–171

NSURLSessionTask,	163,	171

O
Objective-C	programming	language,	xiv,	20,	23

old-school	programming	techniques,	24

Organization	Identifier	option

project	template,	20

target	template,	22

Organization	Name	option,	20

P
page-based	navigation,	26,	27–29,	35

payloads,	notification,	146–151

PCalc	app,	245–246

pedometer	data,	235–237

performExpiringActivityWithReason(_:usingBlock:)	method,	169,	170

physical	devices

communication	between,	171–183

deploying	apps	to,	219–220

ensuring	app	support	on,	244

managing	in	Device	Manager,	212–213

registering	new,	216

See	also	Apple	Watch;	iPhone

pickers,	50–52

animation	linked	to,	80–82

configuration	of,	51–52

types	of,	50–51

placeholder	templates,	109

placeholders,	watchOS	image,	247

planning	the	user	interface,	59–66

challenges	related	to,	61–66

points	to	consider	for,	60–61

See	also	building	the	user	interface

playHaptic(_:)	method,	238

PNG	image	format,	75

popController()	method,	33

popToRootController()	method,	33

premature	deactivation,	169–171

pre-release	checklist,	244–252
presentAudioRecorderControllerWithOutputURL(_:preset:options:completion:)
method,	203

presentControllerWithName(_:context:)	method,	35

presentControllerWithNames(_:context:)	method,	35

presentMediaPlayerControllerWithURL(_:options:completion:)
method,	198,	199

presentTextInputControllerWithSuggestions(_:allowedInputMode:completion:)
method,	187
presentTextInputControllerWithSuggestionsForLanguage(_:allowedInputMode:completion:)
method,	187

processData(_:error:)	method,	168

Product	Name	option

project	template,	20

target	template,	22

production	certificates,	250–251

project	layout,	WatchKit	app,	18–19

Project	option,	target	template,	23

project	templates,	4,	19–21,	93

providers,	104–105

provisioning	profiles,	213–219

automatic	setup	of,	213–215

distribution	profiles,	251–252

manual	setup	of,	215–219

pushControllerWithName(_:context:)	method,	33

PushNotificationPayload.apns	file,	17,	146

R
reachability,	174

readiness	of	apps,	65

receiving	WatchConnectivity	messages,	177–179

recording	audio,	203–208

project	development	for,	204–208

speech	quality	options,	204

Relative	to	Container	sizing,	70

reloadRootControllersWithNames(_:contexts:)	method,	35

remote	notifications,	134,	158

removeAllAnnotations(_:)	method,	42

removeRowsAtIndexes(_:)	method,	50

renaming	complications,	112

Render	As	Template	Image	setting,	75

replay	handler,	174

requestData()	method,	170

restorationHandler	block,	183

restoreUserActivityState(_:)	method,	183

Root.plist	file,	82–83

row	controllers,	49–50

rowControllerAtIndex(_:)	method,	49,	50

Run	action,	152

S
saySomething	method,	9

schemes,	11–13

screen	size	differences,	72–73

screenshots	of	app,	257

scrollToRowAtIndex(_:)	method,	50

segues

creating	relationships	between,	28

methods	for	responding	to,	35

sending	WatchConnectivity	messages,	179–181

sendMessage()	method,	174

sendMessageData()	method,	174

sensor	data,	224–237

accelerometer,	233–237

heart	rate,	224–233

separators,	46

setAttributedText(_:)	method,	41

setAttributedTitle(_:)	method,	43

setBackgroundColor(_:)	method,	43,	46

setBackgroundImage(_:)	method,	43,	46

setCalendar(_:)	method,	41

setColor(_:)	method,	44,	46

setCoordinatedAnimations(_:)	method,	51,	80

setDate(_:)	method,	41

setEnabled(_:)	method,	52

setIsAccessibilityElement(_:)	method,	85

setIsAccessibilityHint(_:)	method,	86

setIsAccessibilityIdentifier(_:)	method,	86

setIsAccessibilityLabel(_:)	method,	85

setIsAccessibilityRegions(_:)	method,	86

setIsAccessibilityTraits(_:)	method,	86

setIsAccessibilityValue(_:)	method,	86

setItems(_:)	method,	52

setLoops(_:)	method,	195

setMovieURL(_:)	method,	195

setNumberOfRows(_:withRowType:)	method,	50

setNumberOfSteps(_:)	method,	44

setPosterImage(_:)	method,	195

setRegion(_:)	method,	42

setRowTypes(_:)	method,	50

setSelectedItemIndex(_:)	method,	52

setText(_:)	method,	9,	41

setTextColor(_:)	method,	41

setTimeZone(_:)	method,	41

Settings	interface,	82–83

setTintColor(_:)	method,	75

setTitle(_:)	method,	34

setValue(_:)	method,	44

setVideoGravity(_:)	method,	195

setVisibleMapRect(_:)	method,	42

shipping	your	app.	See	distributing	your	app

short-look	interface,	136

ShowOnLockScreen	value,	103

SideBySideButtonsAlert,	56

simulators,	11,	13,	14,	213,	219

size	constraints,	176

sizing	behaviors,	70

sliders,	44

smartwatches,	162

software	versions,	xv

speech

quality	options	for	recording,	204

speech-to-text	input,	186

See	also	audio

Stacked	picker,	51

stage	change	monitoring,	17

Static	Interface	Controller	Scene,	12

static	notifications,	136,	138,	141–142,	147,	152–153

status	update	notifications,	141–142

statusNotification	property,	151

statusReplyAction	button,	156

storing	media,	194,	208

storyboard	editor,	68–73

storyboard	file,	5–6

structural	controls,	45–56

alerts,	52–56

control	groups,	45–46

pickers,	50–52

separators,	46

tables,	46–50

stylePicked(_:)	method,	240

suggestionHandler	block,	187

suggestionsForResponseToActionWithIdentifier(_:)	methods,	144,
157

super.init()	method,	32

Supported	Families	setting,	96

Swift	programming	language,	xiv,	20,	23,	27

Swift	Translation	Guide	for	Objective-C	Developers,	xiv

switches,	43–44

T
table	views,	35

tables

exploring	controls	for,	46–50

glance	restrictions	on,	124

tap	targets,	64

tapping	notifications,	154–155

Taptic	Engine,	240

target	templates,	21–24

tasks,	NSURLSession,	163

templates

placeholder,	109

project,	4,	19–21

target,	21–24

test	schemes

for	complications,	110–113

for	notifications,	151–154

TestFlight,	255–257

accessing,	255

build	types,	255

tester	guidance,	255–257

testing

beta,	254,	255–257

complications,	110–113

notifications,	146–154

on-device,	219–220,	221,	254

TestFlight	builds,	255–257

WatchKit	app	code,	10–13

text	input,	185–192

modal	controller	for,	186–192

notifications	and,	156–157,	192

preparing	suggestions	for,	191

speech	to	text,	186

types	of,	186,	187–188

text	input	controller,	186–192

input	types,	187–188

interface	exploration,	188–191

methods	for	invoking,	186–187

suggested	responses,	191

Thomson,	James,	245

Time	Travel	mode,	88–89

timelines,	88–89,	104–109

timer	label,	41

title	property,	147

touch	system.	See	haptic	feedback	engine

transferFile(_:metadata:)	method,	173

transferUserInfo(_:)	method,	173

transparency	option,	69

type,	Dynamic,	84–85

U
UIFont	class,	84

UIFontDescriptor	class,	85

UILabel	class,	6

UILocalNotification	object,	158

UIViewController	class,	31

updateApplicationContext(_:)	method,	172

updateCommands()	method,	131

updates

application	context,	172–173

complication,	113–114

glance,	131–132

status,	141–142

updateUserActivity(_:userInfo:webpageURL:)	method,	182

uploading	your	app,	253–254

user	info	transfer,	173

user	input.	See	text	input

user	interface

accessibility	features,	83–86

building	process,	67–86

designing/planning,	59–66

images	and	animation,	74–82

laying	out,	68–73

screen	size	issues,	72–73

settings	interface,	82–83

userInfo	dictionary,	182

Utilitarian	complications,	90–91,	92

Utility	watch	face,	xv,	90–91

V
vertical	alignment,	69

vibration	system.	See	haptic	feedback	engine

video

control	for	playing,	45,	195–197

encoding	recommendations,	194

foreground	playback	of,	195–199

storage	of,	194

See	also	media

video	player	interface,	195

View	options,	Attributes	inspector,	69

ViewController.swift	file,	178,	179

VoiceOver	system,	85–86

W
wall-to-wall	user	interface,	61–62

Watch	device.	See	Apple	Watch

watch	faces,	89–91

Color,	91

Modular,	89–90

Utility,	90–91

Watch	simulators,	11,	13,	14

WatchConnectivity	framework,	171–183

background	transfer,	172–173

communication	methods,	172

iPhone	app	preparation,	175–177

live	message	transmission,	173–181

receiving	messages,	177–179

sending	messages,	179–181

WatchKit	apps

adding	code	to,	5–10

creation	of,	19–24

deployment	of,	219–220

explanation	of,	16

interface	updates	for,	5–7

project	layout	for,	18–19

project	templates	for,	19–21

shipping,	243–257

target	templates	for,	21–24

testing	code	for,	10–13

WatchKit	extensions	and,	16–17,	19–24

writing	code	for,	7–10

WatchKit	class	template,	97

WatchKit	extensions

creating	apps	and,	19–24

explanation	of,	16–17

WatchKit	Simulator	Actions	property,	148–149

watchOS	2.0	software,	xiii,	xv,	4,	171,	244

watchOS	apps

split	nature	of,	4

terminology	used	for,	16

See	also	WatchKit	apps

WCSessionDelegate	protocol,	171

wearable	devices,	66

Wi-Fi	networks,	162

willActivate()	method,	32,	33,	55

willDisappear()	method,	33

WKAudioFileAsset	initializer,	203

WKAudioRecorderPreset	enumeration,	204

WKExtensionDelegate	protocol,	17,	135

WKHapticType	enum,	238

WKImageAnimatable	protocol,	80

WKInterfaceButton	control,	7,	8,	43

WKInterfaceController	class,	31–38

context	menu,	36–37

lifecycle	callbacks,	31–33

navigation	methods,	33–35

WKInterfaceDate	class,	41

WKInterfaceGroup	control,	45–46,	71–72

WKInterfaceImage	control,	42,	75,	80

WKInterfaceLabel	element,	6,	41

WKInterfaceMap	control,	42

WKInterfaceMovie	control,	45,	194,	195–197

WKInterfacePicker	control,	50–52

WKInterfaceSeparator	control,	46

WKInterfaceSlider	control,	44

WKInterfaceSwitch	control,	43–44

WKInterfaceTable	control,	46–50

WKInterfaceTimer	class,	41

WKUserNotificationInterfaceController	class,	143–145

WML	(Wireless	Markup	Language),	118

X
Xcode

Organizer	window,	252

provisioning	profiles,	213–219,	252

schemes,	11–13

simulators,	11,	13

software	versions,	xv

storyboard	editor,	68–73

Code	Snippets

	Title Page
	Copyright Page
	Dedication Page
	Acknowledgments
	About the Authors
	Contents
	Introduction
	The Watch of Our Dreams
	The Apple Watch of Our Realities
	About This Book
	How to Use This Book
	Organization
	Code Samples
	Text Formats
	Software Versions

	Welcome to watchOS
	Part I: Getting Started
	Chapter 1. Creating a WatchKit Project
	Lifelong Companions
	Adding Code to Your WatchKit App
	Updating the Watch Interface
	Writing Code for the Watch App

	“I’m Sorry, But I Don’t Have a Watch”
	What Do You Want to Test?
	Trying Out HelloWrist!

	Wrapping Up

	Chapter 2. Anatomy of a watchOS App
	Apps and Extensions
	What Is a WatchKit App?
	What Is a WatchKit Extension?
	Why Do We Need This Convoluted System?

	WatchKit App Project Layout
	Creating WatchKit Apps and Extensions
	Using Project Templates
	Using Target Templates
	Using Old-School Techniques

	Wrapping Up

	Chapter 3. Implementing Navigation
	Navigating the Apple Watch
	Navigation Types
	Page-based Navigation
	Hierarchical Navigation

	The WKInterfaceController
	The Circle of Life
	Supporting Navigation

	The Context Menu
	And So Much More
	Wrapping Up

	Chapter 4. Exploring Controls
	House Rules
	WatchKit Controls
	Simple Display Controls
	Interactive Controls
	Structural Controls
	User Input

	Wrapping Up

	Part II: Creating Apps
	Chapter 5. Designing Your App’s User Interface
	Thinking About Design
	Meeting the Challenge
	“Phenomenal Cosmic Power, Itty-Bitty Living Space”
	Tap Targets, Fat Fingers, and Small Screens
	Bringing a Little Color
	Be Prepared
	Gesture and Touch

	Wrapping Up

	Chapter 6. Building Your App’s User Interface
	Laying Out the User Interface
	Grouping Interface Objects Together
	Handling the Different Screen Sizes

	Images and Animation
	Content vs. Chrome
	Getting Images onto the Watch
	Displaying Images
	Controlling Animation
	Picker-Linked Animation

	The Settings Interface
	Accessibility
	Why Accessibility?
	Dynamic Type
	VoiceOver

	Wrapping Up

	Chapter 7. Working with Complications
	Introducing Complications
	Timelines and Time Travel
	Complicated Arrangements

	Adding Complications
	Including a Complication in a New App
	Adding a Complication to an Existing App
	Including Image Assets

	ClockKit
	Timeline Settings
	Complication Timeline Entries
	Providing Timeline Entries

	Testing Complications
	Creating the Test Scheme
	Running the Test Scheme

	Triggering Complication Updates
	Update Methods
	Budgeting

	Wrapping Up

	Chapter 8. Working with Glances
	What Is a Glance?
	Manufacturing a Glance
	Creating a Glance in a New Project
	Adding a Glance to an Existing Project

	Developing the Glance
	Visual Customization
	Working with WKInterfaceController
	Sneaking a Glance

	Wrapping Up

	Chapter 9. Working with Notifications
	What Are Notifications?
	iPhone Notifications
	Watch Notifications

	Creating a Notification Scene
	Creating a Notification in a New Project
	Adding a Notification to an Existing Project

	Designing Your Notifications
	Notification Layout
	Static Notifications
	Dynamic Notifications

	The WKUserNotificationInterfaceController
	Testing Notifications
	Notification Payloads
	Notification Test Schemes

	Actioning Notifications
	Tapping the Notification
	Text Responses

	Local Notifications
	Wrapping Up

	Part III: Making the Most of the Platform
	Chapter 10. Communicating with the Outside World
	Network Requests with NSURLSession
	The Watch and the Network
	Making the Request
	Handling Premature Deactivation

	Talking to the Phone with WatchConnectivity
	Background Transfer
	Live Message Transmission
	Making the Most of Inter-Device Communication
	Continuing User Activity with Handoff

	Wrapping Up

	Chapter 11. Accepting User Input
	Speech to Text
	The Text Input Controller
	Input Types
	Trying Out the Interface
	Preparing Suggestions
	Input from Notifications

	Wrapping Up

	Chapter 12. Playing and Recording Media
	Working with Media
	Media Types and Encodings
	Storing Media

	Foreground Playback
	Using WKInterfaceMovie
	Presenting a Player Programmatically

	Background Audio Playback
	Audio Recording
	Making a Recording
	Handling Recorded Audio

	Wraapping Up

	Chapter 13. Deploying to Physical Devices
	Managing Devices
	Configuring Provisioning Profiles
	Automagic Setup
	Manual Setup

	Deploying to a Device
	Wrapping Up

	Chapter 14. Using Hardware APIs
	Using Sensor Data
	Accessing Heart Rate Data via HealthKit
	Reading Accelerometer Data with CoreMotion

	Providing Haptic Feedback
	Playing with Haptics
	Tap Carefully

	Wrapping Up

	Chapter 15. Shipping Your WatchKit App
	Preparing Your App for Distribution
	Device Support
	Icons and Image Resources
	Back to the Developer Center

	iTunes Connect
	Creating an App Record
	Uploading Your App

	Distributing the App
	TestFlight Distribution
	App Store Distribution

	Wrapping Up

	Index
	Code Snippets

