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Preface

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.
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CHAPTER 1

Introduction to Mesos

Let’s take a trip back in time, to the year 1957. Computers that use transistors are
starting to proliferate across universities and research laboratories. There is a prob‐
lem, though—only one person can use a computer at a time. So, we have paper sign-
up sheets so that we can reserve time slots on the machines. Since computers are so
much more powerful than pencil and paper, they are in high demand. At the same
time, since the computers are so expensive, if people don’t use their whole reserva‐
tions, then thousands of dollars of compute-time could be wasted! Luckily, the idea of
operating systems already existed, more or less, at the time. A brilliant man named
John McCarthy, who also invented LISP, had a great idea—what if all the users could
submit their jobs to the computer, and the computer would automatically share its
CPU resources among the many different jobs?

Jobs Became Programs

What we now call applications or programs used to be called jobs.
We still can see this terminology in our shells, where, once we’ve
backgrounded a process, we use the jobs command to inspect all
the programs we’ve launched in the shell.

Once a single machine could be shared between jobs, we didn’t need humans to
supervise the sign-up sheets—now, everyone could use the machine, and share it
more easily, since the machine could enforce quotas, priorities, and even egalitarian
fairness (if so desired).

Fast-forward to 2010: with the falling costs of networked data transmission and stor‐
age, it’s now possible to store every bit of information you can collect. To process all
this data, you probably need to use Storm (a distributed real-time data processing
system) and Hadoop. So, you get a whole mess of machines: a few for the Hadoop

1
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1 Although most people think of the NSDI 2011 paper “Mesos: A Platform for Fine-Grained Resource Sharing
in the Data Center,” by Ben Hindman, Andy Konwinski, Matei Zaharia, et al., originally Mesos was published
as Nexus in “Nexus: A Common Substrate for Cluster Computing” by the same authors in 2009.

JobTracker and Storm Nimbus (each with its own painstakingly crafted configura‐
tion), a few more for the HDFS NameNode and Secondary NameNode, 15 more that
you’ll install Hadoop TaskTrackers and HDFS DataNodes on, and 10 more that you
use to run Storm Supervisors. At this point, you’ve managed to purchase 30
machines. However, if you decide that instead you’d like to use five of your Hadoop
machines as Storm workers, you’re in for painful task, because you now need to com‐
pletely reprovision the Hadoop machines as Storm machines—a process that, as
many practitioners can vouch, is not as easy as we’d wish.

It’s 2011: the Berkeley AMP lab is in full swing. This is the group that today has
brought us Spark, Tachyon, and many other distributed, scalable systems. One of the
projects in the lab is called Mesos: it wants to be a platform for sharing your com‐
puter cluster between many disparate applications, such as Hadoop and MPI. In the
Mesos paper,1 the authors show promising results in sharing a single cluster of com‐
modity computer hardware between many different applications, including MPI and
Hadoop. This effectively solves the reprovisioning problem in clusters. Of course,
companies like Google and Yahoo! are interested in the AMP lab, because they’re
working on similar problems. The team at Twitter take it a step further: they realize
that Mesos solves a critical problem with which they’ve been struggling—how to effi‐
ciently wrangle the massive number of machines in their data centers—so, they man‐
age to hire the lead author of the paper and architect of Mesos, PhD candidate Ben
Hindman, so that he can tackle this problem at Twitter. Over the next several years,
Mesos grows from being a simple research project into the core infrastructure that
powers tens of thousands of servers at Twitter and many other companies.

So now that you know a little about Mesos (in the historical sense and context), you
probably want to know what Mesos is (in the technical sense). Mesos is a system that
allows you to harness all of the different machines in your computer cluster or data
center and treat them as a single logical entity. With Mesos, the problem of having
fixed sets of machines assigned to applications is no longer an issue. Instead, you can
easily change which software is running on which machines, or even abdicate the
responsibility of choosing which software runs on which machines to Mesos and
allow it to make that decision for you, freeing up your time and mind to work on
other (more interesting and more important) problems. For instance, in my company,
Mesos allowed us to rapidly experiment with new distributed systems, such as Spark
and Storm.
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How to Use Mesos
In the simplest sense, Mesos is an orchestration platform for managing CPU, mem‐
ory, and other resources across a cluster. Mesos uses containerization technology,
such as Docker and Linux Containers (LXC), to accomplish this. However, Mesos
provides much more than that—it provides real-time APIs for interacting with and
developing for the cluster.

Many people wonder where Mesos sits in their stack. Is it part of their deployment
infrastructure? Should their infrastructure team manage it? Or is Mesos an applica‐
tion development platform, like Heroku? Maybe Mesos should really belong to an
application team… The answer to these questions is not straightforward, because
Mesos provides functionality that crosses between Infrastructure as a Service (IaaS)
and Platform as a Service (PaaS), in order to achieve greater efficiencies for your sys‐
tem. On the one hand, Mesos is infrastructure: it is the platform on which we deploy
Hadoop and Storm and all the other PaaS goodies that we require for business. On
the other hand, suppose that we’re trying to develop an application that can process
large-scale computations, similar to Hadoop or Spark. In that case, Mesos becomes
the platform that we are building on. Suddenly, rather than treating it as a black box,
we’re very much concerned with its APIs and how to develop for it.

In practice, it’s best to think of Mesos as serving a different purpose altogether. It
allows you to stop focusing on individual machines, whether for developing your
applications or for deploying them. Instead, it allows you to treat your cluster as a
single, large group of resources. Mesos increases your agility for testing and deploy‐
ing new distributed systems, as well as providing the platform to deploy in-house
applications more quickly and efficiently than if you needed to involve your devel‐
oper operations (DevOps) organization in those processes. For small projects, Mesos
subsumes the many different systems that one might otherwise need to deal with—
deployment tools like Ansible, Chef, and Puppet can now be relegated to basic roles
in which they bootstrap Mesos. Mesos is the ultimate DevOps tool which thoroughly
blurs the lines between the APIs the application runs against and the deployment of
the application is a part of: Twitter has just three operators managing its tens-of-
thousands-of-node Mesos clusters.

Let’s now take a look at how Mesos fills two different roles: deployment system and
execution platforms.

Mesos as a Deployment System
One way that you can think about Mesos is as a smart deployment system. First, let’s
look at a typical deployment system today, like Ansible or Chef. To use these tools,
you write lists of tasks that should be performed on the various machines in your
cluster. Tasks can modify files, install programs, and interact with supervision sys‐
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tems (like Supervisor and SystemD). Groups of tasks can be combined to describe a
“role” or “recipe,” which represents a higher-level concept, like setting up a database
or web server. Finally, these groups of tasks are applied to an “inventory,” or set of
hosts, which then configures them according to the specification.

These tools are wildly more useful than the Bash, Perl, and SSH mashups of old; how‐
ever, they suffer from fundamental limitations. On the one hand, they allow for con‐
figuration to be written in a structured, understandable form. They enable the use of
best practices from software development—source control, encapsulation, and code
reuse through libraries and plug-ins—to extend to system administration. On the
other hand, they are fundamentally designed to make a fleet of machines conform to
a static configuration. This is intentional: once you’ve run your Ansible or Puppet
configuration, you want the cluster to be in the same, known consistent state. If, how‐
ever, you want your cluster to dynamically reallocate resources or shift configurations
depending on various external factors, such as the current load, these tools can’t help
you.

In this sense, it can be useful to think of Mesos as a deployment system. Distributed
applications can be made into Mesos frameworks for use on a Mesos cluster. Rather
than forcing you to use a static configuration description, each framework is essen‐
tially a role or recipe: the framework contains all the logic needed to install, start,
monitor, and use a given application. Many frameworks are themselves platforms;
when many applications follow the same general deployment pattern (like web
servers), then a single framework can manage them all (like Marathon, a Mesos
framework for stateless services). The power of Mesos is that since the framework is a
live, running program, it can make decisions on the fly, reacting to changing work‐
loads and cluster conditions. For instance, a framework could observe how many
resources seem to be available, and change its execution strategy to better perform
given the current cluster conditions. Because the deployment system runs constantly,
it can notice and adapt to failures in real time, automatically starting up new servers
as previous ones fail. Mesos frameworks are strictly more powerful than static
descriptions used by more traditional deployment systems.

Thus, you can think of Mesos as supplanting much of the functionality that Ansible
or Chef previously provided. You’ll still need a traditional configuration manager to
bootstrap the Mesos cluster; however, Mesos provides a more powerful platform for
hosting applications: frameworks can automatically and dynamically adapt to failing
machines and changing workloads, giving operators greater peace of mind and time
to work on new initiatives.

Mesos as an Execution Platform
Another way to think of Mesos is as a platform for hosting applications. Today, you
may use Heroku to run your web services, or you may manage a Hadoop cluster to
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execute MapReduce jobs. In these examples, Heroku and the Hadoop cluster are the
platforms for web services and MapReduce jobs. A Mesos cluster can also be a plat‐
form for higher-level applications. But if your system already works, why add Mesos
to the mix? Mesos offers flexibility and mitigates the risk of being outpaced by tech‐
nology development; with Mesos, launching a Spark cluster or switching to a newer
technology is as simple as launching the framework and watching it bootstrap itself.

Consider the Heroku/PaaS scenario: Marathon can reliably launch your application,
automatically starting up new instances when machines crash or go down for mainte‐
nance. Mesos-DNS and HAProxy can manage your load balancing for you (see Chap‐
ter 3). But once you’ve got Mesos running, why bother continuing to maintain your
Hadoop cluster? After all, you could launch Hadoop on Mesos via Myriad, and you
could even stop dealing with HDFS administration, since there’s a framework for that
(Mesos HDFS).

Thus, you can think of Mesos as an execution platform: rather than paying for third-
party PaaS solutions and creating bespoke clusters for each big data analysis technol‐
ogy, you can have a single Mesos cluster. With your Mesos cluster as the foundation,
you can easily launch whatever frameworks you require to provide whatever func‐
tionality is needed, now or as new requirements and technologies arise.

How This Book Is Structured
At this point, let’s take a look at how the rest of the book will be structured. First,
we’re going to learn about Mesos itself. We’ll cover the architecture of Mesos and its
frameworks, and we’ll learn how resources are allocated across the cluster. We’ll also
dive into configuration settings you’ll want to know, such as how to provide service-
level agreements (SLAs) to certain frameworks, and useful command-line settings to
tune the overall performance and workload of your cluster.

Then, we’ll learn about two existing open source Mesos frameworks—Marathon and
Chronos—that provide application hosting and job scheduling functionality. We’ll
explore how to configure them, how to interact with them, and how to build deeper
integrations. After learning about these frameworks, you will be able to host several
common application architectures, such as web services and data pipelines, on Mesos,
with high reliability and scalability.

In the later parts of this book, we’ll go into great detail about how to build a custom
framework for Mesos. We’ll learn about the APIs that it exposes through the process
of implementing a sample job scheduling framework in Java. In developing this
framework, we’ll delve into how to build on the core Mesos APIs, what some com‐
mon pitfalls are and how to avoid them, and how to decide whether to build a new
framework or adapt an existing system.
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At the end of the book, we’ll do a deeper dive into some advanced features of Mesos,
such as its integration with Docker, its internal architecture, and several cutting-edge
APIs, including persistent disk management for databases and the framework reser‐
vation system.

Summary
In essence, Mesos is an operating system: it manages your computers and harnesses
them together into a single, logical unit. Companies use Mesos because of the reliabil‐
ity, flexibility, and efficiency it brings. Mesos clusters require very few administrators
to ensure that even massive fleets of machines remain operational.

Frameworks are distributed applications that run on Mesos; for them, Mesos pro‐
vides infrastructure and execution services. Frameworks can act as applications, like
Hadoop or Storm, or as deployment systems, like Ansible or Chef. Mesos coordinates
and collaborates with frameworks to allocate slices of machines in the Mesos cluster
to various roles. This capability—brokering the division of machines between many
frameworks—is how Mesos enables greater operational efficiency.

With this high-level view of Mesos in mind, let’s start diving into Mesos concepts and
get started with Mesos in practice!
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CHAPTER 2

Getting Started with Mesos

Now that you have a high-level understanding of the kinds of problems that Mesos
can solve, let’s dive in. What terminology is used by the project? How does Mesos
manage resources? What structural constraints does Mesos impose on applications?
By answering these questions and more, you’ll develop the vocabulary and under‐
standing to discuss Mesos. In subsequent chapters, we’ll go into specifics about each
technology, in order to develop applied skills in building applications with Mesos.

Frameworks
In the Mesos world, we assume that our distributed systems have a central controller
and many workers. This is how most successful, scalable systems work: Google’s
BigTable, Apache Hadoop, and Twitter’s Storm all have some sort of central controller
that organizes their workers. Of course, the workers should be designed to work
independently from the controller so that they’re not bottlenecked by it and don’t rely
on it for their availability. Applications that run on Mesos are called frameworks. A
framework has two parts: the controller portion, which is called the scheduler, and the
worker portion, which are called the executors.

To run a framework on a Mesos cluster, we must run its scheduler. A scheduler is
simply a process that can speak the Mesos protocol; frequently, our schedulers run on
Marathon, but it’s always necessary to consider how to ensure high availability for the
scheduler. When a scheduler first starts up, it connects to the Mesos cluster so that it
can use the cluster’s resources. As the scheduler runs, it makes requests to Mesos to
launch executors as it sees fit. This complete flexibility for the scheduler is what
makes Mesos so powerful: schedulers can launch tasks based on resource availability,
changing workloads, or external triggers. Today, there exist schedulers that can man‐
age fleets of web services, schedulers that coordinate Storm topologies, and schedu‐
lers that optimize batch job placement.

7



When a scheduler wants to do some work, it launches an executor. The executor is
simply the scheduler’s worker: the scheduler then decides to send one or more tasks 
to the executor, which will work on those tasks independently, sending status updates
to the scheduler until the tasks are complete. We’ll learn more about the distinction
between tasks and executors in “Tasks and Executors” on page 21.

Now that we’ve got an idea of what a framework is, let’s take a step down the stack to
learn about the Mesos cluster itself.

Masters and Slaves
A Mesos cluster is comprised of two components: the Mesos masters and the Mesos
slaves. The masters are the software that coordinates the cluster; the slaves are what
execute code in containers. You might be thinking, “That sounds awfully similar to
how frameworks work.”

In that case, you’d be 100% correct. The Mesos cluster mirrors the organization of the
frameworks that run on top of it, because the master/slave pattern is simple, flexible,
and effective. The cluster software needs to be separate, however, to ensure that
frameworks remain isolated and secure from one another. First, we’ll look at a few
key ideas about the Mesos masters; then, we’ll take a look at the slaves.

The Masters
The Mesos masters are the brain of the cluster. They have several responsibilities:

• They are the central source of truth for running tasks.
• They fairly share the cluster between all the connected frameworks.
• They host the primary UI for the cluster.
• They ensure high availability and efficient allocation of resources. Considered

together, they are a single point of failure, but Mesos automatically handles and
recovers from individual master failures.

Let’s unpack these responsibilities, and see what they mean for the design of the mas‐
ters and how they impact our clusters:

Masters are the central source of truth for all running tasks
In order for masters to be able to serve the UI and data about tasks with minimal
latency, all task metadata is kept in memory. This means that the nodes that run
the masters should have plenty of memory—on a cluster with thousands of con‐
current tasks, the masters could, for instance, consume 20 GB of RAM. Note that
this excludes completed tasks, which relieves the memory pressure on the mas‐
ters for some workloads. The masters make an effort to store the metadata
related to recently completed tasks, but in the interest of saving memory, they
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1 Mesos uses a fair-sharing allocation algorithm called Dominant Resource Fairness (DRF). You can read about
it in Ali Ghodsi et al.’s 2011 paper “Dominant Resource Fairness: Fair Allocation of Multiple Resource Types.”

have a fixed-size buffer to store the last few hundred thousand tasks. On a very
high throughput cluster, this could mean that completed task metadata is only
available in the master for a few minutes. To retain task metadata for longer, you
can use the Mesos monitoring system Satellite to automatically replicate the task
metadata to a NoSQL database.

Masters fairly share the cluster between connected frameworks
The masters are responsible for offering resources to frameworks. Since the mas‐
ters know exactly which frameworks are using which resources, they’re able to
determine which frameworks are using less than their share, and give those
frameworks the first choice of free resources.1 When configuring a Mesos cluster,
you have many knobs for controlling the way resources are distributed amongst
connected frameworks. Whenever a framework connects to Mesos, it connects
with a role. Each role can have resources specifically set aside for it, and each role
can be assigned a different weighted share of the remainder of the cluster. The
administrators of the cluster can configure roles to ensure that each framework’s
SLA is met (see “Roles” on page 17).

Masters host the primary UI
When you want to use a browser to inspect and interact with the Mesos cluster,
you’ll typically first visit the master UI, which is on port 5050 by default. This UI
allows you to see how many resources are available in total on your cluster, and
how many are used. It allows you to see all of the connected frameworks, as well
as information about them such as their framework ID and when they registered
with Mesos. You can also see details about all of the current resource offers and
tasks. The master UI automatically links each task with the UI of the slave that
task is running on, so that you can even access files from the task’s sandbox, such
as its logs.

Masters ensure high availability
Mesos seeks to simplify building and running a highly available cluster. This is
the reason that you should run three or five masters: as long as a majority of the
masters are still running, the cluster can continue to operate as normal. The mas‐
ters use the battle-tested Paxos algorithm to durably synchronize their beliefs
about the status of the cluster. Since all masters have the same up-to-date view,
any one of them can service and process requests. At the same time, Mesos seeks
to enable building highly scalable clusters, which means being able to rapidly
manage thousands of cluster allocations. To accomplish this, only one master is
elected leader at a time. The leader is thus able to efficiently compute and make
decisions about resource allocations, without being slowed down by waiting for
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the other masters on every decision. This design allows Mesos to achieve very
high rates of scalable resource allocation, but still offer high availability in the
face of partial failures. Of course, losing a majority of the masters does force the
Mesos cluster to operate in a “safe mode”—when a majority of the masters are
down, frameworks will not be able to allocate new resources or launch new tasks;
however, running tasks will continue as normal. This means that even during a
master outage, as long as the frameworks in use can continue to function without
launching new tasks, the cluster as a whole can offer uninterrupted service even
as individual components fail.

In this book, we won’t cover how to install and run the Mesos masters and slaves:
there are numerous tutorials on the Internet that cover exactly that, and they are cus‐
tomized for whatever operating system and deployment system you prefer.

The Slaves

Slave Will Be Renamed to Agent in Mesos 1.0

When Mesos reaches the 1.0 release, the nomenclature will change
—the Mesos slave will be called the Mesos agent, and all occurences
of “slave” will be changed to “agent.”

The complement of the Mesos masters are the slaves. The slaves have a different set of 
responsibilities:

1. They launch and manage the containers that host the executors (both LXC con‐
tainers and Docker images).

2. They provide a UI to access data from within the containers.
3. They communicate with their local executors in order to manage communica‐

tions with the Mesos masters.
4. They advertise information about the hosts they’re running on, including infor‐

mation about running tasks and executors, available resources, and other meta‐
data.

5. They manage status updates from their tasks.
6. They checkpoint their state to enable rolling restarts of the cluster.

Let’s break these down in turn:

Container management
Mesos provides the best multitenancy isolation story for large clusters to date. It
does so through the use of containerization technology. Containers are a light‐
weight, extremely low-resource way to guarantee specific programs access to spe‐
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2 It’s possible to run a slave as a specific user, and then that Mesos slave can only run executors as that user. This
can be useful in high-security environments or during development.

3 This isn’t really true. Remember, distributed systems are hard!

cific quantities of resources. For instance, a container could guarantee that a web
server always can use 2 CPUs, 1 GB of RAM, and 500 MBps of network band‐
width, regardless of the demand of any other application on the machine. Mesos
slaves have deep integration with LXC, the standard Linux Containers technol‐
ogy, as well as with Docker, the most popular packaging and containerization
technology. Since the slaves need to be able to launch containers and ensure that
the executors are run as specific users, the slave process typically runs as root,2 so
that it can create containers and run different executors as different users.

UI for slave-specific data
Just as the Mesos master UI exposes information about the state of the whole
cluster, such as all the active tasks and frameworks, the slave UI exposes informa‐
tion about what’s happening on a specific slave. Besides presenting a drilled-
down version of the master UI (showing only frameworks, tasks, and executors
that are related to that slave), the slave UI allows for interactive browsing of all
the files within a container. This feature makes it easy to inspect the logs of any
current or completed task, which is invaluable in debugging and monitoring the
cluster. Frequently, Mesos framework UIs will link to the slaves’ UIs, so that users
can easily browse, view, and download the files produced by their tasks.

Communication with executors and masters
If you’re reading this book, you’ve probably worked on distributed systems (or
else you’re about to). If that’s the case, then you know (or will soon find out) that
distributed systems are hard. In order to help us mere mortal programmers with
these hard problems, the Mesos slave intermediates communications between 
executors and the masters. This means that every communication between exec‐
utors and slaves is done locally, on a 100% reliable local loopback interface, which
frees us from distributed systems reliability concerns.3 Therefore, the Mesos slave
can take responsibility for checkpointing and resynchronizing state during tran‐
sient network problems or restarts, which helps to reduce the difficulty in build‐
ing reliable worker applications.

Advertising information about their host
In Mesos, it is up to each slave to self-report the amount of resources it has avail‐
able for running tasks. This design makes it trivial to add new capacity to a
Mesos cluster: once a slave machine is started and the Mesos slave process con‐
nects to the masters, the slave chooses to communicate what resources it’s mak‐
ing available to the cluster. By default, the slave process will autodetect the CPUs,
memory, and disks on the machine and expose them all to Mesos, available to

Masters and Slaves | 11

https://linuxcontainers.org/
https://www.docker.com/


any role. (The slave will reserve 1 GB or 50% of detected memory, whichever is
smaller, in order to run itself and other operating system services. Likewise, it
will reserve 5 GB or 50% of detected disk, whichever is smaller.) However, on the
command line, you can specify exactly how many resources should be exposed,
and whether any or all of those resources should be reserved for one or more
roles. Besides the automatically detected resources, administrators can configure
slaves to expose custom-defined resources, which we’ll learn more about in
“Configuring Custom Resources” on page 16. A slaves can also expose arbitrary
key/value data about the machine (see “Configuring Slave Attributes” on page 17
for details). This is a great way to express information that might be useful to
some schedulers, such as which rack the machine is on, what generation of pro‐
cessor features it supports, or what operating system it is running. By enhancing
the advertised information that a slave shares with the cluster, you can add pow‐
erful features to your schedulers; for example, see “Using Placement Constraints”
on page 38 to see how this data can enable rack-aware Marathon task placement.

Status updates
When a task sends a status update to its scheduler, it is guaranteed to be delivered
at least once. It’s the responsibility of the slave to store all status updates locally to
disk, and periodically retransmit them if they aren’t acknowledged by the task’s
scheduler. Without this, frameworks could fail to learn when their tasks complete
during transient network or scheduler failures.

Rolling restarts
There’s a tricky situation that arises when building an always-up distributed sys‐
tem: you need to be able to upgrade things without incurring any downtime.
Typically, what you might try to do is restart a small fraction of your slaves at a
time—that way, you never dip below 90% or 95% capacity. Unfortunately, there’s
a problem with this strategy. Consider the slaves on which you’re running in-
memory caches. Even if you restart them one at a time, it may take a long time to
repopulate those caches, thus resulting in one of two choices: complete the slave
upgrade faster, and suffer degraded application performance for far longer than
the upgrade itself takes, or upgrade the slaves slowly and increase the time
needed for the rolling upgrade by an order of magnitude or more. Mesos slaves
have a feature called checkpointing, which gives us a third choice: the slave can
periodically write snapshots of its own state plus the state of its tasks and execu‐
tors, so that when you restart the slave process, rather than killing all of its tasks
and executors, the new, upgraded version of the slave can simply read the check‐
point files and pick up where the previous version left off by reconnecting to the
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existing executors. This way, a rolling reboot of your slaves can be done quickly,
and not a single task need die.

Using Cgroups on Mesos Slaves
Cgroups, a shortened name for control groups, are a way to group Linux processes
together in order to do resource accounting and allocation. Every Mesos slave should
have cgroups enabled, because they provide the CPU and memory isolation that ulti‐
mately makes Mesos so reliable. Processes on a Linux system belong to a node in the
cgroup hierarchy; each node in the hierarchy has a certain share of the resources, and
each child of a node has some subset of that node’s resources. Through these resource
hierarchies, anything from CPU shares and memory to network and disk I/O band‐
width can be accounted for and precisely shared. This sharing and accounting is what
guarantees that one task can’t starve another of resources. When the Mesos slave uses
cgroups, it actually dynamically creates and destroys nodes in the hierarchy to match
the allocations that the master calculates. This simplifies the administrators’ jobs,
since they need only ensure that cgroups have been enabled in the OS on the slave.

You can read about how to enable cgroups on the Debian wiki and in the Red Hat
Resource Management Guide. Mesos slaves will automatically work with Debian’s and
Red Hat 7’s default cgroup instructions.

To enable cgroup isolation on the Mesos slaves, you must pass the command-line
option --isolation='cgroups/cpu,cgroups/mem' to every slave. It is not recom‐
mended to use the default Posix isolator in production, as it doesn’t provide the same
robust isolation guarantees that the cgroups isolator does. Its primary purpose is to
get process monitoring data when running Mesos for development purposes on a
Mac.

Now we know the key responsibilities of the Mesos slave. The fundamental purpose
of the slave is to expose the cluster’s resources; in the next section, we’ll learn what
resources are and how to define custom resources.

Resources
The fundamental abstraction in Mesos is that of the resource—tasks and executors
consume resources while performing their work. A common question is: “What is a
resource?” The answer is broad: a resource is anything that a task or executor uses
while doing its work. For example, the standard resources (and thus the resources
that nearly every framework uses) are cpus, mem (memory), disk, and ports. The first
three of those resources are scalar: they represent a total amount available, from
which tasks deduct their usage. There are other resource types available in Mesos, as
well. Ranges are lists of integers from which single elements or subranges can be allo‐
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cated; for example, these are used to represent the ports available and in use. The last
resource type, sets, are simply unordered collections of strings. We’ll see an example
of a set later on. First, let’s learn about the standard resources:

cpus

This resource expresses how many CPU cores are available. Tasks may use frac‐
tional parts of a CPU—this is possible because Mesos slaves use CPU shares,
rather than reserving specific CPUs. This means that, if you have 1.5 cpus
reserved, your processes will be allowed to use a total of 1.5 seconds of CPU time
each second. That could mean that, within a single executor, two processes each
get 750 milliseconds of CPU time per second, or one process gets 1 second of
CPU time and another gets 500 milliseconds of CPU time each in a given second.
The benefit of using CPU shares is that if some task would be able to utilize more
than its share, and no other task would use an otherwise idle CPU, the first task
can potentially use more than its share. As a result, the cpus reserved provides a
guaranteed minimum of CPU time available to the task—if additional capacity is
available, it will be allowed to use more.

mem

mem is how many megabytes of memory are available. Unlike CPUs, which can
burst to use more than their allocation if there’s spare capacity, memory is a
strictly preallocated resource. As a result, choosing the correct memory for tasks
can be tricky: too little, and the tasks get killed when they try to allocate more
than their allotment; too much, and memory sits idle that could otherwise be
used for running more tasks.

disk

disk represents the amount of scratch space (in megabytes) that should be avail‐
able in the container’s sandbox. Since disk usage can be highly variable due to the
unpredictability of errors filling up logs, many framework developers don’t worry
about reserving this resource in their tasks. Furthermore, by default, Mesos slaves
don’t even enforce when a task uses more disk than allocated. (To change that
behavior, you can pass the option --enforce_container_disk_quota on your
slaves’ command lines. The other reason that this value is ignored is that the
Mesos slaves automatically garbage collect the sandboxes of finished tasks when
they need to reclaim disk space (see the following sidebar for details and advice
on configuring garbage collection for slaves).
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Configuring Slave Sandbox Garbage Collection
As tasks run on your Mesos cluster, they’re sure to write data to disk. They can gener‐
ate logs, temporarily store output files, or cache their data or binaries. As mentioned,
most Mesos users don’t bother to enable the disk quota enforcement, since most disks
are so big that it’s unlikely a single job will fill them up. However, this logic works only
in the short term. After days or weeks of running tasks, the sum of all the outputs of
the tasks on a given machine will certainly exceed that slave’s disk capacity. To solve
this problem, Mesos slaves garbage collect old data from their disks. Let’s look at the
command-line options that configure the slave disk garbage collector (GC):

--gc_delay

This option selects the maximum amount of time that an executor directory can
exist before it is deleted. For example, it could be set to --gc_delay=3days or
--gc_delay=2weeks; the default is --gc_delay=1weeks. Note that the system may
shorten this delay, depending on the available disk usage.

--disk_watch_interval

This option selects how often the disk usage is checked (and thus how often the
GC will run). It uses the same time notation as the GC delay setting. For example,
it could be set to --disk_watch_interval=10secs; the default value is
--disk_watch_interval=1mins. If you set this to be too frequent, you could
impact hard drive performance by enumerating directories too often.

--gc_disk_headroom

This option selects what percentage of headroom, or free space, should be targe‐
ted by the GC. If you set the headroom too small, a task that writes to the disk
too fast could consume all of the available space before the GC has time to run.
On the flipside, if you set this too large, files will be garbage collected far earlier
than necessary, which could make debugging annoying (e.g., if your data got
deleted before you could look through it). The value of this option should be
between 0.0 and 1.0; the default is --gc_disk_headroom=0.1, meaning that
Mesos targets 10% of the disk as free space. The formula used to calculate the
maximum age for an output directory is:

max_age = max (0.0, (1.0 – gc_disk_headroom – disk_usage))

ports

Ports are the first (and only default) nonscalar resource on Mesos slaves that we’ll
need to understand. Many tasks, such as HTTP servers, will want to open one or
more ports, so that they can listen for incoming connections. Since each port can
only be bound to one task, Mesos helps by allowing tasks to reserve specific
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ports, so that each task uses a nonconflicting range. Furthermore, if a task must
be bound to a particular port, then it can decline offers that don’t include that
port in the available range. By default, Mesos slaves expose ports 31000–32000;
however, you can change this range by setting the ports resource to whatever
you’d like on the command line.

Now that we’ve seen the basics of Mesos slave resources and learned about their
default behaviors, let’s learn how we can customize the resources offered.

Configuring Custom Resources
Perhaps you want to increase or decrease the resources set aside for operating system
services. Maybe you need to expose additional ports, or ports within a particular
range, in order to run a certain framework. Or possibly your slave machines have an
exotic type of hardware, like a GPGPU, and you’d like to have Mesos manage the res‐
ervation and allocation of these devices. Finally, perhaps you’d like to reserve some of
your resources to only be usable by a particular role. In any of these cases, you must
provide a custom resource configuration to your Mesos slave.

Mesos resources are specified as key/value pairs. The key is the name of the resource:
for example, cpus, mem, disk, or ports. The value is how many of those resources are
available; the resource’s type is determined by the value’s syntax. Each resource is
written as key:value; all the resources are concatenated together with semicolons
and passed via the command line. Mesos supports scalar, set, and range resources.
You can view the full grammar of resource attributes in the Mesos documentation,
but we’ll go over a simple example.

Suppose that we’d like to have our slave advertise the following resources: 4.5 CPUs, 8
GB of RAM, the ports in the ranges of 1000–5000 and 31000–32000, and that it has 2
GPGPUs. Then, we’ll have the following settings:

Resource Value Comments

cpus 4.5 Note that for scalar resources, you can provide a double.

mem 8192 Remember that memory is in MB.

ports [1000-5000,31000-32000] Ranges are written in square brackets; commas separate discontinuities.

gpgpus {gpu1,gpu2} Sets are written in curly braces; elements are separated by commas.

To pass this on the command line, we’d use the flag:

--resources='cpus:4;mem:8192;ports:[1000-5000;31000-32000];gpgpus:{gpu1,gpu2}'

All of the resources specified will belong to the default role.
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Configuring Slave Attributes
Slaves can expose arbitrary key/value data about the machine as attributes. Unlike
resources, attributes are not used by the Mesos allocator. They are merely passed
along to framework schedulers to aid in their scheduling decisions. Suppose that you
wanted to pass the following table of key/value pairs as attributes on the slave:

Key Value

operating_system ubuntu

cpu_class haswell

zone us_east

rack 22

To pass these attributes into the slave, we separate the keys and values with colons
and separate the pairs with semicolons. This is the final command-line option pass:

--attributes='operating_system:ubuntu;cpu_class:haswell;zone:us_east;rack:22'

Roles
In order to decide which resources can be offered to which frameworks, Mesos
includes the concept of “roles.” A role is like a group: you can have the dgrnbrg role
(for things you run), the qa role (for quality assurance-related tasks), the db role (for
databases), and so on. Besides being used to exclusively reserve resources, roles also
can be used to assign weights to Mesos’s fair sharing algorithm. This allows you to
specify that some roles should receive a greater ratio of resources on the cluster than
others. When registering a framework, you may specify which role it belongs to by
setting the role field in the FrameworkInfo message used to register. Frameworks will
only receive offers that are for their role, or for the * role.

If you’d like to use roles, then you must include a comma-separated list of the valid
roles on the master. For example, if you’d like to have dev, qa, and prod roles, then
you’d need to pass --roles=dev,qa,prod to the master. To assign weights to those
roles, so that dev gets twice as many offers as qa and prod gets three times as many
offers as qa, you’d pass --weights='dev=2,qa=1,prod=3'.
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Securing Roles

By default, any framework may claim to belong to any role. If nec‐
essary, roles can be secured through access control lists (ACLs), a
security feature that is beyond the scope of this book. The
register_frameworks ACL controls which roles each principal
(aka user) can use when registering frameworks.

Static and Dynamic Slave Reservations
Slave reservations are the way to ensure that specific resources are always available for
particular use cases. Until Mesos 0.25, only static reservations were available for oper‐
ators. Now, there’s also a dynamic API to reserve and unreserve resources without
needing to change the command line.

Static reservations
Rather than only specifying which resources a slave exposes on its command line, we
can also specify which roles can use those resources; this reserves those resources for
a particular role. In the previous example, we didn’t specify any roles for the resour‐
ces; as a result, all the resources were assigned to the default role. The default role is
set by the --default_role slave command-line option. If --default_role is unset,
then the default role will be * (anyone).

To specify the role for a particular resource, we place the role name in parentheses
after the resource. Let’s suppose that we have a machine with 4 CPUs and 16 GB of
RAM. We’d like to reserve 1 CPU and 4 GB of RAM for the role prod, and 2 CPUs
and 1 GB of RAM for the role qa. The remainder of the resources should be able to be
used by any user of the system. Then, we’ll have the following settings:

Resource Value Role

cpus 1 prod

mem 4096 prod

cpus 2 qa

mem 1024 qa

cpus 13 *

mem 11264 *
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To configure the slave, we can use the following command-line argument (note that
this should all be typed on a single line, without the \ or any spaces; the command
line has been wrapped here to fit in the page margins):

--resources='cpus(prod):1;mem(prod):4096; \
  cpus(qa):2;mem(qa):1024;cpus:13;mem:11264'

Note that we don’t have to specify the role for the resources intended for *, since that’s
the default role. We could also change the default role to prod, and thus the command
line would change:

--default_role=prod \
  --resources='cpus:1;mem:4096;cpus(qa):2;mem(qa):1024;cpus(*):13;mem(*):11264'

Note that changing the default role means that the autodetected disk and port ranges
will also go to the prod role.

As you can see, slave reservations are a very powerful system that gives you control to
ensure that production-critical workloads always receive a minimum allocation. At
the same time, they’re relatively tedious to configure and difficult to change, since
they require changing the slave command line.

Dynamic reservations

As of Mesos 0.25, reservations can be created and destroyed via the /master/reserve
and /master/unreserve HTTP endpoints. Let’s look at how we’d reserve and unre‐
serve the resources as shown in the previous section. For these examples, we’ll assume
that we’ve configured HTTP Basic authentication for a user principal admin, and that
the appropriate ACLs have been configured. First we’ll write some JSON, specifying
the resources to reserve (see Example 2-1).

Example 2-1. resources.json

[
    {
        "name": "cpus",
        "type": "SCALAR", 
        "scalar": { "value": 1 },
        "role": "prod",
        "reservation": {
            "principal": "admin" 
        }
    },
    {
        "name": "mem",
        "type": "SCALAR",
        "scalar": { "value": 4096 },
        "role": "prod",
        "reservation": {
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            "principal": "admin"
        }
    },
    {
        "name": "cpus",
        "type": "SCALAR",
        "scalar": { "value": 2 },
        "role": "qa",
        "reservation": {
            "principal": "admin"
        }
    },
    {
        "name": "mem",
        "type": "SCALAR",
        "scalar": { "value": 1024 },
        "role": "qa",
        "reservation": {
            "principal": "admin"
        }
    }

The HTTP API specifies resources the same way as the Mesos resource protobuf.
See “Understanding mesos.proto” on page 23 to learn more about this structure.

Dynamic reservations must be associated with a user, or principal. To make this
reservation, we’ll need to present the credentials of the admin user when we sub‐
mit it.

To submit this reservation, we’ll also need the slave ID of the slave on which we want
to make this reservation (we’ll use $SLAVEID in the example; a normal slave ID will
look like 201509191529-2380865683-5050-11189-4621). Let’s see how to combine
our user credentials, resources.json, and slave ID into a curl command:

curl -u admin:password \ 
     -d slaveId=$SLAVEID\ 
     -d resources="$(cat resources.json)"\ 
     -X POST\ 
     http://<ip>:<port>/master/reserve 

For this example, we assume that the admin user’s password was set to password.

We provide the slave ID and resources as key/value pairs to the endpoint.

We will pass the resources in JSON format to curl. Note that the actual data that
Mesos sees looks like slaveId=$SLAVEID&resources=$JSON.

Both the /reserve and /unreserve endpoints require POSTing the data.
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We need to specify the URL of the Mesos master. This API makes reservations
more convenient to configure, since you only need to interact with the master,
rather than configuring each slave’s reservation by interacting with that slave
directly.

Destroying a reservation is almost identical to creating it:

curl -u admin:password \
     -d slaveId=$SLAVEID\
     -d resources="$(cat resources.json)"\
     -X POST\
     http://<ip>:<port>/master/unreserve 

Note that the only thing we change is that we’re now using the /unreserve end‐
point. We still need to specify exactly which resources are being unreserved.

The new HTTP API for slave reservations promises to make ad hoc reservations
much simpler to create, manage, and destroy. We should start to see tools to interact
with this API at a higher level emerging as adoption increases (bear in mind that it
was only released in October 2015).

Tasks and Executors
When a scheduler wants to do some work, it launches an executor. The executor is
simply the scheduler’s worker: the scheduler can decide to send one or more tasks to
an executor, which will work on those tasks independently, sending status updates to
the scheduler until the tasks are complete.

Up to this point, we haven’t tried to distinguish the ideas of tasks and executors,
because usually each executor has a single task, so there’s not much point in differen‐
tiating between them. However, some frameworks leverage the full power of the task
and executor abstraction, and to understand these frameworks we must understand
the abstraction. For that we must first understand the problem: tasks are things that
our scheduler wants to run in a container on a slave; however, we’d sometimes like to
be able to run multiple tasks in the same container. For example, this pattern shows
up with Storm workers and Hadoop TaskTrackers, each of which can contain many
tasks.

So, what’s an executor? An executor is a process container that runs tasks.

And what’s a task? A task is the unit of work in Mesos.

Figure 2-1 illustrates the relationship between the elements of this abstraction.
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Figure 2-1. Relationship between slaves (machines), executors (containers), and tasks

There are also some caveats that you should be aware of:

Tasks can adjust the size of the executor’s container
When you launch a task or executor in Mesos, both have resources attached to
them. The reason for this is that an executor has a basic amount of resources that
it requires for itself, and then each task can use additional resources. Mesos will
automatically expand and contract the executor’s container to have resources
equal to the sum of those required by the executor plus all of its running tasks.

APIs can be task or executor oriented
When programming for the executor API (see Chapter 5 for details), some com‐
munication APIs between the executor and scheduler are are specified per task
(such as launchTask and statusUpdate), whereas other APIs are per executor
(such as frameworkMessage). It’s up to the framework developers to make sure
that they associate messages with tasks whenever necessary, regardless of whether
the Mesos API does that automatically.

Most frameworks don’t worry about distinguishing tasks and executors
Nearly every Mesos framework has one task for each executor. This means they
don’t need to worry about various idiosyncrasies in the executor APIs. Unfortu‐
nately, that in turn means that occasionally the executor APIs can be difficult to
understand, since they see less use.
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CommandExecutor
Most users and developers don’t need to leverage the sophisticated features of the
Mesos executor APIs. To assist rapid and reliable application development, Mesos
comes with the CommandExecutor, which is a special, simplified executor. If your task
simply launches a command-line application (and optionally downloads it from a
location in storage) or a Docker image, you can specify a CommandInfo when launch‐
ing a task, rather than an ExecutorInfo. If you do this, then Mesos will launch the
specified command with the built-in CommandExecutor, which will handle the Mesos
messaging protocol for you. Many frameworks, such as Chronos and Marathon, often
use the CommandExecutor for its simplicity.

Understanding mesos.proto
Throughout this book and your own development efforts, you’ll often wonder how
you configure some API or what the configuration options are for some feature. All
communication with Mesos is encoded in Google Protocol Buffers (commonly
known as protobufs). Lucky for us, all of the data schemas are stored in a central loca‐
tion: the file include/mesos/mesos.proto in the Mesos codebase. Let’s take a tour of
Google protobufs, and learn some idioms that frequently show up in the Mesos code‐
base.

Protobufs is an interface description language that allows an application’s developers
to specify strongly typed messages that exist in their system. Many languages have
protobuf compilers, which convert .proto files into efficient serializers and deserializ‐
ers so that all of the languages can communicate with an efficient binary encoding.

First, let’s learn the basics of protobufs:

/** 
 *  This represents information about a user.
 *  We'll respect their privacy as much as possible.
 */
message UserInfo { 
  // The name of the user 
  required string username = 1; 
  required Name name = 2; 
  optional uint32 age = 4; 
  // Auxiliary info
  optional bytes aux_info = 3; 
}

message Name { 
  optional string first = 1; 
  optional string last = 2;

  message MiddleName { 
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    optional string regular = 1; 
    optional string patronymic = 2;
  }

  repeated MiddleName middle = 3; 

  optional uint32 total_parts = 4 [default = 2]; 
}

Protobufs supports block comments in the style of JavaDocs.

The main syntactic form in a .proto file is the message, which has a name
(UserInfo) and a set of typed, named fields.

Protobufs also supports comments that span to the end of the line, like C and
Java.

A field has four parts: whether is it required, optional, or repeated; the type
(string, in this case); the name of the field; and the field index. Each field index
must be unique to the message; it is the developer’s responsibility to never reuse
the indices, because they are the foundation on which backward compatibility in
the binary format is built.

A field’s type can itself be another message.

Protobufs has many built-in numeric types; Mesos primarily uses int32, uint32,
and double. Also, notice that the field indices don’t have to be in numeric order—
they’re usually grouped to reflect the structure of the message.

bytes allows you to store arbitrary binary data in a protobuf. In Mesos’s protobuf
messages, this is used to enable developers to define custom additional payloads.

Generally, most or all of a project’s messages are defined in a single file.

You don’t need to make any fields required.

Messages can be nested into other messages.

Note that the field numbering restarts within every message, even nested mes‐
sages.

Fields can also be repeated, in which case they’re a list of zero or more entries of
the specified type (in this case, MiddleName).

Protobufs allows default values to be specified.
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Besides the basics, there are a few patterns that frequently show up in mesos.proto.
Firstly, any ID in the system typically has a message defined for it, with only a single
required string value (c.f. FrameworkID, TaskID). This is beneficial for typed lan‐
guages like C++, Scala, and Java, because it ensures that different types of IDs can’t get
mixed up. Secondly, when there is a choice for what to specify (for instance, a custom
executor vs. a command executor), both choices are made optional, and there
should be a comment in mesos.proto that explains the choice. Most messages that can
be generated by framework code have a data field of type bytes: this is the place to
put any serialized messages or data you may want to transmit.

The Browser Tab I Never Close

Given the reliance on comments for this pattern, I always have
mesos.proto open when I’m developing framework code.

Another common pattern in mesos.proto is tagged unions. A tagged union is also
known as a discriminated union; it is used when there are multiple mutually exclusive
choices for how to configure something. Unions of this type, such as the Resource
message, have every choice optional, so that you can fill in just one per message.
There is also a required Type field, which indicates to the code which field you
intended to specify. For example, to specify a scalar resource, the Type of the resource
should be SCALAR and the scalar field should contain the value.

Finally, mesos.proto is usually where new features of Mesos are specified and incuba‐
ted. As a result, you’ll often see upcoming features described in mesos.proto without
other official documentation. For example, the service discovery system and the per‐
sistent volumes features were in mesos.proto for several releases prior to becoming
stable, supported features in Mesos. mesos.proto can give you a lot of insight into
what’s coming up for Mesos; however, it can be confusing and overwhelming if you
don’t ignore messages and fields unrelated to your task at hand.

Not Managed by Mesos
To have a functional Mesos cluster, you’ll need a few other applications that are diffi‐
cult or impossible to run as frameworks:

ZooKeeper
Mesos uses ZooKeeper to provide discovery services across your cluster. Zoo‐
Keeper quorums are named by the DNS names of the machines that they run on;
as a result, the Mesos cluster’s ZooKeeper quorum usually runs on three or five
specific machines, so that it can have a stable name.
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Databases
Initial support for persistent volumes was only recently added, in Mesos version
0.23. As a result, most databases don’t yet have mature Mesos frameworks. Nev‐
ertheless, work is rapidly progressing on hosting databases on Mesos. Twitter has
been developing Apache Cotton (previously called Mysos), which runs and man‐
ages MySQL on Mesos, since 2014. Mesosphere has also been working with its
partners to productionalize Cassandra and Kafka on Mesos, and Basho has
released a beta version of a Riak framework for Mesos, which includes a high-
performance proxy layer that was enabled by Mesos.

Monitoring
Mesos watches and monitors its frameworks, which helps developers build highly
available and reliable systems. But, in the loosely translated words of the Roman
poet Juvenal, “Who watches the watchers?” Mesos itself needs to be monitored; it
collects instantaneous usage and utilization data, but that data should be archived
and graphed to understand the cluster’s behavior over time. In addition, Mesos
isn’t built to identify issues with the machines that it’s running on. Thus, a robust,
productionalized Mesos cluster should have host-level monitoring, and it should
archive and alert on data collected by Mesos itself. One integrated solution to this
is Satellite, which can automatically disable flaky slaves, generate alerts on custom
conditions, and store historical data to InfluxDB, ElasticSearch, and many other
databases.

Luckily, setting up a monitoring system and one ZooKeeper cluster involves a lot less
work than setting up standalone versions of all the frameworks that we’re going to
run on Mesos!

Summary
A Mesos cluster is comprised of the masters, which coordinate the cluster, and the
slaves, which execute tasks on behalf of frameworks. The master/slave structure of the
Mesos cluster is mirrored by the frameworks, which are each composed of a schedu‐
ler that controls executors, which run on the slaves.

Mesos slaves can be customized with additional key/value metadata, custom resource
types, and roles, which are all ways to ensure that framework schedulers can choose
the best slaves on which to run their executors, and to help the administrators to
guarantee the allocation behaviors of the Mesos masters. The master and slave states
can be browsed through web UIs that cross-reference data across the cluster.

Executors are the processes that actually run inside of containers on the slaves. In
Mesos, executors can host one or more tasks, which provides flexibility for frame‐
work authors to structure their applications however they’d like; however, most
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frameworks use the CommandExecutor to run one task per executor (i.e., one task per
container).

Finally, although Mesos provides a lot of functionality, one still must deploy certain
tools outside of Mesos: specifically, a ZooKeeper quorum to bootstrap the cluster, a
monitoring system, and possibly some databases.

Now that we’ve had a tour of Mesos, let’s learn how to port an existing web applica‐
tion onto Mesos!
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CHAPTER 3

Porting an Existing Application to Mesos

It’s time to learn how to build an application on top of Mesos. Rather than building
everything from first principles, however, let’s take a look how to utilize existing
frameworks to port our legacy applications. When we think about most applications,
they typically fall into two categories: applications that respond to requests and appli‐
cations that do actions at a particular time. In the LAMP stack, these two components
are PHP and cron jobs.

First, we’re going to look at how to move an existing HTTP-based application from
your current infrastructure onto Mesos. In doing so, we’re going to begin to be able to
take advantage of Mesos’s scalability and resiliency, ending up with a system that can
automatically heal and recover from common failure classes. Besides improving the
resiliency of the application, we’re also going to improve the isolation of the applica‐
tion’s components. This will help us to achieve a better quality of service without
struggling and suffering to build this directly on virtual machines. We’ll use Mara‐
thon, a popular Mesos framework, to host our HTTP-based application.

Then, we’ll look at Chronos as a case study in using Marathon to add high availability
and reliability to other frameworks. Chronos will enable us to run programs at a
specified interval—it can be used to schedule nightly data generation jobs or reports
every 15 minutes. We’ll also go over some recommendations for utilizing Chronos
effectively and maintainably.

Finally, we’ll briefly touch on some alternatives to Marathon, Singularity and Aurora,
which were developed by HubSpot and Twitter, respectively.

Moving a Web Application to Mesos
Nearly every company has a web application. However, no matter whether it’s written
in Ruby on Rails, Scala Play!, or Python’s Flask, deploying it in a reliable, scalable,
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1 By this, I mean endpoints that may result in running a query on the database or making an external service
call that you can’t predict how long it will take, or whether we’ll consume resources indefinitely.

highly available manner is always a challenge. In this section, we’re going to learn
about using Marathon—an easy-to-use Platform as a Service (PaaS) developed by 
Mesosphere—and how to integrate with other tools, such as HAProxy. Through this
process, it is our goal to realize a few benefits over previous architectures:

1. All of our backend processes will be able to run on any machine, and our Mesos
framework will handle automatically spinning up new instances of the backend
when existing instances fail.

2. We will host our static assets, fast-responding endpoints, dangerous endpoints,1

and API in entirely different containers to improve our isolation.
3. We will make it easy to deploy a new version or to roll back, and to do so in a

matter of seconds.
4. We will put the pieces in place to allow our applications to autoscale based on

demand.

At its core, Marathon allows you to specify a command line or Docker image, num‐
ber of CPUs, amount of memory, and number of instances, and it will start that many
instances of that command line or image in containers with the requested amount of
CPU and memory. We will explore this basic configuration as well as a few ways to
integrate Marathon with load balancers, in order to expose our services internally and
to the outside world.

Setting Up Marathon
Obviously, in order to use Marathon, you’ll need to download it. Marathon comes
prepackaged for Ubuntu, Debian, Red Hat, and CentOS on the Mesosphere website.
Of course, you can also build it yourself, by downloading the latest tarball from Mes‐
osphere’s website, or by cloning it from GitHub. Marathon is written in Scala, so you
simply need to run sbt assembly to build it. From here on out, we’ll assume that
you’ve got a copy of Marathon installed.

Marathon is trivial to run as a highly available application. In fact, all you need to do
to run Marathon in a highly available configuration is to ensure that you start two or
three instances of Marathon, and that they all share the same --zk command-line
argument. You should also make other options the same, such as the --master,
--framework-name, and the ports that it listens for HTTP requests on, or you could
see confusing behavior. When running Marathon in this mode, all the instances of
Marathon will correctly respond to requests, and they’ll magically synchronize their
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state so that you don’t need to worry about this. Typically, you’ll finish the setup by
assigning the instances of Marathon to a round-robin DNS name, or putting it
behind a load balancer. Please see Table 3-1 for further information on selected
command-line options.

Table 3-1. Selected Marathon command-line options

Flag Functionality

--master <instance> The URL of the Mesos master. Usually of the form zk://
host1:port,host2:port,host3:port/mesos.

--framework-name <name> Allows you to customize the name of this instance of Marathon in Mesos; useful if you
have multiple instances of Marathon running to stay organized.

--zk <instance> Sets the instance of ZooKeeper in which Marathon’s state is stored. Usually of the form
zk://host1:port,host2:port,host3:port/marathon.

--https-port <port> Enables HTTPS access to Marathon. See “Securing Marathon and Chronos” on page 31 for
details.

Securing Marathon and Chronos
In this sidebar, we’ll go over how to secure Marathon and Chronos by requiring
authentication before making any changes to them, and ensuring all API communica‐
tions are protected with SSL. Although many organizations run Marathon and Chro‐
nos within their trusted networks, others will need to apply access restrictions to
ensure that only authorized users can view or make changes to the running jobs. Note
that this will not secure the connection between Marathon or Chronos and Mesos; to
do that, you’ll need to configure --mesos_authentication_principal and
--mesos_authentication_secret_file for the Mesos authentication scheme you’ve
chosen. This is useful to guard against someone accidentally deleting or changing a
production-critical service, or a rogue employee acting maliciously.

All of these security settings can be configured either with environment variables or
with command-line options. You should use the environment variables, because the
command-line options will enable anyone logged into the machine running Mara‐
thon or Chronos to see the passwords by running ps -f. The environment variables
can be protected by having the script that starts the application export all the sensi‐
tive environment variables before launching. The launcher script can have the per‐
missions set to be unreadable to most users on the machine, which is how you’ll
secure those passwords.

Chronos and Marathon are built on top of the same HTTP/REST services library,
which is named Chaos. Chaos currently only supports HTTP Basic authentication,
also known as username/password authentication. To set the username:password
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pair, you should format them as such (separated by a colon). You can pass them as a
command-line argument via:

--http_credentials username:password

or as an environment variable via:

MESOSPHERE_HTTP_CREDENTIALS=username:password

HTTP authentication is not terribly useful on its own, however, because anyone could
listen to the connection between the client and server to recover the password. To
prevent this, you can enable SSL as well. Because Chaos is a Java application, it needs
to use the Java certificate file format, known as a keystore. The keystore is a password-
protected container for the SSL certificate. To configure this, you specify the path to
the keystore on the command line via:

--ssl_keystore_path /path/to/keystore

or as an environment variable via:

MESOSPHERE_KEYSTORE_PATH=/path/to/keystore

You’ll also need to provide the password. You can do this on the command line via:

--ssl_keystore_password password

or as an environment variable via:

MESOSPHERE_KEYSTORE_PASS=password

At this point, you are probably thinking, “Why does Java have to do everything differ‐
ently? Why can’t it just be compatible with normal certificates?” Luckily, it’s easy to
convert a standard PEM-format PKCS12 certificate (such as the type most Certificate
Authorities issue) into a keystore. To do this, you’ll need your key (mykey.pem) and
certificate (mycert.pem). First, you’ll make a combined file (mykeycert.pem) by run‐
ning:

cat mykey.pem mycert.pem > mykeycert.pem

Then, you’ll use openssl to create the keystore (mykeystore.pkcs12) containing this
certificate. Strangely, keystores require all certificates that they store to have “aliases.”
Our certificate will be called myalias. Without further ado, here’s the command:

openssl pkcs12 -export -in mykeycert.pem -out mykeystore.pkcs12 \
    -name myalias -noiter -nomaciter

And voilà! You can now use any standard issue certificate to secure Marathon and
Chronos.

Make sure to disable the HTTP access once you’ve done this though, or you’ll have
put a lock on the front door but left the back door wide open! This can be done with
the command-line argument --disable_http to Marathon and Chronos.
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Using Marathon
Marathon is controlled entirely through its HTTP API. With a working instance of
Marathon, let’s try launching an application.

We’ll run a simple application: the famous Python SimpleHTTPServer. This applica‐
tion simply serves the files in the directory in which it was started. We’re going to
base our example on it because nearly everyone’s got Python installed, and it’s avail‐
able by default.

If you run this command:

python -m SimpleHTTPServer 8000

on your computer, then you should be able to navigate to localhost:8000 in your
browser and see a directory listing of the folder in which you started the server.

Let’s see how we can run that on a Marathon server running on
marathon.example.com:8080. We’ll first make a file containing the JSON descriptor
of the Marathon application shown in Example 3-1.

Example 3-1. SimpleHTTPServer JSON descriptor

{
    "cmd": "python -m SimpleHTTPServer 31500", 
    "cpus": 0.5, 
    "mem": 50, 
    "instances": 1, 
    "id": "my-first-app", 
    "ports": [31500], 
    "requirePorts": true 
}

The "cmd" specifies the command line that will launch your application.

"cpus" specifies the number of CPUs that your application’s container should
have. This number can be fractional.

"mem" specifies the number of MB of memory that your application’s container
should have.

"instances" specifies how many copies of this application should be started on
the cluster. For this demo, we’ll only make one instance, but typical applications
will have anywhere from 2 to 2,000 instances.

"id" is how we’ll refer to this application in the future via the APIs. This should
be unique for each application.
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"ports" is an array of the ports that the application requires. In this case, we only
need a single port. Later, we’ll see how to dynamically allocate and bind to ports.

Since we’re explicitly specifying which ports we want to allocate, we must tell
Marathon, or else it will default to automatic port assignment.

Now let’s suppose that data has been stored in a file called my-first-app.json. In order
to start this application, we’ll use an HTTP POST to send the data to a Marathon
server running at marathon.example.com:8080:

curl -X POST -H 'Content-Type: application/json' \
    marathon.example.com:8080/v2/apps --data @my-first-app.json

This should give us a response that looks something like:

{
   // This section contains parameters we specified
   "id" : "/my-first-app",
   "instances" : 1,
   "cmd" : "python -m SimpleHTTPServer 31500",
   "ports" : [ 31500 ],
   "requirePorts": true,
   "mem" : 50,
   "cpus" : 0.5,

   // This section contains parameters with their automatically assigned values
   "backoffFactor" : 1.15,
   "maxLaunchDelaySeconds" : 3600,
   "upgradeStrategy" : {
      "minimumHealthCapacity" : 1,
      "maximumOverCapacity" : 1
   },
   "version" : "2015-06-04T18:26:18.834Z",
   "deployments" : [
      {
         "id" : "54e5fdf8-8a81-4f95-805f-b9ecc9293095"
      }
   ],
   "backoffSeconds" : 1,
   "disk" : 0,
   "tasksRunning" : 0,
   "tasksHealthy" : 0,
   "tasks" : [],
   "tasksStaged" : 0,

   // This section contains unspecified parameters
   "executor" : "",
   "storeUrls" : [],
   "dependencies" : [],
   "args" : null,
   "healthChecks" : [],

34 | Chapter 3: Porting an Existing Application to Mesos



   "uris" : [],
   "env" : {},
   "tasksUnhealthy" : 0,
   "user" : null,
   "requirePorts" : true,
   "container" : null,
   "constraints" : [],
   "labels" : {},
}

which indicates that the application was started correctly.

We can find all the information about the running application by querying for infor‐
mation about my-first-app (what we decided to name this application):

curl marathon.example.com:8080/v2/apps/my-first-app | python -m json.tool

This query returns almost the exact same data as we got when we created the applica‐
tion. The difference is that by now our application has had time to start running, so
we can see information about the running tasks:

// ... snip (same as before) ...
    "tasks": [
        {
            "appId": "/my-first-app",
            "host": "10.141.141.10", 
            "id": "my-first-app.7345b7b5-0ae7-11e5-b3a7-56847afe9799", 
            "ports": [ 31500 ], 
            "stagedAt": "2015-06-04T18:28:09.235Z", 
            "startedAt": "2015-06-04T18:28:09.404Z", 
            "version": "2015-06-04T18:28:05.214Z" 
        }
    ],
    "tasksHealthy" : 1, 
// ... snip (same as before) ...

This tells us the DNS name or IP address of the host that is running the task.

The id of the task is a Mesos construct. We can use the Mesos master’s UI to
inspect this task; for instance, we can examine its stdout and stderr.

Whether we chose the port that the application is running on or allowed Mara‐
thon to choose for us (see Example 3-2 for details), we can find the actually
reserved ports for the task.

The staging time of the task is when we submitted the task to a Mesos offer.

The start time of the task is when Mesos actually got around to launching the
task.
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Every time we update the Marathon descriptor, it gets stamped with a new ver‐
sion (see the response to the initial POST given earlier). Every task is annotated
with the version from which it was launched.

This gives a summary of the number of currently healthy tasks in the application.

Let’s look at some of the rich information available about the application. First, we
can see all of the configuration parameters that we specified when we created the
application. We also see tons and tons of other settings, many of which we’ll go over
soon. The next very interesting field is "tasks", which is an array of all of the actual
running instances of the application. Each task is represented as a JSON object, which
has several useful fields:

• "host" and "ports" tell us what the actual host and ports that were assigned to
this task are. These fields are the key to discovering where an application is
actually running so that we can connect to it.

• "id" is the mesos TaskID. This is constructed by adding a unique per-task UUID
to the application’s ID, which allows for convenient discovery with the Mesos CLI
tools or in the Mesos UI.

• "stagedAt" and "startedAt" give us information about when lifecycle events
happened to this task. A task is staged once Marathon actually requests Mesos to
start the task on a particular offer; a task is started once it begins running.

Upcoming Change in Marathon REST API

The REST API examples in this book are valid as of Marathon 0.9.
In the future, Marathon will filter the results so requests don’t need
to return megabytes of JSON data. When this happens, you’ll need
to specify an additional, repeatable URL parameter: embed.
That is, instead of /v2/apps/my-first-app, you need to
request /v2/apps/my-first-app?embed=app.counts&embed=app

.tasks to retrieve the data for the preceding examples. You can
read about all of the options for embed in the Marathon REST API
documentation.

Usually, you won’t want to hardcode the port for your application: after all, if you did
this, then you’d only ever be able to run one instance of the application per slave.
Marathon can specify the port for you, instead: simply choose each port your applica‐
tion requires as 0, and the assigned ports will be available in the environment vari‐
ables $PORT0, $PORT1, etc. If we changed our earlier configuration to take advantage
of this, we’d end up with Example 3-2.
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Example 3-2. SimpleHTTPServer JSON descriptor with dynamically chosen port

{
    "cmd": "./python -m SimpleHTTPServer $PORT0", 
    "cpus": 0.5,
    "mem": 50,
    "instances": 1,
    "id": "my-first-app",
    "ports": [0], 
    "uris": [
        "http://fetchable/uri/with/python.tar.gz" 
    ]
}

Note that we use $PORT0 to access the environment variable that contains the port
assigned to the first index of the "ports" array.

We provided 0 as the desired port, meaning that we’re allowing Marathon to
choose for us.

We can also provide a list of URIs to be fetched and unzipped into the container
before running the command. See “Configuring the process’s environment” on
page 94 for details on the URI schemes supported.

Some applications you’d like to run on Marathon don’t accept their ports via the com‐
mand line. Don’t worry! There’s an easy way for us to propagate our $PORT0 environ‐
ment variables into configuration files. I’ll assume that the application’s configuration
file is set as a URL to be downloaded with the application. Now, we’re going to use
sed to replace a special string in the configuration file with the desired environment
variable, be it a $PORT0 or the $MESOS_DIRECTORY:

sed -e 's#@MESOSDIR@#'"$MESOS_DIRECTORY"'#' config.templ > config 
sed -e 's#@PORT@#'"$PORT0"'#' config2.templ > config2 

In our first example, we are replacing the string @MESOSDIR@ with the task’s sand‐
box directory. We surround the string in the configuration file with @ symbols,
because they so rarely show up in configuration languages (of course, you could
use any unique string). Also, we use single quotes around the “constants” in our
sed command and double quotes around the environment variable to ensure that
our shell doesn’t corrupt our command. Finally, we use # instead of / for the sed
command so that we can successfully template an environment variable that itself
contains forward slashes.

Here, we template the port at index 0 into the configuration file. In fact, we could
pass multiple -e arguments to a single invocation of sed if we wanted to template
several variables in one configuration file.
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We’ll look at other fields as we cover the features that utilize them.

Scaling Your Application
Let’s see what it would take to scale our HTTP server to have five instances. Ready?

curl -X PUT -H 'Content-Type: application/json' \
    marathon.example.com:8080/v2/apps --data '{"instances": 5}'

Of course, no one would ever actually want to have five instances of such a useless
application, so why don’t we scale it down?

curl -X PUT -H 'Content-Type: application/json' \
    marathon.example.com:8080/v2/apps --data '{"instances": 1}'

Luckily, scaling is extremely easy!

Using Placement Constraints
Marathon supports constraints on where the application is launched. These con‐
straints can be driven either by the hostname of the slave or any slave attribute. Con‐
straints are provided in an array to the application; each constraint is itself an array of
two or three elements, depending on whether there’s an argument. Let’s take a look at
what constraints are available and how to use them:

GROUP_BY

This operator ensures that instances of the application are evenly spread across
nodes with a particular attribute. You can use this to spread the application equi‐
tably across hosts (Example 3-3) or racks (assuming that the rack is encoded by
the rack attribute on the slave; see Example 3-4).

Example 3-3. Spread evenly by host

{
    // ... snip ...
    "constraints": [["hostname", "GROUP_BY"]]
}

Example 3-4. Spread evenly by rack

{
    // ... snip ...
    "constraints": [["rack", "GROUP_BY"]]
}

UNIQUE

This operator ensures that every instance of the application has a different value
for the UNIQUE constraint. It’s similar to GROUP_BY, except if there are not enough
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different values for the attribute, the application will fail to fully deploy, rather
than running multiple instances on some slaves. Usually, GROUP_BY is the best
choice for availability, since it’s generally preferable to have multiple tasks run‐
ning on a single slave rather than fewer than the desired number. Example 3-5
shows how you could use UNIQUE to ensure that there’s no more than one
instance of some application per slave in the cluster.

Example 3-5. Run at most one instance per host

{
    // ... snip ...
    "constraints": [["hostname", "UNIQUE"]]
}

CLUSTER

This operator allows you to run an application only on slaves with a specific
value for an attribute. If certain slaves have special hardware configurations, or if
you want to restrict placement to a specific rack, this operator can be useful;
however, LIKE is more powerful and often a better fit. For example, suppose that
we’ve got a mixture of ARM and x86 processors in our data center, and we’ve
made a cpu_arch attribute for our slaves to help us distinguish their architec‐
tures. Example 3-6 shows how to ensure that our application only runs on x86
processors.

Example 3-6. Only run on x86

{
    // ... snip ...
    "constraints": [["cpu_arch", "CLUSTER", "x86"]] 
}

Note that the CLUSTER operator takes an argument.

LIKE

This operator ensures that the application runs only on slaves that have a certain
attribute, and where the value of that attribute matches the provided regular
expression. This can be used like CLUSTER, but it has more flexibility, since many
values can be matched. For example, suppose that we’re running on Amazon, and
we set the instance_type attribute on all of our slaves. Example 3-7 shows how
we could restrict our application to run only on the biggest C4 compute-
optimized machines.
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Example 3-7. Only run on c4.4xlarge and c4.8xlarge machines

{
    // ... snip ...
    "constraints": [["cpu_arch", "LIKE", "c4.[48]xlarge"]] 
}

LIKE’s argument is a regular expression.

UNLIKE

UNLIKE is the complement of LIKE: it allows us to avoid running on certain slaves.
Maybe you don’t want some daemons (such as ones processing user billing infor‐
mation) to run on machines that are in the DMZ, which is an unsecured network
area. By setting the attribute dmz to true on machines in the DMZ, we can have
our application avoid those machines, as in Example 3-8.

Example 3-8. Don’t run in the DMZ

{
    // ... snip ...
    "constraints": [["dmz", "UNLIKE", "true"]] 
}

UNLIKE’s argument can be a regular expression.

Placement constraints can also be combined. For example, we could ensure that our
application isn’t running in the DMZ and is evenly distributed amongst the remain‐
ing machines as shown in Example 3-9.

Example 3-9. Combining constraints

{
    // ... snip ...
    "constraints": [["dmz", "UNLIKE", "true"],
                    ["hostname", "GROUP_BY"]]
}

Combining constraints will allow you to precisely control how your applications are
placed across the cluster.

Running Dockerized Applications
Marathon has first-class support for Docker containers. If your app is already Dock‐
erized, then it’s very easy to run it on Marathon.

In order to get started, you’ll first need to make sure that your Mesos cluster has
Docker support enabled. To do this, make sure that you’ve enabled the Docker con‐
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2 If you’d like to use a private Docker repository, you can add the .dockercfg to the "uris" field of the applica‐
tion descriptor, as described in the Advanced Docker Configuration note in the section “Using Docker” on
page 129.

tainerizer and increased the executor timeout (see “Using Docker” on page 129 for
details).

At this point, we can simply add the Docker configuration to the JSON that we use to
configure our application. Let’s take a look at the options we have when using Docker,
as illustrated in Example 3-10. Note that this JSON configuration is partial; it must
also include additional options such as those in Example 3-1.

Example 3-10. Marathon Docker JSON configuration

{
    // ... snip ...
    "container": {
        "type": "DOCKER", 
        "docker": {
            "image": "group/image", 
            "network": "HOST" 
        }
    }
}

Since Mesos will continue to add new container types, such as Rocket or KVM
containers, much of the container configuration isn’t Docker-specific. Here, we
must specify that we’ll provide Docker-specific configuration, because this is a
DOCKER container.

This is the most important part: where you specify your container image.2

We’re going to run Docker in host networking mode; this means that Docker is
using the slave’s networking resources directly.

Once the Docker container launches, it’ll also have access to the Mesos sandbox
directory, which will be available in the environment variable $MESOS_SANDBOX.

Mounting host volumes
Often, when using Docker, you may want to mount some volume available on the
host. This may be some globally distributed configuration files, data files, or maybe
you’d just like a data directory that won’t be automatically garbage collected.
Example 3-11 shows how to add this to the JSON configuration.
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Example 3-11. Mounting host volumes

{
    "container": {
        "type": "DOCKER",
        "docker": {
            "image": "group/image",
            "network": "HOST"
        },
        "volumes": [ 
            { 
                "containerPath": "/var/hostlib",
                "hostPath": "/usr/lib",
                "mode": "RO" 
            },
            { 
                "containerPath": "/var/scratch",
                "hostPath": "/mount/ssd",
                "mode": "RW"
            }
        ]
    }
}

Note that the "volumes" aren’t considered Docker-specific, and you can specify
an array of them.

This volume allows us to access the /usr/lib directory of the host machine from
within our Docker container. This could be useful if we’d like to access libmesos.so
from the host, rather than needing to keep updating our Docker image.

We can mount the volume in read-only (RO) or read-write (RW) mode.

This volume gives us some SSD-mounted scratch space, assuming that an SSD is
mounted at /mount/ssd on the host.

Mounting host volumes into the Docker container might seem like a great way to
host databases on Marathon; after all, you can provide persistent host storage to con‐
tainers. Unfortunately, even though you can mount volumes with Docker, there are a
few reasons why this is very hard (at least, until Mesos natively supports volumes).
First of all, it’s tedious to communicate which machines have disks available. In order
to accomplish this, you’ll need to use placement constraints to ensure all of the fol‐
lowing:

1. Each slave with a spare volume has a special attribute identifying it as having that
volume, so that you can use the CLUSTER operator to ensure placement on those
slaves.
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2. The application has the UNIQUE operator set on the hostname, so that only one
instance of the application launches on each slave (since there’s only one special
mount point per machine).

3. Every one of the slaves has its host volume mounted on the same path (luckily,
this is the easiest part).

If you feel up to the task, this can help you to get certain types of databases running
on Marathon. Sadly, you won’t have scaling or automatic recovery handled for you,
since there’s so much special configuration necessary on each slave. Happily, as Mesos
adds support for persistent disks, more and more specialized frameworks that handle
launching and configuring databases will pop up, and this mess will no longer be
needed.

Health Checks
Marathon keeps track of whether it believes an application is healthy or not. This
information is exported via the REST API, making it easy to use Marathon to central‐
ize management of its application health checks. When you query the REST API for
information about a particular application, all of its tasks will include their latest
health check results. By default, Marathon assumes that a task is healthy if it is in the
RUNNING state. Of course, just because an application has started executing doesn’t
mean that it’s actually healthy. To improve the usefulness of the application’s health
data, you can specify three additional types of health checks that the tasks should
undergo: command-based, HTTP, and TCP.

Example 3-12 shows the common fields of the JSON health check specification.

Example 3-12. Common health check fields

{
    "gracePeriodSeconds": 300, 
    "intervalSeconds": 60, 
    "maxConsecutiveFailures": 3, 
    "timeoutSeconds": 30 
}

The grace period is the amount of time that a task is given to start itself up.
Health checks will not begin to run against a particular task until this many sec‐
onds have elapsed. This parameter is optional, with a default value of a 5-minute
grace period.

The interval is the amount of time between runs of this health check. This
parameter is optional, with a default value of 1 minute between each check.
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3 These will be made horizontally scalable in a future version of Mesos. You can see whether these features have
been added yet by checking MESOS-2533 and MESOS-3567 on https://issues.apache.org/jira.

The maximum number of consecutive failures determines how many failed
health checks in a row should cause Marathon to forcibly kill the task, so that it
can be restarted elsewhere. If this is set to 0, then this health check failing will
never result in the task getting killed. This parameter is optional, with tasks by
default being killed after three failures of this health check.

Sometimes, a health check just hangs. Rather than simply ignoring the check,
Marathon will treat the slow or hung health check as a failure if it doesn’t com‐
plete in this many seconds. This parameter is optional, and by default health
checks have 20 seconds to run.

We’ll look at the two of the three types of health checks here: HTTP and TCP. Com‐
mand health checks are still relatively new, and due to some of their limitations, I rec‐
ommend waiting a bit longer for them to stabilize. Bear in mind, though, that HTTP
and TCP health checks here are currently performed by the Marathon master, which
means that they’re not scalable to thousands of tasks.3

HTTP checks

HTTP health checks validate if doing a GET on a particular route results in a success‐
ful HTTP status code. Successful status codes can either be true successes, or redi‐
rects; thus, the response code must be in the range 200–399, inclusive. To configure
an HTTP health check, there are two required fields and one optional field, as shown
in Example 3-13.

Example 3-13. HTTP health check fields

{
    "protocol": "HTTP", 
    "path": "/healthcheck", 
    "portIndex": 0 
}

You must specify that this is an HTTP health check in the "protocol" field.

You must specify what the route for the health check should be. In this case, we’re
going to attempt a GET on http://myserver.example.com:8888/healthcheck,
where myserver.example.com:8888 is the host and port that Marathon started
the task on.
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You can optionally specify a "portIndex" for the health check. By default, the
port index is 0.

Why Do Health Checks Use “portIndex” Instead of “port”?

You might be confused as to what the "portIndex" is in the health
check specification, and why we don’t simply specify the actual
port. Remember that Marathon can (and by best practices does)
choose the ports that your application will bind to. As a result, we
don’t actually know when we’re configuring the health check what
port the application is running on. Instead, however, remember
that all the ports our application used were specified in the "ports"
array of the application descriptor. Therefore, we can simply spec‐
ify which index of the "ports" array corresponds to the port that
we want to run the health check on!

TCP checks
TCP health checks validate whether it’s possible to successfully open a TCP connec‐
tion to the task. They do not send or receive any data—they simply attempt to open
the socket. To configure a TCP health check, there is one required and one optional
field, shown in Example 3-14.

Example 3-14. TCP health check fields

{
    "protocol": "TCP", 
    "portIndex": 0 
}

You must specify that this is a TCP health check in the "protocol" field.

You can optionally specify a "portIndex" for the health check. By default, the
port index is 0.

Application Versioning and Rolling Upgrades
What use would a distributed, scalable PaaS have if it couldn’t do rolling upgrades?
An upgrade is any time that you modify the application, which is typically done by
making a PUT to the /v2/apps/$appid route on Marathon. Every upgrade creates a
new version, which is named with the timestamp of when the upgrade was made.
When you query the REST API for information about the application, every task will
say which version it is running. You can query which versions are available from
the /v2/apps/$appid/versions route on Marathon, and you can find details of the
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versions from the /v2/apps/$appid/versions/$version route. Example 3-15 dem‐
onstrates how to configure the upgrade behavior of an application.

Example 3-15. Application upgrades

{
    "upgradeStrategy": {
        "minimumHealthCapacity": 0.5,
        "maximumOverCapacity": 0.1
    }
}

With Marathon, you can easily specify how much of the application you want to be
available during an upgrade via the "minimumHealthCapacity" field of the applica‐
tion descriptor. The "minimumHealthCapacity" can be set to any value between 0 and
1.

If you set this to 0, when you deploy a new version Marathon will first kill all the old
tasks, then start up new ones.

If you set this to 0.6, when you deploy a new version Marathon will first kill 40% of
the old tasks, then start up 60% of the new tasks, then kill the rest of the old tasks and
start the rest of the new tasks.

If you set this to 1, when you deploy a new version Marathon will first start up all the
new tasks (at which point your application could use twice as many resources as dur‐
ing regular operations), and then shut down the old tasks.

The "maximumOverCapacity" setting provides an additional level of safety, so that an
application doesn’t consume too many resources temporarily during an upgrade. The
"maximumOverCapacity" can be set to any value between 0 and 1.

If you set this to 0, when you deploy a new version Marathon will not start more tasks
than the target number of instances.

If you set this to 0.6, when you deploy a new version Marathon will never exceed a
combined total of 160% of the target number of tasks.

If you set this to 1, when you deploy a new version Marathon will be allowed to start
every new task before it kills any of the old tasks, if it so chooses.

The Event Bus
Often, when building applications with Marathon, you’ll want to receive notifications
when various events happen, such as when an application gets a new deployment, or
when it scales up or down. These notifications could then be used to reconfigure
proxies and routers, log statistics, and generate reports. Marathon has a built-in fea‐
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4 SSL termination is when clients communicate with the proxy over a secure SSL connection, and the proxy
handles the SSL so that the backends need not waste CPU resources on cryptography, or even support it.

ture for automatically POSTing all of its internal events to a provided URI. To use this
feature, simply provide two additional command-line arguments to Marathon:

--event_subscriber

This argument should be passed the value http_callback in order to enable this
subsystem. At this time, no other options are supported.

--http_endpoints

This argument is a comma-separated list of destination URIs to send the JSON-
formatted events to. For example, a valid argument would be
http://host1/foo,http://host2/bar.

Setting Up HAProxy with Marathon
What a great day! We’ve learned all about Marathon and decided that it would make
an excellent platform for our applications. Now that our applications are running on
Marathon, however, we’ve reached an impasse: how can the outside world actually
connect to them? Some types of applications, such as Celery or Resque workers, need
no additional configuration: they communicate via a shared database. Other types of
applications, such as HTTP servers and Redis instances, need to be made easily dis‐
coverable. The most popular way to do this on Mesos clusters is to run proxies on
static, non-Mesos managed hosts, and automatically update those proxies to point at
running instances of the application. This way, the application is always available on a
known host and port (i.e., the proxy), but we can still dynamically scale its capacity
on the backend. Also, each proxy host can typically serve many applications, each on
a different port, so that a small number of proxy hosts are sufficient for hundreds of
backends. Typically, proxies are constrained either by the total bandwidth used by all
active connections, or by the total CPU usage if they’re providing SSL termination.4

There are two proxies that are far and away the most popular choices for use in
modern application stacks: HAProxy and Nginx. HAProxy is a proxy with very few
features: it can proxy HTTP and TCP connections, perform basic health checks, and
terminate SSL. It is built for stability and performance: there have been no reported
crashes or deadlock bugs in HAProxy for 13 years. This is why HAProxy is popular
amongst Mesos users today.

Nginx, by comparison, has no limits on its features. Besides acting as a proxy, it is
able to run custom user code written in Lua, JavaScript, or JVM-based languages.
This code can affect the proxy operations, or even serve responses directly. Many sys‐
tems actually use both proxies: clients connect to HAProxy instances, which them‐
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selves forward the requests to Nginx instances. The Nginx instances then either
respond directly, or proxy the requests to backend servers to be processed.

In this section, we’re only going to discuss HAProxy, but be aware that Nginx can be
used in exactly the same way, if you require the additional functionality it offers.

haproxy-marathon-bridge

In the Marathon repository, there’s a script called bin/haproxy-
marathon-bridge. This script is intended to help generate an
HAProxy configuration file for Marathon. Unfortunately, it doesn’t
allow you to specify which port the services on Marathon will be
bound to on the HAProxy host. As a result, this script is best avoi‐
ded.

Let’s take a look at the most popular configurations for setting up proxies with Mesos.

Bamboo
Bamboo is an HAProxy configuration daemon with a web interface. It provides a UI
for viewing and managing the current state of HAProxy rules. At its core, Bamboo
monitors Marathon for changes to applications, and keeps its HAProxy instance’s
backends up-to-date. Bamboo also provides several useful features, all of which are
exposed via the web interface and an HTTP REST API.

Most importantly, Bamboo supports using HAProxy ACL rules for each Marathon
application. An ACL rule is a fine-grained way to choose which server backend
should handle a request. ACL rules can route requests based on their URL, cookies,
headers, and many other factors. For instance, you can use ACL rules to route
requests whose paths start with /static to the static content-serving backends, but
all other requests to your application servers. ACL rules are extremely powerful, since
they allow you to separate your application into isolated components or services,
scale those components separately, but still expose a single URL to clients. With ACL
rules, you could choose to route anonymous visitors to one pool of servers, logged-in
users to another pool of servers, and requests for static data to a third pool of servers,
thus enabling you to scale each of their capacities separately.

Bamboo also has a powerful templating system, based on the Go language’s
text/template package. This templating system is flexible, but does have a steep
learning curve compared to simpler, more popular systems like mustache templates.

All proxy configuration information is stored in ZooKeeper, which simplifies config‐
uration management by keeping all instances of Bamboo in sync.
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5 The other options, DNS and in-app discovery, delegate communication directly to each application, so there’s
no central system to configure for isolation. Instead, each application can handle its authorization in complete
isolation from other applications.

Bamboo uses the Marathon event bus to discover changes in backend configurations,
which means that your HAProxy configurations typically lag changes in Marathon by
mere hundreds of milliseconds.

Additionally, Bamboo has basic integration with StatsD to report on when reconfigu‐
ration events occurred.

Bamboo provides a complete solution for sophisticated HAProxy configurations for
Marathon applications.

HAProxy for microservices
Nowadays, microservices are a popular architectural pattern. Mesos and Marathon
form a great substrate for building microservices-based applications: after all, you can
host all your services on Marathon. Unfortunately, service discovery is typically a
substantial problem for microservice deployments. Let’s look at how we can use
Mesos and Marathon to create a SmartStack-like system.

We need to consider two issues: how can we do service discovery, and what are the
problems with the standard options? These options include:

DNS
We could choose to use round-robin DNS to give all our backend servers the
same DNS name. There are two problems we’ll face, however: DNS changes typi‐
cally take at least several seconds to propagate through our infrastructure, and
some applications cache DNS resolutions forever (meaning they’ll never see DNS
changes). The other problem is that, unless you write a custom client library that
can use SRV records, DNS doesn’t provided a simple solution to running multiple
applications on the same server but with different or randomly assigned ports.

Centralized load balancing
This is akin to what we discussed in “Bamboo” on page 48. For some applica‐
tions, this is actually a great design; however, it does require a globally accessible
pool of load balancers. This centralization can make it tedious to securely isolate
applications from one another: in order to isolate the applications, you must con‐
figure the Nginx or HAProxy rules for the specific isolation requirements.5

In-app discovery
Companies like Twitter and Google use specialized service request and discovery
layers, such as Finagle and Stubby, respectively. These RPC layers integrate ser‐
vice discovery directly into the application, querying ZooKeeper or Chubby
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(Google’s internal ZooKeeper-like system) when they need to find a server to
which they can send a request. If this is possible in your environment, using a
specialized service discovery layer offers the most flexibility in terms of routing,
load balancing, and reliability due to the fact that you can control every aspect of
the system. Unfortunately, if you need to integrate applications written in several
languages, it can be onerous and time-consuming to develop parallel implemen‐
tations of the discovery system for every language. Furthermore, this approach
can be a nonstarter if you need to integrate with existing applications that weren’t
developed with this service discovery mechanism built in.

The shortcomings of these approaches led many engineers to come up with a fourth
pattern: one that combines the ease of integration of centralized load balancing with
the fault tolerance of the decentralized options. With this approach, we will run a
copy of HAProxy on every single machine in our data center. Then, we’ll assign each
application a port (but not a hostname). Finally, we’ll keep all of our HAProxy instan‐
ces pointing each application’s port at its backends, wherever they’re running on the
cluster.

This approach has two main benefits:

Ease of setup
You can use Bamboo or a simple cron job on every machine in your cluster to
keep the local instances of HAProxy in sync with Marathon. Even if some part of
your infrastructure is temporarily unavailable, the local HAProxy will continue to
route traffic directly to the backends. This means that even a disruption of Mar‐
thon won’t impact the application’s operations.

Ease of use
Every application can communicate with any other microservice simply by con‐
necting to localhost:$PORT, where $PORT is what you assigned to that microser‐
vice. There’s no need to write any specialized or custom code for your
applications, as all you need to do is remember which port corresponds to which
application.

There are also a few downsides to this approach. One is that you need to carefully
maintain the mapping from service to port. If you try to store that mapping globally
and have applications fetch it on startup, you’ll have to write custom code for every
language again. On the other hand, if you hardcode the ports themselves, you run the
risk of typos, which can be very difficult to debug.

The other downside is the lack of coordination between proxies. Our system contin‐
ues to function even when partial failures happen, because each machine operates
independently. Due to the independent operation of each machine, it’s possible for
several HAProxies to all route to the same backend, thus spiking the load on that
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backend, which can result in cascading failures. It is normal to see the variance of
request times increase as the number of nodes in a cluster increases.

Today, this approach of tying services to ports and having every client connect to
HAProxy at localhost seems to be the most popular way to manage service discov‐
ery on Mesos clusters.

Running Mesos Frameworks on Marathon
A very common choice in Mesos clusters is to run the cluster’s Mesos frameworks on
Marathon. But Marathon is a Mesos framework itself! So what does it mean to run a
Mesos framework on Marathon? Rather than worrying about deploying each frame‐
work’s scheduler to specific hosts and dealing with those hosts’ failures, Marathon will
ensure that the framework’s scheduler is always running somewhere on the cluster.
This greatly simplifies deploying new frameworks in a highly reliable configuration.

What About Resource Allocation for Frameworks Run by Marathon?

New Mesos users often wonder, “If I run a framework on Mara‐
thon, how does that affect the allocation of resources?” In fact,
although the framework’s scheduler is run by Marathon, the sched‐
uler still must connect directly to Mesos, and it will receive resources
in an identical way as if you ran it on specifically chosen machines.
The benefit of running it on Marathon, of course, is that any Mesos
slave can run the scheduler, and Marathon can restart it automati‐
cally if that slave fails.

What Is Chronos?
Chronos is a Mesos framework that provides a highly available, distributed time-
based job scheduler, like cron. With Chronos, you can launch jobs that are either
command-line programs (optionally downloaded from URIs) or Docker containers.
Like Marathon, Chronos has a web UI and an easily programmable REST API.
Although the Chronos endpoints have a slightly different interface than Marathon’s,
we won’t go over their details, as the online documentation is sufficient. Chronos has
four key features for scheduling jobs:

Interval scheduling
Chronos uses the standard ISO 8601 notation to specify repeating intervals.
Through the web UI or REST API, you can specify the frequency at which you
want the job to rerun. This makes Chronos suitable for running quick jobs every
few minutes, or a nightly data generation job.
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Dependency tracking
In theory, Chronos supports dependent jobs. Dependent jobs run only if their
prerequisites ran successfully. Unfortunately, Chronos’s implementation of
dependent jobs misses the mark. In Chronos, a job’s dependencies are considered
satisfied if the last invocation of that job was successful. A dependent job is run as
soon as all of its dependencies have been run at least once. This means that unless
every parent has the exact same interval, the dependent jobs can run at poten‐
tially unexpected times. In “Chronos Operational Concerns” on page 54, we’ll
look at a popular mitigation strategy for this.

Deferred start
Chronos can also be used to run a job once or on a repeating interval at a point in
the future. When you specify the ISO 8601 interval on which to repeat the job,
you also specify when you’d like the first run of the job to start. This means that
you can use Chronos to schedule jobs to run days, weeks, or months in the
future, which can be useful for planning purposes.

Worker scalability
The key differentiator between Chronos and most other job schedulers is that
Chronos runs its jobs inside of containers on Mesos. This means that jobs are
isolated and workers are scalable, so no matter what load Chronos generates,
you’re able to add new Mesos slaves to handle the additional work and ensure
that the jobs receive their necessary resources.

Like all production-ready Mesos frameworks, Chronos has high-availability support
with hot spares—most Chronos deployments will run at least two instances of the
scheduler, to ensure that Chronos never has more than a couple seconds of downtime
if a scheduler or its host fails. Chronos also comes with a synchronization tool,
chronos-sync.rb. This tool synchronizes the Chronos state to disk in JSON format.
Using chronos-sync.rb, you can version the jobs you run on your cluster by com‐
mitting the file to version control. This is the most popular approach to ensure
repeatability, since it allows you to keep your Chronos configuration in a repository.

The combination of its REST API and synchronize-to-disk tool make Chronos easy
to integrate. Since its features are somewhat limited, it’s easy to use, but it’s not a com‐
plete solution for dependent workflow management.

Running Chronos on Marathon
One of the most common techniques seen in Mesos framework deployment is to run
framework schedulers on Marathon. The reason for this is that those schedulers can
rely on Marathon to ensure they’re always running somewhere. This removes a huge
burden from the operator, who would otherwise need to ensure that every scheduler
had a well-monitored, multimachine deployment.
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In order to be deployable on Marathon, a scheduler must do some sort of leader elec‐
tion. As we’ll learn in Chapter 4, a scheduler connects to Mesos from a single host.
This means that if we’d like to run our scheduler in two locations (e.g., to have a hot
spare), we’ll need some sort of signaling to ensure that only one scheduler runs at a
time. The most common way to solve this is to use ZooKeeper, since it has an easily
integrated leader election component (see “Adding High Availability” on page 79 for
details). Marathon and Chronos both take this approach.

Let’s look at an example JSON expression for launching Chronos on Marathon
(Example 3-16). In order to maximize the efficiency of our port allocations, we’ll
allow Chronos to bind to any port. To connect to Chronos, we’ll either click through
the Marathon UI or use one of the HAProxy service discovery mechanisms described
earlier.

Example 3-16. Chronos JSON descriptor

{
    "cmd": "java -jar chronos.jar -Xmx350m -Xms350m ---port $PORT0", 
    "uris": [
        "http://fetchable/uri/with/chronos.jar" 
    ],
    "cpus": 1, 
    "mem": 384, 
    "instances": 2, 
    "id": "chronos",
    "ports": [0], 
    "constraints": [["hostname", "UNIQUE"]] 
}

We assume that java is already installed on all the Mesos slaves. Thus, we only
need to pass the dynamically assigned port to Chronos so that it can start up suc‐
cessfully.

Rather than installing Chronos on every Mesos slave, we’ll store its .jar file in
some known location. This way, it’ll be downloaded on the fly to any slave that is
assigned to run the Chronos scheduler, simplifying deployment.

We’ll choose a container size to match the amount of memory we allow the JVM
to allocate (we leave 34 MB of headroom for the JVM itself).

Running two instances of Chronos gives us near-instantaneous failover, since the
standby Chronos scheduler will already be running.

Chronos needs only one port to be assigned.
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We will use a unique host constraint to ensure that the standby instance of Chro‐
nos is running on a different machine. If there are slave attributes that indicate
the rack of each slave, it would be better to rack-isolate the scheduler and its
standby.

The simplest way to verify that Chronos is running is to click on the assigned port
number from the Marathon app view. Each task’s port assignment will be a link to
that host and port combination, which will load the Chronos UI. The Chronos UI is
somewhat buggy, so it’s recommended to use curl or chronos-sync.rb to configure
your instance of Chronos.

Chronos Operational Concerns
Chronos is a useful part of the Mesos ecosystem; however, care must be taken not to
overly rely on it. There are a few things that one must be aware of when running
Chronos in production:

1. The dependent jobs feature isn’t useful—you must use a workflow manager.
2. Chronos is still a complex distributed system—it’s only necessary if you need jobs

to run scalably in containers.

Almost no one uses the Chronos dependent jobs feature. Instead, they use Chronos
to schedule invocations of popular data workflow tools. For simple workflows (such
as running a few processes in order), Bash scripts are a popular option; however,
beyond 20 lines, Bash scripts become unwieldy, and their syntax for complex loops
and conditionals leaves much to be desired. make is another popular way to express
dependencies, since it has superior syntax for workflows and supports basic parallel‐
ism. Luigi is a much richer and more powerful workflow manager. It supports check‐
points in HDFS and databases, which can improve the efficiency of retries of jobs that
failed partway through, since it won’t need to redo earlier checkpointed work.
Regardless of your particular needs and use case, you should use some other tool to
order the jobs that Chronos will be scheduling.

If you’ve made it this far, you’re almost ready to use Chronos in production! The final
consideration is whether you truly need the scalable isolation that Chronos gets from
Mesos. Even though you’re running a Mesos cluster, you don’t need to use Chronos
for your task management. There are many other job-scheduling servers that could
easily be run on Marathon; only use Chronos if you need each job to run in its own
container.
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Chronos on Marathon: Summary
Chronos is a powerful tool for Mesos clusters that need reliable, scalable, interval-
based job scheduling. It powers the data generation processes at many companies,
including Airbnb. Just remember the several quirks, workarounds, and advice dis‐
cussed here!

Chronos on Marathon is just one example of how Marathon can be used to provide
high availability and ease of deployment to other Mesos schedulers. DCOS, a com‐
mercial Mesos product, takes this further and requires all frameworks on DCOS to be
hosted by Marathon. Whether you’re deploying Chronos, Kafka, or Cotton, Mara‐
thon is an excellent choice for hosting other Mesos frameworks’ schedulers.

Alternatives to Marathon + Chronos
Of course, Marathon (and Chronos) won’t fit every cluster’s needs. Let’s briefly look at
two other popular Mesos PaaS frameworks: Aurora and Singularity. Both frameworks
have a much steeper learning curve, but they offer many additional features.

Singularity
Singularity is a Mesos framework developed by HubSpot. It offers the ability to
deploy services just like Marathon (including Dockerized applications); beyond this,
if a service begins to fail its health checks after a deployment, Singularity will auto‐
matically roll back the deployment. Singularity also supports repeating jobs, like
Chronos, as well as one-shot jobs, which can be triggered via a REST API. This sim‐
plifies adding containerized, asynchronous background processing to any service or
repeating job. For managing service discovery and proxies, Singularity is integrated
with another tool called Baragon, which manages and integrates HAProxy, Nginx,
and Amazon’s Elastic Load Balancer.

Aurora
Aurora is the Mesos framework that powers Twitter. Aurora has a highly advanced
job description API written in Python. This API, called Thermos, allows users to
specify how to build and install applications, as well as the workflow and sequence of
processes to run within the Mesos executor. Aurora comes with a high-performance
distributed service discovery API with bindings for C++, Java, and Python. It’s able to
run repeating jobs with cron-style syntax. Also, just like Singularity, Aurora can auto‐
matically detect when a service’s health checks start failing and roll it back to the pre‐
vious working version. Aurora’s most powerful features are related to its multitenancy
controls: Aurora can allow for some tasks to use spare cluster capacity, and then pre‐
empt those tasks when higher-priority production tasks need to be scheduled. It also
can enforce quotas between users. These features were born out of the needs of a
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company running huge numbers of applications written by hundreds of developers
on massive Mesos clusters; if that sounds like the kind of organization you’re building
a Mesos cluster for, Aurora’s worth a closer look.

Summary
In this chapter, we learned how to build standard stateless server-based applications
with Mesos. What we achieved was self-healing, self-restarting, and simplified service
discovery—we basically built a PaaS on Mesos! This was accomplished by using Mar‐
athon, a popular Mesos framework.

Marathon launches, monitors, and restarts processes across your Mesos cluster. It
simplifies rollout, allows for push-button scale up and scale down, and provides a
simple JSON API that’s easy to integrate with.

First, we learned how to start up Marathon, how to secure it, and how to ensure that
it’s highly available. Then, we learned how to write a Marathon service descriptor,
which allowed us to launch the omnipresent SimpleHTTPServer. This was just an
example application; any other application could be launched simply by changing the
command line. We also learned how to programmatically query for information
about the status of applications on Marathon.

Next, we learned about scaling applications on Marathon. Most importantly, we dis‐
cussed placement constraints, and how to easily ensure that applications run on the
correct class of slave machines and are spread evenly amongst racks.

Docker is the most popular application containerization technology. We learned how
to launch Dockerized applications on Marathon with minimal fuss, and how to con‐
figure various Docker-specific options, such as mounting host disks.

Our applications wouldn’t be fully robust without including health checks and auto‐
matic incremental rollouts and rollbacks. We discussed how to configure TCP, HTTP,
and command-based health checks, as well as how to specify the application’s behav‐
ior during upgrades. We also discussed how to subscribe to an event stream from
Marathon to build custom integrations.

Then, we learned about integrating Marathon with a service discovery proxy. Bam‐
boo, an open-source HAProxy configuration manager, is a powerful tool for synchro‐
nizing HAProxy with Marathon tasks. We also learned about popular approaches for
building scalable, multilanguage microservices architectures with HAProxy and Mar‐
athon.

Finally, we looked at how to use Marathon to host other Mesos frameworks’ schedu‐
lers, using Chronos, a distributed cron-like framework, as an example. We also briefly
surveyed alternative PaaS frameworks to Marathon, since they offer many additional
features (at the cost of a steeper learning curve).
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Perhaps Marathon and its alternatives don’t satisfy the needs of your application, and
you need more control over how processes are launched or how failures are handled.
In that case, you’ll need to write your own framework. In the next chapter, we’ll learn
about the techniques used to build Marathon, so that you can build your own custom
Mesos framework.
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CHAPTER 4

Creating a New Framework for Mesos

A Mesos framework is the conceptual aggregation of a distributed system. But what
does that mean to us, as framework developers? How can we actually understand how
the structure of the code we write maps onto the Mesos cluster? Let’s review the
Mesos architecture, and learn some common patterns in framework design.

Instead of trying to understand everything about Mesos architecture all at once, we’ll
look at the simplest case: a framework that only has a scheduler, and no custom exec‐
utor. This type of framework could spin up workers to process requests coming in on
a queue, or it could manage a pool of services.

The Scheduler
The scheduler is the component that interacts directly with the leading Mesos master.
A scheduler has four responsibilities:

1. Launch tasks on the received offers.
2. Handle status updates from those tasks, particularly to respond to task failures

and crashes.
3. Persist state and manage failovers in order to be highly available.
4. Interact with clients, users, or other systems (since no system runs in a vacuum!).

Some of these responsibilities are implemented purely by interacting with the Mesos
API; others must be implemented using the language of choice’s platform. For
instance, launching tasks and handling status updates are implemented entirely by
Mesos callbacks and API requests. On the other hand, it’s up to you to start a web
server (such as Jetty on Java or Flask on Python) to allow clients to interact with the
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scheduler. High availability usually requires using both Mesos APIs and other libra‐
ries to create a solution that is suitable for the problem domain.

But how can we launch tasks if we’re only focusing on the scheduler? For our conve‐
nience, Mesos comes with something called the CommandExecutor, which is specifi‐
cally designed to make it easy to launch and orchestrate command-line programs and
Docker containers. Let’s take a look at some high-level designs for several common
scheduler abstractions: building a pool of servers, a work queue, and a job processor.

First, we’ll look at the pool of servers design. Its architecture is illustrated in
Figure 4-1.

Pool of Servers Scheduler

Figure 4-1. Architecture and information flow of a pool of servers scheduler

This scheduler is simply going to ensure that there are always X copies of some appli‐
cation, such as Ruby on Rails, running. To build a pool of servers, our scheduler will
have a list of all the servers it wants to be running. Initially, the list will have all the
servers in the pending state. As the scheduler receives offers, it will attempt to launch
servers, putting them into the staging state. Once the servers start successfully, the
scheduler can move them to the running state. If they ever crash, they’ll go back to the
initial pending state so that they can be relaunched on a new offer. Note that we need
three states here: pending, staging, and running.

You might be tempted to remove the staging state, since, after all, that seems awfully
similar to pending—in both cases, the server is not yet started. But here’s the prob‐
lem: Mesos is an asynchronous system! You could receive many offers between
attempting to launch a task and having the task actually start. Thus, the staging state
ensures that we only try to launch each server once, and only retry if the launch fails.
If you forget to have a staging state, you might encounter a bug in which there are
tens or hundreds of instances of a task when there should be only one.
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Work Queue Scheduler
The work queue architecture, illustrated in Figure 4-2, allows clients to submit “work
items” to a queue, where they’ll eventually be processed by workers. A work queue
scheduler will ensure that we always have a sufficient number of workers running, so
that there will be a sufficient number of workers to process the queued work items.

Figure 4-2. Architecture and information flow of a work queue scheduler

To build this scheduler, we’re actually going to cheat and assume that we already have
a pool of servers scheduler, as described in the previous section. This way, we simply
start the workers as servers in the pool. Therefore, the meat of this system will reside
in the workers themselves.

Our workers will retrieve their work items from some known location. This location
could be passed to them from the scheduler as a command-line option or environ‐
ment variable. Each worker will connect to the queue, and then loop forever: retrieve
an item, process it, and mark it as done.

The neat thing about considering work queues (and all potential frameworks) in this
way is that you don’t even need to write a scheduler—you could just use Marathon or
some other pool of services scheduler. Of course, this shifts the implementation of the
queue to another system, such as RabbitMQ or Redis. This is a good thing: the Mesos
messaging APIs are designed for controlling the applications on the cluster and are
not as well suited to other domains, such as transactional logic or high-performance
messaging. When developing frameworks for Mesos, you must use appropriate data
storage backends—queues, databases, and document stores are all likely useful,
depending on the framework you’re building.
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Job Processor Scheduler
The final abstraction we’ll consider is the job processor scheduler (Figure 4-3).

Figure 4-3. Architecture and information flow of a job processor scheduler

A job processor will accept a list of jobs from clients and then run those jobs on a
cluster; a job is just a command line to invoke, along with the CPU and memory
resources it needs. This scheduler will require a slightly more complex state machine,
since we’ll also need terminal states for jobs (we’ll call them successful and failed).
We’ll also track how many retries have been attempted, so that we can give up on jobs
with no hope for success.

This scheduler’s state machine will move jobs from pending to staging when it
attempts to launch them on an offer, and from staging to running when the job
actually starts running. Handling completion of a task is trickier, though: we’ll want
to move the job to successful if it succeeds, to failed if it has exceeded the maximum
number of retries, or to pending if it has more retries remaining. Furthermore, we
could determine whether the task failed due to a bug in its code, a transient machine
failure, or some other issue—this is useful feedback for deciding whether to have the
job fail fast, or let it continue to retry.

Now that we’ve seen conceptually how a framework could be implemented with just a
scheduler, let’s try our hand at implementing the job processor.
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1 The name of this framework refers to it hardcoding the command that it runs; as an example of how to work
with the Mesos APIs, it is very useful.

Useless Remote BASH
Before we get started on the job processor, let’s break down the absolute minimal
code needed to get a task to launch on Mesos. We’ll call this program Useless Remote
BASH,1 as it’ll just run the hardcoded program in a container on the cluster.

Let’s break down this most simple of frameworks into several parts, and see why each
part is necessary. In Example 4-1, we can see the imports and class declaration of our
new scheduler.

Example 4-1. Imports and class declaration of useless remote BASH

package com.example;
import java.nio.file.*;
import java.util.*;
import org.apache.mesos.*;
import org.apache.mesos.Protos.*;

public class UselessRemoteBASH implements Scheduler {
    // We'll discuss the inner bits as we go
}

Two things here deserve our attention:

1. We import everything from org.apache.mesos and org.apache.mesos.Protos,
so that we can use the Mesos APIs.

2. Schedulers should implement the Scheduler interface, which defines the mes‐
sages a scheduler can receive as callbacks.

We’ll use the complementary SchedulerDriver class to send messages to Mesos.
Example 4-2 is the entry point of our program.

Example 4-2. main of Useless Remote BASH

public static void main(String ... args) throws Exception {
    FrameworkInfo frameworkInfo = FrameworkInfo.newBuilder()
        .setUser("")
        .setName("Useless Remote BASH")
        .build();

    Scheduler mySched = new UselessRemoteBASH();

Useless Remote BASH | 63



    SchedulerDriver driver = new MesosSchedulerDriver(
        mySched,
        frameworkInfo,
        "zk://" + args[0] + "/mesos"
    );
    driver.start();
    driver.join();
}

In the main function, first, we construct the FrameworkInfo of our framework.
FrameworkInfo is a protobuf that describes the framework to Mesos. You’ll want to
choose a clear name for the framework, so that you can identify your framework in
the Mesos UI. In practice, you’ll want to construct the name to include several pieces
of data: which framework this is, as well as other high-level information about the
framework, such as whether it’s a dev or prod instance. It’s entirely up to you what
you name your framework, but consider the anecdote in the following sidebar!

When Poorly Chosen Framework Names Become Annoying
We decided it’d be effective to run Spark on our Mesos cluster. We also decided that
every user would get their own instance of Spark. The next day, a user complained
that tasks weren’t getting scheduled. We opened the Mesos UI to see what was hap‐
pening, but to our chagrin, every single user’s Spark framework was just called
Spark 0.7.6. As a result, we had no way to identify which user was hogging the
resources! From then on, we made sure to change the name of the Spark framework
to $username Spark 0.7.6, so that we could tell what our cluster was doing at a
glance.

Typically, we set the framework’s user to an empty string (""), which means that it
will register with Mesos as whichever user is running the scheduler. In “Roles” on
page 17, we discussed how the framework’s user can be used for quotas, capacity
planning, and security. Most of the other fields of FrameworkInfo are used to config‐
ure high availability, so we’ll postpone discussing those until later.

After we’ve constructed our FrameworkInfo, we can create the driver, which is the
component that actually communicates with Mesos. The driver for the scheduler is an
instance of SchedulerDriver; you should stick with the MesosSchedulerDriver that
is built with Mesos for now. In the future, other implementations may be written in
order to remove the dependencies on native code. Unfortunately, the current projects
working on this are more trouble than they’re worth for framework developers, as
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2 Some projects to watch for purely native Mesos bindings are Jesos for Java, Pesos for Python, and Go bindings
for Go.

they haven’t reached stability yet.2 The SchedulerDriver takes three arguments: an
implementation of the Mesos Scheduler interface, the FrameworkInfo, and the
address of the Mesos cluster. At this point, when we call start(), our driver will con‐
nect to the Mesos cluster, register the framework, and begin receiving offers. Usually,
you’ll want to call join() at the end of your main function. join() blocks until the
driver terminates, either from having stop() called on it or because Mesos instructed
the driver to stop because the framework failed over.

A Common Pattern for Starting the SchedulerDriver

Often, the last thing our main function does is call start() fol‐
lowed by join(). Because this is so common, you can just call
run(), which is essentially start() && join().

Now that we’ve seen how frameworks start up, let’s look at Example 4-3. This function
is an example of how to create a Mesos task that we can launch. As this is a useless
framework, we hardcode what would normally be important parameters: the cpus,
mem, and command we want to run.

Example 4-3. makeTask of Useless Remote BASH

public static TaskInfo makeTask(SlaveID targetSlave) {
    double cpus = 1.0;
    double mem = 100.0;
    String command = "echo hello world";

    UUID uuid = UUID.randomUUID();
    TaskID id = TaskID.newBuilder() 
        .setValue(uuid.toString())
        .build();
    return TaskInfo.newBuilder() 
        .setName("useless_remote_bash.task " + id.getValue())
        .setTaskId(id)
        .addResources(Resource.newBuilder() 
                .setName("cpus")
                .setType(Value.Type.SCALAR)
                .setScalar(Value.Scalar.newBuilder().setValue(cpus)))
        .addResources(Resource.newBuilder() 
                .setName("mem")
                .setType(Value.Type.SCALAR)
                .setScalar(Value.Scalar.newBuilder().setValue(mem)))
        .setCommand(CommandInfo.newBuilder().setValue(command)) 
        .setSlaveId(targetSlave) 
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        .build();
}

First, we make a TaskID. The TaskID must be unique to the framework, just as
the ExecutorID must be unique to the slave and the SlaveID must be unique to
the cluster. I typically find it easiest to just use UUIDs appended to any IDs I
need to generate, since that way I don’t need to ever worry about the uniqueness
constraints that Mesos requires.

Next, we make the TaskInfo, which is the protobuf that explains how to launch a
task. The TaskInfo requires you to set a name for the task. This name is what’s
displayed in the UI, and many Mesos tools can interact with it, such as the Mesos
CLI. Typically, you’ll want to set the name of the task to include useful specifying
information, such as the framework name and any related entity (such as the app
in Marathon or job in Hadoop). By writing the name from most general (i.e.,
framework) to most specific (i.e., instance of the task), you’ll benefit from tools
that can provide tab completion and autocompletion of the task names.

A task wouldn’t be useful without any resources: TaskInfo is where you can add
all of the resources that the task will consume. The only two resources that you’ll
always want to specify are cpus and mem (note the s at the end of cpus); if your
application listens to the network, you should also specify ports. There are many
other resource types that Mesos can manage; you can read more about them in
“Resources” on page 13.

Since this framework is very simple, we set the command so that the Mesos
CommandExecutor will handle the actual running of our task. We specify our
command to the CommandInfo that we provide as the command; its features are
discussed in “CommandInfo” on page 93. For the CommandExecutor, the TaskID
and the ExecutorID are the same.

Finally, we must tie this TaskInfo to the offer. Since it’s possible to apply several
offers from the same slave to one task (pooling them for more total resources),
we specify the SlaveID of the slave we want the task to launch on rather than the
OfferIDs that we want it to use. When we actually call launchTasks(), that’s
where we’ll link the offers to the TaskInfo (see the note Combining Offers fol‐
lowing Example 4-5).

We’ve managed to register our framework, and we’ve learned how to specify a task to
launch. The last step is to actually implement that pesky Scheduler interface. For this
super-basic framework, we’re going to ignore most of the callbacks, as they update us
on information we don’t want to react to. Note that all of the callbacks provide you
with a driver; this driver is guaranteed to be the same one you called start() on.

66 | Chapter 4: Creating a New Framework for Mesos



Mesos passes you this as a convenience, since it’s the only way to interact with the
cluster, and that’s typically something you’d like to do in response to cluster events.
Example 4-4 shows the callbacks we want to log: registered and statusUpdate.

Example 4-4. Scheduler callbacks to log

public void registered(SchedulerDriver driver, FrameworkID frameworkId,
                               MasterInfo masterInfo) {
    System.out.println("Registered with framework id " + frameworkId);
}

public void statusUpdate(SchedulerDriver driver, TaskStatus status) {
    System.out.println("Got status update "+status);
}

When we have successfully registered with the Mesos masters, we’ll get the
registered callback. When you register a framework for the first time, you don’t
specify the FrameworkID; instead, Mesos will assign it for you. This callback is the
only place to learn the assignment of the FrameworkID. (In Example 4-15 and
Example 4-14, we’ll see how we can use this FrameworkID to safely fail a scheduler
over to a new instance, so that we can build zero-downtime systems.) The
MasterInfo tells you which port and version the master is running on. Frameworks
can decide which Mesos features are valid to use based on the master’s version.

The statusUpdate callback will soon become very important for our scheduler, as it’s
how we track the lifecycle of our tasks: when they start running, and when and why
they fail. Even though we’re not going to do anything with this callback yet, it’s conve‐
nient to log when it happens, as that will help us debug our framework and confirm
tasks that are actually launching and finishing. Whenever I build a production frame‐
work, I always make sure to enable logging for every statusUpdate callback: those
logs have helped me identify and debug issues countless times.

Finally, we get to look at the core of our new framework, as shown in Example 4-5.
This callback is how we receive offers from Mesos—offers that are chock-full of juicy
resources that we can launch tasks on.

Example 4-5. Implementation of resourceOffers

private boolean submitted = false;

public void resourceOffers(SchedulerDriver driver, java.util.List<Offer> offers) {
    synchronized (this) {
        if (submitted) { 
            for (Offer o : offers) { 
                driver.declineOffer(o.getId());
            }
            return;
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        }
        submitted = true;
        Offer offer = offers.get(0);
        TaskInfo ti = makeTask(offer.getSlaveId()); 
        driver.launchTasks( 
            Collections.singletonList(offer.getId()),
            Collections.singletonList(ti)
        );
        System.out.println("Launched offer: " + ti);
    }
}

In our framework, we first check if we’ve already submitted our task.

If we have, we simply decline all the offers.

If we haven’t submitted our task yet, we construct a TaskInfo for it with the ID of
the slave from the first offer we received.

Then, we call launchTasks to attempt to launch the task!

Combining Offers

launchTasks takes a list of offers, which allows us to combine sev‐
eral offers for the same slave in order to pool those offers’ resour‐
ces. It also takes a list of tasks, so that you can launch as many tasks
as fit on the given offers. Note that all the tasks and offers must be
for the same slave—the launchTasks will fail if they’re not. If you
want to launch tasks on multiple slaves, simply call launchTasks
multiple times.

The other Scheduler callbacks, listed in Example 4-6, can all be ignored for now.

Example 4-6. Ignored callbacks for Useless Remote BASH

public void disconnected(SchedulerDriver driver) { }
public void error(SchedulerDriver driver, java.lang.String message) { }
public void executorLost(SchedulerDriver driver, ExecutorID executorId,
                             SlaveID slaveId, int status) { }
public void frameworkMessage(SchedulerDriver driver, ExecutorID executorId,
                                 SlaveID slaveId, byte[] data) { }
public void offerRescinded(SchedulerDriver driver, OfferID offerId) { }
public void reregistered(SchedulerDriver driver, MasterInfo masterInfo) { }
public void slaveLost(SchedulerDriver driver, SlaveID slaveId) { }
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And there you have it! You’ve written your first Mesos framework, and it actually
does quite a lot. It can register with the master, create a TaskInfo to express how to
launch a task, log status updates, and accept an offer to launch the task.

executorLost Doesn’t Do Anything

Unfortunately, there’s one scheduler callback that isn’t actually
implemented or supported by Mesos: executorLost. If you’d like to
be notified about when an executor shuts down, we discuss a solu‐
tion in “Canary tasks” on page 120. This issue is being pursued in
MESOS-313, so future versions of Mesos will implement this call‐
back.

This Framework actually has two problematic bugs: when it accepts the offer to
launch a task, it fails to check if the offer is actually big enough. If the offer was too
small, we’ll get a TASK_LOST status update about the task, rather than anything indi‐
cating success. The other bug is that when it accepts the offer, it doesn’t decline the
other offers that were potentially received in the resourceOffers callback. Those
other offers will be stuck in a limbo state until they expire, which could be several
minutes (or forever, if you didn’t change the default). They’ll be unavailable to other
frameworks in the meantime.

In the coming sections, we’ll improve resourceOffers to fix these issues.

Implementing a Basic Job Processor
Now, let’s extend our framework to be more useful by reading a list of jobs from a
JSON file, and then having it launch all of those jobs on Mesos. We’ll start by looking
at how we’ll model a job (Example 4-7).

Example 4-7. Job implementation

public class Job {
    private double cpus; 
    private double mem; 
    private String command; 
    private boolean submitted; 

    private Job() {
        submitted = false;
    }

    public TaskInfo makeTask(SlaveID targetSlave) { 
        UUID uuid = UUID.randomUUID();
        TaskID id = TaskID.newBuilder()
            .setValue(uuid.toString())
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            .build();
        return TaskInfo.newBuilder()
            .setName("task " + id.getValue())
            .setTaskId(id)
            .addResources(Resource.newBuilder()
                    .setName("cpus")
                    .setType(Value.Type.SCALAR)
                    .setScalar(Value.Scalar.newBuilder().setValue(cpus)))
            .addResources(Resource.newBuilder()
                    .setName("mem")
                    .setType(Value.Type.SCALAR)
                    .setScalar(Value.Scalar.newBuilder().setValue(mem)))
            .setSlaveId(targetSlave)
            .setCommand(CommandInfo.newBuilder().setValue(command))
            .build();
    }

    public static Job fromJSON(JSONObject obj) throws JSONException { 
        Job job = new Job();
        job.cpus = obj.getDouble("cpus");
        job.mem = obj.getDouble("mem");
        job.command = obj.getString("command");
        return job;
    }

    // ... snip ... 
}

As you can see, we have parameterized the CPU, memory, and command argu‐
ments.

We’ve moved the submitted field into the Job, so that we can track its lifecycle.

We’ve moved the makeTask function into the Job as well, so that it can access all
the local fields of the Job.

For convenience, we’ve defined a single way to construct a Job, via the factory
method fromJSON.

I’ve left out the getter and setter definitions.

The Job is a container for information about a particular job, like a model class in
MVC. We’ve only added two special methods: fromJSON, which gives us a way to con‐
struct the Job with valid starting state, and makeTask, which gives us a way to easily
turn it into a TaskInfo without having all the protobuf munging code in our schedu‐
ler class.
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Next, let’s look at how our main function has evolved. Example 4-8 shows the revised
version.

Example 4-8. Revised main for Useless Remote BASH

public static void main(String ... args) throws Exception {
    byte[] data = Files.readAllBytes(Paths.get(args[1])); 
    JSONObject config = new JSONObject(new String(data, "UTF-8")); 
    JSONArray jobsArray = config.getJSONArray("jobs");
    List<Job> jobs = new ArrayList<>();
    for (int i = 0; i < jobsArray.length(); i++) { 
        jobs.add(Job.fromJSON(jobsArray.getJSONObject(i)));
    }

    System.out.println(jobs);

    // Below here, the function remains almost as before
    FrameworkInfo frameworkInfo = FrameworkInfo.newBuilder()
        .setUser("")
        .setName("Useless Remote BASH")
        .build();

    Scheduler mySched = new UselessRemoteBASH(jobs); 
    SchedulerDriver driver = new MesosSchedulerDriver(
        mySched,
        frameworkInfo,
        "zk://" + args[0] + "/mesos"
    );
    driver.start();
    driver.join();
}

This allows us to read the entire contents of a file into memory. We assume that
the first argument is still the Mesos cluster, and the second argument is the name
of a file that contains the JSON configuration.

We convert the byte array to JSON in this step, so that we can extract the Job
configurations.

Finally, we loop over the JSON job descriptors, processing them into Jobs.

This time, we pass an argument to our Scheduler: the jobs we want it to launch.
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Let’s take a look at a sample JSON file of jobs, to get a feel for the schema:

{
    "jobs": [ 
        {
            "cpus": 0.5, 
            "mem": 100,
            "command": "sleep 60; echo hello world"
        }
    ]
}

The JSON file should contain a JSON object with a single key, jobs. That key’s
value should be a list of Job objects.

Each job object has three properties: cpus, mem, and command, which correspond
to the eponymous fields in the Job class.

Now that we can load jobs up, let’s see how we evolved resourceOffers. The new
version is shown in Example 4-9.

Example 4-9. Revised implementation of resourceOffers

public void resourceOffers(SchedulerDriver driver, java.util.List<Offer> offers) {
    synchronized (jobs) {
        List<Job> pendingJobs = new ArrayList<>(); 
        for (Job j : jobs) { 
            if (!j.isSubmitted()) {
                pendingJobs.add(j);
            }
        }
        for (Offer o : offers) { 
            if (pendingJobs.isEmpty()) { 
                driver.declineOffer(o.getId());
                break;
            }
            Job j = pendingJobs.remove(0); 
            TaskInfo ti = j.makeTask(o.getSlaveId());
            driver.launchTasks(
                Collections.singletonList(o.getId()),
                Collections.singletonList(ti)
            );
            j.setSubmitted(true); 
        }
    }
}

Because our Jobs contain state information (i.e., whether or not they were just
launched), we need to first calculate which jobs haven’t yet been launched.
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This loop allows us to find all the jobs that haven’t been submitted yet, and add
them to pendingJobs.

Now, we’re going to try to match jobs to offers.

If we have no more jobs we want to launch, then we can decline the offer.

If we reach this line, we have a job to launch. From here on, the code is similar to
our first incarnation.

Remember that we want to mark the job as submitted, or else we could acciden‐
tally double-submit the job.

This version of resourceOffers shows us several useful patterns. Every framework
needs to keep track of the running tasks and work that it wants to do in the future.
For most frameworks, it will be most convenient to have a single data structure that
tracks all ongoing work. This data structure will include both running and pending
tasks. Of course, when you actually want to launch a task, you’ll need to calculate the
specific set of tasks that are still pending. In this example, after each resource offer, we
compute the set of pending tasks. Later in this chapter, we’ll look at other architec‐
tures for tracking this information.

The other pattern that every framework uses is looping over all the offers, matching
offers to pending work until one or the other is exhausted. But you might be thinking:
resourceOffers requires a lot of care, and this framework still fails to handle it effec‐
tively! You’d be absolutely correct, which is why we’re going to look at how to fix that
problem now.

Matching Tasks to Offers
As we’ve been alluding to throughout this chapter, the assignment of tasks to offers is
fraught with details that must be attended to. For instance, we must ensure that the
offer has all the necessary resources for our job, we must attempt to launch as many
tasks as we can on each offer, and we must prioritize which task we’ll launch next.
The reason we want to match as many tasks as possible to each offer is that if we only
match one task per offer, our scheduler will launch tasks at a slow rate. Specifically:

tasks launched per minute = number of slaves
offer interval

With the default offer interval of 1 second, if you have a five-slave cluster, you’ll only
be able to launch at most 60 tasks per minute. With properly implemented offer han‐
dling code, however, you could launch tens of thousands of tasks per minute! For our
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example, we’re going to implement the first fit algorithm, since it requires very little
code. Then, we’ll learn about other algorithms, and various considerations therein.
Let’s make the following change to our resourceOffers:

... // code unchanged
driver.launchTasks(
    Collections.singletonList(o.getId()),
    doFirstFit(o, pendingJobs);
);
... // code unchanged

Instead of directly taking a job, we’re going to compute the first fit of all the pending
jobs to the given offer. The solution we find is a List of tasks, since the whole point is
that we can launch multiple tasks on a single offer.

doFirstFit’s Semantics

doFirstFit takes an Offer and a list of Jobs and returns a list of
TaskInfos that we can launch on the cluster. Note that doFirstFit
is designed to remove all the Jobs that it decides to match from the
list of Jobs passed into it.

Obviously, the interesting part is the implementation of doFirstFit (Example 4-10).
The idea of first fit is this: given the amount of space available in an offer, we’ll add
tasks that fit in whatever space is left in the offer. When we decide to add a task, we’ll
deduct its space usage from the remaining space. Once we can’t fit any more tasks
into the offer, we’ll remove all the matched Jobs from the list of Job provided as an
argument, and we’ll return the TaskInfos that will launch those Jobs.

Example 4-10. First-fit offer packing

public List<TaskInfo> doFirstFit(Offer offer, List<Job> jobs) {
    List<TaskInfo> toLaunch = new ArrayList<>();
    List<Job> launchedJobs = new ArrayList<>();
    double offerCpus = 0; 
    double offerMem = 0;
    // We always need to extract the resource info from the offer.
    // It's a bit annoying in every language.
    for (Resource r : offer.getResourcesList()) { 
        if (r.getName().equals("cpus")) {
            offerCpus += r.getScalar().getValue();
        } else if (r.getName().equals("mem")) {
            offerMem += r.getScalar().getValue();
        }
    }
    // Now, we will pack jobs into the offer
    for (Job j : jobs) {
        double jobCpus = j.getCpus();
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        double jobMem = j.getMem();
        if (jobCpus <= offerCpus && jobMem <= offerMem) { 
            offerCpus -= jobCpus;
            offerMem -= jobMem;
            toLaunch.add(j.makeTask(offer.getSlaveId()));
            j.setSubmitted(true);
            launchedJobs.add(j); 
        }
    }
    for (Job j : launchedJobs) {
        j.launch(); 
    }
    jobs.removeAll(launchedJobs);
    return toLaunch;
}

We’ll keep track of how many resources are remaining in the offer in these vari‐
ables.

You must iterate over all the resources in the offer to find the ones whose names
match the type of resource you care about, and only then can you extract the
value. The reason this cannot be a map is that you can receive multiple resources
of the same name; for example, you could receive both reserved and unreserved
memory resources from a slave.

Here, we check to see if the offer still has enough resources remaining to launch
our task. If it does, we’ll deduct those resources from our method’s internal
count, add the TaskInfo to the list of tasks we will launch, and mark the job as
submitted.

In order to support doFirstFit semantics, we add all jobs we’ll launch to a list,
so that we can remove all those elements from the original list of all pending jobs.

Job has methods that help us track its instances’ progress through their state
machine. We’ll go over this in Example 4-11.

First fit is usually the best algorithm to use when matching tasks to offers. You might
think that this won’t always utilize offers as efficiently as if you put more work into
trying to optimize matching the offers. That’s absolutely true, but consider the follow‐
ing: a cluster either has sufficient or insufficient resources for launching every pend‐
ing task. If there are plenty of resources, then first fit should always be able to launch
every task. If, on the other hand, there are not enough resources, nothing would be
able to launch every task. Thus, it’s a good idea to write code to choose which task to
run next, so that you can maintain the target quality of service. Only if there are just
barely enough resources does more sophisticated packing begin to make sense.
Unfortunately for us, this problem—known more generally as the knapsack problem
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problem.

—is a notorious NP-complete problem. NP-complete problems are those problems
for which it can be proved that an optimal solution will take an extremely long time
to find, and there’s not a clever trick in existence to solve the problem faster.3

Actually, the situation isn’t so bad. In fact, although it’s impossible to solve the pack‐
ing problem perfectly and quickly, there are several techniques that give “good
enough” results and aren’t too tricky to implement. For some frameworks, all tasks
will be bottlenecked on a single resource: either CPUs (for compute-bound work‐
loads, like data analysis) or memory (i.e., caches like memcached or Redis). As a
result, when we try to pack our resources, we can simplify the packing problem to a
single dimension: the most constrained dimension. Once we’ve done this, we can use
techniques such as the fully polynomial time greedy approximation scheme for the
0/1 knapsack problem.4

Bridging the Semantic Gap Between Offers and Jobs
Now, we’ve got a pretty cool framework. It takes a JSON configuration file filled with
the jobs we want to run, and it submits those jobs to the Mesos cluster efficiently. We
have a problem, though—what if a job fails? At the moment, we’ll just see a bit of out‐
put in the terminal indicating that the task failed, succeeded, or was lost. We want to
add support for retries: when a job fails, we’ll resubmit it in the hope that it will suc‐
ceed this time. Eventually, however, we’ll give up and consider it truly failed. To this
end, we’re going to expand our Job class so that instead of simply having a Boolean
property submitted, it will have a JobState:

public enum JobState {
    PENDING,
    STAGING,
    RUNNING,
    SUCCESSFUL,
    FAILED
}

We need to increase the number of states a job can be in in order to support retries.
Before, we would simply launch unsubmitted jobs. Now, we’ll need to track the exact
part of the task lifecycle a job is in, and resubmit it only if it has already failed.
Figure 4-4 illustrates the valid state transitions.
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Figure 4-4. Valid transitions of JobState

We’ll also have to expand the Job class to internally keep track of retries and the job’s
state. Example 4-11 shows the new methods that will implement the preceding state
transition diagram.

Example 4-11. State transition methods for Job

public class Job {
    // previous fields elided
    private int retries;

    private Job() {
        status = JobState.PENDING;
        id = UUID.randomUUID().toString();
        retries = 3;
    }

    public void launch() {
        status = JobState.STAGING;
    }

    public void started() {
        status = JobState.RUNNING;
    }

    public void succeed() {
        status = JobState.SUCCESSFUL;
    }

    public void fail() {
        if (retries == 0) {
            status = JobState.FAILED;
        } else {
            retries--;
            status = JobState.PENDING;
        }
    }
}
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We’ve decided to give every job three retries. To simplify the implementation of the
state changes of the job, we have four functions to move between states: launch(),
started(), succeed(), and fail(). These functions will be called, respectively, when
we submit the task to Mesos, when it starts, and when it succeeds or fails.
Example 4-12 shows how we move between states.

Example 4-12. Enhanced statusUpdate handler

public void statusUpdate(SchedulerDriver driver, TaskStatus status) {
    synchronized (jobs) {
        // We'll see if we can find a job this corresponds to
        for (Job j : jobs) { 
            if (j.getId().equals(status.getTaskId().getValue())) { 
                switch (status.getState()) {
                    case TASK_RUNNING: 
                        j.started();
                        break;
                    case TASK_FINISHED: 
                        j.succeed();
                        break;
                    case TASK_FAILED: 
                    case TASK_KILLED: 
                    case TASK_LOST: 
                    case TASK_ERROR: 
                        j.fail();
                        break;
                    default:
                        break;
                }
            }
        }
    }
}

Typically, one should store a mapping between the TaskID and the Job, rather
than doing a linear search.

This task status, running, means that we’ve received confirmation that the task
was successfully started by the slave.

A finished task is one that completed without reporting any kind of error.

Failed tasks are those that did not complete successfully, and whose termination
was initiated through a normal codepath by the task itself. For example, if a task
that is supposed to download a file wasn’t able to do so, it should report its status
as failed.
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5 There’s ongoing work to enable etcd as a ZooKeeper alternative. The issue is tracked on the Apache Mesos Jira
as MESOS-1806.

6 The examples in the book are written against Curator 2.7.1, using curator-framework and curator-recipes.

Killed tasks are those that did not complete successfully because the scheduler
told them to stop. When a scheduler performs preemption or allows a user to
request the early termination of a task, that task should report the status killed.

When a task is lost, that means that an unexpected error occurred. That could be
due to the slave unexpectedly going offline, or an executor that exited before it
sent a TASK_FINISHED, TASK_KILLED, or TASK_KILLED message.

This is a very rare case, indicating a problem with the task descriptor itself. You
can look in the TaskStatus’s message field for details.

Adding High Availability
At this point, our scheduler-only framework is nearly feature-complete. We are load‐
ing jobs from configuration files, launching them on Mesos, and automatically
restarting them when they fail. Now it’s time to add the final feature: high availability.

High availability means that when the scheduler process fails, the framework as a
whole continues to run. This is accomplished via the cooperation of three subfea‐
tures:

1. The scheduler will use leader election so that we can run multiple instances and
have a fallback instance automatically take over when the current leader fails.

2. The scheduler must synchronize its state to shared, distributed storage, so that
the newly elected leader can pick up where the last one left off.

3. The scheduler must opt into a few Mesos features that will ensure that running
tasks are unaffected by scheduler failure.

For this example, we’re going to use ZooKeeper to provide our leader election and
distributed storage, since Mesos clusters usually5 come with a ZooKeeper cluster. Fur‐
thermore, we’re going to use the Apache Curator library to interact with ZooKeeper,
since it handles many of the challenges of the included ZooKeeper API.6 Since this
isn’t meant to be a production-quality framework, we’ll hardcode all our framework’s
data to reside under the /sampleframework path in ZooKeeper. For production-
quality frameworks, you should make the location of all data configurable in Zoo‐
Keeper. Example 4-13 shows how we add basic leader election to our main function.
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7 Somewhat confusingly, the Apache Curator’s API is also called a framework; however, it’s completely unrela‐
ted to Mesos frameworks!

Example 4-13. Simple leader election

public static void main(String ... args) throws Exception {
    CuratorFramework curator = CuratorFrameworkFactory.newClient( 
            args[0],
            new RetryOneTime(1000)
    );
    curator.start(); 

    LeaderLatch leaderLatch = new LeaderLatch(curator, "/sampleframework/leader"); 
    leaderLatch.start(); 
    leaderLatch.await(); 

    // The previous main implementation goes here
}

Here, we see how to create a new instance of Curator. It takes the address of the
ZooKeeper cluster and a RetryPolicy as arguments. While we are using the
RetryOneTime policy in this book, this is probably not the right choice for
production frameworks. Instead, the ExponentialBackoffRetry or
BoundedExponentialBackoffRetry policies are more robust choices.

Note that you must explicitly start() the Curator framework.7

Next, we create a LeaderLatch for our framework, which we’ll put under the
ZooKeeper path we chose for our framework, /sampleframework.

Never forget to start() Curator components—this is the #1 pitfall.

The await() method on a started LeaderLatch will not return until we are the
leader.
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8 Operations that are idempotent have the same effect no matter whether you do them once or a thousand
times. When building distributed systems, trying to make as many operations idempotent as possible reduces
the chances of race conditions or unpredictable behavior when the network reorders and drops messages.

LeaderLatch Is Nice, but LeaderSelector Is Better

A LeaderLatch is a very easy way to add leader election to an appli‐
cation. You simply call await(), and when it returns, you’re the
leader! Unfortunately, if you do this, your application will not
always behave correctly. Leaders can be deposed not only when
they crash, but also when they are disconnected from the network.
As a result, a properly implemented user of leader election needs to
be constantly checking whether it’s still the leader, and then recreat‐
ing the leader latch after it’s deposed. A better option for building
robust leader election is LeaderSelector, another class in Curator.
LeaderSelector has a listener-based API that notifies you when‐
ever you become the leader or lose leadership. This book doesn’t
use LeaderSelector because it requires substantially more scaf‐
folding code to use.

Unfortunately, it’s not enough to simply allow multiple instances of our framework to
elect a leader from amongst themselves. Our goal is to have the new leader actually
become the same framework as before. To do this, we’ll need to inform Mesos that
our scheduler supports failover. In addition, when the new leader registers, it needs to
tell Mesos that it’s the new scheduler for our framework. In Mesos, schedulers are
identified by their FrameworkID, an optional value in the FrameworkInfo. The
FrameworkID must be assigned by Mesos in order to ensure it remains unique for
each framework. Now, we’ll need to actually store the FrameworkID when it’s assigned,
so that future leaders can reuse it.

We’re going to store the FrameworkID in the ZooKeeper node id under
our /sampleframework path. When we start up, we’ll first check to see if there’s
already a saved FrameworkID; if so, we’ll start up using that. Otherwise, we’ll operate
as before, and allow the Mesos master to assign a FrameworkID (see Example 4-14). In
addition, we will store whatever FrameworkID Mesos informs us we registered with,
so that future leaders can reuse that ID. We can store that FrameworkID uncondition‐
ally, since it will never change after the first assignment, and thus is idempotent.8

Example 4-14. Using a stored FrameworkID with FrameworkInfo

FrameworkInfo.Builder frameworkInfoBuilder = FrameworkInfo.newBuilder()
    .setUser("")
    .setName("Useless Remote BASH"); 

Adding High Availability | 81



try {
    byte[] curatorData = curator.getData().forPath("/sampleframework/id"); 
    frameworkInfoBuilder.setId(new String(curatorData, "UTF-8"));
} catch (KeeperException.NoNodeException e) {
    // Don't set the FrameworkID 
}

FrameworkInfo frameworkInfo = frameworkInfoBuilder
    .setFailoverTimeout(60*60*24*7) 
    .build();

We start with our builder, the same as usual.

We attempt to fetch the stored FrameworkID. If this node doesn’t exist in Zoo‐
Keeper, we throw a KeeperException.NoNodeException.

If there wasn’t a stored FrameworkID, we allow Mesos to assign it.

We must configure the framework to have a failover timeout, in seconds. In this
case, we allow failover to happen for up to a week. This means we’ve got a week
to reconnect a new scheduler for this framework after shutting down the previ‐
ous scheduler. This timeout should be set to help you survive a worst-case sce‐
nario when you need enough time to recover the system after a catastrophe. After
this timeout, requests to register with the old FrameworkID will be met with an
error about registering a finished framework, and all tasks that were running
under that framework will be killed.

Now, we need to update our registered scheduler callback to store the FrameworkID.
The new version is shown in Example 4-15.

Example 4-15. Storing the FrameworkID

public void registered(SchedulerDriver driver, FrameworkID frameworkId,
                                 MasterInfo masterInfo) {
    System.out.println("Registered with framework id " + frameworkId);
    try {
        curator.create().creatingParentsIfNeeded().forPath( 
            "/sampleframework/id",
            frameworkId.getBytes()
        );
    } catch (KeeperException.NodeExistsException e) {
        // Do nothing 
    }
}

We attempt to store the data of the FrameworkID to the predetermined location.
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If we catch this exception, it means that we’ve already created the
node /sampleframework/id. In this case, we’ll assume that means an earlier
leader scheduler already stored the ID, so we’ll do nothing. If you’re using a dif‐
ferent store than ZooKeeper, it may be more convenient to simply uncondition‐
ally store the ID every time, since it will never change.

Now, we’ve finally got a highly available framework with failover working. Or at least,
we would if the framework had any way to also synchronize its state with regard to
which jobs are running. To do this, we’ll need to add support for serializing and
deserializing jobs from ZooKeeper. We’ll store each job in ZooKeeper
at /sampleframework/jobs/$jobid, where $jobid is the id field of the job. Serializa‐
tion can be trivially implemented via JSON.

Now that our framework is highly available, we don’t want to always have to provide
the set of jobs it should run. In fact, we’d like to have our framework automatically
pick up the monitoring of all previously provided jobs on the command line, and also
optionally launch new jobs provided on the command line. To do this, we’ll load jobs
both from the command line (if provided) and from ZooKeeper, as shown in
Example 4-16.

Example 4-16. Loading job data

List<Job> jobs = new ArrayList<>(); 

if (args.length > 1) { 
    byte[] data = Files.readAllBytes(Paths.get(args[1]));
    JSONObject config = new JSONObject(new String(data, "UTF-8"));
    JSONArray jobsArray = config.getJSONArray("jobs");
    for (int i = 0; i < jobsArray.length(); i++) {
        jobs.add(Job.fromJSON(jobsArray.getJSONObject(i), curator));
    }
    System.out.println("Loaded jobs from file");
}

//Load jobs from ZK
try {
    for (String id : curator.getChildren().forPath("/sampleframework/jobs")) { 
        byte[] data = curator.getData()
                             .forPath("/sampleframework/jobs/" + id); 
        JSONObject jobJSON = new JSONObject(new String(data, "UTF-8"));
        Job job = Job.fromJSON(jobJSON, curator); 
        jobs.add(job);
    }
    System.out.println("Loaded jobs from ZK");
} catch (Exception e) {
    // Sample code isn't production ready 
}
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We start by creating the List we’ll store all the Jobs in.

We only run the original job loading code if a filename was passed on the com‐
mand line.

The getChildren() method in Curator allows us to get the names of all the child
nodes of a path. These child nodes are saved after most state-changing methods,
such as launch(), started(), and succeed().

For each job, we’ll fetch the serialized JSON representation from ZooKeeper.

At this point, we can use the original JSON processing code to deserialize the Job.
Note that we must provide every Job with a reference to the Curator now, since
the Jobs must serialize themselves.

In real production code, you should probably handle exceptions.

We’ll also need to enhance our Jobs to be able to save their state, as shown in
Example 4-17.

Example 4-17. Job serialization

public class Job {
    // Previously defined fields elided
    private String id; 

    private void saveState() { 
        JSONObject obj = new JSONObject();
        obj.put("id", id); 
        obj.put("status", (status == JobState.STAGING ?
            JobState.RUNNING : status).toString()); 
        // Storing other fields omitted for brevity
        byte[] data = obj.toString().getBytes("UTF-8");
        try { 
            curator.setData().forPath("/sampleframework/jobs/" + id, data);
        } catch (KeeperException.NoNodeException e) {
            curator.create()
                   .creatingParentsIfNeeded()
                   .forPath("/sampleframework/jobs/" + id, data);
        }
    }
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    public void launch() {
        // ... previous code omitted ...
        saveState(); 
    }

    // started(), succeed(), fail() are modified as above
}

We need to include an identifier for each job, so that they can be looked up by a
primary key in the database we sync them to.

We’ve added a method to save the state of the Job to an external store. In this
case, we’re storing the JSON-formatted data to ZooKeeper.

We need to make sure to store all the fields to the database.

We always store jobs that are in STAGING as if they were running. Since we can’t
be sure whether a job in the STAGING state has launched successfully, we’ll assume
it succeeded during a failover, so that we’ll either get a new statusUpdate if it
finished in the meantime or a TASK_LOST after reconciliation.

Curator’s API requires a different method to create a new ZooKeeper node and
update its data.

We need to make sure to save the Job’s state after every status update. Note that
the addition of saveState() to the last line of started(), succeed(), and fail()
is omitted in this code, but this must be done for a working framework.

And there you have it! Our job scheduler is now able to automatically fail over to
waiting hot spares without impacting the running jobs or losing track of them—well, 
almost.

Adding Reconciliation
It turns out that there are still situations in which things can fall out of synchroniza‐
tion: these cases are explained in “Reconciliation During Failover” on page 127. This
is the final piece missing from our robust, highly available Mesos scheduler. Luckily,
it’s easy to add reconciliation to a scheduler. When implementing the
statusUpdate() callback, you are mapping the Mesos state events to your frame‐
work’s state machine model. As long as this state machine never moves out of the ter‐
minal states (e.g., TASK_LOST, TASK_FINISHED, TASK_KILLED, etc.), reconciliation
shouldn’t require additional work. Typically, you’ll want to run reconciliation periodi‐
cally; I usually just run it on startup and every 30 minutes thereafter. Reconciliation is
a sort of catchall for any message loss—it ensures that even if some unknown bug or
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hardware failure causes your framework to fall out of sync with the state of the Mesos
cluster, you’ll eventually correct that issue.

To reconcile, we will just generate a list of running tasks, along with the ID of the
slave that they’re running on (for an explanation of why, see “Reconciliation During
Failover” on page 127). Then, we’ll invoke reconcileTasks(). Mesos will automati‐
cally send the responses to the statusUpdate() callback. If you want to implement
special handling of reconciliation-related status updates, you can check if the reason
field of the status update is TASK_RECONCILIATION. We don’t bother with that in our
framework, because our framework’s task state machine is robust. Example 4-18
shows how to reconcile the running tasks.

Example 4-18. Reconciliation of running tasks

List<TaskStatus> runningTasks = new ArrayList<>();
for (Job job : jobs) {
    if (job.getStatus() == JobState.RUNNING) {
        TaskID id = TaskID.newBuilder().setValue(job.getId()).build();
        SlaveID slaveId = SlaveID.newBuilder().setValue(job.getSlaveId()).build(); 
        System.out.println("Reconciling the task " + job.getId());
        runningTasks.add(TaskStatus.newBuilder()
                .setSlaveId(slaveId)
                .setTaskId(id)
                .setState(TaskState.TASK_RUNNING)
                .build());
    }
}
driver.reconcileTasks(runningTasks);

Although we didn’t show the code for it, we must record the ID of the slave we
believe each task is currently running on so that we can perform reconciliation.

At last, we have a complete implementation of a highly available Mesos scheduler that
is robust to all kinds of failures: masters can crash, slaves can be disconnected from
the network, and the scheduler itself can be killed and restarted. In spite of any of
those problems, the framework will endure, continually tracking, monitoring, and
ensuring its tasks complete successfully. We accomplished this through several
means:

Jobs over tasks
We separated the notion of a job that we’d like to run from the Mesos task. This
allowed us to manage retries of a job, since the job’s success or failure wasn’t tied
to a single attempt to run it. This conceptual framework works equally well for
long-running services: a service is a goal to run some number of instances of a
program; a task is an instance, but it could fail and be replaced with another task.
If you’re interested in learning more about using goals to handle the reliability of

86 | Chapter 4: Creating a New Framework for Mesos



9 Joe Armstrong, the author of Making reliable distributed systems in the presence of software errors, is also the
creator of Erlang. Even though most of us aren’t using Erlang, his ideas about goal-oriented programming and
supervision pervade all reliable distributed systems, including Mesos and its close cousin from Google, Borg.

scalable, distributed systems, this idea was pioneered by Joe Armstrong in his
thesis on building reliable telephone systems.9

Persistent framework identity
We enabled different schedulers to automatically fail over by storing the identity
of our framework: the FrameworkID. This is the one part of framework manage‐
ment that we must do out-of-band from Mesos, since it must be propagated in
spite of failures even within Mesos itself.

Shared job state
Whenever we received updates about the state of a job, we synchronized those
updates with our distributed store of choice, ZooKeeper. This ensured that newly
elected leader schedulers would have the best possible information about the
state of the cluster.

Retries for jobs
Sometimes, a Mesos slave machine just doesn’t work: perhaps it was misconfig‐
ured, or perhaps another task running on that slave is affecting its neighbors
through a type of resource that Mesos can’t isolate. To defend against these cases,
we should always retry our actions. However, usually we also want to give up if a
job keeps failing, since that may indicate a problem with the job itself.

Reconciliation
Ultimately, things will go wrong that we didn’t predict. In an attempt to handle
these events (or at least eventually recover from them automatically), we used the
Mesos reconciliation API to periodically attempt to clarify our state. Although
even reconciliation won’t handle every such issue, it is the best tool we have for
handling unknown unknowns.

Advanced Scheduler Techniques
Although we’ve managed to implement a feature-complete, reliable scheduler, there
are many other ways in which we could add features and robustness to our scheduler.
In this section, we’ll discuss further improvements that production-quality schedulers
should consider implementing.

Distributed Communication
In our Useless Remote BASH, we only handled new jobs when a scheduler that had
just become the leader was passed a file containing JSON job descriptors. In real
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schedulers, we’ll want to be able to receive new jobs at any time. Most commonly,
work will be communicated to our scheduler via an HTTP API.

If you decide to allow your scheduler to receive work over HTTP, it’s better if both the
leader and hot spare schedulers are all able to process HTTP requests. This can be
accomplished in several ways:

Shared database
In this design, the leader and hot spare schedulers all are able to read from and
write to a shared database. This way, they can all serve client requests. Whenever
a client modifies the database, however, we must ensure that the leading schedu‐
ler is notified. Some databases support notifications; if your database doesn’t sup‐
port this, the leading scheduler can frequently poll the database for updates so
that it never lags too far behind the clients’ instructions. The other solution for
notifications is to use the leader election subsystem to identify the current leader,
and then make a remote procedure call (RPC) to that leader so that it updates
itself.

Redirect modification requests
HTTP already supports redirection. In this case, leader and hot spare schedulers
can handle read-only requests, but requests that update the state of the frame‐
work can simply be redirected to the leading master with a 302 Found response.

The data is the truth
This pattern is similar to the shared database pattern, but rather than providing
an HTTP API, clients communicate directly with the data layer, and the schedu‐
ler is totally subservient to whatever data is in the data layer. For instance, if you
used Redis or RabbitMQ as your data layer, any client could add work to it, and
the leading scheduler would periodically poll for new tasks it needs to launch and
replicate all status updates to the data layer.

In practice, most framework authors reach for ZooKeeper first. ZooKeeper is a great
choice for many types of frameworks, for the following reasons:

• It provides leader election primitives.
• It stores arbitrary data.
• It supports arbitrary transactions.
• It’s highly available.
• It can notify clients when data changes.
• A Mesos cluster already has an instance.
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ZooKeeper’s main downside is that it can’t scale to hundreds of thousands of data ele‐
ments. For that use case, you’ll need to sacrifice the strong consistency it provides for
other data stores like Cassandra, Redis, or MySQL.

Forced Failover
At some point, you may want to make a framework that automatically forces failover
to a new scheduler. This could be useful in two cases:

1. Your scheduler knows what the current running version is and will trigger a fail‐
over if it is a newer version, to simplify the upgrade process.

2. Your scheduler starts out running on the user’s command line, but it actually cre‐
ates a task on the Mesos cluster that will take over for the command-line tool. For
example, mesos-submit (now deprecated) did this.

If you want to trigger a failover, simply register your new scheduler with the existing
FrameworkID. When Mesos accepts the new scheduler’s registration, it will trigger the
error() callback of the old scheduler, with the message Framework failover.
Unfortunately, this message string is the only way to distinguish a purposeful failover
from an actual framework error.

Consolidating Offers
One issue that some schedulers run into is offer fragmentation. Offer fragmentation
occurs when multiple frameworks are connected to the Mesos cluster, and one of
them launches multiple tasks of similar (but not the same) size. Usually, the Mesos
master can consolidate free resources from each host. Fragmentation occurs when the
master isn’t able to do so. The root cause is that the various fractions of the resources
are repeatedly being offered to different connected frameworks, and thus are never
idle long enough to consolidate. This can manifest as, for example, a host having
eight offers with one CPU each, rather than one eight-CPU offer. To solve this prob‐
lem, your framework must change the way it handles offers: rather than immediately
using or declining offers, it can hold on to them temporarily in order to wait and see
if any more offers come in on those hosts. Remember, when you call launchTasks,
you can pass it as many offers for the same slave as you’d like (see the note Combin‐
ing Offers following Example 4-5).

You can build offer consolidation as a form of middleware for your resourceOffers 
callback. Instead of calling your original implementation of resourceOffers, first put
all new offers into a map, keyed by slave, so that you can track all the offers for each
slave. Then, you can decide when to remove a group of offers from the map and pass
them to your original resourceOffers callback. When doing this, you should also
make sure that you can’t accidentally hold on to an offer forever—you should still try
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to decline offers after a couple of minutes, to keep the whole cluster operating
smoothly.

There are two broad classes of strategies for deciding when you should pass a group
of offers along to the original resourceOffers implementation: you can pass along a
group when it’s big enough, or when it’s been long enough. If you choose the big
enough strategy, you’ll need to keep track of the biggest task that you need to launch.
Then, when you finally receive enough offers on a single slave to satisfy the task, you
can pass along the group of offers to the code that will launch the task. If you choose
the long enough strategy, you’ll also need to choose how long to hold on to an offer
(typically, 15–60 seconds). Then, when an offer is held for longer than the chosen
time, you can pass all of that slave’s offers to your original resourceOffers, and
hopefully that group will be big enough.

The benefit of the big enough strategy is that you’re guaranteed to launch your task
when you find enough offers. The downsides are that you still need to worry about
liveness (occasionally declining old offers), and you need to track the size of pending
tasks. The strategy becomes even more complicated if you’d like to try to pack multi‐
ple tasks into an offer group, as you now need to keep track of many variables: the
offers on each slave, the pending tasks, and the different ways those tasks could be
packed into the offers.

On the other hand, the long enough strategy is simpler to implement: you don’t need
to worry about the task sizes at all; instead, you are assuming that you will eventually
receive enough offers during the time window you chose to satisfy any pending task.
The downside of this strategy is that it could struggle to launch a very big task, since
if you waited longer, you could’ve received the last necessary offer to succeed.

Ultimately, consolidating offers is not necessary until you reach a certain scale on
your Mesos cluster. It is, however, good to know how to diagnose this problem, and
how to design a solution to it. In production Mesos clusters I’ve operated, we’ve run
into this problem and solved it successfully using the long enough strategy.

Fenzo, a Scheduling Library

Fenzo is a library released by Netflix in the summer of 2015. For 
Java-based schedulers, Fenzo provides a complete solution to offer
buffering, multiple task launching, and hard and soft constraint
matching. Many, if not most, schedulers would probably benefit
from using Fenzo to compute task assignments, rather than writing
the offer buffering, packing, and placement routines themselves.
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Hardening Your Scheduler
In our example scheduler, we simply retry jobs on the next offer that we receive once
they’ve failed. Often, some job won’t run on a particular host due to some uniquely
broken aspect of that host. To protect against this type of repeated failure, you should
track which hosts a job has failed on, and not retry the job on those hosts. In practice,
this protects against all kinds of host misconfiguration.

A job not working on a particular host isn’t the only host-related issue you could
encounter. Rarely (but what’s rare at scale?), you’ll get a black hole host: a host that
causes every job it runs to fail, often extremely quickly. Black hole hosts will rapidly
exhaust all the retries for all the jobs you’re trying to run, resulting in spurious fail‐
ures that require manual intervention. To handle black hole hosts, you should track
how many failures you’ve seen on each host in the past minute. If that number
exceeds some predetermined target, then you should stop accepting offers from that
host entirely. Some frameworks expect tasks to never fail (like long-running services),
so seeing 20 failures from a single host in a minute bodes poorly for it. On the other
hand, some frameworks complete thousands of tasks every second; for these, 20 fail‐
ures on a single host in a minute would be totally normal, and so they’d only blacklist
a host after thousands of failures in a short duration. Finally, when implementing a
blacklist, make sure that you can receive notifications when hosts are blacklisted, and
make sure that those hosts are automatically unblacklisted after a week. If you don’t
automatically notify and later unblock these hosts, you could accidentally forget
about them and leave those resources idling forever, costing money but not doing any
work. Alternatively, you can use an automated system like Satellite to handle this sit‐
uation for all frameworks.

Framework UI
Usually, frameworks have a web UI, since the browser is such a powerful platform for
graphical interfaces. The FrameworkInfo protobuf has a field called webui_url that
should be set to the URL that the UI is available on. When you set this field, the
Mesos UI will make the framework’s name in the UI a link to the provided
webui_url. If you use this feature, you should either ensure that the webui_url is
managed behind a load balancer, or update it in the FrameworkInfo every time a new
scheduler becomes the leader.

Allocating Ports
We only used scalar resources in our scheduler (i.e., CPUs and memory). Mesos also
supports range-type resources, the most common of which is ports. Mesos manages
the ports on the cluster to ensure that each task that needs to listen on a socket binds
to a unique port, and to ensure that tasks that require specific ports won’t start on
slaves for which those ports are already in use. The available ports are encoded as a
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list of [begin, end] pairs of available ports; to use them, you simply add the sub‐
ranges you’re interested in as resources. For example, in Example 4-19 we demon‐
strate a function, findNPorts, that finds N ports from the given offer and returns the
resources that should be added to the TaskInfo that needs those ports.

Example 4-19. Port allocation

public static Resource findNPorts(Offer offer, int n) {
    int numStillNeeded = n;
    Value.Ranges.Builder ranges = Value.Ranges.newBuilder();
    List<Value.Range> availablePorts = null;

    for (Resource r : offer.getResourcesList()) {
        if (r.getName().equals("ports")) {
            availablePorts = r.getRanges().getRangeList(); 
        }
    }

    while (numStillNeeded > 0 &&
                   availablePorts != null &&
                   !availablePorts.isEmpty()) { 
        Value.Range portRange = availablePorts.remove(0); 
        long numAvail = portRange.getEnd() - portRange.getBegin() + 1; 
        long numWillUse = numAvail >= numStillNeeded ?
                numStillNeeded : numAvail; 
        ranges.addRange(Value.Range.newBuilder()
                .setBegin(portRange.getBegin())
                .setEnd(portRange.getBegin() + numWillUse - 1) 
                .build());
        numStillNeeded -= numWillUse;
    }

    if (numStillNeeded > 0) { 
        throw new RuntimeException("Couldn't satisfy " + n + " ports");
    }

    return Resource.newBuilder()
        .setName("ports")
        .setType(Value.Type.RANGES)
        .setRanges(ranges.build())
        .build();
}

We first find the Ranges that contain the available ports.

We will keep looking for ports as long as there are still available ports and we
need them.

We will check the contiguous subranges one at a time.
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The contiguous subranges are inclusive; thus, if the subrange is [10-20], there
are actually 11 ports available.

When deciding how many ports to use from this subrange, we will never exceed
how many we still need or how many are available.

Remember that the range is inclusive, and beware the off-by-one error!

It’s possible that we couldn’t find enough ports; better to blow up than return bad
data.

Besides ranges, which can be tricky to work with, Mesos also has set-type resources.
Sets of resources currently only exist when defined on the slave command line. They
are represented as lists in the Resource protobuf, and they’re straightforward to use.
You can learn more about creating custom resource types in “Configuring Custom
Resources” on page 16.

Checkpointing
Even though we should always strive to implement our frameworks to be robust
against all kinds of errors, it’s actually possible to instruct Mesos to checkpoint status
updates from tasks onto disk, in case the update coincides with a slave restart. You
can enable this by setting the checkpoint property of the FrameworkInfo to true.
This turns some slave crashes and restarts into unexceptional behavior. I recommend
always doing this, unless you expect to generate large numbers of status updates over
short intervals. Since checkpointing causes every status update to be written to disk, if
you make thousands of status updates per second per slave, that would incur thou‐
sands of additional disk I/O operations per second per slave, which could degrade
cluster performance. You should benchmark your framework with and without
checkpointing if you’re concerned about its performance impact; otherwise, it’s best
to always use it.

CommandInfo
The CommandInfo protobuf describes how a process should be launched. We’ll exam‐
ine CommandInfo’s two sides: fields related to launching a process, and fields related to
setting up the environment for the process.

Launching a process

CommandInfo supports two ways to launch a process: through the execv syscall, and
via the system’s default shell (such as Dash or Bash). If you want to launch your pro‐
cess using execv, this will ensure that you can control the arguments to your process
very precisely, and not worry about how shells interpret strings. To launch the pro‐
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cess directly, set the value to be the path to the executable, set the arguments to be
the args array, and set shell to false. If you’d like it to be launched via a shell, how‐
ever (so that you can use shell operators like &&, ||, and | to compose programs), you
must set shell to true, and then the entire contents of the value will be invoked by
running /bin/sh -c "$value"; arguments are ignored for shell commands.

Configuring the process’s environment
Mesos allows you to control three additional aspects of the process’s environment: the
user account that it runs as (via the user field, subject to the ACLs), the environment
variables that the process sees (via the environment field, which is just a list of name/
value pairs wrapped into a protobuf), and the filesystem state (via URIs). This last
parameter requires additional explanation: it allows you to specify any number of
URIs that should be downloaded into the executor sandbox (the current working
directory when the executor starts running). You can choose whether those URIs
should be executable, which is useful because you can instruct your CommandInfo to
bootstrap and install the application’s binaries directly into the sandbox, obviating the
need for a deployment system. You can also specify whether to extract archive files, as
Mesos understands those extensions and can download and unpack the application
or additional resources automatically. The extensions recognized are cur‐
rently .tgz, .tar.gz, .tbz2, .tar.bz2, .txz, .tar.xz, and .zip. By default, Mesos supports the
URI schemes hdfs://, http://, https://, ftp://, ftps://, and file:// (for use with NFS or
other networked POSIX filesystems), as well as any other URI schemes that the
installed Hadoop client supports (Hadoop is not a required dependency, though, and
hdfs:// will simply fail if it’s not installed). You can add support for additional means
of fetching binary dependencies by modifying src/launcher/fetcher.cpp accordingly.

The task’s sandbox is always available in the environment variable
$MESOS_DIRECTORY.

Summary
In this chapter, we learned how to implement the scheduler component of a Mesos
framework. The scheduler is responsible for launching tasks, monitoring those tasks,
and interacting with the user. Many frameworks only need to implement a scheduler;
all the functionality necessary to build most distributed, scalable, clustered applica‐
tions can be implemented by orchestrating the launching of worker processes. We
looked at a few example framework architectures, such as the pool of servers schedu‐
ler, work queue scheduler, and job processor scheduler. Then, we walked through the
implementation of a job processor.
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To build the job processor scheduler, we had to use a database, ZooKeeper, to persist
the state of the application. Even though the scheduler API has many callbacks, we
only needed to implement a handful of them to create a working system. We separa‐
ted the notion of jobs (what the user wants to do) from tasks (code that Mesos runs
on the cluster). This separation allowed us to easily build retries into our scheduler.
The scheduler also needed a basic optimization, offer packing, in order to avoid being
too slow.

Once the scheduler was up and running, we added high availability by combining an
external leader election library, Curator, with additional features of the Mesos frame‐
work registration API. Unfortunately, once we gained the ability to fail over, we
opened ourselves up to the possible loss of task status updates. To resolve this, we
implemented task reconciliation, which allowed the scheduler to always behave cor‐
rectly during planned and unplanned failover scenarios.

After learning how to implement a reliable Mesos scheduler, we discussed additional
considerations for production-quality frameworks should. Since we usually have
many instances of a scheduler running, and only one is the master, we looked at sev‐
eral designs for how clients can interact with the schedulers. We learned about offer
fragmentation, what causes it, and some strategies to ensure that a framework never
fails to find big enough offers. Besides CPUs and memory, many frameworks must
allocate ports to their tasks: we learned about range-type resources, and how port
allocation differs from CPU and memory scalar allocation. Finally, we briefly dis‐
cussed issues such as building a user interface for a framework, hardening a frame‐
work against unknowns, and automating failovers during maintenance.

At this point, you’re fully equipped to write a Mesos framework that can launch and
monitor tasks, handle various types of failures and unexpected scenarios, and operate
efficiently on your cluster. Next, we’ll learn about how to increase the capabilities of
frameworks by implementing custom executors, which will allow things like dynami‐
cally resizing containers and allowing tasks to share resources.
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CHAPTER 5

Building a Mesos Executor

Now you’ve seen how to build a scheduler for Mesos. However, there are some things
that can’t be done with the scheduler API alone. For instance, perhaps you’d like to
run several tasks in the same container. Maybe your application has lifecycle messages
for the scheduler, reporting on its progress or application-specific statistics. Or per‐
haps you’d like to layer additional functionality into the executed task. In order to
accomplish these things, you need to write a custom Mesos executor.

This is what we’ll learn how to do in this chapter. Initially, we’ll simply provide the
functionality of the built-in CommandExecutor, which we learned about at the end of
the last chapter. Then, we’ll add support for heartbeats to enable faster failure detec‐
tion. Finally, we’ll discuss potential designs for progress reporting, improved logging,
and running multiple tasks in the same container.

The Executor
We’ve already learned what a scheduler is: it’s the component that interacts with the
Mesos masters and the framework’s clients, manages the running tasks, and handles
failovers. But what is an executor? An executor has three responsibilities:

• Executing tasks as requested by the scheduler
• Keeping the scheduler informed of the status of those tasks
• Handling other requests from the scheduler
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You Probably Don’t Want to Do This

Writing executors is very tedious. Unfortunately, the only way to
test whether the communication between your scheduler and exec‐
utors is working is to start a new instance of your framework on a
Mesos cluster. Furthermore, correctly implementing health checks,
process management, and concurrency is very tricky. I strongly
encourage you to think about how you could leverage the
CommandExecutor rather than building your own executor. Never‐
theless, there are many problems that can only be solved by writing
an executor.

Building a Work Queue’s Worker
Recall that the work queue scheduler needs individual workers to execute the work
items. When we discussed it earlier, I suggested using an external queuing system,
like Redis or RabbitMQ, that your worker processes could connect with directly, but
that’s not the only way to build it. Using a custom executor, you could instead send
tasks directly to the executor. If you’re using RabbitMQ or Redis, there’s not much
advantage to doing this; however, if you chose to store your state in a database like
Postgres, you might not be able to easily scale to thousands of connections from every
worker. As a result, you could instead simply have the scheduler send multiple tasks
to the same executor.

This has upsides and downsides. On the one hand, it could allow you to avoid adding
yet another piece of infrastructure (a queuing layer) to solve your scaling problems.
On the other hand, it’s now your responsibility to implement the queuing semantics
you want in your scheduler, which is much more challenging than relying on battle-
tested queues.

Running Pickled Tasks

What Is a Pickled Task?

Serialized code or configuration data that represents a task is
known as a pickled task. For example, sending RPCs requires a way
to serialize a task’s parameters so that it can be transmitted across
the network. Many languages support sending bytecode, executable
source code, or other data. The term “pickle” comes from Python’s
serialization library.

Many of us are using the Java Virtual Machine (JVM) or Docker to run our code. Due
to their potentially long initialize time, we may want to provide generated code to an
executor. For example, it might take 45 seconds to start a JVM with all the classes we
need: this is not something we’d like to do thousands of times per second. In order to
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avoid the 45-second overhead for each task, it’d be nice to reuse the JVMs for tasks on
the same host. With a custom executor, it is possible to read raw bytes from each task
and deserialize them into executable code. Then, the executor can simply run that
code, reusing the whole JVM. For short tasks, this could be the difference between a
task taking 10 seconds or 55 seconds: this is one of the tricks that enables Spark’s low
latency.

This approach can also be used to partially mitigate the challenge of writing an execu‐
tor: you need only write the “pickle executor” once. After you’ve written it, you can
benefit from the dynamic resizability of the executor (see “Multiple Tasks” on page
119), and you won’t need to debug the communications again. Note that this doesn’t
require building a custom executor—you could also communicate pickled tasks
through an out-of-band mechanism; the only downside is that you’d lose the ability to
dynamically resize the container.

Sharing Resources
Imagine writing an application where each task reads a large static dataset and a small
user-provided dataset, crunches the numbers, and returns the result. This could be
used for running a series of simulations or training a machine learning model. A cus‐
tom executor could be used to easily share a large static dataset, and still benefit from
Mesos’s resource accounting and automatic cleanup when the executor terminates. To
do this, you could configure the custom executor to initialize itself by downloading
the large dataset into its sandbox and reserving enough memory for it to remain in
the Filesystem’s in-memory block cache. Then, the tasks you launch on that executor
could memory map that dataset, so that they get in-memory, direct access. This
approach would reduce the bandwidth and disk costs of copying that dataset more
times than necessary.

Another time that a custom executor could share resources is when building general
purpose graphics processing unit (GPGPU) applications. Frequently, you’ll only have
one GPGPU in each slave. If you used the CommandExecutor and made the GPGPU a
custom resource (see “Configuring Custom Resources” on page 16), you’d only be
able to run one task at a time on each slave; however, you might want to manage the
sharing of that GPGPU in an application-specific way. To do that, you could use the
pickled tasks pattern described in the previous section to ensure each task program‐
matically exposes when it needs to use the GPGPU. Then, the custom executor could
run all the tasks within the same container, so that it can broker and scheduler the
tasks’ use of the GPGPU.

These are just a few examples of the ways in which you might want to try to share
resources between tasks. Of course, there are many other ways in which tasks can
share their work, from common subproblems to shared caches. Sometimes, the most
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efficient way to take advantage of these structures is to run them in the same con‐
tainer, which requires writing an executor.

Better Babysitting
Mesos is engineered to maximize availability: when a scheduler crashes, it can auto‐
matically fail over; when a slave is upgraded, executors can automatically reconnect
to the new version; when a network link goes down, the slave and executors continue
to run with their last known instructions. For some applications, however, this isn’t
actually the behavior you want.

At large scale, partial and unexpected failures can reveal subtle bugs that weren’t iden‐
tified during testing and QA. To reduce the impact of these unknown, unpredictable
issues, you can require that every executor checks in with the scheduler periodically,
and if some executor misses too many check-ins, it can be presumed LOST by the
scheduler.

Suppose that a slave loses connectivity to the scheduler, but not to its databases. An
executor running on that slave might be able to continue uninterrupted, even though
the scheduler can’t receive messages when its tasks finish. This can cause the system
to appear stuck to an administrator.

To solve this, we could add a heartbeating mechanism to the executor: the executor
will periodically let the scheduler know it’s still running, so that if an executor misses
several heartbeats, the scheduler can presume the executor LOST and restart it on a
healthy slave. This is known as babysitting—constant, active supervision that helps to
detect failures faster. A custom executor can implement heartbeating functionality
with the Mesos messaging APIs, ensuring that the overall system remains healthy.

Mesos-Native Heartbeating

In an upcoming version after 0.25, Mesos will add native support
for three types of health checks—HTTP requests, TCP connection
checks, and running a command. When these are enabled in the
TaskInfo, they’ll send periodic StatusUpdates. You might recog‐
nize these as the health checks that Marathon provides (see “Health
Checks” on page 43). The Mesos project often integrates useful
functionality from frameworks back into the core. See
MESOS-2533 and MESOS-3567 for updates.

Augmented Logging
The final example of a custom executor’s usefulness is in augmenting the logging
facilities of Mesos. Mesos writes each process’s stdout and stderr to local files in the
executor sandbox. With a custom executor, the process’s stdout and stderr can be
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forwarded to a centralized log repository or data storage location (such as HDFS, S3,
or Logstash), allowing you to upgrade all CommandExecutor-based tasks to centrally
store their logs. However, this could also be accomplished by running a log redirector
such as logger, which connects a process’s stdout to syslog, thus avoiding the need
to make a custom executor.

Rewriting the CommandExecutor
Now that we’ve seen some examples of when we’d want to write an executor, let’s take
a look at how to actually do so. We’re going to start by writing something very simple:
an executor that is compatible with the built-in CommandExecutor.

We’ll start by looking at the skeleton of MyExecutor, our CommandExecutor clone. The
imports and class declaration are presented in Example 5-1.

Example 5-1. Imports and class declaration of MyExecutor

package com.example;
import org.apache.mesos.*;
import org.apache.mesos.Protos.*;
import java.util.*;
import java.io.File;
import org.json.*; 
import java.lang.ProcessBuilder.Redirect; 

public class MyExecutor implements Executor, Runnable { 
    // We'll discuss the inner bits as we go
}

We’ll use JSON to encode the task we want to run. This JSON will be read from
the TaskInfo so that we know what to invoke.

The ProcessBuilder is the most convenient way to start a process in Java; we’ll
use it to launch our application, and we’ll redirect the application’s stdout and
stderr to separate log files from our executor.

Since there’s no callback API for finding out when a process finishes, we’ll start a
thread to wait for the process—that’s why we implement Runnable.

The main method is shown in Example 5-2.
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Example 5-2. main of MyExecutor

public static void main(String ... args) throws Exception {
    Executor executor = new MyExecutor();
    ExecutorDriver driver = new MesosExecutorDriver(executor);
    driver.run();
}

Although it’s tempting to try to configure some things via the command line passed
in to main, you’ll be thankful that all executor configuration comes from the Mesos
APIs—this will simplify development in the long run by ensuring all configuration
comes from a single source. When the scheduler has total control over the executors,
this simplifies development: global (scheduler) changes and local (executor) changes
are now managed from a single codebase, the scheduler’s. This makes developing new
features easier, and it simplifies operations, since the administrators need only to
modify and reload the scheduler to make framework-wide changes.

As with the scheduler, in the main of our executor we create a corresponding driver to
communicate with Mesos. Unfortunately, this driver turns out to be a major annoy‐
ance. When the framework calls MesosExecutorDriver.start(), it needs to have
been started by a slave. The slave injects an environment variable, MESOS_SLAVE_PID, 
which is used to allow the executor to connect to the slave that started it and begin
participating in the Mesos protocols. As a result, if you want to test your executor,
you need to implement a mock ExecutorDriver. If you forget to do this, you’ll see a
weird stack trace like this, regardless of what language you’re developing your execu‐
tor in:

F0605 21:32:01.538770 18480 os.hpp:173] Expecting 'MESOS_SLAVE_PID' in
environment variables
*** Check failure stack trace: ***
    @     0x7fc535912dfd  google::LogMessage::Fail()
    @     0x7fc535914c3d  google::LogMessage::SendToLog()
    @     0x7fc5359129ec  google::LogMessage::Flush()
    @     0x7fc535915539  google::LogMessageFatal::~LogMessageFatal()
    @     0x7fc5352c9ff0  os::getenv()
    @     0x7fc53534139b  mesos::MesosExecutorDriver::start()
    @     0x7fc5359068ee  Java_org_apache_mesos_MesosExecutorDriver_start
    @     0x7fc5390127f8  (unknown)

We’ll block the main thread until our driver completes—when the task is finished,
we’ll call driver.stop() elsewhere to ensure the executor exits correctly. Since execu‐
tors decouple the notion of tasks from the containers and processes that run them, it’s
easy to forget that sending a TASK_FINISHED doesn’t terminate the executor. You
should always have executors shut themselves down once they’ve finished their work,
or have the scheduler explicitly manage their lifetime by killing their canary tasks (see
“Canary tasks” on page 120).
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Just like for schedulers, many of the executor callbacks aren’t important to handle.
Example 5-3 lists the callbacks we can ignore for now.

Example 5-3. Ignoring callbacks

    public void frameworkMessage(ExecutorDriver driver, byte[] data) { } 
    public void registered(ExecutorDriver driver, ExecutorInfo executorInfo, 
                           FrameworkInfo frameworkInfo, SlaveInfo slaveInfo) {
        System.out.println("registered executor " + executorInfo);
    }
    public void disconnected(ExecutorDriver driver) { } 
    public void shutdown(ExecutorDriver driver) { } 
    public void reregistered(ExecutorDriver driver, SlaveInfo slaveInfo) { } 
    public void error(ExecutorDriver driver, java.lang.String message) { } 

Framework messages are a simple (but not guaranteed, as we’ll see in the upcom‐
ing sidebar) way to communicate between the scheduler and its executors by
sending arbitrary data serialized as bytes. Note that framework messages aren’t
routed to particular tasks.

This is invoked the first time that an executor connects to the slave. The most
common thing to do is get data from the ExecutorInfo, since that can carry
executor configuration information in its data field, which contains arbitrary
bytes.

This is invoked when the slave disconnects from the executor, which typically
indicates a slave restart. Rarely should an executor need to do anything special
here.

This callback informs the executor to gracefully shut down. It is called when a
slave restart fails to complete within the grace period, or when the executor’s
framework completes. The executor will be forcibly killed if shutdown doesn’t
complete within 5 seconds (the default, configurable on the slave command line
with --executor_shutdown_grace_period).

This callback is invoked after a successful slave restart; it contains the new slave’s
information.

This callback is invoked after a fatal error occurs. When this callback is invoked,
the driver is no longer running.

As you can see, the executor can actually be a full participant in the slave checkpoint‐
ing and recovery system; however, you can ignore this for almost all executors. We’ll
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make use of some of these callbacks later, but for now, let’s continue by looking at
how to actually launch a task.

Framework Messages Are Unreliable
sendFrameworkMessage is just a thin wrapper around the libprocess semantics (see
“Libprocess and the Actor Model” on page 123 for details), so delivery isn’t guaran‐
teed. This means that if you use sendFrameworkMessage, your framework must not
rely on any guaranteed delivery of messages—you need to handle retries yourself. But
what’s an unreliable delivery useful for, anyway? In spite of the lack of guarantees, the
messages actually will be delivered in all but the most extreme failure conditions of
the cluster. This means that sendFrameworkMessage is great for all sorts of advisory
messages.

One such advisory message is a task heartbeat. Your scheduler wants to know whether
its tasks are continuing to make progress, or whether they’ve stalled or become dead‐
locked for whatever reason. To detect this, simply send a framework message once per
minute to the scheduler, and have the scheduler track which executors it hasn’t heard
from for 5 or 10 minutes. If a message is not delivered for some transient reason, we
can assume the next one will probably succeed; however, if no messages are delivered
over an extended period, that implies that there is a real issue with the executor (or
that the network’s having other problems). We’ll learn how to implement this in
“Adding Heartbeats” on page 113.

Another use for framework messages is for providing progress updates that will be
consumed by users in the UI. There are many communication strategies that ensure
that it’s not problematic if one update is missed. For instance, if each update is a com‐
pletion percentage, the latest update will always subsume earlier updates (since it
should always be greater than or equal to the previous value). Generally, framework
messages are good for progress reporting when newer updates supersede earlier ones,
and the updates are being used for human, rather than programmatic, consumption.

We’ll start by looking at what data we’ll need to access throughout the executor’s
implementation. These are global variables that are defined in the MyExecutor class
(see Example 5-1):

Process proc

We’ll need to store a reference to the process we launched so that we can wait for
it to complete.

TaskID taskId

We also need to communicate the task’s status to Mesos: the driver API to com‐
municate with our scheduler requires the TaskID as an argument.
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ExecutorDriver driver

Of course, we’ll want to be able to use the driver, so we’ll store a reference to it as
well.

Well-behaved executors should keep Mesos up-to-date with the status of their tasks.
Since sending status updates has some boilerplate, we’ll write a convenience method,
shown in Example 5-4.

Example 5-4. Status update helper

private void statusUpdate(TaskState state) {
    TaskStatus status = TaskStatus.newBuilder()
        .setTaskId(taskId)
        .setState(state)
        .build()
    driver.sendStatusUpdate(status);
}

Here, we simply construct a bare-bones task status and send it via the driver. Some‐
times, you’ll want to communicate additional information. Like most Mesos proto‐
bufs, TaskStatus supports arbitrary data, as well as a human-readable message.

In order to keep this example simple, our executor will only support running a single
task, after which it will exit. We’ll enforce this invariant with a helper function, as
seen in Example 5-5.

Example 5-5. Ensuring a single task

private boolean ensureOneLaunch(ExecutorDriver driver, TaskID id) { 
    if (this.taskId != null) { 
        TaskStatus status = TaskStatus.newBuilder()
            .setTaskId(id) 
            .setState(TaskState.TASK_ERROR)
            .setMessage("this executor only can run a single task") 
            .build();
        driver.sendStatusUpdate(status);
        return false;
    } else {
        return true;
    }
}

We’ll return true if this is the first task, and false if it should be ignored.

The code that launches our task will set the value of this.taskId. Thus, we can
assume that if this.taskId was already set, we’ve already launched a task, so this
one is invalid.
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Note that we use the TaskID of the newly requested task, not the running task.

We’ll take advantage of the human-readable message in the status update to help
the user diagnose why the task launch resulted in an error.

Example 5-6 illustrates how we actually launch a process. We’ll take the configuration
JSON object as an input, and we’ll return the newly started process. To help separate
our logs, we’ll redirect the task process’s stdout and stderr to different files than the
executor’s stdout and stderr. For now, the task JSON will have only a single key:
"cmd", which is the command line to run the task. We’ll invoke the task with a shell
for simplicity.

Example 5-6. Starting a process

private Process startProcess(JSONObject cfg) throws Exception{
    List<String> cmdArgs = Arrays.asList("bash", "-c", cfg.getString("cmd")); 
    ProcessBuilder pb = new ProcessBuilder(cmdArgs); 
    File stdoutFile = new File(System.getenv("MESOS_DIRECTORY"), "child_stdout"); 
    File stderrFile = new File(System.getenv("MESOS_DIRECTORY"), "child_stderr"); 
    pb.redirectOutput(Redirect.to(stdoutFile)); 
    pb.redirectError(Redirect.to(stderrFile)); 
    return pb.start();
}

We build the argument vector for the process we will launch.

The ProcessBuilder API is a simple way to launch a process in Java.

The path to the executor’s scratch space is placed into the environment variable
MESOS_DIRECTORY by the slave. It’s best to write any output into this directory,
since it’s automatically garbage collected when the slave needs to reclaim disk
space after the executor exits.

We redirect the task process’s output.

At this point, we’re finally ready to handle launching a task. To do so, we must imple‐
ment the launchTask callback of the Executor interface (see Example 5-7).

Example 5-7. Implementing launchTask

public void launchTask(ExecutorDriver driver, TaskInfo task) {
    synchronized (this) { 
        try {
            if (!ensureOneLaunch(driver, task.getTaskId())) { 
                return;
            }
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1 Java concurrency is beyond the scope of this book, so you’ll just have to trust me that this works.

            this.taskId = task.getTaskId(); 
            this.driver = driver; 

            statusUpdate(TaskState.TASK_STARTING); 

            byte[] taskData = task.getData().toByteArray(); 
            JSONObject cfg = new JSONObject(new String(taskData, "UTF-8"));
            this.proc = startProcess(cfg);  

            statusUpdate(TaskState.TASK_RUNNING); 

            Thread t = new Thread(this); 
            t.setDaemon(true);
            t.start();
        } catch (Exception e) {
            e.printStackTrace(); 
        }
    }
}

To protect access to all global variables, we put a mutex around all the concurrent
code in the executor.1

We check that this is the first task we’ve received. If it isn’t, we’ll do nothing and
just return.

We store a few things to which we have access in this callback into global vari‐
ables: the TaskID, the ExecutorDriver, and the Process, as explained earlier.

As we process the task, we keep Mesos informed of our progress.

The details of the task must be extracted and parsed.

Finally, we can start the process.

We’ll need to watch the process to know when it completes, and whether it com‐
pletes successfully. We’ll look at the implementation of this completion monitor‐
ing thread next.

In real production code, you should try to make it easier to diagnose what goes
wrong in executor code. This is easiest to do by also transmitting exceptions via
StatusUpdate if they’re fatal.
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At this point, we nearly know the entirety of how our executor goes about managing
the lifecycle of its task. Example 5-8 illustrates how we track the completion of the 
task.

Example 5-8. Waiting for the process to finish

public void run() {
    int exitCode;
    try {
        exitCode = proc.waitFor(); 
    } catch (Exception e) {
        exitCode = -99; 
    }
    synchronized (this) { 
        if (proc == null) { 
            return;
        }
        proc = null; 
        if (exitCode == 0) { 
            statusUpdate(TaskState.TASK_FINISHED);
        } else { 
            driver.sendStatusUpdate(TaskStatus.newBuilder()
                    .setTaskId(taskId)
                    .setState(TaskState.TASK_FAILED)
                    .setMessage("Process exited with code " + exitCode)
                    .build());
        }
    }
    driver.stop(); 
}

waitFor() will block until the process terminates, and it returns the process’s exit
code.

If waitFor() throws an exception for some reason, we’ll assume something went
terribly wrong and use a distinctive exit code to signal that.

As mentioned before, the mutex on this protects access to the global variables.

If we reach this point and proc is null, this is a special signal that means that
process was killed by killTask (which we haven’t seen yet). In that case, our
work’s already done.

By setting proc to null, we set that special signal from above.

When the process exits with a successful status, we report that the task finished
(remember, FINISHED is a successful status in Mesos).
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Otherwise, we know that the task failed, and so we send a FAILED status.

We stop() the executor driver at this point, so that our main function can return
and the executor will gracefully shut down.

We’ve seen how our new executor handles accepting a task, starting a process, and
sending the appropriate status updates when that process finishes. All we have left is
to handle requests from the scheduler to kill the task early. Example 5-9 shows how to
handle a killTask message.

Example 5-9. Implementation of killTask

public void killTask(ExecutorDriver driver, TaskID taskId) {
    synchronized (this) { 
        if (proc != null 
                && taskId.equals(this.taskId)) { 
            proc.destroy(); 
            statusUpdate(TaskState.TASK_KILLED); 
            proc = null;
        }
        driver.stop();
    }
}

As mentioned before, we must protect all access to global variables with a mutex.

If proc is null, then the process has already died, either because it finished or
because of an earlier killTask.

We should also ensure that the task we’re running is the task we’re supposed to
kill. This isn’t strictly necessary for our one-task executor, but it protects us from
programming errors in the scheduler, in which we send kill messages to the
wrong executor.

We kill the process.

We inform Mesos that the task was killed as per the user’s request. Note the possi‐
ble race condition if the thread crashes after calling destroy() but before send‐
ing the status update: Mesos might believe the task is still running. This is why we
set proc to null afterward—it will ensure that a second kill message from the
scheduler will cause the TASK_KILLED message to be resent.

We have now seen the entirety of how to implement a basic executor with functional‐
ity similar to the CommandExecutor. Of course, you might be wondering how to
actually use this executor from your scheduler. To integrate this executor with our
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example scheduler from Chapter 4, we’ll simply need to update the makeTask method
of the Job object, as shown in Example 5-10.

Example 5-10. Enhanced makeTask for our new executor

public TaskInfo makeTask(SlaveID targetSlave, FrameworkID fid) {
    TaskID id = TaskID.newBuilder()
        .setValue(this.id)
        .build();
    ExecutorID eid = ExecutorID.newBuilder() 
        .setValue(this.id)
        .build();
    CommandInfo ci = CommandInfo.newBuilder()
        .setValue("java -jar /path/to/custom/executor.jar") 
        .build();
    ExecutorInfo executor = ExecutorInfo.newBuilder() 
        .setExecutorId(eid)
        .setFrameworkId(fid)
        .setCommand(ci)
        .build();
    JSONObject cfg = new JSONObject();
    try {
        cfg.put("cmd", this.command);
        return TaskInfo.newBuilder()
            // ... Elided unchanged code ... 
            .setExecutor(executor) 
            .setData(ByteString.copyFrom(cfg.toString().getBytes("UTF-8"))) 
            .build();
    } catch (Exception e) {
        e.printStackTrace();
        throw new RuntimeException();
    }
}

We need to explicitly assign our executor an ID. The CommandExecutor uses the
same ID for the task and executor, so we’ll do that too.

You’ll need to build the custom executor’s .jar and distribute it to your slaves. In
the next section, we’ll look at some approaches to this.

The ExecutorInfo requires several pieces of information, including the
FrameworkID. The scheduler was trivially modified to pass it to makeTask.

The unchanged configuration to the TaskInfo is not repeated here (refer back to
Example 4-3). We did, however, drop the .setCommand(...), since now we’re set‐
ting the executor.
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TaskInfo must have exactly one of the command or executor set, but never both
—that’s an error.

Finally, we include the JSON configuration of the task.

That’s all there is to it! Now we’ve enhanced our scheduler from Chapter 4 to support
our new, custom executor.

Bootstrapping Executor Installation
One challenge in creating your own executor is deploying the binaries everywhere.
We’ll look at four solutions to this problem, and weigh their pros and cons:

Use HDFS, S3, or another non-POSIX store
Any Mesos executor can list a set of URIs that will be downloaded and optionally
unzipped into the local working directory before the executor is launched. Mesos
has built-in support for HTTP, FTP, and HDFS stores to download files (see
“Configuring the process’s environment” on page 94). As a result, you can easily
host your applications on a local HDFS cluster, Amazon S3, or another data store
to avoid the need to deploy any new technologies, as the other strategies might
require. The challenge is that this data store must be sufficiently scalable to be
able to deliver the container to every concurrently launching task. A common
reason that a newly developed framework falls over during scalability testing is
that it launches hundreds of executors simultaneously; these executors all simul‐
taneously request their binaries from a single server, which kills the server. This
is commonly known as the thundering herd problem. Make sure that you suffi‐
ciently replicate the server that offers the binaries, or use a system with proven
scalability, like S3.

The “next-level” version of this approach is to actually host the binaries in the
scheduler process itself, by having the scheduler run an embedded HTTP server.
Of course, this will exacerbate the thundering herd problem. The solution is to
have the scheduler stagger the launch times of tasks, to ensure that the server is
never overwhelmed. This is done by waiting for a random duration before sub‐
mitting the launch to Mesos.

Use a configuration management system
Many Mesos clusters will be deployed using a configuration management system
like Chef, Puppet, or Ansible. If this applies to your cluster, then you can also use
that system to push your executor binaries out to every slave in your Mesos clus‐
ter. The benefit to this is that you can ensure that the binaries are always immedi‐
ately available to launch tasks—you don’t need to wait for them to download or
run the risk of an untimely network failure that causes your tasks to become
LOST. The downside, however, is that deploying and upgrading to a new version
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of the executor is more difficult. Of course, you’ll want to version every deployed
executor (to ensure that multiple versions can be running concurrently, during
upgrades); nevertheless, it can be extremely tedious during development to wait
for the executor to be pushed out to all slaves.

Use a shared POSIX filesystem
Often, a compute cluster already has a shared POSIX-compatible filesystem.
Some popular choices here are NFS and GlusterFS. The shared filesystem
approach is similar to the configuration management approach: in both cases,
your executor exists at a known path. The benefit of having that path be on a
shared filesystem is that you don’t need to wait for the configuration manage‐
ment system to actually push the binaries out to every slave; instead, you can
immediately launch the executor as soon as it has been copied onto the shared
filesystem. The downside is that it can be difficult to scale the shared filesystem,
and if it fails, your entire cluster goes down.

Use Docker
Mesos has first-class support for Docker containers (see “Using Docker” on page
129), which are themselves a way to ship around complete binary images. Once
you Dockerize your executor, you can start that container on any slave in the
cluster. The challenge here is the Docker repository: you must find a Docker
repository (be it Docker Hub or a self-hosted one) that can host your Docker
containers with sufficient scalability and security. The most common pitfall with
this approach is the time to download a Docker container: when a Docker con‐
tainer takes 10 minutes to download, the executor launch might time out. This
has the symptom of unpredictable, transient LOST tasks.

Now that we’ve reviewed several options, how do you choose the right one? If you are
already heavily using Docker, then I recommend continuing with Docker to host
your Mesos executors. Otherwise, if you have a shared POSIX filesystem, that option
offers the fastest and easiest development. If you would rather avoid the challenge of
setting up a shared POSIX filesystem for this purpose, then serving the binaries from
HDFS or S3 still offers rapid deployment, and nearly everyone has this capability.
Using a configuration management system does centralize deployment, but it dra‐
matically slows down your ability to redeploy a newer or older version of an executor,
and so it is an option of last resort.
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2 This is known as the FLP impossibility result.

Fetcher Cache

In Mesos 0.23, a new feature called the fetcher cache was released.
The fetcher cache seeks to reduce the load on S3, HDFS, or other
filesystems by caching executor downloads on every slave, so that
they’re downloaded only once per slave. Although this doesn’t
eliminate the scalability challenges with shared filesystems, it
should help a lot. To fully take advantage of the fetcher cache and
improve scalability, ensure that your scheduler staggers the launch
of executors. That way, there will never be too many simultaneous
requests to the shared filesystem, and the fetcher cache will further
reduce the load. The fetcher cache guarantees that each artifact will
be fetched once per slave; even if multiple executors request an
artifact, they’ll all wait for the single download.
To use the fetcher cache, you simply set cache to true in your URI
protobuf in the TaskInfo. The fetcher cache is isolated by user,
since it simply uses the URI as the key. In the future, there will be a
way to bypass or purge the cache, but in the meantime, each URI
should be unique for each different version of the resource’s con‐
tent.

In any case, remember that your scheduler specifies exactly from where and how to
fetch and launch the executor. Consequently, each version of a scheduler can choose
to launch different forwards- and/or backwards-compatible versions of the executor.
By ensuring that your scheduler always launches a compatible executor, you can gen‐
erally avoid internal version mismatches in your frameworks.

Adding Heartbeats
One of the advantages of the Mesos architecture is that temporary communication
disruptions don’t affect the operation of the running executors. We often leverage this
functionality when designing for high availability, since each executor can continue to
process its work or service client requests in spite of other failures. When building a
pool of servers scheduler, for example (see “Pool of Servers Scheduler” on page 60),
this is exactly the behavior we want. On the other hand, sometimes we want to ensure
that every executor is running so that we can react quickly to failures—after all,
there’s no way to distinguish a temporary and permanent network blip.2

We’ll ensure that every executor is functioning by requiring them to heartbeat every
so often (the period will depend on how quickly we want to react to failures). To
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heartbeat, we’ll use framework messages, which have several interesting features and
caveats:

• Framework messages are unreliable: there’s no guarantee they’re ever delivered.
• Framework messages are scalable: they usually use an optimized transmission

mechanism directly from the executor to the scheduler, thus avoiding bottleneck‐
ing at the master.

• Framework messages can carry an arbitrary binary payload: you can serialize any
data you’d like into them, such as progress updates.

• Framework messages are between executors and schedulers: it’s up to you to
include the task ID in the binary payload if you want to send messages about a
particular task on an executor.

First, let’s add heartbeats to our executor, as shown in Example 5-11.

Example 5-11. Heartbeats on the executor

public static void main(String ... args) {
    // ... snip ...
    Timer timer = new Timer(); 
    timer.schedule(new TimerTask() {
        public void run() {
            driver.sendFrameworkMessage(new byte[1]); 
        }
    }, 0, 5000); 
    // ... snip ...
}

We create a new Timer when our executor starts up to manage the heartbeats.

The task we create will simply send a framework message without any interesting
data. In a production framework, you could include useful information here,
such as when the message was sent (to track the message delivery delay) or what
the completion percentage of each of the executor’s tasks is.

We start this task immediately, sending a heartbeat every 5 seconds. To increase
scalability, heartbeats are often sent every 30 seconds or every few minutes.

Although it’s easy to send heartbeats on the executor, we also need to augment the
scheduler. First, we enhance the Job to automatically fail itself when it doesn’t receive
a heartbeat in time, as seen in Example 5-12.
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Example 5-12. Automatically self-destructing Job

public class Job {
    private Timer timer = new Timer(); 
    private TimerTask missedHeartbeatTask; 
    // ... snip ...

    public void heartbeat() { 
        if (missedHeartbeatTask != null) { 
            missedHeartbeatTask.cancel();
        }
        missedHeartbeatTask = new HeartbeatTask();
        timer.schedule(missedHeartbeatTask, 20000); 
    }

    public static Job fromJSON(JSONObject obj) {
        Job job = new Job();
        // ... snip ...
        job.heartbeat(); 
        return job;
    }

    public void succeed() {
        // ... snip ...
        missedHeartbeatTask.cancel(); 
    }

    public void fail() {
        // ... snip ...
        missedHeartbeatTask.cancel();
    }

    private class HeartbeatTask extends TimerTask { 
        public void run() {
            System.out.println("Heartbeat missed; failing");
            fail(); 
        }
    }
}

Each Job will now have a Timer to manage the expiration of its latest heartbeat.

We must store the TimerTask that will cause the current instance of the Job to
fail, so that we can cancel it when we receive a heartbeat.

The heartbeat() method will get called every time we receive a heartbeat from
the executor.

Every time we receive a heartbeat, we must cancel the current task, since if that
task ran we’d fail the Job.
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When we receive the heartbeat, we schedule the next failure due to lack of heart‐
beat in 20 seconds. Since we expect a heartbeat every 5 seconds, this should only
run if we miss several heartbeats in a row.

When we first create the Job, we heartbeat it once to ensure that it fails if the
executor never starts running.

When the task finishes, we cancel the pending failure task, since it’s no longer rel‐
evant.

A HeartbeatTask is a subclass of TimerTask. We only need to implement the
run() method, which is only called if the task isn’t canceled before its time is up.

If our task does get to run, we just fail() the Job, which will cause the Job to get
rescheduled later.

Now that our Job has been enhanced to track heartbeats, all we need to do is pass
along framework messages from the scheduler to the proper Job. To do this, we’ll
implement the frameworkMessage callback in the scheduler, as shown in
Example 5-13.

Example 5-13. Implementing frameworkMessage for heartbeats

public void frameworkMessage(SchedulerDriver driver, ExecutorID executorId,
                             SlaveID slaveId, byte[] data) {
    String id = executorId.getValue(); 
    synchronized (jobs) {
        for (Job j : jobs) { 
            if (j.getId().equals(id)) {
                j.heartbeat(); 
            }
        }
    }
}

For the example executor in this chapter (and for the CommandExecutor), we set
the executor ID to be equal to the job ID and the task ID.

Since we don’t care about the data in the framework message, we simply scan
through all the current jobs to find if one of them has the same ID as the executor
that just sent the heartbeat.

Once we find a match, we call the heartbeat() method on that Job, so that the
Example 5-12 code can do its thing.
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This is all it takes to add basic heartbeating functionality to your framework. Of
course, there are several enhancements that should be made in a production-quality
system. Firstly, the heartbeat mechanism shown here creates one timer for every Job’s
heartbeat; for a system with hundreds of Jobs, every Job can share the same Timer to
ensure scalability since each Timer creates a new thread. Secondly, this heartbeat sys‐
tem doesn’t actually kill the non-heartbeating Jobs; it just treats them as dead. We
should always kill the executors that aren’t heartbeating by using the killTask API,
or else we could end up with orphaned or zombie executors, which will consume
resources indefinitely on the cluster without doing any useful work. Finally, when
we’re not sure if an executor was properly killed, we should be careful not to start an
executor with a duplicate ID on a slave. We should actually track all the executor IDs
we’ve used, and generate a new, unique ID for each executor. With the preceding
code, you can encounter undefined behavior when you try to relaunch a Job on the
same slave when the earlier executor is still running but believed dead due to lack of
heartbeats.

Now, we’ve seen how to build a simple executor by leveraging the task-level and
executor-level APIs. We’ve even added an additional functionality, heartbeats, that
wasn’t possible with the built-in executor. In the next few sections, we’ll look at other
advanced features that we can add to our executors.

Advanced Executor Features
As you’ve probably discovered by now, it’s difficult to write an executor. Unlike most
software that we write, the executor is particularly challenging to test, since we need
to build it, package it, and ship it across our cluster, at which point we must wait to
see whether it correctly interacts with our scheduler.

Before we start looking at additional features we can add to our executor, keep in
mind that an executor doesn’t have to make its task a subprocess. In fact, it’s quite
common to have tasks run in the same process as the executor—this can lead to
greater efficiency and a simpler design. The only reason we split our executor and
task into different processes was simply so that we could imitate the behavior of the
built-in CommandExecutor in Mesos.

Progress Reporting
In “Adding Heartbeats” on page 113, we briefly touched on the idea that, in addition
to using periodic framework messages to detect whether an executor is still running
and accessible, we could include periodic status updates in those messages. However,
we don’t only have to use framework messages for this: the TaskStatus message also
has a data field, and it too can be used to send updates about a task. Furthermore, it
is possible to send multiple TaskStatus updates for the same status (i.e.,
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3 Technically, the Mesos master will sometimes process framework messages. This can lead to a bottleneck in
rare cases, but the optimized bypass of the master is almost always used.

TASK_RUNNING, TASK_STARTING, etc.) but with different values in the data field to reli‐
ably send a task’s internal status changes. For instance, we may want to have our tasks
report that they’re RUNNING with the data value “initializing” when they start to initi‐
alize themselves, and then send a new status update that they’re RUNNING with the
data value “ready” when they’re ready to begin processing requests. Let’s look at the
reasons we might consider to choose whether to communicate progress updates with
status messages or framework updates.

Framework messages are highly scalable, because they are transmitted directly from
the executors to the scheduler. Since the Mesos master typically doesn’t process or
forward framework messages,3 the throughput of these messages is limited by the
scheduler’s ability to consume them. Furthermore, since framework messages aren’t
guaranteed to be reliable, during periods of high load, Mesos can choose to drop
some messages in order ensure that higher-priority messages can proceed. These fea‐
tures make framework messages a great choice when scalability is the primary con‐
cern.

Of course, that scalability comes at a price: as mentioned, sometimes framework mes‐
sages get dropped. Status updates, on the other hand, are guaranteed to be delivered.
But this guarantee comes at a steep performance cost: every status update must be
checkpointed to disk on the slave before it’s sent, and then a second disk write must
take place to mark the update as having been successfully sent. Furthermore, the
slaves must keep track of all outstanding status updates, so that if a scheduler is tem‐
porarily offline when the status update would have been delivered, the slave can
retransmit it later. This checkpointing and tracking, along with the periodic retrans‐
missions of unacknowledged status updates, gives status updates their reliability,
making them suitable for notifying the scheduler of important lifecycle events in
tasks, at the cost of far greater resource usage and susceptibility to bottlenecks at the
master’s and the slave’s disks.

Thus, the main criterion for whether framework messages or status updates are more
suitable is whether every update completely subsumes all earlier updates. For exam‐
ple, if the goal was to report on the percent completed of a task, then missing the 49%
update is irrelevant once the 50% update has been received (since the 50% update
implies that 49% has already passed). For this purpose, framework messages are a
good choice. On the other hand, if a task is reporting when various subtasks have
been completed, each update is unique and they all should be delivered to the schedu‐
ler. For this purpose, status updates are more appropriate.
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4 You can read a summary and comparison of centralized logging solutions at Jason Wilder’s blog.

Adding Remote Logging
One often-encountered problem in building distributed systems is figuring out
“What the hell happened?” This is so challenging because logs tend to be scattered
across the cluster; this makes searching the logs for an error message much harder,
since now we also need to search the cluster for the log. Furthermore, we often need
to correlate several logs to identify how the interaction between multiple programs in
our cluster resulted in failure. The most common way to mitigate this issue is to send
all logs to a central repository, which then assists us in analyzing, searching, and cor‐
relating these logs. Some popular technologies for doing this are Splunk, Logstash,
and Papertrail.4

Recall how we used ProcessBuilder.redirectOutput() to send the stdout and
stderr of our process to a file—we could instead get the InputStreams directly from
the resultant process so that we can send the outputs anywhere. Once you’re writing
your own executor, you have complete control over where your executor’s logs get
sent, and where your tasks’ logs get sent. For many applications, since there’s only one
task per executor, we want to send the executor and task logs to the same place. For
other applications, however, we can actually send the task and executor logs to differ‐
ent places. This is useful when you want to be able to debug tasks separately from one
another, and don’t want to see all of an executor’s tasks’ logs intermingled.

Multiple Tasks
Mesos executors are designed to run multiple tasks. To run a task on an existing exec‐
utor, you can launch that task the same as normal, except that you’ll use an identical
ExecutorInfo as the executor that’s already running on that slave. To help you reuse
executors, every offer has a field called executor_ids, which contains all of the
ExecutorIDs of the executors currently running on that slave; however, it’s still up to
you to store all the ExecutorInfos and include them in your task descriptors. The
master will validate the TaskInfo, so if you provide an ExecutorInfo that doesn’t
match the executor you want to launch on, the task will fail immediately with a
TASK_ERROR.
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Resizing Containers

A powerful feature of executors is that their size is always the sum
of all the tasks they’re running and the executor’s resources. A cus‐
tom executor is the only way to easily dynamically resize containers
depending on what work they’re performing. Of course, there’s no
free lunch: you’ll need to keep track of which slave each executor is
running on, and you’ll need to use an offer from the existing execu‐
tor’s slave when you want to scale its container up.

Executors with expensive state
Typically, reusing executors is done when the executor contains some sort of
expensive-to-construct state. For instance, the executors can be maintaining a local
cache of a large amount of data that’s stored in a slow external filesystem, like S3. In
this case, the executor can be responsible for downloading that data, and then each
task can access that data as a local file, which will be much faster than reading it over
the network. Of course, there’s always a trade-off: if you run multiple tasks at the
same time on that executor, those tasks will run in the same container—you’ll be giv‐
ing up the strong isolation guarantee between tasks that Mesos usually provides! If
you are confident that the tasks won’t accidentally consume more of the container’s
resources than they should, this is a workable solution. If, however, you’re like most
developers and occasionally write bugs, this is a risky proposition, in that it opens up
your framework to unanticipated interference and potential nondeterminism.

Multistage initialization
A less common situation in which multiple tasks are used on the same executor is
when the executor has a complex initialization process. Rather than sending status
updates as the initialization occurs, as suggested in “Progress Reporting” on page 117,
the scheduler can treat each step of the initialization as a separate task. This way, the
initialization logic can be managed on the scheduler, rather than on the executor.
Although you’ll occasionally see this technique used, I recommend against it. It is
easier to implement the initialization state machine in the executor itself. This has the
additional benefits of removing the need to implement parts of the state machine in
the executor and other parts in the scheduler, and it reduces the dependency of the
framework on a reliable network during executor initialization.

Canary tasks
There is, however, one situation in which an additional task on the executor is abso‐
lutely necessary: when we need to receive prompt notification that an executor that
may not be presently running any tasks (but is waiting for new ones) has shut down
or crashed. As mentioned in our discussion of Scheduler callbacks (see
Example 4-6), the callback you might think would tell you when an executor is lost is
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never actually called. Therefore, to detect when an executor disappears, we instead
run a canary task on it. That way, when an executor shuts down or crashes or its slave
deactivates, we’ll receive a TASK_LOST from the canary task, which tells us that the
executor is lost. Of course, if you don’t need to promptly detect that the executor has
been lost, you could always just assume executors are gone if you don’t see an offer
from them within some timeout.

When should we use them?
The capability for executors to launch multiple tasks is a lesser-used feature, for good
reason. The APIs can be challenging to use, due to the need to store the
ExecutorInfos for reuse. Ultimately, multiple tasks should only be used in the follow‐
ing situations:

• When it’s necessary to dynamically change the amount of resources used by an
executor as its workload varies

• When the executor’s state is so expensive to construct that it’s acceptable to throw
away the Mesos isolation functionality to save on reinitialization costs

• When the failure of an executor that might not be running any tasks must be
detected rapidly

Use this feature carefully, as it can make debugging very difficult.

Summary
Executors are the Mesos abstraction for a framework’s workers. They should be used
when a framework requires richer interaction between its scheduler and workers.
Building an executor is usually very challenging, because of the need to frequently
deploy new builds to the cluster during development. By surmounting these chal‐
lenges, you can build custom executors to enable frameworks to dynamically scale the
containers in which their tasks are running, to efficiently share expensive resources,
and to provide an easy API to send messages between the scheduler and workers.

In this chapter, after reviewing some of the reasons one might build an executor, we
implemented an executor that was mostly compatible with the built-in Mesos
CommandExecutor and which we integrated with the job scheduler from Chapter 4.
Then, we added heartbeats, which allowed us to more rapidly detect certain types of
partial failures on the cluster, resulting in a better experience for the humans that
must wait for their jobs to complete.

Finally, we looked at some advanced uses of custom executors: how to choose
between framework messages and status updates, considerations when integrating
with centralized distributed logging systems, and how and why to develop executors
that support multiple tasks.
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Now that we’ve looked across the entire spectrum of building applications on Mesos
—utilizing existing frameworks, building application-specific schedulers, creating
rich executors—we’ll move on to more advanced topics, such as Mesos internals,
Docker integration, and exotic, cutting-edge APIs.
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1 It appeared as a component of the Lithe project.

CHAPTER 6

Advanced Topics in Mesos

Although you now know the ropes of building applications on Mesos, you’ve proba‐
bly got even more questions than when you started:

• What is the internal architecture of Mesos?
• How does Mesos handle failures?
• How can I use Docker with Mesos?

In this chapter, we’ll learn more about all these things, so that you can build even
more sophisticated, reliable systems.

Libprocess and the Actor Model
At a high level, Mesos is a hybrid strongly consistent/eventually consistent system,
based on the message passing actor model, written in C++.

The actor model is a paradigm for programming concurrent and distributed systems.
In the actor model, the developer implements processes or actors, which are single-
threaded modules of code that process messages one at a time. While processing a
message, an actor can send messages to other actors or create new actors. Actors can
only send messages to those whose process identifiers (PIDs) they know. When an
actor spawns another actor, it learns the PID of the newly created actor. In order to
get more PIDs, actors must send the PIDs to one another in messages.

The actor model framework that Mesos uses is called libprocess, and it was written by
Ben Hindman at the same time he wrote Mesos.1 Libprocess is a C++ API that pro‐

123

http://lithe.eecs.berkeley.edu/


2 The CAP theorem is a theoretical result about the possible and impossible behaviors of distributed systems.
You can read about it in “Brewer’s Conjecture and the Feasibility of Consistent, Available, Partition-Tolerant
Web Services,” by Seth Gilbert and Nancy Lynch.

vides actor model semantics and uses HTTP to communicate. Since everything
speaks HTTP, it’s easy to interface with libprocess.

Libprocess messages are just protobufs over HTTP, and can benefit from the headers,
content negotiation, and routing features therein. A libprocess process is identified by
its PID, which is written as the hostname and the port of the actor.

Fun Fact

In order to support the asynchronous semantics that the actor
model requires, libprocess uses a neat trick: it turns out that HTTP
status code 202 means that the request has been accepted and is
being asynchronously processed.

For most users of Mesos, you’ll need to understand nothing about libprocess and
actors. If, however, you are using advanced containerization techniques (like Docker
bridged networking) or have multiple network interfaces, you may need to configure
the LIBPROCESS_IP and LIBPROCESS_PORT environment variables for the Mesos mas‐
ters and slaves. These environment variables allow you to control which network
interface the masters, slaves, and other libprocess actors bind to, so that their mes‐
sages can successfully reach each other.

The Consistency Model
Let’s talk more about the consistency model of Mesos. Where does it lie on the CAP
theorem?2 What guarantees do we get, as users and developers of Mesos? The answer
to this question isn’t simple. For this section, we’re going to look at a Mesos cluster
with three masters, the registry feature enabled, and the slave checkpointing and
recovery features enabled. Really, any feature related to reliability and persistence will
be assumed to be enabled, since they form the basis of Mesos’s robust consistency
model.

Consider the block diagram of Mesos while a framework is running a task in
Figure 6-1. There are four parts: the master, the slave, the framework’s scheduler, and
the framework’s executor. There are three communication links: between the master
and the scheduler, between the master and the slave, and between the slave and the
executor. Let’s analyze the failure modes of each of these in turn.
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3 Note that if the slave reconnects within its configured timeout, the slave and all its tasks will continue as nor‐
mal. This behavior is what zero-downtime live upgrades of Mesos rely on.

Figure 6-1. Message flows for a framework

How Is Slave Failure Handled?
First, let’s look at the lifecycle of the slave, and see how various failures are handled.
Initially, when a new slave starts up, it connects to Mesos and asks to register by send‐
ing a Register message to the master. The master then stores the slave’s information
in the registry, and once that operation has committed, it sends a Registered mes‐
sage to the slave, thus informing the slave that it’s successfully joined the Mesos clus‐
ter. At this point, the master can begin to offer the slave’s resources to the connected
schedulers.

Suppose now that the slave crashes. In this case, the master will soon stop receiving
the slave heartbeats, and after the configured timeout, the slave will be recognized as
being “dead” and will be removed from the registry. As a consequence, even if the
slave was only temporarily partitioned from the network, as soon as it resumes heart‐
beating or attempts to reconnect to the master, the master will politely inform the
slave to kill itself.3 At this point, let’s hope that you’re running your slave under a
supervisor such as Supervisord, Monit, or SystemD. When the slave restarts, it’ll gen‐
erate a new random slave ID for itself, at which point it’ll be able to successfully regis‐
ter as a new slave (see the following sidebar). When a slave crashes, any tasks that
were running on the slave originally are LOST, since the slave is dead.

Fail-Stop Versus Fail-Recover
When academic researchers design new robust distributed algorithms, they typically
work within one of two different models of the world: fail-stop or fail-recover. In the
fail-stop model, whenever a machine crashes, it stays crashed forever; that machine
never, ever returns to life. In the fail-recover model, machines that crash are allowed
to return to life. As you can tell, the fail-recover model matches reality far more
closely—after all, we fix and restart machines when they break; we don’t just send
them to the dumpster (or vendor) after their first problem! Unfortunately, it turns out
that the fail-recover model makes it very hard to prove whether any algorithms
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actually work, so much research is done within the fail-stop model. Interestingly,
Mesos slaves emulate the fail-stop model with a clever trick—when you start a slave,
its ID is not just the hostname of the machine it runs on; it is uniquely generated.
This means that if a slave crashes and then restarts, it will get a new slave ID, and thus
appear fresh to Mesos. This makes it much easier to reason about the behavior of
Mesos. It’s worth noting that the checkpointing feature of Mesos allows us, when we
intend it, to let a restarted slave appear to be the old version. In this case, we treat the
restart of the slave just like a brief network partition, rather than a crash.

How Is Master Failure Handled? (Or, the Registry)
Now, let’s look at what happens if the master crashes. First and foremost, we know
this isn’t a big deal, as Mesos is built to handle all sorts of distributed failures. Plus,
we’ve got those redundant backup masters around anyway, right? After the current
master crashes, a new leading master is elected. Gradually the slaves will discover this
information through the course of their regular communication with the masters.
Since the slaves are heartbeating periodically, they’ll see their heartbeats fail to con‐
nect or get rejected (depending on whether the old leader is down or merely restarted
and now just a spare). The slaves will query ZooKeeper again to learn of the new
master. At this point a slave will use a different RPC to connect to the new master,
called Reregister, since the slave believes itself to already be registered but no longer
connected. When the new leader receives this RPC, it checks the registry to confirm
that this slave is indeed live. If it is, it accepts the slave’s registration; however, if the
slave was not in the registry, then it will tell the slave to kill itself so that it can be
revived with a new slave ID and rejoin the cluster as a new slave without any baggage.

You might wonder why we need the registry and the reregistration process. Let’s look
at what happens if we remove reregistration and the registry. Reregistration’s an easy
one: if a slave can’t reregister, then a master crash and subsequent failover will always
force the slave to register as a new slave because (as discussed in the preceding side‐
bar) Mesos uses a fail-stop model. This means killing all the tasks on that slave. Need‐
less to say, instantly killing all tasks across the entire cluster when the master needs to
restart or fail over isn’t ideal, and defeats the purpose of using a highly available clus‐
ter operating system.

Now, let’s consider what happens if we remove the registry. Suppose that a slave stops
heartbeating due to a network partition, and the old leader decides that slave is dead,
meaning all tasks on it are considered LOST. Then, the masters fail over to a new
leader, and at that time the slave, which was previously not sending heartbeats, mirac‐
ulously manages to start sending heartbeats again. Now, the new leader will receive
the slave’s reregistration and accept it. But wait! The old leader thought that slave was
dead, and sent the scheduler LOST messages about all of the tasks on that slave. Now
we’ve gotten into an unfortunate situation where tasks in the LOST state seem to magi‐
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cally resurrect; this is a bug because LOST is a terminal state for the tasks. The registry
allows us to ensure that tasks can never move out of the LOST state (or any terminal
state) back into a nonterminal state: the old leader marks the slave dead in the regis‐
try so that the new leader will know to reject the reregistration.

One thing you might be thinking at this point is, “It sure seems like the masters will
have to do a ton of bookkeeping to track what state every task on every slave is in,
and store that in the registry.” And you’d be right, except that the masters don’t
actually store any task information in the registry. Since the registry allows us to
know which slaves are valid, Mesos allows those slaves to be the trusted, canonical
sources of information about their tasks. So, when a master failover occurs, the new
leader has no information about what tasks are running (and actually, the Mesos UI
will reflect this, so don’t be worried if it takes a couple of minutes after a master fail‐
ure to see all your tasks again). Over time, as the slaves reregister and report in, the
master will rebuild its in-memory picture of the state of the cluster.

There’s one more consideration for the registry, however: strict and nonstrict mode. So
far, I’ve only been describing the strict registry mode, since that’s the safe, always cor‐
rect logic. Unfortunately, there’s an annoying limitation with the strict registry: you
cannot add new slaves to the master until all slaves have either checked in or timed
out (typically, there’s a 90-second grace period for slaves to reregister with a newly
elected master). If, however, you use the nonstrict registry, then your frameworks
must deal with a very challenging case during reconciliation. In the next section, we’ll
learn about all the cases that can occur.

Reconciliation During Failover
At this point you’re probably satisfied with the idea that Mesos will keep its state nice
and consistent. Well, you shouldn’t be, because there’s still one problem as yet unex‐
plored: how do the frameworks stay in sync with the Mesos cluster during transient
failures? For instance, what happens if a master marks a slave as dead and then
crashes, thus missing its chance to inform the schedulers about all the tasks on that
slave that have just reached the LOST state (because their slave died)? After all, the
leader’s state about the tasks is 100% derived from the slaves’ state, and the new leader
has no idea what status updates have or haven’t already been sent.

The answer to this dilemma lies in the reconciliation feature. Reconciliation is how a
scheduler can check with the master to see whether the scheduler’s belief about the
state of the cluster matches the master’s belief about the state of the cluster. A schedu‐
ler is allowed to, at any time, ask the master to reconcileTasks—this is an RPC that
allows the scheduler to provide a list of all the tasks and their statuses to the master,
and the master to provide corrections for any tasks for which it knows a newer status.
Typically, reconciliation waits until the master is no longer waiting for slaves to check
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in (as would happen during a master failover); however, we’ll see now how the non‐
strict mode of the registry complicates this.

Always Provide the Slave ID

Always provide the slave ID to the reconcileTasks RPC, even
though it’s optional. If you choose not to specify the slave ID, you
may have to wait for up to two minutes for a response, since Mesos
will wait until every registered slave has checked in or timed out.
Also, you may erroneously receive a TASK_LOST message for some
tasks, and later see those tasks resurrect. Rather than dealing with
the excess latency and edge cases, just provide the slave ID for
every reconciliation.

Task reconciliation can only provide details about a task when it’s in a nonterminal
state. Of course, the main reason to reconcile is to determine whether tasks are still
running, or if they’ve moved to a terminal state. Whenever a task is in a terminal
state, reconciliation for that task can always claim that it is LOST, when in fact it may
have reached some other terminal status. It’s the framework developer’s responsibility
to combine the information from reconciliation with other information, such as
external services with which a successful task may have stored data, to determine
what the true result of the completed task was.

Reconciling Completed Tasks

You should be careful to always ignore a TASK_LOST message from
reconciliation when you’ve previously seen a different terminal sta‐
tus for that task.

As long as the task is not in a terminal state, reconciliation will result in the latest
state for that task being sent (is either TASK_STAGING if the task hasn’t sent any status
update yet, or whatever the latest status update was). When the task is terminal, rec‐
onciliation is invalid. When the task’s state is unknown to the master, however, the
behavior is a bit trickier. There are a few situations to consider:

Task is unknown, but its slave is known
In this case, the reconciliation mechanism will report that the task has been LOST.
This is logical because it means that the task has entered a terminal state.

Task is unknown, and the slave is in the registry but hasn’t reregistered
This situation happens after a master failure before the slave has had a chance to
check in. Mesos will simply wait to send a response to the request for reconcilia‐
tion until it’s heard from the slave, as it can’t know what has happened to the task
since the previous master crashed.
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Task is unknown, and the slave is not in the registry
If you follow the advice about always providing the slave ID to reconcileTasks
and you are using the strict registry, you’ll never have to deal with this confusing
case. When this happens, Mesos can’t know if it’s ever going to hear from the
slave, since that very slave may exist but not yet have been included in the regis‐
try. As a result, Mesos will report that the task is LOST, but you may see other sta‐
tus updates for that task if the slave registers later on. This includes the chance that
the task could appear to resurrect with a RUNNING status, or complete with a
FINISHED or FAILED state! Using the strict option for the registry completely pre‐
vents this case from ever occurring, and as such it is strongly recommended to
run in strict mode.

Containerizers
As you know, Mesos has first-class support for Docker. But what does that mean? I
mean, Docker can basically be run by a docker run ... on the command line, so
what else needs to be done? Since Docker itself wants to manage the entire container,
from the chroot, namespaces, and cgroups on through the entire userspace, it will
conflict with the default Mesos containers. Because of this, Mesos has added support
for containerizers, a pluggable mechanism to allow Mesos’s containerization subsys‐
tem to be extensible: the original Mesos LXC/cgroups-based containers were ported
to the containerizer API, Docker was added as the first new containerizer, and now
there’s a well-documented protocol for adding new containerizers, such as KVM vir‐
tual machines.

Using Docker
In order to use the Docker containerizer, you must include it on the Mesos slave’s
command line. For example, mesos-slave --containerizers=docker,mesos ...
would allow Docker and plain Mesos containers on that slave.

You’ll probably also want to increase the executor registration timeout, so that Mesos
doesn’t think that your container failed when it’s actually still downloading. Five
minutes is a good conservative starting point for ensuring that your Docker images
have enough time to download. Thus, you’ll end up with a slave command line like:

mesos-slave --containerizers=docker,mesos \
    --executor_registration_timeout=5mins ...

Using Docker with your application is very simple—once you’ve enabled support for
Docker, you just need to set the container field (of type ContainerInfo) in the
TaskInfo or ExecutorInfo.
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Confusingly, the message CommandInfo.ContainerInfo is not the
correct message—you want to set the top-level ContainerInfo in
mesos.proto that has Docker-related fields.

To use Docker, set the type of the ContainerInfo to DOCKER, and set the docker field
to an instance of the ContainerInfo.Docker message, which should have the image
property set to your Docker image’s name (e.g., myusername/webapp). At this point,
you can configure many Docker parameters, such as whether to use HOST or BRIDGE
networking, what port mappings to use, or additional Docker command-line options.
If you’d like the Docker container to use the docker run ... specified in the Docker‐
file, then you should set the CommandInfo of the TaskInfo to have shell = false. If
you set shell = true, then you’ll disable the run built into the Dockerfile, and
instead the specified command will be run via sh -c "<command>".

When you launch a Docker containerized task, the slave first fetches (and unpacks)
all the specified URIs into the sandbox, and it pulls the Docker image locally. Next,
the slave launches the Docker image by running docker. The docker command’s HOME
environment variable is set to the sandbox, so that you can configure Docker via
fetched URIs (as discussed in the following note). The sandbox will be available
inside the Docker image, and its path will be stored in the MESOS_SANDBOX environ‐
ment variable as usual. Finally, Docker’s stdout and stderr will be redirected to files
named stdout and stderr in the Mesos sandbox.

Advanced Docker Configuration

One thing you should be aware of is that the Docker containerizer
always attempts to pull the Docker image down from the registry.
This means that you cannot use a local-only installed Docker
image—you must have deployed it somewhere. If you’d like to use a
private registry, you can provide a .dockercfg file. This file should be
specified by a URI, so that the Mesos slave can use its automatic
URL-fetching facilities to copy the .dockercfg into the HOME for the
Docker process to use.

The same API works for Docker-based executors too, except that then your executor
code can actually run inside the Docker container. To achieve this, do the exact same
thing as described here, but in the ExecutorInfo message instead of the TaskInfo 
message.
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The New Offer API
We’ve chosen to run Mesos because it allows us to flexibly allocate our workloads
across our clusters, so that we can use our infrastructure more efficiently. Sometimes,
however, we want to make longer-term allocation decisions with Mesos. For example,
we may want to reserve certain machines to guarantee capacity for an application
even when it’s not running tasks. Of course, slave reservations exist (as discussed in
“Static and Dynamic Slave Reservations” on page 18), but this new API allows us to
make reservations programmatically, without shutting down a slave. We’ll need a way
to manage these dynamically created reservations on the cluster, which is where the
new API comes in.

The launchTasks API that we first saw used in Example 4-5 has a drawback for some
frameworks: once a task exits, whether normally or due to failure, its resources
become available for other frameworks to claim. In this section, we’ll take a look at
the new offer API, which allows frameworks to dynamically reserve and release
resources beyond the lifetimes of their tasks, as well as some of the additional features
this API enables.

Framework Dynamic Reservations API
Dynamic reservations are a new feature that enables slave reservations to be made on
the fly by frameworks that need to retain their resources through restarts (like data‐
bases and systems with strict SLAs). Rather than using the launchTasks API, we’ll
use the acceptOffers API. Example 6-1 illustrates two equivalent launchTasks and
acceptOffers invocations.

Example 6-1. Comparing launchTasks and acceptOffers

driver.launchTasks(
    Collections.singletonList(offer.getId()),
    Collections.singletonList(taskInfo)
);

// Versus

Launch launch = Offer.Operation.Launch.newBuilder() 
                   .addTaskInfos(taskInfo)
                   .build();
Operation launchOp = Offer.Operation.newBuilder() 
                        .setType(Offer.Operation.Type.LAUNCH)
                        .setLaunch(launch)
                        .build();
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driver.acceptOffers(
    Collections.singletonList(offer.getId()),
    Collections.singletonList(launchOp), 
    Filters.newBuilder().build() 
);

First, we construct the actual command that we want to do with the offer—
launching these tasks.

Then, we construct the operation that we’ll send to Mesos—all the different com‐
mands represented by the Offer.Operation union. Note that Operation is a pro‐
tobuf tagged union (see “Understanding mesos.proto” on page 23).

Here, we’re only doing one operation on the offer. We could choose to specify a
list of several operations, perhaps combining reserving resources, creating persis‐
tent volumes, and launching tasks into a single message.

acceptOffers requires you to pass a Filters protobuf; feel free to just use the
default, which does no filtering.

Besides using acceptOffers to launch a task, a framework can also reserve that task’s
resources as a dynamic reservation. When that task terminates, its resources are held
in a reservation that’s valid only for this framework’s role. This means that you can
launch your production workload, and in spite of it not having preconfigured static
reservations, machine reboots and transient failures will not permanently disrupt its
capacity (for services that must maintain a strict SLA) or functionality (for services
that need to retain their data, like databases). Let’s enhance our Java snippet to also
reserve those resources. We’ll add another Offer.Operation to the list of operations
we are performing on those offers, as seen in Example 6-2.

Example 6-2. Reserving resources and launching a task in a single acceptOffers

Offer.Operation.Launch launch = Offer.Operation.Launch.newBuilder() 
                                   .addTaskInfos(taskInfo)
                                   .build();
Offer.Operation launchOp = Offer.Operation.newBuilder()
                              .setType(Offer.Operation.Type.LAUNCH)
                              .setLaunch(launch)
                              .build();

Offer.Operation.Reserve reserve = Offer.Operation.Reserve.newBuilder() 
                                    .addAllResources(taskInfo.getResourcesList())
                                    .build();
Offer.Operation reserveOp = Offer.Operation.newBuilder()
                               .setType(Offer.Operation.Type.RESERVE)
                               .setReserve(reserve)
                               .build();
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driver.acceptOffers(
    Collections.singletonList(offer.getId()),
    Arrays.asList(reserveOp, launchOp), 
    Filters.newBuilder().build()
);

As before, we construct the launch operation.

We also need to construct the reserve operation; here, we’re simply copying all
the resources from the launched task so that the reservation for the task will per‐
sist beyond the task’s lifetime.

We can pass multiple operations into an acceptOffers. This is equivalent to
waiting for the reservation to be acknowledged and reoffered by the master, but it
saves a round-trip across the network.

Now that we know how to reserve resources and launch tasks on them, a logical ques‐
tion pops up: how do we determine whether an offered resource is from an existing
dynamic reservation? Resources can have an additional field, reservation, that we
can check to see if those resources been reserved, and by whom, as shown in
Example 6-3.

Example 6-3. Querying resources for the reservation status

if (resource.hasReservation()) { 
    resource.getReservation().getPrincipal(); 
}

This call will return true if the resource is reserved.

If the resource was reserved, we can get the name of the principal that reserved it.
The principal is often the same as the framework’s user.

Handling Reservations in Offers

When using dynamic reservations, you may need to revise the code
used to count how many resources are in an offer. Take another
look at Example 4-10. Notice that we actually used += every time
we encountered a CPU or memory resource. This ensures that we’ll
be able to use both reserved and unreserved resources for launch‐
ing our tasks.

Once a slave dies, the reservation will be automatically freed. If your framework is
tracking all the outstanding reservations, you can use the slaveLost callback to
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determine when a reservation on an old slave no longer exists. If you no longer need
a reservation, you can free it by using the unreserve operation in acceptOffers, as
demonstrated in Example 6-4.

Example 6-4. Unreserving resources

List<Resource> resources = new ArrayList<>();
for (Resource r : offer.getResourcesList()) { 
    if (r.hasReservation()) {
        resources.add(r);
    }
}
Offer.Operation.Unreserve unreserve = Offer.Operation.Unreserve.newBuilder()
                                        .addAllResources(resources) 
                                        .build();
Offer.Operation unreserveOp = Offer.Operation.newBuilder()
                                .setType(Offer.Operation.Type.UNRESERVE)
                                .setUnreserve(unreserve)
                                .build();

driver.acceptOffers(
    Collections.singletonList(offer.getId()),
    Collections.singletonList(unreserveOp),
    Filters.newBuilder().build()
);

We find all the previously reserved resources.

Here, we unreserve all of the resources that were previously reserved.

Reservations Are Forever

If you don’t unreserve resources when you’re finished, Mesos will
continue to hold those resources aside forever, until you unreserve
them. Dynamic reservations will leave beta once their administra‐
tive HTTP API is put into place. The HTTP API will allow the
Mesos cluster’s human operators to unreserve resources on a
framework’s behalf.

The dynamic reservations API is a powerful tool for building even more robust appli‐
cations on Mesos. An HTTP API is available on the master as another way to manage
dynamic reservations (see “Dynamic reservations” on page 19). This API makes it
easy to alter reservations across the Mesos cluster on the fly. It also makes it easy to
unreserve resources a framework may have left behind after it was shut down for the
last time. Dynamic resources are just the start of the acceptOffers API; we’ll now
look at the persistent volumes API.
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Persistent Volumes for Databases
Until recently, Mesos could only run services that didn’t need to store data to disk.
That’s because there was no way to reserve the chunk of disk necessary. As of Mesos
0.23, reserving disks is now possible.

Remember from Chapter 1, you can think of Mesos as a deployment system.
Wouldn’t it be great if our MySQL databases automatically backed themselves up and
created new read replicas as needed? Or if we could have simple, self-service REST
APIs to create new Riak and Cassandra clusters? There’s been work ongoing since
2014 to build database frameworks for Mesos. The issue with those frameworks is
that every host has to have special data partitions created and managed outside of
Mesos. With persistent volumes, projects like Apache Cotton (for MySQL) and the
Cassandra and Riak Mesos frameworks will be able to independently bootstrap and
maintain themselves.

In Mesos’s design, disk space is ephemeral and isolated for every task. This is usually a
good thing, unless you want to store data persistently. To solve this, Mesos introduced
a new subtype of disk resources, called a volume. A volume is simply a chunk of disk
that is allocated for a task and mounted at a specified location. The API for doing this
is essentially the same as the Marathon API for mounting host volumes, see “Mount‐
ing host volumes” on page 41. You can even create a volume that isn’t persistent,
which will be useful in the future when multiple independent disks can be exposed to
Mesos. Now, we’ll look at how to create and use persistent volumes.

There are two acceptOffers Operations that are used to create and destroy persis‐
tent volumes. Unsurprisingly, they’re called Create and Destroy. Persistent volumes
can only be created on disk resources that have been reserved. Typically, you’ll reserve
the resources, create the volumes, and launch the tasks in a single acceptOffers, as
shown in Example 6-2.

A persistent volume resource is the same as a regular disk resource (see “Resources”
on page 13), but it has the field disk configured with the appropriate DiskInfo. The
DiskInfo names the persistent volume so that it can be mounted by name via the nes‐
ted string subfield persistence.id. The Volume of the DiskInfo should have the
mode RW (as of Mesos 0.24, only RW is supported). The container_path field of the
Volume will specify where the container will be mounted in the task’s sandbox.

The persistent volume API is so new that no production frameworks have been writ‐
ten using it yet. It has limitations, such as that the volumes must always be mounted
RW, and there’s no way to expose multiple disks or have any disk or I/O isolation. The
API will remain backward-compatible even as new features and functionality are
added, though; because of this, projects such as Apache Cotton are already integrat‐
ing persistent volumes into their codebases.
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Summary
Mesos offers sophisticated, well-thought-out APIs for many different use cases. First,
we discussed the internal architecture of Mesos at a high level, to help us understand
why things are built the way they are. We then dove into a thorough analysis of how
Mesos maintains internal and external consistency. By understanding the consistency
model, we can build far more robust and failure-tolerant frameworks.

Next, we learned about the reconciliation process that is used to synchronize frame‐
works with the Mesos master. By understanding the mechanisms of the reconciliation
process, it’s possible to understand how to eventually guarantee consistency across a
Mesos cluster, what types of inconsistencies can occur, and how to interpret those
inconsistencies.

Then, we moved on to Mesos’s integration with Docker, a popular application con‐
tainerization and deployment format. By integrating containerization into frame‐
works, we can leverage broader ecosystems, such as all Dockerized applications.

Finally, we looked at dynamic reservations and persistent volumes, features enabled
by the new acceptOffers API. Dynamic reservations allow us to far more easily
guarantee capacity for critical workloads. Persistent volumes allow us to build data‐
base frameworks for Mesos that can persist their data in spite of unanticipated fail‐
ures and faults throughout the system.

At this point, we’ve covered a variety of topics and techniques that are useful in build‐
ing applications on Mesos today. In the next chapter, we’re going to look at what’s
coming for Mesos tomorrow.
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CHAPTER 7

The Future of Mesos

Mesos has come a long way. It started out as a graduate student project at the Univer‐
sity of California, Berkley, but since then, it’s been rolled out in production across
hundreds of thousands of machines, attracting scores of developers to its ecosystem.
We’ve learned about building applications on Mesos today, but where is Mesos going?
In this chapter, we’ll look at several current initiatives in the Mesos ecosystem that
stand to become critical and valuable features of Mesos.

Multitenant Workloads
Before we discuss multitenancy, let’s look at a motivating problem: noisy neighbors.
Noisy neighbors are a problem in real life as well as in distributed systems with multi‐
ple users (tenants). When an apartment building’s walls are too thin, you can hear
your neighbors blaring music through the walls. Analogously, when a system doesn’t
provide sufficient isolation (i.e., thick walls), your application’s performance can be
adversely affected by other applications running on the same machine. For example,
multiple CPU-intensive applications running on the same machine could all compete
to use every CPU, resulting in reduced overall performance. As a result, it’s hard for
the users or cluster operators to predict the performance of their applications—
whereas if those applications were running in containers, they’d each be guaranteed a
share of the CPU, reducing the unpredictability of their performance.

Multitenancy refers to when a single resource (in our case, a Mesos cluster and the
resources on its slaves) must be shared by many users, and the associated problems
when those users accidentally monopolize what should be shared. You want a system
that is designed for multitenancy, because it’s much easier to have Mesos manage the
isolation of resources rather than relying on users to carefully write cooperative appli‐
cations.
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Today, many Mesos installations benefit from containerization by isolating different
applications from one another; in the future, more and more Mesos clusters will be
isolating different users or customers from one another. Many large enterprises have
struggled with multitenancy problems. For example, many companies administer and
run separate Hadoop clusters for each team that needs a cluster. Why don’t they just
share one big cluster? Frequently, it’s not possible for each team to achieve the level of
service and performance they need if they can’t predict how much the cluster will be
utilized at any point. Separate clusters isolate the teams from one another, ensuring
that each always can fully utilize the resources it needs. The separation of their sys‐
tems is a solution to the noisy neighbor problem; however, since they’re not sharing,
the companies have to buy many more computers.

Mesos can serve multitenant workloads by allowing many users to share the same
physical hardware (or VMs); with Mesos, Linux containers provide the isolation.
Linux containers are a technology based on cgroups, open sourced by Google to
enable high-performance isolation of multiple workloads on the same machine.
Through projects like CoreOS, Docker, and Mesos, Linux containers have grown
from an interesting but difficult to use technology into a powerful, popular, light‐
weight isolation mechanism. Although cgroups initially only provided support for
isolating CPUs and memory, more and more Linux kernel subsystems are being inte‐
grated. For instance, in July 2014, Mesos added deep integration with the Linux net‐
work isolation stack. This allows for Mesos to be configured to control and isolate
network bandwidth usage between containers running on the cluster. Currently, there
is ongoing work to bring isolation to disk I/O usage between containers. Over time,
we’ll see Mesos get more and more isolation features added, which will continue to
reduce the noisy neighbor problem in multitenant workloads.

There are also Mesos frameworks being built to solve multitenancy problems at a
higher level, to make it easier for enterprises to achieve good isolation between differ‐
ent users of a shared Mesos cluster. For example, Myriad was started in 2014 by eBay
to run YARN on Mesos. YARN is the resource manager for Hadoop 2.0. With
Myriad, a single REST API request is all that’s needed to create a new, fully isolated
YARN cluster in Mesos. Thus, if you deploy Myriad, when a new team needs a
Hadoop cluster for experimentation or production, there’s nearly no administrative
or operational cost. Another multitenant Mesos framework is Cook, written by the
author of this book and open sourced by Two Sigma in 2015. Cook is a preemptive
job scheduler; it’s designed to allow any user to use as many resources as are available,
but automatically scale that user back if other users’ demand for capacity increases
later.

Another way that Mesos supports multitenancy is through resource reservations. 
Reservations can be used to enable and enforce minimum quotas in multitenant envi‐
ronments, making them the strongest guarantee in a multitenant environment, at the
cost of dynamic flexibility. If you believe that generally users won’t monopolize the
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1 The Mesos oversubscription feature is a solution to low actual utilizations, based on Google’s Heracles system.

entire Mesos cluster, you can not bother with reservations and allow any framework
to scale itself up or down freely. When some users have production-critical service-
level agreements that must be met, you can use reservations to guarantee them spe‐
cific resources. As of version 0.25, Mesos has added RESTful HTTP APIs so that
cluster operators can easily create reservations for users on the fly, to simplify guaran‐
teeing resources to particular users and workloads. There’s also an initiative to add a
RESTful quota API to Mesos, so that operators can allow Mesos to figure out reserva‐
tions for them, based on high-level guidelines on how many resources each role
should be limited to.

Mesos offers many features for building more robust multitenant systems. It
integrates with the Linux kernel’s resource isolation mechanisms to provide low-level
isolation between tasks on the cluster. Framework authors are also aware of this prob‐
lem, and more and more frameworks are coming out to simplify the management of
multitenant clusters. Resource reservations are the most powerful tool for solving
multitenancy problems: they absolutely guarantee a tenant resources, at the expense
of preventing other users from accessing those resources. Now, what if there was a
way for a resource to be reserved but still shared if it wasn’t currently needed? In the
next section, we’ll look at the oversubscription feature Mesos added in version 0.23.

Oversubscription
What does it mean to utilize a cluster at 100%? To some, we’re at 100% utilization
when we have no more free resources on our Mesos cluster. However, even when a
framework reserves a resource for a task (such as a web server), that task might not
fully use all those resources. In fact, on most clusters, the actual usage is only 10–30%.
To counter this, the Mesos oversubscription feature was created. It allows for Mesos
clusters to automatically utilize their reserved but unused resources.1

To understand oversubscription, let’s first define slack. Slack is the difference between
what resources you think you’re using and what you’re actually using (Figure 7-1).
Everyone’s goal is to reduce slack: slack is just waste, where resources could be doing
something productive, but instead sit idle. There are two kinds of slack on a Mesos
cluster:

Allocation slack
Allocation slack is the difference between the resources available on the cluster
and the resources that are reserved by frameworks. Mesos was engineered to
address this type of slack efficiently, by repeatedly reoffering resources to all con‐
nected frameworks. This way, if one framework didn’t want or couldn’t make use
of some resources, another framework could have the chance to use those resour‐
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ces. Some frameworks, such as Spark, take advantage of this by launching many
small tasks that use few resources, so that they can get tiny allocations on many
machines, driving cluster utilization up and exploiting those resources for their
users.

Usage slack
Usage slack is the difference between the reserved resources and what resources
are actually used. For instance, if a web server reserves two CPUs, it may be using
nearly no resources if it’s an off-peak time where it doesn’t have many requests to
process. The oversubscription feature is designed to allow Mesos to reduce this
type of slack as well.

Figure 7-1. Allocation and usage slack of CPUs and memory

In some ways, Mesos has become a victim of its own success: allocation slack can be
dramatically reduced on Mesos clusters, with commercial production clusters report‐
ing allocation slacks of 5–15%, which is much lower than the 20–30% seen with ear‐
lier systems. So, a consortium of companies, including Twitter, Mesosphere, and
Intel, set out to build a system that would enable Mesos to reduce usage slack. The
result of their work is the Mesos oversubscription system, which applies control
theory to usage slack on many resources.

To enable oversubscription, Mesos added a new type of resource offer: a revocable
offer. Revocable offers are exactly like normal offers, except that tasks launched on
revocable offers can be killed by Mesos at any time. By default, frameworks won’t
receive any revocable offers; they can opt in by adding the REVOCABLE_RESOURCES
capability to their FrameworkInfos when they register. If the Mesos cluster has also
been configured to enable the oversubscription mechanism, then any opted-in frame‐

140 | Chapter 7: The Future of Mesos



works will see another type of offer along with normal offers: these special offers will
have their revocable field populated, which means they can be canceled at any time.
Note that currently an executor must have only revocable or normal resources; a mix
of revocable and nonrevocable tasks cannot be launched on the same executor.

The oversubscription system is comprised of two pluggable components: the resource
estimator, and the quality of service (QoS) controller. The resource estimator’s job is
to report to the slave how much slack is currently available in its running tasks, so
that the slave can advertise the slack as additional resources. The QoS controller’s job
is to track the usage slack. When the usage slack decreases below what has been allo‐
cated to revocable resources, the QoS controller will begin to kill revocable tasks to
ensure that the cluster’s guaranteed reserved resources are provided.

In Mesos 0.23, there is only a single, fixed resource estimator, which allows a cluster
administrator to have all slaves advertise fixed extra resources. This can be useful
when you know that most tasks request one or two CPUs, but typically only use 5–
10% of their resources. The fixed resource estimator can then allow every slave to
have many more tasks scheduled on it than it actually has CPUs. Only a no-op QoS
controller ships with Mesos 0.23.

Mesosphere and Intel are also building Serenity, which is a sophisticated control sys‐
tem that repeatedly dynamically measures the usage slack on each slave, so that the
cluster can utilize those resources. Serenity also understands how to estimate the
impact of noisy neighbors, how to distinguish between a task that is starting up and a
task that has reached its steady state, and other practical adjustments necessary to
optimize cluster utilization.

Oversubscription is a powerful new feature that will help large clusters squeeze 10–
40% more out of their resources. The revocable resources that oversubscription
brings aren’t only useful for allocating into slack resources; they will also form the
basis of preemptable tasks.

Databases and Turnkey Infrastructure
Today, creating the complete infrastructure for an always-available distributed system
is challenging. You need to set up databases, web servers, big data filesystems, analyt‐
ics tools, monitoring systems, and report generation processes. This is a lot of work—
beside the challenge of sorting through the countless technologies and solutions in
each space, every tool has its own specific way that it needs to be installed and config‐
ured. Creating a process to enable repeatable installation and configuration is often a
major sticking point. On the one hand, one must typically write a large amount of
bespoke deployment code to ensure that it’s possible to reliably rebuild the entire
infrastructure. On the other hand, it’s very expensive and time-consuming to do so,
and thus often that work will be deferred until the system has time to mature. Mesos
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2 Cassandra is a high-performance NoSQL database, popular for its extremely high scalability.
3 HDFS, the Hadoop Filesystem, is one of the most popular big data filesystems.
4 Kafka is a high-performance, replicated queue that enables big data publish/subscribe workloads to scale.

stands in a position to change the way we approach deploying distributed application
infrastructures.

Mesos has always been adept at running computation-oriented tasks, such as web
servers and analytics frameworks. In version 0.23, Mesos finally added support for
managing disks on the cluster. As a result, many data-oriented applications are now
able to become Mesos frameworks. For instance, Cassandra,2 HDFS,3 and Kafka4 have
already started seeing use on Mesos clusters. Over the course of early 2016, as the
Mesos persistent disks API sees more uptake, Mesos’s ecosystem will finally provide
numerous robust choices for disk-based applications. One of the exciting projects to
watch is Apache Cotton (formerly Mysos), which provides powerful automation for
MySQL clusters.

In 2016, we’re finally going to be able to simply install a Mesos cluster, and then ask
the Mesos cluster to bootstrap our databases, monitoring systems, web servers, and
analytics engines. This will dramatically simplify the amount of work needed to get a
scalable, high-availability, self-healing cluster up and running. Since Mesos frame‐
works are running programs that can react to changing cluster conditions, they’ll be
able to automatically handle rote database maintenance and other standard cluster
operation tasks. By automating these time-consuming tasks, operations staff will be
able to spend more time focusing on other issues, such as application tuning and
increasing utilization.

IP per Container
Another exciting feature coming for Mesos is IP per container. The problem we’d like
to solve has two cases:

1. We’d like to use plain DNS names to have our browser automatically find tasks
on our Mesos cluster (e.g., mytask.mesos.mycompany.com).

2. We’d like to more easily port applications that were built to run on an entire
machine to Mesos (e.g., Cassandra, Riak, and other databases).

Mesos already has a DNS solution, called Mesos-DNS. Mesos-DNS reads all the task
metadata from the masters, and, for tasks that specify service discovery information
or have alphanumeric-only names, Mesos-DNS will generate DNS records so that
those tasks can be found through standard mechanisms. Alas, there remains a diffi‐
cult problem: when a task needs to listen on some ports, most Mesos frameworks will
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5 Nginx can be configured to route incoming domain names based on SRV records with SRV Router.

dynamically allocate those ports based on what’s available on the slave. As a result,
even if you know the DNS name of the host, the browser will only try ports 80
(HTTP) and 443 (HTTPS). Thus, the browser won’t be able to actually connect to the
running application. Today, Mesos-DNS solves this by also serving SRV records,
which include the port number that the service is running on. Unfortunately, brows‐
ers don’t support SRV records, although you can use Nginx as a stopgap.5

The IP per container system solves this problem by allocating each executor its own
specific IP address. This way, the DNS entry for the task points to the executor’s IP
address, and then the task can bind to whatever ports it wants on its private IP
address. The way this works is that each executor’s container gets its own Linux net‐
work namespace. This creates a separate network stack per container, so that the host
can route traffic to the appropriate container. In addition, each network stack can
have quality of service controls applied to it, so that each container can be assigned
guaranteed network bandwidth. This feature will allow Mesos to manage IP addresses
as first-class resources, like CPU, memory, and disk are today.

Summary
There are a lot of new and exciting features and plans in the Mesos ecosystem. Mesos
has been built from the ground up to provide the strong isolation guarantees neces‐
sary to build out multitenant systems, and we’ve been starting to see that with systems
like Myriad and Cook, as well as features like the network isolator.

Alongside the growing use in multitenant applications, Mesos is developing a sophis‐
ticated oversubscription feature that will enable the same type of high cluster utiliza‐
tion that Google has been able to achieve. This oversubscription feature as designed is
easy to get started with (if you want fixed oversubscription), and advanced dynami‐
cally adaptive oversubscription is well underway.

Finally, persistent disks and IP per container are the last features needed to allow
Mesos to offer the complete infrastructure management system that other products
like OpenStack were built to serve. Mesos clusters can manage all of an organization’s
infrastructure, including analytics, databases, and services. Having an IP address per
container will make it much easier to port legacy applications that require specific
port ranges, and to easily expose Mesos applications to end users without building
complex routing and proxying layers.

Mesos is taking over the data center, bringing lightweight containerization, orchestra‐
tion, and simple, centralized management to everyone with its open source ecosys‐
tem.
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