
Building Machine
Learning and Deep
Learning Models on
Google Cloud Platform

A Comprehensive Guide for Beginners
—
Ekaba Bisong

www.allitebooks.com

http://www.allitebooks.org

Building Machine
Learning and Deep
Learning Models on

Google Cloud Platform
A Comprehensive Guide

for Beginners

Ekaba Bisong

www.allitebooks.com

http://www.allitebooks.org

Building Machine Learning and Deep Learning Models on Google Cloud Platform:
A Comprehensive Guide for Beginners

ISBN-13 (pbk): 978-1-4842-4469-2 ISBN-13 (electronic): 978-1-4842-4470-8
https://doi.org/10.1007/978-1-4842-4470-8

Copyright © 2019 by Ekaba Bisong

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Susan McDermott
Development Editor: Laura Berendson
Coordinating Editor: Rita Fernando

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/9781484244692. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Ekaba Bisong
OTTAWA, ON, Canada

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-4470-8
http://www.allitebooks.org

This book is dedicated to the Sovereign and Holy Triune God who
created the Heavens and the Earth and is the source of all intelligence.

To my parents Prof. and Prof. (Mrs.) Francis and Nonso Bisong, my
mentors Prof. John Oommen and late Prof. Pius Adesanmi, and to

Rasine, my best friend and companion.

www.allitebooks.com

http://www.allitebooks.org

v

Part I: Getting Started with Google Cloud Platform �� 1

Chapter 1: What Is Cloud Computing? �� 3

Categories of Cloud Solutions ��� 4

Cloud Computing Models �� 5

Chapter 2: An Overview of Google Cloud Platform Services ������������������������������������� 7

Cloud Compute �� 7

Cloud Storage�� 8

Big Data and Analytics �� 9

Cloud Artificial Intelligence (AI) ��� 10

Chapter 3: The Google Cloud SDK and Web CLI �� 11

Setting Up an Account on Google Cloud Platform ��� 12

GCP Resources: Projects ��� 14

Accessing Cloud Platform Services �� 16

Account Users and Permissions ��� 16

The Cloud Shell ��� 17

Google Cloud SDK ��� 19

Table of Contents

About the Author ��xxi

About the Technical Reviewer ��xxiii

Acknowledgments ���xxv

Introduction ���xxvii

www.allitebooks.com

http://www.allitebooks.org

vi

Chapter 4: Google Cloud Storage (GCS) �� 25

Create a Bucket ��� 25

Uploading Data to a Bucket ��� 27

Delete Objects from a Bucket ��� 30

Free Up Storage Resource �� 30

Working with GCS from the Command Line �� 32

Chapter 5: Google Compute Engine (GCE) ��� 35

Provisioning a VM Instance ��� 35

Connecting to the VM Instance ��� 41

Tearing Down the Instance ��� 44

Working with GCE from the Command Line �� 45

Chapter 6: JupyterLab Notebooks �� 49

Provisioning a Notebook Instance ��� 49

Shut Down/Delete a Notebook Instance ��� 53

Starting a Notebook Instance from the Command Line �� 54

Chapter 7: Google Colaboratory �� 59

Starting Out with Colab ��� 59

Change Runtime Settings ��� 61

Storing Notebooks �� 62

Uploading Notebooks �� 64

Part II: Programming Foundations for Data Science ������������������������������������ 65

Chapter 8: What Is Data Science? �� 67

The Challenge of Big Data ��� 67

The Data Science Opportunity��� 68

The Data Science Process �� 69

Table of ConTenTs

vii

Chapter 9: Python ��� 71

Data and Operations ��� 71

Data Types ��� 72

More on Lists ��� 74

Strings ��� 77

Arithmetic and Boolean Operations �� 78

Arithmetic Operations �� 78

Boolean Operations ��� 78

The print() Statement �� 79

Using the Formatter ��� 80

Control Structures ��� 80

The if/elif (else-if) Statements ��� 80

The while Loop �� 82

The for Loop �� 83

List Comprehensions ��� 84

The break and continue Statements ��� 85

Functions �� 86

User-Defined Functions ��� 87

Lambda Expressions ��� 88

Packages and Modules ��� 88

import Statement��� 88

from Statement ��� 89

Chapter 10: NumPy ��� 91

NumPy 1-D Array��� 91

NumPy Datatypes �� 93

Indexing + Fancy Indexing (1-D) ��� 94

Boolean Mask �� 94

Integer Mask �� 95

Slicing a 1-D Array ��� 95

Table of ConTenTs

viii

Basic Math Operations on Arrays: Universal Functions ��� 95

Higher-Dimensional Arrays ��� 96

Creating 2-D Arrays (Matrices) �� 97

Creating 3-D Arrays ��� 98

Indexing/Slicing of Matrices �� 99

Matrix Operations: Linear Algebra ��� 100

Matrix Multiplication (Dot Product) �� 100

Element-Wise Operations �� 102

Scalar Operation �� 103

Matrix Transposition �� 105

The Inverse of a Matrix �� 106

Reshaping ��� 107

Reshape vs� Resize Method ��� 107

Stacking Arrays ��� 108

Broadcasting ��� 110

Loading Data ��� 113

Chapter 11: Pandas �� 115

Pandas Data Structures �� 115

Series �� 115

DataFrames ��� 117

Data Indexing (Selection/Subsets) �� 120

Selecting a Column from a DataFrame �� 121

Selecting a Row from a DataFrame ��� 122

Selecting Multiple Rows and Columns from a DataFrame �� 123

Slice Cells by Row and Column from a DataFrame ��� 124

DataFrame Manipulation ��� 125

Removing a Row/Column �� 125

Adding a Row/Column ��� 127

Data Alignment �� 129

Combining Datasets �� 131

Table of ConTenTs

ix

Handling Missing Data �� 132

Identifying Missing Data �� 132

Removing Missing Data ��� 133

Imputing Values into Missing Data �� 135

Data Aggregation (Grouping) ��� 136

Statistical Summaries ��� 138

Correlation ��� 139

Skewness �� 139

Importing Data �� 140

Timeseries with Pandas �� 140

Importing a Dataset with a DateTime Column ��� 140

Selection Using DatetimeIndex �� 142

Subset Data Columns and Find Summaries �� 144

Resampling Datetime Objects ��� 145

Convert to Datetime Datatype Using ‘to_datetime’ ��� 146

The shift() Method ��� 147

Rolling Windows �� 148

Chapter 12: Matplotlib and Seaborn ��� 151

Matplotlib and Seaborn ��� 151

Pandas Plotting Methods �� 151

Univariate Plots ��� 152

Line Plot ��� 152

Bar Plot �� 154

Histogram/Density Plots �� 155

Box and Whisker Plots ��� 157

Multivariate Plots �� 158

Scatter Plot �� 158

Pairwise Scatter Plot ��� 160

Correlation Matrix Plots ��� 162

Images �� 164

Table of ConTenTs

x

Part III: Introducing Machine Learning ��� 167

Chapter 13: What Is Machine Learning? ��� 169

The Role of Data �� 170

The Cost of Data �� 170

Chapter 14: Principles of Learning ��� 171

Supervised Learning ��� 171

Regression vs� Classification ��� 172

How Do We Know that Learning Has Occurred? �� 175

Training, Test, and Validation Datasets �� 176

Bias vs� Variance Trade-Off �� 177

Evaluating Model Quality ��� 180

Resampling Techniques ��� 191

Improving Model Performance �� 195

Unsupervised Learning ��� 196

Reinforcement Learning�� 197

Chapter 15: Batch vs� Online Learning ��� 199

Batch Learning �� 199

Online Learning ��� 200

Chapter 16: Optimization for Machine Learning: Gradient Descent ��������������������� 203

The Learning Rate of Gradient Descent Algorithm �� 204

Classes of Gradient Descent Algorithm ��� 205

Optimizing Gradient Descent with Feature Scaling ��� 205

Chapter 17: Learning Algorithms�� 209

Classes of Supervised Algorithms ��� 209

Unsupervised Algorithms �� 211

Table of ConTenTs

xi

Part IV: Machine Learning in Practice �� 213

Chapter 18: Introduction to Scikit-learn ��� 215

Loading Sample Datasets from Scikit-learn ��� 215

Splitting the Dataset into Training and Test Sets��� 217

Preprocessing the Data for Model Fitting ��� 217

Data Rescaling��� 218

Standardization ��� 219

Normalization �� 221

Binarization ��� 222

Encoding Categorical Variables ��� 223

Input Missing Data ��� 227

Generating Higher-Order Polynomial Features �� 228

Machine Learning Algorithms ��� 229

Chapter 19: Linear Regression ��� 231

The Regression Model �� 231

A Visual Representation of Linear Regression ��� 233

Finding the Regression Line – How Do We Optimize the Parameters of the
Linear Model? �� 234

How Do We Interpret the Linear Regression Model?��� 234

Linear Regression with Scikit-learn �� 235

Adapting to Non-linearity �� 237

Higher-Order Linear Regression with Scikit-learn �� 238

Improving the Performance of a Linear Regression Model ��� 240

Chapter 20: Logistic Regression ��� 243

Why Logistic Regression? ��� 243

Introducing the Logit or Sigmoid Model �� 245

Training the Logistic Regression Model �� 246

Multi-class Classification/Multinomial Logistic Regression�� 247

Logistic Regression with Scikit-learn ��� 248

Optimizing the Logistic Regression Model �� 250

Table of ConTenTs

xii

Chapter 21: Regularization for Linear Models �� 251

How Does Regularization Work ��� 251

Effects of Regularization on Bias vs� Variance �� 251

Applying Regularization to Models with Scikit-learn �� 252

Linear Regression with Regularization �� 252

Logistic Regression with Regularization ��� 253

Chapter 22: Support Vector Machines �� 255

What Is a Hyperplane? �� 255

Finding the Optimal Hyperplane �� 256

The Support Vector Classifier �� 257

The C Parameter �� 259

Multi-class Classification �� 260

One-vs�-One (OVO) ��� 260

One-vs�-All (OVA) ��� 261

The Kernel Trick: Fitting Non-linear Decision Boundaries ��� 262

Adding Polynomial Features �� 263

Kernels �� 264

Chapter 23: Ensemble Methods �� 269

Decision Trees ��� 269

On Regression and Classification with CART ��� 270

Growing a Regression Tree �� 271

Growing a Classification Tree �� 271

Tree Pruning �� 272

Strengths and Weaknesses of CART �� 272

CART with Scikit-learn��� 272

Random Forests �� 274

Making Predictions with Random Forests ��� 275

Random Forests with Scikit-learn ��� 277

Stochastic Gradient Boosting (SGB) �� 279

Tree Depth/Number of Trees �� 281

Table of ConTenTs

xiii

Shrinkage �� 281

Stochastic Gradient Boosting with Scikit-learn ��� 281

XGBoost (Extreme Gradient Boosting) ��� 284

XGBoost with Scikit-learn �� 284

Chapter 24: More Supervised Machine Learning Techniques with Scikit-learn ��� 287

Feature Engineering �� 287

Statistical Tests to Select the Best k Features Using the SelectKBest Module ������������������� 288

Recursive Feature Elimination (RFE) ��� 289

Feature Importances ��� 290

Resampling Methods �� 291

k-Fold Cross-Validation ��� 291

Leave-One-Out Cross-Validation (LOOCV)�� 292

Model Evaluation ��� 293

Regression Evaluation Metrics �� 294

Classification Evaluation Metrics ��� 297

Pipelines: Streamlining Machine Learning Workflows �� 299

Pipelines Using make_pipeline ��� 301

Pipelines Using FeatureUnion �� 302

Model Tuning ��� 304

Grid Search �� 304

Randomized Search ��� 306

Chapter 25: Clustering �� 309

K-Means Clustering �� 310

Considerations for Selecting K �� 311

Considerations for Assigning the Initial K Points ��� 311

K-Means Clustering with Scikit-learn ��� 312

Hierarchical Clustering �� 313

How Are Clusters Formed �� 314

Hierarchical Clustering with the SciPy Package ��� 317

Table of ConTenTs

xiv

Chapter 26: Principal Component Analysis (PCA) �� 319

How Are Principal Components Computed ��� 319

Dimensionality Reduction with PCA �� 321

Key Considerations for Performing PCA �� 322

PCA with Scikit-learn �� 323

Part V: Introducing Deep Learning �� 325

Chapter 27: What Is Deep Learning? �� 327

The Representation Challenge �� 327

Inspiration from the Brain ��� 328

Chapter 28: Neural Network Foundations��� 331

The Architecture �� 331

Chapter 29: Training a Neural Network �� 333

Cost Function or Loss Function ��� 336

One-Hot Encoding ��� 336

The Backpropagation Algorithm �� 337

Activation Functions �� 338

Sigmoid ��� 340

Hyperbolic Tangent (tanh) �� 341

Rectified Linear Unit (ReLU) ��� 342

Leaky ReLU �� 342

Maxout ��� 343

Part VI: Deep Learning in Practice �� 345

Chapter 30: TensorFlow 2�0 and Keras ��� 347

Navigating Through the TensorFlow API �� 347

The Low-Level TensorFlow APIs �� 348

The Mid-Level TensorFlow APIs ��� 348

The High-Level TensorFlow APIs �� 352

Table of ConTenTs

xv

The Anatomy of a Keras Program ��� 355

TensorBoard �� 356

Features in TensorFlow 2�0 ��� 358

A Simple TensorFlow Program �� 358

Building Efficient Input Pipelines with the Dataset API ��� 359

Linear Regression with TensorFlow �� 361

Classification with TensorFlow �� 365

Visualizing with TensorBoard �� 369

Running TensorFlow with GPUs �� 374

TensorFlow High-Level APIs: Using Estimators ��� 381

Neural Networks with Keras ��� 383

Using the Keras Sequential API ��� 384

Using the Keras Functional API ��� 386

Model Visualization with Keras ��� 389

TensorBoard with Keras �� 393

Checkpointing to Select Best Models ��� 396

Chapter 31: The Multilayer Perceptron (MLP) �� 401

The Concept of Hierarchies ��� 401

Choosing the Number of Hidden Layers: Bias/Variance Trade-Off �� 402

Multilayer Perceptron (MLP) with Keras ��� 403

Chapter 32: Other Considerations for Training the Network ��������������������������������� 407

Weight Initialization ��� 407

Batch Normalization �� 408

Gradient Clipping��� 410

Chapter 33: More on Optimization Techniques ��� 411

Momentum �� 411

Variable Learning Rates �� 412

Adaptive Learning Rates ��� 413

Table of ConTenTs

xvi

Chapter 34: Regularization for Deep Learning ��� 415

Dropout ��� 415

Data Augmentation ��� 417

Noise Injection �� 417

Early Stopping ��� 418

Chapter 35: Convolutional Neural Networks (CNN)��� 423

Local Receptive Fields of the Visual Cortex �� 425

Advantages of CNN over MLP ��� 426

The Convolutional Layer �� 427

The Pooling Layer �� 433

The Fully Connected Network Layer �� 435

An Example CNN Architecture ��� 436

CNN for Image Recognition with TensorFlow 2�0 �� 437

Chapter 36: Recurrent Neural Networks (RNNs) ��� 443

The Recurrent Neuron ��� 443

Unfolding the Recurrent Computational Graph ��� 444

Basic Recurrent Neural Network ��� 446

Recurrent Connection Schemes �� 448

Sequence Mappings ��� 450

Training the Recurrent Network: Backpropagation Through Time �� 453

The Long Short-Term Memory (LSTM) Network �� 454

Peephole Connection �� 456

Gated Recurrent Unit (GRU) ��� 457

Recurrent Neural Networks Applied to Sequence Problems ��� 458

Long-Term Recurrent Convolutional Network (LRCN) �� 459

Encoder-Decoder LSTMs ��� 460

Bidirectional Recurrent Neural Networks �� 461

RNN with TensorFlow 2�0: Univariate Timeseries �� 462

RNN with TensorFlow 2�0: Multivariate Timeseries ��� 468

Table of ConTenTs

xvii

Chapter 37: Autoencoders �� 475

Stacked Autoencoders �� 476

Stacked Autoencoders with TensorFlow 2�0 ��� 477

Denoising Autoencoders ��� 481

Part VII: Advanced Analytics/Machine Learning on
Google Cloud Platform �� 483

Chapter 38: Google BigQuery �� 485

What BigQuery Is Not �� 486

Getting Started with BigQuery �� 486

Public Datasets �� 489

Running Your First Query �� 490

Loading Data into BigQuery �� 491

Staging the Data in GCS �� 491

Loading Data Using the BigQuery Web UI �� 492

The bq Command-Line Utility �� 496

Loading Data Using the Command-Line bq Utility ��� 497

BigQuery SQL �� 499

Filtering ��� 499

Aggregation ��� 501

Joins �� 502

Subselect ��� 504

The Case Against Running Select * ��� 505

Using BigQuery with Notebooks on AI Cloud Instance and Google Colab ��������������������������������� 507

BigQueryML��� 509

Chapter 39: Google Cloud Dataprep �� 519

Getting Started with Cloud Dataprep �� 519

Using Flows to Transform Data ��� 522

Table of ConTenTs

xviii

Chapter 40: Google Cloud Dataflow �� 537

Beam Programming �� 537

Building a Simple Data Processing Pipeline ��� 539

Chapter 41: Google Cloud Machine Learning Engine (Cloud MLE) ������������������������ 545

The Cloud MLE Train/Deploy Process �� 545

Preparing for Training and Serving on Cloud MLE ��� 547

Packaging the Code for Training on Cloud MLE �� 548

The TensorFlow Model �� 549

The Application Logic �� 553

Training on Cloud MLE �� 558

Running a Single Instance Training Job �� 558

Running a Distributed Training Job ��� 560

Running a Distributed Training Job with Hyper-parameter Tuning �������������������������������������� 561

hptuning_config�yaml File ��� 562

Execute Training Job with Hyper-parameter Tuning ��� 563

Making Predictions on Cloud MLE �� 565

Run Batch Prediction �� 566

Training with GPUs on Cloud MLE ��� 569

Scikit-learn on Cloud MLE ��� 572

Move the Data Files to GCS ��� 572

Prepare the Training Scripts �� 573

Execute a Scikit-learn Training Job on Cloud MLE �� 575

Create a Scikit-learn Prediction Service on Cloud MLE �� 577

Make Online Predictions from the Scikit-learn Model �� 578

Chapter 42: Google AutoML: Cloud Vision �� 581

Enable AutoML Cloud Vision on GCP ��� 581

Preparing the Training Dataset �� 586

Building Custom Image Models on Cloud AutoML Vision �� 588

Table of ConTenTs

xix

Chapter 43: Google AutoML: Cloud Natural Language Processing ����������������������� 599

Enable AutoML NLP on GCP �� 599

Preparing the Training Dataset �� 602

Building a Custom Language Classification Model on Cloud AutoML NLP �������������������������������� 605

Chapter 44: Model to Predict the Critical Temperature of Superconductors �������� 613

The Modeling Architecture on GCP �� 614

Stage Raw Data in GCS ��� 615

Load Data into BigQuery for Analytics ��� 615

Exploratory Data Analysis ��� 617

Spot Checking Machine Learning Algorithms ��� 621

Dataflow and TensorFlow Transform for Large-Scale Data Processing ������������������������������������ 624

Training on Cloud MLE �� 636

Deploy Trained Model �� 649

Batch Prediction �� 650

Part VIII: Productionalizing Machine Learning Solutions on GCP ��������������� 653

Chapter 45: Containers and Google Kubernetes Engine ��������������������������������������� 655

Docker ��� 656

Virtual Machines vs� Containers �� 657

Working with Docker ��� 659

Build and Run a Simple Docker Container �� 661

Build the Image ��� 661

Run the Container �� 662

Important Docker Commands �� 663

Kubernetes �� 664

Features of Kubernetes ��� 665

Components of Kubernetes ��� 665

Writing a Kubernetes Deployment File �� 667

Deploying Kubernetes on Google Kubernetes Engine ��� 668

Table of ConTenTs

xx

Chapter 46: Kubeflow and Kubeflow Pipelines ��� 671

The Efficiency Challenge ��� 672

Kubeflow ��� 673

Working with Kubeflow ��� 675

Kubeflow Pipelines – Kubeflow for Poets ��� 681

Components of Kubeflow Pipelines ��� 682

Executing a Sample Pipeline ��� 683

Chapter 47: Deploying an End-to- End Machine Learning Solution on
Kubeflow Pipelines ��� 687

Overview of a Simple End-to-End Solution Pipeline ��� 688

Create a Container Image for Each Component �� 688

Build Containers Before Uploading to Kubeflow Pipelines �� 689

Compile the Pipeline Using the Kubeflow Pipelines DSL Language �� 689

Upload and Execute the Pipeline to Kubeflow Pipelines ��� 690

Index ��� 697

Table of ConTenTs

xxi

About the Author

Ekaba Bisong is a Data Science Lead at T4G. He previously

worked as a Data Scientist/Data Engineer at Pythian.

In addition, he maintains a relationship with the Intelligent

Systems Lab at Carleton University with a research focus

on learning systems (encompassing learning automata

and reinforcement learning), machine learning, and deep

learning. Ekaba is a Google Certified Professional Data

Engineer and a Google Developer Expert in machine

learning. Ekaba is from the Ejagham Nation.

xxiii

About the Technical Reviewer

Vikram Tiwari is a co-founder of Omni Labs, Inc. where he

handles all things tech. At Omni they are redesigning how

we leverage Internet to get things done. He is also a Google

Developer Expert for machine learning and Google Cloud

Platform. He speaks at various conferences and runs hands-

on workshops on cloud and machine learning topics. He

loves working with start-ups and developers as mentor to

help them navigate various challenges through their journey.

Other than work, he runs a community of developers at

Google Developer Group Cloud, San Francisco. In his free

time, he bikes around the city and hills of San Francisco.

Gonzalo Gasca Meza is a developer programs engineer

working on the GCP Machine Learning platform. He currently

works in the TensorFlow and Machine Learning infrastruc-

ture. Gonzalo holds a bachelor’s degree in computer science

and a master’s degree in software engineering from the

University of Oxford. Before joining Google, Gonzalo

worked on Enterprise-focused products for voice and video

communications. He is based in Sunnyvale, California.

xxv

I want to use this opportunity to appreciate the staff and faculty of Carleton University

School of Computer Science; they made for a friendly and stimulating atmosphere

during the writing of this book. I want to thank my friends at the graduate program,

Abdolreza Shirvani, Omar Ghaleb, Anselm Ogbunugafor, Sania Hamid, Gurpreet Saran,

Sean Benjamin, Steven Porretta, Kenniy Olorunnimbe, Moitry Das, Yajing Deng, Tansin

Jahan, and Tahira Ghani. I also want to thank my dear friends at the undergraduate level

during my time as a teaching assistant, Saranya Ravi and Geetika Sharma, as well as my

friend and colleague at the Intelligent Systems Lab, Vojislav Radonjic. They all were most

supportive with a kind and generous friendship that kept me going despite the obvious

pressures at the time. I want to particularly thank Sania Hamid, who helped me type

portions of the manuscript. Nonetheless, I take full responsibility for any typographical

errors contained in this book.

I want to thank my friends Rasine Ukene, Yewande Marquis, Iyanu Obidele, Bukunmi

Oyedeji, Deborah Braide, Akinola Odunlade, Damilola Adesinha, Chinenye Nwaneri,

Chiamaka Chukwuemeka, Deji Marcus, Okoh Hogan, Somto Akaraiwe, Kingsley Munu

and Ernest Onuiri who have offered words of encouragement along the way. Mr. Ernest

taught a course in Artificial Intelligence during my undergraduate years at Babcock

University that kickstarted my journey in this field. Somto provided valuable feedback

that guided me in improving the arrangement of the chapters and parts of this book.

In the same breadth, I thank my friends at the Carleton University Institute of African

Studies, Femi Ajidahun and June Creighton Payne, with special thanks to a mentor and

senior friend, who took me as a son and was most kind, supportive, and generous, (late)

Prof. Pius Adesanmi, the then Director of the Institute. Prof. Adesanmi was sadly lost

to the ill-fated Ethiopian Airlines Flight 302 (ET 302) crash shortly after takeoff from

Addis Ababa on March 10, 2019. I want to appreciate Mrs. Muyiwa Adesanmi and Tise

Adesanmi for their love, friendship, and strength. May they find comfort, now, and in the

future.

Acknowledgments

xxvi

I would like to thank Emmanuel Okoi, Jesam Ujong, Adie Patrick, Redarokim Ikonga,

and the Hope Waddell Old Students’ Association (HWOSA) family; they provided

community and fun to alleviate the mood during stressful periods. Special thanks to my

roommates at the time, Jonathan Austin, Christina Austin, Margherita Ciccozzi, Thai

Chin, and Chris Teal; I had a fantastic place to call home.

I am especially grateful to my former colleagues and friends at Pythian, Vanessa

Simmons, Alex Gorbachev, and Paul Spiegelhalter, for their help and support along

the way. I am thankful to the brethren of the House Fellowships at Ottawa, Toronto,

Winnipeg, Calabar, and Owerri; they constitute my own company and are friends for life.

I also want to thank the staff and crew at Standard Word Broadcasting Network (SWBN)

for working together to keep the vision running as I engaged this project. Special thanks

to Susan McDermott, Rita Fernando, and the publishing and editorial team at Apress

for their support and belief in this project. Many thanks to Vikram Tiwari and Gonzalo

Gasca Meza, who provided the technical review for this manuscript.

Finally, I conclude by giving special thanks to my family, starting with my loving

Father and Mother, Francis Ebuta and Nonso Ngozika Bisong; they have been a rock

in my life and have been there to counsel and encourage me, I am truly grateful for

my loving parents. To my siblings, Osowo-Ayim, Chidera, and Ginika Bisong, and the

extended Bisong family for the constant stream of love and support. Finally, a big

shout- out to my aunty and friend, Joy Duncan, for her love and friendship; she is most

dear to my heart. Also, my appreciation to Uncle Wilfred Achu and Aunty Blessing

Bisong, they have been most kind to me and I am very thankful.

aCknowledgmenTs

xxvii

Introduction

Machine learning and deep learning technologies have impacted the world in profound

ways, from how we interact with technological products and with one another. These

technologies are disrupting how we relate, how we work, and how we engage life in

general. Today, and in the foreseeable future, intelligent machines increasingly form

the core upon which sociocultural and socioeconomic relationships rest. We are indeed

already in the "age of intelligence."

 What Are Machine Learning and Deep Learning?
Machine learning can be described as an assortment of tools and techniques for

predicting or classifying a future event based on a set of interactions between variables

(also referred to as features or attributes) in a particular dataset. Deep learning, on the

other hand, extends a machine learning algorithm called neural network for learning

complex tasks which are incredibly difficult for a computer to perform. Examples of

these tasks may include recognizing faces and understanding languages in their varied

contextual meanings.

 The Role of Big Data
A key ingredient that is critical to the rise and future improved performance of

machine learning and deep learning is data. Since the turn of the twenty-first century,

there has been a steady exponential increase in the amount of data generated and

stored. The rise of humongous data is partly due to the emergence of the Internet and

the miniaturization of processors that have spurned the "Internet of Things (IoT)"

technologies. These vast amounts of data have made it possible to train the computer to

learn complex tasks where an explicit instruction set is infeasible.

xxviii

 The Computing Challenge
The increase in data available for training learning models throws up another kind of

problem, and that is the availability of computational or processing power. Empirically,

as data increases, the performance of learning models also goes up. However, due to the

increasingly enormous size of datasets today, it is inconceivable to train sophisticated,

state-of-the-art learning models on commodity machines.

 Cloud Computing to the Rescue
Cloud is a term that is used to describe large sets of computers that are networked

together in groups called data centers. These data centers are often distributed across

multiple geographical locations. Big companies like Google, Microsoft, Amazon, and

IBM own massive data centers where they manage computing infrastructure that is

provisioned to the public (i.e., both enterprise and personal users) for use at a very

reasonable cost.

Cloud technology/infrastructure is allowing individuals to leverage the computing

resources of big business for machine learning/deep learning experimentation, design,

and development. For example, by making use of cloud resources such as Google Cloud

Platform (GCP), Amazon Web Services (AWS), or Microsoft Azure, we can run a suite

of algorithms with multiple test grids for a fraction of time that it will take on a local

machine.

 Enter Google Cloud Platform (GCP)
One of the big competitors in the cloud computing space is Google, with their cloud

resource offering termed “Google Cloud Platform,” popularly referred to as GCP for

short. Google is also one of the top technology leaders in the Internet space with a range

of leading web products such as Gmail, YouTube, and Google Maps. These products

generate, store, and process tons of terabytes of data each day from Internet users

around the world.

To deal with this significant data, Google over the years has invested heavily

in processing and storage infrastructure. As of today, Google boasts some of the

most impressive data center design and technology in the world to support their

InTroduCTIon

xxix

computational demands and computing services. Through Google Cloud Platform,

the public can leverage these powerful computational resources to design and develop

cutting-edge machine learning and deep learning models.

 The Aim of This Book
The goal of this book is to equip the reader from the ground up with the essential

principles and tools for building learning models. Machine learning and deep learning

are rapidly evolving, and often it is overwhelming and confusing for a beginner to engage

the field. Many have no clue where to start. This book is a one-stop shop that takes the

beginner on a journey to understanding the theoretical foundations and the practical steps

for leveraging machine learning and deep learning techniques on problems of interest.

 Book Organization
This book is divided into eight parts. Their breakdown is as follows:

• Part 1: Getting Started with Google Cloud Platform

• Part 2: Programming Foundations for Data Science

• Part 3: Introducing Machine Learning

• Part 4: Machine Learning in Practice

• Part 5: Introducing Deep Learning

• Part 6: Deep Learning in Practice

• Part 7: Advanced Analytics/Machine Learning on Google Cloud

Platform

• Part 8: Productionalizing Machine Learning Solutions on GCP

It is best to go through the entire book in sequence. However, each part and its

containing chapters are written in such a way that one can shop around and get out what is

of primary interest. The code repository for this book is available at https://github.com/

Apress/building-ml-and-dl-models-on-gcp. The reader can follow through the examples

in this book by cloning the repository to Google Colab or GCP Deep Learning VM.

InTroduCTIon

https://github.com/Apress/building-ml-and-dl-models-on-gcp
https://github.com/Apress/building-ml-and-dl-models-on-gcp

PART I

Getting Started with
Google Cloud Platform

3
© Ekaba Bisong 2019
E. Bisong, Building Machine Learning and Deep Learning Models on Google Cloud Platform,
https://doi.org/10.1007/978-1-4842-4470-8_1

CHAPTER 1

What Is Cloud
Computing?
Cloud computing is the practice where computing services such as storage options,

processing units, and networking capabilities are exposed for consumption by users over

the Internet (the cloud). These services range from free to pay-as-you-use billing.

The central idea behind cloud computing is to make aggregated computational

power available for large-scale consumption. By doing so, the microeconomics principle

of economies of scale kicks into effect where cost per unit output is minimized with

increasing scale of operations.

In a cloud computing environment, enterprises or individuals can take advantage

of the same speed and power of aggregated high-performance computing services and

only pay for what they use and relinquish these compute resources when they are no

longer needed.

The concept of cloud computing had existed as time-sharing systems from the

early years of the modern computer where jobs submitted from different users were

scheduled to execute on a mainframe. The idea of time-sharing machines fizzled away

at the advent of the PC. Now, with the rise of enterprise data centers managed by big IT

companies such as Google, Microsoft, Amazon, IBM, and Oracle, the cloud computing

notion has resurfaced with the added twist of multi-tenancy as opposed to time-sharing.

This computing model is set to disrupt the way we work and utilize software systems and

services.

In addition to storage, networking, and processing services, cloud computing

provides offer other product solutions such as databases, artificial intelligence, and data

analytics capabilities and serverless infrastructures.

4

 Categories of Cloud Solutions
The cloud is a terminology that describes large sets of computers that are networked

together in groups called data centers. These clustered machines can be interacted with

via dashboards, command-line interfaces, REST APIs, and client libraries. Data centers

are often distributed across multiple geographical locations. The size of data centers is

over 100,000 sq. ft. (and those are the smaller sizes!). Cloud computing solutions can be

broadly categorized into three, namely, the public, private, and hybrid cloud. Let’s briefly

discuss them:

• Public cloud: Public clouds are the conventional cloud computing

model, where cloud service providers make available their

computing infrastructure and products for general use by other

enterprises and individuals (see Figure 1-1). In public clouds, the

cloud service provider is responsible for managing the hardware

configuration and servicing.

Figure 1-1. The public cloud

Chapter 1 What Is Cloud ComputIng?

5

• Private cloud: In a private cloud, an organization is solely responsible

for the management and servicing of its computing infrastructure.

The machines in a private cloud can be located on-premises, or it

can be hosted with a cloud service provider but routed on a private

network.

• Hybrid cloud: The hybrid cloud is a compromise between the cost

and efficiency of a public cloud and the data sovereignty and in-

house security assurances of the private cloud. Many companies

and institutions opt for a hybrid cloud and multi-cloud by using

technology solutions to facilitate easy porting and sharing of data and

applications between on-premise and cloud-based infrastructures.

 Cloud Computing Models
Cloud computing is also categorized into three models of service delivery. They are

illustrated as a pyramid as shown in Figure 1-2, where the layers of infrastructure

abstraction increase as we approach the apex of the pyramid:

• Infrastructure as a Service (IaaS): This model is best suited for

enterprises or individuals who want to manage the hardware

infrastructure that hosts their data and applications. This level

of fine-grained management requires the necessary system

administration skills.

• Platform as a Service (PaaS): In the PaaS model, the hardware

configuration is managed by the cloud service provider, as well as

other system and development tools. This relieves the user to focus

on the business logic for quick and easy deployment of application

and database solutions. Another concept that comes up together

with PaaS is the idea of Serverless, where the cloud service provider

manages a scalable infrastructure that utilizes and relinquishes

resources according to demand.

• Software as a Service (SaaS): The SaaS model is most recognizable

by the general public, as a great deal of users interact with SaaS

applications without knowing. The typical examples of SaaS

Chapter 1 What Is Cloud ComputIng?

6

applications are enterprise email suites such as Gmail, Outlook, and

Yahoo! Mail. Others include storage platforms like Google Drive and

Dropbox, photo software like Google Photos, and CRM e-suites like

Salesforce and Oracle E-business Suite.

Figure 1-2. Models of cloud computing

In this chapter, we summarized the practice of cloud computing by explaining the

different categories of cloud solutions and the models for service delivery over the cloud.

The next chapters in Part 1 will provide an introduction to Google Cloud Platform

Infrastructure and Services and introduce JupyterLab Instances, and Google

Colaboratory for prototyping machine learning models and doing data science and

analytics tasks.

Chapter 1 What Is Cloud ComputIng?

7
© Ekaba Bisong 2019
E. Bisong, Building Machine Learning and Deep Learning Models on Google Cloud Platform,
https://doi.org/10.1007/978-1-4842-4470-8_2

CHAPTER 2

An Overview of Google
Cloud Platform Services
Google Cloud Platform offers a wide range of services for securing, storing, serving,

and analyzing data. These cloud services form a secure cloud perimeter for data, where

different operations and transformations can be carried out on the data without it ever

leaving the cloud ecosystem.

The services offered by Google Cloud include compute, storage, big data/analytics,

artificial intelligence (AI), and other networking, developer, and management services.

Let’s briefly review some of the features of the Google Cloud ecosystem.

 Cloud Compute
Google Compute offers a range of products shown in Figure 2-1 for catering to a wide

range of computational needs. The compute products consist of the Compute Engine

(virtual computing instances for custom processing), App Engine (a cloud-managed

platform for developing web, mobile, and IoT app), Kubernetes Engine (orchestration

manager for custom docker containers based on Kubernetes), Container Registry

(private container storage), Serverless Cloud Functions (cloud-based functions to

connect or extend cloud services), and Cloud Run (managed compute platform that

automatically scales your stateless containers).

8

For our purposes of machine learning modeling, the cloud compute engine is what

we will concentrate on. As later seen in Chapter 6, JupyterLab will provision a compute

engine with all the relevant tools, packages, and frameworks for data analytics and

modeling machine learning and deep learning solutions.

 Cloud Storage
Google Cloud Storage options provide scalable and real-time storage access to live and

archival data within the cloud perimeter. Cloud storage as an example is set up to cater

for any conceivable storage demand. Data stored on cloud storage is available anytime

and from any location around the world. What’s more, this massive storage power comes

at an almost negligible cost, taking into consideration the size and economic value of

the stored data. Moreover, acknowledging the accessibility, security, and consistency

provided by cloud storage, the cost is worth every penny.

The cloud storage products shown in Figure 2-2 include Cloud Storage (general-

purpose storage platform), Cloud SQL (cloud-managed MySQL and PostgreSQL), Cloud

Bigtable (NoSQL petabyte-sized storage), Cloud Spanner (scalable/high availability

transactional storage), Cloud Datastore (transactional NoSQL database), and Persistent

Disk (block storage for virtual machines).

Figure 2-1. Cloud compute services

Chapter 2 an Overview Of GOOGle ClOud platfOrm ServiCeS

9

 Big Data and Analytics
Google Cloud Platform offers a range of serverless big data and analytics solutions for

data warehousing, stream, and batch analytics, cloud-managed Hadoop ecosystems,

cloud-based messaging systems, and data exploration. These services provide multiple

perspectives to mining/generating real-time intelligence from big data.

Examples of big data services shown in Figure 2-3 include Cloud BigQuery

(serverless analytics/data warehousing platform), Cloud Dataproc (fully managed

Hadoop/Apache Spark infrastructure), Cloud Dataflow (Batch/Stream data

transformation/processing), Cloud Dataprep (serverless infrastructure for cleaning

unstructured/structured data for analytics), Cloud Datastudio (data visualization/report

dashboards), Cloud Datalab (managed Jupyter notebook for machine learning/data

analytics), and Cloud Pub/Sub (serverless messaging infrastructure).

Figure 2-2. Cloud storage products

Figure 2-3. Big data/analytics serverless platforms

Chapter 2 an Overview Of GOOGle ClOud platfOrm ServiCeS

10

 Cloud Artificial Intelligence (AI)
Google Cloud AI offers cloud services for businesses and individuals to leverage pre-

trained models for custom artificial intelligence tasks through the use of REST APIs.

It also exposes services for developing custom models for domain use cases such as

AutoML Vision for image classification and object detection tasks and AutoML tables to

deploy AI models on structured data.

Google Cloud AI services in Figure 2-4 include Cloud AutoML (train custom

machine learning models leveraging transfer learning), Cloud Machine Learning Engine

(for large-scale distributed training and deployment of machine learning models),

Cloud TPU (to quickly train large-scale models), Video Intelligence (train custom video

models), Cloud Natural Language API (extract/analyze text from documents), Cloud

Speech API (transcribe audio to text), Cloud Vision API (classification/segmentation of

images), Cloud Translate API (translate from one language to another), and Cloud Video

Intelligence API (extract metadata from video files).

Figure 2-4. Cloud AI services

This chapter provides a high-level overview of the products and services offered on

Google Cloud Platform.

The next chapter will introduce the Google Cloud software development kit (SDK)

for interacting with cloud resources from the command line on the local machine

and the cloud command-line interface (CLI) for doing the same via the cloud console

interface on GCP.

Chapter 2 an Overview Of GOOGle ClOud platfOrm ServiCeS

11
© Ekaba Bisong 2019
E. Bisong, Building Machine Learning and Deep Learning Models on Google Cloud Platform,
https://doi.org/10.1007/978-1-4842-4470-8_3

CHAPTER 3

The Google Cloud SDK
and Web CLI
GCP provides a command-line interface (CLI) for interacting with cloud products and

services. GCP resources can be accessed via the web-based CLI on GCP or by installing

the Google Cloud software development kit (SDK) on your local machine to interact with

GCP via the local command-line terminal.

GCP contains shell commands for a wide range of GCP products such as the

Compute Engine, Cloud Storage, Cloud ML Engine, BigQuery, and Datalab, to mention

just a few. Major tools of the Cloud SDK include

• gcloud tool: Responsible for cloud authentication, configuration, and

other interactions on GCP

• gsutil tool: Responsible for interacting with Google Cloud Storage

buckets and objects

• bq tool: Used for interacting and managing Google BigQuery via the

command line

• kubectl tool: Used for managing Kubernetes container clusters on GCP

The Google Cloud SDK also installs client libraries for developers to

programmatically interact with GCP products and services through APIs.1 As of this time

of writing, the Go, Java, Node.js, Python, Ruby, PHP, and C# languages are covered. Many

more are expected to be added to this list.

This chapter works through setting up an account on GCP, installing the Google

Cloud SDK, and then exploring GCP commands using the CLI.

1 APIs stands for application programming interfaces, which are packages and tools used in
building software applications.

12

 Setting Up an Account on Google Cloud Platform
This section shows how to set up an account on Google Cloud Platform. A GCP account

gives access to all of the platform’s products and services. For a new account, a $300

credit is awarded to be spent over a period of 12 months. This offer is great as it gives

ample time to explore the different features and services of Google’s cloud offering.

Note that a valid credit card is required to register an account to validate that it is an

authentic user, as opposed to a robot. However, the credit card won’t be charged after

the trial ends, except Google is authorized to do so:

 1. Go to https://cloud.google.com/ to open an account (see

Figure 3-1).

Figure 3-1. Google Cloud Platform login page

 2. Fill in the necessary identity, address, and credit card details.

 3. Wait a moment while an account is created on the platform (see

Figure 3-2).

Chapter 3 the GooGle Cloud SdK and Web ClI

https://cloud.google.com/

13

 4. After account creation, we’re presented with the Welcome to GCP

page (see Figure 3- 3).

Figure 3-2. Creating account

Figure 3-3. Welcome to GCP

Chapter 3 the GooGle Cloud SdK and Web ClI

14

 5. Click the icon of three lines in the top-left corner of the page

(marked with a circle in Figure 3-3), then click Home (marked

with a rectangle in Figure 3-3) to open the Google Cloud Platform

dashboard (Figure 3-4).

Figure 3-4. GCP dashboard

The Cloud dashboard provides a bird’s-eye summary of the project such as the

current billing rate and other resource usage statistics. The activity tab to the right gives

a breakdown of the resource actions performed on the account. This feature is useful

when building an audit trail of events.

 GCP Resources: Projects
All the services and features of the Google Cloud Platform are called resources. These

resources are arranged in a hierarchical order, with the top level being the project.

The project is like a container that houses all GCP resources. Billing on an account is

attached to a project. Multiple projects can be created for an account. A project must be

created before working with GCP.

Chapter 3 the GooGle Cloud SdK and Web ClI

15

To view the projects in the account in Figure 3-5, click the scope picker in the cloud
console (marked with an oval in Figure 3-6).

Figure 3-5. Select projects

Figure 3-6. Scope picker to select projects

Chapter 3 the GooGle Cloud SdK and Web ClI

16

 Accessing Cloud Platform Services
To access the resources on the cloud platform, click the triple dash in the top-right

corner of the window. Grouped service offerings are used to organize the resources. For

example, in Figure 3-7, we can see the products under STORAGE: Bigtable, Datastore,

Storage, SQL, and Spanner.

Figure 3-7. Google Cloud Platform services

 Account Users and Permissions
GCP allows you to define security roles and permissions for every resource in a

specific project. This feature is particularly useful when a project scales beyond one

user. New roles and permissions are created for a user through the IAM & admin tab

(see Figures 3- 8 and 3-9).

Chapter 3 the GooGle Cloud SdK and Web ClI

17

 The Cloud Shell
The Cloud Shell is a vital component for working with GCP resources. Cloud Shell

provisions an ephemeral virtual machine with command-line tools installed for

interacting with GCP resources. It gives the user cloud-based command-line access to

manipulate resources directly from within the GCP perimeter without installing the

Google Cloud SDK on a local machine.

The Cloud Shell is accessed by clicking the prompt icon in the top-left corner of the

window. See Figures 3-9, 3-10, and 3-11.

Figure 3-8. Open IAM & admin

Figure 3-9. Activate Cloud Shell

Chapter 3 the GooGle Cloud SdK and Web ClI

18

Figure 3-10. Start Cloud Shell

Figure 3-11. Cloud Shell interface

Chapter 3 the GooGle Cloud SdK and Web ClI

19

 Google Cloud SDK
The Google Cloud SDK installs command-line tools for interacting with cloud resources

from the terminal on the local machine:

 1. Go to https://cloud.google.com/sdk/ to download and install the

appropriate Cloud SDK for your machine type (see Figure 3-12).

Figure 3-12. Download Google Cloud SDK

 2. Follow the instructions for the operating system (OS) type to

install the Google Cloud SDK. The installation installs the default

Cloud SDK components.

 3. Open the terminal application of your OS and run the command

‘gcloud init’ to begin authorization and configuration of the Cloud

SDK.

gcloud init

Welcome! This command will take you through the configuration

of gcloud.

Pick configuration to use:

 [1] Create a new configuration

Please enter your numeric choice: 1

Chapter 3 the GooGle Cloud SdK and Web ClI

https://cloud.google.com/sdk/

20

 4. Select the name for your configuration. Here, it is set to the name

‘your- email- id’.

Enter configuration name. Names start with a lower case letter and

contain only lower case letters a-z, digits 0-9, and hyphens '-':

 your- email- id

Your current configuration has been set to: [your-email-id]

 5. Select the Google account to use for the configuration. The browser

will open to log in to the selected account (see Figures 3-13, 3-14,

and 3-15). However, if a purely terminal initialization is desired, the

user can run ‘gcloud init --console-only’.

Choose the account you would like to use to perform operations for

this configuration:

 [1] Log in with a new account

Please enter your numeric choice: 1

Your browser has been opened to visit:

https://accounts.google.com/o/oauth2/auth?redirect_

uri=......=offline

Figure 3-13. Select Google account to authorize for Cloud SDK configuration

Chapter 3 the GooGle Cloud SdK and Web ClI

21

Figure 3-14. Authenticate Cloud SDK to access Google account

Chapter 3 the GooGle Cloud SdK and Web ClI

22

 6. Select the cloud project to use after the browser-based

authentication in a Google account.

You are logged in as: [your-email-id@gmail.com].

Pick cloud project to use:

 [1] secret-country-192905

 [2] Create a new project

Please enter numeric choice or text value (must exactly match list

item): 1

Your current project has been set to: [secret-country-192905].

Your Google Cloud SDK is configured and ready to use!

* Commands that require authentication will use your-email-id@

gmail.com by default

* Commands will reference project `secret-country-192905` by

default

Figure 3-15. Confirmation page for Cloud SDK authentication

Chapter 3 the GooGle Cloud SdK and Web ClI

23

Run `gcloud help config` to learn how to change individual

settings

This gcloud configuration is called [your-configuration-name].

You can create additional configurations if you work with multiple

accounts and/or projects.

Run `gcloud topic configurations` to learn more.

Some things to try next:

* Run `gcloud --help` to see the Cloud Platform services you can

interact with. And run `gcloud help COMMAND` to get help on any

gcloud command.

* Run `gcloud topic -h` to learn about advanced features of the

SDK like arg files and output formatting

The Google Cloud SDK is now configured and ready to use. The following are a few

terminal commands for managing ‘gcloud’ configurations:

• ‘gcloud auth list’: Shows accounts with GCP credentials and indicates

which account configuration is currently active.

gcloud auth list

 Credentialed Accounts

ACTIVE ACCOUNT

* your-email-id@gmail.com

To set the active account, run:

 $ gcloud config set account `ACCOUNT`

• ‘gcloud config configurations list’: List existing Cloud SDK

configurations.

gcloud config configurations list

NAME IS_ACTIVE ACCOUNT PROJECT DEFAULT_ZONE DEFAULT_REGION

your-email-id True your-email-id@gmail.com secret-

country-192905

Chapter 3 the GooGle Cloud SdK and Web ClI

24

• ‘gcloud config configurations activate [CONFIGURATION_NAME]’:

Use this command to activate a configuration.

gcloud config configurations activate your-email-id

Activated [your-email-id].

• ‘gcloud config configurations create [CONFIGURATION_NAME]’:

Use this command to create a new configuration.

This chapter covers how to set up command-line access for interacting with GCP

resources. This includes working with the web-based Cloud Shell and installing the

Cloud SDK to access GCP resources via the terminal on the local machine.

In the next chapter, we’ll introduce Google Cloud Storage (GCS) for storing

ubiquitous data assets on GCP.

Chapter 3 the GooGle Cloud SdK and Web ClI

25
© Ekaba Bisong 2019
E. Bisong, Building Machine Learning and Deep Learning Models on Google Cloud Platform,
https://doi.org/10.1007/978-1-4842-4470-8_4

CHAPTER 4

Google Cloud Storage
(GCS)
Google Cloud Storage is a product for storing a wide range of diverse data objects.

Cloud storage may be used to store both live and archival data. It has guarantees of

scalability (can store increasingly large data objects), consistency (the most updated

version is served on request), durability (data is redundantly placed in separate

geographic locations to eliminate loss), and high availability (data is always available and

accessible).

Let’s take a brief tour through creating and deleting a storage bucket, as well as

uploading and deleting files from a cloud storage bucket.

 Create a Bucket
A bucket, as the name implies, is a container for storing data objects on GCP. A bucket is

the base organizational structure on Cloud Storage. It is similar to the topmost directory

on a file system. Buckets may have a hierarchy of sub-folders containing data assets.

To create a bucket,

 1. Click ‘Create bucket’ on the cloud storage dashboard as shown in

Figure 4-1.

 2. Give the bucket a unique name (see Figure 4-2). Buckets in

GCP must have a global unique name. That is to say, no two

storage buckets on Google Cloud can have the same name. A

common naming convention for buckets is to prefix with your

organization’s domain name.

26

 3. Select a storage class. A multi-region storage class is for buckets

frequently accessed all over the world, whereas the cold-line

storage is more or less for storing backup files. For now, the default

selection is okay.

 4. Click ‘Create’ to set up a bucket on Google Cloud Storage.

Figure 4-1. Cloud Storage Console

Chapter 4 GooGle Cloud StoraGe (GCS)

27

 Uploading Data to a Bucket
Individual files or folders can be uploaded into a bucket on GCS. As an example, let’s

upload a file from the local machine.

To upload a file to a cloud storage bucket on GCP,

 1. Click ‘UPLOAD FILES’ within the red highlight in Figure 4-3.

 2. Select the file from the file upload window, and click ‘Open’ as

shown in Figure 4-4.

 3. Upon upload completion, the file is uploaded as an object in GCS

bucket (see Figure 4-5).

Figure 4-2. Create a bucket

Chapter 4 GooGle Cloud StoraGe (GCS)

28

Figure 4-3. An empty bucket

Figure 4-4. Upload an object

Chapter 4 GooGle Cloud StoraGe (GCS)

29

Figure 4-5. Upload successful

Chapter 4 GooGle Cloud StoraGe (GCS)

30

 Free Up Storage Resource
To delete a bucket or free up a storage resource to prevent billing on a resource that is not

used, click the checkbox beside the bucket in question, and click ‘DELETE’ to remove

the bucket and its contents. This action is not recoverable. See Figures 4-7 and 4-8.

Figure 4-6. Delete a file

 Delete Objects from a Bucket
Click the checkbox beside the file and click ‘DELETE’ as shown in Figure 4-6 to delete an

object from a bucket.

Chapter 4 GooGle Cloud StoraGe (GCS)

31

Figure 4-7. Select bucket to delete

Figure 4-8. Delete bucket

Chapter 4 GooGle Cloud StoraGe (GCS)

32

 Working with GCS from the Command Line
In this section, we’ll carry out similar commands for creating and deleting buckets and

objects on GCS from the command-line interface.

• Creating a bucket: To create a bucket, execute the command

gsutil mb gs://[BUCKET_NAME]

As an example, we’ll create a bucket titled ‘hwosa_09_docs’.

gsutil mb gs://hwosa_09_docs

Creating gs://hwosa_09_docs/...

List buckets on GCP project.

gsutil ls

gs://hwosa_09_docs/

gs://my-first-bucket-ieee-carleton/

• Uploading objects to cloud bucket: To transfer objects from a local

directory to the cloud bucket, execute the command

gsutil cp -r [LOCAL_DIR] gs://[DESTINATION BUCKET]

Copy an image file from the desktop to a bucket on GCP.

gsutil cp -r /Users/ekababisong/Desktop/Howad.jpeg

gs://hwosa_09_docs/

Copying file:///Users/ekababisong/Desktop/Howad.jpeg

[Content-Type=image/jpeg]...

- [1 files][49.8 KiB/ 49.8 KiB]

Operation completed over 1 objects/49.8 KiB.

List objects in bucket.

gsutil ls gs://hwosa_09_docs

gs://hwosa_09_docs/Howad.jpeg

Chapter 4 GooGle Cloud StoraGe (GCS)

33

• Deleting objects from the cloud bucket: To delete a specific file from

the bucket, execute

gsutil rm -r gs://[SOURCE_BUCKET]/[FILE_NAME]

To delete all files from the bucket, execute

gsutil rm -a gs://[SOURCE_BUCKET]/**

As an example, let’s delete the image file in the bucket ‘gs://hwosa_09_docs’.

gsutil rm -r gs://hwosa_09_docs/Howad.jpeg

Removing gs://hwosa_09_docs/Howad.jpeg#1537539161893501...

/ [1 objects]

Operation completed over 1 objects.

• Deleting a bucket: When a bucket is deleted, all the files within that

bucket are also deleted. This action is irreversible. To delete a bucket,

execute the command

gsutil rm -r gs://[SOURCE_BUCKET]/

Delete the bucket ‘gs://hwosa_09_docs’

gsutil rm -r gs://hwosa_09_docs/

Removing gs://hwosa_09_docs/...

This chapter works through uploading and deleting data from Google Cloud Storage

using the Cloud GUI console and command-line tools.

In the next chapter, we will introduce Google Compute Engines, which are virtual

machines running on Google’s distributed data centers and are connected via state-of-

the-art fiber optic network. These machines are provisioned to lower the cost and speed

up the processing of computing workloads.

Chapter 4 GooGle Cloud StoraGe (GCS)

35
© Ekaba Bisong 2019
E. Bisong, Building Machine Learning and Deep Learning Models on Google Cloud Platform,
https://doi.org/10.1007/978-1-4842-4470-8_5

CHAPTER 5

Google Compute Engine
(GCE)
Google Compute Engine (GCE) makes available to users virtual machines (VMs) that are

running on Google’s data centers around the world. These machines take advantage of

Google’s state-of-the-art fiber optic powered network capabilities to offer fast and high-

performance machines that can scale based on usage and automatically deal with issues

of load balancing.

GCE provides a variety of pre-defined machine types for use out of the box; also it

has the option to create custom machines that are tailored to the specific needs of the

user. Another major feature of GCE is the ability to use computing resources that are

currently idle on Google infrastructure for a short period of time to enhance or speed up

the processing capabilities of batch jobs or fault-tolerant workloads. These machines are

called preemptible VMs and come at a huge cost-benefit to the user as they are about

80% cheaper than regular machines.

Again one of the major benefits of GCEs is that the user only pays for the time

the machines are actually in operation. Also, when the machines are used for a long

uninterrupted period of time, discounts are accrued to the prices.

In this chapter, we will go through a simple example of provisioning and tearing

down a Linux machine on the cloud. The examples will cover using the Google Cloud

web interface and the command-line interface for creating VMs on GCP.

 Provisioning a VM Instance
To deploy a VM instance, click the triple dash in the top-left corner of the web page to

pull out the GCP resources drawer. In the group named ‘COMPUTE’, click the arrow

beside ‘Compute Engine’ and select ‘VM instances’ as shown in Figure 5-1.

36

Click ‘Create’ to begin the process of deploying a VM instance (see Figure 5-2).

Figure 5-1. Select VM instances

Chapter 5 GooGle Compute enGine (GCe)

37

Figure 5-2. Begin process of deploying a VM instance

Chapter 5 GooGle Compute enGine (GCe)

38

The labeled numbers in Figure 5-3 are explained here:

 1. Choose the instance name. This name must start with a lowercase

letter and can include numbers or hyphens, but should not end

with a hyphen.

 2. Select the instance region and zone. This is the geographical

region where your computing instance is located, while the zone

is a location within a region.

 3. Select the machine type. This allows for customization of the

cores, memory, and GPUs for the VM (see Figure 5-4).

Figure 5-3. Options for creating an instance

Chapter 5 GooGle Compute enGine (GCe)

39

 4. Select the boot disk. This option selects a disk to boot from. This

disk could be created from an OS image, an application image, a

custom image, or a snapshot of an image (see Figure 5-5).

Figure 5-4. Select machine type

Chapter 5 GooGle Compute enGine (GCe)

40

 5. Select ‘Allow HTTP traffic’ to allow network traffic from the

Internet as shown in Figure 5-6.

Figure 5-5. Select boot disk

Chapter 5 GooGle Compute enGine (GCe)

41

 6. Click ‘Create’ in Figure 5-6 to deploy the VM instance.

 Connecting to the VM Instance
In the VM instances page that lists the created VMs, click ‘SSH’ beside the created

instance as shown in Figure 5-7. This launches a new window with terminal access to the

created VM as shown in Figures 5-8 and 5-9.

Figure 5-6. Allow network traffic to VM

Chapter 5 GooGle Compute enGine (GCe)

42

Figure 5-7. SSH into VM instances

Chapter 5 GooGle Compute enGine (GCe)

43

Figure 5-8. Connecting to VM instances via SSH

Chapter 5 GooGle Compute enGine (GCe)

44

 Tearing Down the Instance
It is good practice to delete compute instances that are no longer in use to save cost for

utilizing GCP resources. To delete a compute instance, on the ‘VM instances’ page, select

the instance for deletion and click ‘DELETE’ (in red) as shown in Figure 5-10.

Figure 5-9. Terminal window access to the instance

Chapter 5 GooGle Compute enGine (GCe)

45

 Working with GCE from the Command Line
In this section, we’ll sample the commands for creating and deleting a compute instance

on GCP using the command-line interface. To create a compute instance using ‘gcloud’

from the command-line interface, there are a variety of options that can be added to the

commands for different specifications of the machine. To learn more about a command,

attach ‘help’ after the command:

• Provisioning a VM instance: To create a VM instance, use the code

syntax

gcloud compute instances create [INSTANCE_NAME]

For example, let’s create an instance named ‘ebisong-howad-instance’

gcloud compute instances create ebisong-howad-instance

Figure 5-10. Delete the VM instance

Chapter 5 GooGle Compute enGine (GCe)

46

Created [https://www.googleapis.com/compute/v1/projects/secret-

country- 192905/zones/us-east1-b/instances/ebisong-howad-instance].

NAME ZONE MACHINE_TYPE PREEMPTIBLE

INTERNAL_IP EXTERNAL_IP STATUS

ebisong-howad-instance us-east1-b n1-standard-1

10.142.0.2 35.196.17.39 RUNNING

To learn more of the options that can be included with the ‘gcloud instance

create’ command, run

gcloud compute instances create –help

NAME

 gcloud compute instances create - create Google Compute Engine

virtual

 machine instances

SYNOPSIS

 gcloud compute instances create INSTANCE_NAMES [INSTANCE_

NAMES ...]

 [--accelerator=[count=COUNT],[type=TYPE]] [--async]

 [--no-boot-disk-auto-delete]

 [--boot-disk-device-name=BOOT_DISK_DEVICE_NAME]

 [-- boot-disk-size=BOOT_DISK_SIZE] [--boot-disk-type=BOOT_

DISK_TYPE]

 [--can-ip-forward] [--create-disk=[PROPERTY=VALUE,...]]

 [--csek-key-file=FILE] [--deletion-protection]

 [--description=DESCRIPTION]

 [--disk=[auto-delete=AUTO-DELETE],

 [boot=BOOT],[device-name=DEVICE-NAME],[mode=MODE],

[name=NAME]]

 [--labels=[KEY=VALUE,...]]

 [--local-ssd=[device-name=DEVICE-NAME],[interface=INTERFACE]]

 [-- machine-type=MACHINE_TYPE] [--maintenance-

policy=MAINTENANCE_POLICY]

 [--metadata=KEY=VALUE,[KEY=VALUE,...]]

 [--metadata-from-file=KEY=LOCAL_FILE_PATH,[...]]

Chapter 5 GooGle Compute enGine (GCe)

47

 [--min-cpu-platform=PLATFORM] [--network=NETWORK]

 [--network-interface=[PROPERTY=VALUE,...]]

 [--network-tier=NETWORK_TIER] [--preemptible]

 [--private-network-ip=PRIVATE_NETWORK_IP]

:

To exit from the help page, type ‘q’ and then press the ‘Enter’ key on the

keyboard.

To list the created instances, run

gcloud compute instances list

NAME ZONE MACHINE_TYPE PREEMPTIBLE

INTERNAL_IP EXTERNAL_IP STATUS

ebisong-howad-instance us-east1-b n1-standard-1

10.142.0.2 35.196.17.39 RUNNING

• Connecting to the instance: To connect to a created VM instance

using SSH, run the command

gcloud compute ssh [INSTANCE_NAME]

For example, to connect to the ‘ebisong-howad-instance’ VM, run the

command

gcloud compute ssh ebisong-howad-instance

Warning: Permanently added 'compute.8493256679990250176' (ECDSA)

to the list of known hosts.

Linux ebisong-howad-instance 4.9.0-8-amd64 #1 SMP Debian

4.9.110-3+deb9u4 (2018-08-21) x86_64

The programs included with the Debian GNU/Linux system are free

software;

the exact distribution terms for each program are described in the

individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent

permitted by applicable law.

ekababisong@ebisong-howad-instance:~$

Chapter 5 GooGle Compute enGine (GCe)

48

• To leave the instance on the terminal, type ‘exit’ and then press the

‘Enter’ key on the keyboard.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent

permitted by applicable law.

ekababisong@ebisong-howad-instance:~$ exit

logout

Connection to 35.196.17.39 closed.

• Tearing down the instance: To delete an instance, run the command

gcloud compute instances delete [INSTANCE_NAME]

Using our example, to delete the ‘ebisong-howad-instance’ VM, run the

command

gcloud compute instances delete ebisong-howad-instance

The following instances will be deleted. Any attached disks

configured to be auto-deleted will be deleted unless they are

attached to any other instances or the `--keep-disks` flag

is given and specifies them for keeping. Deleting a disk is

irreversible and any data on the disk will be lost.

 - [ebisong-howad-instance] in [us-east1-b]

Do you want to continue (Y/n)? Y

Deleted [https://www.googleapis.com/compute/v1/projects/secret-

country- 192905/zones/us-east1-b/instances/ebisong-howad-instance].

This chapter went through the step for launching a compute machine instance on

GCP. It covered working with the web-based cloud console and using commands via the

shell terminal.

In the next chapter, we’ll discuss how to launch a Jupyter notebook instance on GCP

called JupyterLab. A notebook provides an interactive environment for analytics, data

science, and prototyping machine learning models.

Chapter 5 GooGle Compute enGine (GCe)

49
© Ekaba Bisong 2019
E. Bisong, Building Machine Learning and Deep Learning Models on Google Cloud Platform,
https://doi.org/10.1007/978-1-4842-4470-8_6

CHAPTER 6

JupyterLab Notebooks
Google deep learning virtual machines (VMs) are a part of GCP AI Platform. It provisions

a Compute Engine instance that comes pre-configured with the relevant software

packages for carrying out analytics and modeling tasks. It also makes available high-

performance computing TPU and GPU processing capabilities at a single click. These

VMs expose a JupyterLab notebook environment for analyzing data and designing

machine learning models.

In this chapter, we’ll launch a JupyterLab notebook instance using the web-based

console and the command line.

 Provisioning a Notebook Instance
The following steps provide a walk-through for deploying a Notebook instance on a deep

learning VM:

 1. In the group named ‘ARTIFICIAL INTELLIGENCE’ on the GCP

resources drawer, click the arrow beside ‘AI Platform’ and select

‘Notebooks’ as shown in Figure 6-1.

50

 2. Click ‘NEW INSTANCE’ to initiate a notebook instance as shown

in Figure 6-2; there is an option to customize your instance or

to use one of the pre-configured instances with TensorFlow,

PyTorch, or RAPIDS XGBoost installed.

Figure 6-1. Open Notebooks on GCP AI Platform

Figure 6-2. Start a new Notebook instance

Chapter 6 JupyterLab Notebooks

51

 3. For this example, we will create a Notebook instance pre-

configured with TensorFlow 2.0 (see Figure 6-3).

 4. Click ‘OPEN JUPYTERLAB’ to launch the JupyterLab notebook

instance in a new window (see Figure 6-4).

Figure 6-3. Start a new Notebook instance

Figure 6-4. Open JupyterLab

Chapter 6 JupyterLab Notebooks

52

 5. From the JupyterLab Launcher in Figure 6-5, options exist to open

a Python notebook, a Python interactive shell, a bash terminal,

a text file, or a Tensorboard dashboard (more on Tensorboard in

Part 6).

 6. Open a Python 3 Notebook (see Figure 6-6). We’ll work with

Python notebooks in later chapters to carry out data science tasks.

Figure 6-5. JupyterLab Launcher

Chapter 6 JupyterLab Notebooks

53

 Shut Down/Delete a Notebook Instance
The following steps provide a walk-through for shutting down and deleting a Notebook

instance:

 1. From the ‘Notebook instances’ dashboard, click ‘STOP’ to shut

down the instance when not in use so as to save compute costs on

GCP (see Figure 6-7).

Figure 6-6. Python 3 Notebook

Figure 6-7. Stop Notebook instance

Chapter 6 JupyterLab Notebooks

54

 2. When the instance is no longer needed, click ‘DELETE’ to

permanently remove the instance. Note that this option is non-

recoverable (see Figure 6-8).

 Starting a Notebook Instance from the Command
Line
In this section, we’ll examine how the command line is used to launch and shut down a

pre-configured deep learning VM integrated with JupyterLab.

Create a Datalab instance: To create a Notebook instance, execute the code

export IMAGE_FAMILY="tf-latest-cpu-experimental"

export ZONE="us-west1-b"

export INSTANCE_NAME="my-instance"

Figure 6-8. Delete a Notebook instance

Chapter 6 JupyterLab Notebooks

55

gcloud compute instances create $INSTANCE_NAME \

 --zone=$ZONE \

 --image-family=$IMAGE_FAMILY \

 --image-project=deeplearning-platform-release

where

• --image-family can be any of the available images supported by

Google Deep Learning VM; "tf-latest-cpu-experimental"

launches an image with TensorFlow 2.0 pre-configured.

• --image-project must be set to deeplearning-platform-release

Here’s the output when the instance is created:

Created [https://www.googleapis.com/compute/v1/projects/ekabasandbox/zones/

us-west1-b/instances/my-instance].

NAME ZONE MACHINE_TYPE PREEMPTIBLE INTERNAL_IP

EXTERNAL_IP STATUS

my-instance us-west1-b n1-standard-1 10.138.0.6

34.83.90.154 RUNNING

Connect to the instance: To connect to JupyterLab running on the instance, run the

command

export INSTANCE_NAME="my-instance"

gcloud compute ssh $INSTANCE_NAME -- -L 8080:localhost:8080

Then on your local machine, visit http://localhost:8080 in your browser

(see Figure 6-9).

Chapter 6 JupyterLab Notebooks

56

Stop the instance: To stop the instance, run the following command from your local

terminal (not on the instance):

gcloud compute instances stop $INSTANCE_NAME

Stopping instance(s) my-instance...done.

Updated [https://www.googleapis.com/compute/v1/projects/ekabasandbox/zones/

us-west1-b/instances/my-instance].

Delete the instance: The Notebook instance is basically a Google Compute Engine.

Hence, the instance is deleted the same way a Compute Engine VM is deleted.

gcloud compute instances delete $INSTANCE_NAME

The following instances will be deleted. Any attached disks configured

 to be auto-deleted will be deleted unless they are attached to any

other instances or the `--keep-disks` flag is given and specifies them

 for keeping. Deleting a disk is irreversible and any data on the disk

 will be lost.

 - [my-instance] in [us-west1-b]

Figure 6-9. JupyterLab instance launched from terminal

Chapter 6 JupyterLab Notebooks

57

Do you want to continue (Y/n)? Y

Deleted [https://www.googleapis.com/compute/v1/projects/ekabasandbox/zones/

us-west1-b/instances/my-instance].

This chapter introduces Jupyter notebooks running on Google Deep Learning VMs

for interactive programming of data science tasks and prototyping deep learning and

machine learning models.

In the next chapter, we will introduce another product for programming and rapid

prototyping of learning models called Google Colaboratory.

Chapter 6 JupyterLab Notebooks

59
© Ekaba Bisong 2019
E. Bisong, Building Machine Learning and Deep Learning Models on Google Cloud Platform,
https://doi.org/10.1007/978-1-4842-4470-8_7

CHAPTER 7

Google Colaboratory
Google Colaboratory more commonly referred to as “Google Colab” or just simply

“Colab” is a research project for prototyping machine learning models on powerful

hardware options such as GPUs and TPUs. It provides a serverless Jupyter notebook

environment for interactive development. Google Colab is free to use like other G Suite

products.

 Starting Out with Colab
The following steps provide a walk-through for launching a Notebook on Google Colab:

 1. Go to https://colab.research.google.com/ and log in using

your existing Google account to access the Colab homepage

(see Figure 7-1).

https://colab.research.google.com/

60

 2. Open a Python 3 Notebook (see Figure 7-2).

Figure 7-1. Google Colab homepage

Figure 7-2. Python 3 Notebook

Chapter 7 GooGle Colaboratory

61

 Change Runtime Settings
The following steps provide a walk-through for changing the Notebook runtime settings:

 1. Go to Runtime ➤ Change runtime type (see Figure 7-3).

Figure 7-3. Python 3 Notebook

Chapter 7 GooGle Colaboratory

62

 Storing Notebooks
Notebooks on Colab are stored on Google Drive. They can also be saved to GitHub or

published as a GitHub Gist. They can also be downloaded to the local machine.

Figure 7-5 highlights the options for storing Jupyter notebooks running on Google

Colab.

Figure 7-4. Change runtime

 2. Here, the options exist to change the Python runtime and

hardware accelerator to a GPU or TPU (see Figure 7-4).

Chapter 7 GooGle Colaboratory

63

Figure 7-5. Storing Notebooks

Chapter 7 GooGle Colaboratory

64

This chapter introduces Google Colaboratory as an alternative platform to quickly

spin up a high-performance computing infrastructure running Jupyter notebooks for

rapid data science and data modeling tasks.

This is the last chapter in Part 1 on “Getting Started with Google Cloud Platform.” In

Part 2, containing Chapters 8–12, we will go over the fundamentals of “Programming for

Data Science.” The code samples in the ensuing chapters can be executed either using

Jupyter notebooks running on Google Deep Learning VMs or running on Google Colab.

The advantage of working with Google Colab is that you do not need to log into

the Google Cloud Console and it is free to use. When security and privacy are not a

premium, Google Colab is a good option for modeling as it saves computing cost as far

as data science and machine learning prototyping is concerned.

Figure 7-6. Opening Notebooks

 Uploading Notebooks
Notebooks can be uploaded from Google Drive, GitHub, or the local machine (see

Figure 7-6).

Chapter 7 GooGle Colaboratory

PART II

Programming
Foundations for Data
Science

67
© Ekaba Bisong 2019
E. Bisong, Building Machine Learning and Deep Learning Models on Google Cloud Platform,
https://doi.org/10.1007/978-1-4842-4470-8_8

CHAPTER 8

What Is Data Science?
Data science encompasses the tools and techniques for extracting information from

data. Data science techniques draw extensively from the field of mathematics, statistics,

and computation. However, data science is now encapsulated into software packages

and libraries, thus making them easily accessible and consumable by the software

development and engineering communities. This is a major factor to the rise of

intelligence capabilities now integrated as a major staple in software products across all

sorts of domains.

This chapter will discuss broadly on the opportunities for data science and big

data analytics integration as part of the transformation portfolio of businesses and

institutions and give an overview on the data science process as a reusable template for

fulfilling data science projects.

 The Challenge of Big Data
Due to the expansion of data at the turn of the twenty-first century epitomized by the

so-called 3Vs of big data, which are volume, velocity, and variety. Volume refers to the

increasing size of data, velocity the speed at which data is acquired, and variety the

diverse types of data that are available. For others, this becomes 5Vs with the inclusion

of value and veracity to mean the usefulness of data and the truthfulness of data,

respectively. We have observed data volume blowout from the megabyte (MB) to the

terabyte (TB) scale and now exploding past the petabyte (PB). We have to find new

and improved means of storing and processing this ever-increasing dataset. Initially,

this challenge of storage and data processing was addressed by the Hadoop ecosystem

and other supporting frameworks, but even these have become expensive to manage

and scale, and this is why there is a pivot to cloud-managed, elastic, secure, and

high- availability data storage and processing capabilities.

68

On the other hand, for most applications and business use cases, there is a need to

carry out real-time analysis on data due to the vast amount of data created and available

at a given moment. Previously, getting insights from data and unlocking value had

been down to traditional analysis on batch data workloads using statistical tools such

as Excel, Minitab, or SPSS. But in the era of big data, this is changing, as more and more

businesses and institutions want to understand the information in their data at a real-

time or at worst near real-time pace.

Another vertical to the big data conundrum is that of variety. Formerly, a pre-defined

structure had to be imposed on data in order to easily store them as well as make it

easy for data analysis. However, a wide diversity of datasets are now collected and

stored such as spatial maps, image data, video data, audio data, text data from emails

and other documents, and sensor data. As a matter of fact, a far larger amount of

datasets in the wild are unstructured. This led to the development of unstructured

or semi-structured databases such as Elasticsearch, Solr, HBase, Cassandra, and

MongoDB, to mention just a few.

 The Data Science Opportunity
In the new age, where data has inevitably and irreversibly become the new gold, the

greatest needs of organizations are the skills required for data governance and analytics

to unlock intelligence and value from data as well as the expertise to develop and

productionize enterprise data products. This has led to new roles within the data science

umbrella such as

• Data analysts/scientist who specialize in mining intelligence

from data using statistical techniques and computational tools by

understanding the business use case

• Data engineers/architects who specialize in architecting and

managing the infrastructure for efficient big data pipelines by

ensuring that the data platform is redundant, scalable, secure, and

highly available

• Machine learning engineers who specialize in designing and

developing machine learning algorithms as well as incorporating

them into production systems for online or batch prediction services

Chapter 8 What Is Data sCIenCe?

69

 The Data Science Process
The data science process involves components for data ingestion and serving of data

models. However, we will discuss briefly on the steps for carrying out data analytics in

lieu of data prediction modeling.

These steps consist of

 1. Data summaries: The vital statistical summaries of the datasets’

variables or features. This includes information such as the

number of variables, their data types, the number of observations,

and the count/percentage of missing data.

 2. Data visualization: This involves employing univariate and

multivariate data visualization methods to get a better intuition

on the properties of the data variables and their relationship with

each other. This includes metrics such as histograms, box and

whisker plots, and correlation plots.

 3. Data cleaning/preprocessing: This process involves sanitizing the

data to make it amenable for modeling. Data rarely comes clean

with each row representing an observation and each column an

entity. In this phase of a data science effort, the tasks involved

may include removing duplicate entries, choosing a strategy for

dealing with missing data, as well as converting

data features into numeric data types of encoded categories.

This phase may also involve carrying out statistical transformation

on the data features to normalize and/or standardize the data

elements. Data features of wildly differing scales can lead to poor

model results as they become more difficult for the learning

algorithm to converge to the global minimum.

 4. Feature engineering: This practice involves systematically pruning

the data feature space to only select those features relevant to the

modeling problem as part of the model task.

Good feature engineering is often the difference between an

average and high performant model.

Chapter 8 What Is Data sCIenCe?

70

 5. Data modeling and evaluation: This phase involves passing the

data through a learning algorithm to build a predictive model.

This process is usually an iterative process that involves constant

refinement in order to build a model that better minimizes the

cost function on the hold-out validation set and the test set.

In this chapter, we provided a brief overview to the concept of data science, the

challenge of big data, and its goal to unlock value from data. The next chapter will

provide an introduction to programming with Python.

Chapter 8 What Is Data sCIenCe?

71
© Ekaba Bisong 2019
E. Bisong, Building Machine Learning and Deep Learning Models on Google Cloud Platform,
https://doi.org/10.1007/978-1-4842-4470-8_9

CHAPTER 9

Python
Python is one of the preferred languages for data science in the industry primarily

because of its simple syntax and the number of reusable machine learning/deep

learning packages. These packages make it easy to develop data science products

without getting bogged down with the internals of a particular algorithm or method.

They have been written, debugged, and tested by the best experts in the field, as well as

by a large supporting community of developers that contribute their time and expertise

to maintain and improve them.

In this section, we will go through the foundations of programming with Python 3.

This section forms a framework for working with higher-level packages such as NumPy,

Pandas, Matplotlib, TensorFlow, and Keras. The programming paradigm we will cover

in this chapter can be easily adapted or applied to similar languages, such as R, which is

also commonly used in the data science industry.

The best way to work through this chapter and the successive chapters in this part is to

work through the code by executing them on Google Colab or GCP Deep Learning VMs.

 Data and Operations
Fundamentally, programming involves storing data and operating on that data to

generate information. Techniques for efficient data storage are studied in the field called

data structures, while the techniques for operating on data are studied as algorithms.

Data is stored in a memory block on the computer. Think of a memory block as a

container holding data (Figure 9-1). When data is operated upon, the newly processed

data is also stored in memory. Data is operated by using arithmetic and boolean

expressions and functions.

72

In programming, a memory location is called a variable. A variable is a container

for storing the data that is assigned to it. A variable is usually given a unique name by

the programmer to represent a particular memory cell. In python, variable names are

programmer defined, but it must follow a valid naming condition of only alphanumeric

lowercase characters with words separated by an underscore. Also, a variable name

should have semantic meaning to the data that is stored in that variable. This helps to

improve code readability later in the future.

The act of placing data to a variable is called assignment.

assigning data to a variable

x = 1

user_name = 'Emmanuel Okoi'

 Data Types
Python has the number and string data types in addition to other supported specialized

datatypes. The number datatype, for instance, can be an int or a float. Strings are

surrounded by quotes in Python.

data types

type(3)

'Output': int

type(3.0)

'Output': float

Figure 9-1. An illustration of a memory cell holding data

Chapter 9 python

73

type('Jesam Ujong')

'Output': str

Other fundamental data types in Python include the lists, tuple, and dictionary.

These data types hold a group of items together in sequence. Sequences in Python are

indexed from 0.

Tuples are an immutable ordered sequence of items. Immutable means the data

cannot be changed after being assigned. Tuple can contain elements of different types.

Tuples are surrounded by brackets (…).

my_tuple = (5, 4, 3, 2, 1, 'hello')

type(my_tuple)

'Output': tuple

my_tuple[5] # return the sixth element (indexed from 0)

'Output': 'hello'

my_tuple[5] = 'hi' # we cannot alter an immutable data type

Traceback (most recent call last):

 File "<ipython-input-49-f0e593f95bc7>", line 1, in <module>

 my_tuple[5] = 'hi'

TypeError: 'tuple' object does not support item assignment

Lists are very similar to tuples, only that they are mutable. This means that list elements

can be changed after being assigned. Lists are surrounded by square brackets […].

my_list = [4, 8, 16, 32, 64]

print(my_list) # print list items to console

'Output': [4, 8, 16, 32, 64]

my_list[3] # return the fourth list element (indexed from 0)

'Output': 32

my_list[4] = 256

print(my_list)

'Output': [4, 8, 16, 32, 256]

Dictionaries contain a mapping from keys to values. A key/value pair is an item in a

dictionary. The items in a dictionary are indexed by their keys. The keys in a dictionary

can be any hashable datatype (hashing transforms a string of characters into a key to

speed up search). Values can be of any datatype. In other languages, a dictionary is

Chapter 9 python

74

analogous to a hash table or a map. Dictionaries are surrounded by a pair of braces {…}.

A dictionary is not ordered.

my_dict = {'name':'Rijami', 'age':42, 'height':72}

my_dict # dictionary items are un-ordered

'Output': {'age': 42, 'height': 72, 'name': 'Rijami'}

my_dict['age'] # get dictionary value by indexing on keys

'Output': 42

my_dict['age'] = 35 # change the value of a dictionary item

my_dict['age']

'Output': 35

 More on Lists
As earlier mentioned, because list items are mutable, they can be changed, deleted, and

sliced to produce a new list.

my_list = [4, 8, 16, 32, 64]

my_list

'Output': [4, 8, 16, 32, 64]

my_list[1:3] # slice the 2nd to 4th element (indexed from 0)

'Output': [8, 16]

my_list[2:] # slice from the 3rd element (indexed from 0)

'Output': [16, 32, 64]

my_list[:4] # slice till the 5th element (indexed from 0)

'Output': [4, 8, 16, 32]

my_list[-1] # get the last element in the list

'Output': 64

min(my_list) # get the minimum element in the list

'Output': 4

max(my_list) # get the maximum element in the list

'Output': 64

sum(my_list) # get the sum of elements in the list

'Output': 124

my_list.index(16) # index(k) - return the index of the first occurrence of

item k in the list

'Output': 2

Chapter 9 python

75

When modifying a slice of elements in the list, the right-hand side can be of any

length depending that the left-hand size is not a single index.

modifying a list: extended index example

my_list[1:4] = [43, 59, 78, 21]

my_list

'Output': [4, 43, 59, 78, 21, 64]

my_list = [4, 8, 16, 32, 64] # re-initialize list elements

my_list[1:4] = [43]

my_list

'Output': [4, 43, 64]

modifying a list: single index example

my_list[0] = [1, 2, 3] # this will give a list-on-list

my_list

'Output': [[1, 2, 3], 43, 64]

my_list[0:1] = [1, 2, 3] # again - this is the proper way to extend lists

my_list

'Output': [1, 2, 3, 43, 64]

Some useful list methods include

my_list = [4, 8, 16, 32, 64]

len(my_list) # get the length of the list

'Output': 5

my_list.insert(0,2) # insert(i,k) - insert the element k at index i

my_list

'Output': [2, 4, 8, 16, 32, 64]

my_list.remove(8) # remove(k) - remove the first occurrence of element k in

the list

my_list

'Output': [2, 4, 16, 32, 64]

my_list.pop(3) # pop(i) - return the value of the list at index i

'Output': 32

my_list.reverse() # reverse in-place the elements in the list

my_list

'Output': [64, 16, 4, 2]

Chapter 9 python

76

my_list.sort() # sort in-place the elements in the list

my_list

'Output': [2, 4, 16, 64]

my_list.clear() # clear all elements from the list

my_list

'Output': []

The append() method adds an item (could be a list, string, or number) to the end of a

list. If the item is a list, the list as a whole is appended to the end of the current list.

my_list = [4, 8, 16, 32, 64] # initial list

my_list.append(2) # append a number to the end of list

my_list.append('wonder') # append a string to the end of list

my_list.append([256, 512]) # append a list to the end of list

my_list

'Output': [4, 8, 16, 32, 64, 2, 'wonder', [256, 512]]

The extend() method extends the list by adding items from an iterable. An iterable

in Python are objects that have special methods that enable you to access elements from

that object sequentially. Lists and strings are iterable objects. So extend() appends all

the elements of the iterable to the end of the list.

my_list = [4, 8, 16, 32, 64]

my_list.extend(2) # a number is not an iterable

Traceback (most recent call last):

 File "<ipython-input-24-092b23c845b9>", line 1, in <module>

 my_list.extend(2)

TypeError: 'int' object is not iterable

my_list.extend('wonder') # append a string to the end of list

my_list.extend([256, 512]) # append a list to the end of list

my_list

'Output': [4, 8, 16, 32, 64, 'w', 'o', 'n', 'd', 'e', 'r', 256, 512]

We can combine a list with another list by overloading the operator +.

my_list = [4, 8, 16, 32, 64]

my_list + [256, 512]

'Output': [4, 8, 16, 32, 64, 256, 512]

Chapter 9 python

77

 Strings
Strings in Python are enclosed by a pair of single quotes (‘ … ’). Strings are immutable.

This means they cannot be altered when assigned or when a string variable is created.

Strings can be indexed like a list as well as sliced to create new lists.

my_string = 'Schatz'

my_string[0] # get first index of string

'Output': 'S'

my_string[1:4] # slice the string from the 2nd to the 5th element

(indexed from 0)

'Output': 'cha'

len(my_string) # get the length of the string

'Output': 6

my_string[-1] # get last element of the string

'Output': 'z'

We can operate on string values with the boolean operators.

't' in my_string

'Output': True

't' not in my_string

'Output': False

't' is my_string

'Output': False

't' is not my_string

'Output': True

't' == my_string

'Output': False

't' != my_string

'Output': True

We can concatenate two strings to create a new string using the overloaded operator +.

a = 'I'

b = 'Love'

c = 'You'

Chapter 9 python

78

a + b + c

'Output': 'ILoveYou'

let's add some space

a + ' ' + b + ' ' + c

 Arithmetic and Boolean Operations
This section introduces operators for programming arithmetic and logical constructs.

 Arithmetic Operations
In Python, we can operate on data using familiar algebra operations such as addition +,

subtraction -, multiplication *, division /, and exponentiation **.

2 + 2 # addition

'Output': 4

5 - 3 # subtraction

'Output': 2

4 * 4 # multiplication

'Output': 16

10 / 2 # division

'Output': 5.0

2**4 / (5 + 3) # use brackets to enforce precedence

'Output': 2.0

 Boolean Operations
Boolean operations evaluate to True or False. Boolean operators include the comparison

and logical operators. The comparison operators include less than or equal to <=, less

than <, greater than or equal to >=, greater than >, not equal to !=, and equal to ==.

2 < 5

'Output': True

2 <= 5

'Output': True

Chapter 9 python

79

2 > 5

'Output': False

2 >= 5

'Output': False

2 != 5

'Output': True

2 == 5

'Output': False

The logical operators include Boolean NOT (not), Boolean AND (and), and Boolean

OR (or). We can also carry out identity and membership tests using

• is, is not (identity)

• in, not in (membership)

a = [1, 2, 3]

2 in a

'Output': True

2 not in a

'Output': False

2 is a

'Output': False

2 is not a

'Output': True

 The print() Statement
The print() statement is a simple way to show the output of data values to the console.

Variables can be concatenated using the comma. Space is implicitly added after the

comma.

a = 'I'

b = 'Love'

c = 'You'

print(a, b, c)

'Output': I Love You

Chapter 9 python

80

 Using the Formatter
Formatters add a placeholder for inputting a data value into a string output using the

curly brace {}. The format method from the str class is invoked to receive the value as a

parameter. The number of parameters in the format method should match the number

of placeholders in the string representation. Other format specifiers can be added with

the placeholder curly brackets.

print("{} {} {}".format(a, b, c))

'Output': I Love You

re-ordering the output

print("{2} {1} {0}".format(a, b, c))

'Output': You Love I

 Control Structures
Programs need to make decisions which result in executing a particular set of

instructions or a specific block of code repeatedly. With control structures, we would

have the ability to write programs that can make logical decisions and execute an

instruction set until a terminating condition occurs.

 The if/elif (else-if) Statements
The if/elif (else-if) statement executes a set of instructions if the tested condition

evaluates to true. The else statement specifies the code that should execute if none of the

previous conditions evaluate to true. It can be visualized by the flowchart in Figure 9-2.

Chapter 9 python

81

The syntax for the if/elif statement is given as follows:

if expressionA:

 statementA

elif expressionB:

 statementB

...

...

else:

 statementC

Here is a program example:

a = 8

if type(a) is int:

 print('Number is an integer')

elif a > 0:

 print('Number is positive')

Figure 9-2. Flowchart of the if statement

Chapter 9 python

82

else:

 print('The number is negative and not an integer')

'Output': Number is an integer

 The while Loop
The while loop evaluates a condition, which, if true, repeatedly executes the set of

instructions within the while block. It does so until the condition evaluates to false. The

while statement is visualized by the flowchart in Figure 9-3.

Figure 9-3. Flowchart of the while loop

Here is a program example:

a = 8

while a > 0:

 print('Number is', a)

 # decrement a

 a -= 1

Chapter 9 python

83

'Output': Number is 8

 Number is 7

 Number is 6

 Number is 5

 Number is 4

 Number is 3

 Number is 2

 Number is 1

 The for Loop
The for loop repeats the statements within its code block until a terminating condition

is reached. It is different from the while loop in that it knows exactly how many times

the iteration should occur. The for loop is controlled by an iterable expression (i.e.,

expressions in which elements can be accessed sequentially). The for statement is

visualized by the flowchart in Figure 9-4.

Figure 9-4. Flowchart of the for loop

Chapter 9 python

84

The syntax for the for loop is as follows:

for item in iterable:

 statement

Note that in the for loop syntax is not the same as the membership logical operator

earlier discussed.

Here is a program example:

a = [2, 4, 6, 8, 10]

for elem in a:

 print(elem**2)

'Output': 4

 16

 36

 64

 100

To loop for a specific number of time, use the range() function.

for idx in range(5):

 print('The index is', idx)

'Output': The index is 0

 The index is 1

 The index is 2

 The index is 3

 The index is 4

 List Comprehensions
Using list comprehension, we can succinctly rewrite a for loop that iteratively builds a

new list using an elegant syntax. Assuming we want to build a new list using a for loop,

we will write it as

new_list = []

for item in iterable:

 new_list.append(expression)

Chapter 9 python

85

We can rewrite this as

[expression for item in iterable]

Let’s have some program examples.

squares = []

for elem in range(0,5):

 squares.append((elem+1)**2)

squares

'Output': [1, 4, 9, 16, 25]

The preceding code can be concisely written as

[(elem+1)**2 for elem in range(0,5)]

'Output': [1, 4, 9, 16, 25]

This is even more elegant in the presence of nested control structures.

evens = []

for elem in range(0,20):

 if elem % 2 == 0 and elem != 0:

 evens.append(elem)

evens

'Output': [2, 4, 6, 8, 10, 12, 14, 16, 18]

With list comprehension, we can code this as

[elem for elem in range(0,20) if elem % 2 == 0 and elem != 0]

'Output': [2, 4, 6, 8, 10, 12, 14, 16, 18]

 The break and continue Statements
The break statement terminates the execution of the nearest enclosing loop (for, while

loops) in which it appears.

for val in range(0,10):

 print("The variable val is:", val)

 if val > 5:

Chapter 9 python

86

 print("Break out of for loop")

 break

'Output': The variable val is: 0

 The variable val is: 1

 The variable val is: 2

 The variable val is: 3

 The variable val is: 4

 The variable val is: 5

 The variable val is: 6

 Break out of for loop

The continue statement skips the next iteration of the loop to which it belongs,

ignoring any code after it.

a = 6

while a > 0:

 if a != 3:

 print("The variable a is:", a)

 # decrement a

 a = a - 1

 if a == 3:

 print("Skip the iteration when a is", a)

 continue

'Output': The variable a is: 6

 The variable a is: 5

 The variable a is: 4

 Skip the iteration when a is 3

 The variable a is: 2

 The variable a is: 1

 Functions
A function is a code block that carries out a particular action (Figure 9-5). Functions are

called by the programmer when needed by making a function call. Python comes pre-

packaged with lots of useful functions to simplify programming. The programmer can

also write custom functions.

Chapter 9 python

87

A function receives data into its parameter list during a function call. The inputed

data is used to complete the function execution. At the end of its execution, a function

always returns a result – this result could be ‘None’ or a specific data value.

Functions are treated as first-class objects in Python. That means a function can be

passed as data into another function, the result of a function execution can also be a

function, and a function can also be stored as a variable.

Functions are visualized as a black box that receives a set of objects as input,

executes some code, and returns another set of objects as output.

 User-Defined Functions
A function is defined using the def keyword. The syntax for creating a function is as follows:

def function-name(parameters):

 statement(s)

Let’s create a simple function:

def squares(number):

 return number**2

squares(2)

'Output': 4

Here’s another function example:

def _mean_(*number):

 avg = sum(number)/len(number)

 return avg

mean(1,2,3,4,5,6,7,8,9)

'Output': 5.0

Figure 9-5. Functions

Chapter 9 python

88

The * before the parameter number indicates that the variable can receive any

number of values, which is implicitly bound to a tuple.

 Lambda Expressions
Lambda expressions provide a concise and succinct way to write simple functions that

contain just a single line. Lambdas now and again can be very useful, but in general,

working with def may be more readable. The syntax for lambdas are as follows:

lambda parameters: expression

Let’s see an example:

square = lambda x: x**2

square(2)

'Output': 4

 Packages and Modules
A module is simply a Python source file, and packages are a collection of modules.

Modules written by other programmers can be incorporated into your source code by

using import and from statements.

 import Statement
The import statement allows you to load any Python module into your source file. It has

the following syntax:

import module_name [as user_defined_name][,...]

where the following is optional:

[as user_defined_name]

Let us take an example by importing a very important package called numpy that is

used for numerical processing in Python and very critical for machine learning.

Chapter 9 python

89

import numpy as np

np.abs(-10) # the absolute value of -10

'Output': 10

 from Statement
The from statement allows you to import a specific feature from a module into your

source file. The syntax is as follows:

from module_name import module_feature [as user_defined_name][,...]

Let’s see an example:

from numpy import mean

mean([2,4,6,8])

'Output': 5.0

This chapter provides the fundamentals for programming with Python.

Programming is a very active endeavor, and competency is gained by experience and

repetition. What is presented in this chapter provides just enough to be dangerous.

In the next chapter, we’ll introduce NumPy, a Python package for numerical

computing.

Chapter 9 python

91
© Ekaba Bisong 2019
E. Bisong, Building Machine Learning and Deep Learning Models on Google Cloud Platform,
https://doi.org/10.1007/978-1-4842-4470-8_10

CHAPTER 10

NumPy
NumPy is a Python library optimized for numerical computing. It bears close semblance

with MATLAB and is equally as powerful when used in conjunction with other packages

such as SciPy for various scientific functions, Matplotlib for visualization, and Pandas for

data analysis. NumPy is short for numerical python.

NumPy’s core strength lies in its ability to create and manipulate n-dimensional

arrays. This is particularly critical for building machine learning and deep learning

models. Data is often represented in a matrix-like grid of rows and columns, where each

row represents an observation and each column a variable or feature. Hence, NumPy’s

2-D array is a natural fit for storing and manipulating datasets.

This tutorial will cover the basics of NumPy to get you very comfortable working with

the package and also get you to appreciate the thinking behind how NumPy works. This

understanding forms a foundation from which one can extend and seek solutions from

the NumPy reference documentation when a specific functionality is needed.

To begin using NumPy, we’ll start by importing the NumPy module:

import numpy as np

 NumPy 1-D Array
Let’s create a simple 1-D NumPy array:

my_array = np.array([2,4,6,8,10])

my_array

'Output': array([2, 4, 6, 8, 10])

the data-type of a NumPy array is the ndarray

type(my_array)

'Output': numpy.ndarray

92

a NumPy 1-D array can also be seen a vector with 1 dimension

my_array.ndim

'Output': 1

check the shape to get the number of rows and columns in the array \

read as (rows, columns)

my_array.shape

'Output': (5,)

We can also create an array from a Python list.

my_list = [9, 5, 2, 7]

type(my_list)

'Output': list

convert a list to a numpy array

list_to_array = np.array(my_list) # or np.asarray(my_list)

type(list_to_array)

'Output': numpy.ndarray

Let’s explore other useful methods often employed for creating arrays.

create an array from a range of numbers

np.arange(10)

'Output': [0 1 2 3 4 5 6 7 8 9]

create an array from start to end (exclusive) via a step size - (start,

stop, step)

np.arange(2, 10, 2)

'Output': [2 4 6 8]

create a range of points between two numbers

np.linspace(2, 10, 5)

'Output': array([2., 4., 6., 8., 10.])

create an array of ones

np.ones(5)

'Output': array([1., 1., 1., 1., 1.])

create an array of zeros

np.zeros(5)

'Output': array([0., 0., 0., 0., 0.])

Chapter 10 Numpy

93

 NumPy Datatypes
NumPy boasts a broad range of numerical datatypes in comparison with vanilla Python.

This extended datatype support is useful for dealing with different kinds of signed

and unsigned integer and floating-point numbers as well as booleans and complex

numbers for scientific computation. NumPy datatypes include the bool_, int(8,16,32,64),

uint(8,16,32,64), float(16,32,64), complex(64,128) as well as the int_, float_, and

complex_, to mention just a few.

The datatypes with a _ appended are base Python datatypes converted to NumPy

datatypes. The parameter dtype is used to assign a datatype to a NumPy function. The

default NumPy type is float_. Also, NumPy infers contiguous arrays of the same type.

Let’s explore a bit with NumPy datatypes:

ints

my_ints = np.array([3, 7, 9, 11])

my_ints.dtype

'Output': dtype('int64')

floats

my_floats = np.array([3., 7., 9., 11.])

my_floats.dtype

'Output': dtype('float64')

non-contiguous types - default: float

my_array = np.array([3., 7., 9, 11])

my_array.dtype

'Output': dtype('float64')

manually assigning datatypes

my_array = np.array([3, 7, 9, 11], dtype="float64")

my_array.dtype

'Output': dtype('float64')

Chapter 10 Numpy

94

 Indexing + Fancy Indexing (1-D)
We can index a single element of a NumPy 1-D array similar to how we index a Python list.

create a random numpy 1-D array

my_array = np.random.rand(10)

my_array

'Output': array([0.7736445 , 0.28671796, 0.61980802, 0.42110553,

 0.86091567, 0.93953255, 0.300224 , 0.56579416,

 0.58890282, 0.97219289])

index the first element

my_array[0]

'Output': 0.77364449999999996

index the last element

my_array[-1]

'Output': 0.97219288999999998

Fancy indexing in NumPy is an advanced mechanism for indexing array elements

based on integers or boolean. This technique is also called masking.

 Boolean Mask
Let’s index all the even integers in the array using a boolean mask.

create 10 random integers between 1 and 20

my_array = np.random.randint(1, 20, 10)

my_array

'Output': array([14, 9, 3, 19, 16, 1, 16, 5, 13, 3])

index all even integers in the array using a boolean mask

my_array[my_array % 2 == 0]

'Output': array([14, 16, 16])

Observe that the code my_array % 2 == 0 outputs an array of booleans.

my_array % 2 == 0

'Output': array([True, False, False, False, True, False, True, False,

False, False], dtype=bool)

Chapter 10 Numpy

95

 Integer Mask
Let’s select all elements with even indices in the array.

create 10 random integers between 1 and 20

my_array = np.random.randint(1, 20, 10)

my_array

'Output': array([1, 18, 8, 12, 10, 2, 17, 4, 17, 17])

my_array[np.arange(1,10,2)]

'Output': array([18, 12, 2, 4, 17])

Remember that array indices are indexed from 0. So the second element, 18, is in

index 1.

np.arange(1,10,2)

'Output': array([1, 3, 5, 7, 9])

 Slicing a 1-D Array
Slicing a NumPy array is also similar to slicing a Python list.

my_array = np.array([14, 9, 3, 19, 16, 1, 16, 5, 13, 3])

my_array

'Output': array([14, 9, 3, 19, 16, 1, 16, 5, 13, 3])

slice the first 2 elements

my_array[:2]

'Output': array([14, 9])

slice the last 3 elements

my_array[-3:]

'Output': array([5, 13, 3])

 Basic Math Operations on Arrays: Universal
Functions
The core power of NumPy is in its highly optimized vectorized functions for various

mathematical, arithmetic, and string operations. In NumPy these functions are called

universal functions. We’ll explore a couple of basic arithmetic with NumPy 1-D arrays.

Chapter 10 Numpy

96

create an array of even numbers between 2 and 10

my_array = np.arange(2,11,2)

'Output': array([2, 4, 6, 8, 10])

sum of array elements

np.sum(my_array) # or my_array.sum()

'Output': 30

square root

np.sqrt(my_array)

'Output': array([1.41421356, 2. , 2.44948974, 2.82842712,

 3.16227766])

log

np.log(my_array)

'Output': array([0.69314718, 1.38629436, 1.79175947, 2.07944154,

 2.30258509])

exponent

np.exp(my_array)

'Output': array([7.38905610e+00, 5.45981500e+01, 4.03428793e+02,

 2.98095799e+03, 2.20264658e+04])

 Higher-Dimensional Arrays
As we’ve seen earlier, the strength of NumPy is its ability to construct and manipulate

n-dimensional arrays with highly optimized (i.e., vectorized) operations. Previously,

we covered the creation of 1-D arrays (or vectors) in NumPy to get a feel of how NumPy

works.

This section will now consider working with 2-D and 3-D arrays. 2-D arrays are ideal

for storing data for analysis. Structured data is usually represented in a grid of rows and

columns. And even when data is not necessarily represented in this format, it is often

transformed into a tabular form before doing any data analytics or machine learning.

Each column represents a feature or attribute and each row an observation.

Also, other data forms like images are adequately represented using 3-D arrays. A

colored image is composed of n × n pixel intensity values with a color depth of three for

the red, green, and blue (RGB) color profiles.

Chapter 10 Numpy

97

 Creating 2-D Arrays (Matrices)
Let us construct a simple 2-D array.

construct a 2-D array

my_2D = np.array([[2,4,6],

 [8,10,12]])

my_2D

'Output':

array([[2, 4, 6],

 [8, 10, 12]])

check the number of dimensions

my_2D.ndim

'Output': 2

get the shape of the 2-D array - this example has 2 rows and

3 columns: (r, c)

my_2D.shape

'Output': (2, 3)

Let’s explore common methods in practice for creating 2-D NumPy arrays, which
are also matrices.

create a 3x3 array of ones

np.ones([3,3])

'Output':

array([[1., 1., 1.],

 [1., 1., 1.],

 [1., 1., 1.]])

create a 3x3 array of zeros

np.zeros([3,3])

'Output':

array([[0., 0., 0.],

 [0., 0., 0.],

 [0., 0., 0.]])

create a 3x3 array of a particular scalar - full(shape, fill_value)

np.full([3,3], 2)

Chapter 10 Numpy

98

'Output':

array([[2, 2, 2],

 [2, 2, 2],

 [2, 2, 2]])

create a 3x3, empty uninitialized array

np.empty([3,3])

'Output':

array([[-2.00000000e+000, -2.00000000e+000, 2.47032823e-323],

 [0.00000000e+000, 0.00000000e+000, 0.00000000e+000],

 [-2.00000000e+000, -1.73060571e-077, -2.00000000e+000]])

create a 4x4 identity matrix - i.e., a matrix with 1's on its diagonal

np.eye(4) # or np.identity(4)

'Output':

array([[1., 0., 0., 0.],

 [0., 1., 0., 0.],

 [0., 0., 1., 0.],

 [0., 0., 0., 1.]])

 Creating 3-D Arrays
Let’s construct a basic 3-D array.

construct a 3-D array

my_3D = np.array([[

 [2,4,6],

 [8,10,12]

],[

 [1,2,3],

 [7,9,11]

]])

my_3D

'Output':

array([[[2, 4, 6],

 [8, 10, 12]],

 [[1, 2, 3],

 [7, 9, 11]]])

Chapter 10 Numpy

99

check the number of dimensions

my_3D.ndim

'Output': 3

get the shape of the 3-D array - this example has 2 pages, 2 rows and 3

columns: (p, r, c)

my_3D.shape

'Output': (2, 2, 3)

We can also create 3-D arrays with methods such as ones, zeros, full, and empty

by passing the configuration for [page, row, columns] into the shape parameter of the

methods. For example:

create a 2-page, 3x3 array of ones

np.ones([2,3,3])

'Output':

array([[[1., 1., 1.],

 [1., 1., 1.],

 [1., 1., 1.]],

 [[1., 1., 1.],

 [1., 1., 1.],

 [1., 1., 1.]]])

create a 2-page, 3x3 array of zeros

np.zeros([2,3,3])

'Output':

array([[[0., 0., 0.],

 [0., 0., 0.],

 [0., 0., 0.]],

 [[0., 0., 0.],

 [0., 0., 0.],

 [0., 0., 0.]]])

 Indexing/Slicing of Matrices
Let’s see some examples of indexing and slicing 2-D arrays. The concept extends nicely

from doing the same with 1-D arrays.

Chapter 10 Numpy

100

create a 3x3 array contain random normal numbers

my_3D = np.random.randn(3,3)

'Output':

array([[0.99709882, -0.41960273, 0.12544161],

 [-0.21474247, 0.99555079, 0.62395035],

 [-0.32453132, 0.3119651 , -0.35781825]])

select a particular cell (or element) from a 2-D array.

my_3D[1,1] # In this case, the cell at the 2nd row and column

'Output': 0.99555079000000002

slice the last 3 columns

my_3D[:,1:3]

'Output':

array([[-0.41960273, 0.12544161],

 [0.99555079, 0.62395035],

 [0.3119651 , -0.35781825]])

slice the first 2 rows and columns

my_3D[0:2, 0:2]

'Output':

array([[0.99709882, -0.41960273],

 [-0.21474247, 0.99555079]])

 Matrix Operations: Linear Algebra
Linear algebra is a convenient and powerful system for manipulating a set of data

features and is one of the strong points of NumPy. Linear algebra is a crucial component

of machine learning and deep learning research and implementation of learning

algorithms. NumPy has vectorized routines for various matrix operations. Let’s go

through a few of them.

 Matrix Multiplication (Dot Product)
First let’s create random integers using the method np.random.randint(low,
high=None, size=None,) which returns random integers from low (inclusive) to high

(exclusive).

Chapter 10 Numpy

101

create a 3x3 matrix of random integers in the range of 1 to 50

A = np.random.randint(1, 50, size=[3,3])

B = np.random.randint(1, 50, size=[3,3])

print the arrays

A

'Output':

array([[15, 29, 24],

 [5, 23, 26],

 [30, 14, 44]])

B

'Output':

array([[38, 32, 22],

 [32, 30, 46],

 [33, 47, 24]])

We can use the following routines for matrix multiplication, np.matmul(a,b) or

a @ b if using Python 3.6. Using a @ b is preferred. Remember that when multiplying

matrices, the inner matrix dimensions must agree. For example, if A is an m × n matrix

and B is an n × p matrix, the product of the matrices will be an m × p matrix with the

inner dimensions of the respective matrices n agreeing (see Figure 10-1).

Figure 10-1. Matrix multiplication

multiply the two matrices A and B (dot product)

A @ B # or np.matmul(A,B)

Chapter 10 Numpy

102

'Output':

array([[2290, 2478, 2240],

 [1784, 2072, 1792],

 [3040, 3448, 2360]])

 Element-Wise Operations
Element-wise matrix operations involve matrices operating on themselves in an

element-wise fashion. The action can be an addition, subtraction, division, or

multiplication (which is commonly called the Hadamard product). The matrices must be

of the same shape. Please note that while a matrix is of shape n × n, a vector is of shape

n × 1. These concepts easily apply to vectors as well. See Figure 10-2.

Figure 10-2. Element-wise matrix operations

Let’s have some examples.

Hadamard multiplication of A and B

A * B

'Output':

array([[570, 928, 528],

 [160, 690, 1196],

 [990, 658, 1056]])

Chapter 10 Numpy

103

add A and B

A + B

'Output':

array([[53, 61, 46],

 [37, 53, 72],

 [63, 61, 68]])

subtract A from B

B - A

'Output':

array([[23, 3, -2],

 [27, 7, 20],

 [3, 33, -20]])

divide A with B

A / B

'Output':

array([[0.39473684, 0.90625 , 1.09090909],

 [0.15625 , 0.76666667, 0.56521739],

 [0.90909091, 0.29787234, 1.83333333]])

 Scalar Operation
A matrix can be acted upon by a scalar (i.e., a single numeric entity) in the same way

element-wise fashion. This time the scalar operates upon each element of the matrix or

vector. See Figure 10-3.

Chapter 10 Numpy

104

Let’s look at some examples.

Hadamard multiplication of A and a scalar, 0.5

A * 0.5

'Output':

array([[7.5, 14.5, 12.],

 [2.5, 11.5, 13.],

 [15. , 7. , 22.]])

add A and a scalar, 0.5

A + 0.5

'Output':

array([[15.5, 29.5, 24.5],

 [5.5, 23.5, 26.5],

 [30.5, 14.5, 44.5]])

subtract a scalar 0.5 from B

B - 0.5

'Output':

array([[37.5, 31.5, 21.5],

 [31.5, 29.5, 45.5],

 [32.5, 46.5, 23.5]])

Figure 10-3. Scalar operations

Chapter 10 Numpy

105

divide A and a scalar, 0.5

A / 0.5

'Output':

array([[30., 58., 48.],

 [10., 46., 52.],

 [60., 28., 88.]])

 Matrix Transposition
Transposition is a vital matrix operation that reverses the rows and columns of a matrix

by flipping the row and column indices. The transpose of a matrix is denoted as AT.

Observe that the diagonal elements remain unchanged. See Figure 10-4.

Figure 10-4. Matrix transpose

Let’s see an example.

A = np.array([[15, 29, 24],

 [5, 23, 26],

 [30, 14, 44]])

transpose A

A.T # or A.transpose()

'Output':

array([[15, 5, 30],

 [29, 23, 14],

 [24, 26, 44]])

Chapter 10 Numpy

106

 The Inverse of a Matrix
A m × m matrix A (also called a square matrix) has an inverse if A times another matrix B

results in the identity matrix I also of shape m × m. This matrix B is called the inverse of A

and is denoted as A−1. This relationship is formally written as

AA A A I- -= =1 1

However, not all matrices have an inverse. A matrix with an inverse is called a

nonsingular or invertible matrix, while those without an inverse are known as singular or

degenerate.

Note a square matrix is a matrix that has the same number of rows and columns.

Let’s use NumPy to get the inverse of a matrix. Some linear algebra modules are

found in a sub-module of NumPy called linalg.

A = np.array([[15, 29, 24],

 [5, 23, 26],

 [30, 14, 44]])

find the inverse of A

np.linalg.inv(A)

'Output':

array([[0.05848375, -0.08483755, 0.01823105],

 [0.05054152, -0.00541516, -0.02436823],

 [-0.05595668, 0.05956679, 0.01805054]])

NumPy also implements the Moore-Penrose pseudo inverse, which gives an inverse

derivation for degenerate matrices. Here, we use the pinv method to find the inverses of

invertible matrices.

using pinv()

np.linalg.pinv(A)

'Output':

array([[0.05848375, -0.08483755, 0.01823105],

 [0.05054152, -0.00541516, -0.02436823],

 [-0.05595668, 0.05956679, 0.01805054]])

Chapter 10 Numpy

107

 Reshaping
A NumPy array can be restructured to take on a different shape. Let’s convert a 1-D array

to a m × n matrix.

make 20 elements evenly spaced between 0 and 5

a = np.linspace(0,5,20)

a

'Output':

array([0. , 0.26315789, 0.52631579, 0.78947368, 1.05263158,

 1.31578947, 1.57894737, 1.84210526, 2.10526316, 2.36842105,

 2.63157895, 2.89473684, 3.15789474, 3.42105263, 3.68421053,

 3.94736842, 4.21052632, 4.47368421, 4.73684211, 5.])

observe that a is a 1-D array

a.shape

'Output': (20,)

reshape into a 5 x 4 matrix

A = a.reshape(5, 4)

A

'Output':

array([[0. , 0.26315789, 0.52631579, 0.78947368],

 [1.05263158, 1.31578947, 1.57894737, 1.84210526],

 [2.10526316, 2.36842105, 2.63157895, 2.89473684],

 [3.15789474, 3.42105263, 3.68421053, 3.94736842],

 [4.21052632, 4.47368421, 4.73684211, 5.]])

The vector a has been reshaped into a 5 by 4 matrix A

A.shape

'Output': (5, 4)

 Reshape vs. Resize Method
NumPy has the np.reshape and np.resize methods. The reshape method returns an

ndarray with a modified shape without changing the original array, whereas the resize

method changes the original array. Let’s see an example.

Chapter 10 Numpy

108

generate 9 elements evenly spaced between 0 and 5

a = np.linspace(0,5,9)

a

'Output': array([0. , 0.625, 1.25 , 1.875, 2.5 , 3.125, 3.75 ,

4.375, 5.])

the original shape

a.shape

'Output': (9,)

call the reshape method

a.reshape(3,3)

'Output':

array([[0. , 0.625, 1.25],

 [1.875, 2.5 , 3.125],

 [3.75 , 4.375, 5.]])

the original array maintained its shape

a.shape

'Output': (9,)

call the resize method - resize does not return an array

a.resize(3,3)

the resize method has changed the shape of the original array

a.shape

'Output': (3, 3)

 Stacking Arrays
NumPy has methods for concatenating arrays – also called stacking. The methods

hstack and vstack are used to stack several arrays along the horizontal and vertical axis,

respectively.

create a 2x2 matrix of random integers in the range of 1 to 20

A = np.random.randint(1, 50, size=[3,3])

B = np.random.randint(1, 50, size=[3,3])

print out the arrays

A

Chapter 10 Numpy

109

'Output':

array([[19, 40, 31],

 [5, 16, 38],

 [22, 49, 9]])

B

'Output':

array([[15, 22, 16],

 [49, 26, 9],

 [42, 13, 39]])

Let’s stack A and B horizontally using hstack. To use hstack, the arrays must have

the same number of rows. Also, the arrays to be stacked are passed as a tuple to the

hstack method.

arrays are passed as tuple to hstack

np.hstack((A,B))

'Output':

array([[19, 40, 31, 15, 22, 16],

 [5, 16, 38, 49, 26, 9],

 [22, 49, 9, 42, 13, 39]])

To stack A and B vertically using vstack, the arrays must have the same number of

columns. The arrays to be stacked are also passed as a tuple to the vstack method.

arrays are passed as tuple to hstack

np.vstack((A,B))

'Output':

array([[19, 40, 31],

 [5, 16, 38],

 [22, 49, 9],

 [15, 22, 16],

 [49, 26, 9],

 [42, 13, 39]])

Chapter 10 Numpy

110

 Broadcasting
NumPy has an elegant mechanism for arithmetic operation on arrays with different

dimensions or shapes. As an example, when a scalar is added to a vector (or 1-D array).

The scalar value is conceptually broadcasted or stretched across the rows of the array

and added element-wise. See Figure 10-5.

Figure 10-5. Broadcasting example of adding a scalar to a vector (or 1-D array)

Matrices with different shapes can be broadcasted to perform arithmetic operations

by stretching the dimension of the smaller array. Broadcasting is another vectorized

operation for speeding up matrix processing. However, not all arrays with different

shapes can be broadcasted. For broadcasting to occur, the trailing axes for the arrays

must be the same size or 1.

In the example that follows, the matrices A and B have the same rows, but the

column of matrix B is 1. Hence, an arithmetic operation can be performed on them by

broadcasting and adding the cells element-wise.

A (2d array): 4 x 3 + <perform addition>

B (2d array): 4 x 1

Result (2d array): 4 x 3

See Figure 10-6 for more illustration.

Chapter 10 Numpy

111

Let’s see this in code:

create a 4 X 3 matrix of random integers between 1 and 10

A = np.random.randint(1, 10, [4, 3])

A

'Output':

array([[9, 9, 5],

 [8, 2, 8],

 [6, 3, 1],

 [5, 1, 4]])

Figure 10-6. Matrix broadcasting example

Chapter 10 Numpy

112

create a 4 X 1 matrix of random integers between 1 and 10

B = np.random.randint(1, 10, [4, 1])

B

'Output':

array([[1],

 [3],

 [9],

 [8]])

add A and B

A + B

'Output':

array([[10, 10, 6],

 [11, 5, 11],

 [15, 12, 10],

 [13, 9, 12]])

The example that follows cannot be broadcasted and will result in a ValueError:

operands could not be broadcasted together with shapes (4,3) (4,2) because the matrices

A and B have different columns and do not fit with the aforementioned rules of

broadcasting that the trailing axes for the arrays must be the same size or 1.

A (2d array): 4 x 3

B (2d array): 4 x 2

The dimensions do not match - they must be either the same or 1

When we try to add the preceding example in Python, we get an error.

A = np.random.randint(1, 10, [4, 3])

B = np.random.randint(1, 10, [4, 2])

A + B

'Output':

Traceback (most recent call last):

 File "<ipython-input-145-624e41e41a31>", line 1, in <module>

 A + B

ValueError: operands could not be broadcast together with shapes (4,3) (4,2)

Chapter 10 Numpy

113

 Loading Data
Loading data is an important process in the data analysis/machine learning pipeline.

Data usually comes in .csv format. csv files can be loaded into Python by using the

loadtxt method. The parameter skiprows skips the first row of the dataset – it is usually

the header row of the data.

np.loadtxt(open("the_file_name.csv", "rb"), delimiter=",", skiprows=1)

Pandas is a preferred package for loading data in Python.

We will learn more about Pandas for data manipulation in the next chapter.

Chapter 10 Numpy

115
© Ekaba Bisong 2019
E. Bisong, Building Machine Learning and Deep Learning Models on Google Cloud Platform,
https://doi.org/10.1007/978-1-4842-4470-8_11

CHAPTER 11

Pandas
Pandas is a specialized Python library for data analysis, especially on humongous

datasets. It boasts easy-to-use functionality for reading and writing data, dealing with

missing data, reshaping the dataset, and massaging the data by slicing, indexing,

inserting, and deleting data variables and records. Pandas also has an important

groupBy functionality for aggregating data for defined conditions – useful for plotting

and computing data summaries for exploration.

Another key strength of Pandas is in re-ordering and cleaning time series data

for time series analysis. In short, Pandas is the go-to tool for data cleaning and data

exploration.

To use Pandas, first import the Pandas module:

import pandas as pd

 Pandas Data Structures
Just like NumPy, Pandas can store and manipulate a multi-dimensional array of data. To

handle this, Pandas has the Series and DataFrame data structures.

 Series
The Series data structure is for storing a 1-D array (or vector) of data elements. A series

data structure also provides labels to the data items in the form of an index. The user

can specify this label via the index parameter in the Series function, but if the index

parameter is left unspecified, a default label of 0 to one minus the size of the data

elements is assigned.

116

Let us consider an example of creating a Series data structure.

create a Series object

my_series = pd.Series([2,4,6,8], index=['e1','e2','e3','e4'])

print out data in Series data structure

my_series

'Output':

e1 2

e2 4

e3 6

e4 8

dtype: int64

check the data type of the variable

type(my_series)

'Output': pandas.core.series.Series

return the elements of the Series data structure

my_series.values

'Output': array([2, 4, 6, 8])

retrieve elements from Series data structure based on their assigned

indices

my_series['e1']

'Output': 2

return all indices of the Series data structure

my_series.index

'Output': Index(['e1', 'e2', 'e3', 'e4'], dtype='object')

Elements in a Series data structure can be assigned the same indices.

create a Series object with elements sharing indices

my_series = pd.Series([2,4,6,8], index=['e1','e2','e1','e2'])

note the same index assigned to various elements

my_series

'Output':

e1 2

e2 4

e1 6

e2 8

Chapter 11 pandas

117

dtype: int64

get elements using their index

my_series['e1']

'Output':

e1 2

e1 6

dtype: int64

 DataFrames
A DataFrame is a Pandas data structure for storing and manipulating 2-D arrays.

A 2-D array is a table-like structure that is similar to an Excel spreadsheet or a relational

database table. A DataFrame is a very natural form for storing structured datasets.

A DataFrame consists of rows and columns for storing records of information (in

rows) across heterogeneous variables (in columns).

Let’s see examples of working with DataFrames.

create a data frame

my_DF = pd.DataFrame({'age': [15,17,21,29,25], \

 'state_of_origin':['Lagos', 'Cross River', 'Kano', 'Abia',

'Benue']})

my_DF

'Output':

 age state_of_origin

0 15 Lagos

1 17 Cross River

2 21 Kano

3 29 Abia

4 25 Benue

We will observe from the preceding example that a DataFrame is constructed from a

dictionary of records where each value is a Series data structure. Also note that each row

has an index that can be assigned when creating the DataFrame, else the default from 0

to one off the number of records in the DataFrame is used. Creating an index manually is

usually not feasible except when working with small dummy datasets.

Chapter 11 pandas

118

NumPy is frequently used together with Pandas. Let’s import the NumPy library and

use some of its functions to demonstrate other ways of creating a quick DataFrame.

import numpy as np

create a 3x3 dataframe of numbers from the normal distribution

my_DF = pd.DataFrame(np.random.randn(3,3),\

 columns=['First','Second','Third'])

my_DF

'Output':

 First Second Third

0 -0.211218 -0.499870 -0.609792

1 -0.295363 0.388722 0.316661

2 1.397300 -0.894861 1.127306

check the dimensions

my_DF.shape

'Output': (3, 3)

Let’s examine some other operations with DataFrames.

create a python dictionary

my_dict = {'State':['Adamawa', 'Akwa-Ibom', 'Yobe', 'Rivers', 'Taraba'], \

 'Capital':['Yola','Uyo','Damaturu','Port-Harcourt','Jalingo'], \

 'Population':[3178950, 5450758, 2321339, 5198716, 2294800]}

my_dict

'Output':

{'Capital': ['Yola', 'Uyo', 'Damaturu', 'Port-Harcourt', 'Jalingo'],

 'Population': [3178950, 5450758, 2321339, 5198716, 2294800],

 'State': ['Adamawa', 'Akwa-Ibom', 'Yobe', 'Rivers', 'Taraba']}

confirm dictionary type

type(my_dict)

'Output': dict

create DataFrame from dictionary

my_DF = pd.DataFrame(my_dict)

my_DF

Chapter 11 pandas

119

'Output':

 Capital Population State

0 Yola 3178950 Adamawa

1 Uyo 5450758 Akwa-Ibom

2 Damaturu 2321339 Yobe

3 Port-Harcourt 5198716 Rivers

4 Jalingo 2294800 Taraba

check DataFrame type

type(my_DF)

'Output': pandas.core.frame.DataFrame

retrieve column names of the DataFrame

my_DF.columns

'Output': Index(['Capital', 'Population', 'State'], dtype='object')

the data type of `DF.columns` method is an Index

type(my_DF.columns)

'Output': pandas.core.indexes.base.Index

retrieve the DataFrame values as a NumPy ndarray

my_DF.values

'Output':

array([['Yola', 3178950, 'Adamawa'],

 ['Uyo', 5450758, 'Akwa-Ibom'],

 ['Damaturu', 2321339, 'Yobe'],

 ['Port-Harcourt', 5198716, 'Rivers'],

 ['Jalingo', 2294800, 'Taraba']], dtype=object)

the data type of `DF.values` method is an numpy ndarray

type(my_DF.values)

'Output': numpy.ndarray

In summary, a DataFrame is a tabular structure for storing a structured dataset

where each column contains a Series data structure of records. Here’s an illustration

(Figure 11-1).

Chapter 11 pandas

120

Let’s check the data type of each column in the DataFrame.

my_DF.dtypes

'Output':

Capital object

Population int64

State object

dtype: object

An object data type in Pandas represents Strings.

 Data Indexing (Selection/Subsets)
Similar to NumPy, Pandas objects can index or subset the dataset to retrieve a specific

sub-record of the larger dataset. Note that data indexing returns a new DataFrame or

Series if a 2-D or 1-D array is retrieved. They do not, however, alter the original dataset.

Let’s go through some examples of indexing a Pandas DataFrame.

First let’s create a dataframe. Observe the default integer indices assigned.

create the dataframe

my_DF = pd.DataFrame({'age': [15,17,21,29,25], \

 'state_of_origin':['Lagos', 'Cross River', 'Kano', 'Abia',

'Benue']})

Figure 11-1. Pandas data structure

Chapter 11 pandas

121

my_DF

'Output':

 age state_of_origin

0 15 Lagos

1 17 Cross River

2 21 Kano

3 29 Abia

4 25 Benue

 Selecting a Column from a DataFrame
Remember that the data type of a DataFrame column is a Series because it is a vector or

1-D array.

my_DF['age']

'Output':

0 15

1 17

2 21

3 29

4 25

Name: age, dtype: int64

check data type

type(my_DF['age'])

'Output': pandas.core.series.Series

To select multiple columns, enclose the column names as strings with the double

square brackets [[]]. The following code is an example:

my_DF[['age','state_of_origin']]

'Output':

 age state_of_origin

0 15 Lagos

1 17 Cross River

2 21 Kano

3 29 Abia

4 25 Benue

Chapter 11 pandas

122

 Selecting a Row from a DataFrame
Pandas makes use of two unique wrapper attributes for indexing rows from a

DataFrame or a cell from a Series data structure. These attributes are the iloc and loc –

they are also known as indexers. The iloc attribute allows you to select or slice row(s) of

a DataFrame using the intrinsic Python index format, whereas the loc attribute uses the

explicit indices assigned to the DataFrame. If no explicit index is found, loc returns the

same value as iloc.

Remember that the data type of a DataFrame row is a Series because it is a vector or

1-D array.

Let’s select the first row from the DataFrame.

using explicit indexing

my_DF.loc[0]

'Output':

age 15

state_of_origin Lagos

Name: 0, dtype: object

using implicit indexing

my_DF.iloc[0]

'Output':

age 15

state_of_origin Lagos

Name: 0, dtype: object

let's see the data type

type(my_DF.loc[0])

'Output': pandas.core.series.Series

Now let’s create a DataFrame with explicit indexing and test out the iloc and loc

methods. Pandas will return an error if iloc is used for explicit indexing or if loc is used

for implicit Python indexing.

my_DF = pd.DataFrame({'age': [15,17,21,29,25], \

 'state_of_origin':['Lagos', 'Cross River', 'Kano', 'Abia',

'Benue']},\

 index=['a','a','b','b','c'])

observe the string indices

Chapter 11 pandas

123

my_DF

'Output':

 age state_of_origin

a 15 Lagos

a 17 Cross River

b 21 Kano

b 29 Abia

c 25 Benue

select using explicit indexing

my_DF.loc['a']

Out[196]:

 age state_of_origin

a 15 Lagos

a 17 Cross River

let's try to use loc for implicit indexing

my_DF.loc[0]

'Output':

 Traceback (most recent call last):

 TypeError: cannot do label indexing on <class 'pandas.core.indexes.

base.Index'>

 with these indexers [0] of <class 'int'>

 Selecting Multiple Rows and Columns from a DataFrame
Let’s use the loc method to select multiple rows and columns from a Pandas DataFrame.

select rows with age greater than 20

my_DF.loc[my_DF.age > 20]

'Output':

 age state_of_origin

2 21 Kano

3 29 Abia

4 25 Benue

find states of origin with age greater than or equal to 25

my_DF.loc[my_DF.age >= 25, 'state_of_origin']

Chapter 11 pandas

124

'Output':

Out[29]:

3 Abia

4 Benue

 Slice Cells by Row and Column from a DataFrame
First let’s create a DataFrame. Remember, we use iloc when no explicit index or row

labels are assigned.

my_DF = pd.DataFrame({'age': [15,17,21,29,25], \

 'state_of_origin':['Lagos', 'Cross River', 'Kano', 'Abia',

'Benue']})

my_DF

'Output':

 age state_of_origin

0 15 Lagos

1 17 Cross River

2 21 Kano

3 29 Abia

4 25 Benue

select the third row and second column

my_DF.iloc[2,1]

'Output': 'Kano'

slice the first 2 rows - indexed from zero, excluding the final index

my_DF.iloc[:2,]

'Output':

 age state_of_origin

0 15 Lagos

1 17 Cross River

slice the last three rows from the last column

my_DF.iloc[-3:,-1]

'Output':

2 Kano

3 Abia

4 Benue

Name: state_of_origin, dtype: object

Chapter 11 pandas

125

 DataFrame Manipulation
Let’s go through some common tasks for manipulating a DataFrame.

 Removing a Row/Column
In many cases during the data cleaning process, there may be a need to drop unwanted

rows or data variables (i.e., columns). We typically do this using the drop function. The

drop function has a parameter axis whose default is 0. If axis is set to 1, it drops columns

in a dataset, but if left at the default, rows are dropped from the dataset.

Note that when a column or row is dropped, a new DataFrame or Series is returned

without altering the original data structure. However, when the attribute inplace is set to

True, the original DataFrame or Series is modified. Let’s see some examples.

the data frame

my_DF = pd.DataFrame({'age': [15,17,21,29,25], \

 'state_of_origin':['Lagos', 'Cross River', 'Kano', 'Abia',

'Benue']})

my_DF

'Output':

 age state_of_origin

0 15 Lagos

1 17 Cross River

2 21 Kano

3 29 Abia

4 25 Benue

drop the 3rd and 4th column

my_DF.drop([2,4])

'Output':

 age state_of_origin

0 15 Lagos

1 17 Cross River

3 29 Abia

drop the `age` column

my_DF.drop('age', axis=1)

Chapter 11 pandas

126

'Output':

 state_of_origin

0 Lagos

1 Cross River

2 Kano

3 Abia

4 Benue

original DataFrame is unchanged

my_DF

'Output':

 age state_of_origin

0 15 Lagos

1 17 Cross River

2 21 Kano

3 29 Abia

4 25 Benue

drop using 'inplace' - to modify the original DataFrame

my_DF.drop('age', axis=1, inplace=True)

original DataFrame altered

my_DF

'Output':

 state_of_origin

0 Lagos

1 Cross River

2 Kano

3 Abia

4 Benue

Let’s see examples of removing a row given a condition.

my_DF = pd.DataFrame({'age': [15,17,21,29,25], \

 'state_of_origin':['Lagos', 'Cross River', 'Kano', 'Abia',

'Benue']})

my_DF

Chapter 11 pandas

127

'Output':

 age state_of_origin

0 15 Lagos

1 17 Cross River

2 21 Kano

3 29 Abia

4 25 Benue

drop all rows less than 20

my_DF.drop(my_DF[my_DF['age'] < 20].index, inplace=True)

my_DF

'Output':

 age state_of_origin

2 21 Kano

3 29 Abia

4 25 Benue

 Adding a Row/Column
We can add a new column to a Pandas DataFrame by using the assign method.

show dataframe

my_DF = pd.DataFrame({'age': [15,17,21,29,25], \

 'state_of_origin':['Lagos', 'Cross River', 'Kano', 'Abia',

'Benue']})

my_DF

'Output':

 age state_of_origin

0 15 Lagos

1 17 Cross River

2 21 Kano

3 29 Abia

4 25 Benue

add column to data frame

Chapter 11 pandas

128

my_DF = my_DF.assign(capital_city = pd.Series(['Ikeja', 'Calabar', \

 'Kano', 'Umuahia',

'Makurdi']))

my_DF

'Output':

 age state_of_origin capital_city

0 15 Lagos Ikeja

1 17 Cross River Calabar

2 21 Kano Kano

3 29 Abia Umuahia

4 25 Benue Makurdi

We can also add a new DataFrame column by computing some function on another

column. Let’s take an example by adding a column computing the absolute difference of

the ages from their mean.

mean_of_age = my_DF['age'].mean()

my_DF['diff_age'] = my_DF['age'].map(lambda x: abs(x-mean_of_age))

my_DF

'Output':

 age state_of_origin diff_age

0 15 Lagos 6.4

1 17 Cross River 4.4

2 21 Kano 0.4

3 29 Abia 7.6

4 25 Benue 3.6

Typically in practice, a fully formed dataset is converted into Pandas for cleaning and

data analysis, which does not ideally involve adding a new observation to the dataset.

But in the event that this is desired, we can use the append() method to achieve this.

However, it may not be a computationally efficient action. Let’s see an example.

show dataframe

my_DF = pd.DataFrame({'age': [15,17,21,29,25], \

 'state_of_origin':['Lagos', 'Cross River', 'Kano', 'Abia',

'Benue']})

my_DF

Chapter 11 pandas

129

'Output':

 age state_of_origin

0 15 Lagos

1 17 Cross River

2 21 Kano

3 29 Abia

4 25 Benue

add a row to data frame

my_DF = my_DF.append(pd.Series([30 , 'Osun'], index=my_DF.columns), \

 ignore_index=True)

my_DF

'Output':

 age state_of_origin

0 15 Lagos

1 17 Cross River

2 21 Kano

3 29 Abia

4 25 Benue

5 30 Osun

We observe that adding a new row involves passing to the append method, a Series

object with the index attribute set to the columns of the main DataFrame. Since typically,

in given datasets, the index is nothing more than the assigned defaults, we set the

attribute ignore_index to create a new set of default index values with the new row(s).

 Data Alignment
Pandas utilizes data alignment to align indices when performing some binary arithmetic

operation on DataFrames. If two or more DataFrames in an arithmetic operation do not

share a common index, a NaN is introduced denoting missing data. Let’s see examples

of this.

create a 3x3 dataframe - remember randint(low, high, size)

df_A = pd.DataFrame(np.random.randint(1,10,[3,3]),\

 columns=['First','Second','Third'])

df_A

Chapter 11 pandas

130

'Output':

 First Second Third

0 2 3 9

1 8 7 7

2 8 6 4

create a 4x3 dataframe

df_B = pd.DataFrame(np.random.randint(1,10,[4,3]),\

 columns=['First','Second','Third'])

df_B

'Output':

 First Second Third

0 3 6 3

1 2 2 1

2 9 3 8

3 2 9 2

add df_A and df_B together

df_A + df_B

'Output':

 First Second Third

0 5.0 9.0 12.0

1 10.0 9.0 8.0

2 17.0 9.0 12.0

3 NaN NaN NaN

divide both dataframes

df_A / df_B

'Output':

 First Second Third

0 0.666667 0.5 3.0

1 4.000000 3.5 7.0

2 0.888889 2.0 0.5

3 NaN NaN NaN

If we do not want a NaN signifying missing values to be imputed, we can use the

fill_value attribute to substitute with a default value. However, to take advantage of the

fill_value attribute, we have to use the Pandas arithmetic methods: add(), sub(), mul(),

Chapter 11 pandas

131

div(), floordiv(), mod(), and pow() for addition, subtraction, multiplication, integer

division, numeric division, remainder division, and exponentiation. Let’s see examples.

df_A.add(df_B, fill_value=10)

'Output':

 First Second Third

0 5.0 9.0 12.0

1 10.0 9.0 8.0

2 17.0 9.0 12.0

3 12.0 19.0 12.0

 Combining Datasets
We may need to combine two or more datasets together; Pandas provides methods for

such operations. We would consider the simple case of combining data frames with

shared column names using the concat method.

combine two dataframes column-wise

pd.concat([df_A, df_B])

'Output':

 First Second Third

0 2 3 9

1 8 7 7

2 8 6 4

0 3 6 3

1 2 2 1

2 9 3 8

3 2 9 2

Observe that the concat method preserves indices by default. We can also

concatenate or combine two dataframes by rows (or horizontally). This is done by setting

the axis parameter to 1.

combine two dataframes horizontally

pd.concat([df_A, df_B], axis=1)

Chapter 11 pandas

132

'Output':

Out[246]:

 First Second Third First Second Third

0 2.0 3.0 9.0 3 6 3

1 8.0 7.0 7.0 2 2 1

2 8.0 6.0 4.0 9 3 8

3 NaN NaN NaN 2 9 2

 Handling Missing Data
Dealing with missing data is an integral part of the data cleaning/data analysis process.

Moreover, some machine learning algorithms will not work in the presence of missing

data. Let’s see some simple Pandas methods for identifying and removing missing data,

as well as imputing values into missing data.

 Identifying Missing Data
In this section, we’ll use the isnull() method to check if missing cells exist in a

DataFrame.

let's create a data frame with missing data

my_DF = pd.DataFrame({'age': [15,17,np.nan,29,25], \

 'state_of_origin':['Lagos', 'Cross River', 'Kano',

'Abia', np.nan]})

my_DF

'Output':

 age state_of_origin

0 15.0 Lagos

1 17.0 Cross River

2 NaN Kano

3 29.0 Abia

4 25.0 NaN

Let’s check for missing data in this data frame. The isnull() method will return True

where there is a missing data, whereas the notnull() function returns False.

Chapter 11 pandas

133

my_DF.isnull()

'Output':

 age state_of_origin

0 False False

1 False False

2 True False

3 False False

4 False True

However, if we want a single answer (i.e., either True or False) to report if there is a

missing data in the data frame, we will first convert the DataFrame to a NumPy array and

use the function any().

The any function returns True when at least one of the elements in the dataset is

True. In this case, isnull() returns a DataFrame of booleans where True designates a cell

with a missing value.

Let’s see how that works.

my_DF.isnull().values.any()

'Output': True

 Removing Missing Data
Pandas has a function dropna() which is used to filter or remove missing data from

a DataFrame. dropna() returns a new DataFrame without missing data. Let’s see

examples of how this works.

let's see our dataframe with missing data

my_DF = pd.DataFrame({'age': [15,17,np.nan,29,25], \

 'state_of_origin':['Lagos', 'Cross River', 'Kano',

'Abia', np.nan]})

my_DF

'Output':

 age state_of_origin

0 15.0 Lagos

1 17.0 Cross River

2 NaN Kano

3 29.0 Abia

4 25.0 NaN

Chapter 11 pandas

134

let's run dropna() to remove all rows with missing values

my_DF.dropna()

'Output':

 age state_of_origin

0 15.0 Lagos

1 17.0 Cross River

3 29.0 Abia

As we will observe from the preceding code block, dropna() drops all rows that

contain a missing value. But we may not want that. We may rather, for example,

want to drop columns with missing data or drop rows where all the observations are

missing or better still remove consequent on the number of observations present in a

particular row.

Let’s see examples of this option. First let’s expand our example dataset.

my_DF = pd.DataFrame({ 'Capital': ['Yola', np.nan, np.nan, 'Port-Harcourt',

'Jalingo'],

 'Population': [3178950, np.nan, 2321339, np.nan, 2294800],

 'State': ['Adamawa', np.nan, 'Yobe', np.nan, 'Taraba'],

 'LGAs': [22, np.nan, 17, 23, 16]})

my_DF

'Output':

 Capital LGAs Population State

0 Yola 22.0 3178950.0 Adamawa

1 NaN NaN NaN NaN

2 NaN 17.0 2321339.0 Yobe

3 Port-Harcourt 23.0 NaN NaN

4 Jalingo 16.0 2294800.0 Taraba

Drop columns with NaN. This option is not often used in practice.

my_DF.dropna(axis=1)

'Output':

Empty DataFrame

Columns: []

Index: [0, 1, 2, 3, 4]

Chapter 11 pandas

135

Drop rows where all the observations are missing.

my_DF.dropna(how='all')

'Output':

 Capital LGAs Population State

0 Yola 22.0 3178950.0 Adamawa

2 NaN 17.0 2321339.0 Yobe

3 Port-Harcourt 23.0 NaN NaN

4 Jalingo 16.0 2294800.0 Taraba

Drop rows based on an observation threshold. By adjusting the thresh attribute, we

can drop rows where the number of observations in the row is less than the thresh value.

drop rows where number of NaN is less than 3

my_DF.dropna(thresh=3)

'Output':

 Capital LGAs Population State

0 Yola 22.0 3178950.0 Adamawa

2 NaN 17.0 2321339.0 Yobe

4 Jalingo 16.0 2294800.0 Taraba

 Imputing Values into Missing Data
Imputing values as substitutes for missing data is a standard practice in preparing data

for machine learning. Pandas has a fillna() function for this purpose. A simple approach

is to fill NaNs with zeros.

my_DF.fillna(0) # we can also run my_DF.replace(np.nan, 0)

'Output':

 Capital LGAs Population State

0 Yola 22.0 3178950.0 Adamawa

1 0 0.0 0.0 0

2 0 17.0 2321339.0 Yobe

3 Port-Harcourt 23.0 0.0 0

4 Jalingo 16.0 2294800.0 Taraba

Chapter 11 pandas

136

Another tactic is to fill missing values with the mean of the column value.

my_DF.fillna(my_DF.mean())

'Output':

 Capital LGAs Population State

0 Yola 22.0 3178950.0 Adamawa

1 NaN 19.5 2598363.0 NaN

2 NaN 17.0 2321339.0 Yobe

3 Port-Harcourt 23.0 2598363.0 NaN

4 Jalingo 16.0 2294800.0 Taraba

 Data Aggregation (Grouping)
We will touch briefly on a common practice in data science, and that is grouping a set

of data attributes, either for retrieving some group statistics or applying a particular set

of functions to the group. Grouping is commonly used for data exploration and plotting

graphs to understand more about the dataset. Missing data are automatically excluded

in a grouping operation.

Let’s see examples of how this works.

create a data frame

my_DF = pd.DataFrame({'Sex': ['M', 'F', 'M', 'F','M', 'F','M', 'F'],

 'Age': np.random.randint(15,60,8),

 'Salary': np.random.rand(8)*10000})

my_DF

'Output':

 Age Salary Sex

0 54 6092.596170 M

1 57 3148.886141 F

2 37 5960.916038 M

3 23 6713.133849 F

4 34 5208.240349 M

5 25 2469.118934 F

6 50 1277.511182 M

7 54 3529.201109 F

Chapter 11 pandas

137

Let’s find the mean age and salary for observations in our dataset grouped by Sex.

my_DF.groupby('Sex').mean()

'Output':

 Age Salary

Sex

F 39.75 3965.085008

M 43.75 4634.815935

We can group by more than one variable. In this case for each Sex group, also group

the age and find the mean of the other numeric variables.

my_DF.groupby([my_DF['Sex'], my_DF['Age']]).mean()

'Output':

 Salary

Sex Age

F 23 6713.133849

 25 2469.118934

 54 3529.201109

 57 3148.886141

M 34 5208.240349

 37 5960.916038

 50 1277.511182

 54 6092.596170

Also, we can use a variable as a group key to run a group function on another

variable or sets of variables.

my_DF['Age'].groupby(my_DF['Salary']).mean()

'Output':

Salary

1277.511182 50

2469.118934 25

3148.886141 57

3529.201109 54

5208.240349 34

5960.916038 37

Chapter 11 pandas

138

6092.596170 54

6713.133849 23

Name: Age, dtype: int64

 Statistical Summaries
Descriptive statistics is an essential component of the data science pipeline. By

investigating the properties of the dataset, we can gain a better understanding of the

data and the relationship between the variables. This information is useful in making

decisions about the type of data transformations to carry out or the types of learning

algorithms to spot check. Let’s see some examples of simple statistical functions in

Pandas.

First, we’ll create a Pandas dataframe.

my_DF = pd.DataFrame(np.random.randint(10,80,[7,4]),\

 columns=['First','Second','Third', 'Fourth'])

'Output':

 First Second Third Fourth

0 47 32 66 52

1 37 66 16 22

2 24 16 63 36

3 70 47 62 12

4 74 61 44 18

5 65 73 21 37

6 44 47 23 13

Use the describe function to obtain summary statistics of a dataset. Eight statistical

measures are displayed. They are count, mean, standard deviation, minimum value,

25th percentile, 50th percentile or median, 75th percentile, and the maximum value.

my_DF.describe()

'Output':

 First Second Third Fourth

count 7.000000 7.000000 7.000000 7.000000

mean 51.571429 48.857143 42.142857 27.142857

std 18.590832 19.978560 21.980511 14.904458

min 24.000000 16.000000 16.000000 12.000000

Chapter 11 pandas

139

25% 40.500000 39.500000 22.000000 15.500000

50% 47.000000 47.000000 44.000000 22.000000

75% 67.500000 63.500000 62.500000 36.500000

max 74.000000 73.000000 66.000000 52.000000

 Correlation
Correlation shows how much relationship exists between two variables. Parametric

machine learning methods such as logistic and linear regression can take a performance

hit when variables are highly correlated. The correlation values range from –1 to 1, with

0 indicating no correlation at all. –1 signifies that the variables are strongly negatively

correlated, while 1 shows that the variables are strongly positively correlated. In practice,

it is safe to eliminate variables that have a correlation value greater than –0.7 or 0.7. A

common correlation estimate in use is the Pearson’s correlation coefficient.

my_DF.corr(method='pearson')

'Output':

 First Second Third Fourth

First 1.000000 0.587645 -0.014100 -0.317333

Second 0.587645 1.000000 -0.768495 -0.345265

Third -0.014100 -0.768495 1.000000 0.334169

Fourth -0.317333 -0.345265 0.334169 1.000000

 Skewness
Another important statistical metric is the skewness of the dataset. Skewness is when a

bell-shaped or normal distribution is shifted toward the right or the left. Pandas offers a

convenient function called skew() to check the skewness of each variable. Values close

to 0 are more normally distributed with less skew.

my_DF.skew()

'Output':

First -0.167782

Second -0.566914

Third -0.084490

Fourth 0.691332

dtype: float64

Chapter 11 pandas

140

 Importing Data
Again, getting data into the programming environment for analysis is a fundamental and

first step for any data analytics or machine learning task. In practice, data usually comes

in a comma-separated value, csv, format.

my_DF = pd.read_csv('link_to_file/csv_file', sep=',', header = None)

To export a DataFrame back to csv

my_DF.to_csv('file_name.csv')

For the next example, the dataset ‘states.csv’ is found in the chapter folder of the

code repository of this book.

my_DF = pd.read_csv('states.csv', sep=',', header = 0)

read the top 5 rows

my_DF.head()

save DataFrame to csv

my_DF.to_csv('save_states.csv')

 Timeseries with Pandas
One of the core strengths of Pandas is its powerful set of functions for manipulating

timeseries datasets. A couple of these functions are covered in this material.

 Importing a Dataset with a DateTime Column
When importing a dataset that has a column containing datetime entries, Pandas has an

attribute in the read_csv method called parse_dates that converts the datetime column

from strings into Pandas date datatype. The attribute index_col uses the column of

datetimes as an index to the DataFrame.

The method head() prints out the first five rows of the DataFrame, while the method

tail() prints out the last five rows of the DataFrame. This function is very useful for taking

a peek at a large DataFrame without having to bear the computational cost of printing it

out entirely.

Chapter 11 pandas

141

load the data

data = pd.read_csv('crypto-markets.csv', parse_dates=['date'], index_

col='date')

data.head()

'Output':

 slug date symbol name ranknow open high low close

volume market close_ratio spread

2013-04-28 bitcoin BTC Bitcoin 1 135.30 135.98 132.10 134.21

 0 1500520000 0.5438 3.88

2013-04-29 bitcoin BTC Bitcoin 1 134.44 147.49 134.00 144.54

 0 1491160000 0.7813 13.49

2013-04-30 bitcoin BTC Bitcoin 1 144.00 146.93 134.05 139.00

 0 1597780000 0.3843 12.88

2013-05-01 bitcoin BTC Bitcoin 1 139.00 139.89 107.72 116.99

 0 1542820000 0.2882 32.17

2013-05-02 bitcoin BTC Bitcoin 1 116.38 125.60 92.28 105.21

 0 1292190000 0.3881 33.32

Let’s examine the index of the imported data. Notice that they are the datetime

entries.

get the row indices

data.index

'Output':

DatetimeIndex(['2013-04-28', '2013-04-29', '2013-04-30', '2013-05-01',

 '2013-05-02', '2013-05-03', '2013-05-04', '2013-05-05',

 '2013-05-06', '2013-05-07',

 ...

 '2018-01-01', '2018-01-02', '2018-01-03', '2018-01-04',

 '2018-01-05', '2018-01-06', '2018-01-07', '2018-01-08',

 '2018-01-09', '2018-01-10'],

 dtype='datetime64[ns]', name='date', length=659373,

freq=None)

Chapter 11 pandas

142

 Selection Using DatetimeIndex
The DatetimeIndex can be used to select the observations of the dataset in various

interesting ways. For example, we can select the observation of an exact day or the

observations belonging to a particular month or year. The selected observation can be

subsetted by columns and grouped to give more insight in understanding the dataset.

Let’s see some examples.

 Select a Particular Date

Let’s select a particular date from a DataFrame.

select a particular date

data['2018-01-05'].head()

'Output':

 slug symbol name ranknow open high \

date

2018-01-05 bitcoin BTC Bitcoin 1 15477.20 17705.20

2018-01-05 ethereum ETH Ethereum 2 975.75 1075.39

2018-01-05 ripple XRP Ripple 3 3.30 3.56

2018-01-05 bitcoin-cash BCH Bitcoin Cash 4 2400.74 2648.32

2018-01-05 cardano ADA Cardano 5 1.17 1.25

 low close volume market \

date

2018-01-05 15202.800000 17429.500000 23840900000 259748000000

2018-01-05 956.330000 997.720000 6683150000 94423900000

2018-01-05 2.830000 3.050000 6288500000 127870000000

2018-01-05 2370.590000 2584.480000 2115710000 40557600000

2018-01-05 0.903503 0.999559 508100000 30364400000

 close_ratio spread

date

2018-01-05 0.8898 2502.40

2018-01-05 0.3476 119.06

2018-01-05 0.3014 0.73

2018-01-05 0.7701 277.73

2018-01-05 0.2772 0.35

Chapter 11 pandas

143

select a range of dates

data['2018-01-05':'2018-01-06'].head()

'Output':

 slug symbol name ranknow open high low \

date

2018-01-05 bitcoin BTC Bitcoin 1 15477.20 17705.20 15202.80

2018-01-06 bitcoin BTC Bitcoin 1 17462.10 17712.40 16764.60

2018-01-05 ethereum ETH Ethereum 2 975.75 1075.39 956.33

2018-01-06 ethereum ETH Ethereum 2 995.15 1060.71 994.62

2018-01-05 ripple XRP Ripple 3 3.30 3.56 2.83

 close volume market close_ratio spread

date

2018-01-05 17429.50 23840900000 259748000000 0.8898 2502.40

2018-01-06 17527.00 18314600000 293091000000 0.8044 947.80

2018-01-05 997.72 6683150000 94423900000 0.3476 119.06

2018-01-06 1041.68 4662220000 96326500000 0.7121 66.09

2018-01-05 3.05 6288500000 127870000000 0.3014 0.73

 Select a Month

Let’s select a particular month from a DataFrame.

select a particular month

data['2018-01'].head()

'Output':

 slug symbol name ranknow open high low \

date

2018-01-01 bitcoin BTC Bitcoin 1 14112.2 14112.2 13154.7

2018-01-02 bitcoin BTC Bitcoin 1 13625.0 15444.6 13163.6

2018-01-03 bitcoin BTC Bitcoin 1 14978.2 15572.8 14844.5

2018-01-04 bitcoin BTC Bitcoin 1 15270.7 15739.7 14522.2

2018-01-05 bitcoin BTC Bitcoin 1 15477.2 17705.2 15202.8

Chapter 11 pandas

144

 close volume market close_ratio spread

date

2018-01-01 13657.2 10291200000 236725000000 0.5248 957.5

2018-01-02 14982.1 16846600000 228579000000 0.7972 2281.0

2018-01-03 15201.0 16871900000 251312000000 0.4895 728.3

2018-01-04 15599.2 21783200000 256250000000 0.8846 1217.5

2018-01-05 17429.5 23840900000 259748000000 0.8898 2502.4

 Select a Year

Let’s select a particular year from a DataFrame.

select a particular year

data['2018'].head()

'Output':

 slug symbol name ranknow open high low \

date

2018-01-01 bitcoin BTC Bitcoin 1 14112.2 14112.2 13154.7

2018-01-02 bitcoin BTC Bitcoin 1 13625.0 15444.6 13163.6

2018-01-03 bitcoin BTC Bitcoin 1 14978.2 15572.8 14844.5

2018-01-04 bitcoin BTC Bitcoin 1 15270.7 15739.7 14522.2

2018-01-05 bitcoin BTC Bitcoin 1 15477.2 17705.2 15202.8

 close volume market close_ratio spread

date

2018-01-01 13657.2 10291200000 236725000000 0.5248 957.5

2018-01-02 14982.1 16846600000 228579000000 0.7972 2281.0

2018-01-03 15201.0 16871900000 251312000000 0.4895 728.3

2018-01-04 15599.2 21783200000 256250000000 0.8846 1217.5

2018-01-05 17429.5 23840900000 259748000000 0.8898 2502.4

 Subset Data Columns and Find Summaries
Get the closing prices of Bitcoin stocks for the month of January.

Chapter 11 pandas

145

data.loc[data.slug == 'bitcoin', 'close']['2018-01']

'Output':

date

2018-01-01 13657.2

2018-01-02 14982.1

2018-01-03 15201.0

2018-01-04 15599.2

2018-01-05 17429.5

2018-01-06 17527.0

2018-01-07 16477.6

2018-01-08 15170.1

2018-01-09 14595.4

2018-01-10 14973.3

Find the mean market value of Ethereum for the month of January.

data.loc[data.slug == 'ethereum', 'market']['2018-01'].mean()

'Output':

96739480000.0

 Resampling Datetime Objects
A Pandas DataFrame with an index of DatetimeIndex, PeriodIndex, or TimedeltaIndex

can be resampled to any of the date time frequencies from seconds, to minutes, to

months. Let’s see some examples.

Let’s get the average monthly closing values for Litecoin.

data.loc[data.slug == 'bitcoin', 'close'].resample('M').mean().head()

'Output':

date

2013-04-30 139.250000

2013-05-31 119.993226

2013-06-30 107.761333

2013-07-31 90.512258

2013-08-31 113.905161

Freq: M, Name: close, dtype: float64

Chapter 11 pandas

146

Get the average weekly market value of Bitcoin Cash.

data.loc[data.symbol == 'BCH', 'market'].resample('W').mean().head()

'Output':

date

2017-07-23 0.000000e+00

2017-07-30 0.000000e+00

2017-08-06 3.852961e+09

2017-08-13 4.982661e+09

2017-08-20 7.355117e+09

Freq: W-SUN, Name: market, dtype: float64

 Convert to Datetime Datatype Using ‘to_datetime’
Pandas uses the to_datetime method to convert strings to Pandas datetime datatype.

The to_datetime method is smart enough to infer a datetime representation from a

string of dates passed with different formats. The default output format of to_datetime is

in the following order: year, month, day, minute, second, millisecond, microsecond,
nanosecond.

The input to to_datetime is recognized as month, day, year. Although, it can easily

be modified by setting the attributes dayfirst or yearfirst to True.

For example, if dayfirst is set to True, the input is recognized as day, month, year.

Let’s see an example of this.

create list of dates

my_dates = ['Friday, May 11, 2018', '11/5/2018', '11-5-2018', '5/11/2018',

'2018.5.11']

pd.to_datetime(my_dates)

'Output':

DatetimeIndex(['2018-05-11', '2018-11-05', '2018-11-05', '2018-05-11',

 '2018-05-11'],

 dtype='datetime64[ns]', freq=None)

Chapter 11 pandas

147

Let’s set dayfirst to True. Observe that the first input in the string is treated as a day in

the output.

set dayfirst to True

pd.to_datetime('5-11-2018', dayfirst = True)

'Output':

Timestamp('2018-11-05 00:00:00')

 The shift() Method
A typical step in a timeseries use case is to convert the timeseries dataset into a

supervised learning framework for predicting the outcome for a given time instant.

The shift() method is used to adjust a Pandas DataFrame column by shifting the

observations forward or backward. If the observations are pulled backward (or lagged),

NaNs are attached at the tail of the column. But if the values are pushed forward, the

head of the column will contain NaNs. This step is important for adjusting the target

variable of a dataset to predict outcomes n-days or steps or instances into the future.

Let’s see some examples.

Subset columns for the observations related to Bitcoin Cash.

subset a few columns

data_subset_BCH = data.loc[data.symbol == 'BCH',

 ['open','high','low','close']]

data_subset_BCH.head()

'Output':

 open high low close

date

2017-07-23 555.89 578.97 411.78 413.06

2017-07-24 412.58 578.89 409.21 440.70

2017-07-25 441.35 541.66 338.09 406.90

2017-07-26 407.08 486.16 321.79 365.82

2017-07-27 417.10 460.97 367.78 385.48

Now let’s create a target variable that contains the closing rates 3 days into the future.

data_subset_BCH['close_4_ahead'] = data_subset_BCH['close'].shift(-4)

data_subset_BCH.head()

Chapter 11 pandas

148

'Output':

 open high low close close_4_ahead

date

2017-07-23 555.89 578.97 411.78 413.06 385.48

2017-07-24 412.58 578.89 409.21 440.70 406.05

2017-07-25 441.35 541.66 338.09 406.90 384.77

2017-07-26 407.08 486.16 321.79 365.82 345.66

2017-07-27 417.10 460.97 367.78 385.48 294.46

Observe that the tail of the column close_4_head contains NaNs.

data_subset_BCH.tail()

'Output':

 open high low close close_4_ahead

date

2018-01-06 2583.71 2829.69 2481.36 2786.65 2895.38

2018-01-07 2784.68 3071.16 2730.31 2786.88 NaN

2018-01-08 2786.60 2810.32 2275.07 2421.47 NaN

2018-01-09 2412.36 2502.87 2346.68 2391.56 NaN

2018-01-10 2390.02 2961.20 2332.48 2895.38 NaN

 Rolling Windows
Pandas provides a function called rolling() to find the rolling or moving statistics of

values in a column over a specified window. The window is the “number of observations

used in calculating the statistic.” So we can find the rolling sums or rolling means of a

variable. These statistics are vital when working with timeseries datasets. Let’s see some

examples.

Let’s find the rolling means for the closing variable over a 30-day window.

find the rolling means for Bitcoin cash

rolling_means = data_subset_BCH['close'].rolling(window=30).mean()

The first few values of the rolling_means variable contain NaNs because the method

computes the rolling statistic from the earliest time to the latest time in the dataset. Let’s

print out the first five values using the head method.

Chapter 11 pandas

149

rolling_means.head()

Out[75]:

date

2017-07-23 NaN

2017-07-24 NaN

2017-07-25 NaN

2017-07-26 NaN

2017-07-27 NaN

Now let’s observe the last five values using the tail method.

rolling_means.tail()

'Output':

date

2018-01-06 2403.932000

2018-01-07 2448.023667

2018-01-08 2481.737333

2018-01-09 2517.353667

2018-01-10 2566.420333

Name: close, dtype: float64

Let’s do a quick plot of the rolling means using the Pandas plotting function. The

output of the plot is shown in Figure 11-2.

plot the rolling means for Bitcoin cash

data_subset_BCH['close'].rolling(window=30).mean().plot(label='Rolling

Average over 30 days')

Chapter 11 pandas

150

More on plotting in the next chapter.

Figure 11-2. Rolling average closing price over 30 days for Bitcoin Cash

Chapter 11 pandas

151
© Ekaba Bisong 2019
E. Bisong, Building Machine Learning and Deep Learning Models on Google Cloud Platform,
https://doi.org/10.1007/978-1-4842-4470-8_12

CHAPTER 12

Matplotlib and Seaborn
It is critical to be able to plot the observations and variables of a dataset before subjecting

the dataset to some machine learning algorithm or another. Data visualization is

essential to understand your data and to glean insights into the underlying structure of

the dataset. These insights help the scientist in deciding with statistical analysis or which

learning algorithm is more appropriate for the given dataset. Also, the scientist can get

ideas on suitable transformations to apply to the dataset.

In general, visualization in data science can conveniently be split into univariate

and multivariate data visualizations. Univariate data visualization involves plotting

a single variable to understand more about its distribution and structure, while

multivariate plots expose the relationship and structure between two or more variables.

 Matplotlib and Seaborn
Matplotlib is a graphics package for data visualization in Python. Matplotlib has arisen

as a key component in the Python data science stack and is well integrated with NumPy

and Pandas. The pyplot module mirrors the MATLAB plotting commands closely.

Hence, MATLAB users can easily transit to plotting with Python.

Seaborn, on the other hand, extends the Matplotlib library for creating beautiful

graphics with Python using a more straightforward set of methods. Seaborn is more

integrated for working with Pandas DataFrames. We will go through creating simple

essential plots with Matplotlib and seaborn.

 Pandas Plotting Methods
Pandas also has a robust set of plotting functions which we will also use for visualizing

our dataset. The reader will observe how we can easily convert datasets from NumPy to

Pandas and vice versa to take advantage of one functionality or the other. The plotting

features of Pandas are found in the plotting module.

152

There are many options and properties for working with matplotlib, seaborn,

and pandas.plotting functions for data visualization, but as is the theme of

this material, the goal is to keep it simple and give the reader just enough to be

dangerous. Deep competency comes with experience and continuous usage. These

cannot really be taught.

To begin, we will load Matplotlib by importing the pyplot module from the

matplotlib package and the seaborn package.

import matplotlib.pyplot as plt

import seaborn as sns

We’ll also import the numpy and pandas packages to create our datasets.

import pandas as pd

import numpy as np

 Univariate Plots
Some common and essential univariate plots are line plots, bar plots, histograms and

density plots, and the box and whisker plot, to mention just a few.

 Line Plot
Let’s plot a sine graph of 100 points from the negative to positive exponential range. The

plot method allows us to plot lines or markers to the figure. The outputs of the sine and

cosine line plot are shown in Figure 12-1 and Figure 12-2, respectively.

data = np.linspace(-np.e, np.e, 100, endpoint=True)

plot a line plot of the sine wave

plt.plot(np.sin(data))

plt.show()

plot a red cosine wave with dash and dot markers

plt.plot(np.cos(data), 'r-.')

plt.show()

Chapter 12 Matplotlib and Seaborn

153

Figure 12-1. Lineplot with Matplotlib

Figure 12-2. Lineplot with seaborn

Chapter 12 Matplotlib and Seaborn

154

 Bar Plot
Let’s create a simple bar plot using the bar method. The output with matplotlib is shown

in Figure 12-3, and the output with seaborn is shown in Figure 12-4.

states = ["Cross River", "Lagos", "Rivers", "Kano"]

population = [3737517, 17552940, 5198716, 11058300]

create barplot using matplotlib

plt.bar(states, population)

plt.show()

create barplot using seaborn

sns.barplot(x=states, y=population)

plt.show()

Figure 12-3. Barplot with Matplotlib

Chapter 12 Matplotlib and Seaborn

155

 Histogram/Density Plots
Histogram and density plots are essential for examining the statistical distribution of

a variable. For a simple histogram, we’ll create a set of 100,000 points from the normal

distribution. The outputs with matplotlib and seaborn are shown in Figure 12-5 and

Figure 12-6, respectively.

create 100000 data points from the normal distributions

data = np.random.randn(100000)

create a histogram plot

plt.hist(data)

plt.show()

crate a density plot using seaborn

my_fig = sns.distplot(data, hist=False)

plt.show()

Figure 12-4. Barplot with seaborn

Chapter 12 Matplotlib and Seaborn

156

Figure 12-5. Histogram with Matplotlib

Figure 12-6. Histogram with seaborn

Chapter 12 Matplotlib and Seaborn

157

 Box and Whisker Plots
Boxplot, also popularly called box and whisker plot, is another useful visualization

technique for gaining insights into the underlying data distribution. The boxplot draws

a box with the upper line representing the 75th percentile and the lower line the 25th

percentile. A line is drawn at the center of the box indicating the 50th percentile or median

value. The whiskers at both ends give an estimation of the spread or variance of the data

values. The dots at the tail end of the whiskers represent possible outlier values. The

outputs with matplotlib and seaborn are shown in Figure 12-7 and Figure 12-8, respectively.

create data points

data = np.random.randn(1000)

box plot with matplotlib

plt.boxplot(data)

plt.show()

box plot with seaborn

sns.boxplot(data)

plt.show()

Figure 12-7. Boxplot with Matplotlib

Chapter 12 Matplotlib and Seaborn

158

 Multivariate Plots
Common multivariate visualizations include the scatter plot and its extension the

pairwise plot, parallel coordinate plots, and the covariance matrix plot.

 Scatter Plot
Scatter plot exposes the relationships between two variables in a dataset. The outputs

with matplotlib and seaborn are shown in Figure 12-9 and Figure 12-10, respectively.

create the dataset

x = np.random.sample(100)

y = 0.9 * np.asarray(x) + 1 + np.random.uniform(0,0.8, size=(100,))

scatter plot with matplotlib

Figure 12-8. Boxplot with seaborn

Chapter 12 Matplotlib and Seaborn

159

plt.scatter(x,y)

plt.xlabel("x")

plt.ylabel("y")

plt.show()

scatter plot with seaborn

sns.regplot(x=x, y=y, fit_reg=False)

plt.xlabel("x")

plt.ylabel("y")

plt.show()

Figure 12-9. Scatter plot with Matplotlib

Chapter 12 Matplotlib and Seaborn

160

 Pairwise Scatter Plot
Pairwise scatter plot is an effective window for visualizing the relationships among

multiple variables within the same plot. However, with higher-dimension datasets,

the plot may become clogged up, so use it with care. Let’s see an example of this with

Matplotlib and seaborn.

Here, we will use the method scatter_matrix, one of the plotting functions in Pandas

to graph a pairwise scatter plot matrix. The outputs with matplotlib and seaborn are

shown in Figure 12-11 and Figure 12-12, respectively.

create the dataset

data = np.random.randn(1000,6)

using Pandas scatter_matrix

pd.plotting.scatter_matrix(pd.DataFrame(data), alpha=0.5, figsize=(12, 12),

diagonal='kde')

plt.show()

Figure 12-10. Scatter plot with seaborn

Chapter 12 Matplotlib and Seaborn

161

pairwise scatter with seaborn

sns.pairplot(pd.DataFrame(data))

plt.show()

Figure 12-11. Pairwise scatter plot with Pandas

Chapter 12 Matplotlib and Seaborn

162

 Correlation Matrix Plots
Again, correlation shows how much relationship exists between two variables. By

plotting the correlation matrix, we get a visual representation of which variables in the

dataset are highly correlated. Remember that parametric machine learning methods

such as logistic and linear regression can take a performance hit when variables are

Figure 12-12. Pairwise scatter plot with seaborn

Chapter 12 Matplotlib and Seaborn

163

highly correlated. Also, in practice, the correlation values that are greater than –0.7 or

0.7 are for the most part highly correlated. The outputs with matplotlib and seaborn are

shown in Figure 12-13 and Figure 12-14, respectively.

create the dataset

data = np.random.random([1000,6])

plot covariance matrix using the Matplotlib matshow function

fig = plt.figure()

ax = fig.add_subplot(111)

my_plot = ax.matshow(pd.DataFrame(data).corr(), vmin=-1, vmax=1)

fig.colorbar(my_plot)

plt.show()

Figure 12-13. Correlation matrix with Matplotlib

Chapter 12 Matplotlib and Seaborn

164

plot covariance matrix with seaborn heatmap function

sns.heatmap(pd.DataFrame(data).corr(), vmin=-1, vmax=1)

plt.show()

 Images
Matplotlib is also used to visualize images. This process is utilized when visualizing a

dataset of image pixels. You will observe that image data is stored in the computer as

an array of pixel intensity values ranging from 0 to 255 across three bands for colored

images.

img = plt.imread('nigeria-coat-of-arms.png')

check image dimension

img.shape

'Output': (232, 240, 3)

Figure 12-14. Correlation matrix with seaborn

Chapter 12 Matplotlib and Seaborn

165

Note that the image contains 232 rows and 240 columns of pixel values across three

channels (i.e., red, green, and blue).

Let’s print the first row of the columns in the first channel of our image data.

Remember that each pixel is an intensity value from 0 to 255. Values closer to 0 are black,

while those closer to 255 are white. The output is shown in Figure 12-15.

img[0,:,0]

'Output':

array([0., 0., 0., ..., 0., 0., 0.], dtype=float32)

Now let’s plot the image.

plot image

plt.imshow(img)

plt.show()

Figure 12-15. Nigeria Coat of Arms

This chapter completes Part 2 of this book, which provides the foundation to

programming for data science using the Python data science stack. In the next segment,

Part 3, containing Chapters 13–17, we will provide an introduction to the field of

machine learning.

Chapter 12 Matplotlib and Seaborn

PART III

Introducing Machine
Learning

169
© Ekaba Bisong 2019
E. Bisong, Building Machine Learning and Deep Learning Models on Google Cloud Platform,
https://doi.org/10.1007/978-1-4842-4470-8_13

CHAPTER 13

What Is Machine
Learning?
Machine learning as a field grew out of the need to get computers to solve problems that

are difficult to program as a sequence of instructions. Take, for example, that we want

a computer to perform the task of recognizing faces in an image. One will realize that it

is incredibly complicated, if not impossible to develop a precise instruction set that will

satisfactorily perform this task. However, by drawing from the observation that humans

improve on performing complex functions from past experiences, we can then attempt

to develop algorithms and methods that enable the computer to establish a system for

solving complex tasks based off prior experiences without being explicitly programmed.

The set of methods and algorithms for discovering patterns in data is what is known as

machine learning.

Two classical definitions of machine learning are that of Arthur Samuel in 1956

who described machine learning as “the ability for computers to learn without being

explicitly programmed” and Tom Mitchell in 1997 who defined machine learning as "the

process of teaching a computer to perform a particular task by improving its measure of

performance with experience.”

Machine learning is an interdisciplinary field of study that brings together

techniques from the fields of computer science, statistics, mathematics, and the

cognitive sciences which include biology, psychology, and linguistics, to mention just a

few. While the idea of learning from data has been around the academic community for

several decades, its entry into the mainstream technology industry began in the early

2000s. This growth coincided with the rise of humongous data as a result of the web

explosion as people started sharing data over the Internet.

170

 The Role of Data
Data is at the core of machine learning. It is central to the current evolution and further

advancement of this field. Just as it is for humans, it is the same way for machines.

Learning is not possible without data.

Humans learn how to perform tasks by collecting information from the

Environment. This information is the data the brain uses to construct patterns and

gain an understanding of the Environment. For a human being, data is captured

through the sense organs. For example, the eyes capture visual data, the ears capture

auditory data, the skin receives tactile data, while the nose and tongue detect olfactory

and taste data, respectively.

As with humans, this same process of learning from data is replicated with

machines. Let’s take, for example, the task of identifying spam emails. In this example,

the computer is provided email examples as data. It then uses an algorithm to learn to

distinguish spam emails from regular emails.

 The Cost of Data
Data is expensive to collect, and high-quality data is even more costly to capture due

to the associated costs in storing and cleaning the data. Over the years, the paucity of

data had limited the performance of machine learning methods. However, in the early

1990s, the Internet was born, and by the dawn of the century, it became a super highway

for data distribution. As a result, large and diverse data became readily available for the

research and development of machine learning products across various domains.

In this chapter, we covered the definition and history of machine learning and the

importance of data. Next, we will take it further by discussing the principles of machine

learning in Chapter 14.

Chapter 13 What Is MaChIne LearnIng?

171
© Ekaba Bisong 2019
E. Bisong, Building Machine Learning and Deep Learning Models on Google Cloud Platform,
https://doi.org/10.1007/978-1-4842-4470-8_14

CHAPTER 14

Principles of Learning
Machine learning is, for the most part, sub-divided into three components based on the

approach to the learning problem. The three predominant categories of learning are the

supervised, unsupervised, and reinforcement learning schemes. In this chapter, we will

go over supervised learning schemes in detail and also touch upon unsupervised and

reinforcement learning schemes to a lesser extent.

The focus on supervised learning is for a variety of reasons. Firstly, they are the

predominant techniques used for building machine learning products in industry;

secondly, as you will soon learn, they are easy to ground truth and assess their

performances before being deployed as part of a large-scale production pipeline. Let’s

examine each of the three schemes.

 Supervised Learning
To easily understand the concept of supervised learning, let’s revisit the problem of

identifying spam emails from a set of emails. We will use this example to understand

key concepts that are central to the definition and the framing of a supervised learning

problem, and they are

• Features

• Samples

• Targets

For this contrived example, let’s assume that we have a dictionary of the top 4 words

in the set of emails and we record the frequency of occurrence for each email sample.

This information is represented in a tabular format, where each feature is a column and

the rows are email samples. This tabular representation is called a dataset. Figure 14-1

illustrates this depiction.

172

The fundamental concept behind supervised machine learning is that each sample

is associated with a target variable, and the goal is to teach the computer to learn the

patterns from the dataset features that results in a target as a prediction outcome. The

columns of a dataset in machine learning are referred to as features; other names you

may find commonly used are variables or attributes of the dataset, but in this book, we

will use the term features to describe the measurement units of a data sample. Moreover,

the samples of a dataset are also referred to as rows, data points, or observations, but we

will use the term samples throughout this book.

Hence, in supervised learning, a set of features are used to build a learning model

that will predict the outcome of a target variable as shown in Figure 14-1.

Next, we will cover important modeling considerations for building supervised

learning models.

 Regression vs. Classification
In supervised learning, we typically have two types of modeling task, and they are

regression and classification.

Figure 14-1. Dataset representation

Chapter 14 prinCiples of learning

173

 Regression

The supervised learning problem is a regression task when the values of the target

variable are real-valued numbers.

Let’s take, for example, that we are given a housing dataset and are asked to build a

model that can predict the price of a house. The dataset, for example, has features such

as the price of the house, the number of bedrooms, the number of bathrooms, and the

total square feet. Let’s illustrate how this dataset will look like with a contrived example

in Figure 14-2.

From the learning problem, the features of the dataset are the number of bedrooms,

the number of bathrooms, and the square foot of the floor area, while the target feature

is the price of the house. The use case presented in Figure 14-3 is framed as a regression
task because the target feature is a real-valued number.

Figure 14-2. Regression problem: housing dataset

Chapter 14 prinCiples of learning

174

 Classification

In a classification task, the target feature is a label denoting some sort of class

membership. These labels are also called categorical variables, because they represent

labels that belong to two or more categories. Also, no natural ordering exists between the

categories or labels.

As an example, suppose we are given a dataset containing the heart disease

diagnosis of patients, and we are asked to build a model to predict if a patient has a

heart disease or not. Like the previous example, let’s assume the dataset has features

blood pressure, cholesterol level, heart rate, and heart disease diagnosis. A contrived

illustration of this example is shown in Figure 14-3.

Figure 14-3. Classification task: heart disease dataset

Chapter 14 prinCiples of learning

175

From the table in Figure 14-3, the target variable denotes a class membership of
heart disease or no heart disease; hence, the target is categorical and can be termed as

a classification problem.

 How Do We Know that Learning Has Occurred?
This question is vital to determine if the learning algorithm can learn a useful pattern

between the input features and the targets. Let’s create a scenario that will give us better

insights into appraising the question of determining when learning has occurred.

Assume a teacher takes a physics class for 3 months, and at the end of each session,

the teacher administers a test to ascertain if the student has learned anything.

Let’s consider two different scenarios the teacher might use in evaluating the students:

 1. The teacher evaluates the student with the exact word-for-word

questions that were used as sample problems while teaching.

 2. The teacher evaluates the student with an entirely different but

similar set of sample problems that are based on the principles

taught in class.

In which of these subplots can the teacher ascertain that the student has learned? To

figure this out, we must consider the two norms of learning:

 1. Memorization: In the first subplot, it will be incorrect for the

teacher to form a basis for learning because the student has

seen and most likely memorized the examples during the class

sessions. Memorization is when the exact snapshot of a sample

is stored for future recollection. Therefore, it is inaccurate to

use samples used in training to carry out learning evaluation. In

machine learning, this is known as data snooping.

 2. Generalization: In the second subplot, the teacher can be

confident that the assessment serves as an accurate test to

evaluate if the student has learned from the session. The ability to

use the principles learned to solve previously unseen samples is

known as generalization.

Hence, we can conclude that learning is the ability to generalize to previously

unseen samples.

Chapter 14 prinCiples of learning

176

 Training, Test, and Validation Datasets
The goal of supervised machine learning is to be able to predict or classify the targets on

unseen examples correctly. We can misjudge the performance of our learning models if

we evaluate the model performance with the same samples used to train the model as

explained previously.

To properly evaluate the performance of a learning algorithm, we need to set aside

some data for testing purposes. This held-out data is called a test set.

Another situation arises when we have trained the model on a dataset, and we

now need to improve the performance of the model by adjusting some of the learning

algorithm’s parameters.

We cannot use the test set for model tuning because if we do that, the model’s

parameters are trained with the test dataset rendering it unusable as an unseen held-out

sample for model evaluation. Hence, it is typical to divide the entire dataset into

• The training set (to train the model)

• The validation set (to tune the model)

• The test set (to evaluate the effectiveness of the model)

A common and straightforward strategy is to split 60% of the dataset for training,

20% for validation, and the final 20% for testing. This strategy is popularly known as the

60/20/20 rule. We will discuss more sophisticated methods for resampling (i.e., using

subsets of available data) for machine learning later in this chapter. See Figure 14-4.

Chapter 14 prinCiples of learning

177

 Bias vs. Variance Trade-Off
The concept of bias vs. variance is central to machine learning and is critical to

understanding how the model is performing, as well as in suggesting the direction in

which to improve the model.

A model is said to have high bias when it oversimplifies the learning problem

or when the model fails to accurately capture the complex relationships that exist

between the input features of the dataset. High bias makes the model unable to

generalize to new examples.

Figure 14-4. Training, test, and validation set

Chapter 14 prinCiples of learning

178

High variance, on the other hand, is when the model learns too closely the intricate

patterns of the dataset input features, and in the process, it learns the irreducible noise

of the dataset samples. When the learning algorithm learns very closely the patterns

of the training samples, including the noise, it will fail to generalize when exposed to

previously unseen data.

Hence, we observe that there is a need to strike the right balance between bias and

variance, and often it is down to the skill of the model builder to discover this middle

ground. However, there exists practical rules of thumb for finding the right trade-off

between bias and variance.

 How Do We Recognize the Presence of Bias or Variance
in the Results?

High bias is observed when the model performs poorly on the trained data. Of course,

it will also perform poorly (or even worse) on the test data with high prediction errors.

When high bias occurs, it can be said that the model has underfit the data. High variance

is observed when the trained model learns the training data very well but performs

poorly on unseen (test) data. In the event of high variance, we can say that the model has

overfit the dataset.

The graph in Figure 14-5 illustrates the effect of bias and variance on the quality/

performance of a machine learning model. In Figure 14-6, the reader will observe that

there is a sweet spot somewhere in the middle where the model has good performances

on both the training and the test datasets.

Chapter 14 prinCiples of learning

179

To recap, our goal is to have a model that strikes a balance between high bias and

high variance. Figure 14-6 provides further illustration on the effects of models with high

bias and variance on a dataset. As seen in the image to the left of Figure 14-6, we want

to have a model that can generalize to previously unseen example, such a model should

have good prediction accuracy.

Figure 14-5. Bias and variance

Figure 14-6. Left: Good fit. Center: Underfit (high bias). Right: Overfit (high
variance)

Chapter 14 prinCiples of learning

180

 Evaluating Model Quality
Evaluation metrics give us a way to quantitatively evaluate how well our model is

performing. The model’s performance on the training data is evaluated to get the

training set accuracy, while its performance on the test data is evaluated to get the test

data accuracy when the model predicts the targets of previously unseen examples.

Evaluation on test data helps us to know the true performance measure of our model.

The learning problem determines the type of evaluation metric to use. As an

example, for regression prediction problems, it is common to use the root mean

squared error (RMSE) to evaluate the magnitude of the error made by the model. For

classification problems, one of the common evaluation metrics is to use a confusion

matrix to get a picture of how many samples are correctly classified or misclassified.

From the confusion matrix, it is possible to derive other useful metrics for evaluating

classification problems such as accuracy, precision, and recall.

The following are the evaluation metrics for machine learning that we will consider

in this text:

Classification

• Confusion matrix

• Area under ROC curve (AUC-ROC)

Regression

• Root mean squared error (RMSE)

• R-squared (R2)

Let’s go through each.

 Classification Evaluation Metrics

In this section, we’ll briefly explain performance metrics for classification machine

learning tasks.

Confusion Matrix

The confusion matrix is a popular evaluation metric for gleaning insights into the

performance of a classification supervised machine learning model. It is represented as

a table with grid-like cells. In the case of a two-class classification problem, the columns

Chapter 14 prinCiples of learning

181

of the grid are the actual positive and negative class values of the target feature, while the

rows are the predicted positive and negative class values of the targets. This is illustrated

in Figure 14-7.

There are four primary values that can be gotten directly from examining the

confusion matrix, and they are the true positive, the false positive, the true negative,

and the false negative values. Let’s examine each of them briefly:

• True positive: True positive is the number of samples predicted to be

positive (or true) when the actual class is positive.

• False positive: False positive is the number of samples predicted as

positive (or true) when the actual class is negative.

• True negative: True negative is the number of samples predicted to

be negative (or false) and the actual class is negative.

• False negative: False negative is the number of samples predicted to

be negative (or false) when the actual class is positive.

From the four primary values, we have three other measures that provide more

information on the performance of our model. These are accuracy, the positive

predictive value (or precision), and sensitivity (or recall). Let’s explain them briefly:

• Accuracy: Accuracy is the fraction of correct predictions made by the

learning algorithm. It is represented as the ratio of the sum of true

positive, TP, and true negative, TN, to the total population.

Figure 14-7. Confusion matrix

Chapter 14 prinCiples of learning

182

accuracy

TP TN

TP FP FN TN
=

+
+ + +

• Precision or positive predictive value: Precision is the ratio of true

positive, TP, to the sum of true positive, TP, and false positive, FP.

In other words, precision measures the fraction of results that are

correctly predicted as positive over all the results that the algorithm

predicts as positive. The sum TP + FP is also called the predicted

positive condition.

precision

TP

TP FP
=

+

• Recall or sensitivity: Recall is the ratio of true positive, TP, to the sum

of true positive, TP, and false negative, FN. In other words, recall

retrieves the fraction of results that are correctly predicted as positive

over all the results that are positive. The sum TP + FN is also known

as condition positive.

recall

TP

TP FN
=

+

To put this concept together, let’s revisit the example heart disease dataset. Suppose

we are to predict if a patient will be diagnosed with a heart disease or not, assume

we have 50 samples in the dataset, of which 20 are diagnosed with heart disease and

the remaining 30 are not. Of the 30 samples that do not have a disease diagnosis, the

learning algorithm rightly identifies 25, while of the 20 samples that have a disease

diagnosis, the learning algorithm correctly identifies 15.

Let’s represent this information in a confusion matrix (see Figure 14-8) and calculate

the necessary statistical measures to evaluate the algorithm performance.

Chapter 14 prinCiples of learning

183

From the data in Figure 14-8, we can calculate the accuracy, precision, and recall.

• Accuracy =

15 25

15 5 5 25

40

50

4

5

+
+ + +

= =

• Precision =

15

15 5

3

4+
=

• Recall =

15

15 5

3

4+
=

Hence, our algorithm is 80% accurate, with a precision of 75% and a recall of 75%.

Area Under the Receiver Operating Curve (AUC-ROC)

The area under the receiver operating characteristic (ROC) curve, also known as the

AUC-ROC for short, is another widely used metric for evaluating classification machine

learning problems. A significant feature of the AUC-ROC metric is that it can be a good

metric for evaluating datasets with imbalanced classes.

Figure 14-8. Confusion matrix example

Chapter 14 prinCiples of learning

184

An imbalanced class is when one of the outcome targets has far more samples than

another target. A typical example of this can be seen in a fraud identification dataset

where the samples of no fraud will be vastly more than the samples with fraud.

To better understand AUC-ROC, let us derive two (2) relevant formulas from our

confusion matrix, and they are the True negative rate (TNR) (also known as specificity)

and the False positive rate (also known as fall-out).

Specificity is the fraction of results that are correctly predicted as negative over all

the results that are negative, whereas fall-out is the fraction of results that are wrongly
predicted as positive over all the results that are negative. Fall-out is also represented as

(1 – specificity).

This is further illustrated in Figure 14-9.

Figure 14-9. Specificity and fall-out

The ROC Space

The ROC or receiver operating characteristic space is a 2-D graph that plots the

cumulative probability distribution of the sensitivity (i.e., the probability distribution of

making the correct prediction) on the y axis and the cumulative probability distribution

of the fall-out (i.e., the probability distribution of a false alarm) on the x axis.

Chapter 14 prinCiples of learning

185

A few notable details about the ROC space is that

• The area of the square space is 1 because the x and y axes range from

0 to 1, respectively.

• The diagonal line drawn from point (x = 0, y = 0) to (x = 1, y = 1)

represented pure chance or a random guess. It is also known as the

line of no discrimination.

These expressions are further illustrated in Figure 14-10.

Figure 14-10. Receiver operating characteristic (ROC) space

Chapter 14 prinCiples of learning

186

The AUC-ROC Space

The ROC plot as shown in Figure 14-10 looks like a curve. So, the area under the curve,

also known as AUC, is the area underneath the ROC curve. AUC provides a single

floating-point number that describes the model’s performance, and it is interpreted as

follows:

• An AUC value below 0.5 indicates that the model’s prediction is

worse than a random guess of the targets.

• An AUC value closer to 1 signifies a model that is performing very

well by generalizing to new examples on the test dataset.

A ROC curve that is closer to the top-left part of the ROC space (i.e., closer to the

value 1) indicates that the model has a good classification accuracy.

The AUC-ROC curve is illustrated in Figure 14-11.

Figure 14-11. AUC-ROC curve

Chapter 14 prinCiples of learning

187

 Regression Evaluation Metrics

In this section, we’ll go through some of the metrics for evaluating regression machine

learning tasks.

Root Mean Squared Error (RMSE)

Root mean squared error also known as RMSE for short is an important evaluation

metric in supervised machine learning for regression problems. RMSE computes the

error difference between the original value of the target feature and the value predicted

by the learning algorithm. RMSE is formally represented by the following formula:

RMSE

y y

n
i

n

i i=
-()=å 1

2ˆ

where

• n is the number of samples in the dataset

• yi is the actual value of the target feature

• ŷi is the target value predicted by the learning algorithm

Further notes on RMSE:

• Squaring the difference between the actual value and predicted

value of the labels y yi i-()ˆ 2
 gives the positive deviation (i.e., the

magnitude) between the two numbers.

• Dividing by n gives the average of the sum of magnitudes. The square

root returns the results in the same unit of measurement as the

target feature.

An Example of Evaluation with RMSE

Assume we want to predict the price of houses (in thousands of Naira1), and we have the

following dataset (see Figure 14-12).

1 Naira is the currency of Nigeria. It is also symbolized by the code NGN and the sign ₦.

Chapter 14 prinCiples of learning

188

From the formula given, we calculate the RMSE as follows:

RMSE =
-() + -() +¼+ -()

=
() + -

18 3 17 4 15 2 16 3 24 7 25 4

3

0 9 1 1

2 2 2

2

.

. .(() +¼+ -()
=

+ +¼+

= = = =

2 2
0 7

3

0 81 1 21 0 49

3

2 51

3
0 83666666666

. . . .

.
. MSE 00 91469484893.

The closer the RMSE is to 0, the better the performance of the model. Again,

we are most interested in knowing the RMSE on the test data, as this gives us an

accurate picture of the performance of our model. In this example, the error difference

between the actual price and predicted price of houses made by our learning model is

approximately NGN 910 (i.e., 0.91 ∗ 1000).

Figure 14-12. RMSE illustration

Chapter 14 prinCiples of learning

189

Hence, we can calculate the percentage error as

%
,

.

.
error

error difference

mean of the actual prices y
= =

0 91

19 44

0 04690721649 0 04690721649 100 4= = *() ». . %

R-squared (R 2)

R-squared, written as R2, is another regression error metric that gives us a different

perspective into the performance of a learned model. R2 is also known as the coefficient
of determination. The goal of R2 is to tell us how much of the variance or the variability

in the target feature, y, is explained or is captured by the model.

Recall that a model has high variance when it has learned closely the underlying

structure of the targets in the dataset. Of course, we are mostly concerned with the R2

metric on test data. We typically want the R2 value on test data to be high. It shows that

our model generalizes well to new examples.

Interpretation of R 2

R2 outputs a value between 0 and 1. Values close to 0 show that variability in the

responses are not properly captured by the model, while values close to 1 indicate that

the model explains the variability in the observed values. R2 is calculated using the

equation

R

RSS

TSS
2 1= -

where

• RSS (i.e., the residual sum of squares) captures the error difference

(or the variability) between the actual values and the values predicted

by the learning algorithm. The formula is

RSS y y

i

n

i i= -()
=
å

1

2ˆ

Chapter 14 prinCiples of learning

190

• TSS (i.e., the total sum of squares), on the other hand, calculates

the variability in the response variable, y. So, for each observation

in the dataset, we find the squared difference from the mean of all

observation, y . The formula is

TSS y y

i

n

i i= -()
=
å

1

2

• Hence,
RSS

TSS
 gives us a ratio of how much of the variability in the

response variable y is not explained by the model.

So, when we say 1-
RSS

TSS
, we reverse the definition to tell us the ratio of the

variability in the response variable explained by the model.

An Example of Evaluating the Model Performance with R2

Using the dataset illustrated in Figure 14-12 and from the formula given earlier, we will

calculate R2 as follows:

RSS y y
i

n

i i= -() = -() + -() +¼+ -()
=
å

1

2 2 2
18 3 17 4 15 2 16 3 24 7 25 4ˆ

22

2 2 2
0 9 1 1 0 7 0 81 1 21 0 49 2 5

é
ë

ù
û

= () + -() +¼+ -()é
ë

ù
û = + +¼+[] =. 11

while for TSS, we have that the mean of the response variable price, y , is

18 3 15 2 24 7

3
19 4

. . .
.

+ +
=

TSS y y
i

n

i i= -() = -() + -() +¼+ -()
=
å

1

2 2 2 2
18 3 19 4 15 2 19 4 24 7 19 4.éé

ë
ù
û

= -() + -() +¼+()é
ë

ù
û = + +¼+[] =1 1 4 2 5 3 1 21 17 64 28 09 46

2 2 2
.94

Finally,

R

RSS

TSS
2 1 1

2 51

46 94
1 0 05347251811 0 94652748189= - = - = -() =.

.
. .

Chapter 14 prinCiples of learning

191

The result shows that the model does a good job in capturing the variability in the

target feature. Of course, we want to have such good performances on the test dataset.

 Resampling Techniques
This section describes another vital concept for evaluating the performance of

supervised learning methods. Resampling methods are a set of techniques that involve

selecting a subset of the available dataset, training on that data subset, and then using

the remainder of the data to evaluate the trained model.

This process involves creating subsets of the available data into a training set and

a validation set. The training set is used to train the model, while the validation set

will evaluate the performance of the learned model on unseen data. Typically, this

process will be carried out repeatedly to get an approximate measure of the training

and test errors.

We will examine three techniques for data resampling and also give some examples

of when to use a particular technique. The techniques we’ll examine are

• The validation set technique (or train-test split)

• The leave-one-out cross-validation (LOOCV) technique

• The k-fold cross-validation technique

 The Validation Set

The validation set is the simplest approach for data resampling, and it involves randomly

dividing the dataset into two parts; these are the training set and the validation set. The

division can be into two equal sets if you have a big enough dataset, or it could be a 60/40

or 70/30 split.

After splitting, the model is trained on the training set, and its performance is

evaluated on the validation set. This process is summarized in the list as follows:

 1. Randomly split the dataset into

• Training set

• Validation set

 2. Train the model on the training set.

Chapter 14 prinCiples of learning

192

 3. Evaluate the model performance on the validation set using the

appropriate error metric for a regression or classification problem.

 4. No. 1 to No. 3 can be repeated.

 5. Report the error metric to get the ensemble training and

validation set error distribution.

A sample validation set is shown in Figure 14-13.

 Leave-One-Out Cross-Validation (LOOCV)

The leave-one-out cross-validation approach (commonly referred to as LOOCV) involves

dividing the dataset into a training set and a test set. But unlike the validation approach,

LOOCV assigns just one example to the test set, and trains the model on the remainder

of the dataset. This process is repeated until all the examples in the dataset have been

used for evaluating the model.

Assuming we have ten examples in a dataset (let n be used to denote the size of the

dataset) to build a learning model. We will train the model using n − 1 examples and

evaluate the model on just the single remaining example, hence the name leave-one-

out. This process is repeated n times for all the examples in the dataset. At the end of the

n iterations, we will report the average error estimate.

A sample LOOCV is shown in Figure 14-14.

Figure 14-13. Validation set

Chapter 14 prinCiples of learning

193

The main drawback to using LOOCV is that it is computationally expensive. The word

computationally expensive is when a process takes a lot of computing time and memory

to complete its execution.

 k-Fold Cross-Validation

k-Fold cross-validation mitigates the computational cost of LOOCV while maintaining

its benefits in terms of giving an unbiased estimate of the performance of the learned

model when evaluated on validation data.

Figure 14-14. LOOCV

Chapter 14 prinCiples of learning

194

Let’s use the following recipe to explain the idea behind k-fold CV:

• Divide the dataset into k parts or folds. Assume we have a dataset

with 20 records; we’ll divide the dataset into four parts. See

Figure 14- 15.

• Hold out one of the four splits as a test set, and train the model on the

remaining splits. Repeat this until all the splits have been held out for

testing. See Figure 14-16.

• Report the ensemble error metric.

Note from this explanation, we can see that looCV is a special case where
k = n.

Figure 14-16. Train the model using k − 1 example sets or splits

Figure 14-15. Divide your dataset into k parts or folds

Chapter 14 prinCiples of learning

195

 Improving Model Performance
To improve the performance of the model, a few of the techniques to consider are

 1. Systematic feature engineering

 2. Using ensemble learning methods (we’ll discuss more on this in a

later chapter)

 3. Hyper-parameter tuning of the algorithm

 Feature Engineering

In model building, a significant portion of time is spent on feature engineering. Feature

engineering is the practice of systematically going through each feature in the dataset

and investigating its relevance to the targets.

Through feature engineering, we can cleverly introduce new features by combining

one or more existing features, and this can impact the prediction accuracy of the model.

Feature engineering can sometimes be the difference between a decent learning model

and a competition-winning model.

 Ensemble Methods

Ensemble methods combine the output of weaker models to produce a better

performing model. Two major classes of ensemble learning algorithms are

• Boosting

• Bagging

In practice, ensemble methods such as Random forests are known to do very well

in various machine learning problems and are the algorithms of choice for machine

learning competitions.

 Hyper-parameter Tuning

When modeling with a learning algorithm, we can adjust certain configurations of the

algorithm. These configurations are called hyper-parameters. Hyper-parameters are

tuned to get the best settings of the algorithms that will optimize the performance of the

model. One strategy is to use a grid search to adjust the hyper-parameters when fine-

tuning the model.

Chapter 14 prinCiples of learning

196

 Unsupervised Learning
In unsupervised learning, the goal is to build a model that captures the underlying

distribution of the dataset. The dataset has no given targets for the input features (see

Figure 14-17). So, it is not possible to learn a function that maps a relationship between

the input features and the targets as we do in supervised learning.

Rather, unsupervised learning algorithms attempt to determine the unknown

structure of the dataset by grouping similar samples together.

Assume we have a dataset of patients with heart diseases; using unsupervised

machine learning algorithms, we can find some hidden sub-groups of patients to help

understand more about the disease patterns. This is known as clustering.

Also, we can use algorithms like principal component analysis (PCA) to compress

a large number of features into principal components (that summarizes all the other

features) for easy visualization. We will talk more about clustering and principal

component analysis in later chapters.

Figure 14-17. Unsupervised dataset

Chapter 14 prinCiples of learning

197

 Reinforcement Learning
Reinforcement learning presents an approach to learning that is quite different from

what we have seen so far in supervised and unsupervised machine learning techniques.

In reinforcement learning, an agent interacts with an environment in a feedback

configuration and updates its strategy for choosing an action based on the responses it

gets from the environment. An illustration of this scenario is shown in Figure 14-18.

This book will not cover reinforcement learning techniques as it presents a different

approach to the problem of learning from random environments that is distinct from the

approach used in supervised and unsupervised learning problems.

In this chapter, we covered the three main components of machine learning, which

are supervised, unsupervised, and reinforcement learning. The chapter largely focused

on the principles for performing supervised machine learning such as framing a

problem as a regression or classification task; splitting the dataset into training, test, and

validation sets; understanding the bias/variance trade-off and consequently issues of

overfitting and underfitting; and the evaluation metrics for assessing the performance of

a learning model.

In the next chapter, we will briefly look at the differences between batch and online

learning.

Figure 14-18. Reinforcement learning model

Chapter 14 prinCiples of learning

199
© Ekaba Bisong 2019
E. Bisong, Building Machine Learning and Deep Learning Models on Google Cloud Platform,
https://doi.org/10.1007/978-1-4842-4470-8_15

CHAPTER 15

Batch vs. Online Learning
Data is a vital component for building learning models. There are two design choices for

how data is used in the modeling pipeline. The first is to build your learning model with

data at rest (batch learning), and the other is when the data is flowing in streams into

the learning algorithm (online learning). This flow can be as individual sample points in

your dataset, or it can be in small batch sizes. Let’s briefly discuss these concepts.

 Batch Learning
In batch learning the machine learning model is trained using the entire dataset that

is available at a certain point in time. Once we have a model that performs well on the

test set, the model is shipped for production and thus learning ends. This process is also

called offline learning. If in the process of time, new data becomes available, and there is

need to update the model based on the new data, the model is trained from scratch all

over again using both the previous data samples and the new data samples.

This pipeline is further illustrated in Figure 15-1.

200

In a situation where there is a need to train the model with data that is generated

continuously from the source, batch learning becomes inappropriate to deal with that

situation. In such a circumstance, we want to be able to update our learning model on

the go, based on the new data samples that are available.

 Online Learning
In online learning, data streams (either individually or in mini-batches) into the learning

algorithm and updates the model. Online learning is ideal in situations where data is

generated continuously in time, and we need to use real-time data samples to build a

prediction model. A typical example of this case is in stock market prediction.

Online learning is illustrated in Figure 15-2.

Figure 15-1. Batch learning

Chapter 15 BatCh vs. Online learning

201

This brief chapter explained the contrast between batch learning and online

learning. In the next chapter, we will focus our attention on a vital optimization

algorithm for machine learning, gradient descent.

Figure 15-2. Online learning

Chapter 15 BatCh vs. Online learning

203
© Ekaba Bisong 2019
E. Bisong, Building Machine Learning and Deep Learning Models on Google Cloud Platform,
https://doi.org/10.1007/978-1-4842-4470-8_16

CHAPTER 16

Optimization for Machine
Learning: Gradient
Descent
Gradient descent is an optimization algorithm that is used to minimize the cost function

of a machine learning algorithm. Gradient descent is called an iterative optimization

algorithm because, in a stepwise looping fashion, it tries to find an approximate solution

by basing the next step off its present step until a terminating condition is reached that

ends the loop.

Take the following convex function in Figure 16-1 as a visual of gradient descent

finding the minimum point of a function space.

Figure 16-1. Contour figure – gradient descent

204

The image in Figure 16-1 is an example of a function space. This type of function

is known as a convex or a bowl-shaped function. The role of gradient descent in

the function space is to find the set of values for the parameters of the function that

minimizes the cost of the function and brings it to the global minimum. The global

minimum is the lowest point of the function space.

For example, the mean squared error cost function for linear regression is nicely

convex, so gradient descent is almost guaranteed to find the global minimum. However,

this is not always the case for other types of non-convex function spaces. Remember,

gradient descent is a global optimizer for minimizing any function space.

Some functions may have more than one minimum region; these regions are called

local minima. The lowest region of the function space is called the global minimum.

 The Learning Rate of Gradient Descent Algorithm
Learning rate is a hyper-parameter that controls how big a step the gradient descent algorithm

takes when tracing its path in the direction of steepest descent in the function space.

If the learning rate is too large, the algorithm takes a large step as it goes downhill. In

doing so, gradient descent runs faster, but it has a high propensity of missing the global

minimum. An overly small learning rate makes the algorithm slow to converge (i.e., to

reach the global minimum), but it is more likely to converge to the global minimum

steadily. Empirically, examples of good learning rates are values in the range of 0.001,

0.01, and 0.1. In Figure 16-2, with a good learning rate, the cost function C(θ) should

decrease after every iteration.

Figure 16-2. Learning rates. Left: Good learning rate. Right: Bad learning rate.

Chapter 16 OptimizatiOn fOr maChine Learning: gradient desCent

205

 Classes of Gradient Descent Algorithm
The three types of gradient descent algorithms are

• Batch gradient descent

• Mini-batch gradient descent

• Stochastic gradient descent

The batch gradient descent algorithm uses the entire training data in computing

each step of the gradient in the direction of steepest descent. Batch gradient descent

is most likely to converge to the global minimum. However, the disadvantage of this

method is that, for massive datasets, the optimization process can be prolonged.

In stochastic gradient descent (SGD), the algorithm quickly learns the direction

of steepest descent using a single example of the training set at each time step. While

this method has the distinct advantage of being fast, it may never converge to the

global minimum. However, it approximates the global minimum closely enough. In

practice, SGD is enhanced by gradually reducing the learning rate over time as the

algorithm converges. In doing this, we can take advantage of large step sizes to go

downhill more quickly and then slow down so as not to miss the global minimum. Due

to its speed when dealing with humongous datasets, SGD is often preferred to batch

gradient descent.

Mini-batch gradient descent on the other hand randomly splits the dataset into

manageable chunks called mini-batches. It operates on a mini-batch in each time step

to learn the direction of steepest descent of the function. This method is a compromise

between stochastic and batch gradient descent. Just like SGD, mini-batch gradient

descent does not converge to the global minimum. However, it is more robust in

avoiding local minimum. The advantage of mini-batch gradient descent over stochastic

gradient descent is that it is more computational efficient by taking advantage of matrix

vectorization under the hood to efficiently compute the algorithm updates.

 Optimizing Gradient Descent with Feature Scaling
This process involves making sure that the features in the dataset are all on the same

scale. Typically all real-valued features in the dataset should lie between −1 ≤ xi ≤ 1 or

a range around that region. Any range too large or arbitrarily too small can generate a

contour plot that is too narrow and hence will take a longer time for gradient descent

Chapter 16 OptimizatiOn fOr maChine Learning: gradient desCent

206

to converge to the optimal solution. The plot in Figure 16-3 is called a contour plot.

Contour plots are used to represent 3-D surfaces on a 2-D plane. The smaller circles

represent the lowest point (or the global optimum) of the convex function.

A popular technique for feature scaling is called mean normalization. In mean

normalization, for each feature, the mean of the feature is subtracted from each record

and divided by the feature’s range (i.e., the difference between the maximum and

minimum elements in the feature). Alternatively, it can be divided by the standard

deviation of the features. Feature scaling is formally written as

x

x
divided by range x

x
divided by standard dei

i i
i

i i=
-
-

=
-m m
smax min

 vviation

Figure 16-4 is an example of a dataset with feature scaling.

Figure 16-3. Feature scaling – contour plots. Left: without feature scaling.
Right: with feature scaling

Chapter 16 OptimizatiOn fOr maChine Learning: gradient desCent

207

In this chapter, we discussed gradient descent, an important algorithm for

optimizing machine learning models. In the next chapter, we will introduce a suite of

supervised and unsupervised machine learning algorithms.

Figure 16-4. Feature scaling example

Chapter 16 OptimizatiOn fOr maChine Learning: gradient desCent

209
© Ekaba Bisong 2019
E. Bisong, Building Machine Learning and Deep Learning Models on Google Cloud Platform,
https://doi.org/10.1007/978-1-4842-4470-8_17

CHAPTER 17

Learning Algorithms
In this section, we introduce a variety of supervised and unsupervised machine learning

algorithms. The algorithms presented here provide a foundation for understanding other

machine learning methods (e.g., linear and logistic regression), and others like Random

forests and Extreme Stochastic Gradient Boosting (XGBoost) are widely used in applied

machine learning.

We will survey the various learning algorithms from a conceptual level. In general,

the discussion will cut across

• What a particular algorithm is all about and how it works.

• How we interpret the results of the learning algorithm.

• What various ways it can be optimized to improve performance in

certain circumstances.

 Classes of Supervised Algorithms
Supervised machine learning algorithms are broadly classified into

• Linear

• Non-linear

• Ensemble methods

210

Let’s briefly go through them:

• Linear methods are also known as parametric methods or

algorithms. Linear methods assume that the underlying structure

of the data is linear, put in another form, that there exists a linear

interaction between the features of the dataset. Examples of linear

algorithms are

• Linear regression

• Logistic regression

• Support vector machines

• Non-linear methods (also known as non-parametric methods) do

not assume any parametric or structural form of the dataset. Instead,

they attempt to learn the internal relationships or representation

between the features of the dataset. Examples of non-linear

algorithms are

• K-nearest neighbors

• Classification and regression trees (they form the foundation for

ensemble methods such as boosting and bagging)

• Support vector machines

• Neural networks

• Ensemble methods combine the output of multiple algorithms to

build a better model estimator that generalizes to unseen examples.

Two major classes of ensemble methods are

• Boosting (stochastic gradient boosting)

• Bagging (Random forests)

As we can see from the preceding list, some algorithms can function as both a linear

and non-linear model. An example is support vector machine (SVM) which applies the so-

called kernel trick to use it as a non-linear classification algorithm (more on this later).

Supervised machine learning algorithms can also be grouped as regression or

classification algorithms. As we saw in Chapter 14 on regression vs. classification,

regression is when the target variable is real-valued and classification is when the target

variable is class labels.

Chapter 17 Learning aLgorithms

211

 Unsupervised Algorithms
Examples of unsupervised learning include

• Clustering

• Principal component analysis

In the later chapters, we will survey the preceding unsupervised learning algorithms

for learning from non-labeled datasets. Clustering is an algorithm for grouping

homogeneous samples into partitions called clusters. Principal component analysis

is a method for finding low-dimensional feature sub-spaces that capture as much

information as possible from the original higher-dimensional features of the dataset.

This chapter provides an overview of the machine learning algorithms that we’ll

discuss together with code examples in Part 4 of this book.

Chapter 17 Learning aLgorithms

PART IV

Machine Learning
in Practice

215
© Ekaba Bisong 2019
E. Bisong, Building Machine Learning and Deep Learning Models on Google Cloud Platform,
https://doi.org/10.1007/978-1-4842-4470-8_18

CHAPTER 18

Introduction to
Scikit-learn
Scikit-learn is a Python library that provides a standard interface for implementing

machine learning algorithms. It includes other ancillary functions that are integral

to the machine learning pipeline such as data preprocessing steps, data resampling

techniques, evaluation parameters, and search interfaces for tuning/optimizing an

algorithm’s performance.

This section will go through the functions for implementing a typical machine

learning pipeline with Scikit-learn. Since, Scikit-learn has a variety of packages and

modules that are called depending on the use case, we’ll import a module directly from

a package if and when needed using the from keyword. Again the goal of this material is

to provide the foundation to be able to comb through the exhaustive Scikit-learn library

and be able to use the right tool or function to get the job done.

 Loading Sample Datasets from Scikit-learn
Scikit-learn comes with a set of small standard datasets for quickly testing and

prototyping machine learning models. These datasets are ideal for learning purposes

when starting off working with machine learning or even trying out the performance of

some new model. They save a bit of the time required to identify, download, and clean

up a dataset obtained from the wild. However, these datasets are small and well curated,

they do not represent real-world scenarios.

Five popular sample datasets are

• Boston house-prices dataset

• Diabetes dataset

216

• Iris dataset

• Wisconsin breast cancer dataset

• Wine dataset

Table 18-1 summarizes the properties of these datasets.

Table 18-1. Scikit-learn Sample Dataset Properties

Dataset name Observations Dimensions Features Targets

Boston house-prices

dataset (regression)

506 13 real, positive real 5.–50.

Diabetes dataset

(regression)

442 10 real, –.2 < x < .2 integer 25–346

Iris dataset (classification) 150 4 real, positive 3 classes

Wisconsin breast cancer

dataset (classification)

569 30 real, positive 2 classes

Wine dataset (classification) 178 13 real, positive 3 classes

To load the sample dataset, we’ll run

load library

from sklearn import datasets

import numpy as np

Load the Iris dataset

load iris

iris = datasets.load_iris()

iris.data.shape

'Output': (150, 4)

iris.feature_names

'Output':

['sepal length (cm)',

 'sepal width (cm)',

 'petal length (cm)',

 'petal width (cm)']

Chapter 18 IntroDuCtIon to SCIkIt-learn

217

Methods for loading other datasets:

• Boston house-prices dataset – datasets.load_boston()

• Diabetes dataset – datasets.load_diabetes()

• Wisconsin breast cancer dataset – datasets.load_breast_cancer()

• Wine dataset – datasets.load_wine()

 Splitting the Dataset into Training and Test Sets
A core practice in machine learning is to split the dataset into different partitions for

training and testing. Scikit-learn has a convenient method to assist in that process

called train_test_split(X, y, test_size=0.25), where X is the design matrix or dataset of

predictors and y is the target variable. The split size is controlled using the attribute test_
size. By default, test_size is set to 25% of the dataset size. It is standard practice to shuffle

the dataset before splitting by setting the attribute shuffle=True.

import module

from sklearn.model_selection import train_test_split

split in train and test sets

X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target,

shuffle=True)

X_train.shape

'Output': (112, 4)

X_test.shape

'Output': (38, 4)

y_train.shape

'Output': (112,)

y_test.shape

'Output': (38,)

 Preprocessing the Data for Model Fitting
Before a dataset is trained or fitted with a machine learning model, it necessarily

undergoes some vital transformations. These transformations have a huge effect on the

performance of the learning model. Transformations in Scikit-learn have a fit() and

transform() method, or a fit_transform() method.

Chapter 18 IntroDuCtIon to SCIkIt-learn

218

Depending on the use case, the fit() method can be used to learn the parameters

of the dataset, while the transform() method applies the data transform based on

the learned parameters to the same dataset and also to the test or validation datasets

before modeling. Also, the fit_transform() method can be used to learn and apply the

transformation to the same dataset in a one-off fashion. Data transformation packages

are found in the sklearn.preprocessing package.

This section will cover some critical transformation for numeric and categorical

variables. They include

• Data rescaling

• Standardization

• Normalization

• Binarization

• Encoding categorical variables

• Input missing data

• Generating higher-order polynomial features

 Data Rescaling
It is often the case that the features of the dataset contain data with different scales. In

other words, the data in column A can be in the range of 1–5, while the data in column

B is in the range of 1000–9000. This different scale for units of observations in the same

dataset can have an adverse effect for certain machine learning models, especially

when minimizing the cost function of the algorithm because it shrinks the function

space and makes it difficult for an optimization algorithm like gradient descent to find

the global minimum.

When performing data rescaling, usually the attributes are rescaled with the range of

0 and 1. Data rescaling is implemented in Scikit-learn using the MinMaxScaler module.

Let’s see an example.

import packages

from sklearn import datasets

from sklearn.preprocessing import MinMaxScaler

Chapter 18 IntroDuCtIon to SCIkIt-learn

219

load dataset

data = datasets.load_iris()

separate features and target

X = data.data

y = data.target

print first 5 rows of X before rescaling

X[0:5,:]

'Output':

array([[5.1, 3.5, 1.4, 0.2],

 [4.9, 3. , 1.4, 0.2],

 [4.7, 3.2, 1.3, 0.2],

 [4.6, 3.1, 1.5, 0.2],

 [5. , 3.6, 1.4, 0.2]])

rescale X

scaler = MinMaxScaler(feature_range=(0, 1))

rescaled_X = scaler.fit_transform(X)

print first 5 rows of X after rescaling

rescaled_X[0:5,:]

'Output':

array([[0.22222222, 0.625 , 0.06779661, 0.04166667],

 [0.16666667, 0.41666667, 0.06779661, 0.04166667],

 [0.11111111, 0.5 , 0.05084746, 0.04166667],

 [0.08333333, 0.45833333, 0.08474576, 0.04166667],

 [0.19444444, 0.66666667, 0.06779661, 0.04166667]])

 Standardization
Linear machine learning algorithms such as linear regression and logistic regression

make an assumption that the observations of the dataset are normally distributed

with a mean of 0 and standard deviation of 1. However, this is often not the case with

real-world datasets as features are often skewed with differing means and standard

deviations.

Chapter 18 IntroDuCtIon to SCIkIt-learn

220

Applying the technique of standardization to the datasets transforms the features

into a standard Gaussian (or normal) distribution with a mean of 0 and standard

deviation of 1. Scikit-learn implements data standardization in the StandardScaler

module. Let’s look at an example.

import packages

from sklearn import datasets

from sklearn.preprocessing import StandardScaler

load dataset

data = datasets.load_iris()

separate features and target

X = data.data

y = data.target

print first 5 rows of X before standardization

X[0:5,:]

'Output':

array([[5.1, 3.5, 1.4, 0.2],

 [4.9, 3. , 1.4, 0.2],

 [4.7, 3.2, 1.3, 0.2],

 [4.6, 3.1, 1.5, 0.2],

 [5. , 3.6, 1.4, 0.2]])

standardize X

scaler = StandardScaler().fit(X)

standardize_X = scaler.transform(X)

print first 5 rows of X after standardization

standardize_X[0:5,:]

'Output':

array([[-0.90068117, 1.03205722, -1.3412724 , -1.31297673],

 [-1.14301691, -0.1249576 , -1.3412724 , -1.31297673],

 [-1.38535265, 0.33784833, -1.39813811, -1.31297673],

 [-1.50652052, 0.10644536, -1.2844067 , -1.31297673],

 [-1.02184904, 1.26346019, -1.3412724 , -1.31297673]])

Chapter 18 IntroDuCtIon to SCIkIt-learn

221

 Normalization
Data normalization involves transforming the observations in the dataset so that it has

a unit norm or has magnitude or length of 1. The length of a vector is the square root

of the sum of squares of the vector elements. A unit vector (or unit norm) is obtained

by dividing the vector by its length. Normalizing the dataset is particularly useful in

scenarios where the dataset is sparse (i.e., a large number of observations are zeros) and

also has differing scales. Normalization in Scikit-learn is implemented in the Normalizer

module.

import packages

from sklearn import datasets

from sklearn.preprocessing import Normalizer

load dataset

data = datasets.load_iris()

separate features and target

X = data.data

y = data.target

print first 5 rows of X before normalization

X[0:5,:]

'Output':

array([[5.1, 3.5, 1.4, 0.2],

 [4.9, 3. , 1.4, 0.2],

 [4.7, 3.2, 1.3, 0.2],

 [4.6, 3.1, 1.5, 0.2],

 [5. , 3.6, 1.4, 0.2]])

normalize X

scaler = Normalizer().fit(X)

normalize_X = scaler.transform(X)

print first 5 rows of X after normalization

normalize_X[0:5,:]

'Output':

Chapter 18 IntroDuCtIon to SCIkIt-learn

222

array([[0.80377277, 0.55160877, 0.22064351, 0.0315205],

 [0.82813287, 0.50702013, 0.23660939, 0.03380134],

 [0.80533308, 0.54831188, 0.2227517 , 0.03426949],

 [0.80003025, 0.53915082, 0.26087943, 0.03478392],

 [0.790965 , 0.5694948 , 0.2214702 , 0.0316386]])

 Binarization
Binarization is a transformation technique for converting a dataset into binary values

by setting a cutoff or threshold. All values above the threshold are set to 1, while those

below are set to 0. This technique is useful for converting a dataset of probabilities into

integer values or in transforming a feature to reflect some categorization. Scikit-learn

implements binarization with the Binarizer module.

import packages

from sklearn import datasets

from sklearn.preprocessing import Binarizer

load dataset

data = datasets.load_iris()

separate features and target

X = data.data

y = data.target

print first 5 rows of X before binarization

X[0:5,:]

'Output':

array([[5.1, 3.5, 1.4, 0.2],

 [4.9, 3. , 1.4, 0.2],

 [4.7, 3.2, 1.3, 0.2],

 [4.6, 3.1, 1.5, 0.2],

 [5. , 3.6, 1.4, 0.2]])

binarize X

scaler = Binarizer(threshold = 1.5).fit(X)

binarize_X = scaler.transform(X)

Chapter 18 IntroDuCtIon to SCIkIt-learn

223

print first 5 rows of X after binarization

binarize_X[0:5,:]

'Output':

array([[1., 1., 0., 0.],

 [1., 1., 0., 0.],

 [1., 1., 0., 0.],

 [1., 1., 0., 0.],

 [1., 1., 0., 0.]])

 Encoding Categorical Variables
Most machine learning algorithms do not compute with non-numerical or categorical

variables. Hence, encoding categorical variables is the technique for converting non-

numerical features with labels into a numerical representation for use in machine

learning modeling. Scikit-learn provides modules for encoding categorical variables

including the LabelEncoder for encoding labels as integers, OneHotEncoder for

converting categorical features into a matrix of integers, and LabelBinarizer for creating

a one-hot encoding of target labels.

LabelEncoder is typically used on the target variable to transform a vector of

hashable categories (or labels) into an integer representation by encoding label with

values between 0 and the number of categories minus 1. This is further illustrated in

Figure 18-1.

Figure 18-1. LabelEncoder

Chapter 18 IntroDuCtIon to SCIkIt-learn

224

Let’s see an example of LabelEncoder.

import packages

from sklearn.preprocessing import LabelEncoder

create dataset

data = np.array([[5,8,"calabar"],[9,3,"uyo"],[8,6,"owerri"],

 [0,5,"uyo"],[2,3,"calabar"],[0,8,"calabar"],

 [1,8,"owerri"]])

data

'Output':

array([['5', '8', 'calabar'],

 ['9', '3', 'uyo'],

 ['8', '6', 'owerri'],

 ['0', '5', 'uyo'],

 ['2', '3', 'calabar'],

 ['0', '8', 'calabar'],

 ['1', '8', 'owerri']], dtype='<U21')

separate features and target

X = data[:,:2]

y = data[:,-1]

encode y

encoder = LabelEncoder()

encode_y = encoder.fit_transform(y)

adjust dataset with encoded targets

data[:,-1] = encode_y

data

'Output':

array([['5', '8', '0'],

 ['9', '3', '2'],

 ['8', '6', '1'],

 ['0', '5', '2'],

 ['2', '3', '0'],

 ['0', '8', '0'],

 ['1', '8', '1']], dtype='<U21')

Chapter 18 IntroDuCtIon to SCIkIt-learn

225

OneHotEncoder is used to transform a categorical feature variable in a matrix of

integers. This matrix is a sparse matrix with each column corresponding to one possible

value of a category. This is further illustrated in Figure 18-2.

Let’s see an example of OneHotEncoder.

import packages

from sklearn.preprocessing import OneHotEncoder

Figure 18-2. OneHotEncoder

Chapter 18 IntroDuCtIon to SCIkIt-learn

226

create dataset

data = np.array([[5,"efik", 8,"calabar"],[9,"ibibio",3,"uyo"],[8,"igbo",

6,"owerri"],[0,"ibibio",5,"uyo"],[2,"efik",3,"calabar"],[0,"efik",

8,"calabar"],[1,"igbo",8,"owerri"]])

separate features and target

X = data[:,:3]

y = data[:,-1]

print the feature or design matrix X

X

'Output':

array([['5', 'efik', '8'],

 ['9', 'ibibio', '3'],

 ['8', 'igbo', '6'],

 ['0', 'ibibio', '5'],

 ['2', 'efik', '3'],

 ['0', 'efik', '8'],

 ['1', 'igbo', '8']], dtype='<U21')

one_hot_encode X

one_hot_encoder = OneHotEncoder(handle_unknown='ignore')

encode_categorical = X[:,1].reshape(len(X[:,1]), 1)

one_hot_encode_X = one_hot_encoder.fit_transform(encode_categorical)

print one_hot encoded matrix - use todense() to print sparse matrix

or convert to array with toarray()

one_hot_encode_X.todense()

'Output':

matrix([[1., 0., 0.],

 [0., 1., 0.],

 [0., 0., 1.],

 [0., 1., 0.],

 [1., 0., 0.],

 [1., 0., 0.],

 [0., 0., 1.]])

Chapter 18 IntroDuCtIon to SCIkIt-learn

227

remove categorical label

X = np.delete(X, 1, axis=1)

append encoded matrix

X = np.append(X, one_hot_encode_X.toarray(), axis=1)

X

'Output':

array([['5', '8', '1.0', '0.0', '0.0'],

 ['9', '3', '0.0', '1.0', '0.0'],

 ['8', '6', '0.0', '0.0', '1.0'],

 ['0', '5', '0.0', '1.0', '0.0'],

 ['2', '3', '1.0', '0.0', '0.0'],

 ['0', '8', '1.0', '0.0', '0.0'],

 ['1', '8', '0.0', '0.0', '1.0']], dtype='<U32')

 Input Missing Data
It is often the case that a dataset contains several missing observations. Scikit-learn

implements the Imputer module for completing missing values.

import packages

from sklearn. impute import SimpleImputer

create dataset

data = np.array([[5,np.nan,8],[9,3,5],[8,6,4],

 [np.nan,5,2],[2,3,9],[np.nan,8,7],

 [1,np.nan,5]])

data

'Output':

array([[5., nan, 8.],

 [9., 3., 5.],

 [8., 6., 4.],

 [nan, 5., 2.],

 [2., 3., 9.],

 [nan, 8., 7.],

 [1., nan, 5.]])

Chapter 18 IntroDuCtIon to SCIkIt-learn

228

impute missing values - axis=0: impute along columns

imputer = SimpleImputer(missing_values=np.nan, strategy='mean')

imputer.fit_transform(data)

'Output':

array([[5., 5., 8.],

 [9., 3., 5.],

 [8., 6., 4.],

 [5., 5., 2.],

 [2., 3., 9.],

 [5., 8., 7.],

 [1., 5., 5.]])

 Generating Higher-Order Polynomial Features
Scikit-learn has a module called PolynomialFeatures for generating a new dataset

containing high-order polynomial and interaction features based off the features in

the original dataset. For example, if the original dataset has two dimensions [a, b], the

second-degree polynomial transformation of the features will result in [1, a, b, a2, ab, b2].

import packages

from sklearn.preprocessing import PolynomialFeatures

create dataset

data = np.array([[5,8],[9,3],[8,6],

 [5,2],[3,9],[8,7],

 [1,5]])

data

'Output':

array([[5, 8],

 [9, 3],

 [8, 6],

 [5, 2],

 [3, 9],

 [8, 7],

 [1, 5]])

Chapter 18 IntroDuCtIon to SCIkIt-learn

229

create polynomial features

polynomial_features = PolynomialFeatures(2)

data = polynomial_features.fit_transform(data)

data

'Output':

array([[1., 5., 8., 25., 40., 64.],

 [1., 9., 3., 81., 27., 9.],

 [1., 8., 6., 64., 48., 36.],

 [1., 5., 2., 25., 10., 4.],

 [1., 3., 9., 9., 27., 81.],

 [1., 8., 7., 64., 56., 49.],

 [1., 1., 5., 1., 5., 25.]]

 Machine Learning Algorithms
This chapter provides an introduction to working with the Scikit-learn library for

implementing machine learning algorithms.

In the next chapters, we’ll implement supervised and unsupervised machine

learning models using Scikit-learn. Scikit-learn provides a consistent set of methods,

which are the fit() method for fitting models to the training dataset and the predict()

method for using the fitted parameters to make a prediction on the test dataset. The

examples are geared at explaining working with Scikit-learn; hence, we are not so keen

on the performance of the model.

Chapter 18 IntroDuCtIon to SCIkIt-learn

231
© Ekaba Bisong 2019
E. Bisong, Building Machine Learning and Deep Learning Models on Google Cloud Platform,
https://doi.org/10.1007/978-1-4842-4470-8_19

CHAPTER 19

Linear Regression
The fundamental idea behind the linear regression algorithm is that it assumes a linear

relationship between the features of the dataset. As a result of the pre-defined structure

that is imposed on the parameters of the model, it is also called a parametric learning

algorithm. Linear regression is used to predict targets that contain real values. As we will

see later in Chapter 20 on logistic regression, the linear regression model is not adequate

to deal with learning problems whose targets are categorical.

 The Regression Model
In linear regression, the prevailing assumption is that the target variable (i.e., the unit

that we want to predict) can be modeled as a linear combination of the features.

A linear combination is simply the addition of a certain number of vectors that are

scaled (or adjusted) by some arbitrary constant. A vector is a mathematical construct for

representing a set of numbers.

For example, let us assume a randomly generated dataset consisting of two features

and a target variable. The dataset has 50 observations (see Figure 19-1).

232

The vectors of this dataset are

 x x y1 40 318157 66 2 73 5918 69 20 105145128116 144= ¼[] = ¼[] = ¼[], ,

In a linear regression model, every feature has an assigned “weight.” We can say

that the weight parameterizes each feature in the dataset. The weights in the dataset are

adjusted to take on values that capture the underlying relationship between the features

that optimally approximate the target variable. The linear regression model is formally

written as

 ŷ x x xn n= + + +¼+q q q q0 1 1 2 2

where

• ŷ (pronounced y-hat) is the approximate value of the output y that

we want to predict.

• θi, where i = {1, 2, …n}, is the weight assigned to each feature in the

dataset. The notation n is the size of features of the dataset.

• θ0 represents the “bias” term.

Figure 19-1. Sample dataset

Chapter 19 Linear regression

233

 A Visual Representation of Linear Regression
To provide more intuition, let us draw a 2-D plot of the first feature x1 and the target

variable y of the dataset with all 50 records. We are using just one feature in this

illustration because it is easier to visualize with a 2-D scatter plot (see Figure 19-2).

The goal of the linear model is to find a line that gives the best approximation or best

fit to the data points. When found, this line will look like something in Figure 19-3. The

line of best fit is known as the regression line.

Figure 19-2. Scatter plot of x1 (on the x axis) and y (on the y axis)

Figure 19-3. Scatter plot of x1 (on the x axis) and y (on the y axis) with
regression line

Chapter 19 Linear regression

234

 Finding the Regression Line – How Do We Optimize
the Parameters of the Linear Model?
To find the regression line, we need to define the cost function, which is also called the

loss function. Remember that the cost in machine learning is the error measure that

the learning algorithm minimizes. We can also define the cost as the penalty when the

model outputs an incorrect prediction.

In the case of the linear regression model, the cost function is defined as half the sum

of the squared difference between the predicted value and the actual value. The linear

regression cost function is called the squared error cost function and is written as

C y yq() = å -()1

2

2ˆ

To put it more simply, the closer the approximate value of the target variable ŷ is to

the actual variable y, the lower our cost and the better our model.

Having defined the cost function, an optimization algorithm such as gradient

descent is used to minimize the cost C(θ) by updating the weights of the linear

regression model.

 How Do We Interpret the Linear Regression Model?
In machine learning, the focus of linear regression differs slightly from traditional

statistics. In statistics, the goal of a regression model is to understand the relationships

between the features and targets by interpreting p-values, whereas in machine learning,

the goal of the linear regression model is to predict the targets given new samples.

Figure 19-4 shows a regression model with a line of best fit that optimizes the

squared difference between the data features and the targets. This difference is also

called the residuals (shown as the purple vertical lines in Figure 19-4). What we care

about in a linear regression model is to minimize the error between the predicted labels

and the actual labels in the dataset.

Chapter 19 Linear regression

235

If all the points in Figure 19-4 entirely fall on the predicted regression line, then the

error will be 0. In interpreting the regression model, we want the error measure to be as

low as possible.

However, our emphasis is to obtain a low error measure when we evaluate our model

on the test dataset. Recall that the test of learning is when a model can generalize to

examples that it was not exposed to during training.

 Linear Regression with Scikit-learn
In this example, we will implement a linear regression model with Scikit-learn. The

model will predict house prices from the Boston house-prices dataset. The dataset

contains 506 observations and 13 features.

We begin by importing the following packages:

sklearn.linear_model.LinearRegression: function that implements the

LinearRegression model.

sklearn.datasets: function to load sample datasets integrated with scikit-

learn for experimental and learning purposes.

sklearn.model_selection.train_test_split: function that partitions the

dataset into train and test splits.

sklearn.metrics.mean_squared_error: function to load the evaluation metric

for checking the performance of the model.

Figure 19-4. Linear regression model showing residuals

Chapter 19 Linear regression

236

math.sqrt: imports the square-root math function. It is used later to

calculate the RMSE when evaluating the model.

import packages

from sklearn.linear_model import LinearRegression

from sklearn import datasets

from sklearn.model_selection import train_test_split

from sklearn.metrics import mean_squared_error

from math import sqrt

load dataset

data = datasets.load_boston()

separate features and target

X = data.data

y = data.target

split in train and test sets

X_train, X_test, y_train, y_test = train_test_split(X, y, shuffle=True)

create the model

setting normalize to true normalizes the dataset before fitting the model

linear_reg = LinearRegression(normalize = True)

fit the model on the training set

linear_reg.fit(X_train, y_train)

'Output': LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1,

normalize=True)

make predictions on the test set

predictions = linear_reg.predict(X_test)

evaluate the model performance using the root mean square error metric

print("Root mean squared error (RMSE): %.2f" % sqrt(mean_squared_error(y_

test, predictions)))

'Output':

Root mean squared error (RMSE): 4.33

Chapter 19 Linear regression

237

In the preceding code, using the train_test_split() function, the dataset is split

into training and testing sets. The linear regression algorithm is applied to the training

dataset to find the optimal values that parameterize the weights of the model. The model

is evaluated by calling the .predict() function on the test set.

The error of the model is evaluated using the RMSE error metric (discussed in

Chapter 14).

 Adapting to Non-linearity
Although linear regression has the premise that the underlying structure of the

dataset features is linear, this is, however, not the case for most datasets. It is

nevertheless possible to adapt linear regression to fit or build a model for non-linear

datasets. This process of adding non-linearity to linear models is called polynomial
regression.

Polynomial regression fits a non-linear relationship to the data by adding higher-

order polynomial terms of existing data features as new features in the dataset. More of

this is visualized in Figure 19-5.

Figure 19-5. Adding polynomial features to the dataset

Chapter 19 Linear regression

238

It is important to note that from a statistical point of view, when approximating the

optimal values of the weights to minimize the model, the underlying assumption of

the interactions of the parameters is linear. Non-linear regression models may tend to

overfit the data, but this can be mitigated by adding regularization to the model. Here is

a formal example of the polynomial regression model.

 ŷ x x x x x xn n n n= + + + + +¼+ +q q q q q q q0 1 1 2 1
2

3 2 4 2
2 2

An illustration of polynomial regression is shown in Figure 19-6.

 Higher-Order Linear Regression with Scikit-learn
In this example, we will create higher-order polynomials from the dataset features in

hope of fitting a more flexible model that may better capture the variance in the dataset.

As seen in Chapter 18, we will use the PolynomialFeatures method to create these

higher-order polynomial and interaction features. The following code example is similar

to the previous code example except where it extends the feature matrix with higher-

order features.

import packages

from sklearn.linear_model import LinearRegression

from sklearn import datasets

Figure 19-6. Fitting a non-linear model with polynomial regression

Chapter 19 Linear regression

239

from sklearn.model_selection import train_test_split

from sklearn.metrics import mean_squared_error

from math import sqrt

from sklearn.preprocessing import PolynomialFeatures

load dataset

data = datasets.load_boston()

separate features and target

X = data.data

y = data.target

create polynomial features

polynomial_features = PolynomialFeatures(2)

X_higher_order = polynomial_features.fit_transform(X)

split in train and test sets

X_train, X_test, y_train, y_test = train_test_split(X_higher_order, y,

shuffle=True)

create the model

setting normalize to true normalizes the dataset before fitting the model

linear_reg = LinearRegression(normalize = True)

fit the model on the training set

linear_reg.fit(X_train, y_train)

'Output': LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None,

normalize=True)

make predictions on the test set

predictions = linear_reg.predict(X_test)

evaluate the model performance using the root mean square error metric

print("Root mean squared error (RMSE): %.2f" % sqrt(mean_squared_error(y_

test, predictions)))

'Output':

Root mean squared error (RMSE): 3.01

Chapter 19 Linear regression

240

From the example, we can observe a slight improvement in the error score of the

model with added higher-order features. This result is similar to what may most likely

be observed in practice. It is rare to find datasets from real-world events where the

features have a perfectly underlying linear structure. So adding higher-order terms

is most likely to improve the model performance. But we must watch out to avoid

overfitting the model.

 Improving the Performance of a Linear Regression
Model
The following techniques are options that can be explored to improve the performance

of a linear regression model.

In the case of Bias (i.e., poor MSE on training data)

• Perform feature selection to reduce the parameter space. Feature

selection is the process of eliminating variables that do not contribute

to learning the prediction model. There are various automatic

methods for feature selection with linear regression. A couple of

them are backward selection, forward propagation, and stepwise

regression. Features can also be pruned manually by systematically

going through each feature in the dataset and determining its

relevance to the learning problem.

• Remove features with high correlation. Correlation occurs when

two predictor features are strongly dependent on one another.

Empirically, highly correlated features in the datasets may hurt the

model accuracy.

• Use higher-order features. A more flexible fit may better capture the

variance in the dataset.

• Rescale your data before training. Unscaled features negatively affect

the prediction quality of a regression model. Because of the different

feature scales in multi-dimensional space, it becomes difficult for the

model to find the optimal weights that capture the learning problem.

As mentioned in Chapter 16, gradient descent performs better with

feature scaling.

Chapter 19 Linear regression

241

• In a rare case, we may need to collect more data. However, this is

potentially costly.

In the case of variance (i.e., the MSE is good when evaluated on training data, but
poor on the test data)

• A standard practice, in this case, is to apply regularization (more on

this in Chapter 21) to the regression model. This can do a good job at

preventing overfitting.

This chapter provides an overview on the linear regression machine learning

algorithm for learning real-valued targets. Also, the chapter provided practical steps for

implementing linear regression models with Scikit-learn. In the next chapter, we will

examine logistic regression for learning classification problems.

Chapter 19 Linear regression

243
© Ekaba Bisong 2019
E. Bisong, Building Machine Learning and Deep Learning Models on Google Cloud Platform,
https://doi.org/10.1007/978-1-4842-4470-8_20

CHAPTER 20

Logistic Regression
Logistic regression is a supervised machine learning algorithm developed for learning

classification problems. A classification learning problem is when the target variable is

categorical. The goal of logistic regression is to map a function from the features of the

dataset to the targets to predict the probability that a new example belongs to one of the

target classes. Figure 20-1 is an example of a dataset with categorical targets.

 Why Logistic Regression?
To develop our understanding of classification with logistic regression and why linear

regression is unsuitable for learning categorical outputs, let us consider a binary or

two- class classification problem. The dataset illustrated in Figure 20-2 has the output y

(i.e., eye disease) = {disease, no-disease} is an example of dataset with binary targets.

Figure 20-1. Dataset with qualitative variables as output

244

From the illustration in Figure 20-3, the linear regression algorithm is susceptible

to plot inaccurate decision boundaries especially in the presence of outliers (as seen

toward the far right of the graph in Figure 20-3). Moreover, the linear regression model

will be looking to learn a real-valued output, whereas a classification learning problem

predicts the class membership of an observation using probability estimates.

Figure 20-2. Two-class classification problem

Figure 20-3. Linear regression on a classification dataset

Chapter 20 LogistiC regression

245

 Introducing the Logit or Sigmoid Model
The logistic function, also known as the logit or the sigmoid function, is responsible

for constraining the output of the cost function so that it becomes a probability output

between 0 and 1. The sigmoid function is formally written as

h t

e t() =
+ -

1

1

The logistic regression model is formally similar to the linear regression model

except that it is acted upon by the sigmoid model. The following is the formal

representation:

 ŷ x x xn n= + + +¼+q q q q0 1 1 2 2

h y

e y
ˆ

ˆ() =
+ -

1

1

where 0 ≤ h(t) ≤ 1. The sigmoid function is graphically shown in Figure 20-4.

Figure 20-4. Logistic function

Chapter 20 LogistiC regression

246

The sigmoid function, which looks like an S curve, rises from 0 and plateaus at 1.

From the sigmoid function shown in Figure 20-4, as ŷ increases to positive infinity, the

sigmoid output gets closer to 1, and as t decreases toward negative infinity, the sigmoid

function outputs 0.

 Training the Logistic Regression Model
The logistic regression cost function is formally written as

Cost h t y h t if y h t if y()() = - ()() = - - ()() =, { log log1 1 0

The cost function also known as log-loss is set up in this form to output the penalty

of the algorithm if the model predicts a wrong class. To give more intuition, take, for

example, a plot of − log (h(t)) when y = 1 in Figure 20-5.

In Figure 20-5, if the algorithm correctly predicts that the target is 1, then the cost

tends toward 0. However, if the algorithm h(t) predicts incorrectly the target as 0, then

the cost on the model grows exponentially large. The converse is the case with the plot of

− log (1 − h(t)) when y = 0.

The logistic model is optimized using gradient descent to find the optimal values of

the parameter θ that minimizes the cost function to predict the class with the highest

probability estimate.

Figure 20-5. Plot of h(t) when y = 1

Chapter 20 LogistiC regression

247

 Multi-class Classification/Multinomial Logistic
Regression
In multi-class or multinomial logistic regression, the labels of the dataset contain more

than 2 classes. The multinomial logistic regression setup (i.e., the cost function and

optimization procedure) is structurally similar to logistic regression; the only difference

is that the output of logistic regression is 2 classes, while multinomial has greater than 2

classes (see Figure 20-6).

In Figure 20-6, the multi-class logistic regression builds a one-vs.-rest classifier to

construct decision boundaries for the different class memberships.

Figure 20-6. An illustration of multinomial regression

Chapter 20 LogistiC regression

248

At this point, we introduce a critical function in machine learning called the softmax

function. The softmax function is used to compute the probability that an instance

belongs to one of the K classes when K > 2. We will see the softmax function show up

again when we discuss (artificial) neural networks.

In order to build a classification model with k classes, the multinomial logistic model

is formally defined as

 ŷ k x x xk k k
n
k

n() = + + +¼+q q q q0 1 1 2 2

The preceding model takes into consideration the parameters for the k different classes.

The softmax function is formally written as

p k y k
e

e
i

y k

j

K y k k

i

j j
() = ()() =

()

=

()å
s ˆ

ˆ

ˆ (

1

where

• i = {1, …, K} classes.

• s ŷ k
i

()() outputs the probability estimates that an example in the

training dataset belongs to one of the K classes.

The cost function for learning the class labels in a multinomial logistic regression

model is called the cross-entropy cost function. Gradient descent is used to find the

optimal values of the parameter θ that will minimize the cost function to predict the
class with the highest probability estimate accurately.

 Logistic Regression with Scikit-learn
In this example, we will implement a multi-class logistic regression model with Scikit-

learn. The model will predict the three species of flowers from the Iris dataset. The

dataset contains 150 observations and 4 features. For this example, we use the accuracy

metric and confusion matrix to access the model’s performance.

import packages

from sklearn.linear_model import LogisticRegression

from sklearn import datasets

Chapter 20 LogistiC regression

249

from sklearn.model_selection import train_test_split

from sklearn.metrics import accuracy_score

from sklearn.metrics import multilabel_confusion_matrix

load dataset

data = datasets.load_iris()

separate features and target

X = data.data

y = data.target

split in train and test sets

X_train, X_test, y_train, y_test = train_test_split(X, y, shuffle=True)

create the model

logistic_reg = LogisticRegression(solver='lbfgs', multi_class='ovr')

fit the model on the training set

logistic_reg.fit(X_train, y_train)

make predictions on the test set

predictions = logistic_reg.predict(X_test)

evaluate the model performance using accuracy metric

print("Accuracy: %.2f" % accuracy_score(y_test, predictions))

'Output':

Accuracy: 0.97

print the confusion matrix

multilabel_confusion_matrix(y_test, predictions)

'Output':

array([[[26, 0],

 [0, 12]],

 [[25, 0],

 [1, 12]],

 [[24, 1],

 [0, 13]]])

Chapter 20 LogistiC regression

250

Take note of the following in the preceding code block:

• The logistic regression model is initialized by calling the method Logi

sticRegression(solver=‘lbfgs’, multi_class=‘ovr’). The attribute ‘multi_

class’ is set to ‘ovr’ to create a one-vs.-rest classifier.

• The confusion matrix for a multi-class learning problem uses the

`multilabel_confusion_matrix’ to calculate classwise confusion

matrices where the labels are binned in a one-vs.-rest manner. As an

example, the first matrix is interpreted as the difference between the

actual and predicted targets for class 1 against other classes.

 Optimizing the Logistic Regression Model
This section surveys a few techniques to consider in optimizing/improving the

performance of logistic regression models.

In the case of Bias (i.e., when the accuracy is poor with training data)

• Remove highly correlated features. Logistic regression is susceptible

to degraded performance when highly correlated features are present

in the dataset.

• Logistic regression will benefit from standardizing the predictors by

applying feature scaling.

• Good feature engineering to remove redundant features or

recombine features based on intuition into the learning problem can

improve the classification model.

• Applying log transforms to normalize the dataset can boost logistic

regression classification accuracy.

In the case of variance (i.e., when the accuracy is good with training data, but
poor on test data)

Applying regularization (more on this in Chapter 21) is a good technique to prevent

overfitting.

This chapter provides a brief overview of logistic regression for building classification

models. The chapter includes practical steps for implementing a logistic regression

classifier with Scikit-learn. In the next chapter, we will examine the concept of applying

regularization to linear models to mitigate the problem of overfitting.

Chapter 20 LogistiC regression

251
© Ekaba Bisong 2019
E. Bisong, Building Machine Learning and Deep Learning Models on Google Cloud Platform,
https://doi.org/10.1007/978-1-4842-4470-8_21

CHAPTER 21

Regularization for
Linear Models
Regularization is the technique of adding a parameter, λ, to the loss function of a

learning algorithm to improve its ability to generalize to new examples by reducing

overfitting. The role of the extra regularization parameter is to shrink or to minimize the

measure of the weights (or parameters) of the other features in the model.

Regularization is applied to linear models such as polynomial linear regression and

logistic regression which are susceptible to overfitting when high-order polynomial

features are added to the set of features.

 How Does Regularization Work
During model building, the regularization parameter λ is calibrated to determine how

much the magnitude of other features in the model is adjusted when training the model.

The higher the value of the regularization, the more the magnitude of the feature weights

is reduced.

If the regularization parameter is set too close to zero, it reduces the regularization

effect on the feature weights of the model. At zero, the penalty the regularization term

imposes is virtually non-existent, and the model is as if the regularization term was

never present.

 Effects of Regularization on Bias vs. Variance
The higher the value of λ (i.e., the regularization parameter), the more restricted the

coefficients (or weights) of the cost function. Hence, if the value of λ is high, the model

can result in a learning bias (i.e., it underfits the dataset).

252

However, if the value of λ approaches zero, the regularization parameter has

negligible effects on the model, hence resulting in overfitting the model. Regularization

is an important technique and should be used when injecting polynomial features into

linear or logistic regression classifiers to learn non-linear relationships.

 Applying Regularization to Models with Scikit-learn
The technique of adding a penalty to restrain the values of the parameters of the model

is also known as Ridge regression or Tikhonov regularization. In this section we will

build a linear and logistic regression model with regularization.

 Linear Regression with Regularization
This code block is similar to the polynomial linear regression example in Chapter 19.

The model will predict house prices from the Boston house-prices dataset. However, this

model includes regularization.

import packages

from sklearn.linear_model import Ridge

from sklearn import datasets

from sklearn.model_selection import train_test_split

from sklearn.metrics import mean_squared_error

from math import sqrt

from sklearn.preprocessing import PolynomialFeatures

load dataset

data = datasets.load_boston()

separate features and target

X = data.data

y = data.target

create polynomial features

polynomial_features = PolynomialFeatures(2)

X_higher_order = polynomial_features.fit_transform(X)

Chapter 21 regularization for linear Models

253

split in train and test sets

X_train, X_test, y_train, y_test = train_test_split(X_higher_order, y,

shuffle=True)

create the model. The parameter alpha represents the regularization

magnitude

linear_reg = Ridge(alpha=1.0)

fit the model on the training set

linear_reg.fit(X_train, y_train)

make predictions on the test set

predictions = linear_reg.predict(X_test)

evaluate the model performance using the root mean square error metric

print("Root mean squared error (RMSE): %.2f" % sqrt(mean_squared_error(y_

test, predictions)))

'Output':

Root mean squared error (RMSE): 3.74

Take note of the following:

• The method Ridge(alpha=1.0) initializes a linear regression

model with regularization, where the attribute ‘alpha’ controls the

magnitude of the regularization parameter.

 Logistic Regression with Regularization
This code block here is also similar to the example in Chapter 20 on logistic regression.

The model will predict the three species of flowers from the Iris dataset. The addition to

this code segment is the inclusion of a regularization term to the logistic model using the

‘RidgeClassifier’ package.

import packages

from sklearn.linear_model import RidgeClassifier

from sklearn import datasets

from sklearn.model_selection import train_test_split

from sklearn.metrics import accuracy_score

Chapter 21 regularization for linear Models

254

load dataset

data = datasets.load_iris()

separate features and target

X = data.data

y = data.target

split in train and test sets

X_train, X_test, y_train, y_test = train_test_split(X, y, shuffle=True)

create the logistic regression model

logistic_reg = RidgeClassifier()

fit the model on the training set

logistic_reg.fit(X_train, y_train)

make predictions on the test set

predictions = logistic_reg.predict(X_test)

evaluate the model performance using accuracy metric

print("Accuracy: %.2f" % accuracy_score(y_test, predictions))

'Output':

Accuracy: 0.76

In the preceding code block, logistic regression with regularization is implemented

by the method ‘RidgeClassifier()’. The reduced accuracy observed in this example when

regularization is applied to logistic regression is because the algorithm is restricting

the values of the model parameters to prevent high variance on a dataset that is fairly

simplistic and already has high accuracy on test samples without regularization.

This chapter discusses the role of regularization in linear models like linear and

logistic regression. Other forms of regularization exist for other model types such as

early stopping for neural networks (to be discussed later in Chapter 34). Regularization

is an important technique when designing machine learning models. The next chapter

will discuss and implement another important machine learning algorithm known as

support vector machines.

Chapter 21 regularization for linear Models

255
© Ekaba Bisong 2019
E. Bisong, Building Machine Learning and Deep Learning Models on Google Cloud Platform,
https://doi.org/10.1007/978-1-4842-4470-8_22

CHAPTER 22

Support Vector Machines
Support vector machine (SVM) is a machine learning algorithm for learning classification

and regression models. To build intuition, we will consider the case of learning a

classification model with SVM. Given a dataset with two target classes that are linearly

separable, it turns out that there exists an infinite number of lines that can discriminate

between the two classes (see Figure 22-1). The goal of the SVM is to find the best line that

separates the two classes. In higher dimensions, this line is called a hyperplane.

 What Is a Hyperplane?
A hyperplane is a line or more technically called a discriminant that separates two

classes in n-dimensional space. When a hyperplane is drawn in 2-D space, it is called a

line. In 3-D space, it is called a plane, and in dimensions greater than 3, the discriminant

is called a hyperplane (see Figure 22-2). For any n-dimensional world, we have n-1

hyperplanes.

Figure 22-1. Infinite set of discriminants

256

 Finding the Optimal Hyperplane
The best hyperplane that linearly separates two classes is identified as the line lying at

the largest margin from the nearest vectors at the boundary of the two classes.

In Figure 22-3, we observe that the best hyperplane is the line at the exact center

of the two classes and constitutes the largest margin between both classes. Hence, this

optimal hyperplane is also known as the largest margin classifier.

Figure 22-2. Left: A hyperplane in 2-D is a line. Right: A hyperplane in 3-D is a
plane. For dimension greater than 3, visualization becomes difficult.

Figure 22-3. The largest margin classifier

Chapter 22 Support VeCtor MaChineS

257

The boundary points of the respective classes which are known as the support

vectors are essential in finding the optimal hyperplane. The support vectors are

illustrated in Figure 22-4. The boundary points are called support vectors because they

are used to determine the maximum distance between the class they belong to and the

discriminant function separating the classes.

The mathematical formulation for finding the margin and consequently the

hyperplane that maximizes the margin is beyond the scope of this book, but suffice to

say this technique involves the Lagrange multiplier.

 The Support Vector Classifier
In the real world, it is difficult to find data points that are precisely linearly separable

and for which exists a large margin hyperplane. In Figure 22-5, the left image represents

the data points for two classes in a dataset. Observe that there readily exists a linear

separator between those two classes. Now, suppose we have an additional point from

class 1 adjusted in such a way that it is much closer to class 2, we see that this point

upsets the location of the hyperplane as seen in the right image of Figure 22-5. This

reveals the sensitivity of the hyperplane to an additional data point that may result in a

very narrow margin.

Figure 22-4. Support vectors

Chapter 22 Support VeCtor MaChineS

258

This sensitivity to data samples has significant drawbacks, the first being that the

distance between the support vectors and the hyperplane reflects the confidence in the

classification accuracy. Also, the drastic change in the position of the hyperplane due to

a single additional point shows that the classifier is susceptible to high variability and

can overfit the training data.

The goal of the support vector classifier is to find a hyperplane that nearly

discriminates between the two classes. This technique is also called a soft margin. A

soft margin is tuned to ignore a degree of error when finding the separating hyperplane.

This concept of a soft margin is how we generalize the support vector classifier to find a

hyperplane in datasets that are not readily linearly separable. The margin is called soft

because some examples are purposefully misclassified.

In such cases, as outlined in Figure 22-5, a soft margin classifier is preferred as it

is more insensitive to individual data points and overall will have a better chance of

generalizing to new examples. Howbeit, this might misclassify a couple of examples

while training, but this is overall beneficial to the quality of the classifier as it generalizes

to new samples.

Again, the margin is called soft because some examples are allowed to violate the

margin or even be misclassified by the hyperplane to preserve overall generalizability.

This is illustrated in Figure 22-6.

Figure 22-5. Left: A linearly separable data distribution with a large margin.
Right: The data point distribution makes it more difficult to find a large margin
classifier that linearly separates the two classes

Chapter 22 Support VeCtor MaChineS

259

 The C Parameter
The C parameter is the hyper-parameter that is responsible for controlling the degree

of violations to the margins or the number of intentionally misclassified points allowed

by the support vector classifier. The C hyper-parameter is a non-negative real number.

When this C parameter is set to 0, the classifier becomes the large margin classifier.

In a soft margin classifier, the C parameter is tuned by adjusting its values to

control the tolerance of the margin. With larger values of C, the classifier margins

become wider and more tolerant to violations and misclassifications. However, with

smaller values of C, the margins become narrower and are less tolerant of violations

and misclassified points.

Observe that the C hyper-parameter is vital for regulating the bias/variance trade-off

of the support vector classifier. The higher the value of C, our classifier is more prone to

variability in the data points and can under-simplify the learning problem. Also, if C is

set closer to zero, it results in a much narrower margin, and this can overfit the classifier,

leading to high variance – and this will likely fail to generalize to new examples (see

Figure 22-7).

Figure 22-6. Left: An example of a soft margin with points allowed to violate the
margin. Right: An example with some points intentionally misclassified.

Chapter 22 Support VeCtor MaChineS

260

 Multi-class Classification
Previously, we have used the SVC to build a discriminant classifier for binary classes.

What happens when we have more than two classes of outputs in the dataset, which is

often the case in practice? The SVM can be extended for classifying k classes within a

dataset, where k > 2. This extension is, however, not trivial with the SVM. There exist two

standard approaches for addressing this problem. The first is the one-vs.-one (OVO)

multi-class classification, while the other is the one-vs.-all (OVA) or one-vs.rest (OVR)

multi-class classification technique.

 One-vs.-One (OVO)
In the one-vs.-one approach, when the number of classes, k, is greater than 2, the

algorithm constructs “k combination 2”,
k
2

æ
è
ç

ö
ø
÷ classifiers, where each classifier is for a pair

of classes. So if we have 10 classes in our dataset, a total of 45 classifiers is constructed or

trained for every pair of classes. This is illustrated with four classes in Figure 22-8.

After training, the classifiers are evaluated by comparing examples from the test set

against each of the
k
2

æ
è
ç

ö
ø
÷ classifiers. The predicted class is then determined by choosing

the highest number of times an example is assigned to a particular class.

Figure 22-7. Left: Higher values of C result in wider margins with more tolerance.
Right: Lower values of C result in narrower margins with less tolerance

Chapter 22 Support VeCtor MaChineS

261

The one-vs.-one multi-class technique can potentially lead to a large number of

constructed classifiers and hence can result in slower processing time. Conversely, the

classifiers are more robust to class imbalances when training each classifier.

 One-vs.-All (OVA)
The one-vs.-all method for fitting an SVM to a multi-classification problem where

the number of classes k is greater than 2 consists of fitting each k class against the

remaining k – 1 classes. Suppose we have ten classes, each of the classes will be

classified against the remaining nine classes. This example is illustrated with four

classes in Figure 22-9.

Figure 22-8. Suppose we have four classes in the dataset labeled A to D, this will
result in six different classifiers

Chapter 22 Support VeCtor MaChineS

262

The classifiers are evaluated by comparing a test example to each fitted classifier. The

classifier for which the margin of the hyperplane is the largest is chosen as the predicted

classification target because the classifier margin size is indicative of high confidence of

class membership.

 The Kernel Trick: Fitting Non-linear Decision
Boundaries
Non-linear datasets occur more often than not in real world scenarios.

Technically speaking, the name support vector machine is when a support vector

classifier is used with a non-linear kernel to learn non-linear decision boundaries.

Figure 22-9. Given four classes in a dataset, we construct four classifiers, with
each class fitted against the rest

Chapter 22 Support VeCtor MaChineS

263

SVM uses an essential technique for extending the feature space of a dataset to

construct a non-linear classifier. This technique is called kernel and is popularly known

as the kernel trick. Figure 22-10 illustrates the kernel trick as an extra dimension is added

to the feature space.

 Adding Polynomial Features
The feature space of the dataset can be extended by adding higher-order polynomial

terms or interaction terms. For example, instead of training the classifier with linear

features, we can add polynomial features or add interaction terms to our model.

Depending on the dimensions of the dataset, the combinations for extending

the feature space can quickly become unmanageable, and this can easily lead to a

model that overfits the test set and also become expensive to compute with a larger

feature space.

Figure 22-10. Left: Linear discriminant to non-linear data. Right: By using the
kernel trick, we can linearly separate a non-linear dataset by adding an extra
dimension to the feature space.

Chapter 22 Support VeCtor MaChineS

264

 Kernels
Kernel is a mathematical procedure for extending the feature space of a dataset to learn

non-linear decision boundaries between different classes. The mathematical details

of kernels are beyond the scope of this text. Suffice to say that a kernel can be seen as a

mathematical function that captures similarity between data samples.

 Linear Kernel

The support vector classifier is the same as a linear kernel. It is also known as a linear

kernel because the feature space of the support vector classifier is linear.

 Polynomial Kernel

The kernel can also be expressed as a polynomial. With this, a support vector classifier

is trained on higher-dimensional polynomial features without manually adding an

exponential number of polynomial features to the dataset. Adding a polynomial kernel to

the support vector classifier enables the classifier to learn a non-linear decision boundary.

 Radial Basis Function or the Radial Kernel

The radial basis function or radial kernel is another non-linear kernel that enables the

support vector classifier to learn a non-linear decision boundary. The radial kernel is

similar to adding multiple similarity features to the space. For the radial basis function,

a hyper-parameter called gamma, γ, is used to control the flexibility of the non-linear

decision boundary. The smaller the gamma value, the less complex (or flexible) the

non-linear discriminant becomes, but a larger value for gamma leads to a more flexible

and sophisticated decision boundary that tightly fits the non-linearity in the data, which

can inadvertently lead to overfitting. This is illustrated in Figure 22-11. RBF is a popular

kernel option used in practice.

Chapter 22 Support VeCtor MaChineS

265

When using the radial kernel with the support vector classifier, the values of C

and gamma are hyper-parameters that are tuned to find an appropriate level of model

flexibility that generalizes to new examples when deployed.

In practice, a linear kernel or support vector classifier sometimes surprisingly

performs well when used to map a function to non-linear data. This observation follows

Occam’s razor which suggests that it is advantageous to select the simplest hypothesis to

solve a problem in the presence of more complex options.

Also, with regard to choosing the best set of C and gamma, γ, to avoid overfitting,

a grid search is used to explore a range of values for the hyper-parameters and come

up with the combination that performs best on test data. The grid search is used in

conjunction with cross-validation approaches. However, the grid search procedure can

be potentially computationally expensive.

Support vector machines perform well with high-dimensional data. However, they

are preferred for small or medium-sized datasets. For humongous datasets, SVMs

become computationally infeasible. Another limitation is that the performance of SVMs

is known to plateau at some point, even when there exist large training samples. This is

one of the motivations and advantages of deep neural networks.

Figure 22-11. An illustration of adjusting the radial basis function γ parameter,
together with the C parameter of the support vector classifier to fit a non-linear
decision boundary. Left: RBF kernel with C = 1 and γ = 10−3. Right: RBF kernel with
C = 1 and γ = 10−5.

Chapter 22 Support VeCtor MaChineS

266

 Support Vector Machines with Scikit-learn

In Scikit-learn, SVC is the SVM package for classification, while SVR is the SVM

package for regression. The attribute ‘gamma’ in both the SVC and SVR methods

controls the flexibility of the decision boundary, and the default kernel is the radial

basis function (rbf).

SVM for Classification

In this code example, we will build an SVM classification model to predict the three

species of flowers from the Iris dataset.

import packages

from sklearn.svm import SVC

from sklearn import datasets

from sklearn.model_selection import train_test_split

from sklearn.metrics import accuracy_score

from math import sqrt

load dataset

data = datasets.load_iris()

separate features and target

X = data.data

y = data.target

split in train and test sets

X_train, X_test, y_train, y_test = train_test_split(X, y, shuffle=True)

create the model

svc_model = SVC(gamma='scale')

fit the model on the training set

svc_model.fit(X_train, y_train)

make predictions on the test set

predictions = svc_model.predict(X_test)

Chapter 22 Support VeCtor MaChineS

267

evaluate the model performance using accuracy metric

print("Accuracy: %.2f" % accuracy_score(y_test, predictions))

'Output':

Accuracy: 0.95

SVM for Regression

In this code example, we will build an SVM regression model to predict house prices

from the Boston house-prices dataset.

import packages

from sklearn.svm import SVR

from sklearn import datasets

from sklearn.model_selection import train_test_split

from sklearn.metrics import mean_squared_error

load dataset

data = datasets.load_boston()

separate features and target

X = data.data

y = data.target

split in train and test sets

X_train, X_test, y_train, y_test = train_test_split(X, y, shuffle=True)

create the model

svr_model = SVR(gamma='scale')

fit the model on the training set

svr_model.fit(X_train, y_train)

make predictions on the test set

predictions = svr_model.predict(X_test)

evaluate the model performance using the root mean squared error metric

print("Mean squared error: %.2f" % sqrt(mean_squared_error(y_test,

predictions)))

Chapter 22 Support VeCtor MaChineS

268

'Output':

Root mean squared error: 7.58

In this chapter, we surveyed the support vector machine algorithm and its

implementation with Scikit-learn. In the next chapter, we will discuss on ensemble

methods that combine outputs of multiple classifiers or weak learners to build better

prediction models.

Chapter 22 Support VeCtor MaChineS

269
© Ekaba Bisong 2019
E. Bisong, Building Machine Learning and Deep Learning Models on Google Cloud Platform,
https://doi.org/10.1007/978-1-4842-4470-8_23

CHAPTER 23

Ensemble Methods
Ensemble learning is a technique that combines the output of multiple classifiers also

called weak learners to build a more robust prediction model. Ensemble methods work

by combining a group of classifiers (or models) to get an enhanced prediction accuracy.

The idea behind an “ensemble” is that the performance from the average of a group

of classifiers will be better than each classifier on its own. So each classifier is called a

“weak” learner.

Ensemble learners are usually high-performing algorithms for both classification

and regression tasks and are mostly competition-winning algorithms. Examples of

ensemble learning algorithms are Random Forest (RF) and Stochastic Gradient Boosting

(SGB). We will motivate our discussion of ensemble methods by first discussing decision

trees because ensemble classifiers such as RF and SGB are built by combining several

decision tree classifiers.

 Decision Trees
Decision trees, more popularly known as classification and regression trees (CART),

can be visualized as a graph or flowchart of decisions. A branch connects the nodes in

the graph, the last node of the graph is called a terminal node, and the topmost node is

called the root. As seen in Figure 23-1, when constructing a decision tree, the root is at

the top, while the branches connect nodes at lower layers until the terminal node.

270

 On Regression and Classification with CART
A classification or regression tree is built by randomly splitting the set of attributes of the

given dataset into distinct regions. The data points that fall within a particular region are

used to form the predictor from the means of the targets in the regression case and the

highest occurring class in the classification setting.

Thus, if an unseen observation or test data falls within a region, the mean or

modal class is used to predict the output for regression and classification problems,

respectively. In regression trees, the output variable is continuous, whereas in

classification trees, the output variable is categorical. The terminal node of a regression

tree takes the average of the samples in that region, while the terminal node of a

classification tree is the highest occurring class in that area.

The process of splitting the features of the dataset into regions is by a greedy

algorithm called recursive binary splitting. This strategy works by continuously

dividing the feature space into two new branches or regions until a stopping

criterion is reached.

Figure 23-1. Illustration of a decision tree

Chapter 23 ensemble methods

271

 Growing a Regression Tree
In regression trees, the recursive binary splitting technique is used to divide a particular

feature in the dataset into two regions. The splitting is carried out by choosing a value

of the feature that minimizes the regression error measure. This step is done for all the

predictors in the dataset by finding a value that reduces the squared error of the final

tree. This process is repeated continuously for every sub-tree or sub-region until a

stopping criterion is reached. For example, we can stop the algorithm when no region

contains less than ten observations. An example of a tree resulting from the splitting of a

feature space into six regions is shown in Figure 23-2.

 Growing a Classification Tree
Growing a classification tree is very similar to the regression tree setting described in

Figure 23-2. The difference here is that the error measure to minimize is no longer the

squared error, but the misclassification error. This is because a classification tree is for

predicting a qualitative response, where a data point is assigned to a particular region

based on the modal value or the highest occurring class in that region.

Two algorithms for selecting which value to use for splitting the feature space in a

classification setting are the Gini index and entropy; further discussions on these are

beyond the scope of this chapter.

Figure 23-2. Left: An example of splitting a 2-D dataset into sub-trees/regions
using the recursive binary splitting technique. Right: The resulting tree from the
partitioning on the left.

Chapter 23 ensemble methods

272

 Tree Pruning
Tree pruning is a technique for dealing with model overfitting when growing trees.

Fully grown trees have a high tendency to overfit with high variances when applied to

unseen samples.

Pruning involves growing a large tree and then pruning or clipping it to create

a sub-tree. By doing so, we can have a full picture of the tree performance and then

select a sub-tree that results in a minimized error measure on the test dataset. The

technique for selecting the best sub-tree is called the cost complexity pruning or the

weakest link pruning.

 Strengths and Weaknesses of CART
One of the significant advantages of CART models is that they perform well on linear and

non-linear datasets. Moreover, CART models implicitly take care of feature selection and

work well with high-dimensional datasets.

On the flip side, CART models can very easily overfit the dataset and fail to generalize

to new examples. This downside is mitigated by aggregating a large number of decision

trees in techniques like Random forests and boosting ensemble algorithms.

 CART with Scikit-learn
In this section, we will implement a classification and regression decision tree classifier

with Scikit-learn.

 Classification Tree with Scikit-learn

In this code example, we will build a classification decision tree classifier to predict the

species of flowers from the Iris dataset.

import packages

from sklearn.tree import DecisionTreeClassifier

from sklearn import datasets

from sklearn.model_selection import train_test_split

from sklearn.metrics import accuracy_score

Chapter 23 ensemble methods

273

load dataset

data = datasets.load_iris()

separate features and target

X = data.data

y = data.target

split in train and test sets

X_train, X_test, y_train, y_test = train_test_split(X, y, shuffle=True)

create the model

tree_classifier = DecisionTreeClassifier()

fit the model on the training set

tree_classifier.fit(X_train, y_train)

make predictions on the test set

predictions = tree_classifier.predict(X_test)

evaluate the model performance using accuracy metric

print("Accuracy: %.2f" % accuracy_score(y_test, predictions))

'Output":

Accuracy: 0.97

 Regression Tree with Scikit-learn

In this code example, we will build a regression decision tree classifier to predict house

prices from the Boston house-prices dataset.

import packages

from sklearn.tree import DecisionTreeRegressor

from sklearn import datasets

from sklearn.model_selection import train_test_split

from sklearn.metrics import mean_squared_error

from math import sqrt

Chapter 23 ensemble methods

274

load dataset

data = datasets.load_boston()

separate features and target

X = data.data

y = data.target

split in train and test sets

X_train, X_test, y_train, y_test = train_test_split(X, y, shuffle=True)

create the model

tree_reg = DecisionTreeRegressor()

fit the model on the training set

tree_reg.fit(X_train, y_train)

make predictions on the test set

predictions = tree_reg.predict(X_test)

evaluate the model performance using the root mean square error metric

print("Root mean squared error: %.2f" % sqrt(mean_squared_error(y_test,

predictions)))

'Output':

Root mean squared error: 4.93

 Random Forests
Random forest is a robust machine learning algorithm and is often the algorithm of

choice for many classification and regression problems. It is a popular algorithm in

machine learning competitions.

Random forest builds an ensemble classifier from a combination of several decision

tree classifiers. This does an excellent job of reducing the variance that may be found in a

single decision tree classifier.

Chapter 23 ensemble methods

275

Random forest is an improvement on the bagging ensemble algorithm (also known

as bootstrap aggregation) which involves creating a large number of fully grown decision

trees by repeatedly selecting random samples from the training dataset (also called

bootstrapping). The result of these trees is then averaged to smoothen out the variance.

Random forest improves this bagging procedure by using only a subset of the

features or attributes in the training dataset on each tree split. In doing this, Random

forest creates trees whose average is more robust and less prone to high variances.

Observe that the principal distinction between bagging and Random forests is the

choice of features when splitting the feature space or when building the tree. Bagging

makes use of the entire features in the dataset, whereas Random forest imposes a

constraint on the number of features and uses only a subset of features on each tree split

to reduce the correlation of each sub-tree. Empirically, the size of features for each tree

split using Random forests is the square root of the original number of predictors.

 Making Predictions with Random Forests
In order to make a prediction using Random forest, the test example is passed

through each trained decision tree. For the regression case, a prediction is made for a

new example by taking the average of the outputs of the different trees. In the case of

classification problems, the prediction is the class with the most votes from all other

trees in the forest. This is best illustrated in Figure 23-3.

Chapter 23 ensemble methods

276

Fi
gu

re
 2

3-
3.

 T
ak

e
a

m
aj

or
it

y
vo

te
 to

 d
et

er
m

in
e

th
e

fi
n

al
 c

la
ss

 in
 th

e
cl

as
si

fi
ca

ti
on

 c
as

e
an

d
th

e
av

er
ag

e
of

th

e
va

lu
es

 in
 e

ac
h

tr
ee

 to
 d

et
er

m
in

e
th

e
pr

ed
ic

te
d

va
lu

e
in

 th
e

re
gr

es
si

on
 c

as
e

Chapter 23 ensemble methods

277

 Random Forests with Scikit-learn
This section will implement Random forests with Scikit-learn for both regression and

classification use cases.

 Random Forests for Classification

In this code example, we will build a Random forest classification model to predict the

species of flowers from the Iris dataset.

import packages

from sklearn.ensemble import RandomForestClassifier

from sklearn import datasets

from sklearn.model_selection import train_test_split

from sklearn.metrics import accuracy_score

load dataset

data = datasets.load_iris()

separate features and target

X = data.data

y = data.target

split in train and test sets

X_train, X_test, y_train, y_test = train_test_split(X, y, shuffle=True)

create the model

rf_classifier = RandomForestClassifier()

fit the model on the training set

rf_classifier.fit(X_train, y_train)

Chapter 23 ensemble methods

278

make predictions on the test set

predictions = rf_classifier.predict(X_test)

evaluate the model performance using accuracy metric

print("Accuracy: %.2f" % accuracy_score(y_test, predictions))

'Output":

Accuracy: 1.00

 Random Forests for Regression

In this code example, we will build a Random forest regression model to predict house

prices from the Boston house-prices dataset.

import packages

from sklearn.ensemble import RandomForestRegressor

from sklearn import datasets

from sklearn.model_selection import train_test_split

from sklearn.metrics import mean_squared_error

from math import sqrt

load dataset

data = datasets.load_boston()

separate features and target

X = data.data

y = data.target

split in train and test sets

X_train, X_test, y_train, y_test = train_test_split(X, y, shuffle=True)

Chapter 23 ensemble methods

279

create the model

rf_reg = RandomForestRegressor()

fit the model on the training set

rf_reg.fit(X_train, y_train)

make predictions on the test set

predictions = rf_reg.predict(X_test)

evaluate the model performance using the root mean square error metric

print("Root mean squared error: %.2f" % sqrt(mean_squared_error(y_test,

predictions)))

'Output':

Root mean squared error: 2.96

 Stochastic Gradient Boosting (SGB)
Boosting involves growing trees in succession using knowledge from the residuals of the

previously grown tree. In this case, each successive tree works to improve the model of

the previous tree by boosting the areas in which the previous tree did not perform so well

without affecting the areas of high performance. By doing this, we iteratively create a

model that reduces the residual variance when generalizing to test examples. Boosting is

illustrated in Figure 23-4.

Chapter 23 ensemble methods

280

Fi
gu

re
 2

3-
4.

 A
n

 il
lu

st
ra

ti
on

 o
f b

oo
st

in
g

Chapter 23 ensemble methods

281

Gradient boosting evaluates the difference of the residuals for each tree and then

uses that information to determine how to split the feature space in the successive tree.

Gradient boosting employs a pseudo-gradient in computing the residuals. This gradient

is the direction of quickest improvement to the loss function. The residual variance is

minimized as the gradient moves in the direction of steepest descent. This movement is the

same as the stochastic gradient descent algorithm discussed in Chapter 16.

 Tree Depth/Number of Trees
Gradient boosting can be controlled by choosing the tree depth as a hyper-parameter

to the model. In practice, a tree depth of 1 performs well, as each tree consists of just a

single split. Also, the number of trees can affect the model accuracy, because gradient

boosting can overfit if the number of successive trees is vast.

 Shrinkage
The shrinkage hyper-parameter λ controls the learning rate of the gradient boosting

model. An arbitrarily small value of λ may necessitate a larger number of trees to obtain a

good model performance. However, with a small shrinkage size and tree depth d = 1, the

residuals slowly improve by creating more varied trees to improve the worst performing

areas of the model. Rule of thumb: shrinkage size is 0.01 or 0.001.

 Stochastic Gradient Boosting with Scikit-learn
This section will implement SGB with Scikit-learn for both regression and classification

use cases.

Chapter 23 ensemble methods

282

 SGB for Classification

In this code example, we will build a SGB classification model to predict the species of

flowers from the Iris dataset.

import packages

from sklearn.ensemble import GradientBoostingClassifier

from sklearn import datasets

from sklearn.model_selection import train_test_split

from sklearn.metrics import accuracy_score

load dataset

data = datasets.load_iris()

separate features and target

X = data.data

y = data.target

split in train and test sets

X_train, X_test, y_train, y_test = train_test_split(X, y, shuffle=True)

create the model

sgb_classifier = GradientBoostingClassifier()

fit the model on the training set

sgb_classifier.fit(X_train, y_train)

make predictions on the test set

predictions = sgb_classifier.predict(X_test)

evaluate the model performance using accuracy metric

print("Accuracy: %.2f" % accuracy_score(y_test, predictions))

'Output":

Accuracy: 0.92

Chapter 23 ensemble methods

283

 SGB for Regression

In this code example, we will build a SGB regression model to predict house prices from

the Boston house-prices dataset.

import packages

from sklearn.ensemble import GradientBoostingRegressor

from sklearn import datasets

from sklearn.model_selection import train_test_split

from sklearn.metrics import mean_squared_error

from math import sqrt

load dataset

data = datasets.load_boston()

separate features and target

X = data.data

y = data.target

split in train and test sets

X_train, X_test, y_train, y_test = train_test_split(X, y, shuffle=True)

create the model

sgb_reg = GradientBoostingRegressor ()

fit the model on the training set

sgb_reg.fit(X_train, y_train)

make predictions on the test set

predictions = sgb_reg.predict(X_test)

evaluate the model performance using the root mean square error metric

print("Root mean squared error: %.2f" % sqrt(mean_squared_error(y_test,

predictions)))

'Output':

Root mean squared error: 2.86

Chapter 23 ensemble methods

284

 XGBoost (Extreme Gradient Boosting)
XGBoost which is short for Extreme Gradient Boosting makes a couple of computational

and algorithmic modifications to the stochastic gradient boosting algorithm. This

enhanced algorithm is a favorite in machine learning practice due to its speed and has

been the winning algorithm in many machine learning competitions. Let’s go through

some of the modifications made by the XGBoost algorithm.

 1. Parallel training: XGBoost supports parallel training over multiple

cores. This has made XGBoost extremely fast compared to other

machine learning algorithms.

 2. Out of core computation: XGBoost facilitates training from data

not loaded into memory. This feature is a huge advantage when

you’re dealing with large datasets that may not necessarily fit into

the RAM of the computer.

 3. Sparse data optimization: XGBoost is optimized to handle and

speed up computation with sparse matrices. Sparse matrices

contain lots of zeros in its cells.

 XGBoost with Scikit-learn
This section will implement XGBoost with Scikit-learn for both regression and

classification use cases.

 XGBoost for Classification

In this code example, we will build a XGBoost classification model to predict the species

of flowers from the Iris dataset.

import packages

from xgboost import XGBClassifier

from sklearn import datasets

from sklearn.model_selection import train_test_split

from sklearn.metrics import accuracy_score

load dataset

data = datasets.load_iris()

Chapter 23 ensemble methods

285

separate features and target

X = data.data

y = data.target

split in train and test sets

X_train, X_test, y_train, y_test = train_test_split(X, y, shuffle=True)

create the model

xgboost_classifier = XGBClassifier()

fit the model on the training set

xgboost_classifier.fit(X_train, y_train)

make predictions on the test set

predictions = xgboost_classifier.predict(X_test)

evaluate the model performance using accuracy metric

print("Accuracy: %.2f" % accuracy_score(y_test, predictions))

'Output":

Accuracy: 0.95

 XGBoost for Regression

In this code example, we will build a XGBoost regression model to predict house prices

from the Boston house-prices dataset.

import packages

from xgboost import XGBRegressor

from sklearn import datasets

from sklearn.model_selection import train_test_split

from sklearn.metrics import mean_squared_error

from math import sqrt

load dataset

data = datasets.load_boston()

separate features and target

X = data.data

y = data.target

Chapter 23 ensemble methods

286

split in train and test sets

X_train, X_test, y_train, y_test = train_test_split(X, y, shuffle=True)

create the model

xgboost_reg = XGBRegressor()

fit the model on the training set

xgboost_reg.fit(X_train, y_train)

make predictions on the test set

predictions = xgboost_reg.predict(X_test)

evaluate the model performance using the root mean square error metric

print("Root mean squared error: %.2f" % sqrt(mean_squared_error(y_test,

predictions)))

'Output':

Root mean squared error: 3.69

In this chapter, we surveyed and implemented ensemble machine learning

algorithms that combine weak decision tree learners to create a strong classifier for

learning regression and classification problems. In the next chapter, we will discuss more

techniques for implementing supervised machine learning models with Scikit-learn.

Chapter 23 ensemble methods

287
© Ekaba Bisong 2019
E. Bisong, Building Machine Learning and Deep Learning Models on Google Cloud Platform,
https://doi.org/10.1007/978-1-4842-4470-8_24

CHAPTER 24

More Supervised Machine
Learning Techniques
with Scikit-learn
This chapter will cover using Scikit-learn to implement machine learning models using

techniques such as

• Feature engineering

• Resampling methods

• Model evaluation methods

• Pipelines for streamlining machine learning workflows

• Techniques for model tuning

 Feature Engineering
Feature engineering is the process of systematically choosing the set of features in the

dataset that are useful and relevant to the learning problem. It is often the case that

irrelevant features negatively affect the performance of the model. This section will

review some techniques implemented in Scikit-learn for selecting relevant features from

a dataset. The techniques surveyed include

• Statistical tests to select the best k features using the

SelectKBest module

• Recursive feature elimination (RFE) to recursively remove irrelevant

features from the dataset

288

• Principal component analysis to select the components that account

for the variation in the dataset

• Feature importances using ensembled or tree classifiers

 Statistical Tests to Select the Best k Features Using
the SelectKBest Module
The following list is a selection of statistical tests to use with SelectKBest. The choice

depends if the dataset target variable is numerical or categorical:

• ANOVA F-value, f_classif (classification)

• Chi-squared stats of non-negative features, chi2 (classification)

• F-value, f_regression (regression)

• Mutual information for a continuous target, mutual_info_regression

(regression)

Let’s see an example using chi-squared test to select the best variables.

import packages

from sklearn import datasets

from sklearn.feature_selection import SelectKBest

from sklearn.feature_selection import chi2

load dataset

data = datasets.load_iris()

separate features and target

X = data.data

y = data.target

display first 5 rows

X[0:5,:]

feature engineering. Let's see the best 3 features by setting k = 3

kBest_chi = SelectKBest(score_func=chi2, k=3)

fit_test = kBest_chi.fit(X, y)

Chapter 24 More SuperviSed MaChine Learning teChniqueS with SCikit-Learn

289

print test scores

fit_test.scores_

'Output': array([10.81782088, 3.59449902, 116.16984746, 67.24482759])

From the test scores, the top 3 important features in the dataset are ranked from

feature 3 to 4 to 1 and to 2 in order. The data scientist can choose to drop the second

column and observe the effect on the model performance.

We can transform the dataset to subset only the important features.

adjusted_features = fit_test.transform(X)

adjusted_features[0:5,:]

'Output':

array([[5.1, 1.4, 0.2],

 [4.9, 1.4, 0.2],

 [4.7, 1.3, 0.2],

 [4.6, 1.5, 0.2],

 [5. , 1.4, 0.2]])

The result drops the second column of the dataset.

 Recursive Feature Elimination (RFE)
RFE is used together with a learning model to recursively select the desired number of

top performing features.

Let’s use RFE with LinearRegression.

import packages

from sklearn.feature_selection import RFE

from sklearn.linear_model import LinearRegression

from sklearn import datasets

load dataset

data = datasets.load_boston()

separate features and target

X = data.data

y = data.target

Chapter 24 More SuperviSed MaChine Learning teChniqueS with SCikit-Learn

290

feature engineering

linear_reg = LinearRegression()

rfe = RFE(estimator=linear_reg, n_features_to_select=6)

rfe_fit = rfe.fit(X, y)

print the feature ranking

rfe_fit.ranking_

'Output': array([3, 5, 4, 1, 1, 1, 8, 1, 2, 6, 1, 7, 1])

From the result, the 4th, 5th, 6th, 8th, 11th, and 13th features are the top 6 features in

the Boston dataset.

 Feature Importances
Tree-based or ensemble methods in Scikit-learn have a feature_importances_ attribute

which can be used to drop irrelevant features in the dataset using the SelectFromModel
module contained in the sklearn.feature_selection package.

Let’s used the ensemble method AdaBoostClassifier in this example.

import packages

from sklearn.ensemble import AdaBoostClassifier

from sklearn.feature_selection import SelectFromModel

from sklearn import datasets

load dataset

data = datasets.load_iris()

separate features and target

X = data.data

y = data.target

original data shape

X.shape

feature engineering

ada_boost_classifier = AdaBoostClassifier()

ada_boost_classifier.fit(X, y)

Chapter 24 More SuperviSed MaChine Learning teChniqueS with SCikit-Learn

291

'Output':

AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,

 learning_rate=1.0, n_estimators=50, random_state=None)

print the feature importances

ada_boost_classifier.feature_importances_

'Output': array([0. , 0. , 0.58, 0.42])

create a subset of data based on the relevant features

model = SelectFromModel(ada_boost_classifier, prefit=True)

new_data = model.transform(X)

the irrelevant features have been removed

new_data.shape

'Output': (150, 2)

 Resampling Methods
Resampling methods are a set of techniques that involve selecting a subset of the

available dataset, training on that data subset, and using the remainder of the data to

evaluate the trained model. Let’s review the techniques for resampling using Scikit-

learn. This section covers

• k-Fold cross-validation

• Leave-one-out cross-validation

 k-Fold Cross-Validation
In k-fold cross validation, the dataset is divided into k-parts or folds. The model is

trained using k − 1 folds and evaluated on the remaining kth fold. This process is

repeated k-times so that each fold can serve as a test set. At the end of the process,

k-fold averages the result and reports a mean score with a standard deviation. Scikit-

learn implements K-fold CV in the module KFold. The module cross_val_score

is used to evaluate the cross-validation score using the splitting strategy, which is

KFold in this case.

Chapter 24 More SuperviSed MaChine Learning teChniqueS with SCikit-Learn

292

Let’s see an example of this using the k-nearest neighbors (kNN) classification

algorithm. When initializing KFold, it is standard practice to shuffle the data before

splitting.

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

from sklearn.neighbors import KNeighborsClassifier

load dataset

data = datasets.load_iris()

separate features and target

X = data.data

y = data.target

initialize KFold - with shuffle = True, shuffle the data before splitting

kfold = KFold(n_splits=3, shuffle=True)

create the model

knn_clf = KNeighborsClassifier(n_neighbors=3)

fit the model using cross validation

cv_result = cross_val_score(knn_clf, X, y, cv=kfold)

evaluate the model performance using accuracy metric

print("Accuracy: %.3f%% (%.3f%%)" % (cv_result.mean()*100.0, cv_result.

std()*100.0))

'Output':

Accuracy: 93.333% (2.494%)

 Leave-One-Out Cross-Validation (LOOCV)
In LOOCV just one example is assigned to the test set, and the model is trained on the

remainder of the dataset. This process is repeated for all the examples in the dataset.

This process is repeated until all the examples in the dataset have been used for

evaluating the model.

from sklearn.model_selection import LeaveOneOut

from sklearn.model_selection import cross_val_score

from sklearn.neighbors import KNeighborsClassifier

Chapter 24 More SuperviSed MaChine Learning teChniqueS with SCikit-Learn

293

load dataset

data = datasets.load_iris()

separate features and target

X = data.data

y = data.target

initialize LOOCV

loocv = LeaveOneOut()

create the model

knn_clf = KNeighborsClassifier(n_neighbors=3)

fit the model using cross validation

cv_result = cross_val_score(knn_clf, X, y, cv=loocv)

evaluate the model performance using accuracy metric

print("Accuracy: %.3f%% (%.3f%%)" % (cv_result.mean()*100.0, cv_result.

std()*100.0))

'Output':

Accuracy: 96.000% (19.596%)

 Model Evaluation
This chapter has already used a couple of evaluation metrics for assessing the quality of

the fitted models. In this section, we survey a couple of other metrics for regression and

classification use cases and how to implement them using Scikit-learn. For each metric,

we show how to use them as stand-alone implementations, as well as together with

cross-validation using the cross_val_score method.

What we’ll cover here includes

Regression evaluation metrics

• Mean squared error (MSE): The average sum of squared difference

between the predicted label, ŷ, and the true label, y. A score of 0

indicates a perfect prediction without errors.

• Mean absolute error (MAE): The average absolute difference between

the predicted label, ŷ, and the true label, y. A score of 0 indicates a

perfect prediction without errors.

Chapter 24 More SuperviSed MaChine Learning teChniqueS with SCikit-Learn

294

• R2: The amount of variance or variability in the dataset explained by

the model. The score of 1 means that the model perfectly captures

the variability in the dataset.

Classification evaluation metrics

• Accuracy: Is the ratio of correct predictions to the total number of

predictions. The bigger the accuracy, the better the model.

• Logarithmic loss (a.k.a logistic loss or cross-entropy loss): Is the

probability that an observation is correctly assigned to a class label.

By minimizing the log-loss, conversely, the accuracy is maximized.

So with this metric, values closer to zero are good.

• Area under the ROC curve (AUC-ROC): Used in the binary

classification case. Implementation is not provided, but very similar

in style to the others.

• Confusion matrix: More intuitive in the binary classification

case. Implementation is not provided, but very similar in style to

the others.

• Classification report: It returns a text report of the main classification

metrics.

 Regression Evaluation Metrics
The following code is an example of regression evaluation metrics implemented

stand- alone.

import packages

from sklearn.linear_model import LinearRegression

from sklearn import datasets

from sklearn.model_selection import train_test_split

from sklearn.metrics import mean_squared_error

from sklearn.metrics import mean_absolute_error

from sklearn.metrics import r2_score

load dataset

data = datasets.load_boston()

Chapter 24 More SuperviSed MaChine Learning teChniqueS with SCikit-Learn

295

separate features and target

X = data.data

y = data.target

split in train and test sets

X_train, X_test, y_train, y_test = train_test_split(X, y, shuffle=True)

create the model

setting normalize to true normalizes the dataset before fitting the model

linear_reg = LinearRegression(normalize = True)

fit the model on the training set

linear_reg.fit(X_train, y_train)

'Output': LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1,

normalize=True)

make predictions on the test set

predictions = linear_reg.predict(X_test)

evaluate the model performance using mean square error metric

print("Mean squared error: %.2f" % mean_squared_error(y_test, predictions))

'Output':

Mean squared error: 14.46

evaluate the model performance using mean absolute error metric

print("Mean absolute error: %.2f" % mean_absolute_error(y_test,

predictions))

'Output':

Mean absolute error: 3.63

evaluate the model performance using r-squared error metric

print("R-squared score: %.2f" % r2_score(y_test, predictions))

'Output':

R-squared score: 0.69

The following code is an example of regression evaluation metrics implemented with

cross-validation. The MSE and MAE metrics for cross-validation are implemented with

the sign inverted. The simple way to interpret this is to have it in mind that the closer the

values are to zero, the better the model.

Chapter 24 More SuperviSed MaChine Learning teChniqueS with SCikit-Learn

296

from sklearn.linear_model import LinearRegression

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

load dataset

data = datasets.load_boston()

separate features and target

X = data.data

y = data.target

initialize KFold - with shuffle = True, shuffle the data before splitting

kfold = KFold(n_splits=3, shuffle=True)

create the model

linear_reg = LinearRegression(normalize = True)

fit the model using cross validation - score with Mean square error (MSE)

mse_cv_result = cross_val_score(linear_reg, X, y, cv=kfold, scoring="neg_

mean_squared_error")

print mse cross validation output

print("Negative Mean squared error: %.3f%% (%.3f%%)" % (mse_cv_result.

mean(), mse_cv_result.std()))

'Output':

Negtive Mean squared error: -24.275% (4.093%)

fit the model using cross validation - score with Mean absolute error (MAE)

mae_cv_result = cross_val_score(linear_reg, X, y, cv=kfold, scoring="neg_

mean_absolute_error")

print mse cross validation output

print("Negtive Mean absolute error: %.3f%% (%.3f%%)" % (mae_cv_result.

mean(), mae_cv_result.std()))

'Output':

Negtive Mean absolute error: -3.442% (4.093%)

fit the model using cross validation - score with R-squared

r2_cv_result = cross_val_score(linear_reg, X, y, cv=kfold, scoring="r2")

print mse cross validation output

Chapter 24 More SuperviSed MaChine Learning teChniqueS with SCikit-Learn

297

print("R-squared score: %.3f%% (%.3f%%)" % (r2_cv_result.mean(), r2_cv_

result.std()))

'Output':

R-squared score: 0.707% (0.030%)

 Classification Evaluation Metrics
The following code is an example of classification evaluation metrics implemented

stand-alone.

import packages

from sklearn.linear_model import LogisticRegression

from sklearn import datasets

from sklearn.model_selection import train_test_split

from sklearn.metrics import accuracy_score

from sklearn.metrics import log_loss

from sklearn.metrics import classification_report

load dataset

data = datasets.load_iris()

separate features and target

X = data.data

y = data.target

split in train and test sets

X_train, X_test, y_train, y_test = train_test_split(X, y, shuffle=True)

create the model

logistic_reg = LogisticRegression()

fit the model on the training set

logistic_reg.fit(X_train, y_train)

'Output':

LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,

 intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,

 penalty='l2', random_state=None, solver='liblinear', tol=0.0001,

 verbose=0, warm_start=False)

Chapter 24 More SuperviSed MaChine Learning teChniqueS with SCikit-Learn

298

make predictions on the test set

predictions = logistic_reg.predict(X_test)

evaluate the model performance using accuracy

print("Accuracy score: %.2f" % accuracy_score(y_test, predictions))

'Output':

Accuracy score: 0.89

evaluate the model performance using log loss

output the probabilities of assigning an observation to a class

predictions_probabilities = logistic_reg.predict_proba(X_test)

print("Log-Loss likelihood: %.2f" % log_loss(y_test, predictions_

probabilities))

'Output':

Log-Loss likelihood: 0.39

evaluate the model performance using classification report

print("Classification report: \n", classification_report(y_test,

predictions, target_names=data.target_names))

'Output':

Classification report:

 precision recall f1-score support

 setosa 1.00 1.00 1.00 12

 versicolor 0.85 0.85 0.85 13

 virginica 0.85 0.85 0.85 13

avg / total 0.89 0.89 0.89 38

Let’s see an example of classification evaluation metrics implemented with cross-

validation. Evaluation metrics for log-loss using cross-validation is implemented with

the sign inverted. The simple way to interpret this is to have it in mind that the closer the

values are to zero, the better the model.

from sklearn.linear_model import LogisticRegression

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

Chapter 24 More SuperviSed MaChine Learning teChniqueS with SCikit-Learn

299

load dataset

data = datasets.load_iris()

separate features and target

X = data.data

y = data.target

initialize KFold - with shuffle = True, shuffle the data before splitting

kfold = KFold(n_splits=3, shuffle=True)

create the model

logistic_reg = LogisticRegression()

fit the model using cross validation - score with accuracy

accuracy_cv_result = cross_val_score(logistic_reg, X, y, cv=kfold,

scoring="accuracy")

print accuracy cross validation output

print("Accuracy: %.3f%% (%.3f%%)" % (accuracy_cv_result.mean(), accuracy_

cv_result.std()))

'Output':

Accuracy: 0.953% (0.025%)

fit the model using cross validation - score with Log-Loss

logloss_cv_result = cross_val_score(logistic_reg, X, y, cv=kfold,

scoring="neg_log_loss")

print mse cross validation output

print("Log-Loss likelihood: %.3f%% (%.3f%%)" % (logloss_cv_result.mean(),

logloss_cv_result.std()))

'Output':

Log-Loss likelihood: -0.348% (0.027%)

 Pipelines: Streamlining Machine Learning
Workflows
The concept of pipelines in Scikit-learn is a compelling tool for chaining a bunch

of operations together to form a tidy process flow of data transforms from one state

to another. The operations that constitute a pipeline can be any of Scikit-learn’s

Chapter 24 More SuperviSed MaChine Learning teChniqueS with SCikit-Learn

300

transformers (i.e., modules with a fit and transform method, or a fit_transform

method) or classifiers (i.e., modules with a fit and predict method, or a fit_predict

method). Classifiers are also called predictors.

For a typical machine learning workflow, the steps taken may involve cleaning the

data, feature engineering, scaling the dataset, and then fitting a model. Pipelines can be

used in this case to chain these operations together into a coherent workflow. They have

the advantage of providing a convenient and consistent interface for calling at once a

sequence of operations.

These transformers or predictors are collectively called estimators in Scikit-learn

terminology. In the last two paragraphs, we called them operations.

Another advantage of pipelines is that it safeguards against accidentally fitting a

transform on the entire dataset and thereby leaking statistics influenced by the test data

to the machine learning model while training. For example, if a standardizer is fitted on

the whole dataset, the test set will be compromised because the test observations have

contributed in estimating the mean and standard deviation for scaling the training set

before fitting the model.

Finally, only the last step of the pipeline can be a classifier or predictor. All the stages

of the pipeline must contain a transform method except the final stage, which can be a

transformer or a classifier.

To begin using Scikit-learn pipelines, first import

from sklearn.pipeline import Pipeline

Let’s see some examples of working with Pipelines in Scikit-learn. In the following

example, we’ll apply a scaling transform to standardize our dataset and then use a

support vector classifier to train the model.

import packages

from sklearn.svm import SVC

from sklearn import datasets

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

from sklearn.preprocessing import StandardScaler

from sklearn.pipeline import Pipeline

load dataset

data = datasets.load_iris()

Chapter 24 More SuperviSed MaChine Learning teChniqueS with SCikit-Learn

301

separate features and target

X = data.data

y = data.target

create the pipeline

estimators = [

 ('standardize' , StandardScaler()),

 ('svc', SVC())

]

build the pipeline model

pipe = Pipeline(estimators)

run the pipeline

kfold = KFold(n_splits=3, shuffle=True)

cv_result = cross_val_score(pipe, X, y, cv=kfold)

evaluate the model performance

print("Accuracy: %.3f%% (%.3f%%)" % (cv_result.mean()*100.0, cv_result.

std()*100.0))

'Output':

Accuracy: 94.667% (0.943%)

 Pipelines Using make_pipeline
Another method for building machine learning pipelines is by using the make_pipeline

method. For the next example, we use PCA to select the best six features and reduce the

dimensionality of the dataset, and then we’ll fit the model using Random forests for

regression.

from sklearn.pipeline import make_pipeline

from sklearn.svm import SVR

from sklearn import datasets

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

from sklearn.decomposition import PCA

from sklearn.pipeline import Pipeline

from sklearn.ensemble import RandomForestRegressor

Chapter 24 More SuperviSed MaChine Learning teChniqueS with SCikit-Learn

302

load dataset

data = datasets.load_boston()

separate features and target

X = data.data

y = data.target

build the pipeline model

pipe = make_pipeline(

 PCA(n_components=9),

 RandomForestRegressor()

)

run the pipeline

kfold = KFold(n_splits=4, shuffle=True)

cv_result = cross_val_score(pipe, X, y, cv=kfold)

evaluate the model performance

print("Accuracy: %.3f%% (%.3f%%)" % (cv_result.mean()*100.0, cv_result.

std()*100.0))

'Output':

Accuracy: 73.750% (2.489%)

 Pipelines Using FeatureUnion
Scikit-learn provides a module for merging the output of several transformers called

feature_union. It does this by fitting each transformer independently to the dataset, and

then their respective outputs are combined to form a transformed dataset for training

the model.

FeatureUnion works in the same way as a Pipeline, and in many ways can be thought

of as a means of building complex pipelines within a Pipeline.

Let’s see an example using FeatureUnion. Here, we will combine the output of

recursive feature elimination (RFE) and PCA for feature engineering, and then we’ll apply

the Stochastic Gradient Boosting (SGB) ensemble model for regression to train the model.

from sklearn.ensemble import GradientBoostingRegressor

from sklearn.ensemble import RandomForestRegressor

from sklearn import datasets

Chapter 24 More SuperviSed MaChine Learning teChniqueS with SCikit-Learn

303

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

from sklearn.feature_selection import RFE

from sklearn.decomposition import PCA

from sklearn.pipeline import Pipeline

from sklearn.pipeline import make_pipeline

from sklearn.pipeline import make_union

load dataset

data = datasets.load_boston()

separate features and target

X = data.data

y = data.target

construct pipeline for feature engineering - make_union similar to make_

pipeline

feature_engr = make_union(

 RFE(estimator= RandomForestRegressor(n_estimators=100), n_features_to_

select=6),

 PCA(n_components=9)

)

build the pipeline model

pipe = make_pipeline(

 feature_engr,

 GradientBoostingRegressor(n_estimators=100)

)

run the pipeline

kfold = KFold(n_splits=4, shuffle=True)

cv_result = cross_val_score(pipe, X, y, cv=kfold)

evaluate the model performance

print("Accuracy: %.3f%% (%.3f%%)" % (cv_result.mean()*100.0, cv_result.

std()*100.0))

'Output':

Accuracy: 88.956% (1.493%)

Chapter 24 More SuperviSed MaChine Learning teChniqueS with SCikit-Learn

304

 Model Tuning
Each machine learning model has a set of options or configurations that can be tuned

to optimize the model when fitting to data. These configurations are called hyper-
parameters. Hence, for each hyper-parameter, there exist a range of values that can be

chosen. Taking into consideration the number of hyper-parameters that an algorithm

has, the entire space can become exponentially large and infeasible to explore all of

them. Scikit-learn provides two convenient modules for searching through the hyper-

parameter space of an algorithm to find the best values for each hyper-parameter that

optimizes the model.

These modules are the

• Grid search

• Randomized search

 Grid Search
Grid search comprehensively explores all the specified hyper-parameter values for an

estimator. It is implemented using the GridSearchCV module. Let’s see an example

using the Random forest for regression. The hyper-parameters we’ll search over are

• The number of trees in the forest, n_estimators

• The maximum depth of the tree, max_depth

• The minimum number of samples required to split an internal node,

min_samples_leaf

from sklearn.model_selection import GridSearchCV

from sklearn.ensemble import RandomForestRegressor

from sklearn import datasets

load dataset

data = datasets.load_boston()

separate features and target

X = data.data

y = data.target

Chapter 24 More SuperviSed MaChine Learning teChniqueS with SCikit-Learn

305

construct grid search parameters in a dictionary

parameters = {

 'n_estimators': [2, 4, 6, 8, 10, 12, 14, 16],

 'max_depth': [2, 4, 6, 8],

 'min_samples_leaf': [1,2,3,4,5]

 }

create the model

rf_model = RandomForestRegressor()

run the grid search

grid_search = GridSearchCV(estimator=rf_model, param_grid=parameters)

fit the model

grid_search.fit(X,y)

'Output':

GridSearchCV(cv=None, error_score='raise',

 estimator=RandomForestRegressor(bootstrap=True, criterion='mse',

max_depth=None,

 max_features='auto', max_leaf_nodes=None,

 min_impurity_decrease=0.0, min_impurity_split=None,

 min_samples_leaf=1, min_samples_split=2,

 min_weight_fraction_leaf=0.0, n_estimators=10, n_jobs=1,

 oob_score=False, random_state=None, verbose=0, warm_

start=False),

 fit_params=None, iid=True, n_jobs=1,

 param_grid={'n_estimators': [2, 4, 6, 8, 10, 12, 14, 16],

'max_depth': [2, 4, 6, 8], 'min_samples_leaf': [1, 2, 3, 4, 5]},

 pre_dispatch='2*n_jobs', refit=True, return_train_score='warn',

 scoring=None, verbose=0)

evaluate the model performance

print("Best Accuracy: %.3f%%" % (grid_search.best_score_*100.0))

'Output':

Best Accuracy: 57.917%

Chapter 24 More SuperviSed MaChine Learning teChniqueS with SCikit-Learn

306

best set of hyper-parameter values

print("Best n_estimators: %d \nBest max_depth: %d \nBest min_samples_leaf:

%d " % \

 (grid_search.best_estimator_.n_estimators, \

 grid_search.best_estimator_.max_depth, \

 grid_search.best_estimator_.min_samples_leaf))

'Output':

Best n_estimators: 14

Best max_depth: 8

Best min_samples_leaf: 1

 Randomized Search
As opposed to grid search, not all the provided hyper-parameter values are evaluated,

but rather a determined number of hyper-parameter values are sampled from a random

uniform distribution. The number of hyper-parameter values that can be evaluated is

determined by the n_iter attribute of the RandomizedSearchCV module.

In this example, we will use the same scenario as in the grid search case.

from sklearn.model_selection import RandomizedSearchCV

from sklearn.ensemble import RandomForestRegressor

from sklearn import datasets

load dataset

data = datasets.load_boston()

separate features and target

X = data.data

y = data.target

construct grid search parameters in a dictionary

parameters = {

 'n_estimators': [2, 4, 6, 8, 10, 12, 14, 16],

 'max_depth': [2, 4, 6, 8],

 'min_samples_leaf': [1,2,3,4,5]

 }

Chapter 24 More SuperviSed MaChine Learning teChniqueS with SCikit-Learn

307

create the model

rf_model = RandomForestRegressor()

run the grid search

randomized_search = RandomizedSearchCV(estimator=rf_model, param_

distributions=parameters, n_iter=10)

fit the model

randomized_search.fit(X,y)

'Output':

RandomizedSearchCV(cv=None, error_score='raise',

 estimator=RandomForestRegressor(bootstrap=True, criterion='mse',

max_depth=None,

 max_features='auto', max_leaf_nodes=None,

 min_impurity_decrease=0.0, min_impurity_split=None,

 min_samples_leaf=1, min_samples_split=2,

 min_weight_fraction_leaf=0.0, n_estimators=10, n_jobs=1,

 oob_score=False, random_state=None, verbose=0, warm_

start=False),

 fit_params=None, iid=True, n_iter=10, n_jobs=1,

 param_distributions={'n_estimators': [2, 4, 6, 8, 10, 12, 14, 16],

'max_depth': [2, 4, 6, 8], 'min_samples_leaf': [1, 2, 3, 4, 5]},

 pre_dispatch='2*n_jobs', random_state=None, refit=True,

 return_train_score='warn', scoring=None, verbose=0)

evaluate the model performance

print("Best Accuracy: %.3f%%" % (randomized_search.best_score_*100.0))

'Output':

Best Accuracy: 57.856%

best set of hyper-parameter values

print("Best n_estimators: %d \nBest max_depth: %d \nBest min_samples_leaf:

%d " % \

 (randomized_search.best_estimator_.n_estimators, \

 randomized_search.best_estimator_.max_depth, \

 randomized_search.best_estimator_.min_samples_leaf))

Chapter 24 More SuperviSed MaChine Learning teChniqueS with SCikit-Learn

308

'Output':

Best n_estimators: 12

Best max_depth: 6

Best min_samples_leaf: 5

This chapter further explored using Scikit-learn to incorporate other machine

learning techniques such as feature selection and resampling methods to develop a

more robust machine learning method. In the next chapter, we will examine our first

unsupervised machine learning method, clustering, and its implementation with

 Scikit- learn.

Chapter 24 More SuperviSed MaChine Learning teChniqueS with SCikit-Learn

309
© Ekaba Bisong 2019
E. Bisong, Building Machine Learning and Deep Learning Models on Google Cloud Platform,
https://doi.org/10.1007/978-1-4842-4470-8_25

CHAPTER 25

Clustering
Clustering is an unsupervised machine learning technique for grouping homogeneous

data points into partitions called clusters. In the example dataset illustrated in

Figure 25- 1, suppose we have a set of n points and 2 features. A clustering algorithm

can be applied to determine the number of distinct subclasses or groups among the

data samples.

Clustering a 2-D dataset as seen in Figure 25-1 is relatively trivial. The real

challenge arises when we have to perform clustering in higher-dimensional spaces.

The question now is how do we ascertain or find out if a set of points are similar

or if a set of points should be in the same group? In this section, we would cover

two essential types of clustering algorithms known as k-means clustering and

hierarchical clustering.

K-means clustering is used when the number of anticipated distinct classes or

sub- groups is known in advance. In hierarchical clustering, the exact number

of clusters is not known, and the algorithm is tasked to find the optimal number of

heterogeneous sub-groups in the dataset.

Figure 25-1. An illustration of clustering in a 2-D space

310

 K-Means Clustering
k-Means clustering is one of the most famous and widely used clustering algorithms

in practice. It works by using a distance measurement (most commonly the

Euclidean distance) to iteratively assign data points in a hyperspace to a set of non-

overlapping clusters.

In K-means, the anticipated number of clusters, K, is chosen at the onset. The

clusters are initialized by arbitrarily selecting at random one of the data points as

an initial cluster for each K. The algorithm now works by iteratively assigning each

point in the space to the cluster centroid that it is nearest to using the distance

measurement.

After all the points have been assigned to their closest cluster point, the cluster

centroid is adjusted to find a new center among the points in the cluster. This process is

repeated until the algorithm converges, that is, when the cluster centroids stabilize and

points do not readily swap clusters after every reassignment. These steps are illustrated

in Figure 25-2.

Figure 25-2. An illustration of k-means clustering with k = 2. Top left: Randomly
pick a point for each k. Top right: Iteratively assign each point to its closest cluster
centroid. Bottom: Update the cluster centroids for each of the k clusters. Typically,
we repeat the iterative assignment of all the points and update the cluster centroid
until the algorithm resolves in a stable clustering.

Chapter 25 Clustering

311

 Considerations for Selecting K
There’s really no way of telling the number of clusters in a dataset from the onset. The

best way of selecting k is to try out different values of K to see what works best in creating

distinct clusters.

Another strategy, which is widely employed in practice, is to compute the average

distance of the points in the cluster to the cluster centroid for all clusters. This estimate

is plotted on a graph as we progressively increase the value of K. We observe that as K

increases, the distance of points from the centroid of its cluster gradually reduces, and

the generated curve resembles the elbow of an arm. From practice, we choose the value

of K just after the elbow as the best K value for that dataset. This method is called the

elbow method for selecting K as is illustrated in Figure 25-3.

 Considerations for Assigning the Initial K Points
The points that determine the initial value of K are important in finding a good set

of clusters. By selecting the point for K at random, two or more points may reside in

the same cluster, and this will invariably lead to sub-par results. To mitigate this from

occurring, we can employ more sophisticated approaches to selecting the value of K. A

common strategy is to randomly select the first K point and then select the next point

as the point that is farthest from the first chosen point. This strategy is repeated until

all K points have been selected. Another approach is to run hierarchical clustering on a

sub-sample of the dataset (this is because hierarchical clustering is a computationally

expensive algorithm) and use the number of clusters after cutting off the dendrogram as

the value of K.

Figure 25-3. The elbow method for choosing the best value of k

Chapter 25 Clustering

312

 K-Means Clustering with Scikit-learn
This example implements K-means clustering with Scikit-learn. Since this is an

unsupervised learning use case, we use just the features of the Iris dataset to cluster the

observations into labels.

import packages

import matplotlib.pyplot as plt

from sklearn.cluster import KMeans

from sklearn import datasets

from sklearn.model_selection import train_test_split

load dataset

data = datasets.load_iris()

get the dataset features

X = data.data

create the model. Since we know that the Iris dataset has 3 classes, we

set n_clusters = 3

kmeans = KMeans(n_clusters=3, random_state=0)

fit the model on the training set

kmeans.fit(X)

'Output':

KMeans(algorithm='auto', copy_x=True, init='k-means++', max_iter=300,

 n_clusters=3, n_init=10, n_jobs=1, precompute_distances='auto',

 random_state=0, tol=0.0001, verbose=0)

predict the closest cluster each sample in X belongs to.

y_kmeans = kmeans.predict(X)

plot clustered labels

plt.scatter(X[:, 0], X[:, 1], c=y_kmeans, cmap='viridis')

plot cluster centers

centers = kmeans.cluster_centers_

plt.scatter(centers[:, 0], centers[:, 1], c='black', s=200, alpha=0.7);

plt.show()

Chapter 25 Clustering

313

The code to plot the clustered labels and the cluster centers should be executed in

the same notebook. The plot of clusters made by the K-means algorithm is shown in

Figure 25-4.

 Hierarchical Clustering
Hierarchical clustering is another clustering algorithm for finding homogeneous

sub- groups or classes within a dataset. However, as opposed to k-means, we do not

need to make an a priori assumption of the number of clusters in the dataset before

running the algorithm.

The two main techniques for performing hierarchical clustering are

• Bottom-up or agglomerative

• Top-down or divisive

Figure 25-4. Plot of K-means clusters and their cluster centers

Chapter 25 Clustering

314

In the bottom-up or agglomerative method, each data point is initially designated

as a cluster. Clusters are iteratively combined based on homogeneity that is determined

by some distance measure. On the other hand, the divisive or top-down approach starts

with a cluster and subsequently splits into homogeneous sub-groups.

Hierarchical clustering creates a tree-like representation of the partitioning called

a dendrogram. A dendrogram is drawn somewhat similar to a binary tree with the root

at the top and the leaves at the bottom. The leaf on the dendrogram represents a data

sample. The dendrogram is constructed by iteratively combining the leaves based

on homogeneity to form clusters moving up the tree. An illustration of hierarchical

clustering is shown in Figure 25-5.

 How Are Clusters Formed
Clusters are formed by computing the nearness between each pair of data points. The

notion of nearness is most popularly calculated using the Euclidean distance measure.

Beginning at the leaves of the dendrogram, we iteratively combine those data points

that are closer to one another in the multi-dimensional vector space until all the

homogeneous points are placed into a single group or cluster.

Figure 25-5. An illustration of hierarchical clustering of data points in a 2-D
feature space. Left: The spatial representation of points in 2-D space. Right: A
hierarchical cluster of points represented by a dendrogram.

Chapter 25 Clustering

315

The Euclidean distance is used to compute the nearness between n data points.

After each pair of data points has combined to form a cluster, the new cluster pairs are

then pulled into groups going up the tree, with the tree branch or dendrogram height

reflecting the dissimilarity between the clusters.

Dissimilarity computes how different each cluster of data is from one another. The

notion of dissimilarity between two clusters or groups is described in terms of linkage.

Four types of linkage exist for grouping clusters in hierarchical clustering. They are

centroid, complete, average, and single.

The centroid linkage computes the dissimilarity between two clusters using the

geometric centroid of the clusters. The complete linkage uses the two farthest data

points between the two clusters to compute the dissimilarity (see Figure 25-6).

The average linkage finds the means of points within the pair of clusters and uses

that new artificial point to calculate the dissimilarity (see Figure 25-7).

Figure 25-6. Complete linkage

Figure 25-7. Average linkage

Chapter 25 Clustering

316

The single linkage uses the closest data point between the cluster pairs to compute

the dissimilarity measure (see Figure 25-8).

Empirically, the complete and average linkages are preferred in practice because

they yield more balanced dendrograms. Other dissimilarity measures exist for

evaluating the nearness or homogeneity of data points. One of such is the Manhattan

distance, another distance-based measure, or the correlation-based distance which

groups pairs of data samples with highly correlated features. A correlated-based

dissimilarity measure may be more useful in datasets where proximity in multi-

dimensional spaces is not as useful a metric for homogeneity as compared to the

correlation of their features in the space. A choice of calculating dissimilarity has a

significant impact on the ensuring dendrogram.

After running the algorithm, the dendrogram is cut at a particular height, and the

number of distinct lines or branches after the cut is circumscribed as the number

of clusters in the dataset. An illustration of cutting the dendrogram is shown in

Figure 25-9.

Figure 25-8. Single linkage

Chapter 25 Clustering

317

 Hierarchical Clustering with the SciPy Package
This example implements hierarchical or agglomerative clustering with SciPy. The

‘scipy.cluster.hierarchy’ package has simple methods for performing hierarchical

clustering and plotting dendrograms. This example uses the ‘complete’ linkage method.

The plot of the dendrogram is shown in Figure 25-10.

import packages

import matplotlib.pyplot as plt

from scipy.cluster.hierarchy import dendrogram

from scipy.cluster import hierarchy

Z = hierarchy.linkage(X, method='complete')

plt.figure()

dn = hierarchy.dendrogram(Z, truncate_mode='lastp')

Figure 25-9. Dendrogram cut

Chapter 25 Clustering

318

This chapter reviewed the pros and cons of K-means and hierarchical clustering.

Both hierarchical and K-means are susceptible to perturbations in the dataset and can

give very different results if a few data points are removed or added. Also, it is crucial

to standardize the dataset features (i.e., to subtract each element in the feature from its

mean and divide by its standard deviation or by the range) before performing clustering.

This ensures that the features are within similar numeric bounds and have tempered or

measured distances in the feature space.

The results of these clustering algorithms also depend on a wide range of

considerations such as the choice of K for K-means, and for hierarchical clustering, the

choice of dissimilarity measure, the type of linkage, and where to cut the dendrogram

all affect the final result of the clusters. Hence, to get the best out of clustering, it is best

to perform a grid search and try out all these different configurations in order to get

a measured view on the robustness of the results before applying into your learning

pipeline or using as a model to explain the dataset.

In the next chapter, we will discuss principal component analysis (PCA) as an

unsupervised machine learning algorithm for finding low-dimensional feature sub-

spaces that capture the variability in the dataset.

Figure 25-10. Dendrogram produced by hierarchical clustering

Chapter 25 Clustering

319
© Ekaba Bisong 2019
E. Bisong, Building Machine Learning and Deep Learning Models on Google Cloud Platform,
https://doi.org/10.1007/978-1-4842-4470-8_26

CHAPTER 26

Principal Component
Analysis (PCA)
Principal component analysis (PCA) is an essential algorithm in machine learning. It

is a mathematical method for evaluating the principal components of a dataset. The

principal components are a set of vectors in high-dimensional space that capture the

variance (i.e., spread) or variability of the feature space.

The goal of computing principal components is to find a low-dimensional feature

sub-space that captures as much information as possible from the original higher-

dimensional features of the dataset.

PCA is particularly useful for simplifying data visualization of high-dimensional

features by reducing the dimensions of the dataset to a lower sub-space. For example,

since we can easily visualize relationships on a 2-D plane using scatter diagrams, it will

be useful to condense an n-dimensional space into two dimensions that retain as much

information as possible in the n-dimensional dataset. This technique is popularly called

dimensionality reduction.

 How Are Principal Components Computed
The mathematical details for computing principal components are somewhat involved.

This section will instead provide a conceptual but solid overview of this process.

The first step is to find the covariance matrix of the dataset. The covariance matrix

captures the linear relationship between variables or features in the dataset. In a

covariance matrix, an increasingly positive number represents a growing relationship,

while the converse is represented by an increasingly negative number. Numbers around

zero indicate a non-linear relationship between the variables. The covariance matrix is

a square matrix (that means it has the same rows and columns). Hence, given a dataset

with m rows and p columns, the covariance matrix will be a m × p matrix.

320

The next step is to find the eigenvectors of the covariance matrix dataset. In linear

algebra theory, eigenvectors are non-zero vectors that merely stretch by a scalar factor,

but do not change direction when acted upon by a linear transformation. We find the

eigenvectors using a linear algebra technique called the singular value decomposition

or SVD for short (see Figure 26-1). This advanced mathematical concept is beyond the

scope of this book.

The critical point to note at this junction is that the SVD also outputs a square matrix

(p × p), and each column of the matrix is an eigenvector of the original dataset. This

output is the same across different software packages that compute the eigenvectors

because the covariance matrix satisfies a mathematical property of being symmetric and

positive semi-definite (the non-math inclined can conveniently ignore this point). We

have as many eigenvectors as they are attributes or features in the dataset.

Without delving into mathematical theory, we can conclude that the eigenvectors

are the principal components or loadings of the feature space. Again remember that the

principal components capture the most significant variance in the dataset by projecting

the data onto a vector called the first principal component. Other principal components

are perpendicular to each other and capture the variance not explained by the first

principal component. The principal components are arranged in order of importance

in the eigenvector matrix, with the first principal component in the first column, the

second principal component in the second column, and so on.

Figure 26-1. Decompose the covariance matrix using SVD to get the eigenvector
matrix

Chapter 26 prinCipal Component analysis (pCa)

321

 Dimensionality Reduction with PCA
To reduce the dimensions of the original dataset using PCA, we multiply the

desired number of components or loadings from the eigenvector matrix, A, by the

design matrix X. Suppose the design matrix (or the original dataset) has m rows (or

observations) and p columns (or features), if we want to reduce the dimensions of

the original dataset to two dimensions, we will multiply the original dataset X by

the first two columns of the eigenvector matrix, Areduced. The result will be a reduced

matrix of m rows and 2 columns.

If X is a m × p matrix and Areduced is a p × 2 matrix,

T X Areduced m p p= ´´ ´2

Observe that the result Treduced is a m × 2 matrix. Hence, T is a 2-D representation of

the original dataset X as shown in Figure 26-2.

In plotting the reduced dataset, the principal components are ranked in order of

importance with the first principal component more prominent than the second and so

on. Figure 26-3 illustrates a plot of the first two principal components.

Figure 26-2. Reducing the dimension of the original dataset

Chapter 26 prinCipal Component analysis (pCa)

322

 Key Considerations for Performing PCA
It is vital to perform mean normalization and feature scaling on the variables of features

of the original dataset before implementing PCA. This is because unscaled features

can have stretched and narrow distance n-dimensional space, and this has a huge

consequence when finding the principal components that explain the variance of the

dataset (see Figure 26-4).

Figure 26-3. Visualize the principal components

Figure 26-4. Right: An illustration of PCA with scaled features. Left: An
illustration of PCA with unscaled features.

Chapter 26 prinCipal Component analysis (pCa)

323

Again mean normalization ensures that every attribute or feature of the dataset

has a zero mean, while feature scaling ensures all the features are within the same

numeric range.

Finally, PCA is susceptible to vary wildly due to slight perturbations or changes

in the dataset.

 PCA with Scikit-learn
In this section, PCA is implemented using Scikit-learn.

import packages

from sklearn.decomposition import PCA

from sklearn import datasets

from sklearn.preprocessing import Normalizer

load dataset

data = datasets.load_iris()

separate features and target

X = data.data

normalize the dataset

scaler = Normalizer().fit(X)

normalize_X = scaler.transform(X)

create the model.

pca = PCA(n_components=3)

fit the model on the training set

pca.fit(normalize_X)

examine the principal components percentage of variance explained

pca.explained_variance_ratio_

print the principal components

pca_dataset = pca.components_

pca_dataset

'Output':

Chapter 26 prinCipal Component analysis (pCa)

324

array([[0.18359702, 0.49546167, -0.76887947, -0.36004754],

 [0.60210709, -0.64966313, -0.05931229, -0.46031175],

 [-0.2436305 , 0.28528504, 0.49319469, -0.78486663]])

In this chapter, we explained PCA giving a high-level overview of how it works to find

a low-dimensional sub-space of a dataset. More so, we showed how PCA is implemented

with Scikit-learn. This chapter concludes Part 4. In the next part, we introduce another

scheme of learning methods called deep learning that builds on the machine learning

neural network algorithm for learning complex representations.

Chapter 26 prinCipal Component analysis (pCa)

PART V

Introducing Deep
Learning

327
© Ekaba Bisong 2019
E. Bisong, Building Machine Learning and Deep Learning Models on Google Cloud Platform,
https://doi.org/10.1007/978-1-4842-4470-8_27

CHAPTER 27

What Is Deep Learning?
Deep learning is a class of machine learning algorithms called neural networks. Neural

networks are mathematical models inspired by the structure of the brain. Deep learning

enables the neural network algorithm to perform very well in building prediction

models around complex problems such as computer vision and language modeling.

Self- driving cars and automatic speech translation, to mention just a few, are examples

of technologies that have resulted from advances in deep learning.

 The Representation Challenge
Learning is a non-trivial task. The brain’s ability to learn complex tasks is not yet fully

understood by research communities in neurological science, psychology, and other

brain-related fields. What we consider trivial, and to some others natural, are a system

of complex and intricate processes that have set us apart from other life forms as

intelligent beings.

Examples of complex tasks performed by the human brain include the ability to

recognize faces at a millionth of a second (probably much faster), the uncanny aptitude

for learning and understanding deep linguistic representations, and forming symbols

for intelligent communications. Also, the adept skills to compose and perform masterful

musical pieces are examples of the marvel of natural intelligence.

The challenge of AI research and engineering is to build machines that can

understand and decompose the structural patterns inherent in complex problems in

order to mimic natural intelligence. Deep learning as an AI technique approaches the

representation problem by learning the underlying fundamental structure inherent in

the dataset. Deep learning is also called representation learning.

328

 Inspiration from the Brain
Scientists often look to nature for inspiration when performing incredible feats. Notably,

the birds inspired the airplane. In that vein, there is no better type to study as an antitype

of intelligence as the human brain.

We can view the brain as a society of intelligent agents that are networked together

and communicate by passing information via electrical signals from one agent to

another. These agents are known as neurons. Our principal interest here is to have a

glimpse of what neurons are, what their components are, and how they pass information

around to create intelligence.

A neuron is an autonomous agent in the brain and is a central part of the nervous

system. Neurons are responsible for receiving and transmitting information to other cells

within the body based on external or internal stimuli. Neurons react by firing electrical

impulses generated at the stimuli source to the brain and other cells for the appropriate

response. The intricate and coordinated workings of neurons are central to human

intelligence.

The following are the three most essential components of neurons that are of

primary interest to us:

• The axon

• The dendrite

• The synapse

The axon is a long tail connected to the nucleus of the neuron as seen in

Figure 27- 1. The axon is responsible for transmitting electrical signals from the

nucleus to other neuron cells through the axon terminals. The dendrite, on the other

hand, receives information as electrical impulses from other neuron cells through

the synapses to the nucleus of a neuron cell.

Chapter 27 What Is Deep LearnIng?

329

By mimicking these three biological components of a neuron, scientists developed

the core design and structure of an artificial neural network (ANN) that allows us to build

machines that can learn. We will discuss the ANN in more detail in the next chapter.

There is much hope that if we can mimic the capabilities of the brain from a science and

engineering perspective, we can build machines that can learn hierarchical features

from complex domain use cases.

This chapter introduces the field of deep learning as an engineering impersonation

of how the brain learns to build artificial neural networks. In the next chapter, we’ll go

deeper to discuss the neural network algorithm.

Figure 27-1. A neuron

Chapter 27 What Is Deep LearnIng?

331
© Ekaba Bisong 2019
E. Bisong, Building Machine Learning and Deep Learning Models on Google Cloud Platform,
https://doi.org/10.1007/978-1-4842-4470-8_28

CHAPTER 28

Neural Network
Foundations
Building on the inspiration of the biological neuron, the artificial neural network

(ANN) is a society of connectionist agents that learn and transfer information from

one artificial neuron to the other. As data transfers between neurons, a hierarchy

of representations or a hierarchy of features is learned, hence the name deep

representation learning or deep learning.

 The Architecture
An artificial neural network is composed of

• An input layer

• Hidden layer(s)

• An output layer

332

The input layer receives information from the features of the dataset, after which

some computation takes place, and information that captures the learned patterns

of the data is propagated across the hidden layer(s) with hopes to improve the

learned patterns.

The hidden layer(s) is where the workhorse of deep learning occurs. The hidden

layer(s) can consist of multiple neuron modules as shown in Figure 28-1. Each hidden

network layer learns a more sophisticated set of feature representations. The decision

on the number of neurons in a layer (network width) and the number of hidden layers

(network depth) which forms the network topology is a design choice when training

deep learning networks. The techniques for training a deep neural network are discussed

in the next chapter.

Figure 28-1. Neural network architecture

Chapter 28 Neural Network FouNdatioNs

333
© Ekaba Bisong 2019
E. Bisong, Building Machine Learning and Deep Learning Models on Google Cloud Platform,
https://doi.org/10.1007/978-1-4842-4470-8_29

CHAPTER 29

Training a Neural Network
This chapter gives an overview of the techniques for training a deep neural network.

Here, we briefly discuss

• How learned information flows through a neural network

• The role of the cost function at the output layer of the network

• One-hot encoding and the softmax activation function for

determining class membership at the output layer of a classification

problem

• The backpropagation algorithm for improving the learned

parameters of the network

• Activation functions that enable the neural network to learn non-

linear patterns

In this chapter, as we discuss the methods involved in training a neural network, we

will use the example of a classification problem with two possible outputs. In designing

a neural network, the number of neurons in the input layer is typically the number of

features of the dataset, while the number of neurons in the output layer is the number of

classes in the target variable that the neural network is learning to classify.

As illustrated in Figure 29-1, the dataset features are the inputs to the neural network,

while the classes in the target variable determine the number of output neurons. In this

example, the network learns two classes, 0 and 1.

334

A weight (also called parameter) is assigned to every neuron. The weights of neurons

in a neural layer are multiplied by their inputs and then passed through an activation

function (to be discussed in this chapter) for which the outputs are the inputs to the

neurons in the next neural layer of the network (see Figure 29-2). This procedure is

repeated as information of what the neural network is trying to learn moves from one

layer of the network to another. Every neuron layer also has a bias neuron (typically

set to 1) that controls the weighted sum. This is similar to the bias term in the logistic

regression model.

Figure 29-1. Defining a neural network from a dataset

Chapter 29 training a neural network

335

The weights are initialized as random values that are later adjusted as the network

begins to learn using the backpropagation algorithm (to be discussed in this chapter).

In summary, the outputs (or activations) of the neurons in the neural network layers are

determined by the sum of the weight times the outputs plus the bias term of the neurons

in the previous layer acted upon by a non-linear activation function (see Figure 29-2).

This move is called the feedforward learning algorithm.

However, the output of the feedforward pass through the network may most likely

result in an incorrect classification. The errors made from the feedforward procedure are

later adjusted using the backpropagation algorithm (to be discussed). To evaluate the

performance of the neural network, we define a cost function or loss function (similar to

other machine learning algorithms) that captures the quality of the prediction made by

the network.

The goal of the neural network is to minimize the cost function. Two commonly

used cost functions are the squared error cost function for regression problems and the

softmax cross-entropy cost function for classification problems.

Figure 29-2. Information flowing from a previous neural layer to a neuron in the
next layer

Chapter 29 training a neural network

336

 Cost Function or Loss Function
The squared error cost function (also known as the mean squared error) finds the sum

of the squared difference between the estimated target and the actual target for a real-

valued problem, while the cross-entropy cost function finds the difference between the

predicted class from the probability estimates of the actual class label in a classification

problem.

Regardless of the cost function used, when the error loss is small, we say that the cost

is minimized. In Figure 29-3, the correct output of the example passed into the network

is 2.3. After the output values are evaluated from the feedforward training, the squared

error cost function is used to assess the quality of the network’s output.

Remember that the MSE finds the average cost over all the data samples in the

training dataset. In the example illustrated in Figure 29-3, we used just one data sample

to demonstrate how the cost function works.

 One-Hot Encoding
In a classification problem, one-hot encoding is the process of transforming the class

labels of the target variable into a matrix of binary variables. The one-hot encoder

assigns 1 when the output belongs to a particular class and 0 otherwise. An illustration of

one-hot encoding is shown in Figure 29-4.

Figure 29-3. MSE estimate of the neural network

Chapter 29 training a neural network

337

In the final layer of the neural network, just before the output layer, an activation

function called the softmax (same as discussed under “Logistic Regression”) is applied

to transform the activations to the probability that the example belongs to one of the

output classes.

The purpose of applying one-hot encoding to the labels of the dataset is to represent

the output as a vector of distinct classes with the probability that an example in the

training dataset belongs to any one of the output categories.

 The Backpropagation Algorithm
Backpropagation is the process by which we train the neural network to improve its

prediction accuracy. To train the neural network, we need to find a mechanism for

adjusting the weights of the network; this in turn affects the value of the activations

within each neuron and consequently updates the value of the predicted output layer.

The first time we run the feedforward algorithm, the activations at the output layer are

most likely incorrect with a high error estimate or cost function.

The goal of backpropagation is to repeatedly go back and adjust the weights of each

preceding neural layer and perform the feedforward algorithm again until we minimize

the error made by the network at the output layer (see Figure 29-5).

Figure 29-4. One-hot encoding

Chapter 29 training a neural network

338

The backpropagation algorithm works by computing the cost function at the output

layer by comparing the predicted output of the neural network with the actual outputs

from the dataset. It then employs gradient descent (earlier discussed in Chapter 16)

to calculate the gradient of the cost function using the weights of the neurons at each

successive layer and update the weights propagating back through the network.

 Activation Functions
Up till now, we have mentioned activation functions. Now let’s go a bit deeper into what

activation functions are and why do we have them.

Figure 29-5. Backpropagation

Chapter 29 training a neural network

339

Activation functions act on the weighted sum in the neuron (which is nothing more

than the weighted sum of weights and their added bias) by passing it through a non-

linear function to decide if that neuron should fire (propagate) its information or not to

the succeeding neural layers.

In other words, the activation function determines if a particular neuron has the

information to result in a correct prediction at the output layer for an observation in the

training dataset. Activation functions are analogous to how neurons communicate and

transfer information in the brain, by firing when the activation goes above a particular

threshold value.

These activation functions are also called non-linearities because they inject

non-linear capabilities to our network and can learn a mapping from inputs to output

for a dataset whose fundamental structure is non-linear. An illustration of passing

the weighted sum of weights and biases through an activation function is shown in

Figure 29-6.

The following are examples of activation functions used in a neural network:

• Sigmoid

• Hyperbolic tangent (tanh)

Figure 29-6. Activation function

Chapter 29 training a neural network

340

• Rectified linear unit (ReLU)

• Leaky ReLU

• Maxout

Let’s briefly examine them.

 Sigmoid
The sigmoid function illustrated in Figure 29-7 is a non-linear function that brings (or

squashes) the activations to fall within a range of 0 and 1. This brings large negative and

positive numbers to 0 and 1, respectively. The neurons typically begin firing when the

function output is above a threshold of 0.5.

However, a significant drawback of the sigmoid function is its susceptibility to a

phenomenon called exploding and vanishing gradients. In the process of optimizing

the weights of the network during backpropagation, the gradients can become

disproportionately small or large with their activations concentrated at either 0 or 1.

Figure 29-7. Sigmoid activation function

Chapter 29 training a neural network

341

When this happens, we say that the gradients have saturated. Hence, further

multiplication via backpropagation causes the gradient to either vanish or explode; and

as a result, the affected neurons become dead and transfer no information across the

network, thus negatively affecting training.

Another drawback is that the outputs of the function are not zero-centered. As a

consequence, during backpropagation, the gradients can either become all positive

or all negative. This has a negative effect in minimizing the function objective (i.e., the

cost function).

 Hyperbolic Tangent (tanh)
The hyperbolic tangent illustrated in Figure 29-8 improves on the sigmoid function

by bordering its output within a range of −1 and 1. So, while it still suffers from the

exploding and vanishing gradient problem, its outputs are now zero-centered. From the

formula, the reader will observe that tanh is merely a scaled sigmoid function.

Figure 29-8. The hyperbolic tangent activation function

Chapter 29 training a neural network

342

 Rectified Linear Unit (ReLU)
The rectified linear unit or ReLU activation function is illustrated in Figure 29-9 and

works by setting the activation to 0 for values, x, less than 0 and a linear slope of 1 when

values, x, are greater than 0.

ReLU offers a vast improvement on the tanh and sigmoid activation functions

by greatly mitigating the vanishing and exploding gradient problem. However, some

gradients can still die out during backpropagation with a large learning rate. However,

with a well-defined learning rate, we should not have a problem.

 Leaky ReLU
Leaky ReLU is another activation function that is proposed to solve the case of some

neurons completely dying out in ReLU by avoiding zero gradients. Leaky ReLU is

illustrated in Figure 29-10. The function works by setting the activation to a small

negative slope when the value x < 0.

Figure 29-9. ReLU activation function

Chapter 29 training a neural network

343

 Maxout
The Maxout activation function generalizes the ReLU and leaky ReLU functions and

hence takes advantage of the efficiency of ReLU while avoiding its pitfalls of some

neurons dying out. In any case, a trade-off needs to be made, because Maxout increases

the parameter size of each neuron during training.

As a rule of thumb, different types of activation functions are not mixed in the same

network. Also, ReLU is typically used for the hidden layers, and the softmax activation is

used for classification problems at the output layer since this layer returns a probability

of membership of a particular class.

This chapter provided an overview on how to train a predictive model using neural

networks. This chapter ends Part 5 on introducing deep learning. The chapters in

Part 6 will cover deep learning algorithms and their implementation with TensorFlow

and Keras.

Figure 29-10. Leaky ReLU activation function

Chapter 29 training a neural network

PART VI

Deep Learning in Practice

347
© Ekaba Bisong 2019
E. Bisong, Building Machine Learning and Deep Learning Models on Google Cloud Platform,
https://doi.org/10.1007/978-1-4842-4470-8_30

CHAPTER 30

TensorFlow 2.0 and Keras
TensorFlow (TF) is a specialized numerical computation library for deep learning. It is

the preferred tool by numerous deep learning researchers and industry practitioners for

developing deep learning models and architectures as well as for serving learned models

into production servers and software products. This chapter is focused on TensorFlow 2.0.

 Navigating Through the TensorFlow API
Understanding the different levels of the TF API hierarchy is critical to working

effectively with TF. The task of building a TF deep learning model may be addressed

via different TF API levels. An understanding of the API hierarchy provides clarity on

implementing neural network models with TF as well as navigating the TF ecosystem.

The TF API hierarchy is primarily composed of three API levels, the high-level API, the

mid-level API which provides components for building neural network models, and the

low-level API. A diagrammatic representation of this is shown in Figure 30-1.

348

 The Low-Level TensorFlow APIs
The low-level API gives the tools for building network graphs from the ground up using

mathematical operations. This API level affords the greatest level of flexibility to tweak

and tune the model as desired. Moreover, the higher-level APIs implement low-level

operations under the hood.

 The Mid-Level TensorFlow APIs
TensorFlow provides a set of reusable packages for simplifying the process involved in

creating neural network models. Some examples of these functions include the layers

(tf.keras.layers), Datasets (tf.data), metrics (tf.keras.metrics), loss (tf.keras.losses),

and FeatureColumns (tf.feature_column) packages.

 Layers

The layers package (tf.keras.layers) provides a handy set of functions to simplify the

construction of layers in a neural network architecture. For example, consider the

convolutional network architecture in Figure 30-2 and how the layers API simplifies the

creation of the network layers.

Figure 30-1. TensorFlow API hierarchy

Chapter 30 tensorFlow 2.0 and Keras

349

 Datasets

The Dataset package (tf.data) provides a convenient set of high-level functions for

creating complex dataset input pipelines. The goal of the Dataset package is to have

a fast, flexible, and easy-to-use interface for fetching data from various data sources,

performing data transform operations on them before passing them as inputs to the

learning model. The Dataset API provides a more efficient means of fetching records

from a dataset. The major classes of the Dataset API are illustrated in Figure 30-3.

Figure 30-2. Using the layers API to simplify creating the layers of a neural
network

Chapter 30 tensorFlow 2.0 and Keras

350

From the illustration in Figure 30-3, the subclasses perform the following functions:

• TextLineDataset: This class is used for reading lines from text files.

• TFRecordDataset: This class is responsible for reading records

from TFRecord files. A TFRecord file is a TensorFlow binary storage

format. It is faster and easier to work with data stored as TFRecord

files as opposed to raw data files. Working with TFRecord also

makes the data input pipeline more easily aligned for applying vital

transformations such as shuffling and returning data in batches.

• FixedLengthRecordDataset: This class is responsible for reading

records of fixed sizes from binary files.

 FeatureColumns

FeatureColumns tf.feature_column is a TensorFlow functionality for describing the

features of the dataset that will be fed into a high-level Keras or Estimator models for

training and validation. FeatureColumns makes it easy to prepare data for modeling by

carrying out tasks such as the conversion of categorical features of the dataset into a one-

hot encoded vector.

The feature_column API is broadly divided into two categories; they are the

categorical and dense columns. The categories and subsequent functions are illustrated

in Figure 30-4.

Figure 30-3. Dataset API class hierarchy

Chapter 30 tensorFlow 2.0 and Keras

351

Let’s go through each API function briefly in Table 30-1.

Figure 30-4. Function calls of the Feature Column API

Table 30-1. tf.feature_column API Functions

Function name Description

numeric column –

tf.feature_column.
numeric_column()

this is a high-level wrapper for numeric features in the dataset.

Indicator column –

tf.feature_column.
indicator_column()

the indicator column takes as input a categorical column and

transforms it into a one-hot encoded vector.

embedding column –

tf.feature_column.
embedding_column()

the embedding column function transforms a categorical column

with multiple levels or classes into a lower-dimensional numeric

representation that captures the relationships between the categories.

Using embeddings mitigates the problem of a large sparse vector (an

array with mostly zeros) created via one-hot encoding for a dataset

feature with lots of different classes.

(continued)

Chapter 30 tensorFlow 2.0 and Keras

352

Function name Description

Categorical column with

identity – tf.feature_
column.categorical_
column_with_identity()

this function creates a one-hot encoded output of a categorical

column containing identities, e.g, [‘0’, ‘1’, ‘2’, ‘3’].

Categorical column

with vocabulary list –

tf.feature_column.
categorical_ column_
with_vocabulary_list()

this function creates a one-hot encoded output of a categorical

column with strings. It maps each string to an integer based on a

vocabulary list. however, if the vocabulary list is long, it is best to

create a file containing the vocabulary and use the function tf.feature_
column.categorical_ column_with_vocabulary_file().

Categorical column with

hash bucket –

tf.feature_column.
categorical_ column_
with_hash_buckets()

this function specifies the number of categories by using the hash of

the inputs. It is used when it is not possible to create a vocabulary for

the number of categories due to memory considerations.

Crossed column –

tf.feature_columns.
crossed_column()

the function gives the ability to combine multiple input features into a

single input feature.

Bucketized column –

tf.feature_column.
bucketized_column()

the function splits a column of numerical inputs into buckets to form

new classes based on a specified set of numerical ranges.

Table 30-1. (continued)

 The High-Level TensorFlow APIs
The high-level API provides simplified API calls that encapsulate lots of the details that

are typically involved in creating a deep learning TensorFlow model. These high-level

abstractions make it easier to develop powerful deep learning models quickly with fewer

lines of code.

Chapter 30 tensorFlow 2.0 and Keras

353

Figure 30-5. Estimator class API hierarchy

 Estimator API

The Estimator API is a high-level TensorFlow functionality that is aimed at reducing the

complexity involved in building machine learning models by exposing methods that

abstract common models and processes. There are two ways of working with Estimators,

and they include

• Using the premade Estimators: The premade Estimators are black

box models made available by the TensorFlow team for building

common machine learning/deep learning architectures such

as linear regression/classification, Random forest regression/

classification and deep neural networks for regression and

classification. An illustration of the premade Estimators as subclasses

of the Estimator class is shown in Figure 30-5.

Chapter 30 tensorFlow 2.0 and Keras

354

• Creating a custom Estimator: It is also possible to use the low-level

TensorFlow methods to create a custom black box model for easy

reusability. To do this, you must put your code in a method called

the model_fn. The model function will include code that defines

operations such as the labels or predictions, loss function, the

training operations, and the operations for evaluation.

The Estimator class exposes four major methods, namely, the fit(), evaluate(),

predict(), and export_savedmodel() methods. The fit() method is called to train

the data by running a loop of training operations. The evaluate() method is called to

evaluate the model performance by looping through a set of evaluation operations.

The predict() method uses the trained model to make predictions, while the export_
savedmodel() method is used for exporting the trained model to a specified directory.

For both the premade and custom Estimators, we must write a method to build the data

input pipeline into the model. This pipeline is built for both the training and evaluation

data inputs. This is further illustrated in Figure 30-6.

 Keras API

Keras provides a high-level specification for developing deep neural network models.

The Keras API was initially separate from TensorFlow and only provided an interface

for model building with TensorFlow as one of the frameworks running at the backend.

However, in TensorFlow 2.0, Keras is an integral part of the TensorFlow codebase as

preferred high-level API.

Figure 30-6. Estimator data input pipeline

Chapter 30 tensorFlow 2.0 and Keras

355

The Keras API version internal to TensorFlow is available from the ‘tf.keras’ package,

whereas the broader Keras API blueprint that is not tied to a specific backend will remain

available from the ‘keras’ package. In summary, when working with the ‘keras’ package,

the backend can run with either TensorFlow, Microsoft CNTK, or Theano. On the

other hand, working with ‘tf.keras’ provides a TensorFlow only version which is tightly

integrated and compatible with all of the functionality of the core TensorFlow library.

In this book, we will focus on ‘tf.Keras’ as a high-level API of TensorFlow.

 The Anatomy of a Keras Program
The Keras ‘Model’ forms the core of a Keras program. A ‘Model’ is first constructed, then

it is compiled. Next, the compiled model is trained and evaluated using their respective

training and evaluation datasets. Upon successful evaluation using the relevant metrics,

the model is then used for making predictions on previously unseen data samples.

Figure 30-7 shows the program flow for modeling with Keras.

Figure 30-7. The anatomy of a Keras program

As shown in Figure 30-7, the Keras ‘Model’ can be constructed using the Sequential

API ‘tf.keras.Sequential’ or the Keras Functional API which defines a model instance ‘tf.

keras.Model’. The Sequential model is the simplest method for creating a linear stack of

Chapter 30 tensorFlow 2.0 and Keras

356

neural network layers. The Functional model is used if a more complex graph is desired.

Keras is the de facto API for building neural network architectures with TensorFlow.

From here on, the code examples in this book will use the Sequential API, Functional

API, and Model subclassing methods for building neural network architectures with

Keras. In doing this, the reader can play around with the various examples as samples to

get a feel of how they work.

 TensorBoard
TensorBoard is an interactive visualization tool that comes bundled with TensorFlow.

The goal of TensorBoard is to gain a visual insight into how the computational graph is

constructed and executed. This information provides greater visibility for understanding,

optimizing, and debugging deep learning models.

TensorBoard has a variety of visualization dashboard, such as

• Scalar dashboard: This dashboard captures metrics that change with

time, such as the loss of a model or other model evaluation metrics

such as accuracy, precision, recall, f1, and so on.

• Histogram dashboard: This dashboard shows the histogram

distribution for a Tensor as it has changed over time.

• Distribution dashboard: This dashboard is similar to the histogram

dashboard. However, it displays the histogram as a distribution.

• Graph explorer: This dashboard gives a graphical overview of the

TensorFlow computational graph and how information flows from

one node to the other. This dashboard provides invaluable insights

into the network architecture.

• Image dashboard: This dashboard displays images saved using the

method tf.summary.image.

• Audio dashboard: This dashboard provides audio clips saved using

the method tf.summary.audio.

Chapter 30 tensorFlow 2.0 and Keras

357

• Embedding projector: The dashboard makes it easy to visualize

high-dimensional datasets after they have been transformed using

Embeddings. The visualization uses principal component analysis

(PCA) and another technique called t-distributed Stochastic

Neighbor Embedding (t-SNE). Embedding is a technique for

capturing the latent variables in a high-dimensional dataset by

converting the data units into real numbers that capture their

relationship. This technique is broadly similar to how PCA reduces

data dimensionality. Embeddings are also useful for converting

sparse matrices (matrices made up of mostly zeros) into a dense

representation.

• Text dashboard: This dashboard is for displaying textual information.

Figure 30-8. TensorBoard

Chapter 30 tensorFlow 2.0 and Keras

358

 Features in TensorFlow 2.0
TensorFlow 2.0 comes with new features for building machine learning models. Some of

these new features include

• A more pythonic feel to model design and debugging with eager

execution as the de facto execution mode.

• Eager execution enables instant evaluation of TensorFlow operations.

This is opposed to previous versions of Tensorflow where we first

construct a computational graph and then execute it in a session.

• Using tf.function to transform a Python method into

high- performance TensorFlow graphs.

• Using Keras as the core high-level API for model design.

• Using FeatureColumns to parse data as input into Keras models.

• The ease of training on distributed architectures and devices.

To install and work with TensorFlow 2.0 on Google Colab, run

!pip install -q tensorflow==2.0.0-beta0

The GCP Deep Learning VM has images with TensorFlow 2.0 pre-configured.

 A Simple TensorFlow Program
Let’s start by building a simple TF program. Here, we will build a graph to find the roots

of the quadratic expression x2 + 3x − 4 = 0.

import tensorflow

import tensorflow as tf

Quadratic expression: x**2 + 3x - 4 = 0.

a = tf.constant(1.0)

b = tf.constant(3.0)

c = tf.constant(-4.0)

Chapter 30 tensorFlow 2.0 and Keras

359

print(a)

print(b)

print(c)

'Output':

tf.Tensor(1.0, shape=(), dtype=float32)

tf.Tensor(3.0, shape=(), dtype=float32)

tf.Tensor(-4.0, shape=(), dtype=float32)

tf.constant() is a Tensor for storing a constant type. Now let’s calculate the roots of

the expression.

x1 = (-b + tf.math.sqrt(b**2 - (4*a*c))) / 2**a

x2 = (-b - tf.math.sqrt(b**2 - (4*a*c))) / 2**a

roots = (x1, x2)

print(roots)

'Output':

(<tf.Tensor: id=163, shape=(), dtype=float32, numpy=1.0>, <tf.Tensor:

id=175, shape=(), dtype=float32, numpy=-4.0>)

TensorFlow 2.0 is eager-first; this implies that operations are executed immediately

after they are defined, just like regular python code.

 Building Efficient Input Pipelines with the Dataset API
The Dataset API ‘tf.data’ offers an efficient mechanism for building robust input

pipelines for passing data into a TensorFlow program. This section uses the Boston

housing dataset to illustrate working with the Dataset API methods for building data

input pipelines in TensorFlow.

import packages

import tensorflow as tf

from tensorflow.keras.datasets import boston_housing

load dataset and split in train and test sets

(X_train, y_train), (X_test, y_test) = boston_housing.load_data()

Chapter 30 tensorFlow 2.0 and Keras

360

construct data input pipelines

dataset = tf.data.Dataset.from_tensor_slices((X_train, y_train))

dataset = dataset.shuffle(buffer_size=1000)

dataset = dataset.batch(5)

retrieve first data batch from dataset

for features, labels in dataset:

 print('Features:', features)

 print('Shape of Features:', features.shape)

 print('Labels:', labels)

 print('Shape of Labels:', labels.shape)

 break

'Output':

Features: tf.Tensor(

[[8.19900e-02 0.00000e+00 1.39200e+01 0.00000e+00 4.37000e-01 6.00900e+00

 4.23000e+01 5.50270e+00 4.00000e+00 2.89000e+02 1.60000e+01 3.96900e+02

 1.04000e+01]

 [8.82900e-02 1.25000e+01 7.87000e+00 0.00000e+00 5.24000e-01 6.01200e+00

 6.66000e+01 5.56050e+00 5.00000e+00 3.11000e+02 1.52000e+01 3.95600e+02

 1.24300e+01]

 [2.90900e-01 0.00000e+00 2.18900e+01 0.00000e+00 6.24000e-01 6.17400e+00

 9.36000e+01 1.61190e+00 4.00000e+00 4.37000e+02 2.12000e+01 3.88080e+02

 2.41600e+01]

 [5.87205e+00 0.00000e+00 1.81000e+01 0.00000e+00 6.93000e-01 6.40500e+00

 9.60000e+01 1.67680e+00 2.40000e+01 6.66000e+02 2.02000e+01 3.96900e+02

 1.93700e+01]

 [1.71710e-01 2.50000e+01 5.13000e+00 0.00000e+00 4.53000e-01 5.96600e+00

 9.34000e+01 6.81850e+00 8.00000e+00 2.84000e+02 1.97000e+01 3.78080e+02

 1.44400e+01]], shape=(5, 13), dtype=float64)

Shape of Features: (5, 13)

Labels: tf.Tensor([21.7 22.9 14. 12.5 16.], shape=(5,), dtype=float64)

Shape of Labels: (5,)

Chapter 30 tensorFlow 2.0 and Keras

361

From the preceding code listing, take note of the following:

• The method ‘tf.data.Dataset.from_tensor_slices()’ is used to create

a Dataset whose elements are Tensor slices.

• The Dataset method ‘shuffle()’ shuffles the Dataset at each epoch.

• The Dataset method ‘batch()’ is used to set the size of each mini-

batch of the Dataset. In the preceding example, each Dataset batch

contains five observations.

 Linear Regression with TensorFlow
In this section, we use TensorFlow to implement a linear regression machine learning

model. In the following example, we use the Boston house-prices dataset from the Keras
dataset package to build a linear regression model with TensorFlow 2.0.

import packages

import numpy as np

import tensorflow as tf

from tensorflow.keras.datasets import boston_housing

from tensorflow.keras import Model

from sklearn.preprocessing import StandardScaler

load dataset and split in train and test sets

(X_train, y_train), (X_test, y_test) = boston_housing.load_data()

standardize the dataset

scaler_X_train = StandardScaler().fit(X_train)

scaler_X_test = StandardScaler().fit(X_test)

X_train = scaler_X_train.transform(X_train)

X_test = scaler_X_test.transform(X_test)

reshape y-data to become column vector

y_train = np.reshape(y_train, [-1, 1])

y_test = np.reshape(y_test, [-1, 1])

build the linear model

class LinearRegressionModel(Model):

Chapter 30 tensorFlow 2.0 and Keras

362

 def __init__(self):

 super(LinearRegressionModel, self).__init__()

 # initialize weight and bias variables

 self.weight = tf.Variable(

 initial_value = tf. random.normal(

 [13, 1], dtype=tf.float64),

 trainable=True)

 self.bias = tf.Variable(initial_value = tf.constant(

 1.0, shape=[], dtype=tf.float64), trainable=True)

 def call(self, inputs):

 return tf.add(tf.matmul(inputs, self.weight), self.bias)

model = LinearRegressionModel()

parameters

batch_size = 32

learning_rate = 0.01

use tf.data to batch and shuffle the dataset

train_ds = tf.data.Dataset.from_tensor_slices(

 (X_train, y_train)).shuffle(len(X_train)).batch(batch_size)

test_ds = tf.data.Dataset.from_tensor_slices((X_test, y_test)).batch(batch_size)

loss_object = tf.keras.losses.MeanSquaredError()

optimizer = tf.keras.optimizers.SGD(learning_rate=0.01)

train_loss = tf.keras.metrics.Mean(name='train_loss')

train_rmse = tf.keras.metrics.RootMeanSquaredError(name='train_rmse')

test_loss = tf.keras.metrics.Mean(name='test_loss')

test_rmse = tf.keras.metrics.RootMeanSquaredError(name='test_rmse')

use tf.GradientTape to train the model

@tf.function

def train_step(inputs, labels):

 with tf.GradientTape() as tape:

 predictions = model(inputs)

 loss = loss_object(labels, predictions)

Chapter 30 tensorFlow 2.0 and Keras

363

 gradients = tape.gradient(loss, model.trainable_variables)

 optimizer.apply_gradients(zip(gradients, model.trainable_variables))

 train_loss(loss)

 train_rmse(labels, predictions)

@tf.function

def test_step(inputs, labels):

 predictions = model(inputs)

 t_loss = loss_object(labels, predictions)

 test_loss(t_loss)

 test_rmse(labels, predictions)

num_epochs = 1000

for epoch in range(num_epochs):

 for train_inputs, train_labels in train_ds:

 train_step(train_inputs, train_labels)

 for test_inputs, test_labels in test_ds:

 test_step(test_inputs, test_labels)

 template = 'Epoch {}, Loss: {}, RMSE: {}, Test Loss: {}, Test RMSE: {}'

 if ((epoch+1) % 100 == 0):

 print (template.format(epoch+1,

 train_loss.result(),

 train_rmse.result(),

 test_loss.result(),

 test_rmse.result()))

'Output':

Epoch 100, Loss: 23.531124114990234, RMSE: 4.862841606140137, Test Loss:

21.077274322509766, Test RMSE: 4.591667175292969

Epoch 200, Loss: 23.51316261291504, RMSE: 4.860987663269043, Test Loss:

21.067768096923828, Test RMSE: 4.590633869171143

Epoch 300, Loss: 23.496540069580078, RMSE: 4.859271049499512, Test Loss:

21.058971405029297, Test RMSE: 4.589677333831787

Chapter 30 tensorFlow 2.0 and Keras

364

Epoch 400, Loss: 23.481115341186523, RMSE: 4.857677459716797, Test Loss:

21.050806045532227, Test RMSE: 4.588788986206055

Epoch 500, Loss: 23.466760635375977, RMSE: 4.856194019317627, Test Loss:

21.043209075927734, Test RMSE: 4.587962627410889

Epoch 600, Loss: 23.453369140625, RMSE: 4.8548102378845215, Test Loss:

21.036123275756836, Test RMSE: 4.587191581726074

Epoch 700, Loss: 23.440847396850586, RMSE: 4.853515625, Test Loss:

21.029495239257812, Test RMSE: 4.586470603942871

Epoch 800, Loss: 23.429113388061523, RMSE: 4.852302074432373, Test Loss:

21.02336311340332, Test RMSE: 4.585799694061279

Epoch 900, Loss: 23.4180965423584, RMSE: 4.851161956787109, Test Loss:

21.017648696899414, Test RMSE: 4.585177898406982

Epoch 1000, Loss: 23.407730102539062, RMSE: 4.8500895500183105, Test Loss:

21.012271881103516, Test RMSE: 4.584592819213867

Here are a few points and methods to take note of in the preceding code listing for

linear regression with TensorFlow:

• Note that transformation to standardize the feature dataset is

performed after splitting the data into train and test sets. This action

is performed in this manner to prevent information from the training

data to pollute the test data which must remain unseen by the model.

• The class named ‘LinearRegressionModel’ builds a Keras model by

subclassing the ‘tf.keras.Model’ class. The linear regression model is

created as a layer of the neural network in the ‘__init__’ method, and

it is defined as a forward pass in the ‘call’ method. In Chapter 31

on Keras, we will see how to use simpler routines with the Keras

Functional API.

• The ‘tf.data.Dataset.from_tensor_slices’ method uses the

‘.minimize()’ method to update the loss function.

• The squared error loss function is defined with ‘tf.keras.losses.
MeanSquaredError()’.

• The gradient descent optimization algorithm is defined using

‘tf.keras.optimizers.SGD()’ with the learning rate set as a

parameter to the method.

Chapter 30 tensorFlow 2.0 and Keras

365

• The method to capture the loss and root mean squared error

estimates is defined using ‘tf.keras.metrics.Mean(name=‘train_
loss’)’ and ‘tf.keras.metrics.RootMeanSquaredError()’ functions,

respectively.

• The @tf.function is a python decorator to transform a method into

high-performance TensorFlow graphs.

• The method ‘train_step’ uses the ‘tf.GradientTape()’ method to

record operations for automatic differentiation. These gradients

are later used to minimize the cost function by calling the ‘apply_
gradients()’ method of the optimization algorithm.

• The method ‘test_step’ uses the trained model to obtain predictions

on test data.

 Classification with TensorFlow
In this example, we’ll use the Iris flower dataset to build a multivariable logistic

regression machine learning classifier with TensorFlow 2.0. The dataset is gotten from

the Scikit-learn dataset package.

import packages

import numpy as np

import tensorflow as tf

from sklearn import datasets

from tensorflow.keras import Model

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import OneHotEncoder

 # load dataset

data = datasets.load_iris()

separate features and target

X = data.data

y = data.target

apply one-hot encoding to targets

one_hot_encoder = OneHotEncoder(categories='auto')

Chapter 30 tensorFlow 2.0 and Keras

366

encode_categorical = y.reshape(len(y), 1)

y = one_hot_encoder.fit_transform(encode_categorical).toarray()

split in train and test sets

X_train, X_test, y_train, y_test = train_test_split(X, y, shuffle=True)

build the linear model

class LogisticRegressionModel(Model):

 def __init__(self):

 super(LogisticRegressionModel, self).__init__()

 # initialize weight and bias variables

 self.weight = tf.Variable(

 initial_value = tf.random.normal(

 [4, 3], dtype=tf.float64),

 trainable=True)

 self.bias = tf.Variable(initial_value = tf.random.normal(

 [3], dtype=tf.float64), trainable=True)

 def call(self, inputs):

 return tf.add(tf.matmul(inputs, self.weight), self.bias)

model = LogisticRegressionModel()

parameters

batch_size = 32

learning_rate = 0.1

use tf.data to batch and shuffle the dataset

train_ds = tf.data.Dataset.from_tensor_slices(

 (X_train, y_train)).shuffle(len(X_train)).batch(batch_size)

test_ds = tf.data.Dataset.from_tensor_slices((X_test, y_test)).batch(batch_size)

optimizer = tf.keras.optimizers.SGD(learning_rate=learning_rate)

train_loss = tf.keras.metrics.Mean(name='train_loss')

train_accuracy = tf.keras.metrics.Accuracy(name='train_accuracy')

test_loss = tf.keras.metrics.Mean(name='test_loss')

test_accuracy = tf.keras.metrics.Accuracy(name='test_accuracy')

Chapter 30 tensorFlow 2.0 and Keras

367

use tf.GradientTape to train the model

@tf.function

def train_step(inputs, labels):

 with tf.GradientTape() as tape:

 predictions = model(inputs)

 loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels,

predictions))

 gradients = tape.gradient(loss, model.trainable_variables)

 optimizer.apply_gradients(zip(gradients, model.trainable_variables))

 train_loss(loss)

 train_accuracy(tf.argmax(labels,1), tf.argmax(predictions,1))

@tf.function

def test_step(inputs, labels):

 predictions = model(inputs)

 t_loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels,

predictions))

 test_loss(t_loss)

 test_accuracy(tf.argmax(labels,1), tf.argmax(predictions,1))

num_epochs = 1000

for epoch in range(num_epochs):

 for train_inputs, train_labels in train_ds:

 train_step(train_inputs, train_labels)

 for test_inputs, test_labels in test_ds:

 test_step(test_inputs, test_labels)

 template = 'Epoch {}, Loss: {}, Accuracy: {}, Test Loss: {}, Test Accuracy: {}'

 if ((epoch+1) % 100 == 0):

 print (template.format(epoch+1,

 train_loss.result(),

 train_accuracy.result()*100,

 test_loss.result(),

 test_accuracy.result()*100))

Chapter 30 tensorFlow 2.0 and Keras

368

'Output':

Epoch 100, Loss: 0.3510790765285492, Accuracy: 89.63029479980469, Test

Loss: 0.44924452900886536, Test Accuracy: 84.37885284423828

Epoch 200, Loss: 0.3282322287559509, Accuracy: 91.29582214355469, Test

Loss: 0.43276602029800415, Test Accuracy: 85.73675537109375

Epoch 300, Loss: 0.3093726634979248, Accuracy: 92.46343231201172, Test

Loss: 0.41915151476860046, Test Accuracy: 86.6886978149414

Epoch 400, Loss: 0.29340484738349915, Accuracy: 93.3273696899414, Test

Loss: 0.40762627124786377, Test Accuracy: 87.43070220947266

Epoch 500, Loss: 0.2796294391155243, Accuracy: 93.99247741699219, Test

Loss: 0.3976936936378479, Test Accuracy: 88.27145385742188

Epoch 600, Loss: 0.2675718069076538, Accuracy: 94.52030944824219, Test

Loss: 0.38901543617248535, Test Accuracy: 88.93867492675781

Epoch 700, Loss: 0.25689396262168884, Accuracy: 94.94937896728516, Test

Loss: 0.38134896755218506, Test Accuracy: 89.48106384277344

Epoch 800, Loss: 0.24734711647033691, Accuracy: 95.3050537109375, Test

Loss: 0.3745149075984955, Test Accuracy: 89.9306640625

Epoch 900, Loss: 0.23874221742153168, Accuracy: 95.60466766357422, Test

Loss: 0.3683767020702362, Test Accuracy: 90.30940246582031

Epoch 1000, Loss: 0.23093272745609283, Accuracy: 95.86051177978516, Test

Loss: 0.3628271818161011, Test Accuracy: 90.63280487060547

From the preceding code, listing is similar to the example on linear regression with

TensorFlow 2.0. However, take note of the following procedures:

• The target variable ‘y’ is converted to a one-hot encoded matrix by

using the ‘OneHotEncoder’ function from Scikit-learn. There exists

a TensorFlow method named ‘tf.one_hot’ for performing the same

function, even easier! The reader is encouraged to Experiment

with this.

• Observe how the ‘tf.reduce_mean’ and the ‘tf.nn.softmax_cross_
entropy_with_logits’ methods are used to implement the loss for

optimizing the logistic model.

• The Stochastic Gradient Descent optimization algorithm ‘tf.keras.
optimizers.SGD()’ is used to train the logistic model.

Chapter 30 tensorFlow 2.0 and Keras

369

• Observe how the ‘weight’ and ‘bias’ variables are updated by the

gradient descent optimizer within the ‘train_step’ method using ‘tf.
GradientTape()’ to capture and compute the derivatives from the

trainable model variables.

• The ‘tf.keras.metrics.Accuracy’ method is used to evaluate the

accuracy of the model.

 Visualizing with TensorBoard
In this section, we will go through visualizing TensorFlow graphs and statistics with

TensorBoard. The following code improves on the previous code to build a linear

regression model by adding methods to visualize the graph and other variable statistics

in TensorBoard using the ‘tf.summary’ method calls. The TensorBoard output

(illustrated in Figure 30-9) is displayed within the notebook.

import packages

import datetime

import numpy as np

import tensorflow as tf

from tensorflow.keras.datasets import boston_housing

from tensorflow.keras import Model

from sklearn.preprocessing import StandardScaler

load the TensorBoard notebook extension

%load_ext tensorboard

load dataset and split in train and test sets

(X_train, y_train), (X_test, y_test) = boston_housing.load_data()

standardize the dataset

scaler_X_train = StandardScaler().fit(X_train)

scaler_X_test = StandardScaler().fit(X_test)

X_train = scaler_X_train.transform(X_train)

X_test = scaler_X_test.transform(X_test)

reshape y-data to become column vector

y_train = np.reshape(y_train, [-1, 1])

Chapter 30 tensorFlow 2.0 and Keras

370

y_test = np.reshape(y_test, [-1, 1])

build the linear model

class LinearRegressionModel(Model):

 def __init__(self):

 super(LinearRegressionModel, self).__init__()

 # initialize weight and bias variables

 self.weight = tf.Variable(

 initial_value = tf. random.normal(

 [13, 1], dtype=tf.float64),

 trainable=True)

 self.bias = tf.Variable(initial_value = tf.constant(

 1.0, shape=[], dtype=tf.float64), trainable=True)

 def call(self, inputs):

 return tf.add(tf.matmul(inputs, self.weight), self.bias)

model = LinearRegressionModel()

parameters

batch_size = 32

learning_rate = 0.01

use tf.data to batch and shuffle the dataset

train_ds = tf.data.Dataset.from_tensor_slices(

 (X_train, y_train)).shuffle(len(X_train)).batch(batch_size)

test_ds = tf.data.Dataset.from_tensor_slices((X_test, y_test)).batch(batch_size)

loss_object = tf.keras.losses.MeanSquaredError()

optimizer = tf.keras.optimizers.SGD(learning_rate=0.01)

train_loss = tf.keras.metrics.Mean(name='train_loss')

train_rmse = tf.keras.metrics.RootMeanSquaredError(name='train_rmse')

test_loss = tf.keras.metrics.Mean(name='test_loss')

test_rmse = tf.keras.metrics.RootMeanSquaredError(name='test_rmse')

Chapter 30 tensorFlow 2.0 and Keras

371

use tf.GradientTape to train the model

@tf.function

def train_step(inputs, labels):

 with tf.GradientTape() as tape:

 predictions = model(inputs)

 loss = loss_object(labels, predictions)

 gradients = tape.gradient(loss, model.trainable_variables)

 optimizer.apply_gradients(zip(gradients, model.trainable_variables))

 train_loss(loss)

 train_rmse(labels, predictions)

@tf.function

def test_step(inputs, labels):

 predictions = model(inputs)

 t_loss = loss_object(labels, predictions)

 test_loss(t_loss)

 test_rmse(labels, predictions)

Clear any logs from previous runs

!rm -rf ./logs/

set up summary writers to write the summaries to disk in a different logs

directory

current_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")

train_log_dir = 'logs/gradient_tape/' + current_time + '/train'

test_log_dir = 'logs/gradient_tape/' + current_time + '/test'

train_summary_writer = tf.summary.create_file_writer(train_log_dir)

test_summary_writer = tf.summary.create_file_writer(test_log_dir)

num_epochs = 1000

for epoch in range(num_epochs):

 for train_inputs, train_labels in train_ds:

 train_step(train_inputs, train_labels)

 with train_summary_writer.as_default():

 tf.summary.scalar('loss', train_loss.result(), step=epoch)

 tf.summary.scalar('rmse', train_rmse.result(), step=epoch)

Chapter 30 tensorFlow 2.0 and Keras

372

 for test_inputs, test_labels in test_ds:

 test_step(test_inputs, test_labels)

 with test_summary_writer.as_default():

 tf.summary.scalar('loss', test_loss.result(), step=epoch)

 tf.summary.scalar('rmse', test_rmse.result(), step=epoch)

 template = 'Epoch {}, Loss: {}, RMSE: {}, Test Loss: {}, Test RMSE: {}'

 if ((epoch+1) % 100 == 0):

 print (template.format(epoch+1,

 train_loss.result(),

 train_rmse.result(),

 test_loss.result(),

 test_rmse.result()))

 # Reset metrics every epoch

 train_loss.reset_states()

 test_loss.reset_states()

 train_rmse.reset_states()

 test_rmse.reset_states()

'Output':

Epoch 100, Loss: 22.03757667541504, RMSE: 4.726028919219971, Test Loss:

29.092111587524414, Test RMSE: 4.577760696411133

Epoch 200, Loss: 21.973844528198242, RMSE: 4.719051837921143, Test Loss:

29.113895416259766, Test RMSE: 4.585252285003662

Epoch 300, Loss: 21.970674514770508, RMSE: 4.7187066078186035, Test Loss:

29.13644790649414, Test RMSE: 4.587917327880859

Epoch 400, Loss: 21.970500946044922, RMSE: 4.718687534332275, Test Loss:

29.1422119140625, Test RMSE: 4.588583469390869

Epoch 500, Loss: 21.970489501953125, RMSE: 4.718685626983643, Test Loss:

29.14352035522461, Test RMSE: 4.588735103607178

Epoch 600, Loss: 21.970487594604492, RMSE: 4.718685626983643, Test Loss:

29.143817901611328, Test RMSE: 4.58876895904541

Epoch 700, Loss: 21.970487594604492, RMSE: 4.718685626983643, Test Loss:

29.143882751464844, Test RMSE: 4.588776111602783

Chapter 30 tensorFlow 2.0 and Keras

373

Epoch 800, Loss: 21.970487594604492, RMSE: 4.718685626983643, Test Loss:

29.14389419555664, Test RMSE: 4.588778018951416

Epoch 900, Loss: 21.970487594604492, RMSE: 4.718685626983643, Test Loss:

29.143898010253906, Test RMSE: 4.588778495788574

Epoch 1000, Loss: 21.970487594604492, RMSE: 4.718685626983643, Test Loss:

29.143898010253906, Test RMSE: 4.588778495788574

launch tensorboard

%tensorboard --logdir logs/gradient_tape

From the preceding code listing, take note of the following steps:

• The ‘tf.summary.create_file_writer’ method creates summary

writers to write the summaries to disk.

• The ‘tf.summary.scalar’ method is used to capture scalar metrics for

TensorBoard.

• The magic command ‘%tensorboard’ is used to launch TensorBoard

by pointing to the appropriate log directory.

Figure 30-9. TensorBoard visualization dashboard for linear regression
metrics

Chapter 30 tensorFlow 2.0 and Keras

374

 Running TensorFlow with GPUs
GPU is short for graphics processing unit. It is a specialized processor designed for

carrying out complex computations on large memory blocks. GPUs provide more

efficient processing for building deep learning models.

TensorFlow can leverage processing on multiple GPUs to speed up computation

especially when training a complex network architecture. To take advantage of parallel

processing, a replica of the network architecture resides on each GPU machine and

trains a subset of the data. However, for synchronous updates, the model parameters

from each tower (or GPU machines) are stored and updated on a CPU. It turns out that

CPUs are generally good at mean or averaging processing. A diagram of this operation is

shown in Figure 30-10.

Chapter 30 tensorFlow 2.0 and Keras

375

TensorFlow 2.0 performs distributed training across multiple machines (i.e., CPUs,

GPUs, or TPUs) using the ‘tf.distribute.Strategy’ API. To use GPUs on Google Colab, first

change the runtime type to GPU and install the TensorFlow with GPU library by running

the following code in the notebook cell:

!pip install -q tf-nightly-gpu-2.0-preview

Figure 30-10. Framework for training on multiple GPUs

Chapter 30 tensorFlow 2.0 and Keras

376

The following code block uses GPUs for model training. In this example we train

a simple regression model on the Boston housing dataset. The method ‘tf.distribute.
MirroredStrategy()’ implements a distribution strategy called MirroredStrategy. This

strategy supports distributed training with multiple GPUs on a single machine. The

code is similar to the previous code for linear regression with TensorFlow 2.0. However,

minimal changes are added to make the components such as variables, layers, models,

optimizers, metrics, summaries, and checkpoints strategy-aware using the strategy

scope().

import TensorFlow 2.0 with GPU

!pip install -q tf-nightly-gpu-2.0-preview

confirm tensorflow can see GPU

import tensorflow as tf

device_name = tf.test.gpu_device_name()

if device_name != '/device:GPU:0':

 raise SystemError('GPU device not found')

print('Found GPU at: {}'.format(device_name))

import other packages

import numpy as np

from tensorflow.keras.datasets import boston_housing

from tensorflow.keras import Model

from sklearn.preprocessing import StandardScaler

load dataset and split in train and test sets

(X_train, y_train), (X_test, y_test) = boston_housing.load_data()

standardize the dataset

scaler_X_train = StandardScaler().fit(X_train)

scaler_X_test = StandardScaler().fit(X_test)

X_train = scaler_X_train.transform(X_train)

X_test = scaler_X_test.transform(X_test)

reshape y-data to become column vector

y_train = np.reshape(y_train, [-1, 1])

y_test = np.reshape(y_test, [-1, 1])

Chapter 30 tensorFlow 2.0 and Keras

377

build the linear model

class LinearRegressionModel(Model):

 def __init__(self):

 super(LinearRegressionModel, self).__init__()

 # initialize weight and bias variables

 self.weight = tf.Variable(

 initial_value = tf. random.normal(

 [13, 1], dtype=tf.float64),

 trainable=True)

 self.bias = tf.Variable(initial_value = tf.constant(

 1.0, shape=[], dtype=tf.float64), trainable=True)

 def call(self, inputs):

 return tf.add(tf.matmul(inputs, self.weight), self.bias)

create a strategy to distribute the variables and the graph

strategy = tf.distribute.MirroredStrategy()

print number of machines with GPUs

print ('Number of devices: {}'.format(strategy.num_replicas_in_sync))

parameters

batch_size_per_replica = 32

global_batch_size = batch_size_per_replica * strategy.num_replicas_in_sync

learning_rate = 0.01

create the distributed datasets inside a strategy.scope:

with strategy.scope():

 train_ds = tf.data.Dataset.from_tensor_slices(

 (X_train, y_train)).shuffle(len(X_train)).batch(global_batch_size)

 train_dist_ds = strategy.experimental_distribute_dataset(train_ds)

 test_ds = tf.data.Dataset.from_tensor_slices((X_test, y_test)).

batch(global_batch_size)

 test_dist_ds = strategy.experimental_distribute_dataset(test_ds)

Chapter 30 tensorFlow 2.0 and Keras

378

define the loss function

with strategy.scope():

 # Set reduction to `none` so we can do the reduction afterwards and

divide by

 # global batch size.

 loss_object = tf.keras.losses.MeanSquaredError(

 reduction=tf.keras.losses.Reduction.NONE)

 def compute_loss(labels, predictions):

 per_example_loss = loss_object(labels, predictions)

 return tf.reduce_sum(per_example_loss) * (1. / global_batch_size)

define metrics to track loss and rmse

with strategy.scope():

 test_loss = tf.keras.metrics.Mean(name='test_loss')

 train_rmse = tf.keras.metrics.RootMeanSquaredError(

 name='train_rmse')

 test_rmse = tf.keras.metrics.RootMeanSquaredError(

 name='test_rmse')

model and optimizer must be created under `strategy.scope`.

with strategy.scope():

 model = LinearRegressionModel()

 optimizer = tf.keras.optimizers.SGD(learning_rate=0.01)

with strategy.scope():

 def train_step(inputs, labels):

 with tf.GradientTape() as tape:

 predictions = model(inputs)

 loss = compute_loss(labels, predictions)

 gradients = tape.gradient(loss, model.trainable_variables)

 optimizer.apply_gradients(zip(gradients, model.trainable_variables))

 train_rmse.update_state(labels, predictions)

 return loss

Chapter 30 tensorFlow 2.0 and Keras

379

 def test_step(inputs, labels):

 predictions = model(inputs)

 t_loss = loss_object(labels, predictions)

 test_loss.update_state(t_loss)

 test_rmse.update_state(labels, predictions)

num_epochs = 1000

with strategy.scope():

 # `experimental_run_v2` replicates the provided computation and runs it

 # with the distributed input.

 @tf.function

 def distributed_train_step(inputs, labels):

 per_replica_losses = strategy.experimental_run_v2(train_step,

 args=(inputs, labels))

 return strategy.reduce(tf.distribute.ReduceOp.SUM, per_replica_losses,

 axis=None)

 @tf.function

 def distributed_test_step(inputs, labels):

 return strategy.experimental_run_v2(test_step, args=(inputs, labels))

 for epoch in range(num_epochs):

 # Train loop

 total_loss = 0.0

 num_batches = 0

 for train_inputs, train_labels in train_dist_ds:

 total_loss += distributed_train_step(train_inputs, train_labels)

 num_batches += 1

 train_loss = total_loss / num_batches

 # Test loop

 for test_inputs, test_labels in test_dist_ds:

 distributed_test_step(test_inputs, test_labels)

 if (epoch+1) % 100 == 0:

 template = ("Epoch {}, Loss: {}, RMSE: {}, Test Loss: {}, "

 "Test RMSE: {}")

Chapter 30 tensorFlow 2.0 and Keras

380

 print (template.format(epoch+1, train_loss,

 train_rmse.result(), test_loss.result(),

 test_rmse.result()))

 test_loss.reset_states()

 train_rmse.reset_states()

 test_rmse.reset_states()

'Output:'

Epoch 100, Loss: 21.673020569627965, RMSE: 4.724063396453857, Test Loss:

20.915191650390625, Test RMSE: 4.573312759399414

Epoch 200, Loss: 21.594741116702117, RMSE: 4.715524196624756, Test Loss:

20.994861602783203, Test RMSE: 4.582014560699463

Epoch 300, Loss: 21.590902259189097, RMSE: 4.7151055335998535, Test Loss:

21.02731704711914, Test RMSE: 4.585555076599121

Epoch 400, Loss: 21.59074064145569, RMSE: 4.715087413787842, Test Loss:

21.03565216064453, Test RMSE: 4.5864644050598145

Epoch 500, Loss: 21.590740279510765, RMSE: 4.715087413787842, Test Loss:

21.037595748901367, Test RMSE: 4.586676120758057

Epoch 600, Loss: 21.590742194311133, RMSE: 4.715087890625, Test Loss:

21.03803825378418, Test RMSE: 4.586724281311035

Epoch 700, Loss: 21.59074262401866, RMSE: 4.715087890625, Test Loss:

21.03813934326172, Test RMSE: 4.586735248565674

Epoch 800, Loss: 21.59074272223048, RMSE: 4.715087413787842, Test Loss:

21.038162231445312, Test RMSE: 4.586737632751465

Epoch 900, Loss: 21.59074286927267, RMSE: 4.715087413787842, Test Loss:

21.03816795349121, Test RMSE: 4.586737632751465

Epoch 1000, Loss: 21.590742907190307, RMSE: 4.715087413787842, Test Loss:

21.03816795349121, Test RMSE: 4.586738109588623

Please note the following from the preceding code block:

• When writing a custom training loop, sum the per example losses and

divide the sum by the global batch size. In the code tf.reduce_sum(per_

example_loss) * (1. / global_batch_size). This needs to be done because

after calculation on each replica, the gradients are synced across the

replicas by summing them. When using tf.keras.losses classes, the loss

reduction needs to be explicitly specified to be one of NONE or SUM.

Chapter 30 tensorFlow 2.0 and Keras

381

 TensorFlow High-Level APIs: Using Estimators
In this section, we will use the high-level TensorFlow Estimator API for modeling with

premade Estimators. Estimators provide another high-level API for building TensorFlow

models for execution on CPUs, GPUs, or TPUs with minimal code modification.

The following steps are typically followed when working with premade Estimators:

 1. Write the ‘input_fn’ to handle the data pipeline.

 2. Define the type of data attributes into the model using feature

columns ‘tf.feature_column’.

 3. Instantiate one of the premade Estimators by passing in the

feature columns and other relevant attributes.

 4. Use the ‘train()’, ‘evaluate()’, and ‘predict()’ methods to train

and evaluate the model on evaluation dataset and use the model

to make prediction/inference.

Let’s see a simple example of working with a TensorFlow premade Estimator again

using the Boston housing dataset.

Note reset session before running the following cells and change runtime type
to none.

import packages

import datetime

import numpy as np

import pandas as pd

import tensorflow as tf

from tensorflow.keras.datasets import boston_housing

from tensorflow.keras import Model

from sklearn.preprocessing import StandardScaler

load dataset and split in train and test sets

(X_train, y_train), (X_test, y_test) = boston_housing.load_data()

Chapter 30 tensorFlow 2.0 and Keras

382

standardize the dataset

scaler_X_train = StandardScaler().fit(X_train)

scaler_X_test = StandardScaler().fit(X_test)

X_train = scaler_X_train.transform(X_train)

X_test = scaler_X_test.transform(X_test)

reshape y-data to become column vector

y_train = np.reshape(y_train, [-1, 1])

y_test = np.reshape(y_test, [-1, 1])

parameters

batch_size = 32

learning_rate = 0.01

create an input_fn

def input_fn(features, labels, batch_size=30, training=True):

 dataset = tf.data.Dataset.from_tensor_slices((features, labels))

 if training:

 dataset = dataset.shuffle(buffer_size=1000)

 dataset = dataset.repeat()

 return dataset.batch(batch_size)

use feature columns to define the attributes to the model

feature_columns = []

columns_names = []

for i in range(X_train.shape[1]):

 feature_columns.append(tf.feature_column.numeric_column(key=str(i)))

 columns_names.append(str(i))

instantiate a LinearRegressor Estimator

estimator = tf.estimator.DNNRegressor(

 feature_columns=feature_columns,

 hidden_units=[20]

)

convert feature datasets to dictionary

X_train_pd = pd.DataFrame(X_train)

X_train_pd.columns = columns_names

Chapter 30 tensorFlow 2.0 and Keras

383

X_test_pd = pd.DataFrame(X_test)

X_test_pd.columns = columns_names

train model

estimator.train(input_fn=lambda:input_fn(dict(X_train_pd), y_train),

steps=2000)

evaluate model

metrics = estimator.evaluate(input_fn=lambda:input_fn(dict(X_test_pd),

y_test, training=False))

print model metrics

metrics

 Neural Networks with Keras
In this section, we will use the Sequential and Functional Keras API to build a simple

neural network model. A Sequential API is the most commonly used method to build

deep neural network models by stacking one layer on another. The Functional API offers

more flexibility to build more complex neural network architectures. Both API methods

are relatively easy to construct in Keras as we will see in the examples.

Subclassing a model as we did in the preceding examples provides even more

flexibility for building and inspecting complex models. However, the code is more

verbose and may be prone to errors. This technique should be used when it makes the

most sense to, depending on the problem use case. We used them previously to serve as

an illustration.

The following examples will use the Iris Dataset to build a neural network with one

hidden layer as illustrated in Figure 30-11.

Chapter 30 tensorFlow 2.0 and Keras

384

 Using the Keras Sequential API
This code segment will construct a neural network model with the Sequential API using

the method ‘tf.keras.Sequential()’ to stack layers on each other. The model creates a

hidden layer with 32 neurons and an output layer with 3 output units because the Iris

target contains 3 classes.

!pip install -q tensorflow==2.0.0-beta0

import packages

import tensorflow as tf

import pandas as pd

from sklearn.preprocessing import OneHotEncoder

dataset url

train_data_url = "https://storage.googleapis.com/download.tensorflow.org/

data/iris_training.csv"

test_data_url = "https://storage.googleapis.com/download.tensorflow.org/

data/iris_test.csv"

Figure 30-11. Iris dataset – neural network architecture

Chapter 30 tensorFlow 2.0 and Keras

385

define column names

columns = ['sepal_length', 'sepal_width', 'petal_length', 'petal_width', 'species']

download and load the csv files

train_data = pd.read_csv(tf.keras.utils.get_file('iris_train.csv', train_

data_url),

 skiprows=1, header=None, names=columns)

test_data = pd.read_csv(tf.keras.utils.get_file('iris_test.csv', test_data_url),

 skiprows=1, header=None, names=columns)

separate the features and targets

(X_train, y_train) = (train_data.iloc[:,0:-1], train_data.iloc[:,-1])

(X_test, y_test) = (test_data.iloc[:,0:-1], test_data.iloc[:,-1])

apply one-hot encoding to targets

y_train=tf.keras.utils.to_categorical(y_train)

y_test=tf.keras.utils.to_categorical(y_test)

create the sequential model

def model_fn():

 model = tf.keras.Sequential()

 # Add a densely-connected layer with 32 units to the model:

 model.add(tf.keras.layers.Dense(32, activation='sigmoid', input_dim=4))

 # Add a softmax layer with 3 output units:

 model.add(tf.keras.layers.Dense(3, activation='softmax'))

 # compile the model

 model.compile(optimizer=tf.keras.optimizers.SGD(),

 loss='categorical_crossentropy',

 metrics=['accuracy'])

 return model

parameters

batch_size=50

Chapter 30 tensorFlow 2.0 and Keras

386

use tf.data to batch and shuffle the dataset

train_ds = tf.data.Dataset.from_tensor_slices(

 (X_train.values, y_train)).shuffle(len(X_train)).repeat().batch(batch_size)

test_ds = tf.data.Dataset.from_tensor_slices((X_test.values, y_test)).

batch(batch_size)

build train model

model = model_fn()

print train model summary

model.summary()

train the model

history = model.fit(train_ds,steps_per_epoch=5000)

evaluate the model

score = model.evaluate(test_ds)

print('Test loss: {:.2f} \nTest accuracy: {:.2f}%'.format(score[0],

score[1]*100))

'Output':

Test loss: 0.22

Test accuracy: 96.67%

 Using the Keras Functional API
The general code pattern for the Functional API is structurally the same as the

Sequential version. The only change here is in how the network model is constructed.

We also demonstrated the Keras feature for printing the graph of the model in this

example. The output is illustrated in Figure 30-12.

!pip install -q tensorflow==2.0.0-beta0

import packages

import tensorflow as tf

import pandas as pd

from sklearn.preprocessing import OneHotEncoder

Chapter 30 tensorFlow 2.0 and Keras

387

dataset url

train_data_url = "https://storage.googleapis.com/download.tensorflow.org/

data/iris_training.csv"

test_data_url = "https://storage.googleapis.com/download.tensorflow.org/

data/iris_test.csv"

define column names

columns = ['sepal_length', 'sepal_width', 'petal_length', 'petal_width', 'species']

download and load the csv files

train_data = pd.read_csv(tf.keras.utils.get_file('iris_train.csv',

train_data_url),

 skiprows=1, header=None, names=columns)

test_data = pd.read_csv(tf.keras.utils.get_file('iris_test.csv', test_data_url),

 skiprows=1, header=None, names=columns)

separate the features and targets

(X_train, y_train) = (train_data.iloc[:,0:-1], train_data.iloc[:,-1])

(X_test, y_test) = (test_data.iloc[:,0:-1], test_data.iloc[:,-1])

apply one-hot encoding to targets

y_train=tf.keras.utils.to_categorical(y_train)

y_test=tf.keras.utils.to_categorical(y_test)

create the functional model

def model_fn():

 # Model input

 model_input = tf.keras.layers.Input(shape=(4,))

 # Adds a densely-connected layer with 32 units to the model:

 x = tf.keras.layers.Dense(32, activation='relu')(model_input)

 # Add a softmax layer with 3 output units:

 predictions = tf.keras.layers.Dense(3, activation='softmax')(x)

 # the model

 model = tf.keras.Model(inputs=model_input,

 outputs=predictions,

 name='iris_model')

Chapter 30 tensorFlow 2.0 and Keras

388

 # compile the model

 model.compile(optimizer='sgd',

 loss='categorical_crossentropy',

 metrics=['accuracy'])

 return model

parameters

batch_size=50

use tf.data to batch and shuffle the dataset

train_ds = tf.data.Dataset.from_tensor_slices(

 (X_train.values, y_train)).shuffle(len(X_train)).repeat().batch(batch_size)

test_ds = tf.data.Dataset.from_tensor_slices((X_test.values, y_test)).

batch(batch_size)

build train model

model = model_fn()

print train model summary

model.summary()

plot the model as a graph

tf.keras.utils.plot_model(model, 'keras_iris_model.png', show_shapes=True)

train the model

history = model.fit(train_ds, steps_per_epoch=5000)

evaluate the model

score = model.evaluate(test_ds)

print('Test loss: {:.2f} \nTest accuracy: {:.2f}%'.format(score[0],

score[1]*100))

'Output':

Test loss: 0.07

Test accuracy: 96.67%

Chapter 30 tensorFlow 2.0 and Keras

389

Figure 30-12. The graph of the model – produced with Keras

 Model Visualization with Keras
With Keras, it is quite easy and straightforward to plot the metrics of the model to have a

better graphical perspective as to how the model is performing for every training epoch.

This view is also useful for dealing with issues of bias or variance of the model.

A callback function of the ‘model.fit()’ method returns the loss and evaluation score

for each epoch. This information is stored in a variable and plotted.

In this example, we use the same Iris dataset model to illustrate visualization with

Keras. The plots of the loss and accuracy of the model at each epoch are shown in

Figure 30-13 and Figure 30-14, respectively.

!pip install -q tensorflow==2.0.0-beta0

import packages

import tensorflow as tf

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.preprocessing import OneHotEncoder

Chapter 30 tensorFlow 2.0 and Keras

390

dataset url

train_data_url = "https://storage.googleapis.com/download.tensorflow.org/

data/iris_training.csv"

test_data_url = "https://storage.googleapis.com/download.tensorflow.org/

data/iris_test.csv"

define column names

columns = ['sepal_length', 'sepal_width', 'petal_length', 'petal_width',

'species']

download and load the csv files

train_data = pd.read_csv(tf.keras.utils.get_file('iris_train.csv', train_

data_url),

 skiprows=1, header=None, names=columns)

test_data = pd.read_csv(tf.keras.utils.get_file('iris_test.csv', test_data_url),

 skiprows=1, header=None, names=columns)

separate the features and targets

(X_train, y_train) = (train_data.iloc[:,0:-1], train_data.iloc[:,-1])

(X_test, y_test) = (test_data.iloc[:,0:-1], test_data.iloc[:,-1])

apply one-hot encoding to targets

y_train=tf.keras.utils.to_categorical(y_train)

y_test=tf.keras.utils.to_categorical(y_test)

create the functional model

def model_fn():

 # Model input

 model_input = tf.keras.layers.Input(shape=(4,))

 # Adds a densely-connected layer with 32 units to the model:

 x = tf.keras.layers.Dense(32, activation='relu')(model_input)

 # Add a softmax layer with 3 output units:

 predictions = tf.keras.layers.Dense(3, activation='softmax')(x)

 # the model

 model = tf.keras.Model(inputs=model_input,

 outputs=predictions,

 name='iris_model')

Chapter 30 tensorFlow 2.0 and Keras

391

 # compile the model

 model.compile(optimizer='sgd',

 loss='categorical_crossentropy',

 metrics=['accuracy'])

 return model

parameters

batch_size=50

use tf.data to batch and shuffle the dataset

train_ds = tf.data.Dataset.from_tensor_slices(

 (X_train.values, y_train)).shuffle(len(X_train)).repeat().batch(batch_size)

test_ds = tf.data.Dataset.from_tensor_slices((X_test.values, y_test)).

batch(batch_size)

build train model

model = model_fn()

print train model summary

model.summary()

train the model

history = model.fit(train_ds, epochs=10,

 steps_per_epoch=100,

 validation_data=test_ds)

list metrics returned from callback function

history.history.keys()

plot loss metric

plt.figure(1)

plt.plot(history.history['loss'], '--')

plt.plot(history.history['val_loss'], '--')

plt.title('Model loss per epoch: Training')

plt.ylabel('loss')

plt.xlabel('epoch')

plt.legend(['train', 'evaluation'])

plt.show()

Chapter 30 tensorFlow 2.0 and Keras

392

plot accuracy metric

plt.figure(2)

plt.plot(history.history['accuracy'], '--')

plt.plot(history.history['val_accuracy'], '--')

plt.title('Model accuracy per epoch: Training')

plt.ylabel('loss')

plt.xlabel('epoch')

plt.legend(['train', 'evaluation'])

plt.show()

Figure 30-13. Model loss per epoch

Chapter 30 tensorFlow 2.0 and Keras

393

 TensorBoard with Keras
To visualize models with TensorBoard, attach a TensorBoard callback ‘tf.keras.
callbacks.TensorBoard()’ to the ‘model.fit()’ method before training the model. The

model graph, scalars, histograms, and other metrics are stored as event files in the log

directory.

For this example, we modify the Iris model to use TensorBoard. The TensorBoard

output is shown in Figure 30-15.

!pip install -q tensorflow==2.0.0-beta0

import packages

import tensorflow as tf

import pandas as pd

from sklearn.preprocessing import OneHotEncoder

load the TensorBoard notebook extension

%load_ext tensorboard

dataset url

train_data_url = "https://storage.googleapis.com/download.tensorflow.org/

data/iris_training.csv"

Figure 30-14. Model accuracy per epoch

Chapter 30 tensorFlow 2.0 and Keras

394

test_data_url = "https://storage.googleapis.com/download.tensorflow.org/

data/iris_test.csv"

define column names

columns = ['sepal_length', 'sepal_width', 'petal_length', 'petal_width',

'species']

download and load the csv files

train_data = pd.read_csv(tf.keras.utils.get_file('iris_train.csv',

train_data_url),

 skiprows=1, header=None, names=columns)

test_data = pd.read_csv(tf.keras.utils.get_file('iris_test.csv', test_data_url),

 skiprows=1, header=None, names=columns)

separate the features and targets

(X_train, y_train) = (train_data.iloc[:,0:-1], train_data.iloc[:,-1])

(X_test, y_test) = (test_data.iloc[:,0:-1], test_data.iloc[:,-1])

apply one-hot encoding to targets

y_train=tf.keras.utils.to_categorical(y_train)

y_test=tf.keras.utils.to_categorical(y_test)

create the functional model

def model_fn():

 # Model input

 model_input = tf.keras.layers.Input(shape=(4,))

 # Adds a densely-connected layer with 32 units to the model:

 x = tf.keras.layers.Dense(32, activation='relu')(model_input)

 # Add a softmax layer with 3 output units:

 predictions = tf.keras.layers.Dense(3, activation='softmax')(x)

 # the model

 model = tf.keras.Model(inputs=model_input,

 outputs=predictions,

 name='iris_model')

Chapter 30 tensorFlow 2.0 and Keras

395

 # compile the model

 model.compile(optimizer='sgd',

 loss='categorical_crossentropy',

 metrics=['accuracy'])

 return model

parameters

batch_size=50

use tf.data to batch and shuffle the dataset

train_ds = tf.data.Dataset.from_tensor_slices(

 (X_train.values, y_train)).shuffle(len(X_train)).repeat().batch(batch_size)

test_ds = tf.data.Dataset.from_tensor_slices((X_test.values, y_test)).

batch(batch_size)

build train model

model = model_fn()

print train model summary

model.summary()

tensorboard

tensorboard = tf.keras.callbacks.TensorBoard(log_dir='./tmp/logs_iris_keras',

 histogram_freq=0, write_

graph=True,

 write_images=True)

assign callback

callbacks = [tensorboard]

train the model

history = model.fit(train_ds, epochs=10,

 steps_per_epoch=100,

 validation_data=test_ds,

 callbacks=callbacks)

Chapter 30 tensorFlow 2.0 and Keras

396

evaluate the model

score = model.evaluate(test_ds)

print('Test loss: {:.2f} \nTest accuracy: {:.2f}%'.format(score[0],

score[1]*100))

execute the command to run TensorBoard

%tensorboard --logdir tmp/logs_iris_keras

 Checkpointing to Select Best Models
Checkpointing makes it possible to save the weights of the neural network model when

there is an increase in the validation accuracy metric. This is achieved in Keras using the

‘tf.keras.callbacks.ModelCheckpoint()’. The saved weights can then be loaded back

into the model and used to make predictions. Using the Iris dataset, we'll build a model

that saves the weights to file only when there is an improvement in the validation set

performance. For completeness sake as we have done in the previous segments, we will

produce this example within a complete code listing.

!pip install -q tensorflow==2.0.0-beta0

Figure 30-15. TensorBoard output of Iris model

Chapter 30 tensorFlow 2.0 and Keras

397

import packages

import tensorflow as tf

import pandas as pd

from sklearn.preprocessing import OneHotEncoder

dataset url

train_data_url = "https://storage.googleapis.com/download.tensorflow.org/

data/iris_training.csv"

test_data_url = "https://storage.googleapis.com/download.tensorflow.org/

data/iris_test.csv"

define column names

columns = ['sepal_length', 'sepal_width', 'petal_length', 'petal_width', 'species']

download and load the csv files

train_data = pd.read_csv(tf.keras.utils.get_file('iris_train.csv', train_

data_url),

 skiprows=1, header=None, names=columns)

test_data = pd.read_csv(tf.keras.utils.get_file('iris_test.csv', test_data_url),

 skiprows=1, header=None, names=columns)

separate the features and targets

(X_train, y_train) = (train_data.iloc[:,0:-1], train_data.iloc[:,-1])

(X_test, y_test) = (test_data.iloc[:,0:-1], test_data.iloc[:,-1])

apply one-hot encoding to targets

y_train=tf.keras.utils.to_categorical(y_train)

y_test=tf.keras.utils.to_categorical(y_test)

create the functional model

def model_fn():

 # Model input

 model_input = tf.keras.layers.Input(shape=(4,))

 # Adds a densely-connected layer with 32 units to the model:

 x = tf.keras.layers.Dense(32, activation='relu')(model_input)

 # Add a softmax layer with 3 output units:

 predictions = tf.keras.layers.Dense(3, activation='softmax')(x)

Chapter 30 tensorFlow 2.0 and Keras

398

 # the model

 model = tf.keras.Model(inputs=model_input,

 outputs=predictions,

 name='iris_model')

 # compile the model

 model.compile(optimizer='sgd',

 loss='categorical_crossentropy',

 metrics=['accuracy'])

 return model

parameters

batch_size=50

use tf.data to batch and shuffle the dataset

train_ds = tf.data.Dataset.from_tensor_slices(

 (X_train.values, y_train)).shuffle(len(X_train)).repeat().batch(batch_size)

test_ds = tf.data.Dataset.from_tensor_slices((X_test.values, y_test)).

batch(batch_size)

build train model

model = model_fn()

print train model summary

model.summary()

checkpointing

checkpoint = tf.keras.callbacks.ModelCheckpoint(

 './tmp/iris_weights.h5',

 monitor='val_accuracy',

 verbose=1,

 save_best_only=True,

 mode='max')

assign callback

callbacks = [checkpoint]

Chapter 30 tensorFlow 2.0 and Keras

399

train the model

history = model.fit(train_ds, epochs=10,

 steps_per_epoch=100,

 validation_data=test_ds,

 callbacks=callbacks)

build evaluation model and upload saved weights

eval_model = model_fn()

eval_model.load_weights('./tmp/iris_weights.h5')

evaluate the model

score = eval_model.evaluate(test_ds)

print('Test loss: {:.2f} \nTest accuracy: {:.2f}%'.format(score[0],

score[1]*100))

This chapter covered the foundation of working with TensorFlow 2.0 and its exciting

features for developing machine learning models. Some of these new features include

a more pythonic feel to model design and debugging, using tf.function to transform

a Python method into high-performance TensorFlow graphs, using Keras as the core

high-level API for model design, using FeatureColumns to parse data as input into Keras

models, and the ease of training on distributed architectures and devices. The chapter

also covered the principles of building models using the high-level Estimator API.

In the next chapters, we will take a deeper dive into deep neural networks and how

they are implemented in TensorFlow with Keras. In TensorFlow 2.0, Keras is the de facto

method for developing neural network.

Chapter 30 tensorFlow 2.0 and Keras

401
© Ekaba Bisong 2019
E. Bisong, Building Machine Learning and Deep Learning Models on Google Cloud Platform,
https://doi.org/10.1007/978-1-4842-4470-8_31

CHAPTER 31

The Multilayer
Perceptron (MLP)
The multilayer perceptron (MLP) is the fundamental example of a deep neural network.

The architecture of a MLP consists of multiple hidden layers to capture more complex

relationships that exist in the training dataset. Another name for the MLP is the deep

feedforward neural network (DFN). An illustration of an MLP is shown in Figure 31-1.

Figure 31-1. Deep feedforward neural network

 The Concept of Hierarchies
The more the number of hidden layers in a neural network, the deeper the network

becomes. Deep networks are able to learn more sophisticated representations of the

inputs. The concept of hierarchical representation is when each layer learns a set of

features that describe the input and hierarchically pass that information across the

hidden layers. Initially, the hidden layers closer to the input layer learn a simple set

402

of features, which then grow to increasingly complex features as information flows to

deeper layers of the network, to capture the mapping between the inputs and the target.

See Figure 31-2.

 Choosing the Number of Hidden Layers:
Bias/Variance Trade-Off
From experience, increasing the number of hidden layers may improve the

representational quality of the network; however, arbitrarily increasing the number of

hidden layers in your network design can have detrimental effects on the overall network

performance with respect to generalizing to unseen observations. This is because the

neural network will learn more closely the irreducible errors inherent in the training

dataset and will fail to generalize to new examples.

Appropriate caution should be taken when selecting the number of hidden layers

to avoid overfitting. Regularization techniques for neural networks such as Tikhonov

regularization, Dropout, or early stopping are different methods of mitigating overfitting.

Regularization for neural networks will be covered in more detail in a later section.

Empirically, one hidden layer will produce good results for simple learning

problems, but if the number of output classes increases or there exists a high degree

Figure 31-2. Hierarchical learning

Chapter 31 the Multilayer perCeptron (Mlp)

403

of non-linearities among the data features, then it is recommended to add more layers

while taking care to ensure that the model performs well on test data. Choosing the

number of neurons in a hidden layer and the number of hidden layers is usually a case of

a trial-and-error heuristics and presents the case of applying hyper-parameter tuning to

improve the network performance. Using a grid search for hyper-parameter tuning is a

good way to approximate an optimal neural network architecture that performs well on

test data.

 Multilayer Perceptron (MLP) with Keras
In this section, we examine a motivating example by building an MLP model with Keras.

In doing so, we’ll go through the following steps:

• Import and transform the dataset.

• Build and compile the model.

• Train the data using ‘Model.fit()’.

• Evaluate the model using ‘Model.evaluate()’.

• Predict on unseen data using ‘Model.predict()’.

The dataset used for this example is the Fashion-MNIST database of fashion articles.

This dataset contains 60,000 28 x 28 pixel grayscale images of ten clothing items (the

target classes). This dataset is downloaded from the ‘tf.keras.datasets’ package. The

following code example will build a simple MLP neural network for the computer to

classify an image of a clothing item into its appropriate class. The network architecture

has the following layers:

• A dense hidden layer with 250 neurons

• A second hidden layer with 64 neurons

• A third hidden layer with 32 neurons

• An output layer with 10 output classes

install tensorflow 2.0

!pip install -q tensorflow==2.0.0-beta0

import packages

Chapter 31 the Multilayer perCeptron (Mlp)

404

import tensorflow as tf

import numpy as np

import dataset

(x_train, y_train), (x_test, y_test) = tf.keras.datasets.fashion_mnist.

load_data()

flatten the 28*28 pixel images into one long 784 pixel vector

x_train = np.reshape(x_train, (-1, 784)).astype('float32')

x_test = np.reshape(x_test, (-1, 784)).astype('float32')

scale dataset from 0 -> 255 to 0 -> 1

x_train /= 255

x_test /= 255

one-hot encode targets

y_train = tf.keras.utils.to_categorical(y_train)

y_test = tf.keras.utils.to_categorical(y_test)

create the model

def model_fn():

 model = tf.keras.Sequential()

 # Adds a densely-connected layer with 256 units to the model:

 model.add(tf.keras.layers.Dense(256, activation='relu', input_dim=784))

 # Add Dense layer with 64 units

 model.add(tf.keras.layers.Dense(64, activation='relu'))

 # Add another densely-connected layer with 32 units:

 model.add(tf.keras.layers.Dense(32, activation='relu'))

 # Add a softmax layer with 10 output units:

 model.add(tf.keras.layers.Dense(10, activation='softmax'))

 # compile the model

 model.compile(optimizer=tf.keras.optimizers.SGD(0.01),

 loss='categorical_crossentropy',

 metrics=['accuracy'])

 return model

build model

model = model_fn()

Chapter 31 the Multilayer perCeptron (Mlp)

405

use tf.data to batch and shuffle the dataset

train_ds = tf.data.Dataset.from_tensor_slices(

 (x_train, y_train)).shuffle(len(x_train)).repeat().batch(32)

test_ds = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)

train the model

model.fit(train_ds, epochs=10,

 steps_per_epoch=2000)

evaluate the model

score = model.evaluate(test_ds)

print('Test loss: {:.2f} \nTest accuracy: {:.2f}%'.format(score[0],

score[1]*100))

'Ouput:'

Test loss: 0.35

Test accuracy: 87.36%

Observe the following from the preceding code:

• A Keras Sequential Model is built by calling the ‘tf.keras.
Sequential()’ method from which layers are then added to the

model.

• After constructing the model layers, the model is compiled by calling

the method ‘.compile()’.

• The model is trained by calling the ‘.fit()’ method which receives the

training features and targets from the ‘tf.data.Dataset’ pipeline.

• The method ‘.evaluate()’ is used to get the final metric estimate and

the loss score of the model after training.

In this chapter, we introduced the multilayer perceptron network and how it

achieves good performance on complex learning problems by stacking layers of

neurons together to form a deep representational hierarchy. By doing this, the network

learns what features are relevant and also learns what weights of the network will best

approximate the target function.

In the next chapter, we will discuss on other considerations for training deep neural

network.

Chapter 31 the Multilayer perCeptron (Mlp)

407
© Ekaba Bisong 2019
E. Bisong, Building Machine Learning and Deep Learning Models on Google Cloud Platform,
https://doi.org/10.1007/978-1-4842-4470-8_32

CHAPTER 32

Other Considerations
for Training the Network
In this chapter, we will cover some other important techniques to consider when training

a deep neural network.

 Weight Initialization
Weight initialization is a technique for assigning initial values to the weights

(parameters) of the neural network before training (see Figure 32-1). Proper weight

initialization may mitigate the effects of vanishing and exploding gradients when

training the network. It may also speed up the training process. Two commonly used

methods for weight initializations are the Xavier and the He techniques. We will not

go into the technical explanation of these initialization strategies. However, they are

implemented in the standard deep learning framework libraries such as TensorFlow

and Keras. In TensorFlow 2.0, the dense layer in ‘tf.keras.layers.Dense()’ has the Glorot

uniform initializer, also called Xavier uniform initializer as its default kernel initializer.

408

 Batch Normalization
The technique of batch normalization involves normalizing the data (to have zero

mean and unit variance), as well as scaling and shifting the data batch at each layer

of the neural network during the training phase. Batch normalization occurs after the

affine transformation of the input matrix and their weights, but before passing the

transformation into the activation function (see Figure 32-2).

Figure 32-1. Weight initialization

Chapter 32 Other COnsideratiOns fOr training the netwOrk

409

The neural network learns the parameters for scaling and shifting the data at every

layer during training. Also at the training phase, the score of the running mean and

standard deviation of the data is maintained so that it can be used to normalize the test

data before evaluation.

Batch normalization also mitigates the exploding and vanishing gradient problem

irrespective of weight initialization. However, due to the added computational

step at each layer, the network may be a bit slower. A batch normalization layer is

added to a TensorFlow 2.0 network model by calling the method ‘tf.keras.layers.
BatchNormalization()’ as shown in the following code listing.

create the model

def model_fn():

 model = tf.keras.Sequential()

 # Adds a densely-connected layer with 256 units to the model:

 model.add(tf.keras.layers.Dense(256, activation='relu', input_dim=784))

 # Add Dense layer with 64 units

 model.add(tf.keras.layers.Dense(64, activation='relu'))

 # Add a Batch Normalization layer

 model.add(tf.keras.layers.BatchNormalization())

 # Add another densely-connected layer with 32 units:

 model.add(tf.keras.layers.Dense(32, activation='relu'))

 # Add a softmax layer with 10 output units:

 model.add(tf.keras.layers.Dense(10, activation='softmax'))

Figure 32-2. Batch normalization, also known as batch norm

Chapter 32 Other COnsideratiOns fOr training the netwOrk

410

 # compile the model

 model.compile(optimizer=tf.keras.optimizers.SGD(0.01),

 loss='categorical_crossentropy',

 metrics=['accuracy'])

 return model

 Gradient Clipping
Gradient clipping is another technique for hemming the problem of vanishing

and exploding gradients mostly seen in recurrent networks due to training via

backpropagation across a large number of deep recurrent layers. Gradient clipping

involves trimming the computed gradients so that they remain within a specific range;

in doing so, the gradients are prevented from saturating as the network trains across

multiple deep layers.

Gradient clipping is implemented in TensorFlow 2.0 by adjusting the ‘clipnorm’ or

‘clipvalue’ parameters of the selected optimizer from the ‘tf.keras.optimizers’ package.

‘clipnorm’ clips the gradients by norm, while ‘clipvalue’ clips the gradients by value.

This chapter introduces some important techniques that are employed to improve

the performance of a neural network by further mitigating the issue of vanishing and

exploding gradients. In the next chapter, we will see more optimization techniques for

training deep neural network model.

Chapter 32 Other COnsideratiOns fOr training the netwOrk

411
© Ekaba Bisong 2019
E. Bisong, Building Machine Learning and Deep Learning Models on Google Cloud Platform,
https://doi.org/10.1007/978-1-4842-4470-8_33

CHAPTER 33

More on Optimization
Techniques
In this chapter, we’ll go over some other optimization techniques for improving the

ability of a neural network to learn complex patterns in a dataset.

 Momentum
Momentum is a technique for improving the convergence speed of stochastic gradient

descent (SGD) optimization. Remember that stochastic gradient works by learning

the direction of steepest descent by evaluating a training example at each time step to

optimize the weights of the network. Momentum improves on this by calculating the

average of previous gradients in a process called exponentially smoothed averages.

It then uses this computed average to continue to move in the direction of steepest

descent. By doing so, it quickens the learning process. In computing this exponentially

decayed average, a momentum hyper-parameter is introduced to control how the weight

parameters are updated. Figure 33-1 shows an example of stochastic gradient descent

with and without momentum as it converges in a function space. In TensorFlow 2.0,

momentum is added to a SGD optimizer by adjusting the ‘momentum’ parameter of the

SGD method, ‘tf.keras.optimizers.SGD(momentum=[float >=0])’. The momentum

value must be a float value that is greater or equal to 0 that accelerates SGD in the

relevant direction and dampens oscillations.

412

 Variable Learning Rates
Remember that the learning rate controls how large a step the gradient descent

algorithm makes when moving in the direction of steepest descent. If the learning rate is

large, the algorithm takes larger steps in the direction of the steepest gradient, as is faster.

However, the algorithm may overshoot the global minimum and fail to converge. But if

the learning rate is set to a small number, closer to zero, the algorithm converges slowly,

but it is more guaranteed to converge.

Variable learning rates are a set of techniques for adjusting the learning rate of the

gradient descent algorithm at every time instance while training. These methods are also

called learning rate scheduling. Examples of variable learning rates include

• Step decay: This method reduces the learning rate by a constant

factor after a certain number of iterations.

• Exponential decay: The exponential decay adapts the learning rate

following an exponential distribution.

• Decay proportion: This method reduces the learning rate by a ratio of

1 over the time instance, t. The learning rate decay can be adjusted by

modifying the proportionality constant.

Figure 33-1. SGD with and without momentum

Chapter 33 More on optiMization teChniques

413

In TensorFlow 2.0, the ‘decay’ parameter of the selected optimizer from the ‘tf.keras.
optimizers’ module allows time inverse decay of learning rate.

 Adaptive Learning Rates
Adaptive learning rate, on the other hand, re-adjusts the learning rate in accordance

with the training data. It basically uses a different learning rate for each parameter and

adapts it during training. These techniques are based on the observation that each

parameter results in a different type of gradient. The following list outlines types of

adaptive learning rates in use and their method calls in TensorFlow 2.0:

• AdaGrad: tf.keras.optimizers.Adagrad()

• AdaDelta: tf.keras.optimizers.Adadelta()

• RMSProp: tf.keras.optimizers.RMSprop()

• Adaptive Moments, (Adam): tf.keras.optimizers.Adam()

However, AdaGrad performs poorly when used for training deep learning models

due to its monotonic learning rate which could be too aggressive, and learning may stop

early during training. As of now, there is no proven best optimization technique, so the

choice of the optimization technique is down to the preference of the model designer.

This chapter surveys some other techniques for optimizing the weights of a deep

neural network. These techniques have implementations in deep learning libraries such

as Tensorflow and Keras and can be explored as hyper-parameters when designing a

neural network solution for a particular learning use case.

In the next chapter, we will discuss techniques for applying regularization to a deep

neural network to prevent overfitting.

Chapter 33 More on optiMization teChniques

415
© Ekaba Bisong 2019
E. Bisong, Building Machine Learning and Deep Learning Models on Google Cloud Platform,
https://doi.org/10.1007/978-1-4842-4470-8_34

CHAPTER 34

Regularization for Deep
Learning
Regularization is a technique for reducing the variance in the validation set, thus

preventing the model from overfitting during training. In doing so, the model can better

generalize to new examples. When training deep neural networks, a couple of strategies

exist for use as a regularizer.

 Dropout
Dropout is a regularization technique that prevents a deep neural network from

overfitting by randomly discarding a number of neurons at every layer during training. In

doing so, the neural network is not overly dominated by any one feature as it only makes

use of a subset of neurons in each layer during training. In doing so, Dropout resembles

an ensemble of neural networks as a similar but distinct neural network is trained at

each layer. Dropout works by designating a probability that a neuron will be dropped in a

layer. This probability value is called the Dropout rate. Figure 34-1 shows an example of a

network with and without Dropout.

416

In TensorFlow 2.0 Dropout is added to a model with the method ‘tf.keras.layers.
Dropout()’. The ‘rate’ parameter of the method controls the fraction of the input units

to drop. It is assigned a float value between 0 and 1. The following code listing shows an

MLP Keras model with Dropout applied.

Figure 34-1. Dropout. Top: Neural network without Dropout. Bottom: Neural
network with Dropout.

Chapter 34 regularization for Deep learning

417

create the model

def model_fn():

 model = tf.keras.Sequential()

 # Adds a densely-connected layer with 256 units to the model:

 model.add(tf.keras.layers.Dense(256, activation='relu', input_dim=784))

 # Add Dropout layer

 model.add(tf.keras.layers.Dropout(rate=0.2))

 # Add another densely-connected layer with 64 units:

 model.add(tf.keras.layers.Dense(64, activation='relu'))

 # Add a softmax layer with 10 output units:

 model.add(tf.keras.layers.Dense(10, activation='softmax'))

 # compile the model

 model.compile(optimizer=tf.train.AdamOptimizer(0.001),

 loss='categorical_crossentropy',

 metrics=['accuracy'])

 return model

 Data Augmentation
Data augmentation is a method for artificially generating more training data points.

This technique is precipitated on the observation that for an increasingly large training

dataset mitigates the problem of overfitting. For some problems, it may be easy to

artificially generate fake data, while for others it may not readily be the case. A classic

example where we can use data augmentation is in the case of image classification. Here

artificial images can easily be created by rotating or scaling the original images to create

more variations of the dataset for a particular image class.

 Noise Injection
The noise injection regularization method adds some Gaussian noise to the network

inputs during training. Also, Gaussian noise can be added to the hidden units to mitigate

overfitting. Yet still another form of injecting noise into the network is to add some

Gaussian noise to the network weights. Noise injection can be considered as a form

of data augmentation. The amount of noise added is a configurable hyper-parameter.

Chapter 34 regularization for Deep learning

418

Too little noise has no effect, whereas too much noise makes the mapping function too

challenging to learn.

In TensorFlow 2.0, noise injection can be added to the model as a form of data

augmentation using the method ‘tf.keras.layers.GaussianNoise()’. The ‘stddev’
parameter of the method controls the standard deviation of the noise distribution. The

following code listing shows an MLP Keras model with Gaussian noise applied to the

model.

create the model

def model_fn():

 model = tf.keras.Sequential()

 # Adds a densely-connected layer with 256 units to the model:

 model.add(tf.keras.layers.Dense(256, activation='relu', input_dim=784))

 # Add Gaussian Noise

 model.add(tf.keras.layers.GaussianNoise(stddev=1.0))

 # Add another densely-connected layer with 64 units:

 model.add(tf.keras.layers.Dense(64, activation='relu'))

 # Add a softmax layer with 10 output units:

 model.add(tf.keras.layers.Dense(10, activation='softmax'))

 # compile the model

 model.compile(optimizer=tf.keras.optimizers.RMSprop(),

 loss='categorical_crossentropy',

 metrics=['accuracy'])

 return model

 Early Stopping
Early stopping involves storing the model parameters each time there is an improvement

in the loss (or error) estimate on the validation dataset. At the end of the training phase,

the stored model parameters are used rather than the last known parameter before

termination.

The technique of early stopping is based on the observation that for a sufficiently

complex classifier, as the training phase progresses, the error estimate on the training

data continues to decrease, whereas the validation data will see an increase in the model

error measure. This is illustrated in Figure 34-2.

Chapter 34 regularization for Deep learning

419

In TensorFlow 2.0, early stopping can be applied to stop training when there is no

improvement in the validation accuracy or loss by applying the ‘tf. keras.callbacks.
EarlyStopping()’ method as a callback when training the model. For completeness sake,

we will produce a complete code listing with early stopping applied to the MLP Fashion-

MNIST model.

install tensorflow 2.0

!pip install -q tensorflow==2.0.0-beta0

import packages

import tensorflow as tf

import numpy as np

import dataset

(x_train, y_train), (x_test, y_test) = tf.keras.datasets.fashion_mnist.

load_data()

flatten the 28*28 pixel images into one long 784 pixel vector

Figure 34-2. Early stopping

Chapter 34 regularization for Deep learning

420

x_train = np.reshape(x_train, (-1, 784)).astype('float32')

x_test = np.reshape(x_test, (-1, 784)).astype('float32')

scale dataset from 0 -> 255 to 0 -> 1

x_train /= 255

x_test /= 255

one-hot encode targets

y_train = tf.keras.utils.to_categorical(y_train)

y_test = tf.keras.utils.to_categorical(y_test)

create the model

def model_fn():

 model = tf.keras.Sequential()

 # Adds a densely-connected layer with 256 units to the model:

 model.add(tf.keras.layers.Dense(256, activation='relu', input_dim=784))

 # Add another densely-connected layer with 128 units:

 model.add(tf.keras.layers.Dense(128, activation='relu'))

 # Add another densely-connected layer with 64 units:

 model.add(tf.keras.layers.Dense(64, activation='relu'))

 # Add another densely-connected layer with 32 units:

 model.add(tf.keras.layers.Dense(32, activation='relu'))

 # Add a softmax layer with 10 output units:

 model.add(tf.keras.layers.Dense(10, activation='softmax'))

 # compile the model

 model.compile(optimizer=tf.keras.optimizers.RMSprop(),

 loss='categorical_crossentropy',

 metrics=['accuracy'])

 return model

use tf.data to batch and shuffle the dataset

train_ds = tf.data.Dataset.from_tensor_slices(

 (x_train, y_train)).shuffle(len(x_train)).repeat().batch(32)

test_ds = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)

build model

model = model_fn()

Chapter 34 regularization for Deep learning

421

early stopping

checkpoint = tf.keras.callbacks.EarlyStopping(

 monitor='val_loss',

 mode='auto',

 patience=5)

assign callback

callbacks = [checkpoint]

train the model

history = model.fit(train_ds, epochs=10,

 steps_per_epoch=100,

 validation_data=test_ds,

 callbacks=callbacks)

evaluate the model

score = model.evaluate(test_ds)

print('Test loss: {:.2f} \nTest accuracy: {:.2f}%'.format(score[0],

score[1]*100))

With early stopping applied to the preceding code, the training will stop once there

is no improvement to the loss on the validation dataset. The ‘patience’ parameter in the

EarlyStopping method represents the number of epochs with no improvement, after

which training will be stopped.

This chapter surveys some techniques to tackle the problem of overfitting

when training with a deep neural network. In the next chapter, we will discuss on

convolutional neural networks for building predictive models for computer vision use

cases such as image recognition with TensorFlow 2.0.

Chapter 34 regularization for Deep learning

423
© Ekaba Bisong 2019
E. Bisong, Building Machine Learning and Deep Learning Models on Google Cloud Platform,
https://doi.org/10.1007/978-1-4842-4470-8_35

CHAPTER 35

Convolutional Neural
Networks (CNN)
Convolutional neural networks (CNN) are a specific type of neural network systems that

are particularly suited for computer vision problems such as image recognition. In such

tasks, the dataset is represented as a 2-D grid of pixels. See Figure 35-1.

Figure 35-1. 2-D representation of an image

An image is depicted in the computer as a matrix of pixel intensity values ranging

from 0 to 255. A grayscale (or black and white) image consists of a single channel with

0 representing the black areas and 255 the white regions with the values in between for

various shades of gray.

For example, the image in Figure 35-2 is a 10 x 10 grayscale image with its matrix

representation.

424

On the other hand, a colored image consists of three channels, red, green, and blue,

with each channel also containing pixel intensity values from 0 to 255. A colored image

has a matrix shape of [height x width x channel]. In Figure 35-3, we have an image of

shape [10 x 10 x 3] indicating a 10 x 10 matrix with three channels.

Figure 35-2. Grayscale image with matrix representation

Chapter 35 Convolutional neural networks (Cnn)

425

 Local Receptive Fields of the Visual Cortex
The core concept of convolutional neural networks is built on understanding the

local receptive fields found in the neurons of the visual cortex – the part of the brain

responsible for processing visual information.

A local receptive field is an area on the neuron that excites or activates that neuron

to fire information to other neurons. When viewing an image, the neurons in the visual

cortex react to a small or limited area of the overall image due to the presence of a small

local receptive field.

Figure 35-3. Colored image with matrix representation

Chapter 35 Convolutional neural networks (Cnn)

426

Hence, the neurons in the visual cortex do not all sense the entire image at the same

time, but they are activated by viewing a local area of the image via its local receptive

field.

In Figure 35-4, the local receptive fields overlap to give a collective perspective on

the entire image. Each neuron in the visual cortex reacts to a different type of visual

information (e.g., lines with different orientations).

Other neurons have large receptive fields that react to more complex visual patterns

such as edges, regions, and so on. From here we get the idea that neurons with larger

receptive field receive information from those with lower receptive fields as they

progressively learn the visual information of the image.

 Advantages of CNN over MLP
Suppose we have a 28 x 28 pixel set of image data, a feedforward neural network or

multilayer perceptron will need 784 input weights plus a bias. By flattening an image as

you would in MLP, we lose the spatial relationship of the pixels in the image.

CNN, on the other hand, can learn complex image features by preserving the spatial

relationship between the image pixels. It does so by stacking convolutional layers

whereby the neurons in the higher layers with a larger receptive field receive information

Figure 35-4. Local receptive field

Chapter 35 Convolutional neural networks (Cnn)

427

from neurons in the lower layers having a smaller receptive field. CNN learns a hierarchy

of increasingly complex features from the input data as it flows through the network.

In CNN, the neurons (or filters) in the convolutional layer are not all connected to

the pixels in the input image as we have in the dense multilayer perceptron. Hence, a

CNN is also called a sparse neural network.

A distinct advantage of CNN over MLP is the reduced number of weights needed for

training the network.

Convolutional neural networks are composed of three fundamental types of layers:

• Convolutional layer

• Pooling layer

• Fully connected layer

 The Convolutional Layer
The convolution layer is made up of filters and feature maps. A filter is passed over the

input image pixels to capture a specific set of features in a process called convolution

(see Figure 35-5). The output of a filter is called a feature map.

Figure 35-5. The convolution process

Chapter 35 Convolutional neural networks (Cnn)

428

 Convolution

Convolution is the process by which a function is applied to a matrix to extract specific

information from the matrix. The function is implemented as a sliding window through

the matrix, and it is more popularly called a convolutional filter or a kernel. Both terms

are used interchangeably in the literature. The image in Figure 35-6 illustrates a filter

sliding through a matrix to extract information from it.

Filters are neurons in the convolutional layer. They are assigned weights and are

applied as a sliding window through the matrix. The output of a filter is a feature map.

Filters which are basically neurons also have a non-linear activation function.

The inputs into a filter can be the matrix of the image pixels if the filter is at the input

layer, or it can be the feature maps of a previous convolutional layer if the filter is applied

at a deeper layer in the network.

Figure 35-6. Sliding window of a filter through a matrix

Chapter 35 Convolutional neural networks (Cnn)

429

Filters are assigned a fixed square block for its input size. This input size can also be

seen as the local receptive field of the filter. A common input size for filters is a 3 x 3

square patch as illustrated in Figure 35-7; other standard sizes include a 5 x 5 or 7 x 7

filter for extracting features from images. It is also a best practice to use more filters at

deeper layers of the network and fewer filter at the input layer.

Figure 35-7. An example of a 3 x 3 filter kernel

Observe that each cell in the filter has an associated weight or value. These values

are used to multiply its associated pixel intensities and then sum up their results, which

are filled in the appropriate cell of the convolutional result. This procedure is illustrated

in Figure 35-8.

Figure 35-8. Sliding a convolutional filter across an image matrix to extract
features

Chapter 35 Convolutional neural networks (Cnn)

430

The weights on the filter determine the filter operation and consequently the type of

features that are extracted from the filter inputs. Different filters are responsible for edge

detection, line detection, and so on. See Figure 35-9.

Key considerations to make when designing a convolutional layer are

• The filter size

• The stride of the filter

• The padding for the layer input

The stride of the filter determines how many pixel steps the filter makes when

moving from one image activation to another. It is typical to use a stride of 1, although

this could be increased for large images. See Figure 35-10.

Figure 35-9. Filter types

Chapter 35 Convolutional neural networks (Cnn)

431

Sometimes the choice of our filter size and the selected stride may not evenly divide

up the size of the input to the filter. So to avoid losing pixel information since we don’t

slide past the edge of the image, a technique called zero padding is employed to pad the

borders of the image pixels with a defined layer of zeros. This allows the filter to stride

evenly through all the pixels in the image by including the zeros in the convolution. See

Figure 35-11.

Figure 35-10. An illustration of stride width

Chapter 35 Convolutional neural networks (Cnn)

432

 Feature Maps

Feature maps are the outputs of a filter in a convolutional layer. Feature maps bring to the fore

certain patterns of the input image such as horizontal lines, vertical lines, edges, and so on.

These feature maps of the various neurons stacked together are what forms a convolutional

neural layer and enable the layer to learn complex patterns and features of an image.

Moving deeper across the convolutional neural network, the inputs to a deeper

convolutional layer are the feature maps of the previous layer. See Figure 35-12.

Figure 35-11. An illustration of zero padding

Figure 35-12. Feature maps as inputs to a convolutional layer

Chapter 35 Convolutional neural networks (Cnn)

433

 The Pooling Layer
Pooling layers typically follow one or more convolutional layers. The goal of the pooling

layer is to reduce or downsample the feature map of the convolutional layer. The pooling

layer summarizes the image features learned in the previous network layers. By doing so,

it also helps prevent the network from overfitting. Moreso, the reduction in the input size

also bodes well for processing and memory costs when training the network.

The pooling layer can be seen as an aggregation function that consolidates learned

features and extracts the essential features from previous layers. It does not conduct any

multiplicative transformation on the input feature maps as seen in the convolutional layer.

The aggregation functions carried out by the pooling layer include max, sum, and

average. The most frequently used aggregation function in practice is the max and is

commonly called the MaxPool.

The aggregation functions of the pooling layer serve as the layers’ filters. Just like

the filters of the convolutional layer, they have a receptive field (although smaller in size

than that of the convolutional layer) and a stride width. Howbeit, the filters which are the

neurons of the pooling layer have no weight or biases. A typical size for the pooling filter

is a 2 x 2 matrix as shown in Figure 35-13.

Chapter 35 Convolutional neural networks (Cnn)

434

Figure 35-13. Example of pooling with MaxPooling

Chapter 35 Convolutional neural networks (Cnn)

435

The essential advantage of the pooling layer is its ability to inject location invariance

into the network. Location invariance means that features can be detected by the

network no matter where they are on the image.

The pooling layer applies its aggregation function to all the channels of the input

image. For example, in an R, G, B image (i.e., an image with three channels, red, green,

and blue), the MaxPool will be applied independently to all the three channels. Similarly,

for feature maps with a particular depth, the pooling aggregation will be applied

separately to each feature map. See Figure 35-14 as an example of applying pooling to

the channel depth of its inputs.

Figure 35-14. Example of applying pooling to input with depth. Note that the
filters in the pooling layer have no weights or biases

 The Fully Connected Network Layer
The fully connected network (FCN) layer is our regular feedforward neural network

or multilayer perceptron. These layers typically have a non-linear activation function.

In any case, the FCN is the final layer of the convolutional neural network. In this

case, a softmax activation is used to output the probabilities that an input belongs to a

particular class.

Chapter 35 Convolutional neural networks (Cnn)

436

Before passing an input into the FCN, the image matrix will have to be flattened. For

example, a 28 x 28 x 3 image matrix will become 2352 input weights plus a bias of 1 into

the fully connected network.

In the case of our convolutional network, the feature maps of either the

convolutional or pooling layer are flattened before passing into the FCN to compute the

final network probabilities using the softmax function.

 An Example CNN Architecture
We have discussed the building blocks of a convolutional neural network system. As

you’ve seen, a CNN system is principally composed of convolution layers, pooling layers,

and the fully connected layer. However, the way these layers are arranged and in what

number are down to the preferred heuristics of the particular use case that a CNN is

employed in solving.

An example CNN modeling pipeline is shown here:

 1. The first layer following the input layer of images must be a

convolutional layer for extracting image features. A 3 x 3 image

filter is commonly used depending on the size of the input image.

 2. Pooling layers typical follow a set of one or more convolutional

layers. Typically, a 2 x 2 filter size is used in the pooling layer.

 3. The fully connected layer must be the final layer of the CNN. It

is also called the dense layer. It contains the softmax activation

function to give the probabilities of class membership.

 4. CNN may include one or more Dropout layers to prevent the

network from overfitting.

Chapter 35 Convolutional neural networks (Cnn)

437

Figure 35-15 is an example of a CNN architecture.

 CNN for Image Recognition with TensorFlow 2.0
In this example, we will build a convolutional neural network (CNN) to classify images

from the CIFAR-10 dataset. CIFAR-10 is another standard image classification dataset

to classify a colored 32 x 32 pixel image data into ten image classes, namely, airplane,

automobile, bird, cat, deer, dog, frog, horse, ship, and truck. The focus of this section is

exclusively on using TensorFlow 2.0 methods to build a CNN image classifier.

The CNN model architecture implemented loosely mirrors the Krizhevsky’s

architecture, also known as AlexNet. The network architecture has the following layers:

• Convolution layer: kernel_size = [5 x 5]

• Convolution layer: kernel_size = [5 x 5]

• Batch normalization layer

• Convolution layer: kernel_size = [5 x 5]

• Max pooling: pool size = [2 x 2]

• Convolution layer: kernel_size = [5 x 5]

• Convolution layer: kernel_size = [5 x 5]

• Batch normalization layer

• Max pooling: pool size = [2 x 2]

Figure 35-15. CNN architecture

Chapter 35 Convolutional neural networks (Cnn)

438

• Convolution layer: kernel_size = [5 x 5]

• Convolution layer: kernel_size = [5 x 5]

• Convolution layer: kernel_size = [5 x 5]

• Max pooling: pool size = [2 x 2]

• Dropout layer

• Dense layer: units = [512]

• Dense layer: units = [256]

• Dropout layer

• Dense layer: units = [10]

This CNN model has close to a million trainable variables as can be seen from the

model summary when running ‘model.summary()’. Training on a CPU will take an

inordinate amount of time (about 1 hour and 30 minutes). For this code example, we

will train on a GPU instance. If running the code on Google Colab, change the runtime

type to GPU and install TensorFlow 2.0 with GPU package. The graph of the model in

Tensorboard is shown in Figure 35-16.

import TensorFlow 2.0 with GPU

!pip install -q tf-nightly-gpu-2.0-preview

import packages

import tensorflow as tf

confirm tensorflow can see GPU

device_name = tf.test.gpu_device_name()

if device_name != '/device:GPU:0':

 raise SystemError('GPU device not found')

print('Found GPU at: {}'.format(device_name))

load the TensorBoard notebook extension

%load_ext tensorboard

import dataset

(x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar10.load_data()

change datatype to float

Chapter 35 Convolutional neural networks (Cnn)

439

x_train = x_train.astype('float32')

x_test = x_test.astype('float32')

scale the dataset from 0 -> 255 to 0 -> 1

x_train /= 255

x_test /= 255

one-hot encode targets

y_train = tf.keras.utils.to_categorical(y_train)

y_test = tf.keras.utils.to_categorical(y_test)

parameters

batch_size = 100

create dataset pipeline

train_ds = tf.data.Dataset.from_tensor_slices(

 (x_train, y_train)).shuffle(len(x_train)).repeat().batch(batch_size)

test_ds = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(batch_size)

create the model

def model_fn():

 model_input = tf.keras.layers.Input(shape=(32, 32, 3))

 x = tf.keras.layers.Conv2D(64, (5, 5), padding='same',

activation='relu')(model_input)

 x = tf.keras.layers.Conv2D(64, (5, 5), padding='same', activation='relu')(x)

 x = tf.keras.layers.BatchNormalization()(x)

 x = tf.keras.layers.Conv2D(64, (5, 5), padding='same', activation='relu')(x)

 x = tf.keras.layers.MaxPooling2D(pool_size=(2, 2), strides=2,

padding='same')(x)

 x = tf.keras.layers.Conv2D(64, (5, 5), padding='same', activation='relu')(x)

 x = tf.keras.layers.Conv2D(64, (5, 5), padding='same', activation='relu')(x)

 x = tf.keras.layers.BatchNormalization()(x)

 x = tf.keras.layers.MaxPooling2D(pool_size=(2, 2), strides=2, padding='same')(x)

 x = tf.keras.layers.Conv2D(32, (3, 3), padding='same', activation='relu')(x)

 x = tf.keras.layers.Conv2D(32, (3, 3), padding='same', activation='relu')(x)

 x = tf.keras.layers.Conv2D(32, (3, 3), padding='same', activation='relu')(x)

 x = tf.keras.layers.MaxPooling2D(pool_size=(2, 2), strides=2,

padding='same')(x)

Chapter 35 Convolutional neural networks (Cnn)

440

 x = tf.keras.layers.Dropout(0.3)(x)

 x = tf.keras.layers.Flatten()(x)

 x = tf.keras.layers.Dense(512, activation='relu')(x)

 x = tf.keras.layers.Dense(256, activation='relu')(x)

 x = tf.keras.layers.Dropout(0.5)(x)

 output = tf.keras.layers.Dense(10, activation='softmax')(x)

 # the model

 model = tf.keras.Model(inputs=model_input, outputs=output)

 # compile the model

 model.compile(optimizer=tf.keras.optimizers.Nadam(),

 loss='categorical_crossentropy',

 metrics=['accuracy'])

 return model

build the model

model = model_fn()

print model summary

model.summary()

tensorboard

tensorboard = tf.keras.callbacks.TensorBoard(log_dir='./tmp/logs_cifar10_

keras',

 histogram_freq=0, write_graph=True,

 write_images=True)

assign callback

callbacks = [tensorboard]

train the model

history = model.fit(train_ds, epochs=10,

 steps_per_epoch=500,

 callbacks=callbacks)

evaluate the model

score = model.evaluate(test_ds)

print('Test loss: {:.2f} \nTest accuracy: {:.2f}%'.format(score[0], score[1]∗100))

Chapter 35 Convolutional neural networks (Cnn)

441

'Output:'

Test loss: 0.74

Test accuracy: 80.05%

execute the command to run TensorBoard

%tensorboard --logdir tmp/logs_cifar10_keras

In this chapter, we discussed the convolutional neural network (CNN) as an example

of a deep neural network. We went through the design details in architecting a CNN and

implemented a CNN model with TensorFlow 2.0. In the next chapter, we will examine

another type of deep neural network called the recurrent neural network.

Figure 35-16. Tensorboard output of CIFAR-10 model graph

Chapter 35 Convolutional neural networks (Cnn)

443
© Ekaba Bisong 2019
E. Bisong, Building Machine Learning and Deep Learning Models on Google Cloud Platform,
https://doi.org/10.1007/978-1-4842-4470-8_36

CHAPTER 36

Recurrent Neural
Networks (RNNs)
Recurrent neural networks (RNNs) are another specialized scheme of neural network

architectures. RNNs are developed to solve learning problems where information about

the past (i.e., past instants/events) is directly linked to making future predictions. Such

sequential examples play up frequently in many real-world tasks such as language

modeling where the previous words in the sentence are used to determine what the next

word will be. Also in stock market prediction, the last hour/day/week stock prices define

the future stock movement. RNNs are particularly tuned for time series or sequential tasks.

In a sequential problem, there is a looping or feedback framework that connects the

output of one sequence to the input of the next sequence. RNNs are ideal for processing

1-D sequential data, unlike the grid-like 2-D image data in convolutional neural networks.

This feedback framework enables the network to incorporate information from past

sequences or from time-dependent datasets when making a prediction.

In this section, we will cover the broad conceptual overview of recurrent neural

networks and in particular the Long Short-Term Memory RNN variant (LSTM) which is

the state-of-the- art technique for various sequential problems such as image captioning,

stock market prediction, machine translation, and text classification.

 The Recurrent Neuron
The first building block of the RNN is the recurrent neuron (see Figure 36-1). The

neurons of the recurrent network are entirely different from those of other neural

network architectures. The key difference here is that the recurrent neuron maintains a

memory or a state from past computations. It does this by taking as input the output of

the previous instant yt − 1 in addition to its current input at a particular instant xt.

444

In Figure 36-1, the recurrent neuron stands in contrast with neurons of the MLP and

CNN architectures because instead of transferring a hierarchy of information across the

network from one neuron to the other, data is looped back into the same neuron at every

new time instant. A time instant can also mean a new sequence.

Hence, the recurrent neuron has two input weights, Wxt
 and Wyt-1

, for the input at

time xt and for the input at time instant yt − 1. See Figure 36-2.

Similar to other neurons, the recurrent neuron also injects non-linearity into the

network by passing its weighted sums or affine transformations through a non-linear

activation function.

 Unfolding the Recurrent Computational Graph
A recurrent neural network is formalized as an unfolded computational graph. An

unfolded computational graph shows the flow of information through the recurrent layer

at every time instant in the sequence. Suppose we have a sequence of five time steps,

we will unfold the recurrent neuron five times across the number of instants.

The number of sequences constitutes the layers of the recurrent neural network

architecture. See Figure 36-3.

Figure 36-1. A recurrent neuron

Figure 36-2. Recurrent neuron with input weights

Chapter 36 reCurrent neural networks (rnns)

445

Figure 36-3. Unfolding the recurrent neuron into a recurrent neural network

Chapter 36 reCurrent neural networks (rnns)

446

From the unrolled graph of the recurrent neural network, we can observe how

the input into the recurrent layer includes the output of the previous time step t − 1 in

addition to the current input at time step t. This architecture of the recurrent neuron is

central to how the recurrent neural network learns from past events or past sequences.

Up until now, we have seen that the recurrent neuron captures information from

the past by storing memory or state in its memory cell. The recurrent neuron can have

a much more complicated memory cell (such as the GRU or LSTM cell) than the basic

RNN cell as illustrated in the images so far, where the output at time instant t − 1 holds

the memory.

 Basic Recurrent Neural Network
Earlier on, we mentioned that when a recurrent network is unfolded, we can see how

information flows from one recurrent layer to the other. Further, we noted that the

sequence length of the dataset determines the number of recurrent layers. Let’s briefly

illustrate this point in Figure 36-4. Suppose we have a time series dataset of ten layers,

for each row sequence in the dataset, we will have ten layers in the recurrent network

system.

At this point, we must firmly draw attention to the fact that the recurrent layer does

not comprise of just one neuron cell, but it is instead a set of neurons or neuron cells

as shown in Figure 36-5. The choice of the number of neurons in a recurrent layer is a

design decision when composing the network architecture.

Figure 36-4. Dataset to layers

Chapter 36 reCurrent neural networks (rnns)

447

Each neuron in a recurrent layer receives as input the output of the previous layer

and its current input. Hence, the neurons each have two weight vectors. Again, just like

other neurons, they perform an affine transformation of the inputs and pass it through

a non-linear activation function (usually the hyperbolic tangent, tanh). Still, within the

recurrent layer, the output of the neurons is moved to a dense or fully connected layer

with a softmax activation function for outputting the class probabilities. This operation is

illustrated in Figure 36-6.

Figure 36-5. Neurons in a recurrent layer

Chapter 36 reCurrent neural networks (rnns)

448

 Recurrent Connection Schemes
There are two main schemes for forming recurrent connections from one recurrent layer

to another. The first is to have recurrent connections between hidden units, and the

other is recurrent connections between the hidden unit and the output of the previous

layer. The different schemes are visually illustrated in Figure 36-7.

Figure 36-6. Computations within a recurrent layer

Chapter 36 reCurrent neural networks (rnns)

449

Figure 36-7. Recurrent connection schemes

Chapter 36 reCurrent neural networks (rnns)

450

The hidden-to-hidden recurrent configuration is found to be superior to the output-

to- hidden form because it better captures the high-dimensional feature information

about the past. In any case, the output-to-hidden recurrent form is less computationally

expensive to train and can more easily be parallelized.

 Sequence Mappings
Recurrent neural networks can represent sequence problems in a variety of ways. The

flexibility of RNN mappings is that it operates on inputs and outputs of the network as

sequences, thus freeing the network from the fixed sized input-output constraints found

in other neural network architectures such as MLP and CNN.

Here are a few examples of variating sequence problems solved using RNNs:

 1. An input to a sequence of output. This configuration is used

for image captioning problems when an image is passed as an

input to the network, and the output is a sequence of words. See

Figure 36-8.

Figure 36-8. An input to a sequence of output

Chapter 36 reCurrent neural networks (rnns)

451

 2. A sequence of inputs to an output. For example, in sentiment

analysis, we need to pass in a sequence of words as input to the

network, and the output is a class indicating either a positive or

negative review or sentiment. See Figure 36-9.

 3. Sequence input to sequence output. This mapping operation

is suited in application areas such as machine translation and

speech recognition. It is more popularly called the encoder-

decoder or sequence-to-sequence architecture. In this case, we

may have a sequence of words in a particular language as input,

and we want a sequence of words as output in another language.

See Figure 36-10.

Figure 36-9. A sequence of inputs to an output

Chapter 36 reCurrent neural networks (rnns)

452

 4. Synced sequence input to output. This sort of framework is ideal

for video classification in the event we want to label each video

frame. See Figure 36-11.

In the schemes illustrated in this sub-section, information flows from the hidden

unit (or memory cell) of the recurrent layer at time instant t − 1 to the hidden unit at time

instant t. As discussed earlier, this is because the transferred information is more feature-

rich and contains more information from the past.

Figure 36-10. Sequence input to sequence output

Figure 36-11. Synced sequence input to output

Chapter 36 reCurrent neural networks (rnns)

453

 Training the Recurrent Network: Backpropagation
Through Time
The recurrent neural network is trained in much the same way as other traditional

neural networks by using the backpropagation algorithm. However, the backpropagation

algorithm is modified into what is called backpropagation through time (BPTT).

Due to the architectural loop or recurrent structure of the recurrent network, vanilla

backpropagation as is cannot work. Training a network using backpropagation involves

calculating the error gradient, moving backward from the output layer through the

hidden layers of the network and adjusting the network weights. However, this operation

cannot work in the recurrent neuron because we have just one neural cell with recurrent

connections to itself.

So, in order to train the recurrent network using backpropagation, we unroll the

recurrent neuron across the time instants and apply backpropagation to the unrolled

neurons at each time layer the same way it is done for a traditional feedforward neural

network. This operation is further illustrated in Figure 36-12.

Figure 36-12. Backpropagation through time

Chapter 36 reCurrent neural networks (rnns)

454

A significant challenge of training the recurrent neural network is the vanishing and

exploding gradient problem. When training a deep recurrent network for many layers

of time instants, calculating the gradients of the weights of the neurons can become

very volatile. When this happens, the value of the gradient can become extremely large

tending to infinity, or they become tiny, all the way to zero. When this happens, the

neurons become dead and cannot train or learn any new information further. This effect

is called the exploding and vanishing gradient problem.

The exploding and vanishing gradient problem is most prevalent in recurrent

neural networks because of the long-term dependencies or time instant of the unrolled

recurrent neuron. A proposed alternative technique for mitigating this problem in

recurrent networks (in addition to other discussed methods such as gradient clipping,

batch normalization, and using a non-saturating activation function such as ReLu) is to

discard early time instances or time instances in the distant past. This technique is called

Truncated Backpropagation Through Time (truncated BPTT).

However, truncated BPTT suffers a significant drawback, and this is that some

problems rely heavily on long-term dependencies to be able to make a prediction. A

typical example is in language modeling where the long-term sequence of words in the

past is vital in predicting the next word in the sequence.

The shortcoming of truncated BPTT and the need to deal with the problem of

exploding and vanishing gradients led to the development of a memory cell called the

Long Short-Term Memory or LSTM for short, which can store the long-term information

of the problem in the memory cell of the recurrent network.

 The Long Short-Term Memory (LSTM) Network
Long Short-Term Memory (LSTM) belongs to a class of RNN called gated recurrent

unit. They are called gated because unlike the basic recurrent units, they contain extra

components called gates that control the flow of information within the recurrent cell.

This includes choosing what information to store in the cell and what information to

discard or forget.

LSTM is very efficient for capturing the long-term dependencies across a large

number of time instants. It does this by having a slightly more sophisticated cell than the

basic recurrent units. The components of the LSTM are the

• Memory cell

• Input gate

Chapter 36 reCurrent neural networks (rnns)

455

• Forget gate

• Output gate

These extra components enable the RNN to remember and store important events

from the distant past. The LSTM takes as input the previous cell state, ct − 1; the previous

hidden state, ht − 1; and the current input, xt. To keep in line with the simplicity of this

book, we provide a high-level illustration of the LSTM cell showing how the extra

components of the cell come together. In TensorFlow 2.0, LSTM layer is implemented in

the method ‘tf.keras.layers.LSTM()’.
The illustration in Figure 36-13 is the LSTM memory cell. The components of the

LSTM cell serve distinct functions in preserving long-term dependencies in sequence

data. Let’s go through them:

• The input gate: This gate is responsible for controlling what

information gets stored in the long-term state or the memory cell, c.

Working in tandem with the input gate is another gate that regulates

the information flowing into the input gate. This gate analyzes the

current input to the LSTM cell, xt, and the previous short-term state,

ht − 1.

• The forget gate: The role of this gate is to regulate how much of the

information in the long-term state is persisted across time instants.

• The output gate: This gate controls how much information to output

from the cell at a particular time instant. This gate controls the value

of ht (the short-term state) and yt (the output at time t).

Chapter 36 reCurrent neural networks (rnns)

456

It is important to note that the components of the LSTM cells are all fully connected

neural networks. There exist other variants of recurrent networks with memory cells, two

of such are the peephole connections and the gated recurrent units.

 Peephole Connection
The peephole connection extends the LSTM network by also using information from the

memory cell or long-term state of the previous time instant ct − 1 as input to the LSTM

gates. The goal of the peephole is to provide extra information into the LSTM unit by

peeping at the stored long-term memory. This is further illustrated in Figure 36-14.

In TensorFlow 2.0, the implementation of peephole connections to an LSTM layer is

provided by the method ‘tf.keras.experimental.PeepholeLSTMCell()’.

Figure 36-13. LSTM cell

Chapter 36 reCurrent neural networks (rnns)

457

 Gated Recurrent Unit (GRU)
The gated recurrent unit (GRU) is a more recent recurrent neural network architecture

than the LSTM, and it is also comparable simpler to implement with respect to the

number of components within the unit and their operations. Despite its comparative

simplicity, GRUs are high-performing recurrent architectures and, in most cases, even

perform better than the LSTM in sequence modeling problems.

GRUs combine the forget and the input gates to decide on what information should

be committed to the long-term memory or the memory cell and what information

should be left out. Moreover, the GRU combines the cell (i.e., long-term state) and

short-term states into a single state vector ht. Also, the GRU removes the output gate and

returns the state vector ht at each time instant. This is further illustrated in Figure 36-15.

In TensorFlow 2.0, the GRU layer is implemented in the method ‘tf.keras.layers.GRU()’.

Figure 36-14. Peephole connection

Chapter 36 reCurrent neural networks (rnns)

458

 Recurrent Neural Networks Applied to Sequence
Problems
Recurrent neural networks have many application areas for using LSTM models for

sequence tasks. A couple of problems under this domain include sentiment analysis,

machine translation, image captioning, video captioning, and voice recognition. As

mentioned earlier, these problems can be modeled as a one-to-many model, a many-to-

one model, or a many-to-many model. The section will survey a few LSTM architectures

for tackling/modeling sequence problems:

• Long-term recurrent convolutional neural network, also known as

CNN LSTM

• Encoder-Decoder LSTMs

• Bidirectional recurrent neural networks

Figure 36-15. Gated recurrent unit

Chapter 36 reCurrent neural networks (rnns)

459

 Long-Term Recurrent Convolutional Network (LRCN)
The long-term recurrent convolutional network (LRCN) is a unique neural network

architecture for generating descriptions of images and videos (which is seen as a sequence

of images). These problems can be termed as visual time series modeling. The LRCN

architecture combines the ability of the convolutional neural network (CNN) to extract

image features together with a recurrent network for learning sequences or long-term

dependencies. The LRCN passes visual inputs into a CNN to retrieve image features as

outputs. These outputs are then passed into a recurrent LSTM network layer to generate

the natural language descriptions. The recurrent layer can contain stacked LSTMs.

One core advantage of LRCN for modeling sequential vision problems such as image

captioning and video captioning is that the network is not constrained to fixed lengths of

inputs and outputs. Hence, it can be used to model sequential data with different lengths

such as textual data and videos.

The following illustrations show how LRCN is applied to a variety of sequence

problems:

 1. Image captioning: Image captioning can be seen as a one-to-

many sequence problem. The input is an image and therefore a

static input, and the output is a sequence of text that describes the

objects in the image; this is a sequential output. The use of LRCN

for image captioning is illustrated in Figure 36-16.

Figure 36-16. Image captioning (photo by Daniel Llorente on Unsplash)

Chapter 36 reCurrent neural networks (rnns)

460

 2. Video captioning: Video can be seen as a sequence of images.

Hence, in a video captioning problem, a sequence of images

is passed as input to the LRCN model which in turn returns

a sequence of outputs as a textual description for each video

frame. Hence, video captioning can be seen as a many-to-many

sequence problem. This approach is an example of an Encoder-

Decoder LSTM where CNN is used as an image encoder that is

initially trained for image classification. The final hidden layer,

which is also called a bottleneck, is then passed as input to the

RNN decode. It is typical to use an already pre-trained CNN on a

large-scale image recognition task. A number of such models exist

in the public domain. We will survey Encoder-Decoder LSTMs in

more detail shortly. Video captioning is illustrated in Figure 36-17.

 Encoder-Decoder LSTMs
Encoder-Decoder LSTM architecture handles a particular class of sequence problems

that takes as input multiple time steps and also returns a multiple time step output. A

major challenge of this sort of problems is that both the input and output sequences can

have varied lengths.

The first part of the architecture, that is, the Encoder, is responsible for receiving and

encoding the input sequence; the second part of the architecture, that is, the Decoder,

takes in the output from the Encoder and then predicts the output sequence.

Figure 36-17. Video captioning

Chapter 36 reCurrent neural networks (rnns)

461

The sort of architecture is made for natural language processing problems where

the output is a sequence of words. It is commonly used in machine translation, video

captioning, and speech recognition. An illustration is already provided in Figure 36-10.

 Bidirectional Recurrent Neural Networks
Bidirectional RNN is another particular type of recurrent neural network architecture

that involves placing the recurrent layers beside each other where one layer works

to learn the long-term dependencies from the past; this layer is called the forward

LSTM. For the other layer, the input is reversed and fed into the network, so the network

learns long-term dependencies from the future. This layer is called the backward

LSTM. The bidirectional RNN is illustrated in Figure 36-18.

Figure 36-18. Bidirectional LSTM

Chapter 36 reCurrent neural networks (rnns)

462

When the outputs from these side-by-side networks are combined, it is easier

to predict the next time step of a sequence having privy to the entire information

gamut, because they process both information from the past and the future. Although

this architecture was first designed for speech recognition tasks, it has performed

impressively across a variety of other sequence prediction tasks. It is built to improve on

the vanilla unidirectional LSTM which only has knowledge of the past.

This network is built on the understanding that some learning problems only make

sense when a coherent set of information is present. For example, if a human interpreter

is interpreting from one language to another, he first listens to a cohesive set of

information in one language before interpreting to another language. This is because the

context of an entire cohesive sentence gives the right basis for a correct interpretation.

 RNN with TensorFlow 2.0: Univariate Timeseries
This section makes use of the Nigeria power consumption dataset to implement a

univariate timeseries model with LSTM recurrent neural networks. The dataset for this

example is the Nigeria power consumption data from January 1 to March 11 by Hipel

and McLeod (1994), retrieved from DataMarket.

The dataset is preprocessed for timeseries modeling with RNNs by converting the

data input and outputs into sequences using the method ‘convert_to_ sequences’. This

method splits the dataset into rolling sequences consisting of 20 rows (or time steps)

using a window of 1}. In Figure 36-19, the example univariate dataset is converted into

sequences of five time steps, where output sequence is one step ahead of the input

sequence. Each sequence contains five rows (determined by the time_steps variable)

and in this univariate case, 1 column.

Chapter 36 reCurrent neural networks (rnns)

463

When modeling using RNNs, it is important to scale the dataset to have values within

the same range. The plot in Figure 36-20 shows predictions of the model along with the

original targets and the lagging training instances. The next plots in Figure 36-21 and

Figure 36-22 show the original series and the RNN generated series in both the scaled

and normal values.

For increased training speed, the model will train on a GPU. If running the code on

Google Colab, change the runtime type to GPU and install TensorFlow 2.0 with GPU

package.

import TensorFlow 2.0 with GPU

!pip install -q tf-nightly-gpu-2.0-preview

import packages

import tensorflow as tf

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

Figure 36-19. Converting a univariate series into sequences for prediction with
RNNs. Left: Sample univariate dataset. Center: Input sequence. Right: Output
sequence

Chapter 36 reCurrent neural networks (rnns)

464

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import MinMaxScaler

confirm tensorflow can see GPU

device_name = tf.test.gpu_device_name()

if device_name != '/device:GPU:0':

 raise SystemError('GPU device not found')

print('Found GPU at: {}'.format(device_name))

data file path

file_path = "nigeria-power-consumption.csv"

load data

parse_date = lambda dates: pd.datetime.strptime(dates, '%d-%m')

data = pd.read_csv(file_path, parse_dates=['Month'], index_col='Month',

 date_parser=parse_date,

 engine='python', skipfooter=2)

print column name

data.columns

change column names

data.rename(columns={'Nigeria power consumption': 'power-consumption'},

 inplace=True)

split in training and evaluation set

data_train, data_eval = train_test_split(data, test_size=0.2,

shuffle=False)

MinMaxScaler - center and scale the dataset

scaler = MinMaxScaler(feature_range=(0, 1))

data_train = scaler.fit_transform(data_train)

data_eval = scaler.fit_transform(data_eval)

adjust univariate data for timeseries prediction

def convert_to_sequences(data, sequence, is_target=False):

 temp_df = []

 for i in range(len(data) - sequence):

 if is_target:

Chapter 36 reCurrent neural networks (rnns)

465

 temp_df.append(data[(i+1): (i+1) + sequence])

 else:

 temp_df.append(data[i: i + sequence])

 return np.array(temp_df)

parameters

time_steps = 20

batch_size = 50

create training and testing data

train_x = convert_to_sequences(data_train, time_steps, is_target=False)

train_y = convert_to_sequences(data_train, time_steps, is_target=True)

eval_x = convert_to_sequences(data_eval, time_steps, is_target=False)

eval_y = convert_to_sequences(data_eval, time_steps, is_target=True)

build model

model = tf.keras.Sequential()

model.add(tf.keras.layers.LSTM(128, input_shape=train_x.shape[1:],

 return_sequences=True))

model.add(tf.keras.layers.Dense(1))

compile the model

model.compile(loss='mean_squared_error',

 optimizer='adam',

 metrics=['mse'])

print model summary

model.summary()

create dataset pipeline

train_ds = tf.data.Dataset.from_tensor_slices(

 (train_x, train_y)).shuffle(len(train_x)).repeat().batch(batch_size)

test_ds = tf.data.Dataset.from_tensor_slices((eval_x, eval_y)).batch(batch_

size)

train the model

history = model.fit(train_ds, epochs=10,

 steps_per_epoch=500)

Chapter 36 reCurrent neural networks (rnns)

466

evaluate the model

loss, mse = model.evaluate(test_ds)

print('Test loss: {:.4f}'.format(loss))

print('Test mse: {:.4f}'.format(mse))

predict

y_pred = model.predict(eval_x)

plot predicted sequence

plt.title("Model Testing", fontsize=12)

plt.plot(eval_x[0,:,0], "b--", markersize=10, label="training instance")

plt.plot(eval_y[0,:,0], "g--", markersize=10, label="targets")

plt.plot(y_pred[0,:,0], "r--", markersize=10, label="model prediction")

plt.legend(loc="upper left")

plt.xlabel("Time")

plt.show()

Figure 36-20. Keras LSTM Model Testing

Chapter 36 reCurrent neural networks (rnns)

467

inverse to normal scale and plot

data_train_inverse = scaler.inverse_transform(data_train.reshape(-1, 1))

rnn_data_inverse = scaler.inverse_transform(np.array(rnn_data).reshape(-1, 1))

use model to predict sequences using training data as seed

rnn_data = list(data_train[:20])

for i in range(len(data_train) - time_steps):

 batch = np.array(rnn_data[-time_steps:]).reshape(1, time_steps, 1)

 y_pred = model.predict(batch)

 rnn_data.append(y_pred[0, -1, 0])

plt.title("RNN vs. Original series", fontsize=12)

plt.plot(data_train, "b--", markersize=10, label="Original series")

plt.plot(rnn_data, "g--", markersize=10, label="RNN generated series")

plt.legend(loc="upper left")

plt.xlabel("Time")

plt.show()

Figure 36-21. Original series vs. RNN generated series – scaled data values

Chapter 36 reCurrent neural networks (rnns)

468

plt.title("RNN vs. Original series with normal scale", fontsize=12)

plt.plot(data_train_inverse, "b--", markersize=10, label="Original series")

plt.plot(rnn_data_inverse, "g--", markersize=10, label="RNN generated

series")

plt.legend(loc="upper left")

plt.xlabel("Time")

plt.show()

From the Keras LSTM code listing, the method tf.keras.layers.LSTM() is used to

implement the LSTM recurrent layer. The attribute return_sequences is set to True to

return the last output in the output sequence, or the full sequence.

 RNN with TensorFlow 2.0: Multivariate Timeseries
The dataset for this example is the Dow Jones Index Data Set from the famous UCI

Machine Learning Repository. In this stock dataset, each row contains the stock price

record for a week including the percentage of return that stock has in the following week

Figure 36-22. Original series vs. RNN generated series – normal data values

Chapter 36 reCurrent neural networks (rnns)

469

percent_change_next_weeks_price(). For this example, the record for the previous

week is used to predict the percent change in price for the next 2 weeks for Bank of

America, BAC stock prices.

The method named clean_dataset() carries out some rudimentary cleanup of the

dataset to make it suitable for modeling. The actions taken on this particular dataset

involve removing the dollar sign from certain of the data columns, removing missing

values, and rearranging the data columns so target attribute percent_change_next_
weeks_price is the last column.

The method named data_transform() subselects the stock records belonging to

‘Bank of America,’ and the target attribute is adjusted so that the previous week record is

used to predict the percent change in price for the next 2 weeks. Also, the dataset is split

into training and testing sets. The method named normalize_and_scale() removes the

non-numeric columns and scales the dataset attributes.

Again, the model will train on a GPU instance. The model will be a stacked GRU with

multiple GRU layers. This stacking of RNN layers with memory cells makes the network

more expressive and can learn more complex long-running sequences. If running the

code on Google Colab, change the runtime type to GPU and install TensorFlow 2.0 with

GPU package. The output plot in Figure 36-23 is the model predictions showing the

targets and the lag training instances.

import TensorFlow 2.0 with GPU

!pip install -q tf-nightly-gpu-2.0-preview

import packages

import tensorflow as tf

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import MinMaxScaler

confirm tensorflow can see GPU

device_name = tf.test.gpu_device_name()

if device_name != '/device:GPU:0':

 raise SystemError('GPU device not found')

print('Found GPU at: {}'.format(device_name))

Chapter 36 reCurrent neural networks (rnns)

470

data file path

file_path = "dow_jones_index.data"

load data

data = pd.read_csv(file_path, parse_dates=['date'], index_col='date')

print column name

data.columns

print column datatypes

data.dtypes

parameters

outputs = 1

stock ='BAC' # Bank of America

def clean_dataset(data):

 # strip dollar sign from `object` type columns

 col = ['open', 'high', 'low', 'close', 'next_weeks_open', 'next_weeks_

close']

 data[col] = data[col].replace({'\$': "}, regex=True)

 # drop NaN

 data.dropna(inplace=True)

 # rearrange columns

 columns = ['quarter', 'stock', 'open', 'high', 'low', 'close', 'volume',

 'percent_change_price', 'percent_change_volume_over_last_wk',

 'previous_weeks_volume', 'next_weeks_open', 'next_weeks_close',

 'days_to_next_dividend', 'percent_return_next_dividend',

 'percent_change_next_weeks_price']

 data = data[columns]

 return data

def data_transform(data):

 # select stock data belonging to Bank of America

 data = data[data.stock == stock]

 # adjust target(t) to depend on input (t-1)

 data.percent_change_next_weeks_price = data.percent_change_next_weeks_

price.shift(-1)

Chapter 36 reCurrent neural networks (rnns)

471

 # remove nans as a result of the shifted values

 data = data.iloc[:-1,:]

 # split quarter 1 as training data and quarter 2 as testing data

 train_df = data[data.quarter == 1]

 test_df = data[data.quarter == 2]

 return (np.array(train_df), np.array(test_df))

def normalize_and_scale(train_df, test_df):

 # remove string columns and convert to float

 train_df = train_df[:,2:].astype(float,copy=False)

 test_df = test_df[:,2:].astype(float,copy=False)

 # MinMaxScaler - center and scale the dataset

 scaler = MinMaxScaler(feature_range=(0, 1))

 train_df_scale = scaler.fit_transform(train_df[:,2:])

 test_df_scale = scaler.fit_transform(test_df[:,2:])

 return (scaler, train_df_scale, test_df_scale)

clean the dataset

data = clean_dataset(data)

select Dow Jones stock and split into training and test sets

train_df, test_df = data_transform(data)

scale the data

scaler, train_df_scaled, test_df_scaled = normalize_and_scale(train_df,

test_df)

split train/ test

train_X, train_y = train_df_scaled[:, :-1], train_df_scaled[:, -1]

test_X, test_y = test_df_scaled[:, :-1], test_df_scaled[:, -1]

reshape inputs to 3D array

train_X = train_X[:,None,:]

test_X = test_X[:,None,:]

reshape outputs

train_y = np.reshape(train_y, (-1,outputs))

test_y = np.reshape(test_y, (-1,outputs))

Chapter 36 reCurrent neural networks (rnns)

472

model parameters

batch_size = int(train_X.shape[0]/5)

length = train_X.shape[0]

build model

model = tf.keras.Sequential()

model.add(tf.keras.layers.GRU(128, input_shape=train_X.shape[1:],

 return_sequences=True))

model.add(tf.keras.layers.GRU(100, return_sequences=True))

model.add(tf.keras.layers.GRU(64))

model.add(tf.keras.layers.Dense(1))

compile the model

model.compile(loss='mean_squared_error',

 optimizer='adam',

 metrics=['mse'])

print model summary

model.summary()

create dataset pipeline

train_ds = tf.data.Dataset.from_tensor_slices(

 (train_X, train_y)).shuffle(len(train_X)).repeat().batch(batch_size)

test_ds = tf.data.Dataset.from_tensor_slices((test_X, test_y)).batch(batch_size)

train the model

history = model.fit(train_ds, epochs=10,

 steps_per_epoch=500)

evaluate the model

loss, mse = model.evaluate(test_ds)

print('Test loss: {:.4f}'.format(loss))

print('Test mse: {:.4f}'.format(mse))

predict

y_pred = model.predict(test_X)

plot

plt.figure(1)

Chapter 36 reCurrent neural networks (rnns)

473

plt.title("Keras - GRU RNN Model Testing for '{}' stock".format(stock),

fontsize=12)

plt.plot(test_y, "g--", markersize=10, label="targets")

plt.plot(y_pred, "r--", markersize=10, label="model prediction")

plt.legend()

plt.xlabel("Time")

plt.show()

plt.savefig('gru-bac-model.png', dpi=800)

This chapter gave an overview of recurrent neural networks (RNNs) and its

application in learning recurrent models for different types of sequence problems. The

next chapter will discuss how we can use neural networks to reconstruct the inputs as

some form of unsupervised learning using autoencoders.

Figure 36-23. GRU RNN Model Testing for Bank of America stock

Chapter 36 reCurrent neural networks (rnns)

475
© Ekaba Bisong 2019
E. Bisong, Building Machine Learning and Deep Learning Models on Google Cloud Platform,
https://doi.org/10.1007/978-1-4842-4470-8_37

CHAPTER 37

Autoencoders
Autoencoder is an unsupervised learning algorithm that uses neural networks to

reconstruct the features of a dataset. Just like the unsupervised algorithms that we earlier

discussed in the chapter on machine learning, autoencoders can be used to reduce

the dimensionality of a dataset and to extract relevant features. Moreso, peculiar to

autoencoders is the ability to generate more examples of the dataset after learning an

internal representation (also called coding) that reconstructs the features of the inputs to

the neural network.

An autoencoder receives as input the features of the dataset. These features are

passed through a set of encoders, which are the hidden layers of a neural network to

create an internal representation called codings. The learned coding is then used to

reconstruct the output through a set of decoders, which are also hidden neural network

layers. The autoencoder cannot merely do a trivial memorization of the inputs, because

a constraint is placed on the encoders by reducing the input dimension to force the

network to learn an efficient set of representation from which the decoders use to

reconstruct the inputs.

Autoencoders with restricted Encoders and Decoders are called undercomplete.

A reconstruction error term is used to evaluate the performance of an autoencoder

by testing how well the output corresponds with the input. Of course, just like other

neural networks, the neurons of the Encoders and Decoders have non-linear activation

functions for learning complex patterns. An example of a simple autoencoder network

architecture is shown in Figure 37-1.

476

 Stacked Autoencoders
Stacked autoencoder is when the simple autoencoder architecture as shown in

Figure 37-1 is enhanced with multiple hidden layers. Just like other deep neural network

architectures with hidden layers, the hidden layers of an autoencoder enable the

network to learn more complex patterns of the input dataset.

The hidden layers of a stacked or deep autoencoder are added symmetrically at both

the Encoder and Decoder part of the network as shown in Figure 22-2. The neurons of

the hidden layers are restricted to be less than that of the input layer. This formulation

places a restriction on the network, so it doesn’t merely memorize the input. Moreso,

care must be taken not to create too many deep layers, so the autoencoder does not

overfit the input data and fail to generalize to out-of-sample examples. To optimize the

training of a deep autoencoder, the weights of the symmetrical neural layers are shared

in a technique called tying.

Figure 37-1. A simple autoencoder architecture

Chapter 37 autoenCoders

477

 Stacked Autoencoders with TensorFlow 2.0
The code example in this section shows how to implement an autoencoder network

using TensorFlow 2.0. For simplicity, the MNIST handwriting dataset is used to create

reconstructions of the original images. In this example, a stacked autoencoder is

implemented with the original and reconstructed image shown in Figure 37-3. The code

listing is presented in the following, and corresponding notes on the code are shown

thereafter.

import TensorFlow 2.0 with GPU

!pip install -q tf-nightly-gpu-2.0-preview

import packages

import tensorflow as tf

Figure 37-2. Stacked or deep autoencoder. The hidden layers are added
symmetrically at both the Encoder and Decoder

Chapter 37 autoenCoders

478

import numpy as np

import matplotlib.pyplot as plt

import dataset

(x_train, _), (x_test, _) = tf.keras.datasets.mnist.load_data()

change datatype to float

x_train = x_train.astype('float32')

x_test = x_test.astype('float32')

scale the dataset from 0 -> 255 to 0 -> 1

x_train /= 255

x_test /= 255

flatten the 28x28 images into vectors of size 784

x_train = x_train.reshape((len(x_train), np.prod(x_train.shape[1:])))

x_test = x_test.reshape((len(x_test), np.prod(x_test.shape[1:])))

create the autoencoder model

def model_fn():

 model_input = tf.keras.layers.Input(shape=(784,))

 encoded = tf.keras.layers.Dense(units=512, activation='relu')(model_input)

 encoded = tf.keras.layers.Dense(units=128, activation='relu')(encoded)

 encoded = tf.keras.layers.Dense(units=64, activation='relu')(encoded)

 coding_layer = tf.keras.layers.Dense(units=32)(encoded)

 decoded = tf.keras.layers.Dense(units=64, activation='relu')(coding_layer)

 decoded = tf.keras.layers.Dense(units=128, activation='relu')(decoded)

 decoded = tf.keras.layers.Dense(units=512, activation='relu')(decoded)

 decoded_output = tf.keras.layers.Dense(units=784)(decoded)

 # the autoencoder model

 autoencoder_model = tf.keras.Model(inputs=model_input, outputs=decoded_output)

 # compile the model

 autoencoder_model.compile(optimizer='adam',

 loss='binary_crossentropy',

 metrics=['accuracy'])

 return autoencoder_model

Chapter 37 autoenCoders

479

build the model

autoencoder_model = model_fn()

print autoencoder model summary

autoencoder_model.summary()

train the model

autoencoder_model.fit(x_train, x_train, epochs=1000, batch_size=256,

 shuffle=True, validation_data=(x_test, x_test))

visualize reconstruction

sample_size = 6

test_image = x_test[:sample_size]

reconstruct test samples

test_reconstruction = autoencoder_model.predict(test_image)

plt.figure(figsize = (8,25))

plt.suptitle('Stacked Autoencoder Reconstruction', fontsize=16)

for i in range(sample_size):

 plt.subplot(sample_size, 2, i*2+1)

 plt.title('Original image')

 plt.imshow(test_image[i].reshape((28, 28)), cmap="Greys",

interpolation="nearest", aspect='auto')

 plt.subplot(sample_size, 2, i*2+2)

 plt.title('Reconstructed image')

 plt.imshow(test_reconstruction[i].reshape((28, 28)), cmap="Greys",

interpolation="nearest", aspect='auto')

plt.show()

From the preceding code listing, take note of the following:

• Observe the arrangement of the encoder layers and the decoder

layers of the stacked autoencoder. Specifically note how the

corresponding layer arrangement of the encoder and the decoder has

the same number of neurons.

• The loss error measures the squared difference between the inputs

into the autoencoder network and the decoder output.

The image in Figure 37-3 contrasts the reconstructed images from the autoencoder

network with the original images in the dataset.

Chapter 37 autoenCoders

480

Figure 37-3. Stacked autoencoder reconstruction. Left: Original image. Right:
Reconstructed image.

Chapter 37 autoenCoders

481

 Denoising Autoencoders
Denoising autoencoders add a different type of constraint to the network by imputing

some Gaussian noise into the inputs. This noise injection forces the autoencoder to

learn the uncorrupted form of the input features; by doing so, the autoencoder learns the

internal representation of the dataset without memorizing the inputs.

Another way a denoising autoencoder constrains the input is by deactivating some

input neurons in a similar fashion to the Dropout technique. Denoising autoencoders

use an overcomplete network architecture. This means that the dimensions of the

hidden Encoder and Decoder layers are not restricted; hence, they are overcomplete. An

illustration of a denoising autoencoder architecture is shown in Figure 37-4.

Figure 37-4. Denoising autoencoder. Constraint is applied by either adding
Gaussian noise or by switching off some a random selection of the input neurons.

Chapter 37 autoenCoders

482

This chapter discussed how deep neural networks can be employed in an

unsupervised fashion to reconstruct the inputs to the network as the network’s output.

This is the final chapter in Part 6 that provides a general theoretical background to deep

neural networks and how they are implemented in TensorFlow 2.0. In Part 7, we will

discuss doing advanced analytics and machine learning on Google Cloud Platform.

Chapter 37 autoenCoders

PART VII

Advanced Analytics/
Machine Learning on
Google Cloud Platform

485
© Ekaba Bisong 2019
E. Bisong, Building Machine Learning and Deep Learning Models on Google Cloud Platform,
https://doi.org/10.1007/978-1-4842-4470-8_38

CHAPTER 38

Google BigQuery
BigQuery is a Google-managed data warehouse product that is highly scalable, fast, and

optimized for data analytics with rudimentary in-built machine learning capabilities

as part of the product offering. It is also one of Google’s many serverless products. This

means that you do not physically manage the infrastructure assets and the overhead

responsibilities/costs. It is only used to solve the business use case, and it just works in a

highly performant manner.

BigQuery is suited for storing and analyzing structured data. The idea of structured

data is that it must have a schema that describes the columns or fields of the dataset. CSV

or JSON files are examples of structured data formats. BigQuery differentiates itself from

other relational databases in that it can store a collection of other fields (or columns) as a

record type, and a particular field in a row can have more than one value. These features

make BigQuery more expressive for storing datasets without the flat row constraint of

relational databases.

Similar to relational databases, BigQuery organizes rows into tables, and are

accessed using the familiar Structured Query Language (SQL) for databases. However,

individual rows in a table cannot be updated by running a SQL Update statement. Tables

can only be appended to or entirely re-written. Meanwhile, a group of tables in BigQuery

is organized into datasets.

When a query is executed in BigQuery, it runs in parallel on thousands of cores.

This feature greatly accelerates the performance of query execution and consequently

the speed of gaining insights from your data. This ability for massive parallel execution

is one of the major reasons individuals, companies, and institutions are migrating to

BigQuery as their data warehouse of choice.

Also BigQueryML is a powerful platform for building machine learning models

inside of BigQuery. The models take advantage of automated feature engineering and

hyper-parameter optimization and are automatically updated based on changes to

the underlying dataset. This feature is extremely powerful and lowers the threshold

486

of business intelligence and analytics personnel to more easily harness the predictive

power of using machine learning for business forecasting and decision-making.

 What BigQuery Is Not
As powerful and widely purposed as BigQuery is, it may not be properly suited for some

use cases:

• BigQuery is not a replacement for a relational database. Some

business use cases may involve a large number of table row updates;

in such an instance, BigQuery is most likely not the data storage

solution of choice, as relational databases are well suited for such

highly transactional tasks. GCP offers the Cloud SQL and Cloud

Spanner as parts of its managed relational products.

• BigQuery is not a NoSQL database. Data stored in BigQuery must

have a schema. NoSQL is a schema-less data storage solution. GCP

also has Cloud BigTable and Cloud Datastore, which are highly

scalable and performant managed NoSQL products.

 Getting Started with BigQuery
BigQuery can be accessed and used via a variety of ways; they include

• The BigQuery web UI

• The command-line tool, ‘bq’

• The client API libraries for programmatic access

In this section, we will introduce BigQuery by working with the web UI, because it

gives a graphical view of the datasets and tables within BigQuery and is good for quick

execution of queries on the query engine.

To open BigQuery from the GCP dashboard, click the triple dash on the top-left

corner and select BigQuery from the product section labeled Big Data as shown in

Figure 38-1.

Chapter 38 GooGle BiGQuery

487

The BigQuery web UI dashboard is as shown in Figure 38-2.

Figure 38-1. Open BigQuery

Chapter 38 GooGle BiGQuery

488

In Figure 38-2, there are three labeled sections of the BigQuery web UI that we’ll

briefly explain:

 1. The navigation panel: This panel contains a set of BigQuery

resources such as

• Query history: For viewing previous queries

• Saved queries: For storing frequently used queries

• Job history: For viewing BigQuery jobs such as loading, copying,

and exporting of data

• Transfers: Link to the BigQuery Data Transfer Service UI

• Resources: Shows a list of pinned projects and their containing

Datasets

Figure 38-2. BigQuery web UI

Chapter 38 GooGle BiGQuery

489

 2. The Query editor: This is where queries are composed using the

familiar SQL database language.

 3. The Details panel: This panel shows the details of projects,

datasets, and table when clicked in the Resources tab. Also, this

panel shows the results of executed queries.

 Public Datasets
BigQuery comes with access to some public datasets; we will use these datasets to

explore working with BigQuery. To view the public datasets, go to

 https://console.cloud.google.com/bigquery?p=bigquery-public-

data&page=project.

The public datasets will now show in the Resources section of the navigation panel

(see Figure 38-3).

Figure 38-3. Public Datasets

Chapter 38 GooGle BiGQuery

https://console.cloud.google.com/bigquery?p=bigquery-public-data&page=project
https://console.cloud.google.com/bigquery?p=bigquery-public-data&page=project

490

 Running Your First Query
For our first query, we will work with the ‘census_bureau_international’ dataset which

“provides estimates of country populations since 1950 and projections through 2050.” In

this query, we select a country and their life expectancy (for both sexes) in the year 2018.

SELECT

 country_name,

 life_expectancy

FROM

 ̀bigquery-public-data.census_bureau_international.mortality_life_

expectancy`

WHERE

 year = 2018

ORDER BY

 life_expectancy DESC

A sample of the query result is shown in Figure 38-4 under Query results.

Figure 38-4. First query

Chapter 38 GooGle BiGQuery

491

After typing the query in the Query editor, the following should be noted, as

numbered in Figure 38-4:

 1. Click the ‘Run query’ button to execute the query.

 2. The green status indicator shows that the query is a valid SQL

statement and shows by the side an estimate of the query size

estimation.

 3. The query results can be easily analyzed and visualized using Data

Studio.

 4. We can see that the query completed in just over a second.

 Loading Data into BigQuery
In this simple data ingestion example, we will load a CSV file stored on Google Cloud

Storage (GCS) into BigQuery. In GCP, Google Cloud Storage is a general-purpose storage

location for all variety of file types and is preferred as a staging area or an archival

repository for data. Let’s walk through the following steps.

 Staging the Data in GCS
Let’s go through the steps to stage the data in Google Cloud Storage:

 1. Activate Cloud Shell as shown in Figure 38-5.

Figure 38-5. Activate Google Cloud Shell

Chapter 38 GooGle BiGQuery

492

 2. Create a bucket on GCS (remember to give the bucket a unique

name).

gsutil mb gs://my-test-data

 3. Transfer data into bucket. The CSV data used in this example is

a crypto-currency dataset stored in the code repository. Use the

‘gsutil cp’ command to move the dataset to GCS bucket.

gsutil cp crypto-markets.csv gs://my-test-data

 4. Show the transferred data in the bucket.

gsutil ls gs://my-test-data/

 Loading Data Using the BigQuery Web UI
Let’s go through the following steps to load data into BigQuery using the web UI:

 1. In the navigation panel, click the project name, and then click

CREATE DATASET in the Details panel (see Figure 38-6).

Figure 38-6. Create Dataset

 2. Type ‘crypto_data’ as the DatasetID, and select ‘United States

(US)’ as the data location (see Figure 38-7).

Chapter 38 GooGle BiGQuery

493

 3. Next, click the newly created Dataset in the navigation panel, and

then click CREATE TABLE in the Details panel (see Figure 38-8).

Figure 38-7. Create Dataset parameters

Figure 38-8. Create Table

Chapter 38 GooGle BiGQuery

494

 4. We’ll create a table from a CSV file stored on Google Cloud

Storage. On the Create Table page, select the following parameters

as shown in Figure 38-9:

 a. Select ‘Google Cloud Storage’ for Source Data.

 b. Select the file ‘crypto-markets.csv’ from the bucket ‘my-test-data’.

 c. Choose CSV as the file format.

 d. Type ‘markets’ as the Destination table.

 e. Toggle ‘Edit as Text’ and enter the following as the schema:

slug,symbol,name,date,ranknow,open,high,low,close,volume,market,

close_ratio,spread

 f. Expand ‘Advanced options’ and set ‘Header rows to skip’ to 1.

 g. Click Create table.

Figure 38-9. Create table options

Chapter 38 GooGle BiGQuery

495

Click Job history in the navigation panel to view the status of the loading job (see

Figure 38-10).

A preview of the created table is as shown in Figure 38-11.

Figure 38-10. BigQuery loading job

Chapter 38 GooGle BiGQuery

496

 The bq Command-Line Utility
Let’s go through some useful commands on the Cloud Shell terminal with the ‘bq’ utility:

• List the projects that can be accessed.

bq ls –p

 projectId friendlyName

 ----------------------- ------------------

 secret-country-192905 My First Project

• List datasets in the default project.

bq ls

 datasetId

 crypto_data

Figure 38-11. Preview of loaded table

Chapter 38 GooGle BiGQuery

497

• List tables in a Dataset.

bq ls crypto_data

 tableId Type Labels Time Partitioning

 --------- ------- -------- -------------------

 markets TABLE

• List the recent executed jobs. This includes both load jobs and

queries executed.

bq ls –j

jobId Job Type State Start Time Duration

---------------------------- -------- -------- --------------- --------

bquxjob_767fb332_16625172a52 load SUCCESS 29 Sep 07:29:27 0:00:10

bquxjob_2a33184c_16625141949 load SUCCESS 29 Sep 07:26:06 0:00:13

bquxjob_582a116b_16624b3717a query SUCCESS 29 Sep 05:41:20 0:00:01

bquxjob_7b18cd73_16624a0f378 query SUCCESS 29 Sep 05:40:32 0:00:01

 Loading Data Using the Command-Line bq Utility
The following commands walk through loading a dataset into BigQuery using the bq

utility via the terminal:

• Create a new Dataset.

bq mk crypto_data_terminal

Dataset 'secret-country-192905:crypto_data_terminal' successfully

created.

• List the datasets to confirm creation of new Dataset.

bq ls

 datasetId

 crypto_data

 crypto_data_terminal

Chapter 38 GooGle BiGQuery

498

• Load data as a Table into the newly created Dataset. We load the file

using the ‘bq load’ command. This command loads data in a new or

existing table. In our example, we load the data from the GCS bucket

‘gs://my-test-data/crypto-markets.csv’ into a newly created table

named ‘markets_terminal’ with the schema “slug,symbol,name,date,

ranknow,open,high,low,close,volume,market,close_ratio,spread”

bq load crypto_data_terminal.markets_terminal gs://my-test-data/

crypto- markets.csv slug,symbol,name,date,ranknow,open,high,low,

close,volume,market,close_ratio,spread

• List the tables in the dataset.

bq ls crypto_data_terminal

 tableId Type Labels Time Partitioning

 ------------------ ------- -------- -------------------

 markets_terminal TABLE

• Examine the table schema.

bq show crypto_data_terminal.markets_terminal

Table secret-country-192905:crypto_data_terminal.markets_terminal

 Last modified Schema Total Rows Total

Bytes Expiration Time Partitioning Labels

 ----------------- ------------------------ ------------ ---------

---- ------------ ------------------- --------

 29 Sep 09:12:24 |- slug: string 498381 52777964

 |- symbol: string

 |- name: string

 |- date: string

 |- ranknow: string

 |- open: string

 |- high: string

 |- low: string

 |- close: string

 |- volume: string

Chapter 38 GooGle BiGQuery

499

 |- market: string

 |- close_ratio: string

 |- spread: string

• Delete a table.

bq rm crypto_data_terminal.markets_terminal

• Delete a Dataset. This command will delete a Dataset with all its

containing tables.

bq rm -r crypto_data_terminal

 BigQuery SQL
In this section, we’ll have an overview of SQL by executing some examples that gives a

broad perspective of what can be achieved with SQL. New users who have not used SQL

before will benefit from this section. Also, SQL is amazingly easy and intuitive to use

that non-technical people like personnel in marketing and sales are experts at this even

sometimes more than programmers. It is an expressive declarative language.

BigQuery works with both the standard SQL which supports SQL 2011 standard and

the legacy SQL syntax which is a non-standard variant of SQL. However, standard SQL is

the preferred query syntax for BigQuery. In experimenting with SQL, we will work with

the census_bureau_international public dataset. The following queries are available in

the chapter notebook of the book repository.

 Filtering
The following query selects the fertility rate for each country in the year 2018 from the

‘age_specific_fertility_rates’ table in the ‘census_bureau_international’ dataset. The

resulting table is arranged in descending order.

bq query --use_legacy_sql=false 'SELECT

 country_name AS country,

 total_fertility_rate AS fertility_rate

FROM

 ̀bigquery-public-data.census_bureau_international.age_specific_fertility_

rates`

Chapter 38 GooGle BiGQuery

500

WHERE

 year = 2018

ORDER BY

 fertility_rate DESC

LIMIT

 10'

Waiting on bqjob_r142a3f484f713c4a_0000016626f7f063_1 ... (0s) Current

status: DONE

+-------------+----------------+

| country | fertility_rate |

+-------------+----------------+

| Niger | 6.3504 |

| Angola | 6.0945 |

| Burundi | 5.934 |

| Mali | 5.9 |

| Chad | 5.9 |

| Somalia | 5.702 |

| Uganda | 5.62 |

| Zambia | 5.582 |

| Malawi | 5.4286 |

| South Sudan | 5.34 |

+-------------+----------------+

In the preceding query, the SQL command SELECT is used to select fields or

columns from the table. What follows after the SELECT keyboard is the list of the column

names separated by a comma. The keyword AS is used to give an alternative name to

the column that will be displayed in the resulting table when the query is executed. The

keyword FROM is used to point to the table from which the data is being retrieved. In

BigQuery, using the standard SQL, the table name is prefixed by the database name

and the project ID is surrounded by a pair of backticks (i.e., ‘project_id.database_name.

table_name‘).

The keyword WHERE is used to filter the rows returned from the query. The keyword

ORDER BY is used to arrange the retrieved data in either ascending or descending

order by a specified column or set of columns. The keyword LIMIT truncates the results

retrieved from the query.

Chapter 38 GooGle BiGQuery

501

 Aggregation
The following query selects the average population for each country between the years

2000 and 2018 from the ‘midyear_population’ table in the ‘census_bureau_international’

dataset. The resulting table is arranged in descending order.

bq query --use_legacy_sql=false 'SELECT

 country_name AS country,

 AVG(midyear_population) AS average_population

FROM

 `bigquery-public-data.census_bureau_international.midyear_population`

WHERE

 year >= 2000 AND year <= 2018

GROUP BY

 country

ORDER BY

 average_population DESC

LIMIT

 20'

Waiting on bqjob_r95be3d17e726415_000001662890a68f_1 ... (1s) Current

status: DONE

+------------------+----------------------+

| country | average_population |

+------------------+----------------------+

| China | 1.3285399873157892E9 |

| India | 1.154912377105263E9 |

| United States | 3.0594302226315784E8 |

| Indonesia | 2.3984691394736844E8 |

| Brazil | 1.930978929473684E8 |

| Pakistan | 1.8112083526315784E8 |

| Nigeria | 1.6255564478947365E8 |

| Bangladesh | 1.447749475789474E8 |

| Russia | 1.4330035963157892E8 |

| Japan | 1.2727527184210527E8 |

| Mexico | 1.1269223210526317E8 |

| Philippines | 9.1357295E7 |

Chapter 38 GooGle BiGQuery

502

| Vietnam | 8.83786184736842E7 |

| Ethiopia | 8.460339989473683E7 |

| Germany | 8.168817173684208E7 |

| Egypt | 8.064017099999999E7 |

| Iran | 7.427240431578948E7 |

| Turkey | 7.389499394736844E7 |

| Congo (Kinshasa) | 6.82958565263158E7 |

| Thailand | 6.619103463157895E7 |

+------------------+----------------------+

In the preceding query, the fields retrieved using the SELECT command are passed

through an aggregation function to give the average of the mid-year population for

the years between 2000 and 2018 inclusive. In order to mix aggregated field and non-

aggregated fields, we need the GROUP BY command to group the result by one or more

columns, or else only a single result will be returned because of the aggregated function.

 Joins
The following query selects the average population for each country and their life

expectancy for the year 2018. The data is joined from the ‘midyear_population’ table and

the ‘mortality_life_expectancy’ table in the ‘census_bureau_international’ dataset. The

resulting table is grouped by country name and year and arranged in descending order.

bq query --use_legacy_sql=false 'SELECT

 midyearpop.country_name AS country,

 midyearpop.year AS year,

 AVG(midyearpop.midyear_population) AS population,

 AVG(mortality.life_expectancy) AS life_expectancy

FROM

 ̀bigquery-public-data.census_bureau_international.midyear_population` AS

midyearpop

JOIN

 ̀bigquery-public-data.census_bureau_international.mortality_life_

expectancy` AS mortality

ON

 midyearpop.country_name = mortality.country_name

Chapter 38 GooGle BiGQuery

503

WHERE

 midyearpop.year = 2018

GROUP BY

 country, year

ORDER BY

 population DESC

LIMIT

 20'

Waiting on bqjob_r4ecdb3f115b3f5d3_0000016628b526ea_1 ... (0s) Current

status: DONE

+------------------+------+---------------+--------------------+

| country | year | population | life_expectancy |

+------------------+------+---------------+--------------------+

| China | 2018 | 1.384688986E9 | 75.58754098360653 |

| India | 2018 | 1.296834042E9 | 69.15033333333334 |

| United States | 2018 | 3.29256465E8 | 82.25324324324323 |

| Indonesia | 2018 | 2.62787403E8 | 70.89647887323946 |

| Brazil | 2018 | 2.08846892E8 | 71.26444444444446 |

| Pakistan | 2018 | 2.07862518E8 | 66.57942857142856 |

| Nigeria | 2018 | 2.03452505E8 | 53.483061224489774 |

| Bangladesh | 2018 | 1.59453001E8 | 69.93685714285715 |

| Russia | 2018 | 1.42122776E8 | 71.61112903225805 |

| Japan | 2018 | 1.26168156E8 | 85.6562295081967 |

| Mexico | 2018 | 1.25959205E8 | 75.22 |

| Ethiopia | 2018 | 1.08386391E8 | 59.355633802816925 |

| Philippines | 2018 | 1.05893381E8 | 69.13042253521127 |

| Egypt | 2018 | 9.9413317E7 | 73.8963636363636 |

| Vietnam | 2018 | 9.7040334E7 | 74.0014516129032 |

| Congo (Kinshasa) | 2018 | 8.5281024E7 | 56.483376623376614 |

| Iran | 2018 | 8.3024745E7 | 72.58799999999997 |

| Turkey | 2018 | 8.1257239E7 | 73.33577464788735 |

| Germany | 2018 | 8.0457737E7 | 80.61900000000001 |

| Thailand | 2018 | 6.8615858E7 | 75.35032786885246 |

+------------------+------+---------------+--------------------+

Chapter 38 GooGle BiGQuery

504

The JOIN command is used to bring together or concatenate data from two or more

tables by matching their respective rows. The command uses the ON clause to determine

what column will be used for the matching.

 Subselect
The following query selects the average population for each country and their life

expectancy for the year 2018. The data is joined from the ‘midyear_population’ table and

the ‘mortality_life_expectancy’ table in the ‘census_bureau_international’ dataset. The

query uses a subselect statement in the first FROM clause to filter by year and specific

countries. The resulting table is grouped by country name and year and arranged in

descending order. The general idea of a subselect statement is to be able to create more

complex queries without using intermediate tables.

bq query --use_legacy_sql=false 'SELECT

 midyearpop.country_name AS country,

 midyearpop.year AS year,

 AVG(midyearpop.midyear_population) AS population,

 AVG(mortality.life_expectancy) AS life_expectancy

FROM (

 SELECT

 country_name,

 year,

 midyear_population

 FROM

 `bigquery-public-data.census_bureau_international.midyear_population`

 WHERE

 year = 2018

 AND (country_name LIKE "Nigeria"

 OR country_name LIKE "Egypt")) AS midyearpop

JOIN

 ̀bigquery-public-data.census_bureau_international.mortality_life_

expectancy` AS mortality

Chapter 38 GooGle BiGQuery

505

ON

 midyearpop.country_name = mortality.country_name

GROUP BY

 country,

 year

ORDER BY

 population DESC

LIMIT

 20'

Waiting on bqjob_r5d381c26fcb6480e_0000016628e220c3_1 ... (0s) Current

status: DONE

+---------+------+--------------+--------------------+

| country | year | population | life_expectancy |

+---------+------+--------------+--------------------+

| Nigeria | 2018 | 2.03452505E8 | 53.483061224489774 |

| Egypt | 2018 | 9.9413317E7 | 73.8963636363636 |

+---------+------+--------------+--------------------+

 The Case Against Running Select *
In BigQuery, it is ill-advised to run the SELECT ∗ command, which is used in SQL to

retrieve all the columns from the table. This command is rather expensive in BigQuery

especially if your table contains terabytes of data. If instead you want to have a feel for

the columns and their entries in your dataset, you can execute the command ‘bq head

[table_name]’ to retrieve the first few rows of the table. As an example, we used the

command in the following example listing to retrieve the first few rows of the ‘market’

table we earlier loaded from GCS in the ‘crypto_data’ dataset.

Chapter 38 GooGle BiGQuery

506

bq
 h
ea
d
cr
yp
to
_d
at
a.
ma
rk
et
s

+-
--
--
-+
--
--
--
--
+-
--
--
-+
--
--
--
--
--
--
+-
--
--
--
--
+-
--
--
--
--
-+
--
--
--
--
--
+-
--
--
--
--
-+
--
--
--
--

--
+-
--
--
--
--
-+

--
--
--
--
--
-+
--
--
--
--
--
--
-+
--
--
--
--
+

|
sl
ug
 |
 s
ym
bo
l
|
na
me
 |

da
te

|
ra
nk
no
w
|

op
en

 |

 h
ig
h

|

lo
w

 |

cl
os
e

|
 v
ol
um
e
 |

ma
rk
et

 |
 c
lo
se
_r
at
io
 |
 s
pr
ea
d
|

+-
--
--
-+
--
--
--
--
+-
--
--
-+
--
--
--
--
--
--
+-
--
--
--
--
+-
--
--
--
--
-+
--
--
--
--
--
+-
--
--
--
--
-+
--
--
--
--

--
+-
--
--
--
--
-+

--
--
--
--
--
-+
--
--
--
--
--
--
-+
--
--
--
--
+

|
0x

 |
 Z
RX

|
0x

 |
 2
01
7-
08
-1
6
|
41

|
0.
11
17
25
 |
 0
.2
80
03
1
|
0.
10
39
62
 |
 0
.2
24
39

9
|
52
32
60
0
 |

 6
70
34
80
0
 |
 0
.6
84

 |
 0
.1
8

|

|
0x

 |
 Z
RX

|
0x

 |
 2
01
7-
08
-1
7
|
41

|
0.
22
30
22
 |
 0
.2
38
93
5
|
0.
20
67
35
 |
 0
.2
06
73

5
|
27
52
41
0
 |

 1
33
81
30
00
 |
 0

 |
 0
.0
3

|

|
0x

 |
 Z
RX

|
0x

 |
 2
01
7-
08
-1
8
|
41

|
0.
20
55
58
 |
 0
.3
50
26

|
0.
20
55
58
 |
 0
.2
93
38

7
|
12
79
38
00
 |

 1
23
33
50
00
 |
 0
.6
07

 |
 0
.1
4

|

..
..
..

..
..
..

|
0x

 |
 Z
RX

|
0x

 |
 2
01
7-
08
-2
8
|
41

|
0.
35
24
59
 |
 0
.3
54
82
3
|
0.
32
36
2
 |
 0
.3
43
71

3
|
66
39
91
0
 |

 1
76
23
00
00
 |
 0
.6
43
9

 |
 0
.0
3

|

+-
--
--
-+
--
--
--
--
+-
--
--
-+
--
--
--
--
--
--
+-
--
--
--
--
+-
--
--
--
--
-+
--
--
--
--
--
+-
--
--
--
--
-+
--
--
--
--

--
+-
--
--
--
--
-+

--
--
--
--
--
-+
--
--
--
--
--
--
-+
--
--
--
--
+

Chapter 38 GooGle BiGQuery

507

 Using BigQuery with Notebooks on AI Cloud
Instance and Google Colab
BigQuery integrates well with Notebooks on Google Notebook AI Instance and Google

Colab. In this section, we’ll go through executing on BigQuery datasets and tables from

Notebooks. There are a couple of ways to interact with BigQuery from Notebooks, but

one quick and easy method is the use of the ‘%bigquery’ magic command from the

BigQuery client library, ‘google-cloud-bigquery’, to run queries with minimal syntax.

The %%bigquery magic runs a SQL query and returns the results as a pandas

DataFrame. Here, we use the ‘%%bigquery’ magic command to interact with BigQuery.

To begin, open a Notebook on GCP AI Notebook Instance or from Colab:

 1. If running on Google Colab, authenticate the notebook by running

the code

from google.colab import auth

auth.authenticate_user()

print(‘Authenticated’)

 2. Import Pandas and Matplotlib.

import pandas as pd

import matplotlib.pyplot as plt

 3. Store the following query output as a Pandas DataFrame named

‘litcoin_crypto’. Place your project id after the ‘--project’
attribute. Be sure to update the FROM field with your dataset and

table IDs.

%%bigquery --project ekabasandbox litcoin_crypto

SELECT

 symbol,

 date,

 close,

 open,

 high,

 low,

 spread

Chapter 38 GooGle BiGQuery

508

FROM

 `crypto_data.markets`

WHERE

 symbol = 'LTC'

LIMIT 10

 symbol date close open high low spread

0 LTC 2013-04-28 4.35 4.3 4.4 4.18 0.22

1 LTC 2013-05-07 3.33 3.37 3.41 2.94 0.47

2 LTC 2013-05-03 3.04 3.39 3.45 2.4 1.05

3 LTC 2013-05-04 3.48 3.03 3.64 2.9 0.74

4 LTC 2013-05-05 3.59 3.49 3.69 3.35 0.34

5 LTC 2013-05-06 3.37 3.59 3.78 3.12 0.66

6 LTC 2013-05-02 3.37 3.78 4.04 3.01 1.03

7 LTC 2013-05-01 3.8 4.29 4.36 3.52 0.84

8 LTC 2013-04-29 4.38 4.37 4.57 4.23 0.34

9 LTC 2013-04-30 4.3 4.4 4.57 4.17 0.4

 4. The variable ‘litcoin_crypto’ is a Pandas DataFrame. Now, let’s

modify the data attributes and plot a bar chart.

convert columns to numeric

litcoin_crypto = litcoin_crypto.apply(pd.to_numeric,

errors='ignore')

check the datatypes

litcoin_crypto.dtypes

symbol object

date object

close float64

open float64

high float64

low float64

spread float64

dtype: object

Chapter 38 GooGle BiGQuery

509

 5. Plot the bar chart with the variable ‘date’ on the x axis and closing

price on the y axis (see Figure 38-12).

plot the bar chart

litcoin_crypto.plot(kind='bar', x='date', y='close')

plt.show()

 BigQueryML
BigQuery machine learning makes it quick and easy to harness the power of machine

learning on your datasets in BigQuery by using simple standard SQL commands. This

functionality includes the capability to train and test models on the datasets by using

subsets of the data, as well as the capability for automatic hyper-parameter tuning of the

learning models.

Figure 38-12. Litcoin crypto-currency bar chart plot

Chapter 38 GooGle BiGQuery

510

At this time of writing, the following learning models are available in BigQuery:

• Linear regression

• Binary and multi-class logistic regression

In this section, we’ll work with BigQuery ML using the Notebook instance on Colab

on Google AI VMs to build a predictive model using the ‘market’ table in the ‘crypto_data’

dataset that we earlier imported into BigQuery. This model will attempt to predict the next

day’s closing price of the Bitcoin crypto-currency given a set of market attributes. The data

processing and machine learning modeling is all done using standard SQL:

 1. Open a new notebook.

 2. Select features for training the ML model. In the SQL code, we

use the ‘LEAD()’ function to return the value of the next row. The

offset of 1 indicates that we want to get the next value that is one

step ahead in the query. With this, it is easy to adjust the query to

predict a 2- to n-day window. The LEAD() function is a window

function that moves over a rowset. Hence, the OVER() function is

used to define a window within a query, while the PARTITION BY

and ORDER BY clauses divide the query results into partitions and

define the arrangement of the rows within each partition.

We use the ‘params’ variable to sample half of the data and store

it in the ‘TRAIN’ set. This makes sure that the rest of the dataset

is not used in model training and can be used to check that the

model generalizes well during the model evaluation phase.

Be sure to update the FROM field with your dataset and table IDs.

%%bigquery --project ekabasandbox btc_market

WITH

 params AS (

 SELECT

 1 AS TRAIN,

 2 AS EVAL),

 btc_market AS (

 SELECT

 symbol,

Chapter 38 GooGle BiGQuery

511

 date,

 open,

 high,

 low,

 close,

 spread,

 cast(LEAD(close, 1) OVER (PARTITION BY symbol ORDER BY symbol

DESC) AS NUMERIC) AS next_day_close

 FROM

 `crypto_data.markets`,

 params

 WHERE

 symbol = 'BTC'

 AND MOD(ABS(FARM_FINGERPRINT(CAST(date AS STRING))),4) =

params.TRAIN)

SELECT

 *

FROM

 btc_market

WHERE

 next_day_close IS NOT NULL

 3. Display the first ten rows of the query.

btc_market.head(10)

symbol date open high low close spread next_day_close

0 BTC 2013-05-05 112.9 118.8 107.14 115.91 11.66 112.3

1 BTC 2013-05-06 115.98 124.66 106.64 112.3 18.02 112.67

2 BTC 2013-05-09 113.2 113.46 109.26 112.67 4.2 115.24

3 BTC 2013-05-11 117.7 118.68 113.01 115.24 5.67 111.5

4 BTC 2013-05-14 117.98 119.8 110.25 111.5 9.55 114.22

5 BTC 2013-05-15 111.4 115.81 103.5 114.22 12.31 121.99

6 BTC 2013-05-19 123.21 124.5 119.57 121.99 4.93 123.89

7 BTC 2013-05-22 122.89 124 122 123.89 2 133.2

8 BTC 2013-05-24 126.3 133.85 125.72 133.2 8.13 131.98

9 BTC 2013-05-25 133.1 133.22 128.9 131.98 4.32 133.48

Chapter 38 GooGle BiGQuery

512

 4. The trained model is stored in a BigQuery dataset. In this case,

we’ll create a BigQuery dataset to store the model.

from google.cloud import bigquery

client = bigquery.Client(project='ekabasandbox')

create a BigQuery dataset to store your ML model

dataset = client.create_dataset('btc_crypto')

print('Dataset: `{}` created.'.format(dataset.dataset_id))

Dataset: `btc_crypto` created.

 5. After preparing our training dataset, now it is time to train the

model. Be sure to update the FROM field with your dataset and

table IDs.

%%bigquery --project ekabasandbox model

CREATE OR REPLACE MODEL `btc_crypto.market_closing_model`

OPTIONS

 (model_type='linear_reg',

 labels=['next_day_close']) AS

WITH

 params AS (

 SELECT

 1 AS TRAIN,

 2 AS EVAL),

 btc_market AS (

 SELECT

 CAST(open AS NUMERIC) AS open,

 CAST(high AS NUMERIC) AS high,

 CAST(low AS NUMERIC) AS low,

 CAST(close AS NUMERIC) AS close,

 CAST(spread AS NUMERIC) AS spread,

 CAST(LEAD(close, 1) OVER (PARTITION BY symbol ORDER BY symbol

DESC) AS NUMERIC) AS next_day_close

 FROM

 `crypto_data.markets`,

 params

Chapter 38 GooGle BiGQuery

513

 WHERE

 symbol = 'BTC'

 AND MOD(ABS(FARM_FINGERPRINT(CAST(date AS STRING))),4) =

params.TRAIN)

SELECT

 *

FROM

 btc_market

WHERE

 next_day_close IS NOT NULL

 6. Check that the created model exists in the Dataset ‘btc_crypto’. We

prefix the exclamation sign (‘!’) in a Notebook cell to execute bash

commands.

!bq ls btc_crypto

 tableId Type Labels Time Partitioning

 ---------------------- ------- -------- -------------------

 market_closing_model MODEL

 7. Evaluate the model to estimate the performance of the model. The

RMSE metric is evaluated in BigQuery calling the ‘mean_squared_

error’ field of the trained model and passing it through the

‘SQRT()’ function. To evaluate the model, pass the model through

the function ‘ML.EVALUATE()’. This time we select the remaining

subset of the dataset and store it in ‘params.EVAL’.

 8. Be sure to update the FROM field with your dataset and table IDs.

%%bigquery --project ekabasandbox rmse

SELECT

 SQRT(mean_squared_error) AS rmse

FROM

 ML.EVALUATE(MODEL `btc_crypto.market_closing_model`,

 (

 WITH

 params AS (

Chapter 38 GooGle BiGQuery

514

 SELECT

 1 AS TRAIN,

 2 AS EVAL),

 btc_market AS (

 SELECT

 CAST(open AS NUMERIC) AS open,

 CAST(high AS NUMERIC) AS high,

 CAST(low AS NUMERIC) AS low,

 CAST(close AS NUMERIC) AS close,

 CAST(spread AS NUMERIC) AS spread,

 CAST(LEAD(close, 1) OVER (PARTITION BY symbol ORDER BY

symbol DESC) AS NUMERIC) AS next_day_close

 FROM

 `crypto_data.markets`,

 params

 WHERE

 symbol = 'BTC'

 AND MOD(ABS(FARM_FINGERPRINT(CAST(date AS STRING))),4) =

params.EVAL)

 SELECT

 *

 FROM

 btc_market

 WHERE

 next_day_close IS NOT NULL))

 rmse

0 393.265715

 9. Predict the next day’s closing prices for the Bitcoin crypto-

currency using the trained model. Be sure to update the FROM

field with your dataset and table IDs.

%%bigquery --project ekabasandbox predict

SELECT

 *

FROM

Chapter 38 GooGle BiGQuery

515

 ml.PREDICT(MODEL `btc_crypto.market_closing_model`,

 (

 WITH

 params AS (

 SELECT

 1 AS TRAIN,

 2 AS EVAL),

 btc_market AS (

 SELECT

 CAST(close AS NUMERIC) AS close,

 date,

 CAST(open AS NUMERIC) AS open,

 CAST(high AS NUMERIC) AS high,

 CAST(low AS NUMERIC) AS low,

 CAST(spread AS NUMERIC) AS spread,

 CAST(LEAD(close, 1) OVER (PARTITION BY symbol ORDER BY

symbol DESC) AS NUMERIC) AS next_day_close

 FROM

 `crypto_data.markets`,

 params

 WHERE

 symbol = 'BTC'

 AND MOD(ABS(FARM_FINGERPRINT(CAST(date AS STRING))),4) =

params.EVAL)

 SELECT

 *

 FROM

 btc_market

 WHERE

 next_day_close IS NOT NULL))

Chapter 38 GooGle BiGQuery

516

pr
ed
ic
t
 p
re
di
ct
ed
_n
ex
t_
da
y_
cl
os
e
 c
lo
se

da
te

op
en

 h
ig
h

lo
w

 s
pr
ea
d
 n
ex
t_
da
y_
cl
os
e

0

 1
93
.5
23
36
1

 1
16
.9
9

20
13
-0
5-
01

13
9

 1
39
.8
9

10
7.
72

 3
2.
17

 1
12
.5

1

 1
62
.5
05
18
9

 1
12
.5

20
13
-0
5-
04

98
.1

 1
15

92
.5

 2
2.
5

 1
11
.5

2

 1
58
.3
89
05
5

 1
11
.5

20
13
-0
5-
07

11
2.
25

 1
13
.4
4

97
.7

 1
5.
74

 1
17
.2

3

 1
58
.7
00
48
1

 1
17
.2

20
13
-0
5-
10

11
2.
8

 1
22

11
1.
55

 1
0.
45

 1
15

..
.

 .
..

 .
..

..
.

..
.

 .
..

..
.

 .
..

 .
..

38
8

 4
49
1.
05
26
80

 4
70
3.
39

20
17
-0
8-
31

45
55
.5
9
 4
73
6.
05

45
49
.4

 1
86
.6
5
 4
59
7.
12

38
9

 4
42
2.
93
14
11

 4
59
7.
12

20
17
-0
9-
06

43
76
.5
9
 4
61
7.
25

43
76
.5
9
 2
40
.6
6
 4
12
2.
94

39
0

 4
16
3.
34
88
76

 4
12
2.
94

20
17
-0
9-
10

42
29
.3
4
 4
24
5.
44

39
51
.0
4
 2
94
.4

 4
16
1.
27

39
1

 4
02
9.
35
58
33

 4
16
1.
27

20
17
-0
9-
11

41
22
.4
7
 4
26
1.
67

40
99
.4

 1
62
.2
7
 4
13
0.
81

..
.

 .
..

 .
..

..
.

..
.

 .
..

..
.

 .
..

 .
..

41
6

 1
47
23
.7
98
44
5

 1
52
01

20
18
-0
1-
03

14
97
8.
2
 1
55
72
.8

14
84
4.
5
 7
28
.3

 1
55
99
.2

41
7

 1
54
21
.1
70
79
1

 1
55
99
.2

20
18
-0
1-
04

15
27
0.
7
 1
57
39
.7

14
52
2.
2
 1
21
7.
5
 1
45
95
.4

Chapter 38 GooGle BiGQuery

517

This chapter provided an overview of working with Google BigQuery as a data

warehouse and analytics platform on GCP. It covered working with BigQuery from

Notebooks hosted on Google Colab or on GCP AI Instances and included how to work

with BigQuery ML to build machine learning predictive models using SQL commands.

The next chapter will introduce Cloud Dataprep for visually exploring and

transforming large datasets on GCP.

Chapter 38 GooGle BiGQuery

519
© Ekaba Bisong 2019
E. Bisong, Building Machine Learning and Deep Learning Models on Google Cloud Platform,
https://doi.org/10.1007/978-1-4842-4470-8_39

CHAPTER 39

Google Cloud Dataprep
Google Cloud Dataprep is a managed cloud service for quick data exploration and

transformation. Dataprep makes it easy to clean and transform large datasets for

analysis. It is auto-scalable as it takes advantage of the distributed processing capabilities

of Google Cloud Dataflow.

Typically Cloud Dataprep is aimed at easing the data preparation process. Datasets

from real-world use cases are often messy and untidy. In this form, it cannot be used

for downstream analytics or machine learning modeling. Hence, a large portion of the

modeling process involves preparing and cleaning the data. Programming libraries

earlier discussed like Pandas are centrally used for carrying out data preparation.

However, Google Cloud Dataprep provides a simple visual interface for performing data

cleaning. The ability to re-organize the dataset for modeling quickly without coding

provides an instant appeal for Dataprep, as this can greatly speed up the time spent in

data preparation as part of the overall modeling pipeline. The other good part is that

Dataprep can work with petabyte scale data as it is built on a serverless infrastructure.

Dataprep can be used for processing structured and unstructured datasets.

In this section, we’ll go through a brief tour of Google Dataprep by using it to prepare

our ‘crypto_markets.csv’ dataset already stored on Google Cloud Storage.

 Getting Started with Cloud Dataprep
From the GCP dashboard, click the triple dash at the top-left corner and scroll down to

‘Dataprep’ under the BIG DATA section as seen in Figure 39-1.

520

Dataprep is a service offered on GCP in alliance with the company Trifacta. To begin

using Dataprep, agree and accept all the license agreements (see Figure 39-2). Dataprep

creates a bucket on GCS to store the files that are uploaded to Dataprep and the outputs

of its transformation (see Figure 39-3). The Dataprep dashboard is shown in Figure 39-4.

Figure 39-1. Open Dataprep via the GCP dashboard

Chapter 39 GooGle Cloud dataprep

521

Figure 39-2. Trifacta license agreement

Figure 39-3. Dataprep GCS location setup

Chapter 39 GooGle Cloud dataprep

522

 Using Flows to Transform Data
A Dataprep flow is an object created to organize and manage the datasets and operations

that are involved in data cleaning and transformation process:

 1. We begin by creating a flow by clicking the ‘Create Flow’ button in

the top-right corner of the Dataprep dashboard (see Figure 39-4).

Enter the user-defined flow name and click ‘Create’ as shown in

Figure 39-5. The Flow page is shown in Figure 39-6.

Figure 39-4. Dataprep dashboard

Chapter 39 GooGle Cloud dataprep

523

Figure 39-5. Create Flow

Figure 39-6. Flow page

Chapter 39 GooGle Cloud dataprep

524

 2. Let’s start by placing our dataset in a GCS bucket. We’ll do so by

running the following commands on the terminal.

Create a new bucket.

gsutil mb gs://my-dataprep-data

 3. Transfer data from GitHub to the bucket.

gsutil cp crypto-markets.csv gs://my-dataprep-data

 4. Next, we’ll transfer our ‘crypto-market’ dataset from the ‘my-

dataprep- data’ bucket to the Dataprep staging bucket. We can

quickly do this by executing the following code on the terminal.

gsutil cp -r gs://my-dataprep-data gs://dataprep-staging-7fc4d500-

8b76-48a1- 9562-83675643ca4b

Copying gs://my-dataprep-data/crypto-markets.csv [Content-

Type=application/octet-stream]...

/ [1 files][47.0 MiB/ 47.0 MiB]

Operation completed over 1 objects/47.0 MiB.

 5. Next, we’ll import and add Datasets to the Flow. Datasets can be

uploaded directly to Dataprep which will then be stored to the

bucket Dataprep generated on start-up. Also, Dataprep can import

datasets already stored in BigQuery or GCS. In this case, we will

import the ‘crypto-market’ dataset that we earlier transferred to

the Dataprep staging bucket which is in the folder ‘my-dataprep-

data’ (see Figure 39- 7). Figure 39-8 shows the dataset loading into

Dataprep.

Chapter 39 GooGle Cloud dataprep

525

Figure 39-7. Import Dataset from GCS to Dataprep

Figure 39-8. Loading Dataset to Dataprep

Chapter 39 GooGle Cloud dataprep

526

 6. Next, we’ll create a recipe. A Dataprep recipe contains the

transformation steps taken to clean and process a Dataset. This

recipe is later executed as a Dataflow job to operate on the Dataset

and come up with results. Click the ‘Add New Recipe’ button to

create a recipe. The recipe is in the bounded red box in Figure 39-9.

Figure 39-9. Dataset recipe

 7. Then click the ‘Edit Recipe’ button to open the ‘Transformation

Grid’ where we carry out various cleaning and processing steps on

the Dataset.

 8. For the example in this section, we’ll carry out a simple

transformation process by dropping some unused columns and

then removing all rows in the dataset except those for Bitcoin

crypto-currency:

Chapter 39 GooGle Cloud dataprep

527

 a. Remove the ‘slug’ column. Click ‘Add’ within the red box to drop the

column (see Figure 39-10).

 b. Remove the ‘name’ column (see Figure 39-11).

Figure 39-10. Remove ‘slug’ column

Chapter 39 GooGle Cloud dataprep

528

 c. Next, we’ll filter the rows in the dataset to retain only the Bitcoin records

(see Figures 39-12 and 39-13).

Figure 39-11. Remove ‘name’ column

Chapter 39 GooGle Cloud dataprep

529

Figure 39-12. Filter rows using Dataprep

Figure 39-13. Remove all rows except the Bitcoin records

Chapter 39 GooGle Cloud dataprep

530

 9. Figure 39-14 shows the dataset transformation recipes. Click ‘Run

Job’ in Figure 39- 14 and also in Figure 39-15 to run the job on

Cloud Dataflow.

Figure 39-14. View transformation recipes

Chapter 39 GooGle Cloud dataprep

531

Figure 39-15. Run Job on Dataflow

 10. Figure 39-16 shows the running job, and Figure 39-17 shows the

completed job after some minutes.

Chapter 39 GooGle Cloud dataprep

532

Figure 39-16. Job running on Dataflow

Figure 39-17. Completed job

Chapter 39 GooGle Cloud dataprep

533

 11. View the results of the job (see Figure 39-18).

Figure 39-18. View job result

 12. From the Results page shown in Figure 39-19, we can export the

results back to GCS (see Figure 39-20).

Chapter 39 GooGle Cloud dataprep

534

Figure 39-19. Job Results page

Figure 39-20. Export completed jobs

Chapter 39 GooGle Cloud dataprep

535

This chapter provides an example overview of working with Dataprep to visually

explore and transform large datasets on GCP by using the Google Cloud Dataflow

infrastructure for distributed processing. In the next chapter, we will introduce working

with Cloud Dataflow for building custom data transformation pipelines.

Chapter 39 GooGle Cloud dataprep

537
© Ekaba Bisong 2019
E. Bisong, Building Machine Learning and Deep Learning Models on Google Cloud Platform,
https://doi.org/10.1007/978-1-4842-4470-8_40

CHAPTER 40

Google Cloud Dataflow
Google Cloud Dataflow provides a serverless, parallel, and distributed infrastructure

for running jobs for batch and stream data processing. One of the core strengths of

Dataflow is its ability to almost seamlessly handle the switch from processing of batch

historical data to streaming datasets while elegantly taking into consideration the perks

of streaming processing such as windowing. Dataflow is a major component of the data/

ML pipeline on GCP. Typically, Dataflow is used to transform humongous datasets from

a variety of sources such as Cloud Pub/Sub or Apache Kafka to a sink such as BigQuery

or Google Cloud Storage.

Critical to Dataflow is the use of the Apache Beam programming model for building

the parallel data processing pipelines for batch and stream operations. The data

processing pipelines built with the Beam SDKs can be executed on various processing

backends such as Apache Apex, Apache Spark, Apache Flink, and of course Google

Cloud Dataflow. In this section, we will build data transformation pipelines using the

Beam Python SDK. As of this time of writing, Beam also supports building data pipelines

using Java, Go, and Scala languages.

 Beam Programming
Apache Beam provides a set of broad concepts to simplify the process of building a

transformation pipeline for distributed batch and stream jobs. We’ll go through these

concepts providing simple code samples:

• A Pipeline: A Pipeline object wraps the entire operation and

prescribes the transformation process by defining the input data

source to the pipeline, how that data will be transformed, and where

the data will be written. Also, the Pipeline object indicates the

distributed processing backend to execute on. Indeed, a Pipeline

538

is the central component of a Beam execution. Code for creating a

pipeline is as shown in the following:

import apache_beam as beam

from apache_beam.options.pipeline_options import PipelineOptions

p = beam.Pipeline(options=PipelineOptions())

In the preceding code snippet, the Pipeline object is configured

using ‘PipelineOptions’ to set the required fields. This can be done

both programmatically and from the command line.

• A PCollection: A PCollection is used to define a data source. The data

source can either be bounded or unbounded. A bounded data source

refers to batch or historical data, whereas an unbounded data source

refers to streaming data. Beam uses a technique called windowing to

partition unbounded PCollections into finite logical segments using

some attribute of the data such as a timestamp. PCollections can also

be created from in-memory data where PCollections are both the

inputs and outputs for a particular step in the pipeline. Let’s see an

example of reading a csv data from an external source:

lines = p | 'ReadMyFile' >> beam.io.ReadFromText('gs://gcs_bucket/

my_data.csv')

The pipe operator ‘|’ in the preceding code is also called the

apply method and is used to apply the PCollection to the pipeline

instantiated as ‘p’.

• A PTransform: A PTransform refers to a particular transformation

task carried out on one or more PCollections in the pipeline.

PTransforms can be applied to PCollections as follows.

[Output PCollection] = [Input PCollection] | [Transform]

Note that while a PTransform creates a new PCollection, it does

not modify or alter the input collection. A number of core Beam

transforms include

• ParDo: For parallel processing

• GroupByKey: For processing collections of key/value pairs

Chapter 40 GooGle Cloud dataflow

539

• CoGroupByKey: For a relational join of two or more key/value

PCollections with the same key type

• Combine: For combining collections of elements or values in

your data

• Flatten: For merging multiple PCollection objects

• Partition: Splits a single PCollection into smaller collections

• I/O transforms: These are PTransforms that read or write data to

different external storage systems. Some of the currently available I/O

transforms working with Beam Python SDK include

• avroio: For reading from and writing to an Avro file

• textio: For reading from and writing to text files

For a simple linear pipeline with sequential transformation, the processing graph

looks like what is shown in Figure 40-1.

Figure 40-1. A simple linear Pipeline with sequential transforms

 Building a Simple Data Processing Pipeline
In this simple Beam application, we will build a Dataflow pipeline to preprocess a

CSV file from a GCS bucket and write the output back to GCS. This example selects

certain features and rows that are of interest to the downstream modeling task. Here,

we considered the ‘crypto-markets.csv’ dataset. In the data preprocessing pipeline, we

removed data attributes that may not be relevant for analytics/model building and we

Chapter 40 GooGle Cloud dataflow

540

also filtered records pertaining to ‘bitcoin’. The steps that follow create a simple Beam

pipeline and execute in on Google Dataflow:

 1. Enable the GCP Cloud Dataflow API and Cloud Resource Manager

API from the APIs & Services dashboard.

 2. Open a new Notebook.

 3. Note that at this time of writing, Apache Beam only works with

Python version 2.7, so be sure to switch the kernel for your Python

interpreter. Add the following code blocks in the Notebook cell.

 4. If running on Google Colab, first authenticate the notebook

with GCP.

from google.colab import auth

auth.authenticate_user()

print('Authenticated')

configure GCP project. Change to your project ID

project_id = 'ekabasandbox'

!gcloud config set project {project_id}

 5. Install the Apache beam library and other important setup packages.

%%bash

pip install apache-beam[gcp]

 6. After installing, change the notebook runtime type to Python 2.

 7. Next, reset the notebook kernel before running the code to import

the relevant libraries.

import apache_beam as beam

from apache_beam.io import ReadFromText

from apache_beam.io import WriteToText

 8. Assign the parameters for the pipeline. Replace the relevant

parameters with your entries.

parameters

staging_location = 'gs://enter_bucket_name/staging' # change this

temp_location = 'gs://enter_bucket_name/temp' # change this

Chapter 40 GooGle Cloud dataflow

541

job_name = 'dataflow-crypto'

project_id = enter_project_id' # change this

source_bucket = 'enter_bucket_name' # change this

target_bucket = 'enter_bucket_name' # change this

 9. Method to build and run the pipeline.

def run(project, source_bucket, target_bucket):

 import csv

 options = {

 'staging_location': staging_location,

 'temp_location': temp_location,

 'job_name': job_name,

 'project': project,

 'max_num_workers': 24,

 'teardown_policy': 'TEARDOWN_ALWAYS',

 'no_save_main_session': True,

 'runner': 'DataflowRunner'

 }

 options = beam.pipeline.PipelineOptions(flags=[], **options)

 crypto_dataset = 'gs://{}/crypto-markets.csv'.format(source_

bucket)

 processed_ds = 'gs://{}/transformed-crypto-bitcoin'.

format(target_bucket)

 pipeline = beam.Pipeline(options=options)

 # 0:slug, 3:date, 5:open, 6:high, 7:low, 8:close

 rows = (

 pipeline |

 'Read from bucket' >> ReadFromText(crypto_dataset) |

 'Tokenize as csv columns' >> beam.Map(lambda line:

next(csv.reader([line]))) |

 'Select columns' >> beam.Map(lambda fields:

(fields[0], fields[3], fields[5], fields[6],

fields[7], fields[8])) |

Chapter 40 GooGle Cloud dataflow

542

 'Filter bitcoin rows' >> beam.Filter(lambda row: row[0] ==

'bitcoin')

)

 combined = (

 rows |

 'Write to bucket' >> beam.Map(lambda (slug, date,

open, high, low, close): '{},{},{},{},{},{}'.format(

 slug, date, open, high, low, close)) |

 WriteToText(

 file_path_prefix=processed_ds,

 file_name_suffix=".csv", num_shards=2,

 shard_name_template="-SS-of-NN",

 header='slug, date, open, high, low, close')

)

 pipeline.run()

 10. Run the pipeline.

if __name__ == '__main__':

 print 'Run pipeline on the cloud'

 run(project=project_id, source_bucket=source_bucket,

target_bucket=target_bucket)

The image in Figure 40-2 shows the Dataflow pipeline created as a result of this job.

Chapter 40 GooGle Cloud dataflow

543

More complex and advanced uses of Google Cloud Dataflow are beyond the scope

of this book as they are more in the area of building big data pipelines for large-scale

data transformation. However, this section is included because big data transformation

is an important component for the design and productionalization of machine learning

models when solving a particular business use case at scale. It is important for readers to

get a feel of working with these sort of technologies.

This chapter provides an introduction to building large-scale big data transformation

pipelines using Python Apache Beam programming model that runs on Google Dataflow

computing infrastructure. The next chapter will cover using Google Cloud Machine

Learning Engine to train and deploy large-scale models.

Figure 40-2. Preprocessing Pipeline on Google Cloud Dataflow

Chapter 40 GooGle Cloud dataflow

545
© Ekaba Bisong 2019
E. Bisong, Building Machine Learning and Deep Learning Models on Google Cloud Platform,
https://doi.org/10.1007/978-1-4842-4470-8_41

CHAPTER 41

Google Cloud
Machine Learning
Engine (Cloud MLE)
The Google Cloud Machine Learning Engine, simply known as Cloud MLE, is a managed

Google infrastructure for training and serving “large-scale” machine learning models.

Cloud ML Engine is a part of GCP AI Platform. This managed infrastructure can train

large-scale machine learning models built with TensorFlow, Keras, Scikit-learn, or

XGBoost. It also provides modes of serving or consuming the trained models either as

an online or batch prediction service. Using online prediction, the infrastructure scales

in response to request throughout, while with the batch mode, Cloud MLE can provide

inference for TBs of data.

Two important features of Cloud MLE is the ability to perform distribution training

and automatic hyper-parameter tuning of your models while training. The big advantage

of automatic hyper-parameter tuning is the ability to find the best set of parameters

that minimize the model cost or loss function. This saves time of development hours in

iterative experiments.

 The Cloud MLE Train/Deploy Process
The high-level overview of the train/deploy process on Cloud MLE is depicted in

Figure 41-1:

 1. The data for training/inference is kept on GCS.

 2. The execution script uses the application logic to train the model

on Cloud MLE using the training data.

546

 3. The trained model is stored on GCS.

 4. A prediction service is created on Cloud MLE using the

trained model.

 5. The external application sends data to the deployed model

for inference.

Figure 41-1. The train/deploy process on Cloud MLE

Chapter 41 GooGle Cloud MaChine learninG enGine (Cloud Mle)

547

 Preparing for Training and Serving on Cloud MLE
In this contrived example, we’ll use the famous Iris dataset to train and serve a

TensorFlow model using the Estimator API on Cloud MLE. To begin, let’s walk through

the following steps:

 1. Create a bucket on GCS by running the gsutil mb command on

the cloud terminal. Replace it with unique bucket name.

export bucket_name=iris-dataset'

gsutil mb gs://$bucket_name

 2. Transfer training and test data from the code repository to the

GCP bucket.

 3. Move the train data.

gsutil cp train_data.csv gs://$bucket_name

 4. Move the train data.

gsutil cp test_data.csv gs://$bucket_name

 5. Move the hold-out data for batch predictions.

gsutil cp hold_out_test.csv gs://$bucket_name

 6. Enable the Cloud Machine Learning API to be able to create and

use machine learning models on GCP Cloud MLE:

 a. Go to APIs & Services.

 b. Click “Enable APIs & Services”.

 c. Search for “Cloud Machine Learning Engine”.

 d. Click ENABLE API as shown in Figure 41-2.

Chapter 41 GooGle Cloud MaChine learninG enGine (Cloud Mle)

548

 Packaging the Code for Training on Cloud MLE
The code for training on Cloud MLE must be prepared as a python package. The

recommended project structure is explained as follows:

IrisCloudML: [project name as parent folder]

• Trainer: [folder containing the model and execution code]

• __init__.py: [an empty special python file indicating that the

containing folder is a Python package]

• model.py: [script contains the logic of the model written in

TensorFlow, Keras, etc.]

• task.py: [script contains the application that orchestrates or

manages the training job]

• scripts: [folder containing scripts to execute jobs on Cloud MLE]

• distributed-training.sh: [script to run a distributed training job on

Cloud MLE]

Figure 41-2. Enable Cloud Machine Learning APIs

Chapter 41 GooGle Cloud MaChine learninG enGine (Cloud Mle)

549

• hyper-tune.sh: [script to run a training job with hyper-parameter

tuning on Cloud MLE]

• single-instance-training.sh: [script to run a single instance

training job on Cloud MLE]

• online-prediction.sh: [script to execute an online prediction job

on Cloud MLE]

• create-prediction-service.sh: [script to create a prediction service

on Cloud MLE]

• hptuning_config: [configuration file for hyper-parameter tuning on

Cloud MLE]

• gpu_hptuning_config.yaml: [configuration file for hyper-parameter

tuning with GPU training on Cloud MLE]

NOTE: FOLLOW THESE INSTRUCTIONS TO RUN THE EXAMPLES FOR TRAINING ON
CLOUD MACHINE LEARNING ENGINE

 1. launch a notebook instance on GCp ai platform.

 2. pull the code repository.

 3. navigate to the book folder. run the scripts in the sub-folder `tensorflow’.

 4. Should you choose to work with Google Colab, authenticate the user by running

the code

from google.colab import auth

 auth.authenticate_user()

 The TensorFlow Model
Now let’s briefly examine the TF model code in the file ‘model.py’.

import six

Chapter 41 GooGle Cloud MaChine learninG enGine (Cloud Mle)

550

import tensorflow as tf

from tensorflow.python.estimator.model_fn import ModeKeys as Modes

Define the format of your input data including unused columns.

CSV_COLUMNS = [

 'sepal_length', 'sepal_width', 'petal_length',

 'petal_width', 'class'

]

CSV_COLUMN_DEFAULTS = [[0.0], [0.0], [0.0], [0.0], [“]]

LABEL_COLUMN = 'class'

LABELS = ['setosa', 'versicolor', 'virginica']

Define the initial ingestion of each feature used by your model.

Additionally, provide metadata about the feature.

INPUT_COLUMNS = [

 # Continuous base columns.

 tf.feature_column.numeric_column('sepal_length'),

 tf.feature_column.numeric_column('sepal_width'),

 tf.feature_column.numeric_column('petal_length'),

 tf.feature_column.numeric_column('petal_width')

]

UNUSED_COLUMNS = set(CSV_COLUMNS) - {col.name for col in INPUT_COLUMNS} - \

 {LABEL_COLUMN}

def build_estimator(config, hidden_units=None, learning_rate=None):

 """Deep NN Classification model for predicting flower class.

 Args:

 config: (tf.contrib.learn.RunConfig) defining the runtime

environment for

 the estimator (including model_dir).

 hidden_units: [int], the layer sizes of the DNN (input layer first)

 learning_rate: (int), the learning rate for the optimizer.

 Returns:

 A DNNClassifier

 """

 (sepal_length, sepal_width, petal_length, petal_width) = INPUT_COLUMNS

Chapter 41 GooGle Cloud MaChine learninG enGine (Cloud Mle)

551

 columns = [

 sepal_length,

 sepal_width,

 petal_length,

 petal_width,

]

 return tf.estimator.DNNClassifier(

 config=config,

 feature_columns=columns,

 hidden_units=hidden_units or [256, 128, 64],

 n_classes = 3,

 optimizer=tf.train.AdamOptimizer(learning_rate)

)

def parse_label_column(label_string_tensor):

 """Parses a string tensor into the label tensor.

 Args:

 label_string_tensor: Tensor of dtype string. Result of parsing the CSV

 column specified by LABEL_COLUMN.

 Returns:

 A Tensor of the same shape as label_string_tensor, should return

 an int64 Tensor representing the label index for classification tasks,

 and a float32 Tensor representing the value for a regression task.

 """

 # Build a Hash Table inside the graph

 table = tf.contrib.lookup.index_table_from_tensor(tf.constant(LABELS))

 # Use the hash table to convert string labels to ints and one-hot encode

 return table.lookup(label_string_tensor)

[START serving-function]

def csv_serving_input_fn():

 """Build the serving inputs."""

 csv_row = tf.placeholder(shape=[None], dtype=tf.string)

 features = _decode_csv(csv_row)

Chapter 41 GooGle Cloud MaChine learninG enGine (Cloud Mle)

552

 # Ignore label column

 features.pop(LABEL_COLUMN)

 return tf.estimator.export.ServingInputReceiver(features,

 {'csv_row': csv_row})

def json_serving_input_fn():

 """Build the serving inputs."""

 inputs = {}

 for feat in INPUT_COLUMNS:

 inputs[feat.name] = tf.placeholder(shape=[None], dtype=feat.dtype)

 return tf.estimator.export.ServingInputReceiver(inputs, inputs)

[END serving-function]

SERVING_FUNCTIONS = {

 'JSON': json_serving_input_fn,

 'CSV': csv_serving_input_fn

}

def _decode_csv(line):

 """Takes the string input tensor and returns a dict of rank-2 tensors."""

 # Takes a rank-1 tensor and converts it into rank-2 tensor

 row_columns = tf.expand_dims(line, -1)

 columns = tf.decode_csv(row_columns, record_defaults=CSV_COLUMN_DEFAULTS)

 features = dict(zip(CSV_COLUMNS, columns))

 # Remove unused columns

 for col in UNUSED_COLUMNS:

 features.pop(col)

 return features

def input_fn(filenames,

 num_epochs=None,

 shuffle=True,

 skip_header_lines=1,

 batch_size=200):

Chapter 41 GooGle Cloud MaChine learninG enGine (Cloud Mle)

553

 """Generates features and labels for training or evaluation.

 This uses the input pipeline based approach using file name queue

 to read data so that entire data is not loaded in memory.

 """

 dataset = tf.data.TextLineDataset(filenames).skip(skip_header_lines).map(

 _decode_csv)

 if shuffle:

 dataset = dataset.shuffle(buffer_size=batch_size * 10)

 iterator = dataset.repeat(num_epochs).batch(

 batch_size).make_one_shot_iterator()

 features = iterator.get_next()

 return features, parse_label_column(features.pop(LABEL_COLUMN))

The code for the most part is self-explanatory; however, the reader should take note

of the following points:

• The function ‘build_estimator’ uses the canned Estimator API to

train a ‘DNNClassifier’ model on Cloud MLE. The learning rate and

hidden units of the model can be adjusted and tuned as a hyper-

parameter during training.

• The methods ‘csv_serving_input_fn’ and ‘json_serving_input_fn’

define the serving inputs for CSV and JSON serving input formats.

• The method ‘input_fn’ uses the TensorFlow Dataset API to build

the input pipelines for training and evaluation on Cloud MLE. This

method calls the private method _decode_csv() to convert the CSV

columns to Tensors.

 The Application Logic
Let’s see the application logic in the file ‘task.py’.

import argparse

import json

import os

Chapter 41 GooGle Cloud MaChine learninG enGine (Cloud Mle)

554

import tensorflow as tf

from tensorflow.contrib.training.python.training import hparam

import trainer.model as model

def _get_session_config_from_env_var():

 """Returns a tf.ConfigProto instance that has appropriate device_

filters set.

 """

 tf_config = json.loads(os.environ.get('TF_CONFIG', '{}'))

 if (tf_config and 'task' in tf_config and 'type' in tf_config['task'] and

 'index' in tf_config['task']):

 # Master should only communicate with itself and ps

 if tf_config['task']['type'] == 'master':

 return tf.ConfigProto(device_filters=['/job:ps', '/job:master'])

 # Worker should only communicate with itself and ps

 elif tf_config['task']['type'] == 'worker':

 return tf.ConfigProto(device_filters=[

 '/job:ps',

 '/job:worker/task:%d' % tf_config['task']['index']

])

 return None

def train_and_evaluate(hparams):

 """Run the training and evaluate using the high level API."""

 train_input = lambda: model.input_fn(

 hparams.train_files,

 num_epochs=hparams.num_epochs,

 batch_size=hparams.train_batch_size

)

 # Don't shuffle evaluation data

 eval_input = lambda: model.input_fn(

 hparams.eval_files,

 batch_size=hparams.eval_batch_size,

 shuffle=False

)

Chapter 41 GooGle Cloud MaChine learninG enGine (Cloud Mle)

555

 train_spec = tf.estimator.TrainSpec(

 train_input, max_steps=hparams.train_steps)

 exporter = tf.estimator.FinalExporter(

 'iris', model.SERVING_FUNCTIONS[hparams.export_format])

 eval_spec = tf.estimator.EvalSpec(

 eval_input,

 steps=hparams.eval_steps,

 exporters=[exporter],

 name='iris-eval')

 run_config = tf.estimator.RunConfig(

 session_config=_get_session_config_from_env_var())

 run_config = run_config.replace(model_dir=hparams.job_dir)

 print('Model dir %s' % run_config.model_dir)

 estimator = model.build_estimator(

 learning_rate=hparams.learning_rate,

 # Construct layers sizes with exponential decay

 hidden_units=[

 max(2, int(hparams.first_layer_size * hparams.scale_factor**i))

 for i in range(hparams.num_layers)

],

 config=run_config)

 tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec)

if __name__ == '__main__':

 parser = argparse.ArgumentParser()

 # Input Arguments

 parser.add_argument(

 '--train-files',

 help='GCS file or local paths to training data',

 nargs='+',

 default='gs://iris-dataset/train_data.csv')

 parser.add_argument(

 '--eval-files',

 help='GCS file or local paths to evaluation data',

Chapter 41 GooGle Cloud MaChine learninG enGine (Cloud Mle)

556

 nargs='+',

 default='gs://iris-dataset/test_data.csv')

 parser.add_argument(

 '--job-dir',

 help='GCS location to write checkpoints and export models',

 default='/tmp/iris-estimator')

 parser.add_argument(

 '--num-epochs',

 help="""\

 Maximum number of training data epochs on which to train.

 If both --max-steps and --num-epochs are specified,

 the training job will run for --max-steps or --num-epochs,

 whichever occurs first. If unspecified will run for --max-steps.\

 """,

 type=int)

 parser.add_argument(

 '--train-batch-size',

 help='Batch size for training steps',

 type=int,

 default=20)

 parser.add_argument(

 '--eval-batch-size',

 help='Batch size for evaluation steps',

 type=int,

 default=20)

 parser.add_argument(

 '--learning_rate',

 help='The training learning rate',

 default=1e-4,

 type=int)

 parser.add_argument(

 '--first-layer-size',

 help='Number of nodes in the first layer of the DNN',

 default=256,

 type=int)

Chapter 41 GooGle Cloud MaChine learninG enGine (Cloud Mle)

557

 parser.add_argument(

 '--num-layers', help='Number of layers in the DNN', default=3,

type=int)

 parser.add_argument(

 '--scale-factor',

 help='How quickly should the size of the layers in the DNN decay',

 default=0.7,

 type=float)

 parser.add_argument(

 '--train-steps',

 help="""\

 Steps to run the training job for. If --num-epochs is not specified,

 this must be. Otherwise the training job will run indefinitely.\

 """,

 default=100,

 type=int)

 parser.add_argument(

 '--eval-steps',

 help='Number of steps to run evalution for at each checkpoint',

 default=100,

 type=int)

 parser.add_argument(

 '--export-format',

 help='The input format of the exported SavedModel binary',

 choices=['JSON', 'CSV'],

 default='CSV')

 parser.add_argument(

 '--verbosity',

 choices=['DEBUG', 'ERROR', 'FATAL', 'INFO', 'WARN'],

 default='INFO')

 args, _ = parser.parse_known_args()

 # Set python level verbosity

 tf.logging.set_verbosity(args.verbosity)

 # Set C++ Graph Execution level verbosity

Chapter 41 GooGle Cloud MaChine learninG enGine (Cloud Mle)

558

 os.environ['TF_CPP_MIN_LOG_LEVEL'] = str(

 tf.logging.__dict__[args.verbosity] / 10)

 # Run the training job

 hparams = hparam.HParams(**args.__dict__)

 train_and_evaluate(hparams)

Note the following in the preceding code:

• The method ‘_get_session_config_from_env_var()’ defines the

configuration for the runtime environment on Cloud MLE for the

Estimator.

• The method ‘train_and_evaluate()’ does a number of orchestration

events including

• Routing training and evaluation datasets to the model function in

‘model.py’

• Setting up the runtime environment of the Estimator

• Passing hyper-parameters to the Estimator model

• The line of code “if __name__ == ‘__main__’:” defines the entry

point of the Python script via the terminal session. In this script, the

code will receive inputs from the terminal through the ‘argparse.

ArgumentParser()’ method.

 Training on Cloud MLE
The training execution codes are bash commands stored in a shell script. Shell scripts

end with the suffix ‘.sh’.

 Running a Single Instance Training Job
The bash codes for executing training on a single instance on Cloud MLE is shown in the

following. Change the bucket names accordingly.

DATE=`date '+%Y%m%d_%H%M%S'`

export JOB_NAME=iris_$DATE

Chapter 41 GooGle Cloud MaChine learninG enGine (Cloud Mle)

559

export GCS_JOB_DIR=gs://iris-dataset/jobs/$JOB_NAME

export TRAIN_FILE=gs://iris-dataset/train_data.csv

export EVAL_FILE=gs://iris-dataset/test_data.csv

echo $GCS_JOB_DIR

gcloud ai-platform jobs submit training $JOB_NAME \

 --stream-logs \

 --runtime-version 1.8 \

 --job-dir $GCS_JOB_DIR \

 --module-name trainer.task \

 --package-path trainer/ \

 --region us-central1 \

 -- \

 --train-files $TRAIN_FILE \

 --eval-files $EVAL_FILE \

 --train-steps 5000 \

 --eval-steps 100

This code is stored in the file ‘single-instance-training.sh’ and executed by running

the command on the terminal.

source ./scripts/single-instance-training.sh

'Output:'

gs://iris-dataset/jobs/iris_20181112_010123

Job [iris_20181112_010123] submitted successfully.

INFO 2018-11-12 01:01:25 -0500 service Validating job

requirements...

INFO 2018-11-12 01:01:26 -0500 service Job creation request

has been successfully

validated.

INFO 2018-11-12 01:01:26 -0500 service Job iris_20181112_010123 is

queued.

INFO 2018-11-12 01:01:26 -0500 service Waiting for job to be

provisioned.

Chapter 41 GooGle Cloud MaChine learninG enGine (Cloud Mle)

560

INFO 2018-11-12 01:05:32 -0500 service Waiting for training

program to start.

...

INFO 2018-11-12 01:09:05 -0500 ps-replica-2 Module completed;

cleaning up.

INFO 2018-11-12 01:09:05 -0500 ps-replica-2 Clean up finished.

INFO 2018-11-12 01:09:55 -0500 service Finished tearing

down training

program.

INFO 2018-11-12 01:10:53 -0500 service Job completed

successfully.

endTime: '2018-11-12T01:08:35'

jobId: iris_20181112_010123

startTime: '2018-11-12T01:07:34'

state: SUCCEEDED

 Running a Distributed Training Job
The code for initiating distributed training on Cloud MLE is shown in the following, and

the code is stored in the file ‘distributed-training.sh’. For a distributed job, the attribute

‘- -scale-tier’ is set to a tier above the basic machine type. Change the bucket names

accordingly.

export SCALE_TIER=STANDARD_1 # BASIC | BASIC_GPU | STANDARD_1 | PREMIUM_1 |

BASIC_TPU

DATE=`date '+%Y%m%d_%H%M%S'`

export JOB_NAME=iris_$DATE

export GCS_JOB_DIR=gs://iris-dataset/jobs/$JOB_NAME

export TRAIN_FILE=gs://iris-dataset/train_data.csv

export EVAL_FILE=gs://iris-dataset/test_data.csv

echo $GCS_JOB_DIR

gcloud ai-platform jobs submit training $JOB_NAME \

 --stream-logs \

 --scale-tier $SCALE_TIER \

 --runtime-version 1.8 \

Chapter 41 GooGle Cloud MaChine learninG enGine (Cloud Mle)

561

 --job-dir $GCS_JOB_DIR \

 --module-name trainer.task \

 --package-path trainer/ \

 --region us-central1 \

 -- \

 --train-files $TRAIN_FILE \

 --eval-files $EVAL_FILE \

 --train-steps 5000 \

 --eval-steps 100

The following executes a distributed training job.

source ./scripts/distributed-training.sh

 Running a Distributed Training Job with
Hyper-parameter Tuning
To run a training job with hyper-parameter tuning, add the ‘- -config’ attribute and link

to the ‘.yaml’ hyper-parameter configuration file. The code for running the job is the

same, but with the attribute ‘- -config’ added. Change the bucket names accordingly.

export SCALE_TIER=STANDARD_1 # BASIC | BASIC_GPU | STANDARD_1 | PREMIUM_1 |

BASIC_TPU

DATE=`date '+%Y%m%d_%H%M%S'`

export JOB_NAME=iris_$DATE

export HPTUNING_CONFIG=hptuning_config.yaml

export GCS_JOB_DIR=gs://iris-dataset/jobs/$JOB_NAME

export TRAIN_FILE=gs://iris-dataset/train_data.csv

export EVAL_FILE=gs://iris-dataset/test_data.csv

echo $GCS_JOB_DIR

gcloud ai-platform jobs submit training $JOB_NAME \

 --stream-logs \

 --scale-tier $SCALE_TIER \

 --runtime-version 1.8 \

 --config $HPTUNING_CONFIG \

Chapter 41 GooGle Cloud MaChine learninG enGine (Cloud Mle)

562

 --job-dir $GCS_JOB_DIR \

 --module-name trainer.task \

 --package-path trainer/ \

 --region us-central1 \

 -- \

 --train-files $TRAIN_FILE \

 --eval-files $EVAL_FILE \

 --train-steps 5000 \

 --eval-steps 100

 hptuning_config.yaml File
This file contains the hyper-parameter and the ranges we wish to explore in tuning

our training job on Cloud MLE. The goal of the tuning job is to ‘MAXIMIZE’ the

‘accuracy’ metric.

trainingInput:

 hyperparameters:

 goal: MAXIMIZE

 hyperparameterMetricTag: accuracy

 maxTrials: 4

 maxParallelTrials: 2

 params:

 - parameterName: learning-rate

 type: DOUBLE

 minValue: 0.00001

 maxValue: 0.005

 scaleType: UNIT_LOG_SCALE

 - parameterName: first-layer-size

 type: INTEGER

 minValue: 50

 maxValue: 500

 scaleType: UNIT_LINEAR_SCALE

 - parameterName: num-layers

 type: INTEGER

 minValue: 1

Chapter 41 GooGle Cloud MaChine learninG enGine (Cloud Mle)

563

 maxValue: 15

 scaleType: UNIT_LINEAR_SCALE

 - parameterName: scale-factor

 type: DOUBLE

 minValue: 0.1

 maxValue: 1.0

 scaleType: UNIT_REVERSE_LOG_SCALE

 Execute Training Job with Hyper-parameter Tuning
Run the following code on the terminal to launch a distributed training job.

source ./scripts/hyper-tune.sh

gs://iris-dataset/jobs/iris_20181114_190121

Job [iris_20181114_190121] submitted successfully.

INFO 2018-11-14 12:41:07 -0500 service Validating job

requirements...

INFO 2018-11-14 12:41:07 -0500 service Job creation request

has been successfully

validated.

INFO 2018-11-14 12:41:08 -0500 service Job iris_20181114_190121 is

queued.

INFO 2018-11-14 12:41:18 -0500 service Waiting for job to be

provisioned.

INFO 2018-11-14 12:41:18 -0500 service Waiting for job to be

provisioned.

...

INFO 2018-11-14 12:56:38 -0500 service Finished tearing down

training program.

INFO 2018-11-14 12:56:45 -0500 service Finished tearing down

training program.

INFO 2018-11-14 12:57:37 -0500 service Job completed successfully.

INFO 2018-11-14 12:57:43 -0500 service Job completed successfully.

endTime: '2018-11-14T13:04:34'

jobId: iris_20181114_190121

Chapter 41 GooGle Cloud MaChine learninG enGine (Cloud Mle)

564

startTime: '2018-11-14T12:41:12'

state: SUCCEEDED

The job details of the hyper-parameter training job is shown in Figure 41-3.

Under ‘Training output’, the first ‘trialID’ contains the hyper-parameter set that

minimizes the cost function and performs best on the evaluation metric. Observe that

the trial run within the red box has the highest accuracy value in the ‘objectiveValue’
attribute. This is illustrated in Figure 41-4.

Figure 41-3. Job details: Hyper-parameter distributed training job on Cloud MLE

Chapter 41 GooGle Cloud MaChine learninG enGine (Cloud Mle)

565

 Making Predictions on Cloud MLE
To make predictions on Cloud MLE, we first create a prediction instance. To do this,

run the code in ‘create-prediction-service.sh’ as shown in the following. The variable

‘MODEL_BINARIES’ points to the folder location on GCS that stores the trained model

for the hyper-parameter setting with ‘trialID = 2’.

export MODEL_VERSION=v1

export MODEL_NAME=iris

export MODEL_BINARIES=$GCS_JOB_DIR/3/export/iris/1542241126

Create a Cloud ML Engine model

gcloud ai-platform models create $MODEL_NAME

Create a model version

gcloud ai-platform versions create $MODEL_VERSION \

 --model $MODEL_NAME \

 --origin $MODEL_BINARIES \

 --runtime-version 1.8

Figure 41-4. Choosing the best hyper-parameter set

Chapter 41 GooGle Cloud MaChine learninG enGine (Cloud Mle)

566

Run the following code to create the prediction service.

source ./scripts/create-prediction-service.sh

Creating model...

Created ml engine model [projects/quantum-ally-219323/models/iris].

Creating model version...

Creating version (this might take a few minutes)......done.

The version details of the created model is as seen in Figure 41-5.

 Run Batch Prediction
Now let’s run a batch prediction job on Cloud MLE. The code to execute a batch

prediction call on Cloud MLE is provided in the following and stored in ‘run-batch-

predictions.sh’.

export JOB_NAME=iris_prediction

export MODEL_NAME=iris

Figure 41-5. Created model for serving on Cloud MLE

Chapter 41 GooGle Cloud MaChine learninG enGine (Cloud Mle)

567

export MODEL_VERSION=v1

export TEST_FILE=gs://iris-dataset/hold_out_test.csv

submit a batched job

gcloud ai-platform jobs submit prediction $JOB_NAME \

 --model $MODEL_NAME \

 --version $MODEL_VERSION \

 --data-format TEXT \

 --region $REGION \

 --input-paths $TEST_FILE \

 --output-path $GCS_JOB_DIR/predictions

stream job logs

echo "Job logs..."

gcloud ai-platform jobs stream-logs $JOB_NAME

read output summary

echo "Job output summary:"

gsutil cat $GCS_JOB_DIR/predictions/prediction.results-00000-of-00001

Execute the code with the command

source ./scripts/run-batch-prediction.sh

Job [iris_prediction] submitted successfully.

jobId: iris_prediction

state: QUEUED

Job logs...

INFO 2018-11-12 14:48:18 -0500 service Validating job

requirements...

INFO 2018-11-12 14:48:18 -0500 service Job creation request

has been successfully

validated.

INFO 2018-11-12 14:48:19 -0500 service Job iris_prediction is

queued.

Job output summary:

Job output summary:

Chapter 41 GooGle Cloud MaChine learninG enGine (Cloud Mle)

568

{"classes": ["0", "1", "2"], "scores": [8.242315743700601e-06,

0.9921771883964539, 0.007814492098987103]}

{"classes": ["0", "1", "2"], "scores": [2.7296309657032225e-09,

0.015436310321092606, 0.9845637083053589]}

{"classes": ["0", "1", "2"], "scores": [5.207379217608832e-06,

0.9999237060546875, 7.100913353497162e-05]}

........

{"classes": ["0", "1", "2"], "scores": [0.999919056892395,

8.089694165391847e-05, 9.295699552171275e-16]}

{"classes": ["0", "1", "2"], "scores": [0.9999765157699585,

2.3535780201200396e-05, 1.2826575252518792e-17]}

{"classes": ["0", "1", "2"], "scores": [1.8082465658153524e-06,

0.7016969919204712, 0.29830116033554077]}

The prediction job details on Cloud MLE is as shown in Figure 41-6.

Figure 41-6. Batch prediction job details

Chapter 41 GooGle Cloud MaChine learninG enGine (Cloud Mle)

569

 Training with GPUs on Cloud MLE
Training models on GPUs can greatly reduce the processing time. In order to use GPUs

on Cloud MLE, we make the following changes to our code example:

 1. Change the scale tier to ‘CUSTOM’. The CUSTOM tier makes a

number of GPU accelerators available, namely:

 a. standard_gpu: A single NVIDIA Tesla K80 GPU

 b. complex_model_m_gpu: Four NVIDIA Tesla K80 GPUs

 c. complex_model_l_gpu: Eight NVIDIA Tesla K80 GPUs

 d. standard_p100: A single NVIDIA Tesla P100 GPU

 e. complex_model_m_p100: Four NVIDIA Tesla P100 GPUs

 f. standard_v100: A single NVIDIA Tesla V100 GPU

 g. large_model_v100: A single NVIDIA Tesla V100 GPU

 h. complex_model_m_v100: Four NVIDIA Tesla V100 GPUs

 i. complex_model_l_v100: Eight NVIDIA Tesla V100 GPUs

 2. Add the following parameters to the ‘.yaml’ file to configure the

GPU instance.

trainingInput:

 scaleTier: CUSTOM

 masterType: complex_model_m_gpu

 workerType: complex_model_m_gpu

 parameterServerType: large_model

 workerCount: 2

 parameterServerCount: 3

 3. The full configuration file in ‘gpu_hptuning_config.yaml’ now

looks like this:

trainingInput:

 scaleTier: CUSTOM

 masterType: complex_model_m_gpu

 workerType: complex_model_m_gpu

Chapter 41 GooGle Cloud MaChine learninG enGine (Cloud Mle)

570

 parameterServerType: large_model

 workerCount: 2

 parameterServerCount: 3

 hyperparameters:

 goal: MAXIMIZE

 hyperparameterMetricTag: accuracy

 maxTrials: 4

 maxParallelTrials: 2

 params:

 - parameterName: learning-rate

 type: DOUBLE

 minValue: 0.00001

 maxValue: 0.005

 scaleType: UNIT_LOG_SCALE

 - parameterName: first-layer-size

 type: INTEGER

 minValue: 50

 maxValue: 500

 scaleType: UNIT_LINEAR_SCALE

 - parameterName: num-layers

 type: INTEGER

 minValue: 1

 maxValue: 15

 scaleType: UNIT_LINEAR_SCALE

 - parameterName: scale-factor

 type: DOUBLE

 minValue: 0.1

 maxValue: 1.0

 scaleType: UNIT_REVERSE_LOG_SCALE

Note that running GPUs on Cloud MLE is only available in the following regions:

• us-east1

• us-central1

• us-west1

Chapter 41 GooGle Cloud MaChine learninG enGine (Cloud Mle)

571

• asia-east1

• europe-west1

• europe-west4

The updated execution code for training with GPUs on Cloud MLE is saved as ‘gpu-

hyper- tune.sh’ (code shown in the following).

export SCALE_TIER=CUSTOM

DATE=`date '+%Y%m%d_%H%M%S'`

export JOB_NAME=iris_$DATE

export HPTUNING_CONFIG=gpu_hptuning_config.yaml

export GCS_JOB_DIR=gs://iris-dataset/jobs/$JOB_NAME

export TRAIN_FILE=gs://iris-dataset/train_data.csv

export EVAL_FILE=gs://iris-dataset/test_data.csv

echo $GCS_JOB_DIR

gcloud ai-platform jobs submit training $JOB_NAME \

 --stream-logs \

 --scale-tier $SCALE_TIER \

 --runtime-version 1.8 \

 --config $HPTUNING_CONFIG \

 --job-dir $GCS_JOB_DIR \

 --module-name trainer.task \

 --package-path trainer/ \

 --region us-central1 \

 -- \

 --train-files $TRAIN_FILE \

 --eval-files $EVAL_FILE \

 --train-steps 5000 \

 --eval-steps 100

Chapter 41 GooGle Cloud MaChine learninG enGine (Cloud Mle)

572

To execute the code, run

source ./scripts/gpu-hyper-tune.sh

gs://iris-dataset/jobs/iris_20181112_211040

Job [iris_20181112_211040] submitted successfully.

...

INFO 2018-11-12 21:35:36 -0500 ps-replica-2 4 Module completed;

cleaning up.

INFO 2018-11-12 21:35:36 -0500 ps-replica-2 4 Clean up finished.

INFO 2018-11-12 21:36:18 -0500 service Finished tearing down

training program.

INFO 2018-11-12 21:36:25 -0500 service Finished tearing down

training program.

INFO 2018-11-12 21:37:11 -0500 service Job completed successfully.

INFO 2018-11-12 21:37:11 -0500 service Job completed successfully.

endTime: '2018-11-12T21:38:26'

jobId: iris_20181112_211040

startTime: '2018-11-12T21:10:47'

state: SUCCEEDED

 Scikit-learn on Cloud MLE
This section will provide a walk-through of training a Scikit-learn model on Google

Cloud MLE using the same Iris dataset example. We’ll begin by moving the appropriate

data files from the GitHub repository of this book to GCS.

 Move the Data Files to GCS
Walk through the following steps to move the data files to GCS:

 1. Create bucket to hold the datasets.

gsutil mb gs://iris-sklearn

Chapter 41 GooGle Cloud MaChine learninG enGine (Cloud Mle)

573

 2. Run the following commands on the terminal to move the training

and testing datasets to the buckets:

Train set features.

gsutil cp X_train.csv gs://iris-sklearn

Train set targets.

gsutil cp y_train.csv gs://iris-sklearn

Test sample for online prediction.

gsutil cp test-sample.json gs://iris-sklearn

 Prepare the Training Scripts
The code for training a Scikit-learn model on Cloud MLE is also prepared as a python

package. The project structure is as follows:

Iris_SklearnCloudML: [project name as parent folder]

• Trainer: [folder containing the model and execution code]

• __init__.py: [an empty special python file indicating that the

containing folder is a Python package]

• model.py: [file contains the logic of the model written in Scikit-

learn]

• scripts: [folder containing scripts to execute jobs on Cloud MLE]

• single-instance-training.sh: [script to run a single instance

training job on Cloud MLE]

• online-prediction.sh: [script to execute an online prediction job

on Cloud MLE]

• create-prediction-service.sh: [script to create a prediction service

on Cloud MLE]

• config.yaml: [configuration file for specifying model version]

Chapter 41 GooGle Cloud MaChine learninG enGine (Cloud Mle)

574

The model code for training on Cloud MLE with Scikit-learn (shown in the following)

is stored in the file ‘model.py’. The machine learning algorithm used in this model is the

Random forest Classifier.

[START setup]

import datetime

import os

import subprocess

import sys

import pandas as pd

from sklearn.ensemble import RandomForestClassifier

from sklearn.externals import joblib

from tensorflow.python.lib.io import file_io

Fill in your Cloud Storage bucket name

BUCKET_ID = 'iris-sklearn'

[END setup]

[START download-and-load-into-pandas]

iris_data_filename = 'gs://iris-sklearn/X_train.csv'

iris_target_filename = 'gs://iris-sklearn/y_train.csv'

Load data into pandas

with file_io.FileIO(iris_data_filename, 'r') as iris_data_f:

 iris_data = pd.read_csv(filepath_or_buffer=iris_data_f,

 header=None, sep=',').values

with file_io.FileIO(iris_target_filename, 'r') as iris_target_f:

 iris_target = pd.read_csv(filepath_or_buffer=iris_target_f,

 header=None, sep=',').values

iris_target = iris_target.reshape((iris_target.size,))

[END download-and-load-into-pandas]

[START train-and-save-model]

Train the model

classifier = RandomForestClassifier()

classifier.fit(iris_data, iris_target)

Chapter 41 GooGle Cloud MaChine learninG enGine (Cloud Mle)

575

Export the classifier to a file

model = 'model.joblib'

joblib.dump(classifier, model)

[END train-and-save-model]

[START upload-model]

Upload the saved model file to Cloud Storage

model_path = os.path.join('gs://', BUCKET_ID, 'model', datetime.datetime.

now().strftime(

 'iris_%Y%m%d_%H%M%S'), model)

subprocess.check_call(['gsutil', 'cp', model, model_path], stderr=sys.

stdout)

[END upload-model]

Take note of the following points in the preceding code block:

• The code uses the ‘file.io’ module from the package ‘tensorflow.

python.lib.io’ to stream a file stored on Cloud Storage.

• The rest of the code runs the classifier to build the model and exports

the model to a bucket location on GCS. Cloud MLE will read from this

bucket when building a prediction service for online predictions.

 Execute a Scikit-learn Training Job on Cloud MLE
The bash code for executing a training job for the Scikit-learn model is presented in the

following and is saved in the file ‘single-instance-training.sh’.

export SCALE_TIER=BASIC # BASIC | BASIC_GPU | STANDARD_1 | PREMIUM_1 |

BASIC_TPU

DATE=`date '+%Y%m%d_%H%M%S'`

export JOB_NAME=iris_sklearn_$DATE

export GCS_JOB_DIR=gs://iris-sklearn/jobs/$JOB_NAME

echo $GCS_JOB_DIR

gcloud ml-engine jobs submit training $JOB_NAME \

 --stream-logs \

 --scale-tier $SCALE_TIER \

Chapter 41 GooGle Cloud MaChine learninG enGine (Cloud Mle)

576

 --runtime-version 1.8 \

 --job-dir $GCS_JOB_DIR \

 --module-name trainer.model \

 --package-path trainer/ \

 --region us-central1 \

 --python-version 3.5

The following code runs a training job to build a Scikit-learn Random forest model.

source ./scripts/single-instance-training.sh

gs://iris-sklearn/jobs/iris_sklearn_20181119_000349

Job [iris_sklearn_20181119_000349] submitted successfully.

INFO 2018-11-19 00:03:51 -0500 service Validating job

requirements...

INFO 2018-11-19 00:03:52 -0500 service Job creation request

has been successfully

validated.

INFO 2018-11-19 00:03:52 -0500 service Job iris_sklearn_20181119_

000349 is queued.

INFO 2018-11-19 00:03:52 -0500 service Waiting for job to be

provisioned.

INFO 2018-11-19 00:03:54 -0500 service Waiting for training

program to start.

...

INFO 2018-11-19 00:05:19 -0500 master-replica-0 Module

completed;

cleaning up.

INFO 2018-11-19 00:05:19 -0500 master-replica-0 Clean up

finished.

INFO 2018-11-19 00:05:19 -0500 master-replica-0 Task completed

successfully.

endTime: '2018-11-19T00:09:38'

jobId: iris_sklearn_20181119_000349

startTime: '2018-11-19T00:04:29'

state: SUCCEEDED

Chapter 41 GooGle Cloud MaChine learninG enGine (Cloud Mle)

577

 Create a Scikit-learn Prediction Service
on Cloud MLE
The code for creating a prediction service is shown in the following, and is saved in the

file ‘create-prediction-service.sh’.

export MODEL_VERSION=v1

export MODEL_NAME=iris_sklearn

export REGION=us-central1

Create a Cloud ML Engine model

echo "Creating model..."

gcloud ml-engine models create $MODEL_NAME --regions=$REGION

Create a model version

echo "Creating model version..."

gcloud ml-engine versions create $MODEL_VERSION \

 --model $MODEL_NAME \

 --config config.yaml

The preceding code references a configuration file ‘config.yaml’. This file (as shown

in the following) holds the configuration for the Scikit-learn model. Let’s briefly go

through the attributes listed:

• deploymentUri: This points to the bucket location of the Scikit-learn

model.

• runtime version: This attribute specifies the Cloud MLE runtime

version.

• framework: This attribute is of particular importance as it specifies

the model framework in use; this can be SCIKIT_LEARN, XGBOOST,

or TENSORFLOW. For this example, it is set to SCIKIT_LEARN.

• pythonVersion: This attribute specifies the Python version in use.

Chapter 41 GooGle Cloud MaChine learninG enGine (Cloud Mle)

578

The ‘config.yaml’ is as defined in the following:

deploymentUri: "gs://iris-sklearn/iris_20181119_050517"

runtimeVersion: '1.8'

framework: "SCIKIT_LEARN"

pythonVersion: "3.5"

Run the following command to create a prediction service.

source ./scripts/create-prediction-service.sh

Creating model...

Created ml engine model [projects/quantum-ally-219323/models/iris_sklearn].

Creating model version...

Creating version (this might take a few minutes)......done.

 Make Online Predictions from the Scikit-learn
Model
The code to make an online prediction from the Scikit-learn model is shown in the

following and is stored in the file ‘online-prediction.sh’. In online predictions, the input

data is passed directly as a JSON string.

export JOB_NAME=iris_sklearn_prediction

export MODEL_NAME=iris_sklearn

export MODEL_VERSION=v1

export TEST_FILE_GCS=gs://iris-sklearn/test-sample.json

export TEST_FILE=./test-sample.json

download file

gsutil cp $TEST_FILE_GCS .

submit an online job

gcloud ml-engine predict --model $MODEL_NAME \

 --version $MODEL_VERSION \

 --json-instances $TEST_FILE

echo "0 -> setosa, 1 -> versicolor, 2 -> virginica"

Chapter 41 GooGle Cloud MaChine learninG enGine (Cloud Mle)

579

The input data stored as a JSON string is shown in the following.

[5.1, 3.5, 1.4, 0.2]

Run the following command to execute an online prediction request to the hosted

model on Cloud MLE.

source ./scripts/online-prediction.sh

Copying gs://iris-sklearn/test-sample.json...

/ [1 files][20.0 B/ 20.0 B]

Operation completed over 1 objects/20.0 B.

[0]

0 -> setosa, 1 -> versicolor, 2 -> virginica

In this chapter, we discuss training large-scale models using Google Cloud Machine

Learning Engine, which is a part of the Google AI Platform. In the examples in this

chapter, we trained the models using the Estimator High-level API and Scikit-learn. It is

important to mention that the Keras high-level API can also be used to train large-scale

models on Cloud MLE.

In the next chapter, we will cover training custom image recognition models with

Google Cloud AutoML.

Chapter 41 GooGle Cloud MaChine learninG enGine (Cloud Mle)

581
© Ekaba Bisong 2019
E. Bisong, Building Machine Learning and Deep Learning Models on Google Cloud Platform,
https://doi.org/10.1007/978-1-4842-4470-8_42

CHAPTER 42

Google AutoML:
Cloud Vision
Google Cloud AutoML Vision facilitates the creation of custom vision models for image

recognition use cases. This managed service works with the concepts of transfer learning

and neural architecture search under the hood to find the best network architecture

and the optimal hyper-parameter configuration of that architecture that minimizes the

loss function of the model. This chapter will go through a sample project of building a

custom image recognition model using Google Cloud AutoML Vision. In this chapter, we

will build an image model to recognize select cereal boxes.

 Enable AutoML Cloud Vision on GCP
Step through the following steps to enable AutoML Cloud Vision on GCP:

 1. Open Cloud Vision by clicking the triple dash at the top-left corner

of the GCP dashboard. Select Vision under the product section

ARTIFICIAL INTELLIGENCE as shown in Figure 42-1.

582

 2. Select the Google user account on which to activate AutoML as

shown in Figures 42-2 and 42-3.

Figure 42-1. Open Google AutoML: Cloud Vision

Figure 42-2. Select account to authenticate AutoML

Chapter 42 GooGle autoMl: Cloud Vision

583

 3. After authentication, the Google Cloud Vision Welcome page

opens up (see Figure 42- 4).

Figure 42-3. Authenticate AutoML

Figure 42-4. Cloud Vision Welcome page

Chapter 42 GooGle autoMl: Cloud Vision

584

 4. From the drop-down menu, select the Project ID (with billing

enabled) that will be used to set up AutoML (see Figure 42-5).

 5. The final configuration step is to enable the AutoML API on the

GCP project and to create a GCS bucket for storing the output

models. Click ‘SET UP NOW’ to automatically complete the

configuration as shown in Figure 42-6.

Figure 42-5. Select Project ID for configuring AutoML

Chapter 42 GooGle autoMl: Cloud Vision

585

 6. When the configuration is complete, the AutoML Vision

Dashboard is activated (see Figure 42-7).

Figure 42-6. Automatically complete AutoML configuration

Figure 42-7. Automatically complete AutoML configuration

Chapter 42 GooGle autoMl: Cloud Vision

586

 Preparing the Training Dataset
Before building a custom image recognition model with AutoML Cloud Vision, the

dataset must be prepared in a particular format; they include

 1. For training, JPEG, PNG, WEBP, GIF, BMP, TIFF, and ICO image

formats are supported with a maximum size of 30mb per image.

 2. For inference, the image formats JPEG, PNG, and GIF are

supported with each image being of maximum size 1.5mb.

 3. It is best to place each image category into containing sub-folder

within an image folder For example:

• [image-directory]

• [image-class-1-dir]

• [image-class-2-dir]

• …

• [image-class-n-dir]

 4. Next, a CSV must be created that points to the paths of the images

and their corresponding label. AutoML uses the CSV file to point

to the location of the training images and their labels. The CSV

file is placed in the same GCS bucket containing the image files.

Use the bucket automatically created when AutoML Vision was

configured. In our case, this bucket is named ‘gs://quantum-ally-

219323-vcm’. We use the following code segment to create the CSV

file used in the cereal classifier example.

import os

import numpy as np

import pandas as pd

directory = 'cereal_photos/

data = []

go through sub-directories in the image directory and get the

image paths

Chapter 42 GooGle autoMl: Cloud Vision

587

for subdir, dirs, files in os.walk(directory):

 for file in files:

 filepath = subdir + os.sep + file

 if filepath.endswith(".jpg"):

 entry = ['{}/{}'.format('gs://quantum-ally-219323-

vcm',filepath), os.path.basename(subdir)]

 data.append(entry)

convert to Pandas DataFrame

data_pd = pd.DataFrame(np.array(data))

export CSV

data_pd.to_csv("data.csv", header=None, index=None)

 5. The preceding code will result in a CSV looking like the following

sample:

gs://quantum-ally-219323-vcm/cereal_photos/apple_cinnamon_

cheerios/001.jpg,apple_cinnamon_cheerios

gs://quantum-ally-219323-vcm/cereal_photos/apple_cinnamon_

cheerios/002.jpg,apple_cinnamon_cheerios

gs://quantum-ally-219323-vcm/cereal_photos/apple_cinnamon_

cheerios/003.jpg,apple_cinnamon_cheerios

...

gs://quantum-ally-219323-vcm/cereal_photos/none_of_the_above/

images_(97).jpg,none_of_the_above

gs://quantum-ally-219323-vcm/cereal_photos/none_of_the_above/

images_(98).jpg,none_of_the_above

gs://quantum-ally-219323-vcm/cereal_photos/none_of_the_above/

images_(99).jpg,none_of_the_above

...

gs://quantum-ally-219323-vcm/cereal_photos/sugar_crisp/001.

jpg,sugar_crisp

gs://quantum-ally-219323-vcm/cereal_photos/sugar_crisp/002.

jpg,sugar_crisp

gs://quantum-ally-219323-vcm/cereal_photos/sugar_crisp/003.

jpg,sugar_crisp

Chapter 42 GooGle autoMl: Cloud Vision

588

The first part is the image path or URI, while the other is the

image label.

 6. When preparing the image dataset, it is useful to have a ‘None_
of_the_above’ image class. This class will contain random images

that do not belong to any of the predicted classes. Adding this

class can have an overall effect on the model accuracy.

 7. Clone the GitHub book repository to the Notebook instance.

 8. Navigate to the folder chapter and copy the image files to the GCS

bucket.

gsutil cp -r cereal_photos gs://quantum-ally-219323-vcm

 9. Copy the CSV data file containing the image paths and their labels

to the GCS bucket.

gsutil cp data.csv gs://quantum-ally-219323-vcm/cereal_photos/

 Building Custom Image Models on Cloud
AutoML Vision
In AutoML for Cloud Vision, a dataset contains the images that will be used in building

the classifier and their corresponding labels. This section will walk through creating a

dataset and building a custom image model on AutoML Vision.

 1. From the Cloud AutoML Vision Dashboard, click NEW DATASET

as shown in Figure 42-8.

Chapter 42 GooGle autoMl: Cloud Vision

589

 2. To create a Dataset on Cloud AutoML Vision, set the following

parameters as shown in Figure 42-9:

Figure 42-8. New Dataset on AutoML Vision

Chapter 42 GooGle autoMl: Cloud Vision

590

 a. Dataset name: cereal_classifier.

 b. Select a CSV file on Cloud Storage (this is the CSV file placed on the bucket

created when Cloud AutoML was configured that contains the path to the

images): gs://quantum-ally-219323-vcm/cereal_photos/data.csv.

 c. Click CREATE DATASET to begin importing images (see Figure 42-10).

Figure 42-9. Create a Dataset on Cloud AutoML Vision

Chapter 42 GooGle autoMl: Cloud Vision

591

 3. After importing the Dataset, click TRAIN (see Figure 42-11) to

initiate the process of building a custom image recognition model.

 4. In machine learning, more labeled training examples boost the

performance of the model. Likewise, when using AutoML, there

should be at least 100 training examples for each image class. In

the example used in this section, some classes do not have up to

Figure 42-10. Cloud AutoML Vision: Importing images

Figure 42-11. Cloud AutoML Vision: Imported images and their labels

Chapter 42 GooGle autoMl: Cloud Vision

592

100 examples, so AutoML gives a warning as seen in Figure 42-12.

However, for the purposes of this exercise, we will continue with

training. Click START TRAINING.

 5. Choose how long the model will be trained. More training time

might have an effect on the model accuracy, but this may cost

more for running on Cloud AutoML’s machines (see Figure 42-13).

Again, click START TRAINING to begin building the model (see

Figure 42-14).

Figure 42-12. Cloud AutoML Vision requesting for more training examples per
image class

Chapter 42 GooGle autoMl: Cloud Vision

593

 6. The training summary is shown in Figure 42-15.

Figure 42-13. Select training budget

Figure 42-14. Training vision model on Cloud AutoML Vision

Chapter 42 GooGle autoMl: Cloud Vision

594

 7. AutoML Vision uses the set-aside test images to evaluate the

quality of the model after training as seen in Figure 42-16. The F1

plot showing the trade-off between precision and recall is shown

in Figure 42-17. Also, a visual confusion matrix is provided to

further evaluate the model quality (see Figure 42-18).

Figure 42-15. Cloud AutoML Vision: Training summary

Chapter 42 GooGle autoMl: Cloud Vision

595

Figure 42-16. Cloud AutoML Vision: Model evaluation

Figure 42-17. F1 evaluation matrix on Cloud AutoML Vision

Chapter 42 GooGle autoMl: Cloud Vision

596

 8. The custom image recognition model is exposed as a REST or

Python API for integration into software applications as a prediction

service (see Figure 42-19). We can test our model by uploading a

sample image for classification as shown in Figure 42-20.

Figure 42-18. Confusion matrix for model evaluation on Cloud AutoML Vision

Figure 42-19. Cloud AutoML Vision: Model as a prediction service

Chapter 42 GooGle autoMl: Cloud Vision

597

 9. To delete a model, click the triple dash and select Models to

navigate to the Models Dashboard (see Figure 42-21). At the side

of the model, click the triple dot and select Delete model (see

Figure 42-22). Confirm deletion as shown in Figure 42-23. Note,

however, that API calls affiliated with a deleted model will cease to

be operational.

Figure 42-20. Test prediction service on Cloud AutoML Vision

Chapter 42 GooGle autoMl: Cloud Vision

598

This chapter covered building and deploying custom image classification models

using Google AutoML Cloud Vision. In the next chapter, we will discover how to build

and deploy custom text classification models with Google Cloud AutoML for natural

language processing.

Figure 42-21. Return to Models dashboard

Figure 42-23. Delete a model on Cloud AutoML Vision

Figure 42-22. Select model to delete

Chapter 42 GooGle autoMl: Cloud Vision

599
© Ekaba Bisong 2019
E. Bisong, Building Machine Learning and Deep Learning Models on Google Cloud Platform,
https://doi.org/10.1007/978-1-4842-4470-8_43

CHAPTER 43

Google AutoML: Cloud
Natural Language
Processing
This chapter will build a language toxicity classification model to classify and recognize

toxic and non-toxic or clean phrases using Google Cloud AutoML for natural language

processing (NLP). The data used in this project is from the Toxic Comment Classification

Challenge on Kaggle by Jigsaw and Google. The data is modified to have a sample of

16,000 toxic and 16,000 non-toxic words as inputs to build the model on AutoML NLP.

 Enable AutoML NLP on GCP
The following steps will enable AutoML NLP on GCP:

 1. Click the triple dash in the top-left corner of the interface and

select Natural Language under the category ARTIFICIAL

INTELLIGENCE as shown in Figure 43-1.

600

 2. From the screen that follows, click Get started with AutoML (see

Figure 43-2).

Figure 43-1. Open Cloud AutoML for Natural Language

Figure 43-2. Click Get started with Cloud AutoML NLP

Chapter 43 GooGle autoMl: Cloud Natural laNGuaGe proCessiNG

601

 3. Click SET UP NOW to automatically setup the GCP project for

working with Cloud AutoML NLP (see Figure 43-3). This process

involves activating the API for AutoML and creating a bucket on

GCP for storing the data input and output models. We will use this

bucket in the next section.

 4. After configuration, the Cloud AutoML NLP Dashboard is

activated (see Figure 43-4).

Figure 43-3. Auto-configure Cloud AutoML NLP

Figure 43-4. AutoML NLP dashboard

Chapter 43 GooGle autoMl: Cloud Natural laNGuaGe proCessiNG

602

 Preparing the Training Dataset
Let’s step through preparing the dataset for building a custom language classification

model with Cloud AutoML NLP:

 1. The training input can either be a document in (.txt) format or as

an in-line text in a (.csv) file. Multiple texts can be grouped as a

compressed (.zip) file.

 2. For this project, text files are placed in sub-folders with their

grouped output labels as the folder names. This is later used to

create a CSV file containing the data file path and their labels. For

example:

• [files]

• [toxic]

• [clean]

 3. Next, a CSV must be generated that points to the paths of the

images and their corresponding label. Just like Cloud Vision,

Cloud NLP uses the CSV file to point to the location of the training

documents or words and their corresponding labels. The CSV

file is placed in the same GCS bucket created AutoML NLP was

configured. In our case, this bucket is named ‘gs://quantum-ally-

219323-lcm’. The following code segment prepares the data and

produces a CSV file.

import numpy as np

import pandas as pd

import re

import pathlib

import os

read the Toxic Comment Classification training dataset

data = pd.read_csv('./data/train.csv')

add clean column label

data['clean'] = (1 - data.iloc[:, 2:].sum(axis=1) >= 1).

astype(int)

Chapter 43 GooGle autoMl: Cloud Natural laNGuaGe proCessiNG

603

merge all other non-clean comments to toxic

data.loc[data['clean'] == 0, ['toxic']] = 1

select dataframe of clean examples

data_clean = data[data['clean'] == 1].sample(n=20000)

select dataframe of toxic examples

data_toxic = data[data['toxic'] == 1].sample(n=16000)

join into one dataframe

data = pd.concat([data_clean, data_toxic])

remove unused columns

data.drop(['severe_toxic', 'obscene', 'threat', 'insult',

'identity_hate'], axis=1, inplace=True)

create text documents and place them in their folder classes.

for index, row in data.iterrows():

 comment_text = re.sub(r'[^\w\s]',",row['comment_text']).

rstrip().lstrip().strip()

 classes = "

 if (row['toxic'] == 1):

 classes = 'toxic'

 else:

 classes = 'clean'

 pathlib.Path("./file/{}".format(classes)).mkdir(parents=True,

exist_ok=True)

 with open("./file/{}/text_{}.txt".format(classes,index), "w")

as text_file:

 text_file.write(comment_text)

data_path = []

directory = 'file/'

create data csv

for subdir, dirs, files in os.walk(directory):

 for file in files:

 filepath = subdir + os.sep + file

Chapter 43 GooGle autoMl: Cloud Natural laNGuaGe proCessiNG

604

 if filepath.endswith(".txt"):

 entry = ['{}/{}'.format('gs://quantum-ally-219323-

lcm',filepath), os.path.basename(subdir)]

 data_path.append(entry)

convert to Pandas DataFrame

data_pd = pd.DataFrame(np.array(data_path))

export data to csv

data_pd.to_csv("data.csv", header=None, index=None)

 4. The preceding code will result in a CSV looking like the following

sample:

gs://quantum-ally-219323-lcm/file/clean/text_100055.txt,clean

gs://quantum-ally-219323-lcm/file/clean/text_100059.txt,clean

gs://quantum-ally-219323-lcm/file/clean/text_100077.txt,clean

...

gs://quantum-ally-219323-lcm/file/toxic/text_141122.txt,toxic

gs://quantum-ally-219323-lcm/file/toxic/text_141138.txt,toxic

gs://quantum-ally-219323-lcm/file/toxic/text_141143.txt,toxic

The first part is the image path or URI, while the other is the

document label.

 5. When preparing the text dataset, it is useful to have a ‘None_of_
the_above’ class. This class will contain documents that do not

belong to any of the predicted classes. Adding this class can have

an overall effect on the model accuracy.

 6. Navigate to the folder chapter and copy the image files to the GCS

bucket. The flag -m initiates parallel uploads to speed up upload

time of large document sizes to GCP.

gsutil -m cp -r file gs://quantum-ally-219323-lcm

 7. Copy the CSV data file containing the document paths and their

labels to the GCS bucket.

gsutil cp data.csv gs://quantum-ally-219323-lcm/file/

Chapter 43 GooGle autoMl: Cloud Natural laNGuaGe proCessiNG

605

 Building a Custom Language Classification Model
on Cloud AutoML NLP
This section will walk through creating a document dataset and building a custom

language classification model on AutoML Vision.

 1. From the Cloud AutoML NLP dashboard, click NEW DATASET as

shown in Figure 43- 5.

 2. To create a Dataset on Cloud AutoML NLP, set the following

parameters as shown in Figure 43-6:

Figure 43-5. New Dataset on AutoML NLP

Chapter 43 GooGle autoMl: Cloud Natural laNGuaGe proCessiNG

606

 a. Dataset name: toxicity_dataset.

 b. Select a CSV file on Cloud Storage (this is the CSV file placed on the bucket

created when Cloud AutoML was configured that contains the path to the

text documents): gs://quantum-ally-219323-lcm/file/data.csv.

 c. Click CREATE DATASET to begin importing images (see Figure 43-7).

Figure 43-6. Create a Dataset on Cloud AutoML NLP

Chapter 43 GooGle autoMl: Cloud Natural laNGuaGe proCessiNG

607

 3. After importing the Dataset, click TRAIN (see Figure 43-8) to

initiate the process of building a custom language classification

model.

 4. In this example, we have a good enough number of training

examples as seen in Figure 43-9, so hopefully, it makes sense

to expect a good language classification model. Click START
TRAINING to begin the training job.

Figure 43-7. Cloud AutoML NLP: Importing text items

Figure 43-8. Cloud AutoML NLP: Imported text documents and their labels

Chapter 43 GooGle autoMl: Cloud Natural laNGuaGe proCessiNG

608

 5. Accept the default model name, and click START TRAINING (see

Figure 43-10) to begin building the model as seen in Figure 43-11.

Note that this training might take about an hour to complete. When

done, the user will get an email of completion.

Figure 43-9. Cloud AutoML NLP checking the adequacy of training examples

Figure 43-10. Accept the Model name and click on “Start Training”

Chapter 43 GooGle autoMl: Cloud Natural laNGuaGe proCessiNG

609

 6. The training summary is shown in Figure 43-12. The training

phase lasted for approximately 4 hours and 45 minutes.

 7. AutoML NLP sets aside a portion of the documents as a test set

in order to evaluate the quality of the model after training (see

Figure 43-13). The F1 plot shows the trade- off between precision

and recall. Also, a confusion matrix provides further insight into

the model quality (see Figure 43-14).

Figure 43-11. Training the text classification model on Cloud AutoML NLP

Figure 43-12. Cloud AutoML NLP: Training summary

Chapter 43 GooGle autoMl: Cloud Natural laNGuaGe proCessiNG

610

Figure 43-13. Cloud AutoML NLP: Model evaluation

Figure 43-14. F1 evaluation plot and confusion matrix on Cloud AutoML NLP

Chapter 43 GooGle autoMl: Cloud Natural laNGuaGe proCessiNG

611

 8. The custom text classification model is exposed as a REST

or Python API for integration into software applications as a

prediction service (see Figure 43-15). We can test our model by

uploading a sample image for classification. Figure 43-16 passes

a clean text example to the model and it predicts correctly with a

probability of 98%, while Figure 43-17 passes a toxic text example

to the model. This example is also correctly classified with a

probability score of 99%.

Figure 43-15. Cloud AutoML NLP model as a prediction service

Chapter 43 GooGle autoMl: Cloud Natural laNGuaGe proCessiNG

612

This chapter covered building and deploying custom text classification models using

Google AutoML Cloud Vision. In the next chapter, we will build an end-to-end data

science product on GCP.

Figure 43-16. Clean words example: AutoML NLP

Figure 43-17. Toxic words example: AutoML NLP

Chapter 43 GooGle autoMl: Cloud Natural laNGuaGe proCessiNG

613
© Ekaba Bisong 2019
E. Bisong, Building Machine Learning and Deep Learning Models on Google Cloud Platform,
https://doi.org/10.1007/978-1-4842-4470-8_44

CHAPTER 44

Model to Predict the
Critical Temperature
of Superconductors
This chapter builds a regression machine learning model to predict the critical

temperature of superconductors. The features for this dataset were derived based on the

following superconductor properties:

• Atomic mass

• First ionization energy

• Atomic radius

• Density

• Electron affinity

• Fusion heat

• Thermal conductivity

• Valence

And for each property, the mean, weighted mean, geometric mean, weighted

geometric mean, entropy, weighted entropy, range, weighted range, standard deviation,

and weighted standard deviation are extracted. Thus, this results in a total number of

8 x 10 = 80 features. In addition to this, a feature that contains the number of elements in

the superconductor is added to the design matrix. The predictor variable is the critical

temperature of the superconductor. Hence, the dataset has a total of 81 features and

21,263 rows.

614

This dataset is made available by Kam Hamidieh of the University of Pennsylvania

and submitted to the UCI Machine Learning Repository. The goal of this section is to

demonstrate delivering an end-to-end machine learning modeling pipeline on Google

Cloud Platform.

 The Modeling Architecture on GCP
The goal of this end-to-end project is to demonstrate building a large-scale learning

model on GCP using the components already discussed in this book. The modeling

architecture is illustrated in Figure 44-1. Let’s briefly explain the connections:

 1. Stage the raw data on GCS.

 2. Load data into BigQuery for analytics.

 3. Exploratory data analysis.

 4. Large-scale data processing with Dataflow.

 5. Place transformed training and evaluation data on GCS.

 6. Train the model on Cloud MLE.

 7. Place the trained model output on GCS.

 8. Deploy the model for inference on Cloud MLE.

Chapter 44 Model to prediCt the CritiCal teMperature of SuperConduCtorS

615

 Stage Raw Data in GCS
Retrieve the raw data from the book code repository for modeling:

• Create a GCS bucket.

gsutil mb gs://superconductor

• Navigate to the chapter folder and transfer the raw data to GCS.

gsutil cp train.csv gs://superconductor/raw-data/

 Load Data into BigQuery for Analytics
Move the dataset from Google Cloud Storage to BigQuery:

• Create a Dataset in BigQuery.

bq mk superconductor

Figure 44-1. Modeling architecture on GCP

Chapter 44 Model to prediCt the CritiCal teMperature of SuperConduCtorS

616

• Load raw data from GCS as a Table into the newly created BigQuery

Dataset.

bq --location=US load --autodetect --source_format=CSV super

conductor.superconductor gs://superconductor/raw-data/train.csv

• View created Table schema on BigQuery.

bq show superconductor.superconductor

Last modified Schema Total Rows Total Bytes

Expiration Time Partitioning Labels

------------- --------------------- ---------- -------------

---------- ------------------- --------

 08 Dec 01:16:51 |- number_of_elements: string

21264 25582000

 |- mean_atomic_mass: string

 |- wtd_mean_atomic_mass: string

 |- wtd_mean_atomic_radius: string

 |- gmean_atomic_radius: string

 |- wtd_gmean_atomic_radius: string

 |- entropy_atomic_radius: string

 |- wtd_entropy_atomic_radius: string

 ...

 |- range_ThermalConductivity: string

 |- wtd_range_ThermalConductivity: string

 |- std_ThermalConductivity: string

 |- wtd_std_ThermalConductivity: string

 |- mean_Valence: string

 |- wtd_std_Valence: string

 |- critical_temp: string

Chapter 44 Model to prediCt the CritiCal teMperature of SuperConduCtorS

617

 Exploratory Data Analysis
The Table in BigQuery contains 21,264 rows. In the interest of speed and rapid iteration,

we will not operate on all the rows of this dataset, but rather, we will select a thousand

rows for data exploration, transformation, and machine learning spot checking.

import pandas as pd

%%bigquery --project ekabasandbox super_cond_df

WITH super_df AS (

SELECT

 number_of_elements, mean_atomic_mass, wtd_mean_atomic_mass,

 gmean_atomic_mass, wtd_gmean_atomic_mass, entropy_atomic_mass,

 wtd_entropy_atomic_mass, range_atomic_mass, wtd_range_atomic_mass,

 std_atomic_mass, wtd_std_atomic_mass, mean_fie, wtd_mean_fie,

 gmean_fie, wtd_gmean_fie, entropy_fie, wtd_entropy_fie, range_fie,

 wtd_range_fie, std_fie, wtd_std_fie, mean_atomic_radius, wtd_mean_atomic_

radius,

 gmean_atomic_radius, wtd_gmean_atomic_radius, entropy_atomic_radius,

 wtd_entropy_atomic_radius, range_atomic_radius, wtd_range_atomic_radius,

 std_atomic_radius, wtd_std_atomic_radius, mean_Density, wtd_mean_Density,

 gmean_Density, wtd_gmean_Density, entropy_Density, wtd_entropy_Density,

 range_Density, wtd_range_Density, std_Density, wtd_std_Density, mean_

ElectronAffinity,

 wtd_mean_ElectronAffinity, gmean_ElectronAffinity, wtd_gmean_

ElectronAffinity

 entropy_ElectronAffinity, wtd_entropy_ElectronAffinity, range_

ElectronAffinity,

 wtd_range_ElectronAffinity, std_ElectronAffinity, wtd_std_

ElectronAffinity,

 mean_FusionHeat, wtd_mean_FusionHeat, gmean_FusionHeat, wtd_gmean_

FusionHeat,

 entropy_FusionHeat, wtd_entropy_FusionHeat, range_FusionHeat,

 wtd_range_FusionHeat, std_FusionHeat, wtd_std_FusionHeat, mean_

ThermalConductivity,

 wtd_mean_ThermalConductivity, gmean_ThermalConductivity, wtd_gmean_

ThermalConductivity,

Chapter 44 Model to prediCt the CritiCal teMperature of SuperConduCtorS

618

 entropy_ThermalConductivity, wtd_entropy_ThermalConductivity, range_

ThermalConductivity,

 wtd_range_ThermalConductivity, std_ThermalConductivity, wtd_std_

ThermalConductivity,

 mean_Valence, wtd_mean_Valence, gmean_Valence, wtd_gmean_Valence,

 entropy_Valence, wtd_entropy_Valence, range_Valence, wtd_range_Valence,

 std_Valence, wtd_std_Valence, critical_temp, ROW_NUMBER() OVER (PARTITION

BY number_of_elements) row_num

FROM

 `superconductor.superconductor`)

SELECT

 *
FROM

 super_df

LIMIT

 1000

Dataframe shape

super_cond_df.shape

Next, we’ll explore the dataset to gain more understanding of the features and their

relationships. This process is called exploratory data analysis (EDA).

• Check the column datatypes.

check column datatypes

super_cond_df.dtypes

number_of_elements int64

mean_atomic_mass float64

wtd_mean_atomic_mass float64

gmean_atomic_mass float64

wtd_gmean_atomic_mass float64

entropy_atomic_mass float64

wtd_entropy_atomic_mass float64

 ...

range_Valence int64

wtd_range_Valence float64

Chapter 44 Model to prediCt the CritiCal teMperature of SuperConduCtorS

619

std_Valence float64

wtd_std_Valence float64

critical_temp float64

row_num int64

Length: 82, dtype: object

From the results, all the data attributes are of numeric type:

• Next, we will use a tool called pandas profiling. This package

produces a full range of exploratory data analytics for a Pandas

DataFrame object. The result includes summary statistics of

the dataset such as the number of variables, number of data

observations, and number of missing values (if any). It also includes

a histogram visualization for each attribute, descriptive statistics

(such as the mean, mode, standard deviation, sum, median

absolute deviation, coefficient of variation, kurtosis, and skewness),

and quantile statistics (such as minimum value, Q1, median, Q3,

maximum, range, and interquartile range). Also, the profile produces

multivariate correlation graphs and produces a list of variables that

are highly correlated.

Import the pandas profiling library.

pandas profiling

import pandas_profiling

Run the profile and save the output.

run report

profile_result = pandas_profiling.ProfileReport(super_cond_df)

To view the complete report, run the saved output variable:

profile_result

• Retrieve the rejected variables (i.e, attributes with high correlation).

get rejected variables (i.e, attributes with high correlation)

rejected_vars = profile_result.get_rejected_variables

Chapter 44 Model to prediCt the CritiCal teMperature of SuperConduCtorS

620

• Filter the dataset columns by removing the variables with high

correlation.

filter from attributes set

super_cond_df.drop(rejected_vars(), axis=1, inplace=True)

• Next, standardize the dataset values so that they fall within the same

scale range (we’ll be using Scikit-learn minmax_scale function).

Standardizing the values improves the predictive performance of the

model because the optimization algorithm can better minimize the

cost function.

scale the dataframe values

from sklearn.preprocessing import minmax_scale

dataset = pd.DataFrame(minmax_scale(super_cond_df), columns=

 super_cond_df.columns)

• Also, the attribute values are normalized so that the distribution more

closely resembles a normal or Gaussian distribution. This technique

is also noted to have a positive impact on the model performance.

normalize the dataframe

from sklearn.preprocessing import Normalizer

dataset = pd.DataFrame(Normalizer().fit(dataset).

transform(dataset), columns=dataset.columns)

• Plot the histogram distribution of the variables (see Figure 44-2).

plot the histogram distribution of the variables

import matplotlib.pyplot as plt

%matplotlib inline

dataset.hist(figsize=(18, 18))

plt.show()

Chapter 44 Model to prediCt the CritiCal teMperature of SuperConduCtorS

621

 Spot Checking Machine Learning Algorithms
With our reduced dataset, let’s sample a few candidate algorithms to have an idea on

their performance and which is more likely to work best for this problem domain. Let’s

take the following steps:

• The dataset is split into a design matrix and their corresponding label

vector.

Figure 44-2. Histogram showing variable distribution

Chapter 44 Model to prediCt the CritiCal teMperature of SuperConduCtorS

622

split features and labels

dataset_y = dataset['critical_temp']

dataset_X = dataset.drop(['critical_temp', 'row_num'], axis=1)

• Randomly split the dataset into a training set and a test set.

train-test split

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(dataset_X,

dataset_y, shuffle=True)

• Outline the candidate algorithms to create a model.

spot-check ML algorithms

from sklearn.linear_model import LinearRegression

from sklearn.tree import DecisionTreeRegressor

from sklearn.ensemble import RandomForestRegressor

from sklearn.svm import SVR

from xgboost import XGBRegressor

from sklearn.neural_network import MLPRegressor

from sklearn.metrics import mean_squared_error

from math import sqrt

• Create a dictionary of the candidate algorithms.

ml_models = {

 'Linear Reg.': LinearRegression(),

 'Dec. Trees': DecisionTreeRegressor(),

 'Rand. Forest': RandomForestRegressor(),

 'SVM': SVR(),

 'XGBoost': XGBRegressor(),

 'NNets': MLPRegressor(warm_start=True, early_stopping=True,

learning_rate='adaptive')

}

Chapter 44 Model to prediCt the CritiCal teMperature of SuperConduCtorS

623

• For each candidate algorithm, train with the training set and evaluate

on the hold-out test set.

ml_results = {}

for name, model in ml_models.items():

 # fit model on training data

 model.fit(X_train, y_train)

 # make predictions for test data

 prediction = model.predict(X_test)

 # evaluate predictions

 rmse = sqrt(mean_squared_error(y_test, prediction))

 # append accuracy results to dictionary

 ml_results[name] = rmse

 print('RMSE: {} -> {}'.format(name, rmse))

'Output':

RMSE: SVM -> 0.0748587427887

RMSE: XGBoost -> 0.0222440358318

RMSE: Rand. Forest -> 0.0227742725953

RMSE: Linear Reg. -> 0.025615918858

RMSE: Dec. Trees -> 0.0269103025639

RMSE: NNets -> 0.0289585489638

• The plots of the model performances are shown in Figure 44-3.

plt.plot(ml_results.keys(), ml_results.values(), 'o')

plt.title("RMSE estimates for ML algorithms")

plt.xlabel('Algorithms')

plt.ylabel('RMSE')

Chapter 44 Model to prediCt the CritiCal teMperature of SuperConduCtorS

624

 Dataflow and TensorFlow Transform for Large-Scale
Data Processing
In this section, we use Google Cloud Dataflow to carry out large-scale data

processing on humongous datasets. Google Dataflow as earlier discussed is a

serverless, parallel, and distributed infrastructure for running jobs for batch and

stream data processing. Dataflow is a vital component in architecting a production

pipeline for building and deploying large-scale machine learning products. In

conjunction with Cloud Dataflow, we use TensorFlow Transform (TFT), a library built

for preprocessing with Tensorflow. The goal of using TFT is to have a consistent set

of transformation operations applied to the dataset when the model is trained and

when it is served or deployed for consumption. In the following steps, each code

block is executed in a Notebook cell:

Figure 44-3. RMSE estimates for ML algorithms

Chapter 44 Model to prediCt the CritiCal teMperature of SuperConduCtorS

625

• Import the relevant libraries. Remember that Apache Beam (as of

now) only supports Python 2. Moreso, TFT only works with a specific

combination of Tensorflow and Apache Beam packages. In this case,

TFT 0.8.0 works with TF 1.8 and Apache Beam [GCP] 2.5.0. After

importing the libraries, be sure to restart the Notebook kernel.

At this point, change the Notebook runtime type to Python 2.0.

%%bash

source activate py2env

pip install --upgrade tensorflow

pip install --upgrade apache-beam[gcp]

pip install --upgrade tensorflow_transform==0.8.0

apt-get install libsnappy-dev

pip install --upgrade python-snappy==0.5.1

Restart the kernel after you do a pip install.

• Connect to GCP.

from google.colab import auth

auth.authenticate_user()

print('Authenticated')

configure GCP project - update with your parameters

project_id = 'ekabasandbox'

bucket_name = 'superconductor'

region = 'us-central1'

tf_version = '1.8'

configure gcloud

!gcloud config set project {project_id}

!gcloud config set compute/region {region}

• Create query method for retrieving training and testing datasets from

BigQuery.

def create_query(phase, EVERY_N=None):

 """

Chapter 44 Model to prediCt the CritiCal teMperature of SuperConduCtorS

626

 EVERY_N: Integer. Sample one out of every N rows from the full

dataset. Larger values will yield smaller sample

 phase: 1=train 2=valid

 """

 base_query = """

 WITH super_df AS (

 SELECT

 number_of_elements, mean_atomic_mass, wtd_mean_atomic_mass,

 gmean_atomic_mass, wtd_gmean_atomic_mass, entropy_atomic_

mass,

 wtd_entropy_atomic_mass, range_atomic_mass, wtd_range_

atomic_mass,

 std_atomic_mass, wtd_std_atomic_mass, mean_fie, wtd_mean_fie,

 gmean_fie, wtd_gmean_fie, entropy_fie, wtd_entropy_fie,

range_fie,

 wtd_range_fie, std_fie, wtd_std_fie, mean_atomic_radius,

wtd_mean_atomic_radius,

 gmean_atomic_radius, wtd_gmean_atomic_radius, entropy_

atomic_radius,

 wtd_entropy_atomic_radius, range_atomic_radius, wtd_range_

atomic_radius,

 std_atomic_radius, wtd_std_atomic_radius, mean_Density,

wtd_mean_Density,

 gmean_Density, wtd_gmean_Density, entropy_Density, wtd_

entropy_Density,

 range_Density, wtd_range_Density, std_Density, wtd_std_

Density, mean_ElectronAffinity,

 wtd_mean_ElectronAffinity, gmean_ElectronAffinity, wtd_

gmean_ElectronAffinity

 entropy_ElectronAffinity, wtd_entropy_ElectronAffinity,

 range_ElectronAffinity,

 wtd_range_ElectronAffinity, std_ElectronAffinity, wtd_std_

ElectronAffinity,

 mean_FusionHeat, wtd_mean_FusionHeat, gmean_FusionHeat,

wtd_gmean_FusionHeat,

Chapter 44 Model to prediCt the CritiCal teMperature of SuperConduCtorS

627

 entropy_FusionHeat, wtd_entropy_FusionHeat, range_FusionHeat,

 wtd_range_FusionHeat, std_FusionHeat, wtd_std_FusionHeat,

mean_ThermalConductivity,

 wtd_mean_ThermalConductivity, gmean_ThermalConductivity,

wtd_gmean_ThermalConductivity,

 entropy_ThermalConductivity, wtd_entropy_

ThermalConductivity, range_ThermalConductivity,

 wtd_range_ThermalConductivity, std_ThermalConductivity,

wtd_std_ThermalConductivity,

 mean_Valence, wtd_mean_Valence, gmean_Valence, wtd_gmean_

Valence,

 entropy_Valence, wtd_entropy_Valence, range_Valence, wtd_

range_Valence,

 std_Valence, wtd_std_Valence, critical_temp, ROW_NUMBER()

OVER (PARTITION BY number_of_elements) row_num

 FROM

 `superconductor.superconductor`)

 SELECT

 *
 FROM

 super_df

 """

 if EVERY_N == None:

 if phase < 2:

 # training

 query = "{0} WHERE MOD(row_num,4) < 2".format(base_

query)

 else:

 query = "{0} WHERE MOD(row_num,4) = {1}".format(base_

query, phase)

 else:

 query = "{0} WHERE MOD(row_num,{1}) = {2}".format(base_

query, EVERY_N, phase)

 return query

Chapter 44 Model to prediCt the CritiCal teMperature of SuperConduCtorS

628

• Create requirements.txt file to install dependencies (in this case

tensorflow_transform) on Dataflow worker machines.

%%writefile requirements.txt

tensorflow-transform==0.8.0

• The following code block uses Apache Beam to build a data

preprocessing pipeline to transform the raw dataset into a form

suitable for building a predictive model. The transformation is

the same procedure as done earlier with the reduced dataset,

which included removing columns that had a high correlation and

scaling the dataset numeric values to be within the same range.

The output of the preprocessing pipeline produces a training set

and an evaluation set. The Beam pipeline also uses TensorFlow

Transform to save the metadata (both raw and processed) of the data

transformation, as well as the transformed graph which can later

be used as part of the serving function of the deployed model. We

made this example to include the use of TensorFlow Transform for

reference purposes.

import datetime

import snappy

import tensorflow as tf

import apache_beam as beam

import tensorflow_transform as tft

from tensorflow_transform.beam import impl as beam_impl

def get_table_header(projection_fields):

 header = "

 for cnt, val in enumerate(projection_fields):

 if cnt > 0:

 header+=','+val

 else:

 header+=val

 return header

def preprocess_tft(inputs):

 result = {}

Chapter 44 Model to prediCt the CritiCal teMperature of SuperConduCtorS

629

 for attr, value in inputs.items():

 result[attr] = tft.scale_to_0_1(value)

 return result

def cleanup(rowdict):

 # pull columns from BQ and create a line

 CSV_COLUMNS = 'number_of_elements,mean_atomic_mass,entropy_

atomic_mass,wtd_entropy_atomic_mass,range_atomic_mass,wtd_

range_atomic_mass,mean_fie,wtd_mean_fie,wtd_entropy_

fie,range_fie,wtd_range_fie,mean_atomic_radius,wtd_mean_

atomic_radius,range_atomic_radius,wtd_range_atomic_

radius,mean_Density,entropy_Density,wtd_entropy_Density,range_

Density,wtd_range_Density,mean_ElectronAffinity,wtd_

entropy_ElectronAffinity,range_ElectronAffinity,wtd_range_

ElectronAffinity,mean_FusionHeat,gmean_FusionHeat,entropy_

FusionHeat,wtd_entropy_FusionHeat,range_FusionHeat,wtd_

range_FusionHeat,mean_ThermalConductivity,wtd_mean_

ThermalConductivity,gmean_ThermalConductivity,entropy_

ThermalConductivity,wtd_entropy_ThermalConductivity,

range_ThermalConductivity,wtd_range_ThermalConductivity,

mean_Valence,wtd_mean_Valence,range_Valence,wtd_range_

Valence,wtd_std_Valence,critical_temp'.split(',')

 def tofloat(value, ifnot):

 try:

 return float(value)

 except (ValueError, TypeError):

 return ifnot

 result = {

 k : tofloat(rowdict[k], -99) if k in rowdict else -99 for k

in CSV_COLUMNS

 }

 row = ('{}'+',{}'*(len(result)-1)).format(result['number_of_

elements'],result['mean_atomic_mass'],

Chapter 44 Model to prediCt the CritiCal teMperature of SuperConduCtorS

630

 result['entropy_atomic_mass'], result['wtd_entropy_atomic_

mass'],result['range_atomic_mass'],

 result['wtd_range_atomic_mass'],result['mean_fie'],

result['wtd_mean_fie'],

 result['wtd_entropy_fie'],result['range_fie'],result['wtd_

range_fie'],

 result['mean_atomic_radius'],result['wtd_mean_atomic_radius'],

 result['range_atomic_radius'],result['wtd_range_atomic_

radius'],result['mean_Density'],

 result['entropy_Density'],result['wtd_entropy_Density'],

result['range_Density'],

 result['wtd_range_Density'],result['mean_ElectronAffinity'],

 result['wtd_entropy_ElectronAffinity'],result['range_

ElectronAffinity'],

 result['wtd_range_ElectronAffinity'],result['mean_

FusionHeat'],result['gmean_FusionHeat'],

 result['entropy_FusionHeat'],result['wtd_entropy_

FusionHeat'],result['range_FusionHeat'],

 result['wtd_range_FusionHeat'],result['mean_

ThermalConductivity'],

 result['wtd_mean_ThermalConductivity'],result['gmean_

ThermalConductivity'],

 result['entropy_ThermalConductivity'],result['wtd_entropy_

ThermalConductivity'],

 result['range_ThermalConductivity'],result['wtd_range_

ThermalConductivity'],

 result['mean_Valence'],result['wtd_mean_Valence'],

result['range_Valence'],

 result['wtd_range_Valence'],result['wtd_std_Valence'],

result['critical_temp'])

 yield row

def preprocess():

 import os

 import os.path

 import datetime

Chapter 44 Model to prediCt the CritiCal teMperature of SuperConduCtorS

631

 from apache_beam.io import WriteToText

 from apache_beam.io import tfrecordio

 from tensorflow_transform.coders import example_proto_coder

 from tensorflow_transform.tf_metadata import dataset_metadata

 from tensorflow_transform.tf_metadata import dataset_schema

 from tensorflow_transform.beam import tft_beam_io

 from tensorflow_transform.beam.tft_beam_io import transform_

fn_io

 job_name = 'preprocess-features' + '-' + datetime.datetime.

now().strftime('%y%m%d-%H%M%S')

 print 'Launching Dataflow job {} ... hang on'.format(job_name)

 OUTPUT_DIR = 'gs://{0}/preproc_csv/'.format(bucket_name)

 import subprocess

 subprocess.call('gsutil rm -r {}'.format(OUTPUT_DIR).split())

 EVERY_N = 3

 options = {

 'staging_location': os.path.join(OUTPUT_DIR, 'tmp', 'staging'),

 'temp_location': os.path.join(OUTPUT_DIR, 'tmp'),

 'job_name': job_name,

 'project': project_id,

 'max_num_workers': 24,

 'teardown_policy': 'TEARDOWN_ALWAYS',

 'no_save_main_session': True,

 'requirements_file': 'requirements.txt'

 }

 opts = beam.pipeline.PipelineOptions(flags=[], **options)

 RUNNER = 'DataflowRunner'

 # set up metadata

 raw_data_schema = {

 colname : dataset_schema.ColumnSchema(tf.float32, [],

dataset_schema.FixedColumnRepresentation())

 for colname in 'number_of_elements,mean_atomic_

mass,entropy_atomic_mass,wtd_entropy_atomic_

mass,range_atomic_mass,wtd_range_atomic_mass,

Chapter 44 Model to prediCt the CritiCal teMperature of SuperConduCtorS

632

mean_fie,wtd_mean_fie,wtd_entropy_fie,range_

fie,wtd_range_fie,mean_atomic_radius,wtd_

mean_atomic_radius,range_atomic_radius,wtd_

range_atomic_radius,mean_Density,entropy_

Density,wtd_entropy_Density,range_Density,

wtd_range_Density,mean_ElectronAffinity,wtd_

entropy_ElectronAffinity,range_

ElectronAffinity,wtd_range_ElectronAffinity,

mean_FusionHeat,gmean_FusionHeat,entropy_

FusionHeat,wtd_entropy_FusionHeat,range_

FusionHeat,wtd_range_FusionHeat,

mean_ThermalConductivity,

wtd_mean_ThermalConductivity,

gmean_ThermalConductivity,

entropy_ThermalConductivity,

wtd_entropy_ThermalConductivity,

range_ThermalConductivity,wtd_range_

ThermalConductivity,mean_Valence,wtd_mean_

Valence,range_Valence,wtd_range_Valence,wtd_

std_Valence,critical_temp'.split(',')

 }

 raw_data_metadata = dataset_metadata.DatasetMetadata(dataset_

schema.Schema(raw_data_schema))

 # run Beam

 with beam.Pipeline(RUNNER, options=opts) as p:

 with beam_impl.Context(temp_dir=os.path.join

(OUTPUT_DIR, 'tmp')):

 # save the raw data metadata

 _ = (raw_data_metadata

 | 'WriteInputMetadata' >> tft_beam_io.WriteMetadata(

 os.path.join(OUTPUT_DIR, 'metadata/rawdata_

metadata'),

 pipeline=p))

 projection_fields = ['number_of_elements',

'mean_atomic_mass', 'entropy_atomic_mass',

Chapter 44 Model to prediCt the CritiCal teMperature of SuperConduCtorS

633

 'wtd_entropy_atomic_mass',

'range_atomic_mass',

 'wtd_range_atomic_mass', 'mean_

fie', 'wtd_mean_fie',

 'wtd_entropy_fie', 'range_fie',

'wtd_range_fie',

 'mean_atomic_radius', 'wtd_mean_

atomic_radius',

 'range_atomic_radius', 'wtd_

range_atomic_radius', 'mean_

Density',

 'entropy_Density', 'wtd_entropy_

Density', 'range_Density',

 'wtd_range_Density', 'mean_

ElectronAffinity',

 'wtd_entropy_ElectronAffinity',

'range_ElectronAffinity',

 'wtd_range_ElectronAffinity',

'mean_FusionHeat', 'gmean_

FusionHeat',

 'entropy_FusionHeat', 'wtd_

entropy_FusionHeat', 'range_

FusionHeat',

 'wtd_range_FusionHeat', 'mean_

ThermalConductivity',

 'wtd_mean_ThermalConductivity',

 'gmean_ThermalConductivity',

 'entropy_ThermalConductivity',

'wtd_entropy_

ThermalConductivity',

 'range_ThermalConductivity',

'wtd_range_ThermalConductivity',

 'mean_Valence', 'wtd_mean_

Valence', 'range_Valence',

 'wtd_range_Valence', 'wtd_std_

Valence', 'critical_temp']

Chapter 44 Model to prediCt the CritiCal teMperature of SuperConduCtorS

634

 header = get_table_header(projection_fields)

 # analyze and transform training

 raw_data = (p

 | 'train_read' >> beam.io.Read(beam.

io.BigQuerySource(query=create_query(1, EVERY_N),

use_standard_sql=True)))

 raw_dataset = (raw_data, raw_data_metadata)

 transformed_dataset, transform_fn = (

 raw_dataset | beam_impl.AnalyzeAndTransformDataset

(preprocess_tft))

 transformed_data, transformed_metadata = transformed_

dataset

 _ = (transformed_data

 | 'train_filter' >> beam.FlatMap(cleanup)

 | 'WriteTrainData' >> beam.io.Write(beam.

io.WriteToText(

 file_path_prefix=os.path.join(OUTPUT_DIR,

'data', 'train'),

 file_name_suffix=".csv",

 shard_name_template="-SS-of-NN",

 header=header,

 num_shards=1)))

 # transform eval data

 raw_test_data = (p

 | 'eval_read' >> beam.io.Read(beam.

io.BigQuerySource(query=create_query(2, EVERY_N),

use_standard_sql=True)))

 raw_test_dataset = (raw_test_data, raw_data_metadata)

 transformed_test_dataset = (

 (raw_test_dataset, transform_fn) | beam_impl.

TransformDataset())

 transformed_test_data, _ = transformed_test_dataset

Chapter 44 Model to prediCt the CritiCal teMperature of SuperConduCtorS

635

 _ = (transformed_test_data

 | 'eval_filter' >> beam.FlatMap(cleanup)

 | 'WriteTestData' >> beam.io.Write(beam.

io.WriteToText(

 file_path_prefix=os.path.join(OUTPUT_DIR,

'data', 'eval'),

 file_name_suffix=".csv",

 shard_name_template="-SS-of-NN",

 num_shards=1)))

 _ = (transform_fn

 | 'WriteTransformFn' >>

 transform_fn_io.WriteTransformFn(os.path.

join(OUTPUT_DIR, 'metadata')))

preprocess()

• The Dataflow pipeline graph is shown in Figure 44-4.

Figure 44-4. Dataflow pipeline graph

Chapter 44 Model to prediCt the CritiCal teMperature of SuperConduCtorS

636

 Training on Cloud MLE
The following code example will train the processed datasets on Google Cloud MLE. At

this point, change the Notebook runtime type to Python 3.0.

• Configure GCP project.

configure GCP project - update with your parameters

project_id = 'ekabasandbox'

bucket_name = 'superconductor'

region = 'us-central1'

tf_version = '1.8'

import os

os.environ['bucket_name'] = bucket_name

os.environ['tf_version'] = tf_version

os.environ['project_id'] = project_id

os.environ['region'] = region

• Create directory “trainer”.

create directory trainer

import os

try:

 os.makedirs('./trainer')

 print('directory created')

except OSError:

 print('could not create directory')

• Create file __init__.py.

%%writefile trainer/__init__.py

• Create the trainer file task.py. Replace the bucket name with your

values.

%%writefile trainer/task.py

import argparse

import json

import os

Chapter 44 Model to prediCt the CritiCal teMperature of SuperConduCtorS

637

import tensorflow as tf

from tensorflow.contrib.training.python.training import hparam

import trainer.model as model

def _get_session_config_from_env_var():

 """Returns a tf.ConfigProto instance that has appropriate

device_filters set.

 """

 tf_config = json.loads(os.environ.get('TF_CONFIG', '{}'))

 if (tf_config and 'task' in tf_config and 'type' in tf_

config['task'] and

 'index' in tf_config['task']):

 # Master should only communicate with itself and ps

 if tf_config['task']['type'] == 'master':

 return tf.ConfigProto(device_filters=['/job:ps', '/

job:master'])

 # Worker should only communicate with itself and ps

 elif tf_config['task']['type'] == 'worker':

 return tf.ConfigProto(device_filters=[

 '/job:ps',

 '/job:worker/task:%d' % tf_config['task']['index']

])

 return None

def train_and_evaluate(hparams):

 """Run the training and evaluate using the high level API."""

 train_input = lambda: model.input_fn(

 tf.gfile.Glob(hparams.train_files),

 num_epochs=hparams.num_epochs,

 batch_size=hparams.train_batch_size

)

 # Don't shuffle evaluation data

 eval_input = lambda: model.input_fn(

 tf.gfile.Glob(hparams.eval_files),

Chapter 44 Model to prediCt the CritiCal teMperature of SuperConduCtorS

638

 batch_size=hparams.eval_batch_size,

 shuffle=False

)

 train_spec = tf.estimator.TrainSpec(

 train_input, max_steps=hparams.train_steps)

 exporter = tf.estimator.FinalExporter(

 'superconductor', model.SERVING_FUNCTIONS[hparams.export_

format])

 eval_spec = tf.estimator.EvalSpec(

 eval_input,

 steps=hparams.eval_steps,

 exporters=[exporter],

 name='superconductor-eval')

 run_config = tf.estimator.RunConfig(

 session_config=_get_session_config_from_env_var())

 run_config = run_config.replace(model_dir=hparams.job_dir)

 print('Model dir %s' % run_config.model_dir)

 estimator = model.build_estimator(

 learning_rate=hparams.learning_rate,

 # Construct layers sizes with exponential decay

 hidden_units=[

 max(2, int(hparams.first_layer_size * hparams.scale_

factor**i))

 for i in range(hparams.num_layers)

],

 config=run_config,

 output_dir=hparams.output_dir)

 tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec)

if __name__ == '__main__':

 parser = argparse.ArgumentParser()

 # Input Arguments

 parser.add_argument(

 '--train-files',

Chapter 44 Model to prediCt the CritiCal teMperature of SuperConduCtorS

639

 help='GCS file or local paths to training data',

 nargs='+',

 # update the bucket name

 default='gs://{}/preproc_csv/data/{}*{}*'.format('super

conductor', tf.estimator.ModeKeys.TRAIN, 'of'))

 parser.add_argument(

 '--eval-files',

 help='GCS file or local paths to evaluation data',

 nargs='+',

 # update the bucket name

 default='gs://{}/preproc_csv/data/{}*{}*'.format('super

conductor', tf.estimator.ModeKeys.EVAL, 'of'))

 parser.add_argument(

 '--job-dir',

 help='GCS location to write checkpoints and export models',

 default='/tmp/superconductor-estimator')

 parser.add_argument(

 '--num-epochs',

 help="""\

 Maximum number of training data epochs on which to train.

 If both --max-steps and --num-epochs are specified,

 the training job will run for --max-steps or --num-epochs,

 whichever occurs first. If unspecified will run for

--max-steps.\

 """,

 type=int)

 parser.add_argument(

 '--train-batch-size',

 help='Batch size for training steps',

 type=int,

 default=20)

 parser.add_argument(

 '--eval-batch-size',

 help='Batch size for evaluation steps',

 type=int,

 default=20)

Chapter 44 Model to prediCt the CritiCal teMperature of SuperConduCtorS

640

 parser.add_argument(

 '--learning-rate',

 help='The training learning rate',

 default=1e-4,

 type=float)

 parser.add_argument(

 '--first-layer-size',

 help='Number of nodes in the first layer of the DNN',

 default=256,

 type=int)

 parser.add_argument(

 '--num-layers', help='Number of layers in the DNN',

default=3, type=int)

 parser.add_argument(

 '--scale-factor',

 help='How quickly should the size of the layers in the DNN

decay',

 default=0.7,

 type=float)

 parser.add_argument(

 '--train-steps',

 help="""\

 Steps to run the training job for. If --num-epochs is not

specified,

 this must be. Otherwise the training job will run

indefinitely.\

 """,

 default=100,

 type=int)

 parser.add_argument(

 '--eval-steps',

 help='Number of steps to run evalution for at each

checkpoint',

 default=100,

 type=int)

Chapter 44 Model to prediCt the CritiCal teMperature of SuperConduCtorS

641

 parser.add_argument(

 '--export-format',

 help='The input format of the exported SavedModel binary',

 choices=['JSON', 'CSV', 'EXAMPLE'],

 default='CSV')

 parser.add_argument(

 '--output-dir',

 help='Location of the exported model',

 nargs='+')

 parser.add_argument(

 '--verbosity',

 choices=['DEBUG', 'ERROR', 'FATAL', 'INFO', 'WARN'],

 default='INFO')

 args, _ = parser.parse_known_args()

 # Set python level verbosity

 tf.logging.set_verbosity(args.verbosity)

 # Set C++ Graph Execution level verbosity

 os.environ['TF_CPP_MIN_LOG_LEVEL'] = str(

 tf.logging.__dict__[args.verbosity] / 10)

 # Run the training job

 hparams = hparam.HParams(**args.__dict__)

 train_and_evaluate(hparams)

• Create the file model.py that contains the model code.

%%writefile trainer/model.py

import six

import tensorflow as tf

from tensorflow.python.estimator.model_fn import ModeKeys as Modes

Define the format of your input data including unused columns.

CSV_COLUMNS = [

 'number_of_elements', 'mean_atomic_mass', 'entropy_atomic_mass',

 'wtd_entropy_atomic_mass', 'range_atomic_mass',

Chapter 44 Model to prediCt the CritiCal teMperature of SuperConduCtorS

642

 'wtd_range_atomic_mass', 'mean_fie', 'wtd_mean_fie',

 'wtd_entropy_fie', 'range_fie', 'wtd_range_fie',

 'mean_atomic_radius', 'wtd_mean_atomic_radius',

 'range_atomic_radius', 'wtd_range_atomic_radius', 'mean_

Density',

 'entropy_Density', 'wtd_entropy_Density', 'range_Density',

 'wtd_range_Density', 'mean_ElectronAffinity',

 'wtd_entropy_ElectronAffinity', 'range_ElectronAffinity',

 'wtd_range_ElectronAffinity', 'mean_FusionHeat', 'gmean_

FusionHeat',

 'entropy_FusionHeat', 'wtd_entropy_FusionHeat', 'range_

FusionHeat',

 'wtd_range_FusionHeat', 'mean_ThermalConductivity',

 'wtd_mean_ThermalConductivity', 'gmean_ThermalConductivity',

 'entropy_ThermalConductivity', 'wtd_entropy_

ThermalConductivity',

 'range_ThermalConductivity', 'wtd_range_ThermalConductivity',

 'mean_Valence', 'wtd_mean_Valence', 'range_Valence',

 'wtd_range_Valence', 'wtd_std_Valence', 'critical_temp'

]

CSV_COLUMN_DEFAULTS = [[0.0] for i in range(0, len(CSV_COLUMNS))]

LABEL_COLUMN = 'critical_temp'

Define the initial ingestion of each feature used by your model.

Additionally, provide metadata about the feature.

INPUT_COLUMNS = [tf.feature_column.numeric_column(i) for i in CSV_

COLUMNS[:-1]]

UNUSED_COLUMNS = set(CSV_COLUMNS) - {col.name for col in INPUT_

COLUMNS} - \

 {LABEL_COLUMN}

def build_estimator(config, output_dir, hidden_units=None,

learning_rate=None):

 """

 Deep NN Regression model.

Chapter 44 Model to prediCt the CritiCal teMperature of SuperConduCtorS

643

 Args:

 config: (tf.contrib.learn.RunConfig) defining the runtime

environment for

 the estimator (including model_dir).

 hidden_units: [int], the layer sizes of the DNN (input

layer first)

 learning_rate: (int), the learning rate for the optimizer.

 Returns:

 A DNNRegressor

 """

 (number_of_elements,mean_atomic_mass,entropy_atomic_mass,wtd_

entropy_atomic_mass, \

 range_atomic_mass,wtd_range_atomic_mass,mean_fie,wtd_mean_

fie,wtd_entropy_fie,range_fie,\

 wtd_range_fie,mean_atomic_radius,wtd_mean_atomic_

radius,range_atomic_radius,wtd_range_atomic_radius,\

 mean_Density,entropy_Density,wtd_entropy_Density,range_

Density,wtd_range_Density,mean_ElectronAffinity,\

 wtd_entropy_ElectronAffinity,range_ElectronAffinity,wtd_

range_ElectronAffinity,mean_FusionHeat,\

 gmean_FusionHeat,entropy_FusionHeat,wtd_entropy_

FusionHeat,range_FusionHeat,wtd_range_FusionHeat,\

 mean_ThermalConductivity,wtd_mean_ThermalConductivity,gmean_

ThermalConductivity,entropy_ThermalConductivity,\

 wtd_entropy_ThermalConductivity,range_

ThermalConductivity,wtd_range_ThermalConductivity,mean_

Valence,\

 wtd_mean_Valence,range_Valence,wtd_range_Valence,wtd_std_

Valence) = INPUT_COLUMNS

 columns = [number_of_elements,mean_atomic_mass,entropy_atomic_

mass,wtd_entropy_atomic_mass, \

 range_atomic_mass,wtd_range_atomic_mass,mean_fie,wtd_mean_

fie,wtd_entropy_fie,range_fie,\

 wtd_range_fie,mean_atomic_radius,wtd_mean_atomic_

radius,range_atomic_radius,wtd_range_atomic_radius,\

Chapter 44 Model to prediCt the CritiCal teMperature of SuperConduCtorS

644

 mean_Density,entropy_Density,wtd_entropy_Density,range_

Density,wtd_range_Density,mean_ElectronAffinity,\

 wtd_entropy_ElectronAffinity,range_ElectronAffinity,wtd_

range_ElectronAffinity,mean_FusionHeat,\

 gmean_FusionHeat,entropy_FusionHeat,wtd_entropy_FusionHeat,

range_FusionHeat,wtd_range_FusionHeat,\

 mean_ThermalConductivity,wtd_mean_ThermalConductivity,

gmean_ThermalConductivity,entropy_ThermalConductivity,\

 wtd_entropy_ThermalConductivity,range_ThermalConductivity,

wtd_range_ThermalConductivity,mean_Valence,\

 wtd_mean_Valence,range_Valence,wtd_range_Valence,wtd_std_

Valence]

 estimator = tf.estimator.DNNRegressor(

 model_dir=output_dir,

 config=config,

 feature_columns=columns,

 hidden_units=hidden_units or [256, 128, 64],

 optimizer=tf.train.AdamOptimizer(learning_rate)

)

 # add extra evaluation metric for hyperparameter tuning

 estimator = tf.contrib.estimator.add_metrics(estimator, add_

eval_metrics)

 return estimator

def add_eval_metrics(labels, predictions):

 pred_values = predictions['predictions']

 return {

 'rmse': tf.metrics.root_mean_squared_error(labels,

pred_values)

 }

[START serving-function]

def csv_serving_input_fn():

 """Build the serving inputs."""

 csv_row = tf.placeholder(shape=[None], dtype=tf.string)

Chapter 44 Model to prediCt the CritiCal teMperature of SuperConduCtorS

645

 features = _decode_csv(csv_row)

 # Ignore label column

 features.pop(LABEL_COLUMN)

 return tf.estimator.export.ServingInputReceiver(features,

 {'csv_row': csv_row})

def example_serving_input_fn():

 """Build the serving inputs."""

 example_bytestring = tf.placeholder(

 shape=[None],

 dtype=tf.string,

)

 features = tf.parse_example(

 example_bytestring,

 tf.feature_column.make_parse_example_spec(INPUT_COLUMNS))

 return tf.estimator.export.ServingInputReceiver(

 features, {'example_proto': example_bytestring})

def json_serving_input_fn():

 """Build the serving inputs."""

 inputs = {}

 for feat in INPUT_COLUMNS:

 inputs[feat.name] = tf.placeholder(shape=[None],

dtype=feat.dtype)

 return tf.estimator.export.ServingInputReceiver(inputs, inputs)

[END serving-function]

SERVING_FUNCTIONS = {

 'JSON': json_serving_input_fn,

 'EXAMPLE': example_serving_input_fn,

 'CSV': csv_serving_input_fn

}

def _decode_csv(line):

 """Takes the string input tensor and returns a dict of rank-2

tensors."""

Chapter 44 Model to prediCt the CritiCal teMperature of SuperConduCtorS

646

 # Takes a rank-1 tensor and converts it into rank-2 tensor

 row_columns = tf.expand_dims(line, -1)

 columns = tf.decode_csv(row_columns, record_defaults=CSV_

COLUMN_DEFAULTS)

 features = dict(zip(CSV_COLUMNS, columns))

 # Remove unused columns

 for col in UNUSED_COLUMNS:

 features.pop(col)

 return features

def input_fn(filenames, num_epochs=None, shuffle=True, skip_

header_lines=1, batch_size=200):

 """Generates features and labels for training or evaluation.

 This uses the input pipeline based approach using file name queue

 to read data so that entire data is not loaded in memory.

 Args:

 filenames: [str] A List of CSV file(s) to read data from.

 num_epochs: (int) how many times through to read the data.

If None will loop through data indefinitely

 shuffle: (bool) whether or not to randomize the order of

data. Controls randomization of both file order and line

order within files.

 skip_header_lines: (int) set to non-zero in order to skip

header lines in CSV files.

 batch_size: (int) First dimension size of the Tensors

returned by input_fn

 Returns:

 A (features, indices) tuple where features is a dictionary of

 Tensors, and indices is a single Tensor of label indices.

 """

 dataset = tf.data.TextLineDataset(filenames).skip(skip_header_

lines).map(

 _decode_csv)

Chapter 44 Model to prediCt the CritiCal teMperature of SuperConduCtorS

647

 if shuffle:

 dataset = dataset.shuffle(buffer_size=batch_size * 10)

 iterator = dataset.repeat(num_epochs).batch(

 batch_size).make_one_shot_iterator()

 features = iterator.get_next()

 return features, features.pop(LABEL_COLUMN)

• Create the hyper-parameter config file.

%%writefile hptuning_config.yaml

trainingInput:

 hyperparameters:

 hyperparameterMetricTag: rmse

 goal: MINIMIZE

 maxTrials: 4 #20

 maxParallelTrials: 2 #5

 enableTrialEarlyStopping: True

 algorithm: RANDOM_SEARCH

 params:

 - parameterName: learning-rate

 type: DOUBLE

 minValue: 0.00001

 maxValue: 0.005

 scaleType: UNIT_LOG_SCALE

 - parameterName: first-layer-size

 type: INTEGER

 minValue: 50

 maxValue: 500

 scaleType: UNIT_LINEAR_SCALE

 - parameterName: num-layers

 type: INTEGER

 minValue: 1

 maxValue: 15

 scaleType: UNIT_LINEAR_SCALE

 - parameterName: scale-factor

 type: DOUBLE

Chapter 44 Model to prediCt the CritiCal teMperature of SuperConduCtorS

648

 minValue: 0.1

 maxValue: 1.0

 scaleType: UNIT_REVERSE_LOG_SCALE

• The following code executes the training job on Cloud MLE.

%%bash

JOB_NAME=superconductor_$(date -u +%y%m%d_%H%M%S)

HPTUNING_CONFIG=hptuning_config.yaml

GCS_JOB_DIR=gs://$bucket_name/jobs/$JOB_NAME

echo $GCS_JOB_DIR

gcloud ai-platform jobs submit training $JOB_NAME \

 --stream-logs \

 --runtime-version $tf_version \

 --job-dir $GCS_JOB_DIR \

 --module-name trainer.task \

 --package-path trainer/ \

 --region us-central1 \

 --scale-tier=STANDARD_1 \

 --config $HPTUNING_CONFIG \

 -- \

 --train-steps 5000 \

 --eval-steps 100

gs://superconductor/jobs/superconductor_181222_040429

endTime: '2018-12-22T04:24:50'

jobId: superconductor_181222_040429

startTime: '2018-12-22T04:04:35'

state: SUCCEEDED

• Cloud MLE training output is shown in Figure 44-5.

Chapter 44 Model to prediCt the CritiCal teMperature of SuperConduCtorS

649

 Deploy Trained Model
The best model trial with the lowest objectiveValue is deployed for inference on

Cloud MLE:

• Display content of selected trained model directory.

%%bash

gsutil ls gs://${BUCKET}/jobs/superconductor_181222_040429/4/

export/superconductor/1545452450

'Output':

gs://superconductor/jobs/superconductor_181222_040429/4/export/

superconductor/1545452450/

gs://superconductor/jobs/superconductor_181222_040429/4/export/

superconductor/1545452450/saved_model.pb

gs://superconductor/jobs/superconductor_181222_040429/4/export/

superconductor/1545452450/variables/

Figure 44-5. Cloud MLE training output

Chapter 44 Model to prediCt the CritiCal teMperature of SuperConduCtorS

650

• Deploy the model.

%%bash

MODEL_NAME="superconductor"

MODEL_VERSION="v1"

MODEL_LOCATION=gs://$bucket_name/jobs/

superconductor_181222_040429/4/export/superconductor/1545452450

echo "Deploying model $MODEL_NAME $MODEL_VERSION"

gcloud ai-platform models create ${MODEL_NAME} --regions us-central1

gcloud ai-platform versions create ${MODEL_VERSION} --model

${MODEL_NAME} --origin ${MODEL_LOCATION} --runtime-version ${tf_

version}

 Batch Prediction
The following code carries out inference on the deployed model:

• Submit a batch prediction job.

%%bash

JOB_NAME=superconductor_prediction

MODEL_NAME=superconductor

MODEL_VERSION=v1

TEST_FILE=gs://$bucket_name/preproc_csv/data/eval-00-of-01.csv

OUTPUT_DIR=gs://$bucket_name/jobs/$JOB_NAME/predictions

echo $OUTPUT_DIR

submit a batched job

gcloud ai-platform jobs submit prediction $JOB_NAME \

 --model $MODEL_NAME \

 --version $MODEL_VERSION \

 --data-format TEXT \

 --region $region \

 --input-paths $TEST_FILE \

 --output-path $OUTPUT_DIR

Chapter 44 Model to prediCt the CritiCal teMperature of SuperConduCtorS

651

stream job logs

echo "Job logs..."

gcloud ml-engine jobs stream-logs $JOB_NAME

'Output':

gs://superconductor/jobs/superconductor_prediction/predictions

Job logs...

INFO 2018-12-22 22:04:22 +0000 service Validating job

requirements...

INFO 2018-12-22 22:04:22 +0000 service Job creation

request has been

successfully

validated.

INFO 2018-12-22 22:04:22 +0000 service Job superconductor_

prediction is

queued.

INFO 2018-12-22 22:09:09 +0000 service Job completed

successfully.

• List the contents of the prediction output directory in GCS.

%%bash

gsutil ls gs://superconductor/jobs/superconductor_prediction/

predictions/

'Output':

gs://superconductor/jobs/superconductor_prediction/predictions/

prediction.errors_stats-00000-of-00001

gs://superconductor/jobs/superconductor_prediction/predictions/

prediction.results-00000-of-00002

gs://superconductor/jobs/superconductor_prediction/predictions/

prediction.results-00001-of-00002

Chapter 44 Model to prediCt the CritiCal teMperature of SuperConduCtorS

652

• Show predicted RMSE outputs.

%bash

read output summary

echo "Job output summary:"

gsutil cat 'gs://superconductor/jobs/superconductor_prediction/

predictions/prediction.results-00000-of-00002'

'Output':

{"outputs": [0.02159707620739937]}

{"outputs": [0.13300871849060059]}

{"outputs": [0.02054387889802456]}

{"outputs": [0.09370037913322449]}

 ...

{"outputs": [0.41005855798721313]}

{"outputs": [0.39907798171043396]}

{"outputs": [0.4040292799472809]}

{"outputs": [0.43743470311164856]}

This chapter provided a walk-through of an end-to-end process to model and deploy

a machine learning solution on Google Cloud Platform. The next chapter will introduce

the concepts of a microservice architecture. It provides an overview of working with

Docker containers and their orchestration with Kubernetes on GCP.

Chapter 44 Model to prediCt the CritiCal teMperature of SuperConduCtorS

PART VIII

Productionalizing
Machine Learning
Solutions on GCP

655
© Ekaba Bisong 2019
E. Bisong, Building Machine Learning and Deep Learning Models on Google Cloud Platform,
https://doi.org/10.1007/978-1-4842-4470-8_45

CHAPTER 45

Containers and Google
Kubernetes Engine
The microservice architecture is an approach for developing and deploying enterprise

cloud-native software applications that involve separating the core business capabilities

of the application into decoupled components. Each business capability represents

some functionality that the application provides as services to the end user. The idea

of microservices is in contrast to the monolithic architecture which involves building

applications as a composite of its “individual” capabilities. See an illustration in

Figure 45-1.

Figure 45-1. Microservice applications (right) vs. monolithic applications (left)

656

Microservices interact with each other using representational state transfer (REST)

communications for stateless interoperability. By stateless, we mean that “the server

does not store state about the client session.” These protocols can be HTTP request/

response APIs or an asynchronous messaging queue. This flexibility allows the

microservice to easily scale and respond to request even if another microservice fails.

Advantages of Microservices

• Loosely coupled components make the application fault tolerant.

• Ability to scale out making each component highly available.

• The modularity of components makes it easier to extend existing

capabilities.

Challenges with Microservices

• The software architecture increases in complexity.

• Overhead in management and orchestration of microservices. We

will, however, see in the next sessions how Docker and Kubernetes

work to mitigate this challenge.

 Docker
Docker is a virtualization application that abstracts applications into isolated

environments known as containers. The idea behind a container is to provide a

unified platform that includes the software tools and dependencies for developing and

deploying an application.

The traditional way of developing applications is where an application is designed

and hosted on a single server. This is illustrated in Figure 45-2. This setup is prone to

several problems including the famous “it works on my machine but not on yours”. Also

in this architecture, apps are difficult to scale and to migrate resulting in huge costs and

slow deployment.

Chapter 45 Containers and GooGle Kubernetes enGine

657

 Virtual Machines vs. Containers
Virtual machines (VMs), illustrated in Figure 45-3, emulate the capabilities of a physical

machine making it possible to install and run operating systems by using a hypervisor.

The hypervisor is a piece of software on the physical machine (the host) that makes it

possible to carry out virtualization where multiple guest machines are managed by the

host machine.

Figure 45-2. Application running on a single server

Chapter 45 Containers and GooGle Kubernetes enGine

658

Containers on the other hand isolate the environment for hosting an application

with its own libraries and software dependencies; however, as opposed to a VM,

containers on a machine all share the same operating system kernel. Docker is an

example of a container. This is illustrated in Figure 45-4.

Figure 45-3. Virtual machines

Chapter 45 Containers and GooGle Kubernetes enGine

659

 Working with Docker
Google Cloud Shell comes pre-configured with Docker.

Key concepts to note are

• Dockerfile: A Dockerfile is a text file that specifies how an image will

be created.

• Docker images: Images are created by building a Dockerfile.

• Docker containers: Docker containers are the running instance of an

image.

The diagram in Figure 45-5 highlights the process to build an image and run a

Docker container.

Figure 45-4. Containers

Chapter 45 Containers and GooGle Kubernetes enGine

660

Table 45-1 shows key commands when creating a Dockerfile.

Figure 45-5. Steps to deploying a Docker container

Table 45-1. Commands for Creating Dockerfiles

Command Description

FROM the base docker image for the dockerfile.

LABEL Key-value pair for specifying image metadata.

RUN it executes commands on top of the current image as new layers.

COPY Copies files from the local machine to the container file system.

EXPOSE exposes runtime ports for the docker container.

CMD specifies the command to execute when running the container. this command

is overridden if another command is specified at runtime.

ENTRYPOINT specifies the command to execute when running the container. entrypoint

commands are not overridden by a command specified at runtime.

WORKDIR set working directory of the container.

VOLUME Mount a volume from the local machine file system to the docker container.

ARG set environment variable as a key-value pair when building the image.

ENV set environment variable as a key-value pair that will be available in the

container after building.

Chapter 45 Containers and GooGle Kubernetes enGine

661

 Build and Run a Simple Docker Container
Clone the book repository to run this example in Cloud Shell; we have a bash script titled

date-script.sh in the chapter folder. The script assigns the current date to a variable and

then prints out the date to the console. The Dockerfile will copy the script from the local

machine to the docker container file system and execute the shell script when running the

container. The Dockerfile to build the container is stored in docker-intro/hello- world.

navigate to the folder with images

cd docker-intro/hello-world

Let’s view the bash script.

cat date-script.sh

#! /bin/sh

DATE="$(date)"

echo "Todays date is $DATE"

Let’s view the Dockerfile.

view the Dockerfile

cat Dockerfile

base image for building container

FROM docker.io/alpine

add maintainer label

LABEL maintainer="dvdbisong@gmail.com"

copy script from local machine to container file system

COPY date-script.sh /date-script.sh

execute script

CMD sh date-script.sh

The Docker image will be built off the Alpine Linux package. See https://hub.

docker.com/_/alpine. The CMD routine executes the script when the container runs.

 Build the Image
Run the following command to build the Docker image.

build the image

docker build -t ekababisong.org/first_image .

Chapter 45 Containers and GooGle Kubernetes enGine

https://hub.docker.com/_/alpine
https://hub.docker.com/_/alpine

662

Build output

Sending build context to Docker daemon 2.048kB

Step 1/4 : FROM docker.io/alpine

latest: Pulling from library/alpine

6c40cc604d8e: Pull complete

Digest: sha256:b3dbf31b77fd99d9c08f780ce6f5282aba076d70a513a8be859d8d3a4d0c92b8

Status: Downloaded newer image for alpine:latest

 ---> caf27325b298

Step 2/4 : LABEL maintainer="dvdbisong@gmail.com"

 ---> Running in 306600656ab4

Removing intermediate container 306600656ab4

 ---> 33beb1ebcb3c

Step 3/4 : COPY date-script.sh /date-script.sh

 ---> Running in 688dc55c502a

Removing intermediate container 688dc55c502a

 ---> dfd6517a0635

Step 4/4 : CMD sh date-script.sh

 ---> Running in eb80136161fe

Removing intermediate container eb80136161fe

 ---> e97c75dcc5ba

Successfully built e97c75dcc5ba

Successfully tagged ekababisong.org/first_image:latest

 Run the Container
Execute the following command to run the Docker container.

show the images on the image

docker images

run the docker container from the image

docker run ekababisong.org/first_image

Todays date is Sun Feb 24 04:45:08 UTC 2019

Chapter 45 Containers and GooGle Kubernetes enGine

663

 Important Docker Commands
In this section, let’s review some important Docker commands.

 Commands for Managing Images

Table 45-2 contains commands for managing Docker images.

 Commands for Managing Containers

Table 45-3 contains commands for managing Docker containers.

Table 45-2. Docker Commands for Managing Images

Command Description

docker images list all images on the machine.

docker rmi [IMAGE_NAME] remove the image with name IMAGE_NAME on the machine.

docker rmi $(docker

images -q)

remove all images from the machine.

Table 45-3. Docker Commands for Managing Containers

Command Description

docker ps list all containers. append –a to also list containers not running.

docker stop

[CONTAINER_ID]

Gracefully stop the container with [CONTAINER_ID] on the machine.

docker kill

CONTAINER_ID]

Forcefully stop the container with [CONTAINER_ID] on the machine.

docker rm

[CONTAINER_ID]

remove the container with [CONTAINER_ID] from the machine.

docker rm $

(docker ps -a -q)

remove all containers from the machine.

Chapter 45 Containers and GooGle Kubernetes enGine

664

 Running a Docker Container

Let’s break down the following command for running a Docker container:

docker run -d -it --rm --name [CONTAINER_NAME] -p 8081:80 [IMAGE_NAME]

where

• -d runs the container in detached mode. This mode runs the

container in the background.

• -it runs in interactive mode, with a terminal session attached.

• --rm removes the container when it exits.

• --name specifies a name for the container.

• -p does port forwarding from host to the container (i.e.,

host:container).

 Kubernetes
When a microservice application is deployed in production, it usually has many running

containers that need to be allocated the right amount of resources in response to user

demands. Also, there is a need to ensure that the containers are online, are running, and

are communicating with one another. The need to efficiently manage and coordinate

clusters of containerized applications gave rise to Kubernetes.

Kubernetes is a software system that addresses the concerns of deploying, scaling,

and monitoring containers. Hence, it is called a container orchestrator. Examples of

other container orchestrators in the wild are Docker Swarm, Mesos Marathon, and

HashiCorp Nomad.

Kubernetes was built and released by Google as an open source software, which

is now managed by the Cloud Native Computing Foundation (CNCF). Google Cloud

Platform offers a managed Kubernetes service called Google Kubernetes Engine (GKE).

Amazon Elastic Container Service for Kubernetes (EKS) also provides a managed

Kubernetes service.

Chapter 45 Containers and GooGle Kubernetes enGine

665

 Features of Kubernetes
The following are some features of Kubernetes:

• Horizontal auto-scaling: Dynamically scales containers based on

resource demands

• Self-healing: Re-provisions failed nodes in response to health checks

• Load balancing: Efficiently distributes requests between containers

in a pod

• Rollbacks and updates: Easily update or revert to a previous

container deployment without causing application downtime

• DNS service discovery: Uses Domain Name System (DNS) to manage

container groups as a Kubernetes service

 Components of Kubernetes
The main components of the Kubernetes engine are

• Master node(s): Manages the Kubernetes cluster. There may be more

than one master node in high availability mode for fault-tolerance

purposes. In this case, only one is the master, and the others follow.

• Worker node(s): Machine(s) that runs containerized applications that

are scheduled as pod(s).

The illustration in Figure 45-6 provides an overview of the Kubernetes architecture.

Chapter 45 Containers and GooGle Kubernetes enGine

666

Figure 45-6. High-level overview of Kubernetes components

Chapter 45 Containers and GooGle Kubernetes enGine

667

 Master Node(s)

The master node consists of

• etcd (distributed key-store): It manages the Kubernetes cluster

state. This distributed key-store can be a part of the master node or

external to it. Nevertheless, all master nodes connect to it.

• api server: It manages all administrative tasks. The api server

receives commands from the user (kubectl cli, REST or GUI); these

commands are executed and the new cluster state is stored in the

distributed key-store.

• scheduler: It schedules work to worker nodes by allocating pods. It is

responsible for resource allocation.

• controller: It ensures that the desired state of the Kubernetes cluster

is maintained. The desired state is what is contained in a JSON or

YAML deployment file.

 Worker Node(s)

The worker node(s) consists of

• kubelet: The kubelet agent runs on each worker node. It connects

the worker node to the api server on the master node and receives

instructions from it. It ensures the pods on the node are healthy.

• kube-proxy: It is the Kubernetes network proxy that runs on each

worker node. It listens to the api server and forwards requests to

the appropriate pod. It is important for load balancing.

• pod(s): It consists of one or more containers that share network and

storage resources as well as container runtime instructions. Pods are

the smallest deployable unit in Kubernetes.

 Writing a Kubernetes Deployment File
The Kubernetes deployment file defines the desired state for the various Kubernetes

objects. Examples of Kubernetes objects are

• Pods: It is a collection of one or more containers.

Chapter 45 Containers and GooGle Kubernetes enGine

668

• ReplicaSets: It is part of the controller in the master node. It specifies

the number of replicas of a pod that should be running at any given

time. It ensures that the specified number of pods is maintained in

the cluster.

• Deployments: It automatically creates ReplicaSets. It is also part

of the controller in the master node. It ensures that the cluster’s

current state matches the desired state.

• Namespaces: It partitions the cluster into sub-clusters to organize

users into groups.

• Service: It is a logical group of pods with a policy to access them.

• ServiceTypes: It specifies the type of service, for example,

ClusterIP, NodePort, LoadBalancer, and ExternalName. As an

example, LoadBalancer exposes the service externally using a

cloud provider’s load balancer.

Other important tags in writing a Kubernetes deployment file

• spec: It describes the desired state of the cluster

• metadata: It contains information of the object

• labels: It is used to specify attributes of objects as key-value pairs

• selector: It is used to select a subset of objects based on their label

values

The deployment file is specified as a yaml file.

 Deploying Kubernetes on Google Kubernetes Engine
Google Kubernetes engine (GKE) provides a managed environment for deploying

application containers. To create and deploy resources on GCP from the local shell, the

Google command-line SDK gcloud will have to be installed and configured. If this is not

the case on your machine, follow the instructions at https://cloud.google.com/sdk/

gcloud/. Otherwise, a simpler option is to use the Google Cloud Shell which already has

gcloud and kubectl (the Kubernetes command-line interface) installed.

Chapter 45 Containers and GooGle Kubernetes enGine

https://cloud.google.com/sdk/gcloud/
https://cloud.google.com/sdk/gcloud/

669

 Creating a GKE Cluster

Run the following command to create a cluster of containers on GKE. Assign the

cluster name.

create a GKE cluster

gcloud container clusters create my-gke-cluster-name

A Kubernetes cluster is created on GCP with three nodes (as default). The GKE

dashboard on GCP is shown in Figure 45-7.

Creating cluster ekaba-gke-cluster in us-central1-a... Cluster is being

deployed...done.

Created [https://container.googleapis.com/v1/projects/oceanic-sky-230504/

zones/us-central1-a/clusters/ekaba-gke-cluster].

To inspect the contents of your cluster, go to: https://console.

cloud.google.com/kubernetes/workload_/gcloud/us-central1-a/ekaba-gke-

cluster?project=oceanic-sky-230504

kubeconfig entry generated for ekaba-gke-cluster.

NAME LOCATION MASTER_VERSION MASTER_IP MACHINE_

TYPE NODE_VERSION NUM_NODES STATUS

ekaba-gke-cluster us-central1-a 1.11.7-gke.4 35.226.72.40 n1-

standard- 1 1.11.7-gke.4 3 RUNNING

To learn more about creating clusters with Google Kubernetes Engine, visit https://

cloud.google.com/kubernetes-engine/docs/how-to/creating-a-cluster.

Figure 45-7. Google Kubernetes Engine dashboard

Chapter 45 Containers and GooGle Kubernetes enGine

https://cloud.google.com/kubernetes-engine/docs/how-to/creating-a-cluster
https://cloud.google.com/kubernetes-engine/docs/how-to/creating-a-cluster

670

Run the following command to display the nodes of the provisioned cluster on GKE.

get the nodes of the kubernetes cluster on GKE

kubectl get nodes

NAME STATUS ROLES AGE

VERSION

gke-ekaba-gke-cluster-default-pool-e28c64e0-8fk1 Ready <none> 45m

v1.11.7-gke.4

gke-ekaba-gke-cluster-default-pool-e28c64e0-fmck Ready <none> 45m

v1.11.7-gke.4

gke-ekaba-gke-cluster-default-pool-e28c64e0-zzz1 Ready <none> 45m

v1.11.7-gke.4

 Delete the Kubernetes Cluster on GKE

Run the following command to delete a cluster on GKE.

delete the kubernetes cluster

gcloud container clusters delete my-gke-cluster-name

Note always remember to clean up cloud resources when they are no longer
needed.

This chapter introduced the concepts of a microservice architecture and provided

an overview of working with Docker containers for building applications in isolated

environments/sandboxes. In the event that many of such containers are deployed in

production, this chapter introduces Kubernetes as a container orchestrator for managing

the concerns of deploying, scaling, and monitoring containers.

The next chapter will discuss on Kubeflow and Kubeflow Pipelines for deploying

machine learning components into production on Kubernetes.

Chapter 45 Containers and GooGle Kubernetes enGine

671
© Ekaba Bisong 2019
E. Bisong, Building Machine Learning and Deep Learning Models on Google Cloud Platform,
https://doi.org/10.1007/978-1-4842-4470-8_46

CHAPTER 46

Kubeflow and Kubeflow
Pipelines
Machine learning is often and rightly viewed as the use of mathematical algorithms to

teach the computer to learn tasks that are computationally infeasible to program as a set

of specified instructions. However, it turns out that these algorithms constitute only a

small fraction of the overall learning pipeline from an engineering perspective. Building

high-performant and dynamic learning models includes a number of other critical

components. These components actually dominate the space of concerns for delivering

an end-to-end machine learning product.

A typical machine learning production pipeline looks like the illustration in

Figure 46-1.

672

From the preceding diagram, observe that the process flow in the pipeline is

iterative. This repetitive pattern is central to machine learning experimentation, design,

and deployment.

 The Efficiency Challenge
It is easy to recognize that the pipeline requires a significant amount of development

operations for the seamless transition from one component to another when building a

learning model. This interoperability of parts has given rise to Machine Learning Ops,

also known as MLOps. The term is coined as an amalgam of Machine Learning and

DevOps.

The conventional way of doing machine learning is to perform all of the Experiment

and development work in Jupyter notebooks, and the model is exported and sent off to

the software development team for deployment and endpoint generation for integration

Figure 46-1. Machine learning production pipeline

Chapter 46 Kubeflow and Kubeflow pipelines

673

into downstream software products, while the DevOps team handles the infrastructure

and configuration of the machine for model development. This monolithic style of

working results in a machine learning process that is not reusable, difficult to scale and

maintain, and even tougher to audit and perform model improvement, and it is easily

fraught with errors and unnecessary complexities.

However, by incorporating the microservice design pattern to machine learning

development, we can address a host of these concerns and really streamline the

productionalization process.

 Kubeflow
Kubeflow is a platform that is created to enhance and simplify the process of deploying

machine learning workflows on Kubernetes. Using Kubeflow, it becomes easier to

manage a distributed machine learning deployment by placing components in the

deployment pipeline such as the training, serving, monitoring, and logging components

into containers on the Kubernetes cluster.

The goal of Kubeflow is to abstract away the technicalities of managing a Kubernetes

cluster so that a machine learning practitioner can quickly leverage the power of

Kubernetes and the benefits of deploying products within a microservice framework.

Kubeflow has its history as an internal Google framework for implementing machine

learning pipelines on Kubernetes before being open sourced late 2017.

Table 46-1 is a sample of some of the components that run on Kubeflow.

Chapter 46 Kubeflow and Kubeflow pipelines

674

Table 46-1. Sample of Kubeflow Components

Component Description

Chainer

Chainer is a define-by-run deep learning neural network framework. it

also supports multi-node distributed deep learning and deep reinforcement

algorithms.

Jupyter

Jupyter provides a platform for the rapid prototyping and easy sharing of

reproducible codes, equations, and visualizations.

ksonnet

ksonnet provides a simple way to create and edit Kubernetes configuration

files. Kubeflow makes use of ksonnet to help manage deployments.

Istio

Istio eases microservice deployments by providing a uniform way to connect,

secure, control, and observe services.

Katib

Katib is a deep learning framework agnostic hyper-parameter tuning

framework. it is inspired by Google Vizier.

MXNet

MXNet is a portable and scalable deep learning library using multiple frontend

languages such as python, Julia, Matlab, and Javascript.

(continued)

Chapter 46 Kubeflow and Kubeflow pipelines

675

Table 46-1. (continued)

Component Description

PyTorch

PyTorch is a python deep learning library developed by facebook based on

the torch library for lua, a programming language.

NVIDIA TensorRT

TensorRT is a platform for high-performance and scalable deployment of deep

learning models for inference.

Seldon

Seldon is an open source platform for deploying machine learning models on

Kubernetes.

TensorFlow

TensorFlow provides an ecosystem for the large-scale productionalization

of deep learning models. this includes distributed training using tfJob,

serving with tf serving, and other tensorflow extended components such as

tensorflow Model analysis (tfMa) and tensorflow transform (tft).

 Working with Kubeflow

 1. Set up a Kubernetes cluster on GKE.

create a GKE cluster

gcloud container clusters create ekaba-gke-cluster

view the nodes of the kubernetes cluster on GKE

kubectl get nodes

 2. Create OAuth client ID to identify Cloud IAP: Kubeflow uses

Cloud Identity-Aware Proxy (Cloud IAP) to connect to Jupyter and

other running web apps securely. Kubeflow uses email addresses

for authentication. In this section, we’ll create an OAuth client ID

which will be used to identify Cloud IAP when requesting access

to a user’s email account:

Chapter 46 Kubeflow and Kubeflow pipelines

676

• Go to the APIs & Services ➤ Credentials page in GCP Console.

• Go to the OAuth consent screen (see Figure 46-2).

• Assign an Application name, for example, My-Kubeflow-App.

• For authorized domains, use [YOUR_PRODJECT_ID].

cloud.goog.

Figure 46-2. OAuth consent screen

Chapter 46 Kubeflow and Kubeflow pipelines

https://console.cloud.google.com/apis/credentials
https://console.cloud.google.com/apis/credentials

677

• Go to the Credentials tab (see Figure 46-3).

• Click Create credentials, and then click OAuth client ID.

• Under Application type, select Web application.

• Choose a Name to identify the OAuth client ID (see Figure 46-4).

Figure 46-3. GCP Credentials tab

Chapter 46 Kubeflow and Kubeflow pipelines

678

• In the Authorized redirect URIs box, enter the following:

https://<deployment_name>.endpoints.<project>.cloud.

goog/_gcp_gatekeeper/authenticate

• <deployment_name> must be the name of the Kubeflow

deployment.

• <project> is the GCP project ID.

Figure 46-4. Create OAuth client ID

Chapter 46 Kubeflow and Kubeflow pipelines

679

• In this case, it will be

https://ekaba-kubeflow-app.endpoints.oceanic-

sky-230504.cloud.goog/_gcp_gatekeeper/authenticate

• Take note of the client ID and client secret that appear in the

OAuth client window. This is needed to enable Cloud IAP.

Create environment variables from the OAuth client ID and

secret earlier obtained.

export CLIENT_ID=506126439013-drbrj036hihvdolgki6lflovm4bjb6c1.

apps.googleusercontent.com

export CLIENT_SECRET=bACWJuojIVm7PIMphzTOYz9D

export PROJECT=oceanic-sky-230504

 Download kfctl.sh

The file kfctl.sh is the Kubeflow installation shell script. As at this time of writing, the

latest Kubeflow tag is 0.5.0.

create a folder on the local machine

mkdir kubeflow

move to created folder

cd kubeflow

save folder path as a variable

export KUBEFLOW_SRC=$(pwd)

download kubeflow `kfctl.sh`

export KUBEFLOW_TAG=v0.5.0

curl https://raw.githubusercontent.com/kubeflow/kubeflow/${KUBEFLOW_TAG}/

scripts/download.sh | bash

list directory elements

ls -la

drwxr-xr-x 6 ekababisong staff 204 17 Mar 04:15 .

drwxr-xr-x 25 ekababisong staff 850 17 Mar 04:09 ..

drwxr-xr-x 4 ekababisong staff 136 17 Mar 04:18 deployment

Chapter 46 Kubeflow and Kubeflow pipelines

https://ekaba-kubeflow-app.endpoints.oceanic-sky-230504.cloud.goog/_gcp_gatekeeper/authenticate
https://ekaba-kubeflow-app.endpoints.oceanic-sky-230504.cloud.goog/_gcp_gatekeeper/authenticate

680

drwxr-xr-x 36 ekababisong staff 1224 17 Mar 04:14 kubeflow

drwxr-xr-x 16 ekababisong staff 544 17 Mar 04:14 scripts

 Deploy Kubeflow

Run the following code block to deploy Kubeflow.

assign the name for the Kubeflow deployment

The ksonnet app is created in the directory ${KFAPP}/ks_app

export KFAPP=ekaba-kubeflow-app

run setup script

${KUBEFLOW_SRC}/scripts/kfctl.sh init ${KFAPP} --platform gcp --project

${PROJECT}

navigate to the deployment directory

cd ${KFAPP}

creates config files defining the various resources for gcp

${KUBEFLOW_SRC}/scripts/kfctl.sh generate platform

creates or updates gcp resources

${KUBEFLOW_SRC}/scripts/kfctl.sh apply platform

creates config files defining the various resources for gke

${KUBEFLOW_SRC}/scripts/kfctl.sh generate k8s

creates or updates gke resources

${KUBEFLOW_SRC}/scripts/kfctl.sh apply k8s

view resources deployed in namespace kubeflow

kubectl -n kubeflow get all

Kubeflow is available at a URL that will be unique for your deployment. In this

case, Kubeflow is available to me at https://ekaba-kubeflow-app.endpoints.

oceanic-sky-230504.cloud.goog/ (see Figure 46-5). Again, this URL is unique for your

deployment.

Chapter 46 Kubeflow and Kubeflow pipelines

https://ekaba-kubeflow-app.endpoints.oceanic-sky-230504.cloud.goog/
https://ekaba-kubeflow-app.endpoints.oceanic-sky-230504.cloud.goog/

681

Note it can take 10–15 minutes for the uri to become available. Kubeflow needs
to provision a signed ssl certificate and register a dns name.

 Kubeflow Pipelines – Kubeflow for Poets
Kubeflow Pipelines is a simple platform for building and deploying containerized

machine learning workflows on Kubernetes. Kubeflow pipelines make it easy to

implement production-grade machine learning pipelines without bothering on the low-

level details of managing a Kubernetes cluster.

Kubeflow Pipelines is a core component of Kubeflow and is also deployed when

Kubeflow is deployed. The Pipelines dashboard is shown in Figure 46-6.

Figure 46-5. The Kubeflow homescreen

Chapter 46 Kubeflow and Kubeflow pipelines

682

 Components of Kubeflow Pipelines
A Pipeline describes a machine learning workflow, where each component of the

pipeline is a self-contained set of codes that are packaged as Docker images. Each

pipeline can be uploaded individually and shared on the Kubeflow Pipelines user

interface (UI). A pipeline takes inputs (parameters) required to run the pipeline and the

inputs and outputs of each component.

The Kubeflow Pipelines platform consists of

• A user interface (UI) for managing and tracking Experiments, jobs,

and runs

• An engine for scheduling multi-step ML workflows

• An SDK for defining and manipulating pipelines and components

• Notebooks for interacting with the system using the SDK (taken from

www.kubeflow.org/docs/pipelines/pipelines-overview/)

Figure 46-6. Kubeflow Pipelines dashboard

Chapter 46 Kubeflow and Kubeflow pipelines

http://www.kubeflow.org/docs/pipelines/pipelines-overview/)

683

 Executing a Sample Pipeline

 1. Click the name [Sample] Basic - Condition (see Figure 46-7).

Figure 46-7. Select a Pipeline

Figure 46-8. Create a new Experiment

 2. Click Start an Experiment (see Figure 46-8).

Chapter 46 Kubeflow and Kubeflow pipelines

684

 3. Give the Experiment a name (see Figure 46-9).

 4. Give the run a name (see Figure 46-10).

Figure 46-9. Assign a name to the Experiment

Figure 46-10. Assign a name to the run

Chapter 46 Kubeflow and Kubeflow pipelines

685

 5. Click the Run Name to start the run (see Figure 46-11).

Note always remember to clean up cloud resources when they are no longer
needed.

This chapter covered setting up Kubeflow on Kubernetes and introduced working

with Kubeflow Pipelines to manage containerized machine learning workflows. The next

chapter will deploy an end-to-end machine learning solution with Kubeflow Pipelines.

Figure 46-11. Run the Pipeline

Chapter 46 Kubeflow and Kubeflow pipelines

687
© Ekaba Bisong 2019
E. Bisong, Building Machine Learning and Deep Learning Models on Google Cloud Platform,
https://doi.org/10.1007/978-1-4842-4470-8_47

CHAPTER 47

Deploying
an End-to- End Machine
Learning Solution
on Kubeflow Pipelines
A Kubeflow pipeline component is an implementation of a pipeline task. A component

is a step in the workflow. Each task takes one or more artifacts as input and may produce

one or more artifacts as output.

Each component usually includes two parts:

• Client code: The code that talks to endpoints to submit jobs, for

example, code to connect with the Google Cloud Machine Learning

Engine.

• Runtime code: The code that does the actual job and usually runs in

the cluster, for example, the code that prepares the model for training

on Cloud MLE.

A component consists of an interface (inputs/outputs), the implementation

(a Docker container image and command-line arguments), and metadata (name,

description).

688

 Overview of a Simple End-to-End Solution Pipeline
In this simple example, we will implement a deep neural regressor network to predict the

closing prices of Bitcoin crypto-currency. The machine learning code itself is pretty basic

as it is not the focus of this article. The goal here is to orchestrate a machine learning

engineering solution using microservice architectures on Kubernetes with Kubeflow

Pipelines. The code for this chapter is in the book code repository. Clone the repository

from the GCP Cloud Shell.

The pipeline consists of the following components:

 1. Move raw data hosted on GitHub to a storage bucket.

 2. Transform the dataset using Google Dataflow.

 3. Carry out hyper-parameter training on Cloud Machine

Learning Engine.

 4. Train the model with the optimized hyper-parameters.

 5. Deploy the model for serving on Cloud MLE.

 Create a Container Image for Each Component
First, we’ll package the client and runtime code into a Docker image. This image

also contains the secure service account key to authenticate against GCP. For example,

the component to transform the dataset using Dataflow has the following files built into

its image:

• __ Dockerfile: Dockerfile to build the Docker image.

• __ build.sh: Script to initiate the container build and upload to

Google Container Registry.

• __ dataflow_transform.py: Code to run the beam pipeline on

Cloud Dataflow.

• __ service_account.json: Secure key to authenticate container

on GCP.

• __ local_test.sh: Script to run the image pipeline component

locally.

Chapter 47 Deploying an enD-to- enD MaChine learning Solution on Kubeflow pipelineS

689

 Build Containers Before Uploading to Kubeflow
Pipelines
Before uploading the pipeline to Kubeflow Pipelines, be sure to build the component

containers so that the latest version of the code is packaged and uploaded as images to

the container registry. The code provides a handy bash script to build all containers.

 Compile the Pipeline Using the Kubeflow
Pipelines DSL Language
The pipeline code contains a specification on how the components interact with one

another. Each component has an output that serves as an input to the next component

in the pipeline. The Kubeflow pipeline DSL language dsl-compile from the Kubeflow

Pipelines SDK is used to compile the pipeline code in Python for upload to Kubeflow

Pipelines.

Ensure the Kubeflow Pipelines SDK is installed on the local machine by running

install kubeflow pipeline sdk

pip install https://storage.googleapis.com/ml-pipeline/release/0.1.12/kfp.

tar.gz --upgrade

verify the install

which dsl-compile

Compile the pipeline by running

compile the pipeline

python3 [path/to/python/file.py] [path/to/output/tar.gz]

For the sample code, we used

python3 crypto_pipeline.py crypto_pipeline.tar.gz

Chapter 47 Deploying an enD-to- enD MaChine learning Solution on Kubeflow pipelineS

690

 Upload and Execute the Pipeline to Kubeflow
Pipelines
The following steps upload and execute the compiled pipeline on Kubeflow Pipelines:

 1. Upload the pipeline to Kubeflow Pipelines (Figure 47-1).

Figure 47-1. Upload the compiled pipeline to Kubeflow Pipelines

Chapter 47 Deploying an enD-to- enD MaChine learning Solution on Kubeflow pipelineS

691

 2. Click the pipeline to see the static graph of the flow (Figure 47-2).

 3. Create an Experiment and run to execute the pipeline

(Figure 47-3).

Figure 47-2. Pipeline summary graph

Chapter 47 Deploying an enD-to- enD MaChine learning Solution on Kubeflow pipelineS

692

Figure 47-3. Create and run the Experiment

Chapter 47 Deploying an enD-to- enD MaChine learning Solution on Kubeflow pipelineS

693

Figure 47-4. Completed Pipeline run

 4. Completed Pipeline run (Figure 47-4).

Completed Dataflow Pipeline: The completed run of the second component of

the Pipeline, which is to transform the dataset with Cloud Dataflow, is illustrated in

Figure 47-5.

Chapter 47 Deploying an enD-to- enD MaChine learning Solution on Kubeflow pipelineS

694

Figure 47-5. Completed Dataflow run

Figure 47-6. Deployed model on Cloud MLE

Deployed model on Cloud MLE: The deployed model on Cloud MLE, which is the

fifth component of the Pipeline, is illustrated in Figure 47-6.

Note always remember to clean up cloud resources when they are no longer
needed.

Chapter 47 Deploying an enD-to- enD MaChine learning Solution on Kubeflow pipelineS

695

Delete Kubeflow: Run the script to delete the deployment.

navigate to kubeflow app

cd ${KFAPP}

run script to delete the deployment

${KUBEFLOW_SRC}/scripts/kfctl.sh delete all

Delete the Kubernetes cluster: Replace name with your own cluster name.

delete the kubernetes cluster

gcloud container clusters delete ekaba-gke-cluster

This chapter covered building an end-to-end machine learning product as a

containerized application on Kubernetes with Kubeflow and Kubeflow pipelines. Again, the

code for this chapter may be accessed by cloning the book repository to the Cloud Shell.

This concludes this book.

Chapter 47 Deploying an enD-to- enD MaChine learning Solution on Kubeflow pipelineS

697
© Ekaba Bisong 2019
E. Bisong, Building Machine Learning and Deep Learning Models on Google Cloud Platform,
https://doi.org/10.1007/978-1-4842-4470-8

Index

A
Accuracy, 181, 294
Activation functions

hyperbolic tangent (tanh), 341
Leaky ReLU, 342, 343
Maxout, 343
non-linear function, 339
ReLU, 342
sigmoid, 340

Adaptive learning rates, 413
Alpine Linux package, 661
append() method, 76, 128, 129
Area under the receiver operating curve

(AUC-ROC), 183–184, 294
argparse.ArgumentParser()

method, 558
Artificial neural network

(ANN), 329, 331, 332
assign method, 127
Autoencoder

architecture, 476
defined, 475
denoising, 481, 482
undercomplete, 475

AutoML NLP
custom language classification

model (see Custom language
classification model)

dataset, training, 602–604
GCP, 599–601

B
Backpropagation

algorithm, 337, 338
Backpropagation through time

(BPTT), 453, 454
Bar plot, 154, 155
Batch gradient descent

algorithm, 205
Batch learning, 199–200
Batch normalization, 408–410
Beam programming

data processing pipeline
build/run, 541, 542
creation, 540
preprocessing, 543

pipeline transformation
I/O transforms, 539
Pcollection, 538
Ptransform, 538

Bias vs. variance trade-Off
hidden layers, 402–403
high bias, 178
high variance, 178
machine learning, 177
quality/performance, 178

BigQuery
defined, 485
first query

census_bureau_international, 490
Query editor, 491

https://doi.org/10.1007/978-1-4842-4470-8

698

not suited, 486
public datasets, 489
web UI, 486–489

BigQuery, load data
bq utility

bq load command, 498
delete dataset, 499
new dataset, 497
table schema, 498

CSV file, 491
GCS, 491, 492
web UI

create dataset, 492
create table, 493, 494
dataset parameters, 493
job history, 495
loaded table, 495, 496

%bigquery magic command, 507
BigQueryML, 485

BigQuery dataset, 512
FROM field, 512–514
Google AI VMs, 510
hyper-parameter tuning, 509
LEAD() function, 510
RMSE metric, 513
standard SQL, 510

BigQuery SQL
aggregation, 501, 502
filtering, 499, 500
join data, 502, 504
SELECT ∗ command, 505, 506
standard SQL, 499
subselect, 504, 505

Binarization, 222, 223
Bottom-up/agglomerative method, 314
Boxplot, 157, 158
bq command-line utility, 496–499

bq load command, 498
build_estimator function, 553

C
CIFAR-10, 437, 441
Classification and regression trees

(CART), 269
Scikit-learn, 272–273
strengths and weaknesses, 272

Classification evaluation
metrics, 294, 297–299

AUC-ROC
AUC-ROC space, 186
fall-out, 184
imbalanced class, 184
ROC space, 184, 185
TNR, 184

confusion matrix
example, 182, 183
grid-like cells, 180
primary values, 181

clean_dataset() method, 469
Client code, 687
clipnorm, 410
clipvalue, 410
Cloud computing

categories, 4, 5
definition, 3
models

IaaS, 5
PaaS, 5
SaaS, 5, 6

Cloud native computing foundation
(CNCF), 664

Cloud Shell, 17, 18
Clustering, 211

definition, 309

BigQuery (cont.)

INDEX

699

hierarchical
cluster formation, 314–317
SciPy package, 317, 318
techniques, 313, 314

k-means
centroid, 310
elbow method, 311
initial K points, 311
Scikit-learn, 312, 313

CNN over MLP
complex image, 426
number of weights, 427

Colored image, 424, 425
Command-line interface (CLI), 10, 11
Comma-separated value, 140
.compile() method, 405
Component, 687
Convolutional neural networks (CNN), 459

convolutional (see Convolution layer)
defined, 423
FCN layers, 435, 436
modeling pipeline, 436, 437
pooling layers, 433, 435

Convolution layer
feature maps, 427, 432
filters, 428, 430
input size, 429
process, 427
sliding window, 428
stride of filter, 430, 431
weights on filter, 430
zero padding, 431, 432

Correlation, 139
Correlation matrix plots, 162–164
Cost/loss function, 336
C parameter, 259–260
cross_val_score method, 293
csv_serving_input_fn method, 553

Custom image recognition
model, 586, 591, 596

Custom language classification model
building, 605
clean words, 611, 612
dataset creation, 605, 606
evaluation plot, 609, 610
importing text documents, 607
importing text items, 606, 607
model evaluation, 609, 610
model name, 608
new dataset, 605
prediction service, 611
toxic words, 611, 612
training, 607–609

D
Data aggregation, 136–138
Data augmentation, 417, 418
Data cleaning/preprocessing, 69
DataFrame manipulation

row/column
add, 127–129
combine datasets, 131, 132
data alignment, 129, 131
remove, 125–127

Data indexing
column selection, 121
dataframe, 120, 121
multiple rows and columns, 123
row selection, 122, 123
slice cells, 124

Data normalization, 221
Dataprep flow, 522
Data science

challenge, 67, 68
definition, 67

Index

700

opportunity, 68
process, 69, 70

Dataset API, 349–350, 359
Dataset package (tf.data), 349, 350
data_transform() method, 469
Data visualization, 69, 151
DatetimeIndex

select date, 142
select month, 143
select year, 144

decay parameter, 413
Decision trees

classification with CART, 270
growing

classification, 271
regression, 271

illustration, 269, 270
pruning, 272

Deep feedforward neural network
(DFN), 401

Deep learning, 327
Deep neural regressor

network, 688
describe function, 138
Descriptive statistics, 138, 619
Docker containers, 657

Alpine Linux package, 661
build image, 661, 662
commands

creation, 660
managing containers, 663
managing images, 663
run containers, 664

date-script.sh, 661
defined, 656
deployment, 659, 660
Google Cloud Shell, 659

file system, 661
run, 662

drop function, 125
dropna() function, 133, 134
Dropout technique, 415–417, 481

E
Early stopping, 418–421
Elastic Container Service for

Kubernetes (EKS), 664
elbow method, 311
Ensemble methods, 195, 210
Estimator class, 353, 354
evaluate() method, 354, 405
Evaluation metrics, 180
Exploratory data analysis (EDA), 618

pandas profiling, 619
result, 619, 620
variables distribution, 620, 621

export_savedmodel() method, 354

F
feature_column, 350Feature

engineering, 195
defined, 287
feature_importances_ attribute, 290, 291
RFE, 289, 290
SelectKBest module, 288, 289

Feature scaling, 206, 207, 322
FeatureUnion, 302
fillna() function, 135
fit() method, 229, 354, 405
fit_transform() method, 218
Forget gate, 455
Fully connected network (FCN)

layer, 435, 436

Data science (cont.)

INDEX

701

G
Gated recurrent unit

(GRU), 454, 457, 458
GCP Cloud Shell, 688
Google AutoML

authenticate account, 582
build custom image model

confusion matrix, 596
create dataset, 589, 590
delete, 598
F1 evaluation matrix, 595
importing images, 591, 592
model evaluation, 595
prediction service, 596, 597
return dashboard, 598
training vision

model, 593, 594
configuration, 584, 585
on GCP, 581, 582
training dataset, 586–588
welcome page, 583

Google Cloud
AI, 10
big data/analytics, 9
cloud storage, 8, 9
computational needs, 7
services, 8

Google Cloud Dataprep
dashboard, 522
definition, 519
flow, data transformation

completed job, 533
create flow, 522, 523
create recipe, 526
Datasets, 524, 525
filter rows, 529, 530
flow page, 524

remove column, 528, 572
running job, 531, 532
view job results, 533–535
view transformation

recipes, 530
GCS location setup, 521
open via GCP dashboard, 520
Trifacta license agreement, 520, 521

Google Cloud MLE
batch prediction, 650–652
deploy trained model, 649, 650
training

directory trainer, 636
GCP project, 636
hptuning_config.yaml, 647, 648
__init__.py, 636
job, 648
model.py, 641–646
output, 648, 649
task.py, 636–641

Google Cloud Platform (GCP)
architecture, 614, 615
CLI, 11
defined, 11
IAM & admin, 16, 17
resources, 14, 15
SDK

authentication, 21–23
command-line tools, 19
gcloud configurations, 23, 24
installation, 19
select Google account, 20
tools, 11

services, 16
setting up account

creation, 12, 13
dashboard, 14
login page, 12

Index

702

Google Cloud Storage (GCS), 491
BigQuery, 615, 616
bucket

creation, 25–27
deletion, 30, 31
uploading, 27–29

command line, 32, 33
definition, 25
raw data, 615

Google Colaboratory
change runtime, 61, 62
steps, 59, 60
storing notebooks, 62, 63
uploading notebooks, 64

Google Compute Engine (GCE), 35
command line, 45, 48
connecting VM instances

delete, 45
SSH into, 42, 43
terminal window access, 44

gcloud instance create, 46–48
select VM instances, 40, 41

create, 36
deploying process, 37
machine type, 39
options, 38

Google Kubernetes engine
(GKE), 664

cluster creation, 669, 670
delete cluster, 670
SDK gcloud, 668

Gradient clipping, 410, 454
Gradient descent

convex function, 203, 204
defined, 203
feature scaling, 205–207
learning rate, 204
types, 205

Grayscale image, 423, 424
Grid search, 304, 306
GridSearchCV module, 304
groupBy functionality, 115

H
Hierarchical clustering, 313–314
Hierarchies, 401, 402
Histogram and density plots, 155, 156
Hybrid cloud, 5
Hyperbolic Tangent (tanh) function, 341
Hyper-parameters, 195, 304
Hyperplane, 255

optimal
margin classifier, 256
support vectors, 257

I
ignore_index, 129
iloc attribute, 122, 124
Image recognition, CNN

AlexNet, 437
CIFAR-10, 437
model.summary(), 438
Tensorboard, 438, 440, 441
TensorFlow 2.0, 438

Images, 164–165
input_fn method, 553
Input gate, 455

J
JOIN command, 504
JupyterLab notebook

instance
command line, 54, 56, 57
deep learning VM, 49

INDEX

703

GCP AI Platform, 50
Launcher, 52
new window, 51
Python 3, 53
shutdown/delete, 53, 54

K
Keras program

anatomy, 355
Functional API, 386, 389
LSTM model testing, 466
neural network models, 383, 384
Sequential API, 384
TensorBoard, 393, 396
visualization, 389

Kernels, 264
linear, 264
polynomial, 264
radial, 264, 265

k-fold cross validation, 291, 292
k-Means clustering, 310
Kubeflow

components, 673–675
deployment, 680
GCP credentials tab, 677
GKE cluster, 675
homescreen, 681
kfctl.sh, 679
OAuth client ID, 675, 678
OAuth consent screen, 676

Kubeflow pipelines
assign experiment, 684
assign name, 684
Cloud MLE, 694
component, 682

containers, 688, 689
defined, 687

DSL language, 689
dashboard, 681, 682
Dataflow, 693, 694
delete cluster, 695
delete deployment, 695
Experiment creation, 683, 691, 692
graph, 691
platform, 682
run, 685, 693
selection, 683
upload pipelines, 690

Kubernetes
architecture, 665, 666
CNCF, 664
components, 665
defined, 664
deployment file, 667, 668
features, 665
master node(s), 665, 667
worker node(s), 665, 667

L
LabelEncoder, 223
Lambda expressions, 88
Layers package (tf.keras.layers), 348
LEAD() function, 510
Leaky ReLU functions, 342, 343
Learning rate, 204
Leave-one-out cross-validation

(LOOCV), 192, 292, 293
Linear methods, 210
Linear regression, 361, 364, 365
Line plot, 152, 153
Local minima, 204
Local receptive field, 425, 426
Location invariance, 435
loc attribute, 122, 123

Index

704

Logarithmic loss, 294
Long Short-Term Memory (LSTM), 443,

454–456
Long-term recurrent convolutional

network (LRCN), 459–460

M
Machine learning, 169

algorithms, 621–624
cost of data, 170
data, 170
defined, 169
development work, 672
production pipeline, 671, 672

Machine learning engineering solution, 688
Machine learning engine (MLE)

APIs, 547, 548
application logic, 553–558
code package, 548
create prediction service,

565, 566, 577, 578
data files to GCS, 572
distributed training job, 563
hptuning_config.yaml file, 562–563
hyper-parameter training, 564, 565
hyper-parameter tuning, 561, 562
online prediction, Scikit-learn

model, 578, 579
run batch prediction, 566, 568
run distributed training job, 560, 561
run single instance training job, 558–560
Scikit-learn model, 572
Scikit-learn Random forest

model, 575, 576
tensorflow model, 553

label_string_tensor, 551
model.py, 549, 550

pipeline based approach, 553
train/deploy process, 545, 546
training models, GPUs, 569, 570, 572
training scripts, 573–575

make_pipeline method, 301, 302
Matplotlib, 91, 151, 164
Maxout function, 343
Mean absolute error (MAE), 293, 295
Mean normalization, 206
Mean squared error (MSE), 293
Microservice, 655

advantages, 656
challenges, 656
vs. monolithic applications, 655
REST, 656

Mini-batch gradient descent, 205
MinMaxScaler module, 218
Missing data

dropna() function, 133
fillna() function, 135
isnull() method, 132, 133
thresh attribute, 135

Model accuracy per epoch, 393
model.fit() method, 389, 393
Model fitting, data

Binarizer module, 222
data rescaling, 218, 219
fit() method, 218
Imputer module, 227
LabelEncoder, 223, 224
Normalizer module, 221, 222
OneHotEncoder, 225, 227
PolynomialFeatures module, 228
StandardScaler module, 220
transform() method, 218

Model loss per epoch, 392
Momentum, 411, 412
Multi-class classification

INDEX

705

OVA, 261, 262
OVO, 260, 261

Multilayer Perceptron (MLP), 401
Keras

code, 403–405
dataset, 403
layers, 403

Multivariate plots
correlation matrix plot, 162–164
pairwise scatter plot, 160–162
scatter plot, 158–160

N
NaN, 129, 130
Neural network

dataset features, 333, 334
feedforward learning

algorithm, 335
goal, 335
information flow, 334, 335
neuron, 328, 329
weight, 334

Noise injection, 417, 418
Non-linear activation function, 335
Non-linear methods, 210
normalize_and_scale() method, 469
Notebooks, BigQuery

bar chart, 509
%%bigquery, 507
GCP AI, 507
Google Colab, 507
Pandas DataFrame, 507, 508

NumPy
1-D array, 91, 92
data types, 93
definition, 91
higher-dimensional arrays

creating 2-D arrays, 97, 98
creating 3-D arrays, 98, 99
indexing/slicing, 99

indexing + Fancy indexing (1-D)
Boolean mask, 94
integer mask, 95
slicing, 95

math operations, 95
matrix operations, linear algebra

element-wise matrix, 102
inverse of matrix, 106
matrix multiplication (Dot

product), 101
scalar operation, 103, 104
transposition, 105

reshaping
broadcasting, 110, 112
loading data, 113
resize method, 107
stacking arrays, 108

O
Offline learning, 199
OneHotEncoder, 225
One-hot encoding, 336, 337
One-vs.-all (OVA), 261, 262
One-vs.-one (OVO), 260, 261
Online learning, 200, 201
Original series vs. RNN generated series

normal data values, 468
scaled data values, 467

Output gate, 455

P, Q
Pairwise scatter plot, 160–162
Pandas

Index

706

DataFrame
data type, 120
NumPy, 118
operations, 118, 119
Series, 119, 120
2-D array, 117

defined, 115
Series data structure, 115–117

pandas.plotting function, 152
Pandas plotting

methods, 151, 152
pandas profiling, 619
Pandas, timeseries

data columns and
summaries, 144

DatetimeIndex, 142
head() method, 140
parse_dates, 140
resample Datetime, 145, 146
tail() method, 140

PCollection, 538
Peephole connection, 456–457
Pipelines, 537

feature_union, 302, 303
fit_predict method, 300
make_pipeline

method, 301, 302
scaling transform, 300
Scikit-learn, 299
transform method, 300

Platform as a Service (PaaS), 5
plot method, 152
Pooling layers

aggregation function, 433
layers’ filters, 433
location invariance, 435
MaxPool, 435

Precision, 182
predict() method, 229, 354
Principal component analysis

(PCA), 196, 211
covariance matrix, 319, 320
data visualization, 319
dimensions reduction, 321, 322
eigenvectors, 320
feature scaling, 322
mean normalization, 322
Scikit-learn, 323

Private cloud, 5
PTransform, 538
pyplot module, 151
Python

control structure
break statement, 85, 86
if/elif (else-if) statement, 80, 81
list comprehensions, 84, 85
for loop, 83, 84
while loop, 82

data structures, 71
data types

arithmetic operations, 78
Boolean operations, 78, 79
dictionaries, 73
functions, 88
lists, 73–76
print() statement, 79, 80
strings, 77
tuples, 73

definition, 71
functions, 86, 87

user-defined, 87, 88
packages/modules

from statement, 89
import statement, 88

variable, 72

Pandas (cont.)

INDEX

707

R
Random forest (RF), 269

predictions, 275, 276
Scikit-learn

classification, 277, 278
regression, 278, 279

Randomized search, 306–308
Recall/sensitivity, 182
Rectified linear unit (ReLU) function, 342
Recurrent connection schemes, 449
Recurrent neural networks (RNNs), 443

BPTT, 453, 454
computational graph, 444
connection schemes, 448, 449
dataset to layers, 446
GRU, 457, 458
LSTM, 454–456
multivariate timeseries

modeling, 468, 473
neuron (see Recurrent neuron)
peephole connection, 456
sequence mappings

input to output, 451, 452
output, 450

sequence tasks
bidirectional LSTM, 461
Encoder-Decoder LSTM, 460
image captioning, 459
LRCN, 459
video captioning, 460

univariate timeseries modeling, 462, 463
Recurrent neuron, 444

input weights, 444
layer, 447, 448
unfolding, 445

Recursive feature elimination
(RFE), 289, 290

Regression evaluation metrics, 293–295, 297
RMSE, 187, 188
R-squared (R2), 189–191

Regularization
bias vs. variance, 251
defined, 251
linear regression, 252, 253
logistic regression, 253, 254
Scikit-learn, 252
working, 251

Reinforcement learning, 197
Representational state transfer (REST), 656
Representation learning, 327
Resampling methods

defined, 291
k-fold cross validation, 291, 292
LOOCV, 292, 293

Resampling techniques
k-Fold cross-validation, 193, 194
LOOCV, 192, 193
training set, 191
validation set, 191, 192

Residual sum of squares (RSS), 189
RidgeClassifier() method, 254
Rolling Windows

head method, 148–149
NaNs, 148
plotting function, 149, 150
rolling() function, 148
tail method, 149

Root mean squared error
(RMSE), 180, 187, 188

R-squared (R2)
coefficient of determination, 189
model performance, 190, 191
RSS, 189
TSS, 190

Runtime code, 687

Index

708

S
scatter_matrix method, 160
Scatter plot, 158–160
Scikit-learn, 572

classification tree, 272
data preprocessing (see Model fitting,

data)
defined, 215
load, sample datasets, 216, 217
Random forests, 277–279
regression tree, 273
sample datasets, 215
SGB, 282, 283
split dataset, 217
XGBoost, 284–286

Scikit-learn Random forest model, 576
Seaborn, 151, 152
SELECT ∗ command, 505
shift() method, 147–148
Shrinkage, 281
Sigmoid function, 340
skew() function, 139
Soft margin, 258, 259
Software as a Service (SaaS), 5
Software development kit (SDK), 10
Stacked Autoencoder

hidden layers, 476, 477
TensorFlow 2.0

code, 477–479
loss error, 479
MNIST handwriting dataset, 477
reconstructed images, 479, 480

tying, 476
stddev parameter, 418
Stochastic Gradient Boosting (SGB), 269

depth/number of trees, 281
illustration, 279, 280
Scikit-learn

classification, 282
regression, 283

shrinkage, 281
Stochastic gradient descent (SGD), 205, 411
Structured query language (SQL), 485, 499
Superconductor, properties, 613
Supervised learning

bias vs. variance, 177–179
classification, 174, 175
dataset, 171, 172
evaluate learning, 175
goal, 172
improve model performance

ensemble methods, 195
feature engineering, 195
hyper-parameters, 195

regression, 173
60/20/20 rule, 176
test set, 176

Support vector machine (SVM), 210, 255
classification, 266
data distribution, 257, 258
Kernel Trick, 262, 263
polynomial features, 263
regression, 267
Scikit-learn, 266
soft margin, 258, 259

T
TensorBoard

features, 358
visualization dashboard, 356, 357

TensorFlow (TF), 547
API hierarchy, 347, 348
classification, 365, 368
Dataset API, 359, 361
GPU, 374, 375
high-level API

INDEX

709

Estimator, 353, 354, 381
Keras, 354

linear regression, 361, 364, 365
low-level API, 348
mid-level API

dataset package, 349, 350
featureColumns, 350, 351
layers, 348, 349

program, 358, 359
visualization dashboard, 369, 373

TensorFlow Transform (TFT)
Apache Beam, 625
GCP, 625
pipeline, 628–632, 634, 635
query method, 625
requirements.txt file, 628

tf.distribute.MirroredStrategy()
method, 376, 380

tf. keras.callbacks.EarlyStopping()
method, 419

tf.keras.callbacks.ModelCheckpoint()
method, 396

tf.keras.callbacks.TensorBoard()
method, 393

tf.keras.experimental.
PeepholeLSTMCell() method, 456

tf.keras.layers. BatchNormalization()’
method, 409

tf.keras.layers.Dropout()’ method, 416
tf.keras.layers.GaussianNoise()

method, 418
tf.keras.layers.LSTM() method, 455, 468
tf.keras.Sequential() method, 384, 405
to_datetime method, 146
Total sum of squares (TSS), 190
train_and_evaluate() method, 558
train_test_split(X, y, test_size=0.25)

method, 217

Tree pruning, 272
True negative rate (TNR), 184
Truncated backpropagation through

time (truncated BPTT), 454
Tuples, 73
2-D array, 91, 96, 117

U
Univariate plots

bar plot, 154, 155
Boxplot, 157, 158
histogram and density, 155, 156
line plot, 152, 153

Unsupervised learning, 196
User-Defined functions, 87–88

V
Variable learning rates, 412, 413
Virtual machines (VMs), 657, 658

vs. containers, 657–659

W
Weight initialization, 407, 408

X, Y
Xavier uniform initializer, 407
XGBoost (Extreme Gradient Boosting)

algorithm, 284
Scikit-learn

classification, 284, 285
regression, 285, 286

Z
Zero padding, 431, 432

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Part I: Getting Started with Google Cloud Platform
	Chapter 1: What Is Cloud Computing?
	Categories of Cloud Solutions
	Cloud Computing Models

	Chapter 2: An Overview of Google Cloud Platform Services
	Cloud Compute
	Cloud Storage
	Big Data and Analytics
	Cloud Artificial Intelligence (AI)

	Chapter 3: The Google Cloud SDK and Web CLI
	Setting Up an Account on Google Cloud Platform
	GCP Resources: Projects
	Accessing Cloud Platform Services
	Account Users and Permissions
	The Cloud Shell
	Google Cloud SDK

	Chapter 4: Google Cloud Storage (GCS)
	Create a Bucket
	Uploading Data to a Bucket
	Delete Objects from a Bucket
	Free Up Storage Resource
	Working with GCS from the Command Line

	Chapter 5: Google Compute Engine (GCE)
	Provisioning a VM Instance
	Connecting to the VM Instance
	Tearing Down the Instance
	Working with GCE from the Command Line

	Chapter 6: JupyterLab Notebooks
	Provisioning a Notebook Instance
	Shut Down/Delete a Notebook Instance
	Starting a Notebook Instance from the Command Line

	Chapter 7: Google Colaboratory
	Starting Out with Colab
	Change Runtime Settings
	Storing Notebooks
	Uploading Notebooks

	Part II: Programming Foundations for Data Science
	Chapter 8: What Is Data Science?
	The Challenge of Big Data
	The Data Science Opportunity
	The Data Science Process

	Chapter 9: Python
	Data and Operations
	Data Types
	More on Lists
	Strings

	Arithmetic and Boolean Operations
	Arithmetic Operations
	Boolean Operations

	The print() Statement
	Using the Formatter

	Control Structures
	The if/elif (else-if) Statements
	The while Loop
	The for Loop
	List Comprehensions
	The break and continue Statements

	Functions
	User-Defined Functions
	Lambda Expressions

	Packages and Modules
	import Statement
	from Statement

	Chapter 10: NumPy
	NumPy 1-D Array
	NumPy Datatypes
	Indexing + Fancy Indexing (1-D)
	Boolean Mask
	Integer Mask
	Slicing a 1-D Array

	Basic Math Operations on Arrays: Universal Functions
	Higher-Dimensional Arrays
	Creating 2-D Arrays (Matrices)
	Creating 3-D Arrays
	Indexing/Slicing of Matrices

	Matrix Operations: Linear Algebra
	Matrix Multiplication (Dot Product)
	Element-Wise Operations
	Scalar Operation
	Matrix Transposition
	The Inverse of a Matrix

	Reshaping
	Reshape vs. Resize Method
	Stacking Arrays

	Broadcasting
	Loading Data

	Chapter 11: Pandas
	Pandas Data Structures
	Series
	DataFrames

	Data Indexing (Selection/Subsets)
	Selecting a Column from a DataFrame
	Selecting a Row from a DataFrame
	Selecting Multiple Rows and Columns from a DataFrame
	Slice Cells by Row and Column from a DataFrame

	DataFrame Manipulation
	Removing a Row/Column
	Adding a Row/Column
	Data Alignment
	Combining Datasets

	Handling Missing Data
	Identifying Missing Data
	Removing Missing Data
	Imputing Values into Missing Data

	Data Aggregation (Grouping)
	Statistical Summaries
	Correlation
	Skewness

	Importing Data
	Timeseries with Pandas
	Importing a Dataset with a DateTime Column
	Selection Using DatetimeIndex
	Select a Particular Date
	Select a Month
	Select a Year

	Subset Data Columns and Find Summaries
	Resampling Datetime Objects
	Convert to Datetime Datatype Using ‘to_datetime’
	The shift() Method
	Rolling Windows

	Chapter 12: Matplotlib and Seaborn
	Matplotlib and Seaborn
	Pandas Plotting Methods
	Univariate Plots
	Line Plot
	Bar Plot
	Histogram/Density Plots
	Box and Whisker Plots

	Multivariate Plots
	Scatter Plot
	Pairwise Scatter Plot
	Correlation Matrix Plots

	Images

	Part III: Introducing Machine Learning
	Chapter 13: What Is Machine Learning?
	The Role of Data
	The Cost of Data

	Chapter 14: Principles of Learning
	Supervised Learning
	Regression vs. Classification
	Regression
	Classification

	How Do We Know that Learning Has Occurred?
	Training, Test, and Validation Datasets
	Bias vs. Variance Trade-Off
	How Do We Recognize the Presence of Bias or Variance in the Results?

	Evaluating Model Quality
	Classification Evaluation Metrics
	Confusion Matrix
	Area Under the Receiver Operating Curve (AUC-ROC)
	The ROC Space
	The AUC-ROC Space

	Regression Evaluation Metrics
	Root Mean Squared Error (RMSE)
	An Example of Evaluation with RMSE

	R-squared (R2)
	Interpretation of R2
	An Example of Evaluating the Model Performance with R2

	Resampling Techniques
	The Validation Set
	Leave-One-Out Cross-Validation (LOOCV)
	k-Fold Cross-Validation

	Improving Model Performance
	Feature Engineering
	Ensemble Methods
	Hyper-parameter Tuning

	Unsupervised Learning
	Reinforcement Learning

	Chapter 15: Batch vs. Online Learning
	Batch Learning
	Online Learning

	Chapter 16: Optimization for Machine Learning: Gradient Descent
	The Learning Rate of Gradient Descent Algorithm
	Classes of Gradient Descent Algorithm
	Optimizing Gradient Descent with Feature Scaling

	Chapter 17: Learning Algorithms
	Classes of Supervised Algorithms
	Unsupervised Algorithms

	Part IV: Machine Learning in Practice
	Chapter 18: Introduction to Scikit-learn
	Loading Sample Datasets from Scikit-learn
	Splitting the Dataset into Training and Test Sets
	Preprocessing the Data for Model Fitting
	Data Rescaling
	Standardization
	Normalization
	Binarization
	Encoding Categorical Variables
	Input Missing Data
	Generating Higher-Order Polynomial Features

	Machine Learning Algorithms

	Chapter 19: Linear Regression
	The Regression Model
	A Visual Representation of Linear Regression
	Finding the Regression Line – How Do We Optimize the Parameters of the Linear Model?

	How Do We Interpret the Linear Regression Model?
	Linear Regression with Scikit-learn
	Adapting to Non-linearity
	Higher-Order Linear Regression with Scikit-learn
	Improving the Performance of a Linear Regression Model

	Chapter 20: Logistic Regression
	Why Logistic Regression?
	Introducing the Logit or Sigmoid Model
	Training the Logistic Regression Model
	Multi-class Classification/Multinomial Logistic Regression
	Logistic Regression with Scikit-learn
	Optimizing the Logistic Regression Model

	Chapter 21: Regularization for Linear Models
	How Does Regularization Work
	Effects of Regularization on Bias vs. Variance
	Applying Regularization to Models with Scikit-learn
	Linear Regression with Regularization
	Logistic Regression with Regularization

	Chapter 22: Support Vector Machines
	What Is a Hyperplane?
	Finding the Optimal Hyperplane

	The Support Vector Classifier
	The C Parameter

	Multi-class Classification
	One-vs.-One (OVO)
	One-vs.-All (OVA)

	The Kernel Trick: Fitting Non-linear Decision Boundaries
	Adding Polynomial Features
	Kernels
	Linear Kernel
	Polynomial Kernel
	Radial Basis Function or the Radial Kernel
	Support Vector Machines with Scikit-learn
	SVM for Classification
	SVM for Regression

	Chapter 23: Ensemble Methods
	Decision Trees
	On Regression and Classification with CART
	Growing a Regression Tree
	Growing a Classification Tree
	Tree Pruning
	Strengths and Weaknesses of CART
	CART with Scikit-learn
	Classification Tree with Scikit-learn
	Regression Tree with Scikit-learn

	Random Forests
	Making Predictions with Random Forests
	Random Forests with Scikit-learn
	Random Forests for Classification
	Random Forests for Regression

	Stochastic Gradient Boosting (SGB)
	Tree Depth/Number of Trees
	Shrinkage
	Stochastic Gradient Boosting with Scikit-learn
	SGB for Classification
	SGB for Regression

	XGBoost (Extreme Gradient Boosting)
	XGBoost with Scikit-learn
	XGBoost for Classification
	XGBoost for Regression

	Chapter 24: More Supervised Machine Learning Techniques with Scikit-learn
	Feature Engineering
	Statistical Tests to Select the Best k Features Using the SelectKBest Module
	Recursive Feature Elimination (RFE)
	Feature Importances

	Resampling Methods
	k-Fold Cross-Validation
	Leave-One-Out Cross-Validation (LOOCV)

	Model Evaluation
	Regression Evaluation Metrics
	Classification Evaluation Metrics

	Pipelines: Streamlining Machine Learning Workflows
	Pipelines Using make_pipeline
	Pipelines Using FeatureUnion

	Model Tuning
	Grid Search
	Randomized Search

	Chapter 25: Clustering
	K-Means Clustering
	Considerations for Selecting K
	Considerations for Assigning the Initial K Points

	K-Means Clustering with Scikit-learn
	Hierarchical Clustering
	How Are Clusters Formed

	Hierarchical Clustering with the SciPy Package

	Chapter 26: Principal Component Analysis (PCA)
	How Are Principal Components Computed
	Dimensionality Reduction with PCA
	Key Considerations for Performing PCA
	PCA with Scikit-learn

	Part V: Introducing Deep Learning
	Chapter 27: What Is Deep Learning?
	The Representation Challenge
	Inspiration from the Brain

	Chapter 28: Neural Network Foundations
	The Architecture

	Chapter 29: Training a Neural Network
	Cost Function or Loss Function
	One-Hot Encoding
	The Backpropagation Algorithm
	Activation Functions
	Sigmoid
	Hyperbolic Tangent (tanh)
	Rectified Linear Unit (ReLU)
	Leaky ReLU
	Maxout

	Part VI: Deep Learning in Practice
	Chapter 30: TensorFlow 2.0 and Keras
	Navigating Through the TensorFlow API
	The Low-Level TensorFlow APIs
	The Mid-Level TensorFlow APIs
	Layers
	Datasets
	FeatureColumns

	The High-Level TensorFlow APIs
	Estimator API
	Keras API

	The Anatomy of a Keras Program
	TensorBoard
	Features in TensorFlow 2.0
	A Simple TensorFlow Program
	Building Efficient Input Pipelines with the Dataset API
	Linear Regression with TensorFlow
	Classification with TensorFlow
	Visualizing with TensorBoard
	Running TensorFlow with GPUs
	TensorFlow High-Level APIs: Using Estimators
	Neural Networks with Keras
	Using the Keras Sequential API
	Using the Keras Functional API
	Model Visualization with Keras
	TensorBoard with Keras
	Checkpointing to Select Best Models

	Chapter 31: The Multilayer Perceptron (MLP)
	The Concept of Hierarchies
	Choosing the Number of Hidden Layers: Bias/Variance Trade-Off
	Multilayer Perceptron (MLP) with Keras

	Chapter 32: Other Considerations for Training the Network
	Weight Initialization
	Batch Normalization
	Gradient Clipping

	Chapter 33: More on Optimization Techniques
	Momentum
	Variable Learning Rates
	Adaptive Learning Rates

	Chapter 34: Regularization for Deep Learning
	Dropout
	Data Augmentation
	Noise Injection
	Early Stopping

	Chapter 35: Convolutional Neural Networks (CNN)
	Local Receptive Fields of the Visual Cortex
	Advantages of CNN over MLP
	The Convolutional Layer
	Convolution
	Feature Maps

	The Pooling Layer
	The Fully Connected Network Layer

	An Example CNN Architecture
	CNN for Image Recognition with TensorFlow 2.0

	Chapter 36: Recurrent Neural Networks (RNNs)
	The Recurrent Neuron
	Unfolding the Recurrent Computational Graph
	Basic Recurrent Neural Network
	Recurrent Connection Schemes
	Sequence Mappings
	Training the Recurrent Network: Backpropagation Through Time
	The Long Short-Term Memory (LSTM) Network
	Peephole Connection
	Gated Recurrent Unit (GRU)
	Recurrent Neural Networks Applied to Sequence Problems
	Long-Term Recurrent Convolutional Network (LRCN)
	Encoder-Decoder LSTMs
	Bidirectional Recurrent Neural Networks

	RNN with TensorFlow 2.0: Univariate Timeseries
	RNN with TensorFlow 2.0: Multivariate Timeseries

	Chapter 37: Autoencoders
	Stacked Autoencoders
	Stacked Autoencoders with TensorFlow 2.0
	Denoising Autoencoders

	Part VII: Advanced Analytics/Machine Learning on Google Cloud Platform
	Chapter 38: Google BigQuery
	What BigQuery Is Not
	Getting Started with BigQuery
	Public Datasets

	Running Your First Query
	Loading Data into BigQuery
	Staging the Data in GCS
	Loading Data Using the BigQuery Web UI
	The bq Command-Line Utility
	Loading Data Using the Command-Line bq Utility

	BigQuery SQL
	Filtering
	Aggregation
	Joins
	Subselect
	The Case Against Running Select *

	Using BigQuery with Notebooks on AI Cloud Instance and Google Colab
	BigQueryML

	Chapter 39: Google Cloud Dataprep
	Getting Started with Cloud Dataprep
	Using Flows to Transform Data

	Chapter 40: Google Cloud Dataflow
	Beam Programming
	Building a Simple Data Processing Pipeline

	Chapter 41: Google Cloud Machine Learning Engine (Cloud MLE)
	The Cloud MLE Train/Deploy Process
	Preparing for Training and Serving on Cloud MLE
	Packaging the Code for Training on Cloud MLE
	The TensorFlow Model
	The Application Logic
	Training on Cloud MLE
	Running a Single Instance Training Job
	Running a Distributed Training Job
	Running a Distributed Training Job with Hyper-parameter Tuning
	hptuning_config.yaml File

	Execute Training Job with Hyper-parameter Tuning
	Making Predictions on Cloud MLE
	Run Batch Prediction
	Training with GPUs on Cloud MLE
	Scikit-learn on Cloud MLE
	Move the Data Files to GCS
	Prepare the Training Scripts
	Execute a Scikit-learn Training Job on Cloud MLE
	Create a Scikit-learn Prediction Service on Cloud MLE
	Make Online Predictions from the Scikit-learn Model

	Chapter 42: Google AutoML: Cloud Vision
	Enable AutoML Cloud Vision on GCP
	Preparing the Training Dataset
	Building Custom Image Models on Cloud AutoML Vision

	Chapter 43: Google AutoML: Cloud Natural Language Processing
	Enable AutoML NLP on GCP
	Preparing the Training Dataset
	Building a Custom Language Classification Model on Cloud AutoML NLP

	Chapter 44: Model to Predict the Critical Temperature of Superconductors
	The Modeling Architecture on GCP
	Stage Raw Data in GCS
	Load Data into BigQuery for Analytics
	Exploratory Data Analysis
	Spot Checking Machine Learning Algorithms
	Dataflow and TensorFlow Transform for Large-Scale Data Processing
	Training on Cloud MLE
	Deploy Trained Model
	Batch Prediction

	Part VIII: Productionalizing Machine Learning Solutions on GCP
	Chapter 45: Containers and Google Kubernetes Engine
	Docker
	Virtual Machines vs. Containers
	Working with Docker
	Build and Run a Simple Docker Container
	Build the Image
	Run the Container
	Important Docker Commands
	Commands for Managing Images
	Commands for Managing Containers
	Running a Docker Container

	Kubernetes
	Features of Kubernetes
	Components of Kubernetes
	Master Node(s)
	Worker Node(s)

	Writing a Kubernetes Deployment File
	Deploying Kubernetes on Google Kubernetes Engine
	Creating a GKE Cluster
	Delete the Kubernetes Cluster on GKE

	Chapter 46: Kubeflow and Kubeflow Pipelines
	The Efficiency Challenge
	Kubeflow
	Working with Kubeflow
	Download kfctl.sh
	Deploy Kubeflow

	Kubeflow Pipelines – Kubeflow for Poets
	Components of Kubeflow Pipelines
	Executing a Sample Pipeline

	Chapter 47: Deploying an End-to-End Machine Learning Solution on Kubeflow Pipelines
	Overview of a Simple End-to-End Solution Pipeline
	Create a Container Image for Each Component
	Build Containers Before Uploading to Kubeflow Pipelines
	Compile the Pipeline Using the Kubeflow Pipelines DSL Language
	Upload and Execute the Pipeline to Kubeflow Pipelines

	Index

