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Introduction

Machine learning and deep learning technologies have impacted the world in profound 

ways, from how we interact with technological products and with one another. These 

technologies are disrupting how we relate, how we work, and how we engage life in 

general. Today, and in the foreseeable future, intelligent machines increasingly form 

the core upon which sociocultural and socioeconomic relationships rest. We are indeed 

already in the "age of intelligence."

 What Are Machine Learning and Deep Learning?
Machine learning can be described as an assortment of tools and techniques for 

predicting or classifying a future event based on a set of interactions between variables 

(also referred to as features or attributes) in a particular dataset. Deep learning, on the 

other hand, extends a machine learning algorithm called neural network for learning 

complex tasks which are incredibly difficult for a computer to perform. Examples of 

these tasks may include recognizing faces and understanding languages in their varied 

contextual meanings.

 The Role of Big Data
A key ingredient that is critical to the rise and future improved performance of 

machine learning and deep learning is data. Since the turn of the twenty-first century, 

there has been a steady exponential increase in the amount of data generated and 

stored. The rise of humongous data is partly due to the emergence of the Internet and 

the miniaturization of processors that have spurned the "Internet of Things (IoT)" 

technologies. These vast amounts of data have made it possible to train the computer to 

learn complex tasks where an explicit instruction set is infeasible.
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 The Computing Challenge
The increase in data available for training learning models throws up another kind of 

problem, and that is the availability of computational or processing power. Empirically, 

as data increases, the performance of learning models also goes up. However, due to the 

increasingly enormous size of datasets today, it is inconceivable to train sophisticated, 

state-of-the-art learning models on commodity machines.

 Cloud Computing to the Rescue
Cloud is a term that is used to describe large sets of computers that are networked 

together in groups called data centers. These data centers are often distributed across 

multiple geographical locations. Big companies like Google, Microsoft, Amazon, and 

IBM own massive data centers where they manage computing infrastructure that is 

provisioned to the public (i.e., both enterprise and personal users) for use at a very 

reasonable cost.

Cloud technology/infrastructure is allowing individuals to leverage the computing 

resources of big business for machine learning/deep learning experimentation, design, 

and development. For example, by making use of cloud resources such as Google Cloud 

Platform (GCP), Amazon Web Services (AWS), or Microsoft Azure, we can run a suite 

of algorithms with multiple test grids for a fraction of time that it will take on a local 

machine.

 Enter Google Cloud Platform (GCP)
One of the big competitors in the cloud computing space is Google, with their cloud 

resource offering termed “Google Cloud Platform,” popularly referred to as GCP for 

short. Google is also one of the top technology leaders in the Internet space with a range 

of leading web products such as Gmail, YouTube, and Google Maps. These products 

generate, store, and process tons of terabytes of data each day from Internet users 

around the world.

To deal with this significant data, Google over the years has invested heavily 

in processing and storage infrastructure. As of today, Google boasts some of the 

most impressive data center design and technology in the world to support their 

InTroduCTIon
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computational demands and computing services. Through Google Cloud Platform, 

the public can leverage these powerful computational resources to design and develop 

cutting-edge machine learning and deep learning models.

 The Aim of This Book
The goal of this book is to equip the reader from the ground up with the essential 

principles and tools for building learning models. Machine learning and deep learning 

are rapidly evolving, and often it is overwhelming and confusing for a beginner to engage 

the field. Many have no clue where to start. This book is a one-stop shop that takes the 

beginner on a journey to understanding the theoretical foundations and the practical steps 

for leveraging machine learning and deep learning techniques on problems of interest.

 Book Organization
This book is divided into eight parts. Their breakdown is as follows:

• Part 1: Getting Started with Google Cloud Platform

• Part 2: Programming Foundations for Data Science

• Part 3: Introducing Machine Learning

• Part 4: Machine Learning in Practice

• Part 5: Introducing Deep Learning

• Part 6: Deep Learning in Practice

• Part 7: Advanced Analytics/Machine Learning on Google Cloud 

Platform

• Part 8: Productionalizing Machine Learning Solutions on GCP

It is best to go through the entire book in sequence. However, each part and its 

containing chapters are written in such a way that one can shop around and get out what is 

of primary interest. The code repository for this book is available at https://github.com/

Apress/building-ml-and-dl-models-on-gcp. The reader can follow through the examples 

in this book by cloning the repository to Google Colab or GCP Deep Learning VM.

InTroduCTIon
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CHAPTER 1

What Is Cloud 
Computing?
Cloud computing is the practice where computing services such as storage options, 

processing units, and networking capabilities are exposed for consumption by users over 

the Internet (the cloud). These services range from free to pay-as-you-use billing.

The central idea behind cloud computing is to make aggregated computational 

power available for large-scale consumption. By doing so, the microeconomics principle 

of economies of scale kicks into effect where cost per unit output is minimized with 

increasing scale of operations.

In a cloud computing environment, enterprises or individuals can take advantage 

of the same speed and power of aggregated high-performance computing services and 

only pay for what they use and relinquish these compute resources when they are no 

longer needed.

The concept of cloud computing had existed as time-sharing systems from the 

early years of the modern computer where jobs submitted from different users were 

scheduled to execute on a mainframe. The idea of time-sharing machines fizzled away 

at the advent of the PC. Now, with the rise of enterprise data centers managed by big IT 

companies such as Google, Microsoft, Amazon, IBM, and Oracle, the cloud computing 

notion has resurfaced with the added twist of multi-tenancy as opposed to time-sharing. 

This computing model is set to disrupt the way we work and utilize software systems and 

services.

In addition to storage, networking, and processing services, cloud computing 

provides offer other product solutions such as databases, artificial intelligence, and data 

analytics capabilities and serverless infrastructures.
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 Categories of Cloud Solutions
The cloud is a terminology that describes large sets of computers that are networked 

together in groups called data centers. These clustered machines can be interacted with 

via dashboards, command-line interfaces, REST APIs, and client libraries. Data centers 

are often distributed across multiple geographical locations. The size of data centers is 

over 100,000 sq. ft. (and those are the smaller sizes!). Cloud computing solutions can be 

broadly categorized into three, namely, the public, private, and hybrid cloud. Let’s briefly 

discuss them:

• Public cloud: Public clouds are the conventional cloud computing 

model, where cloud service providers make available their 

computing infrastructure and products for general use by other 

enterprises and individuals (see Figure 1-1). In public clouds, the 

cloud service provider is responsible for managing the hardware 

configuration and servicing.

Figure 1-1. The public cloud

Chapter 1  What Is Cloud ComputIng?
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• Private cloud: In a private cloud, an organization is solely responsible 

for the management and servicing of its computing infrastructure. 

The machines in a private cloud can be located on-premises, or it 

can be hosted with a cloud service provider but routed on a private 

network.

• Hybrid cloud: The hybrid cloud is a compromise between the cost 

and efficiency of a public cloud and the data sovereignty and in- 

house security assurances of the private cloud. Many companies 

and institutions opt for a hybrid cloud and multi-cloud by using 

technology solutions to facilitate easy porting and sharing of data and 

applications between on-premise and cloud-based infrastructures.

 Cloud Computing Models
Cloud computing is also categorized into three models of service delivery. They are 

illustrated as a pyramid as shown in Figure 1-2, where the layers of infrastructure 

abstraction increase as we approach the apex of the pyramid:

• Infrastructure as a Service (IaaS): This model is best suited for 

enterprises or individuals who want to manage the hardware 

infrastructure that hosts their data and applications. This level 

of fine-grained management requires the necessary system 

administration skills.

• Platform as a Service (PaaS): In the PaaS model, the hardware 

configuration is managed by the cloud service provider, as well as 

other system and development tools. This relieves the user to focus 

on the business logic for quick and easy deployment of application 

and database solutions. Another concept that comes up together 

with PaaS is the idea of Serverless, where the cloud service provider 

manages a scalable infrastructure that utilizes and relinquishes 

resources according to demand.

• Software as a Service (SaaS): The SaaS model is most recognizable 

by the general public, as a great deal of users interact with SaaS 

applications without knowing. The typical examples of SaaS 

Chapter 1  What Is Cloud ComputIng?
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applications are enterprise email suites such as Gmail, Outlook, and 

Yahoo! Mail. Others include storage platforms like Google Drive and 

Dropbox, photo software like Google Photos, and CRM e-suites like 

Salesforce and Oracle E-business Suite.

Figure 1-2. Models of cloud computing

In this chapter, we summarized the practice of cloud computing by explaining the 

different categories of cloud solutions and the models for service delivery over the cloud.

The next chapters in Part 1 will provide an introduction to Google Cloud Platform 

Infrastructure and Services and introduce JupyterLab Instances, and Google 

Colaboratory for prototyping machine learning models and doing data science and 

analytics tasks.

Chapter 1  What Is Cloud ComputIng?
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CHAPTER 2

An Overview of Google 
Cloud Platform Services
Google Cloud Platform offers a wide range of services for securing, storing, serving, 

and analyzing data. These cloud services form a secure cloud perimeter for data, where 

different operations and transformations can be carried out on the data without it ever 

leaving the cloud ecosystem.

The services offered by Google Cloud include compute, storage, big data/analytics, 

artificial intelligence (AI), and other networking, developer, and management services. 

Let’s briefly review some of the features of the Google Cloud ecosystem.

 Cloud Compute
Google Compute offers a range of products shown in Figure 2-1 for catering to a wide 

range of computational needs. The compute products consist of the Compute Engine 

(virtual computing instances for custom processing), App Engine (a cloud-managed 

platform for developing web, mobile, and IoT app), Kubernetes Engine (orchestration 

manager for custom docker containers based on Kubernetes), Container Registry 

(private container storage), Serverless Cloud Functions (cloud-based functions to 

connect or extend cloud services), and Cloud Run (managed compute platform that 

automatically scales your stateless containers).
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For our purposes of machine learning modeling, the cloud compute engine is what 

we will concentrate on. As later seen in Chapter 6, JupyterLab will provision a compute 

engine with all the relevant tools, packages, and frameworks for data analytics and 

modeling machine learning and deep learning solutions.

 Cloud Storage
Google Cloud Storage options provide scalable and real-time storage access to live and 

archival data within the cloud perimeter. Cloud storage as an example is set up to cater 

for any conceivable storage demand. Data stored on cloud storage is available anytime 

and from any location around the world. What’s more, this massive storage power comes 

at an almost negligible cost, taking into consideration the size and economic value of 

the stored data. Moreover, acknowledging the accessibility, security, and consistency 

provided by cloud storage, the cost is worth every penny.

The cloud storage products shown in Figure 2-2 include Cloud Storage (general- 

purpose storage platform), Cloud SQL (cloud-managed MySQL and PostgreSQL), Cloud 

Bigtable (NoSQL petabyte-sized storage), Cloud Spanner (scalable/high availability 

transactional storage), Cloud Datastore (transactional NoSQL database), and Persistent 

Disk (block storage for virtual machines).

Figure 2-1. Cloud compute services

Chapter 2  an Overview Of GOOGle ClOud platfOrm ServiCeS
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 Big Data and Analytics
Google Cloud Platform offers a range of serverless big data and analytics solutions for 

data warehousing, stream, and batch analytics, cloud-managed Hadoop ecosystems, 

cloud-based messaging systems, and data exploration. These services provide multiple 

perspectives to mining/generating real-time intelligence from big data.

Examples of big data services shown in Figure 2-3 include Cloud BigQuery 

(serverless analytics/data warehousing platform), Cloud Dataproc (fully managed 

Hadoop/Apache Spark infrastructure), Cloud Dataflow (Batch/Stream data 

transformation/processing), Cloud Dataprep (serverless infrastructure for cleaning 

unstructured/structured data for analytics), Cloud Datastudio (data visualization/report 

dashboards), Cloud Datalab (managed Jupyter notebook for machine learning/data 

analytics), and Cloud Pub/Sub (serverless messaging infrastructure).

Figure 2-2. Cloud storage products

Figure 2-3. Big data/analytics serverless platforms

Chapter 2  an Overview Of GOOGle ClOud platfOrm ServiCeS
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 Cloud Artificial Intelligence (AI)
Google Cloud AI offers cloud services for businesses and individuals to leverage pre- 

trained models for custom artificial intelligence tasks through the use of REST APIs. 

It also exposes services for developing custom models for domain use cases such as 

AutoML Vision for image classification and object detection tasks and AutoML tables to 

deploy AI models on structured data.

Google Cloud AI services in Figure 2-4 include Cloud AutoML (train custom 

machine learning models leveraging transfer learning), Cloud Machine Learning Engine 

(for large-scale distributed training and deployment of machine learning models), 

Cloud TPU (to quickly train large-scale models), Video Intelligence (train custom video 

models), Cloud Natural Language API (extract/analyze text from documents), Cloud 

Speech API (transcribe audio to text), Cloud Vision API (classification/segmentation of 

images), Cloud Translate API (translate from one language to another), and Cloud Video 

Intelligence API (extract metadata from video files).

Figure 2-4. Cloud AI services

This chapter provides a high-level overview of the products and services offered on 

Google Cloud Platform.

The next chapter will introduce the Google Cloud software development kit (SDK) 

for interacting with cloud resources from the command line on the local machine 

and the cloud command-line interface (CLI) for doing the same via the cloud console 

interface on GCP.

Chapter 2  an Overview Of GOOGle ClOud platfOrm ServiCeS
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CHAPTER 3

The Google Cloud SDK 
and Web CLI
GCP provides a command-line interface (CLI) for interacting with cloud products and 

services. GCP resources can be accessed via the web-based CLI on GCP or by installing 

the Google Cloud software development kit (SDK) on your local machine to interact with 

GCP via the local command-line terminal.

GCP contains shell commands for a wide range of GCP products such as the 

Compute Engine, Cloud Storage, Cloud ML Engine, BigQuery, and Datalab, to mention 

just a few. Major tools of the Cloud SDK include

• gcloud tool: Responsible for cloud authentication, configuration, and 

other interactions on GCP

• gsutil tool: Responsible for interacting with Google Cloud Storage 

buckets and objects

• bq tool: Used for interacting and managing Google BigQuery via the 

command line

• kubectl tool: Used for managing Kubernetes container clusters on GCP

The Google Cloud SDK also installs client libraries for developers to 

programmatically interact with GCP products and services through APIs.1 As of this time 

of writing, the Go, Java, Node.js, Python, Ruby, PHP, and C# languages are covered. Many 

more are expected to be added to this list.

This chapter works through setting up an account on GCP, installing the Google 

Cloud SDK, and then exploring GCP commands using the CLI.

1 APIs stands for application programming interfaces, which are packages and tools used in 
building software applications.
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 Setting Up an Account on Google Cloud Platform
This section shows how to set up an account on Google Cloud Platform. A GCP account 

gives access to all of the platform’s products and services. For a new account, a $300 

credit is awarded to be spent over a period of 12 months. This offer is great as it gives 

ample time to explore the different features and services of Google’s cloud offering.

Note that a valid credit card is required to register an account to validate that it is an 

authentic user, as opposed to a robot. However, the credit card won’t be charged after 

the trial ends, except Google is authorized to do so:

 1. Go to https://cloud.google.com/ to open an account (see 

Figure 3-1).

Figure 3-1. Google Cloud Platform login page

 2. Fill in the necessary identity, address, and credit card details.

 3. Wait a moment while an account is created on the platform (see 

Figure 3-2).
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 4. After account creation, we’re presented with the Welcome to GCP 

page (see Figure 3- 3).

Figure 3-2. Creating account

Figure 3-3. Welcome to GCP
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 5. Click the icon of three lines in the top-left corner of the page 

(marked with a circle in Figure 3-3), then click Home (marked 

with a rectangle in Figure 3-3) to open the Google Cloud Platform 

dashboard (Figure 3-4).

Figure 3-4. GCP dashboard

The Cloud dashboard provides a bird’s-eye summary of the project such as the 

current billing rate and other resource usage statistics. The activity tab to the right gives 

a breakdown of the resource actions performed on the account. This feature is useful 

when building an audit trail of events.

 GCP Resources: Projects
All the services and features of the Google Cloud Platform are called resources. These 

resources are arranged in a hierarchical order, with the top level being the project. 

The project is like a container that houses all GCP resources. Billing on an account is 

attached to a project. Multiple projects can be created for an account. A project must be 

created before working with GCP.
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To view the projects in the account in Figure 3-5, click the scope picker in the cloud 
console (marked with an oval in Figure 3-6).

Figure 3-5. Select projects

Figure 3-6. Scope picker to select projects
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 Accessing Cloud Platform Services
To access the resources on the cloud platform, click the triple dash in the top-right 

corner of the window. Grouped service offerings are used to organize the resources. For 

example, in Figure 3-7, we can see the products under STORAGE: Bigtable, Datastore, 

Storage, SQL, and Spanner.

Figure 3-7. Google Cloud Platform services

 Account Users and Permissions
GCP allows you to define security roles and permissions for every resource in a  

specific project. This feature is particularly useful when a project scales beyond one  

user. New roles and permissions are created for a user through the IAM & admin tab  

(see Figures 3- 8 and 3-9).
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 The Cloud Shell
The Cloud Shell is a vital component for working with GCP resources. Cloud Shell 

provisions an ephemeral virtual machine with command-line tools installed for 

interacting with GCP resources. It gives the user cloud-based command-line access to 

manipulate resources directly from within the GCP perimeter without installing the 

Google Cloud SDK on a local machine.

The Cloud Shell is accessed by clicking the prompt icon in the top-left corner of the 

window. See Figures 3-9, 3-10, and 3-11.

Figure 3-8. Open IAM & admin

Figure 3-9. Activate Cloud Shell
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Figure 3-10. Start Cloud Shell

Figure 3-11. Cloud Shell interface
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 Google Cloud SDK
The Google Cloud SDK installs command-line tools for interacting with cloud resources 

from the terminal on the local machine:

 1. Go to https://cloud.google.com/sdk/ to download and install the 

appropriate Cloud SDK for your machine type (see Figure 3-12).

Figure 3-12. Download Google Cloud SDK

 2. Follow the instructions for the operating system (OS) type to 

install the Google Cloud SDK. The installation installs the default 

Cloud SDK components.

 3. Open the terminal application of your OS and run the command 

‘gcloud init’ to begin authorization and configuration of the Cloud 

SDK.

gcloud init

Welcome! This command will take you through the configuration  

of gcloud.

Pick configuration to use:

 [1] Create a new configuration

Please enter your numeric choice:  1
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 4. Select the name for your configuration. Here, it is set to the name 

‘your- email- id’.

Enter configuration name. Names start with a lower case letter and

contain only lower case letters a-z, digits 0-9, and hyphens '-': 

 your- email- id

Your current configuration has been set to: [your-email-id]

 5. Select the Google account to use for the configuration. The browser 

will open to log in to the selected account (see Figures 3-13, 3-14, 

and 3-15). However, if a purely terminal initialization is desired, the 

user can run ‘gcloud init --console-only’.

Choose the account you would like to use to perform operations for

this configuration:

 [1] Log in with a new account

Please enter your numeric choice:  1

Your browser has been opened to visit:

https://accounts.google.com/o/oauth2/auth?redirect_

uri=......=offline

Figure 3-13. Select Google account to authorize for Cloud SDK configuration
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Figure 3-14. Authenticate Cloud SDK to access Google account
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 6. Select the cloud project to use after the browser-based 

authentication in a Google account.

You are logged in as: [your-email-id@gmail.com].

Pick cloud project to use:

 [1] secret-country-192905

 [2] Create a new project

Please enter numeric choice or text value (must exactly match list

item): 1

Your current project has been set to: [secret-country-192905].

Your Google Cloud SDK is configured and ready to use!

* Commands that require authentication will use your-email-id@

gmail.com by default

* Commands will reference project `secret-country-192905` by 

default

Figure 3-15. Confirmation page for Cloud SDK authentication
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Run `gcloud help config` to learn how to change individual 

settings

This gcloud configuration is called [your-configuration-name].  

You can create additional configurations if you work with multiple 

accounts and/or projects.

Run `gcloud topic configurations` to learn more.

Some things to try next:

* Run `gcloud --help` to see the Cloud Platform services you can 

interact with. And run `gcloud help COMMAND` to get help on any 

gcloud command.

* Run `gcloud topic -h` to learn about advanced features of the 

SDK like arg files and output formatting

The Google Cloud SDK is now configured and ready to use. The following are a few 

terminal commands for managing ‘gcloud’ configurations:

• ‘gcloud auth list’: Shows accounts with GCP credentials and indicates 

which account configuration is currently active.

gcloud auth list

                      Credentialed Accounts

ACTIVE  ACCOUNT

*       your-email-id@gmail.com

To set the active account, run:

    $ gcloud config set account `ACCOUNT`

• ‘gcloud config configurations list’: List existing Cloud SDK 

configurations.

gcloud config configurations list

NAME  IS_ACTIVE  ACCOUNT  PROJECT  DEFAULT_ZONE  DEFAULT_REGION

your-email-id  True  your-email-id@gmail.com     secret-

country-192905
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• ‘gcloud config configurations activate [CONFIGURATION_NAME]’: 

Use this command to activate a configuration.

gcloud config configurations activate your-email-id

Activated [your-email-id].

• ‘gcloud config configurations create [CONFIGURATION_NAME]’: 

Use this command to create a new configuration.

This chapter covers how to set up command-line access for interacting with GCP 

resources. This includes working with the web-based Cloud Shell and installing the 

Cloud SDK to access GCP resources via the terminal on the local machine.

In the next chapter, we’ll introduce Google Cloud Storage (GCS) for storing 

ubiquitous data assets on GCP.
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CHAPTER 4

Google Cloud Storage 
(GCS)
Google Cloud Storage is a product for storing a wide range of diverse data objects. 

Cloud storage may be used to store both live and archival data. It has guarantees of 

scalability (can store increasingly large data objects), consistency (the most updated 

version is served on request), durability (data is redundantly placed in separate 

geographic locations to eliminate loss), and high availability (data is always available and 

accessible).

Let’s take a brief tour through creating and deleting a storage bucket, as well as 

uploading and deleting files from a cloud storage bucket.

 Create a Bucket
A bucket, as the name implies, is a container for storing data objects on GCP. A bucket is 

the base organizational structure on Cloud Storage. It is similar to the topmost directory 

on a file system. Buckets may have a hierarchy of sub-folders containing data assets.

To create a bucket,

 1. Click ‘Create bucket’ on the cloud storage dashboard as shown in 

Figure 4-1.

 2. Give the bucket a unique name (see Figure 4-2). Buckets in 

GCP must have a global unique name. That is to say, no two 

storage buckets on Google Cloud can have the same name. A 

common naming convention for buckets is to prefix with your 

organization’s domain name.
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 3. Select a storage class. A multi-region storage class is for buckets 

frequently accessed all over the world, whereas the cold-line 

storage is more or less for storing backup files. For now, the default 

selection is okay.

 4. Click ‘Create’ to set up a bucket on Google Cloud Storage.

Figure 4-1. Cloud Storage Console
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 Uploading Data to a Bucket
Individual files or folders can be uploaded into a bucket on GCS. As an example, let’s 

upload a file from the local machine.

To upload a file to a cloud storage bucket on GCP,

 1. Click ‘UPLOAD FILES’ within the red highlight in Figure 4-3.

 2. Select the file from the file upload window, and click ‘Open’ as 

shown in Figure 4-4.

 3. Upon upload completion, the file is uploaded as an object in GCS 

bucket (see Figure 4-5).

Figure 4-2. Create a bucket
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Figure 4-3. An empty bucket

Figure 4-4. Upload an object
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Figure 4-5. Upload successful
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 Free Up Storage Resource
To delete a bucket or free up a storage resource to prevent billing on a resource that is not 

used, click the checkbox beside the bucket in question, and click ‘DELETE’ to remove 

the bucket and its contents. This action is not recoverable. See Figures 4-7 and 4-8.

Figure 4-6. Delete a file

 Delete Objects from a Bucket
Click the checkbox beside the file and click ‘DELETE’ as shown in Figure 4-6 to delete an 

object from a bucket.
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Figure 4-7. Select bucket to delete

Figure 4-8. Delete bucket
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 Working with GCS from the Command Line
In this section, we’ll carry out similar commands for creating and deleting buckets and 

objects on GCS from the command-line interface.

• Creating a bucket: To create a bucket, execute the command

gsutil mb gs://[BUCKET_NAME]

As an example, we’ll create a bucket titled ‘hwosa_09_docs’.

gsutil mb gs://hwosa_09_docs

Creating gs://hwosa_09_docs/...

List buckets on GCP project.

gsutil ls

gs://hwosa_09_docs/

gs://my-first-bucket-ieee-carleton/

• Uploading objects to cloud bucket: To transfer objects from a local 

directory to the cloud bucket, execute the command

gsutil cp -r [LOCAL_DIR] gs://[DESTINATION BUCKET]

Copy an image file from the desktop to a bucket on GCP.

gsutil cp -r /Users/ekababisong/Desktop/Howad.jpeg  

gs://hwosa_09_docs/

Copying file:///Users/ekababisong/Desktop/Howad.jpeg  

[Content-Type=image/jpeg]...

- [1 files][ 49.8 KiB/ 49.8 KiB]

Operation completed over 1 objects/49.8 KiB.

List objects in bucket.

gsutil ls gs://hwosa_09_docs

gs://hwosa_09_docs/Howad.jpeg
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• Deleting objects from the cloud bucket: To delete a specific file from 

the bucket, execute

gsutil rm -r gs://[SOURCE_BUCKET]/[FILE_NAME]

To delete all files from the bucket, execute

gsutil rm -a gs://[SOURCE_BUCKET]/**

As an example, let’s delete the image file in the bucket ‘gs://hwosa_09_docs’.

gsutil rm -r gs://hwosa_09_docs/Howad.jpeg

Removing gs://hwosa_09_docs/Howad.jpeg#1537539161893501...

/ [1 objects]

Operation completed over 1 objects.

• Deleting a bucket: When a bucket is deleted, all the files within that 

bucket are also deleted. This action is irreversible. To delete a bucket, 

execute the command

gsutil rm -r gs://[SOURCE_BUCKET]/

Delete the bucket ‘gs://hwosa_09_docs’

gsutil rm -r gs://hwosa_09_docs/

Removing gs://hwosa_09_docs/...

This chapter works through uploading and deleting data from Google Cloud Storage 

using the Cloud GUI console and command-line tools.

In the next chapter, we will introduce Google Compute Engines, which are virtual 

machines running on Google’s distributed data centers and are connected via state-of- 

the-art fiber optic network. These machines are provisioned to lower the cost and speed 

up the processing of computing workloads.

Chapter 4  GooGle Cloud StoraGe (GCS)



35
© Ekaba Bisong 2019 
E. Bisong, Building Machine Learning and Deep Learning Models on Google Cloud Platform,  
https://doi.org/10.1007/978-1-4842-4470-8_5

CHAPTER 5

Google Compute Engine 
(GCE)
Google Compute Engine (GCE) makes available to users virtual machines (VMs) that are 

running on Google’s data centers around the world. These machines take advantage of 

Google’s state-of-the-art fiber optic powered network capabilities to offer fast and high- 

performance machines that can scale based on usage and automatically deal with issues 

of load balancing.

GCE provides a variety of pre-defined machine types for use out of the box; also it 

has the option to create custom machines that are tailored to the specific needs of the 

user. Another major feature of GCE is the ability to use computing resources that are 

currently idle on Google infrastructure for a short period of time to enhance or speed up 

the processing capabilities of batch jobs or fault-tolerant workloads. These machines are 

called preemptible VMs and come at a huge cost-benefit to the user as they are about 

80% cheaper than regular machines.

Again one of the major benefits of GCEs is that the user only pays for the time 

the machines are actually in operation. Also, when the machines are used for a long 

uninterrupted period of time, discounts are accrued to the prices.

In this chapter, we will go through a simple example of provisioning and tearing 

down a Linux machine on the cloud. The examples will cover using the Google Cloud 

web interface and the command-line interface for creating VMs on GCP.

 Provisioning a VM Instance
To deploy a VM instance, click the triple dash in the top-left corner of the web page to 

pull out the GCP resources drawer. In the group named ‘COMPUTE’, click the arrow 

beside ‘Compute Engine’ and select ‘VM instances’ as shown in Figure 5-1.
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Click ‘Create’ to begin the process of deploying a VM instance (see Figure 5-2).

Figure 5-1. Select VM instances
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Figure 5-2. Begin process of deploying a VM instance
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The labeled numbers in Figure 5-3 are explained here:

 1. Choose the instance name. This name must start with a lowercase 

letter and can include numbers or hyphens, but should not end 

with a hyphen.

 2. Select the instance region and zone. This is the geographical 

region where your computing instance is located, while the zone 

is a location within a region.

 3. Select the machine type. This allows for customization of the 

cores, memory, and GPUs for the VM (see Figure 5-4).

Figure 5-3. Options for creating an instance
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 4. Select the boot disk. This option selects a disk to boot from. This 

disk could be created from an OS image, an application image, a 

custom image, or a snapshot of an image (see Figure 5-5).

Figure 5-4. Select machine type
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 5. Select ‘Allow HTTP traffic’ to allow network traffic from the 

Internet as shown in Figure 5-6.

Figure 5-5. Select boot disk
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 6. Click ‘Create’ in Figure 5-6 to deploy the VM instance.

 Connecting to the VM Instance
In the VM instances page that lists the created VMs, click ‘SSH’ beside the created 

instance as shown in Figure 5-7. This launches a new window with terminal access to the 

created VM as shown in Figures 5-8 and 5-9.

Figure 5-6. Allow network traffic to VM
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Figure 5-7. SSH into VM instances
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Figure 5-8. Connecting to VM instances via SSH
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 Tearing Down the Instance
It is good practice to delete compute instances that are no longer in use to save cost for 

utilizing GCP resources. To delete a compute instance, on the ‘VM instances’ page, select 

the instance for deletion and click ‘DELETE’ (in red) as shown in Figure 5-10.

Figure 5-9. Terminal window access to the instance
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 Working with GCE from the Command Line
In this section, we’ll sample the commands for creating and deleting a compute instance 

on GCP using the command-line interface. To create a compute instance using ‘gcloud’ 

from the command-line interface, there are a variety of options that can be added to the 

commands for different specifications of the machine. To learn more about a command, 

attach ‘help’ after the command:

• Provisioning a VM instance: To create a VM instance, use the code 

syntax

gcloud compute instances create [INSTANCE_NAME]

For example, let’s create an instance named ‘ebisong-howad-instance’

gcloud compute instances create ebisong-howad-instance

Figure 5-10. Delete the VM instance
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Created [https://www.googleapis.com/compute/v1/projects/secret- 

country- 192905/zones/us-east1-b/instances/ebisong-howad-instance].

NAME                       ZONE        MACHINE_TYPE   PREEMPTIBLE   

INTERNAL_IP  EXTERNAL_IP   STATUS

ebisong-howad-instance  us-east1-b  n1-standard-1               

10.142.0.2   35.196.17.39  RUNNING

To learn more of the options that can be included with the ‘gcloud instance 

create’ command, run

gcloud compute instances create –help

NAME

     gcloud compute instances create - create Google Compute Engine 

virtual

        machine instances

SYNOPSIS

     gcloud compute instances create INSTANCE_NAMES [INSTANCE_ 

NAMES ...]

        [--accelerator=[count=COUNT],[type=TYPE]] [--async]

        [--no-boot-disk-auto-delete]

        [--boot-disk-device-name=BOOT_DISK_DEVICE_NAME]

        [-- boot-disk-size=BOOT_DISK_SIZE] [--boot-disk-type=BOOT_

DISK_TYPE]

        [--can-ip-forward] [--create-disk=[PROPERTY=VALUE,...]]

        [--csek-key-file=FILE] [--deletion-protection]

        [--description=DESCRIPTION]

        [--disk=[auto-delete=AUTO-DELETE],

           [boot=BOOT],[device-name=DEVICE-NAME],[mode=MODE], 

[name=NAME]]

        [--labels=[KEY=VALUE,...]]

         [--local-ssd=[device-name=DEVICE-NAME],[interface=INTERFACE]]

        [-- machine-type=MACHINE_TYPE] [--maintenance-

policy=MAINTENANCE_POLICY]

        [--metadata=KEY=VALUE,[KEY=VALUE,...]]

        [--metadata-from-file=KEY=LOCAL_FILE_PATH,[...]]
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        [--min-cpu-platform=PLATFORM] [--network=NETWORK]

        [--network-interface=[PROPERTY=VALUE,...]]

        [--network-tier=NETWORK_TIER] [--preemptible]

        [--private-network-ip=PRIVATE_NETWORK_IP]

:

To exit from the help page, type ‘q’ and then press the ‘Enter’ key on the 

keyboard.

To list the created instances, run

gcloud compute instances list

NAME                       ZONE        MACHINE_TYPE   PREEMPTIBLE   

INTERNAL_IP  EXTERNAL_IP   STATUS

ebisong-howad-instance  us-east1-b  n1-standard-1               

10.142.0.2   35.196.17.39  RUNNING

• Connecting to the instance: To connect to a created VM instance 

using SSH, run the command

gcloud compute ssh [INSTANCE_NAME]

For example, to connect to the ‘ebisong-howad-instance’ VM, run the 

command

gcloud compute ssh ebisong-howad-instance

Warning: Permanently added 'compute.8493256679990250176' (ECDSA) 

to the list of known hosts.

Linux ebisong-howad-instance 4.9.0-8-amd64 #1 SMP Debian 

4.9.110-3+deb9u4 (2018-08-21) x86_64

The programs included with the Debian GNU/Linux system are free 

software;

the exact distribution terms for each program are described in the

individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent

permitted by applicable law.

ekababisong@ebisong-howad-instance:~$
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• To leave the instance on the terminal, type ‘exit’ and then press the 

‘Enter’ key on the keyboard.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent

permitted by applicable law.

ekababisong@ebisong-howad-instance:~$ exit

logout

Connection to 35.196.17.39 closed.

• Tearing down the instance: To delete an instance, run the command

gcloud compute instances delete [INSTANCE_NAME]

Using our example, to delete the ‘ebisong-howad-instance’ VM, run the 

command

gcloud compute instances delete ebisong-howad-instance

The following instances will be deleted. Any attached disks 

configured to be auto-deleted will be deleted unless they are 

attached to any other instances or the `--keep-disks` flag 

is given and specifies them for keeping. Deleting a disk is 

irreversible and any data on the disk will be lost.

 - [ebisong-howad-instance] in [us-east1-b]

Do you want to continue (Y/n)?  Y

Deleted  [https://www.googleapis.com/compute/v1/projects/secret- 

country- 192905/zones/us-east1-b/instances/ebisong-howad-instance].

This chapter went through the step for launching a compute machine instance on 

GCP. It covered working with the web-based cloud console and using commands via the 

shell terminal.

In the next chapter, we’ll discuss how to launch a Jupyter notebook instance on GCP 

called JupyterLab. A notebook provides an interactive environment for analytics, data 

science, and prototyping machine learning models.
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CHAPTER 6

JupyterLab Notebooks
Google deep learning virtual machines (VMs) are a part of GCP AI Platform. It provisions 

a Compute Engine instance that comes pre-configured with the relevant software 

packages for carrying out analytics and modeling tasks. It also makes available high- 

performance computing TPU and GPU processing capabilities at a single click. These 

VMs expose a JupyterLab notebook environment for analyzing data and designing 

machine learning models.

In this chapter, we’ll launch a JupyterLab notebook instance using the web-based 

console and the command line.

 Provisioning a Notebook Instance
The following steps provide a walk-through for deploying a Notebook instance on a deep 

learning VM:

 1. In the group named ‘ARTIFICIAL INTELLIGENCE’ on the GCP 

resources drawer, click the arrow beside ‘AI Platform’ and select 

‘Notebooks’ as shown in Figure 6-1.
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 2. Click ‘NEW INSTANCE’ to initiate a notebook instance as shown 

in Figure 6-2; there is an option to customize your instance or 

to use one of the pre-configured instances with TensorFlow, 

PyTorch, or RAPIDS XGBoost installed.

Figure 6-1. Open Notebooks on GCP AI Platform

Figure 6-2. Start a new Notebook instance

Chapter 6  JupyterLab Notebooks



51

 3. For this example, we will create a Notebook instance pre-

configured with TensorFlow 2.0 (see Figure 6-3).

 4. Click ‘OPEN JUPYTERLAB’ to launch the JupyterLab notebook 

instance in a new window (see Figure 6-4).

Figure 6-3. Start a new Notebook instance

Figure 6-4. Open JupyterLab
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 5. From the JupyterLab Launcher in Figure 6-5, options exist to open 

a Python notebook, a Python interactive shell, a bash terminal, 

a text file, or a Tensorboard dashboard (more on Tensorboard in 

Part 6).

 6. Open a Python 3 Notebook (see Figure 6-6). We’ll work with 

Python notebooks in later chapters to carry out data science tasks.

Figure 6-5. JupyterLab Launcher
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 Shut Down/Delete a Notebook Instance
The following steps provide a walk-through for shutting down and deleting a Notebook 

instance:

 1. From the ‘Notebook instances’ dashboard, click ‘STOP’ to shut 

down the instance when not in use so as to save compute costs on 

GCP (see Figure 6-7).

Figure 6-6. Python 3 Notebook

Figure 6-7. Stop Notebook instance
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 2. When the instance is no longer needed, click ‘DELETE’ to 

permanently remove the instance. Note that this option is non-

recoverable (see Figure 6-8).

 Starting a Notebook Instance from the Command 
Line
In this section, we’ll examine how the command line is used to launch and shut down a 

pre-configured deep learning VM integrated with JupyterLab.

Create a Datalab instance: To create a Notebook instance, execute the code

export IMAGE_FAMILY="tf-latest-cpu-experimental"

export ZONE="us-west1-b"

export INSTANCE_NAME="my-instance"

Figure 6-8. Delete a Notebook instance
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gcloud compute instances create $INSTANCE_NAME \

  --zone=$ZONE \

  --image-family=$IMAGE_FAMILY \

  --image-project=deeplearning-platform-release

where

• --image-family can be any of the available images supported by 

Google Deep Learning VM; "tf-latest-cpu-experimental" 

launches an image with TensorFlow 2.0 pre-configured.

• --image-project must be set to deeplearning-platform-release

Here’s the output when the instance is created:

Created  [https://www.googleapis.com/compute/v1/projects/ekabasandbox/zones/

us-west1-b/instances/my-instance].

NAME         ZONE        MACHINE_TYPE   PREEMPTIBLE  INTERNAL_IP   

EXTERNAL_IP   STATUS

my-instance  us-west1-b  n1-standard-1               10.138.0.6   

34.83.90.154  RUNNING

Connect to the instance: To connect to JupyterLab running on the instance, run the 

command

export INSTANCE_NAME="my-instance"

gcloud compute ssh $INSTANCE_NAME -- -L 8080:localhost:8080

Then on your local machine, visit http://localhost:8080 in your browser  

(see Figure 6-9).
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Stop the instance: To stop the instance, run the following command from your local 

terminal (not on the instance):

gcloud compute instances stop $INSTANCE_NAME

Stopping instance(s) my-instance...done.

Updated [https://www.googleapis.com/compute/v1/projects/ekabasandbox/zones/

us-west1-b/instances/my-instance].

Delete the instance: The Notebook instance is basically a Google Compute Engine. 

Hence, the instance is deleted the same way a Compute Engine VM is deleted.

gcloud compute instances delete $INSTANCE_NAME

The following instances will be deleted. Any attached disks configured

 to be auto-deleted will be deleted unless they are attached to any

other instances or the `--keep-disks` flag is given and specifies them

 for keeping. Deleting a disk is irreversible and any data on the disk

 will be lost.

 - [my-instance] in [us-west1-b]

Figure 6-9. JupyterLab instance launched from terminal
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Do you want to continue (Y/n)?  Y

Deleted [https://www.googleapis.com/compute/v1/projects/ekabasandbox/zones/

us-west1-b/instances/my-instance].

This chapter introduces Jupyter notebooks running on Google Deep Learning VMs 

for interactive programming of data science tasks and prototyping deep learning and 

machine learning models.

In the next chapter, we will introduce another product for programming and rapid 

prototyping of learning models called Google Colaboratory.

Chapter 6  JupyterLab Notebooks
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CHAPTER 7

Google Colaboratory
Google Colaboratory more commonly referred to as “Google Colab” or just simply 

“Colab” is a research project for prototyping machine learning models on powerful 

hardware options such as GPUs and TPUs. It provides a serverless Jupyter notebook 

environment for interactive development. Google Colab is free to use like other G Suite 

products.

 Starting Out with Colab
The following steps provide a walk-through for launching a Notebook on Google Colab:

 1. Go to https://colab.research.google.com/ and log in using 

your existing Google account to access the Colab homepage  

(see Figure 7-1).

https://colab.research.google.com/
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 2. Open a Python 3 Notebook (see Figure 7-2).

Figure 7-1. Google Colab homepage

Figure 7-2. Python 3 Notebook
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 Change Runtime Settings
The following steps provide a walk-through for changing the Notebook runtime settings:

 1. Go to Runtime ➤ Change runtime type (see Figure 7-3).

Figure 7-3. Python 3 Notebook
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 Storing Notebooks
Notebooks on Colab are stored on Google Drive. They can also be saved to GitHub or 

published as a GitHub Gist. They can also be downloaded to the local machine.

Figure 7-5 highlights the options for storing Jupyter notebooks running on Google 

Colab.

Figure 7-4. Change runtime

 2. Here, the options exist to change the Python runtime and 

hardware accelerator to a GPU or TPU (see Figure 7-4).
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Figure 7-5. Storing Notebooks
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This chapter introduces Google Colaboratory as an alternative platform to quickly 

spin up a high-performance computing infrastructure running Jupyter notebooks for 

rapid data science and data modeling tasks.

This is the last chapter in Part 1 on “Getting Started with Google Cloud Platform.” In 

Part 2, containing Chapters 8–12, we will go over the fundamentals of “Programming for 

Data Science.” The code samples in the ensuing chapters can be executed either using 

Jupyter notebooks running on Google Deep Learning VMs or running on Google Colab.

The advantage of working with Google Colab is that you do not need to log into 

the Google Cloud Console and it is free to use. When security and privacy are not a 

premium, Google Colab is a good option for modeling as it saves computing cost as far 

as data science and machine learning prototyping is concerned.

Figure 7-6. Opening Notebooks

 Uploading Notebooks
Notebooks can be uploaded from Google Drive, GitHub, or the local machine (see 

Figure 7-6).

Chapter 7  GooGle Colaboratory



PART II

Programming 
Foundations for Data 
Science



67
© Ekaba Bisong 2019 
E. Bisong, Building Machine Learning and Deep Learning Models on Google Cloud Platform,  
https://doi.org/10.1007/978-1-4842-4470-8_8

CHAPTER 8

What Is Data Science?
Data science encompasses the tools and techniques for extracting information from 

data. Data science techniques draw extensively from the field of mathematics, statistics, 

and computation. However, data science is now encapsulated into software packages 

and libraries, thus making them easily accessible and consumable by the software 

development and engineering communities. This is a major factor to the rise of 

intelligence capabilities now integrated as a major staple in software products across all 

sorts of domains.

This chapter will discuss broadly on the opportunities for data science and big 

data analytics integration as part of the transformation portfolio of businesses and 

institutions and give an overview on the data science process as a reusable template for 

fulfilling data science projects.

 The Challenge of Big Data
Due to the expansion of data at the turn of the twenty-first century epitomized by the 

so-called 3Vs of big data, which are volume, velocity, and variety. Volume refers to the 

increasing size of data, velocity the speed at which data is acquired, and variety the 

diverse types of data that are available. For others, this becomes 5Vs with the inclusion 

of value and veracity to mean the usefulness of data and the truthfulness of data, 

respectively. We have observed data volume blowout from the megabyte (MB) to the 

terabyte (TB) scale and now exploding past the petabyte (PB). We have to find new  

and improved means of storing and processing this ever-increasing dataset. Initially,  

this challenge of storage and data processing was addressed by the Hadoop ecosystem 

and other supporting frameworks, but even these have become expensive to manage 

and scale, and this is why there is a pivot to cloud-managed, elastic, secure, and  

high- availability data storage and processing capabilities.
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On the other hand, for most applications and business use cases, there is a need to 

carry out real-time analysis on data due to the vast amount of data created and available 

at a given moment. Previously, getting insights from data and unlocking value had 

been down to traditional analysis on batch data workloads using statistical tools such 

as Excel, Minitab, or SPSS. But in the era of big data, this is changing, as more and more 

businesses and institutions want to understand the information in their data at a real- 

time or at worst near real-time pace.

Another vertical to the big data conundrum is that of variety. Formerly, a pre-defined  

structure had to be imposed on data in order to easily store them as well as make it 

easy for data analysis. However, a wide diversity of datasets are now collected and 

stored such as spatial maps, image data, video data, audio data, text data from emails 

and other documents, and sensor data. As a matter of fact, a far larger amount of 

datasets in the wild are unstructured. This led to the development of unstructured 

or semi-structured databases such as Elasticsearch, Solr, HBase, Cassandra, and 

MongoDB, to mention just a few.

 The Data Science Opportunity
In the new age, where data has inevitably and irreversibly become the new gold, the 

greatest needs of organizations are the skills required for data governance and analytics 

to unlock intelligence and value from data as well as the expertise to develop and 

productionize enterprise data products. This has led to new roles within the data science 

umbrella such as

• Data analysts/scientist who specialize in mining intelligence 

from data using statistical techniques and computational tools by 

understanding the business use case

• Data engineers/architects who specialize in architecting and 

managing the infrastructure for efficient big data pipelines by 

ensuring that the data platform is redundant, scalable, secure, and 

highly available

• Machine learning engineers who specialize in designing and 

developing machine learning algorithms as well as incorporating 

them into production systems for online or batch prediction services

Chapter 8  What Is Data sCIenCe?
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 The Data Science Process
The data science process involves components for data ingestion and serving of data 

models. However, we will discuss briefly on the steps for carrying out data analytics in 

lieu of data prediction modeling.

These steps consist of

 1. Data summaries: The vital statistical summaries of the datasets’ 

variables or features. This includes information such as the 

number of variables, their data types, the number of observations, 

and the count/percentage of missing data.

 2. Data visualization: This involves employing univariate and 

multivariate data visualization methods to get a better intuition 

on the properties of the data variables and their relationship with 

each other. This includes metrics such as histograms, box and 

whisker plots, and correlation plots.

 3. Data cleaning/preprocessing: This process involves sanitizing the 

data to make it amenable for modeling. Data rarely comes clean 

with each row representing an observation and each column an 

entity. In this phase of a data science effort, the tasks involved 

may include removing duplicate entries, choosing a strategy for 

dealing with missing data, as well as converting  

data features into numeric data types of encoded categories.  

This phase may also involve carrying out statistical transformation 

on the data features to normalize and/or standardize the data 

elements. Data features of wildly differing scales can lead to poor 

model results as they become more difficult for the learning 

algorithm to converge to the global minimum.

 4. Feature engineering: This practice involves systematically pruning 

the data feature space to only select those features relevant to the 

modeling problem as part of the model task.  

Good feature engineering is often the difference between an 

average and high performant model.
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 5. Data modeling and evaluation: This phase involves passing the 

data through a learning algorithm to build a predictive model. 

This process is usually an iterative process that involves constant 

refinement in order to build a model that better minimizes the 

cost function on the hold-out validation set and the test set.

In this chapter, we provided a brief overview to the concept of data science, the 

challenge of big data, and its goal to unlock value from data. The next chapter will 

provide an introduction to programming with Python.

Chapter 8  What Is Data sCIenCe?
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CHAPTER 9

Python
Python is one of the preferred languages for data science in the industry primarily 

because of its simple syntax and the number of reusable machine learning/deep 

learning packages. These packages make it easy to develop data science products 

without getting bogged down with the internals of a particular algorithm or method. 

They have been written, debugged, and tested by the best experts in the field, as well as 

by a large supporting community of developers that contribute their time and expertise 

to maintain and improve them.

In this section, we will go through the foundations of programming with Python 3. 

This section forms a framework for working with higher-level packages such as NumPy, 

Pandas, Matplotlib, TensorFlow, and Keras. The programming paradigm we will cover 

in this chapter can be easily adapted or applied to similar languages, such as R, which is 

also commonly used in the data science industry.

The best way to work through this chapter and the successive chapters in this part is to 

work through the code by executing them on Google Colab or GCP Deep Learning VMs.

 Data and Operations
Fundamentally, programming involves storing data and operating on that data to 

generate information. Techniques for efficient data storage are studied in the field called 

data structures, while the techniques for operating on data are studied as algorithms.

Data is stored in a memory block on the computer. Think of a memory block as a 

container holding data (Figure 9-1). When data is operated upon, the newly processed 

data is also stored in memory. Data is operated by using arithmetic and boolean 

expressions and functions.
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In programming, a memory location is called a variable. A variable is a container 

for storing the data that is assigned to it. A variable is usually given a unique name by 

the programmer to represent a particular memory cell. In python, variable names are 

programmer defined, but it must follow a valid naming condition of only alphanumeric 

lowercase characters with words separated by an underscore. Also, a variable name 

should have semantic meaning to the data that is stored in that variable. This helps to 

improve code readability later in the future.

The act of placing data to a variable is called assignment.

# assigning data to a variable

x = 1

user_name = 'Emmanuel Okoi'

 Data Types
Python has the number and string data types in addition to other supported specialized 

datatypes. The number datatype, for instance, can be an int or a float. Strings are 

surrounded by quotes in Python.

# data types

type(3)

'Output': int

type(3.0)

'Output': float

Figure 9-1. An illustration of a memory cell holding data
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type('Jesam Ujong')

'Output': str

Other fundamental data types in Python include the lists, tuple, and dictionary. 

These data types hold a group of items together in sequence. Sequences in Python are 

indexed from 0.

Tuples are an immutable ordered sequence of items. Immutable means the data 

cannot be changed after being assigned. Tuple can contain elements of different types. 

Tuples are surrounded by brackets (…).

my_tuple = (5, 4, 3, 2, 1, 'hello')

type(my_tuple)

'Output': tuple

my_tuple[5]           # return the sixth element (indexed from 0)

'Output': 'hello'

my_tuple[5] = 'hi'    # we cannot alter an immutable data type

Traceback (most recent call last):

  File "<ipython-input-49-f0e593f95bc7>", line 1, in <module>

    my_tuple[5] = 'hi'

TypeError: 'tuple' object does not support item assignment

Lists are very similar to tuples, only that they are mutable. This means that list elements 

can be changed after being assigned. Lists are surrounded by square brackets […].

my_list = [4, 8, 16, 32, 64]

print(my_list)    # print list items to console

'Output': [4, 8, 16, 32, 64]

my_list[3]        # return the fourth list element (indexed from 0)

'Output': 32

my_list[4] = 256

print(my_list)

'Output': [4, 8, 16, 32, 256]

Dictionaries contain a mapping from keys to values. A key/value pair is an item in a 

dictionary. The items in a dictionary are indexed by their keys. The keys in a dictionary 

can be any hashable datatype (hashing transforms a string of characters into a key to 

speed up search). Values can be of any datatype. In other languages, a dictionary is 

Chapter 9  python



74

analogous to a hash table or a map. Dictionaries are surrounded by a pair of braces {…}. 

A dictionary is not ordered.

my_dict = {'name':'Rijami', 'age':42, 'height':72}

my_dict               # dictionary items are un-ordered

'Output': {'age': 42, 'height': 72, 'name': 'Rijami'}

my_dict['age']        # get dictionary value by indexing on keys

'Output': 42

my_dict['age'] = 35   # change the value of a dictionary item

my_dict['age']

'Output': 35

 More on Lists
As earlier mentioned, because list items are mutable, they can be changed, deleted, and 

sliced to produce a new list.

my_list = [4, 8, 16, 32, 64]

my_list

'Output': [4, 8, 16, 32, 64]

my_list[1:3]      # slice the 2nd to 4th element (indexed from 0)

'Output': [8, 16]

my_list[2:]       # slice from the 3rd element (indexed from 0)

'Output': [16, 32, 64]

my_list[:4]       # slice till the 5th element (indexed from 0)

'Output': [4, 8, 16, 32]

my_list[-1]       # get the last element in the list

'Output': 64

min(my_list)      # get the minimum element in the list

'Output': 4

max(my_list)      # get the maximum element in the list

'Output': 64

sum(my_list)      # get the sum of elements in the list

'Output': 124

my_list.index(16) # index(k) - return the index of the first occurrence of 

item k in the list

'Output': 2
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When modifying a slice of elements in the list, the right-hand side can be of any 

length depending that the left-hand size is not a single index.

# modifying a list: extended index example

my_list[1:4] = [43, 59, 78, 21]

my_list

'Output': [4, 43, 59, 78, 21, 64]

my_list = [4, 8, 16, 32, 64]  # re-initialize list elements

my_list[1:4] = [43]

my_list

'Output': [4, 43, 64]

# modifying a list: single index example

my_list[0] = [1, 2, 3]      # this will give a list-on-list

my_list

'Output': [[1, 2, 3], 43, 64]

my_list[0:1] = [1, 2, 3]    #  again - this is the proper way to extend lists

my_list

'Output': [1, 2, 3, 43, 64]

Some useful list methods include

my_list = [4, 8, 16, 32, 64]

len(my_list)          # get the length of the list

'Output': 5

my_list.insert(0,2)   # insert(i,k) - insert the element k at index i

my_list

'Output': [2, 4, 8, 16, 32, 64]

my_list.remove(8) # remove(k) -  remove the first occurrence of element k in 

the list

my_list

'Output': [2, 4, 16, 32, 64]

my_list.pop(3)    # pop(i) - return the value of the list at index i

'Output': 32

my_list.reverse() # reverse in-place the elements in the list

my_list

'Output': [64, 16, 4, 2]
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my_list.sort()    # sort in-place the elements in the list

my_list

'Output': [2, 4, 16, 64]

my_list.clear()   # clear all elements from the list

my_list

'Output': []

The append() method adds an item (could be a list, string, or number) to the end of a 

list. If the item is a list, the list as a whole is appended to the end of the current list.

my_list = [4, 8, 16, 32, 64]  # initial list

my_list.append(2)             # append a number to the end of list

my_list.append('wonder')      # append a string to the end of list

my_list.append([256, 512])    # append a list to the end of list

my_list

'Output': [4, 8, 16, 32, 64, 2, 'wonder', [256, 512]]

The extend() method extends the list by adding items from an iterable. An iterable 

in Python are objects that have special methods that enable you to access elements from 

that object sequentially. Lists and strings are iterable objects. So extend() appends all 

the elements of the iterable to the end of the list.

my_list = [4, 8, 16, 32, 64]

my_list.extend(2)             # a number is not an iterable

Traceback (most recent call last):

  File "<ipython-input-24-092b23c845b9>", line 1, in <module>

    my_list.extend(2)

TypeError: 'int' object is not iterable

my_list.extend('wonder')      # append a string to the end of list

my_list.extend([256, 512])    # append a list to the end of list

my_list

'Output': [4, 8, 16, 32, 64, 'w', 'o', 'n', 'd', 'e', 'r', 256, 512]

We can combine a list with another list by overloading the operator +.

my_list = [4, 8, 16, 32, 64]

my_list + [256, 512]

'Output': [4, 8, 16, 32, 64, 256, 512]
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 Strings
Strings in Python are enclosed by a pair of single quotes (‘ … ’). Strings are immutable. 

This means they cannot be altered when assigned or when a string variable is created. 

Strings can be indexed like a list as well as sliced to create new lists.

my_string = 'Schatz'

my_string[0]      # get first index of string

'Output': 'S'

my_string[1:4]    #  slice the string from the 2nd to the 5th element 

(indexed from 0)

'Output': 'cha'

len(my_string)    # get the length of the string

'Output': 6

my_string[-1]     # get last element of the string

'Output': 'z'

We can operate on string values with the boolean operators.

't' in my_string

'Output': True

't' not in my_string

'Output': False

't' is my_string

'Output': False

't' is not my_string

'Output': True

't' == my_string

'Output': False

't' != my_string

'Output': True

We can concatenate two strings to create a new string using the overloaded operator +.

a = 'I'

b = 'Love'

c = 'You'
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a + b + c

'Output': 'ILoveYou'

# let's add some space

a + ' ' + b +  ' ' + c

 Arithmetic and Boolean Operations
This section introduces operators for programming arithmetic and logical constructs.

 Arithmetic Operations
In Python, we can operate on data using familiar algebra operations such as addition +, 

subtraction -, multiplication *, division /, and exponentiation **.

2 + 2     # addition

'Output': 4

5 - 3     # subtraction

'Output': 2

4 * 4     # multiplication

'Output': 16

10 / 2    # division

'Output': 5.0

2**4 / (5 + 3)    # use brackets to enforce precedence

'Output': 2.0

 Boolean Operations
Boolean operations evaluate to True or False. Boolean operators include the comparison 

and logical operators. The comparison operators include less than or equal to <=, less 

than <, greater than or equal to >=, greater than >, not equal to !=, and equal to ==.

2 < 5

'Output': True

2 <= 5

'Output': True
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2 > 5

'Output': False

2 >= 5

'Output': False

2 != 5

'Output': True

2 == 5

'Output': False

The logical operators include Boolean NOT (not), Boolean AND (and), and Boolean 

OR (or). We can also carry out identity and membership tests using

• is, is not (identity)

• in, not in (membership)

a = [1, 2, 3]

2 in a

'Output': True

2 not in a

'Output': False

2 is a

'Output': False

2 is not a

'Output': True

 The print( ) Statement
The print() statement is a simple way to show the output of data values to the console. 

Variables can be concatenated using the comma. Space is implicitly added after the 

comma.

a = 'I'

b = 'Love'

c = 'You'

print(a, b, c)

'Output': I Love You
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 Using the Formatter
Formatters add a placeholder for inputting a data value into a string output using the 

curly brace {}. The format method from the str class is invoked to receive the value as a 

parameter. The number of parameters in the format method should match the number 

of placeholders in the string representation. Other format specifiers can be added with 

the placeholder curly brackets.

print("{} {} {}".format(a, b, c))

'Output': I Love You

# re-ordering the output

print("{2} {1} {0}".format(a, b, c))

'Output': You Love I

 Control Structures
Programs need to make decisions which result in executing a particular set of 

instructions or a specific block of code repeatedly. With control structures, we would 

have the ability to write programs that can make logical decisions and execute an 

instruction set until a terminating condition occurs.

 The if/elif (else-if) Statements
The if/elif (else-if ) statement executes a set of instructions if the tested condition 

evaluates to true. The else statement specifies the code that should execute if none of the 

previous conditions evaluate to true. It can be visualized by the flowchart in Figure 9-2.

Chapter 9  python



81

The syntax for the if/elif statement is given as follows:

if expressionA:

    statementA

elif expressionB:

    statementB

...

...

else:

    statementC

Here is a program example:

a = 8

if type(a) is int:

    print('Number is an integer')

elif a > 0:

    print('Number is positive')

Figure 9-2. Flowchart of the if statement
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else:

    print('The number is negative and not an integer')

'Output': Number is an integer

 The while Loop
The while loop evaluates a condition, which, if true, repeatedly executes the set of 

instructions within the while block. It does so until the condition evaluates to false. The 

while statement is visualized by the flowchart in Figure 9-3.

Figure 9-3. Flowchart of the while loop

Here is a program example:

a = 8

while a > 0:

    print('Number is', a)

    # decrement a

    a -= 1

Chapter 9  python



83

'Output': Number is 8

     Number is 7

     Number is 6

     Number is 5

     Number is 4

     Number is 3

     Number is 2

     Number is 1

 The for Loop
The for loop repeats the statements within its code block until a terminating condition 

is reached. It is different from the while loop in that it knows exactly how many times 

the iteration should occur. The for loop is controlled by an iterable expression (i.e., 

expressions in which elements can be accessed sequentially). The for statement is 

visualized by the flowchart in Figure 9-4.

Figure 9-4. Flowchart of the for loop
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The syntax for the for loop is as follows:

for item in iterable:

    statement

Note that in the for loop syntax is not the same as the membership logical operator 

earlier discussed.

Here is a program example:

a = [2, 4, 6, 8, 10]

for elem in a:

    print(elem**2)

'Output': 4

    16

    36

    64

    100

To loop for a specific number of time, use the range() function.

for idx in range(5):

    print('The index is', idx)

'Output': The index is 0

     The index is 1

     The index is 2

     The index is 3

     The index is 4

 List Comprehensions
Using list comprehension, we can succinctly rewrite a for loop that iteratively builds a 

new list using an elegant syntax. Assuming we want to build a new list using a for loop, 

we will write it as

new_list = []

for item in iterable:

    new_list.append(expression)
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We can rewrite this as

[expression for item in iterable]

Let’s have some program examples.

squares = []

for elem in range(0,5):

    squares.append((elem+1)**2)

squares

'Output': [1, 4, 9, 16, 25]

The preceding code can be concisely written as

[(elem+1)**2 for elem in range(0,5)]

'Output': [1, 4, 9, 16, 25]

This is even more elegant in the presence of nested control structures.

evens = []

for elem in range(0,20):

    if elem % 2 == 0 and elem != 0:

        evens.append(elem)

evens

'Output': [2, 4, 6, 8, 10, 12, 14, 16, 18]

With list comprehension, we can code this as

[elem for elem in range(0,20) if elem % 2 == 0 and elem != 0]

'Output': [2, 4, 6, 8, 10, 12, 14, 16, 18]

 The break and continue Statements
The break statement terminates the execution of the nearest enclosing loop (for, while 

loops) in which it appears.

for val in range(0,10):

    print("The variable val is:", val)

    if val > 5:
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        print("Break out of for loop")

        break

'Output': The variable val is: 0

     The variable val is: 1

     The variable val is: 2

     The variable val is: 3

     The variable val is: 4

     The variable val is: 5

     The variable val is: 6

     Break out of for loop

The continue statement skips the next iteration of the loop to which it belongs, 

ignoring any code after it.

a = 6

while a > 0:

    if a != 3:

        print("The variable a is:", a)

    # decrement a

    a = a - 1

    if a == 3:

        print("Skip the iteration when a is", a)

        continue

'Output': The variable a is: 6

     The variable a is: 5

     The variable a is: 4

     Skip the iteration when a is 3

     The variable a is: 2

     The variable a is: 1

 Functions
A function is a code block that carries out a particular action (Figure 9-5). Functions are 

called by the programmer when needed by making a function call. Python comes pre- 

packaged with lots of useful functions to simplify programming. The programmer can 

also write custom functions.
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A function receives data into its parameter list during a function call. The inputed 

data is used to complete the function execution. At the end of its execution, a function 

always returns a result – this result could be ‘None’ or a specific data value.

Functions are treated as first-class objects in Python. That means a function can be 

passed as data into another function, the result of a function execution can also be a 

function, and a function can also be stored as a variable.

Functions are visualized as a black box that receives a set of objects as input, 

executes some code, and returns another set of objects as output.

 User-Defined Functions
A function is defined using the def keyword. The syntax for creating a function is as follows:

def function-name(parameters):

    statement(s)

Let’s create a simple function:

def squares(number):

    return number**2

squares(2)

'Output': 4

Here’s another function example:

def _mean_(*number):

    avg = sum(number)/len(number)

    return avg

_mean_(1,2,3,4,5,6,7,8,9)

'Output': 5.0

Figure 9-5. Functions
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The * before the parameter number indicates that the variable can receive any 

number of values, which is implicitly bound to a tuple.

 Lambda Expressions
Lambda expressions provide a concise and succinct way to write simple functions that 

contain just a single line. Lambdas now and again can be very useful, but in general, 

working with def may be more readable. The syntax for lambdas are as follows:

lambda parameters: expression

Let’s see an example:

square = lambda x: x**2

square(2)

'Output': 4

 Packages and Modules
A module is simply a Python source file, and packages are a collection of modules. 

Modules written by other programmers can be incorporated into your source code by 

using import and from statements.

 import Statement
The import statement allows you to load any Python module into your source file. It has 

the following syntax:

import module_name [as user_defined_name][,...]

where the following is optional:

[as user_defined_name]

Let us take an example by importing a very important package called numpy that is 

used for numerical processing in Python and very critical for machine learning.
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import numpy as np

np.abs(-10)   # the absolute value of -10

'Output': 10

 from Statement
The from statement allows you to import a specific feature from a module into your 

source file. The syntax is as follows:

from module_name import module_feature [as user_defined_name][,...]

Let’s see an example:

from numpy import mean

mean([2,4,6,8])

'Output': 5.0

This chapter provides the fundamentals for programming with Python. 

Programming is a very active endeavor, and competency is gained by experience and 

repetition. What is presented in this chapter provides just enough to be dangerous.

In the next chapter, we’ll introduce NumPy, a Python package for numerical 

computing.
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CHAPTER 10

NumPy
NumPy is a Python library optimized for numerical computing. It bears close semblance 

with MATLAB and is equally as powerful when used in conjunction with other packages 

such as SciPy for various scientific functions, Matplotlib for visualization, and Pandas for 

data analysis. NumPy is short for numerical python.

NumPy’s core strength lies in its ability to create and manipulate n-dimensional 

arrays. This is particularly critical for building machine learning and deep learning 

models. Data is often represented in a matrix-like grid of rows and columns, where each 

row represents an observation and each column a variable or feature. Hence, NumPy’s 

2-D array is a natural fit for storing and manipulating datasets.

This tutorial will cover the basics of NumPy to get you very comfortable working with 

the package and also get you to appreciate the thinking behind how NumPy works. This 

understanding forms a foundation from which one can extend and seek solutions from 

the NumPy reference documentation when a specific functionality is needed.

To begin using NumPy, we’ll start by importing the NumPy module:

import numpy as np

 NumPy 1-D Array
Let’s create a simple 1-D NumPy array:

my_array = np.array([2,4,6,8,10])

my_array

'Output': array([ 2,  4,  6,  8, 10])

# the data-type of a NumPy array is the ndarray

type(my_array)

'Output': numpy.ndarray
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# a NumPy 1-D array can also be seen a vector with 1 dimension

my_array.ndim

'Output': 1

# check the shape to get the number of rows and columns in the array \

# read as (rows, columns)

my_array.shape

'Output': (5,)

We can also create an array from a Python list.

my_list = [9, 5, 2, 7]

type(my_list)

'Output': list

# convert a list to a numpy array

list_to_array = np.array(my_list) # or np.asarray(my_list)

type(list_to_array)

'Output': numpy.ndarray

Let’s explore other useful methods often employed for creating arrays.

# create an array from a range of numbers

np.arange(10)

'Output': [0 1 2 3 4 5 6 7 8 9]

# create an array from start to end (exclusive) via a step size - (start, 

stop, step)

np.arange(2, 10, 2)

'Output': [2 4 6 8]

# create a range of points between two numbers

np.linspace(2, 10, 5)

'Output': array([  2.,   4.,   6.,   8.,  10.])

# create an array of ones

np.ones(5)

'Output': array([ 1.,  1.,  1.,  1.,  1.])

# create an array of zeros

np.zeros(5)

'Output': array([ 0.,  0.,  0.,  0.,  0.])

Chapter 10  Numpy



93

 NumPy Datatypes
NumPy boasts a broad range of numerical datatypes in comparison with vanilla Python. 

This extended datatype support is useful for dealing with different kinds of signed 

and unsigned integer and floating-point numbers as well as booleans and complex 

numbers for scientific computation. NumPy datatypes include the bool_, int(8,16,32,64), 

uint(8,16,32,64), float(16,32,64), complex(64,128) as well as the int_, float_, and 

complex_, to mention just a few.

The datatypes with a _ appended are base Python datatypes converted to NumPy 

datatypes. The parameter dtype is used to assign a datatype to a NumPy function. The 

default NumPy type is float_. Also, NumPy infers contiguous arrays of the same type.

Let’s explore a bit with NumPy datatypes:

# ints

my_ints = np.array([3, 7, 9, 11])

my_ints.dtype

'Output': dtype('int64')

# floats

my_floats = np.array([3., 7., 9., 11.])

my_floats.dtype

'Output': dtype('float64')

# non-contiguous types - default: float

my_array = np.array([3., 7., 9, 11])

my_array.dtype

'Output': dtype('float64')

# manually assigning datatypes

my_array = np.array([3, 7, 9, 11], dtype="float64")

my_array.dtype

'Output': dtype('float64')
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 Indexing + Fancy Indexing (1-D)
We can index a single element of a NumPy 1-D array similar to how we index a Python list.

# create a random numpy 1-D array

my_array = np.random.rand(10)

my_array

'Output': array( [ 0.7736445 ,  0.28671796,  0.61980802,  0.42110553, 

  0.86091567,  0.93953255,  0.300224  ,  0.56579416, 

  0.58890282,   0.97219289])

# index the first element

my_array[0]

'Output': 0.77364449999999996

# index the last element

my_array[-1]

'Output': 0.97219288999999998

Fancy indexing in NumPy is an advanced mechanism for indexing array elements 

based on integers or boolean. This technique is also called masking.

 Boolean Mask
Let’s index all the even integers in the array using a boolean mask.

# create 10 random integers between 1 and 20

my_array = np.random.randint(1, 20, 10)

my_array

'Output': array([14,  9,  3, 19, 16,  1, 16,  5, 13,  3])

# index all even integers in the array using a boolean mask

my_array[my_array % 2 == 0]

'Output': array([14, 16, 16])

Observe that the code my_array % 2 == 0 outputs an array of booleans.

my_array % 2 == 0

'Output': array([ True, False, False, False,  True, False,  True, False, 

False, False], dtype=bool)
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 Integer Mask
Let’s select all elements with even indices in the array.

# create 10 random integers between 1 and 20

my_array = np.random.randint(1, 20, 10)

my_array

'Output': array([ 1, 18,  8, 12, 10,  2, 17,  4, 17, 17])

my_array[np.arange(1,10,2)]

'Output': array([18, 12,  2,  4, 17])

Remember that array indices are indexed from 0. So the second element, 18, is in 

index 1.

np.arange(1,10,2)

'Output': array([1, 3, 5, 7, 9])

 Slicing a 1-D Array
Slicing a NumPy array is also similar to slicing a Python list.

my_array = np.array([14,  9,  3, 19, 16,  1, 16,  5, 13,  3])

my_array

'Output': array([14,  9,  3, 19, 16,  1, 16,  5, 13,  3])

# slice the first 2 elements

my_array[:2]

'Output': array([14,  9])

# slice the last 3 elements

my_array[-3:]

'Output': array([ 5, 13,  3])

 Basic Math Operations on Arrays: Universal 
Functions
The core power of NumPy is in its highly optimized vectorized functions for various 

mathematical, arithmetic, and string operations. In NumPy these functions are called 

universal functions. We’ll explore a couple of basic arithmetic with NumPy 1-D arrays.
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# create an array of even numbers between 2 and 10

my_array = np.arange(2,11,2)

'Output': array([ 2,  4,  6,  8, 10])

# sum of array elements

np.sum(my_array) # or my_array.sum()

'Output': 30

# square root

np.sqrt(my_array)

'Output': array( [ 1.41421356,  2.        ,  2.44948974,  2.82842712, 

  3.16227766])

# log

np.log(my_array)

'Output': array( [ 0.69314718,  1.38629436,  1.79175947,  2.07944154, 

  2.30258509])

# exponent

np.exp(my_array)

'Output': array([  7.38905610e+00,   5.45981500e+01,   4.03428793e+02,

                   2.98095799e+03,   2.20264658e+04])

 Higher-Dimensional Arrays
As we’ve seen earlier, the strength of NumPy is its ability to construct and manipulate 

n-dimensional arrays with highly optimized (i.e., vectorized) operations. Previously, 

we covered the creation of 1-D arrays (or vectors) in NumPy to get a feel of how NumPy 

works.

This section will now consider working with 2-D and 3-D arrays. 2-D arrays are ideal 

for storing data for analysis. Structured data is usually represented in a grid of rows and 

columns. And even when data is not necessarily represented in this format, it is often 

transformed into a tabular form before doing any data analytics or machine learning. 

Each column represents a feature or attribute and each row an observation.

Also, other data forms like images are adequately represented using 3-D arrays. A 

colored image is composed of n × n pixel intensity values with a color depth of three for 

the red, green, and blue (RGB) color profiles.

Chapter 10  Numpy



97

 Creating 2-D Arrays (Matrices)
Let us construct a simple 2-D array.

# construct a 2-D array

my_2D = np.array([[2,4,6],

                    [8,10,12]])

my_2D

'Output':

array([[ 2,  4,  6],

       [ 8, 10, 12]])

# check the number of dimensions

my_2D.ndim

'Output': 2

# get the shape of the 2-D array - this example has 2 rows and  

3 columns: (r, c)

my_2D.shape

'Output': (2, 3)

Let’s explore common methods in practice for creating 2-D NumPy arrays, which 
are also matrices.

# create a 3x3 array of ones

np.ones([3,3])

'Output':

array([[ 1.,  1.,  1.],

       [ 1.,  1.,  1.],

       [ 1.,  1.,  1.]])

# create a 3x3 array of zeros

np.zeros([3,3])

'Output':

array([[ 0.,  0.,  0.],

       [ 0.,  0.,  0.],

       [ 0.,  0.,  0.]])

# create a 3x3 array of a particular scalar - full(shape, fill_value)

np.full([3,3], 2)
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'Output':

array([[2, 2, 2],

       [2, 2, 2],

       [2, 2, 2]])

# create a 3x3, empty uninitialized array

np.empty([3,3])

'Output':

array([[ -2.00000000e+000,  -2.00000000e+000,   2.47032823e-323],

       [  0.00000000e+000,   0.00000000e+000,   0.00000000e+000],

       [ -2.00000000e+000,  -1.73060571e-077,  -2.00000000e+000]])

# create a 4x4 identity matrix - i.e., a matrix with 1's on its diagonal

np.eye(4) # or np.identity(4)

'Output':

array([[ 1.,  0.,  0.,  0.],

       [ 0.,  1.,  0.,  0.],

       [ 0.,  0.,  1.,  0.],

       [ 0.,  0.,  0.,  1.]])

 Creating 3-D Arrays
Let’s construct a basic 3-D array.

# construct a 3-D array

my_3D = np.array([[

                     [2,4,6],

                     [8,10,12]

                    ],[

                     [1,2,3],

                     [7,9,11]

                    ]])

my_3D

'Output':

array([[[ 2,  4,  6],

        [ 8, 10, 12]],

       [[ 1,  2,  3],

        [ 7,  9, 11]]])
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# check the number of dimensions

my_3D.ndim

'Output': 3

# get the shape of the 3-D array - this example has 2 pages, 2 rows and 3 

columns: (p, r, c)

my_3D.shape

'Output': (2, 2, 3)

We can also create 3-D arrays with methods such as ones, zeros, full, and empty 

by passing the configuration for [page, row, columns] into the shape parameter of the 

methods. For example:

# create a 2-page, 3x3 array of ones

np.ones([2,3,3])

'Output':

array([[[ 1.,  1.,  1.],

        [ 1.,  1.,  1.],

        [ 1.,  1.,  1.]],

       [[ 1.,  1.,  1.],

        [ 1.,  1.,  1.],

        [ 1.,  1.,  1.]]])

# create a 2-page, 3x3 array of zeros

np.zeros([2,3,3])

'Output':

array([[[ 0.,  0.,  0.],

        [ 0.,  0.,  0.],

        [ 0.,  0.,  0.]],

       [[ 0.,  0.,  0.],

        [ 0.,  0.,  0.],

        [ 0.,  0.,  0.]]])

 Indexing/Slicing of Matrices
Let’s see some examples of indexing and slicing 2-D arrays. The concept extends nicely 

from doing the same with 1-D arrays.
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# create a 3x3 array contain random normal numbers

my_3D = np.random.randn(3,3)

'Output':

array([[ 0.99709882, -0.41960273,  0.12544161],

       [-0.21474247,  0.99555079,  0.62395035],

       [-0.32453132,  0.3119651 , -0.35781825]])

# select a particular cell (or element) from a 2-D array.

my_3D[1,1]    # In this case, the cell at the 2nd row and column

'Output': 0.99555079000000002

# slice the last 3 columns

my_3D[:,1:3]

'Output':

array([[-0.41960273,  0.12544161],

       [ 0.99555079,  0.62395035],

       [ 0.3119651 , -0.35781825]])

# slice the first 2 rows and columns

my_3D[0:2, 0:2]

'Output':

array([[ 0.99709882, -0.41960273],

       [-0.21474247,  0.99555079]])

 Matrix Operations: Linear Algebra
Linear algebra is a convenient and powerful system for manipulating a set of data 

features and is one of the strong points of NumPy. Linear algebra is a crucial component 

of machine learning and deep learning research and implementation of learning 

algorithms. NumPy has vectorized routines for various matrix operations. Let’s go 

through a few of them.

 Matrix Multiplication (Dot Product)
First let’s create random integers using the method np.random.randint(low, 
high=None, size=None,) which returns random integers from low (inclusive) to high 

(exclusive).
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# create a 3x3 matrix of random integers in the range of 1 to 50

A = np.random.randint(1, 50, size=[3,3])

B = np.random.randint(1, 50, size=[3,3])

# print the arrays

A

'Output':

array([[15, 29, 24],

       [ 5, 23, 26],

       [30, 14, 44]])

B

'Output':

array([[38, 32, 22],

       [32, 30, 46],

       [33, 47, 24]])

We can use the following routines for matrix multiplication, np.matmul(a,b) or 

a @ b if using Python 3.6. Using a @ b is preferred. Remember that when multiplying 

matrices, the inner matrix dimensions must agree. For example, if A is an m × n matrix 

and B is an n × p matrix, the product of the matrices will be an m × p matrix with the 

inner dimensions of the respective matrices n agreeing (see Figure 10-1).

Figure 10-1. Matrix multiplication

# multiply the two matrices A and B (dot product)

A @ B    # or np.matmul(A,B)
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'Output':

array([[2290, 2478, 2240],

       [1784, 2072, 1792],

       [3040, 3448, 2360]])

 Element-Wise Operations
Element-wise matrix operations involve matrices operating on themselves in an 

element-wise fashion. The action can be an addition, subtraction, division, or 

multiplication (which is commonly called the Hadamard product). The matrices must be 

of the same shape. Please note that while a matrix is of shape n × n, a vector is of shape 

n × 1. These concepts easily apply to vectors as well. See Figure 10-2.

Figure 10-2. Element-wise matrix operations

Let’s have some examples.

# Hadamard multiplication of A and B

A * B

'Output':

array([[ 570,  928,  528],

       [ 160,  690, 1196],

       [ 990,  658, 1056]])
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# add A and B

A + B

'Output':

array([[53, 61, 46],

       [37, 53, 72],

       [63, 61, 68]])

# subtract A from B

B - A

'Output':

array([[ 23,   3,  -2],

       [ 27,   7,  20],

       [  3,  33, -20]])

# divide A with B

A / B

'Output':

array([[ 0.39473684,  0.90625   ,  1.09090909],

       [ 0.15625   ,  0.76666667,  0.56521739],

       [ 0.90909091,  0.29787234,  1.83333333]])

 Scalar Operation
A matrix can be acted upon by a scalar (i.e., a single numeric entity) in the same way 

element-wise fashion. This time the scalar operates upon each element of the matrix or 

vector. See Figure 10-3.
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Let’s look at some examples.

# Hadamard multiplication of A and a scalar, 0.5

A * 0.5

'Output':

array([[  7.5,  14.5,  12. ],

       [  2.5,  11.5,  13. ],

       [ 15. ,   7. ,  22. ]])

# add A and a scalar, 0.5

A + 0.5

'Output':

array([[ 15.5,  29.5,  24.5],

       [  5.5,  23.5,  26.5],

       [ 30.5,  14.5,  44.5]])

# subtract a scalar 0.5 from B

B - 0.5

'Output':

array([[ 37.5,  31.5,  21.5],

       [ 31.5,  29.5,  45.5],

       [ 32.5,  46.5,  23.5]])

Figure 10-3. Scalar operations
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# divide A and a scalar, 0.5

A / 0.5

'Output':

array([[ 30.,  58.,  48.],

       [ 10.,  46.,  52.],

       [ 60.,  28.,  88.]])

 Matrix Transposition
Transposition is a vital matrix operation that reverses the rows and columns of a matrix 

by flipping the row and column indices. The transpose of a matrix is denoted as AT. 

Observe that the diagonal elements remain unchanged. See Figure 10-4.

Figure 10-4. Matrix transpose

Let’s see an example.

A = np.array([[15, 29, 24],

                [ 5, 23, 26],

                [30, 14, 44]])

# transpose A

A.T   # or A.transpose()

'Output':

array([[15,  5, 30],

       [29, 23, 14],

       [24, 26, 44]])
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 The Inverse of a Matrix
A m × m matrix A (also called a square matrix) has an inverse if A times another matrix B 

results in the identity matrix I also of shape m × m. This matrix B is called the inverse of A 

and is denoted as A−1. This relationship is formally written as

AA A A I- -= =1 1

However, not all matrices have an inverse. A matrix with an inverse is called a 

nonsingular or invertible matrix, while those without an inverse are known as singular or 

degenerate.

Note  a square matrix is a matrix that has the same number of rows and columns.

Let’s use NumPy to get the inverse of a matrix. Some linear algebra modules are 

found in a sub-module of NumPy called linalg.

A = np.array([[15, 29, 24],

                [ 5, 23, 26],

                [30, 14, 44]])

# find the inverse of A

np.linalg.inv(A)

'Output':

array([[ 0.05848375, -0.08483755,  0.01823105],

       [ 0.05054152, -0.00541516, -0.02436823],

       [-0.05595668,  0.05956679,  0.01805054]])

NumPy also implements the Moore-Penrose pseudo inverse, which gives an inverse 

derivation for degenerate matrices. Here, we use the pinv method to find the inverses of 

invertible matrices.

# using pinv()

np.linalg.pinv(A)

'Output':

array([[ 0.05848375, -0.08483755,  0.01823105],

       [ 0.05054152, -0.00541516, -0.02436823],

       [-0.05595668,  0.05956679,  0.01805054]])
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 Reshaping
A NumPy array can be restructured to take on a different shape. Let’s convert a 1-D array 

to a m × n matrix.

# make 20 elements evenly spaced between 0 and 5

a = np.linspace(0,5,20)

a

'Output':

array([ 0.        ,  0.26315789,  0.52631579,  0.78947368,  1.05263158,

        1.31578947,  1.57894737,  1.84210526,  2.10526316,  2.36842105,

        2.63157895,  2.89473684,  3.15789474,  3.42105263,  3.68421053,

        3.94736842,  4.21052632,  4.47368421,  4.73684211,  5.        ])

# observe that a is a 1-D array

a.shape

'Output': (20,)

# reshape into a 5 x 4 matrix

A = a.reshape(5, 4)

A

'Output':

array([[ 0.        ,  0.26315789,  0.52631579,  0.78947368],

       [ 1.05263158,  1.31578947,  1.57894737,  1.84210526],

       [ 2.10526316,  2.36842105,  2.63157895,  2.89473684],

       [ 3.15789474,  3.42105263,  3.68421053,  3.94736842],

       [ 4.21052632,  4.47368421,  4.73684211,  5.        ]])

# The vector a has been reshaped into a 5 by 4 matrix A

A.shape

'Output': (5, 4)

 Reshape vs. Resize Method
NumPy has the np.reshape and np.resize methods. The reshape method returns an 

ndarray with a modified shape without changing the original array, whereas the resize 

method changes the original array. Let’s see an example.
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# generate 9 elements evenly spaced between 0 and 5

a = np.linspace(0,5,9)

a

'Output':  array([ 0.   ,  0.625,  1.25 ,  1.875,  2.5  ,  3.125,  3.75 ,   

4.375,  5.   ])

# the original shape

a.shape

'Output':  (9,)

# call the reshape method

a.reshape(3,3)

'Output':

array([[ 0.   ,  0.625,  1.25 ],

       [ 1.875,  2.5  ,  3.125],

       [ 3.75 ,  4.375,  5.   ]])

# the original array maintained its shape

a.shape

'Output':  (9,)

# call the resize method - resize does not return an array

a.resize(3,3)

# the resize method has changed the shape of the original array

a.shape

'Output':  (3, 3)

 Stacking Arrays
NumPy has methods for concatenating arrays – also called stacking. The methods 

hstack and vstack are used to stack several arrays along the horizontal and vertical axis, 

respectively.

# create a 2x2 matrix of random integers in the range of 1 to 20

A = np.random.randint(1, 50, size=[3,3])

B = np.random.randint(1, 50, size=[3,3])

# print out the arrays

A
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'Output':

array([[19, 40, 31],

       [ 5, 16, 38],

       [22, 49,  9]])

B

'Output':

array([[15, 22, 16],

       [49, 26,  9],

       [42, 13, 39]])

Let’s stack A and B horizontally using hstack. To use hstack, the arrays must have 

the same number of rows. Also, the arrays to be stacked are passed as a tuple to the 

hstack method.

# arrays are passed as tuple to hstack

np.hstack((A,B))

'Output':

array([[19, 40, 31, 15, 22, 16],

       [ 5, 16, 38, 49, 26,  9],

       [22, 49,  9, 42, 13, 39]])

To stack A and B vertically using vstack, the arrays must have the same number of 

columns. The arrays to be stacked are also passed as a tuple to the vstack method.

# arrays are passed as tuple to hstack

np.vstack((A,B))

'Output':

array([[19, 40, 31],

       [ 5, 16, 38],

       [22, 49,  9],

       [15, 22, 16],

       [49, 26,  9],

       [42, 13, 39]])

Chapter 10  Numpy



110

 Broadcasting
NumPy has an elegant mechanism for arithmetic operation on arrays with different 

dimensions or shapes. As an example, when a scalar is added to a vector (or 1-D array). 

The scalar value is conceptually broadcasted or stretched across the rows of the array 

and added element-wise. See Figure 10-5.

Figure 10-5. Broadcasting example of adding a scalar to a vector (or 1-D array)

Matrices with different shapes can be broadcasted to perform arithmetic operations 

by stretching the dimension of the smaller array. Broadcasting is another vectorized 

operation for speeding up matrix processing. However, not all arrays with different 

shapes can be broadcasted. For broadcasting to occur, the trailing axes for the arrays 

must be the same size or 1.

In the example that follows, the matrices A and B have the same rows, but the 

column of matrix B is 1. Hence, an arithmetic operation can be performed on them by 

broadcasting and adding the cells element-wise.

A      (2d array):  4 x 3       + <perform addition>

B      (2d array):  4 x 1

Result (2d array):  4 x 3

See Figure 10-6 for more illustration.
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Let’s see this in code:

# create a 4 X 3 matrix of random integers between 1 and 10

A = np.random.randint(1, 10, [4, 3])

A

'Output':

array([[9, 9, 5],

       [8, 2, 8],

       [6, 3, 1],

       [5, 1, 4]])

Figure 10-6. Matrix broadcasting example
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# create a 4 X 1 matrix of random integers between 1 and 10

B = np.random.randint(1, 10, [4, 1])

B

'Output':

array([[1],

       [3],

       [9],

       [8]])

# add A and B

A + B

'Output':

array([[10, 10,  6],

       [11,  5, 11],

       [15, 12, 10],

       [13,  9, 12]])

The example that follows cannot be broadcasted and will result in a ValueError: 

operands could not be broadcasted together with shapes (4,3) (4,2) because the matrices 

A and B have different columns and do not fit with the aforementioned rules of 

broadcasting that the trailing axes for the arrays must be the same size or 1.

A      (2d array):  4 x 3

B      (2d array):  4 x 2

The dimensions do not match - they must be either the same or 1

When we try to add the preceding example in Python, we get an error.

A = np.random.randint(1, 10, [4, 3])

B = np.random.randint(1, 10, [4, 2])

A + B

'Output':

Traceback (most recent call last):

  File "<ipython-input-145-624e41e41a31>", line 1, in <module>

    A + B

ValueError: operands could not be broadcast together with shapes (4,3) (4,2)
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 Loading Data
Loading data is an important process in the data analysis/machine learning pipeline. 

Data usually comes in .csv format. csv files can be loaded into Python by using the 

loadtxt method. The parameter skiprows skips the first row of the dataset – it is usually 

the header row of the data.

np.loadtxt(open("the_file_name.csv", "rb"), delimiter=",", skiprows=1)

Pandas is a preferred package for loading data in Python.

We will learn more about Pandas for data manipulation in the next chapter.
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CHAPTER 11

Pandas
Pandas is a specialized Python library for data analysis, especially on humongous 

datasets. It boasts easy-to-use functionality for reading and writing data, dealing with 

missing data, reshaping the dataset, and massaging the data by slicing, indexing, 

inserting, and deleting data variables and records. Pandas also has an important 

groupBy functionality for aggregating data for defined conditions – useful for plotting 

and computing data summaries for exploration.

Another key strength of Pandas is in re-ordering and cleaning time series data 

for time series analysis. In short, Pandas is the go-to tool for data cleaning and data 

exploration.

To use Pandas, first import the Pandas module:

import pandas as pd

 Pandas Data Structures
Just like NumPy, Pandas can store and manipulate a multi-dimensional array of data. To 

handle this, Pandas has the Series and DataFrame data structures.

 Series
The Series data structure is for storing a 1-D array (or vector) of data elements. A series 

data structure also provides labels to the data items in the form of an index. The user 

can specify this label via the index parameter in the Series function, but if the index 

parameter is left unspecified, a default label of 0 to one minus the size of the data 

elements is assigned.



116

Let us consider an example of creating a Series data structure.

# create a Series object

my_series = pd.Series([2,4,6,8], index=['e1','e2','e3','e4'])

# print out data in Series data structure

my_series

'Output':

e1    2

e2    4

e3    6

e4    8

dtype: int64

# check the data type of the variable

type(my_series)

'Output': pandas.core.series.Series

# return the elements of the Series data structure

my_series.values

'Output': array([2, 4, 6, 8])

# retrieve elements from Series data structure based on their assigned 

indices

my_series['e1']

'Output': 2

# return all indices of the Series data structure

my_series.index

'Output': Index(['e1', 'e2', 'e3', 'e4'], dtype='object')

Elements in a Series data structure can be assigned the same indices.

# create a Series object with elements sharing indices

my_series = pd.Series([2,4,6,8], index=['e1','e2','e1','e2'])

# note the same index assigned to various elements

my_series

'Output':

e1    2

e2    4

e1    6

e2    8
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dtype: int64

# get elements using their index

my_series['e1']

'Output':

e1    2

e1    6

dtype: int64

 DataFrames
A DataFrame is a Pandas data structure for storing and manipulating 2-D arrays.  

A 2-D array is a table-like structure that is similar to an Excel spreadsheet or a relational 

database table. A DataFrame is a very natural form for storing structured datasets.

A DataFrame consists of rows and columns for storing records of information (in 

rows) across heterogeneous variables (in columns).

Let’s see examples of working with DataFrames.

# create a data frame

my_DF = pd.DataFrame({'age': [15,17,21,29,25], \

             'state_of_origin':['Lagos', 'Cross River', 'Kano', 'Abia', 

'Benue']})

my_DF

'Output':

   age state_of_origin

0   15           Lagos

1   17     Cross River

2   21            Kano

3   29            Abia

4   25           Benue

We will observe from the preceding example that a DataFrame is constructed from a 

dictionary of records where each value is a Series data structure. Also note that each row 

has an index that can be assigned when creating the DataFrame, else the default from 0 

to one off the number of records in the DataFrame is used. Creating an index manually is 

usually not feasible except when working with small dummy datasets.
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NumPy is frequently used together with Pandas. Let’s import the NumPy library and 

use some of its functions to demonstrate other ways of creating a quick DataFrame.

import numpy as np

# create a 3x3 dataframe of numbers from the normal distribution

my_DF = pd.DataFrame(np.random.randn(3,3),\

            columns=['First','Second','Third'])

my_DF

'Output':

      First    Second     Third

0 -0.211218 -0.499870 -0.609792

1 -0.295363  0.388722  0.316661

2  1.397300 -0.894861  1.127306

# check the dimensions

my_DF.shape

'Output': (3, 3)

Let’s examine some other operations with DataFrames.

# create a python dictionary

my_dict = {'State':['Adamawa', 'Akwa-Ibom', 'Yobe', 'Rivers', 'Taraba'], \

            'Capital':['Yola','Uyo','Damaturu','Port-Harcourt','Jalingo'], \

             'Population':[3178950, 5450758, 2321339, 5198716, 2294800]}

my_dict

'Output':

{'Capital': ['Yola', 'Uyo', 'Damaturu', 'Port-Harcourt', 'Jalingo'],

 'Population': [3178950, 5450758, 2321339, 5198716, 2294800],

 'State': ['Adamawa', 'Akwa-Ibom', 'Yobe', 'Rivers', 'Taraba']}

# confirm dictionary type

type(my_dict)

'Output': dict

# create DataFrame from dictionary

my_DF = pd.DataFrame(my_dict)

my_DF
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'Output':

         Capital  Population      State

0           Yola     3178950    Adamawa

1            Uyo     5450758  Akwa-Ibom

2       Damaturu     2321339       Yobe

3  Port-Harcourt     5198716     Rivers

4        Jalingo     2294800     Taraba

# check DataFrame type

type(my_DF)

'Output': pandas.core.frame.DataFrame

# retrieve column names of the DataFrame

my_DF.columns

'Output': Index(['Capital', 'Population', 'State'], dtype='object')

# the data type of `DF.columns` method is an Index

type(my_DF.columns)

'Output': pandas.core.indexes.base.Index

# retrieve the DataFrame values as a NumPy ndarray

my_DF.values

'Output':

array([['Yola', 3178950, 'Adamawa'],

       ['Uyo', 5450758, 'Akwa-Ibom'],

       ['Damaturu', 2321339, 'Yobe'],

       ['Port-Harcourt', 5198716, 'Rivers'],

       ['Jalingo', 2294800, 'Taraba']], dtype=object)

# the data type of  `DF.values` method is an numpy ndarray

type(my_DF.values)

'Output': numpy.ndarray

In summary, a DataFrame is a tabular structure for storing a structured dataset 

where each column contains a Series data structure of records. Here’s an illustration 

(Figure 11-1).
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Let’s check the data type of each column in the DataFrame.

my_DF.dtypes

'Output':

Capital       object

Population     int64

State         object

dtype: object

An object data type in Pandas represents Strings.

 Data Indexing (Selection/Subsets)
Similar to NumPy, Pandas objects can index or subset the dataset to retrieve a specific 

sub-record of the larger dataset. Note that data indexing returns a new DataFrame or 

Series if a 2-D or 1-D array is retrieved. They do not, however, alter the original dataset. 

Let’s go through some examples of indexing a Pandas DataFrame.

First let’s create a dataframe. Observe the default integer indices assigned.

# create the dataframe

my_DF = pd.DataFrame({'age': [15,17,21,29,25], \

             'state_of_origin':['Lagos', 'Cross River', 'Kano', 'Abia', 

'Benue']})

Figure 11-1. Pandas data structure
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my_DF

'Output':

   age state_of_origin

0   15           Lagos

1   17     Cross River

2   21            Kano

3   29            Abia

4   25           Benue

 Selecting a Column from a DataFrame
Remember that the data type of a DataFrame column is a Series because it is a vector or 

1-D array.

my_DF['age']

'Output':

0    15

1    17

2    21

3    29

4    25

Name: age, dtype: int64

# check data type

type(my_DF['age'])

'Output':  pandas.core.series.Series

To select multiple columns, enclose the column names as strings with the double 

square brackets [[ ]]. The following code is an example:

my_DF[['age','state_of_origin']]

'Output':

   age state_of_origin

0   15           Lagos

1   17     Cross River

2   21            Kano

3   29            Abia

4   25           Benue
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 Selecting a Row from a DataFrame
Pandas makes use of two unique wrapper attributes for indexing rows from a 

DataFrame or a cell from a Series data structure. These attributes are the iloc and loc – 

they are also known as indexers. The iloc attribute allows you to select or slice row(s) of 

a DataFrame using the intrinsic Python index format, whereas the loc attribute uses the 

explicit indices assigned to the DataFrame. If no explicit index is found, loc returns the 

same value as iloc.

Remember that the data type of a DataFrame row is a Series because it is a vector or 

1-D array.

Let’s select the first row from the DataFrame.

# using explicit indexing

my_DF.loc[0]

'Output':

age                   15

state_of_origin    Lagos

Name: 0, dtype: object

# using implicit indexing

my_DF.iloc[0]

'Output':

age                   15

state_of_origin    Lagos

Name: 0, dtype: object

# let's see the data type

type(my_DF.loc[0])

'Output':  pandas.core.series.Series

Now let’s create a DataFrame with explicit indexing and test out the iloc and loc 

methods. Pandas will return an error if iloc is used for explicit indexing or if loc is used 

for implicit Python indexing.

my_DF = pd.DataFrame({'age': [15,17,21,29,25], \

             'state_of_origin':['Lagos', 'Cross River', 'Kano', 'Abia', 

'Benue']},\

            index=['a','a','b','b','c'])

# observe the string indices
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my_DF

'Output':

   age state_of_origin

a   15           Lagos

a   17     Cross River

b   21            Kano

b   29            Abia

c   25           Benue

# select using explicit indexing

my_DF.loc['a']

Out[196]:

   age state_of_origin

a   15           Lagos

a   17     Cross River

# let's try to use loc for implicit indexing

my_DF.loc[0]

'Output':

    Traceback (most recent call last):

     TypeError: cannot do label indexing on <class 'pandas.core.indexes.

base.Index'>

        with these indexers [0] of <class 'int'>

 Selecting Multiple Rows and Columns from a DataFrame
Let’s use the loc method to select multiple rows and columns from a Pandas DataFrame.

# select rows with age greater than 20

my_DF.loc[my_DF.age > 20]

'Output':

   age state_of_origin

2   21            Kano

3   29            Abia

4   25           Benue

# find states of origin with age greater than or equal to 25

my_DF.loc[my_DF.age >= 25, 'state_of_origin']
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'Output':

Out[29]:

3     Abia

4    Benue

 Slice Cells by Row and Column from a DataFrame
First let’s create a DataFrame. Remember, we use iloc when no explicit index or row 

labels are assigned.

my_DF = pd.DataFrame({'age': [15,17,21,29,25], \

             'state_of_origin':['Lagos', 'Cross River', 'Kano', 'Abia', 

'Benue']})

my_DF

'Output':

   age state_of_origin

0   15           Lagos

1   17     Cross River

2   21            Kano

3   29            Abia

4   25           Benue

# select the third row and second column

my_DF.iloc[2,1]

'Output': 'Kano'

# slice the first 2 rows - indexed from zero, excluding the final index

my_DF.iloc[:2,]

'Output':

   age state_of_origin

0   15           Lagos

1   17     Cross River

# slice the last three rows from the last column

my_DF.iloc[-3:,-1]

'Output':

2     Kano

3     Abia

4    Benue

Name: state_of_origin, dtype: object
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 DataFrame Manipulation
Let’s go through some common tasks for manipulating a DataFrame.

 Removing a Row/Column
In many cases during the data cleaning process, there may be a need to drop unwanted 

rows or data variables (i.e., columns). We typically do this using the drop function. The 

drop function has a parameter axis whose default is 0. If axis is set to 1, it drops columns 

in a dataset, but if left at the default, rows are dropped from the dataset.

Note that when a column or row is dropped, a new DataFrame or Series is returned 

without altering the original data structure. However, when the attribute inplace is set to 

True, the original DataFrame or Series is modified. Let’s see some examples.

# the data frame

my_DF = pd.DataFrame({'age': [15,17,21,29,25], \

             'state_of_origin':['Lagos', 'Cross River', 'Kano', 'Abia', 

'Benue']})

my_DF

'Output':

   age state_of_origin

0   15           Lagos

1   17     Cross River

2   21            Kano

3   29            Abia

4   25           Benue

# drop the 3rd and 4th column

my_DF.drop([2,4])

'Output':

   age state_of_origin

0   15           Lagos

1   17     Cross River

3   29            Abia

# drop the `age` column

my_DF.drop('age', axis=1)
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'Output':

  state_of_origin

0           Lagos

1     Cross River

2            Kano

3            Abia

4           Benue

# original DataFrame is unchanged

my_DF

'Output':

   age state_of_origin

0   15           Lagos

1   17     Cross River

2   21            Kano

3   29            Abia

4   25           Benue

# drop using 'inplace' - to modify the original DataFrame

my_DF.drop('age', axis=1, inplace=True)

# original DataFrame altered

my_DF

'Output':

  state_of_origin

0           Lagos

1     Cross River

2            Kano

3            Abia

4           Benue

Let’s see examples of removing a row given a condition.

my_DF = pd.DataFrame({'age': [15,17,21,29,25], \

             'state_of_origin':['Lagos', 'Cross River', 'Kano', 'Abia', 

'Benue']})

my_DF
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'Output':

   age state_of_origin

0   15           Lagos

1   17     Cross River

2   21            Kano

3   29            Abia

4   25           Benue

# drop all rows less than 20

my_DF.drop(my_DF[my_DF['age'] < 20].index, inplace=True)

my_DF

'Output':

   age state_of_origin

2   21            Kano

3   29            Abia

4   25           Benue

 Adding a Row/Column
We can add a new column to a Pandas DataFrame by using the assign method.

# show dataframe

my_DF = pd.DataFrame({'age': [15,17,21,29,25], \

             'state_of_origin':['Lagos', 'Cross River', 'Kano', 'Abia', 

'Benue']})

my_DF

'Output':

   age state_of_origin

0   15           Lagos

1   17     Cross River

2   21            Kano

3   29            Abia

4   25           Benue

# add column to data frame
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my_DF = my_DF.assign(capital_city = pd.Series(['Ikeja', 'Calabar', \

                                                 'Kano', 'Umuahia', 

'Makurdi']))

my_DF

'Output':

   age state_of_origin capital_city

0   15           Lagos        Ikeja

1   17     Cross River      Calabar

2   21            Kano         Kano

3   29            Abia      Umuahia

4   25           Benue      Makurdi

We can also add a new DataFrame column by computing some function on another 

column. Let’s take an example by adding a column computing the absolute difference of 

the ages from their mean.

mean_of_age = my_DF['age'].mean()

my_DF['diff_age'] = my_DF['age'].map(lambda x: abs(x-mean_of_age))

my_DF

'Output':

   age state_of_origin  diff_age

0   15           Lagos       6.4

1   17     Cross River       4.4

2   21            Kano       0.4

3   29            Abia       7.6

4   25           Benue       3.6

Typically in practice, a fully formed dataset is converted into Pandas for cleaning and 

data analysis, which does not ideally involve adding a new observation to the dataset. 

But in the event that this is desired, we can use the append() method to achieve this. 

However, it may not be a computationally efficient action. Let’s see an example.

# show dataframe

my_DF = pd.DataFrame({'age': [15,17,21,29,25], \

             'state_of_origin':['Lagos', 'Cross River', 'Kano', 'Abia', 

'Benue']})

my_DF
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'Output':

   age state_of_origin

0   15           Lagos

1   17     Cross River

2   21            Kano

3   29            Abia

4   25           Benue

# add a row to data frame

my_DF = my_DF.append(pd.Series([30 , 'Osun'], index=my_DF.columns), \

                                                        ignore_index=True)

my_DF

'Output':

   age state_of_origin

0   15           Lagos

1   17     Cross River

2   21            Kano

3   29            Abia

4   25           Benue

5   30            Osun

We observe that adding a new row involves passing to the append method, a Series 

object with the index attribute set to the columns of the main DataFrame. Since typically, 

in given datasets, the index is nothing more than the assigned defaults, we set the 

attribute ignore_index to create a new set of default index values with the new row(s).

 Data Alignment
Pandas utilizes data alignment to align indices when performing some binary arithmetic 

operation on DataFrames. If two or more DataFrames in an arithmetic operation do not 

share a common index, a NaN is introduced denoting missing data. Let’s see examples 

of this.

# create a 3x3 dataframe - remember randint(low, high, size)

df_A = pd.DataFrame(np.random.randint(1,10,[3,3]),\

            columns=['First','Second','Third'])

df_A
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'Output':

   First  Second  Third

0      2       3      9

1      8       7      7

2      8       6      4

# create a 4x3 dataframe

df_B = pd.DataFrame(np.random.randint(1,10,[4,3]),\

            columns=['First','Second','Third'])

df_B

'Output':

   First  Second  Third

0      3       6      3

1      2       2      1

2      9       3      8

3      2       9      2

# add df_A and df_B together

df_A + df_B

'Output':

   First  Second  Third

0    5.0     9.0   12.0

1   10.0     9.0    8.0

2   17.0     9.0   12.0

3    NaN     NaN    NaN

# divide both dataframes

df_A / df_B

'Output':

      First  Second  Third

0  0.666667     0.5    3.0

1  4.000000     3.5    7.0

2  0.888889     2.0    0.5

3       NaN     NaN    NaN

If we do not want a NaN signifying missing values to be imputed, we can use the 

fill_value attribute to substitute with a default value. However, to take advantage of the 

fill_value attribute, we have to use the Pandas arithmetic methods: add(), sub(), mul(), 

Chapter 11  pandas



131

div(), floordiv(), mod(), and pow() for addition, subtraction, multiplication, integer 

division, numeric division, remainder division, and exponentiation. Let’s see examples.

df_A.add(df_B, fill_value=10)

'Output':

   First  Second  Third

0    5.0     9.0   12.0

1   10.0     9.0    8.0

2   17.0     9.0   12.0

3   12.0    19.0   12.0

 Combining Datasets
We may need to combine two or more datasets together; Pandas provides methods for 

such operations. We would consider the simple case of combining data frames with 

shared column names using the concat method.

# combine two dataframes column-wise

pd.concat([df_A, df_B])

'Output':

   First  Second  Third

0      2       3      9

1      8       7      7

2      8       6      4

0      3       6      3

1      2       2      1

2      9       3      8

3      2       9      2

Observe that the concat method preserves indices by default. We can also 

concatenate or combine two dataframes by rows (or horizontally). This is done by setting 

the axis parameter to 1.

# combine two dataframes horizontally

pd.concat([df_A, df_B], axis=1)
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'Output':

Out[246]:

   First  Second  Third  First  Second  Third

0    2.0     3.0    9.0      3       6      3

1    8.0     7.0    7.0      2       2      1

2    8.0     6.0    4.0      9       3      8

3    NaN     NaN    NaN      2       9      2

 Handling Missing Data
Dealing with missing data is an integral part of the data cleaning/data analysis process. 

Moreover, some machine learning algorithms will not work in the presence of missing 

data. Let’s see some simple Pandas methods for identifying and removing missing data, 

as well as imputing values into missing data.

 Identifying Missing Data
In this section, we’ll use the isnull() method to check if missing cells exist in a 

DataFrame.

# let's create a data frame with missing data

my_DF = pd.DataFrame({'age': [15,17,np.nan,29,25], \

             'state_of_origin':['Lagos', 'Cross River', 'Kano',  

'Abia', np.nan]})

my_DF

'Output':

    age state_of_origin

0  15.0           Lagos

1  17.0     Cross River

2   NaN            Kano

3  29.0            Abia

4  25.0             NaN

Let’s check for missing data in this data frame. The isnull() method will return True 

where there is a missing data, whereas the notnull() function returns False.
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my_DF.isnull()

'Output':

     age  state_of_origin

0  False            False

1  False            False

2   True            False

3  False            False

4  False             True

However, if we want a single answer (i.e., either True or False) to report if there is a 

missing data in the data frame, we will first convert the DataFrame to a NumPy array and 

use the function any().

The any function returns True when at least one of the elements in the dataset is 

True. In this case, isnull() returns a DataFrame of booleans where True designates a cell 

with a missing value.

Let’s see how that works.

my_DF.isnull().values.any()

'Output':  True

 Removing Missing Data
Pandas has a function dropna() which is used to filter or remove missing data from 

a DataFrame. dropna() returns a new DataFrame without missing data. Let’s see 

examples of how this works.

# let's see our dataframe with missing data

my_DF = pd.DataFrame({'age': [15,17,np.nan,29,25], \

             'state_of_origin':['Lagos', 'Cross River', 'Kano',  

'Abia', np.nan]})

my_DF

'Output':

    age state_of_origin

0  15.0           Lagos

1  17.0     Cross River

2   NaN            Kano

3  29.0            Abia

4  25.0             NaN
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# let's run dropna() to remove all rows with missing values

my_DF.dropna()

'Output':

    age state_of_origin

0  15.0           Lagos

1  17.0     Cross River

3  29.0            Abia

As we will observe from the preceding code block, dropna() drops all rows that 

contain a missing value. But we may not want that. We may rather, for example, 

want to drop columns with missing data or drop rows where all the observations are 

missing or better still remove consequent on the number of observations present in a 

particular row.

Let’s see examples of this option. First let’s expand our example dataset.

my_DF = pd.DataFrame({ 'Capital': ['Yola', np.nan, np.nan, 'Port-Harcourt', 

'Jalingo'],

 'Population': [3178950, np.nan, 2321339, np.nan, 2294800],

 'State': ['Adamawa', np.nan, 'Yobe', np.nan, 'Taraba'],

 'LGAs': [22, np.nan, 17, 23, 16]})

my_DF

'Output':

         Capital  LGAs  Population    State

0           Yola  22.0   3178950.0  Adamawa

1            NaN   NaN         NaN      NaN

2            NaN  17.0   2321339.0     Yobe

3  Port-Harcourt  23.0         NaN      NaN

4        Jalingo  16.0   2294800.0   Taraba

Drop columns with NaN. This option is not often used in practice.

my_DF.dropna(axis=1)

'Output':

Empty DataFrame

Columns: []

Index: [0, 1, 2, 3, 4]
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Drop rows where all the observations are missing.

my_DF.dropna(how='all')

'Output':

         Capital  LGAs  Population    State

0           Yola  22.0   3178950.0  Adamawa

2            NaN  17.0   2321339.0     Yobe

3  Port-Harcourt  23.0         NaN      NaN

4        Jalingo  16.0   2294800.0   Taraba

Drop rows based on an observation threshold. By adjusting the thresh attribute, we 

can drop rows where the number of observations in the row is less than the thresh value.

# drop rows where number of NaN is less than 3

my_DF.dropna(thresh=3)

'Output':

   Capital  LGAs  Population    State

0     Yola  22.0   3178950.0  Adamawa

2      NaN  17.0   2321339.0     Yobe

4  Jalingo  16.0   2294800.0   Taraba

 Imputing Values into Missing Data
Imputing values as substitutes for missing data is a standard practice in preparing data 

for machine learning. Pandas has a fillna() function for this purpose. A simple approach 

is to fill NaNs with zeros.

my_DF.fillna(0) # we can also run my_DF.replace(np.nan, 0)

'Output':

         Capital  LGAs  Population    State

0           Yola  22.0   3178950.0  Adamawa

1              0   0.0         0.0        0

2              0  17.0   2321339.0     Yobe

3  Port-Harcourt  23.0         0.0        0

4        Jalingo  16.0   2294800.0   Taraba
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Another tactic is to fill missing values with the mean of the column value.

my_DF.fillna(my_DF.mean())

'Output':

         Capital  LGAs  Population    State

0           Yola  22.0   3178950.0  Adamawa

1            NaN  19.5   2598363.0      NaN

2            NaN  17.0   2321339.0     Yobe

3  Port-Harcourt  23.0   2598363.0      NaN

4        Jalingo  16.0   2294800.0   Taraba

 Data Aggregation (Grouping)
We will touch briefly on a common practice in data science, and that is grouping a set 

of data attributes, either for retrieving some group statistics or applying a particular set 

of functions to the group. Grouping is commonly used for data exploration and plotting 

graphs to understand more about the dataset. Missing data are automatically excluded 

in a grouping operation.

Let’s see examples of how this works.

# create a data frame

my_DF = pd.DataFrame({'Sex': ['M', 'F', 'M', 'F','M', 'F','M', 'F'],

 'Age': np.random.randint(15,60,8),

 'Salary': np.random.rand(8)*10000})

my_DF

'Output':

   Age       Salary Sex

0   54  6092.596170   M

1   57  3148.886141   F

2   37  5960.916038   M

3   23  6713.133849   F

4   34  5208.240349   M

5   25  2469.118934   F

6   50  1277.511182   M

7   54  3529.201109   F
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Let’s find the mean age and salary for observations in our dataset grouped by Sex.

my_DF.groupby('Sex').mean()

'Output':

       Age       Salary

Sex

F    39.75  3965.085008

M    43.75  4634.815935

We can group by more than one variable. In this case for each Sex group, also group 

the age and find the mean of the other numeric variables.

my_DF.groupby([my_DF['Sex'], my_DF['Age']]).mean()

'Output':

              Salary

Sex Age

F   23   6713.133849

    25   2469.118934

    54   3529.201109

    57   3148.886141

M   34   5208.240349

    37   5960.916038

    50   1277.511182

    54   6092.596170

Also, we can use a variable as a group key to run a group function on another 

variable or sets of variables.

my_DF['Age'].groupby(my_DF['Salary']).mean()

'Output':

Salary

1277.511182    50

2469.118934    25

3148.886141    57

3529.201109    54

5208.240349    34

5960.916038    37
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6092.596170    54

6713.133849    23

Name: Age, dtype: int64

 Statistical Summaries
Descriptive statistics is an essential component of the data science pipeline. By 

investigating the properties of the dataset, we can gain a better understanding of the 

data and the relationship between the variables. This information is useful in making 

decisions about the type of data transformations to carry out or the types of learning 

algorithms to spot check. Let’s see some examples of simple statistical functions in 

Pandas.

First, we’ll create a Pandas dataframe.

my_DF = pd.DataFrame(np.random.randint(10,80,[7,4]),\

            columns=['First','Second','Third', 'Fourth'])

'Output':

   First  Second  Third  Fourth

0     47      32     66      52

1     37      66     16      22

2     24      16     63      36

3     70      47     62      12

4     74      61     44      18

5     65      73     21      37

6     44      47     23      13

Use the describe function to obtain summary statistics of a dataset. Eight statistical 

measures are displayed. They are count, mean, standard deviation, minimum value, 

25th percentile, 50th percentile or median, 75th percentile, and the maximum value.

my_DF.describe()

'Output':

           First     Second      Third     Fourth

count   7.000000   7.000000   7.000000   7.000000

mean   51.571429  48.857143  42.142857  27.142857

std    18.590832  19.978560  21.980511  14.904458

min    24.000000  16.000000  16.000000  12.000000

Chapter 11  pandas



139

25%    40.500000  39.500000  22.000000  15.500000

50%    47.000000  47.000000  44.000000  22.000000

75%    67.500000  63.500000  62.500000  36.500000

max    74.000000  73.000000  66.000000  52.000000

 Correlation
Correlation shows how much relationship exists between two variables. Parametric 

machine learning methods such as logistic and linear regression can take a performance 

hit when variables are highly correlated. The correlation values range from –1 to 1, with 

0 indicating no correlation at all. –1 signifies that the variables are strongly negatively 

correlated, while 1 shows that the variables are strongly positively correlated. In practice, 

it is safe to eliminate variables that have a correlation value greater than –0.7 or 0.7. A 

common correlation estimate in use is the Pearson’s correlation coefficient.

my_DF.corr(method='pearson')

'Output':

           First    Second     Third    Fourth

First   1.000000  0.587645 -0.014100 -0.317333

Second  0.587645  1.000000 -0.768495 -0.345265

Third  -0.014100 -0.768495  1.000000  0.334169

Fourth -0.317333 -0.345265  0.334169  1.000000

 Skewness
Another important statistical metric is the skewness of the dataset. Skewness is when a 

bell-shaped or normal distribution is shifted toward the right or the left. Pandas offers a 

convenient function called skew() to check the skewness of each variable. Values close 

to 0 are more normally distributed with less skew.

my_DF.skew()

'Output':

First    -0.167782

Second   -0.566914

Third    -0.084490

Fourth    0.691332

dtype: float64
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 Importing Data
Again, getting data into the programming environment for analysis is a fundamental and 

first step for any data analytics or machine learning task. In practice, data usually comes 

in a comma-separated value, csv, format.

my_DF = pd.read_csv('link_to_file/csv_file', sep=',', header = None)

To export a DataFrame back to csv

my_DF.to_csv('file_name.csv')

For the next example, the dataset ‘states.csv’ is found in the chapter folder of the 

code repository of this book.

my_DF = pd.read_csv('states.csv', sep=',', header = 0)

# read the top 5 rows

my_DF.head()

# save DataFrame to csv

my_DF.to_csv('save_states.csv')

 Timeseries with Pandas
One of the core strengths of Pandas is its powerful set of functions for manipulating 

timeseries datasets. A couple of these functions are covered in this material.

 Importing a Dataset with a DateTime Column
When importing a dataset that has a column containing datetime entries, Pandas has an 

attribute in the read_csv method called parse_dates that converts the datetime column 

from strings into Pandas date datatype. The attribute index_col uses the column of 

datetimes as an index to the DataFrame.

The method head() prints out the first five rows of the DataFrame, while the method 

tail() prints out the last five rows of the DataFrame. This function is very useful for taking 

a peek at a large DataFrame without having to bear the computational cost of printing it 

out entirely.
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# load the data

data =  pd.read_csv('crypto-markets.csv', parse_dates=['date'], index_

col='date')

data.head()

'Output':

  slug date  symbol name  ranknow     open    high     low   close    

volume   market    close_ratio  spread

2013-04-28  bitcoin BTC Bitcoin 1   135.30  135.98  132.10  134.21   

     0   1500520000     0.5438    3.88

2013-04-29  bitcoin BTC Bitcoin 1   134.44  147.49  134.00  144.54   

     0   1491160000     0.7813   13.49

2013-04-30  bitcoin BTC Bitcoin 1   144.00  146.93  134.05  139.00   

     0   1597780000     0.3843   12.88

2013-05-01  bitcoin BTC Bitcoin 1   139.00  139.89  107.72  116.99   

     0   1542820000     0.2882   32.17

2013-05-02  bitcoin BTC Bitcoin 1   116.38  125.60  92.28   105.21   

     0   1292190000     0.3881   33.32

Let’s examine the index of the imported data. Notice that they are the datetime 

entries.

# get the row indices

data.index

'Output':

DatetimeIndex(['2013-04-28', '2013-04-29', '2013-04-30', '2013-05-01',

               '2013-05-02', '2013-05-03', '2013-05-04', '2013-05-05',

               '2013-05-06', '2013-05-07',

               ...

               '2018-01-01', '2018-01-02', '2018-01-03', '2018-01-04',

               '2018-01-05', '2018-01-06', '2018-01-07', '2018-01-08',

               '2018-01-09', '2018-01-10'],

               dtype='datetime64[ns]', name='date', length=659373, 

freq=None)
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 Selection Using DatetimeIndex
The DatetimeIndex can be used to select the observations of the dataset in various 

interesting ways. For example, we can select the observation of an exact day or the 

observations belonging to a particular month or year. The selected observation can be 

subsetted by columns and grouped to give more insight in understanding the dataset.

Let’s see some examples.

 Select a Particular Date

Let’s select a particular date from a DataFrame.

# select a particular date

data['2018-01-05'].head()

'Output':

                    slug  symbol         name  ranknow      open   high  \

date

2018-01-05       bitcoin    BTC       Bitcoin        1  15477.20  17705.20

2018-01-05      ethereum    ETH      Ethereum        2    975.75   1075.39

2018-01-05        ripple    XRP        Ripple        3      3.30      3.56

2018-01-05  bitcoin-cash    BCH  Bitcoin Cash        4   2400.74   2648.32

2018-01-05       cardano    ADA       Cardano        5      1.17      1.25

                     low         close       volume     market  \

date

2018-01-05  15202.800000  17429.500000  23840900000  259748000000

2018-01-05    956.330000    997.720000   6683150000   94423900000

2018-01-05      2.830000      3.050000   6288500000  127870000000

2018-01-05   2370.590000   2584.480000   2115710000   40557600000

2018-01-05      0.903503      0.999559    508100000   30364400000

            close_ratio   spread

date

2018-01-05       0.8898  2502.40

2018-01-05       0.3476   119.06

2018-01-05       0.3014     0.73

2018-01-05       0.7701   277.73

2018-01-05       0.2772     0.35
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# select a range of dates

data['2018-01-05':'2018-01-06'].head()

'Output':

                slug symbol     name  ranknow      open      high    low  \

date

2018-01-05  bitcoin    BTC   Bitcoin        1  15477.20  17705.20  15202.80

2018-01-06  bitcoin    BTC   Bitcoin        1  17462.10  17712.40  16764.60

2018-01-05  ethereum   ETH  Ethereum        2    975.75   1075.39    956.33

2018-01-06  ethereum   ETH  Ethereum        2    995.15   1060.71    994.62

2018-01-05  ripple     XRP    Ripple        3      3.30      3.56      2.83

               close       volume        market  close_ratio   spread

date

2018-01-05  17429.50  23840900000  259748000000       0.8898  2502.40

2018-01-06  17527.00  18314600000  293091000000       0.8044   947.80

2018-01-05    997.72   6683150000   94423900000       0.3476   119.06

2018-01-06   1041.68   4662220000   96326500000       0.7121    66.09

2018-01-05      3.05   6288500000  127870000000       0.3014     0.73

 Select a Month

Let’s select a particular month from a DataFrame.

# select a particular month

data['2018-01'].head()

'Output':

               slug    symbol     name  ranknow     open     high     low \

date

2018-01-01  bitcoin      BTC   Bitcoin        1  14112.2  14112.2   13154.7

2018-01-02  bitcoin      BTC   Bitcoin        1  13625.0  15444.6   13163.6

2018-01-03  bitcoin      BTC   Bitcoin        1  14978.2  15572.8   14844.5

2018-01-04  bitcoin      BTC   Bitcoin        1  15270.7  15739.7   14522.2

2018-01-05  bitcoin      BTC   Bitcoin        1  15477.2  17705.2   15202.8
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              close       volume        market  close_ratio  spread

date

2018-01-01  13657.2  10291200000  236725000000       0.5248   957.5

2018-01-02  14982.1  16846600000  228579000000       0.7972  2281.0

2018-01-03  15201.0  16871900000  251312000000       0.4895   728.3

2018-01-04  15599.2  21783200000  256250000000       0.8846  1217.5

2018-01-05  17429.5  23840900000  259748000000       0.8898  2502.4

 Select a Year

Let’s select a particular year from a DataFrame.

# select a particular year

data['2018'].head()

'Output':

               slug symbol     name  ranknow     open     high  low  \

date

2018-01-01  bitcoin    BTC  Bitcoin        1  14112.2  14112.2  13154.7

2018-01-02  bitcoin    BTC  Bitcoin        1  13625.0  15444.6  13163.6

2018-01-03  bitcoin    BTC  Bitcoin        1  14978.2  15572.8  14844.5

2018-01-04  bitcoin    BTC  Bitcoin        1  15270.7  15739.7  14522.2

2018-01-05  bitcoin    BTC  Bitcoin        1  15477.2  17705.2  15202.8

              close       volume        market  close_ratio  spread

date

2018-01-01  13657.2  10291200000  236725000000       0.5248   957.5

2018-01-02  14982.1  16846600000  228579000000       0.7972  2281.0

2018-01-03  15201.0  16871900000  251312000000       0.4895   728.3

2018-01-04  15599.2  21783200000  256250000000       0.8846  1217.5

2018-01-05  17429.5  23840900000  259748000000       0.8898  2502.4

 Subset Data Columns and Find Summaries
Get the closing prices of Bitcoin stocks for the month of January.
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data.loc[data.slug == 'bitcoin', 'close']['2018-01']

'Output':

date

2018-01-01    13657.2

2018-01-02    14982.1

2018-01-03    15201.0

2018-01-04    15599.2

2018-01-05    17429.5

2018-01-06    17527.0

2018-01-07    16477.6

2018-01-08    15170.1

2018-01-09    14595.4

2018-01-10    14973.3

Find the mean market value of Ethereum for the month of January.

data.loc[data.slug == 'ethereum', 'market']['2018-01'].mean()

'Output':

96739480000.0

 Resampling Datetime Objects
A Pandas DataFrame with an index of DatetimeIndex, PeriodIndex, or TimedeltaIndex 

can be resampled to any of the date time frequencies from seconds, to minutes, to 

months. Let’s see some examples.

Let’s get the average monthly closing values for Litecoin.

data.loc[data.slug == 'bitcoin', 'close'].resample('M').mean().head()

'Output':

date

2013-04-30    139.250000

2013-05-31    119.993226

2013-06-30    107.761333

2013-07-31     90.512258

2013-08-31    113.905161

Freq: M, Name: close, dtype: float64
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Get the average weekly market value of Bitcoin Cash.

data.loc[data.symbol == 'BCH', 'market'].resample('W').mean().head()

'Output':

date

2017-07-23    0.000000e+00

2017-07-30    0.000000e+00

2017-08-06    3.852961e+09

2017-08-13    4.982661e+09

2017-08-20    7.355117e+09

Freq: W-SUN, Name: market, dtype: float64

 Convert to Datetime Datatype Using ‘to_datetime’
Pandas uses the to_datetime method to convert strings to Pandas datetime datatype. 

The to_datetime method is smart enough to infer a datetime representation from a 

string of dates passed with different formats. The default output format of to_datetime is 

in the following order: year, month, day, minute, second, millisecond, microsecond, 
nanosecond.

The input to to_datetime is recognized as month, day, year. Although, it can easily 

be modified by setting the attributes dayfirst or yearfirst to True.

For example, if dayfirst is set to True, the input is recognized as day, month, year.

Let’s see an example of this.

# create list of dates

my_dates =  ['Friday, May 11, 2018', '11/5/2018', '11-5-2018', '5/11/2018', 

'2018.5.11']

pd.to_datetime(my_dates)

'Output':

DatetimeIndex(['2018-05-11', '2018-11-05', '2018-11-05', '2018-05-11',

               '2018-05-11'],

              dtype='datetime64[ns]', freq=None)
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Let’s set dayfirst to True. Observe that the first input in the string is treated as a day in 

the output.

# set dayfirst to True

pd.to_datetime('5-11-2018', dayfirst = True)

'Output':

Timestamp('2018-11-05 00:00:00')

 The shift( ) Method
A typical step in a timeseries use case is to convert the timeseries dataset into a 

supervised learning framework for predicting the outcome for a given time instant. 

The shift() method is used to adjust a Pandas DataFrame column by shifting the 

observations forward or backward. If the observations are pulled backward (or lagged), 

NaNs are attached at the tail of the column. But if the values are pushed forward, the 

head of the column will contain NaNs. This step is important for adjusting the target 

variable of a dataset to predict outcomes n-days or steps or instances into the future. 

Let’s see some examples.

Subset columns for the observations related to Bitcoin Cash.

# subset a few columns

data_subset_BCH = data.loc[data.symbol == 'BCH', 

 ['open','high','low','close']]

data_subset_BCH.head()

'Output':

              open    high     low   close

date

2017-07-23  555.89  578.97  411.78  413.06

2017-07-24  412.58  578.89  409.21  440.70

2017-07-25  441.35  541.66  338.09  406.90

2017-07-26  407.08  486.16  321.79  365.82

2017-07-27  417.10  460.97  367.78  385.48

Now let’s create a target variable that contains the closing rates 3 days into the future.

data_subset_BCH['close_4_ahead'] = data_subset_BCH['close'].shift(-4)

data_subset_BCH.head()
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'Output':

              open    high     low   close  close_4_ahead

date

2017-07-23  555.89  578.97  411.78  413.06         385.48

2017-07-24  412.58  578.89  409.21  440.70         406.05

2017-07-25  441.35  541.66  338.09  406.90         384.77

2017-07-26  407.08  486.16  321.79  365.82         345.66

2017-07-27  417.10  460.97  367.78  385.48         294.46

Observe that the tail of the column close_4_head contains NaNs.

data_subset_BCH.tail()

'Output':

               open     high      low    close  close_4_ahead

date

2018-01-06  2583.71  2829.69  2481.36  2786.65        2895.38

2018-01-07  2784.68  3071.16  2730.31  2786.88            NaN

2018-01-08  2786.60  2810.32  2275.07  2421.47            NaN

2018-01-09  2412.36  2502.87  2346.68  2391.56            NaN

2018-01-10  2390.02  2961.20  2332.48  2895.38            NaN

 Rolling Windows
Pandas provides a function called rolling() to find the rolling or moving statistics of 

values in a column over a specified window. The window is the “number of observations 

used in calculating the statistic.” So we can find the rolling sums or rolling means of a 

variable. These statistics are vital when working with timeseries datasets. Let’s see some 

examples.

Let’s find the rolling means for the closing variable over a 30-day window.

# find the rolling means for Bitcoin cash

rolling_means = data_subset_BCH['close'].rolling(window=30).mean()

The first few values of the rolling_means variable contain NaNs because the method 

computes the rolling statistic from the earliest time to the latest time in the dataset. Let’s 

print out the first five values using the head method.
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rolling_means.head()

Out[75]:

date

2017-07-23   NaN

2017-07-24   NaN

2017-07-25   NaN

2017-07-26   NaN

2017-07-27   NaN

Now let’s observe the last five values using the tail method.

rolling_means.tail()

'Output':

date

2018-01-06    2403.932000

2018-01-07    2448.023667

2018-01-08    2481.737333

2018-01-09    2517.353667

2018-01-10    2566.420333

Name: close, dtype: float64

Let’s do a quick plot of the rolling means using the Pandas plotting function. The 

output of the plot is shown in Figure 11-2.

# plot the rolling means for Bitcoin cash

data_subset_BCH['close'].rolling(window=30).mean().plot(label='Rolling 

Average over 30 days')
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More on plotting in the next chapter.

Figure 11-2. Rolling average closing price over 30 days for Bitcoin Cash

Chapter 11  pandas



151
© Ekaba Bisong 2019 
E. Bisong, Building Machine Learning and Deep Learning Models on Google Cloud Platform,  
https://doi.org/10.1007/978-1-4842-4470-8_12

CHAPTER 12

Matplotlib and Seaborn
It is critical to be able to plot the observations and variables of a dataset before subjecting 

the dataset to some machine learning algorithm or another. Data visualization is 

essential to understand your data and to glean insights into the underlying structure of 

the dataset. These insights help the scientist in deciding with statistical analysis or which 

learning algorithm is more appropriate for the given dataset. Also, the scientist can get 

ideas on suitable transformations to apply to the dataset.

In general, visualization in data science can conveniently be split into univariate 

and multivariate data visualizations. Univariate data visualization involves plotting 

a single variable to understand more about its distribution and structure, while 

multivariate plots expose the relationship and structure between two or more variables.

 Matplotlib and Seaborn
Matplotlib is a graphics package for data visualization in Python. Matplotlib has arisen 

as a key component in the Python data science stack and is well integrated with NumPy 

and Pandas. The pyplot module mirrors the MATLAB plotting commands closely. 

Hence, MATLAB users can easily transit to plotting with Python.

Seaborn, on the other hand, extends the Matplotlib library for creating beautiful 

graphics with Python using a more straightforward set of methods. Seaborn is more 

integrated for working with Pandas DataFrames. We will go through creating simple 

essential plots with Matplotlib and seaborn.

 Pandas Plotting Methods
Pandas also has a robust set of plotting functions which we will also use for visualizing 

our dataset. The reader will observe how we can easily convert datasets from NumPy to 

Pandas and vice versa to take advantage of one functionality or the other. The plotting 

features of Pandas are found in the plotting module.
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There are many options and properties for working with matplotlib, seaborn, 

and pandas.plotting functions for data visualization, but as is the theme of 

this material, the goal is to keep it simple and give the reader just enough to be 

dangerous. Deep competency comes with experience and continuous usage. These 

cannot really be taught.

To begin, we will load Matplotlib by importing the pyplot module from the 

matplotlib package and the seaborn package.

import matplotlib.pyplot as plt

import seaborn as sns

We’ll also import the numpy and pandas packages to create our datasets.

import pandas as pd

import numpy as np

 Univariate Plots
Some common and essential univariate plots are line plots, bar plots, histograms and 

density plots, and the box and whisker plot, to mention just a few.

 Line Plot
Let’s plot a sine graph of 100 points from the negative to positive exponential range. The 

plot method allows us to plot lines or markers to the figure. The outputs of the sine and 

cosine line plot are shown in Figure 12-1 and Figure 12-2, respectively.

data = np.linspace(-np.e, np.e, 100, endpoint=True)

# plot a line plot of the sine wave

plt.plot(np.sin(data))

plt.show()

# plot a red cosine wave with dash and dot markers

plt.plot(np.cos(data), 'r-.')

plt.show()

Chapter 12  Matplotlib and Seaborn
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Figure 12-1. Lineplot with Matplotlib

Figure 12-2. Lineplot with seaborn

Chapter 12  Matplotlib and Seaborn
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 Bar Plot
Let’s create a simple bar plot using the bar method. The output with matplotlib is shown 

in Figure 12-3, and the output with seaborn is shown in Figure 12-4.

states = ["Cross River", "Lagos", "Rivers", "Kano"]

population = [3737517, 17552940, 5198716, 11058300]

# create barplot using matplotlib

plt.bar(states, population)

plt.show()

# create barplot using seaborn

sns.barplot(x=states, y=population)

plt.show()

Figure 12-3. Barplot with Matplotlib
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 Histogram/Density Plots
Histogram and density plots are essential for examining the statistical distribution of 

a variable. For a simple histogram, we’ll create a set of 100,000 points from the normal 

distribution. The outputs with matplotlib and seaborn are shown in Figure 12-5 and 

Figure 12-6, respectively.

# create 100000 data points from the normal distributions

data = np.random.randn(100000)

# create a histogram plot

plt.hist(data)

plt.show()

# crate a density plot using seaborn

my_fig = sns.distplot(data, hist=False)

plt.show()

Figure 12-4. Barplot with seaborn
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Figure 12-5. Histogram with Matplotlib

Figure 12-6. Histogram with seaborn
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 Box and Whisker Plots
Boxplot, also popularly called box and whisker plot, is another useful visualization 

technique for gaining insights into the underlying data distribution. The boxplot draws 

a box with the upper line representing the 75th percentile and the lower line the 25th 

percentile. A line is drawn at the center of the box indicating the 50th percentile or median 

value. The whiskers at both ends give an estimation of the spread or variance of the data 

values. The dots at the tail end of the whiskers represent possible outlier values. The 

outputs with matplotlib and seaborn are shown in Figure 12-7 and Figure 12-8, respectively.

# create data points

data = np.random.randn(1000)

## box plot with matplotlib

plt.boxplot(data)

plt.show()

## box plot with seaborn

sns.boxplot(data)

plt.show()

Figure 12-7. Boxplot with Matplotlib
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 Multivariate Plots
Common multivariate visualizations include the scatter plot and its extension the 

pairwise plot, parallel coordinate plots, and the covariance matrix plot.

 Scatter Plot
Scatter plot exposes the relationships between two variables in a dataset. The outputs 

with matplotlib and seaborn are shown in Figure 12-9 and Figure 12-10, respectively.

# create the dataset

x = np.random.sample(100)

y = 0.9 * np.asarray(x) + 1 + np.random.uniform(0,0.8, size=(100,))

# scatter plot with matplotlib

Figure 12-8. Boxplot with seaborn
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plt.scatter(x,y)

plt.xlabel("x")

plt.ylabel("y")

plt.show()

# scatter plot with seaborn

sns.regplot(x=x, y=y, fit_reg=False)

plt.xlabel("x")

plt.ylabel("y")

plt.show()

Figure 12-9. Scatter plot with Matplotlib
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 Pairwise Scatter Plot
Pairwise scatter plot is an effective window for visualizing the relationships among 

multiple variables within the same plot. However, with higher-dimension datasets, 

the plot may become clogged up, so use it with care. Let’s see an example of this with 

Matplotlib and seaborn.

Here, we will use the method scatter_matrix, one of the plotting functions in Pandas 

to graph a pairwise scatter plot matrix. The outputs with matplotlib and seaborn are 

shown in Figure 12-11 and Figure 12-12, respectively.

# create the dataset

data = np.random.randn(1000,6)

# using Pandas scatter_matrix

pd.plotting.scatter_matrix(pd.DataFrame(data), alpha=0.5, figsize=(12, 12), 

diagonal='kde')

plt.show()

Figure 12-10. Scatter plot with seaborn
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# pairwise scatter with seaborn

sns.pairplot(pd.DataFrame(data))

plt.show()

Figure 12-11. Pairwise scatter plot with Pandas
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 Correlation Matrix Plots
Again, correlation shows how much relationship exists between two variables. By 

plotting the correlation matrix, we get a visual representation of which variables in the 

dataset are highly correlated. Remember that parametric machine learning methods 

such as logistic and linear regression can take a performance hit when variables are 

Figure 12-12. Pairwise scatter plot with seaborn
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highly correlated. Also, in practice, the correlation values that are greater than –0.7 or 

0.7 are for the most part highly correlated. The outputs with matplotlib and seaborn are 

shown in Figure 12-13 and Figure 12-14, respectively.

# create the dataset

data = np.random.random([1000,6])

# plot covariance matrix using the Matplotlib matshow function

fig = plt.figure()

ax = fig.add_subplot(111)

my_plot = ax.matshow(pd.DataFrame(data).corr(), vmin=-1, vmax=1)

fig.colorbar(my_plot)

plt.show()

Figure 12-13. Correlation matrix with Matplotlib
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# plot covariance matrix with seaborn heatmap function

sns.heatmap(pd.DataFrame(data).corr(), vmin=-1, vmax=1)

plt.show()

 Images
Matplotlib is also used to visualize images. This process is utilized when visualizing a 

dataset of image pixels. You will observe that image data is stored in the computer as 

an array of pixel intensity values ranging from 0 to 255 across three bands for colored 

images.

img = plt.imread('nigeria-coat-of-arms.png')

# check image dimension

img.shape

'Output': (232, 240, 3)

Figure 12-14. Correlation matrix with seaborn
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Note that the image contains 232 rows and 240 columns of pixel values across three 

channels (i.e., red, green, and blue).

Let’s print the first row of the columns in the first channel of our image data. 

Remember that each pixel is an intensity value from 0 to 255. Values closer to 0 are black, 

while those closer to 255 are white. The output is shown in Figure 12-15.

img[0,:,0]

'Output':

array([0., 0., 0., ..., 0., 0., 0.], dtype=float32)

Now let’s plot the image.

# plot image

plt.imshow(img)

plt.show()

Figure 12-15. Nigeria Coat of Arms

This chapter completes Part 2 of this book, which provides the foundation to 

programming for data science using the Python data science stack. In the next segment, 

Part 3, containing Chapters 13–17, we will provide an introduction to the field of 

machine learning.
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CHAPTER 13

What Is Machine 
Learning?
Machine learning as a field grew out of the need to get computers to solve problems that 

are difficult to program as a sequence of instructions. Take, for example, that we want 

a computer to perform the task of recognizing faces in an image. One will realize that it 

is incredibly complicated, if not impossible to develop a precise instruction set that will 

satisfactorily perform this task. However, by drawing from the observation that humans 

improve on performing complex functions from past experiences, we can then attempt 

to develop algorithms and methods that enable the computer to establish a system for 

solving complex tasks based off prior experiences without being explicitly programmed. 

The set of methods and algorithms for discovering patterns in data is what is known as 

machine learning.

Two classical definitions of machine learning are that of Arthur Samuel in 1956 

who described machine learning as “the ability for computers to learn without being 

explicitly programmed” and Tom Mitchell in 1997 who defined machine learning as "the 

process of teaching a computer to perform a particular task by improving its measure of 

performance with experience.”

Machine learning is an interdisciplinary field of study that brings together 

techniques from the fields of computer science, statistics, mathematics, and the 

cognitive sciences which include biology, psychology, and linguistics, to mention just a 

few. While the idea of learning from data has been around the academic community for 

several decades, its entry into the mainstream technology industry began in the early 

2000s. This growth coincided with the rise of humongous data as a result of the web 

explosion as people started sharing data over the Internet.
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 The Role of Data
Data is at the core of machine learning. It is central to the current evolution and further 

advancement of this field. Just as it is for humans, it is the same way for machines. 

Learning is not possible without data.

Humans learn how to perform tasks by collecting information from the 

Environment. This information is the data the brain uses to construct patterns and 

gain an understanding of the Environment. For a human being, data is captured 

through the sense organs. For example, the eyes capture visual data, the ears capture 

auditory data, the skin receives tactile data, while the nose and tongue detect olfactory 

and taste data, respectively.

As with humans, this same process of learning from data is replicated with 

machines. Let’s take, for example, the task of identifying spam emails. In this example, 

the computer is provided email examples as data. It then uses an algorithm to learn to 

distinguish spam emails from regular emails.

 The Cost of Data
Data is expensive to collect, and high-quality data is even more costly to capture due 

to the associated costs in storing and cleaning the data. Over the years, the paucity of 

data had limited the performance of machine learning methods. However, in the early 

1990s, the Internet was born, and by the dawn of the century, it became a super highway 

for data distribution. As a result, large and diverse data became readily available for the 

research and development of machine learning products across various domains.

In this chapter, we covered the definition and history of machine learning and the 

importance of data. Next, we will take it further by discussing the principles of machine 

learning in Chapter 14.

Chapter 13  What Is MaChIne LearnIng?
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CHAPTER 14

Principles of Learning
Machine learning is, for the most part, sub-divided into three components based on the 

approach to the learning problem. The three predominant categories of learning are the 

supervised, unsupervised, and reinforcement learning schemes. In this chapter, we will 

go over supervised learning schemes in detail and also touch upon unsupervised and 

reinforcement learning schemes to a lesser extent.

The focus on supervised learning is for a variety of reasons. Firstly, they are the 

predominant techniques used for building machine learning products in industry; 

secondly, as you will soon learn, they are easy to ground truth and assess their 

performances before being deployed as part of a large-scale production pipeline. Let’s 

examine each of the three schemes.

 Supervised Learning
To easily understand the concept of supervised learning, let’s revisit the problem of 

identifying spam emails from a set of emails. We will use this example to understand 

key concepts that are central to the definition and the framing of a supervised learning 

problem, and they are

• Features

• Samples

• Targets

For this contrived example, let’s assume that we have a dictionary of the top 4 words 

in the set of emails and we record the frequency of occurrence for each email sample. 

This information is represented in a tabular format, where each feature is a column and 

the rows are email samples. This tabular representation is called a dataset. Figure 14-1 

illustrates this depiction.
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The fundamental concept behind supervised machine learning is that each sample 

is associated with a target variable, and the goal is to teach the computer to learn the 

patterns from the dataset features that results in a target as a prediction outcome. The 

columns of a dataset in machine learning are referred to as features; other names you 

may find commonly used are variables or attributes of the dataset, but in this book, we 

will use the term features to describe the measurement units of a data sample. Moreover, 

the samples of a dataset are also referred to as rows, data points, or observations, but we 

will use the term samples throughout this book.

Hence, in supervised learning, a set of features are used to build a learning model 

that will predict the outcome of a target variable as shown in Figure 14-1.

Next, we will cover important modeling considerations for building supervised 

learning models.

 Regression vs. Classification
In supervised learning, we typically have two types of modeling task, and they are 

regression and classification.

Figure 14-1. Dataset representation

Chapter 14  prinCiples of learning
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 Regression

The supervised learning problem is a regression task when the values of the target 

variable are real-valued numbers.

Let’s take, for example, that we are given a housing dataset and are asked to build a 

model that can predict the price of a house. The dataset, for example, has features such 

as the price of the house, the number of bedrooms, the number of bathrooms, and the 

total square feet. Let’s illustrate how this dataset will look like with a contrived example 

in Figure 14-2.

From the learning problem, the features of the dataset are the number of bedrooms, 

the number of bathrooms, and the square foot of the floor area, while the target feature 

is the price of the house. The use case presented in Figure 14-3 is framed as a regression 
task because the target feature is a real-valued number.

Figure 14-2. Regression problem: housing dataset
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 Classification

In a classification task, the target feature is a label denoting some sort of class 

membership. These labels are also called categorical variables, because they represent 

labels that belong to two or more categories. Also, no natural ordering exists between the 

categories or labels.

As an example, suppose we are given a dataset containing the heart disease 

diagnosis of patients, and we are asked to build a model to predict if a patient has a 

heart disease or not. Like the previous example, let’s assume the dataset has features 

blood pressure, cholesterol level, heart rate, and heart disease diagnosis. A contrived 

illustration of this example is shown in Figure 14-3.

Figure 14-3. Classification task: heart disease dataset
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From the table in Figure 14-3, the target variable denotes a class membership of 
heart disease or no heart disease; hence, the target is categorical and can be termed as 

a classification problem.

 How Do We Know that Learning Has Occurred?
This question is vital to determine if the learning algorithm can learn a useful pattern 

between the input features and the targets. Let’s create a scenario that will give us better 

insights into appraising the question of determining when learning has occurred.

Assume a teacher takes a physics class for 3 months, and at the end of each session, 

the teacher administers a test to ascertain if the student has learned anything.

Let’s consider two different scenarios the teacher might use in evaluating the students:

 1. The teacher evaluates the student with the exact word-for-word 

questions that were used as sample problems while teaching.

 2. The teacher evaluates the student with an entirely different but 

similar set of sample problems that are based on the principles 

taught in class.

In which of these subplots can the teacher ascertain that the student has learned? To 

figure this out, we must consider the two norms of learning:

 1. Memorization: In the first subplot, it will be incorrect for the 

teacher to form a basis for learning because the student has 

seen and most likely memorized the examples during the class 

sessions. Memorization is when the exact snapshot of a sample 

is stored for future recollection. Therefore, it is inaccurate to 

use samples used in training to carry out learning evaluation. In 

machine learning, this is known as data snooping.

 2. Generalization: In the second subplot, the teacher can be 

confident that the assessment serves as an accurate test to 

evaluate if the student has learned from the session. The ability to 

use the principles learned to solve previously unseen samples is 

known as generalization.

Hence, we can conclude that learning is the ability to generalize to previously 

unseen samples.

Chapter 14  prinCiples of learning
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 Training, Test, and Validation Datasets
The goal of supervised machine learning is to be able to predict or classify the targets on 

unseen examples correctly. We can misjudge the performance of our learning models if 

we evaluate the model performance with the same samples used to train the model as 

explained previously.

To properly evaluate the performance of a learning algorithm, we need to set aside 

some data for testing purposes. This held-out data is called a test set.

Another situation arises when we have trained the model on a dataset, and we 

now need to improve the performance of the model by adjusting some of the learning 

algorithm’s parameters.

We cannot use the test set for model tuning because if we do that, the model’s 

parameters are trained with the test dataset rendering it unusable as an unseen held-out 

sample for model evaluation. Hence, it is typical to divide the entire dataset into

• The training set (to train the model)

• The validation set (to tune the model)

• The test set (to evaluate the effectiveness of the model)

A common and straightforward strategy is to split 60% of the dataset for training, 

20% for validation, and the final 20% for testing. This strategy is popularly known as the 

60/20/20 rule. We will discuss more sophisticated methods for resampling (i.e., using 

subsets of available data) for machine learning later in this chapter. See Figure 14-4.

Chapter 14  prinCiples of learning
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 Bias vs. Variance Trade-Off
The concept of bias vs. variance is central to machine learning and is critical to 

understanding how the model is performing, as well as in suggesting the direction in 

which to improve the model.

A model is said to have high bias when it oversimplifies the learning problem 

or when the model fails to accurately capture the complex relationships that exist 

between the input features of the dataset. High bias makes the model unable to 

generalize to new examples.

Figure 14-4. Training, test, and validation set
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High variance, on the other hand, is when the model learns too closely the intricate 

patterns of the dataset input features, and in the process, it learns the irreducible noise 

of the dataset samples. When the learning algorithm learns very closely the patterns 

of the training samples, including the noise, it will fail to generalize when exposed to 

previously unseen data.

Hence, we observe that there is a need to strike the right balance between bias and 

variance, and often it is down to the skill of the model builder to discover this middle 

ground. However, there exists practical rules of thumb for finding the right trade-off 

between bias and variance.

 How Do We Recognize the Presence of Bias or Variance 
in the Results?

High bias is observed when the model performs poorly on the trained data. Of course, 

it will also perform poorly (or even worse) on the test data with high prediction errors. 

When high bias occurs, it can be said that the model has underfit the data. High variance 

is observed when the trained model learns the training data very well but performs 

poorly on unseen (test) data. In the event of high variance, we can say that the model has 

overfit the dataset.

The graph in Figure 14-5 illustrates the effect of bias and variance on the quality/

performance of a machine learning model. In Figure 14-6, the reader will observe that 

there is a sweet spot somewhere in the middle where the model has good performances 

on both the training and the test datasets.

Chapter 14  prinCiples of learning



179

To recap, our goal is to have a model that strikes a balance between high bias and 

high variance. Figure 14-6 provides further illustration on the effects of models with high 

bias and variance on a dataset. As seen in the image to the left of Figure 14-6, we want 

to have a model that can generalize to previously unseen example, such a model should 

have good prediction accuracy.

Figure 14-5. Bias and variance

Figure 14-6. Left: Good fit. Center: Underfit (high bias). Right: Overfit (high 
variance)

Chapter 14  prinCiples of learning



180

 Evaluating Model Quality
Evaluation metrics give us a way to quantitatively evaluate how well our model is 

performing. The model’s performance on the training data is evaluated to get the 

training set accuracy, while its performance on the test data is evaluated to get the test 

data accuracy when the model predicts the targets of previously unseen examples. 

Evaluation on test data helps us to know the true performance measure of our model.

The learning problem determines the type of evaluation metric to use. As an 

example, for regression prediction problems, it is common to use the root mean 

squared error (RMSE) to evaluate the magnitude of the error made by the model. For 

classification problems, one of the common evaluation metrics is to use a confusion 

matrix to get a picture of how many samples are correctly classified or misclassified. 

From the confusion matrix, it is possible to derive other useful metrics for evaluating 

classification problems such as accuracy, precision, and recall.

The following are the evaluation metrics for machine learning that we will consider 

in this text:

Classification

• Confusion matrix

• Area under ROC curve (AUC-ROC)

Regression

• Root mean squared error (RMSE)

• R-squared (R2)

Let’s go through each.

 Classification Evaluation Metrics

In this section, we’ll briefly explain performance metrics for classification machine 

learning tasks.

Confusion Matrix

The confusion matrix is a popular evaluation metric for gleaning insights into the 

performance of a classification supervised machine learning model. It is represented as 

a table with grid-like cells. In the case of a two-class classification problem, the columns 
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of the grid are the actual positive and negative class values of the target feature, while the 

rows are the predicted positive and negative class values of the targets. This is illustrated 

in Figure 14-7.

There are four primary values that can be gotten directly from examining the 

confusion matrix, and they are the true positive, the false positive, the true negative, 

and the false negative values. Let’s examine each of them briefly:

• True positive: True positive is the number of samples predicted to be 

positive (or true) when the actual class is positive.

• False positive: False positive is the number of samples predicted as 

positive (or true) when the actual class is negative.

• True negative: True negative is the number of samples predicted to 

be negative (or false) and the actual class is negative.

• False negative: False negative is the number of samples predicted to 

be negative (or false) when the actual class is positive.

From the four primary values, we have three other measures that provide more 

information on the performance of our model. These are accuracy, the positive 

predictive value (or precision), and sensitivity (or recall). Let’s explain them briefly:

• Accuracy: Accuracy is the fraction of correct predictions made by the 

learning algorithm. It is represented as the ratio of the sum of true 

positive, TP, and true negative, TN, to the total population.

Figure 14-7. Confusion matrix
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accuracy

TP TN

TP FP FN TN
=

+
+ + +  

• Precision or positive predictive value: Precision is the ratio of true 

positive, TP, to the sum of true positive, TP, and false positive, FP. 

In other words, precision measures the fraction of results that are 

correctly predicted as positive over all the results that the algorithm 

predicts as positive. The sum TP + FP is also called the predicted 

positive condition.

 
precision

TP

TP FP
=

+  

• Recall or sensitivity: Recall is the ratio of true positive, TP, to the sum 

of true positive, TP, and false negative, FN. In other words, recall 

retrieves the fraction of results that are correctly predicted as positive 

over all the results that are positive. The sum TP + FN is also known 

as condition positive.

 
recall

TP

TP FN
=

+  

To put this concept together, let’s revisit the example heart disease dataset. Suppose 

we are to predict if a patient will be diagnosed with a heart disease or not, assume 

we have 50 samples in the dataset, of which 20 are diagnosed with heart disease and 

the remaining 30 are not. Of the 30 samples that do not have a disease diagnosis, the 

learning algorithm rightly identifies 25, while of the 20 samples that have a disease 

diagnosis, the learning algorithm correctly identifies 15.

Let’s represent this information in a confusion matrix (see Figure 14-8) and calculate 

the necessary statistical measures to evaluate the algorithm performance.
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From the data in Figure 14-8, we can calculate the accuracy, precision, and recall.

• Accuracy =

 

15 25

15 5 5 25

40

50

4

5

+
+ + +

= =  

• Precision =

 

15

15 5

3

4+
=  

• Recall =

 

15

15 5

3

4+
=  

Hence, our algorithm is 80% accurate, with a precision of 75% and a recall of 75%.

Area Under the Receiver Operating Curve (AUC-ROC)

The area under the receiver operating characteristic (ROC) curve, also known as the 

AUC-ROC for short, is another widely used metric for evaluating classification machine 

learning problems. A significant feature of the AUC-ROC metric is that it can be a good 

metric for evaluating datasets with imbalanced classes.

Figure 14-8. Confusion matrix example
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An imbalanced class is when one of the outcome targets has far more samples than 

another target. A typical example of this can be seen in a fraud identification dataset 

where the samples of no fraud will be vastly more than the samples with fraud.

To better understand AUC-ROC, let us derive two (2) relevant formulas from our 

confusion matrix, and they are the True negative rate (TNR) (also known as specificity) 

and the False positive rate (also known as fall-out).

Specificity is the fraction of results that are correctly predicted as negative over all 

the results that are negative, whereas fall-out is the fraction of results that are wrongly 
predicted as positive over all the results that are negative. Fall-out is also represented as 

(1 – specificity).

This is further illustrated in Figure 14-9.

Figure 14-9. Specificity and fall-out

The ROC Space

The ROC or receiver operating characteristic space is a 2-D graph that plots the 

cumulative probability distribution of the sensitivity (i.e., the probability distribution of 

making the correct prediction) on the y axis and the cumulative probability distribution 

of the fall-out (i.e., the probability distribution of a false alarm) on the x axis.
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A few notable details about the ROC space is that

• The area of the square space is 1 because the x and y axes range from 

0 to 1, respectively.

• The diagonal line drawn from point (x = 0, y = 0) to (x = 1, y = 1) 

represented pure chance or a random guess. It is also known as the 

line of no discrimination.

These expressions are further illustrated in Figure 14-10.

Figure 14-10. Receiver operating characteristic (ROC) space
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The AUC-ROC Space

The ROC plot as shown in Figure 14-10 looks like a curve. So, the area under the curve, 

also known as AUC, is the area underneath the ROC curve. AUC provides a single 

floating-point number that describes the model’s performance, and it is interpreted as 

follows:

• An AUC value below 0.5 indicates that the model’s prediction is 

worse than a random guess of the targets.

• An AUC value closer to 1 signifies a model that is performing very 

well by generalizing to new examples on the test dataset.

A ROC curve that is closer to the top-left part of the ROC space (i.e., closer to the 

value 1) indicates that the model has a good classification accuracy.

The AUC-ROC curve is illustrated in Figure 14-11.

Figure 14-11. AUC-ROC curve
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 Regression Evaluation Metrics

In this section, we’ll go through some of the metrics for evaluating regression machine 

learning tasks.

Root Mean Squared Error (RMSE)

Root mean squared error also known as RMSE for short is an important evaluation 

metric in supervised machine learning for regression problems. RMSE computes the 

error difference between the original value of the target feature and the value predicted 

by the learning algorithm. RMSE is formally represented by the following formula:

 
RMSE

y y

n
i

n

i i=
-( )=å 1

2ˆ

 

where

• n is the number of samples in the dataset

• yi is the actual value of the target feature

• ŷi  is the target value predicted by the learning algorithm

Further notes on RMSE:

• Squaring the difference between the actual value and predicted 

value of the labels y yi i-( )ˆ 2
 gives the positive deviation (i.e., the 

magnitude) between the two numbers.

• Dividing by n gives the average of the sum of magnitudes. The square 

root returns the results in the same unit of measurement as the 

target feature.

An Example of Evaluation with RMSE

Assume we want to predict the price of houses (in thousands of Naira1), and we have the 

following dataset (see Figure 14-12).

1 Naira is the currency of Nigeria. It is also symbolized by the code NGN and the sign ₦.
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From the formula given, we calculate the RMSE as follows:
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The closer the RMSE is to 0, the better the performance of the model. Again, 

we are most interested in knowing the RMSE on the test data, as this gives us an 

accurate picture of the performance of our model. In this example, the error difference 

between the actual price and predicted price of houses made by our learning model is 

approximately NGN 910 (i.e., 0.91 ∗ 1000).

Figure 14-12. RMSE illustration
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Hence, we can calculate the percentage error as
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R-squared (R 2)

R-squared, written as R2, is another regression error metric that gives us a different 

perspective into the performance of a learned model. R2 is also known as the coefficient 
of determination. The goal of R2 is to tell us how much of the variance or the variability 

in the target feature, y, is explained or is captured by the model.

Recall that a model has high variance when it has learned closely the underlying 

structure of the targets in the dataset. Of course, we are mostly concerned with the R2 

metric on test data. We typically want the R2 value on test data to be high. It shows that 

our model generalizes well to new examples.

Interpretation of R 2

R2 outputs a value between 0 and 1. Values close to 0 show that variability in the 

responses are not properly captured by the model, while values close to 1 indicate that 

the model explains the variability in the observed values. R2 is calculated using the 

equation

 
R

RSS

TSS
2 1= -  

where

• RSS (i.e., the residual sum of squares) captures the error difference 

(or the variability) between the actual values and the values predicted 

by the learning algorithm. The formula is
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• TSS (i.e., the total sum of squares), on the other hand, calculates 

the variability in the response variable, y. So, for each observation 

in the dataset, we find the squared difference from the mean of all 

observation, y . The formula is

 
TSS y y
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• Hence, 
RSS

TSS
 gives us a ratio of how much of the variability in the 

response variable y is not explained by the model.

So, when we say 1-
RSS

TSS
, we reverse the definition to tell us the ratio of the 

variability in the response variable explained by the model.

An Example of Evaluating the Model Performance with R2

Using the dataset illustrated in Figure 14-12 and from the formula given earlier, we will 

calculate R2 as follows:
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while for TSS, we have that the mean of the response variable price, y , is
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The result shows that the model does a good job in capturing the variability in the 

target feature. Of course, we want to have such good performances on the test dataset.

 Resampling Techniques
This section describes another vital concept for evaluating the performance of 

supervised learning methods. Resampling methods are a set of techniques that involve 

selecting a subset of the available dataset, training on that data subset, and then using 

the remainder of the data to evaluate the trained model.

This process involves creating subsets of the available data into a training set and 

a validation set. The training set is used to train the model, while the validation set 

will evaluate the performance of the learned model on unseen data. Typically, this 

process will be carried out repeatedly to get an approximate measure of the training 

and test errors.

We will examine three techniques for data resampling and also give some examples 

of when to use a particular technique. The techniques we’ll examine are

• The validation set technique (or train-test split)

• The leave-one-out cross-validation (LOOCV) technique

• The k-fold cross-validation technique

 The Validation Set

The validation set is the simplest approach for data resampling, and it involves randomly 

dividing the dataset into two parts; these are the training set and the validation set. The 

division can be into two equal sets if you have a big enough dataset, or it could be a 60/40 

or 70/30 split.

After splitting, the model is trained on the training set, and its performance is 

evaluated on the validation set. This process is summarized in the list as follows:

 1. Randomly split the dataset into

• Training set

• Validation set

 2. Train the model on the training set.
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 3. Evaluate the model performance on the validation set using the 

appropriate error metric for a regression or classification problem.

 4. No. 1 to No. 3 can be repeated.

 5. Report the error metric to get the ensemble training and 

validation set error distribution.

A sample validation set is shown in Figure 14-13.

 Leave-One-Out Cross-Validation (LOOCV)

The leave-one-out cross-validation approach (commonly referred to as LOOCV) involves 

dividing the dataset into a training set and a test set. But unlike the validation approach, 

LOOCV assigns just one example to the test set, and trains the model on the remainder 

of the dataset. This process is repeated until all the examples in the dataset have been 

used for evaluating the model.

Assuming we have ten examples in a dataset (let n be used to denote the size of the 

dataset) to build a learning model. We will train the model using n − 1 examples and 

evaluate the model on just the single remaining example, hence the name  leave-one- 

out. This process is repeated n times for all the examples in the dataset. At the end of the 

n iterations, we will report the average error estimate.

A sample LOOCV is shown in Figure 14-14.

Figure 14-13. Validation set
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The main drawback to using LOOCV is that it is computationally expensive. The word 

computationally expensive is when a process takes a lot of computing time and memory 

to complete its execution.

 k-Fold Cross-Validation

k-Fold cross-validation mitigates the computational cost of LOOCV while maintaining 

its benefits in terms of giving an unbiased estimate of the performance of the learned 

model when evaluated on validation data.

Figure 14-14. LOOCV

Chapter 14  prinCiples of learning



194

Let’s use the following recipe to explain the idea behind k-fold CV:

• Divide the dataset into k parts or folds. Assume we have a dataset 

with 20 records; we’ll divide the dataset into four parts. See 

Figure 14- 15.

• Hold out one of the four splits as a test set, and train the model on the 

remaining splits. Repeat this until all the splits have been held out for 

testing. See Figure 14-16.

• Report the ensemble error metric.

Note from this explanation, we can see that looCV is a special case where 
k = n.

Figure 14-16. Train the model using k − 1 example sets or splits

Figure 14-15. Divide your dataset into k parts or folds
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 Improving Model Performance
To improve the performance of the model, a few of the techniques to consider are

 1. Systematic feature engineering

 2. Using ensemble learning methods (we’ll discuss more on this in a 

later chapter)

 3. Hyper-parameter tuning of the algorithm

 Feature Engineering

In model building, a significant portion of time is spent on feature engineering. Feature 

engineering is the practice of systematically going through each feature in the dataset 

and investigating its relevance to the targets.

Through feature engineering, we can cleverly introduce new features by combining 

one or more existing features, and this can impact the prediction accuracy of the model. 

Feature engineering can sometimes be the difference between a decent learning model 

and a competition-winning model.

 Ensemble Methods

Ensemble methods combine the output of weaker models to produce a better 

performing model. Two major classes of ensemble learning algorithms are

• Boosting

• Bagging

In practice, ensemble methods such as Random forests are known to do very well 

in various machine learning problems and are the algorithms of choice for machine 

learning competitions.

 Hyper-parameter Tuning

When modeling with a learning algorithm, we can adjust certain configurations of the 

algorithm. These configurations are called hyper-parameters. Hyper-parameters are 

tuned to get the best settings of the algorithms that will optimize the performance of the 

model. One strategy is to use a grid search to adjust the hyper-parameters when fine- 

tuning the model.
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 Unsupervised Learning
In unsupervised learning, the goal is to build a model that captures the underlying 

distribution of the dataset. The dataset has no given targets for the input features (see 

Figure 14-17). So, it is not possible to learn a function that maps a relationship between 

the input features and the targets as we do in supervised learning.

Rather, unsupervised learning algorithms attempt to determine the unknown 

structure of the dataset by grouping similar samples together.

Assume we have a dataset of patients with heart diseases; using unsupervised 

machine learning algorithms, we can find some hidden sub-groups of patients to help 

understand more about the disease patterns. This is known as clustering.

Also, we can use algorithms like principal component analysis (PCA) to compress 

a large number of features into principal components (that summarizes all the other 

features) for easy visualization. We will talk more about clustering and principal 

component analysis in later chapters.

Figure 14-17. Unsupervised dataset
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 Reinforcement Learning
Reinforcement learning presents an approach to learning that is quite different from 

what we have seen so far in supervised and unsupervised machine learning techniques. 

In reinforcement learning, an agent interacts with an environment in a feedback 

configuration and updates its strategy for choosing an action based on the responses it 

gets from the environment. An illustration of this scenario is shown in Figure 14-18.

This book will not cover reinforcement learning techniques as it presents a different 

approach to the problem of learning from random environments that is distinct from the 

approach used in supervised and unsupervised learning problems.

In this chapter, we covered the three main components of machine learning, which 

are supervised, unsupervised, and reinforcement learning. The chapter largely focused 

on the principles for performing supervised machine learning such as framing a 

problem as a regression or classification task; splitting the dataset into training, test, and 

validation sets; understanding the bias/variance trade-off and consequently issues of 

overfitting and underfitting; and the evaluation metrics for assessing the performance of 

a learning model.

In the next chapter, we will briefly look at the differences between batch and online 

learning.

Figure 14-18. Reinforcement learning model
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CHAPTER 15

Batch vs. Online Learning
Data is a vital component for building learning models. There are two design choices for 

how data is used in the modeling pipeline. The first is to build your learning model with 

data at rest (batch learning), and the other is when the data is flowing in streams into 

the learning algorithm (online learning). This flow can be as individual sample points in 

your dataset, or it can be in small batch sizes. Let’s briefly discuss these concepts.

 Batch Learning
In batch learning the machine learning model is trained using the entire dataset that 

is available at a certain point in time. Once we have a model that performs well on the 

test set, the model is shipped for production and thus learning ends. This process is also 

called offline learning. If in the process of time, new data becomes available, and there is 

need to update the model based on the new data, the model is trained from scratch all 

over again using both the previous data samples and the new data samples.

This pipeline is further illustrated in Figure 15-1.
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In a situation where there is a need to train the model with data that is generated 

continuously from the source, batch learning becomes inappropriate to deal with that 

situation. In such a circumstance, we want to be able to update our learning model on 

the go, based on the new data samples that are available.

 Online Learning
In online learning, data streams (either individually or in mini-batches) into the learning 

algorithm and updates the model. Online learning is ideal in situations where data is 

generated continuously in time, and we need to use real-time data samples to build a 

prediction model. A typical example of this case is in stock market prediction.

Online learning is illustrated in Figure 15-2.

Figure 15-1. Batch learning
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This brief chapter explained the contrast between batch learning and online 

learning. In the next chapter, we will focus our attention on a vital optimization 

algorithm for machine learning, gradient descent.

Figure 15-2. Online learning
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CHAPTER 16

Optimization for Machine 
Learning: Gradient 
Descent
Gradient descent is an optimization algorithm that is used to minimize the cost function 

of a machine learning algorithm. Gradient descent is called an iterative optimization 

algorithm because, in a stepwise looping fashion, it tries to find an approximate solution 

by basing the next step off its present step until a terminating condition is reached that 

ends the loop.

Take the following convex function in Figure 16-1 as a visual of gradient descent 

finding the minimum point of a function space.

Figure 16-1. Contour figure – gradient descent
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The image in Figure 16-1 is an example of a function space. This type of function 

is known as a convex or a bowl-shaped function. The role of gradient descent in 

the function space is to find the set of values for the parameters of the function that 

minimizes the cost of the function and brings it to the global minimum. The global 

minimum is the lowest point of the function space.

For example, the mean squared error cost function for linear regression is nicely 

convex, so gradient descent is almost guaranteed to find the global minimum. However, 

this is not always the case for other types of non-convex function spaces. Remember, 

gradient descent is a global optimizer for minimizing any function space.

Some functions may have more than one minimum region; these regions are called 

local minima. The lowest region of the function space is called the global minimum.

 The Learning Rate of Gradient Descent Algorithm
Learning rate is a hyper-parameter that controls how big a step the gradient descent algorithm 

takes when tracing its path in the direction of steepest descent in the function space.

If the learning rate is too large, the algorithm takes a large step as it goes downhill. In 

doing so, gradient descent runs faster, but it has a high propensity of missing the global 

minimum. An overly small learning rate makes the algorithm slow to converge (i.e., to 

reach the global minimum), but it is more likely to converge to the global minimum 

steadily. Empirically, examples of good learning rates are values in the range of 0.001, 

0.01, and 0.1. In Figure 16-2, with a good learning rate, the cost function C(θ) should 

decrease after every iteration.

Figure 16-2. Learning rates. Left: Good learning rate. Right: Bad learning rate.
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 Classes of Gradient Descent Algorithm
The three types of gradient descent algorithms are

• Batch gradient descent

• Mini-batch gradient descent

• Stochastic gradient descent

The batch gradient descent algorithm uses the entire training data in computing 

each step of the gradient in the direction of steepest descent. Batch gradient descent 

is most likely to converge to the global minimum. However, the disadvantage of this 

method is that, for massive datasets, the optimization process can be prolonged.

In stochastic gradient descent (SGD), the algorithm quickly learns the direction 

of steepest descent using a single example of the training set at each time step. While 

this method has the distinct advantage of being fast, it may never converge to the 

global minimum. However, it approximates the global minimum closely enough. In 

practice, SGD is enhanced by gradually reducing the learning rate over time as the 

algorithm converges. In doing this, we can take advantage of large step sizes to go 

downhill more quickly and then slow down so as not to miss the global minimum. Due 

to its speed when dealing with humongous datasets, SGD is often preferred to batch 

gradient descent.

Mini-batch gradient descent on the other hand randomly splits the dataset into 

manageable chunks called mini-batches. It operates on a mini-batch in each time step 

to learn the direction of steepest descent of the function. This method is a compromise 

between stochastic and batch gradient descent. Just like SGD, mini-batch gradient 

descent does not converge to the global minimum. However, it is more robust in 

avoiding local minimum. The advantage of mini-batch gradient descent over stochastic 

gradient descent is that it is more computational efficient by taking advantage of matrix 

vectorization under the hood to efficiently compute the algorithm updates.

 Optimizing Gradient Descent with Feature Scaling
This process involves making sure that the features in the dataset are all on the same 

scale. Typically all real-valued features in the dataset should lie between −1 ≤ xi ≤ 1 or 

a range around that region. Any range too large or arbitrarily too small can generate a 

contour plot that is too narrow and hence will take a longer time for gradient descent 
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to converge to the optimal solution. The plot in Figure 16-3 is called a contour plot. 

Contour plots are used to represent 3-D surfaces on a 2-D plane. The smaller circles 

represent the lowest point (or the global optimum) of the convex function.

A popular technique for feature scaling is called mean normalization. In mean 

normalization, for each feature, the mean of the feature is subtracted from each record 

and divided by the feature’s range (i.e., the difference between the maximum and 

minimum elements in the feature). Alternatively, it can be divided by the standard 

deviation of the features. Feature scaling is formally written as
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Figure 16-4 is an example of a dataset with feature scaling.

Figure 16-3. Feature scaling – contour plots. Left: without feature scaling. 
Right: with feature scaling
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In this chapter, we discussed gradient descent, an important algorithm for 

optimizing machine learning models. In the next chapter, we will introduce a suite of 

supervised and unsupervised machine learning algorithms.

Figure 16-4. Feature scaling example
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CHAPTER 17

Learning Algorithms
In this section, we introduce a variety of supervised and unsupervised machine learning 

algorithms. The algorithms presented here provide a foundation for understanding other 

machine learning methods (e.g., linear and logistic regression), and others like Random 

forests and Extreme Stochastic Gradient Boosting (XGBoost) are widely used in applied 

machine learning.

We will survey the various learning algorithms from a conceptual level. In general, 

the discussion will cut across

• What a particular algorithm is all about and how it works.

• How we interpret the results of the learning algorithm.

• What various ways it can be optimized to improve performance in 

certain circumstances.

 Classes of Supervised Algorithms
Supervised machine learning algorithms are broadly classified into

• Linear

• Non-linear

• Ensemble methods
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Let’s briefly go through them:

• Linear methods are also known as parametric methods or 

algorithms. Linear methods assume that the underlying structure 

of the data is linear, put in another form, that there exists a linear 

interaction between the features of the dataset. Examples of linear 

algorithms are

• Linear regression

• Logistic regression

• Support vector machines

• Non-linear methods (also known as non-parametric methods) do 

not assume any parametric or structural form of the dataset. Instead, 

they attempt to learn the internal relationships or representation 

between the features of the dataset. Examples of non-linear 

algorithms are

• K-nearest neighbors

• Classification and regression trees (they form the foundation for 

ensemble methods such as boosting and bagging)

• Support vector machines

• Neural networks

• Ensemble methods combine the output of multiple algorithms to 

build a better model estimator that generalizes to unseen examples. 

Two major classes of ensemble methods are

• Boosting (stochastic gradient boosting)

• Bagging (Random forests)

As we can see from the preceding list, some algorithms can function as both a linear 

and non-linear model. An example is support vector machine (SVM) which applies the so-

called kernel trick to use it as a non-linear classification algorithm (more on this later).

Supervised machine learning algorithms can also be grouped as regression or 

classification algorithms. As we saw in Chapter 14 on regression vs. classification, 

regression is when the target variable is real-valued and classification is when the target 

variable is class labels.
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 Unsupervised Algorithms
Examples of unsupervised learning include

• Clustering

• Principal component analysis

In the later chapters, we will survey the preceding unsupervised learning algorithms 

for learning from non-labeled datasets. Clustering is an algorithm for grouping 

homogeneous samples into partitions called clusters. Principal component analysis 

is a method for finding low-dimensional feature sub-spaces that capture as much 

information as possible from the original higher-dimensional features of the dataset.

This chapter provides an overview of the machine learning algorithms that we’ll 

discuss together with code examples in Part 4 of this book.
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CHAPTER 18

Introduction to  
Scikit-learn
Scikit-learn is a Python library that provides a standard interface for implementing 

machine learning algorithms. It includes other ancillary functions that are integral 

to the machine learning pipeline such as data preprocessing steps, data resampling 

techniques, evaluation parameters, and search interfaces for tuning/optimizing an 

algorithm’s performance.

This section will go through the functions for implementing a typical machine 

learning pipeline with Scikit-learn. Since, Scikit-learn has a variety of packages and 

modules that are called depending on the use case, we’ll import a module directly from 

a package if and when needed using the from keyword. Again the goal of this material is 

to provide the foundation to be able to comb through the exhaustive Scikit-learn library 

and be able to use the right tool or function to get the job done.

 Loading Sample Datasets from Scikit-learn
Scikit-learn comes with a set of small standard datasets for quickly testing and 

prototyping machine learning models. These datasets are ideal for learning purposes 

when starting off working with machine learning or even trying out the performance of 

some new model. They save a bit of the time required to identify, download, and clean 

up a dataset obtained from the wild. However, these datasets are small and well curated, 

they do not represent real-world scenarios.

Five popular sample datasets are

• Boston house-prices dataset

• Diabetes dataset
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• Iris dataset

• Wisconsin breast cancer dataset

• Wine dataset

Table 18-1 summarizes the properties of these datasets.

Table 18-1. Scikit-learn Sample Dataset Properties

Dataset name Observations Dimensions Features Targets

Boston house-prices  

dataset (regression)

506 13 real, positive real 5.–50.

Diabetes dataset  

(regression)

442 10 real, –.2 < x < .2 integer 25–346

Iris dataset (classification) 150 4 real, positive 3 classes

Wisconsin breast cancer 

dataset (classification)

569 30 real, positive 2 classes

Wine dataset (classification) 178 13 real, positive 3 classes

To load the sample dataset, we’ll run

# load library

from sklearn import datasets

import numpy as np

Load the Iris dataset

# load iris

iris = datasets.load_iris()

iris.data.shape

'Output': (150, 4)

iris.feature_names

'Output':

['sepal length (cm)',

 'sepal width (cm)',

 'petal length (cm)',

 'petal width (cm)']
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Methods for loading other datasets:

• Boston house-prices dataset – datasets.load_boston()

• Diabetes dataset – datasets.load_diabetes()

• Wisconsin breast cancer dataset – datasets.load_breast_cancer()

• Wine dataset – datasets.load_wine()

 Splitting the Dataset into Training and Test Sets
A core practice in machine learning is to split the dataset into different partitions for 

training and testing. Scikit-learn has a convenient method to assist in that process 

called train_test_split(X, y, test_size=0.25), where X is the design matrix or dataset of 

predictors and y is the target variable. The split size is controlled using the attribute test_
size. By default, test_size is set to 25% of the dataset size. It is standard practice to shuffle 

the dataset before splitting by setting the attribute shuffle=True.

# import module

from sklearn.model_selection import train_test_split

# split in train and test sets

X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, 

shuffle=True)

X_train.shape

'Output': (112, 4)

X_test.shape

'Output': (38, 4)

y_train.shape

'Output': (112,)

y_test.shape

'Output': (38,)

 Preprocessing the Data for Model Fitting
Before a dataset is trained or fitted with a machine learning model, it necessarily 

undergoes some vital transformations. These transformations have a huge effect on the 

performance of the learning model. Transformations in Scikit-learn have a fit() and 

transform() method, or a fit_transform() method.
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Depending on the use case, the fit() method can be used to learn the parameters 

of the dataset, while the transform() method applies the data transform based on 

the learned parameters to the same dataset and also to the test or validation datasets 

before modeling. Also, the fit_transform() method can be used to learn and apply the 

transformation to the same dataset in a one-off fashion. Data transformation packages 

are found in the sklearn.preprocessing package.

This section will cover some critical transformation for numeric and categorical 

variables. They include

• Data rescaling

• Standardization

• Normalization

• Binarization

• Encoding categorical variables

• Input missing data

• Generating higher-order polynomial features

 Data Rescaling
It is often the case that the features of the dataset contain data with different scales. In 

other words, the data in column A can be in the range of 1–5, while the data in column 

B is in the range of 1000–9000. This different scale for units of observations in the same 

dataset can have an adverse effect for certain machine learning models, especially 

when minimizing the cost function of the algorithm because it shrinks the function 

space and makes it difficult for an optimization algorithm like gradient descent to find 

the global minimum.

When performing data rescaling, usually the attributes are rescaled with the range of 

0 and 1. Data rescaling is implemented in Scikit-learn using the MinMaxScaler module. 

Let’s see an example.

# import packages

from sklearn import datasets

from sklearn.preprocessing import MinMaxScaler

Chapter 18  IntroDuCtIon to SCIkIt-learn 



219

# load dataset

data = datasets.load_iris()

# separate features and target

X = data.data

y = data.target

# print first 5 rows of X before rescaling

X[0:5,:]

'Output':

array([[5.1, 3.5, 1.4, 0.2],

       [4.9, 3. , 1.4, 0.2],

       [4.7, 3.2, 1.3, 0.2],

       [4.6, 3.1, 1.5, 0.2],

       [5. , 3.6, 1.4, 0.2]])

# rescale X

scaler = MinMaxScaler(feature_range=(0, 1))

rescaled_X = scaler.fit_transform(X)

# print first 5 rows of X after rescaling

rescaled_X[0:5,:]

'Output':

array([[0.22222222, 0.625     , 0.06779661, 0.04166667],

       [0.16666667, 0.41666667, 0.06779661, 0.04166667],

       [0.11111111, 0.5       , 0.05084746, 0.04166667],

       [0.08333333, 0.45833333, 0.08474576, 0.04166667],

       [0.19444444, 0.66666667, 0.06779661, 0.04166667]])

 Standardization
Linear machine learning algorithms such as linear regression and logistic regression 

make an assumption that the observations of the dataset are normally distributed 

with a mean of 0 and standard deviation of 1. However, this is often not the case with 

real-world datasets as features are often skewed with differing means and standard 

deviations.
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Applying the technique of standardization to the datasets transforms the features 

into a standard Gaussian (or normal) distribution with a mean of 0 and standard 

deviation of 1. Scikit-learn implements data standardization in the StandardScaler 

module. Let’s look at an example.

# import packages

from sklearn import datasets

from sklearn.preprocessing import StandardScaler

# load dataset

data = datasets.load_iris()

# separate features and target

X = data.data

y = data.target

# print first 5 rows of X before standardization

X[0:5,:]

'Output':

array([[5.1, 3.5, 1.4, 0.2],

       [4.9, 3. , 1.4, 0.2],

       [4.7, 3.2, 1.3, 0.2],

       [4.6, 3.1, 1.5, 0.2],

       [5. , 3.6, 1.4, 0.2]])

# standardize X

scaler = StandardScaler().fit(X)

standardize_X = scaler.transform(X)

# print first 5 rows of X after standardization

standardize_X[0:5,:]

'Output':

array([[-0.90068117,  1.03205722, -1.3412724 , -1.31297673],

       [-1.14301691, -0.1249576 , -1.3412724 , -1.31297673],

       [-1.38535265,  0.33784833, -1.39813811, -1.31297673],

       [-1.50652052,  0.10644536, -1.2844067 , -1.31297673],

       [-1.02184904,  1.26346019, -1.3412724 , -1.31297673]])
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 Normalization
Data normalization involves transforming the observations in the dataset so that it has 

a unit norm or has magnitude or length of 1. The length of a vector is the square root 

of the sum of squares of the vector elements. A unit vector (or unit norm) is obtained 

by dividing the vector by its length. Normalizing the dataset is particularly useful in 

scenarios where the dataset is sparse (i.e., a large number of observations are zeros) and 

also has differing scales. Normalization in Scikit-learn is implemented in the Normalizer 

module.

# import packages

from sklearn import datasets

from sklearn.preprocessing import Normalizer

# load dataset

data = datasets.load_iris()

# separate features and target

X = data.data

y = data.target

# print first 5 rows of X before normalization

X[0:5,:]

'Output':

array([[5.1, 3.5, 1.4, 0.2],

       [4.9, 3. , 1.4, 0.2],

       [4.7, 3.2, 1.3, 0.2],

       [4.6, 3.1, 1.5, 0.2],

       [5. , 3.6, 1.4, 0.2]])

# normalize X

scaler = Normalizer().fit(X)

normalize_X = scaler.transform(X)

# print first 5 rows of X after normalization

normalize_X[0:5,:]

'Output':
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array([[0.80377277, 0.55160877, 0.22064351, 0.0315205 ],

       [0.82813287, 0.50702013, 0.23660939, 0.03380134],

       [0.80533308, 0.54831188, 0.2227517 , 0.03426949],

       [0.80003025, 0.53915082, 0.26087943, 0.03478392],

       [0.790965  , 0.5694948 , 0.2214702 , 0.0316386 ]])

 Binarization
Binarization is a transformation technique for converting a dataset into binary values 

by setting a cutoff or threshold. All values above the threshold are set to 1, while those 

below are set to 0. This technique is useful for converting a dataset of probabilities into 

integer values or in transforming a feature to reflect some categorization. Scikit-learn 

implements binarization with the Binarizer module.

# import packages

from sklearn import datasets

from sklearn.preprocessing import Binarizer

# load dataset

data = datasets.load_iris()

# separate features and target

X = data.data

y = data.target

# print first 5 rows of X before binarization

X[0:5,:]

'Output':

array([[5.1, 3.5, 1.4, 0.2],

       [4.9, 3. , 1.4, 0.2],

       [4.7, 3.2, 1.3, 0.2],

       [4.6, 3.1, 1.5, 0.2],

       [5. , 3.6, 1.4, 0.2]])

# binarize X

scaler = Binarizer(threshold = 1.5).fit(X)

binarize_X = scaler.transform(X)
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# print first 5 rows of X after binarization

binarize_X[0:5,:]

'Output':

array([[1., 1., 0., 0.],

       [1., 1., 0., 0.],

       [1., 1., 0., 0.],

       [1., 1., 0., 0.],

       [1., 1., 0., 0.]])

 Encoding Categorical Variables
Most machine learning algorithms do not compute with non-numerical or categorical 

variables. Hence, encoding categorical variables is the technique for converting non- 

numerical features with labels into a numerical representation for use in machine 

learning modeling. Scikit-learn provides modules for encoding categorical variables 

including the LabelEncoder for encoding labels as integers, OneHotEncoder for 

converting categorical features into a matrix of integers, and LabelBinarizer for creating 

a one-hot encoding of target labels.

LabelEncoder is typically used on the target variable to transform a vector of 

hashable categories (or labels) into an integer representation by encoding label with 

values between 0 and the number of categories minus 1. This is further illustrated in 

Figure 18-1.

Figure 18-1. LabelEncoder
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Let’s see an example of LabelEncoder.

# import packages

from sklearn.preprocessing import LabelEncoder

# create dataset

data = np.array([[5,8,"calabar"],[9,3,"uyo"],[8,6,"owerri"],

                 [0,5,"uyo"],[2,3,"calabar"],[0,8,"calabar"],

                 [1,8,"owerri"]])

data

'Output':

array([['5', '8', 'calabar'],

       ['9', '3', 'uyo'],

       ['8', '6', 'owerri'],

       ['0', '5', 'uyo'],

       ['2', '3', 'calabar'],

       ['0', '8', 'calabar'],

       ['1', '8', 'owerri']], dtype='<U21')

# separate features and target

X = data[:,:2]

y = data[:,-1]

# encode y

encoder = LabelEncoder()

encode_y = encoder.fit_transform(y)

# adjust dataset with encoded targets

data[:,-1] = encode_y

data

'Output':

array([['5', '8', '0'],

       ['9', '3', '2'],

       ['8', '6', '1'],

       ['0', '5', '2'],

       ['2', '3', '0'],

       ['0', '8', '0'],

       ['1', '8', '1']], dtype='<U21')
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OneHotEncoder is used to transform a categorical feature variable in a matrix of 

integers. This matrix is a sparse matrix with each column corresponding to one possible 

value of a category. This is further illustrated in Figure 18-2.

Let’s see an example of OneHotEncoder.

# import packages

from sklearn.preprocessing import OneHotEncoder

Figure 18-2. OneHotEncoder
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# create dataset

data = np.array([[5,"efik", 8,"calabar"],[9,"ibibio",3,"uyo"],[8,"igbo", 

6,"owerri"],[0,"ibibio",5,"uyo"],[2,"efik",3,"calabar"],[0,"efik", 

8,"calabar"],[1,"igbo",8,"owerri"]])

# separate features and target

X = data[:,:3]

y = data[:,-1]

# print the feature or design matrix X

X

'Output':

array([['5', 'efik', '8'],

       ['9', 'ibibio', '3'],

       ['8', 'igbo', '6'],

       ['0', 'ibibio', '5'],

       ['2', 'efik', '3'],

       ['0', 'efik', '8'],

       ['1', 'igbo', '8']], dtype='<U21')

# one_hot_encode X

one_hot_encoder = OneHotEncoder(handle_unknown='ignore')

encode_categorical = X[:,1].reshape(len(X[:,1]), 1)

one_hot_encode_X = one_hot_encoder.fit_transform(encode_categorical)

# print one_hot encoded matrix - use todense() to print sparse matrix

# or convert to array with toarray()

one_hot_encode_X.todense()

'Output':

matrix([[1., 0., 0.],

        [0., 1., 0.],

        [0., 0., 1.],

        [0., 1., 0.],

        [1., 0., 0.],

        [1., 0., 0.],

        [0., 0., 1.]])
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# remove categorical label

X = np.delete(X, 1, axis=1)

# append encoded matrix

X = np.append(X, one_hot_encode_X.toarray(), axis=1)

X

'Output':

array([['5', '8', '1.0', '0.0', '0.0'],

       ['9', '3', '0.0', '1.0', '0.0'],

       ['8', '6', '0.0', '0.0', '1.0'],

       ['0', '5', '0.0', '1.0', '0.0'],

       ['2', '3', '1.0', '0.0', '0.0'],

       ['0', '8', '1.0', '0.0', '0.0'],

       ['1', '8', '0.0', '0.0', '1.0']], dtype='<U32')

 Input Missing Data
It is often the case that a dataset contains several missing observations. Scikit-learn 

implements the Imputer module for completing missing values.

# import packages

from sklearn. impute import SimpleImputer

# create dataset

data = np.array([[5,np.nan,8],[9,3,5],[8,6,4],

                 [np.nan,5,2],[2,3,9],[np.nan,8,7],

                 [1,np.nan,5]])

data

'Output':

array([[ 5., nan,  8.],

       [ 9.,  3.,  5.],

       [ 8.,  6.,  4.],

       [nan,  5.,  2.],

       [ 2.,  3.,  9.],

       [nan,  8.,  7.],

       [ 1., nan,  5.]])
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# impute missing values - axis=0: impute along columns

imputer = SimpleImputer(missing_values=np.nan, strategy='mean')

imputer.fit_transform(data)

'Output':

array([[5., 5., 8.],

       [9., 3., 5.],

       [8., 6., 4.],

       [5., 5., 2.],

       [2., 3., 9.],

       [5., 8., 7.],

       [1., 5., 5.]])

 Generating Higher-Order Polynomial Features
Scikit-learn has a module called PolynomialFeatures for generating a new dataset 

containing high-order polynomial and interaction features based off the features in 

the original dataset. For example, if the original dataset has two dimensions [a, b], the 

second-degree polynomial transformation of the features will result in [1, a, b, a2, ab, b2].

# import packages

from sklearn.preprocessing import PolynomialFeatures

# create dataset

data = np.array([[5,8],[9,3],[8,6],

                 [5,2],[3,9],[8,7],

                 [1,5]])

data

'Output':

array([[5, 8],

       [9, 3],

       [8, 6],

       [5, 2],

       [3, 9],

       [8, 7],

       [1, 5]])
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# create polynomial features

polynomial_features = PolynomialFeatures(2)

data = polynomial_features.fit_transform(data)

data

'Output':

array([[ 1.,  5.,  8., 25., 40., 64.],

       [ 1.,  9.,  3., 81., 27.,  9.],

       [ 1.,  8.,  6., 64., 48., 36.],

       [ 1.,  5.,  2., 25., 10.,  4.],

       [ 1.,  3.,  9.,  9., 27., 81.],

       [ 1.,  8.,  7., 64., 56., 49.],

       [ 1.,  1.,  5.,  1.,  5., 25.]]

 Machine Learning Algorithms
This chapter provides an introduction to working with the Scikit-learn library for 

implementing machine learning algorithms.

In the next chapters, we’ll implement supervised and unsupervised machine 

learning models using Scikit-learn. Scikit-learn provides a consistent set of methods, 

which are the fit() method for fitting models to the training dataset and the predict() 

method for using the fitted parameters to make a prediction on the test dataset. The 

examples are geared at explaining working with Scikit-learn; hence, we are not so keen 

on the performance of the model.
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CHAPTER 19

Linear Regression
The fundamental idea behind the linear regression algorithm is that it assumes a linear 

relationship between the features of the dataset. As a result of the pre-defined structure 

that is imposed on the parameters of the model, it is also called a parametric learning 

algorithm. Linear regression is used to predict targets that contain real values. As we will 

see later in Chapter 20 on logistic regression, the linear regression model is not adequate 

to deal with learning problems whose targets are categorical.

 The Regression Model
In linear regression, the prevailing assumption is that the target variable (i.e., the unit 

that we want to predict) can be modeled as a linear combination of the features.

A linear combination is simply the addition of a certain number of vectors that are 

scaled (or adjusted) by some arbitrary constant. A vector is a mathematical construct for 

representing a set of numbers.

For example, let us assume a randomly generated dataset consisting of two features 

and a target variable. The dataset has 50 observations (see Figure 19-1).
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The vectors of this dataset are

 x x y1 40 318157 66 2 73 5918 69 20 105145128116 144= ¼[ ] = ¼[ ] = ¼[ ], ,  

In a linear regression model, every feature has an assigned “weight.” We can say 

that the weight parameterizes each feature in the dataset. The weights in the dataset are 

adjusted to take on values that capture the underlying relationship between the features 

that optimally approximate the target variable. The linear regression model is formally 

written as

 ŷ x x xn n= + + +¼+q q q q0 1 1 2 2  

where

• ŷ  (pronounced y-hat) is the approximate value of the output y that 

we want to predict.

• θi, where i = {1, 2, …n}, is the weight assigned to each feature in the 

dataset. The notation n is the size of features of the dataset.

• θ0 represents the “bias” term.

Figure 19-1. Sample dataset
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 A Visual Representation of Linear Regression
To provide more intuition, let us draw a 2-D plot of the first feature x1 and the target 

variable y of the dataset with all 50 records. We are using just one feature in this 

illustration because it is easier to visualize with a 2-D scatter plot (see Figure 19-2).

The goal of the linear model is to find a line that gives the best approximation or best 

fit to the data points. When found, this line will look like something in Figure 19-3. The 

line of best fit is known as the regression line.

Figure 19-2. Scatter plot of x1 (on the x axis) and y (on the y axis)

Figure 19-3. Scatter plot of x1 (on the x axis) and y (on the y axis) with  
regression line
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 Finding the Regression Line – How Do We Optimize 
the Parameters of the Linear Model?
To find the regression line, we need to define the cost function, which is also called the 

loss function. Remember that the cost in machine learning is the error measure that 

the learning algorithm minimizes. We can also define the cost as the penalty when the 

model outputs an incorrect prediction.

In the case of the linear regression model, the cost function is defined as half the sum 

of the squared difference between the predicted value and the actual value. The linear 

regression cost function is called the squared error cost function and is written as

 
C y yq( ) = å -( )1

2

2ˆ
 

To put it more simply, the closer the approximate value of the target variable ŷ  is to 

the actual variable y, the lower our cost and the better our model.

Having defined the cost function, an optimization algorithm such as gradient 

descent is used to minimize the cost C(θ) by updating the weights of the linear 

regression model.

 How Do We Interpret the Linear Regression Model?
In machine learning, the focus of linear regression differs slightly from traditional 

statistics. In statistics, the goal of a regression model is to understand the relationships 

between the features and targets by interpreting p-values, whereas in machine learning, 

the goal of the linear regression model is to predict the targets given new samples.

Figure 19-4 shows a regression model with a line of best fit that optimizes the 

squared difference between the data features and the targets. This difference is also 

called the residuals (shown as the purple vertical lines in Figure 19-4). What we care 

about in a linear regression model is to minimize the error between the predicted labels 

and the actual labels in the dataset.
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If all the points in Figure 19-4 entirely fall on the predicted regression line, then the 

error will be 0. In interpreting the regression model, we want the error measure to be as 

low as possible.

However, our emphasis is to obtain a low error measure when we evaluate our model 

on the test dataset. Recall that the test of learning is when a model can generalize to 

examples that it was not exposed to during training.

 Linear Regression with Scikit-learn
In this example, we will implement a linear regression model with Scikit-learn. The 

model will predict house prices from the Boston house-prices dataset. The dataset 

contains 506 observations and 13 features.

We begin by importing the following packages:

sklearn.linear_model.LinearRegression: function that implements the 

LinearRegression model.

sklearn.datasets: function to load sample datasets integrated with scikit- 

learn for experimental and learning purposes.

sklearn.model_selection.train_test_split: function that partitions the 

dataset into train and test splits.

sklearn.metrics.mean_squared_error: function to load the evaluation metric 

for checking the performance of the model.

Figure 19-4. Linear regression model showing residuals
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math.sqrt: imports the square-root math function. It is used later to 

calculate the RMSE when evaluating the model.

# import packages

from sklearn.linear_model import LinearRegression

from sklearn import datasets

from sklearn.model_selection import train_test_split

from sklearn.metrics import mean_squared_error

from math import sqrt

# load dataset

data = datasets.load_boston()

# separate features and target

X = data.data

y = data.target

# split in train and test sets

X_train, X_test, y_train, y_test = train_test_split(X, y, shuffle=True)

# create the model

# setting normalize to true normalizes the dataset before fitting the model

linear_reg = LinearRegression(normalize = True)

# fit the model on the training set

linear_reg.fit(X_train, y_train)

'Output': LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, 

normalize=True)

# make predictions on the test set

predictions = linear_reg.predict(X_test)

# evaluate the model performance using the root mean square error metric

print("Root mean squared error (RMSE): %.2f" % sqrt(mean_squared_error(y_

test, predictions)))

'Output':

Root mean squared error (RMSE): 4.33
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In the preceding code, using the train_test_split() function, the dataset is split 

into training and testing sets. The linear regression algorithm is applied to the training 

dataset to find the optimal values that parameterize the weights of the model. The model 

is evaluated by calling the .predict() function on the test set.

The error of the model is evaluated using the RMSE error metric (discussed in 

Chapter 14).

 Adapting to Non-linearity
Although linear regression has the premise that the underlying structure of the 

dataset features is linear, this is, however, not the case for most datasets. It is 

nevertheless possible to adapt linear regression to fit or build a model for non-linear 

datasets. This process of adding non-linearity to linear models is called polynomial 
regression.

Polynomial regression fits a non-linear relationship to the data by adding higher- 

order polynomial terms of existing data features as new features in the dataset. More of 

this is visualized in Figure 19-5.

Figure 19-5. Adding polynomial features to the dataset
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It is important to note that from a statistical point of view, when approximating the 

optimal values of the weights to minimize the model, the underlying assumption of 

the interactions of the parameters is linear. Non-linear regression models may tend to 

overfit the data, but this can be mitigated by adding regularization to the model. Here is 

a formal example of the polynomial regression model.

 ŷ x x x x x xn n n n= + + + + +¼+ +q q q q q q q0 1 1 2 1
2

3 2 4 2
2 2  

An illustration of polynomial regression is shown in Figure 19-6.

 Higher-Order Linear Regression with Scikit-learn
In this example, we will create higher-order polynomials from the dataset features in 

hope of fitting a more flexible model that may better capture the variance in the dataset. 

As seen in Chapter 18, we will use the PolynomialFeatures method to create these 

higher-order polynomial and interaction features. The following code example is similar 

to the previous code example except where it extends the feature matrix with higher- 

order features.

# import packages

from sklearn.linear_model import LinearRegression

from sklearn import datasets

Figure 19-6. Fitting a non-linear model with polynomial regression
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from sklearn.model_selection import train_test_split

from sklearn.metrics import mean_squared_error

from math import sqrt

from sklearn.preprocessing import PolynomialFeatures

# load dataset

data = datasets.load_boston()

# separate features and target

X = data.data

y = data.target

# create polynomial features

polynomial_features = PolynomialFeatures(2)

X_higher_order = polynomial_features.fit_transform(X)

# split in train and test sets

X_train, X_test, y_train, y_test = train_test_split(X_higher_order, y, 

shuffle=True)

# create the model

# setting normalize to true normalizes the dataset before fitting the model

linear_reg = LinearRegression(normalize = True)

# fit the model on the training set

linear_reg.fit(X_train, y_train)

'Output': LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, 

normalize=True)

# make predictions on the test set

predictions = linear_reg.predict(X_test)

# evaluate the model performance using the root mean square error metric

print("Root mean squared error (RMSE): %.2f" % sqrt(mean_squared_error(y_

test, predictions)))

'Output':

Root mean squared error (RMSE): 3.01
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From the example, we can observe a slight improvement in the error score of the 

model with added higher-order features. This result is similar to what may most likely 

be observed in practice. It is rare to find datasets from real-world events where the 

features have a perfectly underlying linear structure. So adding higher-order terms 

is most likely to improve the model performance. But we must watch out to avoid 

overfitting the model.

 Improving the Performance of a Linear Regression 
Model
The following techniques are options that can be explored to improve the performance 

of a linear regression model.

In the case of Bias (i.e., poor MSE on training data)

• Perform feature selection to reduce the parameter space. Feature 

selection is the process of eliminating variables that do not contribute 

to learning the prediction model. There are various automatic 

methods for feature selection with linear regression. A couple of 

them are backward selection, forward propagation, and stepwise 

regression. Features can also be pruned manually by systematically 

going through each feature in the dataset and determining its 

relevance to the learning problem.

• Remove features with high correlation. Correlation occurs when 

two predictor features are strongly dependent on one another. 

Empirically, highly correlated features in the datasets may hurt the 

model accuracy.

• Use higher-order features. A more flexible fit may better capture the 

variance in the dataset.

• Rescale your data before training. Unscaled features negatively affect 

the prediction quality of a regression model. Because of the different 

feature scales in multi-dimensional space, it becomes difficult for the 

model to find the optimal weights that capture the learning problem. 

As mentioned in Chapter 16, gradient descent performs better with 

feature scaling.
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• In a rare case, we may need to collect more data. However, this is 

potentially costly.

In the case of variance (i.e., the MSE is good when evaluated on training data, but 
poor on the test data)

• A standard practice, in this case, is to apply regularization (more on 

this in Chapter 21) to the regression model. This can do a good job at 

preventing overfitting.

This chapter provides an overview on the linear regression machine learning 

algorithm for learning real-valued targets. Also, the chapter provided practical steps for 

implementing linear regression models with Scikit-learn. In the next chapter, we will 

examine logistic regression for learning classification problems.
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CHAPTER 20

Logistic Regression
Logistic regression is a supervised machine learning algorithm developed for learning 

classification problems. A classification learning problem is when the target variable is 

categorical. The goal of logistic regression is to map a function from the features of the 

dataset to the targets to predict the probability that a new example belongs to one of the 

target classes. Figure 20-1 is an example of a dataset with categorical targets.

 Why Logistic Regression?
To develop our understanding of classification with logistic regression and why linear 

regression is unsuitable for learning categorical outputs, let us consider a binary or 

two- class classification problem. The dataset illustrated in Figure 20-2 has the output y 

(i.e., eye disease) = {disease, no-disease} is an example of dataset with binary targets.

Figure 20-1. Dataset with qualitative variables as output
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From the illustration in Figure 20-3, the linear regression algorithm is susceptible 

to plot inaccurate decision boundaries especially in the presence of outliers (as seen 

toward the far right of the graph in Figure 20-3). Moreover, the linear regression model 

will be looking to learn a real-valued output, whereas a classification learning problem 

predicts the class membership of an observation using probability estimates.

Figure 20-2. Two-class classification problem

Figure 20-3. Linear regression on a classification dataset
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 Introducing the Logit or Sigmoid Model
The logistic function, also known as the logit or the sigmoid function, is responsible 

for constraining the output of the cost function so that it becomes a probability output 

between 0 and 1. The sigmoid function is formally written as

 
h t

e t( ) =
+ -

1

1  

The logistic regression model is formally similar to the linear regression model 

except that it is acted upon by the sigmoid model. The following is the formal 

representation:

 ŷ x x xn n= + + +¼+q q q q0 1 1 2 2  

 
h y

e y
ˆ

ˆ( ) =
+ -

1

1  

where 0 ≤ h(t) ≤ 1. The sigmoid function is graphically shown in Figure 20-4.

Figure 20-4. Logistic function
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The sigmoid function, which looks like an S curve, rises from 0 and plateaus at 1. 

From the sigmoid function shown in Figure 20-4, as ŷ  increases to positive infinity, the 

sigmoid output gets closer to 1, and as t decreases toward negative infinity, the sigmoid 

function outputs 0.

 Training the Logistic Regression Model
The logistic regression cost function is formally written as

 
Cost h t y h t if y h t if y( )( ) = - ( )( ) = - - ( )( ) =, { log log1 1 0  

The cost function also known as log-loss is set up in this form to output the penalty 

of the algorithm if the model predicts a wrong class. To give more intuition, take, for 

example, a plot of − log (h(t)) when y = 1 in Figure 20-5.

In Figure 20-5, if the algorithm correctly predicts that the target is 1, then the cost 

tends toward 0. However, if the algorithm h(t) predicts incorrectly the target as 0, then 

the cost on the model grows exponentially large. The converse is the case with the plot of 

− log (1 − h(t)) when y = 0.

The logistic model is optimized using gradient descent to find the optimal values of 

the parameter θ that minimizes the cost function to predict the class with the highest 

probability estimate.

Figure 20-5. Plot of h(t) when y = 1
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 Multi-class Classification/Multinomial Logistic 
Regression
In multi-class or multinomial logistic regression, the labels of the dataset contain more 

than 2 classes. The multinomial logistic regression setup (i.e., the cost function and 

optimization procedure) is structurally similar to logistic regression; the only difference 

is that the output of logistic regression is 2 classes, while multinomial has greater than 2 

classes (see Figure 20-6).

In Figure 20-6, the multi-class logistic regression builds a one-vs.-rest classifier to 

construct decision boundaries for the different class memberships.

Figure 20-6. An illustration of multinomial regression
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At this point, we introduce a critical function in machine learning called the softmax 

function. The softmax function is used to compute the probability that an instance 

belongs to one of the K classes when K > 2. We will see the softmax function show up 

again when we discuss (artificial) neural networks.

In order to build a classification model with k classes, the multinomial logistic model 

is formally defined as

 ŷ k x x xk k k
n
k

n( ) = + + +¼+q q q q0 1 1 2 2  

The preceding model takes into consideration the parameters for the k different classes.

The softmax function is formally written as

 

p k y k
e

e
i

y k

j

K y k k

i

j j
( ) = ( )( ) =

( )

=

( )å
s ˆ

ˆ

ˆ (

1



 

where

• i = {1, …, K} classes.

• s ŷ k
i

( )( )  outputs the probability estimates that an example in the 

training dataset belongs to one of the K classes.

The cost function for learning the class labels in a multinomial logistic regression 

model is called the cross-entropy cost function. Gradient descent is used to find the 

optimal values of the parameter θ that will minimize the cost function to predict the 
class with the highest probability estimate accurately.

 Logistic Regression with Scikit-learn
In this example, we will implement a multi-class logistic regression model with Scikit- 

learn. The model will predict the three species of flowers from the Iris dataset. The 

dataset contains 150 observations and 4 features. For this example, we use the accuracy 

metric and confusion matrix to access the model’s performance.

# import packages

from sklearn.linear_model import LogisticRegression

from sklearn import datasets

Chapter 20  LogistiC regression



249

from sklearn.model_selection import train_test_split

from sklearn.metrics import accuracy_score

from sklearn.metrics import multilabel_confusion_matrix

# load dataset

data = datasets.load_iris()

# separate features and target

X = data.data

y = data.target

# split in train and test sets

X_train, X_test, y_train, y_test = train_test_split(X, y, shuffle=True)

# create the model

logistic_reg = LogisticRegression(solver='lbfgs', multi_class='ovr')

# fit the model on the training set

logistic_reg.fit(X_train, y_train)

# make predictions on the test set

predictions = logistic_reg.predict(X_test)

# evaluate the model performance using accuracy metric

print("Accuracy: %.2f" % accuracy_score(y_test, predictions))

'Output':

Accuracy: 0.97

# print the confusion matrix

multilabel_confusion_matrix(y_test, predictions)

'Output':

array([[[26,  0],

        [ 0, 12]],

       [[25,  0],

        [ 1, 12]],

       [[24,  1],

        [ 0, 13]]])
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Take note of the following in the preceding code block:

• The logistic regression model is initialized by calling the method Logi

sticRegression(solver=‘lbfgs’, multi_class=‘ovr’). The attribute ‘multi_

class’ is set to ‘ovr’ to create a one-vs.-rest classifier.

• The confusion matrix for a multi-class learning problem uses the 

`multilabel_confusion_matrix’ to calculate classwise confusion 

matrices where the labels are binned in a one-vs.-rest manner. As an 

example, the first matrix is interpreted as the difference between the 

actual and predicted targets for class 1 against other classes.

 Optimizing the Logistic Regression Model
This section surveys a few techniques to consider in optimizing/improving the 

performance of logistic regression models.

In the case of Bias (i.e., when the accuracy is poor with training data)

• Remove highly correlated features. Logistic regression is susceptible 

to degraded performance when highly correlated features are present 

in the dataset.

• Logistic regression will benefit from standardizing the predictors by 

applying feature scaling.

• Good feature engineering to remove redundant features or 

recombine features based on intuition into the learning problem can 

improve the classification model.

• Applying log transforms to normalize the dataset can boost logistic 

regression classification accuracy.

In the case of variance (i.e., when the accuracy is good with training data, but 
poor on test data)

Applying regularization (more on this in Chapter 21) is a good technique to prevent 

overfitting.

This chapter provides a brief overview of logistic regression for building classification 

models. The chapter includes practical steps for implementing a logistic regression 

classifier with Scikit-learn. In the next chapter, we will examine the concept of applying 

regularization to linear models to mitigate the problem of overfitting.
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CHAPTER 21

Regularization for  
Linear Models
Regularization is the technique of adding a parameter, λ, to the loss function of a 

learning algorithm to improve its ability to generalize to new examples by reducing 

overfitting. The role of the extra regularization parameter is to shrink or to minimize the 

measure of the weights (or parameters) of the other features in the model.

Regularization is applied to linear models such as polynomial linear regression and 

logistic regression which are susceptible to overfitting when high-order polynomial 

features are added to the set of features.

 How Does Regularization Work
During model building, the regularization parameter λ is calibrated to determine how 

much the magnitude of other features in the model is adjusted when training the model. 

The higher the value of the regularization, the more the magnitude of the feature weights 

is reduced.

If the regularization parameter is set too close to zero, it reduces the regularization 

effect on the feature weights of the model. At zero, the penalty the regularization term 

imposes is virtually non-existent, and the model is as if the regularization term was 

never present.

 Effects of Regularization on Bias vs. Variance
The higher the value of λ (i.e., the regularization parameter), the more restricted the 

coefficients (or weights) of the cost function. Hence, if the value of λ is high, the model 

can result in a learning bias (i.e., it underfits the dataset).
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However, if the value of λ approaches zero, the regularization parameter has 

negligible effects on the model, hence resulting in overfitting the model. Regularization 

is an important technique and should be used when injecting polynomial features into 

linear or logistic regression classifiers to learn non-linear relationships.

 Applying Regularization to Models with Scikit-learn
The technique of adding a penalty to restrain the values of the parameters of the model 

is also known as Ridge regression or Tikhonov regularization. In this section we will 

build a linear and logistic regression model with regularization.

 Linear Regression with Regularization
This code block is similar to the polynomial linear regression example in Chapter 19. 

The model will predict house prices from the Boston house-prices dataset. However, this 

model includes regularization.

# import packages

from sklearn.linear_model import Ridge

from sklearn import datasets

from sklearn.model_selection import train_test_split

from sklearn.metrics import mean_squared_error

from math import sqrt

from sklearn.preprocessing import PolynomialFeatures

# load dataset

data = datasets.load_boston()

# separate features and target

X = data.data

y = data.target

# create polynomial features

polynomial_features = PolynomialFeatures(2)

X_higher_order = polynomial_features.fit_transform(X)
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# split in train and test sets

X_train, X_test, y_train, y_test = train_test_split(X_higher_order, y, 

shuffle=True)

# create the model. The parameter alpha represents the regularization 

magnitude

linear_reg = Ridge(alpha=1.0)

# fit the model on the training set

linear_reg.fit(X_train, y_train)

# make predictions on the test set

predictions = linear_reg.predict(X_test)

# evaluate the model performance using the root mean square error metric

print("Root mean squared error (RMSE): %.2f" % sqrt(mean_squared_error(y_

test, predictions)))

'Output':

Root mean squared error (RMSE): 3.74

Take note of the following:

• The method Ridge(alpha=1.0) initializes a linear regression 

model with regularization, where the attribute ‘alpha’ controls the 

magnitude of the regularization parameter.

 Logistic Regression with Regularization
This code block here is also similar to the example in Chapter 20 on logistic regression. 

The model will predict the three species of flowers from the Iris dataset. The addition to 

this code segment is the inclusion of a regularization term to the logistic model using the 

‘RidgeClassifier’ package.

# import packages

from sklearn.linear_model import RidgeClassifier

from sklearn import datasets

from sklearn.model_selection import train_test_split

from sklearn.metrics import accuracy_score
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# load dataset

data = datasets.load_iris()

# separate features and target

X = data.data

y = data.target

# split in train and test sets

X_train, X_test, y_train, y_test = train_test_split(X, y, shuffle=True)

# create the logistic regression model

logistic_reg = RidgeClassifier()

# fit the model on the training set

logistic_reg.fit(X_train, y_train)

# make predictions on the test set

predictions = logistic_reg.predict(X_test)

# evaluate the model performance using accuracy metric

print("Accuracy: %.2f" % accuracy_score(y_test, predictions))

'Output':

Accuracy: 0.76

In the preceding code block, logistic regression with regularization is implemented 

by the method ‘RidgeClassifier()’. The reduced accuracy observed in this example when 

regularization is applied to logistic regression is because the algorithm is restricting 

the values of the model parameters to prevent high variance on a dataset that is fairly 

simplistic and already has high accuracy on test samples without regularization.

This chapter discusses the role of regularization in linear models like linear and 

logistic regression. Other forms of regularization exist for other model types such as 

early stopping for neural networks (to be discussed later in Chapter 34). Regularization 

is an important technique when designing machine learning models. The next chapter 

will discuss and implement another important machine learning algorithm known as 

support vector machines.
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CHAPTER 22

Support Vector Machines
Support vector machine (SVM) is a machine learning algorithm for learning classification 

and regression models. To build intuition, we will consider the case of learning a 

classification model with SVM. Given a dataset with two target classes that are linearly 

separable, it turns out that there exists an infinite number of lines that can discriminate 

between the two classes (see Figure 22-1). The goal of the SVM is to find the best line that 

separates the two classes. In higher dimensions, this line is called a hyperplane.

 What Is a Hyperplane?
A hyperplane is a line or more technically called a discriminant that separates two 

classes in n-dimensional space. When a hyperplane is drawn in 2-D space, it is called a 

line. In 3-D space, it is called a plane, and in dimensions greater than 3, the discriminant 

is called a hyperplane (see Figure 22-2). For any n-dimensional world, we have n-1 

hyperplanes.

Figure 22-1. Infinite set of discriminants
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 Finding the Optimal Hyperplane
The best hyperplane that linearly separates two classes is identified as the line lying at 

the largest margin from the nearest vectors at the boundary of the two classes.

In Figure 22-3, we observe that the best hyperplane is the line at the exact center 

of the two classes and constitutes the largest margin between both classes. Hence, this 

optimal hyperplane is also known as the largest margin classifier.

Figure 22-2. Left: A hyperplane in 2-D is a line. Right: A hyperplane in 3-D is a 
plane. For dimension greater than 3, visualization becomes difficult.

Figure 22-3. The largest margin classifier
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The boundary points of the respective classes which are known as the support 

vectors are essential in finding the optimal hyperplane. The support vectors are 

illustrated in Figure 22-4. The boundary points are called support vectors because they 

are used to determine the maximum distance between the class they belong to and the 

discriminant function separating the classes.

The mathematical formulation for finding the margin and consequently the 

hyperplane that maximizes the margin is beyond the scope of this book, but suffice to 

say this technique involves the Lagrange multiplier.

 The Support Vector Classifier
In the real world, it is difficult to find data points that are precisely linearly separable 

and for which exists a large margin hyperplane. In Figure 22-5, the left image represents 

the data points for two classes in a dataset. Observe that there readily exists a linear 

separator between those two classes. Now, suppose we have an additional point from 

class 1 adjusted in such a way that it is much closer to class 2, we see that this point 

upsets the location of the hyperplane as seen in the right image of Figure 22-5. This 

reveals the sensitivity of the hyperplane to an additional data point that may result in a 

very narrow margin.

Figure 22-4. Support vectors
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This sensitivity to data samples has significant drawbacks, the first being that the 

distance between the support vectors and the hyperplane reflects the confidence in the 

classification accuracy. Also, the drastic change in the position of the hyperplane due to 

a single additional point shows that the classifier is susceptible to high variability and 

can overfit the training data.

The goal of the support vector classifier is to find a hyperplane that nearly 

discriminates between the two classes. This technique is also called a soft margin. A 

soft margin is tuned to ignore a degree of error when finding the separating hyperplane. 

This concept of a soft margin is how we generalize the support vector classifier to find a 

hyperplane in datasets that are not readily linearly separable. The margin is called soft 

because some examples are purposefully misclassified.

In such cases, as outlined in Figure 22-5, a soft margin classifier is preferred as it 

is more insensitive to individual data points and overall will have a better chance of 

generalizing to new examples. Howbeit, this might misclassify a couple of examples 

while training, but this is overall beneficial to the quality of the classifier as it generalizes 

to new samples.

Again, the margin is called soft because some examples are allowed to violate the 

margin or even be misclassified by the hyperplane to preserve overall generalizability. 

This is illustrated in Figure 22-6.

Figure 22-5. Left: A linearly separable data distribution with a large margin. 
Right: The data point distribution makes it more difficult to find a large margin 
classifier that linearly separates the two classes
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 The C Parameter
The C parameter is the hyper-parameter that is responsible for controlling the degree 

of violations to the margins or the number of intentionally misclassified points allowed 

by the support vector classifier. The C hyper-parameter is a non-negative real number. 

When this C parameter is set to 0, the classifier becomes the large margin classifier.

In a soft margin classifier, the C parameter is tuned by adjusting its values to 

control the tolerance of the margin. With larger values of C, the classifier margins 

become wider and more tolerant to violations and misclassifications. However, with 

smaller values of C, the margins become narrower and are less tolerant of violations 

and misclassified points.

Observe that the C hyper-parameter is vital for regulating the bias/variance trade-off 

of the support vector classifier. The higher the value of C, our classifier is more prone to 

variability in the data points and can under-simplify the learning problem. Also, if C is 

set closer to zero, it results in a much narrower margin, and this can overfit the classifier, 

leading to high variance – and this will likely fail to generalize to new examples (see 

Figure 22-7).

Figure 22-6. Left: An example of a soft margin with points allowed to violate the 
margin. Right: An example with some points intentionally misclassified.
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 Multi-class Classification
Previously, we have used the SVC to build a discriminant classifier for binary classes. 

What happens when we have more than two classes of outputs in the dataset, which is 

often the case in practice? The SVM can be extended for classifying k classes within a 

dataset, where k > 2. This extension is, however, not trivial with the SVM. There exist two 

standard approaches for addressing this problem. The first is the one-vs.-one (OVO) 

multi-class classification, while the other is the one-vs.-all (OVA) or one-vs.rest (OVR) 

multi-class classification technique.

 One-vs.-One (OVO)
In the one-vs.-one approach, when the number of classes, k, is greater than 2, the 

algorithm constructs “k combination 2”, 
k
2

æ
è
ç

ö
ø
÷  classifiers, where each classifier is for a pair 

of classes. So if we have 10 classes in our dataset, a total of 45 classifiers is constructed or 

trained for every pair of classes. This is illustrated with four classes in Figure 22-8.

After training, the classifiers are evaluated by comparing examples from the test set 

against each of the 
k
2

æ
è
ç

ö
ø
÷ classifiers. The predicted class is then determined by choosing 

the highest number of times an example is assigned to a particular class.

Figure 22-7. Left: Higher values of C result in wider margins with more tolerance. 
Right: Lower values of C result in narrower margins with less tolerance
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The one-vs.-one multi-class technique can potentially lead to a large number of 

constructed classifiers and hence can result in slower processing time. Conversely, the 

classifiers are more robust to class imbalances when training each classifier.

 One-vs.-All (OVA)
The one-vs.-all method for fitting an SVM to a multi-classification problem where 

the number of classes k is greater than 2 consists of fitting each k class against the 

remaining k – 1 classes. Suppose we have ten classes, each of the classes will be 

classified against the remaining nine classes. This example is illustrated with four 

classes in Figure 22-9.

Figure 22-8. Suppose we have four classes in the dataset labeled A to D, this will 
result in six different classifiers
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The classifiers are evaluated by comparing a test example to each fitted classifier. The 

classifier for which the margin of the hyperplane is the largest is chosen as the predicted 

classification target because the classifier margin size is indicative of high confidence of 

class membership.

 The Kernel Trick: Fitting Non-linear Decision 
Boundaries
Non-linear datasets occur more often than not in real world scenarios.

Technically speaking, the name support vector machine is when a support vector 

classifier is used with a non-linear kernel to learn non-linear decision boundaries.

Figure 22-9. Given four classes in a dataset, we construct four classifiers, with 
each class fitted against the rest
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SVM uses an essential technique for extending the feature space of a dataset to 

construct a non-linear classifier. This technique is called kernel and is popularly known 

as the kernel trick. Figure 22-10 illustrates the kernel trick as an extra dimension is added 

to the feature space.

 Adding Polynomial Features
The feature space of the dataset can be extended by adding higher-order polynomial 

terms or interaction terms. For example, instead of training the classifier with linear 

features, we can add polynomial features or add interaction terms to our model.

Depending on the dimensions of the dataset, the combinations for extending 

the feature space can quickly become unmanageable, and this can easily lead to a 

model that overfits the test set and also become expensive to compute with a larger 

feature space.

Figure 22-10. Left: Linear discriminant to non-linear data. Right: By using the 
kernel trick, we can linearly separate a non-linear dataset by adding an extra 
dimension to the feature space.
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 Kernels
Kernel is a mathematical procedure for extending the feature space of a dataset to learn 

non-linear decision boundaries between different classes. The mathematical details 

of kernels are beyond the scope of this text. Suffice to say that a kernel can be seen as a 

mathematical function that captures similarity between data samples.

 Linear Kernel

The support vector classifier is the same as a linear kernel. It is also known as a linear 

kernel because the feature space of the support vector classifier is linear.

 Polynomial Kernel

The kernel can also be expressed as a polynomial. With this, a support vector classifier 

is trained on higher-dimensional polynomial features without manually adding an 

exponential number of polynomial features to the dataset. Adding a polynomial kernel to 

the support vector classifier enables the classifier to learn a non-linear decision boundary.

 Radial Basis Function or the Radial Kernel

The radial basis function or radial kernel is another non-linear kernel that enables the 

support vector classifier to learn a non-linear decision boundary. The radial kernel is 

similar to adding multiple similarity features to the space. For the radial basis function, 

a hyper-parameter called gamma, γ, is used to control the flexibility of the non-linear 

decision boundary. The smaller the gamma value, the less complex (or flexible) the 

non-linear discriminant becomes, but a larger value for gamma leads to a more flexible 

and sophisticated decision boundary that tightly fits the non-linearity in the data, which 

can inadvertently lead to overfitting. This is illustrated in Figure 22-11. RBF is a popular 

kernel option used in practice.
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When using the radial kernel with the support vector classifier, the values of C 

and gamma are hyper-parameters that are tuned to find an appropriate level of model 

flexibility that generalizes to new examples when deployed.

In practice, a linear kernel or support vector classifier sometimes surprisingly 

performs well when used to map a function to non-linear data. This observation follows 

Occam’s razor which suggests that it is advantageous to select the simplest hypothesis to 

solve a problem in the presence of more complex options.

Also, with regard to choosing the best set of C and gamma, γ, to avoid overfitting, 

a grid search is used to explore a range of values for the hyper-parameters and come 

up with the combination that performs best on test data. The grid search is used in 

conjunction with cross-validation approaches. However, the grid search procedure can 

be potentially computationally expensive.

Support vector machines perform well with high-dimensional data. However, they 

are preferred for small or medium-sized datasets. For humongous datasets, SVMs 

become computationally infeasible. Another limitation is that the performance of SVMs 

is known to plateau at some point, even when there exist large training samples. This is 

one of the motivations and advantages of deep neural networks.

Figure 22-11. An illustration of adjusting the radial basis function γ parameter, 
together with the C parameter of the support vector classifier to fit a non-linear 
decision boundary. Left: RBF kernel with C = 1 and γ = 10−3. Right: RBF kernel with 
C = 1 and γ = 10−5.
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 Support Vector Machines with Scikit-learn

In Scikit-learn, SVC is the SVM package for classification, while SVR is the SVM 

package for regression. The attribute ‘gamma’ in both the SVC and SVR methods 

controls the flexibility of the decision boundary, and the default kernel is the radial 

basis function (rbf ).

SVM for Classification

In this code example, we will build an SVM classification model to predict the three 

species of flowers from the Iris dataset.

# import packages

from sklearn.svm import SVC

from sklearn import datasets

from sklearn.model_selection import train_test_split

from sklearn.metrics import accuracy_score

from math import sqrt

# load dataset

data = datasets.load_iris()

# separate features and target

X = data.data

y = data.target

# split in train and test sets

X_train, X_test, y_train, y_test = train_test_split(X, y, shuffle=True)

# create the model

svc_model = SVC(gamma='scale')

# fit the model on the training set

svc_model.fit(X_train, y_train)

# make predictions on the test set

predictions = svc_model.predict(X_test)
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# evaluate the model performance using accuracy metric

print("Accuracy: %.2f" % accuracy_score(y_test, predictions))

'Output':

Accuracy: 0.95

SVM for Regression

In this code example, we will build an SVM regression model to predict house prices 

from the Boston house-prices dataset.

# import packages

from sklearn.svm import SVR

from sklearn import datasets

from sklearn.model_selection import train_test_split

from sklearn.metrics import mean_squared_error

# load dataset

data = datasets.load_boston()

# separate features and target

X = data.data

y = data.target

# split in train and test sets

X_train, X_test, y_train, y_test = train_test_split(X, y, shuffle=True)

# create the model

svr_model = SVR(gamma='scale')

# fit the model on the training set

svr_model.fit(X_train, y_train)

# make predictions on the test set

predictions = svr_model.predict(X_test)

# evaluate the model performance using the root mean squared error metric

print("Mean squared error: %.2f" % sqrt(mean_squared_error(y_test, 

predictions)))
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'Output':

Root mean squared error: 7.58

In this chapter, we surveyed the support vector machine algorithm and its 

implementation with Scikit-learn. In the next chapter, we will discuss on ensemble 

methods that combine outputs of multiple classifiers or weak learners to build better 

prediction models.
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CHAPTER 23

Ensemble Methods
Ensemble learning is a technique that combines the output of multiple classifiers also 

called weak learners to build a more robust prediction model. Ensemble methods work 

by combining a group of classifiers (or models) to get an enhanced prediction accuracy. 

The idea behind an “ensemble” is that the performance from the average of a group 

of classifiers will be better than each classifier on its own. So each classifier is called a 

“weak” learner.

Ensemble learners are usually high-performing algorithms for both classification 

and regression tasks and are mostly competition-winning algorithms. Examples of 

ensemble learning algorithms are Random Forest (RF) and Stochastic Gradient Boosting 

(SGB). We will motivate our discussion of ensemble methods by first discussing decision 

trees because ensemble classifiers such as RF and SGB are built by combining several 

decision tree classifiers.

 Decision Trees
Decision trees, more popularly known as classification and regression trees (CART), 

can be visualized as a graph or flowchart of decisions. A branch connects the nodes in 

the graph, the last node of the graph is called a terminal node, and the topmost node is 

called the root. As seen in Figure 23-1, when constructing a decision tree, the root is at 

the top, while the branches connect nodes at lower layers until the terminal node.
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 On Regression and Classification with CART
A classification or regression tree is built by randomly splitting the set of attributes of the 

given dataset into distinct regions. The data points that fall within a particular region are 

used to form the predictor from the means of the targets in the regression case and the 

highest occurring class in the classification setting.

Thus, if an unseen observation or test data falls within a region, the mean or 

modal class is used to predict the output for regression and classification problems, 

respectively. In regression trees, the output variable is continuous, whereas in 

classification trees, the output variable is categorical. The terminal node of a regression 

tree takes the average of the samples in that region, while the terminal node of a 

classification tree is the highest occurring class in that area.

The process of splitting the features of the dataset into regions is by a greedy 

algorithm called recursive binary splitting. This strategy works by continuously 

dividing the feature space into two new branches or regions until a stopping 

criterion is reached.

Figure 23-1. Illustration of a decision tree
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 Growing a Regression Tree
In regression trees, the recursive binary splitting technique is used to divide a particular 

feature in the dataset into two regions. The splitting is carried out by choosing a value 

of the feature that minimizes the regression error measure. This step is done for all the 

predictors in the dataset by finding a value that reduces the squared error of the final 

tree. This process is repeated continuously for every sub-tree or sub-region until a 

stopping criterion is reached. For example, we can stop the algorithm when no region 

contains less than ten observations. An example of a tree resulting from the splitting of a 

feature space into six regions is shown in Figure 23-2.

 Growing a Classification Tree
Growing a classification tree is very similar to the regression tree setting described in 

Figure 23-2. The difference here is that the error measure to minimize is no longer the 

squared error, but the misclassification error. This is because a classification tree is for 

predicting a qualitative response, where a data point is assigned to a particular region 

based on the modal value or the highest occurring class in that region.

Two algorithms for selecting which value to use for splitting the feature space in a 

classification setting are the Gini index and entropy; further discussions on these are 

beyond the scope of this chapter.

Figure 23-2. Left: An example of splitting a 2-D dataset into sub-trees/regions 
using the recursive binary splitting technique. Right: The resulting tree from the 
partitioning on the left.
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 Tree Pruning
Tree pruning is a technique for dealing with model overfitting when growing trees. 

Fully grown trees have a high tendency to overfit with high variances when applied to 

unseen samples.

Pruning involves growing a large tree and then pruning or clipping it to create 

a sub-tree. By doing so, we can have a full picture of the tree performance and then 

select a sub-tree that results in a minimized error measure on the test dataset. The 

technique for selecting the best sub-tree is called the cost complexity pruning or the 

weakest link pruning.

 Strengths and Weaknesses of CART
One of the significant advantages of CART models is that they perform well on linear and 

non-linear datasets. Moreover, CART models implicitly take care of feature selection and 

work well with high-dimensional datasets.

On the flip side, CART models can very easily overfit the dataset and fail to generalize 

to new examples. This downside is mitigated by aggregating a large number of decision 

trees in techniques like Random forests and boosting ensemble algorithms.

 CART with Scikit-learn
In this section, we will implement a classification and regression decision tree classifier 

with Scikit-learn.

 Classification Tree with Scikit-learn

In this code example, we will build a classification decision tree classifier to predict the 

species of flowers from the Iris dataset.

# import packages

from sklearn.tree import DecisionTreeClassifier

from sklearn import datasets

from sklearn.model_selection import train_test_split

from sklearn.metrics import accuracy_score
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# load dataset

data = datasets.load_iris()

# separate features and target

X = data.data

y = data.target

# split in train and test sets

X_train, X_test, y_train, y_test = train_test_split(X, y, shuffle=True)

# create the model

tree_classifier = DecisionTreeClassifier()

# fit the model on the training set

tree_classifier.fit(X_train, y_train)

# make predictions on the test set

predictions = tree_classifier.predict(X_test)

# evaluate the model performance using accuracy metric

print("Accuracy: %.2f" % accuracy_score(y_test, predictions))

'Output":

Accuracy: 0.97

 Regression Tree with Scikit-learn

In this code example, we will build a regression decision tree classifier to predict house 

prices from the Boston house-prices dataset.

# import packages

from sklearn.tree import DecisionTreeRegressor

from sklearn import datasets

from sklearn.model_selection import train_test_split

from sklearn.metrics import mean_squared_error

from math import sqrt
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# load dataset

data = datasets.load_boston()

# separate features and target

X = data.data

y = data.target

# split in train and test sets

X_train, X_test, y_train, y_test = train_test_split(X, y, shuffle=True)

# create the model

tree_reg = DecisionTreeRegressor()

# fit the model on the training set

tree_reg.fit(X_train, y_train)

# make predictions on the test set

predictions = tree_reg.predict(X_test)

# evaluate the model performance using the root mean square error metric

print("Root mean squared error: %.2f" % sqrt(mean_squared_error(y_test, 

predictions)))

'Output':

Root mean squared error: 4.93

 Random Forests
Random forest is a robust machine learning algorithm and is often the algorithm of 

choice for many classification and regression problems. It is a popular algorithm in 

machine learning competitions.

Random forest builds an ensemble classifier from a combination of several decision 

tree classifiers. This does an excellent job of reducing the variance that may be found in a 

single decision tree classifier.

Chapter 23  ensemble methods



275

Random forest is an improvement on the bagging ensemble algorithm (also known 

as bootstrap aggregation) which involves creating a large number of fully grown decision 

trees by repeatedly selecting random samples from the training dataset (also called 

bootstrapping). The result of these trees is then averaged to smoothen out the variance.

Random forest improves this bagging procedure by using only a subset of the 

features or attributes in the training dataset on each tree split. In doing this, Random 

forest creates trees whose average is more robust and less prone to high variances.

Observe that the principal distinction between bagging and Random forests is the 

choice of features when splitting the feature space or when building the tree. Bagging 

makes use of the entire features in the dataset, whereas Random forest imposes a 

constraint on the number of features and uses only a subset of features on each tree split 

to reduce the correlation of each sub-tree. Empirically, the size of features for each tree 

split using Random forests is the square root of the original number of predictors.

 Making Predictions with Random Forests
In order to make a prediction using Random forest, the test example is passed 

through each trained decision tree. For the regression case, a prediction is made for a 

new example by taking the average of the outputs of the different trees. In the case of 

classification problems, the prediction is the class with the most votes from all other 

trees in the forest. This is best illustrated in Figure 23-3.
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 Random Forests with Scikit-learn
This section will implement Random forests with Scikit-learn for both regression and 

classification use cases.

 Random Forests for Classification

In this code example, we will build a Random forest classification model to predict the 

species of flowers from the Iris dataset.

# import packages

from sklearn.ensemble import RandomForestClassifier

from sklearn import datasets

from sklearn.model_selection import train_test_split

from sklearn.metrics import accuracy_score

# load dataset

data = datasets.load_iris()

# separate features and target

X = data.data

y = data.target

# split in train and test sets

X_train, X_test, y_train, y_test = train_test_split(X, y, shuffle=True)

# create the model

rf_classifier = RandomForestClassifier()

# fit the model on the training set

rf_classifier.fit(X_train, y_train)
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# make predictions on the test set

predictions = rf_classifier.predict(X_test)

# evaluate the model performance using accuracy metric

print("Accuracy: %.2f" % accuracy_score(y_test, predictions))

'Output":

Accuracy: 1.00

 Random Forests for Regression

In this code example, we will build a Random forest regression model to predict house 

prices from the Boston house-prices dataset.

# import packages

from sklearn.ensemble import RandomForestRegressor

from sklearn import datasets

from sklearn.model_selection import train_test_split

from sklearn.metrics import mean_squared_error

from math import sqrt

# load dataset

data = datasets.load_boston()

# separate features and target

X = data.data

y = data.target

# split in train and test sets

X_train, X_test, y_train, y_test = train_test_split(X, y, shuffle=True)
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# create the model

rf_reg = RandomForestRegressor()

# fit the model on the training set

rf_reg.fit(X_train, y_train)

# make predictions on the test set

predictions = rf_reg.predict(X_test)

# evaluate the model performance using the root mean square error metric

print("Root mean squared error: %.2f" % sqrt(mean_squared_error(y_test, 

predictions)))

'Output':

Root mean squared error: 2.96

 Stochastic Gradient Boosting (SGB)
Boosting involves growing trees in succession using knowledge from the residuals of the 

previously grown tree. In this case, each successive tree works to improve the model of 

the previous tree by boosting the areas in which the previous tree did not perform so well 

without affecting the areas of high performance. By doing this, we iteratively create a 

model that reduces the residual variance when generalizing to test examples. Boosting is 

illustrated in Figure 23-4.
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Gradient boosting evaluates the difference of the residuals for each tree and then 

uses that information to determine how to split the feature space in the successive tree.

Gradient boosting employs a pseudo-gradient in computing the residuals. This gradient 

is the direction of quickest improvement to the loss function. The residual variance is 

minimized as the gradient moves in the direction of steepest descent. This movement is the 

same as the stochastic gradient descent algorithm discussed in Chapter 16.

 Tree Depth/Number of Trees
Gradient boosting can be controlled by choosing the tree depth as a hyper-parameter 

to the model. In practice, a tree depth of 1 performs well, as each tree consists of just a 

single split. Also, the number of trees can affect the model accuracy, because gradient 

boosting can overfit if the number of successive trees is vast.

 Shrinkage
The shrinkage hyper-parameter λ controls the learning rate of the gradient boosting 

model. An arbitrarily small value of λ may necessitate a larger number of trees to obtain a 

good model performance. However, with a small shrinkage size and tree depth d = 1, the 

residuals slowly improve by creating more varied trees to improve the worst performing 

areas of the model. Rule of thumb: shrinkage size is 0.01 or 0.001.

 Stochastic Gradient Boosting with Scikit-learn
This section will implement SGB with Scikit-learn for both regression and classification 

use cases.
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 SGB for Classification

In this code example, we will build a SGB classification model to predict the species of 

flowers from the Iris dataset.

# import packages

from sklearn.ensemble import GradientBoostingClassifier

from sklearn import datasets

from sklearn.model_selection import train_test_split

from sklearn.metrics import accuracy_score

# load dataset

data = datasets.load_iris()

# separate features and target

X = data.data

y = data.target

# split in train and test sets

X_train, X_test, y_train, y_test = train_test_split(X, y, shuffle=True)

# create the model

sgb_classifier = GradientBoostingClassifier()

# fit the model on the training set

sgb_classifier.fit(X_train, y_train)

# make predictions on the test set

predictions = sgb_classifier.predict(X_test)

# evaluate the model performance using accuracy metric

print("Accuracy: %.2f" % accuracy_score(y_test, predictions))

'Output":

Accuracy: 0.92
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 SGB for Regression

In this code example, we will build a SGB regression model to predict house prices from 

the Boston house-prices dataset.

# import packages

from sklearn.ensemble import GradientBoostingRegressor

from sklearn import datasets

from sklearn.model_selection import train_test_split

from sklearn.metrics import mean_squared_error

from math import sqrt

# load dataset

data = datasets.load_boston()

# separate features and target

X = data.data

y = data.target

# split in train and test sets

X_train, X_test, y_train, y_test = train_test_split(X, y, shuffle=True)

# create the model

sgb_reg = GradientBoostingRegressor ()

# fit the model on the training set

sgb_reg.fit(X_train, y_train)

# make predictions on the test set

predictions = sgb_reg.predict(X_test)

# evaluate the model performance using the root mean square error metric

print("Root mean squared error: %.2f" % sqrt(mean_squared_error(y_test, 

predictions)))

'Output':

Root mean squared error: 2.86
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 XGBoost (Extreme Gradient Boosting)
XGBoost which is short for Extreme Gradient Boosting makes a couple of computational 

and algorithmic modifications to the stochastic gradient boosting algorithm. This 

enhanced algorithm is a favorite in machine learning practice due to its speed and has 

been the winning algorithm in many machine learning competitions. Let’s go through 

some of the modifications made by the XGBoost algorithm.

 1. Parallel training: XGBoost supports parallel training over multiple 

cores. This has made XGBoost extremely fast compared to other 

machine learning algorithms.

 2. Out of core computation: XGBoost facilitates training from data 

not loaded into memory. This feature is a huge advantage when 

you’re dealing with large datasets that may not necessarily fit into 

the RAM of the computer.

 3. Sparse data optimization: XGBoost is optimized to handle and 

speed up computation with sparse matrices. Sparse matrices 

contain lots of zeros in its cells.

 XGBoost with Scikit-learn
This section will implement XGBoost with Scikit-learn for both regression and 

classification use cases.

 XGBoost for Classification

In this code example, we will build a XGBoost classification model to predict the species 

of flowers from the Iris dataset.

# import packages

from xgboost import XGBClassifier

from sklearn import datasets

from sklearn.model_selection import train_test_split

from sklearn.metrics import accuracy_score

# load dataset

data = datasets.load_iris()

Chapter 23  ensemble methods



285

# separate features and target

X = data.data

y = data.target

# split in train and test sets

X_train, X_test, y_train, y_test = train_test_split(X, y, shuffle=True)

# create the model

xgboost_classifier = XGBClassifier()

# fit the model on the training set

xgboost_classifier.fit(X_train, y_train)

# make predictions on the test set

predictions = xgboost_classifier.predict(X_test)

# evaluate the model performance using accuracy metric

print("Accuracy: %.2f" % accuracy_score(y_test, predictions))

'Output":

Accuracy: 0.95

 XGBoost for Regression

In this code example, we will build a XGBoost regression model to predict house prices 

from the Boston house-prices dataset.

# import packages

from xgboost import XGBRegressor

from sklearn import datasets

from sklearn.model_selection import train_test_split

from sklearn.metrics import mean_squared_error

from math import sqrt

# load dataset

data = datasets.load_boston()

# separate features and target

X = data.data

y = data.target
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# split in train and test sets

X_train, X_test, y_train, y_test = train_test_split(X, y, shuffle=True)

# create the model

xgboost_reg = XGBRegressor()

# fit the model on the training set

xgboost_reg.fit(X_train, y_train)

# make predictions on the test set

predictions = xgboost_reg.predict(X_test)

# evaluate the model performance using the root mean square error metric

print("Root mean squared error: %.2f" % sqrt(mean_squared_error(y_test, 

predictions)))

'Output':

Root mean squared error: 3.69

In this chapter, we surveyed and implemented ensemble machine learning 

algorithms that combine weak decision tree learners to create a strong classifier for 

learning regression and classification problems. In the next chapter, we will discuss more 

techniques for implementing supervised machine learning models with Scikit-learn.
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CHAPTER 24

More Supervised Machine 
Learning Techniques 
with Scikit-learn
This chapter will cover using Scikit-learn to implement machine learning models using 

techniques such as

• Feature engineering

• Resampling methods

• Model evaluation methods

• Pipelines for streamlining machine learning workflows

• Techniques for model tuning

 Feature Engineering
Feature engineering is the process of systematically choosing the set of features in the 

dataset that are useful and relevant to the learning problem. It is often the case that 

irrelevant features negatively affect the performance of the model. This section will 

review some techniques implemented in Scikit-learn for selecting relevant features from 

a dataset. The techniques surveyed include

• Statistical tests to select the best k features using the  

SelectKBest module

• Recursive feature elimination (RFE) to recursively remove irrelevant 

features from the dataset
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• Principal component analysis to select the components that account 

for the variation in the dataset

• Feature importances using ensembled or tree classifiers

 Statistical Tests to Select the Best k Features Using 
the SelectKBest Module
The following list is a selection of statistical tests to use with SelectKBest. The choice 

depends if the dataset target variable is numerical or categorical:

• ANOVA F-value, f_classif (classification)

• Chi-squared stats of non-negative features, chi2 (classification)

• F-value, f_regression (regression)

• Mutual information for a continuous target, mutual_info_regression 

(regression)

Let’s see an example using chi-squared test to select the best variables.

# import packages

from sklearn import datasets

from sklearn.feature_selection import SelectKBest

from sklearn.feature_selection import chi2

# load dataset

data = datasets.load_iris()

# separate features and target

X = data.data

y = data.target

# display first 5 rows

X[0:5,:]

# feature engineering. Let's see the best 3 features by setting k = 3

kBest_chi = SelectKBest(score_func=chi2, k=3)

fit_test = kBest_chi.fit(X, y)
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# print test scores

fit_test.scores_

'Output': array([ 10.81782088,   3.59449902, 116.16984746,  67.24482759])

From the test scores, the top 3 important features in the dataset are ranked from 

feature 3 to 4 to 1 and to 2 in order. The data scientist can choose to drop the second 

column and observe the effect on the model performance.

We can transform the dataset to subset only the important features.

adjusted_features = fit_test.transform(X)

adjusted_features[0:5,:]

'Output':

array([[5.1, 1.4, 0.2],

       [4.9, 1.4, 0.2],

       [4.7, 1.3, 0.2],

       [4.6, 1.5, 0.2],

       [5. , 1.4, 0.2]])

The result drops the second column of the dataset.

 Recursive Feature Elimination (RFE)
RFE is used together with a learning model to recursively select the desired number of 

top performing features.

Let’s use RFE with LinearRegression.

# import packages

from sklearn.feature_selection import RFE

from sklearn.linear_model import LinearRegression

from sklearn import datasets

# load dataset

data = datasets.load_boston()

# separate features and target

X = data.data

y = data.target
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# feature engineering

linear_reg = LinearRegression()

rfe = RFE(estimator=linear_reg, n_features_to_select=6)

rfe_fit = rfe.fit(X, y)

# print the feature ranking

rfe_fit.ranking_

'Output': array([3, 5, 4, 1, 1, 1, 8, 1, 2, 6, 1, 7, 1])

From the result, the 4th, 5th, 6th, 8th, 11th, and 13th features are the top 6 features in 

the Boston dataset.

 Feature Importances
Tree-based or ensemble methods in Scikit-learn have a feature_importances_ attribute 

which can be used to drop irrelevant features in the dataset using the SelectFromModel 
module contained in the sklearn.feature_selection package.

Let’s used the ensemble method AdaBoostClassifier in this example.

# import packages

from sklearn.ensemble import AdaBoostClassifier

from sklearn.feature_selection import SelectFromModel

from sklearn import datasets

# load dataset

data = datasets.load_iris()

# separate features and target

X = data.data

y = data.target

# original data shape

X.shape

# feature engineering

ada_boost_classifier = AdaBoostClassifier()

ada_boost_classifier.fit(X, y)
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'Output':

AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,

          learning_rate=1.0, n_estimators=50, random_state=None)

# print the feature importances

ada_boost_classifier.feature_importances_

'Output': array([0.  , 0.  , 0.58, 0.42])

# create a subset of data based on the relevant features

model = SelectFromModel(ada_boost_classifier, prefit=True)

new_data = model.transform(X)

# the irrelevant features have been removed

new_data.shape

'Output': (150, 2)

 Resampling Methods
Resampling methods are a set of techniques that involve selecting a subset of the 

available dataset, training on that data subset, and using the remainder of the data to 

evaluate the trained model. Let’s review the techniques for resampling using Scikit- 

learn. This section covers

• k-Fold cross-validation

• Leave-one-out cross-validation

 k-Fold Cross-Validation
In k-fold cross validation, the dataset is divided into k-parts or folds. The model is 

trained using k − 1 folds and evaluated on the remaining kth fold. This process is 

repeated k-times so that each fold can serve as a test set. At the end of the process, 

k-fold averages the result and reports a mean score with a standard deviation. Scikit-

learn implements K-fold CV in the module KFold. The module cross_val_score 

is used to evaluate the cross-validation score using the splitting strategy, which is 

KFold in this case.
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Let’s see an example of this using the k-nearest neighbors (kNN) classification 

algorithm. When initializing KFold, it is standard practice to shuffle the data before 

splitting.

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

from sklearn.neighbors import KNeighborsClassifier

# load dataset

data = datasets.load_iris()

# separate features and target

X = data.data

y = data.target

# initialize KFold - with shuffle = True, shuffle the data before splitting

kfold = KFold(n_splits=3, shuffle=True)

# create the model

knn_clf = KNeighborsClassifier(n_neighbors=3)

# fit the model using cross validation

cv_result = cross_val_score(knn_clf, X, y, cv=kfold)

# evaluate the model performance using accuracy metric

print("Accuracy: %.3f%% (%.3f%%)" % (cv_result.mean()*100.0, cv_result.

std()*100.0))

'Output':

Accuracy: 93.333% (2.494%)

 Leave-One-Out Cross-Validation (LOOCV)
In LOOCV just one example is assigned to the test set, and the model is trained on the 

remainder of the dataset. This process is repeated for all the examples in the dataset. 

This process is repeated until all the examples in the dataset have been used for 

evaluating the model.

from sklearn.model_selection import LeaveOneOut

from sklearn.model_selection import cross_val_score

from sklearn.neighbors import KNeighborsClassifier
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# load dataset

data = datasets.load_iris()

# separate features and target

X = data.data

y = data.target

# initialize LOOCV

loocv = LeaveOneOut()

# create the model

knn_clf = KNeighborsClassifier(n_neighbors=3)

# fit the model using cross validation

cv_result = cross_val_score(knn_clf, X, y, cv=loocv)

# evaluate the model performance using accuracy metric

print("Accuracy: %.3f%% (%.3f%%)" % (cv_result.mean()*100.0, cv_result.

std()*100.0))

'Output':

Accuracy: 96.000% (19.596%)

 Model Evaluation
This chapter has already used a couple of evaluation metrics for assessing the quality of 

the fitted models. In this section, we survey a couple of other metrics for regression and 

classification use cases and how to implement them using Scikit-learn. For each metric, 

we show how to use them as stand-alone implementations, as well as together with 

cross-validation using the cross_val_score method.

What we’ll cover here includes

Regression evaluation metrics

• Mean squared error (MSE): The average sum of squared difference 

between the predicted label, ŷ, and the true label, y. A score of 0 

indicates a perfect prediction without errors.

• Mean absolute error (MAE): The average absolute difference between 

the predicted label, ŷ, and the true label, y. A score of 0 indicates a 

perfect prediction without errors.
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• R2: The amount of variance or variability in the dataset explained by 

the model. The score of 1 means that the model perfectly captures 

the variability in the dataset.

Classification evaluation metrics

• Accuracy: Is the ratio of correct predictions to the total number of 

predictions. The bigger the accuracy, the better the model.

• Logarithmic loss (a.k.a logistic loss or cross-entropy loss): Is the 

probability that an observation is correctly assigned to a class label. 

By minimizing the log-loss, conversely, the accuracy is maximized. 

So with this metric, values closer to zero are good.

• Area under the ROC curve (AUC-ROC): Used in the binary 

classification case. Implementation is not provided, but very similar 

in style to the others.

• Confusion matrix: More intuitive in the binary classification 

case. Implementation is not provided, but very similar in style to 

the others.

• Classification report: It returns a text report of the main classification 

metrics.

 Regression Evaluation Metrics
The following code is an example of regression evaluation metrics implemented 

stand- alone.

# import packages

from sklearn.linear_model import LinearRegression

from sklearn import datasets

from sklearn.model_selection import train_test_split

from sklearn.metrics import mean_squared_error

from sklearn.metrics import mean_absolute_error

from sklearn.metrics import r2_score

# load dataset

data = datasets.load_boston()
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# separate features and target

X = data.data

y = data.target

# split in train and test sets

X_train, X_test, y_train, y_test = train_test_split(X, y, shuffle=True)

# create the model

# setting normalize to true normalizes the dataset before fitting the model

linear_reg = LinearRegression(normalize = True)

# fit the model on the training set

linear_reg.fit(X_train, y_train)

'Output': LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, 

normalize=True)

# make predictions on the test set

predictions = linear_reg.predict(X_test)

# evaluate the model performance using mean square error metric

print("Mean squared error: %.2f" % mean_squared_error(y_test, predictions))

'Output':

Mean squared error: 14.46

# evaluate the model performance using mean absolute error metric

print("Mean absolute error: %.2f" % mean_absolute_error(y_test, 

predictions))

'Output':

Mean absolute error: 3.63

# evaluate the model performance using r-squared error metric

print("R-squared score: %.2f" % r2_score(y_test, predictions))

'Output':

R-squared score: 0.69

The following code is an example of regression evaluation metrics implemented with 

cross-validation. The MSE and MAE metrics for cross-validation are implemented with 

the sign inverted. The simple way to interpret this is to have it in mind that the closer the 

values are to zero, the better the model.
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from sklearn.linear_model import LinearRegression

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

# load dataset

data = datasets.load_boston()

# separate features and target

X = data.data

y = data.target

# initialize KFold - with shuffle = True, shuffle the data before splitting

kfold = KFold(n_splits=3, shuffle=True)

# create the model

linear_reg = LinearRegression(normalize = True)

# fit the model using cross validation - score with Mean square error (MSE)

mse_cv_result = cross_val_score(linear_reg, X, y, cv=kfold, scoring="neg_

mean_squared_error")

# print mse cross validation output

print("Negative Mean squared error: %.3f%% (%.3f%%)" % (mse_cv_result.

mean(), mse_cv_result.std()))

'Output':

Negtive Mean squared error: -24.275% (4.093%)

# fit the model using cross validation - score with Mean absolute error (MAE)

mae_cv_result = cross_val_score(linear_reg, X, y, cv=kfold, scoring="neg_

mean_absolute_error")

# print mse cross validation output

print("Negtive Mean absolute error: %.3f%% (%.3f%%)" % (mae_cv_result.

mean(), mae_cv_result.std()))

'Output':

Negtive Mean absolute error: -3.442% (4.093%)

# fit the model using cross validation - score with R-squared

r2_cv_result = cross_val_score(linear_reg, X, y, cv=kfold, scoring="r2")

# print mse cross validation output
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print("R-squared score: %.3f%% (%.3f%%)" % (r2_cv_result.mean(), r2_cv_

result.std()))

'Output':

R-squared score: 0.707% (0.030%)

 Classification Evaluation Metrics
The following code is an example of classification evaluation metrics implemented 

stand-alone.

# import packages

from sklearn.linear_model import LogisticRegression

from sklearn import datasets

from sklearn.model_selection import train_test_split

from sklearn.metrics import accuracy_score

from sklearn.metrics import log_loss

from sklearn.metrics import classification_report

# load dataset

data = datasets.load_iris()

# separate features and target

X = data.data

y = data.target

# split in train and test sets

X_train, X_test, y_train, y_test = train_test_split(X, y, shuffle=True)

# create the model

logistic_reg = LogisticRegression()

# fit the model on the training set

logistic_reg.fit(X_train, y_train)

'Output':

LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,

          intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,

          penalty='l2', random_state=None, solver='liblinear', tol=0.0001,

          verbose=0, warm_start=False)
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# make predictions on the test set

predictions = logistic_reg.predict(X_test)

# evaluate the model performance using accuracy

print("Accuracy score: %.2f" % accuracy_score(y_test, predictions))

'Output':

Accuracy score: 0.89

# evaluate the model performance using log loss

### output the probabilities of assigning an observation to a class

predictions_probabilities = logistic_reg.predict_proba(X_test)

print("Log-Loss likelihood: %.2f" % log_loss(y_test, predictions_

probabilities))

'Output':

Log-Loss likelihood: 0.39

# evaluate the model performance using classification report

print("Classification report: \n", classification_report(y_test, 

predictions, target_names=data.target_names))

'Output':

Classification report:

              precision    recall  f1-score   support

     setosa       1.00      1.00      1.00        12

 versicolor       0.85      0.85      0.85        13

  virginica       0.85      0.85      0.85        13

avg / total       0.89      0.89      0.89        38

Let’s see an example of classification evaluation metrics implemented with cross- 

validation. Evaluation metrics for log-loss using cross-validation is implemented with 

the sign inverted. The simple way to interpret this is to have it in mind that the closer the 

values are to zero, the better the model.

from sklearn.linear_model import LogisticRegression

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score
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# load dataset

data = datasets.load_iris()

# separate features and target

X = data.data

y = data.target

# initialize KFold - with shuffle = True, shuffle the data before splitting

kfold = KFold(n_splits=3, shuffle=True)

# create the model

logistic_reg = LogisticRegression()

# fit the model using cross validation - score with accuracy

accuracy_cv_result = cross_val_score(logistic_reg, X, y, cv=kfold, 

scoring="accuracy")

# print accuracy cross validation output

print("Accuracy: %.3f%% (%.3f%%)" % (accuracy_cv_result.mean(), accuracy_

cv_result.std()))

'Output':

Accuracy: 0.953% (0.025%)

# fit the model using cross validation - score with Log-Loss

logloss_cv_result = cross_val_score(logistic_reg, X, y, cv=kfold, 

scoring="neg_log_loss")

# print mse cross validation output

print("Log-Loss likelihood: %.3f%% (%.3f%%)" % (logloss_cv_result.mean(), 

logloss_cv_result.std()))

'Output':

Log-Loss likelihood: -0.348% (0.027%)

 Pipelines: Streamlining Machine Learning 
Workflows
The concept of pipelines in Scikit-learn is a compelling tool for chaining a bunch 

of operations together to form a tidy process flow of data transforms from one state 

to another. The operations that constitute a pipeline can be any of Scikit-learn’s 
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transformers (i.e., modules with a fit and transform method, or a fit_transform 

method) or classifiers (i.e., modules with a fit and predict method, or a fit_predict 

method). Classifiers are also called predictors.

For a typical machine learning workflow, the steps taken may involve cleaning the 

data, feature engineering, scaling the dataset, and then fitting a model. Pipelines can be 

used in this case to chain these operations together into a coherent workflow. They have 

the advantage of providing a convenient and consistent interface for calling at once a 

sequence of operations.

These transformers or predictors are collectively called estimators in Scikit-learn 

terminology. In the last two paragraphs, we called them operations.

Another advantage of pipelines is that it safeguards against accidentally fitting a 

transform on the entire dataset and thereby leaking statistics influenced by the test data 

to the machine learning model while training. For example, if a standardizer is fitted on 

the whole dataset, the test set will be compromised because the test observations have 

contributed in estimating the mean and standard deviation for scaling the training set 

before fitting the model.

Finally, only the last step of the pipeline can be a classifier or predictor. All the stages 

of the pipeline must contain a transform method except the final stage, which can be a 

transformer or a classifier.

To begin using Scikit-learn pipelines, first import

from sklearn.pipeline import Pipeline

Let’s see some examples of working with Pipelines in Scikit-learn. In the following 

example, we’ll apply a scaling transform to standardize our dataset and then use a 

support vector classifier to train the model.

# import packages

from sklearn.svm import SVC

from sklearn import datasets

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

from sklearn.preprocessing import StandardScaler

from sklearn.pipeline import Pipeline

# load dataset

data = datasets.load_iris()
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# separate features and target

X = data.data

y = data.target

# create the pipeline

estimators = [

    ('standardize' , StandardScaler()),

    ('svc', SVC())

]

# build the pipeline model

pipe = Pipeline(estimators)

# run the pipeline

kfold = KFold(n_splits=3, shuffle=True)

cv_result = cross_val_score(pipe, X, y, cv=kfold)

# evaluate the model performance

print("Accuracy: %.3f%% (%.3f%%)" % (cv_result.mean()*100.0, cv_result.

std()*100.0))

'Output':

Accuracy: 94.667% (0.943%)

 Pipelines Using make_pipeline
Another method for building machine learning pipelines is by using the make_pipeline 

method. For the next example, we use PCA to select the best six features and reduce the 

dimensionality of the dataset, and then we’ll fit the model using Random forests for 

regression.

from sklearn.pipeline import make_pipeline

from sklearn.svm import SVR

from sklearn import datasets

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

from sklearn.decomposition import PCA

from sklearn.pipeline import Pipeline

from sklearn.ensemble import RandomForestRegressor

Chapter 24  More SuperviSed MaChine Learning teChniqueS with SCikit-Learn



302

# load dataset

data = datasets.load_boston()

# separate features and target

X = data.data

y = data.target

# build the pipeline model

pipe = make_pipeline(

    PCA(n_components=9),

    RandomForestRegressor()

)

# run the pipeline

kfold = KFold(n_splits=4, shuffle=True)

cv_result = cross_val_score(pipe, X, y, cv=kfold)

# evaluate the model performance

print("Accuracy: %.3f%% (%.3f%%)" % (cv_result.mean()*100.0, cv_result.

std()*100.0))

'Output':

Accuracy: 73.750% (2.489%)

 Pipelines Using FeatureUnion
Scikit-learn provides a module for merging the output of several transformers called 

feature_union. It does this by fitting each transformer independently to the dataset, and 

then their respective outputs are combined to form a transformed dataset for training 

the model.

FeatureUnion works in the same way as a Pipeline, and in many ways can be thought 

of as a means of building complex pipelines within a Pipeline.

Let’s see an example using FeatureUnion. Here, we will combine the output of 

recursive feature elimination (RFE) and PCA for feature engineering, and then we’ll apply 

the Stochastic Gradient Boosting (SGB) ensemble model for regression to train the model.

from sklearn.ensemble import GradientBoostingRegressor

from sklearn.ensemble import RandomForestRegressor

from sklearn import datasets
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from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

from sklearn.feature_selection import RFE

from sklearn.decomposition import PCA

from sklearn.pipeline import Pipeline

from sklearn.pipeline import make_pipeline

from sklearn.pipeline import make_union

# load dataset

data = datasets.load_boston()

# separate features and target

X = data.data

y = data.target

# construct pipeline for feature engineering - make_union similar to make_

pipeline

feature_engr = make_union(

    RFE(estimator= RandomForestRegressor(n_estimators=100), n_features_to_

select=6),

    PCA(n_components=9)

)

# build the pipeline model

pipe = make_pipeline(

    feature_engr,

    GradientBoostingRegressor(n_estimators=100)

)

# run the pipeline

kfold = KFold(n_splits=4, shuffle=True)

cv_result = cross_val_score(pipe, X, y, cv=kfold)

# evaluate the model performance

print("Accuracy: %.3f%% (%.3f%%)" % (cv_result.mean()*100.0, cv_result.

std()*100.0))

'Output':

Accuracy: 88.956% (1.493%)
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 Model Tuning
Each machine learning model has a set of options or configurations that can be tuned 

to optimize the model when fitting to data. These configurations are called hyper- 
parameters. Hence, for each hyper-parameter, there exist a range of values that can be 

chosen. Taking into consideration the number of hyper-parameters that an algorithm 

has, the entire space can become exponentially large and infeasible to explore all of 

them. Scikit-learn provides two convenient modules for searching through the hyper- 

parameter space of an algorithm to find the best values for each hyper-parameter that 

optimizes the model.

These modules are the

• Grid search

• Randomized search

 Grid Search
Grid search comprehensively explores all the specified hyper-parameter values for an 

estimator. It is implemented using the GridSearchCV module. Let’s see an example 

using the Random forest for regression. The hyper-parameters we’ll search over are

• The number of trees in the forest, n_estimators

• The maximum depth of the tree, max_depth

• The minimum number of samples required to split an internal node, 

min_samples_leaf

from sklearn.model_selection import GridSearchCV

from sklearn.ensemble import RandomForestRegressor

from sklearn import datasets

# load dataset

data = datasets.load_boston()

# separate features and target

X = data.data

y = data.target
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# construct grid search parameters in a dictionary

parameters = {

    'n_estimators': [2, 4, 6, 8, 10, 12, 14, 16],

    'max_depth': [2, 4, 6, 8],

    'min_samples_leaf': [1,2,3,4,5]

    }

# create the model

rf_model = RandomForestRegressor()

# run the grid search

grid_search = GridSearchCV(estimator=rf_model, param_grid=parameters)

# fit the model

grid_search.fit(X,y)

'Output':

GridSearchCV(cv=None, error_score='raise',

        estimator=RandomForestRegressor(bootstrap=True, criterion='mse', 

max_depth=None,

           max_features='auto', max_leaf_nodes=None,

           min_impurity_decrease=0.0, min_impurity_split=None,

           min_samples_leaf=1, min_samples_split=2,

           min_weight_fraction_leaf=0.0, n_estimators=10, n_jobs=1,

            oob_score=False, random_state=None, verbose=0, warm_

start=False),

       fit_params=None, iid=True, n_jobs=1,

        param_grid={'n_estimators': [2, 4, 6, 8, 10, 12, 14, 16],  

'max_depth': [2, 4, 6, 8], 'min_samples_leaf': [1, 2, 3, 4, 5]},

       pre_dispatch='2*n_jobs', refit=True, return_train_score='warn',

       scoring=None, verbose=0)

# evaluate the model performance

print("Best Accuracy: %.3f%%" %  (grid_search.best_score_*100.0))

'Output':

Best Accuracy: 57.917%
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# best set of hyper-parameter values

print("Best n_estimators: %d \nBest max_depth: %d \nBest min_samples_leaf: 

%d " %  \

            (grid_search.best_estimator_.n_estimators, \

            grid_search.best_estimator_.max_depth, \

            grid_search.best_estimator_.min_samples_leaf))

'Output':

Best n_estimators: 14

Best max_depth: 8

Best min_samples_leaf: 1

 Randomized Search
As opposed to grid search, not all the provided hyper-parameter values are evaluated, 

but rather a determined number of hyper-parameter values are sampled from a random 

uniform distribution. The number of hyper-parameter values that can be evaluated is 

determined by the n_iter attribute of the RandomizedSearchCV module.

In this example, we will use the same scenario as in the grid search case.

from sklearn.model_selection import RandomizedSearchCV

from sklearn.ensemble import RandomForestRegressor

from sklearn import datasets

# load dataset

data = datasets.load_boston()

# separate features and target

X = data.data

y = data.target

# construct grid search parameters in a dictionary

parameters = {

    'n_estimators': [2, 4, 6, 8, 10, 12, 14, 16],

    'max_depth': [2, 4, 6, 8],

    'min_samples_leaf': [1,2,3,4,5]

    }
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# create the model

rf_model = RandomForestRegressor()

# run the grid search

randomized_search = RandomizedSearchCV(estimator=rf_model, param_

distributions=parameters, n_iter=10)

# fit the model

randomized_search.fit(X,y)

'Output':

RandomizedSearchCV(cv=None, error_score='raise',

           estimator=RandomForestRegressor(bootstrap=True, criterion='mse', 

max_depth=None,

           max_features='auto', max_leaf_nodes=None,

           min_impurity_decrease=0.0, min_impurity_split=None,

           min_samples_leaf=1, min_samples_split=2,

           min_weight_fraction_leaf=0.0, n_estimators=10, n_jobs=1,

            oob_score=False, random_state=None, verbose=0, warm_

start=False),

          fit_params=None, iid=True, n_iter=10, n_jobs=1,

           param_distributions={'n_estimators': [2, 4, 6, 8, 10, 12, 14, 16], 

'max_depth': [2, 4, 6, 8], 'min_samples_leaf': [1, 2, 3, 4, 5]},

          pre_dispatch='2*n_jobs', random_state=None, refit=True,

          return_train_score='warn', scoring=None, verbose=0)

# evaluate the model performance

print("Best Accuracy: %.3f%%" %  (randomized_search.best_score_*100.0))

'Output':

Best Accuracy: 57.856%

# best set of hyper-parameter values

print("Best n_estimators: %d \nBest max_depth: %d \nBest min_samples_leaf: 

%d " %  \

            (randomized_search.best_estimator_.n_estimators, \

            randomized_search.best_estimator_.max_depth, \

            randomized_search.best_estimator_.min_samples_leaf))
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'Output':

Best n_estimators: 12

Best max_depth: 6

Best min_samples_leaf: 5

This chapter further explored using Scikit-learn to incorporate other machine 

learning techniques such as feature selection and resampling methods to develop a 

more robust machine learning method. In the next chapter, we will examine our first 

unsupervised machine learning method, clustering, and its implementation with 

 Scikit- learn.
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CHAPTER 25

Clustering
Clustering is an unsupervised machine learning technique for grouping homogeneous 

data points into partitions called clusters. In the example dataset illustrated in 

Figure 25- 1, suppose we have a set of n points and 2 features. A clustering algorithm 

can be applied to determine the number of distinct subclasses or groups among the 

data samples.

Clustering a 2-D dataset as seen in Figure 25-1 is relatively trivial. The real 

challenge arises when we have to perform clustering in higher-dimensional spaces. 

The question now is how do we ascertain or find out if a set of points are similar 

or if a set of points should be in the same group? In this section, we would cover 

two essential types of clustering algorithms known as k-means clustering and 

hierarchical clustering.

K-means clustering is used when the number of anticipated distinct classes or 

sub- groups is known in advance. In hierarchical clustering, the exact number  

of clusters is not known, and the algorithm is tasked to find the optimal number of 

heterogeneous sub-groups in the dataset.

Figure 25-1. An illustration of clustering in a 2-D space
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 K-Means Clustering
k-Means clustering is one of the most famous and widely used clustering algorithms 

in practice. It works by using a distance measurement (most commonly the 

Euclidean distance) to iteratively assign data points in a hyperspace to a set of non-

overlapping clusters.

In K-means, the anticipated number of clusters, K, is chosen at the onset. The 

clusters are initialized by arbitrarily selecting at random one of the data points as 

an initial cluster for each K. The algorithm now works by iteratively assigning each 

point in the space to the cluster centroid that it is nearest to using the distance 

measurement.

After all the points have been assigned to their closest cluster point, the cluster 

centroid is adjusted to find a new center among the points in the cluster. This process is 

repeated until the algorithm converges, that is, when the cluster centroids stabilize and 

points do not readily swap clusters after every reassignment. These steps are illustrated 

in Figure 25-2.

Figure 25-2. An illustration of k-means clustering with k = 2. Top left: Randomly 
pick a point for each k. Top right: Iteratively assign each point to its closest cluster 
centroid. Bottom: Update the cluster centroids for each of the k clusters. Typically, 
we repeat the iterative assignment of all the points and update the cluster centroid 
until the algorithm resolves in a stable clustering.
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 Considerations for Selecting K
There’s really no way of telling the number of clusters in a dataset from the onset. The 

best way of selecting k is to try out different values of K to see what works best in creating 

distinct clusters.

Another strategy, which is widely employed in practice, is to compute the average 

distance of the points in the cluster to the cluster centroid for all clusters. This estimate 

is plotted on a graph as we progressively increase the value of K. We observe that as K 

increases, the distance of points from the centroid of its cluster gradually reduces, and 

the generated curve resembles the elbow of an arm. From practice, we choose the value 

of K just after the elbow as the best K value for that dataset. This method is called the 

elbow method for selecting K as is illustrated in Figure 25-3.

 Considerations for Assigning the Initial K Points
The points that determine the initial value of K are important in finding a good set 

of clusters. By selecting the point for K at random, two or more points may reside in 

the same cluster, and this will invariably lead to sub-par results. To mitigate this from 

occurring, we can employ more sophisticated approaches to selecting the value of K. A 

common strategy is to randomly select the first K point and then select the next point 

as the point that is farthest from the first chosen point. This strategy is repeated until 

all K points have been selected. Another approach is to run hierarchical clustering on a 

sub-sample of the dataset (this is because hierarchical clustering is a computationally 

expensive algorithm) and use the number of clusters after cutting off the dendrogram as 

the value of K.

Figure 25-3. The elbow method for choosing the best value of k
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 K-Means Clustering with Scikit-learn
This example implements K-means clustering with Scikit-learn. Since this is an 

unsupervised learning use case, we use just the features of the Iris dataset to cluster the 

observations into labels.

# import packages

import matplotlib.pyplot as plt

from sklearn.cluster import KMeans

from sklearn import datasets

from sklearn.model_selection import train_test_split

# load dataset

data = datasets.load_iris()

# get the dataset features

X = data.data

# create the model. Since we know that the Iris dataset has 3 classes, we 

set n_clusters = 3

kmeans = KMeans(n_clusters=3, random_state=0)

# fit the model on the training set

kmeans.fit(X)

'Output':

KMeans(algorithm='auto', copy_x=True, init='k-means++', max_iter=300,

    n_clusters=3, n_init=10, n_jobs=1, precompute_distances='auto',

    random_state=0, tol=0.0001, verbose=0)

# predict the closest cluster each sample in X belongs to.

y_kmeans = kmeans.predict(X)

# plot clustered labels

plt.scatter(X[:, 0], X[:, 1], c=y_kmeans, cmap='viridis')

# plot cluster centers

centers = kmeans.cluster_centers_

plt.scatter(centers[:, 0], centers[:, 1], c='black', s=200, alpha=0.7);

plt.show()

Chapter 25  Clustering



313

The code to plot the clustered labels and the cluster centers should be executed in 

the same notebook. The plot of clusters made by the K-means algorithm is shown in 

Figure 25-4.

 Hierarchical Clustering
Hierarchical clustering is another clustering algorithm for finding homogeneous  

sub- groups or classes within a dataset. However, as opposed to k-means, we do not 

need to make an a priori assumption of the number of clusters in the dataset before 

running the algorithm.

The two main techniques for performing hierarchical clustering are

• Bottom-up or agglomerative

• Top-down or divisive

Figure 25-4. Plot of K-means clusters and their cluster centers
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In the bottom-up or agglomerative method, each data point is initially designated 

as a cluster. Clusters are iteratively combined based on homogeneity that is determined 

by some distance measure. On the other hand, the divisive or top-down approach starts 

with a cluster and subsequently splits into homogeneous sub-groups.

Hierarchical clustering creates a tree-like representation of the partitioning called 

a dendrogram. A dendrogram is drawn somewhat similar to a binary tree with the root 

at the top and the leaves at the bottom. The leaf on the dendrogram represents a data 

sample. The dendrogram is constructed by iteratively combining the leaves based 

on homogeneity to form clusters moving up the tree. An illustration of hierarchical 

clustering is shown in Figure 25-5.

 How Are Clusters Formed
Clusters are formed by computing the nearness between each pair of data points. The 

notion of nearness is most popularly calculated using the Euclidean distance measure. 

Beginning at the leaves of the dendrogram, we iteratively combine those data points 

that are closer to one another in the multi-dimensional vector space until all the 

homogeneous points are placed into a single group or cluster.

Figure 25-5. An illustration of hierarchical clustering of data points in a 2-D 
feature space. Left: The spatial representation of points in 2-D space. Right: A 
hierarchical cluster of points represented by a dendrogram.

Chapter 25  Clustering



315

The Euclidean distance is used to compute the nearness between n data points. 

After each pair of data points has combined to form a cluster, the new cluster pairs are 

then pulled into groups going up the tree, with the tree branch or dendrogram height 

reflecting the dissimilarity between the clusters.

Dissimilarity computes how different each cluster of data is from one another. The 

notion of dissimilarity between two clusters or groups is described in terms of linkage. 

Four types of linkage exist for grouping clusters in hierarchical clustering. They are 

centroid, complete, average, and single.

The centroid linkage computes the dissimilarity between two clusters using the 

geometric centroid of the clusters. The complete linkage uses the two farthest data 

points between the two clusters to compute the dissimilarity (see Figure 25-6).

The average linkage finds the means of points within the pair of clusters and uses 

that new artificial point to calculate the dissimilarity (see Figure 25-7).

Figure 25-6. Complete linkage

Figure 25-7. Average linkage
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The single linkage uses the closest data point between the cluster pairs to compute 

the dissimilarity measure (see Figure 25-8).

Empirically, the complete and average linkages are preferred in practice because 

they yield more balanced dendrograms. Other dissimilarity measures exist for 

evaluating the nearness or homogeneity of data points. One of such is the Manhattan 

distance, another distance-based measure, or the correlation-based distance which 

groups pairs of data samples with highly correlated features. A correlated-based 

dissimilarity measure may be more useful in datasets where proximity in multi-

dimensional spaces is not as useful a metric for homogeneity as compared to the 

correlation of their features in the space. A choice of calculating dissimilarity has a 

significant impact on the ensuring dendrogram.

After running the algorithm, the dendrogram is cut at a particular height, and the 

number of distinct lines or branches after the cut is circumscribed as the number 

of clusters in the dataset. An illustration of cutting the dendrogram is shown in 

Figure 25-9.

Figure 25-8. Single linkage
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 Hierarchical Clustering with the SciPy Package
This example implements hierarchical or agglomerative clustering with SciPy. The 

‘scipy.cluster.hierarchy’ package has simple methods for performing hierarchical 

clustering and plotting dendrograms. This example uses the ‘complete’ linkage method. 

The plot of the dendrogram is shown in Figure 25-10.

# import packages

import matplotlib.pyplot as plt

from scipy.cluster.hierarchy import dendrogram

from scipy.cluster import hierarchy

Z = hierarchy.linkage(X, method='complete')

plt.figure()

dn = hierarchy.dendrogram(Z, truncate_mode='lastp')

Figure 25-9. Dendrogram cut
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This chapter reviewed the pros and cons of K-means and hierarchical clustering. 

Both hierarchical and K-means are susceptible to perturbations in the dataset and can 

give very different results if a few data points are removed or added. Also, it is crucial 

to standardize the dataset features (i.e., to subtract each element in the feature from its 

mean and divide by its standard deviation or by the range) before performing clustering. 

This ensures that the features are within similar numeric bounds and have tempered or 

measured distances in the feature space.

The results of these clustering algorithms also depend on a wide range of 

considerations such as the choice of K for K-means, and for hierarchical clustering, the 

choice of dissimilarity measure, the type of linkage, and where to cut the dendrogram 

all affect the final result of the clusters. Hence, to get the best out of clustering, it is best 

to perform a grid search and try out all these different configurations in order to get 

a measured view on the robustness of the results before applying into your learning 

pipeline or using as a model to explain the dataset.

In the next chapter, we will discuss principal component analysis (PCA) as an 

unsupervised machine learning algorithm for finding low-dimensional feature sub- 

spaces that capture the variability in the dataset.

Figure 25-10. Dendrogram produced by hierarchical clustering
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CHAPTER 26

Principal Component 
Analysis (PCA)
Principal component analysis (PCA) is an essential algorithm in machine learning. It 

is a mathematical method for evaluating the principal components of a dataset. The 

principal components are a set of vectors in high-dimensional space that capture the 

variance (i.e., spread) or variability of the feature space.

The goal of computing principal components is to find a low-dimensional feature 

sub-space that captures as much information as possible from the original higher- 

dimensional features of the dataset.

PCA is particularly useful for simplifying data visualization of high-dimensional 

features by reducing the dimensions of the dataset to a lower sub-space. For example, 

since we can easily visualize relationships on a 2-D plane using scatter diagrams, it will 

be useful to condense an n-dimensional space into two dimensions that retain as much 

information as possible in the n-dimensional dataset. This technique is popularly called 

dimensionality reduction.

 How Are Principal Components Computed
The mathematical details for computing principal components are somewhat involved. 

This section will instead provide a conceptual but solid overview of this process.

The first step is to find the covariance matrix of the dataset. The covariance matrix 

captures the linear relationship between variables or features in the dataset. In a 

covariance matrix, an increasingly positive number represents a growing relationship, 

while the converse is represented by an increasingly negative number. Numbers around 

zero indicate a non-linear relationship between the variables. The covariance matrix is 

a square matrix (that means it has the same rows and columns). Hence, given a dataset 

with m rows and p columns, the covariance matrix will be a m × p matrix.
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The next step is to find the eigenvectors of the covariance matrix dataset. In linear 

algebra theory, eigenvectors are non-zero vectors that merely stretch by a scalar factor, 

but do not change direction when acted upon by a linear transformation. We find the 

eigenvectors using a linear algebra technique called the singular value decomposition 

or SVD for short (see Figure 26-1). This advanced mathematical concept is beyond the 

scope of this book.

The critical point to note at this junction is that the SVD also outputs a square matrix 

(p × p), and each column of the matrix is an eigenvector of the original dataset. This 

output is the same across different software packages that compute the eigenvectors 

because the covariance matrix satisfies a mathematical property of being symmetric and 

positive semi-definite (the non-math inclined can conveniently ignore this point). We 

have as many eigenvectors as they are attributes or features in the dataset.

Without delving into mathematical theory, we can conclude that the eigenvectors 

are the principal components or loadings of the feature space. Again remember that the 

principal components capture the most significant variance in the dataset by projecting 

the data onto a vector called the first principal component. Other principal components 

are perpendicular to each other and capture the variance not explained by the first 

principal component. The principal components are arranged in order of importance 

in the eigenvector matrix, with the first principal component in the first column, the 

second principal component in the second column, and so on.

Figure 26-1. Decompose the covariance matrix using SVD to get the eigenvector 
matrix
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 Dimensionality Reduction with PCA
To reduce the dimensions of the original dataset using PCA, we multiply the 

desired number of components or loadings from the eigenvector matrix, A, by the 

design matrix X. Suppose the design matrix (or the original dataset) has m rows (or 

observations) and p columns (or features), if we want to reduce the dimensions of 

the original dataset to two dimensions, we will multiply the original dataset X by 

the first two columns of the eigenvector matrix, Areduced. The result will be a reduced 

matrix of m rows and 2 columns.

If X is a m × p matrix and Areduced is a p × 2 matrix,

 
T X Areduced m p p= ´´ ´2  

Observe that the result Treduced is a m × 2 matrix. Hence, T is a 2-D representation of 

the original dataset X as shown in Figure 26-2.

In plotting the reduced dataset, the principal components are ranked in order of 

importance with the first principal component more prominent than the second and so 

on. Figure 26-3 illustrates a plot of the first two principal components.

Figure 26-2. Reducing the dimension of the original dataset
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 Key Considerations for Performing PCA
It is vital to perform mean normalization and feature scaling on the variables of features 

of the original dataset before implementing PCA. This is because unscaled features 

can have stretched and narrow distance n-dimensional space, and this has a huge 

consequence when finding the principal components that explain the variance of the 

dataset (see Figure 26-4).

Figure 26-3. Visualize the principal components

Figure 26-4. Right: An illustration of PCA with scaled features. Left: An 
illustration of PCA with unscaled features.
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Again mean normalization ensures that every attribute or feature of the dataset 

has a zero mean, while feature scaling ensures all the features are within the same 

numeric range.

Finally, PCA is susceptible to vary wildly due to slight perturbations or changes 

in the dataset.

 PCA with Scikit-learn
In this section, PCA is implemented using Scikit-learn.

# import packages

from sklearn.decomposition import PCA

from sklearn import datasets

from sklearn.preprocessing import Normalizer

# load dataset

data = datasets.load_iris()

# separate features and target

X = data.data

# normalize the dataset

scaler = Normalizer().fit(X)

normalize_X = scaler.transform(X)

# create the model.

pca = PCA(n_components=3)

# fit the model on the training set

pca.fit(normalize_X)

# examine the principal components percentage of variance explained

pca.explained_variance_ratio_

# print the principal components

pca_dataset = pca.components_

pca_dataset

'Output':
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array([[ 0.18359702,  0.49546167, -0.76887947, -0.36004754],

       [ 0.60210709, -0.64966313, -0.05931229, -0.46031175],

       [-0.2436305 ,  0.28528504,  0.49319469, -0.78486663]])

In this chapter, we explained PCA giving a high-level overview of how it works to find 

a low-dimensional sub-space of a dataset. More so, we showed how PCA is implemented 

with Scikit-learn. This chapter concludes Part 4. In the next part, we introduce another 

scheme of learning methods called deep learning that builds on the machine learning 

neural network algorithm for learning complex representations.
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CHAPTER 27

What Is Deep Learning?
Deep learning is a class of machine learning algorithms called neural networks. Neural 

networks are mathematical models inspired by the structure of the brain. Deep learning 

enables the neural network algorithm to perform very well in building prediction 

models around complex problems such as computer vision and language modeling. 

Self- driving cars and automatic speech translation, to mention just a few, are examples 

of technologies that have resulted from advances in deep learning.

 The Representation Challenge
Learning is a non-trivial task. The brain’s ability to learn complex tasks is not yet fully 

understood by research communities in neurological science, psychology, and other 

brain-related fields. What we consider trivial, and to some others natural, are a system 

of complex and intricate processes that have set us apart from other life forms as 

intelligent beings.

Examples of complex tasks performed by the human brain include the ability to 

recognize faces at a millionth of a second (probably much faster), the uncanny aptitude 

for learning and understanding deep linguistic representations, and forming symbols 

for intelligent communications. Also, the adept skills to compose and perform masterful 

musical pieces are examples of the marvel of natural intelligence.

The challenge of AI research and engineering is to build machines that can 

understand and decompose the structural patterns inherent in complex problems in 

order to mimic natural intelligence. Deep learning as an AI technique approaches the 

representation problem by learning the underlying fundamental structure inherent in 

the dataset. Deep learning is also called representation learning.
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 Inspiration from the Brain
Scientists often look to nature for inspiration when performing incredible feats. Notably, 

the birds inspired the airplane. In that vein, there is no better type to study as an antitype 

of intelligence as the human brain.

We can view the brain as a society of intelligent agents that are networked together 

and communicate by passing information via electrical signals from one agent to 

another. These agents are known as neurons. Our principal interest here is to have a 

glimpse of what neurons are, what their components are, and how they pass information 

around to create intelligence.

A neuron is an autonomous agent in the brain and is a central part of the nervous 

system. Neurons are responsible for receiving and transmitting information to other cells 

within the body based on external or internal stimuli. Neurons react by firing electrical 

impulses generated at the stimuli source to the brain and other cells for the appropriate 

response. The intricate and coordinated workings of neurons are central to human 

intelligence.

The following are the three most essential components of neurons that are of 

primary interest to us:

• The axon

• The dendrite

• The synapse

The axon is a long tail connected to the nucleus of the neuron as seen in 

Figure 27- 1. The axon is responsible for transmitting electrical signals from the 

nucleus to other neuron cells through the axon terminals. The dendrite, on the other 

hand, receives information as electrical impulses from other neuron cells through 

the synapses to the nucleus of a neuron cell.
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By mimicking these three biological components of a neuron, scientists developed 

the core design and structure of an artificial neural network (ANN) that allows us to build 

machines that can learn. We will discuss the ANN in more detail in the next chapter. 

There is much hope that if we can mimic the capabilities of the brain from a science and 

engineering perspective, we can build machines that can learn hierarchical features 

from complex domain use cases.

This chapter introduces the field of deep learning as an engineering impersonation 

of how the brain learns to build artificial neural networks. In the next chapter, we’ll go 

deeper to discuss the neural network algorithm.

Figure 27-1. A neuron
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CHAPTER 28

Neural Network 
Foundations
Building on the inspiration of the biological neuron, the artificial neural network 

(ANN) is a society of connectionist agents that learn and transfer information from 

one artificial neuron to the other. As data transfers between neurons, a hierarchy 

of representations or a hierarchy of features is learned, hence the name deep 

representation learning or deep learning.

 The Architecture
An artificial neural network is composed of

• An input layer

• Hidden layer(s)

• An output layer
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The input layer receives information from the features of the dataset, after which 

some computation takes place, and information that captures the learned patterns 

of the data is propagated across the hidden layer(s) with hopes to improve the 

learned patterns.

The hidden layer(s) is where the workhorse of deep learning occurs. The hidden 

layer(s) can consist of multiple neuron modules as shown in Figure 28-1. Each hidden 

network layer learns a more sophisticated set of feature representations. The decision 

on the number of neurons in a layer (network width) and the number of hidden layers 

(network depth) which forms the network topology is a design choice when training 

deep learning networks. The techniques for training a deep neural network are discussed 

in the next chapter.

Figure 28-1. Neural network architecture
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CHAPTER 29

Training a Neural Network
This chapter gives an overview of the techniques for training a deep neural network. 

Here, we briefly discuss

• How learned information flows through a neural network

• The role of the cost function at the output layer of the network

• One-hot encoding and the softmax activation function for 

determining class membership at the output layer of a classification 

problem

• The backpropagation algorithm for improving the learned 

parameters of the network

• Activation functions that enable the neural network to learn non- 

linear patterns

In this chapter, as we discuss the methods involved in training a neural network, we 

will use the example of a classification problem with two possible outputs. In designing 

a neural network, the number of neurons in the input layer is typically the number of 

features of the dataset, while the number of neurons in the output layer is the number of 

classes in the target variable that the neural network is learning to classify.

As illustrated in Figure 29-1, the dataset features are the inputs to the neural network, 

while the classes in the target variable determine the number of output neurons. In this 

example, the network learns two classes, 0 and 1.
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A weight (also called parameter) is assigned to every neuron. The weights of neurons 

in a neural layer are multiplied by their inputs and then passed through an activation 

function (to be discussed in this chapter) for which the outputs are the inputs to the 

neurons in the next neural layer of the network (see Figure 29-2). This procedure is 

repeated as information of what the neural network is trying to learn moves from one 

layer of the network to another. Every neuron layer also has a bias neuron (typically 

set to 1) that controls the weighted sum. This is similar to the bias term in the logistic 

regression model.

Figure 29-1. Defining a neural network from a dataset
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The weights are initialized as random values that are later adjusted as the network 

begins to learn using the backpropagation algorithm (to be discussed in this chapter). 

In summary, the outputs (or activations) of the neurons in the neural network layers are 

determined by the sum of the weight times the outputs plus the bias term of the neurons 

in the previous layer acted upon by a non-linear activation function (see Figure 29-2). 

This move is called the feedforward learning algorithm.

However, the output of the feedforward pass through the network may most likely 

result in an incorrect classification. The errors made from the feedforward procedure are 

later adjusted using the backpropagation algorithm (to be discussed). To evaluate the 

performance of the neural network, we define a cost function or loss function (similar to 

other machine learning algorithms) that captures the quality of the prediction made by 

the network.

The goal of the neural network is to minimize the cost function. Two commonly 

used cost functions are the squared error cost function for regression problems and the 

softmax cross-entropy cost function for classification problems.

Figure 29-2. Information flowing from a previous neural layer to a neuron in the 
next layer
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 Cost Function or Loss Function
The squared error cost function (also known as the mean squared error) finds the sum 

of the squared difference between the estimated target and the actual target for a real- 

valued problem, while the cross-entropy cost function finds the difference between the 

predicted class from the probability estimates of the actual class label in a classification 

problem.

Regardless of the cost function used, when the error loss is small, we say that the cost 

is minimized. In Figure 29-3, the correct output of the example passed into the network 

is 2.3. After the output values are evaluated from the feedforward training, the squared 

error cost function is used to assess the quality of the network’s output.

Remember that the MSE finds the average cost over all the data samples in the 

training dataset. In the example illustrated in Figure 29-3, we used just one data sample 

to demonstrate how the cost function works.

 One-Hot Encoding
In a classification problem, one-hot encoding is the process of transforming the class 

labels of the target variable into a matrix of binary variables. The one-hot encoder 

assigns 1 when the output belongs to a particular class and 0 otherwise. An illustration of 

one-hot encoding is shown in Figure 29-4.

Figure 29-3. MSE estimate of the neural network

Chapter 29  training a neural network



337

In the final layer of the neural network, just before the output layer, an activation 

function called the softmax (same as discussed under “Logistic Regression”) is applied 

to transform the activations to the probability that the example belongs to one of the 

output classes.

The purpose of applying one-hot encoding to the labels of the dataset is to represent 

the output as a vector of distinct classes with the probability that an example in the 

training dataset belongs to any one of the output categories.

 The Backpropagation Algorithm
Backpropagation is the process by which we train the neural network to improve its 

prediction accuracy. To train the neural network, we need to find a mechanism for 

adjusting the weights of the network; this in turn affects the value of the activations 

within each neuron and consequently updates the value of the predicted output layer. 

The first time we run the feedforward algorithm, the activations at the output layer are 

most likely incorrect with a high error estimate or cost function.

The goal of backpropagation is to repeatedly go back and adjust the weights of each 

preceding neural layer and perform the feedforward algorithm again until we minimize 

the error made by the network at the output layer (see Figure 29-5).

Figure 29-4. One-hot encoding
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The backpropagation algorithm works by computing the cost function at the output 

layer by comparing the predicted output of the neural network with the actual outputs 

from the dataset. It then employs gradient descent (earlier discussed in Chapter 16) 

to calculate the gradient of the cost function using the weights of the neurons at each 

successive layer and update the weights propagating back through the network.

 Activation Functions
Up till now, we have mentioned activation functions. Now let’s go a bit deeper into what 

activation functions are and why do we have them.

Figure 29-5. Backpropagation
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Activation functions act on the weighted sum in the neuron (which is nothing more 

than the weighted sum of weights and their added bias) by passing it through a non- 

linear function to decide if that neuron should fire (propagate) its information or not to 

the succeeding neural layers.

In other words, the activation function determines if a particular neuron has the 

information to result in a correct prediction at the output layer for an observation in the 

training dataset. Activation functions are analogous to how neurons communicate and 

transfer information in the brain, by firing when the activation goes above a particular 

threshold value.

These activation functions are also called non-linearities because they inject 

non-linear capabilities to our network and can learn a mapping from inputs to output 

for a dataset whose fundamental structure is non-linear. An illustration of passing 

the weighted sum of weights and biases through an activation function is shown in 

Figure 29-6.

The following are examples of activation functions used in a neural network:

• Sigmoid

• Hyperbolic tangent (tanh)

Figure 29-6. Activation function
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• Rectified linear unit (ReLU)

• Leaky ReLU

• Maxout

Let’s briefly examine them.

 Sigmoid
The sigmoid function illustrated in Figure 29-7 is a non-linear function that brings (or 

squashes) the activations to fall within a range of 0 and 1. This brings large negative and 

positive numbers to 0 and 1, respectively. The neurons typically begin firing when the 

function output is above a threshold of 0.5.

However, a significant drawback of the sigmoid function is its susceptibility to a 

phenomenon called exploding and vanishing gradients. In the process of optimizing 

the weights of the network during backpropagation, the gradients can become 

disproportionately small or large with their activations concentrated at either 0 or 1.  

Figure 29-7. Sigmoid activation function
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When this happens, we say that the gradients have saturated. Hence, further 

multiplication via backpropagation causes the gradient to either vanish or explode; and 

as a result, the affected neurons become dead and transfer no information across the 

network, thus negatively affecting training.

Another drawback is that the outputs of the function are not zero-centered. As a 

consequence, during backpropagation, the gradients can either become all positive 

or all negative. This has a negative effect in minimizing the function objective (i.e., the 

cost function).

 Hyperbolic Tangent (tanh)
The hyperbolic tangent illustrated in Figure 29-8 improves on the sigmoid function 

by bordering its output within a range of −1 and 1. So, while it still suffers from the 

exploding and vanishing gradient problem, its outputs are now zero-centered. From the 

formula, the reader will observe that tanh is merely a scaled sigmoid function.

Figure 29-8. The hyperbolic tangent activation function
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 Rectified Linear Unit (ReLU)
The rectified linear unit or ReLU activation function is illustrated in Figure 29-9 and 

works by setting the activation to 0 for values, x, less than 0 and a linear slope of 1 when 

values, x, are greater than 0.

ReLU offers a vast improvement on the tanh and sigmoid activation functions 

by greatly mitigating the vanishing and exploding gradient problem. However, some 

gradients can still die out during backpropagation with a large learning rate. However, 

with a well-defined learning rate, we should not have a problem.

 Leaky ReLU
Leaky ReLU is another activation function that is proposed to solve the case of some 

neurons completely dying out in ReLU by avoiding zero gradients. Leaky ReLU is 

illustrated in Figure 29-10. The function works by setting the activation to a small 

negative slope when the value x < 0.

Figure 29-9. ReLU activation function
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 Maxout
The Maxout activation function generalizes the ReLU and leaky ReLU functions and 

hence takes advantage of the efficiency of ReLU while avoiding its pitfalls of some 

neurons dying out. In any case, a trade-off needs to be made, because Maxout increases 

the parameter size of each neuron during training.

As a rule of thumb, different types of activation functions are not mixed in the same 

network. Also, ReLU is typically used for the hidden layers, and the softmax activation is 

used for classification problems at the output layer since this layer returns a probability 

of membership of a particular class.

This chapter provided an overview on how to train a predictive model using neural 

networks. This chapter ends Part 5 on introducing deep learning. The chapters in  

Part 6 will cover deep learning algorithms and their implementation with TensorFlow 

and Keras.

Figure 29-10. Leaky ReLU activation function
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CHAPTER 30

TensorFlow 2.0 and Keras
TensorFlow (TF) is a specialized numerical computation library for deep learning. It is 

the preferred tool by numerous deep learning researchers and industry practitioners for 

developing deep learning models and architectures as well as for serving learned models 

into production servers and software products. This chapter is focused on TensorFlow 2.0.

 Navigating Through the TensorFlow API
Understanding the different levels of the TF API hierarchy is critical to working 

effectively with TF. The task of building a TF deep learning model may be addressed 

via different TF API levels. An understanding of the API hierarchy provides clarity on 

implementing neural network models with TF as well as navigating the TF ecosystem. 

The TF API hierarchy is primarily composed of three API levels, the high-level API, the 

mid-level API which provides components for building neural network models, and the 

low-level API. A diagrammatic representation of this is shown in Figure 30-1.
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 The Low-Level TensorFlow APIs
The low-level API gives the tools for building network graphs from the ground up using 

mathematical operations. This API level affords the greatest level of flexibility to tweak 

and tune the model as desired. Moreover, the higher-level APIs implement low-level 

operations under the hood.

 The Mid-Level TensorFlow APIs
TensorFlow provides a set of reusable packages for simplifying the process involved in 

creating neural network models. Some examples of these functions include the layers  

(tf.keras.layers), Datasets (tf.data), metrics (tf.keras.metrics), loss (tf.keras.losses), 

and FeatureColumns (tf.feature_column) packages.

 Layers

The layers package (tf.keras.layers) provides a handy set of functions to simplify the 

construction of layers in a neural network architecture. For example, consider the 

convolutional network architecture in Figure 30-2 and how the layers API simplifies the 

creation of the network layers.

Figure 30-1. TensorFlow API hierarchy
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 Datasets

The Dataset package (tf.data) provides a convenient set of high-level functions for 

creating complex dataset input pipelines. The goal of the Dataset package is to have 

a fast, flexible, and easy-to-use interface for fetching data from various data sources, 

performing data transform operations on them before passing them as inputs to the 

learning model. The Dataset API provides a more efficient means of fetching records 

from a dataset. The major classes of the Dataset API are illustrated in Figure 30-3.

Figure 30-2. Using the layers API to simplify creating the layers of a neural 
network
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From the illustration in Figure 30-3, the subclasses perform the following functions:

• TextLineDataset: This class is used for reading lines from text files.

• TFRecordDataset: This class is responsible for reading records 

from TFRecord files. A TFRecord file is a TensorFlow binary storage 

format. It is faster and easier to work with data stored as TFRecord 

files as opposed to raw data files. Working with TFRecord also 

makes the data input pipeline more easily aligned for applying vital 

transformations such as shuffling and returning data in batches.

• FixedLengthRecordDataset: This class is responsible for reading 

records of fixed sizes from binary files.

 FeatureColumns

FeatureColumns tf.feature_column is a TensorFlow functionality for describing the 

features of the dataset that will be fed into a high-level Keras or Estimator models for 

training and validation. FeatureColumns makes it easy to prepare data for modeling by 

carrying out tasks such as the conversion of categorical features of the dataset into a one- 

hot encoded vector.

The feature_column API is broadly divided into two categories; they are the 

categorical and dense columns. The categories and subsequent functions are illustrated 

in Figure 30-4.

Figure 30-3. Dataset API class hierarchy
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Let’s go through each API function briefly in Table 30-1.

Figure 30-4. Function calls of the Feature Column API

Table 30-1. tf.feature_column API Functions

Function name Description

numeric column –  

tf.feature_column.
numeric_column()

this is a high-level wrapper for numeric features in the dataset.

Indicator column –  

tf.feature_column.
indicator_column()

the indicator column takes as input a categorical column and 

transforms it into a one-hot encoded vector.

embedding column – 

tf.feature_column.
embedding_column()

the embedding column function transforms a categorical column 

with multiple levels or classes into a lower-dimensional numeric 

representation that captures the relationships between the categories. 

Using embeddings mitigates the problem of a large sparse vector (an 

array with mostly zeros) created via one-hot encoding for a dataset 

feature with lots of different classes.

(continued)
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Function name Description

Categorical column with 

identity – tf.feature_
column.categorical_ 
column_with_identity( )

this function creates a one-hot encoded output of a categorical 

column containing identities, e.g, [‘0’, ‘1’, ‘2’, ‘3’].

Categorical column 

with vocabulary list – 

tf.feature_column.
categorical_ column_
with_vocabulary_list( )

this function creates a one-hot encoded output of a categorical 

column with strings. It maps each string to an integer based on a 

vocabulary list. however, if the vocabulary list is long, it is best to 

create a file containing the vocabulary and use the function tf.feature_
column.categorical_ column_with_vocabulary_file( ).

Categorical column with 

hash bucket –  

tf.feature_column.
categorical_ column_
with_hash_buckets( )

this function specifies the number of categories by using the hash of 

the inputs. It is used when it is not possible to create a vocabulary for 

the number of categories due to memory considerations.

Crossed column –  

tf.feature_columns.
crossed_column()

the function gives the ability to combine multiple input features into a 

single input feature.

Bucketized column –  

tf.feature_column.
bucketized_column()

the function splits a column of numerical inputs into buckets to form 

new classes based on a specified set of numerical ranges.

Table 30-1. (continued)

 The High-Level TensorFlow APIs
The high-level API provides simplified API calls that encapsulate lots of the details that 

are typically involved in creating a deep learning TensorFlow model. These high-level 

abstractions make it easier to develop powerful deep learning models quickly with fewer 

lines of code.
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Figure 30-5. Estimator class API hierarchy

 Estimator API

The Estimator API is a high-level TensorFlow functionality that is aimed at reducing the 

complexity involved in building machine learning models by exposing methods that 

abstract common models and processes. There are two ways of working with Estimators, 

and they include

• Using the premade Estimators: The premade Estimators are black  

box models made available by the TensorFlow team for building  

common machine learning/deep learning architectures such 

as linear regression/classification, Random forest regression/

classification and deep neural networks for regression and 

classification. An illustration of the premade Estimators as subclasses 

of the Estimator class is shown in Figure 30-5.
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• Creating a custom Estimator: It is also possible to use the low-level 

TensorFlow methods to create a custom black box model for easy 

reusability. To do this, you must put your code in a method called 

the model_fn. The model function will include code that defines 

operations such as the labels or predictions, loss function, the 

training operations, and the operations for evaluation.

The Estimator class exposes four major methods, namely, the fit(), evaluate(), 

predict(), and export_savedmodel() methods. The fit() method is called to train 

the data by running a loop of training operations. The evaluate() method is called to 

evaluate the model performance by looping through a set of evaluation operations. 

The predict() method uses the trained model to make predictions, while the export_
savedmodel() method is used for exporting the trained model to a specified directory. 

For both the premade and custom Estimators, we must write a method to build the data 

input pipeline into the model. This pipeline is built for both the training and evaluation 

data inputs. This is further illustrated in Figure 30-6.

 Keras API

Keras provides a high-level specification for developing deep neural network models. 

The Keras API was initially separate from TensorFlow and only provided an interface 

for model building with TensorFlow as one of the frameworks running at the backend. 

However, in TensorFlow 2.0, Keras is an integral part of the TensorFlow codebase as 

preferred high-level API.

Figure 30-6. Estimator data input pipeline
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The Keras API version internal to TensorFlow is available from the ‘tf.keras’ package, 

whereas the broader Keras API blueprint that is not tied to a specific backend will remain 

available from the ‘keras’ package. In summary, when working with the ‘keras’ package, 

the backend can run with either TensorFlow, Microsoft CNTK, or Theano. On the 

other hand, working with ‘tf.keras’ provides a TensorFlow only version which is tightly 

integrated and compatible with all of the functionality of the core TensorFlow library.

In this book, we will focus on ‘tf.Keras’ as a high-level API of TensorFlow.

 The Anatomy of a Keras Program
The Keras ‘Model’ forms the core of a Keras program. A ‘Model’ is first constructed, then 

it is compiled. Next, the compiled model is trained and evaluated using their respective 

training and evaluation datasets. Upon successful evaluation using the relevant metrics, 

the model is then used for making predictions on previously unseen data samples. 

Figure 30-7 shows the program flow for modeling with Keras.

Figure 30-7. The anatomy of a Keras program

As shown in Figure 30-7, the Keras ‘Model’ can be constructed using the Sequential 

API ‘tf.keras.Sequential’ or the Keras Functional API which defines a model instance ‘tf.

keras.Model’. The Sequential model is the simplest method for creating a linear stack of 
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neural network layers. The Functional model is used if a more complex graph is desired. 

Keras is the de facto API for building neural network architectures with TensorFlow.

From here on, the code examples in this book will use the Sequential API, Functional 

API, and Model subclassing methods for building neural network architectures with 

Keras. In doing this, the reader can play around with the various examples as samples to 

get a feel of how they work.

 TensorBoard
TensorBoard is an interactive visualization tool that comes bundled with TensorFlow. 

The goal of TensorBoard is to gain a visual insight into how the computational graph is 

constructed and executed. This information provides greater visibility for understanding, 

optimizing, and debugging deep learning models.

TensorBoard has a variety of visualization dashboard, such as

• Scalar dashboard: This dashboard captures metrics that change with 

time, such as the loss of a model or other model evaluation metrics 

such as accuracy, precision, recall, f1, and so on.

• Histogram dashboard: This dashboard shows the histogram 

distribution for a Tensor as it has changed over time.

• Distribution dashboard: This dashboard is similar to the histogram 

dashboard. However, it displays the histogram as a distribution.

• Graph explorer: This dashboard gives a graphical overview of the 

TensorFlow computational graph and how information flows from 

one node to the other. This dashboard provides invaluable insights 

into the network architecture.

• Image dashboard: This dashboard displays images saved using the 

method tf.summary.image.

• Audio dashboard: This dashboard provides audio clips saved using 

the method tf.summary.audio.
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• Embedding projector: The dashboard makes it easy to visualize 

high-dimensional datasets after they have been transformed using 

Embeddings. The visualization uses principal component analysis 

(PCA) and another technique called t-distributed Stochastic 

Neighbor Embedding (t-SNE). Embedding is a technique for 

capturing the latent variables in a high-dimensional dataset by 

converting the data units into real numbers that capture their 

relationship. This technique is broadly similar to how PCA reduces 

data dimensionality. Embeddings are also useful for converting 

sparse matrices (matrices made up of mostly zeros) into a dense 

representation.

• Text dashboard: This dashboard is for displaying textual information.

Figure 30-8. TensorBoard
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 Features in TensorFlow 2.0
TensorFlow 2.0 comes with new features for building machine learning models. Some of 

these new features include

• A more pythonic feel to model design and debugging with eager 

execution as the de facto execution mode.

• Eager execution enables instant evaluation of TensorFlow operations. 

This is opposed to previous versions of Tensorflow where we first 

construct a computational graph and then execute it in a session.

• Using tf.function to transform a Python method into  

high- performance TensorFlow graphs.

• Using Keras as the core high-level API for model design.

• Using FeatureColumns to parse data as input into Keras models.

• The ease of training on distributed architectures and devices.

To install and work with TensorFlow 2.0 on Google Colab, run

!pip install -q tensorflow==2.0.0-beta0

The GCP Deep Learning VM has images with TensorFlow 2.0 pre-configured.

 A Simple TensorFlow Program
Let’s start by building a simple TF program. Here, we will build a graph to find the roots 

of the quadratic expression x2 + 3x − 4 = 0.

# import tensorflow

import tensorflow as tf

# Quadratic expression: x**2 + 3x - 4 = 0.

a = tf.constant(1.0)

b = tf.constant(3.0)

c = tf.constant(-4.0)
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print(a)

print(b)

print(c)

'Output':

tf.Tensor(1.0, shape=(), dtype=float32)

tf.Tensor(3.0, shape=(), dtype=float32)

tf.Tensor(-4.0, shape=(), dtype=float32)

tf.constant() is a Tensor for storing a constant type. Now let’s calculate the roots of 

the expression.

x1 = (-b + tf.math.sqrt(b**2 - (4*a*c))) / 2**a

x2 = (-b - tf.math.sqrt(b**2 - (4*a*c))) / 2**a

roots = (x1, x2)

print(roots)

'Output':

(<tf.Tensor: id=163, shape=(), dtype=float32, numpy=1.0>, <tf.Tensor: 

id=175, shape=(), dtype=float32, numpy=-4.0>)

TensorFlow 2.0 is eager-first; this implies that operations are executed immediately 

after they are defined, just like regular python code.

 Building Efficient Input Pipelines with the Dataset API
The Dataset API ‘tf.data’ offers an efficient mechanism for building robust input 

pipelines for passing data into a TensorFlow program. This section uses the Boston 

housing dataset to illustrate working with the Dataset API methods for building data 

input pipelines in TensorFlow.

# import packages

import tensorflow as tf

from tensorflow.keras.datasets import boston_housing

# load dataset and split in train and test sets

(X_train, y_train), (X_test, y_test) = boston_housing.load_data()
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# construct data input pipelines

dataset = tf.data.Dataset.from_tensor_slices((X_train, y_train))

dataset = dataset.shuffle(buffer_size=1000)

dataset = dataset.batch(5)

# retrieve first data batch from dataset

for features, labels in dataset:

    print('Features:', features)

    print('Shape of Features:', features.shape)

    print('Labels:', labels)

    print('Shape of Labels:', labels.shape)

    break

'Output':

Features: tf.Tensor(

[[8.19900e-02 0.00000e+00 1.39200e+01 0.00000e+00 4.37000e-01 6.00900e+00

  4.23000e+01 5.50270e+00 4.00000e+00 2.89000e+02 1.60000e+01 3.96900e+02

  1.04000e+01]

 [8.82900e-02 1.25000e+01 7.87000e+00 0.00000e+00 5.24000e-01 6.01200e+00

  6.66000e+01 5.56050e+00 5.00000e+00 3.11000e+02 1.52000e+01 3.95600e+02

  1.24300e+01]

 [2.90900e-01 0.00000e+00 2.18900e+01 0.00000e+00 6.24000e-01 6.17400e+00

  9.36000e+01 1.61190e+00 4.00000e+00 4.37000e+02 2.12000e+01 3.88080e+02

  2.41600e+01]

 [5.87205e+00 0.00000e+00 1.81000e+01 0.00000e+00 6.93000e-01 6.40500e+00

  9.60000e+01 1.67680e+00 2.40000e+01 6.66000e+02 2.02000e+01 3.96900e+02

  1.93700e+01]

 [1.71710e-01 2.50000e+01 5.13000e+00 0.00000e+00 4.53000e-01 5.96600e+00

  9.34000e+01 6.81850e+00 8.00000e+00 2.84000e+02 1.97000e+01 3.78080e+02

  1.44400e+01]], shape=(5, 13), dtype=float64)

Shape of Features: (5, 13)

Labels: tf.Tensor([21.7 22.9 14.  12.5 16. ], shape=(5,), dtype=float64)

Shape of Labels: (5,)
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From the preceding code listing, take note of the following:

• The method ‘tf.data.Dataset.from_tensor_slices()’ is used to create 

a Dataset whose elements are Tensor slices.

• The Dataset method ‘shuffle()’ shuffles the Dataset at each epoch.

• The Dataset method ‘batch()’ is used to set the size of each mini- 

batch of the Dataset. In the preceding example, each Dataset batch 

contains five observations.

 Linear Regression with TensorFlow
In this section, we use TensorFlow to implement a linear regression machine learning 

model. In the following example, we use the Boston house-prices dataset from the Keras 
dataset package to build a linear regression model with TensorFlow 2.0.

# import packages

import numpy as np

import tensorflow as tf

from tensorflow.keras.datasets import boston_housing

from tensorflow.keras import Model

from sklearn.preprocessing import StandardScaler

# load dataset and split in train and test sets

(X_train, y_train), (X_test, y_test) = boston_housing.load_data()

# standardize the dataset

scaler_X_train = StandardScaler().fit(X_train)

scaler_X_test = StandardScaler().fit(X_test)

X_train = scaler_X_train.transform(X_train)

X_test = scaler_X_test.transform(X_test)

# reshape y-data to become column vector

y_train = np.reshape(y_train, [-1, 1])

y_test = np.reshape(y_test, [-1, 1])

# build the linear model

class LinearRegressionModel(Model):
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  def __init__(self):

    super(LinearRegressionModel, self).__init__()

    # initialize weight and bias variables

    self.weight = tf.Variable(

        initial_value = tf. random.normal(

            [13, 1], dtype=tf.float64),

        trainable=True)

    self.bias = tf.Variable(initial_value = tf.constant(

        1.0, shape=[], dtype=tf.float64), trainable=True)

  def call(self, inputs):

    return tf.add(tf.matmul(inputs, self.weight), self.bias)

model = LinearRegressionModel()

# parameters

batch_size = 32

learning_rate = 0.01

# use tf.data to batch and shuffle the dataset

train_ds = tf.data.Dataset.from_tensor_slices(

    (X_train, y_train)).shuffle(len(X_train)).batch(batch_size)

test_ds = tf.data.Dataset.from_tensor_slices((X_test, y_test)).batch(batch_size)

loss_object = tf.keras.losses.MeanSquaredError()

optimizer = tf.keras.optimizers.SGD(learning_rate=0.01)

train_loss = tf.keras.metrics.Mean(name='train_loss')

train_rmse = tf.keras.metrics.RootMeanSquaredError(name='train_rmse')

test_loss = tf.keras.metrics.Mean(name='test_loss')

test_rmse = tf.keras.metrics.RootMeanSquaredError(name='test_rmse')

# use tf.GradientTape to train the model

@tf.function

def train_step(inputs, labels):

  with tf.GradientTape() as tape:

    predictions = model(inputs)

    loss = loss_object(labels, predictions)
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  gradients = tape.gradient(loss, model.trainable_variables)

  optimizer.apply_gradients(zip(gradients, model.trainable_variables))

  train_loss(loss)

  train_rmse(labels, predictions)

@tf.function

def test_step(inputs, labels):

  predictions = model(inputs)

  t_loss = loss_object(labels, predictions)

  test_loss(t_loss)

  test_rmse(labels, predictions)

num_epochs = 1000

for epoch in range(num_epochs):

  for train_inputs, train_labels in train_ds:

    train_step(train_inputs, train_labels)

  for test_inputs, test_labels in test_ds:

    test_step(test_inputs, test_labels)

  template = 'Epoch {}, Loss: {}, RMSE: {}, Test Loss: {}, Test RMSE: {}'

  if ((epoch+1) % 100 == 0):

    print (template.format(epoch+1,

                           train_loss.result(),

                           train_rmse.result(),

                           test_loss.result(),

                           test_rmse.result()))

'Output':

Epoch 100, Loss: 23.531124114990234, RMSE: 4.862841606140137, Test Loss: 

21.077274322509766, Test RMSE: 4.591667175292969

Epoch 200, Loss: 23.51316261291504, RMSE: 4.860987663269043, Test Loss: 

21.067768096923828, Test RMSE: 4.590633869171143

Epoch 300, Loss: 23.496540069580078, RMSE: 4.859271049499512, Test Loss: 

21.058971405029297, Test RMSE: 4.589677333831787

Chapter 30  tensorFlow 2.0 and Keras



364

Epoch 400, Loss: 23.481115341186523, RMSE: 4.857677459716797, Test Loss: 

21.050806045532227, Test RMSE: 4.588788986206055

Epoch 500, Loss: 23.466760635375977, RMSE: 4.856194019317627, Test Loss: 

21.043209075927734, Test RMSE: 4.587962627410889

Epoch 600, Loss: 23.453369140625, RMSE: 4.8548102378845215, Test Loss: 

21.036123275756836, Test RMSE: 4.587191581726074

Epoch 700, Loss: 23.440847396850586, RMSE: 4.853515625, Test Loss: 

21.029495239257812, Test RMSE: 4.586470603942871

Epoch 800, Loss: 23.429113388061523, RMSE: 4.852302074432373, Test Loss: 

21.02336311340332, Test RMSE: 4.585799694061279

Epoch 900, Loss: 23.4180965423584, RMSE: 4.851161956787109, Test Loss: 

21.017648696899414, Test RMSE: 4.585177898406982

Epoch 1000, Loss: 23.407730102539062, RMSE: 4.8500895500183105, Test Loss: 

21.012271881103516, Test RMSE: 4.584592819213867

Here are a few points and methods to take note of in the preceding code listing for 

linear regression with TensorFlow:

• Note that transformation to standardize the feature dataset is 

performed after splitting the data into train and test sets. This action 

is performed in this manner to prevent information from the training 

data to pollute the test data which must remain unseen by the model.

• The class named ‘LinearRegressionModel’ builds a Keras model by 

subclassing the ‘tf.keras.Model’ class. The linear regression model is 

created as a layer of the neural network in the ‘__init__’ method, and 

it is defined as a forward pass in the ‘call’ method. In Chapter 31  

on Keras, we will see how to use simpler routines with the Keras 

Functional API.

• The ‘tf.data.Dataset.from_tensor_slices’ method uses the 

‘.minimize()’ method to update the loss function.

• The squared error loss function is defined with ‘tf.keras.losses.
MeanSquaredError()’.

• The gradient descent optimization algorithm is defined using  

‘tf.keras.optimizers.SGD()’ with the learning rate set as a  

parameter to the method.
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• The method to capture the loss and root mean squared error 

estimates is defined using ‘tf.keras.metrics.Mean(name=‘train_
loss’)’ and ‘tf.keras.metrics.RootMeanSquaredError()’ functions, 

respectively.

• The @tf.function is a python decorator to transform a method into 

high-performance TensorFlow graphs.

• The method ‘train_step’ uses the ‘tf.GradientTape()’ method to 

record operations for automatic differentiation. These gradients 

are later used to minimize the cost function by calling the ‘apply_
gradients()’ method of the optimization algorithm.

• The method ‘test_step’ uses the trained model to obtain predictions 

on test data.

 Classification with TensorFlow
In this example, we’ll use the Iris flower dataset to build a multivariable logistic 

regression machine learning classifier with TensorFlow 2.0. The dataset is gotten from 

the Scikit-learn dataset package.

# import packages

import numpy as np

import tensorflow as tf

from sklearn import datasets

from tensorflow.keras import Model

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import OneHotEncoder

 # load dataset

data = datasets.load_iris()

# separate features and target

X = data.data

y = data.target

# apply one-hot encoding to targets

one_hot_encoder = OneHotEncoder(categories='auto')
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encode_categorical = y.reshape(len(y), 1)

y = one_hot_encoder.fit_transform(encode_categorical).toarray()

# split in train and test sets

X_train, X_test, y_train, y_test = train_test_split(X, y, shuffle=True)

# build the linear model

class LogisticRegressionModel(Model):

  def __init__(self):

    super(LogisticRegressionModel, self).__init__()

    # initialize weight and bias variables

    self.weight = tf.Variable(

        initial_value = tf.random.normal(

            [4, 3], dtype=tf.float64),

        trainable=True)

    self.bias = tf.Variable(initial_value = tf.random.normal(

        [3], dtype=tf.float64), trainable=True)

  def call(self, inputs):

    return tf.add(tf.matmul(inputs, self.weight), self.bias)

model = LogisticRegressionModel()

# parameters

batch_size = 32

learning_rate = 0.1

# use tf.data to batch and shuffle the dataset

train_ds = tf.data.Dataset.from_tensor_slices(

    (X_train, y_train)).shuffle(len(X_train)).batch(batch_size)

test_ds = tf.data.Dataset.from_tensor_slices((X_test,  y_test)).batch(batch_size)

optimizer = tf.keras.optimizers.SGD(learning_rate=learning_rate)

train_loss = tf.keras.metrics.Mean(name='train_loss')

train_accuracy = tf.keras.metrics.Accuracy(name='train_accuracy')

test_loss = tf.keras.metrics.Mean(name='test_loss')

test_accuracy = tf.keras.metrics.Accuracy(name='test_accuracy')
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# use tf.GradientTape to train the model

@tf.function

def train_step(inputs, labels):

  with tf.GradientTape() as tape:

    predictions = model(inputs)

     loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels, 

predictions))

  gradients = tape.gradient(loss, model.trainable_variables)

  optimizer.apply_gradients(zip(gradients, model.trainable_variables))

  train_loss(loss)

  train_accuracy(tf.argmax(labels,1), tf.argmax(predictions,1))

@tf.function

def test_step(inputs, labels):

  predictions = model(inputs)

   t_loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels, 

predictions))

  test_loss(t_loss)

  test_accuracy(tf.argmax(labels,1), tf.argmax(predictions,1))

num_epochs = 1000

for epoch in range(num_epochs):

  for train_inputs, train_labels in train_ds:

    train_step(train_inputs, train_labels)

  for test_inputs, test_labels in test_ds:

    test_step(test_inputs, test_labels)

  template = 'Epoch {}, Loss: {}, Accuracy: {}, Test Loss: {}, Test Accuracy: {}'

  if ((epoch+1) % 100 == 0):

    print (template.format(epoch+1,

                           train_loss.result(),

                           train_accuracy.result()*100,

                           test_loss.result(),

                           test_accuracy.result()*100))
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'Output':

Epoch 100, Loss: 0.3510790765285492, Accuracy: 89.63029479980469, Test 

Loss: 0.44924452900886536, Test Accuracy: 84.37885284423828

Epoch 200, Loss: 0.3282322287559509, Accuracy: 91.29582214355469, Test 

Loss: 0.43276602029800415, Test Accuracy: 85.73675537109375

Epoch 300, Loss: 0.3093726634979248, Accuracy: 92.46343231201172, Test 

Loss: 0.41915151476860046, Test Accuracy: 86.6886978149414

Epoch 400, Loss: 0.29340484738349915, Accuracy: 93.3273696899414, Test 

Loss: 0.40762627124786377, Test Accuracy: 87.43070220947266

Epoch 500, Loss: 0.2796294391155243, Accuracy: 93.99247741699219, Test 

Loss: 0.3976936936378479, Test Accuracy: 88.27145385742188

Epoch 600, Loss: 0.2675718069076538, Accuracy: 94.52030944824219, Test 

Loss: 0.38901543617248535, Test Accuracy: 88.93867492675781

Epoch 700, Loss: 0.25689396262168884, Accuracy: 94.94937896728516, Test 

Loss: 0.38134896755218506, Test Accuracy: 89.48106384277344

Epoch 800, Loss: 0.24734711647033691, Accuracy: 95.3050537109375, Test 

Loss: 0.3745149075984955, Test Accuracy: 89.9306640625

Epoch 900, Loss: 0.23874221742153168, Accuracy: 95.60466766357422, Test 

Loss: 0.3683767020702362, Test Accuracy: 90.30940246582031

Epoch 1000, Loss: 0.23093272745609283, Accuracy: 95.86051177978516, Test 

Loss: 0.3628271818161011, Test Accuracy: 90.63280487060547

From the preceding code, listing is similar to the example on linear regression with 

TensorFlow 2.0. However, take note of the following procedures:

• The target variable ‘y’ is converted to a one-hot encoded matrix by 

using the ‘OneHotEncoder’ function from Scikit-learn. There exists 

a TensorFlow method named ‘tf.one_hot’ for performing the same 

function, even easier! The reader is encouraged to Experiment  

with this.

• Observe how the ‘tf.reduce_mean’ and the ‘tf.nn.softmax_cross_
entropy_with_logits’ methods are used to implement the loss for 

optimizing the logistic model.

• The Stochastic Gradient Descent optimization algorithm ‘tf.keras.
optimizers.SGD()’ is used to train the logistic model.
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• Observe how the ‘weight’ and ‘bias’ variables are updated by the 

gradient descent optimizer within the ‘train_step’ method using ‘tf.
GradientTape()’ to capture and compute the derivatives from the 

trainable model variables.

• The ‘tf.keras.metrics.Accuracy’ method is used to evaluate the 

accuracy of the model.

 Visualizing with TensorBoard
In this section, we will go through visualizing TensorFlow graphs and statistics with 

TensorBoard. The following code improves on the previous code to build a linear 

regression model by adding methods to visualize the graph and other variable statistics 

in TensorBoard using the ‘tf.summary’ method calls. The TensorBoard output 

(illustrated in Figure 30-9) is displayed within the notebook.

# import packages

import datetime

import numpy as np

import tensorflow as tf

from tensorflow.keras.datasets import boston_housing

from tensorflow.keras import Model

from sklearn.preprocessing import StandardScaler

# load the TensorBoard notebook extension

%load_ext tensorboard

# load dataset and split in train and test sets

(X_train, y_train), (X_test, y_test) = boston_housing.load_data()

# standardize the dataset

scaler_X_train = StandardScaler().fit(X_train)

scaler_X_test = StandardScaler().fit(X_test)

X_train = scaler_X_train.transform(X_train)

X_test = scaler_X_test.transform(X_test)

# reshape y-data to become column vector

y_train = np.reshape(y_train, [-1, 1])
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y_test = np.reshape(y_test, [-1, 1])

# build the linear model

class LinearRegressionModel(Model):

  def __init__(self):

    super(LinearRegressionModel, self).__init__()

    # initialize weight and bias variables

    self.weight = tf.Variable(

        initial_value = tf. random.normal(

            [13, 1], dtype=tf.float64),

        trainable=True)

    self.bias = tf.Variable(initial_value = tf.constant(

        1.0, shape=[], dtype=tf.float64), trainable=True)

  def call(self, inputs):

    return tf.add(tf.matmul(inputs, self.weight), self.bias)

model = LinearRegressionModel()

# parameters

batch_size = 32

learning_rate = 0.01

# use tf.data to batch and shuffle the dataset

train_ds = tf.data.Dataset.from_tensor_slices(

    (X_train, y_train)).shuffle(len(X_train)).batch(batch_size)

test_ds = tf.data.Dataset.from_tensor_slices((X_test, y_test)).batch(batch_size)

loss_object = tf.keras.losses.MeanSquaredError()

optimizer = tf.keras.optimizers.SGD(learning_rate=0.01)

train_loss = tf.keras.metrics.Mean(name='train_loss')

train_rmse = tf.keras.metrics.RootMeanSquaredError(name='train_rmse')

test_loss = tf.keras.metrics.Mean(name='test_loss')

test_rmse = tf.keras.metrics.RootMeanSquaredError(name='test_rmse')
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# use tf.GradientTape to train the model

@tf.function

def train_step(inputs, labels):

  with tf.GradientTape() as tape:

    predictions = model(inputs)

    loss = loss_object(labels, predictions)

  gradients = tape.gradient(loss, model.trainable_variables)

  optimizer.apply_gradients(zip(gradients, model.trainable_variables))

  train_loss(loss)

  train_rmse(labels, predictions)

@tf.function

def test_step(inputs, labels):

  predictions = model(inputs)

  t_loss = loss_object(labels, predictions)

  test_loss(t_loss)

  test_rmse(labels, predictions)

# Clear any logs from previous runs

!rm -rf ./logs/

# set up summary writers to write the summaries to disk in a different logs 

directory

current_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")

train_log_dir = 'logs/gradient_tape/' + current_time + '/train'

test_log_dir = 'logs/gradient_tape/' + current_time + '/test'

train_summary_writer = tf.summary.create_file_writer(train_log_dir)

test_summary_writer = tf.summary.create_file_writer(test_log_dir)

num_epochs = 1000

for epoch in range(num_epochs):

  for train_inputs, train_labels in train_ds:

    train_step(train_inputs, train_labels)

  with train_summary_writer.as_default():

    tf.summary.scalar('loss', train_loss.result(), step=epoch)

    tf.summary.scalar('rmse', train_rmse.result(), step=epoch)
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  for test_inputs, test_labels in test_ds:

    test_step(test_inputs, test_labels)

  with test_summary_writer.as_default():

    tf.summary.scalar('loss', test_loss.result(), step=epoch)

    tf.summary.scalar('rmse', test_rmse.result(), step=epoch)

  template = 'Epoch {}, Loss: {}, RMSE: {}, Test Loss: {}, Test RMSE: {}'

  if ((epoch+1) % 100 == 0):

    print (template.format(epoch+1,

                           train_loss.result(),

                           train_rmse.result(),

                           test_loss.result(),

                           test_rmse.result()))

  # Reset metrics every epoch

  train_loss.reset_states()

  test_loss.reset_states()

  train_rmse.reset_states()

  test_rmse.reset_states()

'Output':

Epoch 100, Loss: 22.03757667541504, RMSE: 4.726028919219971, Test Loss: 

29.092111587524414, Test RMSE: 4.577760696411133

Epoch 200, Loss: 21.973844528198242, RMSE: 4.719051837921143, Test Loss: 

29.113895416259766, Test RMSE: 4.585252285003662

Epoch 300, Loss: 21.970674514770508, RMSE: 4.7187066078186035, Test Loss: 

29.13644790649414, Test RMSE: 4.587917327880859

Epoch 400, Loss: 21.970500946044922, RMSE: 4.718687534332275, Test Loss: 

29.1422119140625, Test RMSE: 4.588583469390869

Epoch 500, Loss: 21.970489501953125, RMSE: 4.718685626983643, Test Loss: 

29.14352035522461, Test RMSE: 4.588735103607178

Epoch 600, Loss: 21.970487594604492, RMSE: 4.718685626983643, Test Loss: 

29.143817901611328, Test RMSE: 4.58876895904541

Epoch 700, Loss: 21.970487594604492, RMSE: 4.718685626983643, Test Loss: 

29.143882751464844, Test RMSE: 4.588776111602783
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Epoch 800, Loss: 21.970487594604492, RMSE: 4.718685626983643, Test Loss: 

29.14389419555664, Test RMSE: 4.588778018951416

Epoch 900, Loss: 21.970487594604492, RMSE: 4.718685626983643, Test Loss: 

29.143898010253906, Test RMSE: 4.588778495788574

Epoch 1000, Loss: 21.970487594604492, RMSE: 4.718685626983643, Test Loss: 

29.143898010253906, Test RMSE: 4.588778495788574

# launch tensorboard

%tensorboard --logdir logs/gradient_tape

From the preceding code listing, take note of the following steps:

• The ‘tf.summary.create_file_writer’ method creates summary 

writers to write the summaries to disk.

• The ‘tf.summary.scalar’ method is used to capture scalar metrics for 

TensorBoard.

• The magic command ‘%tensorboard’ is used to launch TensorBoard 

by pointing to the appropriate log directory.

Figure 30-9. TensorBoard visualization dashboard for linear regression 
metrics
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 Running TensorFlow with GPUs
GPU is short for graphics processing unit. It is a specialized processor designed for 

carrying out complex computations on large memory blocks. GPUs provide more 

efficient processing for building deep learning models.

TensorFlow can leverage processing on multiple GPUs to speed up computation 

especially when training a complex network architecture. To take advantage of parallel 

processing, a replica of the network architecture resides on each GPU machine and 

trains a subset of the data. However, for synchronous updates, the model parameters 

from each tower (or GPU machines) are stored and updated on a CPU. It turns out that 

CPUs are generally good at mean or averaging processing. A diagram of this operation is 

shown in Figure 30-10.
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TensorFlow 2.0 performs distributed training across multiple machines (i.e., CPUs, 

GPUs, or TPUs) using the ‘tf.distribute.Strategy’ API. To use GPUs on Google Colab, first 

change the runtime type to GPU and install the TensorFlow with GPU library by running 

the following code in the notebook cell:

!pip install -q tf-nightly-gpu-2.0-preview

Figure 30-10. Framework for training on multiple GPUs

Chapter 30  tensorFlow 2.0 and Keras



376

The following code block uses GPUs for model training. In this example we train 

a simple regression model on the Boston housing dataset. The method ‘tf.distribute.
MirroredStrategy()’ implements a distribution strategy called MirroredStrategy. This 

strategy supports distributed training with multiple GPUs on a single machine. The 

code is similar to the previous code for linear regression with TensorFlow 2.0. However, 

minimal changes are added to make the components such as variables, layers, models, 

optimizers, metrics, summaries, and checkpoints strategy-aware using the strategy 

scope().

# import TensorFlow 2.0 with GPU

!pip install -q tf-nightly-gpu-2.0-preview

# confirm tensorflow can see GPU

import tensorflow as tf

device_name = tf.test.gpu_device_name()

if device_name != '/device:GPU:0':

  raise SystemError('GPU device not found')

print('Found GPU at: {}'.format(device_name))

# import other packages

import numpy as np

from tensorflow.keras.datasets import boston_housing

from tensorflow.keras import Model

from sklearn.preprocessing import StandardScaler

# load dataset and split in train and test sets

(X_train, y_train), (X_test, y_test) = boston_housing.load_data()

# standardize the dataset

scaler_X_train = StandardScaler().fit(X_train)

scaler_X_test = StandardScaler().fit(X_test)

X_train = scaler_X_train.transform(X_train)

X_test = scaler_X_test.transform(X_test)

# reshape y-data to become column vector

y_train = np.reshape(y_train, [-1, 1])

y_test = np.reshape(y_test, [-1, 1])
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# build the linear model

class LinearRegressionModel(Model):

  def __init__(self):

    super(LinearRegressionModel, self).__init__()

    # initialize weight and bias variables

    self.weight = tf.Variable(

        initial_value = tf. random.normal(

            [13, 1], dtype=tf.float64),

        trainable=True)

    self.bias = tf.Variable(initial_value = tf.constant(

        1.0, shape=[], dtype=tf.float64), trainable=True)

  def call(self, inputs):

    return tf.add(tf.matmul(inputs, self.weight), self.bias)

# create a strategy to distribute the variables and the graph

strategy = tf.distribute.MirroredStrategy()

# print number of machines with GPUs

print ('Number of devices: {}'.format(strategy.num_replicas_in_sync))

# parameters

batch_size_per_replica = 32

global_batch_size = batch_size_per_replica * strategy.num_replicas_in_sync

learning_rate = 0.01

# create the distributed datasets inside a strategy.scope:

with strategy.scope():

  train_ds = tf.data.Dataset.from_tensor_slices(

      (X_train, y_train)).shuffle(len(X_train)).batch(global_batch_size)

  train_dist_ds = strategy.experimental_distribute_dataset(train_ds)

   test_ds = tf.data.Dataset.from_tensor_slices((X_test, y_test)).

batch(global_batch_size)

  test_dist_ds = strategy.experimental_distribute_dataset(test_ds)

Chapter 30  tensorFlow 2.0 and Keras



378

# define the loss function

with strategy.scope():

   # Set reduction to `none` so we can do the reduction afterwards and 

divide by

  # global batch size.

  loss_object = tf.keras.losses.MeanSquaredError(

      reduction=tf.keras.losses.Reduction.NONE)

  def compute_loss(labels, predictions):

    per_example_loss = loss_object(labels, predictions)

    return tf.reduce_sum(per_example_loss) * (1. / global_batch_size)

# define metrics to track loss and rmse

with strategy.scope():

  test_loss = tf.keras.metrics.Mean(name='test_loss')

  train_rmse = tf.keras.metrics.RootMeanSquaredError(

      name='train_rmse')

  test_rmse = tf.keras.metrics.RootMeanSquaredError(

      name='test_rmse')

# model and optimizer must be created under `strategy.scope`.

with strategy.scope():

  model = LinearRegressionModel()

  optimizer = tf.keras.optimizers.SGD(learning_rate=0.01)

with strategy.scope():

  def train_step(inputs, labels):

    with tf.GradientTape() as tape:

      predictions = model(inputs)

      loss = compute_loss(labels, predictions)

    gradients = tape.gradient(loss, model.trainable_variables)

    optimizer.apply_gradients(zip(gradients, model.trainable_variables))

    train_rmse.update_state(labels, predictions)

    return loss
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  def test_step(inputs, labels):

    predictions = model(inputs)

    t_loss = loss_object(labels, predictions)

    test_loss.update_state(t_loss)

    test_rmse.update_state(labels, predictions)

num_epochs = 1000

with strategy.scope():

  # `experimental_run_v2` replicates the provided computation and runs it

  # with the distributed input.

  @tf.function

  def distributed_train_step(inputs, labels):

    per_replica_losses = strategy.experimental_run_v2(train_step,

                                                      args=(inputs, labels))

    return strategy.reduce(tf.distribute.ReduceOp.SUM, per_replica_losses,

                           axis=None)

  @tf.function

  def distributed_test_step(inputs, labels):

    return strategy.experimental_run_v2(test_step, args=(inputs, labels))

  for epoch in range(num_epochs):

    # Train loop

    total_loss = 0.0

    num_batches = 0

    for train_inputs, train_labels in train_dist_ds:

      total_loss += distributed_train_step(train_inputs, train_labels)

      num_batches += 1

    train_loss = total_loss / num_batches

    # Test loop

    for test_inputs, test_labels in test_dist_ds:

      distributed_test_step(test_inputs, test_labels)

    if (epoch+1) % 100 == 0:

      template = ("Epoch {}, Loss: {}, RMSE: {}, Test Loss: {}, "

                  "Test RMSE: {}")
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      print (template.format(epoch+1, train_loss,

                             train_rmse.result(), test_loss.result(),

                             test_rmse.result()))

    test_loss.reset_states()

    train_rmse.reset_states()

    test_rmse.reset_states()

'Output:'

Epoch 100, Loss: 21.673020569627965, RMSE: 4.724063396453857, Test Loss: 

20.915191650390625, Test RMSE: 4.573312759399414

Epoch 200, Loss: 21.594741116702117, RMSE: 4.715524196624756, Test Loss: 

20.994861602783203, Test RMSE: 4.582014560699463

Epoch 300, Loss: 21.590902259189097, RMSE: 4.7151055335998535, Test Loss: 

21.02731704711914, Test RMSE: 4.585555076599121

Epoch 400, Loss: 21.59074064145569, RMSE: 4.715087413787842, Test Loss: 

21.03565216064453, Test RMSE: 4.5864644050598145

Epoch 500, Loss: 21.590740279510765, RMSE: 4.715087413787842, Test Loss: 

21.037595748901367, Test RMSE: 4.586676120758057

Epoch 600, Loss: 21.590742194311133, RMSE: 4.715087890625, Test Loss: 

21.03803825378418, Test RMSE: 4.586724281311035

Epoch 700, Loss: 21.59074262401866, RMSE: 4.715087890625, Test Loss: 

21.03813934326172, Test RMSE: 4.586735248565674

Epoch 800, Loss: 21.59074272223048, RMSE: 4.715087413787842, Test Loss: 

21.038162231445312, Test RMSE: 4.586737632751465

Epoch 900, Loss: 21.59074286927267, RMSE: 4.715087413787842, Test Loss: 

21.03816795349121, Test RMSE: 4.586737632751465

Epoch 1000, Loss: 21.590742907190307, RMSE: 4.715087413787842, Test Loss: 

21.03816795349121, Test RMSE: 4.586738109588623

Please note the following from the preceding code block:

• When writing a custom training loop, sum the per example losses and 

divide the sum by the global batch size. In the code tf.reduce_sum(per_

example_loss) * (1. / global_batch_size). This needs to be done because 

after calculation on each replica, the gradients are synced across the 

replicas by summing them. When using tf.keras.losses classes, the loss 

reduction needs to be explicitly specified to be one of NONE or SUM.
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 TensorFlow High-Level APIs: Using Estimators
In this section, we will use the high-level TensorFlow Estimator API for modeling with 

premade Estimators. Estimators provide another high-level API for building TensorFlow 

models for execution on CPUs, GPUs, or TPUs with minimal code modification.

The following steps are typically followed when working with premade Estimators:

 1. Write the ‘input_fn’ to handle the data pipeline.

 2. Define the type of data attributes into the model using feature 

columns ‘tf.feature_column’.

 3. Instantiate one of the premade Estimators by passing in the 

feature columns and other relevant attributes.

 4. Use the ‘train()’, ‘evaluate()’, and ‘predict()’ methods to train 

and evaluate the model on evaluation dataset and use the model 

to make prediction/inference.

Let’s see a simple example of working with a TensorFlow premade Estimator again 

using the Boston housing dataset.

Note reset session before running the following cells and change runtime type 
to none.

# import packages

import datetime

import numpy as np

import pandas as pd

import tensorflow as tf

from tensorflow.keras.datasets import boston_housing

from tensorflow.keras import Model

from sklearn.preprocessing import StandardScaler

# load dataset and split in train and test sets

(X_train, y_train), (X_test, y_test) = boston_housing.load_data()
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# standardize the dataset

scaler_X_train = StandardScaler().fit(X_train)

scaler_X_test = StandardScaler().fit(X_test)

X_train = scaler_X_train.transform(X_train)

X_test = scaler_X_test.transform(X_test)

# reshape y-data to become column vector

y_train = np.reshape(y_train, [-1, 1])

y_test = np.reshape(y_test, [-1, 1])

# parameters

batch_size = 32

learning_rate = 0.01

# create an input_fn

def input_fn(features, labels, batch_size=30, training=True):

  dataset = tf.data.Dataset.from_tensor_slices((features, labels))

  if training:

      dataset = dataset.shuffle(buffer_size=1000)

      dataset = dataset.repeat()

  return dataset.batch(batch_size)

# use feature columns to define the attributes to the model

feature_columns = []

columns_names = []

for i in range(X_train.shape[1]):

  feature_columns.append(tf.feature_column.numeric_column(key=str(i)))

  columns_names.append(str(i))

# instantiate a LinearRegressor Estimator

estimator = tf.estimator.DNNRegressor(

    feature_columns=feature_columns,

    hidden_units=[20]

)

# convert feature datasets to dictionary

X_train_pd = pd.DataFrame(X_train)

X_train_pd.columns = columns_names
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X_test_pd = pd.DataFrame(X_test)

X_test_pd.columns = columns_names

# train model

estimator.train(input_fn=lambda:input_fn(dict(X_train_pd), y_train), 

steps=2000)

# evaluate model

metrics = estimator.evaluate(input_fn=lambda:input_fn(dict(X_test_pd),  

y_test, training=False))

# print model metrics

metrics

 Neural Networks with Keras
In this section, we will use the Sequential and Functional Keras API to build a simple 

neural network model. A Sequential API is the most commonly used method to build 

deep neural network models by stacking one layer on another. The Functional API offers 

more flexibility to build more complex neural network architectures. Both API methods 

are relatively easy to construct in Keras as we will see in the examples.

Subclassing a model as we did in the preceding examples provides even more 

flexibility for building and inspecting complex models. However, the code is more 

verbose and may be prone to errors. This technique should be used when it makes the 

most sense to, depending on the problem use case. We used them previously to serve as 

an illustration.

The following examples will use the Iris Dataset to build a neural network with one 

hidden layer as illustrated in Figure 30-11.
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 Using the Keras Sequential API
This code segment will construct a neural network model with the Sequential API using 

the method ‘tf.keras.Sequential()’ to stack layers on each other. The model creates a 

hidden layer with 32 neurons and an output layer with 3 output units because the Iris 

target contains 3 classes.

!pip install -q tensorflow==2.0.0-beta0

# import packages

import tensorflow as tf

import pandas as pd

from sklearn.preprocessing import OneHotEncoder

# dataset url

train_data_url = "https://storage.googleapis.com/download.tensorflow.org/

data/iris_training.csv"

test_data_url = "https://storage.googleapis.com/download.tensorflow.org/

data/iris_test.csv"

Figure 30-11. Iris dataset – neural network architecture
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# define column names

columns = ['sepal_length', 'sepal_width', 'petal_length', 'petal_width', 'species']

# download and load the csv files

train_data = pd.read_csv(tf.keras.utils.get_file('iris_train.csv', train_

data_url),

                               skiprows=1, header=None, names=columns)

test_data = pd.read_csv(tf.keras.utils.get_file('iris_test.csv', test_data_url),

                               skiprows=1, header=None, names=columns)

# separate the features and targets

(X_train, y_train) = (train_data.iloc[:,0:-1], train_data.iloc[:,-1])

(X_test, y_test) = (test_data.iloc[:,0:-1], test_data.iloc[:,-1])

# apply one-hot encoding to targets

y_train=tf.keras.utils.to_categorical(y_train)

y_test=tf.keras.utils.to_categorical(y_test)

# create the sequential model

def model_fn():

    model = tf.keras.Sequential()

    # Add a densely-connected layer with 32 units to the model:

    model.add(tf.keras.layers.Dense(32, activation='sigmoid', input_dim=4))

    # Add a softmax layer with 3 output units:

    model.add(tf.keras.layers.Dense(3, activation='softmax'))

    # compile the model

    model.compile(optimizer=tf.keras.optimizers.SGD(),

                    loss='categorical_crossentropy',

                    metrics=['accuracy'])

    return model

# parameters

batch_size=50
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# use tf.data to batch and shuffle the dataset

train_ds = tf.data.Dataset.from_tensor_slices(

    (X_train.values, y_train)).shuffle(len(X_train)).repeat().batch(batch_size)

test_ds = tf.data.Dataset.from_tensor_slices((X_test.values, y_test)).

batch(batch_size)

# build train model

model = model_fn()

# print train model summary

model.summary()

# train the model

history = model.fit(train_ds,steps_per_epoch=5000)

# evaluate the model

score = model.evaluate(test_ds)

print('Test loss: {:.2f} \nTest accuracy: {:.2f}%'.format(score[0], 

score[1]*100))

'Output':

Test loss: 0.22

Test accuracy: 96.67%

 Using the Keras Functional API
The general code pattern for the Functional API is structurally the same as the 

Sequential version. The only change here is in how the network model is constructed. 

We also demonstrated the Keras feature for printing the graph of the model in this 

example. The output is illustrated in Figure 30-12.

!pip install -q tensorflow==2.0.0-beta0

# import packages

import tensorflow as tf

import pandas as pd

from sklearn.preprocessing import OneHotEncoder
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# dataset url

train_data_url = "https://storage.googleapis.com/download.tensorflow.org/

data/iris_training.csv"

test_data_url = "https://storage.googleapis.com/download.tensorflow.org/

data/iris_test.csv"

# define column names

columns = ['sepal_length', 'sepal_width', 'petal_length', 'petal_width', 'species']

# download and load the csv files

train_data = pd.read_csv(tf.keras.utils.get_file('iris_train.csv',  

train_data_url),

                               skiprows=1, header=None, names=columns)

test_data = pd.read_csv(tf.keras.utils.get_file('iris_test.csv', test_data_url),

                               skiprows=1, header=None, names=columns)

# separate the features and targets

(X_train, y_train) = (train_data.iloc[:,0:-1], train_data.iloc[:,-1])

(X_test, y_test) = (test_data.iloc[:,0:-1], test_data.iloc[:,-1])

# apply one-hot encoding to targets

y_train=tf.keras.utils.to_categorical(y_train)

y_test=tf.keras.utils.to_categorical(y_test)

# create the functional model

def model_fn():

    # Model input

    model_input = tf.keras.layers.Input(shape=(4,))

    # Adds a densely-connected layer with 32 units to the model:

    x = tf.keras.layers.Dense(32, activation='relu')(model_input)

    # Add a softmax layer with 3 output units:

    predictions = tf.keras.layers.Dense(3, activation='softmax')(x)

    # the model

    model = tf.keras.Model(inputs=model_input,

                           outputs=predictions,

                           name='iris_model')
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    # compile the model

    model.compile(optimizer='sgd',

                  loss='categorical_crossentropy',

                  metrics=['accuracy'])

    return model

# parameters

batch_size=50

# use tf.data to batch and shuffle the dataset

train_ds = tf.data.Dataset.from_tensor_slices(

    (X_train.values, y_train)).shuffle(len(X_train)).repeat().batch(batch_size)

test_ds = tf.data.Dataset.from_tensor_slices((X_test.values, y_test)).

batch(batch_size)

# build train model

model = model_fn()

# print train model summary

model.summary()

# plot the model as a graph

tf.keras.utils.plot_model(model, 'keras_iris_model.png', show_shapes=True)

# train the model

history = model.fit(train_ds, steps_per_epoch=5000)

# evaluate the model

score = model.evaluate(test_ds)

print('Test loss: {:.2f} \nTest accuracy: {:.2f}%'.format(score[0], 

score[1]*100))

'Output':

Test loss: 0.07

Test accuracy: 96.67%
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Figure 30-12. The graph of the model – produced with Keras

 Model Visualization with Keras
With Keras, it is quite easy and straightforward to plot the metrics of the model to have a 

better graphical perspective as to how the model is performing for every training epoch. 

This view is also useful for dealing with issues of bias or variance of the model.

A callback function of the ‘model.fit()’ method returns the loss and evaluation score 

for each epoch. This information is stored in a variable and plotted.

In this example, we use the same Iris dataset model to illustrate visualization with 

Keras. The plots of the loss and accuracy of the model at each epoch are shown in 

Figure 30-13 and Figure 30-14, respectively.

!pip install -q tensorflow==2.0.0-beta0

# import packages

import tensorflow as tf

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.preprocessing import OneHotEncoder
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# dataset url

train_data_url = "https://storage.googleapis.com/download.tensorflow.org/

data/iris_training.csv"

test_data_url = "https://storage.googleapis.com/download.tensorflow.org/

data/iris_test.csv"

# define column names

columns = ['sepal_length', 'sepal_width', 'petal_length', 'petal_width', 

'species']

# download and load the csv files

train_data = pd.read_csv(tf.keras.utils.get_file('iris_train.csv', train_

data_url),

                               skiprows=1, header=None, names=columns)

test_data = pd.read_csv(tf.keras.utils.get_file('iris_test.csv', test_data_url),

                               skiprows=1, header=None, names=columns)

# separate the features and targets

(X_train, y_train) = (train_data.iloc[:,0:-1], train_data.iloc[:,-1])

(X_test, y_test) = (test_data.iloc[:,0:-1], test_data.iloc[:,-1])

# apply one-hot encoding to targets

y_train=tf.keras.utils.to_categorical(y_train)

y_test=tf.keras.utils.to_categorical(y_test)

# create the functional model

def model_fn():

    # Model input

    model_input = tf.keras.layers.Input(shape=(4,))

    # Adds a densely-connected layer with 32 units to the model:

    x = tf.keras.layers.Dense(32, activation='relu')(model_input)

    # Add a softmax layer with 3 output units:

    predictions = tf.keras.layers.Dense(3, activation='softmax')(x)

    # the model

    model = tf.keras.Model(inputs=model_input,

                           outputs=predictions,

                           name='iris_model')
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    # compile the model

    model.compile(optimizer='sgd',

                  loss='categorical_crossentropy',

                  metrics=['accuracy'])

    return model

# parameters

batch_size=50

# use tf.data to batch and shuffle the dataset

train_ds = tf.data.Dataset.from_tensor_slices(

    (X_train.values, y_train)).shuffle(len(X_train)).repeat().batch(batch_size)

test_ds = tf.data.Dataset.from_tensor_slices((X_test.values, y_test)).

batch(batch_size)

# build train model

model = model_fn()

# print train model summary

model.summary()

# train the model

history = model.fit(train_ds, epochs=10,

                    steps_per_epoch=100,

                    validation_data=test_ds)

# list metrics returned from callback function

history.history.keys()

# plot loss metric

plt.figure(1)

plt.plot(history.history['loss'], '--')

plt.plot(history.history['val_loss'], '--')

plt.title('Model loss per epoch: Training')

plt.ylabel('loss')

plt.xlabel('epoch')

plt.legend(['train', 'evaluation'])

plt.show()
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# plot accuracy metric

plt.figure(2)

plt.plot(history.history['accuracy'], '--')

plt.plot(history.history['val_accuracy'], '--')

plt.title('Model accuracy per epoch: Training')

plt.ylabel('loss')

plt.xlabel('epoch')

plt.legend(['train', 'evaluation'])

plt.show()

Figure 30-13. Model loss per epoch
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 TensorBoard with Keras
To visualize models with TensorBoard, attach a TensorBoard callback ‘tf.keras.
callbacks.TensorBoard()’ to the ‘model.fit()’ method before training the model. The 

model graph, scalars, histograms, and other metrics are stored as event files in the log 

directory.

For this example, we modify the Iris model to use TensorBoard. The TensorBoard 

output is shown in Figure 30-15.

!pip install -q tensorflow==2.0.0-beta0

# import packages

import tensorflow as tf

import pandas as pd

from sklearn.preprocessing import OneHotEncoder

# load the TensorBoard notebook extension

%load_ext tensorboard

# dataset url

train_data_url = "https://storage.googleapis.com/download.tensorflow.org/

data/iris_training.csv"

Figure 30-14. Model accuracy per epoch
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test_data_url = "https://storage.googleapis.com/download.tensorflow.org/

data/iris_test.csv"

# define column names

columns = ['sepal_length', 'sepal_width', 'petal_length', 'petal_width', 

'species']

# download and load the csv files

train_data = pd.read_csv(tf.keras.utils.get_file('iris_train.csv',  

train_data_url),

                               skiprows=1, header=None, names=columns)

test_data = pd.read_csv(tf.keras.utils.get_file('iris_test.csv', test_data_url),

                               skiprows=1, header=None, names=columns)

# separate the features and targets

(X_train, y_train) = (train_data.iloc[:,0:-1], train_data.iloc[:,-1])

(X_test, y_test) = (test_data.iloc[:,0:-1], test_data.iloc[:,-1])

# apply one-hot encoding to targets

y_train=tf.keras.utils.to_categorical(y_train)

y_test=tf.keras.utils.to_categorical(y_test)

# create the functional model

def model_fn():

    # Model input

    model_input = tf.keras.layers.Input(shape=(4,))

    # Adds a densely-connected layer with 32 units to the model:

    x = tf.keras.layers.Dense(32, activation='relu')(model_input)

    # Add a softmax layer with 3 output units:

    predictions = tf.keras.layers.Dense(3, activation='softmax')(x)

    # the model

    model = tf.keras.Model(inputs=model_input,

                           outputs=predictions,

                           name='iris_model')
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    # compile the model

    model.compile(optimizer='sgd',

                  loss='categorical_crossentropy',

                  metrics=['accuracy'])

    return model

# parameters

batch_size=50

# use tf.data to batch and shuffle the dataset

train_ds = tf.data.Dataset.from_tensor_slices(

    (X_train.values, y_train)).shuffle(len(X_train)).repeat().batch(batch_size)

test_ds = tf.data.Dataset.from_tensor_slices((X_test.values, y_test)).

batch(batch_size)

# build train model

model = model_fn()

# print train model summary

model.summary()

# tensorboard

tensorboard =  tf.keras.callbacks.TensorBoard(log_dir='./tmp/logs_iris_keras',

                                              histogram_freq=0, write_

graph=True,

                                             write_images=True)

# assign callback

callbacks = [tensorboard]

# train the model

history = model.fit(train_ds, epochs=10,

                    steps_per_epoch=100,

                    validation_data=test_ds,

                    callbacks=callbacks)
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# evaluate the model

score = model.evaluate(test_ds)

print('Test loss: {:.2f} \nTest accuracy: {:.2f}%'.format(score[0], 

score[1]*100))

# execute the command to run TensorBoard

%tensorboard --logdir tmp/logs_iris_keras

 Checkpointing to Select Best Models
Checkpointing makes it possible to save the weights of the neural network model when 

there is an increase in the validation accuracy metric. This is achieved in Keras using the 

‘tf.keras.callbacks.ModelCheckpoint()’. The saved weights can then be loaded back 

into the model and used to make predictions. Using the Iris dataset, we'll build a model 

that saves the weights to file only when there is an improvement in the validation set 

performance. For completeness sake as we have done in the previous segments, we will 

produce this example within a complete code listing.

!pip install -q tensorflow==2.0.0-beta0

Figure 30-15. TensorBoard output of Iris model
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# import packages

import tensorflow as tf

import pandas as pd

from sklearn.preprocessing import OneHotEncoder

# dataset url

train_data_url = "https://storage.googleapis.com/download.tensorflow.org/

data/iris_training.csv"

test_data_url = "https://storage.googleapis.com/download.tensorflow.org/

data/iris_test.csv"

# define column names

columns = ['sepal_length', 'sepal_width', 'petal_length', 'petal_width', 'species']

# download and load the csv files

train_data = pd.read_csv(tf.keras.utils.get_file('iris_train.csv', train_

data_url),

                               skiprows=1, header=None, names=columns)

test_data = pd.read_csv(tf.keras.utils.get_file('iris_test.csv', test_data_url),

                               skiprows=1, header=None, names=columns)

# separate the features and targets

(X_train, y_train) = (train_data.iloc[:,0:-1], train_data.iloc[:,-1])

(X_test, y_test) = (test_data.iloc[:,0:-1], test_data.iloc[:,-1])

# apply one-hot encoding to targets

y_train=tf.keras.utils.to_categorical(y_train)

y_test=tf.keras.utils.to_categorical(y_test)

# create the functional model

def model_fn():

    # Model input

    model_input = tf.keras.layers.Input(shape=(4,))

    # Adds a densely-connected layer with 32 units to the model:

    x = tf.keras.layers.Dense(32, activation='relu')(model_input)

    # Add a softmax layer with 3 output units:

    predictions = tf.keras.layers.Dense(3, activation='softmax')(x)
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    # the model

    model = tf.keras.Model(inputs=model_input,

                           outputs=predictions,

                           name='iris_model')

    # compile the model

    model.compile(optimizer='sgd',

                  loss='categorical_crossentropy',

                  metrics=['accuracy'])

    return model

# parameters

batch_size=50

# use tf.data to batch and shuffle the dataset

train_ds = tf.data.Dataset.from_tensor_slices(

    (X_train.values, y_train)).shuffle(len(X_train)).repeat().batch(batch_size)

test_ds = tf.data.Dataset.from_tensor_slices((X_test.values, y_test)).

batch(batch_size)

# build train model

model = model_fn()

# print train model summary

model.summary()

# checkpointing

checkpoint = tf.keras.callbacks.ModelCheckpoint(

    './tmp/iris_weights.h5',

    monitor='val_accuracy',

    verbose=1,

    save_best_only=True,

    mode='max')

# assign callback

callbacks = [checkpoint]
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# train the model

history = model.fit(train_ds, epochs=10,

                    steps_per_epoch=100,

                    validation_data=test_ds,

                    callbacks=callbacks)

# build evaluation model and upload saved weights

eval_model = model_fn()

eval_model.load_weights('./tmp/iris_weights.h5')

# evaluate the model

score = eval_model.evaluate(test_ds)

print('Test loss: {:.2f} \nTest accuracy: {:.2f}%'.format(score[0], 

score[1]*100))

This chapter covered the foundation of working with TensorFlow 2.0 and its exciting 

features for developing machine learning models. Some of these new features include 

a more pythonic feel to model design and debugging, using tf.function to transform 

a Python method into high-performance TensorFlow graphs, using Keras as the core 

high-level API for model design, using FeatureColumns to parse data as input into Keras 

models, and the ease of training on distributed architectures and devices. The chapter 

also covered the principles of building models using the high-level Estimator API.

In the next chapters, we will take a deeper dive into deep neural networks and how 

they are implemented in TensorFlow with Keras. In TensorFlow 2.0, Keras is the de facto 

method for developing neural network.
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CHAPTER 31

The Multilayer  
Perceptron (MLP)
The multilayer perceptron (MLP) is the fundamental example of a deep neural network. 

The architecture of a MLP consists of multiple hidden layers to capture more complex 

relationships that exist in the training dataset. Another name for the MLP is the deep 

feedforward neural network (DFN). An illustration of an MLP is shown in Figure 31-1.

Figure 31-1. Deep feedforward neural network

 The Concept of Hierarchies
The more the number of hidden layers in a neural network, the deeper the network 

becomes. Deep networks are able to learn more sophisticated representations of the 

inputs. The concept of hierarchical representation is when each layer learns a set of 

features that describe the input and hierarchically pass that information across the 

hidden layers. Initially, the hidden layers closer to the input layer learn a simple set 
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of features, which then grow to increasingly complex features as information flows to 

deeper layers of the network, to capture the mapping between the inputs and the target. 

See Figure 31-2.

 Choosing the Number of Hidden Layers:  
Bias/Variance Trade-Off
From experience, increasing the number of hidden layers may improve the 

representational quality of the network; however, arbitrarily increasing the number of 

hidden layers in your network design can have detrimental effects on the overall network 

performance with respect to generalizing to unseen observations. This is because the 

neural network will learn more closely the irreducible errors inherent in the training 

dataset and will fail to generalize to new examples.

Appropriate caution should be taken when selecting the number of hidden layers 

to avoid overfitting. Regularization techniques for neural networks such as Tikhonov 

regularization, Dropout, or early stopping are different methods of mitigating overfitting. 

Regularization for neural networks will be covered in more detail in a later section.

Empirically, one hidden layer will produce good results for simple learning 

problems, but if the number of output classes increases or there exists a high degree 

Figure 31-2. Hierarchical learning
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of non-linearities among the data features, then it is recommended to add more layers 

while taking care to ensure that the model performs well on test data. Choosing the 

number of neurons in a hidden layer and the number of hidden layers is usually a case of 

a trial-and-error heuristics and presents the case of applying hyper-parameter tuning to 

improve the network performance. Using a grid search for hyper-parameter tuning is a 

good way to approximate an optimal neural network architecture that performs well on 

test data.

 Multilayer Perceptron (MLP) with Keras
In this section, we examine a motivating example by building an MLP model with Keras. 

In doing so, we’ll go through the following steps:

• Import and transform the dataset.

• Build and compile the model.

• Train the data using ‘Model.fit()’.

• Evaluate the model using ‘Model.evaluate()’.

• Predict on unseen data using ‘Model.predict()’.

The dataset used for this example is the Fashion-MNIST database of fashion articles. 

This dataset contains 60,000 28 x 28 pixel grayscale images of ten clothing items (the 

target classes). This dataset is downloaded from the ‘tf.keras.datasets’ package. The 

following code example will build a simple MLP neural network for the computer to 

classify an image of a clothing item into its appropriate class. The network architecture 

has the following layers:

• A dense hidden layer with 250 neurons

• A second hidden layer with 64 neurons

• A third hidden layer with 32 neurons

• An output layer with 10 output classes

# install tensorflow 2.0

!pip install -q tensorflow==2.0.0-beta0

# import packages
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import tensorflow as tf

import numpy as np

# import dataset

(x_train, y_train), (x_test, y_test) = tf.keras.datasets.fashion_mnist.

load_data()

# flatten the 28*28 pixel images into one long 784 pixel vector

x_train = np.reshape(x_train, (-1, 784)).astype('float32')

x_test = np.reshape(x_test, (-1, 784)).astype('float32')

# scale dataset from 0 -> 255 to 0 -> 1

x_train /= 255

x_test /= 255

# one-hot encode targets

y_train = tf.keras.utils.to_categorical(y_train)

y_test = tf.keras.utils.to_categorical(y_test)

# create the model

def model_fn():

    model = tf.keras.Sequential()

    # Adds a densely-connected layer with 256 units to the model:

    model.add(tf.keras.layers.Dense(256, activation='relu', input_dim=784))

    # Add Dense layer with 64 units

    model.add(tf.keras.layers.Dense(64, activation='relu'))

    # Add another densely-connected layer with 32 units:

    model.add(tf.keras.layers.Dense(32, activation='relu'))

    # Add a softmax layer with 10 output units:

    model.add(tf.keras.layers.Dense(10, activation='softmax'))

    # compile the model

    model.compile(optimizer=tf.keras.optimizers.SGD(0.01),

                  loss='categorical_crossentropy',

                  metrics=['accuracy'])

    return model

# build model

model = model_fn()
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# use tf.data to batch and shuffle the dataset

train_ds = tf.data.Dataset.from_tensor_slices(

    (x_train, y_train)).shuffle(len(x_train)).repeat().batch(32)

test_ds = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)

# train the model

model.fit(train_ds, epochs=10,

          steps_per_epoch=2000)

# evaluate the model

score = model.evaluate(test_ds)

print('Test loss: {:.2f} \nTest accuracy: {:.2f}%'.format(score[0], 

score[1]*100))

'Ouput:'

Test loss: 0.35

Test accuracy: 87.36%

Observe the following from the preceding code:

• A Keras Sequential Model is built by calling the ‘tf.keras.
Sequential()’ method from which layers are then added to the 

model.

• After constructing the model layers, the model is compiled by calling 

the method ‘.compile()’.

• The model is trained by calling the ‘.fit()’ method which receives the 

training features and targets from the ‘tf.data.Dataset’ pipeline.

• The method ‘.evaluate()’ is used to get the final metric estimate and 

the loss score of the model after training.

In this chapter, we introduced the multilayer perceptron network and how it 

achieves good performance on complex learning problems by stacking layers of 

neurons together to form a deep representational hierarchy. By doing this, the network 

learns what features are relevant and also learns what weights of the network will best 

approximate the target function.

In the next chapter, we will discuss on other considerations for training deep neural 

network.
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CHAPTER 32

Other Considerations 
for Training the Network
In this chapter, we will cover some other important techniques to consider when training 

a deep neural network.

 Weight Initialization
Weight initialization is a technique for assigning initial values to the weights 

(parameters) of the neural network before training (see Figure 32-1). Proper weight 

initialization may mitigate the effects of vanishing and exploding gradients when 

training the network. It may also speed up the training process. Two commonly used 

methods for weight initializations are the Xavier and the He techniques. We will not 

go into the technical explanation of these initialization strategies. However, they are 

implemented in the standard deep learning framework libraries such as TensorFlow 

and Keras. In TensorFlow 2.0, the dense layer in ‘tf.keras.layers.Dense()’ has the Glorot 

uniform initializer, also called Xavier uniform initializer as its default kernel initializer.



408

 Batch Normalization
The technique of batch normalization involves normalizing the data (to have zero 

mean and unit variance), as well as scaling and shifting the data batch at each layer 

of the neural network during the training phase. Batch normalization occurs after the 

affine transformation of the input matrix and their weights, but before passing the 

transformation into the activation function (see Figure 32-2).

Figure 32-1. Weight initialization
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The neural network learns the parameters for scaling and shifting the data at every 

layer during training. Also at the training phase, the score of the running mean and 

standard deviation of the data is maintained so that it can be used to normalize the test 

data before evaluation.

Batch normalization also mitigates the exploding and vanishing gradient problem 

irrespective of weight initialization. However, due to the added computational 

step at each layer, the network may be a bit slower. A batch normalization layer is 

added to a TensorFlow 2.0 network model by calling the method ‘tf.keras.layers. 
BatchNormalization()’ as shown in the following code listing.

# create the model

def model_fn():

    model = tf.keras.Sequential()

    # Adds a densely-connected layer with 256 units to the model:

    model.add(tf.keras.layers.Dense(256, activation='relu', input_dim=784))

    # Add Dense layer with 64 units

    model.add(tf.keras.layers.Dense(64, activation='relu'))

    # Add a Batch Normalization layer

    model.add(tf.keras.layers.BatchNormalization())

    # Add another densely-connected layer with 32 units:

    model.add(tf.keras.layers.Dense(32, activation='relu'))

    # Add a softmax layer with 10 output units:

    model.add(tf.keras.layers.Dense(10, activation='softmax'))

Figure 32-2. Batch normalization, also known as batch norm
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    # compile the model

    model.compile(optimizer=tf.keras.optimizers.SGD(0.01),

                  loss='categorical_crossentropy',

                  metrics=['accuracy'])

    return model

 Gradient Clipping
Gradient clipping is another technique for hemming the problem of vanishing 

and exploding gradients mostly seen in recurrent networks due to training via 

backpropagation across a large number of deep recurrent layers. Gradient clipping 

involves trimming the computed gradients so that they remain within a specific range; 

in doing so, the gradients are prevented from saturating as the network trains across 

multiple deep layers.

Gradient clipping is implemented in TensorFlow 2.0 by adjusting the ‘clipnorm’ or 

‘clipvalue’ parameters of the selected optimizer from the ‘tf.keras.optimizers’ package. 

‘clipnorm’ clips the gradients by norm, while ‘clipvalue’ clips the gradients by value.

This chapter introduces some important techniques that are employed to improve 

the performance of a neural network by further mitigating the issue of vanishing and 

exploding gradients. In the next chapter, we will see more optimization techniques for 

training deep neural network model.
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CHAPTER 33

More on Optimization 
Techniques
In this chapter, we’ll go over some other optimization techniques for improving the 

ability of a neural network to learn complex patterns in a dataset.

 Momentum
Momentum is a technique for improving the convergence speed of stochastic gradient 

descent (SGD) optimization. Remember that stochastic gradient works by learning 

the direction of steepest descent by evaluating a training example at each time step to 

optimize the weights of the network. Momentum improves on this by calculating the 

average of previous gradients in a process called exponentially smoothed averages. 

It then uses this computed average to continue to move in the direction of steepest 

descent. By doing so, it quickens the learning process. In computing this exponentially 

decayed average, a momentum hyper-parameter is introduced to control how the weight 

parameters are updated. Figure 33-1 shows an example of stochastic gradient descent 

with and without momentum as it converges in a function space. In TensorFlow 2.0, 

momentum is added to a SGD optimizer by adjusting the ‘momentum’ parameter of the 

SGD method, ‘tf.keras.optimizers.SGD(momentum=[float >=0])’. The momentum 

value must be a float value that is greater or equal to 0 that accelerates SGD in the 

relevant direction and dampens oscillations.
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 Variable Learning Rates
Remember that the learning rate controls how large a step the gradient descent 

algorithm makes when moving in the direction of steepest descent. If the learning rate is 

large, the algorithm takes larger steps in the direction of the steepest gradient, as is faster. 

However, the algorithm may overshoot the global minimum and fail to converge. But if 

the learning rate is set to a small number, closer to zero, the algorithm converges slowly, 

but it is more guaranteed to converge.

Variable learning rates are a set of techniques for adjusting the learning rate of the 

gradient descent algorithm at every time instance while training. These methods are also 

called learning rate scheduling. Examples of variable learning rates include

• Step decay: This method reduces the learning rate by a constant 

factor after a certain number of iterations.

• Exponential decay: The exponential decay adapts the learning rate 

following an exponential distribution.

• Decay proportion: This method reduces the learning rate by a ratio of 

1 over the time instance, t. The learning rate decay can be adjusted by 

modifying the proportionality constant.

Figure 33-1. SGD with and without momentum
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In TensorFlow 2.0, the ‘decay’ parameter of the selected optimizer from the ‘tf.keras.
optimizers’ module allows time inverse decay of learning rate.

 Adaptive Learning Rates
Adaptive learning rate, on the other hand, re-adjusts the learning rate in accordance 

with the training data. It basically uses a different learning rate for each parameter and 

adapts it during training. These techniques are based on the observation that each 

parameter results in a different type of gradient. The following list outlines types of 

adaptive learning rates in use and their method calls in TensorFlow 2.0:

• AdaGrad: tf.keras.optimizers.Adagrad()

• AdaDelta: tf.keras.optimizers.Adadelta()

• RMSProp: tf.keras.optimizers.RMSprop()

• Adaptive Moments, (Adam): tf.keras.optimizers.Adam()

However, AdaGrad performs poorly when used for training deep learning models 

due to its monotonic learning rate which could be too aggressive, and learning may stop 

early during training. As of now, there is no proven best optimization technique, so the 

choice of the optimization technique is down to the preference of the model designer.

This chapter surveys some other techniques for optimizing the weights of a deep 

neural network. These techniques have implementations in deep learning libraries such 

as Tensorflow and Keras and can be explored as hyper-parameters when designing a 

neural network solution for a particular learning use case.

In the next chapter, we will discuss techniques for applying regularization to a deep 

neural network to prevent overfitting.
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CHAPTER 34

Regularization for Deep 
Learning
Regularization is a technique for reducing the variance in the validation set, thus 

preventing the model from overfitting during training. In doing so, the model can better 

generalize to new examples. When training deep neural networks, a couple of strategies 

exist for use as a regularizer.

 Dropout
Dropout is a regularization technique that prevents a deep neural network from 

overfitting by randomly discarding a number of neurons at every layer during training. In 

doing so, the neural network is not overly dominated by any one feature as it only makes 

use of a subset of neurons in each layer during training. In doing so, Dropout resembles 

an ensemble of neural networks as a similar but distinct neural network is trained at 

each layer. Dropout works by designating a probability that a neuron will be dropped in a 

layer. This probability value is called the Dropout rate. Figure 34-1 shows an example of a 

network with and without Dropout.
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In TensorFlow 2.0 Dropout is added to a model with the method ‘tf.keras.layers.
Dropout()’. The ‘rate’ parameter of the method controls the fraction of the input units 

to drop. It is assigned a float value between 0 and 1. The following code listing shows an 

MLP Keras model with Dropout applied.

Figure 34-1. Dropout. Top: Neural network without Dropout. Bottom: Neural 
network with Dropout.
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# create the model

def model_fn():

    model = tf.keras.Sequential()

    # Adds a densely-connected layer with 256 units to the model:

    model.add(tf.keras.layers.Dense(256, activation='relu', input_dim=784))

    # Add Dropout layer

    model.add(tf.keras.layers.Dropout(rate=0.2))

    # Add another densely-connected layer with 64 units:

    model.add(tf.keras.layers.Dense(64, activation='relu'))

    # Add a softmax layer with 10 output units:

    model.add(tf.keras.layers.Dense(10, activation='softmax'))

    # compile the model

    model.compile(optimizer=tf.train.AdamOptimizer(0.001),

                    loss='categorical_crossentropy',

                    metrics=['accuracy'])

    return model

 Data Augmentation
Data augmentation is a method for artificially generating more training data points. 

This technique is precipitated on the observation that for an increasingly large training 

dataset mitigates the problem of overfitting. For some problems, it may be easy to 

artificially generate fake data, while for others it may not readily be the case. A classic 

example where we can use data augmentation is in the case of image classification. Here 

artificial images can easily be created by rotating or scaling the original images to create 

more variations of the dataset for a particular image class.

 Noise Injection
The noise injection regularization method adds some Gaussian noise to the network 

inputs during training. Also, Gaussian noise can be added to the hidden units to mitigate 

overfitting. Yet still another form of injecting noise into the network is to add some 

Gaussian noise to the network weights. Noise injection can be considered as a form 

of data augmentation. The amount of noise added is a configurable hyper-parameter. 
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Too little noise has no effect, whereas too much noise makes the mapping function too 

challenging to learn.

In TensorFlow 2.0, noise injection can be added to the model as a form of data 

augmentation using the method ‘tf.keras.layers.GaussianNoise()’. The ‘stddev’ 
parameter of the method controls the standard deviation of the noise distribution. The 

following code listing shows an MLP Keras model with Gaussian noise applied to the 

model.

# create the model

def model_fn():

    model = tf.keras.Sequential()

    # Adds a densely-connected layer with 256 units to the model:

    model.add(tf.keras.layers.Dense(256, activation='relu', input_dim=784))

    # Add Gaussian Noise

    model.add(tf.keras.layers.GaussianNoise(stddev=1.0))

    # Add another densely-connected layer with 64 units:

    model.add(tf.keras.layers.Dense(64, activation='relu'))

    # Add a softmax layer with 10 output units:

    model.add(tf.keras.layers.Dense(10, activation='softmax'))

    # compile the model

    model.compile(optimizer=tf.keras.optimizers.RMSprop(),

                    loss='categorical_crossentropy',

                    metrics=['accuracy'])

    return model

 Early Stopping
Early stopping involves storing the model parameters each time there is an improvement 

in the loss (or error) estimate on the validation dataset. At the end of the training phase, 

the stored model parameters are used rather than the last known parameter before 

termination.

The technique of early stopping is based on the observation that for a sufficiently 

complex classifier, as the training phase progresses, the error estimate on the training 

data continues to decrease, whereas the validation data will see an increase in the model 

error measure. This is illustrated in Figure 34-2.
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In TensorFlow 2.0, early stopping can be applied to stop training when there is no 

improvement in the validation accuracy or loss by applying the ‘tf. keras.callbacks.
EarlyStopping()’ method as a callback when training the model. For completeness sake, 

we will produce a complete code listing with early stopping applied to the MLP Fashion- 

MNIST model.

# install tensorflow 2.0

!pip install -q tensorflow==2.0.0-beta0

# import packages

import tensorflow as tf

import numpy as np

# import dataset

(x_train, y_train), (x_test, y_test) = tf.keras.datasets.fashion_mnist.

load_data()

# flatten the 28*28 pixel images into one long 784 pixel vector

Figure 34-2. Early stopping
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x_train = np.reshape(x_train, (-1, 784)).astype('float32')

x_test = np.reshape(x_test, (-1, 784)).astype('float32')

# scale dataset from 0 -> 255 to 0 -> 1

x_train /= 255

x_test /= 255

# one-hot encode targets

y_train = tf.keras.utils.to_categorical(y_train)

y_test = tf.keras.utils.to_categorical(y_test)

# create the model

def model_fn():

    model = tf.keras.Sequential()

    # Adds a densely-connected layer with 256 units to the model:

    model.add(tf.keras.layers.Dense(256, activation='relu', input_dim=784))

    # Add another densely-connected layer with 128 units:

    model.add(tf.keras.layers.Dense(128, activation='relu'))

    # Add another densely-connected layer with 64 units:

    model.add(tf.keras.layers.Dense(64, activation='relu'))

    # Add another densely-connected layer with 32 units:

    model.add(tf.keras.layers.Dense(32, activation='relu'))

    # Add a softmax layer with 10 output units:

    model.add(tf.keras.layers.Dense(10, activation='softmax'))

    # compile the model

    model.compile(optimizer=tf.keras.optimizers.RMSprop(),

                    loss='categorical_crossentropy',

                    metrics=['accuracy'])

    return model

# use tf.data to batch and shuffle the dataset

train_ds = tf.data.Dataset.from_tensor_slices(

    (x_train, y_train)).shuffle(len(x_train)).repeat().batch(32)

test_ds = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)

# build model

model = model_fn()
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# early stopping

checkpoint = tf.keras.callbacks.EarlyStopping(

    monitor='val_loss',

    mode='auto',

    patience=5)

# assign callback

callbacks = [checkpoint]

# train the model

history = model.fit(train_ds, epochs=10,

                    steps_per_epoch=100,

                    validation_data=test_ds,

                    callbacks=callbacks)

# evaluate the model

score = model.evaluate(test_ds)

print('Test loss: {:.2f} \nTest accuracy: {:.2f}%'.format(score[0], 

score[1]*100))

With early stopping applied to the preceding code, the training will stop once there 

is no improvement to the loss on the validation dataset. The ‘patience’ parameter in the 

EarlyStopping method represents the number of epochs with no improvement, after 

which training will be stopped.

This chapter surveys some techniques to tackle the problem of overfitting 

when training with a deep neural network. In the next chapter, we will discuss on 

convolutional neural networks for building predictive models for computer vision use 

cases such as image recognition with TensorFlow 2.0.
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CHAPTER 35

Convolutional Neural 
Networks (CNN)
Convolutional neural networks (CNN) are a specific type of neural network systems that 

are particularly suited for computer vision problems such as image recognition. In such 

tasks, the dataset is represented as a 2-D grid of pixels. See Figure 35-1.

Figure 35-1. 2-D representation of an image

An image is depicted in the computer as a matrix of pixel intensity values ranging 

from 0 to 255. A grayscale (or black and white) image consists of a single channel with 

0 representing the black areas and 255 the white regions with the values in between for 

various shades of gray.

For example, the image in Figure 35-2 is a 10 x 10 grayscale image with its matrix 

representation.
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On the other hand, a colored image consists of three channels, red, green, and blue, 

with each channel also containing pixel intensity values from 0 to 255. A colored image 

has a matrix shape of [height x width x channel]. In Figure 35-3, we have an image of 

shape [10 x 10 x 3] indicating a 10 x 10 matrix with three channels.

Figure 35-2. Grayscale image with matrix representation

Chapter 35  Convolutional neural networks (Cnn)



425

 Local Receptive Fields of the Visual Cortex
The core concept of convolutional neural networks is built on understanding the 

local receptive fields found in the neurons of the visual cortex – the part of the brain 

responsible for processing visual information.

A local receptive field is an area on the neuron that excites or activates that neuron 

to fire information to other neurons. When viewing an image, the neurons in the visual 

cortex react to a small or limited area of the overall image due to the presence of a small 

local receptive field.

Figure 35-3. Colored image with matrix representation
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Hence, the neurons in the visual cortex do not all sense the entire image at the same 

time, but they are activated by viewing a local area of the image via its local receptive 

field.

In Figure 35-4, the local receptive fields overlap to give a collective perspective on 

the entire image. Each neuron in the visual cortex reacts to a different type of visual 

information (e.g., lines with different orientations).

Other neurons have large receptive fields that react to more complex visual patterns 

such as edges, regions, and so on. From here we get the idea that neurons with larger 

receptive field receive information from those with lower receptive fields as they 

progressively learn the visual information of the image.

 Advantages of CNN over MLP
Suppose we have a 28 x 28 pixel set of image data, a feedforward neural network or 

multilayer perceptron will need 784 input weights plus a bias. By flattening an image as 

you would in MLP, we lose the spatial relationship of the pixels in the image.

CNN, on the other hand, can learn complex image features by preserving the spatial 

relationship between the image pixels. It does so by stacking convolutional layers 

whereby the neurons in the higher layers with a larger receptive field receive information 

Figure 35-4. Local receptive field
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from neurons in the lower layers having a smaller receptive field. CNN learns a hierarchy 

of increasingly complex features from the input data as it flows through the network.

In CNN, the neurons (or filters) in the convolutional layer are not all connected to 

the pixels in the input image as we have in the dense multilayer perceptron. Hence, a 

CNN is also called a sparse neural network.

A distinct advantage of CNN over MLP is the reduced number of weights needed for 

training the network.

Convolutional neural networks are composed of three fundamental types of layers:

• Convolutional layer

• Pooling layer

• Fully connected layer

 The Convolutional Layer
The convolution layer is made up of filters and feature maps. A filter is passed over the 

input image pixels to capture a specific set of features in a process called convolution 

(see Figure 35-5). The output of a filter is called a feature map.

Figure 35-5. The convolution process
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 Convolution

Convolution is the process by which a function is applied to a matrix to extract specific 

information from the matrix. The function is implemented as a sliding window through 

the matrix, and it is more popularly called a convolutional filter or a kernel. Both terms 

are used interchangeably in the literature. The image in Figure 35-6 illustrates a filter 

sliding through a matrix to extract information from it.

Filters are neurons in the convolutional layer. They are assigned weights and are 

applied as a sliding window through the matrix. The output of a filter is a feature map. 

Filters which are basically neurons also have a non-linear activation function.

The inputs into a filter can be the matrix of the image pixels if the filter is at the input 

layer, or it can be the feature maps of a previous convolutional layer if the filter is applied 

at a deeper layer in the network.

Figure 35-6. Sliding window of a filter through a matrix
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Filters are assigned a fixed square block for its input size. This input size can also be 

seen as the local receptive field of the filter. A common input size for filters is a 3 x 3  

square patch as illustrated in Figure 35-7; other standard sizes include a 5 x 5 or 7 x 7 

filter for extracting features from images. It is also a best practice to use more filters at 

deeper layers of the network and fewer filter at the input layer.

Figure 35-7. An example of a 3 x 3 filter kernel

Observe that each cell in the filter has an associated weight or value. These values 

are used to multiply its associated pixel intensities and then sum up their results, which 

are filled in the appropriate cell of the convolutional result. This procedure is illustrated 

in Figure 35-8.

Figure 35-8. Sliding a convolutional filter across an image matrix to extract 
features
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The weights on the filter determine the filter operation and consequently the type of 

features that are extracted from the filter inputs. Different filters are responsible for edge 

detection, line detection, and so on. See Figure 35-9.

Key considerations to make when designing a convolutional layer are

• The filter size

• The stride of the filter

• The padding for the layer input

The stride of the filter determines how many pixel steps the filter makes when 

moving from one image activation to another. It is typical to use a stride of 1, although 

this could be increased for large images. See Figure 35-10.

Figure 35-9. Filter types
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Sometimes the choice of our filter size and the selected stride may not evenly divide 

up the size of the input to the filter. So to avoid losing pixel information since we don’t 

slide past the edge of the image, a technique called zero padding is employed to pad the 

borders of the image pixels with a defined layer of zeros. This allows the filter to stride 

evenly through all the pixels in the image by including the zeros in the convolution. See 

Figure 35-11.

Figure 35-10. An illustration of stride width
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 Feature Maps

Feature maps are the outputs of a filter in a convolutional layer. Feature maps bring to the fore 

certain patterns of the input image such as horizontal lines, vertical lines, edges, and so on. 

These feature maps of the various neurons stacked together are what forms a convolutional 

neural layer and enable the layer to learn complex patterns and features of an image.

Moving deeper across the convolutional neural network, the inputs to a deeper 

convolutional layer are the feature maps of the previous layer. See Figure 35-12.

Figure 35-11. An illustration of zero padding

Figure 35-12. Feature maps as inputs to a convolutional layer
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 The Pooling Layer
Pooling layers typically follow one or more convolutional layers. The goal of the pooling 

layer is to reduce or downsample the feature map of the convolutional layer. The pooling 

layer summarizes the image features learned in the previous network layers. By doing so, 

it also helps prevent the network from overfitting. Moreso, the reduction in the input size 

also bodes well for processing and memory costs when training the network.

The pooling layer can be seen as an aggregation function that consolidates learned 

features and extracts the essential features from previous layers. It does not conduct any 

multiplicative transformation on the input feature maps as seen in the convolutional layer.

The aggregation functions carried out by the pooling layer include max, sum, and 

average. The most frequently used aggregation function in practice is the max and is 

commonly called the MaxPool.

The aggregation functions of the pooling layer serve as the layers’ filters. Just like 

the filters of the convolutional layer, they have a receptive field (although smaller in size 

than that of the convolutional layer) and a stride width. Howbeit, the filters which are the 

neurons of the pooling layer have no weight or biases. A typical size for the pooling filter 

is a 2 x 2 matrix as shown in Figure 35-13.
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Figure 35-13. Example of pooling with MaxPooling
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The essential advantage of the pooling layer is its ability to inject location invariance 

into the network. Location invariance means that features can be detected by the 

network no matter where they are on the image.

The pooling layer applies its aggregation function to all the channels of the input 

image. For example, in an R, G, B image (i.e., an image with three channels, red, green, 

and blue), the MaxPool will be applied independently to all the three channels. Similarly, 

for feature maps with a particular depth, the pooling aggregation will be applied 

separately to each feature map. See Figure 35-14 as an example of applying pooling to 

the channel depth of its inputs.

Figure 35-14. Example of applying pooling to input with depth. Note that the 
filters in the pooling layer have no weights or biases

 The Fully Connected Network Layer
The fully connected network (FCN) layer is our regular feedforward neural network 

or multilayer perceptron. These layers typically have a non-linear activation function. 

In any case, the FCN is the final layer of the convolutional neural network. In this 

case, a softmax activation is used to output the probabilities that an input belongs to a 

particular class.
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Before passing an input into the FCN, the image matrix will have to be flattened. For 

example, a 28 x 28 x 3 image matrix will become 2352 input weights plus a bias of 1 into 

the fully connected network.

In the case of our convolutional network, the feature maps of either the 

convolutional or pooling layer are flattened before passing into the FCN to compute the 

final network probabilities using the softmax function.

 An Example CNN Architecture
We have discussed the building blocks of a convolutional neural network system. As 

you’ve seen, a CNN system is principally composed of convolution layers, pooling layers, 

and the fully connected layer. However, the way these layers are arranged and in what 

number are down to the preferred heuristics of the particular use case that a CNN is 

employed in solving.

An example CNN modeling pipeline is shown here:

 1. The first layer following the input layer of images must be a 

convolutional layer for extracting image features. A 3 x 3 image 

filter is commonly used depending on the size of the input image.

 2. Pooling layers typical follow a set of one or more convolutional 

layers. Typically, a 2 x 2 filter size is used in the pooling layer.

 3. The fully connected layer must be the final layer of the CNN. It 

is also called the dense layer. It contains the softmax activation 

function to give the probabilities of class membership.

 4. CNN may include one or more Dropout layers to prevent the 

network from overfitting.
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Figure 35-15 is an example of a CNN architecture.

 CNN for Image Recognition with TensorFlow 2.0
In this example, we will build a convolutional neural network (CNN) to classify images 

from the CIFAR-10 dataset. CIFAR-10 is another standard image classification dataset 

to classify a colored 32 x 32 pixel image data into ten image classes, namely, airplane, 

automobile, bird, cat, deer, dog, frog, horse, ship, and truck. The focus of this section is 

exclusively on using TensorFlow 2.0 methods to build a CNN image classifier.

The CNN model architecture implemented loosely mirrors the Krizhevsky’s 

architecture, also known as AlexNet. The network architecture has the following layers:

• Convolution layer: kernel_size = [5 x 5]

• Convolution layer: kernel_size = [5 x 5]

• Batch normalization layer

• Convolution layer: kernel_size = [5 x 5]

• Max pooling: pool size = [2 x 2]

• Convolution layer: kernel_size = [5 x 5]

• Convolution layer: kernel_size = [5 x 5]

• Batch normalization layer

• Max pooling: pool size = [2 x 2]

Figure 35-15. CNN architecture
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• Convolution layer: kernel_size = [5 x 5]

• Convolution layer: kernel_size = [5 x 5]

• Convolution layer: kernel_size = [5 x 5]

• Max pooling: pool size = [2 x 2]

• Dropout layer

• Dense layer: units = [512]

• Dense layer: units = [256]

• Dropout layer

• Dense layer: units = [10]

This CNN model has close to a million trainable variables as can be seen from the 

model summary when running ‘model.summary()’. Training on a CPU will take an 

inordinate amount of time (about 1 hour and 30 minutes). For this code example, we 

will train on a GPU instance. If running the code on Google Colab, change the runtime 

type to GPU and install TensorFlow 2.0 with GPU package. The graph of the model in 

Tensorboard is shown in Figure 35-16.

# import TensorFlow 2.0 with GPU

!pip install -q tf-nightly-gpu-2.0-preview

# import packages

import tensorflow as tf

# confirm tensorflow can see GPU

device_name = tf.test.gpu_device_name()

if device_name != '/device:GPU:0':

  raise SystemError('GPU device not found')

print('Found GPU at: {}'.format(device_name))

# load the TensorBoard notebook extension

%load_ext tensorboard

# import dataset

(x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar10.load_data()

# change datatype to float
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x_train = x_train.astype('float32')

x_test = x_test.astype('float32')

# scale the dataset from 0 -> 255 to 0 -> 1

x_train /= 255

x_test /= 255

# one-hot encode targets

y_train = tf.keras.utils.to_categorical(y_train)

y_test = tf.keras.utils.to_categorical(y_test)

# parameters

batch_size = 100

# create dataset pipeline

train_ds = tf.data.Dataset.from_tensor_slices(

    (x_train, y_train)).shuffle(len(x_train)).repeat().batch(batch_size)

test_ds = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(batch_size)

# create the model

def model_fn():

    model_input = tf.keras.layers.Input(shape=(32, 32, 3))

     x = tf.keras.layers.Conv2D(64, (5, 5), padding='same', 

activation='relu')(model_input)

    x = tf.keras.layers.Conv2D(64, (5, 5), padding='same', activation='relu')(x)

    x = tf.keras.layers.BatchNormalization()(x)

    x = tf.keras.layers.Conv2D(64, (5, 5), padding='same', activation='relu')(x)

     x = tf.keras.layers.MaxPooling2D(pool_size=(2, 2), strides=2, 

padding='same')(x)

    x = tf.keras.layers.Conv2D(64, (5, 5), padding='same', activation='relu')(x)

    x = tf.keras.layers.Conv2D(64, (5, 5), padding='same', activation='relu')(x)

    x = tf.keras.layers.BatchNormalization()(x)

    x = tf.keras.layers.MaxPooling2D(pool_size=(2, 2), strides=2, padding='same')(x)

    x = tf.keras.layers.Conv2D(32, (3, 3), padding='same', activation='relu')(x)

    x = tf.keras.layers.Conv2D(32, (3, 3), padding='same', activation='relu')(x)

    x = tf.keras.layers.Conv2D(32, (3, 3), padding='same', activation='relu')(x)

     x = tf.keras.layers.MaxPooling2D(pool_size=(2, 2), strides=2, 

padding='same')(x)
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    x = tf.keras.layers.Dropout(0.3)(x)

    x = tf.keras.layers.Flatten()(x)

    x = tf.keras.layers.Dense(512, activation='relu')(x)

    x = tf.keras.layers.Dense(256, activation='relu')(x)

    x = tf.keras.layers.Dropout(0.5)(x)

    output = tf.keras.layers.Dense(10, activation='softmax')(x)

    # the model

    model = tf.keras.Model(inputs=model_input, outputs=output)

    # compile the model

    model.compile(optimizer=tf.keras.optimizers.Nadam(),

                  loss='categorical_crossentropy',

                  metrics=['accuracy'])

    return model

# build the model

model = model_fn()

# print model summary

model.summary()

# tensorboard

tensorboard =  tf.keras.callbacks.TensorBoard(log_dir='./tmp/logs_cifar10_

keras',

              histogram_freq=0, write_graph=True,

               write_images=True)

# assign callback

callbacks = [tensorboard]

# train the model

history = model.fit(train_ds, epochs=10,

                    steps_per_epoch=500,

                    callbacks=callbacks)

# evaluate the model

score = model.evaluate(test_ds)

print('Test loss: {:.2f} \nTest accuracy: {:.2f}%'.format(score[0], score[1]∗100))
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'Output:'

Test loss: 0.74

Test accuracy: 80.05%

# execute the command to run TensorBoard

%tensorboard --logdir tmp/logs_cifar10_keras

In this chapter, we discussed the convolutional neural network (CNN) as an example 

of a deep neural network. We went through the design details in architecting a CNN and 

implemented a CNN model with TensorFlow 2.0. In the next chapter, we will examine 

another type of deep neural network called the recurrent neural network.

Figure 35-16. Tensorboard output of CIFAR-10 model graph
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CHAPTER 36

Recurrent Neural 
Networks (RNNs)
Recurrent neural networks (RNNs) are another specialized scheme of neural network 

architectures. RNNs are developed to solve learning problems where information about 

the past (i.e., past instants/events) is directly linked to making future predictions. Such 

sequential examples play up frequently in many real-world tasks such as language 

modeling where the previous words in the sentence are used to determine what the next 

word will be. Also in stock market prediction, the last hour/day/week stock prices define 

the future stock movement. RNNs are particularly tuned for time series or sequential tasks.

In a sequential problem, there is a looping or feedback framework that connects the 

output of one sequence to the input of the next sequence. RNNs are ideal for processing 

1-D sequential data, unlike the grid-like 2-D image data in convolutional neural networks.

This feedback framework enables the network to incorporate information from past 

sequences or from time-dependent datasets when making a prediction.  

In this section, we will cover the broad conceptual overview of recurrent neural  

networks and in particular the Long Short-Term Memory RNN variant (LSTM) which is 

the state-of-the- art technique for various sequential problems such as image captioning, 

stock market prediction, machine translation, and text classification.

 The Recurrent Neuron
The first building block of the RNN is the recurrent neuron (see Figure 36-1). The 

neurons of the recurrent network are entirely different from those of other neural 

network architectures. The key difference here is that the recurrent neuron maintains a 

memory or a state from past computations. It does this by taking as input the output of 

the previous instant yt − 1 in addition to its current input at a particular instant xt.
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In Figure 36-1, the recurrent neuron stands in contrast with neurons of the MLP and 

CNN architectures because instead of transferring a hierarchy of information across the 

network from one neuron to the other, data is looped back into the same neuron at every 

new time instant. A time instant can also mean a new sequence.

Hence, the recurrent neuron has two input weights, Wxt
 and Wyt-1

, for the input at 

time xt and for the input at time instant yt − 1. See Figure 36-2.

Similar to other neurons, the recurrent neuron also injects non-linearity into the 

network by passing its weighted sums or affine transformations through a non-linear 

activation function.

 Unfolding the Recurrent Computational Graph
A recurrent neural network is formalized as an unfolded computational graph. An 

unfolded computational graph shows the flow of information through the recurrent layer 

at every time instant in the sequence. Suppose we have a sequence of five time steps,  

we will unfold the recurrent neuron five times across the number of instants.  

The number of sequences constitutes the layers of the recurrent neural network 

architecture. See Figure 36-3.

Figure 36-1. A recurrent neuron

Figure 36-2. Recurrent neuron with input weights
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Figure 36-3. Unfolding the recurrent neuron into a recurrent neural network
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From the unrolled graph of the recurrent neural network, we can observe how 

the input into the recurrent layer includes the output of the previous time step t − 1 in 

addition to the current input at time step t. This architecture of the recurrent neuron is 

central to how the recurrent neural network learns from past events or past sequences.

Up until now, we have seen that the recurrent neuron captures information from 

the past by storing memory or state in its memory cell. The recurrent neuron can have 

a much more complicated memory cell (such as the GRU or LSTM cell) than the basic 

RNN cell as illustrated in the images so far, where the output at time instant t − 1 holds 

the memory.

 Basic Recurrent Neural Network
Earlier on, we mentioned that when a recurrent network is unfolded, we can see how 

information flows from one recurrent layer to the other. Further, we noted that the 

sequence length of the dataset determines the number of recurrent layers. Let’s briefly 

illustrate this point in Figure 36-4. Suppose we have a time series dataset of ten layers, 

for each row sequence in the dataset, we will have ten layers in the recurrent network 

system.

At this point, we must firmly draw attention to the fact that the recurrent layer does 

not comprise of just one neuron cell, but it is instead a set of neurons or neuron cells 

as shown in Figure 36-5. The choice of the number of neurons in a recurrent layer is a 

design decision when composing the network architecture.

Figure 36-4. Dataset to layers
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Each neuron in a recurrent layer receives as input the output of the previous layer 

and its current input. Hence, the neurons each have two weight vectors. Again, just like 

other neurons, they perform an affine transformation of the inputs and pass it through 

a non-linear activation function (usually the hyperbolic tangent, tanh). Still, within the 

recurrent layer, the output of the neurons is moved to a dense or fully connected layer 

with a softmax activation function for outputting the class probabilities. This operation is 

illustrated in Figure 36-6.

Figure 36-5. Neurons in a recurrent layer

Chapter 36  reCurrent neural networks (rnns)



448

 Recurrent Connection Schemes
There are two main schemes for forming recurrent connections from one recurrent layer 

to another. The first is to have recurrent connections between hidden units, and the 

other is recurrent connections between the hidden unit and the output of the previous 

layer. The different schemes are visually illustrated in Figure 36-7.

Figure 36-6. Computations within a recurrent layer

Chapter 36  reCurrent neural networks (rnns)



449

Figure 36-7. Recurrent connection schemes
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The hidden-to-hidden recurrent configuration is found to be superior to the output- 

to- hidden form because it better captures the high-dimensional feature information 

about the past. In any case, the output-to-hidden recurrent form is less computationally 

expensive to train and can more easily be parallelized.

 Sequence Mappings
Recurrent neural networks can represent sequence problems in a variety of ways. The 

flexibility of RNN mappings is that it operates on inputs and outputs of the network as 

sequences, thus freeing the network from the fixed sized input-output constraints found 

in other neural network architectures such as MLP and CNN.

Here are a few examples of variating sequence problems solved using RNNs:

 1. An input to a sequence of output. This configuration is used 

for image captioning problems when an image is passed as an 

input to the network, and the output is a sequence of words. See 

Figure 36-8.

Figure 36-8. An input to a sequence of output
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 2. A sequence of inputs to an output. For example, in sentiment 

analysis, we need to pass in a sequence of words as input to the 

network, and the output is a class indicating either a positive or 

negative review or sentiment. See Figure 36-9.

 3. Sequence input to sequence output. This mapping operation 

is suited in application areas such as machine translation and 

speech recognition. It is more popularly called the encoder-

decoder or sequence-to-sequence architecture. In this case, we 

may have a sequence of words in a particular language as input, 

and we want a sequence of words as output in another language. 

See Figure 36-10.

Figure 36-9. A sequence of inputs to an output
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 4. Synced sequence input to output. This sort of framework is ideal 

for video classification in the event we want to label each video 

frame. See Figure 36-11.

In the schemes illustrated in this sub-section, information flows from the hidden 

unit (or memory cell) of the recurrent layer at time instant t − 1 to the hidden unit at time 

instant t. As discussed earlier, this is because the transferred information is more feature-

rich and contains more information from the past.

Figure 36-10. Sequence input to sequence output

Figure 36-11. Synced sequence input to output
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 Training the Recurrent Network: Backpropagation 
Through Time
The recurrent neural network is trained in much the same way as other traditional 

neural networks by using the backpropagation algorithm. However, the backpropagation 

algorithm is modified into what is called backpropagation through time (BPTT).

Due to the architectural loop or recurrent structure of the recurrent network, vanilla 

backpropagation as is cannot work. Training a network using backpropagation involves 

calculating the error gradient, moving backward from the output layer through the 

hidden layers of the network and adjusting the network weights. However, this operation 

cannot work in the recurrent neuron because we have just one neural cell with recurrent 

connections to itself.

So, in order to train the recurrent network using backpropagation, we unroll the 

recurrent neuron across the time instants and apply backpropagation to the unrolled 

neurons at each time layer the same way it is done for a traditional feedforward neural 

network. This operation is further illustrated in Figure 36-12.

Figure 36-12. Backpropagation through time
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A significant challenge of training the recurrent neural network is the vanishing and 

exploding gradient problem. When training a deep recurrent network for many layers 

of time instants, calculating the gradients of the weights of the neurons can become 

very volatile. When this happens, the value of the gradient can become extremely large 

tending to infinity, or they become tiny, all the way to zero. When this happens, the 

neurons become dead and cannot train or learn any new information further. This effect 

is called the exploding and vanishing gradient problem.

The exploding and vanishing gradient problem is most prevalent in recurrent 

neural networks because of the long-term dependencies or time instant of the unrolled 

recurrent neuron. A proposed alternative technique for mitigating this problem in 

recurrent networks (in addition to other discussed methods such as gradient clipping, 

batch normalization, and using a non-saturating activation function such as ReLu) is to 

discard early time instances or time instances in the distant past. This technique is called 

Truncated Backpropagation Through Time (truncated BPTT).

However, truncated BPTT suffers a significant drawback, and this is that some 

problems rely heavily on long-term dependencies to be able to make a prediction. A 

typical example is in language modeling where the long-term sequence of words in the 

past is vital in predicting the next word in the sequence.

The shortcoming of truncated BPTT and the need to deal with the problem of 

exploding and vanishing gradients led to the development of a memory cell called the 

Long Short-Term Memory or LSTM for short, which can store the long-term information 

of the problem in the memory cell of the recurrent network.

 The Long Short-Term Memory (LSTM) Network
Long Short-Term Memory (LSTM) belongs to a class of RNN called gated recurrent 

unit. They are called gated because unlike the basic recurrent units, they contain extra 

components called gates that control the flow of information within the recurrent cell. 

This includes choosing what information to store in the cell and what information to 

discard or forget.

LSTM is very efficient for capturing the long-term dependencies across a large 

number of time instants. It does this by having a slightly more sophisticated cell than the 

basic recurrent units. The components of the LSTM are the

• Memory cell

• Input gate

Chapter 36  reCurrent neural networks (rnns)



455

• Forget gate

• Output gate

These extra components enable the RNN to remember and store important events 

from the distant past. The LSTM takes as input the previous cell state, ct − 1; the previous 

hidden state, ht − 1; and the current input, xt. To keep in line with the simplicity of this 

book, we provide a high-level illustration of the LSTM cell showing how the extra 

components of the cell come together. In TensorFlow 2.0, LSTM layer is implemented in 

the method ‘tf.keras.layers.LSTM()’.
The illustration in Figure 36-13 is the LSTM memory cell. The components of the 

LSTM cell serve distinct functions in preserving long-term dependencies in sequence 

data. Let’s go through them:

• The input gate: This gate is responsible for controlling what 

information gets stored in the long-term state or the memory cell, c. 

Working in tandem with the input gate is another gate that regulates 

the information flowing into the input gate. This gate analyzes the 

current input to the LSTM cell, xt, and the previous short-term state, 

ht − 1.

• The forget gate: The role of this gate is to regulate how much of the 

information in the long-term state is persisted across time instants.

• The output gate: This gate controls how much information to output 

from the cell at a particular time instant. This gate controls the value 

of ht (the short-term state) and yt (the output at time t).
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It is important to note that the components of the LSTM cells are all fully connected 

neural networks. There exist other variants of recurrent networks with memory cells, two 

of such are the peephole connections and the gated recurrent units.

 Peephole Connection
The peephole connection extends the LSTM network by also using information from the 

memory cell or long-term state of the previous time instant ct − 1 as input to the LSTM 

gates. The goal of the peephole is to provide extra information into the LSTM unit by 

peeping at the stored long-term memory. This is further illustrated in Figure 36-14. 

In TensorFlow 2.0, the implementation of peephole connections to an LSTM layer is 

provided by the method ‘tf.keras.experimental.PeepholeLSTMCell()’.

Figure 36-13. LSTM cell
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 Gated Recurrent Unit (GRU)
The gated recurrent unit (GRU) is a more recent recurrent neural network architecture 

than the LSTM, and it is also comparable simpler to implement with respect to the 

number of components within the unit and their operations. Despite its comparative 

simplicity, GRUs are high-performing recurrent architectures and, in most cases, even 

perform better than the LSTM in sequence modeling problems.

GRUs combine the forget and the input gates to decide on what information should 

be committed to the long-term memory or the memory cell and what information 

should be left out. Moreover, the GRU combines the cell (i.e., long-term state) and 

short-term states into a single state vector ht. Also, the GRU removes the output gate and 

returns the state vector ht at each time instant. This is further illustrated in Figure 36-15. 

In TensorFlow 2.0, the GRU layer is implemented in the method ‘tf.keras.layers.GRU()’.

Figure 36-14. Peephole connection
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 Recurrent Neural Networks Applied to Sequence 
Problems
Recurrent neural networks have many application areas for using LSTM models for 

sequence tasks. A couple of problems under this domain include sentiment analysis, 

machine translation, image captioning, video captioning, and voice recognition. As 

mentioned earlier, these problems can be modeled as a one-to-many model, a many-to- 

one model, or a many-to-many model. The section will survey a few LSTM architectures 

for tackling/modeling sequence problems:

• Long-term recurrent convolutional neural network, also known as 

CNN LSTM

• Encoder-Decoder LSTMs

• Bidirectional recurrent neural networks

Figure 36-15. Gated recurrent unit
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 Long-Term Recurrent Convolutional Network (LRCN)
The long-term recurrent convolutional network (LRCN) is a unique neural network 

architecture for generating descriptions of images and videos (which is seen as a sequence 

of images). These problems can be termed as visual time series modeling. The LRCN 

architecture combines the ability of the convolutional neural network (CNN) to extract 

image features together with a recurrent network for learning sequences or long-term 

dependencies. The LRCN passes visual inputs into a CNN to retrieve image features as 

outputs. These outputs are then passed into a recurrent LSTM network layer to generate 

the natural language descriptions. The recurrent layer can contain stacked LSTMs.

One core advantage of LRCN for modeling sequential vision problems such as image 

captioning and video captioning is that the network is not constrained to fixed lengths of 

inputs and outputs. Hence, it can be used to model sequential data with different lengths 

such as textual data and videos.

The following illustrations show how LRCN is applied to a variety of sequence 

problems:

 1. Image captioning: Image captioning can be seen as a one-to-

many sequence problem. The input is an image and therefore a 

static input, and the output is a sequence of text that describes the 

objects in the image; this is a sequential output. The use of LRCN 

for image captioning is illustrated in Figure 36-16.

Figure 36-16. Image captioning (photo by Daniel Llorente on Unsplash)
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 2. Video captioning: Video can be seen as a sequence of images. 

Hence, in a video captioning problem, a sequence of images 

is passed as input to the LRCN model which in turn returns 

a sequence of outputs as a textual description for each video 

frame. Hence, video captioning can be seen as a many-to-many 

sequence problem. This approach is an example of an Encoder-

Decoder LSTM where CNN is used as an image encoder that is 

initially trained for image classification. The final hidden layer, 

which is also called a bottleneck, is then passed as input to the 

RNN decode. It is typical to use an already pre-trained CNN on a 

large-scale image recognition task. A number of such models exist 

in the public domain. We will survey Encoder-Decoder LSTMs in 

more detail shortly. Video captioning is illustrated in Figure 36-17.

 Encoder-Decoder LSTMs
Encoder-Decoder LSTM architecture handles a particular class of sequence problems 

that takes as input multiple time steps and also returns a multiple time step output. A 

major challenge of this sort of problems is that both the input and output sequences can 

have varied lengths.

The first part of the architecture, that is, the Encoder, is responsible for receiving and 

encoding the input sequence; the second part of the architecture, that is, the Decoder, 

takes in the output from the Encoder and then predicts the output sequence.

Figure 36-17. Video captioning
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The sort of architecture is made for natural language processing problems where 

the output is a sequence of words. It is commonly used in machine translation, video 

captioning, and speech recognition. An illustration is already provided in Figure 36-10.

 Bidirectional Recurrent Neural Networks
Bidirectional RNN is another particular type of recurrent neural network architecture 

that involves placing the recurrent layers beside each other where one layer works 

to learn the long-term dependencies from the past; this layer is called the forward 

LSTM. For the other layer, the input is reversed and fed into the network, so the network 

learns long-term dependencies from the future. This layer is called the backward 

LSTM. The bidirectional RNN is illustrated in Figure 36-18.

Figure 36-18. Bidirectional LSTM
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When the outputs from these side-by-side networks are combined, it is easier 

to predict the next time step of a sequence having privy to the entire information 

gamut, because they process both information from the past and the future. Although 

this architecture was first designed for speech recognition tasks, it has performed 

impressively across a variety of other sequence prediction tasks. It is built to improve on 

the vanilla unidirectional LSTM which only has knowledge of the past.

This network is built on the understanding that some learning problems only make 

sense when a coherent set of information is present. For example, if a human interpreter 

is interpreting from one language to another, he first listens to a cohesive set of 

information in one language before interpreting to another language. This is because the 

context of an entire cohesive sentence gives the right basis for a correct interpretation.

 RNN with TensorFlow 2.0: Univariate Timeseries
This section makes use of the Nigeria power consumption dataset to implement a 

univariate timeseries model with LSTM recurrent neural networks. The dataset for this 

example is the Nigeria power consumption data from January 1 to March 11 by Hipel 

and McLeod (1994), retrieved from DataMarket.

The dataset is preprocessed for timeseries modeling with RNNs by converting the 

data input and outputs into sequences using the method ‘convert_to_ sequences’. This 

method splits the dataset into rolling sequences consisting of 20 rows (or time steps) 

using a window of 1}. In Figure 36-19, the example univariate dataset is converted into 

sequences of five time steps, where output sequence is one step ahead of the input 

sequence. Each sequence contains five rows (determined by the time_steps variable) 

and in this univariate case, 1 column.
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When modeling using RNNs, it is important to scale the dataset to have values within 

the same range. The plot in Figure 36-20 shows predictions of the model along with the 

original targets and the lagging training instances. The next plots in Figure 36-21 and 

Figure 36-22 show the original series and the RNN generated series in both the scaled 

and normal values.

For increased training speed, the model will train on a GPU. If running the code on 

Google Colab, change the runtime type to GPU and install TensorFlow 2.0 with GPU 

package.

# import TensorFlow 2.0 with GPU

!pip install -q tf-nightly-gpu-2.0-preview

# import packages

import tensorflow as tf

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

Figure 36-19. Converting a univariate series into sequences for prediction with 
RNNs. Left: Sample univariate dataset. Center: Input sequence. Right: Output 
sequence
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from sklearn.model_selection import train_test_split

from sklearn.preprocessing import MinMaxScaler

# confirm tensorflow can see GPU

device_name = tf.test.gpu_device_name()

if device_name != '/device:GPU:0':

  raise SystemError('GPU device not found')

print('Found GPU at: {}'.format(device_name))

# data file path

file_path = "nigeria-power-consumption.csv"

# load data

parse_date = lambda dates: pd.datetime.strptime(dates, '%d-%m')

data = pd.read_csv(file_path, parse_dates=['Month'], index_col='Month',

                   date_parser=parse_date,

                   engine='python', skipfooter=2)

# print column name

data.columns

# change column names

data.rename(columns={'Nigeria power consumption': 'power-consumption'},

            inplace=True)

# split in training and evaluation set

data_train, data_eval = train_test_split(data, test_size=0.2, 

shuffle=False)

# MinMaxScaler - center and scale the dataset

scaler = MinMaxScaler(feature_range=(0, 1))

data_train = scaler.fit_transform(data_train)

data_eval = scaler.fit_transform(data_eval)

# adjust univariate data for timeseries prediction

def convert_to_sequences(data, sequence, is_target=False):

    temp_df = []

    for i in range(len(data) - sequence):

        if is_target:
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            temp_df.append(data[(i+1): (i+1) + sequence])

        else:

            temp_df.append(data[i: i + sequence])

    return np.array(temp_df)

# parameters

time_steps = 20

batch_size = 50

# create training and testing data

train_x = convert_to_sequences(data_train, time_steps, is_target=False)

train_y = convert_to_sequences(data_train, time_steps, is_target=True)

eval_x = convert_to_sequences(data_eval, time_steps, is_target=False)

eval_y = convert_to_sequences(data_eval, time_steps, is_target=True)

# build model

model = tf.keras.Sequential()

model.add(tf.keras.layers.LSTM(128, input_shape=train_x.shape[1:],

                               return_sequences=True))

model.add(tf.keras.layers.Dense(1))

# compile the model

model.compile(loss='mean_squared_error',

              optimizer='adam',

              metrics=['mse'])

# print model summary

model.summary()

# create dataset pipeline

train_ds = tf.data.Dataset.from_tensor_slices(

    (train_x, train_y)).shuffle(len(train_x)).repeat().batch(batch_size)

test_ds = tf.data.Dataset.from_tensor_slices((eval_x, eval_y)).batch(batch_

size)

# train the model

history = model.fit(train_ds, epochs=10,

                    steps_per_epoch=500)
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# evaluate the model

loss, mse = model.evaluate(test_ds)

print('Test loss: {:.4f}'.format(loss))

print('Test mse: {:.4f}'.format(mse))

# predict

y_pred = model.predict(eval_x)

# plot predicted sequence

plt.title("Model Testing", fontsize=12)

plt.plot(eval_x[0,:,0], "b--", markersize=10, label="training instance")

plt.plot(eval_y[0,:,0], "g--", markersize=10, label="targets")

plt.plot(y_pred[0,:,0], "r--", markersize=10, label="model prediction")

plt.legend(loc="upper left")

plt.xlabel("Time")

plt.show()

Figure 36-20. Keras LSTM Model Testing
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# inverse to normal scale and plot

data_train_inverse = scaler.inverse_transform(data_train.reshape(-1, 1))

rnn_data_inverse = scaler.inverse_transform(np.array(rnn_data).reshape(-1, 1))

# use model to predict sequences using training data as seed

rnn_data = list(data_train[:20])

for i in range(len(data_train) - time_steps):

    batch = np.array(rnn_data[-time_steps:]).reshape(1, time_steps, 1)

    y_pred = model.predict(batch)

    rnn_data.append(y_pred[0, -1, 0])

plt.title("RNN vs. Original series", fontsize=12)

plt.plot(data_train, "b--", markersize=10, label="Original series")

plt.plot(rnn_data, "g--", markersize=10, label="RNN generated series")

plt.legend(loc="upper left")

plt.xlabel("Time")

plt.show()

Figure 36-21. Original series vs. RNN generated series – scaled data values
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plt.title("RNN vs. Original series with normal scale", fontsize=12)

plt.plot(data_train_inverse, "b--", markersize=10, label="Original series")

plt.plot(rnn_data_inverse, "g--", markersize=10, label="RNN generated 

series")

plt.legend(loc="upper left")

plt.xlabel("Time")

plt.show()

From the Keras LSTM code listing, the method tf.keras.layers.LSTM() is used to 

implement the LSTM recurrent layer. The attribute return_sequences is set to True to 

return the last output in the output sequence, or the full sequence.

 RNN with TensorFlow 2.0: Multivariate Timeseries
The dataset for this example is the Dow Jones Index Data Set from the famous UCI 

Machine Learning Repository. In this stock dataset, each row contains the stock price 

record for a week including the percentage of return that stock has in the following week 

Figure 36-22. Original series vs. RNN generated series – normal data values

Chapter 36  reCurrent neural networks (rnns)



469

percent_change_next_weeks_price(). For this example, the record for the previous 

week is used to predict the percent change in price for the next 2 weeks for Bank of 

America, BAC stock prices.

The method named clean_dataset() carries out some rudimentary cleanup of the 

dataset to make it suitable for modeling. The actions taken on this particular dataset 

involve removing the dollar sign from certain of the data columns, removing missing 

values, and rearranging the data columns so target attribute percent_change_next_
weeks_price is the last column.

The method named data_transform() subselects the stock records belonging to 

‘Bank of America,’ and the target attribute is adjusted so that the previous week record is 

used to predict the percent change in price for the next 2 weeks. Also, the dataset is split 

into training and testing sets. The method named normalize_and_scale() removes the 

non-numeric columns and scales the dataset attributes.

Again, the model will train on a GPU instance. The model will be a stacked GRU with 

multiple GRU layers. This stacking of RNN layers with memory cells makes the network 

more expressive and can learn more complex long-running sequences. If running the 

code on Google Colab, change the runtime type to GPU and install TensorFlow 2.0 with 

GPU package. The output plot in Figure 36-23 is the model predictions showing the 

targets and the lag training instances.

# import TensorFlow 2.0 with GPU

!pip install -q tf-nightly-gpu-2.0-preview

# import packages

import tensorflow as tf

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import MinMaxScaler

# confirm tensorflow can see GPU

device_name = tf.test.gpu_device_name()

if device_name != '/device:GPU:0':

  raise SystemError('GPU device not found')

print('Found GPU at: {}'.format(device_name))
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# data file path

file_path = "dow_jones_index.data"

# load data

data = pd.read_csv(file_path, parse_dates=['date'], index_col='date')

# print column name

data.columns

# print column datatypes

data.dtypes

# parameters

outputs = 1

stock ='BAC'  # Bank of America

def clean_dataset(data):

    # strip dollar sign from `object` type columns

     col = ['open', 'high', 'low', 'close', 'next_weeks_open', 'next_weeks_

close']

    data[col] = data[col].replace({'\$': "}, regex=True)

    # drop NaN

    data.dropna(inplace=True)

    # rearrange columns

    columns = ['quarter', 'stock', 'open', 'high', 'low', 'close', 'volume',

       'percent_change_price', 'percent_change_volume_over_last_wk',

       'previous_weeks_volume', 'next_weeks_open', 'next_weeks_close',

       'days_to_next_dividend', 'percent_return_next_dividend',

       'percent_change_next_weeks_price']

    data = data[columns]

    return data

def data_transform(data):

    # select stock data belonging to Bank of America

    data = data[data.stock == stock]

    # adjust target(t) to depend on input (t-1)

     data.percent_change_next_weeks_price = data.percent_change_next_weeks_

price.shift(-1)
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    # remove nans as a result of the shifted values

    data = data.iloc[:-1,:]

    # split quarter 1 as training data and quarter 2 as testing data

    train_df = data[data.quarter == 1]

    test_df = data[data.quarter == 2]

    return (np.array(train_df), np.array(test_df))

def normalize_and_scale(train_df, test_df):

    # remove string columns and convert to float

    train_df = train_df[:,2:].astype(float,copy=False)

    test_df = test_df[:,2:].astype(float,copy=False)

    # MinMaxScaler - center and scale the dataset

    scaler = MinMaxScaler(feature_range=(0, 1))

    train_df_scale = scaler.fit_transform(train_df[:,2:])

    test_df_scale = scaler.fit_transform(test_df[:,2:])

    return (scaler, train_df_scale, test_df_scale)

# clean the dataset

data = clean_dataset(data)

# select Dow Jones stock and split into training and test sets

train_df, test_df = data_transform(data)

# scale the data

scaler, train_df_scaled, test_df_scaled = normalize_and_scale(train_df, 

test_df)

# split train/ test

train_X, train_y = train_df_scaled[:, :-1], train_df_scaled[:, -1]

test_X, test_y = test_df_scaled[:, :-1], test_df_scaled[:, -1]

# reshape inputs to 3D array

train_X = train_X[:,None,:]

test_X = test_X[:,None,:]

# reshape outputs

train_y = np.reshape(train_y, (-1,outputs))

test_y = np.reshape(test_y, (-1,outputs))
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# model parameters

batch_size = int(train_X.shape[0]/5)

length = train_X.shape[0]

# build model

model = tf.keras.Sequential()

model.add(tf.keras.layers.GRU(128, input_shape=train_X.shape[1:],

                               return_sequences=True))

model.add(tf.keras.layers.GRU(100, return_sequences=True))

model.add(tf.keras.layers.GRU(64))

model.add(tf.keras.layers.Dense(1))

# compile the model

model.compile(loss='mean_squared_error',

              optimizer='adam',

              metrics=['mse'])

# print model summary

model.summary()

# create dataset pipeline

train_ds = tf.data.Dataset.from_tensor_slices(

    (train_X, train_y)).shuffle(len(train_X)).repeat().batch(batch_size)

test_ds = tf.data.Dataset.from_tensor_slices((test_X, test_y)).batch(batch_size)

# train the model

history = model.fit(train_ds, epochs=10,

                    steps_per_epoch=500)

# evaluate the model

loss, mse = model.evaluate(test_ds)

print('Test loss: {:.4f}'.format(loss))

print('Test mse: {:.4f}'.format(mse))

# predict

y_pred = model.predict(test_X)

# plot

plt.figure(1)
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plt.title("Keras - GRU RNN Model Testing for '{}' stock".format(stock), 

fontsize=12)

plt.plot(test_y, "g--", markersize=10, label="targets")

plt.plot(y_pred, "r--", markersize=10, label="model prediction")

plt.legend()

plt.xlabel("Time")

plt.show()

# plt.savefig('gru-bac-model.png', dpi=800)

This chapter gave an overview of recurrent neural networks (RNNs) and its 

application in learning recurrent models for different types of sequence problems. The 

next chapter will discuss how we can use neural networks to reconstruct the inputs as 

some form of unsupervised learning using autoencoders.

Figure 36-23. GRU RNN Model Testing for Bank of America stock
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CHAPTER 37

Autoencoders
Autoencoder is an unsupervised learning algorithm that uses neural networks to 

reconstruct the features of a dataset. Just like the unsupervised algorithms that we earlier 

discussed in the chapter on machine learning, autoencoders can be used to reduce 

the dimensionality of a dataset and to extract relevant features. Moreso, peculiar to 

autoencoders is the ability to generate more examples of the dataset after learning an 

internal representation (also called coding) that reconstructs the features of the inputs to 

the neural network.

An autoencoder receives as input the features of the dataset. These features are 

passed through a set of encoders, which are the hidden layers of a neural network to 

create an internal representation called codings. The learned coding is then used to 

reconstruct the output through a set of decoders, which are also hidden neural network 

layers. The autoencoder cannot merely do a trivial memorization of the inputs, because 

a constraint is placed on the encoders by reducing the input dimension to force the 

network to learn an efficient set of representation from which the decoders use to 

reconstruct the inputs.

Autoencoders with restricted Encoders and Decoders are called undercomplete. 

A reconstruction error term is used to evaluate the performance of an autoencoder 

by testing how well the output corresponds with the input. Of course, just like other 

neural networks, the neurons of the Encoders and Decoders have non-linear activation 

functions for learning complex patterns. An example of a simple autoencoder network 

architecture is shown in Figure 37-1.
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 Stacked Autoencoders
Stacked autoencoder is when the simple autoencoder architecture as shown in 

Figure 37-1 is enhanced with multiple hidden layers. Just like other deep neural network 

architectures with hidden layers, the hidden layers of an autoencoder enable the 

network to learn more complex patterns of the input dataset.

The hidden layers of a stacked or deep autoencoder are added symmetrically at both 

the Encoder and Decoder part of the network as shown in Figure 22-2. The neurons of 

the hidden layers are restricted to be less than that of the input layer. This formulation 

places a restriction on the network, so it doesn’t merely memorize the input. Moreso, 

care must be taken not to create too many deep layers, so the autoencoder does not 

overfit the input data and fail to generalize to out-of-sample examples. To optimize the 

training of a deep autoencoder, the weights of the symmetrical neural layers are shared 

in a technique called tying.

Figure 37-1. A simple autoencoder architecture
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 Stacked Autoencoders with TensorFlow 2.0
The code example in this section shows how to implement an autoencoder network 

using TensorFlow 2.0. For simplicity, the MNIST handwriting dataset is used to create 

reconstructions of the original images. In this example, a stacked autoencoder is 

implemented with the original and reconstructed image shown in Figure 37-3. The code 

listing is presented in the following, and corresponding notes on the code are shown 

thereafter.

# import TensorFlow 2.0 with GPU

!pip install -q tf-nightly-gpu-2.0-preview

# import packages

import tensorflow as tf

Figure 37-2. Stacked or deep autoencoder. The hidden layers are added 
symmetrically at both the Encoder and Decoder
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import numpy as np

import matplotlib.pyplot as plt

# import dataset

(x_train, _), (x_test, _) = tf.keras.datasets.mnist.load_data()

# change datatype to float

x_train = x_train.astype('float32')

x_test = x_test.astype('float32')

# scale the dataset from 0 -> 255 to 0 -> 1

x_train /= 255

x_test /= 255

# flatten the 28x28 images into vectors of size 784

x_train = x_train.reshape((len(x_train), np.prod(x_train.shape[1:])))

x_test = x_test.reshape((len(x_test), np.prod(x_test.shape[1:])))

# create the autoencoder model

def model_fn():

  model_input = tf.keras.layers.Input(shape=(784,))

  encoded = tf.keras.layers.Dense(units=512, activation='relu')(model_input)

  encoded = tf.keras.layers.Dense(units=128, activation='relu')(encoded)

  encoded = tf.keras.layers.Dense(units=64, activation='relu')(encoded)

  coding_layer = tf.keras.layers.Dense(units=32)(encoded)

  decoded = tf.keras.layers.Dense(units=64, activation='relu')(coding_layer)

  decoded = tf.keras.layers.Dense(units=128, activation='relu')(decoded)

  decoded = tf.keras.layers.Dense(units=512, activation='relu')(decoded)

  decoded_output = tf.keras.layers.Dense(units=784)(decoded)

  # the autoencoder model

  autoencoder_model = tf.keras.Model(inputs=model_input, outputs=decoded_output)

  # compile the model

  autoencoder_model.compile(optimizer='adam',

                loss='binary_crossentropy',

                metrics=['accuracy'])

  return autoencoder_model
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# build the model

autoencoder_model = model_fn()

# print autoencoder model summary

autoencoder_model.summary()

# train the model

autoencoder_model.fit(x_train, x_train, epochs=1000, batch_size=256,

                      shuffle=True, validation_data=(x_test, x_test))

# visualize reconstruction

sample_size = 6

test_image = x_test[:sample_size]

# reconstruct test samples

test_reconstruction = autoencoder_model.predict(test_image)

plt.figure(figsize = (8,25))

plt.suptitle('Stacked Autoencoder Reconstruction', fontsize=16)

for i in range(sample_size):

    plt.subplot(sample_size, 2, i*2+1)

    plt.title('Original image')

     plt.imshow(test_image[i].reshape((28, 28)), cmap="Greys", 

interpolation="nearest", aspect='auto')

    plt.subplot(sample_size, 2, i*2+2)

    plt.title('Reconstructed image')

     plt.imshow(test_reconstruction[i].reshape((28, 28)), cmap="Greys", 

interpolation="nearest", aspect='auto')

plt.show()

From the preceding code listing, take note of the following:

• Observe the arrangement of the encoder layers and the decoder 

layers of the stacked autoencoder. Specifically note how the 

corresponding layer arrangement of the encoder and the decoder has 

the same number of neurons.

• The loss error measures the squared difference between the inputs 

into the autoencoder network and the decoder output.

The image in Figure 37-3 contrasts the reconstructed images from the autoencoder 

network with the original images in the dataset.
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Figure 37-3. Stacked autoencoder reconstruction. Left: Original image. Right: 
Reconstructed image.
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 Denoising Autoencoders
Denoising autoencoders add a different type of constraint to the network by imputing 

some Gaussian noise into the inputs. This noise injection forces the autoencoder to 

learn the uncorrupted form of the input features; by doing so, the autoencoder learns the 

internal representation of the dataset without memorizing the inputs.

Another way a denoising autoencoder constrains the input is by deactivating some 

input neurons in a similar fashion to the Dropout technique. Denoising autoencoders 

use an overcomplete network architecture. This means that the dimensions of the 

hidden Encoder and Decoder layers are not restricted; hence, they are overcomplete. An 

illustration of a denoising autoencoder architecture is shown in Figure 37-4.

Figure 37-4. Denoising autoencoder. Constraint is applied by either adding 
Gaussian noise or by switching off some a random selection of the input neurons.
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This chapter discussed how deep neural networks can be employed in an 

unsupervised fashion to reconstruct the inputs to the network as the network’s output. 

This is the final chapter in Part 6 that provides a general theoretical background to deep 

neural networks and how they are implemented in TensorFlow 2.0. In Part 7, we will 

discuss doing advanced analytics and machine learning on Google Cloud Platform.
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CHAPTER 38

Google BigQuery
BigQuery is a Google-managed data warehouse product that is highly scalable, fast, and 

optimized for data analytics with rudimentary in-built machine learning capabilities 

as part of the product offering. It is also one of Google’s many serverless products. This 

means that you do not physically manage the infrastructure assets and the overhead 

responsibilities/costs. It is only used to solve the business use case, and it just works in a 

highly performant manner.

BigQuery is suited for storing and analyzing structured data. The idea of structured 

data is that it must have a schema that describes the columns or fields of the dataset. CSV 

or JSON files are examples of structured data formats. BigQuery differentiates itself from 

other relational databases in that it can store a collection of other fields (or columns) as a 

record type, and a particular field in a row can have more than one value. These features 

make BigQuery more expressive for storing datasets without the flat row constraint of 

relational databases.

Similar to relational databases, BigQuery organizes rows into tables, and are 

accessed using the familiar Structured Query Language (SQL) for databases. However, 

individual rows in a table cannot be updated by running a SQL Update statement. Tables 

can only be appended to or entirely re-written. Meanwhile, a group of tables in BigQuery 

is organized into datasets.

When a query is executed in BigQuery, it runs in parallel on thousands of cores. 

This feature greatly accelerates the performance of query execution and consequently 

the speed of gaining insights from your data. This ability for massive parallel execution 

is one of the major reasons individuals, companies, and institutions are migrating to 

BigQuery as their data warehouse of choice.

Also BigQueryML is a powerful platform for building machine learning models 

inside of BigQuery. The models take advantage of automated feature engineering and 

hyper-parameter optimization and are automatically updated based on changes to 

the underlying dataset. This feature is extremely powerful and lowers the threshold 
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of  business intelligence and analytics personnel to more easily harness the predictive 

power of using machine learning for business forecasting and decision-making.

 What BigQuery Is Not
As powerful and widely purposed as BigQuery is, it may not be properly suited for some 

use cases:

• BigQuery is not a replacement for a relational database. Some 

business use cases may involve a large number of table row updates; 

in such an instance, BigQuery is most likely not the data storage 

solution of choice, as relational databases are well suited for such 

highly transactional tasks. GCP offers the Cloud SQL and Cloud 

Spanner as parts of its managed relational products.

• BigQuery is not a NoSQL database. Data stored in BigQuery must 

have a schema. NoSQL is a schema-less data storage solution. GCP 

also has Cloud BigTable and Cloud Datastore, which are highly 

scalable and performant managed NoSQL products.

 Getting Started with BigQuery
BigQuery can be accessed and used via a variety of ways; they include

• The BigQuery web UI

• The command-line tool, ‘bq’

• The client API libraries for programmatic access

In this section, we will introduce BigQuery by working with the web UI, because it 

gives a graphical view of the datasets and tables within BigQuery and is good for quick 

execution of queries on the query engine.

To open BigQuery from the GCP dashboard, click the triple dash on the top-left 

corner and select BigQuery from the product section labeled Big Data as shown in 

Figure 38-1.
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The BigQuery web UI dashboard is as shown in Figure 38-2.

Figure 38-1. Open BigQuery
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In Figure 38-2, there are three labeled sections of the BigQuery web UI that we’ll 

briefly explain:

 1. The navigation panel: This panel contains a set of BigQuery 

resources such as

• Query history: For viewing previous queries

• Saved queries: For storing frequently used queries

• Job history: For viewing BigQuery jobs such as loading, copying, 

and exporting of data

• Transfers: Link to the BigQuery Data Transfer Service UI

• Resources: Shows a list of pinned projects and their containing 

Datasets

Figure 38-2. BigQuery web UI
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 2. The Query editor: This is where queries are composed using the 

familiar SQL database language.

 3. The Details panel: This panel shows the details of projects, 

datasets, and table when clicked in the Resources tab. Also, this 

panel shows the results of executed queries.

 Public Datasets
BigQuery comes with access to some public datasets; we will use these datasets to 

explore working with BigQuery. To view the public datasets, go to

 https://console.cloud.google.com/bigquery?p=bigquery-public- 

data&page=project.

The public datasets will now show in the Resources section of the navigation panel 

(see Figure 38-3).

Figure 38-3. Public Datasets
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 Running Your First Query
For our first query, we will work with the ‘census_bureau_international’ dataset which 

“provides estimates of country populations since 1950 and projections through 2050.” In 

this query, we select a country and their life expectancy (for both sexes) in the year 2018.

SELECT

  country_name,

  life_expectancy

FROM

   ̀bigquery-public-data.census_bureau_international.mortality_life_

expectancy`

WHERE

  year = 2018

ORDER BY

  life_expectancy DESC

A sample of the query result is shown in Figure 38-4 under Query results.

Figure 38-4. First query
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After typing the query in the Query editor, the following should be noted, as 

numbered in Figure 38-4:

 1. Click the ‘Run query’ button to execute the query.

 2. The green status indicator shows that the query is a valid SQL 

statement and shows by the side an estimate of the query size 

estimation.

 3. The query results can be easily analyzed and visualized using Data 

Studio.

 4. We can see that the query completed in just over a second.

 Loading Data into BigQuery
In this simple data ingestion example, we will load a CSV file stored on Google Cloud 

Storage (GCS) into BigQuery. In GCP, Google Cloud Storage is a general-purpose storage 

location for all variety of file types and is preferred as a staging area or an archival 

repository for data. Let’s walk through the following steps.

 Staging the Data in GCS
Let’s go through the steps to stage the data in Google Cloud Storage:

 1. Activate Cloud Shell as shown in Figure 38-5.

Figure 38-5. Activate Google Cloud Shell
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 2. Create a bucket on GCS (remember to give the bucket a unique 

name).

gsutil mb gs://my-test-data

 3. Transfer data into bucket. The CSV data used in this example is 

a crypto-currency dataset stored in the code repository. Use the 

‘gsutil cp’ command to move the dataset to GCS bucket.

gsutil cp crypto-markets.csv gs://my-test-data

 4. Show the transferred data in the bucket.

gsutil ls gs://my-test-data/

 Loading Data Using the BigQuery Web UI
Let’s go through the following steps to load data into BigQuery using the web UI:

 1. In the navigation panel, click the project name, and then click 

CREATE DATASET in the Details panel (see Figure 38-6).

Figure 38-6. Create Dataset

 2. Type ‘crypto_data’ as the DatasetID, and select ‘United States 

(US)’ as the data location (see Figure 38-7).
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 3. Next, click the newly created Dataset in the navigation panel, and 

then click CREATE TABLE in the Details panel (see Figure 38-8).

Figure 38-7. Create Dataset parameters

Figure 38-8. Create Table
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 4. We’ll create a table from a CSV file stored on Google Cloud 

Storage. On the Create Table page, select the following parameters 

as shown in Figure 38-9:

 a. Select ‘Google Cloud Storage’ for Source Data.

 b. Select the file ‘crypto-markets.csv’ from the bucket ‘my-test-data’.

 c. Choose CSV as the file format.

 d. Type ‘markets’ as the Destination table.

 e. Toggle ‘Edit as Text’ and enter the following as the schema:

slug,symbol,name,date,ranknow,open,high,low,close,volume,market,

close_ratio,spread

 f. Expand ‘Advanced options’ and set ‘Header rows to skip’ to 1.

 g. Click Create table.

Figure 38-9. Create table options
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Click Job history in the navigation panel to view the status of the loading job (see 

Figure 38-10).

A preview of the created table is as shown in Figure 38-11.

Figure 38-10. BigQuery loading job
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 The bq Command-Line Utility
Let’s go through some useful commands on the Cloud Shell terminal with the ‘bq’ utility:

• List the projects that can be accessed.

bq ls –p

        projectId           friendlyName

 ----------------------- ------------------

  secret-country-192905   My First Project

• List datasets in the default project.

bq ls

   datasetId

 -------------

  crypto_data

Figure 38-11. Preview of loaded table
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• List tables in a Dataset.

bq ls crypto_data

  tableId   Type    Labels   Time Partitioning

 --------- ------- -------- -------------------

  markets   TABLE

• List the recent executed jobs. This includes both load jobs and 

queries executed.

bq ls –j

jobId                         Job Type  State     Start Time       Duration

----------------------------  --------  --------  ---------------  --------

bquxjob_767fb332_16625172a52  load      SUCCESS   29 Sep 07:29:27  0:00:10

bquxjob_2a33184c_16625141949  load      SUCCESS   29 Sep 07:26:06  0:00:13

bquxjob_582a116b_16624b3717a  query     SUCCESS   29 Sep 05:41:20  0:00:01

bquxjob_7b18cd73_16624a0f378  query     SUCCESS   29 Sep 05:40:32  0:00:01

 Loading Data Using the Command-Line bq Utility
The following commands walk through loading a dataset into BigQuery using the bq 

utility via the terminal:

• Create a new Dataset.

bq mk crypto_data_terminal

Dataset 'secret-country-192905:crypto_data_terminal' successfully 

created.

• List the datasets to confirm creation of new Dataset.

bq ls

       datasetId

 ----------------------

  crypto_data

  crypto_data_terminal
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• Load data as a Table into the newly created Dataset. We load the file 

using the ‘bq load’ command. This command loads data in a new or 

existing table. In our example, we load the data from the GCS bucket 

‘gs://my-test-data/crypto-markets.csv’ into a newly created table 

named ‘markets_terminal’ with the schema “slug,symbol,name,date,

ranknow,open,high,low,close,volume,market,close_ratio,spread”

bq load crypto_data_terminal.markets_terminal gs://my-test-data/

crypto- markets.csv slug,symbol,name,date,ranknow,open,high,low, 

close,volume,market,close_ratio,spread

• List the tables in the dataset.

bq ls crypto_data_terminal

      tableId        Type    Labels   Time Partitioning

 ------------------ ------- -------- -------------------

  markets_terminal   TABLE

• Examine the table schema.

bq show crypto_data_terminal.markets_terminal

Table secret-country-192905:crypto_data_terminal.markets_terminal

   Last modified            Schema           Total Rows   Total 

Bytes   Expiration   Time Partitioning   Labels

 ----------------- ------------------------ ------------ ---------

---- ------------ ------------------- --------

  29 Sep 09:12:24   |- slug: string          498381       52777964

                    |- symbol: string

                    |- name: string

                    |- date: string

                    |- ranknow: string

                    |- open: string

                    |- high: string

                    |- low: string

                    |- close: string

                    |- volume: string
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                    |- market: string

                    |- close_ratio: string

                    |- spread: string

• Delete a table.

bq rm crypto_data_terminal.markets_terminal

• Delete a Dataset. This command will delete a Dataset with all its 

containing tables.

bq rm -r crypto_data_terminal

 BigQuery SQL
In this section, we’ll have an overview of SQL by executing some examples that gives a 

broad perspective of what can be achieved with SQL. New users who have not used SQL 

before will benefit from this section. Also, SQL is amazingly easy and intuitive to use 

that non-technical people like personnel in marketing and sales are experts at this even 

sometimes more than programmers. It is an expressive declarative language.

BigQuery works with both the standard SQL which supports SQL 2011 standard and 

the legacy SQL syntax which is a non-standard variant of SQL. However, standard SQL is 

the preferred query syntax for BigQuery. In experimenting with SQL, we will work with 

the census_bureau_international public dataset. The following queries are available in 

the chapter notebook of the book repository.

 Filtering
The following query selects the fertility rate for each country in the year 2018 from the 

‘age_specific_fertility_rates’ table in the ‘census_bureau_international’ dataset. The 

resulting table is arranged in descending order.

bq query --use_legacy_sql=false 'SELECT

  country_name AS country,

  total_fertility_rate AS fertility_rate

FROM

   ̀bigquery-public-data.census_bureau_international.age_specific_fertility_

rates`
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WHERE

  year = 2018

ORDER BY

  fertility_rate DESC

LIMIT

  10'

Waiting on bqjob_r142a3f484f713c4a_0000016626f7f063_1 ... (0s) Current 

status: DONE

+-------------+----------------+

|   country   | fertility_rate |

+-------------+----------------+

| Niger       |         6.3504 |

| Angola      |         6.0945 |

| Burundi     |          5.934 |

| Mali        |            5.9 |

| Chad        |            5.9 |

| Somalia     |          5.702 |

| Uganda      |           5.62 |

| Zambia      |          5.582 |

| Malawi      |         5.4286 |

| South Sudan |           5.34 |

+-------------+----------------+

In the preceding query, the SQL command SELECT is used to select fields or 

columns from the table. What follows after the SELECT keyboard is the list of the column 

names separated by a comma. The keyword AS is used to give an alternative name to 

the column that will be displayed in the resulting table when the query is executed. The 

keyword FROM is used to point to the table from which the data is being retrieved. In 

BigQuery, using the standard SQL, the table name is prefixed by the database name 

and the project ID is surrounded by a pair of backticks (i.e., ‘project_id.database_name.

table_name‘).

The keyword WHERE is used to filter the rows returned from the query. The keyword 

ORDER BY is used to arrange the retrieved data in either ascending or descending 

order by a specified column or set of columns. The keyword LIMIT truncates the results 

retrieved from the query.
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 Aggregation
The following query selects the average population for each country between the years 

2000 and 2018 from the ‘midyear_population’ table in the ‘census_bureau_international’ 

dataset. The resulting table is arranged in descending order.

bq query --use_legacy_sql=false 'SELECT

  country_name AS country,

  AVG(midyear_population) AS average_population

FROM

  `bigquery-public-data.census_bureau_international.midyear_population`

WHERE

  year >= 2000 AND year <= 2018

GROUP BY

  country

ORDER BY

  average_population DESC

LIMIT

  20'

Waiting on bqjob_r95be3d17e726415_000001662890a68f_1 ... (1s) Current 

status: DONE

+------------------+----------------------+

|     country      |  average_population  |

+------------------+----------------------+

| China            | 1.3285399873157892E9 |

| India            |  1.154912377105263E9 |

| United States    | 3.0594302226315784E8 |

| Indonesia        | 2.3984691394736844E8 |

| Brazil           |  1.930978929473684E8 |

| Pakistan         | 1.8112083526315784E8 |

| Nigeria          | 1.6255564478947365E8 |

| Bangladesh       |  1.447749475789474E8 |

| Russia           | 1.4330035963157892E8 |

| Japan            | 1.2727527184210527E8 |

| Mexico           | 1.1269223210526317E8 |

| Philippines      |          9.1357295E7 |
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| Vietnam          |   8.83786184736842E7 |

| Ethiopia         |  8.460339989473683E7 |

| Germany          |  8.168817173684208E7 |

| Egypt            |  8.064017099999999E7 |

| Iran             |  7.427240431578948E7 |

| Turkey           |  7.389499394736844E7 |

| Congo (Kinshasa) |   6.82958565263158E7 |

| Thailand         |  6.619103463157895E7 |

+------------------+----------------------+

In the preceding query, the fields retrieved using the SELECT command are passed 

through an aggregation function to give the average of the mid-year population for 

the years between 2000 and 2018 inclusive. In order to mix aggregated field and non- 

aggregated fields, we need the GROUP BY command to group the result by one or more 

columns, or else only a single result will be returned because of the aggregated function.

 Joins
The following query selects the average population for each country and their life 

expectancy for the year 2018. The data is joined from the ‘midyear_population’ table and 

the ‘mortality_life_expectancy’ table in the ‘census_bureau_international’ dataset. The 

resulting table is grouped by country name and year and arranged in descending order.

bq query --use_legacy_sql=false 'SELECT

  midyearpop.country_name AS country,

  midyearpop.year AS year,

  AVG(midyearpop.midyear_population) AS population,

  AVG(mortality.life_expectancy) AS life_expectancy

FROM

   ̀bigquery-public-data.census_bureau_international.midyear_population` AS 

midyearpop

JOIN

   ̀bigquery-public-data.census_bureau_international.mortality_life_

expectancy` AS mortality

ON

  midyearpop.country_name = mortality.country_name
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WHERE

  midyearpop.year = 2018

GROUP BY

  country, year

ORDER BY

  population DESC

LIMIT

  20'

Waiting on bqjob_r4ecdb3f115b3f5d3_0000016628b526ea_1 ... (0s) Current 

status: DONE

+------------------+------+---------------+--------------------+

|     country      | year |  population   |  life_expectancy   |

+------------------+------+---------------+--------------------+

| China            | 2018 | 1.384688986E9 |  75.58754098360653 |

| India            | 2018 | 1.296834042E9 |  69.15033333333334 |

| United States    | 2018 |  3.29256465E8 |  82.25324324324323 |

| Indonesia        | 2018 |  2.62787403E8 |  70.89647887323946 |

| Brazil           | 2018 |  2.08846892E8 |  71.26444444444446 |

| Pakistan         | 2018 |  2.07862518E8 |  66.57942857142856 |

| Nigeria          | 2018 |  2.03452505E8 | 53.483061224489774 |

| Bangladesh       | 2018 |  1.59453001E8 |  69.93685714285715 |

| Russia           | 2018 |  1.42122776E8 |  71.61112903225805 |

| Japan            | 2018 |  1.26168156E8 |   85.6562295081967 |

| Mexico           | 2018 |  1.25959205E8 |              75.22 |

| Ethiopia         | 2018 |  1.08386391E8 | 59.355633802816925 |

| Philippines      | 2018 |  1.05893381E8 |  69.13042253521127 |

| Egypt            | 2018 |   9.9413317E7 |   73.8963636363636 |

| Vietnam          | 2018 |   9.7040334E7 |   74.0014516129032 |

| Congo (Kinshasa) | 2018 |   8.5281024E7 | 56.483376623376614 |

| Iran             | 2018 |   8.3024745E7 |  72.58799999999997 |

| Turkey           | 2018 |   8.1257239E7 |  73.33577464788735 |

| Germany          | 2018 |   8.0457737E7 |  80.61900000000001 |

| Thailand         | 2018 |   6.8615858E7 |  75.35032786885246 |

+------------------+------+---------------+--------------------+
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The JOIN command is used to bring together or concatenate data from two or more 

tables by matching their respective rows. The command uses the ON clause to determine 

what column will be used for the matching.

 Subselect
The following query selects the average population for each country and their life 

expectancy for the year 2018. The data is joined from the ‘midyear_population’ table and 

the ‘mortality_life_expectancy’ table in the ‘census_bureau_international’ dataset. The 

query uses a subselect statement in the first FROM clause to filter by year and specific 

countries. The resulting table is grouped by country name and year and arranged in 

descending order. The general idea of a subselect statement is to be able to create more 

complex queries without using intermediate tables.

bq query --use_legacy_sql=false 'SELECT

  midyearpop.country_name AS country,

  midyearpop.year AS year,

  AVG(midyearpop.midyear_population) AS population,

  AVG(mortality.life_expectancy) AS life_expectancy

FROM (

  SELECT

    country_name,

    year,

    midyear_population

  FROM

    `bigquery-public-data.census_bureau_international.midyear_population`

  WHERE

    year = 2018

    AND (country_name LIKE "Nigeria"

    OR country_name LIKE "Egypt")) AS midyearpop

JOIN

   ̀bigquery-public-data.census_bureau_international.mortality_life_

expectancy` AS mortality

Chapter 38  GooGle BiGQuery



505

ON

  midyearpop.country_name = mortality.country_name

GROUP BY

  country,

  year

ORDER BY

  population DESC

LIMIT

  20'

Waiting on bqjob_r5d381c26fcb6480e_0000016628e220c3_1 ... (0s) Current 

status: DONE

+---------+------+--------------+--------------------+

| country | year |  population  |  life_expectancy   |

+---------+------+--------------+--------------------+

| Nigeria | 2018 | 2.03452505E8 | 53.483061224489774 |

| Egypt   | 2018 |  9.9413317E7 |   73.8963636363636 |

+---------+------+--------------+--------------------+

 The Case Against Running Select *
In BigQuery, it is ill-advised to run the SELECT ∗ command, which is used in SQL to 

retrieve all the columns from the table. This command is rather expensive in BigQuery 

especially if your table contains terabytes of data. If instead you want to have a feel for 

the columns and their entries in your dataset, you can execute the command ‘bq head 

[table_name]’ to retrieve the first few rows of the table. As an example, we used the 

command in the following example listing to retrieve the first few rows of the ‘market’ 

table we earlier loaded from GCS in the ‘crypto_data’ dataset.
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 Using BigQuery with Notebooks on AI Cloud 
Instance and Google Colab
BigQuery integrates well with Notebooks on Google Notebook AI Instance and Google 

Colab. In this section, we’ll go through executing on BigQuery datasets and tables from 

Notebooks. There are a couple of ways to interact with BigQuery from Notebooks, but 

one quick and easy method is the use of the ‘%bigquery’ magic command from the 

BigQuery client library, ‘google-cloud-bigquery’, to run queries with minimal syntax.

The %%bigquery magic runs a SQL query and returns the results as a pandas 

DataFrame. Here, we use the ‘%%bigquery’ magic command to interact with BigQuery. 

To begin, open a Notebook on GCP AI Notebook Instance or from Colab:

 1. If running on Google Colab, authenticate the notebook by running 

the code

from google.colab import auth

auth.authenticate_user()

print(‘Authenticated’)

 2. Import Pandas and Matplotlib.

import pandas as pd

import matplotlib.pyplot as plt

 3. Store the following query output as a Pandas DataFrame named 

‘litcoin_crypto’. Place your project id after the ‘--project’ 
attribute. Be sure to update the FROM field with your dataset and 

table IDs.

%%bigquery --project ekabasandbox litcoin_crypto

SELECT

  symbol,

  date,

  close,

  open,

  high,

  low,

  spread
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FROM

  `crypto_data.markets`

WHERE

  symbol = 'LTC'

LIMIT 10

    symbol  date    close   open    high    low   spread

0   LTC 2013-04-28  4.35    4.3     4.4     4.18    0.22

1   LTC 2013-05-07  3.33    3.37    3.41    2.94    0.47

2   LTC 2013-05-03  3.04    3.39    3.45    2.4     1.05

3   LTC 2013-05-04  3.48    3.03    3.64    2.9     0.74

4   LTC 2013-05-05  3.59    3.49    3.69    3.35    0.34

5   LTC 2013-05-06  3.37    3.59    3.78    3.12    0.66

6   LTC 2013-05-02  3.37    3.78    4.04    3.01    1.03

7   LTC 2013-05-01  3.8     4.29    4.36    3.52    0.84

8   LTC 2013-04-29  4.38    4.37    4.57    4.23    0.34

9   LTC 2013-04-30  4.3     4.4     4.57    4.17    0.4

 4. The variable ‘litcoin_crypto’ is a Pandas DataFrame. Now, let’s 

modify the data attributes and plot a bar chart.

# convert columns to numeric

litcoin_crypto = litcoin_crypto.apply(pd.to_numeric, 

errors='ignore')

# check the datatypes

litcoin_crypto.dtypes

symbol     object

date       object

close     float64

open      float64

high      float64

low       float64

spread    float64

dtype: object
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 5. Plot the bar chart with the variable ‘date’ on the x axis and closing 

price on the y axis (see Figure 38-12).

# plot the bar chart

litcoin_crypto.plot(kind='bar', x='date', y='close')

plt.show()

 BigQueryML
BigQuery machine learning makes it quick and easy to harness the power of machine 

learning on your datasets in BigQuery by using simple standard SQL commands. This 

functionality includes the capability to train and test models on the datasets by using 

subsets of the data, as well as the capability for automatic hyper-parameter tuning of the 

learning models.

Figure 38-12. Litcoin crypto-currency bar chart plot

Chapter 38  GooGle BiGQuery



510

At this time of writing, the following learning models are available in BigQuery:

• Linear regression

• Binary and multi-class logistic regression

In this section, we’ll work with BigQuery ML using the Notebook instance on Colab 

on Google AI VMs to build a predictive model using the ‘market’ table in the ‘crypto_data’ 

dataset that we earlier imported into BigQuery. This model will attempt to predict the next 

day’s closing price of the Bitcoin crypto-currency given a set of market attributes. The data 

processing and machine learning modeling is all done using standard SQL:

 1. Open a new notebook.

 2. Select features for training the ML model. In the SQL code, we 

use the ‘LEAD()’ function to return the value of the next row. The 

offset of 1 indicates that we want to get the next value that is one 

step ahead in the query. With this, it is easy to adjust the query to 

predict a 2- to n-day window. The LEAD() function is a window 

function that moves over a rowset. Hence, the OVER() function is 

used to define a window within a query, while the PARTITION BY 

and ORDER BY clauses divide the query results into partitions and 

define the arrangement of the rows within each partition.

We use the ‘params’ variable to sample half of the data and store 

it in the ‘TRAIN’ set. This makes sure that the rest of the dataset 

is not used in model training and can be used to check that the 

model generalizes well during the model evaluation phase.

Be sure to update the FROM field with your dataset and table IDs.

%%bigquery --project ekabasandbox btc_market

WITH

  params AS (

  SELECT

    1 AS TRAIN,

    2 AS EVAL ),

  btc_market AS (

  SELECT

    symbol,

Chapter 38  GooGle BiGQuery



511

    date,

    open,

    high,

    low,

    close,

    spread,

     cast(LEAD(close, 1) OVER (PARTITION BY symbol ORDER BY symbol 

DESC) AS NUMERIC) AS next_day_close

  FROM

    `crypto_data.markets`,

    params

  WHERE

    symbol = 'BTC'

     AND MOD(ABS(FARM_FINGERPRINT(CAST(date AS STRING))),4) = 

params.TRAIN )

SELECT

  *

FROM

  btc_market

WHERE

  next_day_close IS NOT NULL

 3. Display the first ten rows of the query.

btc_market.head(10)

symbol  date    open    high    low close   spread  next_day_close

0   BTC 2013-05-05  112.9   118.8   107.14  115.91  11.66 112.3

1   BTC 2013-05-06  115.98  124.66  106.64  112.3   18.02 112.67

2   BTC 2013-05-09  113.2   113.46  109.26  112.67  4.2   115.24

3   BTC 2013-05-11  117.7   118.68  113.01  115.24  5.67  111.5

4   BTC 2013-05-14  117.98  119.8   110.25  111.5   9.55  114.22

5   BTC 2013-05-15  111.4   115.81  103.5   114.22  12.31 121.99

6   BTC 2013-05-19  123.21  124.5   119.57  121.99  4.93  123.89

7   BTC 2013-05-22  122.89  124     122     123.89  2     133.2

8   BTC 2013-05-24  126.3   133.85  125.72  133.2   8.13  131.98

9   BTC 2013-05-25  133.1   133.22  128.9   131.98  4.32  133.48
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 4. The trained model is stored in a BigQuery dataset. In this case, 

we’ll create a BigQuery dataset to store the model.

from google.cloud import bigquery

client = bigquery.Client(project='ekabasandbox')

# create a BigQuery dataset to store your ML model

dataset = client.create_dataset('btc_crypto')

print('Dataset: `{}` created.'.format(dataset.dataset_id))

Dataset: `btc_crypto` created.

 5. After preparing our training dataset, now it is time to train the 

model. Be sure to update the FROM field with your dataset and 

table IDs.

%%bigquery --project ekabasandbox model

CREATE OR REPLACE MODEL `btc_crypto.market_closing_model`

OPTIONS

  (model_type='linear_reg',

    labels=['next_day_close']) AS

WITH

  params AS (

  SELECT

    1 AS TRAIN,

    2 AS EVAL ),

  btc_market AS (

  SELECT

    CAST(open AS NUMERIC) AS open,

    CAST(high AS NUMERIC) AS high,

    CAST(low AS NUMERIC) AS low,

    CAST(close AS NUMERIC) AS close,

    CAST(spread AS NUMERIC) AS spread,

     CAST(LEAD(close, 1) OVER (PARTITION BY symbol ORDER BY symbol 

DESC) AS NUMERIC) AS next_day_close

  FROM

    `crypto_data.markets`,

    params
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  WHERE

    symbol = 'BTC'

     AND MOD(ABS(FARM_FINGERPRINT(CAST(date AS STRING))),4) = 

params.TRAIN )

SELECT

  *

FROM

  btc_market

WHERE

  next_day_close IS NOT NULL

 6. Check that the created model exists in the Dataset ‘btc_crypto’. We 

prefix the exclamation sign (‘!’) in a Notebook cell to execute bash 

commands.

!bq ls btc_crypto

        tableId          Type    Labels   Time Partitioning

 ---------------------- ------- -------- -------------------

  market_closing_model   MODEL

 7. Evaluate the model to estimate the performance of the model. The 

RMSE metric is evaluated in BigQuery calling the ‘mean_squared_

error’ field of the trained model and passing it through the 

‘SQRT()’ function. To evaluate the model, pass the model through 

the function ‘ML.EVALUATE()’. This time we select the remaining 

subset of the dataset and store it in ‘params.EVAL’.

 8. Be sure to update the FROM field with your dataset and table IDs.

%%bigquery --project ekabasandbox rmse

SELECT

  SQRT(mean_squared_error) AS rmse

FROM

  ML.EVALUATE(MODEL `btc_crypto.market_closing_model`,

    (

    WITH

      params AS (
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      SELECT

        1 AS TRAIN,

        2 AS EVAL ),

      btc_market AS (

      SELECT

        CAST(open AS NUMERIC) AS open,

        CAST(high AS NUMERIC) AS high,

        CAST(low AS NUMERIC) AS low,

        CAST(close AS NUMERIC) AS close,

        CAST(spread AS NUMERIC) AS spread,

         CAST(LEAD(close, 1) OVER (PARTITION BY symbol ORDER BY 

symbol DESC) AS NUMERIC) AS next_day_close

      FROM

        `crypto_data.markets`,

        params

      WHERE

        symbol = 'BTC'

         AND MOD(ABS(FARM_FINGERPRINT(CAST(date AS STRING))),4) = 

params.EVAL )

    SELECT

      *

    FROM

      btc_market

    WHERE

      next_day_close IS NOT NULL ))

    rmse

0   393.265715

 9. Predict the next day’s closing prices for the Bitcoin crypto-

currency using the trained model. Be sure to update the FROM 

field with your dataset and table IDs.

%%bigquery --project ekabasandbox predict

SELECT

  *

FROM
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  ml.PREDICT(MODEL `btc_crypto.market_closing_model`,

    (

    WITH

      params AS (

      SELECT

        1 AS TRAIN,

        2 AS EVAL ),

      btc_market AS (

      SELECT

        CAST(close AS NUMERIC) AS close,

        date,

        CAST(open AS NUMERIC) AS open,

        CAST(high AS NUMERIC) AS high,

        CAST(low AS NUMERIC) AS low,

        CAST(spread AS NUMERIC) AS spread,

         CAST(LEAD(close, 1) OVER (PARTITION BY symbol ORDER BY 

symbol DESC) AS NUMERIC) AS next_day_close

      FROM

        `crypto_data.markets`,

        params

      WHERE

        symbol = 'BTC'

         AND MOD(ABS(FARM_FINGERPRINT(CAST(date AS STRING))),4) = 

params.EVAL )

    SELECT

      *

    FROM

      btc_market

    WHERE

      next_day_close IS NOT NULL ))
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This chapter provided an overview of working with Google BigQuery as a data 

warehouse and analytics platform on GCP. It covered working with BigQuery from 

Notebooks hosted on Google Colab or on GCP AI Instances and included how to work 

with BigQuery ML to build machine learning predictive models using SQL commands.

The next chapter will introduce Cloud Dataprep for visually exploring and 

transforming large datasets on GCP.

Chapter 38  GooGle BiGQuery



519
© Ekaba Bisong 2019 
E. Bisong, Building Machine Learning and Deep Learning Models on Google Cloud Platform,  
https://doi.org/10.1007/978-1-4842-4470-8_39

CHAPTER 39

Google Cloud Dataprep
Google Cloud Dataprep is a managed cloud service for quick data exploration and 

transformation. Dataprep makes it easy to clean and transform large datasets for 

analysis. It is auto-scalable as it takes advantage of the distributed processing capabilities 

of Google Cloud Dataflow.

Typically Cloud Dataprep is aimed at easing the data preparation process. Datasets 

from real-world use cases are often messy and untidy. In this form, it cannot be used 

for downstream analytics or machine learning modeling. Hence, a large portion of the 

modeling process involves preparing and cleaning the data. Programming libraries 

earlier discussed like Pandas are centrally used for carrying out data preparation. 

However, Google Cloud Dataprep provides a simple visual interface for performing data 

cleaning. The ability to re-organize the dataset for modeling quickly without coding 

provides an instant appeal for Dataprep, as this can greatly speed up the time spent in 

data preparation as part of the overall modeling pipeline. The other good part is that 

Dataprep can work with petabyte scale data as it is built on a serverless infrastructure. 

Dataprep can be used for processing structured and unstructured datasets.

In this section, we’ll go through a brief tour of Google Dataprep by using it to prepare 

our ‘crypto_markets.csv’ dataset already stored on Google Cloud Storage.

 Getting Started with Cloud Dataprep
From the GCP dashboard, click the triple dash at the top-left corner and scroll down to 

‘Dataprep’ under the BIG DATA section as seen in Figure 39-1.
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Dataprep is a service offered on GCP in alliance with the company Trifacta. To begin 

using Dataprep, agree and accept all the license agreements (see Figure 39-2). Dataprep 

creates a bucket on GCS to store the files that are uploaded to Dataprep and the outputs 

of its transformation (see Figure 39-3). The Dataprep dashboard is shown in Figure 39-4.

Figure 39-1. Open Dataprep via the GCP dashboard
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Figure 39-2. Trifacta license agreement

Figure 39-3. Dataprep GCS location setup
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 Using Flows to Transform Data
A Dataprep flow is an object created to organize and manage the datasets and operations 

that are involved in data cleaning and transformation process:

 1. We begin by creating a flow by clicking the ‘Create Flow’ button in 

the top-right corner of the Dataprep dashboard (see Figure 39-4). 

Enter the user-defined flow name and click ‘Create’ as shown in 

Figure 39-5. The Flow page is shown in Figure 39-6.

Figure 39-4. Dataprep dashboard
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Figure 39-5. Create Flow

Figure 39-6. Flow page
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 2. Let’s start by placing our dataset in a GCS bucket. We’ll do so by 

running the following commands on the terminal.

Create a new bucket.

gsutil mb gs://my-dataprep-data

 3. Transfer data from GitHub to the bucket.

gsutil cp crypto-markets.csv gs://my-dataprep-data

 4. Next, we’ll transfer our ‘crypto-market’ dataset from the ‘my-

dataprep- data’ bucket to the Dataprep staging bucket. We can 

quickly do this by executing the following code on the terminal.

gsutil cp -r gs://my-dataprep-data gs://dataprep-staging-7fc4d500-

8b76-48a1- 9562-83675643ca4b

Copying gs://my-dataprep-data/crypto-markets.csv [Content-

Type=application/octet-stream]...

/ [1 files][ 47.0 MiB/ 47.0 MiB]

Operation completed over 1 objects/47.0 MiB.

 5. Next, we’ll import and add Datasets to the Flow. Datasets can be 

uploaded directly to Dataprep which will then be stored to the 

bucket Dataprep generated on start-up. Also, Dataprep can import 

datasets already stored in BigQuery or GCS. In this case, we will 

import the ‘crypto-market’ dataset that we earlier transferred to 

the Dataprep staging bucket which is in the folder ‘my-dataprep-

data’ (see Figure 39- 7). Figure 39-8 shows the dataset loading into 

Dataprep.
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Figure 39-7. Import Dataset from GCS to Dataprep

Figure 39-8. Loading Dataset to Dataprep
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 6. Next, we’ll create a recipe. A Dataprep recipe contains the 

transformation steps taken to clean and process a Dataset. This 

recipe is later executed as a Dataflow job to operate on the Dataset 

and come up with results. Click the ‘Add New Recipe’ button to 

create a recipe. The recipe is in the bounded red box in Figure 39-9.

Figure 39-9. Dataset recipe

 7. Then click the ‘Edit Recipe’ button to open the ‘Transformation 

Grid’ where we carry out various cleaning and processing steps on 

the Dataset.

 8. For the example in this section, we’ll carry out a simple 

transformation process by dropping some unused columns and 

then removing all rows in the dataset except those for Bitcoin 

crypto-currency:
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 a. Remove the ‘slug’ column. Click ‘Add’ within the red box to drop the 

column (see Figure 39-10).

 b. Remove the ‘name’ column (see Figure 39-11).

Figure 39-10. Remove ‘slug’ column
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 c. Next, we’ll filter the rows in the dataset to retain only the Bitcoin records 

(see Figures 39-12 and 39-13).

Figure 39-11. Remove ‘name’ column
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Figure 39-12. Filter rows using Dataprep

Figure 39-13. Remove all rows except the Bitcoin records
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 9. Figure 39-14 shows the dataset transformation recipes. Click ‘Run 

Job’ in Figure 39- 14 and also in Figure 39-15 to run the job on 

Cloud Dataflow.

Figure 39-14. View transformation recipes
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Figure 39-15. Run Job on Dataflow

 10. Figure 39-16 shows the running job, and Figure 39-17 shows the 

completed job after some minutes.
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Figure 39-16. Job running on Dataflow

Figure 39-17. Completed job
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 11. View the results of the job (see Figure 39-18).

Figure 39-18. View job result

 12. From the Results page shown in Figure 39-19, we can export the 

results back to GCS (see Figure 39-20).
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Figure 39-19. Job Results page

Figure 39-20. Export completed jobs
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This chapter provides an example overview of working with Dataprep to visually 

explore and transform large datasets on GCP by using the Google Cloud Dataflow 

infrastructure for distributed processing. In the next chapter, we will introduce working 

with Cloud Dataflow for building custom data transformation pipelines.
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CHAPTER 40

Google Cloud Dataflow
Google Cloud Dataflow provides a serverless, parallel, and distributed infrastructure 

for running jobs for batch and stream data processing. One of the core strengths of 

Dataflow is its ability to almost seamlessly handle the switch from processing of batch 

historical data to streaming datasets while elegantly taking into consideration the perks 

of streaming processing such as windowing. Dataflow is a major component of the data/

ML pipeline on GCP. Typically, Dataflow is used to transform humongous datasets from 

a variety of sources such as Cloud Pub/Sub or Apache Kafka to a sink such as BigQuery 

or Google Cloud Storage.

Critical to Dataflow is the use of the Apache Beam programming model for building 

the parallel data processing pipelines for batch and stream operations. The data 

processing pipelines built with the Beam SDKs can be executed on various processing 

backends such as Apache Apex, Apache Spark, Apache Flink, and of course Google 

Cloud Dataflow. In this section, we will build data transformation pipelines using the 

Beam Python SDK. As of this time of writing, Beam also supports building data pipelines 

using Java, Go, and Scala languages.

 Beam Programming
Apache Beam provides a set of broad concepts to simplify the process of building a 

transformation pipeline for distributed batch and stream jobs. We’ll go through these 

concepts providing simple code samples:

• A Pipeline: A Pipeline object wraps the entire operation and 

prescribes the transformation process by defining the input data 

source to the pipeline, how that data will be transformed, and where 

the data will be written. Also, the Pipeline object indicates the 

distributed processing backend to execute on. Indeed, a Pipeline 
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is the central component of a Beam execution. Code for creating a 

pipeline is as shown in the following:

import apache_beam as beam

from apache_beam.options.pipeline_options import PipelineOptions

p = beam.Pipeline(options=PipelineOptions())

In the preceding code snippet, the Pipeline object is configured 

using ‘PipelineOptions’ to set the required fields. This can be done 

both programmatically and from the command line.

• A PCollection: A PCollection is used to define a data source. The data 

source can either be bounded or unbounded. A bounded data source 

refers to batch or historical data, whereas an unbounded data source 

refers to streaming data. Beam uses a technique called windowing to 

partition unbounded PCollections into finite logical segments using 

some attribute of the data such as a timestamp. PCollections can also 

be created from in-memory data where PCollections are both the 

inputs and outputs for a particular step in the pipeline. Let’s see an 

example of reading a csv data from an external source:

lines = p | 'ReadMyFile' >> beam.io.ReadFromText('gs://gcs_bucket/

my_data.csv')

The pipe operator ‘|’ in the preceding code is also called the 

apply method and is used to apply the PCollection to the pipeline 

instantiated as ‘p’.

• A PTransform: A PTransform refers to a particular transformation 

task carried out on one or more PCollections in the pipeline. 

PTransforms can be applied to PCollections as follows.

[Output PCollection] = [Input PCollection] | [Transform]

Note that while a PTransform creates a new PCollection, it does 

not modify or alter the input collection. A number of core Beam 

transforms include

• ParDo: For parallel processing

• GroupByKey: For processing collections of key/value pairs
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• CoGroupByKey: For a relational join of two or more key/value 

PCollections with the same key type

• Combine: For combining collections of elements or values in 

your data

• Flatten: For merging multiple PCollection objects

• Partition: Splits a single PCollection into smaller collections

• I/O transforms: These are PTransforms that read or write data to 

different external storage systems. Some of the currently available I/O 

transforms working with Beam Python SDK include

• avroio: For reading from and writing to an Avro file

• textio: For reading from and writing to text files

For a simple linear pipeline with sequential transformation, the processing graph 

looks like what is shown in Figure 40-1.

Figure 40-1. A simple linear Pipeline with sequential transforms

 Building a Simple Data Processing Pipeline
In this simple Beam application, we will build a Dataflow pipeline to preprocess a 

CSV file from a GCS bucket and write the output back to GCS. This example selects 

certain features and rows that are of interest to the downstream modeling task. Here, 

we considered the ‘crypto-markets.csv’ dataset. In the data preprocessing pipeline, we 

removed data attributes that may not be relevant for analytics/model building and we 
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also filtered records pertaining to ‘bitcoin’. The steps that follow create a simple Beam 

pipeline and execute in on Google Dataflow:

 1. Enable the GCP Cloud Dataflow API and Cloud Resource Manager 

API from the APIs & Services dashboard.

 2. Open a new Notebook.

 3. Note that at this time of writing, Apache Beam only works with 

Python version 2.7, so be sure to switch the kernel for your Python 

interpreter. Add the following code blocks in the Notebook cell.

 4. If running on Google Colab, first authenticate the notebook  

with GCP.

from google.colab import auth

auth.authenticate_user()

print('Authenticated')

# configure GCP project. Change to your project ID

project_id = 'ekabasandbox'

!gcloud config set project {project_id}

 5. Install the Apache beam library and other important setup packages.

%%bash

pip install apache-beam[gcp]

 6. After installing, change the notebook runtime type to Python 2.

 7. Next, reset the notebook kernel before running the code to import 

the relevant libraries.

import apache_beam as beam

from apache_beam.io import ReadFromText

from apache_beam.io import WriteToText

 8. Assign the parameters for the pipeline. Replace the relevant 

parameters with your entries.

# parameters

staging_location = 'gs://enter_bucket_name/staging' # change this

temp_location = 'gs://enter_bucket_name/temp' # change this
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job_name = 'dataflow-crypto'

project_id = enter_project_id' # change this

source_bucket = 'enter_bucket_name' # change this

target_bucket = 'enter_bucket_name' # change this

 9. Method to build and run the pipeline.

def run(project, source_bucket, target_bucket):

    import csv

    options = {

        'staging_location': staging_location,

        'temp_location': temp_location,

        'job_name': job_name,

        'project': project,

        'max_num_workers': 24,

        'teardown_policy': 'TEARDOWN_ALWAYS',

        'no_save_main_session': True,

        'runner': 'DataflowRunner'

      }

    options = beam.pipeline.PipelineOptions(flags=[], **options)

     crypto_dataset = 'gs://{}/crypto-markets.csv'.format(source_

bucket)

     processed_ds = 'gs://{}/transformed-crypto-bitcoin'.

format(target_bucket)

    pipeline = beam.Pipeline(options=options)

    # 0:slug, 3:date, 5:open, 6:high, 7:low, 8:close

    rows = (

        pipeline |

            'Read from bucket' >> ReadFromText(crypto_dataset) |

             'Tokenize as csv columns' >> beam.Map(lambda line: 

next(csv.reader([line]))) |

             'Select columns' >> beam.Map(lambda fields: 

(fields[0], fields[3], fields[5], fields[6], 

fields[7], fields[8])) |
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             'Filter bitcoin rows' >> beam.Filter(lambda row: row[0] == 

'bitcoin')

        )

    combined = (

        rows |

             'Write to bucket' >> beam.Map(lambda (slug, date, 

open, high, low, close): '{},{},{},{},{},{}'.format(

                slug, date, open, high, low, close)) |

            WriteToText(

                file_path_prefix=processed_ds,

                file_name_suffix=".csv", num_shards=2,

                shard_name_template="-SS-of-NN",

                header='slug, date, open, high, low, close')

        )

    pipeline.run()

 10. Run the pipeline.

if __name__ == '__main__':

     print 'Run pipeline on the cloud'

      run(project=project_id, source_bucket=source_bucket,  

target_bucket=target_bucket)

The image in Figure 40-2 shows the Dataflow pipeline created as a result of this job.
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More complex and advanced uses of Google Cloud Dataflow are beyond the scope 

of this book as they are more in the area of building big data pipelines for large-scale 

data transformation. However, this section is included because big data transformation 

is an important component for the design and productionalization of machine learning 

models when solving a particular business use case at scale. It is important for readers to 

get a feel of working with these sort of technologies.

This chapter provides an introduction to building large-scale big data transformation 

pipelines using Python Apache Beam programming model that runs on Google Dataflow 

computing infrastructure. The next chapter will cover using Google Cloud Machine 

Learning Engine to train and deploy large-scale models.

Figure 40-2. Preprocessing Pipeline on Google Cloud Dataflow
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CHAPTER 41

Google Cloud  
Machine Learning  
Engine (Cloud MLE)
The Google Cloud Machine Learning Engine, simply known as Cloud MLE, is a managed 

Google infrastructure for training and serving “large-scale” machine learning models. 

Cloud ML Engine is a part of GCP AI Platform. This managed infrastructure can train 

large-scale machine learning models built with TensorFlow, Keras, Scikit-learn, or 

XGBoost. It also provides modes of serving or consuming the trained models either as 

an online or batch prediction service. Using online prediction, the infrastructure scales 

in response to request throughout, while with the batch mode, Cloud MLE can provide 

inference for TBs of data.

Two important features of Cloud MLE is the ability to perform distribution training 

and automatic hyper-parameter tuning of your models while training. The big advantage 

of automatic hyper-parameter tuning is the ability to find the best set of parameters 

that minimize the model cost or loss function. This saves time of development hours in 

iterative experiments.

 The Cloud MLE Train/Deploy Process
The high-level overview of the train/deploy process on Cloud MLE is depicted in 

Figure 41-1:

 1. The data for training/inference is kept on GCS.

 2. The execution script uses the application logic to train the model 

on Cloud MLE using the training data.
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 3. The trained model is stored on GCS.

 4. A prediction service is created on Cloud MLE using the  

trained model.

 5. The external application sends data to the deployed model  

for inference.

Figure 41-1. The train/deploy process on Cloud MLE
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 Preparing for Training and Serving on Cloud MLE
In this contrived example, we’ll use the famous Iris dataset to train and serve a 

TensorFlow model using the Estimator API on Cloud MLE. To begin, let’s walk through 

the following steps:

 1. Create a bucket on GCS by running the gsutil mb command on 

the cloud terminal. Replace it with unique bucket name.

export bucket_name=iris-dataset'

gsutil mb gs://$bucket_name

 2. Transfer training and test data from the code repository to the 

GCP bucket.

 3. Move the train data.

gsutil cp train_data.csv gs://$bucket_name

 4. Move the train data.

gsutil cp test_data.csv gs://$bucket_name

 5. Move the hold-out data for batch predictions.

gsutil cp hold_out_test.csv gs://$bucket_name

 6. Enable the Cloud Machine Learning API to be able to create and 

use machine learning models on GCP Cloud MLE:

 a. Go to APIs & Services.

 b. Click “Enable APIs & Services”.

 c. Search for “Cloud Machine Learning Engine”.

 d. Click ENABLE API as shown in Figure 41-2.

Chapter 41  GooGle Cloud MaChine learninG enGine (Cloud Mle)  



548

 Packaging the Code for Training on Cloud MLE
The code for training on Cloud MLE must be prepared as a python package. The 

recommended project structure is explained as follows:

IrisCloudML: [project name as parent folder]

• Trainer: [folder containing the model and execution code]

• __init__.py: [an empty special python file indicating that the 

containing folder is a Python package]

• model.py: [script contains the logic of the model written in 

TensorFlow, Keras, etc.]

• task.py: [script contains the application that orchestrates or 

manages the training job]

• scripts: [folder containing scripts to execute jobs on Cloud MLE]

• distributed-training.sh: [script to run a distributed training job on 

Cloud MLE]

Figure 41-2. Enable Cloud Machine Learning APIs
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• hyper-tune.sh: [script to run a training job with hyper-parameter 

tuning on Cloud MLE]

• single-instance-training.sh: [script to run a single instance 

training job on Cloud MLE]

• online-prediction.sh: [script to execute an online prediction job 

on Cloud MLE]

• create-prediction-service.sh: [script to create a prediction service 

on Cloud MLE]

• hptuning_config: [configuration file for hyper-parameter tuning on 

Cloud MLE]

• gpu_hptuning_config.yaml: [configuration file for hyper-parameter 

tuning with GPU training on Cloud MLE]

NOTE: FOLLOW THESE INSTRUCTIONS TO RUN THE EXAMPLES FOR TRAINING ON  
CLOUD MACHINE LEARNING ENGINE

 1. launch a notebook instance on GCp ai platform.

 2. pull the code repository.

 3. navigate to the book folder. run the scripts in the sub-folder `tensorflow’.

 4. Should you choose to work with Google Colab, authenticate the user by running 

the code

from google.colab import auth

    auth.authenticate_user()

 The TensorFlow Model
Now let’s briefly examine the TF model code in the file ‘model.py’.

import six
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import tensorflow as tf

from tensorflow.python.estimator.model_fn import ModeKeys as Modes

# Define the format of your input data including unused columns.

CSV_COLUMNS = [

    'sepal_length', 'sepal_width', 'petal_length',

    'petal_width', 'class'

]

CSV_COLUMN_DEFAULTS = [[0.0], [0.0], [0.0], [0.0], [“]]

LABEL_COLUMN = 'class'

LABELS = ['setosa', 'versicolor', 'virginica']

# Define the initial ingestion of each feature used by your model.

# Additionally, provide metadata about the feature.

INPUT_COLUMNS = [

    # Continuous base columns.

    tf.feature_column.numeric_column('sepal_length'),

    tf.feature_column.numeric_column('sepal_width'),

    tf.feature_column.numeric_column('petal_length'),

    tf.feature_column.numeric_column('petal_width')

]

UNUSED_COLUMNS = set(CSV_COLUMNS) - {col.name for col in INPUT_COLUMNS} - \

    {LABEL_COLUMN}

def build_estimator(config, hidden_units=None, learning_rate=None):

    """Deep NN Classification model for predicting flower class.

    Args:

         config: (tf.contrib.learn.RunConfig) defining the runtime 

environment for

          the estimator (including model_dir).

        hidden_units: [int], the layer sizes of the DNN (input layer first)

        learning_rate: (int), the learning rate for the optimizer.

    Returns:

        A DNNClassifier

    """

    (sepal_length, sepal_width, petal_length, petal_width) = INPUT_COLUMNS
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    columns = [

        sepal_length,

        sepal_width,

        petal_length,

        petal_width,

    ]

    return tf.estimator.DNNClassifier(

      config=config,

      feature_columns=columns,

      hidden_units=hidden_units or [256, 128, 64],

      n_classes = 3,

      optimizer=tf.train.AdamOptimizer(learning_rate)

    )

def parse_label_column(label_string_tensor):

  """Parses a string tensor into the label tensor.

  Args:

    label_string_tensor: Tensor of dtype string. Result of parsing the CSV

      column specified by LABEL_COLUMN.

  Returns:

    A Tensor of the same shape as label_string_tensor, should return

    an int64 Tensor representing the label index for classification tasks,

    and a float32 Tensor representing the value for a regression task.

  """

  # Build a Hash Table inside the graph

  table = tf.contrib.lookup.index_table_from_tensor(tf.constant(LABELS))

  # Use the hash table to convert string labels to ints and one-hot encode

  return table.lookup(label_string_tensor)

# [START serving-function]

def csv_serving_input_fn():

    """Build the serving inputs."""

    csv_row = tf.placeholder(shape=[None], dtype=tf.string)

    features = _decode_csv(csv_row)

Chapter 41  GooGle Cloud MaChine learninG enGine (Cloud Mle)  



552

    # Ignore label column

    features.pop(LABEL_COLUMN)

    return tf.estimator.export.ServingInputReceiver(features,

                                              {'csv_row': csv_row})

def json_serving_input_fn():

    """Build the serving inputs."""

    inputs = {}

    for feat in INPUT_COLUMNS:

        inputs[feat.name] = tf.placeholder(shape=[None], dtype=feat.dtype)

    return tf.estimator.export.ServingInputReceiver(inputs, inputs)

# [END serving-function]

SERVING_FUNCTIONS = {

  'JSON': json_serving_input_fn,

  'CSV': csv_serving_input_fn

}

def _decode_csv(line):

    """Takes the string input tensor and returns a dict of rank-2 tensors."""

    # Takes a rank-1 tensor and converts it into rank-2 tensor

    row_columns = tf.expand_dims(line, -1)

    columns = tf.decode_csv(row_columns, record_defaults=CSV_COLUMN_DEFAULTS)

    features = dict(zip(CSV_COLUMNS, columns))

    # Remove unused columns

    for col in UNUSED_COLUMNS:

      features.pop(col)

    return features

def input_fn(filenames,

         num_epochs=None,

         shuffle=True,

         skip_header_lines=1,

         batch_size=200):
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    """Generates features and labels for training or evaluation.

    This uses the input pipeline based approach using file name queue

    to read data so that entire data is not loaded in memory.

    """

    dataset = tf.data.TextLineDataset(filenames).skip(skip_header_lines).map(

      _decode_csv)

    if shuffle:

        dataset = dataset.shuffle(buffer_size=batch_size * 10)

    iterator = dataset.repeat(num_epochs).batch(

        batch_size).make_one_shot_iterator()

    features = iterator.get_next()

    return features, parse_label_column(features.pop(LABEL_COLUMN))

The code for the most part is self-explanatory; however, the reader should take note 

of the following points:

• The function ‘build_estimator’ uses the canned Estimator API to 

train a ‘DNNClassifier’ model on Cloud MLE. The learning rate and 

hidden units of the model can be adjusted and tuned as a hyper- 

parameter during training.

• The methods ‘csv_serving_input_fn’ and ‘json_serving_input_fn’ 

define the serving inputs for CSV and JSON serving input formats.

• The method ‘input_fn’ uses the TensorFlow Dataset API to build 

the input pipelines for training and evaluation on Cloud MLE. This 

method calls the private method _decode_csv() to convert the CSV 

columns to Tensors.

 The Application Logic
Let’s see the application logic in the file ‘task.py’.

import argparse

import json

import os
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import tensorflow as tf

from tensorflow.contrib.training.python.training import hparam

import trainer.model as model

def _get_session_config_from_env_var():

     """Returns a tf.ConfigProto instance that has appropriate device_

filters set.

    """

    tf_config = json.loads(os.environ.get('TF_CONFIG', '{}'))

    if (tf_config and 'task' in tf_config and 'type' in tf_config['task'] and

       'index' in tf_config['task']):

        # Master should only communicate with itself and ps

        if tf_config['task']['type'] == 'master':

             return tf.ConfigProto(device_filters=['/job:ps', '/job:master'])

        # Worker should only communicate with itself and ps

        elif tf_config['task']['type'] == 'worker':

            return tf.ConfigProto(device_filters=[

                '/job:ps',

                '/job:worker/task:%d' % tf_config['task']['index']

            ])

    return None

def train_and_evaluate(hparams):

    """Run the training and evaluate using the high level API."""

    train_input = lambda: model.input_fn(

        hparams.train_files,

        num_epochs=hparams.num_epochs,

        batch_size=hparams.train_batch_size

    )

    # Don't shuffle evaluation data

    eval_input = lambda: model.input_fn(

        hparams.eval_files,

        batch_size=hparams.eval_batch_size,

        shuffle=False

    )
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    train_spec = tf.estimator.TrainSpec(

        train_input, max_steps=hparams.train_steps)

    exporter = tf.estimator.FinalExporter(

        'iris', model.SERVING_FUNCTIONS[hparams.export_format])

    eval_spec = tf.estimator.EvalSpec(

        eval_input,

        steps=hparams.eval_steps,

        exporters=[exporter],

        name='iris-eval')

    run_config = tf.estimator.RunConfig(

        session_config=_get_session_config_from_env_var())

    run_config = run_config.replace(model_dir=hparams.job_dir)

    print('Model dir %s' % run_config.model_dir)

    estimator = model.build_estimator(

        learning_rate=hparams.learning_rate,

        # Construct layers sizes with exponential decay

        hidden_units=[

            max(2, int(hparams.first_layer_size * hparams.scale_factor**i))

            for i in range(hparams.num_layers)

        ],

        config=run_config)

    tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec)

if __name__ == '__main__':

    parser = argparse.ArgumentParser()

    # Input Arguments

    parser.add_argument(

        '--train-files',

        help='GCS file or local paths to training data',

        nargs='+',

        default='gs://iris-dataset/train_data.csv')

    parser.add_argument(

        '--eval-files',

        help='GCS file or local paths to evaluation data',
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        nargs='+',

        default='gs://iris-dataset/test_data.csv')

    parser.add_argument(

        '--job-dir',

        help='GCS location to write checkpoints and export models',

        default='/tmp/iris-estimator')

    parser.add_argument(

        '--num-epochs',

        help="""\

        Maximum number of training data epochs on which to train.

        If both --max-steps and --num-epochs are specified,

        the training job will run for --max-steps or --num-epochs,

        whichever occurs first. If unspecified will run for --max-steps.\

        """,

        type=int)

    parser.add_argument(

        '--train-batch-size',

        help='Batch size for training steps',

        type=int,

        default=20)

    parser.add_argument(

        '--eval-batch-size',

        help='Batch size for evaluation steps',

        type=int,

        default=20)

    parser.add_argument(

        '--learning_rate',

        help='The training learning rate',

        default=1e-4,

        type=int)

    parser.add_argument(

        '--first-layer-size',

        help='Number of nodes in the first layer of the DNN',

        default=256,

        type=int)
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    parser.add_argument(

         '--num-layers', help='Number of layers in the DNN', default=3, 

type=int)

    parser.add_argument(

        '--scale-factor',

        help='How quickly should the size of the layers in the DNN decay',

        default=0.7,

        type=float)

    parser.add_argument(

        '--train-steps',

        help="""\

        Steps to run the training job for. If --num-epochs is not specified,

        this must be. Otherwise the training job will run indefinitely.\

        """,

        default=100,

        type=int)

    parser.add_argument(

        '--eval-steps',

        help='Number of steps to run evalution for at each checkpoint',

        default=100,

        type=int)

    parser.add_argument(

        '--export-format',

        help='The input format of the exported SavedModel binary',

        choices=['JSON', 'CSV'],

        default='CSV')

    parser.add_argument(

        '--verbosity',

        choices=['DEBUG', 'ERROR', 'FATAL', 'INFO', 'WARN'],

        default='INFO')

    args, _ = parser.parse_known_args()

    # Set python level verbosity

    tf.logging.set_verbosity(args.verbosity)

    # Set C++ Graph Execution level verbosity
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    os.environ['TF_CPP_MIN_LOG_LEVEL'] = str(

        tf.logging.__dict__[args.verbosity] / 10)

    # Run the training job

    hparams = hparam.HParams(**args.__dict__)

    train_and_evaluate(hparams)

Note the following in the preceding code:

• The method ‘_get_session_config_from_env_var()’ defines the 

configuration for the runtime environment on Cloud MLE for the 

Estimator.

• The method ‘train_and_evaluate()’ does a number of orchestration 

events including

• Routing training and evaluation datasets to the model function in 

‘model.py’

• Setting up the runtime environment of the Estimator

• Passing hyper-parameters to the Estimator model

• The line of code “if __name__ == ‘__main__’:” defines the entry 

point of the Python script via the terminal session. In this script, the 

code will receive inputs from the terminal through the ‘argparse.

ArgumentParser()’ method.

 Training on Cloud MLE
The training execution codes are bash commands stored in a shell script. Shell scripts 

end with the suffix ‘.sh’.

 Running a Single Instance Training Job
The bash codes for executing training on a single instance on Cloud MLE is shown in the 

following. Change the bucket names accordingly.

DATE=`date '+%Y%m%d_%H%M%S'`

export JOB_NAME=iris_$DATE
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export GCS_JOB_DIR=gs://iris-dataset/jobs/$JOB_NAME

export TRAIN_FILE=gs://iris-dataset/train_data.csv

export EVAL_FILE=gs://iris-dataset/test_data.csv

echo $GCS_JOB_DIR

gcloud ai-platform jobs submit training $JOB_NAME \

                                    --stream-logs \

                                    --runtime-version 1.8 \

                                    --job-dir $GCS_JOB_DIR \

                                    --module-name trainer.task \

                                    --package-path trainer/ \

                                    --region us-central1 \

                                    -- \

                                    --train-files $TRAIN_FILE \

                                    --eval-files $EVAL_FILE \

                                    --train-steps 5000 \

                                    --eval-steps 100

This code is stored in the file ‘single-instance-training.sh’ and executed by running 

the command on the terminal.

source ./scripts/single-instance-training.sh

'Output:'

gs://iris-dataset/jobs/iris_20181112_010123

Job [iris_20181112_010123] submitted successfully.

INFO    2018-11-12 01:01:25 -0500   service      Validating job 

requirements...

INFO    2018-11-12 01:01:26 -0500   service      Job creation request 

has been successfully 

validated.

INFO    2018-11-12 01:01:26 -0500   service      Job iris_20181112_010123 is 

queued.

INFO    2018-11-12 01:01:26 -0500   service      Waiting for job to be 

provisioned.
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INFO    2018-11-12 01:05:32 -0500   service      Waiting for training 

program to start.

...

INFO    2018-11-12 01:09:05 -0500   ps-replica-2         Module completed; 

cleaning up.

INFO    2018-11-12 01:09:05 -0500   ps-replica-2        Clean up finished.

INFO    2018-11-12 01:09:55 -0500   service              Finished tearing 

down training 

program.

INFO    2018-11-12 01:10:53 -0500   service              Job completed 

successfully.

endTime: '2018-11-12T01:08:35'

jobId: iris_20181112_010123

startTime: '2018-11-12T01:07:34'

state: SUCCEEDED

 Running a Distributed Training Job
The code for initiating distributed training on Cloud MLE is shown in the following, and 

the code is stored in the file ‘distributed-training.sh’. For a distributed job, the attribute 

‘- -scale-tier’ is set to a tier above the basic machine type. Change the bucket names 

accordingly.

export SCALE_TIER=STANDARD_1 # BASIC | BASIC_GPU | STANDARD_1 | PREMIUM_1 | 

BASIC_TPU

DATE=`date '+%Y%m%d_%H%M%S'`

export JOB_NAME=iris_$DATE

export GCS_JOB_DIR=gs://iris-dataset/jobs/$JOB_NAME

export TRAIN_FILE=gs://iris-dataset/train_data.csv

export EVAL_FILE=gs://iris-dataset/test_data.csv

echo $GCS_JOB_DIR

gcloud ai-platform jobs submit training $JOB_NAME \

                                    --stream-logs \

                                    --scale-tier $SCALE_TIER \

                                    --runtime-version 1.8 \
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                                    --job-dir $GCS_JOB_DIR \

                                    --module-name trainer.task \

                                    --package-path trainer/ \

                                    --region us-central1 \

                                    -- \

                                    --train-files $TRAIN_FILE \

                                    --eval-files $EVAL_FILE \

                                    --train-steps 5000 \

                                    --eval-steps 100

The following executes a distributed training job.

source ./scripts/distributed-training.sh

 Running a Distributed Training Job with  
Hyper-parameter Tuning
To run a training job with hyper-parameter tuning, add the ‘- -config’ attribute and link 

to the ‘.yaml’ hyper-parameter configuration file. The code for running the job is the 

same, but with the attribute ‘- -config’ added. Change the bucket names accordingly.

export SCALE_TIER=STANDARD_1 # BASIC | BASIC_GPU | STANDARD_1 | PREMIUM_1 | 

BASIC_TPU

DATE=`date '+%Y%m%d_%H%M%S'`

export JOB_NAME=iris_$DATE

export HPTUNING_CONFIG=hptuning_config.yaml

export GCS_JOB_DIR=gs://iris-dataset/jobs/$JOB_NAME

export TRAIN_FILE=gs://iris-dataset/train_data.csv

export EVAL_FILE=gs://iris-dataset/test_data.csv

echo $GCS_JOB_DIR

gcloud ai-platform jobs submit training $JOB_NAME \

                                    --stream-logs \

                                    --scale-tier $SCALE_TIER \

                                    --runtime-version 1.8 \

                                    --config $HPTUNING_CONFIG \
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                                    --job-dir $GCS_JOB_DIR \

                                    --module-name trainer.task \

                                    --package-path trainer/ \

                                    --region us-central1 \

                                    -- \

                                    --train-files $TRAIN_FILE \

                                    --eval-files $EVAL_FILE \

                                    --train-steps 5000 \

                                    --eval-steps 100

 hptuning_config.yaml File
This file contains the hyper-parameter and the ranges we wish to explore in tuning 

our training job on Cloud MLE. The goal of the tuning job is to ‘MAXIMIZE’ the 

‘accuracy’ metric.

trainingInput:

  hyperparameters:

    goal: MAXIMIZE

    hyperparameterMetricTag: accuracy

    maxTrials: 4

    maxParallelTrials: 2

    params:

      - parameterName: learning-rate

        type: DOUBLE

        minValue: 0.00001

        maxValue: 0.005

        scaleType: UNIT_LOG_SCALE

      - parameterName: first-layer-size

        type: INTEGER

        minValue: 50

        maxValue: 500

        scaleType: UNIT_LINEAR_SCALE

      - parameterName: num-layers

        type: INTEGER

        minValue: 1
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        maxValue: 15

        scaleType: UNIT_LINEAR_SCALE

      - parameterName: scale-factor

        type: DOUBLE

        minValue: 0.1

        maxValue: 1.0

        scaleType: UNIT_REVERSE_LOG_SCALE

 Execute Training Job with Hyper-parameter Tuning
Run the following code on the terminal to launch a distributed training job.

source ./scripts/hyper-tune.sh

gs://iris-dataset/jobs/iris_20181114_190121

Job [iris_20181114_190121] submitted successfully.

INFO    2018-11-14 12:41:07 -0500   service      Validating job 

requirements...

INFO    2018-11-14 12:41:07 -0500   service      Job creation request 

has been successfully 

validated.

INFO    2018-11-14 12:41:08 -0500   service      Job iris_20181114_190121 is 

queued.

INFO    2018-11-14 12:41:18 -0500   service      Waiting for job to be 

provisioned.

INFO    2018-11-14 12:41:18 -0500   service      Waiting for job to be 

provisioned.

...

INFO    2018-11-14 12:56:38 -0500   service      Finished tearing down 

training program.

INFO    2018-11-14 12:56:45 -0500   service      Finished tearing down 

training program.

INFO    2018-11-14 12:57:37 -0500   service     Job completed successfully.

INFO    2018-11-14 12:57:43 -0500   service     Job completed successfully.

endTime: '2018-11-14T13:04:34'

jobId: iris_20181114_190121
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startTime: '2018-11-14T12:41:12'

state: SUCCEEDED

The job details of the hyper-parameter training job is shown in Figure 41-3.

Under ‘Training output’, the first ‘trialID’ contains the hyper-parameter set that 

minimizes the cost function and performs best on the evaluation metric. Observe that 

the trial run within the red box has the highest accuracy value in the ‘objectiveValue’ 
attribute. This is illustrated in Figure 41-4.

Figure 41-3. Job details: Hyper-parameter distributed training job on Cloud MLE
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 Making Predictions on Cloud MLE
To make predictions on Cloud MLE, we first create a prediction instance. To do this, 

run the code in ‘create-prediction-service.sh’ as shown in the following. The variable 

‘MODEL_BINARIES’ points to the folder location on GCS that stores the trained model 

for the hyper-parameter setting with ‘trialID = 2’.

export MODEL_VERSION=v1

export MODEL_NAME=iris

export MODEL_BINARIES=$GCS_JOB_DIR/3/export/iris/1542241126

# Create a Cloud ML Engine model

gcloud ai-platform models create $MODEL_NAME

# Create a model version

gcloud ai-platform versions create $MODEL_VERSION \

    --model $MODEL_NAME \

    --origin $MODEL_BINARIES \

    --runtime-version 1.8

Figure 41-4. Choosing the best hyper-parameter set
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Run the following code to create the prediction service.

source ./scripts/create-prediction-service.sh

Creating model...

Created ml engine model [projects/quantum-ally-219323/models/iris].

Creating model version...

Creating version (this might take a few minutes)......done.

The version details of the created model is as seen in Figure 41-5.

 Run Batch Prediction
Now let’s run a batch prediction job on Cloud MLE. The code to execute a batch 

prediction call on Cloud MLE is provided in the following and stored in ‘run-batch- 

predictions.sh’.

export JOB_NAME=iris_prediction

export MODEL_NAME=iris

Figure 41-5. Created model for serving on Cloud MLE
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export MODEL_VERSION=v1

export TEST_FILE=gs://iris-dataset/hold_out_test.csv

# submit a batched job

gcloud ai-platform jobs submit prediction $JOB_NAME \

        --model $MODEL_NAME \

        --version $MODEL_VERSION \

        --data-format TEXT \

        --region $REGION \

        --input-paths $TEST_FILE \

        --output-path $GCS_JOB_DIR/predictions

# stream job logs

echo "Job logs..."

gcloud ai-platform jobs stream-logs $JOB_NAME

# read output summary

echo "Job output summary:"

gsutil cat $GCS_JOB_DIR/predictions/prediction.results-00000-of-00001

Execute the code with the command

source ./scripts/run-batch-prediction.sh

Job [iris_prediction] submitted successfully.

jobId: iris_prediction

state: QUEUED

Job logs...

INFO    2018-11-12 14:48:18 -0500   service      Validating job 

requirements...

INFO    2018-11-12 14:48:18 -0500   service      Job creation request 

has been successfully 

validated.

INFO    2018-11-12 14:48:19 -0500   service      Job iris_prediction is 

queued.

Job output summary:

Job output summary:
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{"classes": ["0", "1", "2"], "scores": [8.242315743700601e-06, 

0.9921771883964539, 0.007814492098987103]}

{"classes": ["0", "1", "2"], "scores": [2.7296309657032225e-09, 

0.015436310321092606, 0.9845637083053589]}

{"classes": ["0", "1", "2"], "scores": [5.207379217608832e-06, 

0.9999237060546875, 7.100913353497162e-05]}

........          ........          ........          ........

{"classes": ["0", "1", "2"], "scores": [0.999919056892395, 

8.089694165391847e-05, 9.295699552171275e-16]}

{"classes": ["0", "1", "2"], "scores": [0.9999765157699585, 

2.3535780201200396e-05, 1.2826575252518792e-17]}

{"classes": ["0", "1", "2"], "scores": [1.8082465658153524e-06, 

0.7016969919204712, 0.29830116033554077]}

The prediction job details on Cloud MLE is as shown in Figure 41-6.

Figure 41-6. Batch prediction job details
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 Training with GPUs on Cloud MLE
Training models on GPUs can greatly reduce the processing time. In order to use GPUs 

on Cloud MLE, we make the following changes to our code example:

 1. Change the scale tier to ‘CUSTOM’. The CUSTOM tier makes a 

number of GPU accelerators available, namely:

 a. standard_gpu: A single NVIDIA Tesla K80 GPU

 b. complex_model_m_gpu: Four NVIDIA Tesla K80 GPUs

 c. complex_model_l_gpu: Eight NVIDIA Tesla K80 GPUs

 d. standard_p100: A single NVIDIA Tesla P100 GPU

 e. complex_model_m_p100: Four NVIDIA Tesla P100 GPUs

 f. standard_v100: A single NVIDIA Tesla V100 GPU

 g. large_model_v100: A single NVIDIA Tesla V100 GPU

 h. complex_model_m_v100: Four NVIDIA Tesla V100 GPUs

 i. complex_model_l_v100: Eight NVIDIA Tesla V100 GPUs

 2. Add the following parameters to the ‘.yaml’ file to configure the 

GPU instance.

trainingInput:

  scaleTier: CUSTOM

  masterType: complex_model_m_gpu

  workerType: complex_model_m_gpu

  parameterServerType: large_model

  workerCount: 2

  parameterServerCount: 3

 3. The full configuration file in ‘gpu_hptuning_config.yaml’ now 

looks like this:

trainingInput:

  scaleTier: CUSTOM

  masterType: complex_model_m_gpu

  workerType: complex_model_m_gpu
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  parameterServerType: large_model

  workerCount: 2

  parameterServerCount: 3

  hyperparameters:

    goal: MAXIMIZE

    hyperparameterMetricTag: accuracy

    maxTrials: 4

    maxParallelTrials: 2

    params:

      - parameterName: learning-rate

        type: DOUBLE

        minValue: 0.00001

        maxValue: 0.005

        scaleType: UNIT_LOG_SCALE

      - parameterName: first-layer-size

        type: INTEGER

        minValue: 50

        maxValue: 500

        scaleType: UNIT_LINEAR_SCALE

      - parameterName: num-layers

        type: INTEGER

        minValue: 1

        maxValue: 15

        scaleType: UNIT_LINEAR_SCALE

      - parameterName: scale-factor

        type: DOUBLE

        minValue: 0.1

        maxValue: 1.0

        scaleType: UNIT_REVERSE_LOG_SCALE

Note that running GPUs on Cloud MLE is only available in the following regions:

• us-east1

• us-central1

• us-west1
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• asia-east1

• europe-west1

• europe-west4

The updated execution code for training with GPUs on Cloud MLE is saved as ‘gpu- 

hyper- tune.sh’ (code shown in the following).

export SCALE_TIER=CUSTOM

DATE=`date '+%Y%m%d_%H%M%S'`

export JOB_NAME=iris_$DATE

export HPTUNING_CONFIG=gpu_hptuning_config.yaml

export GCS_JOB_DIR=gs://iris-dataset/jobs/$JOB_NAME

export TRAIN_FILE=gs://iris-dataset/train_data.csv

export EVAL_FILE=gs://iris-dataset/test_data.csv

echo $GCS_JOB_DIR

gcloud ai-platform jobs submit training $JOB_NAME \

                                    --stream-logs \

                                    --scale-tier $SCALE_TIER \

                                    --runtime-version 1.8 \

                                    --config $HPTUNING_CONFIG \

                                    --job-dir $GCS_JOB_DIR \

                                    --module-name trainer.task \

                                    --package-path trainer/ \

                                    --region us-central1 \

                                    -- \

                                    --train-files $TRAIN_FILE \

                                    --eval-files $EVAL_FILE \

                                    --train-steps 5000 \

                                    --eval-steps 100
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To execute the code, run

source ./scripts/gpu-hyper-tune.sh

gs://iris-dataset/jobs/iris_20181112_211040

Job [iris_20181112_211040] submitted successfully.

...

INFO    2018-11-12 21:35:36 -0500   ps-replica-2    4    Module completed; 

cleaning up.

INFO    2018-11-12 21:35:36 -0500   ps-replica-2    4   Clean up finished.

INFO    2018-11-12 21:36:18 -0500   service      Finished tearing down 

training program.

INFO    2018-11-12 21:36:25 -0500   service      Finished tearing down 

training program.

INFO    2018-11-12 21:37:11 -0500   service     Job completed successfully.

INFO    2018-11-12 21:37:11 -0500   service     Job completed successfully.

endTime: '2018-11-12T21:38:26'

jobId: iris_20181112_211040

startTime: '2018-11-12T21:10:47'

state: SUCCEEDED

 Scikit-learn on Cloud MLE
This section will provide a walk-through of training a Scikit-learn model on Google 

Cloud MLE using the same Iris dataset example. We’ll begin by moving the appropriate 

data files from the GitHub repository of this book to GCS.

 Move the Data Files to GCS
Walk through the following steps to move the data files to GCS:

 1. Create bucket to hold the datasets.

gsutil mb gs://iris-sklearn
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 2. Run the following commands on the terminal to move the training 

and testing datasets to the buckets:

Train set features.

gsutil cp X_train.csv gs://iris-sklearn

Train set targets.

gsutil cp y_train.csv gs://iris-sklearn

Test sample for online prediction.

gsutil cp test-sample.json gs://iris-sklearn

 Prepare the Training Scripts
The code for training a Scikit-learn model on Cloud MLE is also prepared as a python 

package. The project structure is as follows:

Iris_SklearnCloudML: [project name as parent folder]

• Trainer: [folder containing the model and execution code]

• __init__.py: [an empty special python file indicating that the 

containing folder is a Python package]

• model.py: [file contains the logic of the model written in Scikit-

learn]

• scripts: [folder containing scripts to execute jobs on Cloud MLE]

• single-instance-training.sh: [script to run a single instance 

training job on Cloud MLE]

• online-prediction.sh: [script to execute an online prediction job 

on Cloud MLE]

• create-prediction-service.sh: [script to create a prediction service 

on Cloud MLE]

• config.yaml: [configuration file for specifying model version]
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The model code for training on Cloud MLE with Scikit-learn (shown in the following) 

is stored in the file ‘model.py’. The machine learning algorithm used in this model is the 

Random forest Classifier.

# [START setup]

import datetime

import os

import subprocess

import sys

import pandas as pd

from sklearn.ensemble import RandomForestClassifier

from sklearn.externals import joblib

from tensorflow.python.lib.io import file_io

# Fill in your Cloud Storage bucket name

BUCKET_ID = 'iris-sklearn'

# [END setup]

# [START download-and-load-into-pandas]

iris_data_filename = 'gs://iris-sklearn/X_train.csv'

iris_target_filename = 'gs://iris-sklearn/y_train.csv'

# Load data into pandas

with file_io.FileIO(iris_data_filename, 'r') as iris_data_f:

    iris_data = pd.read_csv(filepath_or_buffer=iris_data_f,

                        header=None, sep=',').values

with file_io.FileIO(iris_target_filename, 'r') as iris_target_f:

    iris_target = pd.read_csv(filepath_or_buffer=iris_target_f,

                        header=None, sep=',').values

iris_target = iris_target.reshape((iris_target.size,))

# [END download-and-load-into-pandas]

# [START train-and-save-model]

# Train the model

classifier = RandomForestClassifier()

classifier.fit(iris_data, iris_target)
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# Export the classifier to a file

model = 'model.joblib'

joblib.dump(classifier, model)

# [END train-and-save-model]

# [START upload-model]

# Upload the saved model file to Cloud Storage

model_path = os.path.join('gs://', BUCKET_ID, 'model', datetime.datetime.

now().strftime(

    'iris_%Y%m%d_%H%M%S'), model)

subprocess.check_call(['gsutil', 'cp', model, model_path], stderr=sys.

stdout)

# [END upload-model]

Take note of the following points in the preceding code block:

• The code uses the ‘file.io’ module from the package ‘tensorflow.

python.lib.io’ to stream a file stored on Cloud Storage.

• The rest of the code runs the classifier to build the model and exports 

the model to a bucket location on GCS. Cloud MLE will read from this 

bucket when building a prediction service for online predictions.

 Execute a Scikit-learn Training Job on Cloud MLE
The bash code for executing a training job for the Scikit-learn model is presented in the 

following and is saved in the file ‘single-instance-training.sh’.

export SCALE_TIER=BASIC # BASIC | BASIC_GPU | STANDARD_1 | PREMIUM_1 | 

BASIC_TPU

DATE=`date '+%Y%m%d_%H%M%S'`

export JOB_NAME=iris_sklearn_$DATE

export GCS_JOB_DIR=gs://iris-sklearn/jobs/$JOB_NAME

echo $GCS_JOB_DIR

gcloud ml-engine jobs submit training $JOB_NAME \

                                    --stream-logs \

                                    --scale-tier $SCALE_TIER \
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                                    --runtime-version 1.8 \

                                    --job-dir $GCS_JOB_DIR \

                                    --module-name trainer.model \

                                    --package-path trainer/ \

                                    --region us-central1 \

                                    --python-version 3.5

The following code runs a training job to build a Scikit-learn Random forest model.

source ./scripts/single-instance-training.sh

gs://iris-sklearn/jobs/iris_sklearn_20181119_000349

Job [iris_sklearn_20181119_000349] submitted successfully.

INFO    2018-11-19 00:03:51 -0500   service      Validating job 

requirements...

INFO    2018-11-19 00:03:52 -0500   service      Job creation request 

has been successfully 

validated.

INFO    2018-11-19 00:03:52 -0500   service      Job iris_sklearn_20181119_ 

000349 is queued.

INFO    2018-11-19 00:03:52 -0500   service      Waiting for job to be 

provisioned.

INFO    2018-11-19 00:03:54 -0500   service      Waiting for training 

program to start.

...

INFO    2018-11-19 00:05:19 -0500   master-replica-0         Module 

completed; 

cleaning up.

INFO    2018-11-19 00:05:19 -0500   master-replica-0         Clean up 

finished.

INFO    2018-11-19 00:05:19 -0500   master-replica-0         Task completed 

successfully.

endTime: '2018-11-19T00:09:38'

jobId: iris_sklearn_20181119_000349

startTime: '2018-11-19T00:04:29'

state: SUCCEEDED
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 Create a Scikit-learn Prediction Service  
on Cloud MLE
The code for creating a prediction service is shown in the following, and is saved in the 

file ‘create-prediction-service.sh’.

export MODEL_VERSION=v1

export MODEL_NAME=iris_sklearn

export REGION=us-central1

# Create a Cloud ML Engine model

echo "Creating model..."

gcloud ml-engine models create $MODEL_NAME --regions=$REGION

# Create a model version

echo "Creating model version..."

gcloud ml-engine versions create $MODEL_VERSION \

    --model $MODEL_NAME \

    --config config.yaml

The preceding code references a configuration file ‘config.yaml’. This file (as shown 

in the following) holds the configuration for the Scikit-learn model. Let’s briefly go 

through the attributes listed:

• deploymentUri: This points to the bucket location of the Scikit-learn 

model.

• runtime version: This attribute specifies the Cloud MLE runtime 

version.

• framework: This attribute is of particular importance as it specifies 

the model framework in use; this can be SCIKIT_LEARN, XGBOOST, 

or TENSORFLOW. For this example, it is set to SCIKIT_LEARN.

• pythonVersion: This attribute specifies the Python version in use.
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The ‘config.yaml’ is as defined in the following:

deploymentUri: "gs://iris-sklearn/iris_20181119_050517"

runtimeVersion: '1.8'

framework: "SCIKIT_LEARN"

pythonVersion: "3.5"

Run the following command to create a prediction service.

source ./scripts/create-prediction-service.sh

Creating model...

Created ml engine model [projects/quantum-ally-219323/models/iris_sklearn].

Creating model version...

Creating version (this might take a few minutes)......done.

 Make Online Predictions from the Scikit-learn 
Model
The code to make an online prediction from the Scikit-learn model is shown in the 

following and is stored in the file ‘online-prediction.sh’. In online predictions, the input 

data is passed directly as a JSON string.

export JOB_NAME=iris_sklearn_prediction

export MODEL_NAME=iris_sklearn

export MODEL_VERSION=v1

export TEST_FILE_GCS=gs://iris-sklearn/test-sample.json

export TEST_FILE=./test-sample.json

# download file

gsutil cp $TEST_FILE_GCS .

# submit an online job

gcloud ml-engine predict --model $MODEL_NAME \

        --version $MODEL_VERSION \

        --json-instances $TEST_FILE

echo "0 -> setosa, 1 -> versicolor, 2 -> virginica"
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The input data stored as a JSON string is shown in the following.

[5.1, 3.5, 1.4, 0.2]

Run the following command to execute an online prediction request to the hosted 

model on Cloud MLE.

source ./scripts/online-prediction.sh

Copying gs://iris-sklearn/test-sample.json...

/ [1 files][   20.0 B/   20.0 B]

Operation completed over 1 objects/20.0 B.

[0]

0 -> setosa, 1 -> versicolor, 2 -> virginica

In this chapter, we discuss training large-scale models using Google Cloud Machine 

Learning Engine, which is a part of the Google AI Platform. In the examples in this 

chapter, we trained the models using the Estimator High-level API and Scikit-learn. It is 

important to mention that the Keras high-level API can also be used to train large-scale 

models on Cloud MLE.

In the next chapter, we will cover training custom image recognition models with 

Google Cloud AutoML.
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CHAPTER 42

Google AutoML:  
Cloud Vision
Google Cloud AutoML Vision facilitates the creation of custom vision models for image 

recognition use cases. This managed service works with the concepts of transfer learning 

and neural architecture search under the hood to find the best network architecture 

and the optimal hyper-parameter configuration of that architecture that minimizes the 

loss function of the model. This chapter will go through a sample project of building a 

custom image recognition model using Google Cloud AutoML Vision. In this chapter, we 

will build an image model to recognize select cereal boxes.

 Enable AutoML Cloud Vision on GCP
Step through the following steps to enable AutoML Cloud Vision on GCP:

 1. Open Cloud Vision by clicking the triple dash at the top-left corner 

of the GCP dashboard. Select Vision under the product section 

ARTIFICIAL INTELLIGENCE as shown in Figure 42-1.
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 2. Select the Google user account on which to activate AutoML as 

shown in Figures 42-2 and 42-3.

Figure 42-1. Open Google AutoML: Cloud Vision

Figure 42-2. Select account to authenticate AutoML
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 3. After authentication, the Google Cloud Vision Welcome page 

opens up (see Figure 42- 4).

Figure 42-3. Authenticate AutoML

Figure 42-4. Cloud Vision Welcome page
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 4. From the drop-down menu, select the Project ID (with billing 

enabled) that will be used to set up AutoML (see Figure 42-5).

 5. The final configuration step is to enable the AutoML API on the 

GCP project and to create a GCS bucket for storing the output 

models. Click ‘SET UP NOW’ to automatically complete the 

configuration as shown in Figure 42-6.

Figure 42-5. Select Project ID for configuring AutoML
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 6. When the configuration is complete, the AutoML Vision 

Dashboard is activated (see Figure 42-7).

Figure 42-6. Automatically complete AutoML configuration

Figure 42-7. Automatically complete AutoML configuration
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 Preparing the Training Dataset
Before building a custom image recognition model with AutoML Cloud Vision, the 

dataset must be prepared in a particular format; they include

 1. For training, JPEG, PNG, WEBP, GIF, BMP, TIFF, and ICO image 

formats are supported with a maximum size of 30mb per image.

 2. For inference, the image formats JPEG, PNG, and GIF are 

supported with each image being of maximum size 1.5mb.

 3. It is best to place each image category into containing sub-folder 

within an image folder For example:

• [image-directory]

• [image-class-1-dir]

• [image-class-2-dir]

• …

• [image-class-n-dir]

 4. Next, a CSV must be created that points to the paths of the images 

and their corresponding label. AutoML uses the CSV file to point 

to the location of the training images and their labels. The CSV 

file is placed in the same GCS bucket containing the image files. 

Use the bucket automatically created when AutoML Vision was 

configured. In our case, this bucket is named ‘gs://quantum-ally-

219323-vcm’. We use the following code segment to create the CSV 

file used in the cereal classifier example.

import os

import numpy as np

import pandas as pd

directory = 'cereal_photos/

data = []

# go through sub-directories in the image directory and get the 

image paths
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for subdir, dirs, files in os.walk(directory):

    for file in files:

        filepath = subdir + os.sep + file

        if filepath.endswith(".jpg"):

             entry = ['{}/{}'.format('gs://quantum-ally-219323- 

vcm',filepath), os.path.basename(subdir)]

            data.append(entry)

# convert to Pandas DataFrame

data_pd = pd.DataFrame(np.array(data))

# export CSV

data_pd.to_csv("data.csv", header=None, index=None)

 5. The preceding code will result in a CSV looking like the following 

sample:

gs://quantum-ally-219323-vcm/cereal_photos/apple_cinnamon_

cheerios/001.jpg,apple_cinnamon_cheerios

gs://quantum-ally-219323-vcm/cereal_photos/apple_cinnamon_

cheerios/002.jpg,apple_cinnamon_cheerios

gs://quantum-ally-219323-vcm/cereal_photos/apple_cinnamon_

cheerios/003.jpg,apple_cinnamon_cheerios

...

gs://quantum-ally-219323-vcm/cereal_photos/none_of_the_above/

images_(97).jpg,none_of_the_above

gs://quantum-ally-219323-vcm/cereal_photos/none_of_the_above/

images_(98).jpg,none_of_the_above

gs://quantum-ally-219323-vcm/cereal_photos/none_of_the_above/

images_(99).jpg,none_of_the_above

...

gs://quantum-ally-219323-vcm/cereal_photos/sugar_crisp/001.

jpg,sugar_crisp

gs://quantum-ally-219323-vcm/cereal_photos/sugar_crisp/002.

jpg,sugar_crisp

gs://quantum-ally-219323-vcm/cereal_photos/sugar_crisp/003.

jpg,sugar_crisp
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The first part is the image path or URI, while the other is the  

image label.

 6. When preparing the image dataset, it is useful to have a ‘None_
of_the_above’ image class. This class will contain random images 

that do not belong to any of the predicted classes. Adding this 

class can have an overall effect on the model accuracy.

 7. Clone the GitHub book repository to the Notebook instance.

 8. Navigate to the folder chapter and copy the image files to the GCS 

bucket.

gsutil cp -r cereal_photos gs://quantum-ally-219323-vcm

 9. Copy the CSV data file containing the image paths and their labels 

to the GCS bucket.

gsutil cp data.csv gs://quantum-ally-219323-vcm/cereal_photos/

 Building Custom Image Models on Cloud  
AutoML Vision
In AutoML for Cloud Vision, a dataset contains the images that will be used in building 

the classifier and their corresponding labels. This section will walk through creating a 

dataset and building a custom image model on AutoML Vision.

 1. From the Cloud AutoML Vision Dashboard, click NEW DATASET 

as shown in Figure 42-8.
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 2. To create a Dataset on Cloud AutoML Vision, set the following 

parameters as shown in Figure 42-9:

Figure 42-8. New Dataset on AutoML Vision
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 a. Dataset name: cereal_classifier.

 b. Select a CSV file on Cloud Storage (this is the CSV file placed on the bucket 

created when Cloud AutoML was configured that contains the path to the 

images): gs://quantum-ally-219323-vcm/cereal_photos/data.csv.

 c. Click CREATE DATASET to begin importing images (see Figure 42-10).

Figure 42-9. Create a Dataset on Cloud AutoML Vision
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 3. After importing the Dataset, click TRAIN (see Figure 42-11) to 

initiate the process of building a custom image recognition model.

 4. In machine learning, more labeled training examples boost the 

performance of the model. Likewise, when using AutoML, there 

should be at least 100 training examples for each image class. In 

the example used in this section, some classes do not have up to 

Figure 42-10. Cloud AutoML Vision: Importing images

Figure 42-11. Cloud AutoML Vision: Imported images and their labels
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100 examples, so AutoML gives a warning as seen in Figure 42-12. 

However, for the purposes of this exercise, we will continue with 

training. Click START TRAINING.

 5. Choose how long the model will be trained. More training time 

might have an effect on the model accuracy, but this may cost 

more for running on Cloud AutoML’s machines (see Figure 42-13). 

Again, click START TRAINING to begin building the model (see 

Figure 42-14).

Figure 42-12. Cloud AutoML Vision requesting for more training examples per 
image class
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 6. The training summary is shown in Figure 42-15.

Figure 42-13. Select training budget

Figure 42-14. Training vision model on Cloud AutoML Vision
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 7. AutoML Vision uses the set-aside test images to evaluate the 

quality of the model after training as seen in Figure 42-16. The F1 

plot showing the trade-off between precision and recall is shown 

in Figure 42-17. Also, a visual confusion matrix is provided to 

further evaluate the model quality (see Figure 42-18).

Figure 42-15. Cloud AutoML Vision: Training summary
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Figure 42-16. Cloud AutoML Vision: Model evaluation

Figure 42-17. F1 evaluation matrix on Cloud AutoML Vision
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 8. The custom image recognition model is exposed as a REST or 

Python API for integration into software applications as a prediction 

service (see Figure 42-19). We can test our model by uploading a 

sample image for classification as shown in Figure 42-20.

Figure 42-18. Confusion matrix for model evaluation on Cloud AutoML Vision

Figure 42-19. Cloud AutoML Vision: Model as a prediction service
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 9. To delete a model, click the triple dash and select Models to 

navigate to the Models Dashboard (see Figure 42-21). At the side 

of the model, click the triple dot and select Delete model (see 

Figure 42-22). Confirm deletion as shown in Figure 42-23. Note, 

however, that API calls affiliated with a deleted model will cease to 

be operational.

Figure 42-20. Test prediction service on Cloud AutoML Vision
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This chapter covered building and deploying custom image classification models 

using Google AutoML Cloud Vision. In the next chapter, we will discover how to build 

and deploy custom text classification models with Google Cloud AutoML for natural 

language processing.

Figure 42-21. Return to Models dashboard

Figure 42-23. Delete a model on Cloud AutoML Vision

Figure 42-22. Select model to delete
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CHAPTER 43

Google AutoML: Cloud 
Natural Language 
Processing
This chapter will build a language toxicity classification model to classify and recognize 

toxic and non-toxic or clean phrases using Google Cloud AutoML for natural language 

processing (NLP). The data used in this project is from the Toxic Comment Classification 

Challenge on Kaggle by Jigsaw and Google. The data is modified to have a sample of 

16,000 toxic and 16,000 non-toxic words as inputs to build the model on AutoML NLP.

 Enable AutoML NLP on GCP
The following steps will enable AutoML NLP on GCP:

 1. Click the triple dash in the top-left corner of the interface and 

select Natural Language under the category ARTIFICIAL 

INTELLIGENCE as shown in Figure 43-1.
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 2. From the screen that follows, click Get started with AutoML (see 

Figure 43-2).

Figure 43-1. Open Cloud AutoML for Natural Language

Figure 43-2. Click Get started with Cloud AutoML NLP
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 3. Click SET UP NOW to automatically setup the GCP project for 

working with Cloud AutoML NLP (see Figure 43-3). This process 

involves activating the API for AutoML and creating a bucket on 

GCP for storing the data input and output models. We will use this 

bucket in the next section.

 4. After configuration, the Cloud AutoML NLP Dashboard is 

activated (see Figure 43-4).

Figure 43-3. Auto-configure Cloud AutoML NLP

Figure 43-4. AutoML NLP dashboard
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 Preparing the Training Dataset
Let’s step through preparing the dataset for building a custom language classification 

model with Cloud AutoML NLP:

 1. The training input can either be a document in (.txt) format or as 

an in-line text in a (.csv) file. Multiple texts can be grouped as a 

compressed (.zip) file.

 2. For this project, text files are placed in sub-folders with their 

grouped output labels as the folder names. This is later used to 

create a CSV file containing the data file path and their labels. For 

example:

• [files]

• [toxic]

• [clean]

 3. Next, a CSV must be generated that points to the paths of the 

images and their corresponding label. Just like Cloud Vision, 

Cloud NLP uses the CSV file to point to the location of the training 

documents or words and their corresponding labels. The CSV 

file is placed in the same GCS bucket created AutoML NLP was 

configured. In our case, this bucket is named ‘gs://quantum-ally-

219323-lcm’. The following code segment prepares the data and 

produces a CSV file.

import numpy as np

import pandas as pd

import re

import pathlib

import os

# read the Toxic Comment Classification training dataset

data = pd.read_csv('./data/train.csv')

# add clean column label

data['clean'] = (1 - data.iloc[:, 2:].sum(axis=1) >= 1). 

astype(int)
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# merge all other non-clean comments to toxic

data.loc[data['clean'] == 0, ['toxic']] = 1

# select dataframe of clean examples

data_clean = data[data['clean'] == 1].sample(n=20000)

# select dataframe of toxic examples

data_toxic = data[data['toxic'] == 1].sample(n=16000)

# join into one dataframe

data = pd.concat([data_clean, data_toxic])

# remove unused columns

data.drop(['severe_toxic', 'obscene', 'threat', 'insult', 

'identity_hate'], axis=1, inplace=True)

# create text documents and place them in their folder classes.

for index, row in data.iterrows():

     comment_text = re.sub(r'[^\w\s]',",row['comment_text']).

rstrip().lstrip().strip()

    classes = "

    if (row['toxic'] == 1):

        classes = 'toxic'

    else:

        classes = 'clean'

     pathlib.Path("./file/{}".format(classes)).mkdir(parents=True, 

exist_ok=True)

     with open("./file/{}/text_{}.txt".format(classes,index), "w") 

as text_file:

        text_file.write(comment_text)

data_path = []

directory = 'file/'

# create data csv

for subdir, dirs, files in os.walk(directory):

    for file in files:

        filepath = subdir + os.sep + file
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        if filepath.endswith(".txt"):

             entry = ['{}/{}'.format('gs://quantum-ally-219323- 

lcm',filepath), os.path.basename(subdir)]

            data_path.append(entry)

# convert to Pandas DataFrame

data_pd = pd.DataFrame(np.array(data_path))

# export data to csv

data_pd.to_csv("data.csv", header=None, index=None)

 4. The preceding code will result in a CSV looking like the following 

sample:

gs://quantum-ally-219323-lcm/file/clean/text_100055.txt,clean

gs://quantum-ally-219323-lcm/file/clean/text_100059.txt,clean

gs://quantum-ally-219323-lcm/file/clean/text_100077.txt,clean

...

gs://quantum-ally-219323-lcm/file/toxic/text_141122.txt,toxic

gs://quantum-ally-219323-lcm/file/toxic/text_141138.txt,toxic

gs://quantum-ally-219323-lcm/file/toxic/text_141143.txt,toxic

The first part is the image path or URI, while the other is the 

document label.

 5. When preparing the text dataset, it is useful to have a ‘None_of_
the_above’ class. This class will contain documents that do not 

belong to any of the predicted classes. Adding this class can have 

an overall effect on the model accuracy.

 6. Navigate to the folder chapter and copy the image files to the GCS 

bucket. The flag -m initiates parallel uploads to speed up upload 

time of large document sizes to GCP.

gsutil -m cp -r file gs://quantum-ally-219323-lcm

 7. Copy the CSV data file containing the document paths and their 

labels to the GCS bucket.

gsutil cp data.csv gs://quantum-ally-219323-lcm/file/
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 Building a Custom Language Classification Model 
on Cloud AutoML NLP
This section will walk through creating a document dataset and building a custom 

language classification model on AutoML Vision.

 1. From the Cloud AutoML NLP dashboard, click NEW DATASET as 

shown in Figure 43- 5.

 2. To create a Dataset on Cloud AutoML NLP, set the following 

parameters as shown in Figure 43-6:

Figure 43-5. New Dataset on AutoML NLP
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 a. Dataset name: toxicity_dataset.

 b. Select a CSV file on Cloud Storage (this is the CSV file placed on the bucket 

created when Cloud AutoML was configured that contains the path to the 

text documents): gs://quantum-ally-219323-lcm/file/data.csv.

 c. Click CREATE DATASET to begin importing images (see Figure 43-7).

Figure 43-6. Create a Dataset on Cloud AutoML NLP
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 3. After importing the Dataset, click TRAIN (see Figure 43-8) to 

initiate the process of building a custom language classification 

model.

 4. In this example, we have a good enough number of training 

examples as seen in Figure 43-9, so hopefully, it makes sense 

to expect a good language classification model. Click START 
TRAINING to begin the training job.

Figure 43-7. Cloud AutoML NLP: Importing text items

Figure 43-8. Cloud AutoML NLP: Imported text documents and their labels
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 5. Accept the default model name, and click START TRAINING (see 

Figure 43-10) to begin building the model as seen in Figure 43-11. 

Note that this training might take about an hour to complete. When 

done, the user will get an email of completion.

Figure 43-9. Cloud AutoML NLP checking the adequacy of training examples

Figure 43-10. Accept the Model name and click on “Start Training”
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 6. The training summary is shown in Figure 43-12. The training 

phase lasted for approximately 4 hours and 45 minutes.

 7. AutoML NLP sets aside a portion of the documents as a test set 

in order to evaluate the quality of the model after training (see 

Figure 43-13). The F1 plot shows the trade- off between precision 

and recall. Also, a confusion matrix provides further insight into 

the model quality (see Figure 43-14).

Figure 43-11. Training the text classification model on Cloud AutoML NLP

Figure 43-12. Cloud AutoML NLP: Training summary
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Figure 43-13. Cloud AutoML NLP: Model evaluation

Figure 43-14. F1 evaluation plot and confusion matrix on Cloud AutoML NLP
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 8. The custom text classification model is exposed as a REST 

or Python API for integration into software applications as a 

prediction service (see Figure 43-15). We can test our model by 

uploading a sample image for classification. Figure 43-16 passes 

a clean text example to the model and it predicts correctly with a 

probability of 98%, while Figure 43-17 passes a toxic text example 

to the model. This example is also correctly classified with a 

probability score of 99%.

Figure 43-15. Cloud AutoML NLP model as a prediction service
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This chapter covered building and deploying custom text classification models using 

Google AutoML Cloud Vision. In the next chapter, we will build an end-to-end data 

science product on GCP.

Figure 43-16. Clean words example: AutoML NLP

Figure 43-17. Toxic words example: AutoML NLP
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CHAPTER 44

Model to Predict the 
Critical Temperature 
of Superconductors
This chapter builds a regression machine learning model to predict the critical 

temperature of superconductors. The features for this dataset were derived based on the 

following superconductor properties:

• Atomic mass

• First ionization energy

• Atomic radius

• Density

• Electron affinity

• Fusion heat

• Thermal conductivity

• Valence

And for each property, the mean, weighted mean, geometric mean, weighted 

geometric mean, entropy, weighted entropy, range, weighted range, standard deviation, 

and weighted standard deviation are extracted. Thus, this results in a total number of  

8 x 10 = 80 features. In addition to this, a feature that contains the number of elements in 

the superconductor is added to the design matrix. The predictor variable is the critical 

temperature of the superconductor. Hence, the dataset has a total of 81 features and 

21,263 rows.
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This dataset is made available by Kam Hamidieh of the University of Pennsylvania 

and submitted to the UCI Machine Learning Repository. The goal of this section is to 

demonstrate delivering an end-to-end machine learning modeling pipeline on Google 

Cloud Platform.

 The Modeling Architecture on GCP
The goal of this end-to-end project is to demonstrate building a large-scale learning 

model on GCP using the components already discussed in this book. The modeling 

architecture is illustrated in Figure 44-1. Let’s briefly explain the connections:

 1. Stage the raw data on GCS.

 2. Load data into BigQuery for analytics.

 3. Exploratory data analysis.

 4. Large-scale data processing with Dataflow.

 5. Place transformed training and evaluation data on GCS.

 6. Train the model on Cloud MLE.

 7. Place the trained model output on GCS.

 8. Deploy the model for inference on Cloud MLE.

Chapter 44  Model to prediCt the CritiCal teMperature of SuperConduCtorS



615

 Stage Raw Data in GCS
Retrieve the raw data from the book code repository for modeling:

• Create a GCS bucket.

gsutil mb gs://superconductor

• Navigate to the chapter folder and transfer the raw data to GCS.

gsutil cp train.csv gs://superconductor/raw-data/

 Load Data into BigQuery for Analytics
Move the dataset from Google Cloud Storage to BigQuery:

• Create a Dataset in BigQuery.

bq mk superconductor

Figure 44-1. Modeling architecture on GCP
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• Load raw data from GCS as a Table into the newly created BigQuery 

Dataset.

bq --location=US load --autodetect --source_format=CSV super 

conductor.superconductor gs://superconductor/raw-data/train.csv

• View created Table schema on BigQuery.

bq show superconductor.superconductor

Last modified        Schema         Total Rows   Total Bytes    

Expiration   Time Partitioning   Labels

------------- --------------------- ---------- -------------  

---------- ------------------- --------

  08 Dec 01:16:51   |- number_of_elements: string                

21264        25582000

                    |- mean_atomic_mass: string

                    |- wtd_mean_atomic_mass: string

                    |- wtd_mean_atomic_radius: string

                    |- gmean_atomic_radius: string

                    |- wtd_gmean_atomic_radius: string

                    |- entropy_atomic_radius: string

                    |- wtd_entropy_atomic_radius: string

                    ...

                    |- range_ThermalConductivity: string

                    |- wtd_range_ThermalConductivity: string

                    |- std_ThermalConductivity: string

                    |- wtd_std_ThermalConductivity: string

                    |- mean_Valence: string

                    |- wtd_std_Valence: string

                    |- critical_temp: string
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 Exploratory Data Analysis
The Table in BigQuery contains 21,264 rows. In the interest of speed and rapid iteration, 

we will not operate on all the rows of this dataset, but rather, we will select a thousand 

rows for data exploration, transformation, and machine learning spot checking.

import pandas as pd

%%bigquery --project ekabasandbox super_cond_df

WITH super_df AS (

SELECT

  number_of_elements, mean_atomic_mass, wtd_mean_atomic_mass,

  gmean_atomic_mass, wtd_gmean_atomic_mass, entropy_atomic_mass,

  wtd_entropy_atomic_mass, range_atomic_mass, wtd_range_atomic_mass,

  std_atomic_mass, wtd_std_atomic_mass, mean_fie, wtd_mean_fie,

  gmean_fie, wtd_gmean_fie, entropy_fie, wtd_entropy_fie, range_fie,

   wtd_range_fie, std_fie, wtd_std_fie, mean_atomic_radius, wtd_mean_atomic_

radius,

  gmean_atomic_radius, wtd_gmean_atomic_radius, entropy_atomic_radius,

  wtd_entropy_atomic_radius, range_atomic_radius, wtd_range_atomic_radius,

  std_atomic_radius, wtd_std_atomic_radius, mean_Density, wtd_mean_Density,

  gmean_Density, wtd_gmean_Density, entropy_Density, wtd_entropy_Density,

   range_Density, wtd_range_Density, std_Density, wtd_std_Density, mean_

ElectronAffinity,

   wtd_mean_ElectronAffinity, gmean_ElectronAffinity, wtd_gmean_

ElectronAffinity

   entropy_ElectronAffinity, wtd_entropy_ElectronAffinity, range_

ElectronAffinity,

   wtd_range_ElectronAffinity, std_ElectronAffinity, wtd_std_

ElectronAffinity,

   mean_FusionHeat, wtd_mean_FusionHeat, gmean_FusionHeat, wtd_gmean_

FusionHeat,

  entropy_FusionHeat, wtd_entropy_FusionHeat, range_FusionHeat,

   wtd_range_FusionHeat, std_FusionHeat, wtd_std_FusionHeat, mean_

ThermalConductivity,

   wtd_mean_ThermalConductivity, gmean_ThermalConductivity, wtd_gmean_

ThermalConductivity,
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   entropy_ThermalConductivity, wtd_entropy_ThermalConductivity, range_

ThermalConductivity,

   wtd_range_ThermalConductivity, std_ThermalConductivity, wtd_std_

ThermalConductivity,

  mean_Valence, wtd_mean_Valence, gmean_Valence, wtd_gmean_Valence,

  entropy_Valence, wtd_entropy_Valence, range_Valence, wtd_range_Valence,

   std_Valence, wtd_std_Valence, critical_temp, ROW_NUMBER() OVER (PARTITION 

BY number_of_elements) row_num

FROM

  `superconductor.superconductor` )

SELECT

  *
FROM

  super_df

LIMIT

  1000

# Dataframe shape

super_cond_df.shape

Next, we’ll explore the dataset to gain more understanding of the features and their 

relationships. This process is called exploratory data analysis (EDA).

• Check the column datatypes.

# check column datatypes

super_cond_df.dtypes

number_of_elements                   int64

mean_atomic_mass                   float64

wtd_mean_atomic_mass               float64

gmean_atomic_mass                  float64

wtd_gmean_atomic_mass              float64

entropy_atomic_mass                float64

wtd_entropy_atomic_mass            float64

                                    ...

range_Valence                        int64

wtd_range_Valence                  float64
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std_Valence                        float64

wtd_std_Valence                    float64

critical_temp                      float64

row_num                              int64

Length: 82, dtype: object

From the results, all the data attributes are of numeric type:

• Next, we will use a tool called pandas profiling. This package 

produces a full range of exploratory data analytics for a Pandas 

DataFrame object. The result includes summary statistics of 

the dataset such as the number of variables, number of data 

observations, and number of missing values (if any). It also includes 

a histogram visualization for each attribute, descriptive statistics 

(such as the mean, mode, standard deviation, sum, median 

absolute deviation, coefficient of variation, kurtosis, and skewness), 

and quantile statistics (such as minimum value, Q1, median, Q3, 

maximum, range, and interquartile range). Also, the profile produces 

multivariate correlation graphs and produces a list of variables that 

are highly correlated.

Import the pandas profiling library.

# pandas profiling

import pandas_profiling

Run the profile and save the output.

# run report

profile_result = pandas_profiling.ProfileReport(super_cond_df)

To view the complete report, run the saved output variable:

profile_result

• Retrieve the rejected variables (i.e, attributes with high correlation).

# get rejected variables (i.e, attributes with high correlation)

rejected_vars = profile_result.get_rejected_variables
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• Filter the dataset columns by removing the variables with high 

correlation.

# filter from attributes set

super_cond_df.drop(rejected_vars(), axis=1, inplace=True)

• Next, standardize the dataset values so that they fall within the same 

scale range (we’ll be using Scikit-learn minmax_scale function). 

Standardizing the values improves the predictive performance of the 

model because the optimization algorithm can better minimize the 

cost function.

# scale the dataframe values

from sklearn.preprocessing import minmax_scale

dataset = pd.DataFrame(minmax_scale(super_cond_df), columns= 

 super_cond_df.columns)

• Also, the attribute values are normalized so that the distribution more 

closely resembles a normal or Gaussian distribution. This technique 

is also noted to have a positive impact on the model performance.

# normalize the dataframe

from sklearn.preprocessing import Normalizer

dataset = pd.DataFrame(Normalizer().fit(dataset).

transform(dataset), columns=dataset.columns)

• Plot the histogram distribution of the variables (see Figure 44-2).

# plot the histogram distribution of the variables

import matplotlib.pyplot as plt

%matplotlib inline

dataset.hist(figsize=(18, 18))

plt.show()
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 Spot Checking Machine Learning Algorithms
With our reduced dataset, let’s sample a few candidate algorithms to have an idea on 

their performance and which is more likely to work best for this problem domain. Let’s 

take the following steps:

• The dataset is split into a design matrix and their corresponding label 

vector.

Figure 44-2. Histogram showing variable distribution
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# split features and labels

dataset_y = dataset['critical_temp']

dataset_X = dataset.drop(['critical_temp', 'row_num'], axis=1)

• Randomly split the dataset into a training set and a test set.

# train-test split

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(dataset_X, 

dataset_y, shuffle=True)

• Outline the candidate algorithms to create a model.

# spot-check ML algorithms

from sklearn.linear_model import LinearRegression

from sklearn.tree import DecisionTreeRegressor

from sklearn.ensemble import RandomForestRegressor

from sklearn.svm import SVR

from xgboost import XGBRegressor

from sklearn.neural_network import MLPRegressor

from sklearn.metrics import mean_squared_error

from math import sqrt

• Create a dictionary of the candidate algorithms.

ml_models = {

    'Linear Reg.': LinearRegression(),

    'Dec. Trees': DecisionTreeRegressor(),

    'Rand. Forest': RandomForestRegressor(),

    'SVM': SVR(),

    'XGBoost': XGBRegressor(),

    'NNets':  MLPRegressor(warm_start=True, early_stopping=True, 

learning_rate='adaptive')

}
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• For each candidate algorithm, train with the training set and evaluate 

on the hold-out test set.

ml_results = {}

for name, model in ml_models.items():

    # fit model on training data

    model.fit(X_train, y_train)

    # make predictions for test data

    prediction = model.predict(X_test)

    # evaluate predictions

    rmse = sqrt(mean_squared_error(y_test, prediction))

    # append accuracy results to dictionary

    ml_results[name] = rmse

    print('RMSE: {} -> {}'.format(name, rmse))

'Output':

RMSE: SVM -> 0.0748587427887

RMSE: XGBoost -> 0.0222440358318

RMSE: Rand. Forest -> 0.0227742725953

RMSE: Linear Reg. -> 0.025615918858

RMSE: Dec. Trees -> 0.0269103025639

RMSE: NNets -> 0.0289585489638

• The plots of the model performances are shown in Figure 44-3.

plt.plot(ml_results.keys(), ml_results.values(), 'o')

plt.title("RMSE estimates for ML algorithms")

plt.xlabel('Algorithms')

plt.ylabel('RMSE')
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 Dataflow and TensorFlow Transform for Large-Scale 
Data Processing
In this section, we use Google Cloud Dataflow to carry out large-scale data 

processing on humongous datasets. Google Dataflow as earlier discussed is a 

serverless, parallel, and distributed infrastructure for running jobs for batch and 

stream data processing. Dataflow is a vital component in architecting a production 

pipeline for building and deploying large-scale machine learning products. In 

conjunction with Cloud Dataflow, we use TensorFlow Transform (TFT), a library built 

for preprocessing with Tensorflow. The goal of using TFT is to have a consistent set 

of transformation operations applied to the dataset when the model is trained and 

when it is served or deployed for consumption. In the following steps, each code 

block is executed in a Notebook cell:

Figure 44-3. RMSE estimates for ML algorithms
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• Import the relevant libraries. Remember that Apache Beam (as of 

now) only supports Python 2. Moreso, TFT only works with a specific 

combination of Tensorflow and Apache Beam packages. In this case, 

TFT 0.8.0 works with TF 1.8 and Apache Beam [GCP] 2.5.0. After 

importing the libraries, be sure to restart the Notebook kernel.

At this point, change the Notebook runtime type to Python 2.0.

%%bash

source activate py2env

pip install --upgrade tensorflow

pip install --upgrade apache-beam[gcp]

pip install --upgrade tensorflow_transform==0.8.0

apt-get install libsnappy-dev

pip install --upgrade python-snappy==0.5.1

Restart the kernel after you do a pip install.

• Connect to GCP.

from google.colab import auth

auth.authenticate_user()

print('Authenticated')

# configure GCP project - update with your parameters

project_id = 'ekabasandbox'

bucket_name = 'superconductor'

region = 'us-central1'

tf_version = '1.8'

# configure gcloud

!gcloud config set project {project_id}

!gcloud config set compute/region {region}

• Create query method for retrieving training and testing datasets from 

BigQuery.

def create_query(phase, EVERY_N=None):

    """
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     EVERY_N: Integer. Sample one out of every N rows from the full 

dataset. Larger values will yield smaller sample

    phase: 1=train 2=valid

    """

    base_query = """

    WITH super_df AS (

      SELECT

        number_of_elements, mean_atomic_mass, wtd_mean_atomic_mass,

         gmean_atomic_mass, wtd_gmean_atomic_mass, entropy_atomic_

mass,

         wtd_entropy_atomic_mass, range_atomic_mass, wtd_range_

atomic_mass,

         std_atomic_mass, wtd_std_atomic_mass, mean_fie, wtd_mean_fie,

         gmean_fie, wtd_gmean_fie, entropy_fie, wtd_entropy_fie, 

range_fie,

         wtd_range_fie, std_fie, wtd_std_fie, mean_atomic_radius, 

wtd_mean_atomic_radius,

         gmean_atomic_radius, wtd_gmean_atomic_radius, entropy_

atomic_radius,

         wtd_entropy_atomic_radius, range_atomic_radius, wtd_range_

atomic_radius,

         std_atomic_radius, wtd_std_atomic_radius, mean_Density, 

wtd_mean_Density,

         gmean_Density, wtd_gmean_Density, entropy_Density, wtd_

entropy_Density,

         range_Density, wtd_range_Density, std_Density, wtd_std_

Density, mean_ElectronAffinity,

         wtd_mean_ElectronAffinity, gmean_ElectronAffinity, wtd_

gmean_ElectronAffinity

         entropy_ElectronAffinity, wtd_entropy_ElectronAffinity, 

 range_ElectronAffinity,

         wtd_range_ElectronAffinity, std_ElectronAffinity, wtd_std_

ElectronAffinity,

         mean_FusionHeat, wtd_mean_FusionHeat, gmean_FusionHeat, 

wtd_gmean_FusionHeat,

Chapter 44  Model to prediCt the CritiCal teMperature of SuperConduCtorS



627

         entropy_FusionHeat, wtd_entropy_FusionHeat, range_FusionHeat,

         wtd_range_FusionHeat, std_FusionHeat, wtd_std_FusionHeat, 

mean_ThermalConductivity,

         wtd_mean_ThermalConductivity, gmean_ThermalConductivity, 

wtd_gmean_ThermalConductivity,

         entropy_ThermalConductivity, wtd_entropy_

ThermalConductivity, range_ThermalConductivity,

         wtd_range_ThermalConductivity, std_ThermalConductivity, 

wtd_std_ThermalConductivity,

         mean_Valence, wtd_mean_Valence, gmean_Valence, wtd_gmean_

Valence,

         entropy_Valence, wtd_entropy_Valence, range_Valence, wtd_

range_Valence,

         std_Valence, wtd_std_Valence, critical_temp, ROW_NUMBER() 

OVER (PARTITION BY number_of_elements) row_num

      FROM

        `superconductor.superconductor`)

      SELECT

        *
      FROM

        super_df

    """

    if EVERY_N == None:

        if phase < 2:

            # training

             query = "{0} WHERE MOD(row_num,4) < 2".format(base_

query)

        else:

             query = "{0} WHERE MOD(row_num,4) = {1}".format(base_

query, phase)

    else:

         query = "{0} WHERE MOD(row_num,{1}) = {2}".format(base_

query, EVERY_N, phase)

    return query
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• Create requirements.txt file to install dependencies (in this case 

tensorflow_transform) on Dataflow worker machines.

%%writefile requirements.txt

tensorflow-transform==0.8.0

• The following code block uses Apache Beam to build a data 

preprocessing pipeline to transform the raw dataset into a form 

suitable for building a predictive model. The transformation is 

the same procedure as done earlier with the reduced dataset, 

which included removing columns that had a high correlation and 

scaling the dataset numeric values to be within the same range. 

The output of the preprocessing pipeline produces a training set 

and an evaluation set. The Beam pipeline also uses TensorFlow 

Transform to save the metadata (both raw and processed) of the data 

transformation, as well as the transformed graph which can later 

be used as part of the serving function of the deployed model. We 

made this example to include the use of TensorFlow Transform for 

reference purposes.

import datetime

import snappy

import tensorflow as tf

import apache_beam as beam

import tensorflow_transform as tft

from tensorflow_transform.beam import impl as beam_impl

def get_table_header(projection_fields):

    header = "

    for cnt, val in enumerate(projection_fields):

        if cnt > 0:

            header+=','+val

        else:

            header+=val

    return header

def preprocess_tft(inputs):

    result = {}
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    for attr, value in inputs.items():

        result[attr] = tft.scale_to_0_1(value)

    return result

def cleanup(rowdict):

    # pull columns from BQ and create a line

     CSV_COLUMNS = 'number_of_elements,mean_atomic_mass,entropy_

atomic_mass,wtd_entropy_atomic_mass,range_atomic_mass,wtd_

range_atomic_mass,mean_fie,wtd_mean_fie,wtd_entropy_

fie,range_fie,wtd_range_fie,mean_atomic_radius,wtd_mean_

atomic_radius,range_atomic_radius,wtd_range_atomic_

radius,mean_Density,entropy_Density,wtd_entropy_Density,range_

Density,wtd_range_Density,mean_ElectronAffinity,wtd_

entropy_ElectronAffinity,range_ElectronAffinity,wtd_range_

ElectronAffinity,mean_FusionHeat,gmean_FusionHeat,entropy_

FusionHeat,wtd_entropy_FusionHeat,range_FusionHeat,wtd_

range_FusionHeat,mean_ThermalConductivity,wtd_mean_

ThermalConductivity,gmean_ThermalConductivity,entropy_

ThermalConductivity,wtd_entropy_ThermalConductivity, 

range_ThermalConductivity,wtd_range_ThermalConductivity, 

mean_Valence,wtd_mean_Valence,range_Valence,wtd_range_

Valence,wtd_std_Valence,critical_temp'.split(',')

    def tofloat(value, ifnot):

        try:

            return float(value)

        except (ValueError, TypeError):

            return ifnot

    result = {

       k : tofloat(rowdict[k], -99) if k in rowdict else -99 for k 

in CSV_COLUMNS

    }

     row = ('{}'+',{}'*(len(result)-1)).format(result['number_of_

elements'],result['mean_atomic_mass'],
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         result['entropy_atomic_mass'], result['wtd_entropy_atomic_

mass'],result['range_atomic_mass'],

         result['wtd_range_atomic_mass'],result['mean_fie'], 

result['wtd_mean_fie'],

         result['wtd_entropy_fie'],result['range_fie'],result['wtd_

range_fie'],

         result['mean_atomic_radius'],result['wtd_mean_atomic_radius'],

         result['range_atomic_radius'],result['wtd_range_atomic_

radius'],result['mean_Density'],

         result['entropy_Density'],result['wtd_entropy_Density'], 

result['range_Density'],

         result['wtd_range_Density'],result['mean_ElectronAffinity'],

         result['wtd_entropy_ElectronAffinity'],result['range_

ElectronAffinity'],

         result['wtd_range_ElectronAffinity'],result['mean_

FusionHeat'],result['gmean_FusionHeat'],

         result['entropy_FusionHeat'],result['wtd_entropy_

FusionHeat'],result['range_FusionHeat'],

         result['wtd_range_FusionHeat'],result['mean_

ThermalConductivity'],

         result['wtd_mean_ThermalConductivity'],result['gmean_

ThermalConductivity'],

         result['entropy_ThermalConductivity'],result['wtd_entropy_

ThermalConductivity'],

         result['range_ThermalConductivity'],result['wtd_range_

ThermalConductivity'],

         result['mean_Valence'],result['wtd_mean_Valence'], 

result['range_Valence'],

         result['wtd_range_Valence'],result['wtd_std_Valence'], 

result['critical_temp'])

    yield row

def preprocess():

    import os

    import os.path

    import datetime
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    from apache_beam.io import WriteToText

    from apache_beam.io import tfrecordio

    from tensorflow_transform.coders import example_proto_coder

    from tensorflow_transform.tf_metadata import dataset_metadata

    from tensorflow_transform.tf_metadata import dataset_schema

    from tensorflow_transform.beam import tft_beam_io

     from tensorflow_transform.beam.tft_beam_io import transform_

fn_io

     job_name = 'preprocess-features' + '-' + datetime.datetime.

now().strftime('%y%m%d-%H%M%S')

    print 'Launching Dataflow job {} ... hang on'.format(job_name)

    OUTPUT_DIR = 'gs://{0}/preproc_csv/'.format(bucket_name)

    import subprocess

    subprocess.call('gsutil rm -r {}'.format(OUTPUT_DIR).split())

    EVERY_N = 3

    options = {

       'staging_location': os.path.join(OUTPUT_DIR, 'tmp', 'staging'),

      'temp_location': os.path.join(OUTPUT_DIR, 'tmp'),

      'job_name': job_name,

      'project': project_id,

      'max_num_workers': 24,

      'teardown_policy': 'TEARDOWN_ALWAYS',

      'no_save_main_session': True,

      'requirements_file': 'requirements.txt'

    }

    opts = beam.pipeline.PipelineOptions(flags=[], **options)

    RUNNER = 'DataflowRunner'

    # set up metadata

    raw_data_schema = {

       colname : dataset_schema.ColumnSchema(tf.float32, [], 

dataset_schema.FixedColumnRepresentation())

                       for colname in 'number_of_elements,mean_atomic_ 

mass,entropy_atomic_mass,wtd_entropy_atomic_ 

mass,range_atomic_mass,wtd_range_atomic_mass, 
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mean_fie,wtd_mean_fie,wtd_entropy_fie,range_ 

fie,wtd_range_fie,mean_atomic_radius,wtd_

mean_atomic_radius,range_atomic_radius,wtd_ 

range_atomic_radius,mean_Density,entropy_

Density,wtd_entropy_Density,range_Density, 

wtd_range_Density,mean_ElectronAffinity,wtd_

entropy_ElectronAffinity,range_

ElectronAffinity,wtd_range_ElectronAffinity, 

mean_FusionHeat,gmean_FusionHeat,entropy_

FusionHeat,wtd_entropy_FusionHeat,range_

FusionHeat,wtd_range_FusionHeat, 

mean_ThermalConductivity, 

wtd_mean_ThermalConductivity, 

gmean_ThermalConductivity, 

entropy_ThermalConductivity, 

wtd_entropy_ThermalConductivity, 

range_ThermalConductivity,wtd_range_

ThermalConductivity,mean_Valence,wtd_mean_

Valence,range_Valence,wtd_range_Valence,wtd_

std_Valence,critical_temp'.split(',')

    }

     raw_data_metadata = dataset_metadata.DatasetMetadata(dataset_

schema.Schema(raw_data_schema))

    # run Beam

    with beam.Pipeline(RUNNER, options=opts) as p:

         with beam_impl.Context(temp_dir=os.path.join 

(OUTPUT_DIR, 'tmp')):

            # save the raw data metadata

            _ = (raw_data_metadata

              | 'WriteInputMetadata' >> tft_beam_io.WriteMetadata(

                   os.path.join(OUTPUT_DIR, 'metadata/rawdata_

metadata'),

                  pipeline=p))

             projection_fields = ['number_of_elements',  

'mean_atomic_mass', 'entropy_atomic_mass',
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                                  'wtd_entropy_atomic_mass', 

'range_atomic_mass',

                                  'wtd_range_atomic_mass', 'mean_

fie', 'wtd_mean_fie',

                                  'wtd_entropy_fie', 'range_fie', 

'wtd_range_fie',

                                  'mean_atomic_radius',  'wtd_mean_

atomic_radius',

                                  'range_atomic_radius', 'wtd_

range_atomic_radius', 'mean_

Density',

                                  'entropy_Density', 'wtd_entropy_

Density', 'range_Density',

                                  'wtd_range_Density', 'mean_

ElectronAffinity',

                                  'wtd_entropy_ElectronAffinity', 

'range_ElectronAffinity',

                                  'wtd_range_ElectronAffinity', 

'mean_FusionHeat', 'gmean_

FusionHeat',

                                  'entropy_FusionHeat', 'wtd_

entropy_FusionHeat', 'range_

FusionHeat',

                                  'wtd_range_FusionHeat', 'mean_

ThermalConductivity',

                                  'wtd_mean_ThermalConductivity', 

 'gmean_ThermalConductivity',

                                  'entropy_ThermalConductivity', 

'wtd_entropy_

ThermalConductivity',

                                  'range_ThermalConductivity', 

'wtd_range_ThermalConductivity',

                                  'mean_Valence', 'wtd_mean_

Valence', 'range_Valence',

                                  'wtd_range_Valence', 'wtd_std_

Valence', 'critical_temp']
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            header = get_table_header(projection_fields)

            # analyze and transform training

            raw_data = (p

               | 'train_read' >> beam.io.Read(beam.

io.BigQuerySource(query=create_query(1, EVERY_N), 

use_standard_sql=True)))

            raw_dataset = (raw_data, raw_data_metadata)

            transformed_dataset, transform_fn = (

                 raw_dataset | beam_impl.AnalyzeAndTransformDataset 

(preprocess_tft))

             transformed_data, transformed_metadata = transformed_

dataset

            _ = (transformed_data

                 | 'train_filter' >> beam.FlatMap(cleanup)

                 |  'WriteTrainData' >> beam.io.Write(beam.

io.WriteToText(

                       file_path_prefix=os.path.join(OUTPUT_DIR, 

'data', 'train'),

                      file_name_suffix=".csv",

                      shard_name_template="-SS-of-NN",

                      header=header,

                      num_shards=1)))

            # transform eval data

            raw_test_data = (p

              |  'eval_read' >> beam.io.Read(beam.

io.BigQuerySource(query=create_query(2, EVERY_N), 

use_standard_sql=True)))

            raw_test_dataset = (raw_test_data, raw_data_metadata)

            transformed_test_dataset = (

                 (raw_test_dataset, transform_fn) | beam_impl.

TransformDataset())

            transformed_test_data, _ = transformed_test_dataset
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            _ = (transformed_test_data

                 | 'eval_filter' >> beam.FlatMap(cleanup)

                 |  'WriteTestData' >> beam.io.Write(beam.

io.WriteToText(

                         file_path_prefix=os.path.join(OUTPUT_DIR, 

'data', 'eval'),

                        file_name_suffix=".csv",

                        shard_name_template="-SS-of-NN",

                        num_shards=1)))

            _ = (transform_fn

                 | 'WriteTransformFn' >>

                  transform_fn_io.WriteTransformFn(os.path.

join(OUTPUT_DIR, 'metadata')))

preprocess()

• The Dataflow pipeline graph is shown in Figure 44-4.

Figure 44-4. Dataflow pipeline graph
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 Training on Cloud MLE
The following code example will train the processed datasets on Google Cloud MLE. At 

this point, change the Notebook runtime type to Python 3.0.

• Configure GCP project.

# configure GCP project - update with your parameters

project_id = 'ekabasandbox'

bucket_name = 'superconductor'

region = 'us-central1'

tf_version = '1.8'

import os

os.environ['bucket_name'] = bucket_name

os.environ['tf_version'] = tf_version

os.environ['project_id'] = project_id

os.environ['region'] = region

• Create directory “trainer”.

# create directory trainer

import os

try:

    os.makedirs('./trainer')

    print('directory created')

except OSError:

    print('could not create directory')

• Create file __init__.py.

%%writefile trainer/__init__.py

• Create the trainer file task.py. Replace the bucket name with your 

values.

%%writefile trainer/task.py

import argparse

import json

import os
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import tensorflow as tf

from tensorflow.contrib.training.python.training import hparam

import trainer.model as model

def _get_session_config_from_env_var():

     """Returns a tf.ConfigProto instance that has appropriate 

device_filters set.

    """

    tf_config = json.loads(os.environ.get('TF_CONFIG', '{}'))

     if (tf_config and 'task' in tf_config and 'type' in tf_

config['task'] and

       'index' in tf_config['task']):

        # Master should only communicate with itself and ps

        if tf_config['task']['type'] == 'master':

             return tf.ConfigProto(device_filters=['/job:ps', '/

job:master'])

        # Worker should only communicate with itself and ps

        elif tf_config['task']['type'] == 'worker':

            return tf.ConfigProto(device_filters=[

                '/job:ps',

                '/job:worker/task:%d' % tf_config['task']['index']

            ])

    return None

def train_and_evaluate(hparams):

    """Run the training and evaluate using the high level API."""

    train_input = lambda: model.input_fn(

        tf.gfile.Glob(hparams.train_files),

        num_epochs=hparams.num_epochs,

        batch_size=hparams.train_batch_size

    )

    # Don't shuffle evaluation data

    eval_input = lambda: model.input_fn(

        tf.gfile.Glob(hparams.eval_files),
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        batch_size=hparams.eval_batch_size,

        shuffle=False

    )

    train_spec = tf.estimator.TrainSpec(

        train_input, max_steps=hparams.train_steps)

    exporter = tf.estimator.FinalExporter(

         'superconductor', model.SERVING_FUNCTIONS[hparams.export_

format])

    eval_spec = tf.estimator.EvalSpec(

        eval_input,

        steps=hparams.eval_steps,

        exporters=[exporter],

        name='superconductor-eval')

    run_config = tf.estimator.RunConfig(

        session_config=_get_session_config_from_env_var())

    run_config = run_config.replace(model_dir=hparams.job_dir)

    print('Model dir %s' % run_config.model_dir)

    estimator = model.build_estimator(

        learning_rate=hparams.learning_rate,

        # Construct layers sizes with exponential decay

        hidden_units=[

             max(2, int(hparams.first_layer_size * hparams.scale_

factor**i))

            for i in range(hparams.num_layers)

        ],

        config=run_config,

        output_dir=hparams.output_dir)

    tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec)

if __name__ == '__main__':

    parser = argparse.ArgumentParser()

    # Input Arguments

    parser.add_argument(

        '--train-files',

Chapter 44  Model to prediCt the CritiCal teMperature of SuperConduCtorS



639

        help='GCS file or local paths to training data',

        nargs='+',

        # update the bucket name

         default='gs://{}/preproc_csv/data/{}*{}*'.format('super 

conductor', tf.estimator.ModeKeys.TRAIN, 'of'))

    parser.add_argument(

        '--eval-files',

        help='GCS file or local paths to evaluation data',

        nargs='+',

        # update the bucket name

         default='gs://{}/preproc_csv/data/{}*{}*'.format('super 

conductor', tf.estimator.ModeKeys.EVAL, 'of'))

    parser.add_argument(

        '--job-dir',

        help='GCS location to write checkpoints and export models',

        default='/tmp/superconductor-estimator')

    parser.add_argument(

        '--num-epochs',

        help="""\

        Maximum number of training data epochs on which to train.

        If both --max-steps and --num-epochs are specified,

        the training job will run for --max-steps or --num-epochs,

         whichever occurs first. If unspecified will run for  

--max-steps.\

        """,

        type=int)

    parser.add_argument(

        '--train-batch-size',

        help='Batch size for training steps',

        type=int,

        default=20)

    parser.add_argument(

        '--eval-batch-size',

        help='Batch size for evaluation steps',

        type=int,

        default=20)
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    parser.add_argument(

        '--learning-rate',

        help='The training learning rate',

        default=1e-4,

        type=float)

    parser.add_argument(

        '--first-layer-size',

        help='Number of nodes in the first layer of the DNN',

        default=256,

        type=int)

    parser.add_argument(

         '--num-layers', help='Number of layers in the DNN', 

default=3, type=int)

    parser.add_argument(

        '--scale-factor',

         help='How quickly should the size of the layers in the DNN 

decay',

        default=0.7,

        type=float)

    parser.add_argument(

        '--train-steps',

        help="""\

         Steps to run the training job for. If --num-epochs is not 

specified,

         this must be. Otherwise the training job will run 

indefinitely.\

        """,

        default=100,

        type=int)

    parser.add_argument(

        '--eval-steps',

         help='Number of steps to run evalution for at each 

checkpoint',

        default=100,

        type=int)
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    parser.add_argument(

        '--export-format',

        help='The input format of the exported SavedModel binary',

        choices=['JSON', 'CSV', 'EXAMPLE'],

        default='CSV')

    parser.add_argument(

        '--output-dir',

        help='Location of the exported model',

        nargs='+')

    parser.add_argument(

        '--verbosity',

        choices=['DEBUG', 'ERROR', 'FATAL', 'INFO', 'WARN'],

        default='INFO')

    args, _ = parser.parse_known_args()

    # Set python level verbosity

    tf.logging.set_verbosity(args.verbosity)

    # Set C++ Graph Execution level verbosity

    os.environ['TF_CPP_MIN_LOG_LEVEL'] = str(

        tf.logging.__dict__[args.verbosity] / 10)

    # Run the training job

    hparams = hparam.HParams(**args.__dict__)

    train_and_evaluate(hparams)

• Create the file model.py that contains the model code.

%%writefile trainer/model.py

import six

import tensorflow as tf

from tensorflow.python.estimator.model_fn import ModeKeys as Modes

# Define the format of your input data including unused columns.

CSV_COLUMNS = [

    'number_of_elements', 'mean_atomic_mass', 'entropy_atomic_mass',

   'wtd_entropy_atomic_mass', 'range_atomic_mass',
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   'wtd_range_atomic_mass', 'mean_fie', 'wtd_mean_fie',

   'wtd_entropy_fie', 'range_fie', 'wtd_range_fie',

   'mean_atomic_radius', 'wtd_mean_atomic_radius',

    'range_atomic_radius', 'wtd_range_atomic_radius', 'mean_

Density',

   'entropy_Density', 'wtd_entropy_Density', 'range_Density',

   'wtd_range_Density', 'mean_ElectronAffinity',

   'wtd_entropy_ElectronAffinity', 'range_ElectronAffinity',

    'wtd_range_ElectronAffinity', 'mean_FusionHeat', 'gmean_

FusionHeat',

    'entropy_FusionHeat', 'wtd_entropy_FusionHeat', 'range_

FusionHeat',

   'wtd_range_FusionHeat', 'mean_ThermalConductivity',

   'wtd_mean_ThermalConductivity', 'gmean_ThermalConductivity',

    'entropy_ThermalConductivity', 'wtd_entropy_

ThermalConductivity',

   'range_ThermalConductivity', 'wtd_range_ThermalConductivity',

   'mean_Valence', 'wtd_mean_Valence', 'range_Valence',

   'wtd_range_Valence', 'wtd_std_Valence', 'critical_temp'

]

CSV_COLUMN_DEFAULTS = [[0.0] for i in range(0, len(CSV_COLUMNS))]

LABEL_COLUMN = 'critical_temp'

# Define the initial ingestion of each feature used by your model.

# Additionally, provide metadata about the feature.

INPUT_COLUMNS = [tf.feature_column.numeric_column(i) for i in CSV_

COLUMNS[:-1]]

UNUSED_COLUMNS = set(CSV_COLUMNS) - {col.name for col in INPUT_

COLUMNS} - \

    {LABEL_COLUMN}

def build_estimator(config, output_dir, hidden_units=None, 

learning_rate=None):

    """

    Deep NN Regression model.
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    Args:

         config: (tf.contrib.learn.RunConfig) defining the runtime 

environment for

          the estimator (including model_dir).

         hidden_units: [int], the layer sizes of the DNN (input 

layer first)

        learning_rate: (int), the learning rate for the optimizer.

    Returns:

        A DNNRegressor

    """

     (number_of_elements,mean_atomic_mass,entropy_atomic_mass,wtd_

entropy_atomic_mass, \

       range_atomic_mass,wtd_range_atomic_mass,mean_fie,wtd_mean_

fie,wtd_entropy_fie,range_fie,\

       wtd_range_fie,mean_atomic_radius,wtd_mean_atomic_

radius,range_atomic_radius,wtd_range_atomic_radius,\

       mean_Density,entropy_Density,wtd_entropy_Density,range_

Density,wtd_range_Density,mean_ElectronAffinity,\

       wtd_entropy_ElectronAffinity,range_ElectronAffinity,wtd_

range_ElectronAffinity,mean_FusionHeat,\

        gmean_FusionHeat,entropy_FusionHeat,wtd_entropy_

FusionHeat,range_FusionHeat,wtd_range_FusionHeat,\

       mean_ThermalConductivity,wtd_mean_ThermalConductivity,gmean_

ThermalConductivity,entropy_ThermalConductivity,\

       wtd_entropy_ThermalConductivity,range_

ThermalConductivity,wtd_range_ThermalConductivity,mean_

Valence,\

       wtd_mean_Valence,range_Valence,wtd_range_Valence,wtd_std_

Valence) = INPUT_COLUMNS

     columns = [number_of_elements,mean_atomic_mass,entropy_atomic_

mass,wtd_entropy_atomic_mass, \

       range_atomic_mass,wtd_range_atomic_mass,mean_fie,wtd_mean_

fie,wtd_entropy_fie,range_fie,\

       wtd_range_fie,mean_atomic_radius,wtd_mean_atomic_

radius,range_atomic_radius,wtd_range_atomic_radius,\
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       mean_Density,entropy_Density,wtd_entropy_Density,range_

Density,wtd_range_Density,mean_ElectronAffinity,\

       wtd_entropy_ElectronAffinity,range_ElectronAffinity,wtd_

range_ElectronAffinity,mean_FusionHeat,\

       gmean_FusionHeat,entropy_FusionHeat,wtd_entropy_FusionHeat, 

range_FusionHeat,wtd_range_FusionHeat,\

       mean_ThermalConductivity,wtd_mean_ThermalConductivity, 

gmean_ThermalConductivity,entropy_ThermalConductivity,\

       wtd_entropy_ThermalConductivity,range_ThermalConductivity, 

wtd_range_ThermalConductivity,mean_Valence,\

       wtd_mean_Valence,range_Valence,wtd_range_Valence,wtd_std_

Valence]

    estimator = tf.estimator.DNNRegressor(

      model_dir=output_dir,

      config=config,

      feature_columns=columns,

      hidden_units=hidden_units or [256, 128, 64],

      optimizer=tf.train.AdamOptimizer(learning_rate)

    )

    # add extra evaluation metric for hyperparameter tuning

     estimator = tf.contrib.estimator.add_metrics(estimator, add_

eval_metrics)

    return estimator

def add_eval_metrics(labels, predictions):

    pred_values = predictions['predictions']

    return {

         'rmse': tf.metrics.root_mean_squared_error(labels,  

pred_values)

    }

# [START serving-function]

def csv_serving_input_fn():

    """Build the serving inputs."""

    csv_row = tf.placeholder(shape=[None], dtype=tf.string)
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    features = _decode_csv(csv_row)

    # Ignore label column

    features.pop(LABEL_COLUMN)

    return tf.estimator.export.ServingInputReceiver(features,

                                               {'csv_row': csv_row})

def example_serving_input_fn():

    """Build the serving inputs."""

    example_bytestring = tf.placeholder(

      shape=[None],

      dtype=tf.string,

    )

    features = tf.parse_example(

      example_bytestring,

      tf.feature_column.make_parse_example_spec(INPUT_COLUMNS))

    return tf.estimator.export.ServingInputReceiver(

      features, {'example_proto': example_bytestring})

def json_serving_input_fn():

    """Build the serving inputs."""

    inputs = {}

    for feat in INPUT_COLUMNS:

         inputs[feat.name] = tf.placeholder(shape=[None], 

dtype=feat.dtype)

    return tf.estimator.export.ServingInputReceiver(inputs, inputs)

# [END serving-function]

SERVING_FUNCTIONS = {

  'JSON': json_serving_input_fn,

  'EXAMPLE': example_serving_input_fn,

  'CSV': csv_serving_input_fn

}

def _decode_csv(line):

     """Takes the string input tensor and returns a dict of rank-2 

tensors."""
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    # Takes a rank-1 tensor and converts it into rank-2 tensor

    row_columns = tf.expand_dims(line, -1)

     columns = tf.decode_csv(row_columns, record_defaults=CSV_

COLUMN_DEFAULTS)

    features = dict(zip(CSV_COLUMNS, columns))

    # Remove unused columns

    for col in UNUSED_COLUMNS:

        features.pop(col)

    return features

def input_fn(filenames, num_epochs=None, shuffle=True, skip_

header_lines=1, batch_size=200):

    """Generates features and labels for training or evaluation.

     This uses the input pipeline based approach using file name queue

    to read data so that entire data is not loaded in memory.

    Args:

      filenames: [str] A List of CSV file(s) to read data from.

       num_epochs: (int) how many times through to read the data. 

If None will loop through data indefinitely

       shuffle: (bool) whether or not to randomize the order of 

data. Controls randomization of both file order and line 

order within files.

       skip_header_lines: (int) set to non-zero in order to skip 

header lines in CSV files.

       batch_size: (int) First dimension size of the Tensors 

returned by input_fn

    Returns:

       A (features, indices) tuple where features is a dictionary of

        Tensors, and indices is a single Tensor of label indices.

    """

     dataset = tf.data.TextLineDataset(filenames).skip(skip_header_

lines).map(

      _decode_csv)
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    if shuffle:

        dataset = dataset.shuffle(buffer_size=batch_size * 10)

    iterator = dataset.repeat(num_epochs).batch(

        batch_size).make_one_shot_iterator()

    features = iterator.get_next()

    return features, features.pop(LABEL_COLUMN)

• Create the hyper-parameter config file.

%%writefile hptuning_config.yaml

trainingInput:

  hyperparameters:

    hyperparameterMetricTag: rmse

    goal: MINIMIZE

    maxTrials: 4 #20

    maxParallelTrials: 2 #5

    enableTrialEarlyStopping: True

    algorithm: RANDOM_SEARCH

    params:

      - parameterName: learning-rate

        type: DOUBLE

        minValue: 0.00001

        maxValue: 0.005

        scaleType: UNIT_LOG_SCALE

      - parameterName: first-layer-size

        type: INTEGER

        minValue: 50

        maxValue: 500

        scaleType: UNIT_LINEAR_SCALE

      - parameterName: num-layers

        type: INTEGER

        minValue: 1

        maxValue: 15

        scaleType: UNIT_LINEAR_SCALE

      - parameterName: scale-factor

        type: DOUBLE
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        minValue: 0.1

        maxValue: 1.0

        scaleType: UNIT_REVERSE_LOG_SCALE

• The following code executes the training job on Cloud MLE.

%%bash

JOB_NAME=superconductor_$(date -u +%y%m%d_%H%M%S)

HPTUNING_CONFIG=hptuning_config.yaml

GCS_JOB_DIR=gs://$bucket_name/jobs/$JOB_NAME

echo $GCS_JOB_DIR

gcloud ai-platform jobs submit training $JOB_NAME \

                                    --stream-logs \

                                    --runtime-version $tf_version \

                                    --job-dir $GCS_JOB_DIR \

                                    --module-name trainer.task \

                                    --package-path trainer/ \

                                    --region us-central1 \

                                    --scale-tier=STANDARD_1 \

                                    --config $HPTUNING_CONFIG \

                                    -- \

                                    --train-steps 5000 \

                                    --eval-steps 100

gs://superconductor/jobs/superconductor_181222_040429

endTime: '2018-12-22T04:24:50'

jobId: superconductor_181222_040429

startTime: '2018-12-22T04:04:35'

state: SUCCEEDED

• Cloud MLE training output is shown in Figure 44-5.
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 Deploy Trained Model
The best model trial with the lowest objectiveValue is deployed for inference on 

Cloud MLE:

• Display content of selected trained model directory.

%%bash

gsutil ls gs://${BUCKET}/jobs/superconductor_181222_040429/4/

export/superconductor/1545452450

'Output':

gs://superconductor/jobs/superconductor_181222_040429/4/export/

superconductor/1545452450/

gs://superconductor/jobs/superconductor_181222_040429/4/export/

superconductor/1545452450/saved_model.pb

gs://superconductor/jobs/superconductor_181222_040429/4/export/

superconductor/1545452450/variables/

Figure 44-5. Cloud MLE training output
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• Deploy the model.

%%bash

MODEL_NAME="superconductor"

MODEL_VERSION="v1"

MODEL_LOCATION=gs://$bucket_name/jobs/

superconductor_181222_040429/4/export/superconductor/1545452450

echo "Deploying model $MODEL_NAME $MODEL_VERSION"

gcloud ai-platform models create ${MODEL_NAME} --regions us-central1

gcloud ai-platform versions create ${MODEL_VERSION} --model 

${MODEL_NAME} --origin ${MODEL_LOCATION} --runtime-version ${tf_

version}

 Batch Prediction
The following code carries out inference on the deployed model:

• Submit a batch prediction job.

%%bash

JOB_NAME=superconductor_prediction

MODEL_NAME=superconductor

MODEL_VERSION=v1

TEST_FILE=gs://$bucket_name/preproc_csv/data/eval-00-of-01.csv

OUTPUT_DIR=gs://$bucket_name/jobs/$JOB_NAME/predictions

echo $OUTPUT_DIR

# submit a batched job

gcloud ai-platform jobs submit prediction $JOB_NAME \

        --model $MODEL_NAME \

        --version $MODEL_VERSION \

        --data-format TEXT \

        --region $region \

        --input-paths $TEST_FILE \

              --output-path $OUTPUT_DIR
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# stream job logs

echo "Job logs..."

gcloud ml-engine jobs stream-logs $JOB_NAME

'Output':

gs://superconductor/jobs/superconductor_prediction/predictions

Job logs...

INFO    2018-12-22 22:04:22 +0000   service      Validating job 

requirements...

INFO    2018-12-22 22:04:22 +0000   service      Job creation 

request has been 

successfully 

validated.

INFO    2018-12-22 22:04:22 +0000   service      Job superconductor_

prediction is 

queued.

INFO    2018-12-22 22:09:09 +0000   service      Job completed 

successfully.

• List the contents of the prediction output directory in GCS.

%%bash

gsutil ls gs://superconductor/jobs/superconductor_prediction/

predictions/

'Output':

gs://superconductor/jobs/superconductor_prediction/predictions/

prediction.errors_stats-00000-of-00001

gs://superconductor/jobs/superconductor_prediction/predictions/

prediction.results-00000-of-00002

gs://superconductor/jobs/superconductor_prediction/predictions/

prediction.results-00001-of-00002
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• Show predicted RMSE outputs.

%bash

# read output summary

echo "Job output summary:"

gsutil cat 'gs://superconductor/jobs/superconductor_prediction/

predictions/prediction.results-00000-of-00002'

'Output':

{"outputs": [0.02159707620739937]}

{"outputs": [0.13300871849060059]}

{"outputs": [0.02054387889802456]}

{"outputs": [0.09370037913322449]}

                ...

{"outputs": [0.41005855798721313]}

{"outputs": [0.39907798171043396]}

{"outputs": [0.4040292799472809]}

{"outputs": [0.43743470311164856]}

This chapter provided a walk-through of an end-to-end process to model and deploy 

a machine learning solution on Google Cloud Platform. The next chapter will introduce 

the concepts of a microservice architecture. It provides an overview of working with 

Docker containers and their orchestration with Kubernetes on GCP.
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CHAPTER 45

Containers and Google 
Kubernetes Engine
The microservice architecture is an approach for developing and deploying enterprise 

cloud-native software applications that involve separating the core business capabilities 

of the application into decoupled components. Each business capability represents 

some functionality that the application provides as services to the end user. The idea 

of microservices is in contrast to the monolithic architecture which involves building 

applications as a composite of its “individual” capabilities. See an illustration in 

Figure 45-1.

Figure 45-1. Microservice applications (right) vs. monolithic applications (left)
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Microservices interact with each other using representational state transfer (REST) 

communications for stateless interoperability. By stateless, we mean that “the server 

does not store state about the client session.” These protocols can be HTTP request/

response APIs or an asynchronous messaging queue. This flexibility allows the 

microservice to easily scale and respond to request even if another microservice fails.

Advantages of Microservices

• Loosely coupled components make the application fault tolerant.

• Ability to scale out making each component highly available.

• The modularity of components makes it easier to extend existing 

capabilities.

Challenges with Microservices

• The software architecture increases in complexity.

• Overhead in management and orchestration of microservices. We 

will, however, see in the next sessions how Docker and Kubernetes 

work to mitigate this challenge.

 Docker
Docker is a virtualization application that abstracts applications into isolated 

environments known as containers. The idea behind a container is to provide a 

unified platform that includes the software tools and dependencies for developing and 

deploying an application.

The traditional way of developing applications is where an application is designed 

and hosted on a single server. This is illustrated in Figure 45-2. This setup is prone to 

several problems including the famous “it works on my machine but not on yours”. Also 

in this architecture, apps are difficult to scale and to migrate resulting in huge costs and 

slow deployment.
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 Virtual Machines vs. Containers
Virtual machines (VMs), illustrated in Figure 45-3, emulate the capabilities of a physical 

machine making it possible to install and run operating systems by using a hypervisor. 

The hypervisor is a piece of software on the physical machine (the host) that makes it 

possible to carry out virtualization where multiple guest machines are managed by the 

host machine.

Figure 45-2. Application running on a single server
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Containers on the other hand isolate the environment for hosting an application 

with its own libraries and software dependencies; however, as opposed to a VM, 

containers on a machine all share the same operating system kernel. Docker is an 

example of a container. This is illustrated in Figure 45-4.

Figure 45-3. Virtual machines
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 Working with Docker
Google Cloud Shell comes pre-configured with Docker.

Key concepts to note are

• Dockerfile: A Dockerfile is a text file that specifies how an image will 

be created.

• Docker images: Images are created by building a Dockerfile.

• Docker containers: Docker containers are the running instance of an 

image.

The diagram in Figure 45-5 highlights the process to build an image and run a 

Docker container.

Figure 45-4. Containers
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Table 45-1 shows key commands when creating a Dockerfile.

Figure 45-5. Steps to deploying a Docker container

Table 45-1. Commands for Creating Dockerfiles

Command Description

FROM the base docker image for the dockerfile.

LABEL Key-value pair for specifying image metadata.

RUN it executes commands on top of the current image as new layers.

COPY Copies files from the local machine to the container file system.

EXPOSE exposes runtime ports for the docker container.

CMD specifies the command to execute when running the container. this command 

is overridden if another command is specified at runtime.

ENTRYPOINT specifies the command to execute when running the container. entrypoint 

commands are not overridden by a command specified at runtime.

WORKDIR set working directory of the container.

VOLUME Mount a volume from the local machine file system to the docker container.

ARG set environment variable as a key-value pair when building the image.

ENV set environment variable as a key-value pair that will be available in the 

container after building.
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 Build and Run a Simple Docker Container
Clone the book repository to run this example in Cloud Shell; we have a bash script titled 

date-script.sh in the chapter folder. The script assigns the current date to a variable and 

then prints out the date to the console. The Dockerfile will copy the script from the local 

machine to the docker container file system and execute the shell script when running the 

container. The Dockerfile to build the container is stored in docker-intro/hello- world.

# navigate to the folder with images

cd docker-intro/hello-world

Let’s view the bash script.

cat date-script.sh

#! /bin/sh

DATE="$(date)"

echo "Todays date is $DATE"

Let’s view the Dockerfile.

# view the Dockerfile

cat Dockerfile

# base image for building container

FROM docker.io/alpine

# add maintainer label

LABEL maintainer="dvdbisong@gmail.com"

# copy script from local machine to container file system

COPY date-script.sh /date-script.sh

# execute script

CMD sh date-script.sh

The Docker image will be built off the Alpine Linux package. See https://hub.

docker.com/_/alpine. The CMD routine executes the script when the container runs.

 Build the Image
Run the following command to build the Docker image.

# build the image

docker build -t ekababisong.org/first_image .
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Build output

Sending build context to Docker daemon  2.048kB

Step 1/4 : FROM docker.io/alpine

latest: Pulling from library/alpine

6c40cc604d8e: Pull complete

Digest: sha256:b3dbf31b77fd99d9c08f780ce6f5282aba076d70a513a8be859d8d3a4d0c92b8

Status: Downloaded newer image for alpine:latest

 ---> caf27325b298

Step 2/4 : LABEL maintainer="dvdbisong@gmail.com"

 ---> Running in 306600656ab4

Removing intermediate container 306600656ab4

 ---> 33beb1ebcb3c

Step 3/4 : COPY date-script.sh /date-script.sh

 ---> Running in 688dc55c502a

Removing intermediate container 688dc55c502a

 ---> dfd6517a0635

Step 4/4 : CMD sh date-script.sh

 ---> Running in eb80136161fe

Removing intermediate container eb80136161fe

 ---> e97c75dcc5ba

Successfully built e97c75dcc5ba

Successfully tagged ekababisong.org/first_image:latest

 Run the Container
Execute the following command to run the Docker container.

# show the images on the image

docker images

# run the docker container from the image

docker run ekababisong.org/first_image

Todays date is Sun Feb 24 04:45:08 UTC 2019
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 Important Docker Commands
In this section, let’s review some important Docker commands.

 Commands for Managing Images

Table 45-2 contains commands for managing Docker images.

 Commands for Managing Containers

Table 45-3 contains commands for managing Docker containers.

Table 45-2. Docker Commands for Managing Images

Command Description

docker images list all images on the machine.

docker rmi [IMAGE_NAME] remove the image with name IMAGE_NAME on the machine.

docker rmi $(docker  

images -q)

remove all images from the machine.

Table 45-3. Docker Commands for Managing Containers

Command Description

docker ps list all containers. append –a to also list containers not running.

docker stop 

[CONTAINER_ID]

Gracefully stop the container with [CONTAINER_ID] on the machine.

docker kill 

CONTAINER_ID]

Forcefully stop the container with [CONTAINER_ID] on the machine.

docker rm 

[CONTAINER_ID]

remove the container with [CONTAINER_ID] from the machine.

docker rm $ 

(docker ps -a -q)

remove all containers from the machine.
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 Running a Docker Container

Let’s break down the following command for running a Docker container:

docker run -d -it --rm --name [CONTAINER_NAME] -p 8081:80 [IMAGE_NAME]

where

• -d runs the container in detached mode. This mode runs the 

container in the background.

• -it runs in interactive mode, with a terminal session attached.

• --rm removes the container when it exits.

• --name specifies a name for the container.

• -p does port forwarding from host to the container (i.e., 

host:container).

 Kubernetes
When a microservice application is deployed in production, it usually has many running 

containers that need to be allocated the right amount of resources in response to user 

demands. Also, there is a need to ensure that the containers are online, are running, and 

are communicating with one another. The need to efficiently manage and coordinate 

clusters of containerized applications gave rise to Kubernetes.

Kubernetes is a software system that addresses the concerns of deploying, scaling, 

and monitoring containers. Hence, it is called a container orchestrator. Examples of 

other container orchestrators in the wild are Docker Swarm, Mesos Marathon, and 

HashiCorp Nomad.

Kubernetes was built and released by Google as an open source software, which 

is now managed by the Cloud Native Computing Foundation (CNCF). Google Cloud 

Platform offers a managed Kubernetes service called Google Kubernetes Engine (GKE). 

Amazon Elastic Container Service for Kubernetes (EKS) also provides a managed 

Kubernetes service.
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 Features of Kubernetes
The following are some features of Kubernetes:

• Horizontal auto-scaling: Dynamically scales containers based on 

resource demands

• Self-healing: Re-provisions failed nodes in response to health checks

• Load balancing: Efficiently distributes requests between containers 

in a pod

• Rollbacks and updates: Easily update or revert to a previous 

container deployment without causing application downtime

• DNS service discovery: Uses Domain Name System (DNS) to manage 

container groups as a Kubernetes service

 Components of Kubernetes
The main components of the Kubernetes engine are

• Master node(s): Manages the Kubernetes cluster. There may be more 

than one master node in high availability mode for fault-tolerance 

purposes. In this case, only one is the master, and the others follow.

• Worker node(s): Machine(s) that runs containerized applications that 

are scheduled as pod(s).

The illustration in Figure 45-6 provides an overview of the Kubernetes architecture.
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Figure 45-6. High-level overview of Kubernetes components
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 Master Node(s)

The master node consists of

• etcd (distributed key-store): It manages the Kubernetes cluster 

state. This distributed key-store can be a part of the master node or 

external to it. Nevertheless, all master nodes connect to it.

• api server: It manages all administrative tasks. The api server 

receives commands from the user (kubectl cli, REST or GUI); these 

commands are executed and the new cluster state is stored in the 

distributed key-store.

• scheduler: It schedules work to worker nodes by allocating pods. It is 

responsible for resource allocation.

• controller: It ensures that the desired state of the Kubernetes cluster 

is maintained. The desired state is what is contained in a JSON or 

YAML deployment file.

 Worker Node(s)

The worker node(s) consists of

• kubelet: The kubelet agent runs on each worker node. It connects 

the worker node to the api server on the master node and receives 

instructions from it. It ensures the pods on the node are healthy.

• kube-proxy: It is the Kubernetes network proxy that runs on each 

worker node. It listens to the api server and forwards requests to 

the appropriate pod. It is important for load balancing.

• pod(s): It consists of one or more containers that share network and 

storage resources as well as container runtime instructions. Pods are 

the smallest deployable unit in Kubernetes.

 Writing a Kubernetes Deployment File
The Kubernetes deployment file defines the desired state for the various Kubernetes 

objects. Examples of Kubernetes objects are

• Pods: It is a collection of one or more containers.
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• ReplicaSets: It is part of the controller in the master node. It specifies 

the number of replicas of a pod that should be running at any given 

time. It ensures that the specified number of pods is maintained in 

the cluster.

• Deployments: It automatically creates ReplicaSets. It is also part 

of the controller in the master node. It ensures that the cluster’s 

current state matches the desired state.

• Namespaces: It partitions the cluster into sub-clusters to organize 

users into groups.

• Service: It is a logical group of pods with a policy to access them.

• ServiceTypes: It specifies the type of service, for example, 

ClusterIP, NodePort, LoadBalancer, and ExternalName. As an 

example, LoadBalancer exposes the service externally using a 

cloud provider’s load balancer.

Other important tags in writing a Kubernetes deployment file

• spec: It describes the desired state of the cluster

• metadata: It contains information of the object

• labels: It is used to specify attributes of objects as key-value pairs

• selector: It is used to select a subset of objects based on their label 

values

The deployment file is specified as a yaml file.

 Deploying Kubernetes on Google Kubernetes Engine
Google Kubernetes engine (GKE) provides a managed environment for deploying 

application containers. To create and deploy resources on GCP from the local shell, the 

Google command-line SDK gcloud will have to be installed and configured. If this is not 

the case on your machine, follow the instructions at https://cloud.google.com/sdk/

gcloud/. Otherwise, a simpler option is to use the Google Cloud Shell which already has 

gcloud and kubectl (the Kubernetes command-line interface) installed.
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 Creating a GKE Cluster

Run the following command to create a cluster of containers on GKE. Assign the 

cluster name.

# create a GKE cluster

gcloud container clusters create my-gke-cluster-name

A Kubernetes cluster is created on GCP with three nodes (as default). The GKE 

dashboard on GCP is shown in Figure 45-7.

Creating cluster ekaba-gke-cluster in us-central1-a... Cluster is being 

deployed...done.

Created  [https://container.googleapis.com/v1/projects/oceanic-sky-230504/

zones/us-central1-a/clusters/ekaba-gke-cluster].

To inspect the contents of your cluster, go to: https://console.

cloud.google.com/kubernetes/workload_/gcloud/us-central1-a/ekaba-gke- 

cluster?project=oceanic-sky-230504

kubeconfig entry generated for ekaba-gke-cluster.

NAME               LOCATION       MASTER_VERSION  MASTER_IP     MACHINE_

TYPE   NODE_VERSION  NUM_NODES  STATUS

ekaba-gke-cluster  us-central1-a  1.11.7-gke.4    35.226.72.40  n1- 

standard- 1  1.11.7-gke.4  3          RUNNING

To learn more about creating clusters with Google Kubernetes Engine, visit https://

cloud.google.com/kubernetes-engine/docs/how-to/creating-a-cluster.

Figure 45-7. Google Kubernetes Engine dashboard
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Run the following command to display the nodes of the provisioned cluster on GKE.

# get the nodes of the kubernetes cluster on GKE

kubectl get nodes

NAME                                               STATUS    ROLES     AGE       

VERSION

gke-ekaba-gke-cluster-default-pool-e28c64e0-8fk1   Ready     <none>    45m       

v1.11.7-gke.4

gke-ekaba-gke-cluster-default-pool-e28c64e0-fmck   Ready     <none>    45m       

v1.11.7-gke.4

gke-ekaba-gke-cluster-default-pool-e28c64e0-zzz1   Ready     <none>    45m       

v1.11.7-gke.4

 Delete the Kubernetes Cluster on GKE

Run the following command to delete a cluster on GKE.

# delete the kubernetes cluster

gcloud container clusters delete my-gke-cluster-name

Note always remember to clean up cloud resources when they are no longer 
needed.

This chapter introduced the concepts of a microservice architecture and provided 

an overview of working with Docker containers for building applications in isolated 

environments/sandboxes. In the event that many of such containers are deployed in 

production, this chapter introduces Kubernetes as a container orchestrator for managing 

the concerns of deploying, scaling, and monitoring containers.

The next chapter will discuss on Kubeflow and Kubeflow Pipelines for deploying 

machine learning components into production on Kubernetes.
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CHAPTER 46

Kubeflow and Kubeflow 
Pipelines
Machine learning is often and rightly viewed as the use of mathematical algorithms to 

teach the computer to learn tasks that are computationally infeasible to program as a set 

of specified instructions. However, it turns out that these algorithms constitute only a 

small fraction of the overall learning pipeline from an engineering perspective. Building 

high-performant and dynamic learning models includes a number of other critical 

components. These components actually dominate the space of concerns for delivering 

an end-to-end machine learning product.

A typical machine learning production pipeline looks like the illustration in 

Figure 46-1.
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From the preceding diagram, observe that the process flow in the pipeline is 

iterative. This repetitive pattern is central to machine learning experimentation, design, 

and deployment.

 The Efficiency Challenge
It is easy to recognize that the pipeline requires a significant amount of development 

operations for the seamless transition from one component to another when building a 

learning model. This interoperability of parts has given rise to Machine Learning Ops, 

also known as MLOps. The term is coined as an amalgam of Machine Learning and 

DevOps.

The conventional way of doing machine learning is to perform all of the Experiment 

and development work in Jupyter notebooks, and the model is exported and sent off to 

the software development team for deployment and endpoint generation for integration 

Figure 46-1. Machine learning production pipeline
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into downstream software products, while the DevOps team handles the infrastructure 

and configuration of the machine for model development. This monolithic style of 

working results in a machine learning process that is not reusable, difficult to scale and 

maintain, and even tougher to audit and perform model improvement, and it is easily 

fraught with errors and unnecessary complexities.

However, by incorporating the microservice design pattern to machine learning 

development, we can address a host of these concerns and really streamline the 

productionalization process.

 Kubeflow
Kubeflow is a platform that is created to enhance and simplify the process of deploying 

machine learning workflows on Kubernetes. Using Kubeflow, it becomes easier to 

manage a distributed machine learning deployment by placing components in the 

deployment pipeline such as the training, serving, monitoring, and logging components 

into containers on the Kubernetes cluster.

The goal of Kubeflow is to abstract away the technicalities of managing a Kubernetes 

cluster so that a machine learning practitioner can quickly leverage the power of 

Kubernetes and the benefits of deploying products within a microservice framework. 

Kubeflow has its history as an internal Google framework for implementing machine 

learning pipelines on Kubernetes before being open sourced late 2017.

Table 46-1 is a sample of some of the components that run on Kubeflow.
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Table 46-1. Sample of Kubeflow Components

Component Description

Chainer

Chainer is a define-by-run deep learning neural network framework. it 

also supports multi-node distributed deep learning and deep reinforcement 

algorithms.

Jupyter

Jupyter provides a platform for the rapid prototyping and easy sharing of 

reproducible codes, equations, and visualizations.

ksonnet

ksonnet provides a simple way to create and edit Kubernetes configuration 

files. Kubeflow makes use of ksonnet to help manage deployments.

 

Istio

Istio eases microservice deployments by providing a uniform way to connect, 

secure, control, and observe services.

 

Katib

Katib is a deep learning framework agnostic hyper-parameter tuning 

framework. it is inspired by Google Vizier.

 

MXNet

MXNet is a portable and scalable deep learning library using multiple frontend 

languages such as python, Julia, Matlab, and Javascript.

(continued)
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Table 46-1. (continued)

Component Description

 

PyTorch

PyTorch is a  python deep learning library developed by facebook based on 

the torch library for lua, a programming language.

NVIDIA TensorRT

TensorRT is a platform for high-performance and scalable deployment of deep 

learning models for inference.

 

Seldon

Seldon is an open source platform for deploying machine learning models on 

Kubernetes.

 

TensorFlow

TensorFlow provides an ecosystem for the large-scale productionalization 

of deep learning models. this includes distributed training using tfJob, 

serving with tf serving, and other tensorflow extended components such as 

tensorflow Model analysis (tfMa) and tensorflow transform (tft).

 Working with Kubeflow

 1. Set up a Kubernetes cluster on GKE.

# create a GKE cluster

gcloud container clusters create ekaba-gke-cluster

# view the nodes of the kubernetes cluster on GKE

kubectl get nodes

 2. Create OAuth client ID to identify Cloud IAP: Kubeflow uses 

Cloud Identity-Aware Proxy (Cloud IAP) to connect to Jupyter and 

other running web apps securely. Kubeflow uses email addresses 

for authentication. In this section, we’ll create an OAuth client ID 

which will be used to identify Cloud IAP when requesting access 

to a user’s email account:
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• Go to the APIs & Services ➤ Credentials page in GCP Console.

• Go to the OAuth consent screen (see Figure 46-2).

• Assign an Application name, for example, My-Kubeflow-App.

• For authorized domains, use [YOUR_PRODJECT_ID]. 

cloud.goog.

Figure 46-2. OAuth consent screen
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• Go to the Credentials tab (see Figure 46-3).

• Click Create credentials, and then click OAuth client ID.

• Under Application type, select Web application.

• Choose a Name to identify the OAuth client ID (see Figure 46-4).

Figure 46-3. GCP Credentials tab
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• In the Authorized redirect URIs box, enter the following:

https://<deployment_name>.endpoints.<project>.cloud.

goog/_gcp_gatekeeper/authenticate

• <deployment_name> must be the name of the Kubeflow 

deployment.

• <project> is the GCP project ID.

Figure 46-4. Create OAuth client ID
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• In this case, it will be

https://ekaba-kubeflow-app.endpoints.oceanic-

sky-230504.cloud.goog/_gcp_gatekeeper/authenticate

• Take note of the client ID and client secret that appear in the 

OAuth client window. This is needed to enable Cloud IAP.

# Create environment variables from the OAuth client ID and 

secret earlier obtained.

export CLIENT_ID=506126439013-drbrj036hihvdolgki6lflovm4bjb6c1.

apps.googleusercontent.com

export CLIENT_SECRET=bACWJuojIVm7PIMphzTOYz9D

export PROJECT=oceanic-sky-230504

 Download kfctl.sh

The file kfctl.sh is the Kubeflow installation shell script. As at this time of writing, the 

latest Kubeflow tag is 0.5.0.

# create a folder on the local machine

mkdir kubeflow

# move to created folder

cd kubeflow

# save folder path as a variable

export KUBEFLOW_SRC=$(pwd)

# download kubeflow `kfctl.sh`

export KUBEFLOW_TAG=v0.5.0

curl https://raw.githubusercontent.com/kubeflow/kubeflow/${KUBEFLOW_TAG}/

scripts/download.sh | bash

# list directory elements

ls -la

drwxr-xr-x   6 ekababisong  staff   204 17 Mar 04:15 .

drwxr-xr-x  25 ekababisong  staff   850 17 Mar 04:09 ..

drwxr-xr-x   4 ekababisong  staff   136 17 Mar 04:18 deployment
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drwxr-xr-x  36 ekababisong  staff  1224 17 Mar 04:14 kubeflow

drwxr-xr-x  16 ekababisong  staff   544 17 Mar 04:14 scripts

 Deploy Kubeflow

Run the following code block to deploy Kubeflow.

# assign the name for the Kubeflow deployment

# The ksonnet app is created in the directory ${KFAPP}/ks_app

export KFAPP=ekaba-kubeflow-app

# run setup script

${KUBEFLOW_SRC}/scripts/kfctl.sh init ${KFAPP} --platform gcp --project 

${PROJECT}

# navigate to the deployment directory

cd ${KFAPP}

# creates config files defining the various resources for gcp

${KUBEFLOW_SRC}/scripts/kfctl.sh generate platform

# creates or updates gcp resources

${KUBEFLOW_SRC}/scripts/kfctl.sh apply platform

# creates config files defining the various resources for gke

${KUBEFLOW_SRC}/scripts/kfctl.sh generate k8s

# creates or updates gke resources

${KUBEFLOW_SRC}/scripts/kfctl.sh apply k8s

# view resources deployed in namespace kubeflow

kubectl -n kubeflow get  all

Kubeflow is available at a URL that will be unique for your deployment. In this 

case, Kubeflow is available to me at https://ekaba-kubeflow-app.endpoints.

oceanic-sky-230504.cloud.goog/ (see Figure 46-5). Again, this URL is unique for your 

deployment.
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Note it can take 10–15 minutes for the uri to become available. Kubeflow needs 
to provision a signed ssl certificate and register a dns name.

 Kubeflow Pipelines – Kubeflow for Poets
Kubeflow Pipelines is a simple platform for building and deploying containerized 

machine learning workflows on Kubernetes. Kubeflow pipelines make it easy to 

implement production-grade machine learning pipelines without bothering on the low- 

level details of managing a Kubernetes cluster.

Kubeflow Pipelines is a core component of Kubeflow and is also deployed when 

Kubeflow is deployed. The Pipelines dashboard is shown in Figure 46-6.

Figure 46-5. The Kubeflow homescreen
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 Components of Kubeflow Pipelines
A Pipeline describes a machine learning workflow, where each component of the 

pipeline is a self-contained set of codes that are packaged as Docker images. Each 

pipeline can be uploaded individually and shared on the Kubeflow Pipelines user 

interface (UI). A pipeline takes inputs (parameters) required to run the pipeline and the 

inputs and outputs of each component.

The Kubeflow Pipelines platform consists of

• A user interface (UI) for managing and tracking Experiments, jobs, 

and runs

• An engine for scheduling multi-step ML workflows

• An SDK for defining and manipulating pipelines and components

• Notebooks for interacting with the system using the SDK (taken from 

www.kubeflow.org/docs/pipelines/pipelines-overview/)

Figure 46-6. Kubeflow Pipelines dashboard
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 Executing a Sample Pipeline

 1. Click the name [Sample] Basic - Condition (see Figure 46-7).

Figure 46-7. Select a Pipeline

Figure 46-8. Create a new Experiment

 2. Click Start an Experiment (see Figure 46-8).
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 3. Give the Experiment a name (see Figure 46-9).

 4. Give the run a name (see Figure 46-10).

Figure 46-9. Assign a name to the Experiment

Figure 46-10. Assign a name to the run
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 5. Click the Run Name to start the run (see Figure 46-11).

Note always remember to clean up cloud resources when they are no longer 
needed.

This chapter covered setting up Kubeflow on Kubernetes and introduced working 

with Kubeflow Pipelines to manage containerized machine learning workflows. The next 

chapter will deploy an end-to-end machine learning solution with Kubeflow Pipelines.

Figure 46-11. Run the Pipeline
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CHAPTER 47

Deploying  
an End-to- End Machine 
Learning Solution 
on Kubeflow Pipelines
A Kubeflow pipeline component is an implementation of a pipeline task. A component 

is a step in the workflow. Each task takes one or more artifacts as input and may produce 

one or more artifacts as output.

Each component usually includes two parts:

• Client code: The code that talks to endpoints to submit jobs, for 

example, code to connect with the Google Cloud Machine Learning 

Engine.

• Runtime code: The code that does the actual job and usually runs in 

the cluster, for example, the code that prepares the model for training 

on Cloud MLE.

A component consists of an interface (inputs/outputs), the implementation 

(a Docker container image and command-line arguments), and metadata (name, 

description).
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 Overview of a Simple End-to-End Solution Pipeline
In this simple example, we will implement a deep neural regressor network to predict the 

closing prices of Bitcoin crypto-currency. The machine learning code itself is pretty basic 

as it is not the focus of this article. The goal here is to orchestrate a machine learning 

engineering solution using microservice architectures on Kubernetes with Kubeflow 

Pipelines. The code for this chapter is in the book code repository. Clone the repository 

from the GCP Cloud Shell.

The pipeline consists of the following components:

 1. Move raw data hosted on GitHub to a storage bucket.

 2. Transform the dataset using Google Dataflow.

 3. Carry out hyper-parameter training on Cloud Machine  

Learning Engine.

 4. Train the model with the optimized hyper-parameters.

 5. Deploy the model for serving on Cloud MLE.

 Create a Container Image for Each Component
First, we’ll package the client and runtime code into a Docker image. This image  

also contains the secure service account key to authenticate against GCP. For example, 

the component to transform the dataset using Dataflow has the following files built into 

its image:

• __ Dockerfile: Dockerfile to build the Docker image.

• __ build.sh: Script to initiate the container build and upload to 

Google Container Registry.

• __ dataflow_transform.py: Code to run the beam pipeline on 

Cloud Dataflow.

• __ service_account.json: Secure key to authenticate container  

on GCP.

• __ local_test.sh: Script to run the image pipeline component 

locally.
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 Build Containers Before Uploading to Kubeflow 
Pipelines
Before uploading the pipeline to Kubeflow Pipelines, be sure to build the component 

containers so that the latest version of the code is packaged and uploaded as images to 

the container registry. The code provides a handy bash script to build all containers.

 Compile the Pipeline Using the Kubeflow  
Pipelines DSL Language
The pipeline code contains a specification on how the components interact with one 

another. Each component has an output that serves as an input to the next component 

in the pipeline. The Kubeflow pipeline DSL language dsl-compile from the Kubeflow 

Pipelines SDK is used to compile the pipeline code in Python for upload to Kubeflow 

Pipelines.

Ensure the Kubeflow Pipelines SDK is installed on the local machine by running

# install kubeflow pipeline sdk

pip install https://storage.googleapis.com/ml-pipeline/release/0.1.12/kfp.

tar.gz --upgrade

# verify the install

which dsl-compile

Compile the pipeline by running

# compile the pipeline

python3 [path/to/python/file.py] [path/to/output/tar.gz]

For the sample code, we used

python3 crypto_pipeline.py crypto_pipeline.tar.gz
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 Upload and Execute the Pipeline to Kubeflow 
Pipelines
The following steps upload and execute the compiled pipeline on Kubeflow Pipelines:

 1. Upload the pipeline to Kubeflow Pipelines (Figure 47-1).

Figure 47-1. Upload the compiled pipeline to Kubeflow Pipelines
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 2. Click the pipeline to see the static graph of the flow (Figure 47-2).

 3. Create an Experiment and run to execute the pipeline  

(Figure 47-3).

Figure 47-2. Pipeline summary graph
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Figure 47-3. Create and run the Experiment
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Figure 47-4. Completed Pipeline run

 4. Completed Pipeline run (Figure 47-4).

Completed Dataflow Pipeline: The completed run of the second component of 

the Pipeline, which is to transform the dataset with Cloud Dataflow, is illustrated in 

Figure 47-5.
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Figure 47-5. Completed Dataflow run

Figure 47-6. Deployed model on Cloud MLE

Deployed model on Cloud MLE: The deployed model on Cloud MLE, which is the 

fifth component of the Pipeline, is illustrated in Figure 47-6.

Note always remember to clean up cloud resources when they are no longer 
needed.
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Delete Kubeflow: Run the script to delete the deployment.

# navigate to kubeflow app

cd ${KFAPP}

# run script to delete the deployment

${KUBEFLOW_SRC}/scripts/kfctl.sh delete all

Delete the Kubernetes cluster: Replace name with your own cluster name.

# delete the kubernetes cluster

gcloud container clusters delete ekaba-gke-cluster

This chapter covered building an end-to-end machine learning product as a 

containerized application on Kubernetes with Kubeflow and Kubeflow pipelines. Again, the 

code for this chapter may be accessed by cloning the book repository to the Cloud Shell.

This concludes this book.
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(BPTT), 453, 454
Bar plot, 154, 155
Batch gradient descent  

algorithm, 205
Batch learning, 199–200
Batch normalization, 408–410
Beam programming

data processing pipeline
build/run, 541, 542
creation, 540
preprocessing, 543

pipeline transformation
I/O transforms, 539
Pcollection, 538
Ptransform, 538

Bias vs. variance trade-Off
hidden layers, 402–403
high bias, 178
high variance, 178
machine learning, 177
quality/performance, 178

BigQuery
defined, 485
first query

census_bureau_international, 490
Query editor, 491

https://doi.org/10.1007/978-1-4842-4470-8


698
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hierarchical
cluster formation, 314–317
SciPy package, 317, 318
techniques, 313, 314

k-means
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elbow method, 311
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Scikit-learn, 312, 313
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filters, 428, 430
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Data cleaning/preprocessing, 69
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opportunity, 68
process, 69, 70

Dataset API, 349–350, 359
Dataset package (tf.data), 349, 350
data_transform() method, 469
Data visualization, 69, 151
DatetimeIndex

select date, 142
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select year, 144

decay parameter, 413
Decision trees

classification with CART, 270
growing
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regression, 271

illustration, 269, 270
pruning, 272

Deep feedforward neural network  
(DFN), 401

Deep learning, 327
Deep neural regressor  

network, 688
describe function, 138
Descriptive statistics, 138, 619
Docker containers, 657

Alpine Linux package, 661
build image, 661, 662
commands

creation, 660
managing containers, 663
managing images, 663
run containers, 664

date-script.sh, 661
defined, 656
deployment, 659, 660
Google Cloud Shell, 659

file system, 661
run, 662

drop function, 125
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E
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evaluate() method, 354, 405
Evaluation metrics, 180
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result, 619, 620
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F
feature_column, 350Feature  

engineering, 195
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RFE, 289, 290
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Feature scaling, 206, 207, 322
FeatureUnion, 302
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G
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build custom image model
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cloud storage, 8, 9
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services, 8

Google Cloud Dataprep
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completed job, 533
create flow, 522, 523
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flow page, 524
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running job, 531, 532
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Trifacta license agreement, 520, 521

Google Cloud MLE
batch prediction, 650–652
deploy trained model, 649, 650
training

directory trainer, 636
GCP project, 636
hptuning_config.yaml, 647, 648
__init__.py, 636
job, 648
model.py, 641–646
output, 648, 649
task.py, 636–641

Google Cloud Platform (GCP)
architecture, 614, 615
CLI, 11
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IAM & admin, 16, 17
resources, 14, 15
SDK

authentication, 21–23
command-line tools, 19
gcloud configurations, 23, 24
installation, 19
select Google account, 20
tools, 11

services, 16
setting up account
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dashboard, 14
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Google Cloud Storage (GCS), 491
BigQuery, 615, 616
bucket

creation, 25–27
deletion, 30, 31
uploading, 27–29

command line, 32, 33
definition, 25
raw data, 615

Google Colaboratory
change runtime, 61, 62
steps, 59, 60
storing notebooks, 62, 63
uploading notebooks, 64

Google Compute Engine (GCE), 35
command line, 45, 48
connecting VM instances

delete, 45
SSH into, 42, 43
terminal window access, 44

gcloud instance create, 46–48
select VM instances, 40, 41

create, 36
deploying process, 37
machine type, 39
options, 38

Google Kubernetes engine  
(GKE), 664

cluster creation, 669, 670
delete cluster, 670
SDK gcloud, 668
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Gradient descent
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Grayscale image, 423, 424
Grid search, 304, 306
GridSearchCV module, 304
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H
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Hyper-parameters, 195, 304
Hyperplane, 255
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I
ignore_index, 129
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model.summary(), 438
Tensorboard, 438, 440, 441
TensorFlow 2.0, 438

Images, 164–165
input_fn method, 553
Input gate, 455

J
JOIN command, 504
JupyterLab notebook

instance
command line, 54, 56, 57
deep learning VM, 49
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GCP AI Platform, 50
Launcher, 52
new window, 51
Python 3, 53
shutdown/delete, 53, 54

K
Keras program

anatomy, 355
Functional API, 386, 389
LSTM model testing, 466
neural network models, 383, 384
Sequential API, 384
TensorBoard, 393, 396
visualization, 389

Kernels, 264
linear, 264
polynomial, 264
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k-fold cross validation, 291, 292
k-Means clustering, 310
Kubeflow

components, 673–675
deployment, 680
GCP credentials tab, 677
GKE cluster, 675
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kfctl.sh, 679
OAuth client ID, 675, 678
OAuth consent screen, 676

Kubeflow pipelines
assign experiment, 684
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Cloud MLE, 694
component, 682

containers, 688, 689
defined, 687

DSL language, 689
dashboard, 681, 682
Dataflow, 693, 694
delete cluster, 695
delete deployment, 695
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graph, 691
platform, 682
run, 685, 693
selection, 683
upload pipelines, 690

Kubernetes
architecture, 665, 666
CNCF, 664
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defined, 664
deployment file, 667, 668
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master node(s), 665, 667
worker node(s), 665, 667

L
LabelEncoder, 223
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Layers package (tf.keras.layers), 348
LEAD() function, 510
Leaky ReLU functions, 342, 343
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Leave-one-out cross-validation  

(LOOCV), 192, 292, 293
Linear methods, 210
Linear regression, 361, 364, 365
Line plot, 152, 153
Local minima, 204
Local receptive field, 425, 426
Location invariance, 435
loc attribute, 122, 123
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Logarithmic loss, 294
Long Short-Term Memory (LSTM), 443, 

454–456
Long-term recurrent convolutional 

network (LRCN), 459–460

M
Machine learning, 169

algorithms, 621–624
cost of data, 170
data, 170
defined, 169
development work, 672
production pipeline, 671, 672

Machine learning engineering solution, 688
Machine learning engine (MLE)

APIs, 547, 548
application logic, 553–558
code package, 548
create prediction service,  

565, 566, 577, 578
data files to GCS, 572
distributed training job, 563
hptuning_config.yaml file, 562–563
hyper-parameter training, 564, 565
hyper-parameter tuning, 561, 562
online prediction, Scikit-learn  

model, 578, 579
run batch prediction, 566, 568
run distributed training job, 560, 561
run single instance training job, 558–560
Scikit-learn model, 572
Scikit-learn Random forest  

model, 575, 576
tensorflow model, 553

label_string_tensor, 551
model.py, 549, 550

pipeline based approach, 553
train/deploy process, 545, 546
training models, GPUs, 569, 570, 572
training scripts, 573–575

make_pipeline method, 301, 302
Matplotlib, 91, 151, 164
Maxout function, 343
Mean absolute error (MAE), 293, 295
Mean normalization, 206
Mean squared error (MSE), 293
Microservice, 655

advantages, 656
challenges, 656
vs. monolithic applications, 655
REST, 656

Mini-batch gradient descent, 205
MinMaxScaler module, 218
Missing data

dropna() function, 133
fillna() function, 135
isnull() method, 132, 133
thresh attribute, 135

Model accuracy per epoch, 393
model.fit() method, 389, 393
Model fitting, data

Binarizer module, 222
data rescaling, 218, 219
fit() method, 218
Imputer module, 227
LabelEncoder, 223, 224
Normalizer module, 221, 222
OneHotEncoder, 225, 227
PolynomialFeatures module, 228
StandardScaler module, 220
transform() method, 218

Model loss per epoch, 392
Momentum, 411, 412
Multi-class classification
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OVA, 261, 262
OVO, 260, 261

Multilayer Perceptron (MLP), 401
Keras

code, 403–405
dataset, 403
layers, 403

Multivariate plots
correlation matrix plot, 162–164
pairwise scatter plot, 160–162
scatter plot, 158–160

N
NaN, 129, 130
Neural network

dataset features, 333, 334
feedforward learning  

algorithm, 335
goal, 335
information flow, 334, 335
neuron, 328, 329
weight, 334

Noise injection, 417, 418
Non-linear activation function, 335
Non-linear methods, 210
normalize_and_scale() method, 469
Notebooks, BigQuery

bar chart, 509
%%bigquery, 507
GCP AI, 507
Google Colab, 507
Pandas DataFrame, 507, 508

NumPy
1-D array, 91, 92
data types, 93
definition, 91
higher-dimensional arrays

creating 2-D arrays, 97, 98
creating 3-D arrays, 98, 99
indexing/slicing, 99

indexing + Fancy indexing (1-D)
Boolean mask, 94
integer mask, 95
slicing, 95

math operations, 95
matrix operations, linear algebra

element-wise matrix, 102
inverse of matrix, 106
matrix multiplication (Dot 

product), 101
scalar operation, 103, 104
transposition, 105

reshaping
broadcasting, 110, 112
loading data, 113
resize method, 107
stacking arrays, 108

O
Offline learning, 199
OneHotEncoder, 225
One-hot encoding, 336, 337
One-vs.-all (OVA), 261, 262
One-vs.-one (OVO), 260, 261
Online learning, 200, 201
Original series vs. RNN generated series

normal data values, 468
scaled data values, 467

Output gate, 455

P, Q
Pairwise scatter plot, 160–162
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DataFrame
data type, 120
NumPy, 118
operations, 118, 119
Series, 119, 120
2-D array, 117

defined, 115
Series data structure, 115–117

pandas.plotting function, 152
Pandas plotting  

methods, 151, 152
pandas profiling, 619
Pandas, timeseries

data columns and  
summaries, 144

DatetimeIndex, 142
head() method, 140
parse_dates, 140
resample Datetime, 145, 146
tail() method, 140

PCollection, 538
Peephole connection, 456–457
Pipelines, 537

feature_union, 302, 303
fit_predict method, 300
make_pipeline  

method, 301, 302
scaling transform, 300
Scikit-learn, 299
transform method, 300

Platform as a Service (PaaS), 5
plot method, 152
Pooling layers

aggregation function, 433
layers’ filters, 433
location invariance, 435
MaxPool, 435

Precision, 182
predict() method, 229, 354
Principal component analysis  

(PCA), 196, 211
covariance matrix, 319, 320
data visualization, 319
dimensions reduction, 321, 322
eigenvectors, 320
feature scaling, 322
mean normalization, 322
Scikit-learn, 323

Private cloud, 5
PTransform, 538
pyplot module, 151
Python

control structure
break statement, 85, 86
if/elif (else-if ) statement, 80, 81
list comprehensions, 84, 85
for loop, 83, 84
while loop, 82

data structures, 71
data types

arithmetic operations, 78
Boolean operations, 78, 79
dictionaries, 73
functions, 88
lists, 73–76
print() statement, 79, 80
strings, 77
tuples, 73

definition, 71
functions, 86, 87

user-defined, 87, 88
packages/modules

from statement, 89
import statement, 88

variable, 72
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R
Random forest (RF), 269

predictions, 275, 276
Scikit-learn

classification, 277, 278
regression, 278, 279

Randomized search, 306–308
Recall/sensitivity, 182
Rectified linear unit (ReLU) function, 342
Recurrent connection schemes, 449
Recurrent neural networks (RNNs), 443

BPTT, 453, 454
computational graph, 444
connection schemes, 448, 449
dataset to layers, 446
GRU, 457, 458
LSTM, 454–456
multivariate timeseries  

modeling, 468, 473
neuron (see Recurrent neuron)
peephole connection, 456
sequence mappings

input to output, 451, 452
output, 450

sequence tasks
bidirectional LSTM, 461
Encoder-Decoder LSTM, 460
image captioning, 459
LRCN, 459
video captioning, 460

univariate timeseries modeling, 462, 463
Recurrent neuron, 444

input weights, 444
layer, 447, 448
unfolding, 445

Recursive feature elimination  
(RFE), 289, 290

Regression evaluation metrics, 293–295, 297
RMSE, 187, 188
R-squared (R2), 189–191

Regularization
bias vs. variance, 251
defined, 251
linear regression, 252, 253
logistic regression, 253, 254
Scikit-learn, 252
working, 251

Reinforcement learning, 197
Representational state transfer (REST), 656
Representation learning, 327
Resampling methods

defined, 291
k-fold cross validation, 291, 292
LOOCV, 292, 293

Resampling techniques
k-Fold cross-validation, 193, 194
LOOCV, 192, 193
training set, 191
validation set, 191, 192

Residual sum of squares (RSS), 189
RidgeClassifier() method, 254
Rolling Windows

head method, 148–149
NaNs, 148
plotting function, 149, 150
rolling() function, 148
tail method, 149

Root mean squared error  
(RMSE), 180, 187, 188

R-squared (R2)
coefficient of determination, 189
model performance, 190, 191
RSS, 189
TSS, 190

Runtime code, 687
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S
scatter_matrix method, 160
Scatter plot, 158–160
Scikit-learn, 572

classification tree, 272
data preprocessing (see Model fitting, 

data)
defined, 215
load, sample datasets, 216, 217
Random forests, 277–279
regression tree, 273
sample datasets, 215
SGB, 282, 283
split dataset, 217
XGBoost, 284–286

Scikit-learn Random forest model, 576
Seaborn, 151, 152
SELECT ∗ command, 505
shift() method, 147–148
Shrinkage, 281
Sigmoid function, 340
skew() function, 139
Soft margin, 258, 259
Software as a Service (SaaS), 5
Software development kit (SDK), 10
Stacked Autoencoder

hidden layers, 476, 477
TensorFlow 2.0

code, 477–479
loss error, 479
MNIST handwriting dataset, 477
reconstructed images, 479, 480

tying, 476
stddev parameter, 418
Stochastic Gradient Boosting (SGB), 269

depth/number of trees, 281
illustration, 279, 280
Scikit-learn

classification, 282
regression, 283

shrinkage, 281
Stochastic gradient descent (SGD), 205, 411
Structured query language (SQL), 485, 499
Superconductor, properties, 613
Supervised learning

bias vs. variance, 177–179
classification, 174, 175
dataset, 171, 172
evaluate learning, 175
goal, 172
improve model performance

ensemble methods, 195
feature engineering, 195
hyper-parameters, 195

regression, 173
60/20/20 rule, 176
test set, 176

Support vector machine (SVM), 210, 255
classification, 266
data distribution, 257, 258
Kernel Trick, 262, 263
polynomial features, 263
regression, 267
Scikit-learn, 266
soft margin, 258, 259

T
TensorBoard

features, 358
visualization dashboard, 356, 357

TensorFlow (TF), 547
API hierarchy, 347, 348
classification, 365, 368
Dataset API, 359, 361
GPU, 374, 375
high-level API
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Estimator, 353, 354, 381
Keras, 354

linear regression, 361, 364, 365
low-level API, 348
mid-level API

dataset package, 349, 350
featureColumns, 350, 351
layers, 348, 349

program, 358, 359
visualization dashboard, 369, 373

TensorFlow Transform (TFT)
Apache Beam, 625
GCP, 625
pipeline, 628–632, 634, 635
query method, 625
requirements.txt file, 628

tf.distribute.MirroredStrategy()  
method, 376, 380

tf. keras.callbacks.EarlyStopping() 
method, 419

tf.keras.callbacks.ModelCheckpoint() 
method, 396

tf.keras.callbacks.TensorBoard()  
method, 393

tf.keras.experimental.
PeepholeLSTMCell() method, 456

tf.keras.layers. BatchNormalization()’ 
method, 409

tf.keras.layers.Dropout()’ method, 416
tf.keras.layers.GaussianNoise()  

method, 418
tf.keras.layers.LSTM() method, 455, 468
tf.keras.Sequential() method, 384, 405
to_datetime method, 146
Total sum of squares (TSS), 190
train_and_evaluate() method, 558
train_test_split(X, y, test_size=0.25) 

method, 217

Tree pruning, 272
True negative rate (TNR), 184
Truncated backpropagation through  

time (truncated BPTT), 454
Tuples, 73
2-D array, 91, 96, 117

U
Univariate plots

bar plot, 154, 155
Boxplot, 157, 158
histogram and density, 155, 156
line plot, 152, 153

Unsupervised learning, 196
User-Defined functions, 87–88

V
Variable learning rates, 412, 413
Virtual machines (VMs), 657, 658

vs. containers, 657–659

W
Weight initialization, 407, 408

X, Y
Xavier uniform initializer, 407
XGBoost (Extreme Gradient Boosting)

algorithm, 284
Scikit-learn

classification, 284, 285
regression, 285, 286

Z
Zero padding, 431, 432
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