
Joost Visser

Building
Maintainable
Software
TEN GUIDELINES FOR FUTURE-PROOF CODE

C# Edition

Joost Visser

Building Maintainable Software
Ten Guidelines for Future-Proof Code

C# EDITION

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-491-95452-2

[LSI]

Building Maintainable Software, C# Edition
by Joost Visser

Copyright © 2016 Software Improvement Group, B.V. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Nan Barber and Rachel Roumeliotis
Production Editor: Colleen Cole
Copyeditor: Nan Barber
Indexer: WordCo Indexing Services, Inc.

Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

April 2016: First Edition

Revision History for the First Edition
2016-04-18: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491954522 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Building Maintainable Software, C#
Edition, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491954522

Table of Contents

Preface. ix

1. Introduction. 1
1.1 What Is Maintainability? 2
1.2 Why Is Maintainability Important? 3
1.3 Three Principles of the Guidelines in This Book 4
1.4 Misunderstandings About Maintainability 6
1.5 Rating Maintainability 7
1.6 An Overview of the Maintainability Guidelines 9

2. Write Short Units of Code. 11
2.1 Motivation 14
2.2 How to Apply the Guideline 15
2.3 Common Objections to Writing Short Units 22
2.4 See Also 26

3. Write Simple Units of Code. 29
3.1 Motivation 35
3.2 How to Apply the Guideline 35
3.3 Common Objections to Writing Simple Units of Code 40
3.4 See Also 41

4. Write Code Once. 43
4.1 Motivation 47
4.2 How to Apply the Guideline 48
4.3 Common Objections to Avoiding Code Duplication 53
4.4 See Also 55

iii

5. Keep Unit Interfaces Small. 57
5.1 Motivation 59
5.2 How to Apply the Guideline 60
5.3 Common Objections to Keeping Unit Interfaces Small 64
5.4 See Also 65

6. Separate Concerns in Modules. 67
6.1 Motivation 72
6.2 How to Apply the Guideline 73
6.3 Common Objections to Separating Concerns 78

7. Couple Architecture Components Loosely. 81
7.1 Motivation 82
7.2 How to Apply the Guideline 86
7.3 Common Objections to Loose Component Coupling 88
7.4 See Also 90

8. Keep Architecture Components Balanced. 93
8.1 Motivation 95
8.2 How to Apply the Guideline 96
8.3 Common Objections to Balancing Components 98
8.4 See Also 98

9. Keep Your Codebase Small. 101
9.1 Motivation 102
9.2 How to Apply the Guideline 105
9.3 Common Objections to Keeping the Codebase Small 107

10. Automate Tests. 111
10.1 Motivation 113
10.2 How to Apply the Guideline 114
10.3 Common Objections to Automating Tests 123
10.4 See Also 125

11. Write Clean Code. 127
11.1 Leave No Trace 127
11.2 How to Apply the Guideline 128
11.3 Common Objections to Writing Clean Code 134

12. Next Steps. 137
12.1 Turning the Guidelines into Practice 137

iv | Table of Contents

12.2 Lower-Level (Unit) Guidelines Take Precedence Over Higher-Level
(Component) Guidelines 137

12.3 Remember That Every Commit Counts 138
12.4 Development Process Best Practices Are Discussed in the Follow-Up

Book 138

A. How SIG Measures Maintainability. 139

Index. 143

Table of Contents | v

About the Authors
Joost Visser is Head of Research at the Software Improvement Group. In this role, he
is responsible for the science behind the methods and tools that SIG offers to measure
and master software. Joost also holds a position as professor of Large-Scale Software
Systems at Radboud University Nijmegen. He has obtained his PhD in Computer Sci‐
ence from the University of Amsterdam and has published over 100 papers on topics
such as generic programming, program transformation, green computing, software
quality, and software evolution. Joost considers software engineering a socio-
technical discipline, and he is convinced that software measurement is essential for
development teams and product owners to thrive.

Pascal van Eck joined the Software Improvement Group in 2013 as a general consul‐
tant on software quality. Prior to joining SIG, for 13 years Pascal was Assistant Pro‐
fessor of Information Systems at University of Twente, The Netherlands. Pascal holds
a PhD in Computer Science from Vrije Universiteit Amsterdam and has published
over 80 papers in areas such as enterprise architecture, IT security, and software met‐
rics. Pascal is chairman of the program committee of the Dutch National Conference
on Architecture for the Digital World.

After obtaining an MSc degree in Software Engineering from Delft University of
Technology in 2005, Rob van der Leek joined SIG as a software quality consultant.
Working at SIG is for Rob the closest thing to being a software doctor. In his role as a
consultant, he combines his thorough technical knowledge on software engineering
and software technologies to advise clients on how to keep their systems in shape.
Next to being a consultant, Rob fulfills a leading role in SIG’s internal development
team. This team develops and maintains the company’s software analysis tooling. It’s
Rob’s ambition to leave the IT industry a bit better than he found it.

Sylvan Rigal has worked as a software quality consultant at SIG since 2011 and has
advised clients on managing their IT since 2008. He helps clients achieve lower soft‐
ware maintenance costs and enhanced security by prioritizing improvements in soft‐
ware design and development processes. He holds a MSc in international business
from Maastricht University, The Netherlands. As an active member of SIG’s software
security team, Sylvan trains consultants on analyzing software security risks. When
he is not assessing the technical health of software, he is training in Brazilian jiu jitsu,
enjoying Amsterdam’s restaurants, or traveling through Asia. Approximately in that
order.

Gijs Wijnholds joined the Software Improvement Group in 2015 as a software qual‐
ity consultant in public administration. He helps clients get in control of their soft‐
ware projects by advising them on development processes and translating technical
risks into strategic decisions. Gijs holds a BSc in AI from Utrecht University and a
MSc degree in Logic from the University of Amsterdam. He is an expert on Haskell
and mathematical linguistics.

Preface

In der Beschränkung zeigt sich erst der Meister. (In simplicity one recognizes true skill.)
—J.W. von Goethe

After 15 years of consulting about software quality, we at the Software Improvement
Group (SIG) have learned a thing or two about maintainability.

First, insufficient maintainability is a real problem in the practice of software devel‐
opment. Low maintainability means that developers spend too much time on main‐
taining and fixing old code. That leaves less time available for the most rewarding
part of software development: writing new code. Our experience, as well as the data
we have collected, shows that maintaining source code takes at least twice as long
when maintainability is measured as below average, compared to when maintainabil‐
ity is above average. See Appendix A to learn how we measure maintainability.

Second, lack of maintainability is to a large extent caused by simple issues that occur
over and over again. Consequently, the most efficient and effective way to improve
maintainability is to address these simple issues. Improving maintainability does not
require magic or rocket science. A combination of relatively simple skills and knowl‐
edge, plus the discipline and environment to apply them, leads to the largest improve‐
ment in maintainability.

At SIG, we have seen systems that are essentially unmaintainable. In these systems,
bugs are not fixed, and functionality is not changed or extended because it is consid‐
ered too time-consuming and risky. Unfortunately, this is all too common in today’s
IT industry, but it does not have to be like that.

That is why we have written the 10 guidelines. We want to share the knowledge and
skills that any practicing software developer should master to consistently write
maintainable source code. We are confident that after reading and understanding the
10 guidelines, as a software developer you will be able to write maintainable source
code. What is left, then, is the environment to apply these skills to maximum effect,

ix

1 TÜViT is part of TÜV, a worldwide organization of German origin for technical quality management. It spe‐
cializes in certification and consulting for IT in general and security in particular.

2 See Maintainability Evaluation Criteria.

including shared development practices, appropriate tooling, and more. We cover
these development environment essentials in a second book, called Building Software
Teams.

The Topic of This Book: Ten Guidelines for Building
Maintainable Software
The guidelines in the following chapters are independent of the type of system. The
guidelines are about the size and number of parameters in units of code (methods in
C#), the number of decision points, and other properties of source code. They are
well-known guidelines that many programmers may have heard about in their train‐
ing. The chapters also provide examples, mostly in the form of refactoring patterns,
of how to apply the guidelines in practice. Although the guidelines are presented in
C#, they are independent of the programming language used. Eight out of 10 of them
are derived from the SIG/TÜViT1 Evaluation Criteria for Trusted Product Maintaina‐
bility,2 a set of metrics to systematically rate source code maintainability.

Why You Should Read This Book
Taken in isolation, the guidelines presented in this book are well known. In fact,
many commonly used tools for code analysis check a number of the guidelines pre‐
sented here. For instance, Checkstyle (Java), StyleCop+ (for C#), Pylint (for Python),
JSHint (for JavaScript), RuboCop (for Ruby), and PMD (covers multiple languages,
including C# and Java) all check compliance with the guideline presented in Chap‐
ter 2. The following three characteristics, however, set this book apart from other
books on software development:

We have selected the 10 most important guidelines from experience
Style guides and static code analysis tools can be daunting. Checkstyle version 6.9
contains some 150 rules, each of which implies a guideline. They all make sense,
but their effect on maintainability is not equal. We have selected the 10 guideline
chapters because they have the highest impact on maintainability. The box “Why
These Ten Specific Guidelines?” on page xi explains how we have chosen our
guidelines.

We teach how to comply with these 10 guidelines
Stating what a programmer should or should not do is one thing (and many style
guides do just that). Providing guidance on how to comply with the guidelines is

x | Preface

http://bit.ly/eval_criteria
http://checkstyle.sourceforge.net
http://stylecopplus.codeplex.com
http://www.pylint.org
http://jshint.com
https://github.com/bbatsov/rubocop
https://pmd.github.io

another. In this book, for each guideline we provide concrete examples of how to
build code that complies with it.

We present statistics and examples from real-world systems
At SIG, we have seen a lot of source code made by real-world programmers
under real-world constraints. That source code contains compromises. There‐
fore, we are sharing data from our benchmark to show how real-world source
code compares with the guidelines.

Who Should Read This Book
This book is aimed at software developers who know how to program in C#. We dis‐
tinguish between two groups of such developers. The first group comprises develop‐
ers who received comprehensive training in computer science or software
engineering (e.g., by majoring in one of those fields in college or university). For
those developers, our book should reinforce basic principles that they have been
taught in introductory programming courses.

The second group comprises software developers who entered the field without any
comprehensive training in computer science or software engineering. We are think‐
ing of developers who are self-taught, or who majored in a totally different field in
college or university and then made a career switch. Our experience is that this group
often received very little training beyond the syntax and semantics of the program‐
ming language they are using. This is the group for whom we have specifically
written.

Why These Ten Specific Guidelines?
This book presents 10 guidelines. The first eight have a one-to-one relationship with
the so-called system properties in the SIG/TÜViT Evaluation Criteria Trusted Product
Maintainability, which underpins the way SIG rates maintainability. For the SIG/
TÜViT evaluation criteria, we have selected metrics that:

• Are contained in a set as small as possible
• Are technology-independent
• Are easy to measure
• Enable a meaningful comparison of real-world enterprise software systems

The eight system properties that comprise the SIG/TÜViT evaluation criteria are the
result of this selection. To those we have added two process guidelines (regarding
clean code and automation) that we consider to be the most critical and under your
direct control.

Preface | xi

Researchers in computer science and software engineering have been prolific in
defining source code metrics. Depending on how you count, tens if not hundreds of
different metrics have been reported. So the eight system properties that we apply are
clearly not the complete set of maintainability metrics.

We argue, however, that the eight SIG/TÜViT metrics are both adequate and suffi‐
cient to measure maintainability, as they solve the following problems:

Metrics that are technology dependent
Some metrics (e.g., depth of inheritance) are applicable only to source code in
particular technologies (e.g., only in object-oriented languages). While dominant
in practice, object orientation is far from the only technology. There is still a lot
of non-object-oriented source code out there (think of systems in Cobol, RPG, C,
and Pascal) that we need to cover in our maintainability assessments.

Metrics that are strongly correlated to other metrics
Some metrics are known to have a strong correlation to other metrics. An exam‐
ple is the total number of decision points in a system. There is empirical evidence
that this metric is strongly correlated to code volume. This means that once you
know the total number of lines of code in the system (which is easy to measure),
you can predict the number of decision points with high certainty. It makes no
sense to include the less easy-to-measure metric: you would have the additional
burden of executing the measurement and reporting its outcome, but it would
tell you nothing that you could not derive from the easier metric.

Metrics that do not differentiate in practice
Some metrics are defined in a theoretically sound way, but in the practice of soft‐
ware development, all systems score more or less the same. It makes no sense to
include these in an assessment model, as systems cannot be distinguished on the
outcome of such a metric.

What This Book Is Not
This book uses C# (and only C#) to illustrate and explain our guidelines. Yet it does
not teach C# in itself. We assume that the reader is at least able to read C# and the
API of the standard libraries that come with it. We have tried to keep the code exam‐
ples simple, using basic features of the language.

This is also not a book about C# idioms—that is, about C#-specific conventions on
how to express functionality in code. We do not believe that you achieve maintaina‐
bility by using specific language-dependent idiom. To the contrary, the guidelines
presented here are to a very large extent language-independent, and therefore also
independent of language idioms.

While we introduce and explain a number of refactoring patterns, what follows is not
meant to be a comprehensive catalogue of such patterns. There are already books and

xii | Preface

3 That is, ISO/IEC 17025 certified.

websites out there that are very good pattern catalogues. Our book focuses on why
and how a number of selected refactoring patterns contribute to maintainability.
Therefore, this book serves as a stepping stone for such catalogues.

The Follow-up Book
We know that individual developers do not control all parts of the development pro‐
cess. Which development tools are used, how quality control is organized, how
deployment pipelines are set up, and so on are all important factors that influence
software quality but are also a team responsibility. Those topics are therefore outside
the scope of this book. We do discuss them in a follow-up book, Building Software
Teams. That book deals with discussing best practices in that field and how to meas‐
ure their implementation.

About the Software Improvement Group
Although the front cover lists one name, the real author of this book is much more
than just one person. The real author is SIG, a software management consulting com‐
pany. That is, the book consolidates the collective experience and knowledge of the
SIG consultants that have been measuring software quality and advising about it
since 2000. We run a unique, certified,3 software analysis laboratory that performs
standardized inspections against the ISO 25010 international standard for software
product quality.

One of the services provided by SIG is our Software Risk Monitoring service. Our cli‐
ents using this service upload their source code at regular intervals (usually once a
week). These uploads are then automatically inspected in our software analysis labo‐
ratory. Anything out of the ordinary detected by this automatic analysis is then
assessed by SIG consultants and discussed with the client. At the time of writing, in
total SIG has analyzed 7.1 billion lines of code, and 72.7 million new lines of code are
uploaded to SIG weekly.

SIG was established in 2000. Its roots can be traced back to the Dutch National
Research Institute for Mathematics and Computer Science (Centrum voor Wiskunde
en Informatica [CWI] in Dutch). Even after 15 years, we still keep and value our links
with the academic software engineering research community. SIG consultants regu‐
larly contribute to scientific publications, and several PhD theses have been based on
research to develop and improve the SIG quality model.

Preface | xiii

About This Edition
This is the C# edition of the book. All code examples are in C# (and in C# only), and
the text frequently refers to tools and terms that are widely used in the C# commu‐
nity, but not necessarily outside of it. We assume that the reader has experience in C#
programming. As previously noted, the guidelines, while presented in this edition in
C#, are independent of the programming language used. A Java edition is published
concurrently by O’Reilly.

Related Books
We present 10 basic guidelines for achieving high maintainability. While it might be
the first book many people will read on the topic of maintainability, we hope it will
certainly not be the last one. We recommend several books as follow-up:

Building Software Teams, by the Software Improvement Group
This is the companion to the current book, written by the same authors. While
the current book focuses on developer guidelines for building maintainable soft‐
ware, this book focuses on development process best practices and how to meas‐
ure them wisely with the Goal-Question-Metric approach. Building Software
Teams is scheduled for publication in 2016.

Refactoring: Improving the Design of Existing Code, by Martin Fowler
This book focuses on improving maintainability (and other quality characteris‐
tics) of existing code.

Clean Code: A Handbook of Agile Software Craftsmanship, by Robert C. Martin (a.k.a.
Uncle Bob)

Like the current book, Clean Code is about building software source code that is
of high quality. Clean Code describes guidelines at a higher level of abstraction.

Code Quality: The Open Source Perspective, by Diomidis Spinellis
Also like the current book, Code Quality presents guidelines for code quality, but
like Clean Code, they are presented at a higher level of abstraction.

Design Patterns: Elements of Reusable Object-Oriented Software, by Erich Gamma,
Richard Helm, Ralph Johnson, and John Vlissides (a.k.a. the Gang of Four)

This is recommended reading for those software developers who want to become
better software architects.

xiv | Preface

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

This element indicates an important remark.

Generic Names for Elements of Source Code
Although in the book we use C# to illustrate maintainability guidelines, these guide‐
lines are not specific to C#. The guidelines are inspired by the SIG maintainability
model, which is technology-independent and has been applied to about a hundred
programming languages and related technologies (such as JSP).

Programming languages differ in the features they provide and (of course) their syn‐
tax. For example, where Java uses the keyword final for a constant, C# uses

Preface | xv

readonly for exactly the same thing. As another example, C# provides a feature called
partial classes, which Java (currently) does not provide.

In addition to differences in syntax, programming languages also differ in the termi‐
nology they use in textbooks, tutorials, and their individual specifications. For
instance, the concept of a group of code lines that can be executed as a whole is
known in almost every programming language. In Java and C#, this concept is called
a method. In Visual Basic, it is called a subroutine. In JavaScript and C, it is known as a
function. In Pascal, it is known as a procedure.

That is why a technology-independent model needs generic names for grouping con‐
cepts. Table P-1 presents the generic names that we use throughout the chapters.

Table P-1. A generic grouping of concepts and their representation in C#.

Generic name Generic definition In C#
Unit Smallest grouping of lines that can be executed independently Method or constructor

Module Smallest grouping of units Top-level class, interface, or enum

Component Top-level division of a system as defined by its software architecture (Not defined by the language)

System The entire codebase under study (Not defined by the language)

The following list further clarifies the relationship between the grouping constructs
described in Table P-1 and the practice of C# programming:

From smallest to largest
The grouping concepts in Table P-1 are ordered from smallest to largest. A unit
itself consists of statements, but statements are not a grouping construct.

In C#, as in many other programming languages, there is a com‐
plex relationship between statements and lines in the .cs file in
which they appear. A line may have more than one statement, but a
statement can be spread over multiple lines. We simply look at lines
of code (LoC): any line in source code that ends with an Enter/
Return, and neither is empty nor contains only a comment.

Some concepts are not defined in a particular language
As Table P-1 shows, some generic concepts are not represented in C#. For
instance, in C# there is no syntax to describe the boundaries of a system. This
concept is introduced in the generic terminology because we do need it. It is not
a problem that C# lacks the syntax: in practice we have other ways to determine
these boundaries.

xvi | Preface

Some well-known generic concepts play no role
You might be surprised that Table P-1 does not define well-known terms such as
subcomponent and subsystem. The reason is simple: we do not need them for the
guidelines.

Not all grouping constructs of a language are represented
C# has more grouping constructs than those listed in Table P-1. C# has namespa‐
ces to group classes and interfaces. C# also has nested classes. They are not listed
in Table P-1 because we do not need them for the guidelines. For example, we do
not need to distinguish between classes and nested classes to formulate our
guidelines about coupling.

A C# namespace is not the same as a component in the generic ter‐
minology. In very small C# systems, there may be a one-to-one
mapping between components and namespaces. In larger C# sys‐
tems, there are usually far more namespaces than components.

Build tooling plays no role in the generic terminology
In C# development, Visual Studio provides an additional grouping concept: build
targets. However, build targets play no role in the guidelines. There may be a
one-to-one relation between on the one hand components and on the other hand
build targets, but this is not a rule.

Components are determined by the architecture of the system
A component is not a C# concept. Components are neither namespaces nor Vis‐
ual Studio build targets or solutions. In a given system, there may be a one-to-
one mapping between components and Visual Studio projects of solutions, but
that is not a rule. Instead, components are the highest-level building blocks as
identified by the software architecture of the system. They are the blocks in a
“blocks-and-arrows” diagram of the system. Chapter 7 further explains the con‐
cept of components and presents some examples.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/oreillymedia/building_maintainable_software.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing storage media (e.g., CD-
ROM) of examples from O’Reilly books does require permission. Answering a

Preface | xvii

https://github.com/oreillymedia/building_maintainable_software

question by citing this book and quoting example code does not require permission.
Incorporating a significant amount of example code from this book into your pro‐
duct’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, authors, publisher, and ISBN. For example: “Building Maintainable Software, C#
Edition by Joost Visser. Copyright 2016 Software Improvement Group B.V.,
978-1-4919-5452-2.”

If you feel your use of code examples falls outside fair use or the permission given
above, you may contact us at permissions@oreilly.com for special permission.

Safari® Books Online
Safari Books Online is an on-demand digital library that deliv‐
ers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf‐
mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

xviii | Preface

mailto:permissions@oreilly.com
http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/building_maintainable_soft
ware_csharp.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
We would like to thank the following people for writing this book:

• Yiannis Kanellopoulos (SIG) as our project manager, overseeing everything.
• Tobias Kuipers (SIG) as initiator of this project.
• Lodewijk Bergmans (SIG) for helping to develop the book structure.
• Zeeger Lubsen (SIG) for his thorough review.
• Ed Louwers (SIG) for his help with the visuals in this book.
• All SIG (former) employees that are working and have worked on perfecting

models for measuring, benchmarking, and interpreting software quality.

From our publisher, O’Reilly:

• Nan Barber as our text reviewer.
• Jay Hilyard as our technical reviewer.

And Arie van Deursen for granting permission to use the JPacman code base.

Preface | xix

http://bit.ly/building_maintainable_software_csharp
http://bit.ly/building_maintainable_software_csharp
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 1

Introduction

Who wrote this piece of code?? I can’t work like this!!
—Any programmer

Being a software developer is great. When someone gives you a problem and require‐
ments, you are able to come up with a solution and translate that solution into a lan‐
guage that a computer understands. These are challenging and rewarding endeavors.
Being a software developer can also be a painstaking job. If you regularly have to
change source code written by others (or even by yourself), you know that it can be
either really easy or really difficult. Sometimes, you can quickly identify the lines of
code to change. The change is nicely isolated, and tests confirm that it works as
intended. At other times, the only solution is to use a hack that creates more prob‐
lems than it solves.

The ease or difficulty with which a software system can be modified is known as its
maintainability. The maintainability of a software system is determined by properties
of its source code. This book discusses these properties and presents 10 guidelines to
help you write source code that is easy to modify.

In this chapter, we explain what we mean when we speak about maintainability. After
that, we discuss why maintainability is important. This sets the stage to introduce the
main topic of this book: how to build software that is maintainable from the start. At
the end of this introduction we discuss common misunderstandings about maintain‐
ability and introduce the principles behind the 10 guidelines presented in this book.

1

1 Full title: International Standard ISO/IEC 25010. Systems and Software Engineering -- Systems and software
Quality Requirements and Evaluation (SQuaRE) -- System and Software Quality Models. First Edition,
2011-03-01.

1.1 What Is Maintainability?
Imagine two different software systems that have exactly the same functionality.
Given the same input, both compute exactly the same output. One of these two
systems is fast and user-friendly, and its source code is easy to modify. The other sys‐
tem is slow and difficult to use, and its source code is nearly impossible to under‐
stand, let alone modify. Even though both systems have the same functionality, their
quality clearly differs.

Maintainability (how easily a system can be modified) is one characteristic of soft‐
ware quality. Performance (how slow or fast a system produces its output) is another.

The international standard ISO/IEC 25010:2011 (which we simply call ISO 25010 in
this book1) breaks down software quality into eight characteristics: maintainability,
functional suitability, performance efficiency, compatibility, usability, reliability, secu‐
rity, and portability. This book focuses exclusively on maintainability.

Even though ISO 25010 does not describe how to measure software quality, that does
not mean you cannot measure it. In Appendix A, we present how we measure soft‐
ware quality at the Software Improvement Group (SIG) in accordance with ISO
25010.

The Four Types of Software Maintenance
Software maintenance is not about fixing wear and tear. Software is not physical, and
therefore it does not degrade by itself the way physical things do. Yet most software
systems are modified all the time after they have been delivered. This is what software
maintenance is about. Four types of software maintenance can be distinguished:

• Bugs are discovered and have to be fixed (this is called corrective maintenance).
• The system has to be adapted to changes in the environment in which it

operates—for example, upgrades of the operating system or technologies (this is
called adaptive maintenance).

• Users of the system (and/or other stakeholders) have new or changed require‐
ments (this is called perfective maintenance).

• Ways are identified to increase quality or prevent future bugs from occurring
(this is called preventive maintenance).

2 | Chapter 1: Introduction

1.2 Why Is Maintainability Important?
As you have learned, maintainability is only one of the eight characteristics of soft‐
ware product quality identified in ISO 25010. So why is maintainability so important
that it warrants its own, dedicated book? There are two angles to this question:

• Maintainability, or lack thereof, has significant business impact.
• Maintainability is an enabler for other quality characteristics.

Both angles are discussed in the next two sections.

Maintainability Has Significant Business Impact
In software development, the maintenance phase of a software system often spans 10
years or more. During most of this time, there is a continuous stream of issues that
need to be resolved (corrective and adaptive maintenance) and enhancement requests
that have to be met (perfective maintenance). The efficiency and effectiveness with
which issues can be resolved and enhancements can be realized is therefore impor‐
tant for stakeholders.

Maintenance efforts are reduced when issue resolution and enhancements can be
performed quickly and easily. If efficient maintenance leads to less maintenance per‐
sonnel (developers), it also lowers maintenance costs. When the number of develop‐
ers stays the same, with efficient maintenance they have more time for other tasks,
such as building new functionality. Fast enhancements mean shorter time-to-market
of new products and services supported by the system. For both issue resolution and
enhancements, it holds that if they are slow and troublesome, deadlines may not be
met or the system may become unusable.

SIG has collected empirical evidence that issue resolution and enhancements are
twice as fast in systems with above-average maintainability than in systems with
below-average maintainability. A factor of two is a significant quantity in the practice
of enterprise systems. The time it takes to resolve issues and make an enhancement is
on the order of days or weeks. It is not the difference between fixing 5 bugs or 10 in
an hour; it is the difference between being the first one to the market with a new
product, or seeing your competitor months ahead of you.

And that is just the difference between above-average and below-average maintaina‐
bility. At SIG we have seen newly built systems for which the maintainability was so
low that it was no longer possible to effectively modify them—even before the sys‐
tems went into production. Modifications introduced more bugs than they solved.
Development took so long that the business environment (and therefore, user
requirements) had already changed. More modifications were needed, which

1.2 Why Is Maintainability Important? | 3

introduced yet more bugs. More often than not, such systems are written off before
they ever see a 1.0 release.

Maintainability Is an Enabler for Other Quality Characteristics
Another reason why maintainability is a special aspect of software quality is that it
acts as an enabler for other quality characteristics. When a system has high maintain‐
ability, it is easier to make improvements in the other quality areas, such as fixing a
security bug. More generally speaking, optimizing a software system requires modifi‐
cations to its source code, whether for performance, functional suitability, security, or
any other of the seven nonmaintainability characteristics defined by ISO 25010.

Sometimes they are small, local modifications. Sometimes they involve more invasive
restructuring. All modifications require finding a specific piece of source code and
analyzing it, understanding its inner logic and its position in the business process that
the system facilitates, analyzing dependencies between different pieces of code and
testing them, and pushing them through the development pipeline. In any case, in a
more maintainable system, these modifications are easier to make, allowing you to
implement quality optimizations faster and more effectively. For example, highly
maintainable code is more stable than unmaintainable code: changes in a highly
maintainable system have fewer unexpected side effects than changes in an entangled
system that is hard to analyze and test.

1.3 Three Principles of the Guidelines in This Book
If maintainability is so important, how can you improve maintainability of the code
that you write? This book presents 10 guidelines that, if followed, lead to code that is
highly maintainable. In the following chapters, each guideline is presented and dis‐
cussed. In the current chapter, we introduce the principles behind these guidelines:

1. Maintainability benefits most from adhering to simple guidelines.
2. Maintainability is not an afterthought, but should be addressed from the very

beginning of a development project. Every individual contribution counts.
3. Some violations are worse than others. The more a software system complies

with the guidelines, the more maintainable it is.

These principles are explained next.

Principle 1: Maintainability Benefits Most from Simple Guidelines
People may think that maintainability requires a “silver bullet”: one technology or
principle that solves maintainability once and for all, automagically. Our principle is
the very opposite: maintainability requires following simple guidelines that are not

4 | Chapter 1: Introduction

sophisticated at all. These guidelines guarantee sufficient maintainability, not perfect
maintainability (whatever that may be). Source code that complies with these guide‐
lines can still be made more maintainable. At some point, the additional gains in
maintainability become smaller and smaller, while the costs become higher and
higher.

Principle 2: Maintainability Is Not an Afterthought, and Every
Contribution Counts
Maintainability needs to be addressed from the very start of a development project.
We understand that it is hard to see whether an individual “violation” of the guide‐
lines in this book influences the overall maintainability of the system. That is why all
developers must be disciplined and follow the guidelines to achieve a system that is
maintainable overall. Therefore, your individual contribution is of great importance
to the whole.

Following the guidelines in this book not only results in more maintainable code, but
also sets the right example for your fellow developers. This avoids the “broken win‐
dows effect” in which other developers temporarily relax their discipline and take
shortcuts. Setting the right example is not necessarily about being the most skilled
engineer, but more about retaining discipline during development.

Remember that you are writing code not just for yourself, but also
for less-experienced developers that come after you. This thought
helps you to simplify the solution you are programming.

Principle 3: Some Violations Are Worse Than Others
The guidelines in this book present metric thresholds as an absolute rule. For
instance, in Chapter 2, we tell you to never write methods that have more than 15
lines of code. We are fully aware that in practice, almost always there will be excep‐
tions to the guideline. What if a fragment of source code violates one or more of these
guidelines? Many types of tooling for software quality assume that each and every
violation is bad. The hidden assumption is that all violations should be resolved. In
practice, resolving all violations is neither necessary nor profitable. This all-or-
nothing view on violations may lead developers to ignore the violations altogether.

We take a different approach. To keep the metrics simple but also practical, we deter‐
mine the quality of a complete codebase not by the code’s number of violations but by
its quality profiles. A quality profile divides metrics into distinct categories, ranging
from fully compliant code to severe violations. By using quality profiles, we can dis‐
tinguish moderate violations (for example, a method with 20 lines of code) from

1.3 Three Principles of the Guidelines in This Book | 5

severe violations (for example, a method with 200 lines of code). After the next sec‐
tion, which discusses common misunderstandings about maintainability, we explain
how quality profiles are used to measure the maintainability of a system.

1.4 Misunderstandings About Maintainability
In this section, we discuss some misunderstandings about maintainability that are
encountered in practice.

Misunderstanding: Maintainability Is Language-Dependent
“Our system uses a state-of-the-art programming language. Therefore, it is at least as
maintainable as any other system.”

The data we have at SIG does not indicate that the technology (programming lan‐
guage) chosen for a system is the dominant determining factor of maintainability.
Our dataset contains C# systems that are among the most maintainable, but also, that
are among the least maintainable. The average maintainability of all C# systems in
our benchmark is itself average, and the same holds for Java. This shows us that it is
possible to make very maintainable systems in C# (and in Java), but using either of
these languages does not guarantee a system’s maintainability. Apparently, there are
other factors that determine maintainability.

For consistency, we are using C# code snippets throughout the
book. However, the guidelines described in this book are not spe‐
cific to C#. In fact, SIG has benchmarked systems in over a hun‐
dred programming languages based on the guidelines and metrics
in this book.

Misunderstanding: Maintainability Is Industry-Dependent
“My team makes embedded software for the car industry. Maintainability is different
there.”

We believe that the guidelines presented in this book are applicable to all forms of
software development: embedded software, games, scientific software, software com‐
ponents such as compilers and database engines, and administrative software. Of
course, there are differences between these domains. For example, scientific software
often uses a special-purpose programming language, such as R, for statistical analysis.
Yet, in R, it is a good idea to keep units short and simple. Embedded software has to
operate in an environment where performance predictability is essential and resour‐
ces are constrained. So whenever a compromise has to be made between performance
and maintainability, the former wins over the latter. But no matter the domain, the
characteristics defined in ISO 25010 still apply.

6 | Chapter 1: Introduction

Misunderstanding: Maintainability Is the Same as the Absence of
Bugs
“You said the system has above-average maintainability. However, it turns out it is full of
bugs!”

According to the ISO 25010 definitions, a system can be highly maintainable and still
be lacking in other quality characteristics. Consequently, a system may have above-
average maintainability and still suffer from problems regarding functional suitabil‐
ity, performance, reliability, and more. Above-average maintainability means nothing
more than that the modifications needed to reduce the number of bugs can be made
at a high degree of efficiency and effectiveness.

Misunderstanding: Maintainability Is a Binary Quantity
“My team repeatedly has been able to fix bugs in this system. Therefore, it has been pro‐
ven that it is maintainable.”

This distinction is important. “Maintain-Ability” is literally the ability to maintain.
According to its definition in ISO 25010, source code maintainability is not a binary
quantity. Instead, maintainability is the degree to which changes can be made effi‐
ciently and effectively. So the right question to ask is not whether changes (such as
bug fixes) have been made, but rather, how much effort did fixing the bug take (effi‐
ciency), and was the bug fixed correctly (effectiveness)?

Given the ISO 25010 definition of maintainability, one could say that a software sys‐
tem is never perfectly maintainable nor perfectly unmaintainable. In practice, we at
SIG have encountered systems that can be considered unmaintainable. These systems
had such a low degree of modification efficiency and effectiveness that the system
owner could not afford to maintain it.

1.5 Rating Maintainability
We know now that maintainability is a quality characteristic on a scale. It signifies
different degrees of being able to maintain a system. But what is “easy to maintain”
and what is “hard to maintain”? Clearly, a complex system is easier to maintain by an
expert than by a less experienced developer. By benchmarking, at SIG we let the met‐
rics in the software industry answer this question. If software metrics for a system
score below average, it is harder than average to maintain. The benchmark is recali‐
brated yearly. As the industry learns to code more efficiently (e.g., with the help of
new technologies), the average for metrics tends to improve over time. What was the
norm in software engineering a few years back, may be subpar now. The benchmark
thus reflects the state of the art in software engineering.

1.5 Rating Maintainability | 7

SIG divides the systems in the benchmark by star rating, ranging from 1 star (hardest
to maintain) to 5 stars (easiest to maintain). The distribution of these star ratings
among systems from 1 to 5 stars is 5%-30%-30%-30%-5%. Thus, in the benchmark
the systems that are among the top 5% are rated 5 stars. In these systems, there are
still violations to the guidelines, but much fewer than in systems rated below.

The star ratings serve as a predictor for actual system maintainability. SIG has collec‐
ted empirical evidence that issue resolution and enhancements are twice as fast in
systems with 4 stars than in systems with 2 stars.

The systems in the benchmark are ranked based on their metric quality profiles.
Figure 1-1 shows three examples of unit size quality profiles (print readers can view
full-color figures for this and the other quality profiles that follow in our repository
for this book).

Figure 1-1. Example of three quality profiles

The first chart in Figure 1-1 is a quality profile for unit size based on the source code
of Jenkins version 1.625, a popular open source continuous integration server. The
quality profile tells us that the Jenkins codebase has 64% of its code in methods that
are no longer than 15 lines of code (compliant with the guideline). The profile also
shows that 18% of all the code in the codebase is in methods between 16 and 30 lines
of code, and 12% is in methods between 31 and 60 lines of code. The Jenkins code‐
base is not perfect. It has severe unit size violations: 6% of the codebase is in very long
units (more than 60 lines of code).

The second chart in Figure 1-1 shows the quality profile of a 2-star system. Notice
that over one-third of the codebase is in units that are over 60 lines of code. Doing
maintenance on this system is a very painstaking job.

Finally, the third chart in Figure 1-1 shows the unit size cutoff points for 4 stars.
Compare this chart to the first one. You can tell that Jenkins complies to the unit size
guideline for 4 stars (although not for 5 stars), since the percentages of code in each
category are lower than the 4-star cutoffs.

8 | Chapter 1: Introduction

https://github.com/oreillymedia/building_maintainable_software
https://github.com/oreillymedia/building_maintainable_software
http://jenkins-ci.org/

In a sidebar at the end of each guideline chapter, we present the quality profile cate‐
gories for that guideline as we use them at SIG to rate maintainability. Specifically, for
each guideline, we present the cutoff points and the maximum percentage of code in
each category for a rating of 4 stars or higher (top 35% of the benchmark).

1.6 An Overview of the Maintainability Guidelines
In the following chapters, we will present the guidelines one by one, but here we list
all 10 guidelines together to give you a quick overview. We advise you to read this
book starting with Chapter 2 and work your way through sequentially.

Write short units of code (Chapter 2)
Shorter units (that is, methods and constructors) are easier to analyze, test, and
reuse.

Write simple units of code (Chapter 3)
Units with fewer decision points are easier to analyze and test.

Write code once (Chapter 4)
Duplication of source code should be avoided at all times, since changes will need
to be made in each copy. Duplication is also a source of regression bugs.

Keep unit interfaces small (Chapter 5)
Units (methods and constructors) with fewer parameters are easier to test and
reuse.

Separate concerns in modules (Chapter 6)
Modules (classes) that are loosely coupled are easier to modify and lead to a more
modular system.

Couple architecture components loosely (Chapter 7)
Top-level components of a system that are more loosely coupled are easier to
modify and lead to a more modular system.

Keep architecture components balanced (Chapter 8)
A well-balanced architecture, with not too many and not too few components, of
uniform size, is the most modular and enables easy modification through separa‐
tion of concerns.

Keep your codebase small (Chapter 9)
A large system is difficult to maintain, because more code needs to be analyzed,
changed, and tested. Also, maintenance productivity per line of code is lower in a
large system than in a small system.

1.6 An Overview of the Maintainability Guidelines | 9

Automate development pipeline and tests (Chapter 10)
Automated tests (that is, tests that can be executed without manual intervention)
enable near-instantaneous feedback on the effectiveness of modifications. Man‐
ual tests do not scale.

Write clean code (Chapter 11)
Having irrelevant artifacts such as TODOs and dead code in your codebase
makes it more difficult for new team members to become productive. Therefore,
it makes maintenance less efficient.

10 | Chapter 1: Introduction

CHAPTER 2

Write Short Units of Code

Any fool can write code that a computer can understand. Good programmers write
code that humans can understand.

—Martin Fowler

Guideline:

• Limit the length of code units to 15 lines of code.
• Do this by not writing units that are longer than 15 lines of

code in the first place, or by splitting long units into multiple
smaller units until each unit has at most 15 lines of code.

• This improves maintainability because small units are easy to
understand, easy to test, and easy to reuse.

Units are the smallest groups of code that can be maintained and executed independ‐
ently. In C#, units are methods or constructors. A unit is always executed as a whole.
It is not possible to invoke just a few lines of a unit. Therefore, the smallest piece of
code that can be reused and tested is a unit.

Consider the code snippet presented next. Given a customer identifier in a URL, this
code generates a list of all of the customer’s bank accounts along with the balance of
each account. The list is returned as a string formatted according to the JSON stan‐
dard, and also includes the overall total balance. It checks the validity of the bank
account numbers using a checksum and skips invalid numbers. See the sidebar “The
11-Check for Bank Account Numbers” on page 12 for an explanation of the check‐
sum used.

11

The 11-Check for Bank Account Numbers
The 11-check is a checksum used to validate Dutch nine-digit bank account numbers.
The checksum is a weighted sum of the nine digits of an account number. The
weights are the position of the digit in the bank account number, from right to left.
The leftmost digit has weight 9, while the rightmost digit has weight 1. A bank
account number is valid if and only if this checksum is an integer multiple of 11. This
checksum can detect mistakes in which one digit of a bank number is wrong.

As an example, consider bank account number 12.34.56.789. With the bank account
numbers in bold, let us count its sum from left to right: (1 × 9) + (2 × 8) + (3 × 7) + (4
× 6) + (5 × 5) + (6 × 4) + (7 × 3) + (8 × 2) + (9 × 1) = 165. Its checksum is therefore
valid, because 165 = 15 × 11.

public void DoGet(HttpRequest req, HttpResponse resp)
{
 resp.ContentType = "application/json";
 string command = "SELECT account, balance " +
 "FROM ACCTS WHERE id=" + req.Params[
 ConfigurationManager.AppSettings["request.parametername"]];
 SqlDataAdapter dataAdapter = new SqlDataAdapter(command,
 ConfigurationManager.AppSettings["handler.serverstring"]);
 DataSet dataSet = new DataSet();
 dataAdapter.Fill(dataSet, "ACCTS");
 DataTable dataTable = dataSet.Tables[0];
 try
 {
 float totalBalance = 0;
 int rowNum = 0;
 resp.Write("{\"balances\":[");
 while (dataTable.Rows.GetEnumerator().MoveNext())
 {
 rowNum++;
 DataRow results = (DataRow)dataTable.Rows.GetEnumerator().Current;
 // Assuming result is 9-digit bank account number,
 // validate with 11-test:
 int sum = 0;
 for (int i = 0; i < ((string)results["account"]).Length; i++)
 {
 sum = sum + (9 - i) *
 (int)Char.GetNumericValue(((string)results["account"])[i]);
 }
 if (sum % 11 == 0)
 {
 totalBalance += (float)results["balance"];
 resp.Write($"{{\"{results["account"]}\":{results["balance"]}}}");
 }
 if (rowNum == dataTable.Rows.Count)

12 | Chapter 2: Write Short Units of Code

 {
 resp.Write("],\n");
 }
 else
 {
 resp.Write(",");
 }
 }
 resp.Write($"\"total\":{totalBalance}}}\n");
 }
 catch (SqlException e)
 {
 Console.WriteLine($"SQL exception: {e.Message}");
 }
}

Understanding this unit requires you to keep track of a large number of details. First,
there is the ADO.NET connection. Then the checksum is validated in a for loop
inside the while loop, which iterates over all records returned by the SQL query.
There are also the details of JSON formatting, and the details of handling HTTP
requests and responses, to keep in mind.

The for loop in the middle of the unit implements the checksum validation. While
conceptually not that difficult, this type of code requires testing. That is easier said
than done, since you can only test the code by invoking the DoGet method. That
requires first creating HttpRequest and HttpResponse objects. It also requires mak‐
ing a database server available and populating it with account numbers to test. After
the call to DoGet, all you have is a JSON-formatted string hidden in the HttpResponse
object. To test whether the total balance is correct, you have to extract this value from
the JSON-formatted string.

The checksum code is also hard to reuse. The only way to execute the checksum code
is to call DoGet. Consequently, any future code that wants to reuse the checksum code
needs to have a SQL database available just to provide the bank account number to
check.

Long units tend to be hard to test, reuse, and understand. In the example just given,
the root cause is that DoGet is mixing (at least) four responsibilities: handling an
HTTP GET request, accessing data from a database, executing some business logic,
and transferring the result to the data transfer format of choice—in this case, JSON.
Together, DoGet has 46 lines of code. A shorter unit would simply not accommodate
that many responsibilities.

Every line that is not empty and does not contain only a comment
counts as a line of code. When counting the length of a unit, we
start at the line containing the first opening brace.

Write Short Units of Code | 13

2.1 Motivation
The advantages of short units are that they are easy to test, easy to analyze, and easy
to reuse.

Short Units Are Easy to Test
Units encapsulate the application logic of your system, and typically much testing
effort is spent on validating the application logic’s correctness. This is because the C#
compiler will not detect errors in the application logic automatically, and neither will
your editor or IDE (integrated development environment; e.g., Visual Studio). Code
with a single responsibility is easier to test. In general, short units may do only one
thing, while long units do multiple things and tend to have more responsibilities. A
unit with one responsibility is easier to test, since it implements a single indivisible
task. That allows the test to be isolated (specific to the unit) and simple. Chapter 10
discusses testing in more detail.

Short Units Are Easy to Analyze
It takes less time to read all the code in a short unit in order to analyze how the unit
works internally than it does in a long unit. This may not be apparent when you are
writing new code, but it makes all the difference when you are modifying existing
code. This is not an exceptional situation, since maintenance begins the day after the
project is started.

Short Units Are Easy to Reuse
A unit should always be invoked in at least one method (otherwise, the unit is dead
code). In a system, you can reuse a unit by invoking it in more than one method.
Small units are better candidates for reuse than long units. Long units tend to offer
specific details or provide a specific combination of functionalities. As a result, they
have more specialized functionality than short units. This makes reuse hard, because
it is not very likely that the specific functionality of a long unit is suitable. In contrast,
short units tend to be more generic. This makes reuse easier, because it is more likely
to fit your needs. Reusing code also helps keep the total code volume low (see Chap‐
ter 9).

Copying and pasting a unit is not what we mean when we speak
about reuse. That type of reuse leads to duplication, which is to be
avoided at all times (see Chapter 4).

14 | Chapter 2: Write Short Units of Code

2.2 How to Apply the Guideline
Following this guideline is not difficult when you know the right techniques, but it
requires discipline. This section presents two techniques that we find particularly
important. When writing a new unit, never let it grow beyond 15 lines of code. That
means that well before you reach 15 lines of code, you need to start thinking about
how to add further functionality. Does it really belong in the unit you are writing, or
should it go into its own unit? When a unit grows beyond 15 lines of code despite
your efforts, you need to shorten it.

When Writing a New Unit
Assume you are writing a class that represents a level in CsPacMan, the codebase we
use for a number of examples in this book. See the sidebar “About CsPacMan” on
page 16 for an introduction to it. This class provides public Start and Stop methods
that are called from buttons in the user interface of the game. A level maintains a list
of observers: classes that need to be informed whenever the level has finished.

The most basic version of the Start method checks whether the game is already in
progress. If so, it silently returns; otherwise, it updates inProgress, a private member
to keep track of its state:

public void Start()
{
 if (inProgress)
 {
 return;
 }
 inProgress = true;
}

So far our unit contains only seven lines of code. At this point, we can add a unit test
for our unit. When you use TDD (test-driven development), you already have a unit
test at this point. Unit testing is discussed in Chapter 10.

2.2 How to Apply the Guideline | 15

About CsPacMan
In this book, we use the source code of a simple Pacman-style game in several chap‐
ters (Figure 2-1). The codebase we use is called the JPacman Framework by its
authors. The JPacman Framework was created (in Java) by professor Arie van
Deursen and his team of Delft University of Technology for teaching testing concepts.
The source code has been released as open source under the Apache 2.0 license and is
available on GitHub. For this book, we converted the JPacMan Framework to C# and
call this version CsPacman. The source code is also available on GitHub.

Figure 2-1. CsPacman, a Pacman-style game

When Extending a Unit with New Functionality
When you extend your system with new functionality, you will see that units start to
grow longer. Discipline is required to adhere to a strict size limit. The next thing the
Start method needs is functionality that updates all observers of the level to inform
them about the current state. Here is how that works if we add code that tells all
observers the level has been lost if the player has died, and that tells all observers that
the level is won if any pellets are left:

public void Start()
{
 if (inProgress)
 {

16 | Chapter 2: Write Short Units of Code

http://bit.ly/jpacman
http://bit.ly/cspacman

 return;
 }
 inProgress = true;
 // Update observers if player died:
 if (!IsAnyPlayerAlive())
 {
 foreach (LevelObserver o in observers)
 {
 o.LevelLost();
 }
 }
 // Update observers if all pellets eaten:
 if (RemainingPellets() == 0)
 {
 foreach (LevelObserver o in observers)
 {
 o.LevelWon();
 }
 }
}

Adding the code to update observers made our unit grow to 21 lines of code (and 23
lines in total, including the 2 lines that contain comments). After testing the behavior
of this new code, you are probably already thinking about the next functionality to
implement. However, you need to refactor first to follow the guideline of this chapter.

Using Refactoring Techniques to Apply the Guideline
This section discusses two refactoring techniques to apply the guideline and achieve
shorter units of code.

Refactoring technique: Extract Method
One refactoring technique that works in this case is Extract Method. In the following
snippet, this technique is applied to extract a method from the former snippet:

public void Start()
{
 if (inProgress)
 {
 return;
 }
 inProgress = true;
 UpdateObservers();
}

private void UpdateObservers()
{
 // Update observers if player died:
 if (!IsAnyPlayerAlive())
 {

2.2 How to Apply the Guideline | 17

 foreach (LevelObserver o in observers)
 {
 o.LevelLost();
 }
 }
 // Update observers if all pellets eaten:
 if (RemainingPellets() == 0)
 {
 foreach (LevelObserver o in observers)
 {
 o.LevelWon();
 }
 }
}

As you can see, the unit (the method called Start) that had grown to 21 lines of code
is now back to 8 lines of code, well below the limit of 15 lines. A new unit (method),
called UpdateObservers, has been added. However, this method itself has 16 lines of
code, which is not under the limit of 15 lines (we will fix this in a moment). There is
an additional benefit. Starting or resuming a level is not the only place where observ‐
ers need to be updated; they also need to be informed after every move (of the player
or any of the ghosts). Implementing that is easy now: just call UpdateObservers from
Move, the method that controls the movement of the player and all ghosts.

The new method still has two responsibilities, as indicated by the comments. We have
to refactor the code further, applying Extract Method two more times:

public void UpdateObservers()
{
 UpdateObserversPlayerDied();
 UpdateObserversPelletsEaten();
}

private void UpdateObserversPlayerDied()
{
 if (!IsAnyPlayerAlive())
 {
 foreach (LevelObserver o in observers)
 {
 o.LevelLost();
 }
 }
}

private void UpdateObserversPelletsEaten()
{
 if (RemainingPellets() == 0)
 {
 foreach (LevelObserver o in observers)
 {
 o.LevelWon();

18 | Chapter 2: Write Short Units of Code

 }
 }
}

There is no need for the comments anymore: they have been replaced by the names
of the new methods. Using short units makes source code self-explanatory, as the
names of the methods take over the role of comments. There is a price, however: the
total number of code lines has increased, from 16 to 25.

Writing maintainable code is always a trade-off between different guidelines. When
splitting a unit into multiple units, you might increase the total number of code lines.
That seems to contradict the guideline of keeping the codebase small (see Chapter 9).
However, you have decreased the length and complexity of units that need to be tes‐
ted and understood. Therefore, maintainability has improved. While keeping the
codebase small is a good practice, the advantages of short units far outweigh the
increase in overall volume—especially given the marginal volume increase in this
case.

That writing maintainable code is always a trade-off is also evident in the choices
made by the JPacman authors. In the source code as it appears on GitHub, Extract
Method has been applied once, resulting in the 16-line version of UpdateObservers.
The authors of JPacman have not chosen to split UpdateObservers into UpdateObser
versPlayerDied and UpdateObserversPelletsEaten.

Refactoring technique: Replace Method with Method Object
In this example, it was easy to apply the Extract Method refactoring technique. The
reason is that the groups of code lines that were extracted did not access any local
variables, nor did they return any value. Sometimes, you want to extract a method
that does access local variables. It is always possible to pass local variables as parame‐
ters to the extracted method. However, this may lead to long parameter lists, which
are a problem in themselves (see Chapter 5). Return values can be even more trouble‐
some, as in C# you can return only a single value from a method. In these cases, you
can use a second refactoring technique, called Replace Method with Method Object.

JPacman contains a snippet for which this refactoring is applicable. Consider the fol‐
lowing 21-line method from the class BoardFactory:

public Board CreateBoard(Square[,] grid)
{
 Debug.Assert(grid != null);

 Board board = new Board(grid);

 int width = board.Width;
 int height = board.Height;
 for (int x = 0; x < width; x++)
 {

2.2 How to Apply the Guideline | 19

 for (int y = 0; y < height; y++)
 {
 Square square = grid[x, y];
 foreach (Direction dir in Direction.Values)
 {
 int dirX = (width + x + dir.DeltaX) % width;
 int dirY = (height + y + dir.DeltaY) % height;
 Square neighbour = grid[dirX, dirY];
 square.Link(neighbour, dir);
 }
 }
 }

 return board;
}

The four lines inside the innermost for loop are a candidate for the Extract Method
technique. However, together these four lines use six local variables—width, height,
x, y, dir, and square—and one pseudovariable, the grid parameter. If you apply the
Extract Method technique, you will have to pass seven parameters to the extracted
method:

private void SetLink(Square square, Direction dir, int x, int y,
 int width, int height, Square[,] grid)
{
 int dirX = (width + x + dir.DeltaX) % width;
 int dirY = (height + y + dir.DeltaY) % height;
 Square neighbour = grid[dirX, dirY];
 square.Link(neighbour, dir);
}

The refactored CreateBoard method would look like this:

public Board CreateBoard(Square[,] grid)
{
 Debug.Assert(grid != null);

 Board board = new Board(grid);

 int width = board.Width;
 int height = board.Height;
 for (int x = 0; x < width; x++)
 {
 for (int y = 0; y < height; y++)
 {
 Square square = grid[x, y];
 foreach (Direction dir in Direction.Values)
 {
 SetLink(square, dir, x, y, width, height, grid);
 }
 }
 }

20 | Chapter 2: Write Short Units of Code

 return board;
}

Let us try the Replace Method with Method Object technique instead. In this techni‐
que, we create a new class that will take over the role of CreateBoard, the method we
are refactoring:

internal class BoardCreator
{
 private Square[,] grid;
 private Board board;
 private int width;
 private int height;

 internal BoardCreator(Square[,] grid)
 {
 Debug.Assert(grid != null);
 this.grid = grid;
 this.board = new Board(grid);
 this.width = board.Width;
 this.height = board.Height;
 }

 internal Board Create()
 {
 for (int x = 0; x < width; x++)
 {
 for (int y = 0; y < height; y++)
 {
 Square square = grid[x, y];
 foreach (Direction dir in Direction.Values)
 {
 SetLink(square, dir, x, y);
 }
 }
 }
 return this.board;
 }

 private void SetLink(Square square, Direction dir, int x, int y)
 {
 int dirX = (width + x + dir.DeltaX) % width;
 int dirY = (height + y + dir.DeltaY) % height;
 Square neighbour = grid[dirX, dirY];
 square.Link(neighbour, dir);
 }
}

In this new class, three local variables (board, width, and height) and one parameter
(grid) of the CreateBoard method have been turned into (private) fields of the new
class. These fields are accessible to all methods of the new class. Hence, they no

2.2 How to Apply the Guideline | 21

longer need to be passed around as parameters. The four lines of the innermost for
loop now appear in a new method, SetLink, that has four parameters, not seven.

We’re almost done. To complete the refactoring, we have to change the original Crea
teBoard method as follows:

public Board CreateBoard(Square[,] grid)
{
 return new BoardCreator(grid).Create();
}

Not only have we ended up only with methods shorter than 15 lines of code and avoi‐
ded creating methods with long parameter lists, but the code is actually easier to read,
test, and reuse.

2.3 Common Objections to Writing Short Units
While writing short units may sound simple, software developers often find it quite
difficult in practice. The following are typical objections to the principle explained in
this chapter.

Objection: Having More Units Is Bad for Performance
“Writing short units means having more units, and therefore more method calls. That
will never perform.”

Indeed, theoretically, there is a performance penalty for having more units. There will
be more method invocations (compared to having fewer, longer units). For each invo‐
cation, a bit of work needs to be done by the .Net runtime. In practice, this is almost
never a problem. In the worst case, we are talking about microseconds. Unless a unit
is executed hundreds of thousands of times in a loop, the performance penalty of a
method invocation is not noticeable. Also, the C# compiler is very good at optimizing
the overhead of method invocations.

Except for very specific cases in enterprise software development, you can focus on
maintainability without sacrificing performance. An example is when a method is
invoked hundreds of thousands of times in the case of certain algorithms. This is
probably one of the very few cases in a programmer’s life where you can have your
cake and eat it too. We are not saying that there are no performance issues in enter‐
prise software development; however, they seldom, if ever, are caused by excessive
method calling.

Do not sacrifice maintainability to optimize for performance,
unless solid performance tests have proven that you actually have a
performance problem and your performance optimization actually
makes a difference.

22 | Chapter 2: Write Short Units of Code

Objection: Code Is Harder to Read When Spread Out
“Code becomes harder to read when spread out over multiple units.”

Well, psychology says that is not the case. People have a working memory of about
seven items, so someone who is reading a unit that is significantly longer than seven
lines of code cannot process all of it. The exception is probably the original author of
a piece of source code while he or she is working on it (but not a week later).

Write code that is easy to read and understand for your successors
(and for your future self).

Guideline Encourages Improper Formatting
“Your guideline encourages improper source code formatting.”

Do not try to comply with guideline by cutting corners in the area of formatting. We
are talking about putting multiple statements or multiple curly brackets on one line.
It makes the code slightly harder to read and thus decreases its maintainability. Resist
the temptation to do so.

Consider what purpose the guideline really serves. We simply cannot leave unit
length unconstrained. That would be akin to removing speed limits in traffic because
they discourage being on time. It is perfectly possible to obey speed limits and arrive
on time: just leave home a bit earlier. It is equally possible to write short units. Our
experience is that 15 lines of properly formatted code is enough to write useful units.

As proof, Table 2-1 presents some data from a typical Java 2 Enterprise Edition sys‐
tem, consisting of Java source files but also some XSD and XSLT. The system, cur‐
rently in production at a SIG client, provides reporting functionality for its owner.
The Java part consists of about 28,000 lines of code (a medium-sized system). Of
these 28,000 lines of code, just over 17,000 lines are in units. There are just over 3,000
units in this codebase.

Table 2-1. Distribution of unit length in a real-world enterprise system

Unit length Number of units
(absolute)

Number of units
(relative)

Number of lines
(absolute)

Number of lines
(relative)

1-15 3,071 95.4% 14,032 81.3%

16 or more 149 4.6% 3,221 18.7%

Total 3,220 100% 17,253 100%

2.3 Common Objections to Writing Short Units | 23

Out of the 3,220 units in this system, 3,071 (95.4%) are at most 15 lines of code, while
149 units (4.6% of all units) are longer. This shows that it is very possible in practice
to write short units—at least for a vast majority of units.

Agree on formatting conventions in your team. Keep units short
and comply with these conventions.

This Unit Is Impossible to Split Up
“My unit really cannot be split up.”

Sometimes, splitting a method is indeed difficult. Take, for instance, a properly for‐
matted switch statement in C#. For each case of the switch statement, there is a line
for the case itself, at least one line to do anything useful, and a line for the break
statement. So, anything beyond four cases becomes very hard to fit into 15 lines of
code, and a case statement cannot be split. In Chapter 3, we present some guidelines
on how to deal specifically with switch statements.

However, it is true that sometimes a source code statement simply cannot be split. A
typical example in enterprise software is SQL query construction. Consider the fol‐
lowing example (adapted from a real-world system analyzed by the authors of this
book):

public static void PrintDepartmentEmployees(string department)
{
 Query q = new Query();
 foreach (Employee e in q.AddColumn("FamilyName")
 .AddColumn("Initials")
 .AddColumn("GivenName")
 .AddColumn("AddressLine1")
 .AddColumn("ZIPcode")
 .AddColumn("City")
 .AddTable("EMPLOYEES")
 .AddWhere($"EmployeeDep='{department}'")
 .Execute())
 {
 Console.WriteLine($@"<div name='addressDiv'>
 {e.FamilyName}, {e.Initials}
" +
 "{e.AddressLine1}
{e.ZipCode}{e.City}</div>");
 }
}

This example has 16 lines of code. However, there are just three statements. The sec‐
ond statement contains an expression that spans nine lines. Indeed, you cannot
extract just this statement; neither the Extract Method nor the Replace Method with
Method Object technique is applicable, at least not directly. However, the nine-line

24 | Chapter 2: Write Short Units of Code

expression starting with q.AddColumn("FamilyName") can be extracted into a new
method. But before doing that (and seeing the newly created method grow to over 15
lines when the query gets more complex in the future), rethink the architecture. Is it
wise to create a SQL query piece by piece as in this snippet? Should the HTML
markup really appear here? A templating solution such as ASP or Razor may be more
suitable for the job at hand.

So, if you are faced with a unit that seems impossible to refactor, do not ignore it and
move on to another programming task, but indeed raise the issue with your team
members and team lead.

When a refactoring seems possible but doesn’t make sense, rethink
the architecture of your system.

There Is No Visible Advantage in Splitting Units
“Putting code in DoSomethingOne, DoSomethingTwo, DoSomethingThree has no benefit
over putting the same code all together in one long DoSomething.”

Actually, it does, provided you choose better names than DoSomethingOne, DoSome
thingTwo, and so on. Each of the shorter units is, on its own, easier to understand
than the long DoSomething. More importantly, you may not even need to consider all
the parts, especially since each of the method names, when chosen carefully, serves as
documentation indicating what the unit of code is supposed to do. Moreover, the long
DoSomething typically will combine multiple tasks. That means that you can only
reuse DoSomething if you need the exact same combination. Most likely, you can
reuse each of DoSomethingOne, DoSomethingTwo, and so on much more easily.

Put code in short units (at most 15 lines of code) that have carefully
chosen names that describe their function.

2.3 Common Objections to Writing Short Units | 25

2.4 See Also
See Chapters 3, 4, and 5 for additional refactoring techniques. For a discussion on
how to test methods, see Chapter 10.

How SIG Rates Unit Size
The size (length) of units (methods and constructors in C#) is one of the eight system
properties of the SIG/TÜViT Evaluation Criteria for Trusted Product Maintainability.
To rate unit size, every unit of the system is categorized in one of four risk categories
depending on the number of lines of code it contains. Table 2-2 lists the four risk cat‐
egories used in the 2015 version of the SIG/TÜViT Evaluation Criteria.

The criteria (rows) in Table 2-2 are conjunctive: a codebase needs to comply with all
four of them. For example, if 6.9% of all lines of code are in methods longer than
60 lines, the codebase can still be rated at 4 stars. However, in that case, at most
22.3% – 6.9% = 15.4% of all lines of code can be in methods that are longer than 30
lines but not longer than 60 lines. To the contrary, if a codebase does not have any
methods of more than 60 lines of code, at most 22.3% of all lines of code can be in
methods that are longer than 30 lines but not longer than 60 lines.

Table 2-2. Minimum thresholds for a 4-star unit size rating (2015 version of the SIG/
TÜViT Evaluation Criteria)

Lines of code in methods with … Percentage allowed for 4 stars for unit size
… more than 60 lines of code At most 6.9%

… more than 30 lines of code At most 22.3%

… more than 15 lines of code At most 43.7%

… at most 15 lines of code At least 56.3%

See the three quality profiles shown in Figure 2-2 as an example:

• Left: an open source system, in this case Jenkins
• Center: an anonymous system in the SIG benchmark that complies with a 4-star

rating for unit size
• Right: the cutoff points for achieving 4-star quality for this quality characteristic

26 | Chapter 2: Write Short Units of Code

Figure 2-2. Three quality profiles for unit size

2.4 See Also | 27

CHAPTER 3

Write Simple Units of Code

Each problem has smaller problems inside.
—Martin Fowler

Guideline:

• Limit the number of branch points per unit to 4.
• Do this by splitting complex units into simpler ones and

avoiding complex units altogether.
• This improves maintainability because keeping the number of

branch points low makes units easier to modify and test.

Complexity is an often disputed quality characteristic. Code that appears complex to
an outsider or novice developer can appear straightforward to a developer that is inti‐
mately familiar with it. To a certain extent, what is “complex” is in the eye of the
beholder. There is, however, a point where code becomes so complex that modifying
it becomes extremely risky and very time-consuming task, let alone testing the modi‐
fications afterward. To keep code maintainable, we must put a limit on complexity.
Another reason to measure complexity is knowing the minimum number of tests we
need to be sufficiently certain that the system acts predictably. Before we can define
such a code complexity limit, we must be able to measure complexity.

A common way to objectively assess complexity is to count the number of possible
paths through a piece of code. The idea is that the more paths can be distinguished,
the more complex a piece of code is. We can determine the number of paths unam‐
biguously by counting the number of branch points. A branch point is a statement
where execution can take more than one direction depending on a condition. Exam‐
ples of branch points in C# code are if and switch statements (a complete list follows

29

later). Branch points can be counted for a complete codebase, a class, a namespace, or
a unit. The number of branch points of a unit is equal to the minimum number of
paths needed to cover all branches created by all branch points of that unit. This is
called branch coverage. However, when you consider all paths through a unit from the
first line of the unit to a final statement, combinatory effects are possible. The reason
is that it may matter whether a branch follows another in a particular order. All possi‐
ble combinations of branches are the execution paths of the unit—that is, the maxi‐
mum number of paths through the unit.

Consider a unit containing two consecutive if statements. Figure 3-1 depicts the con‐
trol flow of the unit and shows the difference between branch coverage and execution
path coverage.

Figure 3-1. Branch coverage and execution path coverage

Suppose the point to the left of the first if statement modifies a database, and the
point to the right of the second if statement reads from that database. These are side
effects and require us to test the “zigzag” paths as well (the dotted lines in Figure 3-1).

30 | Chapter 3: Write Simple Units of Code

In summary, the number of branch points is the number of paths that cover all
branches created by branch points. It is the minimum number of paths and can be
zero (for a unit that has no branch points). The number of execution paths is a maxi‐
mum, and can be very large due to combinatorial explosion. Which one to choose?

The answer is to take the number of branch points plus one. This is called cyclomatic
complexity or McCabe complexity. Consequently, the guideline “limit the number of
branch points per unit to 4” is equal to “limit code McCabe complexity to 5.” This is
the minimum number of test cases that you need to cover a unit such that every path
has a part not covered by the other paths. The cyclomatic (McCabe) complexity of a
unit is at least one, which is easy to understand as follows. Consider a unit with no
branch points. According to the definition, its cyclomatic complexity is one (number
of branch points plus one). It also fits intuitively: a unit with no branch points has
one execution path, and needs at least one test.

For the sake of completeness: only for units with one exit point, the cyclomatic or
McCabe complexity is equal to the number of branch points plus one. It becomes
more complex for units with more than one exit point. Do not worry about that:
focus on limiting the number of branch points to four.

The minimum number of tests needed to cover all independent
execution paths of a unit is equal to the number of branch points
plus one.

Now consider the following example. Given a nationality, the GetFlagColors method
returns the correct flag colors:

public IList<Color> GetFlagColors(Nationality nationality)
{
 List<Color> result;
 switch (nationality)
 {
 case Nationality.DUTCH:
 result = new List<Color> { Color.Red, Color.White, Color.Blue };
 break;
 case Nationality.GERMAN:
 result = new List<Color> { Color.Black, Color.Red, Color.Yellow };
 break;
 case Nationality.BELGIAN:
 result = new List<Color> { Color.Black, Color.Yellow, Color.Red };
 break;
 case Nationality.FRENCH:
 result = new List<Color> { Color.Blue, Color.White, Color.Red };
 break;
 case Nationality.ITALIAN:
 result = new List<Color> { Color.Green, Color.White, Color.Red };

Write Simple Units of Code | 31

 break;
 case Nationality.UNCLASSIFIED:
 default:
 result = new List<Color> { Color.Gray };
 break;
 }
 return result;
}

The switch statement in the method body needs to handle all cases of the nationality
enumeration type and return the correct flag colors. As there are five possible nation‐
alities and the unclassified/default case, the number of isolated paths to be tested
(control flow branches) is six.

On first sight, the GetFlagColors method might seem harmless. Indeed, the method
is quite readable, and its behavior is as expected. Still, if we want to test the behavior
of this method, we would need six unique test cases (one for each nationality plus one
for the default/unclassified case). Writing automated tests might seem excessive for
the GetFlagColors method, but suppose a developer adds the flag of Luxembourg
(which is very similar to the Dutch flag) as a quick fix:

...
 case Nationality.DUTCH:
 result = new List<Color> { Color.Red, Color.White, Color.Blue };
 case Nationality.LUXEMBOURGER:
 result = new List<Color> { Color.Red, Color.White, Color.LightBlue };
 break;
 case Nationality.GERMAN:
....

Being in a hurry, the developer copied the constructor call for the Dutch flag
and updated the last argument to the right color. Unfortunately, the break statement
escaped the developer’s attention, and now all Dutch nationalities will see the flag
from Luxembourg on their profile page!

This example looks like a forged scenario, but we know from our consultancy prac‐
tice that this is what happens to complex code in reality. These types of simple mis‐
takes are also responsible for many “trivial” bugs that could be easily prevented.

To understand why complex code is such a problem for maintenance, it is important
to realize that code that starts out quite straightforward tends to grow much more
complex over time. Consider the following snippet taken from the codebase of the
open source build server Jenkins. There are 20 control flow branches in this code
snippet. Imagine having to modify or test this method:

/**
* Retrieve a user by its ID, and create a new one if requested.
* @return
* An existing or created user. May be {@code null} if a user does not exis
* and {@code create} is false.

32 | Chapter 3: Write Simple Units of Code

*/
private static User getOrCreate(string id, string fullName, bool create)
{
 string idkey = idStrategy().keyFor(id);

 byNameLock.readLock().doLock();
 User u;
 try
 {
 u = byName.get(idkey);
 }
 finally
 {
 byNameLock.readLock().unlock();
 }
 FileInfo configFile = getConfigFileFor(id);
 if (!configFile.Exists && !Directory.Exists(configFile.Directory.FullName))
 {
 // check for legacy users and migrate if safe to do so.
 FileInfo[] legacy = getLegacyConfigFilesFor(id);
 if (legacy != null && legacy.Length > 0)
 {
 foreach (FileInfo legacyUserDir in legacy)
 {
 XmlFile legacyXml = new XmlFile(XmlFile.XSTREAM,
 new FileInfo(Path.Combine(
 legacyUserDir.FullName, "config.xml")));
 try
 {
 object o = legacyXml.read();
 if (o is User)
 {
 if (idStrategy().equals(id, legacyUserDir.Name)
 && !idStrategy()
 .filenameOf(legacyUserDir.Name)
 .Equals(legacyUserDir.Name))
 {
 try
 {
 File.Move(legacyUserDir.FullName,
 configFile.Directory.FullName);
 }
 catch (IOException)
 {
 LOGGER.log(Level.WARNING,
 "Failed to migrate user record from {0} " +
 "to {1}", new Object[] {legacyUserDir,
 configFile.Directory.FullName
 });
 }
 break;
 }

Write Simple Units of Code | 33

 }
 else
 {
 LOGGER.log(Level.FINE,
 "Unexpected object loaded from {0}: {1}",
 new object[] { legacyUserDir, o });
 }
 }
 catch (IOException e)
 {
 LOGGER.log(Level.FINE,
 string.Format(
 "Exception trying to load user from {0}: {1}",
 new Object[] { legacyUserDir, e.Message }),
 e);
 }
 }
 }
 }
 if (u == null && (create || configFile.Exists))
 {
 User tmp = new User(id, fullName);
 User prev;
 byNameLock.readLock().doLock();
 try
 {
 prev = byName.putIfAbsent(idkey, u = tmp);
 }
 finally
 {
 byNameLock.readLock().unlock();
 }
 if (prev != null)
 {
 u = prev; // if some has already put a value in the map, use it
 if (LOGGER.isLoggable(Level.FINE)
 && !fullName.Equals(prev.getFullName()))
 {
 LOGGER.log(Level.FINE,
 "mismatch on fullName (‘" + fullName + "’ vs. ‘"
 + prev.getFullName() + "’) for ‘" + id + "’",
 new Exception());
 }
 }
 else if (!id.Equals(fullName) && !configFile.Exists)
 {
 // JENKINS-16332: since the fullName may not be recoverable
 // from the id, and various code may store the id only, we
 // must save the fullName
 try
 {
 u.save();

34 | Chapter 3: Write Simple Units of Code

 }
 catch (IOException x)
 {
 LOGGER.log(Level.WARNING, null, x);
 }
 }
 }
 return u;
}

3.1 Motivation
Based on the code examples in the previous section, keeping your units simple is
important for two main reasons:

• A simple unit is easier to understand, and thus modify, than a complex one.
• Simple units ease testing.

Simple Units Are Easier to Modify
Units with high complexity are generally hard to understand, which makes them hard
to modify. The first code example of the first section was not overly complicated, but
it would be when it checks for, say, 15 or more nationalities. The second code exam‐
ple covers many use cases for looking up or creating users. Understanding the second
code example in order to make a functional change is quite a challenge. The time it
takes to understand the code makes modification harder.

Simple Units Are Easier to Test
There is a good reason you should keep your units simple: to make the process of
testing easier. If there are six control flow branches in a unit, you will need at least six
test cases to cover all of them. Consider the GetFlagColors method: six tests to cover
five nationalities plus the default case would prevent trivial bugs from being intro‐
duced by maintenance work.

3.2 How to Apply the Guideline
As explained at the beginning of this chapter, we need to limit the number of branch
points to four. In C# the following statements and operators count as branch points:

• if

• case

• ? , ??

3.1 Motivation | 35

• &&, ||
• while

• for , foreach
• catch

So how can we limit the number of branch points? Well, this is mainly a matter of
identifying the proper causes of high complexity. In a lot of cases, a complex unit
consists of several code blocks glued together, where the complexity of the unit is the
sum of its parts. In other cases, the complexity arises as the result of nested if-then-
else statements, making the code increasingly harder to understand with each level
of nesting. Another possibility is the presence of a long chain of if-then-else state‐
ments or a long switch statement, of which the GetFlagColors method in the intro‐
duction is an example.

Each of these cases has its own problem, and thus, its own solution. The first case,
where a unit consists of several code blocks that execute almost independently, is a
good candidate for refactoring using the Extract Method pattern. This way of reduc‐
ing complexity is similar to Chapter 2. But what to do when faced with the other
cases of complexity?

Dealing with Conditional Chains
A chain of if-then-else statements has to make a decision every time a conditional
if is encountered. An easy-to-handle situation is the one in which the conditionals
are mutually exclusive; that is, they each apply to a different situation. This is also the
typical use case for a switch statement, like the switch from the GetFlagColors
method.

There are many ways to simplify this type of complexity, and selecting the best solu‐
tion is a trade-off that depends on the specific situation. For the GetFlagColors
method we present two alternatives to reduce complexity. The first is the introduction
of a Map data structure that maps nationalities to specific Flag objects. This refactor‐
ing reduces the complexity of the GetFlagColors method from McCabe 7 to
McCabe 2.

private static Dictionary<Nationality, IList<Color>> FLAGS =
 new Dictionary<Nationality, IList<Color>>();

static FlagFactoryWithMap()
{
 FLAGS[Nationality.DUTCH] = new List<Color>{ Color.Red, Color.White,
 Color.Blue };
 FLAGS[Nationality.GERMAN] = new List<Color>{ Color.Black, Color.Red,
 Color.Yellow };
 FLAGS[Nationality.BELGIAN] = new List<Color>{ Color.Black, Color.Yellow,

36 | Chapter 3: Write Simple Units of Code

 Color.Red };
 FLAGS[Nationality.FRENCH] = new List<Color>{ Color.Blue, Color.White,
 Color.Red };
 FLAGS[Nationality.ITALIAN] = new List<Color>{ Color.Green, Color.White,
 Color.Red };
}

public IList<Color> GetFlagColors(Nationality nationality)
{
 IList<Color> colors = FLAGS[nationality];
 return colors ?? new List<Color> { Color.Gray };
}

A second, more advanced way to reduce the complexity of the GetFlagColors
method is to apply a refactoring pattern that separates functionality for different flags
in different flag types. You can do this by applying the Replace Conditional with Poly‐
morphism pattern: each flag will get its own type that implements a general interface.
The polymorphic behavior of the C# language will ensure that the right functionality
is called during runtime.

For this refactoring, we start with a general IFlag interface:

public interface IFlag
{
 IList<Color> Colors { get; }
}

and specific flag types for different nationalities, such as for the Dutch:

public class DutchFlag : IFlag
{
 public IList<Color> Colors
 {
 get
 {
 return new List<Color> { Color.Red, Color.White, Color.Blue };
 }
 }
}

and the Italian:

public class ItalianFlag : IFlag
{
 public IList<Color> Colors
 {
 get
 {
 return new List<Color> { Color.Green, Color.White, Color.Red };
 }
 }
}

3.2 How to Apply the Guideline | 37

The GetFlagColors method now becomes even more concise and less error-prone:

private static readonly Dictionary<Nationality, IFlag> FLAGS =
 new Dictionary<Nationality, IFlag>();

static FlagFactory()
{
 FLAGS[Nationality.DUTCH] = new DutchFlag();
 FLAGS[Nationality.GERMAN] = new GermanFlag();
 FLAGS[Nationality.BELGIAN] = new BelgianFlag();
 FLAGS[Nationality.FRENCH] = new FrenchFlag();
 FLAGS[Nationality.ITALIAN] = new ItalianFlag();
}

public IList<Color> GetFlagColors(Nationality nationality)
{
 IFlag flag = FLAGS[nationality];
 flag = flag ?? new DefaultFlag();
 return flag.Colors;
}

This refactoring offers the most flexible implementation. For example, it allows the
flag type hierarchy to grow over time by implementing new flag types and testing
these types in isolation. A drawback of this refactoring is that it introduces more code
spread out over more classes. The developer much choose between extensibility and
conciseness.

Dealing with Nesting
Suppose a unit has a deeply nested conditional, as in the following example. Given a
binary search tree root node and an integer, the CalculateDepth method determines
whether the integer occurs in the tree. If so, the method returns the depth of the inte‐
ger in the tree; otherwise, it throws a TreeException:

public static int CalculateDepth(BinaryTreeNode<int> t, int n)
{
 int depth = 0;
 if (t.Value == n)
 {
 return depth;
 }
 else
 {
 if (n < t.Value)
 {
 BinaryTreeNode<int> left = t.Left;
 if (left == null)
 {
 throw new TreeException("Value not found in tree!");
 }
 else

38 | Chapter 3: Write Simple Units of Code

 {
 return 1 + CalculateDepth(left, n);
 }
 }
 else
 {
 BinaryTreeNode<int> right = t.Right;
 if (right == null)
 {
 throw new TreeException("Value not found in tree!");
 }
 else
 {
 return 1 + CalculateDepth(right, n);
 }
 }
 }
}

To improve readability, we can get rid of the nested conditional by identifying the dis‐
tinct cases and insert return statements for these. In terms of refactoring, this is
called the Replace Nested Conditional with Guard Clauses pattern. The result will be
the following method:

public static int CalculateDepth(BinaryTreeNode<int> t, int n)
{
 int depth = 0;
 if (t.Value == n)
 {
 return depth;
 }
 if ((n < t.Value) && (t.Left != null))
 {
 return 1 + CalculateDepth(t.Left, n);
 }
 if ((n > t.Value) && (t.Right != null))
 {
 return 1 + CalculateDepth(t.Right, n);
 }
 throw new TreeException("Value not found in tree!");
}

Although the unit is now easier to understand, its complexity has not decreased. In
order to reduce the complexity, you should extract the nested conditionals to separate
methods. The result will be as follows:

public static int CalculateDepth(BinaryTreeNode<int> t, int n)
{
 int depth = 0;
 if (t.Value == n)
 {
 return depth;

3.2 How to Apply the Guideline | 39

 }
 else
 {
 return TraverseByValue(t, n);
 }
}

private static int TraverseByValue(BinaryTreeNode<int> t, int n)
{
 BinaryTreeNode<int> childNode = GetChildNode(t, n);
 if (childNode == null)
 {
 throw new TreeException("Value not found in tree!");
 }
 else
 {
 return 1 + CalculateDepth(childNode, n);
 }
}

private static BinaryTreeNode<int> GetChildNode(
 BinaryTreeNode<int> t, int n)
{
 if (n < t.Value)
 {
 return t.Left;
 }
 else
 {
 return t.Right;
 }
}

This actually does decrease the complexity of the unit. Now we have achieved two
things: the methods are easier to understand, and they are easier to test in isolation
since we can now write unit tests for the distinct functionalities.

3.3 Common Objections to Writing Simple Units of Code
Of course, when you are writing code, units can easily become complex. You may
argue that high complexity is bound to arise or that reducing unit complexity in your
codebase will not help to increase the maintainability of your system. Such objections
are discussed next.

Objection: High Complexity Cannot Be Avoided
“Our domain is very complex, and therefore high code complexity is unavoidable.”

When you are working in a complex domain—such as optimizing logistical prob‐
lems, real-time visualizations, or anything that demands advanced application logic—

40 | Chapter 3: Write Simple Units of Code

it is natural to think that the domain’s complexity carries over to the implementation,
and that this is an unavoidable fact of life.

We argue against this common interpretation. Complexity in the domain does not
require the technical implementation to be complex as well. In fact, it is your respon‐
sibility as a developer to simplify problems such that they lead to simple code. Even if
the system as a whole performs complex functionality, it does not mean that units on
the lowest level should be complex as well. In cases where a system needs to process
many conditions and exceptions (such as certain legislative requirements), one solu‐
tion may be to implement a default, simple process and model the exceptions
explicitly.

It is true that the more demanding a domain is, the more effort the developer must
expend to build technically simple solutions. But it can be done! We have seen many
highly maintainable systems solving complex business problems. In fact, we believe
that the only way to solve complex business problems and keep them under control is
through simple code.

Objection: Splitting Up Methods Does Not Reduce Complexity
“Replacing one method with McCabe 15 by three methods with McCabe 5 each means
that overall McCabe is still 15 (and therefore, there are 15 control flow branches overall).
So nothing is gained.”

Of course, you will not decrease the overall McCabe complexity of a system by refac‐
toring a method into several new methods. But from a maintainability perspective,
there is an advantage to doing so: it will become easier to test and understand the
code that was written. So, as we already mentioned, newly written unit tests allow you
to more easily identify the root cause of your failing tests.

Put your code in simple units (at most four branch points) that
have carefully chosen names describing their function and cases.

3.4 See Also
See also Chapter 2 on refactoring patterns for splitting units up in smaller units.

3.4 See Also | 41

How SIG Rates Unit Complexity
The complexity (McCabe) of units (methods and constructors in C#) is one of the
eight system properties of the SIG/TÜViT Evaluation Criteria for Trusted Product
Maintainability. To rate unit complexity, every unit of the system is categorized in one
of four risk categories depending on its McCabe measurement. Table 3-1 lists the four
risk categories used in the 2015 version of the SIG/TÜViT Evaluation Criteria.

The criteria (rows) in Table 3-1 are conjunctive: a codebase needs to comply with
all four of them. For example, if 1.5% of all lines of code are in methods with a
McCabe over 25, it can still be rated at 4 stars. However, in that case, at most
10.0% - 1.5% = 8.5% of all lines of code can be in methods that have a McCabe over
10 but not over 25.

Table 3-1. Minimum thresholds for a 4-star unit complexity rating (2015 version of the
SIG/TÜViT Evaluation Criteria)

Lines of code in methods with … Percentage allowed for 4 stars for unit complexity
… a McCabe above 25 At most 1.5%

… a McCabe above 10 At most 10.0%

… a McCabe above 5 At most 25.2%

… a McCabe of at most 5 At least 74.8%

See the three quality profiles in Figure 3-2 as an example:

• Left: an open source system, in this case Jenkins
• Center: an anonymous system in the SIG benchmark that complies with a 4-star

rating for unit complexity
• Right: the cutoff points for achieving 4-star quality for this quality characteristic

Figure 3-2. Three quality profiles for unit complexity

42 | Chapter 3: Write Simple Units of Code

CHAPTER 4

Write Code Once

Number one in the stink parade is duplicated code.
—Kent Beck and Martin Fowler,
Bad Smells in Code

Guideline:

• Do not copy code.
• Do this by writing reusable, generic code and/or calling

existing methods instead.
• This improves maintainability because when code is copied,

bugs need to be fixed at multiple places, which is inefficient
and error-prone.

Copying existing code looks like a quick win—why write something anew when it
already exists? The point is: copied code leads to duplicates, and duplicates are a
problem. As the quote above indicates, some even say that duplicates are the biggest
software quality problem of all.

Consider a system that manages bank accounts. In this system, money transfers
between accounts are represented by objects of the Transfer class (not shown here).
The bank offers checking accounts represented by class CheckingAccount:

public class CheckingAccount
{
 private int transferLimit = 100;

 public Transfer MakeTransfer(String counterAccount, Money amount)
 {
 // 1. Check withdrawal limit:

43

 if (amount.GreaterThan(this.transferLimit))
 {
 throw new BusinessException("Limit exceeded!");
 }
 // 2. Assuming result is 9-digit bank account number, validate 11-test:
 int sum = 0;
 for (int i = 0; i < counterAccount.Length; i++)
 {
 sum = sum + (9 - i) * (int)Char.GetNumericValue(
 counterAccount[i]);
 }
 if (sum % 11 == 0)
 {
 // 3. Look up counter account and make transfer object:
 CheckingAccount acct = Accounts.FindAcctByNumber(counterAccount);
 Transfer result = new Transfer(this, acct, amount);
 return result;
 }
 else
 {
 throw new BusinessException("Invalid account number!");
 }
 }
}

Given the account number of the account to transfer money to (as a string), the Make
Transfer method creates a Transfer object. MakeTransfer first checks whether the
amount to be transferred does not exceed a certain limit. In this example, the limit is
simply hardcoded. MakeTransfer then checks whether the number of the account to
transfer the money to complies with a checksum (see the sidebar “The 11-Check for
Bank Account Numbers” on page 12 for an explanation of the checksum used). If that
is the case, the object that represents this account is retrieved, and a Transfer object
is created and returned.

Now assume the bank introduces a new account type, called a savings account. A sav‐
ings account does not have a transfer limit, but it does have a restriction: money can
only be transferred to one particular (fixed) checking account. The idea is that the
account owner chooses once to couple a particular checking account with a savings
account.

A class is needed to represent this new account type. Suppose the existing class is sim‐
ply copied, renamed, and adapted. This would be the result:

public class SavingsAccount
{
 public CheckingAccount RegisteredCounterAccount { get; set; }

 public Transfer makeTransfer(string counterAccount, Money amount)
 {
 // 1. Assuming result is 9-digit bank account number, validate 11-test:

44 | Chapter 4: Write Code Once

 int sum = 0;
 for (int i = 0; i < counterAccount.Length; i++)
 {
 sum = sum + (9 - i) * (int)Char.GetNumericValue(
 counterAccount[i]);
 }
 if (sum % 11 == 0)
 {
 // 2. Look up counter account and make transfer object:
 CheckingAccount acct = Accounts.FindAcctByNumber(counterAccount);
 Transfer result = new Transfer(this, acct, amount);
 // 3. Check whether withdrawal is to registered counter account:
 if (result.CounterAccount.Equals(this.RegisteredCounterAccount))
 {
 return result;
 }
 else
 {
 throw new BusinessException("Counter-account not registered!");
 }
 }
 else
 {
 throw new BusinessException("Invalid account number!!");
 }
 }
}

Start of code clone.

End of code clone.

Both classes exist in the same codebase. By copying and pasting an existing class, we
have introduced some duplicated code in the codebase. There are now two fragments
(ten lines of code each) of consecutive lines of code that are exactly the same. These
fragments are called code clones or duplicates.

Now suppose a bug is discovered in the implementation of the 11-test (the for loop
that iterates over the characters in counterAccount). This bug now needs to be fixed
in both duplicates. This is additional work, making maintenance less efficient. More‐
over, if the fix is only made in one duplicate but the other is overlooked, the bug is
only half fixed.

Resist the temptation of gaining a short-term advantage by copying
and pasting code. For every future adjustment to either duplicate,
you will need to revisit all duplicates.

Write Code Once | 45

Coding is about finding generic solutions for specific problems. Either reuse (by call‐
ing) an existing, generic method in your codebase, or make an existing method more
generic.

Types of Duplication
We define a duplicate or code clone as an identical piece of code at least six lines long.
The line count excludes whitespace and comments, just like in the regular definition
of “line of code” (see also Chapter 1). That means that the lines need to be exactly the
same to be considered a duplicate. Such clones are called Type 1 clones. It does not
matter where the duplicates occur. Two clones can be in the same method, in
different methods in the same class, or in different methods in different classes in the
same codebase. Code clones can cross method boundaries. For instance, if the follow‐
ing fragment appears twice in the codebase, it is considered one clone of six lines of
code, not two clones of three lines each:

public void SetGivenName(string givenName)
{
 this.givenName = givenName;
}

public void SetFamilyName(string familyName)
{
 this.familyName = familyName;
}

The following two methods are not considered duplicates of each other even though
they differ only in literals and the names of identifiers:

public void SetPageWidthInInches(float newWidth)
{
 float cmPerInch = 2.54f;
 this.pageWidthInCm = newWidth * cmPerInch;
 // A few more lines.
}

public void SetPageWidthInPoints(float newWidth)
{
 float cmPerPoint = 0.0352777f;
 this.pageWidthInCm = newWidth * cmPerPoint;
 // A few more lines (same as in setPageWidthInInches).
}

Two fragments of code that are syntactically the same (as opposed to textually) are
called Type 2 clones. Type 2 clones differ only in whitespace, comments, names of
identifiers, and literals. Every Type 1 clone is always also a Type 2 clone, but some
Type 2 clones are not Type 1 clones. The methods SetPageWidthInInches and SetPa
geWidthInPoints are Type 2 clones but not Type 1 clones.

46 | Chapter 4: Write Code Once

The guideline presented in this chapter is about Type 1 clones, for two reasons:

• Source code maintenance benefits most from the removal of Type 1 clones.
• Type 1 clones are easier to detect and recognize (both by humans and computers,

as detecting Type 2 clones requires full parsing).

The limit of six lines of code may appear somewhat arbitrary, since other books and
tools use a different limit. In our experience, the limit of six lines is the right balance
between identifying too many and too few clones. As an example, a ToString method
could be three or four lines, and those lines may occur in many domain objects.
Those clones can be ignored, as they are not what we are looking for—namely, delib‐
erate copies of functionality.

4.1 Motivation
To understand the advantages of a codebase with little duplication, in this section we
discuss the effects that duplication has on system maintainability.

Duplicated Code Is Harder to Analyze
If you have a problem, you want to know how to fix it. And part of that “how” is
where to locate the problem. When you are calling an existing method, you can easily
find the source. When you are copying code, the source of the problem may exist
elsewhere as well. However, the only way to find out is by using a clone detection
tool. A well-known tool for clone detection is CPD, which is included in a source
code analysis tool called PMD. Several editions of Visual Studio come with a clone
detection tool built-in.

The fundamental problem of duplication is not knowing whether
there is another copy of the code that you are analyzing, how many
copies exist, and where they are located.

Duplicated Code Is Harder to Modify
All code may contain bugs. But if duplicated code contains a bug, the same bug
appears multiple times. Therefore, duplicated code is harder to modify; you may need
to repeat bug fixes multiple times. This, in turn, requires knowing that a fix has to be
made in a duplicate in the first place! This is why duplication is a typical source of so-
called regression bugs: functionality that has worked normally before suddenly stops
working (because a duplicate was overlooked).

4.1 Motivation | 47

https://pmd.github.io

The same problem holds for regular changes. When code is duplicated, changes may
need to be made in multiple places, and having many duplicates makes changing a
codebase unpredictable.

4.2 How to Apply the Guideline
To avoid the problem of duplicated bugs, never reuse code by copying and pasting
existing code fragments. Instead, put it in a method if it is not already in one, so that
you can call it the second time that you need it. That is why, as we have covered in the
previous chapters, the Extract Method refactoring technique is the workhorse that
solves many duplication problems.

In the example presented at the beginning of the chapter, the code that implements
the checksum (which is part of the duplicate) is an obvious candidate for extraction.
To resolve duplication using Extract Method, the duplicate (or a part thereof) is
extracted into a new method which is then called multiple times, once from each
duplicate.

In Chapter 2, the new extracted method became a private method of the class in
which the long method occurs. That does not work if duplication occurs across
classes, as in CheckingAccount and SavingsAccount. One option in that case is to
make the extracted method a method of a utility class. In the example, we already
have an appropriate class for that (Accounts). So the new static method, IsValid, is
simply a method of that class:

public static bool IsValid(string number)
{
 int sum = 0;
 for (int i = 0; i < number.Length; i++)
 {
 sum = sum + (9 - i) * (int)Char.GetNumericValue(number[i]);
 }
 return sum % 11 == 0;
}

This method is called in CheckingAccount:

public class CheckingAccount
{
 private int transferLimit = 100;

 public Transfer MakeTransfer(string counterAccount, Money amount)
 {
 // 1. Check withdrawal limit:
 if (amount.GreaterThan(this.transferLimit))
 {
 throw new BusinessException("Limit exceeded!");
 }
 if (Accounts.IsValid(counterAccount))

48 | Chapter 4: Write Code Once

 {
 // 2. Look up counter account and make transfer object:
 CheckingAccount acct = Accounts.FindAcctByNumber(counterAccount);
 Transfer result = new Transfer(this, acct, amount);
 return result;
 }
 else
 {
 throw new BusinessException("Invalid account number!");
 }
 }
}

Start of short clone (three lines of code).

End of short clone (three lines of code).

And also in SavingsAccount:

public class SavingsAccount
{
 public CheckingAccount RegisteredCounterAccount { get; set; }

 public Transfer MakeTransfer(string counterAccount, Money amount)
 {
 // 1. Assuming result is 9-digit bank account number, validate 11-test:
 if (Accounts.IsValid(counterAccount))
 {
 // 2. Look up counter account and make transfer object:
 CheckingAccount acct = Accounts.FindAcctByNumber(counterAccount);
 Transfer result = new Transfer(this, acct, amount);
 if (result.CounterAccount.Equals(this.RegisteredCounterAccount))
 {
 return result;
 }
 else
 {
 throw new BusinessException("Counter-account not registered!");
 }
 }
 else
 {
 throw new BusinessException("Invalid account number!!");
 }
 }
}

Start of short clone (three lines of code).

End of short clone (three lines of code).

4.2 How to Apply the Guideline | 49

Mission accomplished: according to the definition of duplication presented at the
beginning of this chapter, the clone has disappeared (because the repeated fragment is
fewer than six lines of code). But the following issues remain:

• Even though according to the definition, the clone has disappeared, there is still
logic repeated in the two classes.

• The extracted fragment had to be put in a third class, just because in C# every
method needs to be in a class (or struct). The class to which the extracted method
was added runs the risk of becoming a hodgepodge of unrelated methods. This
leads to a large class smell and tight coupling. Having a large class is a smell
because it signals that there are multiple unrelated functionalities within the
class. This tends to lead to tight coupling when methods need to know imple‐
mentation details in order to interact with such a large class. (For elaboration, see
Chapter 6.)

The refactoring technique presented in the next section solves these problems.

The Extract Superclass Refactoring Technique
In the preceding code snippets, there are separate classes for a checking account and
a savings account. They are functionally related. However, they are not related in
C# (they are just two classes that each derive directly from System.Object).
Both have common functionality (the checksum validation), which introduced a
duplicate when we created SavingsAccount by copying and pasting (and modifying)
CheckingAccount. One could say that a checking account is a special type of a (gen‐
eral) bank account, and that a savings account is also a special type of a (general)
bank account. C# (and other object-oriented languages) has a feature to represent the
relationship between something general and something specific: inheritance from a
superclass to a subclass.

The Extract Superclass refactoring technique uses this feature by extracting a frag‐
ment of code lines not just to a method, but to a new class that is the superclass of the
original class. So, to apply this technique, you create a new Account class like so:

public class Account
{
 public virtual Transfer MakeTransfer(string counterAccount, Money amount)
 {
 // 1. Assuming result is 9-digit bank account number, validate 11-test:
 int sum = 0;
 for (int i = 0; i < counterAccount.Length; i++)
 {
 sum = sum + (9 - i) * (int)Char.
 GetNumericValue(counterAccount[i]);
 }
 if (sum % 11 == 0)

50 | Chapter 4: Write Code Once

 {
 // 2. Look up counter account and make transfer object:
 CheckingAccount acct = Accounts.FindAcctByNumber(counterAccount);
 Transfer result = new Transfer(this, acct, amount);
 return result;
 }
 else
 {
 throw new BusinessException("Invalid account number!");
 }
 }
}

Start of extracted clone.

End of extracted clone.

The new superclass, Account, contains logic shared by the two types of special
accounts. You can now turn both the CheckingAccount and SavingsAccount classes
into subclasses of this new superclass. For CheckingAccount, the result looks like this:

public class CheckingAccount : Account
{
 private int transferLimit = 100;

 public override Transfer MakeTransfer(string counterAccount, Money amount)
 {
 if (amount.GreaterThan(this.transferLimit))
 {
 throw new BusinessException("Limit exceeded!");
 }
 return base.MakeTransfer(counterAccount, amount);
 }
}

The CheckingAccount class declares its own member, transferLimit, and overrides
MakeTransfer. The MakeTransfer method first checks to be sure the amount to be
transferred does not exceed the limit for checking accounts. If that is the case, it calls
MakeTransfer in the superclass to create the actual transfer.

The new version of SavingsAccount works likewise:

public class SavingsAccount : Account
{
 public CheckingAccount RegisteredCounterAccount { get; set; }

 public override Transfer MakeTransfer(string counterAccount, Money amount)
 {
 Transfer result = base.MakeTransfer(counterAccount, amount);
 if (result.CounterAccount.Equals(this.RegisteredCounterAccount))
 {

4.2 How to Apply the Guideline | 51

 return result;
 }
 else
 {
 throw new BusinessException("Counter-account not registered!");
 }
 }
}

The SavingsAccount class declares RegisteredCounterAccount and, just like Check
ingAccount, overrides MakeTransfer. The MakeTransfer method does not need to
check a limit (because savings accounts do not have a limit). Instead, it calls Make
Transfer directly in the superclass to create a transfer. It then checks whether the
transfer is actually with the registered counter account.

All functionality is now exactly where it belongs. The part of making a transfer that is
the same for all accounts is in the Account class, while the parts that are specific to
certain types of accounts are in their respective classes. All duplication has been
removed.

As the comments indicate, the MakeTransfer method in the Account superclass has
two responsibilities. Although the duplication introduced by copying and pasting
CheckingAccount has already been resolved, one more refactoring—extracting the
11-test to its own method—makes the new Account class even more maintainable:

public class Account
{
 public Transfer MakeTransfer(string counterAccount, Money amount)
 {
 if (IsValid(counterAccount))
 {
 CheckingAccount acct = Accounts.FindAcctByNumber(counterAccount);
 return new Transfer(this, acct, amount);
 }
 else
 {
 throw new BusinessException("Invalid account number!");
 }
 }

 public static bool IsValid(string number)
 {
 int sum = 0;
 for (int i = 0; i < number.Length; i++)
 {
 sum = sum + (9 - i) * (int)Char.GetNumericValue(number[i]);
 }
 return sum % 11 == 0;
 }
}

52 | Chapter 4: Write Code Once

The Account class is now a natural place for IsValid, the extracted method.

4.3 Common Objections to Avoiding Code Duplication
This section discusses common objections regarding code duplication. From our
experience, these are developers’ arguments for allowing duplication, such as copying
from other codebases, claiming there are “unavoidable” cases, and insisting that some
code will “never change.”

Copying from Another Codebase Should Be Allowed
“Copying and pasting code from another codebase is not a problem because it will not
create a duplicate in the codebase of the current system.”

Technically, that is correct: it does not create a duplicate in the codebase of the cur‐
rent system. Copying code from another system may seem beneficial if the code
solves the exact same problem in the exact same context. However, in any of the fol‐
lowing situations you will run into problems:

The other (original) codebase is still maintained
Your copy will not benefit from the improvements made in the original codebase.
Therefore, do not copy, but rather import the functionality needed (that is, add
the other codebase to your classpath).

The other codebase is no longer maintained and you are working on rebuilding this
codebase

In this case, you definitely should not copy the code. Often, rebuilds are caused
by maintainability problems or technology renewals. In the case of maintainabil‐
ity issues, you would be defeating the purpose by copying code. You are introduc‐
ing code that is determined to be (on average) hard to maintain. In the case of
technology renewals, you would be introducing limitations of the old technology
into the new codebase, such as an inability to use abstractions that are needed for
reusing functionality efficiently.

Slight Variations, and Hence Duplication, Are Unavoidable
“Duplication is unavoidable in our case because we need slight variations of common
functionality.”

Indeed, systems often contain slight variations of common functionality. For
instance, some functionality is slightly different for different operating systems, for
other versions (for reasons of backward compatibility), or for different customer
groups. However, this does not imply that duplication is unavoidable. You need to
find those parts of the code that are shared by all variants and move them to a com‐
mon superclass, as in the examples presented in this chapter. You should strive to

4.3 Common Objections to Avoiding Code Duplication | 53

model variations in the code in such a way that they are explicit, isolated, and
testable.

This Code Will Never Change
“This code will never, ever change, so there is no harm in duplicating it.”

If it is absolutely, completely certain that code will never, ever change, duplication
(and every other aspect of maintainability) is not an issue. For a start, you have to be
absolutely, completely certain that the code in question also does not contain any
bugs that need fixing. Apart from that, the reality is that systems change for many
reasons, each of which may eventually lead to changes in parts deemed to never, ever
change:

• The functional requirements of the system may change because of changing users,
changing behavior, or a change in the way the organization does business.

• The organization may change in terms of ownership, responsibilities, develop‐
ment approach, development process, or legislative requirements.

• Technology may change, typically in the system’s environment, such as the operat‐
ing system, libraries, frameworks, or interfaces to other applications.

• Code itself may change, because of bugs, refactoring efforts, or even cosmetic
improvements.

That is why we argue that most of the time the expectation that code never changes is
unfounded. So accepting duplication is really nothing more than accepting the risk
that someone else will have to deal with it later if it happens.

Your code will change. Really.

Duplicates of Entire Files Should Be Allowed as Backups
“We are keeping copies of entire files in our codebase as backups. Every backup is an
unavoidable duplicate of all other versions.”

We recommend keeping backups, but not in the way implied by this objection (inside
the codebase). Version control systems such as Microsoft TFS, SVN and Git provide a
much better backup mechanism. If those are not available, move backup files to a
directory next to the root of the codebase, not inside it. Why? Because sooner or later
you will lose track of which variant of a file is the right one.

54 | Chapter 4: Write Code Once

Unit Tests Are Covering Me
“Unit tests will sort out whether something goes wrong with a duplicate.”

This is true only if the duplicates are in the same method, and the unit test of the
method covers both. If the duplicates are in other methods, it can be true only if a
code analyzer alerts you if duplicates are changing. Otherwise, unit tests would not
necessarily signal that something is wrong if only one duplicate has changed. Hence,
you cannot rely only on the tests (identifying symptoms) instead of addressing the
root cause of the problem (using duplicate code). You should not assume that even‐
tual problems will be fixed later in the development process, when you could avoid
them altogether right now.

Duplication in String Literals Is Unavoidable and Harmless
“I need long string literals with a lot of duplication in them. Duplication is unavoidable
and does not hurt because it is just in literals.”

This is a variant of one of the objections discussed in Chapter 2 (“This unit is impos‐
sible to split”). We often see code that contains long SQL queries or XML or HTML
documents appearing as string literals in C# code. Sometimes such literals are com‐
plete clones, but more often parts of them are repeated. For instance, we have seen
SQL queries of more than a hundred lines of code that differed only in the sorting
order (order by asc versus order by desc). This type of duplication is not harmless
even though technically they are not in the C# logic itself. It is also not unavoidable;
in fact this type of duplication can be avoided in a straightforward fashion:

• Extract to a method that uses string concatenation and parameters to deal with
variants.

• Use a templating engine to generate HTML output from smaller, nonduplicated
fragments that are kept in separate files.

4.4 See Also
Less duplication leads to a smaller codebase; for elaboration, see Chapter 9. See the
Extract Method refactoring technique in Chapter 2 for splitting units to make them
easier to reuse.

4.4 See Also | 55

How SIG Rates Duplication
The amount of duplication is one of the eight system properties of the SIG/TÜViT
Evaluation Criteria for Trusted Product Maintainability. To rate duplication, all Type
1 (i.e., textually equal) code clones of at least six lines of code are considered, except
clones consisting entirely of import statements. Code clones are then categorized in
two risk categories: redundant clones and nonredundant clones, as follows. Take a
fragment of 10 lines of code that appears three times in the codebase. In other words,
there is a group of three code clones, each 10 lines of code. Theoretically, two of these
can be removed: they are considered technically redundant. Consequently, 10 + 10 =
20 lines of code are categorized as redundant. One clone is categorized as nonredun‐
dant, and hence, 10 lines of code are categorized as nonredundant. To be rated at 4
stars, at most 4.6% of the total number of lines of code in the codebase can be catego‐
rized as redundant. See Table 4-1

Table 4-1. Minimum thresholds for a 4-star duplication rating (2015 version of the SIG/
TÜViT Evaluation Criteria)

Lines of code categorized as … Percentage allowed for 4 stars
… nonredundant At least 95.4%

… redundant At most 4.6%

See the three quality profiles in Figure 4-1 as an example:

• Left: an open source system, in this case Jenkins
• Center: an anonymous system in the SIG benchmark that complies with a 4-star

rating for duplication
• Right: the cutoff points for achieving 4-star quality for this quality characteristic

Figure 4-1. Three code duplication quality profiles

56 | Chapter 4: Write Code Once

CHAPTER 5

Keep Unit Interfaces Small

Bunches of data that hang around together really ought to be made into their own
object.

—Martin Fowler

Guideline:

• Limit the number of parameters per unit to at most 4.
• Do this by extracting parameters into objects.
• This improves maintainability because keeping the number of

parameters low makes units easier to understand and reuse.

There are many situations in the daily life of a programmer where long parameter
lists seem unavoidable. In the rush of getting things done, you might add a few
parameters more to that one method in order to make it work for exceptional cases.
In the long term, however, such a way of working will lead to methods that are hard
to maintain and hard to reuse. To keep your code maintainable it is essential to avoid
long parameter lists, or unit interfaces, by limiting the number of parameters they
have.

A typical example of a unit with many parameters is the render method in the Board
Panel class of JPacman. This method renders a square and its occupants (e.g., a ghost,
a pellet) in a rectangle given by the x,y,w,h parameters.

/// <summary>
/// Renders a single square on the given graphics context on the specified
/// rectangle.
///
/// <param name="square">The square to render.</param>

57

/// <param name="g">The graphics context to draw on.</param>
/// <param name="x">The x position to start drawing.</param>
/// <param name="y">The y position to start drawing.</param>
/// <param name="w">The width of this square (in pixels.)</param>
/// <param name="h">The height of this square (in pixels.)</param>
private void Render(Square square, Graphics g, int x, int y, int w, int h)
{
 square.Sprite.Draw(g, x, y, w, h);
 foreach (Unit unit in square.Occupants)
 {
 unit.Sprite.Draw(g, x, y, w, h);
 }
}

This method exceeds the parameter limit of 4. Especially the last four arguments, all
of type int, make the method harder to understand and its usage more error-prone
than necessary. It is not unthinkable that after a long day of writing code, even an
experienced developer could mix up the x,y,w and h parameters—a mistake that the
compiler and possibly even the unit tests will not catch.

Because the x,y,w, and h variables are related (they define a rectangle with a 2D
anchor point, a width and a height), and the render method does not manipulate
these variables independently, it makes sense to group them into an object of type
Rectangle. The next code snippets show the Rectangle class and the refactored
render method:

public class Rectangle
{
 public Point Position { get; set; }

 public int Width { get; set; }

 public int Height { get; set; }

 public Rectangle(Point position, int width, int height)
 {
 this.Position = position;
 this.Width = width;
 this.Height = height;
 }

}

/// <summary>
/// Renders a single square on the given graphics context on the specified
/// rectangle.
///
/// <param name="square">The square to render.</param>
/// <param name="g">The graphics context to draw on.</param>
/// <param name="r">The position and dimension for rendering the square.</param>
private void Render(Square square, Graphics g, Rectangle r)

58 | Chapter 5: Keep Unit Interfaces Small

{
 Point position = r.Position;
 square.Sprite.Draw(g, position.X, position.Y, r.Width, r.Height);
 foreach (Unit unit in square.Occupants)
 {
 unit.Sprite.Draw(g, position.X, position.Y, r.Width, r.Height);
 }
}

Now the render method has only three parameters instead of six. Next to that, in the
whole system we now have the Rectangle class available to work with. This allows us
to also create a smaller interface for the draw method:

private void Render(Square square, Graphics g, Rectangle r)
{
 Point position = r.Position;
 square.Sprite.Draw(g, r);
 foreach (Unit unit in square.Occupants)
 {
 unit.Sprite.Draw(g, r);
 }
}

The preceding refactorings are an example of the Introduce Parameter Object refac‐
toring pattern. Avoiding long parameter lists, as shown in the previous example,
improves the readability of your code. In the next section, we explain why small inter‐
faces contribute to the overall maintainability of a system.

5.1 Motivation
As we already discussed in the introduction, there are good reasons to keep interfaces
small and to introduce suitable objects for the parameters you keep passing around in
conjunction. Methods with small interfaces keep their context simple and thus are
easier to understand. Furthermore, they are easier to reuse and modify because they
do not depend on too much external input.

Small Interfaces Are Easier to Understand and Reuse
As the codebase grows, the core classes become the API upon which a lot of other
code in the system builds. In order to keep the volume of the total codebase low (see
also Chapter 9) and the speed of development high, it is important that the methods
in the core classes have a clear and small interface. Suppose you want to store a Pro
ductOrder object in the database: would you prefer a ProductOrderDao.store(Pro
ductOrder order) method or a ProductOrderDao.store(ProductOrder order,

String databaseUser, String databaseName, boolean validateBeforeStore,

boolean closeDbConnection) method?

5.1 Motivation | 59

Methods with Small Interfaces Are Easier to Modify
Large interfaces do not only make your methods obscure, but in many cases also
indicate multiple responsibilities (especially when you feel that you really cannot
group your objects together anymore). In this sense, interface size correlates with unit
size and unit complexity. So it is pretty obvious that methods with large interfaces are
hard to modify. If you have, say, a method with eight parameters and a lot is going on
in the method body, it can be difficult to see where you can split your method into
distinct parts. However, once you have done so, you will have several methods with
their own responsibility, and moreover, each method will have a small number of
parameters! Now it will be much easier to modify each of these methods, because you
can more easily locate exactly where your modification needs to be done.

5.2 How to Apply the Guideline
By the time you have read this, you should be convinced that having small interfaces
is a good idea. How small should an interface be? In practice, an upper bound of four
seems reasonable: a method with four parameters is still reasonably clear, but a
method with five parameters is already getting difficult to read and has too many
responsibilities.

So how can you ensure small interfaces? Before we show you how you can fix meth‐
ods with large interfaces, keep in mind that large interfaces are not the problem, but
rather are indicators of the actual problem—a poor data model or ad hoc code modi‐
fication. So, you can view interface size as a code smell, to see whether your data
model needs improvement.

Large interfaces are usually not the main problem; rather, they are a
code smell that indicates a deeper maintainability problem.

Let us say you have a buildAndSendMail method that takes a list of nine parameters
in order to construct and send an email message. However, if you looked at just the
parameter list, it would not be very clear what would happen in the method body:

public void DoBuildAndSendMail(MailMan m, string firstName, string lastName,
 string division, string subject, MailFont font, string message1,
 string message2, string message3)
{
 // Format the email address
 string mId = $"{firstName[0]}.{lastName.Substring(0, 7)}" +
 $"@{division.Substring(0, 5)}.compa.ny";
 // Format the message given the content type and raw message
 MailMessage mMessage = FormatMessage(font,

60 | Chapter 5: Keep Unit Interfaces Small

 message1 + message2 + message3);
 // Send message
 m.Send(mId, subject, mMessage);
}

The buildAndSendMail method clearly has too many responsibilities; the construc‐
tion of the email address does not have much to do with sending the actual email.
Furthermore, you would not want to confuse your fellow programmer with five
parameters that together will make up a message body! We propose the following
revision of the method:

public void DoBuildAndSendMail(MailMan m, MailAddress mAddress,
 MailBody mBody)
{
 // Build the mail
 Mail mail = new Mail(mAddress, mBody);
 // Send the mail
 m.SendMail(mail);
}

public class Mail
{
 public MailAddress Address { get; set; }
 public MailBody Body { get; set; }

 public Mail(MailAddress mAddress, MailBody mBody)
 {
 this.Address = mAddress;
 this.Body = mBody;
 }
}

public class MailBody
{
 public string Subject { get; set; }
 public MailMessage Message { get; set; }

 public MailBody(string subject, MailMessage message)
 {
 this.Subject = subject;
 this.Message = message;
 }
}

public class MailAddress
{
 public string MsgId { get; private set; }

 public MailAddress(string firstName, string lastName,
 string division)
 {
 this.MsgId = $"{firstName[0]}.{lastName.Substring(0, 7)}" +

5.2 How to Apply the Guideline | 61

 $"@{division.Substring(0, 5)}.compa.ny";
 }
}

The buildAndSendMail method is now considerably less complex. Of course, you
now have to construct the email address and message body before you invoke the
method. But if you want to send the same message to several addresses, you only have
to build the message once, and similarly for the case where you want to send a bunch
of messages to one email address. In conclusion, we have now separated concerns,
and while we did so we introduced some nice, structured classes.

The examples presented in this chapter all group parameters into objects. Such
objects are often called data transfer objects or parameter objects. In the examples,
these new objects actually represent meaningful concepts from the domain. A point, a
width, and a height represent a rectangle, so grouping these in a class called Rectan
gle makes sense. Likewise, a first name, a last name, and a division make an address,
so grouping these in a class called MailAddress makes sense, too. It is not unlikely
that these classes will see a lot of use in the codebase because they are useful generali‐
zations, not just because they may decrease the number of parameters of a method.

What if we have a number of parameters that do not fit well together? We can always
make a parameter object out of them, but probably, it will be used only once. In such
cases, another approach is often possible, as illustrated by the following example.

Suppose we are creating a library that can draw charts, such as bar charts and pie
charts, on a System.Drawing.Graphics canvas. To draw a nice-looking chart, you
usually need quite a bit of information, such as the size of the area to draw on, config‐
uration of the category axis and value axis, the actual dataset to chart, and so forth.
One way to supply this information to the charting library is like this:

public static void DrawBarChart(Graphics g,
 CategoryItemRendererState state,
 Rectangle graphArea,
 CategoryPlot plot,
 CategoryAxis domainAxis,
 ValueAxis rangeAxis,
 CategoryDataset dataset)
{
 // ..
}

This method already has seven parameters, three more than the guideline presented
in this chapter allows. Moreover, any call to drawBarChart needs to supply values for
all seven parameters. What if the charting library provided default values wherever
possible? One way to implement this is to use method overloading and define, for
instance, a two-parameter version of drawBarChart:

62 | Chapter 5: Keep Unit Interfaces Small

public static void DrawBarChart(Graphics g, CategoryDataset dataset)
{
 Charts.DrawBarChart(g,
 CategoryItemRendererState.DEFAULT,
 new Rectangle(new Point(0, 0), 100, 100),
 CategoryPlot.DEFAULT,
 CategoryAxis.DEFAULT,
 ValueAxis.DEFAULT,
 dataset);
}

This covers the case where we want to use defaults for all parameters whose data
types have a default value defined. However, that is just one case. Before you know it,
you are defining more than a handful of alternatives like these. And the version with
seven parameters is still there.

Another way to solve this is to use the Replace Method with Method Object refactoring
technique presented in Chapter 2. This refactoring technique is primarily used to
make methods shorter, but it can also be used to reduce the number of method
parameters.

To apply the Replace Method with Method Object technique to this example, we
define a BarChart class like this:

 public class BarChart
 {
 private CategoryItemRendererState state =
 CategoryItemRendererState.DEFAULT;
 private Rectangle graphArea = new Rectangle(new Point(0, 0), 100, 100);
 private CategoryPlot plot = CategoryPlot.DEFAULT;
 private CategoryAxis domainAxis = CategoryAxis.DEFAULT;
 private ValueAxis rangeAxis = ValueAxis.DEFAULT;
 private CategoryDataset dataset = CategoryDataset.DEFAULT;

 public BarChart Draw(Graphics g)
 {
 // ..
 return this;
 }

 public ValueAxis GetRangeAxis()
 {
 return rangeAxis;
 }

 public BarChart SetRangeAxis(ValueAxis rangeAxis)
 {
 this.rangeAxis = rangeAxis;
 return this;
 }

 // More getters and setters.

5.2 How to Apply the Guideline | 63

}

The static method drawBarChart from the original version is replaced by the (non‐
static) method draw in this class. Six of the seven parameters of drawBarChart have
been turned into of BarChart class. All of these have default values. We have chosen
to keep parameter g (of type System.Drawing.Graphics) as a parameter of draw. This
is a sensible choice: draw always needs a Graphics object, and there is no sensible
default value. But it is not necessary: we could also have made g into the seventh pri‐
vate member and supplied a getter and setter for it.

We made another choice: all setters return this to create what is called a fluent inter‐
face. The setters can then be called in a cascading style, like so:

private void ShowMyBarChart()
{
 Graphics g = this.CreateGraphics();
 BarChart b = new BarChart()
 .SetRangeAxis(myValueAxis)
 .SetDataset(myDataset)
 .Draw(g);
}

In this particular call of draw, we provide values for the range axis, dataset, and g, and
use default values for the other members of BarChart. We could have used more
default values or fewer, without having to define additional overloaded draw methods.

5.3 Common Objections to Keeping Unit Interfaces Small
It may take some time to get rid of all large interfaces. Typical objections to this effort
are discussed next.

Objection: Parameter Objects with Large Interfaces
“The parameter object I introduced now has a constructor with too many parameters.”

If all went well, you have grouped a number of parameters into an object during the
refactoring of a method with a large interface. It may be the case that your object now
has a lot of parameters because they apparently fit together. This usually means that
there is a finer distinction possible inside the object. Remember the first example,
where we refactored the render method? Well, the defining parameters of the rectan‐
gle were grouped together, but instead of having a constructor with four arguments
we actually put the x and y parameters together in the Point object. So, in general,
you should not refuse to introduce a parameter object, but rather think about the
structure of the object you are introducing and how it relates to the rest of your code.

64 | Chapter 5: Keep Unit Interfaces Small

Refactoring Large Interfaces Does Not Improve My Situation
“When I refactor my method, I am still passing a lot of parameters to another method.”

Getting rid of large interfaces is not always easy. It usually takes more than refactor‐
ing one method. Normally, you should continue splitting responsibilities in your
methods, so that you access the most primitive parameters only when you need to
manipulate them separately. For instance, the refactored version of the render
method needs to access all parameters in the Rectangle object because they are input
to the draw method. But it would be better, of course, to also refactor the draw
method to access the x,y,w, and h parameters inside the method body. In this way,
you have just passed a Rectangle in the render method, because you do not actually
manipulate its class variables before you begin drawing!

Frameworks or Libraries Prescribe Interfaces with Long Parameter
Lists
“The interface of a framework we’re using has nine parameters. How can I implement
this interface without creating a unit interface violation?”

Sometimes frameworks/libraries define interfaces or classes with methods that have
long parameter lists. Implementing or overriding these methods will inevitably lead
to long parameter lists in your own code. These types of violations are impossible to
prevent, but their impact can be limited. To limit the impact of violations caused by
third-party frameworks or libraries, it is best to isolate these violations—for instance,
by using wrappers or adapters. Selecting a different framework/library is also a viable
alternative, although this can have a large impact on other parts of the codebase.

5.4 See Also
Methods with multiple responsibilities are more likely when the methods are large
and complex. Therefore, make sure that you understand the guidelines for achieving
short and simple units. See Chapters 2 and 3.

5.4 See Also | 65

How SIG Rates Unit Interfacing
Unit interfacing is one of the eight system properties of the SIG/TÜViT Evaluation
Criteria for Trusted Product Maintainability. To rate unit interfacing, every unit of the
system is categorized in one of four risk categories depending on its number of
parameters. Table 5-1 lists the four risk categories used in the 2015 version of the SIG/
TÜViT Evaluation Criteria.

Table 5-1. Minimum thresholds for a 4-star unit size rating (2015 version of the SIG/
TÜViT Evaluation Criteria)

Lines of code in methods with … Percentage allowed for 4 stars for unit interfacing
… more than seven parameters At most 0.7%

… five or more parameters At most 2.7%

… three or more parameters At most 13.8%

… at most two parameters At least 86.2%

See the three quality profiles shown in Figure 5-1 as an example:

• Left: an open source system, in this case Jenkins
• Center: an anonymous system in the SIG benchmark that complies with a 4-star

rating for unit interfacing
• Right: the cutoff points for achieving 4-star quality for this quality characteristic

Figure 5-1. Three quality profiles for unit interfacing

66 | Chapter 5: Keep Unit Interfaces Small

CHAPTER 6

Separate Concerns in Modules

In a system that is both complex and tightly coupled, accidents are inevitable.
—Charles Perrow’s Normal Accidents theory in one sentence

Guideline:

• Avoid large modules in order to achieve loose coupling
between them.

• Do this by assigning responsibilities to separate modules
and hiding implementation details behind interfaces.

• This improves maintainability because changes in a loosely
coupled codebase are much easier to oversee and execute
than changes in a tightly coupled codebase.

The guidelines presented in the previous chapters are all what we call unit guidelines:
they address improving maintainability of individual units (methods/constructors) in
a system. In this chapter, we move up from the unit level to the module level.

Remember that the concept of a module translates to a class in
object-oriented languages such as C#.

This module-level guideline addresses relationships between classes. This guideline is
about achieving loose coupling.

67

We will use a true story to illustrate what tight coupling between classes is and why it
leads to maintenance problems. This story is about how a class called UserService in
the service layer of a web application started growing while under development and
kept on growing until it violated the guideline of this chapter.

In the first development iteration, the UserService class started out as a class with
only three methods, the names and responsibilities of which are shown in this code
snippet:

 public class UserService
 {
 public User LoadUser(string userId)
 {
 // ...
 }

 public bool DoesUserExist(string userId)
 {
 // ...
 }

 public User ChangeUserInfo(UserInfo userInfo)
 {
 // ...
 }
 }
 // end::UserSerice[]
}

In this case, the backend of the web application provides a REST interface to the
frontend code and other systems.

A REST interface is an approach for providing web services in a simplified manner.
REST is a common way to expose functionality outside of the system. The class in
the REST layer that implements user operations uses the UserService class like this:

public class UserController : System.Web.Http.ApiController
{

 private readonly UserService userService = new UserService();

 // ...

 public System.Web.Http.IHttpActionResult GetUserById(string id)
 {
 User user = userService.LoadUser(id);
 if (user == null)
 {
 return NotFound();
 }
 return Ok(user);

68 | Chapter 6: Separate Concerns in Modules

 }
}

During the second development iteration, the UserService class is not modified at
all. In the third development iteration, new requirements were implemented that
allowed a user to register to receive certain notifications. Three new methods were
added to the UserService class for this requirement:

 public class UserService
 {
 public User LoadUser(string userId)
 {
 // ...
 }

 public bool DoesUserExist(string userId)
 {
 // ...
 }

 public User ChangeUserInfo(UserInfo userInfo)
 {
 // ...
 }

 public List<NotificationType> GetNotificationTypes(User user)
 {
 // ...
 }

 public void RegisterForNotifications(User user, NotificationType type)
 {
 // ...
 }

 public void UnregisterForNotifications(User user, NotificationType type)
 {
 // ...
 }
 }
 // end::UserSerice[]

}

These new functionalities were also exposed via a separate REST API class:

public class NotificationController : System.Web.Http.ApiController
{
 private readonly UserService userService = new UserService();

 // ...

 public System.Web.Http.IHttpActionResult Register(string id,

Separate Concerns in Modules | 69

 string notificationType)
 {
 User user = userService.LoadUser(id);
 userService.RegisterForNotifications(user,
 NotificationType.FromString(notificationType));
 return Ok();
 }

 [System.Web.Http.HttpPost]
 [System.Web.Http.ActionName("unregister")]
 public System.Web.Http.IHttpActionResult Unregister(string id,
 string notificationType)
 {
 User user = userService.LoadUser(id);
 userService.UnregisterForNotifications(user,
 NotificationType.FromString(notificationType));
 return Ok();
 }
}

In the fourth development iteration, new requirements for searching users, blocking
users, and listing all blocked users were implemented (management requested that
last requirement for reporting purposes). All of these requirements caused new meth‐
ods to be added to the UserService class.

 public class UserService
 {
 public User LoadUser(string userId)
 {
 // ...
 }

 public bool DoesUserExist(string userId)
 {
 // ...
 }

 public User ChangeUserInfo(UserInfo userInfo)
 {
 // ...
 }

 public List<NotificationType> GetNotificationTypes(User user)
 {
 // ...
 }

 public void RegisterForNotifications(User user, NotificationType type)
 {
 // ...
 }

70 | Chapter 6: Separate Concerns in Modules

 public void UnregisterForNotifications(User user, NotificationType type)
 {
 // ...
 }

 public List<User> SearchUsers(UserInfo userInfo)
 {
 // ...
 }

 public void BlockUser(User user)
 {
 // ...
 }

 public List<User> GetAllBlockedUsers()
 {
 // ...
 }
 }
 // end::UserSerice[]

}

At the end of this development iteration, the class had grown to an impressive size. At
this point the UserService class had become the most used service in the service
layer of the system. Three frontend views (pages for Profile, Notifications, and
Search), connected through three REST API services, used the UserService class.
The number of incoming calls from other classes (the fan-in) has increased to over
50. The size of class has increased to more than 300 lines of code.

These kind of classes have what is called the large class smell, briefly discussed in
Chapter 4. The code contains too much functionality and also knows implementation
details about the code that surrounds it. The consequence is that the class is now
tightly coupled. It is called from a large number of places in the code, and the class
itself knows details on other parts of the codebase. For example, it uses different data
layer classes for user profile management, the notification system, and searching/
blocking other users.

Coupling means that two parts of a system are somehow connected
when changes are needed. That may be direct calls, but classes
could also be connected via a configuration file, database structure,
or even assumptions they make (in terms of business logic).

The problem with these classes is that they become a maintenance hotspot. All func‐
tionalities related (even remotely) to users are likely to end up in the UserService
class. This is an example of an improper separation of concerns. Developers will also

Separate Concerns in Modules | 71

find the UserService class increasingly more difficult to understand as it becomes
large and unmanageable. Less experienced developers on the team will find the class
intimidating and will hesitate to make changes to it.

Two principles are necessary to understand the significance of coupling between
classes.

• Coupling is an issue on the class level of source code. Each of the methods in
UserService complies with all guidelines presented in the preceding chapters.
However, it is the combination of methods in the UserService class that makes
UserService tightly coupled with the classes that use it.

• Tight and loose coupling are a matter of degree. The actual maintenance conse‐
quence of tight coupling is determined by the number of calls to that class and the
size of that class. Therefore, the more calls to a particular class that is tightly cou‐
pled, the smaller its size should be. Consider that even when classes are split up,
the number of calls may not necessarily be lower. However, the coupling is then
lower, because less code is coupled.

6.1 Motivation
The biggest advantage of keeping classes small is that it provides a direct path toward
loose coupling between classes. Loose coupling means that your class-level design will
be much more flexible to facilitate future changes. By “flexibility” we mean that you
can make changes while limiting unexpected effects of those changes. Thus, loose
coupling allows developers to work on isolated parts of the codebase without creating
change ripples that affect the rest of the codebase. A third advantage, which cannot be
underestimated, is that the codebase as a whole will be much more open to less expe‐
rienced developers.

The following sections discuss the advantages of having small, loosely coupled classes
in your system.

Small, Loosely Coupled Modules Allow Developers to Work on
Isolated Parts of the Codebase
When a class is tightly coupled with other classes, changes to the implementation of
the class tend to create ripple effects through the codebase. For example, changing the
interface of a public method leads to code changes everywhere the method is called.
Besides the increased development effort, this also increases the risk that class modi‐
fications lead to bugs or inconsistencies in remote parts of the codebase.

72 | Chapter 6: Separate Concerns in Modules

Small, Loosely Coupled Modules Ease Navigation Through the
Codebase
Not only does a good separation of concerns keep the codebase flexible to facilitate
future changes, it also improves the analyzability of the codebase since classes encap‐
sulate data and implement logic to perform a single task. Just as it is easier to name
methods that only do one thing, classes also become easier to name and understand
when they have one responsibility. Making sure classes have only one responsibility is
also known as the single responsibility principle.

Small, Loosely Coupled Modules Prevent No-Go Areas for New
Developers
Classes that violate the single responsibility principle become tightly coupled and accu‐
mulate a lot of code over time. As with the UserService example in the introduction
of this chapter, these classes become intimidating to less experienced developers, and
even experienced developers are hesitant to make changes to their implementation. A
codebase that has a large number of classes that lack a good separation of concerns is
very difficult to adapt to new requirements.

6.2 How to Apply the Guideline
In general, this guideline prescribes keeping your classes small (by addressing only
one concern) and limiting the number of places where a class is called by code out‐
side the class itself. Following are three development best practices that help to pre‐
vent tight coupling between classes in a codebase.

Split Classes to Separate Concerns
Designing classes that collectively implement functionality of a software system is the
most essential step in modeling and designing object-oriented systems. In typical
software projects we see that classes start out as logical entities that implement a sin‐
gle functionality but over time gain more responsibilities. To prevent classes from
getting a large class smell, it is crucial that developers take action if a class has more
than one responsibility by splitting up the class.

To demonstrate how this works with the UserService class from the introduction, we
split the class into three separate classes. Here are the two newly created classes and
the modified UserService class:

public class UserNotificationService
{
 public IList<NotificationType> GetNotificationTypes(User user)
 {
 // ...

6.2 How to Apply the Guideline | 73

 }

 public void Register(User user, NotificationType type)
 {
 // ...
 }

 public void Unregister(User user, NotificationType type)
 {
 // ...
 }
}

public class UserBlockService
{
 public void BlockUser(User user)
 {
 // ...
 }

 public IList<User> GetAllBlockedUsers()
 {
 // ...
 }
}

public class UserService
{
 public User LoadUser(string userId)
 {
 // ...
 }

 public bool DoesUserExist(string userId)
 {
 // ...
 }

 public User ChangeUserInfo(UserInfo userInfo)
 {
 // ...
 }

 public IList<User> SearchUsers(UserInfo userInfo)
 {
 // ...
 }
}

After we rewired the calls from the REST API classes, the system now has a more
loosely coupled implementation. For example, the UserService class has no knowl‐
edge about the notification system or the logic for blocking users. Developers are also

74 | Chapter 6: Separate Concerns in Modules

more likely to put new functionalities in separate classes instead of defaulting to the
UserService class.

Hide Specialized Implementations Behind Interfaces
We can also achieve loose coupling by hiding specific and detailed implementations
behind a high-level interface. Consider the following class, which implements the
functionality of a digital camera that can take snapshots with the flash on or off:

public class DigitalCamera
{
 public Image TakeSnapshot()
 {
 // ...
 }

 public void FlashLightOn()
 {
 // ...
 }

 public void FlashLightOff()
 {
 // ...
 }
}

And suppose this code runs inside an app on a smartphone device, like this:

public class SmartphoneApp
{
 private static DigitalCamera camera = new DigitalCamera();

 public static void Main(string[] args)
 {
 // ...
 Image image = camera.TakeSnapshot();
 // ...
 }
}

A more advanced digital camera becomes available. Apart from taking snapshots, it
can also record video, has a timer feature, and can zoom in and out. The DigitalCa
mera class is extended to support the new features:

public class DigitalCamera
{
 public Image TakeSnapshot()
 {
 // ...
 }

6.2 How to Apply the Guideline | 75

 public void FlashLightOn()
 {
 // ...
 }

 public void FlaslLightOff()
 {
 // ...
 }

 public Image TakePanoramaSnapshot()
 {
 // ...
 }

 public Video Record()
 {
 // ...
 }

 public void SetTimer(int seconds)
 {
 // ...
 }

 public void ZoomIn()
 {
 // ...
 }

 public void ZoomOut()
 {
 // ...
 }
}

From this example implementation, it is not difficult to imagine that the extended
version of the DigitalCamera class will be much larger than the initial version, which
has fewer features.

The codebase of the smartphone app still uses only the original three methods. How‐
ever, because there is still just one DigitalCamera class, the app is forced to use this
larger class. This introduces more coupling in the codebase than necessary. If one (or
more) of the additional methods of DigitalCamera changes, we have to review the
codebase of the smartphone app, only to find that it is not affected. While the smart‐
phone app does not use any of the new methods, they are available to it.

To lower coupling, we use an interface that defines a limited list of camera features
implemented by both basic and advanced cameras:

76 | Chapter 6: Separate Concerns in Modules

public interface ISimpleDigitalCamera
{
 Image TakeSnapshot();

 void FlashLightOn();

 void FlashLightOff();
}

public class DigitalCamera : ISimpleDigitalCamera
{
 // ...
}

public class SmartphoneApp
{
 private static ISimpleDigitalCamera camera = SDK.GetCamera();

 public static void Main(string[] args)
 {
 // ...
 Image image = camera.TakeSnapshot();
 // ...
 }
}

This change leads to lower coupling by a higher degree of encapsulation. In other
words, classes that use only basic digital camera functionalities now do not know
about all of the advanced digital camera functionalities. The SmartphoneApp class
accesses only the SimpleDigitalCamera interface. This guarantees that Smart

phoneApp does not use any of the methods of the more advanced camera.

Also, this way your system becomes more modular: it is composed such that a change
to one class has minimal impact on other classes. This, in turn, increases modifiabil‐
ity: it is easier and less work to modify the system, and there is less risk that modifica‐
tions introduce defects.

Replace Custom Code with Third-Party Libraries/Frameworks
A third situation that typically leads to tight module coupling are classes that provide
generic or utility functionality. Classic examples are classes called StringUtils and
FileUtils. Since these classes provide generic functionality, they are obviously called
from many places in the codebase. In many cases this is an occurrence of tight cou‐
pling that is hard to avoid. A best practice, though, is to keep the class sizes limited
and to periodically review (open source) libraries and frameworks to check if they
can replace the custom implementation. CommonLibrary.NET is a widespread
library with frequently used utility functionality. In some cases, utility code can be
replaced with new C# language features or a company-wide shared library.

6.2 How to Apply the Guideline | 77

https://commonlibrarynet.codeplex.com/

6.3 Common Objections to Separating Concerns
The following are typical objections to the principle explained in this chapter.

Objection: Loose Coupling Conflicts With Reuse
“Tight coupling is a side effect of code reuse, so this guideline conflicts with that best
practice.”

Of course, code reuse can increase the number of calls to a method. However, there
are two reasons why this should not lead to tight coupling:

• Reuse does not necessarily lead to methods that are called from as many places as
possible. Good software design—for example, using inheritance and hiding
implementation behind interfaces—will stimulate code reuse while keeping the
implementation loosely coupled, since interfaces hide implementation details.

• Making your code more generic, to solve more problems with less code, does not
mean it should become a tightly coupled codebase. Clearly, utility functionality is
expected to be called from more places than specific functionality. Utility func‐
tionality should then also embody less source code. In that way, there may be
many incoming dependencies, but the dependencies refer to a small amount of
code.

Objection: C# Interfaces Are Not Just for Loose Coupling
“It doesn’t make sense to use C# interfaces to prevent tight coupling.”

Indeed, using interfaces is a great way to improve encapsulation by hiding implemen‐
tations, but it does not make sense to provide an interface for every class. As a rule of
thumb, an interface should be implemented by at least two classes in your codebase.
Consider splitting your class if the only reason to put an interface in front of your
class is to limit the amount of code that other classes see.

Objection: High Fan-in of Utility Classes Is Unavoidable
“Utility code will always be called from many locations in the codebase.”

That is true. In practice, even highly maintainable codebases contain a small amount
of code that is so generic that it is used by many places in the codebase (for example,
logging functionality or I/O code). Highly generic, reusable code should be small, and
some of it may be unavoidable. However, if the functionality is indeed that common,
there may be a framework or library available that already implements it and can be
used as is.

78 | Chapter 6: Separate Concerns in Modules

Objection: Not All Loose Coupling Solutions Increase Maintainability
“Frameworks that implement inversion of control (IoC) achieve loose coupling but make
it harder to maintain the codebase.”

Inversion of control is a design principle to achieve loose coupling. There are frame‐
works available that implement this for you. IoC makes a system more flexible for
extension and decreases the amount of knowledge that pieces of code have of each
other.

This objection holds when such frameworks add complexity for which the maintain‐
ing developers are not experienced enough. Therefore, in cases where this objection
is true, it is not IoC that is the problem, but the framework that implements it.

Thus, the design decision to use a framework for implementing IoC should be con‐
sidered with care. As with all engineering decisions, this is a trade-off that does not
pay off in all cases. Using these types of frameworks just to achieve loose coupling is a
choice that can almost never be justified.

6.3 Common Objections to Separating Concerns | 79

How SIG Rates Module Coupling
Module coupling is one of the eight system properties of the SIG/TÜViT Evaluation
Criteria for Trusted Product Maintainability. To rate module coupling, the fan-in of
every method is calculated. Each module (class in C#) is then categorized in one of
four risk categories depending on the total fan-in of all methods in the class. Table 6-1
lists the four risk categories used in the 2015 version of the SIG/TÜViT Evaluation
Criteria. The table shows the maximum amount of code that may fall in the risk cate‐
gories in order to achieve a 4-star rating. For example, a maximum of 21.8% of code
volume may be in classes with a fan-in in the moderate risk category, and likewise for
the other risk categories.

Table 6-1. Module coupling risk categories (2015 version of the SIG/TÜViT Evaluation
Criteria)

Fan-in of modules in the category Percentage allowed for 4 stars
51+ At most 6.6%

21–50 At most 13.8%

11–20 At most 21.6%

1–10 No constraint

See the three quality profiles in Figure 6-1 as an example:

• Left: an open source system, in this case Jenkins. Note that Jenkins does not fulfill
the 4-star requirement here for the highest risk category (in red).

• Center: an anonymous system in the SIG benchmark that complies with a 4-star
rating for module coupling.

• Right: the cutoff points for achieving 4-star quality for this quality characteristic.

Figure 6-1. Three quality profiles for module coupling

80 | Chapter 6: Separate Concerns in Modules

CHAPTER 7

Couple Architecture Components Loosely

There are two ways of constructing a software design: one way is to make it so simple
that there are obviously no deficiencies, and the other way is to make it so complicated
that there are no obvious deficiencies.

—C.A.R. Hoare

Guideline:

• Achieve loose coupling between top-level components.
• Do this by minimizing the relative amount of code within

modules that is exposed to (i.e., can receive calls from)
modules in other components.

• This improves maintainability because independent compo‐
nents ease isolated maintenance.

Having a clear view on software architecture is essential when you are building and
maintaining software. A good software architecture gives you insight into what the
system does, how the system does it, and how functionality is organized (in compo‐
nent groupings, that is). It shows you the high-level structure, the “skeleton” so to
speak, of the system. Having a good architecture makes it easier to find the source
code that you are looking for and to understand how (high-level) components inter‐
act with other components.

This chapter deals with dependencies on the component level. A component is part of
the top-level division of a system. It is defined by a system’s software architecture, so
its boundaries should be quite clear from the start of development. As it is touching
upon the software architecture domain, it may be outside of your direct control.

81

However, the implementation of software architecture always remains the responsi‐
bility of you as a developer.

Components should be loosely coupled; that is, they should be clearly separated by
having few entry points for other components and a limited amount of information
shared among components. In that case, implementation details of methods are hid‐
den (or encapsulated) which makes the system more modular.

Sounds familiar? Yes, both as a general design principle and on a module level, loose
coupling has been discussed in Chapter 6. Component coupling applies the same rea‐
soning but at the higher level of components rather than modules. Module coupling
focuses on the exposure of individual modules (classes) to the rest of the codebase.
Component coupling focuses specifically on the exposure of modules in one compo‐
nent (group of modules) to the modules in another component.

So a module being called from a module in the same component is
considered to be an internal call if we assess at the component level,
but when we assess it at the module level, there is module coupling
indeed.

In this chapter, we refer to the characteristic of being loosely coupled on a component
level as component independence. The opposite of component independence is com‐
ponent dependence. In that case, the inner workings of components are exposed too
much to other components that rely on them. That kind of entanglement makes it
harder to oversee effects that code changes in one component may have on others,
because it does not behave in an isolated manner. This complicates testing, when we
must make assumptions or simulations of what happens within another component.

7.1 Motivation
System maintenance is easier when changes within a component have effects that are
isolated within that component. To clarify the advantages of having loosely coupled
components, let us elaborate on the consequences of different types of dependencies
with Figure 7-1.

82 | Chapter 7: Couple Architecture Components Loosely

Figure 7-1. Low component dependence (left) and high component dependence (right)

The left side of the figure shows a low level of component dependence. Most calls
between modules are internal (within the component). Let us elaborate on internal
and noninternal dependencies.

Calls that improve maintainability:

• Internal calls are healthy. Since the modules calling each other are part of the
same component, they should implement closely related functionality. Their
inner logic is hidden from the outside.

• Outgoing calls are also healthy. As they delegate tasks to other components, they
create a dependency outward. In general, delegation of distinct concerns to other
components is a good thing. Delegation can be done from anywhere within a
component and does not need to be restricted to a limited set of modules within
the component.

Note that outgoing calls from one component are incoming calls
for another component.

7.1 Motivation | 83

Calls that have a negative impact on maintainability:

• Incoming calls provide functionality for other components by offering an inter‐
face. The code volume that is involved in this should be limited. Conversely, the
code within a component should be encapsulated as much as possible—that is, it
should be shielded against direct invocations from other components. This
improves information hiding. Also, modifying code involved in incoming depen‐
dencies potentially has a large impact on other components. By having a small
percentage of code involved in incoming dependencies, you may dampen the
negative ripple effects of modifications to other components.

• Throughput code is risky and must be avoided. Throughput code both receives
incoming calls and delegates to other components. Throughput code accom‐
plishes the opposite of information hiding: it exposes its delegates (implementa‐
tion) to its clients. It is like asking a question to a help desk that does not
formulate its own answer but instead forwards your question to another com‐
pany. Now you are dependent on two parties for the answer. In the case of code,
this indicates that responsibilities are not well divided over components. As it is
hard to trace back the path that the request follows, it is also hard to test and
modify: tight coupling may cause effects to spill over to other components.

The right side of the figure shows a component with a high level of component
dependence. The component has many dependencies with modules outside the com‐
ponent and is thus tightly coupled. It will be hard to make isolated changes, since the
effects of changes cannot be easily overseen.

Note that the effects of component independence are enhanced by
component balance. Component balance is achieved when the num‐
ber of components and their relative size are balanced. For elabora‐
tion on this topic, see Chapter 8.

To give you an idea of how coupling between components evolves over time, consider
how entanglements seem to appear naturally in systems. Entanglements evolve over
time because of hasty hacks in code, declining development discipline, or other rea‐
sons why the intended architecture cannot be applied consistently. Figure 7-2 illus‐
trates a situation that we encounter often in our practice. A system has a clear
architecture with one-way dependencies, but over time they become blurred and
entangled. In this case, the entanglement is between layers, but similar situations
occur between components.

84 | Chapter 7: Couple Architecture Components Loosely

Figure 7-2. Designed versus implemented architecture

Low Component Dependence Allows for Isolated Maintenance
A low level of dependence means that changes can be made in an isolated manner.
This applies when most of a component’s code volume is either internal or outgoing.
Isolated maintenance means less work, as coding changes do not have effects outside
the functionality that you are modifying.

Note that this reasoning about isolation applies to code on a
smaller level. For example, a system consisting of small, simple
classes signals a proper separation of concerns, but does not guar‐
antee it. For that, you will need to investigate the actual dependen‐
cies (see, for example, Chapter 6).

Low Component Dependence Separates Maintenance Responsibilities
If all components are independent from each other, it is easier to distribute responsi‐
bilities for maintenance among separate teams. This follows from the advantage of
isolated modification. Isolation is in fact a prerequisite for efficient division of devel‐
opment work among team members or among different teams.

By contrast, if components are tightly intertwined with each other, one cannot isolate
and separate maintenance responsibilities among teams, since the effects of modifica‐
tions will spill over to other teams. Aside from that code being hard to test, the effects
of modifications may also be unpredictable. So, dependencies may lead to inconsis‐
tencies, more time spent on communication between developers, and time wasted
waiting for others to complete their modifications.

7.1 Motivation | 85

Low Component Dependence Eases Testing
Code that has a low dependence on other components (modules with mainly internal
and outgoing code) is easier to test. For internal calls, functionality can be traced and
tested within the component. For outgoing calls, you do not need to mock or stub
functionality that is provided by other components (given that functionality in that
other component is finished).

For elaboration on (unit) testing, see also Chapter 10.

7.2 How to Apply the Guideline
The goal for this chapter’s guideline is to achieve loose coupling between compo‐
nents. In practice, we find that you can help yourself by adhering to the following
principles for implementing interfaces and requests between components.

The following principles help you apply the guideline of this chapter:

• Limit the size of modules that are the component’s interface.
• Define component interfaces on a high level of abstraction. This limits the types

of requests that cross component borders. That avoids requests that “know too
much” about the implementation details.

• Avoid throughput code, because it has the most serious effect on testing func‐
tionality. In other words, avoid interface modules that put through calls to other
components. If throughput code exists, analyze the concerned modules in order
to solve calls that are put through to other components.

Abstract Factory Design Pattern
Component independence reflects the high-level architecture of a software system.
However, this is not a book on software architecture. In this section, we discuss only
one design pattern that we frequently see applied in practice to successfully limit the
amount of interface code exposed by a component: the Abstract Factory design pat‐
tern. A system that is loosely coupled is characterized by relying more on contracts
and less on implementation details.

Many more design patterns and software architecture styles can help in keeping your
architecture components loosely coupled. An example is using a framework for
dependency injection (which allows Inversion of Control). For elaboration on other
patterns, we kindly direct you to the many great books on design patterns and soft‐
ware architecture (see, for example, “Related Books” on page xiv).

86 | Chapter 7: Couple Architecture Components Loosely

The Abstract Factory design pattern hides (or encapsulates) the creation of specific
“products” behind a generic “product factory” interface. In this context, products are
typically entities for which more than one variant exists. Examples are audio format
decoder/encoder algorithms or user interface widgets that have different themes
for “look and feel.” In the following example, we use the Abstract Factory design pat‐
ten to encapsulate the specifics of cloud hosting platforms behind a small factory
interface.

Suppose our codebase contains a component, called PlatformServices, that imple‐
ments the management of services from a cloud hosting platform. Two specific cloud
hosting providers are supported by the PlatformServices component: Amazon AWS
and Microsoft Azure (more could be added in the future).

To start/stop servers and reserve storage space, we have to implement the following
interface for a cloud hosting platform:

public interface ICloudServerFactory
{
 ICloudServer LaunchComputeServer();

 ICloudServer LaunchDatabaseServer();

 ICloudStorage CreateCloudStorage(long sizeGb);
}

Based on this interface, we create two specific factory classes for AWS and Azure:

public class AWSCloudServerFactory : ICloudServerFactory
{
 public ICloudServer LaunchComputeServer()
 {
 return new AWSComputeServer();
 }

 public ICloudServer LaunchDatabaseServer()
 {
 return new AWSDatabaseServer();
 }

 public ICloudStorage CreateCloudStorage(long sizeGb)
 {
 return new AWSCloudStorage(sizeGb);
 }
}

public class AzureCloudServerFactory : ICloudServerFactory {
 public ICloudServer LaunchComputeServer() {
 return new AzureComputeServer();
 }

 public ICloudServer LaunchDatabaseServer() {

7.2 How to Apply the Guideline | 87

 return new AzureDatabaseServer();
 }

 public ICloudStorage CreateCloudStorage(long sizeGb) {
 return new AzureCloudStorage(sizeGb);
 }
}

Note that these factories make calls to specific AWS and Azure implementation
classes (which in turn do specific AWS and Azure API calls), but return generic inter‐
face types for servers and storage.

Code outside the PlatformServices component can now use the concise interface
module ICloudServerFactory—for example, like this:

public class ApplicationLauncher
{

 public static void Main(string[] args)
 {
 ICloudServerFactory factory;
 if (args[1].Equals("-azure"))
 {
 factory = new AzureCloudServerFactory();
 }
 else
 {
 factory = new AWSCloudServerFactory();
 }
 ICloudServer computeServer = factory.LaunchComputeServer();
 ICloudServer databaseServer = factory.LaunchDatabaseServer();

The ICloudServerFactory interface of the PlatformServices provides a small inter‐
face for other components in the codebase. This way, these other components can be
loosely coupled to it.

7.3 Common Objections to Loose Component Coupling
This section discusses objections regarding component dependence, whether they
concern the difficulty of fixing the component dependence itself, or dependency
being a requirement within the system.

88 | Chapter 7: Couple Architecture Components Loosely

Objection: Component Dependence Cannot Be Fixed Because the
Components Are Entangled
“We cannot get component dependence right because of mutual dependencies between
components.”

Entangled components are a problem that you experience most clearly during main‐
tenance. You should start by analyzing the modules in the throughput category, as it
has the most serious effect on the ease of testing and on predicting what exactly the
functionality does.

When you achieve clearer boundaries for component responsibilities, it improves the
analyzability and testability of the modules within. For example, modules with an
extraordinary number of incoming calls may signal that they have multiple responsi‐
bilities and can be split up. When they are split up, the code becomes easier to analyze
and test. For elaboration, please refer to Chapter 6.

Objection: No Time to Fix
“In the maintenance team, we understand the importance of achieving low component
dependence, but we are not granted time to fix it.”

We understand how this is an issue. Development deadlines are real, and there may
not be time for refactoring, or what a manager may see as “technical aesthetics.” What
is important is the trade-off. One should resolve issues that pose a real problem for
maintainability. So dependencies should be resolved if the team finds that they inhibit
testing, analysis, or stability. You can solidify your case by measuring what percentage
of issues arises/maintenance effort is needed in components that are tightly coupled
with each other.

For example, throughput code follows complex paths that are hard to test for devel‐
opers. There may be more elegant solutions that require less time and effort.

7.3 Common Objections to Loose Component Coupling | 89

Objection: Throughput Is a Requirement
“We have a requirement for a software architecture for a layer that puts through calls.”

It is true that some architectures are designed to include an intermediate layer. Typi‐
cally, this is a service layer that collects requests from one side (e.g., the user interface)
and bundles them for passing on to another layer in the system. The existence of such
a layer is not necessarily a problem—given that this layer implements loose coupling.
It should have a clear separation of incoming and outgoing requests. So the module
that receives requests in this layer:

• Should not process the request itself.
• Should not know where and how to process that request (its implementation

details).

If both are true, the receiving module in the service layer has an incoming request
and an outgoing request, instead of putting requests through to a specific module in
the receiving component.

A large-volume service layer containing much logic is a typical code smell. In that
case, the layer does not merely abstract and pass on requests, but also transforms
them. Hence, for transformation, the layer knows about the implementation details.
That means that the layer does not properly encapsulate both request and implemen‐
tation. If throughput code follows from software architecture requirements, you may
raise the issue to the software or enterprise architect.

7.4 See Also
A related concept to component independence is that of component balance, dis‐
cussed in Chapter 8. That chapter deals with achieving an overseeable number of
components that are balanced in size.

How SIG Rates Component Independence
SIG defines and measures loose coupling between components as “component inde‐
pendence.” The independence is measured on the module level, as each module in a
system should be contained in a component. “Module” here is the smallest grouping
of code units, typically a file.

You can assess dependence between modules by measuring calls between them (in
static source code analysis). For classifying dependence between components, we
make a distinction between hidden code and interface code.

90 | Chapter 7: Couple Architecture Components Loosely

• Hidden code is composed of modules that have no incoming dependencies from
modules in other components: they call only within their own component (inter‐
nal) and may have calls outside their own component (outgoing calls).

• Interface code is composed of modules that have incoming dependencies from
modules in other components. They consist of code in modules with incoming
and throughput code.

Following the principle of loose coupling, a low level of dependence between modules
is better than a high level of dependence. That signals the risk that changes within one
component propagate to other components.

SIG measures component independence as the percentage of code that is classified as
hidden code. To achieve a SIG/TÜViT rating of 4 stars for highly-maintainable soft‐
ware, the percentage of code residing in modules with incoming dependencies from
other components (incoming or throughput) should not exceed 14.2%.

See the three quality profiles in Figure 7-3 as an example:

• Left: an open source system, in this case Jenkins
• Center: an anonymous system in the SIG benchmark that complies with a 4-star

rating for component independence
• Right: the cutoff points for achieving 4-star quality for this quality characteristic

Figure 7-3. Three quality profiles for component independence

7.4 See Also | 91

CHAPTER 8

Keep Architecture Components Balanced

Building encapsulation boundaries is a crucial skill in software architecture.
—George H. Fairbanks in Just Enough Architecture

Guideline:

• Balance the number and relative size of top-level compo‐
nents in your code.

• Do this by organizing source code in a way that the number
of components is close to 9 (i.e., between 6 and 12) and that
the components are of approximately equal size.

• This improves maintainability because balanced components
ease locating code and allow for isolated maintenance.

A well-balanced software architecture is one with not too many and not too few com‐
ponents, with sizes that are approximately equal. The architecture then has a good
component balance.

An example of component imbalance would be having a few very large components
that contain a disproportionate amount of system logic and many small ones that
dwindle in comparison.

Figure 8-1 gives an impression of component balance and what the ideal situation
would be. The least desirable situation is on the top left because changes cannot be
made in an isolated component. The ideal situation is shown last, the one with nine
components in which it is most likely that maintenance can be isolated to one or two
components that have a limited scope. The second situation (top right) suffers from a
skewed distribution of volume over components. When one component is extraordi‐

93

narily large, the architecture becomes monolithic; it becomes hard to navigate the
codebase and do isolated maintenance. In the third situation (bottom left), where the
architecture is scattered among many components, it becomes hard to keep a mental
map of the codebase and to grasp how components interact.

Figure 8-1. System division in components, with worst component balance top-left and
best component balance bottom-right

94 | Chapter 8: Keep Architecture Components Balanced

8.1 Motivation
Now we know what component balance is, but not why it is important. The reason is
simple: software maintenance is easier when the software architecture is balanced.
This section discusses in what ways you can benefit from a good system component
balance: it makes it easier to find and analyze code, it better isolates effects of mainte‐
nance, and it separates maintenance responsibilities.

A Good Component Balance Eases Finding and Analyzing Code
A clear code organization in components makes it easier to find the piece of code that
you want to change. Of course, proper code hygiene helps in this process as well, such
as using a consistent naming convention (see Chapter 11). When the number of com‐
ponents is manageable (around nine) and their volume is consistent, they allow for a
drill-down each time that you need to analyze code to modify it.

In contrast, an unbalanced organization of components is more likely to have unclear
functional boundaries. For example, a component that is very large compared to oth‐
ers is more likely to contain functionalities that are unrelated, and therefore that
component is harder to analyze.

A Good Component Balance Better Isolates Maintenance Effects
When a system’s component balance clearly describes functional boundaries, it has a
proper separation of concerns, which makes for isolated behavior in the system. Iso‐
lated behavior within system components is relevant because it guards against unex‐
pected effects, such as regression.

More broadly, isolation of code within components has the general advantage of
modularity: components with clear functional and technical boundaries are easier to
substitute, remove, and test than components with mixed functionalities and techni‐
cal intertwinement.

Note that a good component balance in itself clearly does not guarantee isolation of
changes. After all, grouping code in different components does not necessarily make
those components independent from each other. So, the degree of dependence
between components is relevant as well, as we will discuss in Chapter 7.

8.1 Motivation | 95

This reasoning about isolation applies to code on a smaller level as
well. For example, a system that consists of small, simple classes
signals a proper separation of concerns, but does not guarantee it.
For that you will need to investigate the actual dependencies (see,
e.g., Chapter 6).

A Good Component Balance Separates Maintenance Responsibilities
Having clear functional boundaries between components makes it easier to distribute
responsibilities for maintenance among separate teams. The number of components
of a system and their relative size should indicate the system’s decomposition into
functional groups.

When a system has too many or too few components, it is considered more difficult
to understand and harder to maintain. If the number of components is too low, it
does not help you much to navigate through the functionalities of the system. On the
other hand, too many components make it hard to get a clear overview of the entire
system.

8.2 How to Apply the Guideline
The two principles of component balance are:

• The number of top-level system components should ideally be 9, and generally
between 6 and 12.

• The components’ volume in terms of source code should be roughly equal.

Note that component balance is an indicator for a clear component
separation, not a goal in itself. It should follow from the system
design and development process. The division of the system into
components should be natural, not forced to nine components for
the sake of having nine components.

96 | Chapter 8: Keep Architecture Components Balanced

Decide on the Right Conceptual Level for Grouping Functionality into
Components
To achieve a good system division that is easy to navigate for developers, you need to
choose the right conceptual level for grouping functionality. Usually, software systems
are organized along high-level functional domains that describe what kind of func‐
tions the system performs for the user. Alternatively, a division is made along the sep‐
arations of technical specialities.

For example, a system that bases component division on function domains might
have components like Data Retrieval, Invoice Administration, Reporting, Adminis‐
trator, and so on. Each component contains source code that offers end-to-end func‐
tionality, ranging from the database to the frontend. A functional division has
the advantage of being available during design, before development starts. For devel‐
opers, it has the advantage that they can analyze source code while thinking in
high-level functionalities. A disadvantage can be that developers may need to be pro‐
ficient and comfortable in multiple technical domains to make changes to a single
component.

An example of a system that uses technical division might have components like
Frontend, Backend, Interfaces, Logging, and so on. This approach has advantages for
teams that have a division of responsibilities based on technology specialization. The
component division then reflects the division of labor among various specialists.

Choosing the right concepts for grouping functionality within a system is part of the
software architect role. This role may be assigned to a single person, or it may be dis‐
tributed over various people within the development team. When changes are needed
to the component division, those in the architect role must be consulted.

Clarify the System’s Domains and Apply Those Consistently
Once a choice for the type of system division into components has been made, you
need to apply it consistently. An inconsistent architecture is a bad architecture.
Therefore, the division into components should be formalized and controlled. While
making the design choices may be an architect’s role, the discipline to create and
respect the component boundaries in the code organization applies to all developers.
A way to achieve this is to agree as a team in which components certain changes need
to be implemented. It is a collective responsibility to ensure that this is done in a con‐
sistent manner.

8.2 How to Apply the Guideline | 97

8.3 Common Objections to Balancing Components
This section discusses objections regarding component balance. Common objections
are that component imbalance is not really a problem, or that it is a problem that can‐
not be fixed.

Objection: Component Imbalance Works Just Fine
“Our system may seem to have bad component balance, but we’re not having any prob‐
lems with it.”

Component balance, as we define it, is not binary. There are different degrees of bal‐
ance, and its definition allows for some deviation from the “ideal” of nine compo‐
nents of equal size. Whether a component imbalance is an actual maintenance
burden depends on the degree of deviation, the experience of the maintenance team,
and the cause of the imbalance.

The most important maintenance burden occurs when the imbalance is caused by
lack of discipline during maintenance—when developers do not put code in the com‐
ponent where it belongs. Since inconsistency is the enemy of predictability, that may
lead to unexpected effects. Code that is placed in the wrong components may lead to
unintended dependencies between components, which hurts testability and flexibility.

Objection: Entanglement Is Impairing Component Balance
“We cannot get component balance right because of entanglement among components.”

This situation points to another problem: technical dependence between compo‐
nents. Entanglement between components signals an improper separation of con‐
cerns. This issue and guideline are further described in Chapter 7. In this case, it is
more important and urgent to fix component dependencies—for example, by hiding
implementation details behind interfaces and fixing circular dependencies. After that,
you can revise your component structure to improve its balance.

8.4 See Also
Component coupling is closely related to the idea of component balance discussed in
this chapter. Component coupling is discussed in Chapter 7.

98 | Chapter 8: Keep Architecture Components Balanced

How SIG Rates Component Balance
SIG defines and measures component balance as a combined calculation (i.e., multi‐
plication) of the following:

• The number of top-level system components
• The uniformity of component size

The ideal number of top-level system components is nine, as SIG has identified that as
the median in its benchmark. The closer the actual number of components is to nine,
the better.

The score for the number of top-level system components ranges from 0 to 1. A sys‐
tem with nine components gives a score of 1, linearly decreasing to 0 for a system
with one component. A correction is applied upward, to allow for a more lenient
count when the number of components is higher than 17, which would otherwise
lead to a score of 0 with a linear model. The correction is based on the 95th percentile
scores within the benchmark.

Uniformity of component size means the distribution of source code volume between
components. An equally sized distribution of top-level components is better than an
unequal distribution.

SIG uses the adjusted Gini coefficient as a measure of component size uniformity.
The Gini coefficient measures the inequality of distribution between things and
ranges from 0 (perfect equality) to 1 (perfect inequality).

To achieve a SIG/TÜViT rating of 4 stars for highly-maintainable software, the num‐
ber of components should be close to the ideal of nine, and the adjusted Gini coeffi‐
cient of the component sizes should be 0.71 maximum.

See the volume charts in Figure 8-2 as an example:

• Left: an anonymous system in the SIG benchmark that scores 2 stars on compo‐
nent balance. Note that both the number of components (six) and their code vol‐
ume are off.

• Right: an anonymous system in the SIG benchmark that complies with a 4-star
rating for component balance. Note that even though the volume of the compo‐
nents is not equal, the number of components is exactly nine, which levels out
the influence of the component size inequality.

8.4 See Also | 99

Figure 8-2. Two quality profiles for component balance

100 | Chapter 8: Keep Architecture Components Balanced

CHAPTER 9

Keep Your Codebase Small

Program complexity grows until it exceeds the capability of the programmer who must
maintain it.

—7th Law of Computer Programming

Guideline:

• Keep your codebase as small as feasible.
• Do this by avoiding codebase growth and actively reducing

system size.
• This improves maintainability because having a small prod‐

uct, project, and team is a success factor.

A codebase is a collection of source code that is stored in one repository, can be com‐
piled and deployed independently, and is maintained by one team. A system has at
least one codebase. Larger systems sometimes have more than one codebase. A typi‐
cal example is packaged software. There may be a codebase for the standard function‐
ality, and there are different, independently maintained codebases for customer- or
market-specific plugins.

101

Given two systems with the same functionality, in which one has a small codebase
and the other has a large codebase, you surely would prefer the small system. In a
small system it is easier to search through, analyze, and understand code. If you mod‐
ify something, it is easier to tell whether the change has effects elsewhere in the sys‐
tem. This ease of maintenance leads to fewer mistakes and lower costs. That much is
obvious.

9.1 Motivation
Software development and maintenance become increasingly hard with growing sys‐
tem size. Building larger systems requires larger teams and longer-lasting projects,
which bring additional overhead and risks of (project) failure. The rest of this section
discusses the adverse effects of large software systems.

A Project That Sets Out to Build a Large Codebase Is More Likely to
Fail
There is a strong correlation between project size and project risks. A large project
leads to a larger team, complex design, and longer project duration. As a result, there
is more complex communication and coordination among stakeholders and team
members, less overview over the software design, and a larger number of require‐
ments that change during the project. This all increases the chance of reduced quality,
project delays, and project failure. The probabilities in the graph in Figure 9-1 are
cumulative: for example, for all projects over 500 man-years of development effort,
more than 90% are indentified as “poor project quality.” A subset of this is projects
with delays (80–90% of the total) and failed projects (50% of the total).

Figure 9-1 illustrates the relationship between project size and project failure: it
shows that as the size of a project increases, the chances of project failure (i.e., project
is terminated or does not deliver results), of project delay, and of a project delivered
with poor quality are increasingly high.

102 | Chapter 9: Keep Your Codebase Small

1 Source: The Economics of Software Quality by Capers Jones and Olivier Bonsignour (Addison-Wesley Profes‐
sional 2012). The original data is simplified into man-years (200 function points/year for Java).

Figure 9-1. Probability of project failures by project size1

9.1 Motivation | 103

Large Codebases Are Harder to Maintain
Figure 9-2 illustrates how codebase size affects maintainability.

Figure 9-2. Distribution of system maintainability in SIG benchmark among different
volume groups

The graph is based on a set of codebases of over 1,500 systems in the SIG Software
Analysis Warehouse. Volume is measured as the amount of development effort in
man-years to reproduce the system (see also “How SIG Rates Codebase Volume” on
page 110). Each bar shows the distribution of systems in different levels of maintaina‐
bility (benchmarked in stars). As the graph shows, over 30% of systems in the small‐
est volume category manage to reach 4- or 5-star maintainability, while in the largest
volume category only a tiny percentage reaches this level.

Large Systems Have Higher Defect Density
You may expect that a larger system has more defects in absolute numbers. But the
defect density (defined as the number of defects per 1,000 lines of code) also increases
substantially as systems grow larger. Figure 9-3 shows the relationship between code
volume and the number of defects per 1,000 lines of code. Since the number of
defects rises when code volume grows, the graph shows that larger systems have
higher defects both absolutely and relatively.

104 | Chapter 9: Keep Your Codebase Small

2 Source: Steve McConnell, Code Complete, 2nd edition (Microsoft Press, 2004), p.652.

Figure 9-3. Impact of code volume on the number of defects2

9.2 How to Apply the Guideline
All other things being equal, a system that has less functionality will be smaller than a
system that has more functionality. Then, the implementation of that functionality
may be either concise or verbose. Therefore, achieving a small codebase first requires
keeping the functionality of a system limited, and then requires attention to keep the
amount of code limited.

Functional Measures
Functionality-related measures are not always within your span of control, but when‐
ever new or adapted functionality is being discussed with developers, the following
should be considered:

Fight scope creep:
In projects, scope creep is a common phenomenon in which requirements
extend during development. This may lead to “nice-to-have functionality” that
adds growth to the system without adding much value to the business or the user.
Fight scope creep by confronting the business with the price of additional func‐
tionality, in terms of project delays or higher future maintenance costs.

9.2 How to Apply the Guideline | 105

Standardize functionality:
By standardization of functionality we mean consistency in the behavior and
interactions of the program. First of all, this is intended to avoid the implementa‐
tion of the same core functionality in multiple, slightly different ways. Secondly,
standardization of functionality offers possibilities for reuse of code—assuming
the code itself is written in a reusable way.

Technical Measures
For the technical implementation, the goal is to use less code to implement the same
functionality. You can achieve this mainly through reusing code by referral (instead
of writing or copying and pasting code again) or by avoiding coding altogether, but
using existing libraries or frameworks.

Do not copy and paste code:
Referring to existing code is always preferable to copying and pasting code in
pieces that will need to be maintained individually. If there are multiple copies of
a piece of code, maintenance needs to occur in multiple places, too. Mistakes
easily crop up if an update in one piece of logic requires individual adjustment
(or not) and testing of multiple, scattered copies. Note that the intention of the
guideline presented in Chapter 4 is precisely to avoid copying and pasting.

Refactor existing code:
While refactoring has many merits for code maintainability, it can have an imme‐
diate and visible effect in reducing the codebase. Typically, refactoring involves
revisiting code, simplifying its structure, removing code redundancies, and
improving the amount of reuse. This may be as simple as removing unused/obso‐
lete functionality. See, for example, the refactoring patterns in Chapter 4.

Use third-party libraries and frameworks:
Many applications share the same type of behavior for which a vast number of
frameworks and libraries exist—for example, UI behavior (e.g., jQuery), database
access (e.g., Hibernate), security measurements (e.g., Spring Security), logging
(e.g., SLF4J), or utilities (e.g., Google Guava). Using third-party libraries is espe‐
cially helpful for such generic functionality. If functionality is used and main‐
tained by other parties, why invent your own? Using third-party code is
especially helpful because it avoids unnecessary over-engineering. It is well worth
considering adjusting functionality to fit it to third-party code instead of building
a custom solution.

106 | Chapter 9: Keep Your Codebase Small

http://jquery.com/
http://hibernate.org/
http://projects.spring.io/spring-security/
http://www.slf4j.org/
https://github.com/google/guava

Do not make changes to the source code of a third-party library. If
you do, essentially you have made the library code part of your
own codebase. In particular, updates of changed libraries are cum‐
bersome and can easily lead to bugs. Typically, difficulties arise
when developers try to update the library to a newer version, since
they need to analyze what has been changed in the library code and
how that impacts the locally changed code.

Split up a large system:
Splitting up a large system into multiple smaller systems is a way to minimize the
issues that come with larger systems. A prerequisite is that the system can be
divided into parts that are independent, from a functional, technical, and lifecycle
perspective. To the users, the systems (or plugins) must be clearly separated.
Technically, the code in the different systems must be loosely coupled; that is,
their code is related via interfaces instead of direct dependencies. Systems are
only really independent if their lifecycles are decoupled (i.e., they are developed
and released independently). Note that the split systems may well have some
mutual or shared dependencies. There is an additional advantage. It might turn
out that some of the new subsystems can be replaced by a third-party package,
completely removing the need to have any codebase for this subsystem. An
example is a Linux distribution such as Ubuntu. The Linux kernel is a codebase
that lives at kernel.org and is maintained by a large team of volunteers headed by
Linus Torvalds. Next to the actual Linux kernel, a distribution contains thou‐
sands of other software applications, each of which has its own codebase. These
are the types of plugins that we mean here.

Decoupling (on a code level) is discussed in more detail in the chapters that deal with
loose coupling, particularly Chapter 7.

9.3 Common Objections to Keeping the Codebase Small
The measures described in this chapter are applicable to all phases of software devel‐
opment. They support the primary maintainability goal of achieving a small
codebase.

There are generally two familiar strategies with which you can actively pursue the
goal of a small codebase: avoiding the problem (avoiding further codebase growth) or
fixing the problem (reducing the size of the codebase).

The biggest long-term gains are achieved when you are working on a system that is
already quite small or in an early stage of development. Technical adjustments such as
refactoring and reuse of functionality are easier with a small system and will be bene‐
ficial for all further coding.

9.3 Common Objections to Keeping the Codebase Small | 107

http://kernel.org

The most visible improvements will appear once a system is big and parts of it can be
removed—for example, when functionality is being replaced by third-party code or
after a system has been split into multiple parts.

Objection: Reducing the Codebase Size Is Impeded by Productivity
Measures
“I cannot possibly reduce the size of my system, since my programming productivity is
being measured in terms of added code volume.”

If this is the case, we suggest escalating this issue. Measuring development productiv‐
ity in terms of added code volume is a bad practice. It provides a negative incentive,
as it encourages the bad habit of copying and pasting code. Code reference is better
because it improves analyzing, testing, and changing code.

We understand that the number of code additions can help managers monitor pro‐
gress and predict timelines. However, productivity should be measured in terms of
value added, not lines of code added. Experienced developers can often add function‐
ality with a minimum number of additional lines of code, and they will refactor the
code whenever they see an opportunity, often resulting in reduction of the code size.

Objection: Reducing the Codebase Size is Impeded by the
Programming Language
“I work with a language that is more verbose than others, so I cannot achieve a small
codebase.”

In most projects, the programming language is a given. It may very well be true that
in some programming languages, it is impossible to get a small codebase (SQL-based
languages come to mind). However, you can always strive to get a smaller codebase
than you currently have, in the same programming language. Every codebase benefits
from decreasing its size, even those in low-level languages with little possibility for
abstraction.

Objection: System Complexity Forces Code Copying
“My system is so complicated that we can only add functionality by copying large pieces
of existing code. Hence, it is impossible to keep the codebase small.”

Difficulty in understanding existing code, and hence the fear of touching that code, is
a common reason that programmers resort to copying and pasting. This is particu‐
larly the case if the code has an insufficient number of automated tests.

The best approach here is to find the functionality that is most like the one that you
are trying to add. By analyzing that code, you should find some common functional‐
ity; otherwise, you would not consider copying that code in the first place. If that

108 | Chapter 9: Keep Your Codebase Small

original functionality can be split up into multiple parts, then ideally you end up with
a piece of code that can be referred to independently by the new functionality, avoid‐
ing duplication and taming codebase growth. Write unit tests for the new units to
verify that you understand the inner workings of the unit. Besides, it is recommended
practice; see Chapter 10.

Objection: Splitting the Codebase Is Impossible Because of Platform
Architecture
“We cannot split the system into smaller parts because we are building for a platform
where all functionality is tied to a common codebase.”

Yes, platform-based software tends to grow large over time because it assimilates new
functionality and rarely reduces functionality. One way to dramatically decrease the
size of the codebase is to decouple the system into a plug-in architecture. This leads
to multiple codebases that are each smaller than the original one. There is a codebase
for the common core, and one or more codebases for the plugins. If those plugins are
technically decoupled, they allow for separate release cycles. That means that small
changes in functionality do not need an update of the whole system. Keep in mind
that those small updates still need full integration/regression tests to ensure that the
system as a whole still functions as expected.

Objection: Splitting the Codebase Leads to Duplication
“Splitting the codebase forces me to duplicate code.”

There may be cases in which decoupling a system into separate parts (such as plu‐
gins/extensions) requires (interfaces to) common functionality or data structures to
be duplicated in those extensions.

In such a case, duplication is a bigger problem than having a large codebase, and the
guideline of Chapter 4 prevails over this guideline of achieving a small codebase. It is
then preferable to code common functionality either as a separate extension or as
part of a common codebase.

Objection: Splitting the Codebase Is Impossible Because of Tight
Coupling
“I cannot split up my system since the system parts are tightly coupled.”

Then decouple the system first. To achieve this, you can write specific interfaces that
act as a uniform entry point to functionality. This can be achieved with WebServices,
REST APIs, or other tooling that provides that functionality (e.g., middleware or
ESB).

9.3 Common Objections to Keeping the Codebase Small | 109

Keep in mind that the goal is to have subsystems that can be
maintained independently, not necessarily systems that operate
independently.

How SIG Rates Codebase Volume
The metric for codebase volume does not have different risk categories, since it con‐
sists of only one metric. To be rated at 4 stars, the codebase should be at most equiva‐
lent to 20 man-years of rebuild value. If C# is the only technology in a system, this
translates to at most 160,000 lines of code.

Man-months and man-years

The total volume in a codebase is the volume in lines of code converted to man-
months. A man-month is a standard measure of source code volume. It is the amount
of source code that one developer with average productivity could write in one
month. The advantage of “man-month” is that it allows for comparisons of source
code volume between technologies. This is relevant because programming languages
have different productivity measures, or “levels of verbosity.” Therefore, a system with
multiple programming languages can be converted to an aggregate measure that tells
you the approximate effort it would take to rebuild it: the “rebuild value.”

SIG’s experience has shown that the man-month is an effective metric to assess the
size of a system and to compare systems with each other. A man-year is simply 12
man-months. Of course, actual productivity is also dependent on skill and program‐
ming style. The volume metric does not tell you how many months or years of effort
actually went into building the system.

110 | Chapter 9: Keep Your Codebase Small

CHAPTER 10

Automate Tests

Keep the bar green to keep the code clean.
—The jUnit motto

Guideline:

• Automate tests for your codebase.
• Do this by writing automated tests using a test framework.
• This improves maintainability because automated testing

makes development predictable and less risky.

In Chapter 4, we have presented IsValid, a method to check whether bank account
numbers comply with a checksum. That method contains a small algorithm that
implements the checksum. It is easy to make mistakes in a method like this. That is
why probably every programmer in the world at some point has written a little, one-
off program to test the behavior of such a method, like so:

using System;
using eu.sig.training.ch04.v1;

namespace eu.sig.training.ch10
{
 public class Program
 {
 [STAThread]
 public static void Main(string[] args)
 {
 string acct;
 do
 {

111

 Console.WriteLine("Type a bank account number on the next line.");
 acct = Console.ReadLine();
 Console.WriteLine($"Bank account number '{acct}' is" +
 (Accounts.IsValid(acct) ? "" : " not") + " valid.");
 } while (!String.IsNullOrEmpty(acct));
 }
 }
}

This is a C# class with a Main method, so it can be run from the command line:

C:\> Program.exe
Type a bank account number on the next line.
123456789
Bank account number '123456789' is valid.
Type a bank account number on the next line.
123456788
Bank account number '123456788' is not valid.
C:\>

A program like this can be called a manual unit test. It is a unit test because it is used
to test just one unit, IsValid. It is manual because the user of this program has to
type in test cases manually, and manually assess whether the output of the program is
correct.

While better than having no unit testing at all, this approach has several problems:

• Test cases have to be provided by hand, so the test cannot be executed automati‐
cally in an easy way.

• The developer who has written this test is focusing on logic to execute the test
(the do … while loop, all input/output handling), not on the test itself.

• The program does not show how IsValid is expected to behave.
• The program is not recognizable as a test (although the rather generic name
Program is an indication it is meant as a one-off experiment).

That is why you should write automated unit tests instead of manual unit tests. These
are tests of code units themselves described in code that runs autonomously. The
same holds for other types of testing, such as regression tests and user acceptance
tests: automate as much as possible, using a standard test framework. For unit tests, a
common framework is NUnit.

112 | Chapter 10: Automate Tests

http://nunit.org

10.1 Motivation
This section describes the advantages of automating your tests as much as possible.

Automated Testing Makes Testing Repeatable
Just like other programs and scripts, automated tests are executed in exactly the same
way every time they are run. This makes testing repeatable: if a certain test executes at
two different points in time yet gives different answers, it cannot be that the test exe‐
cution itself was faulty. One can conclude that something has changed in the system
that has caused the different outcome. With manual tests, there is always the possibil‐
ity that tests are not performed consistently or that human errors are made.

Automated Testing Makes Development Efficient
Automated tests can be executed with much less effort than manual tests. The effort
they require is negligible and can be repeated as often as you see fit. They are also
faster than manual code review. You should also test as early in the development pro‐
cess as possible, to limit the effort it takes to fix problems.

Postponing testing to a late stage in the development pipeline risks
late identification of problems. That costs more effort to fix,
because code needs to go back through the development pipeline
and be merged, and tests must be rerun.

Automated Testing Makes Code Predictable
Technical tests can be automated to a high degree. Take unit tests and integration
tests: they test the technical inner workings of code and the cohesion/integration of
that code. Without being sure of the inner workings of your system, you might get
the right results by accident. It is a bit like driving a car: you might arrive at an
intended destination by following the wrong directions, but when you want to go to
another destination, you are uncertain whether the new directions are reliable and
will actually take you there.

A common advantage of automated testing is identifying when regression is occur‐
ring. Without a batch of automated unit tests, development quickly turns into a game
of whack-a-mole: you implement a change in one piece of code, and while you are
working on the next change in another piece of code, you realize you have introduced
a bug with your previous change. Automated tests allow you to double-check your
entire codebase effortlessly before turning to the next change. And since the automa‐
ted unit tests follow predefined paths, you can be sure that if you have fixed a bug, it
does not pop up on a second run.

10.1 Motivation | 113

Thus, running automated tests provides certainty about how the code works. There‐
fore, the predictability of automated tests also makes the quality of developed code
more predictable.

Tests Document the Code That Is Tested
The script or program code of a test contains assertions about the expected
behavior of the system under test. For example, as will be illustrated later in this
chapter, an appropriate test of IsValid contains the following line of code:
Assert.IsFalse(IsValid("")). This documents, in C# code, that we expect IsValid
to return false when checking the empty string. In this way, the Assert.IsFalse state‐
ment plays a double role: as the actual test, and as documentation of the expected
behavior. In other words, tests are examples of what the system does.

Writing Tests Make You Write Better Code
Writing tests helps you to write testable code. As a side effect, this leads to code con‐
sisting of units that are shorter, are simpler, have fewer parameters, and are more
loosely coupled (as the guidelines in the previous chapters advise). For example, a
method is more difficult to test when it performs multiple functions instead of only
one. To make it easier to test, you move responsibilities to different methods, improv‐
ing the maintainability of the whole. That is why some development approaches
advocate writing a unit test before writing the code that conforms to the test. Such
approaches are called test-driven development (TDD) approaches. You will see that
designing a method becomes easier when you think about how you are going to test
it: what are the valid arguments of the method, and what should the method return as
a result?

10.2 How to Apply the Guideline
How you automate tests differs by the types of tests you want to automate. Test types
differ in what is tested, by whom, and why, as detailed in Table 10-1. They are ordered
from top to bottom based on the scope of the tests. For example, a unit test has the
unit as scope, while an end-to-end test, a regression test, and an acceptance test are
on the system level.

114 | Chapter 10: Automate Tests

Table 10-1. Types of testing

Type What it tests Why Who
Unit test Functionality of one unit in isolation Verify that unit behaves as

expected
Developer (preferably
of the unit)

Integration test Functionality, performance, or other quality
characteristic of at least two classes

Verify that parts of the system
work together

Developer

End-to-end test System interaction (with a user or another
system)

Verify that system behaves as
expected

Developer

Regression test Previously erroneous behavior of a unit, class,
or system interaction

Ensure that bugs do not re-
appear

Developer

Acceptance test System interaction (with a user or another
system)

Confirm the system behaves as
required

End-user
representative (never
the developer)

Table 10-1 shows that a regression test is a unit test, an integration test, or an end-to-
end test that has been created when a bug was fixed. Acceptance tests are end-to-end
tests executed by end user representatives.

Different types of testing call for different automation frameworks. For unit testing,
several well-known C# frameworks are available, such as NUnit. For automated
end-to-end testing, you need a framework that can mimic user input and capture
output. A well-known framework that does just that for web development is Sele‐
nium. For integration testing, it all depends on the environment in which you are
working and the quality characteristics you are testing. SoapUI is a framework for
integration tests that focuses on web services and messaging middleware. Apache
jMeter is a framework for testing the performance of C# applications under heavy
workloads.

Choosing a test framework needs to be done at the team level. Writing integration
tests is a specialized skill—but unit testing is for each and every individual developer.
That is why the rest of this chapter focuses on writing unit tests using the most well-
known framework for C#: NUnit.

Contrary to specialized integration and end-to-end tests, writing
unit tests is a skill that every developer needs to master.

10.2 How to Apply the Guideline | 115

http://nunit.org
http://www.seleniumhq.org
http://www.seleniumhq.org
http://www.soapui.org
http://jmeter.apache.org
http://jmeter.apache.org

1 Actually, Visual Studio comes with Microsoft’s Unit Testing Framework, which differs slightly from NUnit.

Writing unit tests also requires the smallest upfront investment:1 just download
NUnit from http://nunit.org.

Getting Started with NUnit Tests
As we noted in the introduction of this chapter, we want to test IsValid, a method of
the class Accounts. Accounts is called the class under test. In NUnit, tests are put in a
different class, the test class, or test fixture. This class is indicated as a test fixture by
the [TestFixture] attribute. By convention, the name of the test class is the name of
the class under test with the suffix Test added. In this case, that would mean the
name of the test class is AccountsTest. It must be a public class, but apart from that,
there are no other requirements for a test class. In particular, it does not need to
extend any other class. It is convenient, but not required, to place the test class in the
same namespace as the class under test. That way, the test class has access to all mem‐
bers of the test class under test that have namespace (but not public) access.

In NUnit, a test itself is any method that has the [Test] attribute. To test IsValid,
you can use the following NUnit test class:

using NUnit.Framework;

namespace eu.sig.training.ch04.v1
{
 [TestFixture]
 public class AccountsTest
 {
 [Test]
 public void TestIsValidNormalCases()
 {
 Assert.IsTrue(Accounts.IsValid("123456789"));
 Assert.IsFalse(Accounts.IsValid("123456788"));
 }

}

This test handles two cases:

• Bank account number 123456789: We know this is a valid bank account number
(see “The 11-Check for Bank Account Numbers” on page 12), so IsValid should
return true. The call of Assert.IsTrue tests this.

• Bank account number 123456788: We know this is an invalid bank account num‐
ber (because it differs from a valid account number by one digit), so IsValid
should return false. The call of Assert.IsFalse tests this.

116 | Chapter 10: Automate Tests

https://msdn.microsoft.com/en-us/library/ms243147(v=vs.90).aspx
http://nunit.org

Unit tests can be run directly in Visual Studio. In addition, NUnit comes with test
runners to run tests from the command line. Tests can also be executed by Maven or
Ant. Figure 10-1 shows the result of running the preceding test in Visual Studio. The
red bar indicates that there are failed tests.

Figure 10-1. All tests succeeded!

The test in the preceding test class only tests normal cases: two bank account num‐
bers of the expected format (exactly nine characters, all digits). How about corner
cases? One obvious special case is the empty string. The empty string is, of course,
not a valid bank account number, so we test it by calling Assert.IsFalse:

[Test]
public void TestEmptyString()
{
 Assert.IsFalse(Accounts.IsValid(""));
}

As Figure 10-2 shows, it turns out that this test fails! While the call to IsValid should
return false, it actually returned something else (which, of course, must be true, as
there is no other option).

Figure 10-2. One test failed

The failed test points us to a flaw in IsValid. In case the argument to IsValid is the
empty string, the for loop does not run at all. So the only lines executed are:

int sum = 0;
return sum % 11 == 0;

10.2 How to Apply the Guideline | 117

2 And that is still not enough. Because System.GetNumericValue returns -1.0 for a non-numeric character,
isValid("72345678z") returns true.

This indeed returns true, while it should return false. This reminds us to add code
to IsValid that checks the length of the bank account number.2

The NUnit runner reports this as a test failure and not as a test error. A test failure
means that the test itself (the method TestEmptyString) is executed perfectly, but the
assertion failed. A test error means that the test method itself did not execute cor‐
rectly. The following code snippet illustrates this: the ShowError method raises a
division-by-zero exception and never even executes Assert.IsTrue:

[Test]
public void ShowError()
{
 int tmp = 0, dummy = 1 / tmp;
 // Next line is never executed because the previous one raises an
 // exception.
 // If it were executed, you'll never see the assert message because
 // the test always succeeds.
 Assert.IsTrue(true);
}

Next, we present some basic principles that will help you write good unit tests. We
start with the most basic principles and then progress to more advanced ones that
apply when your test efforts become more mature.

General Principles for Writing Good Unit Tests
When writing tests, it is important to keep in mind the following general principles:

Test both normal and special cases
As in the examples given in this chapter, test two kinds of cases. Write tests that
confirm that a unit indeed behaves as expected on normal input (called happy
flow or sunny-side testing). Also write tests that confirm that a unit behaves sensi‐
bly on non-normal input and circumstances (called unhappy flow or rainy-side
testing). For instance, in NUnit it is possible to write tests to confirm that a
method under test indeed throws a certain exception.

Maintain tests just like nontest (production) code
When you adjust code in the system, the changes should be reflected in the unit
tests as well. This is most relevant for unit tests, though it applies to all tests. In
particular, when adding new methods or enhancing the behavior of existing
methods, be sure to add new test cases that cover that new code.

118 | Chapter 10: Automate Tests

Write tests that are isolated: their outcomes should reflect only the behavior of the sub‐
ject being tested

That is, each test should act independently of all other tests. For unit testing, this
means that each test case should test only one functionality. No unit test should
depend on state, such as files written by other tests. That is why a unit test that,
say, causes the class under test to access the filesystem or a database server is not
a good unit test.

Consequently, in unit testing you should simulate the state/input of other classes
when those are needed (e.g., as arguments). Otherwise, the test is not isolated and
would test more than one unit. This was easy for the test of IsValid, because IsValid
takes a string as an argument, and it does not call other methods of our system. For
other situations, you may need a technique like stubbing or mocking.

In Chapter 6, we introduced a C# interface for a simple digital camera, which is
repeated here for ease of reference:

public interface ISimpleDigitalCamera
{
 Image TakeSnapshot();

 void FlashLightOn();

 void FlashLightOff();
}

Suppose this interface is used in an application that ensures people never forget to
turn on the flash at night:

public const int DAYLIGHT_START = 6;

public Image TakePerfectPicture(int currentHour)
{
 Image image;
 if (currentHour < PerfectPicture.DAYLIGHT_START)
 {
 camera.FlashLightOn();
 image = camera.TakeSnapshot();
 camera.FlashLightOff();
 }
 else
 {
 image = camera.TakeSnapshot();
 }
 return image;
}

Although the logic is simple (TakePerfectPicture simply assumes that if the hour of
the day on a 24-hour clock is lower than 6 p.m., it is night), it needs testing. For a
proper unit test for TakePerfectPicture to be written, taking a picture needs to be

10.2 How to Apply the Guideline | 119

3 In textbooks and other resources about testing, there is little if any agreement on terminology. We adopt the
terminology of The Art of Unit Testing by Roy Osherove (Manning Publications, 2009).

automatic and independent. That means that the normal implementation of the digi‐
tal camera interface cannot be used. On a typical device, the normal implementation
requires a (human) user to point the camera at something interesting and press a
button. The picture taken can be any picture, so it is hard to test whether the (suppos‐
edly perfect) picture taken is the one expected.

The solution is to use an implementation of the camera interface that has been made
especially for testing. This implementation is a fake object, called a test stub or simply
a stub.3 In this case, we want this fake object to behave in a preprogrammed (and
therefore predictable) way. We write a test stub like this:

class DigitalCameraStub : ISimpleDigitalCamera
{
 public Image TestImage;

 public Image TakeSnapshot()
 {
 return this.TestImage;
 }

 public void FlashLightOn()
 {
 }

 public void FlashLightOff()
 {
 }
}

In this stub, TakeSnapshot always returns the same image, which we can set simply
by assigning to testImage (for reasons of simplicity, we have made testImage a pub‐
lic field and do not provide a setter). This stub can now be used in a test:

[Test]
public void TestDayPicture()
{
 Image image =
 Image.FromFile("../../../../test/resources/VanGoghSunflowers.jpg");
 DigitalCameraStub cameraStub = new DigitalCameraStub();
 cameraStub.TestImage = image;
 PerfectPicture.camera = cameraStub;
 Assert.AreSame(image, new PerfectPicture().TakePerfectPicture(12));
}

In this test, we create a stub camera and supply it with an image to return. We then
call TakePerfectPicture(12) and test whether it returns the correct image. The

120 | Chapter 10: Automate Tests

value of the call, 12, means that TakePerfectPicture assumes it is between noon
and 1 p.m.

Now suppose we want to test TakePerfectPicture for nighttime behavior; that is, we
want to ensure that if TakePerfectPicture is called with a value lower than Perfect
Picture.DAYLIGHT_START, it indeed switches on the flash. So, we want to test whether
TakePerfectPicture indeed calls FlashLightOn. However, FlashLightOn does not
return any value, and the ISimpleDigitalCamera interface also does not provide any
other way to know whether the flash has been switched on. So what to check?

The solution is to provide the fake digital camera implementation with some mecha‐
nism to record whether the method we are interested in gets called. A fake object that
records whether expected calls have taken place is called a mock object. So, a mock
object is a stub object with added test-specific behavior. The digital camera mock
object looks like this:

class DigitalCameraMock : ISimpleDigitalCamera
{
 public Image TestImage;
 public int FlashOnCounter = 0;

 public Image TakeSnapshot()
 {
 return this.TestImage;
 }

 public void FlashLightOn()
 {
 this.FlashOnCounter++;
 }

 public void FlashLightOff()
 {
 }
}

Compared to DigitalCameraStub, DigitalCameraMock additionally keeps track of
the number of times FlashLightOn has been called, in a public field. DigitalCamera
Mock still contains preprogrammed behavior, so it is both a stub and a mock. We can
check that FlashLightOn is called in the unit test like so:

[Test]
public void TestNightPicture()
{
 Image image =
 Image.FromFile("../../../../test/resources/VanGoghStarryNight.jpg");
 DigitalCameraMock cameraMock = new DigitalCameraMock();
 cameraMock.TestImage = image;
 PerfectPicture.camera = cameraMock;
 Assert.AreSame(image, new PerfectPicture().TakePerfectPicture(0));

10.2 How to Apply the Guideline | 121

 Assert.AreEqual(1, cameraMock.FlashOnCounter);
}

In these examples, we have written our own stub and mock objects. This leads to a lot
of code. Generally, it is most efficient to use a mocking framework such as Moq.
Mocking frameworks use features of the .Net runtime to automatically create mock
objects from normal interfaces or classes. They also provide methods to test whether
methods of a mock object have been called, and with which arguments. Some mock‐
ing frameworks also provide ways to specify preprogrammed behavior of mock
objects, giving them the characteristics of both stubs and mocks.

Indeed, using Moq as an example, you can write TestNightPicture without any need
to write a class like DigitalCameraMock yourself:

[Test]
public void TestNightPictureMoq()
{
 Image image =
 Image.FromFile("../../../../test/resources/VanGoghStarryNight.jpg");
 var cameraMock = new Mock<ISimpleDigitalCamera>();
 cameraMock.Setup(foo => foo.TakeSnapshot()).Returns(image);
 PerfectPicture.camera = cameraMock.Object;
 Assert.AreSame(image, new PerfectPicture().TakePerfectPicture(0));
 cameraMock.Verify(foo => foo.FlashLightOn(), Times.AtMostOnce());
}

In this test, Moq’s Mock constructor is used to create cameraMock, the mock object
used in this test. With Moq’s Setup and Returns method, the desired behavior is
specified. Moq’s Verify method is used to verify whether FlashLightOn has been
called.

Measure Coverage to Determine Whether There Are Enough Tests
How many unit tests are needed? One way to assess whether you have written enough
unit tests is to measure coverage of your unit tests. Coverage, or more precisely, line
coverage, is the percentage of lines of code in your codebase that actually get executed
when all unit tests are executed. As a rule of thumb, you should aim for at least 80%
line coverage with a sufficient number of tests—that is, as many lines of test code as pro‐
duction code.

Why 80% coverage (and not 100%)? Any codebase contains fragments of trivial code
that technically can be tested, but are so trivial that testing them makes little sense.
Take the following typical C# getter method:

public string Name { get; }

It is possible to test this getter (with something like Assert.AreEq

ual(myObj.Name,"John Smith")), but with this test, you are mostly testing that the
C# compiler and the .Net runtime work as expected. But it is not true that you should

122 | Chapter 10: Automate Tests

https://github.com/Moq/moq4

never test getters. Take a typical class that represents postal mail addresses. It typically
has two or three string fields that represent (additional) address lines. It is easy to
make a mistake like this one:

public string getAddressLine3() {
 return this.addressLine2;
}

A minimum of 80% coverage alone is not enough to ensure high-quality unit tests.
It is possible to get high coverage by testing just a few high-level methods (like Main,
the first method called by the .NET runtime) and not mock out lower-level methods.
That is why we advise a 1-to-1 ratio of production code versus test code.

You can measure coverage using a code coverage tool. Some editions of Visual Studio
provide a built-in code coverage tool. Figure 10-3 shows coverage of the examples of
this book, using Visual Studio 2015 Enterprise Edition.

Figure 10-3. Coverage report of the examples of this book in Visual Studio 2015 Enter‐
prise Edition.

10.3 Common Objections to Automating Tests
This section discusses typical objections and limitations regarding automation. They
deal with the reasons and considerations to invest in test automation.

Objection: We Still Need Manual Testing
“Why should we invest in automated tests at all if we still need manual testing?”

The answer to this question is simply because test automation frees up time to man‐
ually test those things that cannot be automated.

Consider the downsides of the alternative to automated tests. Manual testing has clear
limitations. It is slow, expensive, and hard to repeat in a consistent manner. In fact,
technical verification of the system needs to take place anyway, since you cannot man‐
ually test code that does not work. Because manual tests are not easily repeatable,
even with small code changes a full retest may be needed to be sure that the system
works as intended.

10.3 Common Objections to Automating Tests | 123

Manual acceptance testing can largely be automated with automa‐
ted regression tests. With those, the scope of remaining manual
tests decreases. You may still need manual review or acceptance
tests to verify that business logic is correct. This typically concerns
the process flow of a functionality.

Objection: I Am Not Allowed to Write Unit Tests
“I am not allowed to write unit tests because they lower productivity according to my
manager.”

Writing unit tests during development actually improves productivity. It improves
system code by shifting the focus from “what code should do” toward “what it should
not do.” If you never take into account how the code may fail, you cannot be sure
whether your code is resilient to unexpected situations.

The disadvantages of not having unit tests are mainly in uncertainty and rework.
Every time a piece of code is changed, it requires painstaking review to verify whether
the code does what it is supposed to do.

Objection: Why Should We Invest in Unit Tests When the Current
Coverage Is Low?
“The current unit test coverage of my system is very low. Why should I invest time now
in writing unit tests?”

We have elaborated on the reasons why unit tests are useful and help you develop
code that works predictably. However, when a very large system has little to no unit
test code, this may be a burden. After all, it would be a significant investment to start
writing unit tests from scratch for an existing system because you would need to ana‐
lyze all units again. Therefore, you should make a significant investment in unit tests
only if the added certainty is worth the effort. This especially applies to critical, cen‐
tral functionality and when there is reason to believe that units are behaving in an
unintended manner. Otherwise, add unit tests incrementally each time you change
existing code or add new code.

In general, when the unit test coverage of a system is much below
the industry best practice of 80%, a good strategy is to apply the
“Boy Scout rule.” This rule says to leave code in a better state than
you found it (see also Chapter 12 on applying this principle). Thus,
when you are adjusting code, you have the opportunity to (re)write
unit tests to ensure that in the new state, the code is still working as
expected.

124 | Chapter 10: Automate Tests

10.4 See Also
Standardization and consistency in applying it are important in achieving a well-
automated development environment. For elaboration, see Chapter 11.

How SIG Rates Testability
Testability is one of the five subcharacteristics of maintainability according to ISO
25010. SIG rates testability by aggregating the ratings of system properties unit com‐
plexity (see Chapter 3), component independence (see Chapter 7), and system volume
(see Chapter 9), using an aggregation mechanism as explained in Appendix A.

The rationale for this is that complex units are especially hard to test, poor compo‐
nent independence increases the need for mocking and stubbing, and higher volumes
of production code require higher volumes of test code.

10.4 See Also | 125

CHAPTER 11

Write Clean Code

Writing clean code is what you must do in order to call yourself a professional.
—Robert C. Martin

Guideline:

• Write clean code.
• Do this by not leaving code smells behind after development

work.
• This improves maintainability because clean code is main‐

tainable code.

Code smells are coding patterns that hint that a problem is present. Introducing or
not removing such patterns is bad practice, as they decrease the maintainability of
code. In this chapter we discuss guidelines for keeping the codebase clean from code
smells to achieve a “hygienic environment.”

11.1 Leave No Trace
Boy Scouts have a rule that says, “leave the campground cleaner than you found it.”
Applying the Boy Scout rule to software development means that once you are writ‐
ing or modifying a piece of code, you have the opportunity to make small improve‐
ments as well. The result is that you leave the code cleaner and more maintainable
than you found it. If you are adjusting a piece of code now, apparently there is a need
for maintaining it. That increases the chance that you will revisit that same code later.
When you revisit that code again, you will benefit from the refactoring you are doing
now.

127

11.2 How to Apply the Guideline
Trying to be a clean coder is an ambitious goal, and there are many best practices that
you can follow. From our consultancy experience we have distilled seven developer
“Boy Scout rules” that will help you to prevent code smells that impact maintainabil‐
ity most:

1. Leave no unit-level code smells behind.
2. Leave no bad comments behind.
3. Leave no code in comments behind.
4. Leave no dead code behind.
5. Leave no long identifier names behind.
6. Leave no magic constants behind.
7. Leave no badly handled exceptions behind.

These seven rules are explained in the following sections.

Rule 1: Leave No-Unit Level Code Smells Behind
At this point in the book you are familiar with nine guidelines for building maintain‐
able software, discussed in the previous nine chapters. Of those nine guidelines, three
deal with smells at the unit level: long units (Chapter 2), complex units (Chapter 3),
and units with large interfaces (Chapter 5). For modern programming languages,
there is really no good reason why any of these guidelines should be violated when
you are writing new code.

To follow this rule is to refactor “smelly” code in time. By “in time,” we mean as soon
as possible but certainly before the code is committed to the version control system.
Of course, it is OK to have small violations when you are working on a development
ticket—for example, a method of 20 lines of code or a method with 5 parameters. But
these violations should be refactored out before you commit your changes.

Of course, the other guidelines, such as avoiding duplicated code and preventing tight
coupling, are equally important to building a maintainable system. However, as a
responsible software developer, you will find the first three guidelines are easy to inte‐
grate with your daily way of working. Violations of unit length, complexity, and
parameters are easy to detect. It is very common to have these checks available in
modern integrated development environments. We actually advise you to turn on this
feature and make sure your code is free from unit-level code smells before each
commit.

128 | Chapter 11: Write Clean Code

Rule 2: Leave No Bad Comments Behind
Comments are sometimes considered the anti-pattern of good code. From our expe‐
rience we can confirm that inline comments typically indicate a lack of elegant engi‐
neering solutions. Consider the following method taken from the Jenkins codebase
(which is in Java):

public HttpResponse doUploadPlugin(StaplerRequest req)
 throws IOException, ServletException {
 try {
 Jenkins.getInstance().checkPermission(UPLOAD_PLUGINS);

 ServletFileUpload upload = new ServletFileUpload(
 new DiskFileItemFactory());

 // Parse the request
 FileItem fileItem = (FileItem)upload.parseRequest(req).get(0);
 String fileName = Util.getFileName(fileItem.getName());
 if ("".equals(fileName)) {
 return new HttpRedirect("advanced");
 }
 // we allow the upload of the new jpi's and the legacy hpi's
 if (!fileName.endsWith(".jpi") && !fileName.endsWith(".hpi")) {
 throw new Failure("Not a plugin: " + fileName);
 }

 // first copy into a temporary file name
 File t = File.createTempFile("uploaded", ".jpi");
 t.deleteOnExit();
 fileItem.write(t);
 fileItem.delete();

 final String baseName = identifyPluginShortName(t);

 pluginUploaded = true;

 // Now create a dummy plugin that we can dynamically load
 // (the InstallationJob will force a restart if one is needed):
 JSONObject cfg = new JSONObject().element("name", baseName)
 .element("version", "0"). // unused but mandatory
 element("url", t.toURI().toString())
 .element("dependencies", new JSONArray());
 new UpdateSite(UpdateCenter.ID_UPLOAD, null).new Plugin(
 UpdateCenter.ID_UPLOAD, cfg).deploy(true);
 return new HttpRedirect("../updateCenter");
 } catch (IOException e) {
 throw e;
 } catch (Exception e) {// grrr. fileItem.write throws this
 throw new ServletException(e);
 }
}

11.2 How to Apply the Guideline | 129

Although the doUploadPlugin is not very hard to maintain (it has only 1 parameter,
32 lines of code, and a McCabe index of 6), the inline comments indicate separate
concerns that could easily be addressed outside this method. For example, copying
the fileItem to a temporary file and creating the plugin configuration are tasks that
deserve their own methods (where they can be tested and potentially reused).

Comments in code may reveal many different problems:

• Lack of understanding of the code itself
// I don't know what is happening here, but if I remove this line
// an infinite loop occurs

• Issue tracking systems not properly used
// JIRA-1234: Fixes a bug when summing negative numbers

• Conventions or tooling are being bypassed
// CHECKSTYLE:OFF
// NOPMD

• Good intentions
// TODO: Make this method a lot faster some day

Comments are valuable in only a small number of cases. Helpful API documentation
can be such a case, but always be cautious to avoid dogmatic boilerplate commentary.
In general, the best advice we can give is to keep your code free of comments.

Rule 3: Leave No Code in Comments Behind
Although there might be rare occasions where there is a good reason to use com‐
ments in your code, there is never an excuse for checking in code that is commented
out. The version control system will always keep a record of old code, so it is perfectly
safe to delete it. Take a look at the following example, taken from the Apache Tomcat
codebase (which is in Java, but we present a C# translation here):

private void ValidateFilterMap(FilterMap filterMap) {
 // Validate the proposed filter mapping
 string filterName = filterMap.GetFilterName();
 string[] servletNames = filterMap.GetServletNames();
 string[] urlPatterns = filterMap.GetURLPatterns();
 if (FindFilterDef(filterName) == null)
 throw new Exception(
 sm.GetString("standardContext.filterMap.name", filterName));

 if (!filterMap.GetMatchAllServletNames() &&
 !filterMap.GetMatchAllUrlPatterns() &&
 (servletNames.Length == 0) && (urlPatterns.Length == 0))
 throw new Exception(
 sm.GetString("standardContext.filterMap.either"));

130 | Chapter 11: Write Clean Code

 // FIXME: Older spec revisions may still check this
 /*
 if ((servletNames.length != 0) && (urlPatterns.length != 0))
 throw new IllegalArgumentException
 (sm.getString("standardContext.filterMap.either"));
 */
 for (int i = 0; i < urlPatterns.Length; i++) {
 if (!ValidateURLPattern(urlPatterns[i])) {
 throw new Exception(
 sm.GetString("standardContext.filterMap.pattern",
 urlPatterns[i]));
 }
 }
}

The FIXME note and accompanying code are understandable from the original develo‐
per’s perspective, but to a new developer they act as a distractor. The original devel‐
oper had to make a decision before leaving this commented-out code: either fix
it at the spot, create a new ticket to fix it at some other time, or reject this corner case
altogether.

Rule 4: Leave No Dead Code Behind
Dead code comes in different shapes. Dead code is code that is not executed at all or
its output is “dead”: the code may be executed, but its output is not used elsewhere in
the system. Code in comments, as discussed in the previous section, is an example of
dead code, but there are many other forms of dead code. In this section, we give three
more examples of dead code.

Unreachable code in methods
public Transaction GetTransaction(long uid)
{
 Transaction result = new Transaction(uid);
 if (result != null)
 {
 return result;
 }
 else
 {
 return LookupTransaction(uid);
 }
}

Unreachable code

11.2 How to Apply the Guideline | 131

Unused private methods
Private methods can be called only from other code in the same class. If they are not,
they are dead code. Nonprivate methods that are not called by methods in the same
class may also be dead, but you cannot determine this by looking at the code of the
class alone.

Code in comments
This is not to be confused with commented-out code. Sometimes it can be useful to
use short code snippets in API documentation (such as in C# XMLDOC tags), but
remember that keeping those snippets in sync with the actual code is a task that is
quickly overlooked. Avoid code in comments if possible.

Rule 5: Leave No Long Identifiers Behind
Good identifiers make all the difference between code that is a pleasure to read and
code that is hard to wrap your head around. A famous saying by Phil Karlton is
“There are only two hard problems in computer science: cache invalidation and nam‐
ing things.” In this book we won’t discuss the first, but we do want to say a few things
about long identifiers.

Identifiers name the items in your codebase, from units to modules to components to
even the system itself. It is important to choose good names so that developers can
find their way through the codebase without great effort. The names of most of the
identifiers in a codebase will be dependent on the domain in which the system oper‐
ates. It is typical for teams to have a formal naming convention or an informal, but
consistent, use of domain-specific terminology.

It is not easy to choose the right identifiers in your code, and unfortunately there are
no guidelines for what is and what isn’t a good identifier. Sometimes it may even take
you a couple of iterations to find the right name for a method or class.

As a general rule, long identifiers must be avoided. A maximum length for an identi‐
fier is hard to define (some domains have longer terminology than others), but in
most cases there is little debate within a development team when an identifier is con‐
sidered too long. Identifiers that express multiple responsibilities (such as generate
ConsoleAnnotationScriptAndStylesheet) or contain too many technical terms
(e.g., GlobalProjectNamingStrategyConfiguration) are always a violation of this
rule.

132 | Chapter 11: Write Clean Code

Rule 6: Leave No Magic Constants Behind
Magic constants are number or literal values that are used in code without a clear def‐
inition of their meaning (hence the name magic constant). Consider the following
code example:

float CalculateFare(Customer c, long distance)
{
 float travelledDistanceFare = distance * 0.10f;
 if (c.Age < 12)
 {
 travelledDistanceFare *= 0.25f;
 }
 else
 if (c.Age >= 65)
 {
 travelledDistanceFare *= 0.5f;
 }
 return 3.00f + travelledDistanceFare;
}

All the numbers in this code example could be considered magic numbers. For
instance, the age thresholds for children and the elderly may seem like familiar num‐
bers, but remember they could be used at many other places in the codebase. The fare
rates are constants that are likely to change over time by business demands.

The next snippet shows what the code looks like if we define all magic constants
explicitly. The code volume increased with six extra lines of code, which is a lot com‐
pared to the original source, but remember that these constants can be reused in
many other places in the code:

private static readonly float BASE_RATE = 3.00f;
private static readonly float FARE_PER_KM = 0.10f;
private static readonly float DISCOUNT_RATE_CHILDREN = 0.25f;
private static readonly float DISCOUNT_RATE_ELDERLY = 0.5f;
private static readonly int MAXIMUM_AGE_CHILDREN = 12;
private static readonly int MINIMUM_AGE_ELDERLY = 65;

float CalculateFare(Customer c, long distance)
{
 float travelledDistanceFare = distance * FARE_PER_KM;
 if (c.Age < MAXIMUM_AGE_CHILDREN)
 {
 travelledDistanceFare *= DISCOUNT_RATE_CHILDREN;
 }
 else
 if (c.Age >= MINIMUM_AGE_ELDERLY)
 {
 travelledDistanceFare *= DISCOUNT_RATE_ELDERLY;
 }

11.2 How to Apply the Guideline | 133

 return BASE_RATE + travelledDistanceFare;
}

Rule 7: Leave No Badly Handled Exception Behind
Three guidelines for good exception handling are discussed here specifically because
in our practice we see many flaws in implementing exception handling:

• Always catch exceptions. You are logging failures of the system to help you
understand these failures and then improve the system’s reaction to them. That
means that exceptions must always be caught. Also, in some cases an empty
catch block compiles, but it is bad practice since it does not provide information
about the context of the exception.

• Catch specific exceptions. To make exceptions traceable to a specific event,
you should catch specific exceptions. General exceptions that do not provide
information specific to the state or event that triggered it fail to provide that
traceability. Therefore, you should not catch Exception or SystemException
directly.

• Translate specific exceptions to general messages before showing them to end
users. End users should not be “bothered” with detailed exceptions, since they
are mostly confusing and a security bad practice (i.e., providing more informa‐
tion than necessary about the inner workings of the system).

11.3 Common Objections to Writing Clean Code
This section discusses typical objections regarding clean code. The most common
objections are reasons why commenting would be a good way to document code and
whether corners can be cut for doing exception handling.

Objection: Comments Are Our Documentation
“We use comments to document the workings of the code.”

Comments that tell the truth can be a valuable aid to less experienced developers who
want to understand how a piece of code works. In practice, however, most comments
in code lie—not on purpose, of course, but comments often tell an outdated version
of the truth. Outdated comments become more and more common as the system gets
older. Keeping comments in sync with code is a task that requires precision and a lot
of times is overlooked during maintenance.

Code that “tells the story” itself does not require lengthy comments to document its
workings. By keeping units small and simple, and by using descriptive names for
identifiers, using comments for documentation is seldom necessary.

134 | Chapter 11: Write Clean Code

Objection: Exception Handling Causes Code Additions
“Implementing exception classes forces me to add a lot of extra code without visible
benefits.”

Exception handling is an important part of defensive programming: coding to prevent
unstable situations and unpredictable system behavior. Anticipating unstable situa‐
tions means trying to foresee what can go wrong. This does indeed add to the burden
of analysis and coding. However, this is an investment. The benefits of exception han‐
dling may not be visible now, but they definitely will prove valuable in preventing and
absorbing unstable situations in the future.

By defining exceptions, you are documenting and safeguarding your assumptions.
They can later be adjusted when circumstances change.

Objection: Why Only These Coding Guidelines?
“We use a much longer list of coding conventions and quality checks in our team. This
list of seven seems like an arbitrary selection with many important omissions.”

Having more guidelines and checks than the seven in this chapter is of course not a
problem. These seven rules are the ones we consider the most important for writing
maintainable code and the ones that should be adhered to by every member on the
development team. A risk of having many guidelines and checks is that developers
can be overwhelmed by them and focus their efforts on the less critical issues. How‐
ever, teams are obviously allowed to extend this list with items that they find indis‐
pensable for building a maintainable system.

11.3 Common Objections to Writing Clean Code | 135

CHAPTER 12

Next Steps

At this point, you know a lot more about what maintainable code is, why it is impor‐
tant, and how to apply the 10 guidelines in this book. But writing maintainable code
is not something you learn from a book. You learn it by doing it! Therefore, here we
will discuss simple advice on practicing the 10 guidelines for achieving maintainable
software.

12.1 Turning the Guidelines into Practice
Ensuring that your code is easy to maintain depends on two behaviors in your daily
routine: discipline and setting priorities. Discipline helps you to constantly keep
improving your coding techniques, up to a point where any new code you write will
already be maintainable. As for priorities, some of the presented guidelines can seem
to contradict each other. It takes consideration on your side about which guideline
has the most impact on the actual maintainability of your system. Be sure to take
some time to deliberate and ask your team for their opinion.

12.2 Lower-Level (Unit) Guidelines Take Precedence Over
Higher-Level (Component) Guidelines
Keep in mind that the aggregated higher-level guidelines are effects of the application
applying the lower-level principles. For example, when units of code are long and
duplicated throughout the system (see Chapters 2 and 4), the codebase will likely be
large as well (see Chapter 9). This is because one of the causes of having a large code‐
base is that long units are being duplicated.

Therefore, when there is a conflict between two guidelines, adhering to the lower-
level guidelines leads to better overall system maintainability. For instance, splitting

137

units into multiple smaller units slightly grows the total codebase. But the advantage
of small units in terms of reusability will have a huge pay-off when more functionality
is added to the system.

The same applies to the architecture-level guidelines (see Chapters 7 and 8): it makes
no sense to reorganize your code structure when it makes your components highly
dependent on each other. To put it succinctly: fix your dependencies before trying to
balance your components.

12.3 Remember That Every Commit Counts
The hardest part of applying the guidelines in this book may be keeping the discipline
to apply them. It is tempting to violate the guidelines when a “quick fix” seems more
efficient. To keep this discipline, follow the Boy Scout rule presented in Chapter 11.

The Boy Scout rule is especially effective on large codebases. Unless you have the time
to sort out your whole system and improve maintainability, you will have to do it
step-by-step while doing your regular work. This gradually improves maintainability
and hones your refactoring skills. So, in the long run, you also have the skill to write
highly maintainable software.

12.4 Development Process Best Practices Are Discussed in
the Follow-Up Book
As discussed in the preface, the process part of developing high-quality software is
discussed in detail in the follow-up book in this series: Building Software Teams. It
provides 10 guidelines for managing and measuring the software development pro‐
cess. It focuses on how to measure and manage best practices for software develop‐
ment (e.g., development tool support, automation, standardization).

138 | Chapter 12: Next Steps

1 TÜViT is part of TÜV, a worldwide organization of German origin for technical quality management. It spe‐
cializes in certification and consulting of IT in general and security in particular.

APPENDIX A

How SIG Measures Maintainability

SIG measures system maintainability based on eight metrics. Those eight metrics are
discussed in Chapters 2 through 9. Those chapters include sidebars explaining how
SIG rates source code properties relevant to those guidelines. These ratings are
derived from the SIG/TÜViT1 Evaluation Criteria for Trusted Product Maintainabil‐
ity. In this appendix, we provide you with additional background.

Together with TÜViT, SIG has determined eight properties of source code that can be
measured automatically. See “Why These Ten Specific Guidelines?” on page xi for
how these properties have been chosen.

To assess maintainability of a system, we measure these eight source code properties
and summarize these measurements either in a single number (for instance, the per‐
centage of code duplication) or a couple of numbers (for instance, the percentage of
code in four categories of complexity, which we call a quality profile; see “Rating
Maintainability”).

We then compare these numbers against a benchmark containing several hundreds of
systems, using Table A-1 to determine the quality level on each property. So, if the
measurement for a system is among the top 5% of all systems in the benchmark, the
system is rated at 5 stars for this property. If it is among the next best 30%, it rates 4
stars, and so forth. This process of comparing quality profiles for each system prop‐
erty against the benchmark results in eight star ratings, one for each system property.

139

Table A-1. SIG maintainability ratings

Rating Maintainability
5 stars Top 5% of the systems in the benchmark

4 stars Next 30% of the systems in the benchmark (above-average systems)

3 stars Next 30% of the systems in the benchmark (average systems)

2 stars Next 30% of the systems in the benchmark (below-average systems)

1 star Bottom 5% least maintainable systems

We then aggregate the ratings to arrive at one overall rating. We do this in two steps.
First, we determine the ratings for the subcharacteristics of maintainability as defined
by ISO 25010 (i.e., analyzability, modifiability, etc.) by taking the weighted averages
according to the rows of Table A-2. Each cross in a given row indicates that the corre‐
sponding system property (column) contributes to this subcharacteristic. Second, we
take a weighted average of the five subcharacteristics to determine an overall rating
for maintainability.

Table A-2. Relation of subcharacteristics and system properties

Volume Duplication Unit
size

Unit
complexity

Unit
interfacing

Module
coupling

Component
balance

Component
independence

Analyzability X X X X

Modifiability X X X

Testability X X X

Modularity X X X

Reusability X X

This describes the SIG maintainability model in a nutshell, since there is more detail
to it than what we can cover in this appendix. If you would like to learn more about
the details of the maintainability model, a good start for elaboration is the following
publication:

• Visser, Joost. SIG/TÜViT Evaluation Criteria Trusted Product Maintainability.
http://bit.ly/eval_criteria

140 | Appendix A: How SIG Measures Maintainability

http://bit.ly/eval_criteria

Background on the development of the model and its application is provided in the
following publications:

• Heitlager, Ilja, Tobias Kuipers, and Joost Visser. “A Practical Model for Measuring
Maintainability.” In Proceedings of the 6th International Conference on the Quality
of Information and Communications Technology (QUATIC 2007), 30–39. IEEE
Computer Society Press, 2007.

• Baggen, Robert, José Pedro Correia, Katrin Schill, and Joost Visser. “Standardized
code quality benchmarking for improving software maintainability.” Software
Quality Journal 20, no. 2 (2012): 287–307.

• Bijlsma, Dennis, Miguel Alexandre Ferreira, Bart Luijten, and Joost Visser.
“Faster issue resolution with higher technical quality of software.” Software Qual‐
ity Journal 20, no. 2 (2012): 265–285.

Does Maintainability Improve Over Time?
A question we often get at SIG is whether maintainability improves over time across
all systems we see. The answer is yes, but very slowly. The recalibration that we carry
out every year consistently shows that the thresholds become stricter over time. This
means that for one system to get a high maintainability rating, over time it must have
fewer units that are overly long or complex, must have less duplication, lower cou‐
pling, and so on. Given the structure of our model, the reason for this must be that
systems in our benchmark over time have less duplication, less tight coupling, and so
on. One could argue that this means that maintainability across the systems we
acquire for our benchmark is improving. We are not talking about big changes. In
broad terms, we can say this: it is about a tenth of a star per year.

The selection of systems within the SIG benchmark is a representative cross-cut of the
software industry, including both proprietary and open source systems, developed in
a variety of languages, functional domains, platforms, and so on. Therefore, the tenth
of a star improvement per year means that the industry as a whole is slowly but con‐
stantly improving.

How SIG Measures Maintainability | 141

Index

Symbols
11-check, 12

A
Abstract Factory design pattern, 86-88
acceptance tests

automation of, 124
characteristics, 114

adaptive maintenance, 2
analysis

and component balance, 95
and duplication, 47

architecture components, balance of (see com‐
ponent balance)

automation of tests (see test automation)

B
backups, code duplication and, 54
balance of components (see component bal‐

ance)
bank account numbers, checksum for, 12
benchmarking, 7
Boy Scout rules

and improvement of modified code, 127
defined, 124
for preventing code smells, 128-134
with large codebases, 138

branch coverage, 30
branch points

defined, 29
limiting number of, 35

business impact of maintainability, 3
business logic, manual testing and, 124

C
C#

concept names in, xvi
namespaces vs. components, xvii

C# interfaces, 78
calls, 83
chains, conditional, 36-38
change

and duplication, 54
possible reasons for, 54

checksum, 12
classes, splitting, 73
clean coding

and badly-handled exceptions, 134
and Boy Scout rule, 124
and commented-out code, 130
and comments as documentation, 134
and dead code, 131
and exception class implementation, 135
and number of coding guidelines, 135
and unit-level code, 128
applying guidelines for, 128-134
avoiding long identifiers, 132
avoiding magic constants, 133
common objections to, 134
importance of, 127-135
minimizing inline comments, 129
refactoring for improved maintainability,

127
clone detection tools, 47
clones (see code clones)
code

complexity as quality characteristic, 29
dead, 131

143

finding/analyzing, 95
hidden vs. interface, 90
improvement through test automation, 114
minimizing unit size, 11-26
reading when spread out over multiple

units, 23
replacing custom code with libraries/frame‐

works, 77
test automation and predictability of, 113
unreachable, 131
writing clean (see clean coding)

code clones
and SIG duplication ratings, 56
defined, 46

codebase
Boy Scout rule with large, 138
defined, 101
navigation of, 73
volume (see codebase volume)
working on isolated parts of, 72

codebase volume
advantages of minimizing, 102-104
and defect density, 104
applying guidelines for, 105-107
common objections to minimizing of,

107-110
duplication as impediment to reducing, 109
functionality-related measures to minimize,

105
importance of minimizing, 101-110
maintenance and, 104
platform architecture and, 109
productivity measures and, 108
programming languages and, 108
project failures and, 102
SIG rating thresholds, 110
system complexity as impediment to reduc‐

ing, 108
technical measures to minimize, 106
tight coupling as impediment to reducing,

109
comments

and commented-out code, 130
as documentation, 134
code in, 132
minimizing inline comments, 129

complexity, 29
(see also unit complexity)
as quality characteristic, 29

of system as impediment to reducing code‐
base volume, 108

component balance, 93-99
advantages of, 95
and component independence, 84
and deceptive acceptability of imbalance, 98
and entanglements, 98
applying guidelines for, 96
clarifying domains for, 97
common objections to, 98
deciding on proper conceptual level for

grouping functionality, 97
importance of, 93-99
isolation of maintenance effects, 95
separation of maintenance responsibilities,

96
SIG rating thresholds, 99
when finding/analyzing code, 95

component coupling, module coupling vs., 82
component dependence, 82
component guidelines, unit guidelines vs., 137
component imbalance, 93, 98
component independence

advantages of, 82-86
and Abstract Factory design pattern, 86-88
and entangled components, 89
and isolated maintenance, 85
and separation of maintenance responsibili‐

ties, 85
and testing, 86
applying guidelines for, 86-88
common objections to, 88
defined, 82
importance of, 81-91
SIG rating thresholds, 90
time as factor in achieving, 89
when throughput is a requirement, 90

components, namespaces vs., xvii
concepts, generic names for, xvi
concerns, separation of, 71-75, 85, 95, 98

common objections to, 78
splitting classes for, 73

conditional chains, 36-38
conditionals, nested, 38-40
constants, magic, 133
conventions, 24, 95, 130, 132, 135
copying and pasting

avoiding, 106
from another codebase, 53

144 | Index

reuse vs., 14
system complexity as cause of, 108

copying code (see duplication [code])
core classes, 59
corrective maintenance, 2
coupling, 71

(see also module coupling)
between classes, 72
defined, 71
loose (see component independence) (see

loose coupling)
tight (see tight coupling)

coverage
measuring for test adequacy, 122
test automation in low-coverage situation,

124
CPD (clone detection tool), 47
cyclomatic complexity, 31

(see also McCabe complexity)

D
data transfer objects, 62
dead code, 131
deadlines, component independence and, 89
defect density, codebase volume and, 104
defensive programming, exception handling

and, 135
dependency injection, 86
discipline, coding and, 137
documentation

and test automation, 114
comments as, 134

domains
clarifying, 97
complex, 40

duplicates (code clones), 46
duplication (code)

advantages of avoiding, 47
and analysis, 47
and assumption that code will never change,

54
and backups, 54
and copying from another codebase, 53
and Extract Superclass refactoring techni‐

que, 50-53
and modification, 47
and slight variations of common functional‐

ity, 53
and string literals, 55

and unit tests, 55
as impediment to reducing codebase vol‐

ume, 109
avoiding, 43-56
common objections to avoiding, 53-55
guidelines for avoiding, 48-53
SIG ratings, 56
types of, 46

E
embedded software, 6
encapsulation, 73, 77, 78, 84, 87, 90
end-to-end tests, 114
entangled components

and component balance, 98
and component independence, 89
evolution over time, 84

errors, test, 118
exception handling

and clean coding, 134
and exception class implementation, 135

execution paths, 30
Extract Method refactoring technique, 17, 48
Extract Superclass refactoring technique, 50-53,

50

F
failures, 118

(see also exception handling)
codebase volume and, 102
test errors vs. test failures, 118

fluent interface, 64
for loops, 13
formatting, unit size guidelines and, 23
frameworks

for reducing codebase, 106
replacing custom code with, 77
with long parameter lists, 65

functionality
and codebase volume, 105
extending unit with new, 16
grouping into components, 97
standardization of, 106

G
guidelines, maintainability

and quality profiles, 5
and system properties, xi

Index | 145

importance of simple, 4
lower-level vs. higher-level, 137
maintaining discipline to apply, 138
overview, 9
practicing, 137
principles of, 4

H
happy flow testing, 118
hidden code, 90
higher-level guidelines, 137

I
identifiers, long, 132
if-then-else statements, 36-38
implementations, specialized, 75-77
incoming calls, 84
industry-dependent software development, 6
integration tests, 114
interface code, 90
interfaces, unit (see unit interfaces)
internal calls, 83
Introduce Parameter Object refactoring pat‐

tern, 59
inversion of control (IoC), 79
isolated maintenance, 85

J
JMeter, 115
JPacman, 16

L
large class smell, 50, 71, 73
large systems, splitting up of, 107
libraries

dangers of modifying source code in, 107
for reducing codebase, 106
replacing custom code with, 77
with long parameter lists, 65

local variables, 19
loose coupling, 72

(see also component independence)
advantages of, 72
and reuse, 78
C# interfaces and, 78
component, 82, 86-91
modules, 67, 72-75, 77, 79, 114
systems, 107

lower-level guidelines, 137

M
magic constants, 133
maintainability

and discipline during development, 5
as enabler for other quality characteristics, 4
as industry-independent, 6
as language-independent, 6
as nonbinary quantity, 7
business impact of, 3
defined, 2
guidelines (see guidelines, maintainability)
importance of, 3-4
importance of simple guidelines, 4
improvement over time, 141
metrics for, xi
misunderstandings about, 6
performance vs., 22
rating, 7-9

maintenance, four types of, 2
man-months/years, 110
manual testing

and test automation, 123
limitations of, 112
unit test, 112

McCabe complexity
as SIG/TÜViT rating criteria, 42
defined, 31

method invocations, 22
method modification, 60
method splitting, 41
methods

unreachable code in, 131
unused private, 132

metrics, maintainability, xi, 139-140
mock object, 121
mocking framework, 122
modifiability, 77
modification

and duplication, 47
and unit complexity, 35
of methods with unit interfaces, 60

modularity, 77
module coupling, 67-80

and C# interfaces, 78
and IoC, 79
and navigation of codebase, 73
and reuse, 78

146 | Index

and utility code, 78
applying guidelines for, 73-77
common objections to separating concerns,

78
component coupling vs., 82
hiding specialized implementations behind

interfaces, 75-77
loose (see loose coupling)
replacing custom code with libraries/frame‐

works, 77
SIG rating thresholds, 80
splitting classes to separate concerns, 73
tight (see tight coupling)
to prevent no-go areas for new developers,

73
when working on isolated parts of codebase,

72
Moq, 122
mutual dependencies, 89

N
namespaces, components vs., xvii
nested conditionals, 38-40
NUnit tests, 112, 116-118

O
observers, 15
outgoing calls, 83

P
parameter lists, 65

(see also unit interfaces)
parameter objects, 62, 64
perfective maintenance, 2
performance

and quantity of units, 22
maintainability vs., 22

platform architecture, codebase volume and,
109

preventive maintenance, 2
priorities, setting, 137
private methods, unused, 132
productivity measures

and code additions, 108
and test automation, 124
as impediment to reducing codebase vol‐

ume, 108
programming languages

as impediment to reducing codebase vol‐
ume, 108

as maintainability factor, 6
project failures, codebase volume and, 102

Q
quality profiles, 5, 8
quality, maintainability as enabler for, 4
quick fixes, 138

R
rainy-side testing, 118
refactoring

and unit complexity, 41
and unit interfaces, 65
and unit size, 17-22
difficulties as maintainability issue, 25
Extract Method technique, 17, 48
Extract Superclass technique, 50-53, 50
for improved maintainability, 127
Introduce Parameter Object pattern, 59
Replace Method with Method Object tech‐

nique, 19-22, 63
to reduce codebase, 106

referral, reuse by, 106
regression, 95, 109, 112-115, 124

automated testing to identify, 113
bugs, 47

regression tests
characteristics, 114
for automation of manual acceptance test‐

ing, 124
repeatability, test automation and, 113
Replace Conditional with Polymorphism pat‐

tern, 37
Replace Method with Method Object refactor‐

ing technique, 19-22, 63
Replace Nested Conditional with Guard Clau‐

ses pattern, 39
reuse

by referral, 106
copying and pasting vs., 14
loose coupling and, 78
of unit interfaces, 59
unit size and, 14

S
scientific software, 6

Index | 147

scope creep, 105
Selenium, 115
self-taught developers, xi
separation of concerns (see concerns, separa‐

tion of)
SIG (Software Improvement Group), xiii
SIG/TÜViT Evaluation Criteria Trusted Prod‐

uct Maintainability
codebase volume rating thresholds, 110
component balance rating thresholds, 99
component independence rating thresholds,

90
duplication rating thresholds, 56
metrics, xi, 139-140
module coupling rating thresholds, 80
star ratings, 7-9
testability rating thresholds, 125
unit complexity rating thresholds, 42
unit interface rating thresholds, 66
unit size rating thresholds, 26

simple units (see unit complexity)
single responsibility principle

classes that violate, 73
defined, 73

smells, Boy Scout rules for preventing, 128-134
(see also large class smell)

SoapUI, 115
Software Improvement Group (see SIG)
Software Risk Monitoring service, xiii
SQL queries, 24
standardization of functionality, 106
star rating system, 8
string literals, 55
stub (test stub), 120
sunny-side testing, 118
system complexity, codebase volume and, 108
system properties, xi

T
test automation, 111-125

advantages of, 113-114
and code improvement, 114
and code predictability, 113
and continued need for manual testing, 123
and documentation, 114
and efficient development, 113
and NUnit tests, 116-118
and productivity measures, 124
and repeatability, 113

and SIG testability rating thresholds, 125
applying guidelines for, 114
common objections to, 123
general principles for writing good unit

tests, 118-122
in low-coverage situation, 124
measuring coverage of, 122

test stub, 120
test-driven development (TDD), 114
testability

and unit size, 14
SIG rating thresholds, 125

tests/testing
and unit complexity, 35
automation of (see test automation)
component independence and ease of, 86
dangers of postponing, 113
errors vs. failures, 118
types of, 114

third-party libraries/frameworks (see frame‐
works) (see libraries)

throughput code, 84
throughput, component independence and, 90
tight coupling

as impediment to reducing codebase vol‐
ume, 109

as risk when removing clones, 50
maintenance consequences of, 72
maintenance problems with, 68-72
of classes, 71

Type 1 clones, 46
Type 2 clones, 46

U
unhappy flow testing, 118
unit

complexity of (see unit complexity)
defined, 11
extending with new functionality, 16
maximum recommended length, 15

unit complexity
advantages of minimizing, 35
and conditional chains, 36-38
and method splitting, 41
and nesting, 38-40
and testing, 35
and unit modification, 35
applying guidelines for, 35-40
common objections to minimizing, 40

148 | Index

in complex domains, 40
minimizing, 29, 42
SIG rating of, 42

unit guidelines
component guidelines vs., 137
defined, 67

unit interfaces
advantages of minimizing size of, 59
and libraries/frameworks with long parame‐

ter lists, 65
and method modification, 60
and parameter objects, 64
applying guidelines for, 60-64
C# interfaces and loose coupling, 78
common objections to minimizing size of,

64
ease of understanding, 59
hiding specialized implementations behind,

75-77
minimizing size of, 57-66
refactoring, 65
reuse, 59
SIG rating thresholds, 66

unit size
advantages of minimizing, 14
and ease of analysis, 14
and improper formatting, 23
and reuse, 14
and testability, 14
applying guidelines to, 15-22
common objections to writing short units,

22-25
difficulty of optimizing by splitting units, 24

in real-world systems, 23
minimizing, 11-26
perceived lack of advantage in splitting

units, 25
quantity of units and performance, 22
reading code when spread out over multiple

units, 23
refactoring techniques for guideline applica‐

tions, 17-22
SIG thresholds for, 26
when extending unit with new functionality,

16
when writing new unit, 15

unit tests
and Boy Scout rule, 124
and duplication, 55
characteristics, 114
common objections to automating tests, 123
failures vs. errors, 118
general principles for writing, 118-122
measuring coverage to determine proper

number of, 124
NUnit tests, 116-118

unit-level code, clean coding and, 128
unreachable code, 131
unused private methods, 132
utility code, module coupling and, 78

V
violations

prioritizing, 5
with frameworks/libraries, 65

Index | 149

Colophon
The animal on the cover of Building Maintainable Software is a grey-headed wood‐
pecker (Picus canus). Like all woodpeckers, which consitute about half of the Pici‐
formes order, grey-headed woodpeckers use strong bills to puncture the surface of
trees and seek small insects that inhabit the wood. Very long, bristly tongues coated
with an adhesive extend into deep cracks, holes, and crevices to gather food in the
bird’s bill. A membrane that closes over the woodpecker’s eye protects it from the
debris that may result from each blow at the tree. Slit-like nostrils provide a similar
protection, as do feathers that cover them. Adaptations to the brain like small size
and a position that maximizes its contact with the skull—permitting optimal shock
absorption—represent further guards against the violence of the woodpecker’s drill‐
ing. The zygodactyl arrangement of the feet, putting two toes forward and two back,
allow the woodpecker to maintain its position on the tree’s trunk during this activity,
as well as to traverse vertically up and down it.

Grey-headed woodpeckers maintain a vast range across Eurasia, though individual
members of the species tend to be homebodies to particular forest and woodland
habitats. As such, they rarely travel overseas and switch to a seed-based diet in winter.
Mating calls that begin with high-pitched whistles lead to monogamous pairs roost‐
ing with clutches of 5 to 10 eggs in the holes that males bore into the trunks of trees,
where both parents remain to incubate eggs and nurse the hatchlings for the three to
four weeks in which the hatchlings progress to juveniles. At this point, the young can
fly from the nest and gather their own food.

In their greenish back and tail plumage, grey-headed woodpeckers very much resem‐
ble the closely related green woodpecker, and males of the species will develop on
their foreheads the red patch that appears on many other species of woodpecker.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Lydekker’s Royal Natural History. The cover fonts are URW
Typewriter and Guardian Sans. The text font is Adobe Minion Pro; the heading font
is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

	Copyright
	Table of Contents
	About the Authors
	Preface
	The Topic of This Book: Ten Guidelines for Building Maintainable Software
	Why You Should Read This Book
	Who Should Read This Book
	What This Book Is Not
	The Follow-up Book
	About the Software Improvement Group
	About This Edition
	Related Books
	Conventions Used in This Book
	Generic Names for Elements of Source Code
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Introduction
	1.1 What Is Maintainability?
	The Four Types of Software Maintenance

	1.2 Why Is Maintainability Important?
	Maintainability Has Significant Business Impact
	Maintainability Is an Enabler for Other Quality Characteristics

	1.3 Three Principles of the Guidelines in This Book
	Principle 1: Maintainability Benefits Most from Simple Guidelines
	Principle 2: Maintainability Is Not an Afterthought, and Every Contribution Counts
	Principle 3: Some Violations Are Worse Than Others

	1.4 Misunderstandings About Maintainability
	Misunderstanding: Maintainability Is Language-Dependent
	Misunderstanding: Maintainability Is Industry-Dependent
	Misunderstanding: Maintainability Is the Same as the Absence of Bugs
	Misunderstanding: Maintainability Is a Binary Quantity

	1.5 Rating Maintainability
	1.6 An Overview of the Maintainability Guidelines

	Chapter 2. Write Short Units of Code
	2.1 Motivation
	Short Units Are Easy to Test
	Short Units Are Easy to Analyze
	Short Units Are Easy to Reuse

	2.2 How to Apply the Guideline
	When Writing a New Unit
	When Extending a Unit with New Functionality
	Using Refactoring Techniques to Apply the Guideline

	2.3 Common Objections to Writing Short Units
	Objection: Having More Units Is Bad for Performance
	Objection: Code Is Harder to Read When Spread Out
	Guideline Encourages Improper Formatting
	This Unit Is Impossible to Split Up
	There Is No Visible Advantage in Splitting Units

	2.4 See Also

	Chapter 3. Write Simple Units of Code
	3.1 Motivation
	Simple Units Are Easier to Modify
	Simple Units Are Easier to Test

	3.2 How to Apply the Guideline
	Dealing with Conditional Chains
	Dealing with Nesting

	3.3 Common Objections to Writing Simple Units of Code
	Objection: High Complexity Cannot Be Avoided
	Objection: Splitting Up Methods Does Not Reduce Complexity

	3.4 See Also

	Chapter 4. Write Code Once
	4.1 Motivation
	Duplicated Code Is Harder to Analyze
	Duplicated Code Is Harder to Modify

	4.2 How to Apply the Guideline
	The Extract Superclass Refactoring Technique

	4.3 Common Objections to Avoiding Code Duplication
	Copying from Another Codebase Should Be Allowed
	Slight Variations, and Hence Duplication, Are Unavoidable
	This Code Will Never Change
	Duplicates of Entire Files Should Be Allowed as Backups
	Unit Tests Are Covering Me
	Duplication in String Literals Is Unavoidable and Harmless

	4.4 See Also

	Chapter 5. Keep Unit Interfaces Small
	5.1 Motivation
	Small Interfaces Are Easier to Understand and Reuse
	Methods with Small Interfaces Are Easier to Modify

	5.2 How to Apply the Guideline
	5.3 Common Objections to Keeping Unit Interfaces Small
	Objection: Parameter Objects with Large Interfaces
	Refactoring Large Interfaces Does Not Improve My Situation
	Frameworks or Libraries Prescribe Interfaces with Long Parameter Lists

	5.4 See Also

	Chapter 6. Separate Concerns in Modules
	6.1 Motivation
	Small, Loosely Coupled Modules Allow Developers to Work on Isolated Parts of the Codebase
	Small, Loosely Coupled Modules Ease Navigation Through the Codebase
	Small, Loosely Coupled Modules Prevent No-Go Areas for New Developers

	6.2 How to Apply the Guideline
	Split Classes to Separate Concerns
	Hide Specialized Implementations Behind Interfaces
	Replace Custom Code with Third-Party Libraries/Frameworks

	6.3 Common Objections to Separating Concerns
	Objection: Loose Coupling Conflicts With Reuse
	Objection: C# Interfaces Are Not Just for Loose Coupling
	Objection: High Fan-in of Utility Classes Is Unavoidable
	Objection: Not All Loose Coupling Solutions Increase Maintainability

	Chapter 7. Couple Architecture Components Loosely
	7.1 Motivation
	Low Component Dependence Allows for Isolated Maintenance
	Low Component Dependence Separates Maintenance Responsibilities
	Low Component Dependence Eases Testing

	7.2 How to Apply the Guideline
	Abstract Factory Design Pattern

	7.3 Common Objections to Loose Component Coupling
	Objection: Component Dependence Cannot Be Fixed Because the Components Are Entangled
	Objection: No Time to Fix
	Objection: Throughput Is a Requirement

	7.4 See Also

	Chapter 8. Keep Architecture Components Balanced
	8.1 Motivation
	A Good Component Balance Eases Finding and Analyzing Code
	A Good Component Balance Better Isolates Maintenance Effects
	A Good Component Balance Separates Maintenance Responsibilities

	8.2 How to Apply the Guideline
	Decide on the Right Conceptual Level for Grouping Functionality into Components
	Clarify the System’s Domains and Apply Those Consistently

	8.3 Common Objections to Balancing Components
	Objection: Component Imbalance Works Just Fine
	Objection: Entanglement Is Impairing Component Balance

	8.4 See Also

	Chapter 9. Keep Your Codebase Small
	9.1 Motivation
	A Project That Sets Out to Build a Large Codebase Is More Likely to Fail
	Large Codebases Are Harder to Maintain
	Large Systems Have Higher Defect Density

	9.2 How to Apply the Guideline
	Functional Measures
	Technical Measures

	9.3 Common Objections to Keeping the Codebase Small
	Objection: Reducing the Codebase Size Is Impeded by Productivity Measures
	Objection: Reducing the Codebase Size is Impeded by the Programming Language
	Objection: System Complexity Forces Code Copying
	Objection: Splitting the Codebase Is Impossible Because of Platform Architecture
	Objection: Splitting the Codebase Leads to Duplication
	Objection: Splitting the Codebase Is Impossible Because of Tight Coupling

	Chapter 10. Automate Tests
	10.1 Motivation
	Automated Testing Makes Testing Repeatable
	Automated Testing Makes Development Efficient
	Automated Testing Makes Code Predictable
	Tests Document the Code That Is Tested
	Writing Tests Make You Write Better Code

	10.2 How to Apply the Guideline
	Getting Started with NUnit Tests
	General Principles for Writing Good Unit Tests
	Measure Coverage to Determine Whether There Are Enough Tests

	10.3 Common Objections to Automating Tests
	Objection: We Still Need Manual Testing
	Objection: I Am Not Allowed to Write Unit Tests
	Objection: Why Should We Invest in Unit Tests When the Current Coverage Is Low?

	10.4 See Also

	Chapter 11. Write Clean Code
	11.1 Leave No Trace
	11.2 How to Apply the Guideline
	Rule 1: Leave No-Unit Level Code Smells Behind
	Rule 2: Leave No Bad Comments Behind
	Rule 3: Leave No Code in Comments Behind
	Rule 4: Leave No Dead Code Behind
	Rule 5: Leave No Long Identifiers Behind
	Rule 6: Leave No Magic Constants Behind
	Rule 7: Leave No Badly Handled Exception Behind

	11.3 Common Objections to Writing Clean Code
	Objection: Comments Are Our Documentation
	Objection: Exception Handling Causes Code Additions
	Objection: Why Only These Coding Guidelines?

	Chapter 12. Next Steps
	12.1 Turning the Guidelines into Practice
	12.2 Lower-Level (Unit) Guidelines Take Precedence Over Higher-Level (Component) Guidelines
	12.3 Remember That Every Commit Counts
	12.4 Development Process Best Practices Are Discussed in the Follow-Up Book

	Appendix A. How SIG Measures Maintainability
	Index
	Colophon

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

