

Building	Python	Real-Time	Applications
with	Storm

Table	of	Contents

Building	Python	Real-Time	Applications	with	Storm

Credits

About	the	Authors

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Errata

Piracy

Questions

1.	Getting	Acquainted	with	Storm

Overview	of	Storm

Before	the	Storm	era

Key	features	of	Storm

Storm	cluster	modes

Developer	mode

Single-machine	Storm	cluster

Multimachine	Storm	cluster

The	Storm	client

Prerequisites	for	a	Storm	installation

Zookeeper	installation

Storm	installation

Enabling	native	(Netty	only)	dependency

Netty	configuration

Starting	daemons

Playing	with	optional	configurations

Summary

2.	The	Storm	Anatomy

Storm	processes

Supervisor

Zookeeper

The	Storm	UI

Storm-topology-specific	terminologies

The	worker	process,	executor,	and	task

Worker	processes

Executors

Tasks

Interprocess	communication

A	physical	view	of	a	Storm	cluster

Stream	grouping

Fault	tolerance	in	Storm

Guaranteed	tuple	processing	in	Storm

XOR	magic	in	acking

Tuning	parallelism	in	Storm	–	scaling	a	distributed	computation

Summary

3.	Introducing	Petrel

What	is	Petrel?

Building	a	topology

Packaging	a	topology

Logging	events	and	errors

Managing	third-party	dependencies

Installing	Petrel

Creating	your	first	topology

Sentence	spout

Splitter	bolt

Word	Counting	Bolt

Defining	a	topology

Running	the	topology

Troubleshooting

Productivity	tips	with	Petrel

Improving	startup	performance

Enabling	and	using	logging

Automatic	logging	of	fatal	errors

Summary

4.	Example	Topology	–	Twitter

Twitter	analysis

Twitter’s	Streaming	API

Creating	a	Twitter	app	to	use	the	Streaming	API

The	topology	configuration	file

The	Twitter	stream	spout

Splitter	bolt

Rolling	word	count	bolt

The	intermediate	rankings	bolt

The	total	rankings	bolt

Defining	the	topology

Running	the	topology

Summary

5.	Persistence	Using	Redis	and	MongoDB

Finding	the	top	n	ranked	topics	using	Redis

The	topology	configuration	file	–	the	Redis	case

Rolling	word	count	bolt	–	the	Redis	case

Total	rankings	bolt	–	the	Redis	case

Defining	the	topology	–	the	Redis	case

Running	the	topology	–	the	Redis	case

Finding	the	hourly	count	of	tweets	by	city	name	using	MongoDB

Defining	the	topology	–	the	MongoDB	case

Running	the	topology	–	the	MongoDB	case

Summary

6.	Petrel	in	Practice

Testing	a	bolt

Example	–	testing	SplitSentenceBolt

Example	–	testing	SplitSentenceBolt	with	WordCountBolt

Debugging

Installing	Winpdb

Add	Winpdb	breakpoint

Launching	and	attaching	the	debugger

Profiling	your	topology’s	performance

Split	sentence	bolt	log

Word	count	bolt	log

Summary

A.	Managing	Storm	Using	Supervisord

Storm	administration	over	a	cluster

Introducing	supervisord

Supervisord	components

Supervisord	installation

Configuration	of	supervisord.conf

Configuration	of	supervisord.conf	on	172-31-19-62

Summary

Index

Building	Python	Real-Time	Applications
with	Storm

Building	Python	Real-Time	Applications
with	Storm
Copyright	©	2015	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	authors,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	November	2015

Production	reference:	1261115

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78439-285-7

www.packtpub.com

http://www.packtpub.com

Credits
Authors

Kartik	Bhatnagar

Barry	Hart

Reviewers

Oscar	Campos

Pavan	Narayanan

Commissioning	Editor

Usha	Iyer

Acquisition	Editor

Larissa	Pinto

Content	Development	Editor

Anish	Sukumaran

Technical	Editor

Tanmayee	Patil

Copy	Editor

Vikrant	Phadke

Project	Coordinator

Izzat	Contractor

Proofreader

Safis	Editing

Indexer

Rekha	Nair

Production	Coordinator

Aparna	Bhagat

Cover	Work

Aparna	Bhagat

About	the	Authors
Kartik	Bhatnagar	loves	nature	and	likes	to	visit	picturesque	places.	He	is	a	technical
architect	in	the	big	data	analytics	unit	of	Infosys.	He	is	passionate	about	new	technologies.
He	is	leading	the	development	work	of	Apache	Storm	and	MarkLogic	NoSQL	for	a
leading	bank.	Kartik	has	a	total	10	years	of	experience	in	software	development	for
Fortune	500	companies	in	many	countries.	His	expertise	also	includes	the	full	Amazon
Web	Services	(AWS)	stack	and	modern	open	source	libraries.	He	is	active	on	the
StackOverflow	platform	and	is	always	eager	to	help	young	developers	with	new
technologies.	Kartik	has	also	worked	as	a	reviewer	of	a	book	called	Elasticsearch
Blueprints,	Packt	Publishing.	In	the	future,	he	wants	to	work	on	predictive	analytics.

Barry	Hart	began	using	Storm	in	2012	at	AirSage.	He	quickly	saw	the	potential	of	Storm
while	suffering	from	the	limitations	of	the	basic	storm.py	that	it	provides.	In	response,	he
developed	Petrel,	the	first	open	source	library	for	developing	Storm	applications	in	pure
Python.	He	also	contributed	some	bug	fixes	to	the	core	Storm	project.

When	it	comes	to	development,	Barry	has	worked	on	a	little	of	everything:	Windows
printer	drivers,	logistics	planning	frameworks,	OLAP	engines	for	the	retail	industry,
database	engines,	and	big	data	workflows.

Barry	is	currently	an	architect	and	senior	Python/C++	developer	at	Pindrop	Security,
helping	fight	phone	fraud	in	banking,	insurance,	investment,	and	other	industries.

I	want	to	thank	my	wonderful	wife,	Beth,	for	all	her	love	and	support.	I	would	also	like	to
thank	my	two	little	boys,	who	keep	me	young	and	make	every	day	special.

About	the	Reviewers
Oscar	Campos	has	been	working	with	Python	since	early	2007.	He	is	the	author	of	the
famous	Anaconda	Python	IDE	package	for	Sublime	Text	3,	available	as	free	software	at
http://github.com/DamnWidget/anaconda.

He	currently	works	as	a	senior	software	engineer	on	EXADS,	programming	high-
concurrency	backend	system	applications	in	Golang.

Oscar	has	also	reviewed	PySide	GUI	Application	Development,	Packt	Publishing.

I	want	to	thank	my	wife,	Lydia,	for	all	her	support	in	every	aspect	of	my	life—without
you,	nothing	could	be	possible.

Pavan	Narayanan	is	a	blogger	at	DataScience	Hacks
(https://datasciencehacks.wordpress.com),	experienced	in	developing	mathematical
programming	and	data	analytics	solutions.	He	has	utilized	Apache	Storm	for	developing
real-time	analytics	prototype	and	his	interests	are	exploring	problem	solving	techniques,
from	industrial	mathematics	to	machine	learning.	He	can	be	reached	at
<pavan.narayanan@gmail.com>.

Pavan	has	also	reviewed	Apache	Mahout	Essentials,	Learning	Apache	Mahout
Classification,	and	Mastering	Machine	Learning	with	R,	all	by	Packt	Publishing.

I	would	like	to	thank	my	family	and	God	almighty	for	all	the	strength	and	endurance,	and
the	folks	at	Packt	Publishing	for	the	opportunity	to	work	on	this	book.

http://github.com/DamnWidget/anaconda
https://datasciencehacks.wordpress.com
mailto:pavan.narayanan@gmail.com

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com

Preface
Apache	Storm	is	a	powerful	framework	for	creating	complex	workflows	that	ingest	and
process	huge	amounts	of	data.	With	its	generic	concepts	of	spouts	and	bolts,	along	with
simple	deployment	and	monitoring	tools,	it	allows	developers	to	focus	on	the	specifics	of
their	workflow	without	reinventing	the	wheel.

However,	Storm	is	written	in	Java.	While	it	supports	other	programming	languages
besides	Java,	the	tools	are	incomplete	and	there	is	little	documentation	and	few	examples.

One	of	the	authors	of	this	book	created	Petrel,	the	first	framework	that	supports	the
creation	of	Storm	topologies	in	100	percent	Python.	He	has	firsthand	experience	with	the
struggles	of	building	a	Python	Storm	topology	on	the	Java	tool	set.	This	book	closes	this
gap,	providing	a	resource	to	help	Python	developers	of	all	experience	levels	in	building
their	own	applications	using	Storm.

What	this	book	covers
Chapter	1,	Getting	Acquainted	with	Storm,	provides	detailed	information	about	Storm’s
use	cases,	different	installation	modes,	and	configuration	in	Storm.

Chapter	2,	The	Storm	Anatomy,	tells	you	about	Storm-specific	terminologies,	processes,
fault	tolerance	in	Storm,	tuning	parallelism	in	Storm,	and	guaranteed	tuple	processing,
with	detailed	explanations	about	each	of	these.

Chapter	3,	Introducing	Petrel,	introduces	a	framework	called	Petrel	for	building	Storm
topologies	in	Python.	This	chapter	walks	through	the	installation	of	Petrel	and	includes	a
simple	example.

Chapter	4,	Example	Topology	–	Twitter,	provides	an	in-depth	example	of	a	topology	that
computes	statistics	on	Twitter	data	in	real	time.	The	example	introduces	the	use	of	tick
tuples,	which	are	useful	for	topologies	that	need	to	compute	statistics	or	do	other	things	on
a	schedule.	In	this	chapter,	you	also	see	how	topologies	can	access	configuration	data.

Chapter	5,	Persistence	Using	Redis	and	MongoDB,	updates	the	sample	Twitter	topology
for	the	use	of	Redis,	a	popular	key-value	store.	It	shows	you	how	to	simplify	the	complex
Python	calculation	logic	with	built-in	Redis	operations.	The	chapter	concludes	with	an
example	of	storing	Twitter	data	in	MongoDB,	a	popular	NoSQL	database,	and	using	its
aggregation	capabilities	to	generate	reports.

Chapter	6,	Petrel	in	Practice,	teaches	practical	skills	that	will	make	developers	more
productive	using	Storm.	You	learn	how	to	use	Petrel	to	create	automated	tests	for	your
spout	and	bolt	components	that	run	outside	of	Storm.	You	also	see	how	to	use	a	graphical
debugger	to	debug	a	topology	running	inside	Storm.

Appendix,	Managing	Storm	Using	Supervisord,	is	a	practical	demonstration	of	monitoring
and	control	of	Storm	using	a	supervisor	over	the	cluster.

What	you	need	for	this	book
You	will	need	a	computer	with	Python	2.7,	Java	7	JDK,	and	Apache	Storm	0.9.3.	Ubuntu
is	recommended	but	not	required.

Who	this	book	is	for
This	book	is	for	beginners	as	well	as	advanced	Python	developers	who	want	to	use	Storm
to	process	big	data	in	real	time.	While	familiarity	with	the	Java	runtime	environment	is
helpful	for	installing	and	configuring	Storm,	all	the	code	examples	in	this	book	are	in
Python.

Conventions
In	this	book,	you	will	find	a	number	of	styles	of	text	that	distinguish	between	different
kinds	of	information.	Here	are	some	examples	of	these	styles,	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“Storm
configurations	can	be	done	using	storm.yaml,	which	is	present	in	the	conf	folder”.

A	block	of	code	is	set	as	follows:

import	nltk.corpus

from	petrel	import	storm

from	petrel.emitter	import	BasicBolt

class	SplitSentenceBolt(BasicBolt):

				def	__init__(self):

								super(SplitSentenceBolt,	self).__init__(script=__file__)

								self.stop	=	set(nltk.corpus.stopwords.words('english'))

								self.stop.update(['http',	'https',	'rt'])

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant
lines	or	items	are	set	in	bold:

import	logging

from	collections	import	defaultdict

from	petrel	import	storm

from	petrel.emitter	import	BasicBolt

Any	command-line	input	or	output	is	written	as	follows:

tail	-f	petrel24748_totalrankings.log

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,	in
menus	or	dialog	boxes	for	example,	appear	in	the	text	like	this:	“Finally,	click	on	Create
your	Twitter	application“.

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	may	have	disliked.	Reader	feedback	is	important	for	us	to
develop	titles	that	you	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	send	an	e-mail	to	<feedback@packtpub.com>,	and
mention	the	book	title	via	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	on	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	for	all	Packt	books	you	have	purchased	from
your	account	at	http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can
visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to
you.

http://www.packtpub.com
http://www.packtpub.com/support

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	would	report	this	to	us.	By	doing	so,	you	can	save
other	readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If
you	find	any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-
errata,	selecting	your	book,	clicking	on	the	errata	submission	form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	on	our	website,	or	added	to	any	list	of	existing	errata,	under	the
Errata	section	of	that	title.	Any	existing	errata	can	be	viewed	by	selecting	your	title	from
http://www.packtpub.com/support.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Piracy
Piracy	of	copyright	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works,	in	any	form,	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors,	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
You	can	contact	us	at	<questions@packtpub.com>	if	you	are	having	a	problem	with	any
aspect	of	the	book,	and	we	will	do	our	best	to	address	it.

mailto:questions@packtpub.com

Chapter	1.	Getting	Acquainted	with
Storm
In	this	chapter,	you	will	get	acquainted	with	the	following	topics:

An	overview	of	Storm
The	“before	Storm”	era	and	key	features	of	Storm
Storm	cluster	modes
Storm	installation
Starting	various	daemons
Playing	with	Storm	configurations

Over	the	complete	course	of	the	chapter,	you	will	learn	why	Storm	is	creating	a	buzz	in
the	industry	and	why	it	is	relevant	in	present-day	scenarios.	What	is	this	real-time
computation?	We	will	also	explain	the	different	types	of	Storm’s	cluster	modes,	the
installation,	and	the	approach	to	configuration.

Overview	of	Storm
Storm	is	a	distributed,	fault-tolerant,	and	highly	scalable	platform	for	processing	streaming
data	in	a	real-time	manner.	It	became	an	Apache	top-level	project	in	September	2014,	and
was	previously	an	Apache	Incubator	project	since	September	2013.

Real-time	processing	on	a	massive	scale	has	become	a	requirement	of	businesses.	Apache
Storm	provides	the	capability	to	process	data	(a.k.a	tuples	or	stream)	as	and	when	it
arrives	in	a	real-time	manner	with	distributed	computing	options.	The	ability	to	add	more
machines	to	the	Storm	cluster	makes	Storm	scalable.	Then,	the	third	most	important	thing
that	comes	with	storm	is	fault	tolerance.	If	the	storm	program	(also	known	as	topology)	is
equipped	with	reliable	spout,	it	can	reprocess	the	failed	tuples	lost	due	to	machine	failure
and	also	give	fault	tolerance.	It	is	based	on	XOR	magic,	which	will	be	explained	in
Chapter	2,	The	Storm	Anatomy.

Storm	was	originally	created	by	Nathan	Marz	and	his	team	at	BackType.	The	project	was
made	open	source	after	it	was	acquired	by	Twitter.	Interestingly,	Storm	received	a	tag	as
Real	Time	Hadoop.

Storm	is	best	suited	for	many	real-time	use	cases.	A	few	of	its	interesting	use	cases	are
explained	here:

ETL	pipeline:	ETL	stands	for	Extraction,	Transformation,	and	Load.	It	is	a	very
common	use	case	of	Storm.	Data	can	be	extracted	or	read	from	any	source.	Here,	the
data	can	be	complex	XML,	a	JDBC	result	set	row,	or	simply	a	few	key-value	records.
Data	(also	known	as	tuples	in	Storm)	can	be	enriched	on	the	fly	with	more
information,	transformed	into	the	required	storage	format,	and	stored	in	a
NoSQL/RDBMS	data	store.	All	of	these	things	can	be	achieved	at	a	very	high
throughput	in	a	real-time	manner	with	simple	storm	programs.	Using	the	Storm	ETL
pipeline,	you	can	ingest	into	a	big	data	warehouse	at	high	speed.
Trending	topic	analysis:	Twitter	uses	such	use	cases	to	know	the	trending	topics
within	a	given	time	frame	or	at	present.	There	are	numerous	use	cases,	and	finding
the	top	trends	in	a	real-time	manner	is	required.	Storm	can	fit	well	in	such	use	cases.
You	can	also	perform	running	aggregation	of	values	with	the	help	of	any	database.
Regulatory	check	engine:	Real-time	event	data	can	pass	through	a	business-specific
regulatory	algorithm,	which	can	perform	a	compliance	check	in	a	real-time	manner.
Banks	use	these	for	trade	data	checks	in	real	time.

Storm	can	ideally	fit	into	any	use	case	where	there	is	a	need	to	process	data	in	a	fast	and
reliable	manner,	at	a	rate	of	more	than	10,000	messages	processing	per	second,	as	soon	as
data	arrives.	Actually,	10,000+	is	a	small	number.	Twitter	is	able	to	process	millions	of
tweets	per	second	on	a	large	cluster.	It	depends	on	how	well	the	Storm	topology	is	written,
how	well	it	is	tuned,	and	the	cluster	size.

Storm	program	(a.k.a	topologies)	are	designed	to	run	24x7	and	will	not	stop	until	someone
stops	them	explicitly.

Storm	is	written	using	both	Clojure	as	well	as	Java.	Clojure	is	a	Lisp,	functional

programming	language	that	runs	on	JVM	and	is	best	for	concurrency	and	parallel
programming.	Storm	leverages	the	mature	Java	library,	which	was	built	over	the	last	10
years.	All	of	these	can	be	found	inside	the	storm/lib	folder.

Before	the	Storm	era
Before	Storm	became	popular,	real-time	or	near-real-time	processing	problems	were
solved	using	intermediate	brokers	and	with	the	help	of	message	queues.	Listener	or
worker	processes	run	using	the	Python	or	Java	languages.	For	parallel	processing,	code
was	dependent	on	the	threading	model	supplied	using	the	programming	language	itself.
Many	times,	the	old	style	of	working	did	not	utilize	CPU	and	memory	very	well.	In	some
cases,	mainframes	were	used	as	well,	but	they	also	became	outdated	over	time.	Distributed
computing	was	not	so	easy.	There	were	either	many	intermediate	outputs	or	hops	in	this
old	style	of	working.	There	was	no	way	to	perform	a	fail	replay	automatically.	Storm
addressed	all	of	these	pain	areas	very	well.	It	is	one	of	the	best	real-time	computation
frameworks	available	for	use.

Key	features	of	Storm
Here	are	Storm’s	key	features;	they	address	the	aforementioned	problems:

Simple	to	program:	It’s	easy	to	learn	the	Storm	framework.	You	can	write	code	in
the	programming	language	of	your	choice	and	can	also	use	the	existing	libraries	of
that	programming	language.	There	is	no	compromise.
Storm	already	supports	most	programming	languages:	However,	even	if
something	is	not	supported,	it	can	be	done	by	supplying	code	and	configuration	using
the	JSON	protocol	defined	in	the	Storm	Data	Specification	Language	(DSL).
Horizontal	scalability	or	distributed	computing	is	possible:	Computation	can	be
multiplied	by	adding	more	machines	to	the	Storm	cluster	without	stopping	running
programs,	also	known	as	topologies.
Fault	tolerant:	Storm	manages	worker	and	machine-level	failure.	Heartbeats	of	each
process	are	tracked	to	manage	different	types	of	failure,	such	as	task	failure	on	one
machine	or	an	entire	machine’s	failure.
Guaranteed	message	processing:	There	is	a	provision	of	performing	auto	and
explicit	ACK	within	storm	processes	on	messages	(tuples).	If	ACK	is	not	received,
storm	can	do	a	reply	of	a	message.
Free,	open	source,	and	lots	of	open	source	community	support:	Being	an	Apache
project,	Storm	has	free	distribution	and	modifying	rights	without	any	worry	about	the
legal	aspect.	Storm	gets	a	lot	of	attention	from	the	open	source	community	and	is
attracting	a	large	number	of	good	developers	to	contribute	to	the	code.

Storm	cluster	modes
The	Storm	cluster	can	be	set	up	in	four	flavors	based	on	the	requirement.	If	you	want	to
set	up	a	large	cluster,	go	for	distributed	installation.	If	you	want	to	learn	Storm,	then	go	for
a	single	machine	installation.	If	you	want	to	connect	to	an	existing	Storm	cluster,	use
client	mode.	Finally,	if	you	want	to	perform	development	on	an	IDE,	simply	unzip	the
storm	TAR	and	point	to	all	dependencies	of	the	storm	library.	At	the	initial	learning
phase,	a	single-machine	storm	installation	is	actually	what	you	need.

Developer	mode
A	developer	can	download	storm	from	the	distribution	site,	unzip	it	somewhere	in	$HOME,
and	simply	submit	the	Storm	topology	as	local	mode.	Once	the	topology	is	successfully
tested	locally,	it	can	be	submitted	to	run	over	the	cluster.

Single-machine	Storm	cluster
This	flavor	is	best	for	students	and	medium-scale	computation.	Here,	everything	runs	on	a
single	machine,	including	Zookeeper,	Nimbus,	and	Supervisor.	Storm/bin	is	used	to	run
all	commands.	Also,	no	extra	Storm	client	is	required.	You	can	do	everything	from	the
same	machine.	This	case	is	well	demonstrated	in	the	following	figure:

Multimachine	Storm	cluster
This	option	is	required	when	you	have	a	large-scale	computation	requirement.	It	is	a
horizontal	scaling	option.	The	following	figure	explains	this	case	in	detail.	In	this	figure,
we	have	five	physical	machines,	and	to	increase	fault	tolerance	in	the	systems,	we	are
running	Zookeeper	on	two	machines.	As	shown	in	the	diagram,	Machine	1	and	Machine
2	are	a	group	of	Zookeeper	machines;	one	of	them	is	the	leader	at	any	point	of	time,	and
when	it	dies,	the	other	becomes	the	leader.	Nimbus	is	a	lightweight	process,	so	it	can	run
on	either	machine,	1	or	2.	We	also	have	Machine	3,	Machine	4,	and	Machine	5	dedicated
for	performing	actual	processing.	Each	one	of	these	machines	(3,	4,	and	5)	requires	a
supervisor	daemon	to	run	over	there.	Machines	3,	4,	and	5	should	know	where	the
Nimbus/Zookeeper	daemon	is	running	and	that	entry	should	be	present	in	their
storm.yaml.

So,	each	physical	machine	(3,	4,	and	5)	runs	one	supervisor	daemon,	and	each	machine’s
storm.yaml	points	to	the	IP	address	of	the	machine	where	Nimbus	is	running	(this	can	be
1	or	2).	All	Supervisor	machines	must	add	the	Zookeeper	IP	addresses	(1	and	2)	to
storm.yaml.	The	Storm	UI	daemon	should	run	on	the	Nimbus	machine	(this	can	be	1	or
2).

The	Storm	client
The	Storm	client	is	required	only	when	you	have	a	Storm	cluster	of	multiple	machines.	To
start	the	client,	unzip	the	Storm	distribution	and	add	the	Nimbus	IP	address	to	the
storm.yaml	file.	The	Storm	client	can	be	used	to	submit	Storm	topologies	and	check	the
status	of	running	topologies	from	command-line	options.	Storm	versions	older	than	0.9
should	put	the	yaml	file	inside	$STORM_HOME/.storm/storm.yaml	(not	required	for	newer
versions).

Note
The	jps	command	is	a	very	useful	Unix	command	for	seeing	the	Java	process	ID	of
Zookeeper,	Nimbus,	and	Supervisor.	The	kill	-9	<pid>	option	can	stop	a	running
process.	The	jps	command	will	work	only	when	JAVA_HOME	is	set	in	the	PATH	environment
variable.

Prerequisites	for	a	Storm	installation
Installing	Java	and	Python	is	easy.	Let’s	assume	our	Linux	machine	is	ready	with	Java	and
Python:

A	Linux	machine	(Storm	version	0.9	and	later	can	also	run	on	Windows	machines)
Java	6	(set	export	PATH=$PATH:$JAVA_HOME/bin)
Python	2.6	(required	to	run	Storm	daemons	and	management	commands)

We	will	be	making	lots	of	changes	in	the	storm	configuration	file	(that	is,	storm.yaml),
which	is	actually	present	under	$STORM_HOME/config.	First,	we	start	the	Zookeeper
process,	which	carries	out	coordination	between	Nimbus	and	the	Supervisors.	Then,	we
start	the	Nimbus	master	daemon,	which	distributes	code	in	the	Storm	cluster.	Next,	the
Supervisor	daemon	listens	for	work	assigned	(by	Nimbus)	to	the	node	it	runs	on	and	starts
and	stops	the	worker	processes	as	necessary.

ZeroMQ/JZMQ	and	Netty	are	inter-JVM	communication	libraries	that	permit	two
machines	or	two	JVMs	to	send	and	receive	process	data	(tuples)	between	each	other.
JZMQ	is	a	Java	binding	of	ZeroMQ.	The	latest	versions	of	Storm	(0.9+)	have	now	been
moved	to	Netty.	If	you	download	an	old	version	of	Storm,	installing	ZeroMQ	and	JZMQ
is	required.	In	this	book,	we	will	be	considering	only	the	latest	versions	of	Storm,	so	you
don’t	really	require	ZeroMQ/JZMQ.

Zookeeper	installation
Zookeeper	is	a	coordinator	for	the	Storm	cluster.	The	interaction	between	Nimbus	and
worker	nodes	is	done	through	Zookeeper.	The	installation	of	Zookeeper	is	well	explained
on	the	official	website	at
http://zookeeper.apache.org/doc/trunk/zookeeperStarted.html#sc_InstallingSingleMode.

The	setup	can	be	downloaded	from:

https://archive.apache.org/dist/zookeeper/zookeeper-3.3.5/zookeeper-3.3.5.tar.gz.	After
downloading,	edit	the	zoo.cfg	file.

The	following	are	the	Zookeeper	commands	that	are	used:

Starting	the	zookeeper	process:

../zookeeper/bin/./zkServer.sh	start

Checking	the	running	status	of	the	zookeeper	service:

../zookeeper/bin/./zkServer.sh	status

Stopping	the	zookeeper	service:

../zookeeper/bin/./zkServer.sh	stop

Alternatively,	use	jps	to	find	<pid>	and	then	use	kill	-9	<pid>	to	kill	the	processes.

http://zookeeper.apache.org/doc/trunk/zookeeperStarted.html#sc_InstallingSingleMode
https://archive.apache.org/dist/zookeeper/zookeeper-3.3.5/zookeeper-3.3.5.tar.gz

Storm	installation
Storm	can	be	installed	in	either	of	these	two	ways:

1.	 Fetch	a	Storm	release	from	this	location	using	Git:

https://github.com/nathanmarz/storm.git

2.	 Download	directly	from	the	following	link:	https://storm.apache.org/downloads.html

Storm	configurations	can	be	done	using	storm.yaml,	which	is	present	in	the	conf	folder.

The	following	are	the	configurations	for	a	single-machine	Storm	cluster	installation.

Port	#	2181	is	the	default	port	of	Zookeeper.	To	add	more	than	one	zookeeper,	keep	entry
–	separated:

storm.zookeeper.servers:

					-	"localhost"

#	you	must	change	2181	to	another	value	if	zookeeper	running	on	another	

port.

storm.zookeeper.port:	2181

#	In	single	machine	mode	nimbus	run	locally	so	we	are	keeping	it	localhost.

#	In	distributed	mode	change	localhost	to	machine	name	where	nimbus	daemon	

is	running.

nimbus.host:	"localhost"

#	Here	storm	will	generate	logs	of	workers,	nimbus	and	supervisor.

storm.local.dir:	"/var/stormtmp"

java.library.path:	"/usr/local/lib"

#	Allocating	4	ports	for	workers.	More	numbers	can	also	be	added.

supervisor.slots.ports:

					-	6700

					-	6701

					-	6702

					-	6703

#	Memory	is	allocated	to	each	worker.	In	below	case	we	are	allocating	768	

mb	per	worker.worker.childopts:	"-Xmx768m"

#	Memory	to	nimbus	daemon-	Here	we	are	giving	512	mb	to	nimbus.

nimbus.childopts:	"-Xmx512m"

#	Memory	to	supervisor	daemon-	Here	we	are	giving	256	mb	to	supervisor.

Note
Notice	supervisor.childopts:	"-Xmx256m".	In	this	setting,	we	reserved	four	supervisor
ports,	which	means	that	a	maximum	of	four	worker	processes	can	run	on	this	machine.

storm.local.dir:	This	directory	location	should	be	cleaned	if	there	is	a	problem	with
starting	Nimbus	and	Supervisor.	In	the	case	of	running	a	topology	on	the	local	IDE	on	a
Windows	machine,	C:\Users\<User-Name>\AppData\Local\Temp	should	be	cleaned.

https://github.com/nathanmarz/storm.git
https://storm.apache.org/downloads.html

Enabling	native	(Netty	only)	dependency
Netty	enables	inter	JVM	communication	and	it	is	very	simple	to	use.

Netty	configuration
You	don’t	really	need	to	install	anything	extra	for	Netty.	This	is	because	it’s	a	pure	Java-
based	communication	library.	All	new	versions	of	Storm	support	Netty.

Add	the	following	lines	to	your	storm.yaml	file.	Configure	and	adjust	the	values	to	best
suit	your	use	case:

storm.messaging.transport:	"backtype.storm.messaging.netty.Context"

storm.messaging.netty.server_worker_threads:	1

storm.messaging.netty.client_worker_threads:	1

storm.messaging.netty.buffer_size:	5242880

storm.messaging.netty.max_retries:	100

storm.messaging.netty.max_wait_ms:	1000

storm.messaging.netty.min_wait_ms:	100

Starting	daemons
Storm	daemons	are	the	processes	that	are	needed	to	pre-run	before	you	submit	your
program	to	the	cluster.	When	you	run	a	topology	program	on	a	local	IDE,	these	daemons
auto-start	on	predefined	ports,	but	over	the	cluster,	they	must	run	at	all	times:

1.	 Start	the	master	daemon,	nimbus.	Go	to	the	bin	directory	of	the	Storm	installation
and	execute	the	following	command	(assuming	that	zookeeper	is	running):

			./storm	nimbus

					Alternatively,	to	run	in	the	background,	use	the	same	command	with	

nohup,	like	this:

				Run	in	background

				nohup	./storm	nimbus	&

2.	 Now	we	have	to	start	the	supervisor	daemon.	Go	to	the	bin	directory	of	the	Storm
installation	and	execute	this	command:

		./storm	supervisor

To	run	in	the	background,	use	the	following	command:

									nohup	./storm		supervisor	&

Note
If	Nimbus	or	the	Supervisors	restart,	the	running	topologies	are	unaffected	as	both	are
stateless.

3.	 Let’s	start	the	storm	UI.	The	Storm	UI	is	an	optional	process.	It	helps	us	to	see	the
Storm	statistics	of	a	running	topology.	You	can	see	how	many	executors	and	workers
are	assigned	to	a	particular	topology.	The	command	needed	to	run	the	storm	UI	is	as
follows:

							./storm	ui

Alternatively,	to	run	in	the	background,	use	this	line	with	nohup:

							nohup	./storm	ui	&

To	access	the	Storm	UI,	visit	http://localhost:8080.

4.	 We	will	now	start	storm	logviewer.	Storm	UI	is	another	optional	process	for	seeing
the	log	from	the	browser.	You	can	also	see	the	storm	log	using	the	command-line
option	in	the	$STORM_HOME/logs	folder.	To	start	logviewer,	use	this	command:

									./storm	logviewer

To	run	in	the	background,	use	the	following	line	with	nohup:

									nohup	./storm	logviewer	&

Note
To	access	Storm’s	log,	visit	http://localhost:8000log	viewer	daemon	should	run
on	each	machine.	Another	way	to	access	the	log	of	<machine	name>	for	worker	port
6700	is	given	here:

<Machine	name>:8000/log?file=worker-6700.log

5.	 DRPC	daemon:	DRPC	is	another	optional	service.	DRPC	stands	for	Distributed
Remote	Procedure	Call.	You	will	require	the	DRPC	daemon	if	you	want	to	supply
to	the	storm	topology	an	argument	externally	through	the	DRPC	client.	Note	that	an
argument	can	be	supplied	only	once,	and	the	DRPC	client	can	wait	for	long	until
storm	topology	does	the	processing	and	the	return.	DRPC	is	not	a	popular	option	to
use	in	projects,	as	firstly,	it	is	blocking	to	the	client,	and	secondly,	you	can	supply
only	one	argument	at	a	time.	DRPC	is	not	supported	by	Python	and	Petrel.

Summarizing,	the	steps	for	starting	processes	are	as	follows:

1.	 First,	all	the	Zookeeper	daemons.
2.	 Nimbus	daemons.
3.	 Supervisor	daemon	on	one	or	more	machine.
4.	 The	UI	daemon	where	Nimbus	is	running	(optional).
5.	 The	Logviewer	daemon	(optional).
6.	 Submitting	the	topology.

You	can	restart	the	nimbus	daemon	anytime	without	any	impact	on	existing	processes	or
topologies.	You	can	restart	the	supervisor	daemon	and	can	also	add	more	supervisor
machines	to	the	Storm	cluster	anytime.

To	submit	jar	to	the	Storm	cluster,	go	to	the	bin	directory	of	the	Storm	installation	and
execute	the	following	command:

./storm	jar	<path-to-topology-jar>	<class-with-the-main>	<arg1>	…	<argN>

Playing	with	optional	configurations
All	the	previous	settings	are	required	to	start	the	cluster,	but	there	are	many	other	settings
that	are	optional	and	can	be	tuned	based	on	the	topology’s	requirement.	A	prefix	can	help
find	the	nature	of	a	configuration.	The	complete	list	of	default	yaml	configuration	is
available	at	https://github.com/apache/storm/blob/master/conf/defaults.yaml.

Configurations	can	be	identified	by	how	the	prefix	starts.	For	example,	all	UI
configurations	start	with	ui*.

Nature	of	the	configuration Prefix	to	look	into

General storm.*

Nimbus nimbus.*

UI ui.*

Log	viewer logviewer.*

DRPC drpc.*

Supervisor supervisor.*

Topology topology.*

All	of	these	optional	configurations	can	be	added	to	STORM_HOME/conf/storm.yaml	for
any	change	other	than	the	default	values.	All	settings	that	start	with	topology.*	can	either
be	set	programmatically	from	the	topology	or	from	storm.yaml.	All	other	settings	can	be
set	only	from	the	storm.yaml	file.	For	example,	the	following	table	shows	three	different
ways	to	play	with	these	parameters.	However,	all	of	these	three	do	the	same	thing:

/conf/storm.yaml Topology	builder Custom	yaml

Changing	storm.yaml

(impacts	all	the
topologies	of	the
cluster)

Changing	the	topology	builder
while	writing	code

(impacts	only	the	current
topology)

Supplying	topology.yaml	as	a	command-line	option

(impacts	only	the	current	topology)

topology.workers:	1

conf.setNumberOfWorker(1);

This	is	supplied	through
Python	code

Create	topology.yaml	with	the	entry	made	into	it	similar	to
storm.yaml,	and	supply	it	when	running	the	topology

Python:
petrel	submit	--config	topology.yaml

Any	configuration	change	in	storm.yaml	will	affect	all	running	topologies,	but	when
using	the	conf.setXXX	option	in	code,	different	topologies	can	overwrite	that	option,	what
is	best	suited	for	each	of	them.

https://github.com/apache/storm/blob/master/conf/defaults.yaml

Summary
Here	comes	the	conclusion	of	the	first	chapter.	This	chapter	gave	an	overview	of	how
applications	were	developed	before	Storm	came	into	existence.	A	brief	knowledge	of	what
real-time	computations	are	and	how	Storm,	as	a	programming	framework,	is	becoming	so
popular	was	also	acquired	as	we	went	through	the	chapter	and	approached	the	conclusion.
This	chapter	taught	you	to	perform	Storm	configurations.	It	also	gave	you	details	about	the
daemons	of	Storm,	Storm	clusters,	and	their	step	up.	In	the	next	chapter,	we	will	be
exploring	the	details	of	Storm’s	anatomy.

Chapter	2.	The	Storm	Anatomy
This	chapter	gives	a	detailed	view	of	the	internal	structure	and	processes	of	the	Storm
technology.	We	will	cover	the	following	topics	in	this	chapter:

Storm	processes
Storm-topology-specific	terminologies
Interprocess	communication
Fault	tolerance	in	Storm
Guaranteed	tuple	processing
Parallelism	in	Storm—scaling	a	distributed	computation

As	we	advance	through	the	chapter,	you	will	understand	Storm’s	processes	and	their	role
in	detail.	In	this	chapter,	various	Storm-specific	terminologies	will	be	explained.	You	will
learn	how	Storm	achieves	fault	tolerance	for	different	types	of	failure.	We	will	see	what
guaranteed	message	processing	is	and,	most	importantly,	how	to	configure	parallelism	in
Storm	to	achieve	fast	and	reliable	processing.

Storm	processes
We	will	start	with	Nimbus	first,	which	is	actually	the	entry-point	daemon	in	Storm.	Just	to
compare	with	Hadoop,	Nimbus	is	actually	the	job	tracker	of	Storm.	Nimbus’s	job	is	to
distribute	code	to	all	supervisor	daemons	of	a	cluster.	So,	when	topology	code	is
submitted,	it	actually	reaches	all	physical	machines	in	the	cluster.	Nimbus	also	monitors
failure	of	supervisors.	If	a	supervisor	continues	to	fail,	then	Nimbus	reassigns	those
workers’	jobs	to	other	workers	of	a	different	physical	machine.	The	current	version	of
Storm	allows	only	one	instance	of	the	Nimbus	daemon	to	run.	Nimbus	is	also	responsible
for	assigning	tasks	to	supervisor	nodes.	If	you	lose	Nimbus,	the	workers	will	still	continue
to	compute.	Supervisors	will	continue	to	restart	workers	as	and	when	they	die.	Without
Nimbus,	a	worker’s	task	won’t	be	reassigned	to	another	machine	worker	within	the
cluster.

There	is	no	alternative	Storm	process	that	will	take	over	if	Nimbus	dies,	and	no	process
will	even	try	to	restart	it.	There	is	nothing	to	worry	about,	however,	since	it	can	be
restarted	anytime.	In	a	production	environment,	alerts	can	also	be	set	when	Nimbus	dies.
In	future,	we	may	see	highly	available	Nimbus.

Supervisor
A	supervisor	manages	all	the	workers	of	the	respective	machine.	Distributed	computation
in	Storm	is	possible	due	to	the	supervisor	daemon,	as	there	is	one	supervisor	per	machine
in	your	cluster.	The	supervisor	daemon	listens	for	the	work	assigned	by	Nimbus	to	the
machine	that	it	runs,	and	distributes	it	among	workers.	Due	to	any	runtime	exception,
workers	can	die	anytime,	and	the	supervisor	restarts	them	when	there	is	no	heartbeat	from
dead	workers.	Each	worker	process	executes	a	part	of	a	topology.	Similar	to	the	Hadoop
ecosystem,	supervisor	is	a	task	tracker	of	Storm.	It	tracks	the	tasks	of	workers	of	the	same
machine.	The	maximum	number	of	possible	workers	depends	on	the	number	of	ports
defined	in	storm.yaml.

Zookeeper
In	addition	to	its	own	components,	Storm	relies	on	a	Zookeeper	cluster	(one	or	more
Zookeeper	servers)	to	perform	the	coordination	job	between	Nimbus	and	the	supervisors.
Apart	from	using	Zookeeper	for	coordination	purposes,	Nimbus	and	the	supervisors	also
store	all	their	states	in	Zookeeper,	and	Zookeeper	stores	them	on	a	local	disk	where	it	is
running.	Having	more	than	one	Zookeeper	daemon	increases	the	reliability	of	the	system,
because	if	one	daemon	goes	down,	another	becomes	the	leader.

The	Storm	UI
Storm	is	also	equipped	with	a	web-based	user	interface.	It	should	be	started	on	a	machine
that	also	runs	Nimbus.	The	Storm	UI	provides	a	report	of	the	entire	cluster,	such	as	the
sum	of	all	active	supervisor	machines,	the	total	number	of	workers	available,	allotted	to
each	topology	and	how	many	remaining,	and	topology-level	diagnostics	such	as	tuples
stats	(how	many	tuples	were	emitted,	and	the	ACK	between	spout	to	bolt	or	bolt	to	bolt).
The	Storm	UI	also	shows	the	total	number	of	workers,	which	is	actually	sum	of	all
workers	available	of	all	supervisors’	machines.

The	following	screenshot	shows	a	sample	screen	of	the	Storm	UI:

Following	is	the	explanation	of	Storm	UI:

Topology	stats:	Under	Topology	stats,	you	can	click	and	see	the	stats	of	the	last	10
minutes,	3	hours,	or	all	time.
Spouts	(All	time):	This	displays	the	number	of	executors	and	tasks	assigned	for	this
spout,	along	with	the	stats	of	emitted	tuples	and	other	latency	stats.
Bolts	(All	time):	This	displays	a	list	of	all	bolts,	along	with	the	assigned
executors/tasks.	When	you	are	doing	performance	tuning,	keep	the	Capacity	column
close	to	1.	In	the	preceding	example	for	aggregatorBolt,	it	is	1.500,	so	instead	of
200	executors/tasks,	we	can	use	300.	The	Capacity	column	helps	us	decide	the	right
degree	of	parallelism.	The	idea	is	very	simple;	if	the	Capacity	column	reads	more
than	1,	try	increasing	the	executors	and	tasks	in	the	same	ratio.	If	the	value	of

executors/tasks	is	high	and	the	Capacity	column	is	close	to	zero,	try	reducing	the
number	of	executors/tasks.	You	can	do	this	until	you	get	the	best	configuration.

Storm-topology-specific	terminologies
A	topology	is	a	logical	separation	of	programming	work	into	many	small-scale	processing
units	called	spout	and	bolt,	which	is	similar	to	MapReduce	in	Hadoop.	A	topology	can	be
written	in	many	languages,	including	Java,	Python,	and	lot	more	supported	languages.	In
visual	depictions,	a	topology	is	shown	as	a	graph	of	connecting	spouts	and	bolts.	Spouts
and	bolts	execute	tasks	across	the	cluster.	Storm	has	two	modes	of	operation,	called	local
mode	and	distributed	mode:

In	local	mode,	all	processes	of	Storm	and	workers	run	within	your	code	development
environment.	This	is	good	for	testing	and	development	of	topologies.
In	distributed	mode,	Storm	operates	as	a	cluster	of	machines.	When	you	submit
topology	code	to	the	Nimbus,	Nimbus	takes	care	of	distributing	the	code	and
allocating	workers	to	run	your	topology	based	on	your	configuration.

In	the	following	figure,	we	have	purple	bolts;	these	receive	a	tuple	or	records	from	the
spout	above	them.	A	tuple	supports	most	of	the	data	types	available	in	the	programming
language	in	which	the	topology	code	is	being	written.	It	flows	as	an	independent	unit	from
a	spout	to	a	bolt	or	a	bolt	to	another	bolt.	An	unbounded	flow	of	tuples	is	called	a	stream.
In	a	single	tuple,	you	can	have	many	key-value	pairs	to	pass	together.

The	next	figure	illustrates	streams	in	more	detail.	A	spout	is	connected	to	a	source	of
tuples	and	generates	continuous	tuples	for	the	topology	as	a	stream.	What	you	emit	from
the	spout	as	a	key-value	pair	can	be	received	by	the	bolt	using	the	same	key.

The	worker	process,	executor,	and	task
Storm	distinguishes	between	the	following	three	main	entities,	which	are	used	to	actually
run	a	topology	in	a	Storm	cluster:

Worker
Executor
Task

Let’s	say	we	have	decided	to	keep	two	workers,	one	spout	executor,	three	Bolt1	executors,
and	two	Bolt2	executors.	Assume	that	the	ratio	of	the	number	of	executors	and	tasks	is	the
same.	The	total	sum	of	executors	is	six	for	spout	and	bolt.	Out	of	six	executors,	some	will
run	within	the	scope	of	worker	1,	and	some	will	be	in	control	of	worker	2;	this	decision	is
taken	by	the	supervisor.	This	is	explained	in	the	following	figure:

The	next	figure	explains	the	position	of	the	workers	and	executors	within	the	scope	of	the
supervisor	that	is	running	on	a	machine:

The	number	of	executors	and	tasks	is	set	while	building	the	topology	code.	In	the

preceding	figure,	we	have	two	workers	(1	and	2),	run	and	managed	by	the	supervisor	of
that	machine.	Assume	that	Executor	1	is	running	one	task,	because	the	ratio	of	executors
to	tasks	is	the	same	(for	example,	10	executors	means	10	tasks,	which	makes	the	ratio
1:1).	But	Executor	2	is	running	two	tasks	sequentially,	so	the	ratio	of	tasks	to	executors	is
2:1	(for	example,	10	executors	means	20	tasks,	which	makes	the	ratio	2:1).	Having	more
tasks	never	means	higher	processing	speed,	but	this	is	true	for	more	executors,	as	tasks	run
sequentially.

Worker	processes
A	single	worker	process	executes	a	portion	of	a	topology	and	runs	on	its	own	JVM.
Workers	are	allocated	during	topology	submission.	A	worker	process	is	linked	to	a	specific
topology	and	can	run	one	or	more	executors	for	one	or	more	spouts	or	bolts	of	that
topology.	A	running	topology	consists	of	many	such	workers	running	on	many	machines
within	a	Storm	cluster.

Executors
An	executor	is	a	thread	run	within	the	scope	of	a	worker’s	JVM.	An	executor	may	run	one
or	more	tasks	for	a	spout	or	bolt	sequentially.

An	executor	always	runs	on	one	thread	for	all	its	tasks,	which	means	that	tasks	run	serially
on	an	executor.	The	number	of	executors	can	be	changed	after	the	topology	has	been
started	without	shutdown,	using	the	rebalance	command:

storm	rebalance	<topology	name>	-n	<number	of	workers>	-e	<spout>=<number	

of	executors>	-e	<bolt1	name>=<number	of	executors>	-e	<bolt2	name>=<number	

of	executors>

Tasks
A	task	performs	data	processing	and	runs	within	its	parent	executor’s	thread	of	execution.
The	default	value	of	the	number	of	tasks	is	the	same	as	the	number	of	executors.	While
building	the	topology,	we	can	keep	a	higher	number	of	tasks	as	well.	It	can	help	to
increase	the	number	of	executors	in	the	future,	which	keeps	the	scope	of	scaling	open.
Initially,	we	can	have	10	executors	and	20	tasks,	so	the	ratio	is	2:1.	This	means	two	tasks
per	executor.	A	future	rebalancing	action	can	make	20	executors	and	20	tasks,	which	will
make	the	ratio	1:1.

Interprocess	communication
The	following	figure	illustrates	communication	between	the	Storm	submitter	(client),	the
Nimbus	thrift	server,	Zookeeper,	supervisors,	workers	of	supervisors,	executors,	and	tasks.
Each	worker	process	runs	as	a	separate	JVM.

A	physical	view	of	a	Storm	cluster
The	next	figure	explains	the	physical	position	of	each	process.	There	can	be	only	one
Nimbus.	However,	more	than	one	Zookeeper	is	there	to	support	failover,	and	per	machine,
there	is	one	supervisor.

Stream	grouping
A	stream	grouping	controls	the	flow	of	tuples	between	from	spout	to	bolt	or	bolt	to	bolt.	In
Storm,	we	have	four	types	of	groupings.	Shuffle	and	field	grouping	are	most	commonly
used:

Shuffle	grouping:	Tuple	flow	between	two	random	tasks	in	this	grouping
Field	grouping:	A	tuple	with	a	particular	field	key	is	always	delivered	to	the	same
task	of	the	downstream	bolt
All	grouping:	Sends	the	same	tuple	to	all	tasks	of	the	downstream	bolt
Global	grouping:	Tuples	from	all	tasks	reach	one	task

The	subsequent	figure	gives	a	diagrammatic	explanation	of	all	the	four	types	of	groupings:

Fault	tolerance	in	Storm
Supervisor	runs	a	synchronization	thread	to	get	assignment	information	(what	part	of
topology	I	am	supposed	to	run)	from	Zookeeper	and	write	to	the	local	disk.	This	local
filesystem	information	helps	keep	the	worker	up	to	date:

Case	1:	This	is	the	ideal	case	for	most	of	the	times.	When	the	cluster	works	normally,
the	worker’s	heartbeat	goes	back	to	the	supervisors	and	Nimbus	via	Zookeeper.

Case	2:	If	a	supervisor	dies,	processing	still	continues,	but	the	assignment	is	never
synchronized.	Nimbus	will	reassign	the	work	to	another	supervisor	of	a	different
machine.	Those	workers	will	be	running,	but	will	not	receive	any	new	tuples.	Do	set
an	alert	to	restart	the	supervisor	or	use	a	Unix	tool	that	can	restart	the	supervisor.
Case	3:	If	Nimbus	dies,	the	topologies	will	continue	to	function	normally.	Processing
will	still	continue,	but	topology	life	cycle	operations	and	reassigning	to	another
machine	will	not	be	possible.
Case	4:	If	a	worker	dies	(as	the	heartbeat	stops	arriving),	the	supervisor	will	try	to
restart	the	worker	process	and	processing	will	continue.	If	a	worker	dies	repeatedly,
Nimbus	will	reassign	the	work	to	other	nodes	in	the	cluster.

Guaranteed	tuple	processing	in	Storm
As	Storm	is	already	equipped	to	deal	with	various	process-level	failures,	another
important	feature	is	the	ability	to	deal	with	failure	of	tuples	that	occurs	when	a	worker
dies.	This	is	just	to	give	an	idea	of	bitwise	XOR:	the	XOR	of	two	sets	of	the	same	bits	is	0.
This	is	called	XOR	magic,	and	it	can	help	us	know	whether	the	delivery	of	a	tuple	to	the
next	bolt	is	successful	or	not.	Storm	uses	64	bits	to	track	tuples.	Every	tuple	gets	a	64-bit
tuple	ID.	This	64-bit	ID,	along	with	the	task	ID,	is	kept	at	ACKer.

In	the	next	figure,	ACKing	and	a	replay	case	is	explained:

XOR	magic	in	acking
A	spout	tuple	is	not	fully	processed	until	all	the	tuples	in	the	linked	tuple	tree	are
completed.	If	the	tuple	tree	is	not	completed	within	a	configured	timeout	(the	default	value
is	topology.message.timeout.secs:	30),	the	spout	tuple	is	replayed.

In	the	preceding	diagram,	the	first	acker	gets	10101	(for	simplicity	of	explanation,	we	are
keeping	5	bits)	for	tuple	1	from	the	spout.	Once	Bolt	1	receives	the	same	tuple,	it	also
ACK	to	acker.	From	both	sources,	acker	gets	10101.	This	means	10101	XOR	10101	=	0.
Tuple	1	is	successfully	received	by	Bolt	1.	The	same	process	repeats	between	bolts	1	and
2.	At	last,	Bolt	2	sends	ack	to	acker,	and	the	tuple	tree	is	completed.	This	creates	a	signal
to	call	the	spout’s	success	function.	Any	failure	in	tuple	processing	can	trigger	the	spout’s
fail	function	call,	which	gives	an	indication	to	send	the	tuple	back	for	processing	again.

Storm’s	acker	tracks	the	completion	of	the	tuple	tree	by	performing	XOR	between	the
sender’s	tuple	and	the	receiver’s	tuple.	Each	time	a	tuple	is	sent,	its	value	is	XORed	into
the	checksum	maintained	by	acker,	and	each	time	a	tuple	is	acked,	its	value	is	XORed	in
again	at	acker.

If	all	tuples	have	been	successfully	acked,	the	checksum	will	be	zero.	Ackers	are	system-
level	executors.

In	the	spout,	we	have	a	choice	of	two	emit	functions.

emit([tuple]):	This	is	a	simple	emit
storm.emit([tuple],	id=the_value):	This	creates	a	reliable	spout,	but	only	if	you
can	re-emit	a	tuple	using	the_value

In	the	Spout,	we	also	have	two	ACK	functions:

fail(the_value):	This	function	is	called	when	a	timeout	occurs	or	the	tuple	fails
ack(the_value):	This	function	is	called	when	the	last	bolt	of	the	topology	ACK	the
tuple	tree

This	ID	field	should	be	a	random	and	unique	value	to	replay	from	the	spout’s	fail
function.	Using	this	ID,	we	can	re-emit	it	from	the	fail	function.	If	successful,	the	jn
success	function	will	call	and	it	can	remove	successful	tuples	from	the	global	list	or
recreate	from	the	source.

You	will	be	able	to	recreate	the	same	tuple	if	you	have	a	reliable	spout	in	the	topology.	To
create	a	reliable	spout,	emit	a	unique	message	ID	(the_value)	from	the	spout’s	next	tuple
function	along	with	the	tuple:

storm.emit([tuple],	id=the_value)

Whether	a	tuple	is	not	ACKed	within	a	configured	period	of	time,	or	the	programming
code	fails	a	tuple	due	to	some	error	condition,	both	are	valid	cases	of	replay.

When	the	fail	function	is	called,	the	code	can	read	from	the	source	of	the	spout	using	the
same	message	ID,	and	when	the	success	function	is	called,	an	action	such	as	removing	a
message	from	the	queue	can	be	taken.

The	message	ID	is	an	application-specific	key	that	can	help	you	recreate	a	tuple	and	emit
it	back	from	the	spout.	An	example	of	a	message	ID	can	be	a	queue	message	ID,	or	a
primary	key	of	a	table.	A	tuple	is	considered	failed	if	a	timeout	occurs	or	due	to	any	other
reason.

Storm	has	a	fault	tolerance	mechanism	that	guarantees	at-least-once	processing	for	all
tuples	emitted	only	from	a	reliable	spout.

Once	you	have	a	reliable	spout	in	place,	you	can	make	the	bolt	do	the	linking	between	the
input	and	output	tuples,	which	creates	a	tuple	tree.	Once	a	tuple	tree	is	established,	acker
knows	any	failure	in	the	linked	tree,	and	the	original	message	ID	is	used	to	create	the
entire	tuple	tree	again.

In	the	bolt,	there	are	two	functions:

emit([tuple]):	There	is	no	tuple	tree	linking.	We	can’t	track	which	original	message
ID	was	used.
storm.emit([tuple],	anchors=[message_key]):	With	linking	in	place,	the	original
tuple	can	now	be	replayed.

The	following	figure	explains	how	tuple	B	is	generated	from	tuple	A:

The	next	figure	illustrates	the	bolt	performing	ACK:

The	following	figure	illustrates	the	failure	condition,	where	the	signal	reaches	the	spout
upon	failure:

A	successful	ACK	is	demonstrated	as	follows:

The	following	figure	illustrates	a	condition	of	a	big	tuple	tree	without	a	bolt,	and	there	is
no	failure:

The	next	figure	demonstrates	an	example	of	failure	in	a	tuple	tree—in	the	middle	of	the
tuple	tree:

Tuning	parallelism	in	Storm	–	scaling	a
distributed	computation
To	explain	parallelism	of	Storm,	we	will	configure	three	parameters:

The	number	of	workers
The	number	of	executors
The	number	of	tasks

The	following	figure	gives	a	diagrammatic	explanation	of	an	example	where	we	have	a
topology	with	just	one	spout	and	one	bolt.	In	this	case,	we	will	set	different	values	for	the
numbers	of	workers,	executors,	and	tasks	at	the	spout	and	bolt	levels,	and	see	how
parallelism	works	in	each	case:

//	assume	we	have	two	workers	in	total	for	topology.

topology.workers:	2

	//	just	one	executor	of	spout.

builder.setSpout("spout-sentence",	TwitterStreamSpout(),1)

//	two	executors	of	bolt.

builder.setBolt("bolt-split",	SplitSentenceBolt(),2)

	//	four	tasks	for	bolts.

.setNumTasks(4)

.shuffleGrouping("spout-sentence");

For	this	configuration,	we	will	have	two	workers,	which	will	run	in	separate	JVMs
(worker	1	and	worker	2).

For	the	spout,	there	is	one	executor,	and	the	default	number	of	tasks	is	one,	which	makes
the	ratio	1:1	(one	task	per	executor).

For	the	bolt,	there	are	two	executors	and	four	tasks,	which	makes	it	4/2	=	two	tasks	per
executor.	These	two	executors	run	under	worker	2,	with	each	having	two	tasks,	while	the
executor	of	worker	1	gets	only	one	task.

This	can	be	illustrated	nicely	using	the	following	figure:

Let’s	change	the	configuration	in	the	bolt	to	two	executors	and	two	tasks:

builder.setBolt("bolt-split",	SplitSentenceBolt(),2)

	//	2	tasks	for	bolts.

.setNumTasks(2)

.shuffleGrouping("spout-sentence");

This	can	be	illustrated	well	here:

The	number	of	workers	is	two	again.	As	the	bolt	has	two	executors	and	two	tasks,	that
makes	it	2/2,	or	one	task	per	executor.	Now	you	can	see	that	both	executors	get	one	task
each.	In	terms	of	performance,	both	cases	are	exactly	the	same,	as	the	tasks	run
sequentially	within	the	executor	thread.	More	executors	means	a	higher	degree	of
parallelism,	and	more	workers	means	using	resources	such	as	CPU	and	RAM	more
effectively.	Memory	allocation	is	done	at	the	worker	level	using	the	worker.childopts
setting.	We	should	also	monitor	the	maximum	amount	of	memory	a	particular	worker
process	is	holding.	This	plays	an	important	role	in	deciding	the	total	number	of	workers.	It
can	be	seen	using	the	ps	-ef	option.	Always	keep	the	tasks	and	executors	in	the	same
ratio,	and	derive	the	correct	value	for	the	number	of	executors	using	the	capacity	column
of	the	Storm	UI.	As	an	important	note,	we	should	keep	the	shorter	duration	transaction	in
the	bolt	and	try	to	tune	it	via	splitting	code	into	more	bolts	or	reducing	the	batch	size	tuple.
The	batch	size	is	the	number	of	records	received	by	the	bolt	in	a	single	tuple	delivery.
Also,	don’t	block	the	nextTuple	method	of	the	spout	due	to	the	longer	holding
transaction.

Summary
As	this	chapter	approaches	its	end,	you	must	have	got	a	brief	idea	about	the	Nimbus,
supervisor,	UI,	and	Zookeeper	processes.	This	chapter	also	taught	you	how	to	tune
parallelism	in	Storm	by	playing	with	the	number	of	workers,	executors,	and	tasks.	You
became	familiar	with	the	important	problem	of	distributing	computation,	that	is,	failures
and	overcoming	failures	by	different	kinds	of	fault	tolerance	available	in	the	system.	And
most	importantly,	you	learned	how	to	write	a	“reliable”	spout	to	achieve	guaranteed
message	processing	and	linking	in	bolts.

The	next	chapter	will	give	you	information	about	how	to	build	a	simple	topology	using	a
Python	library	called	Petrel.	Petrel	addresses	some	limitations	of	Storm’s	built-in	Python
support,	providing	simpler	and	more	streamlined	development.

Chapter	3.	Introducing	Petrel
As	discussed	in	Chapter	1,	Getting	Acquainted	with	Storm,	Storm	is	a	platform	for
processing	large	amounts	of	data	in	real	time.	Storm	applications	are	often	written	in	Java,
but	Storm	supports	other	languages	as	well,	including	Python.	While	the	concepts	are
similar	across	languages,	the	details	vary	by	language.	In	this	chapter,	we’ll	get	our	first
hands-on	experience	using	Storm	with	Python.	First,	you’ll	learn	about	a	Python	library
called	Petrel,	which	is	necessary	for	creating	topologies	in	Python.	Next,	we’ll	set	up	our
Python/Storm	development	environment.	Then,	we’ll	take	a	close	look	at	a	working	Storm
topology	written	in	Python.	Finally,	we’ll	run	the	topology	and	you	will	learn	some	key
techniques	to	ease	the	process	of	developing	and	debugging	topologies.	After	you
complete	this	chapter,	you’ll	have	a	good	high-level	understanding	of	developing	basic
Storm	topologies.	In	this	chapter,	we	will	cover	these	topics:

What	is	Petrel?
Installing	Petrel
Creating	your	first	topology
Running	the	topology
Productivity	tips	with	Petrel

What	is	Petrel?
All	Python	topologies	in	this	book	rely	on	an	open	source	Python	library	called	Petrel.	If
you	have	prior	experience	with	Storm,	you	may	recall	that	there	is	a	GitHub	project	called
storm-starter	that	includes	examples	of	using	Storm	with	various	languages	(you	can
find	the	latest	version	of	storm-starter	at
https://github.com/apache/storm/tree/master/examples/storm-starter).	The	storm-starter
project	includes	a	module	called	storm.py,	which	allows	you	to	implement	Storm
topologies	in	Python.	Given	the	availability	of	storm.py,	is	it	really	necessary	to	use
another	library?	While	it	is	certainly	possible	to	build	topologies	using	storm.py,	it	lacks
some	important	features.	To	work	around	those	gaps,	a	developer	must	use	languages	and
tools	that	won’t	be	familiar	to	most	Python	developers.	If	you	are	already	familiar	with
these	tools	and	do	not	mind	juggling	multiple	technology	stacks	as	you	work	with	Storm,
you	may	be	happy	with	storm.py.	But	most	developers	who	are	new	to	Storm	find	the
storm.py	approach	to	be	overly	complex,	even	overwhelming.	Let’s	discuss	the
weaknesses	of	storm.py	in	more	detail.

https://github.com/apache/storm/tree/master/examples/storm-starter

Building	a	topology
In	order	to	run	a	topology,	Storm	needs	a	description	of	spouts,	bolts,	and	streams	within
it.	This	description	is	encoded	in	a	format	called	Thrift.	The	storm.py	module	does	not
support	the	creation	of	this	description;	the	developer	must	create	it	using	another
programming	language	(typically	Java	or	Clojure).

Packaging	a	topology
A	topology	is	submitted	to	Storm	in	the	form	of	a	Java	.jar	file	(similar	to	Python	.egg	or
.tar.gz	files).	In	addition	to	the	topology	description,	a	Python	topology	.jar	must	also
include	the	Python	code	for	the	topology.	Creating	a	JAR	file	typically	involves	using	Java
development	tools	such	as	Ant	or	Maven.

Logging	events	and	errors
It	is	much	easier	to	debug	and	monitor	a	topology	if	it	includes	logging	messages	to	allow
tracking	of	the	data	that	flows	through	it.	If	things	go	wrong	in	a	Python	topology	and	the
code	crashes,	it’s	invaluable	to	see	what	the	error	was	and	where	it	occurred.	The
storm.py	module	provides	no	help	in	these	areas.	If	a	component	crashes,	it	simply	exits
without	capturing	any	information.	In	my	experience,	this	is	the	most	frustrating	aspect	of
working	with	storm.py.

Managing	third-party	dependencies
Real-world	Python	applications	often	use	third-party	libraries.	If	a	cluster	needs	to	run
multiple	topologies,	each	topology	may	have	different,	even	conflicting	versions	of	these
libraries.	Python	virtual	environments	are	a	great	tool	for	managing	this.	However,
storm.py	does	not	help	you	create,	activate,	or	install	third-party	libraries	in	a	Python
virtual	environment.	Petrel	addresses	all	of	these	limitations	of	Storm’s	built-in	Python
support,	providing	a	simpler,	more	streamlined	development	experience.	Petrel’s	key
features	include	the	following:

A	Python	API	for	building	a	topology
Packaging	a	topology	for	submission	to	Storm
Logging	events	and	errors
On	worker	nodes,	setting	up	a	topology-specific	Python	runtime	environment	using
setup.sh

In	this	chapter,	we’ll	talk	about	the	first	three	points.	We’ll	see	an	example	of	the	fourth	in
Chapter	4,	Example	Topology	–	Twitter.

Installing	Petrel
Let’s	set	up	our	Python	development	environment.	We	assume	here	that	you	have	already
followed	the	instructions	in	Chapter	1,	Getting	Acquainted	with	Storm,	to	install	Storm
0.9.3:

1.	 First,	we	need	to	install	virtualenv,	a	tool	for	managing	Python	libraries.	On
Ubuntu,	simply	run	this	command:

sudo	apt-get	install	python-virtualenv

2.	 Next,	we	create	a	Python	virtual	environment.	This	provides	a	way	to	install	Python
libraries	without	requiring	root	access	to	the	machine	and	without	interfering	with	the
system’s	Python	packages:

virtualenv	petrel

You	will	see	something	like	the	following	output:

New	python	executable	in	petrel/bin/python

Installing	

distribute…..

...

...done

3.	 Next,	run	this	command	to	activate	the	virtual	environment.	Your	shell	prompt	will
change	to	include	the	virtualenv	name,	indicating	that	the	virtual	environment	is
active:

source	petrel/bin/activate

(petrel)barry@Dell660s:~$

Note
You’ll	need	to	run	this	command	again—each	time	you	open	a	new	terminal.

4.	 Finally,	install	Petrel:

easy_install	petrel==0.9.3.0.3

Note
The	first	three	digits	of	the	Petrel	version	number	must	match	the	version	of	Storm
that	you’re	using.	If	you’re	using	a	version	of	Storm	with	no	corresponding	Petrel
release,	you	can	install	Petrel	from	source.	Check	out
https://github.com/AirSage/Petrel#installing-petrel-from-source	for	instructions.

Tip
Downloading	the	example	code

You	can	download	the	example	code	files	for	all	Packt	books	you	have	purchased	from
your	account	at	http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can

https://github.com/AirSage/Petrel#installing-petrel-from-source
http://www.packtpub.com

visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to
you

http://www.packtpub.com/support

Creating	your	first	topology
Now,	we’ll	create	a	Storm	topology	that	breaks	sentences	into	words	and	then	counts	the
number	of	occurrences	of	each	word.	Implementing	this	topology	in	Storm	requires	the
following	components:

Sentence	spout	(randomsentence.py):	A	topology	always	begins	with	a	spout;	that’s
how	data	gets	into	Storm.	The	sentence	spout	will	emit	an	infinite	stream	of
sentences.
Splitter	bolt	(splitsentence.py):	This	receives	sentences	and	splits	them	into	words.
Word	count	bolt	(wordcount.py):	This	receives	words	and	counts	the	occurrences.
For	each	word	processed,	output	the	word	along	with	the	number	of	occurrences.

The	following	figure	shows	how	data	flows	through	the	topology:

Word	count	topology

Now	that	we’ve	seen	the	basic	data	flow,	let’s	implement	the	topology	and	see	how	it
works.

Sentence	spout
In	this	section,	we	implement	a	spout	that	generates	random	sentences.	Enter	this	code	in	a
file	called	randomsentence.py:

import	time

import	random

from	petrel	import	storm

from	petrel.emitter	import	Spout

class	RandomSentenceSpout(Spout):

				def	__init__(self):

								super(RandomSentenceSpout,	self).__init__(script=__file__)

				@classmethod

				def	declareOutputFields(cls):

								return	['sentence']

				sentences	=	[

								"the	cow	jumped	over	the	moon",

								"an	apple	a	day	keeps	the	doctor	away",

]

				def	nextTuple(self):

								time.sleep(0.25)

								sentence	=	self.sentences[

												random.randint(0,	len(self.sentences)	-	1)]

								storm.emit([sentence])

def	run():

				RandomSentenceSpout().run()

The	spout	inherits	from	Petrel’s	Spout	class.

Petrel	requires	every	spout	and	bolt	class	to	implement	__init__()	and	pass	its	filename
to	the	(script=__file__)	base	class.	The	script	parameter	tells	Petrel	which	Python
script	to	run	while	launching	an	instance	of	the	component.

The	declareOutputFields()	function	tells	Storm	about	the	structure	of	the	tuples	emitted
by	this	spout.	Each	tuple	consists	of	a	single	field	named	sentence.

Storm	calls	nextTuple()	each	time	it	is	ready	for	more	data	from	the	spout.	In	a	real-
world	spout,	you	might	be	reading	from	an	external	data	source,	such	as	Kafka	or	Twitter.
This	spout	is	just	an	example,	so	it	generates	its	own	data.	It	simply	makes	a	random
choice	between	one	of	two	sentences.

You	may	have	noticed	that	the	spout	sleeps	for	0.25	seconds	on	every	call	to	nextTuple().
Why	is	this	so?	It’s	not	technically	necessary,	but	it	slows	things	down	and	makes	the
output	easier	to	read	when	the	topology	runs	in	local	mode.

What	does	the	run()	function	do?	It’s	a	bit	of	glue	code	required	by	Petrel.	When	a	spout
or	bolt	script	is	loaded	into	Storm,	Petrel	calls	the	run()	function	to	create	the	component
and	begins	processing	messages.	If	your	spout	or	bolt	needs	to	do	additional	initialization,

this	is	a	good	place	for	it	to	do	so.

Splitter	bolt
This	section	provides	the	splitter	bolt,	which	consumes	sentences	from	the	spout	and	splits
them	into	words.	Enter	this	code	in	a	file	called	splitsentence.py:

from	petrel	import	storm

from	petrel.emitter	import	BasicBolt

class	SplitSentenceBolt(BasicBolt):

				def	__init__(self):

								super(SplitSentenceBolt,	self).__init__(script=__file__)

				def	declareOutputFields(self):

								return	['word']

				def	process(self,	tup):

								words	=	tup.values[0].split("")

								for	word	in	words:

										storm.emit([word])

def	run():

				SplitSentenceBolt().run()

SplitSentenceBolt	inherits	from	the	BasicBolt	Petrel	class.	This	class	is	used	for	most
simple	bolts.	You	may	recall	that	Storm	has	a	feature	for	ensuring	that	every	message	is
processed,	“replaying”	previous	tuples	if	they	were	not	processed	to	completion.
BasicBolt	simplifies	working	with	this	feature.	It	does	so	by	automatically
acknowledging	to	Storm	as	each	tuple	is	processed.	The	more	flexible	Bolt	class	allows
the	programmer	to	directly	acknowledge	tuples,	but	is	it	beyond	the	scope	of	this	book.

The	split	sentence	bolt	has	a	run	function,	similar	to	the	spout.

The	process()	function	receives	sentences	from	the	spout	and	splits	them	into	words.
Each	word	is	emitted	as	an	individual	tuple.

Word	Counting	Bolt
This	section	implements	the	word	count	bolt,	which	consumes	words	from	the	spout	and
counts	them.	Enter	the	following	code	in	the	wordcount.py	file:

from	collections	import	defaultdict

from	petrel	import	storm

from	petrel.emitter	import	BasicBolt

class	WordCountBolt(BasicBolt):

				def	__init__(self):

								super(WordCountBolt,	self).__init__(script=__file__)

								self._count	=	defaultdict(int)

				@classmethod

				def	declareOutputFields(cls):

								return	['word',	'count']

				def	process(self,	tup):

								word	=	tup.values[0]

								self._count[word]	+=	1

								storm.emit([word,	self._count[word]])

def	run():

				WordCountBolt().run()

The	word	count	bolt	has	a	new	wrinkle;	unlike	the	sentence	bolt,	it	needs	to	store
information	from	one	tuple	to	the	next—the	word	count.	The	__init__()	function	sets	up
a	_count	field	to	handle	this.

The	word	count	bolt	uses	Python’s	handy	defaultdict	class,	which	simplifies	counting
things	by	automatically	providing	a	0	entry	when	we	access	a	nonexistent	key.

Defining	a	topology
The	previous	sections	provided	the	spout	and	bolts	for	the	word	count	topology.	Now,	we
need	to	tell	Storm	how	the	components	combine	to	form	a	topology.	In	Petrel,	this	is	done
with	a	create.py	script.	This	script	provides	the	following	information:

Spouts	and	bolts	that	make	up	the	topology
For	each	bolt,	where	its	input	data	comes	from
How	tuples	are	partitioned	among	the	instances	of	the	bolt

Here	is	the	create.py	script:

from	randomsentence	import	RandomSentenceSpout

from	splitsentence	import	SplitSentenceBolt

from	wordcount	import	WordCountBolt

def	create(builder):

				builder.setSpout("spout",	RandomSentenceSpout(),	1)

				builder.setBolt(

								"split",	SplitSentenceBolt(),	1).shuffleGrouping("spout")

				builder.setBolt(

								"count",	WordCountBolt(),	1).fieldsGrouping(

								"split",	["word"])

It	is	vital	that	the	word	count	bolt	uses	Storm’s	fieldsGrouping	behavior	(as	described	in
the	Stream	grouping	section	of	Chapter	2,	The	Storm	Anatomy).This	setting	for	a	bolt	lets
you	group	the	tuples	in	your	data	stream	on	one	or	more	fields.	For	the	word	count
topology,	fieldsGrouping	ensures	that	all	instances	of	a	word	will	be	counted	by	the
same	Storm	worker	process.

When	the	topology	is	deployed	on	a	cluster,	there	will	probably	be	many	separate	running
instances	of	the	word	count	bolt.	If	we	didn’t	configure	fieldsGrouping	on	the	"word"
field,	then	we	might	get	the	following	results	by	processing	the	sentence,	“the	cow	jumped
over	the	moon”:

Word	count	instance	1:	{	"the":	1,	"cow":	1,	"jumped":	1	}

Word	count	instance	2:	{	"over":	1,	"the":	1,	"moon":	1	}

There	are	two	entries	for	"the",	and	because	of	this,	the	count	is	wrong!	We	want
something	like	this	instead:

Word	count	instance	1:	{	"the":	2,	"cow":	1,	"jumped":	1	}

Word	count	instance	2:	{	"over":	1,	"moon":	1	}

Running	the	topology
Just	a	few	more	details	and	we’ll	be	ready	to	run	the	topology:

1.	 Create	a	topology.yaml	file.	This	is	a	configuration	file	for	Storm.	A	complete
explanation	of	this	file	is	beyond	the	scope	of	this	book,	but	you	can	see	the	entire	set
of	available	options	at
https://github.com/apache/storm/blob/master/conf/defaults.yaml:

nimbus.host:	"localhost"

topology.workers:	1

2.	 Create	an	empty	manifest.txt	file.	You	can	use	an	editor	to	do	this	or	simply	run
touch	manifest.txt.	This	is	a	Petrel-specific	file	that	tells	Petrel	what	additional
files	(if	any)	should	be	included	in	the	.jar	file	that	it	submits	to	Storm.	In	Chapter
4,	Example	Topology	–	Twitter	we’ll	see	an	example	that	really	uses	this	file.

3.	 Before	running	the	topology,	let’s	review	the	list	of	files	we’ve	created.	Make	sure
you	have	created	these	files	correctly:

randomsentence.py

splitsentence.py

wordcount.py

create.py

topology.yaml

manifest.txt

4.	 Run	the	topology	with	the	following	command:

petrel	submit	--config	topology.yaml	--logdir	`pwd`

Congratulations!	You	have	created	and	run	your	first	topology!

Petrel	runs	the	create.py	script	to	discover	the	structure	of	the	topology,	and	then
uses	that	information	plus	the	manifest.txt	file	to	build	a	topology.jar	file	and
submit	it	to	Storm.	Next,	Storm	unpacks	the	topology.jar	file	and	prepares	the
workers.	With	Petrel,	this	requires	creating	a	Python	virtual	environment	and
installing	Petrel	from	the	Internet.	In	about	30	seconds,	the	topology	will	be	up	and
running	in	Storm.

You’ll	see	an	endless	stream	of	output,	sprinkled	with	messages	similar	to	the
following:

25057	[Thread-20]	INFO		backtype.storm.daemon.task	-	Emitting:	split	

default	["the"]

25058	[Thread-20]	INFO		backtype.storm.daemon.task	-	Emitting:	split	

default	["moon"]

25059	[Thread-22]	INFO		backtype.storm.daemon.task	-	Emitting:	count	

default	["cow",3]

25059	[Thread-9-count]	INFO		backtype.storm.daemon.executor	-	

Processing	received	message	source:	split:3,	stream:	default,	id:	{},	

["over"]

25059	[Thread-9-count]	INFO		backtype.storm.daemon.executor	-	

https://github.com/apache/storm/blob/master/conf/defaults.yaml

Processing	received	message	source:	split:3,	stream:	default,	id:	{},	

["the"]

25059	[Thread-9-count]	INFO		backtype.storm.daemon.executor	-	

Processing	received	message	source:	split:3,	stream:	default,	id:	{},	

["moon"]

25060	[Thread-22]	INFO		backtype.storm.daemon.task	-	Emitting:	count	

default	["jumped",3]

25060	[Thread-22]	INFO		backtype.storm.daemon.task	-	Emitting:	count	

default	["over",3]

25060	[Thread-22]	INFO		backtype.storm.daemon.task	-	Emitting:	count	

default	["the",9]

25060	[Thread-22]	INFO		backtype.storm.daemon.task	-	Emitting:	count	

default	["moon",3]

5.	 When	you’ve	seen	enough,	press	Ctrl	+	C	to	kill	Storm.	Sometimes,	it	doesn’t	exit
cleanly.	If	it	doesn’t,	typically	the	following	steps	will	clean	things	up:	press	Ctrl	+	C
a	few	more	times,	and	press	Ctrl	+	Z	to	pause	Storm.

6.	 Type	ps	to	get	a	list	of	processesLook	for	a	Java	process	and	get	its	process	idType
"kill	-9	processid",	replacing	processid	with	the	ID	of	the	Java	process.

Troubleshooting
If	the	topology	doesn’t	run	correctly,	review	the	log	files	created	in	the	current	directory.
Errors	are	often	caused	by	using	a	version	of	Storm	that	does	not	have	a	corresponding
version	of	Petrel	on	the	PyPI	website	(https://pypi.python.org/pypi/petrel).	At	the	time	of
writing	this	book,	two	Storm	versions	are	supported:

0.9.3
0.9.4

If	you	are	using	an	unsupported	version	of	Storm,	you	are	likely	to	see	an	error	similar	to
one	of	these:

		File	"/home/barry/.virtualenvs/petrel2/lib/python2.7/site-

packages/petrel-0.9.3.0.3-py2.7.egg/petrel/cmdline.py",	line	19,	in	

get_storm_version

				return	m.group(2)

AttributeError:	'NoneType'	object	has	no	attribute	'group'

IOError:	[Errno	2]	No	such	file	or	directory:	

'/home/barry/.virtualenvs/petrel2/lib/python2.7/site-packages/petrel-

0.9.3.0.3-py2.7.egg/petrel/generated/storm-petrel-0.10.0-SNAPSHOT.jar'

https://pypi.python.org/pypi/petrel

Productivity	tips	with	Petrel
We’ve	covered	a	lot	of	ground	in	this	chapter.	While	we	don’t	know	every	detail	of	Storm,
we’ve	seen	how	to	construct	a	topology	with	multiple	components	and	send	data	between
them.

The	Python	code	for	the	topology	is	quite	short—only	about	75	lines	in	all.	This	makes	a
nice	example,	but	really,	it’s	just	a	little	too	short.	When	you	start	writing	your	own
topologies,	things	probably	won’t	work	perfectly	the	first	time.	New	code	usually	has
bugs,	and	may	even	crash	sometimes.	To	get	things	working	correctly,	you’ll	need	to
know	what’s	happening	in	the	topology,	especially	when	there	are	problems.	As	you	work
on	fixing	problems,	you’ll	be	running	the	same	topology	over	and	over,	and	the	30-second
startup	time	for	a	topology	can	seem	like	eternity.

Improving	startup	performance
Let’s	address	startup	performance	first.	By	default,	when	a	Petrel	topology	starts	up,	it
creates	a	new	Python	virtualenv	and	installs	Petrel	and	other	dependencies	in	it.	While
this	behavior	is	very	useful	for	deploying	a	topology	on	a	cluster,	it	is	very	inefficient
during	development,	when	you	may	be	launching	the	topology	dozens	of	times.	To	skip
the	virtualenv	creation	step,	simply	change	the	submit	command	to	have	Petrel	reuse	the
existing	Python	virtual	environment:

petrel	submit	--config	topology.yaml	--venv	self

This	cuts	the	startup	time	from	30	seconds	down	to	about	10	seconds.

Enabling	and	using	logging
Like	many	languages,	Python	has	a	logging	framework	that	provides	a	way	to	capture
information	on	what	is	happening	inside	a	running	application.	This	section	describes	how
to	use	logging	with	Storm:

1.	 In	the	same	directory	as	that	of	the	word	count	topology,	create	a	new	file,	called
logconfig.ini:

[loggers]

keys=root,storm

[handlers]

keys=hand01

[formatters]

keys=form01

[logger_root]

level=INFO

handlers=hand01

[logger_storm]

qualname=storm

level=DEBUG

handlers=hand01

propagate=0

[handler_hand01]

class=FileHandler

level=DEBUG

formatter=form01

args=(os.getenv('PETREL_LOG_PATH')	or	'petrel.log',	'a')

[formatter_form01]

format=[%(asctime)s][%(name)s][%(levelname)s]%(message)s

datefmt=

class=logging.Formatter

Note
What	you	just	saw	is	a	simple	log	configuration	for	demonstration	purposes.	For
more	information	about	Python	logging,	consult	the	logging	module	documentation
at	https://www.python.org/.

2.	 Update	wordcount.py	to	log	its	input	and	output.	The	newly	added	lines	are
highlighted:

import	logging

from	collections	import	defaultdict

from	petrel	import	storm

from	petrel.emitter	import	BasicBolt

log	=	logging.getLogger('wordcount')

class	WordCountBolt(BasicBolt):

				def	__init__(self):

								super(WordCountBolt,	self).__init__(script=__file__)

								self._count	=	defaultdict(int)

https://www.python.org/

				@classmethod

				def	declareOutputFields(cls):

								return	['word',	'count']

				def	process(self,	tup):

							log.debug('WordCountBolt.process()	called	with:	%s',

																		tup)

							word	=	tup.values[0]

							self._count[word]	+=	1

							log.debug('WordCountBolt.process()	emitting:	%s',

											[word,	self._count[word]])

							storm.emit([word,	self._count[word]])

def	run():

				WordCountBolt().run()

3.	 Now	launch	the	updated	topology:

petrel	submit	--config	topology.yaml	--venv	self	--logdir	`pwd`

As	the	topology	runs,	a	log	file	for	the	word	count	component	will	be	written	to	the
current	directory,	capturing	what’s	happening.	The	filename	varies	from	run	to	run,	but	it
will	be	something	like	petrel22011_wordcount.log:

WordCountBolt.process()	called	with:	<Tuple	component='split'	

id='5891744987683180633'	stream='default'	task=3	values=['moon']>

WordCountBolt.process()	emitting:	['moon',	2]

WordCountBolt.process()	called	with:	<Tuple	component='split'	

id='-8615076722768870443'	stream='default'	task=3	values=['the']>

WordCountBolt.process()	emitting:	['the',	7]

Automatic	logging	of	fatal	errors
If	a	spout	or	bolt	crashes	due	to	a	runtime	error,	you’ll	need	to	know	what	happened	in
order	to	fix	it.	To	help	with	this,	Petrel	automatically	writes	fatal	runtime	errors	to	the	log:

1.	 Add	a	line	at	the	beginning	of	the	word	count	bolt’s	process()	function	so	that	it
crashes:

				def	process(self,	tup):

								raise	ValueError('abc')

								log.debug('WordCountBolt.process()	called	with:	%s',	tup)

								word	=	tup.values[0]

								self._count[word]	+=	1

								log.debug('WordCountBolt.process()	emitting:	%s',

												[word,	self._count[word]])

								storm.emit([word,	self._count[word]])

2.	 Run	the	topology	again	and	examine	the	word	count	log	file.	It’ll	contain	a	backtrace
for	the	failure:

[2015-02-08	22:28:42,383][storm][INFO]Caught	exception

[2015-02-08	22:28:42,383][storm][ERROR]Sent	failure	message	

("E_BOLTFAILED__wordcount__Dell660s__pid__21794__port__-1__taskindex__-

1__ValueError")	to	Storm

[2015-02-08	22:28:47,385][storm][ERROR]Caught	exception	in	

BasicBolt.run

Traceback	(most	recent	call	last):

		File	"/home/barry/dev/Petrel/petrel/petrel/storm.py",	line	381,	in	

run

				self.process(tup)

		File	"/tmp/b46e3137-1956-4abf-80c8-

acaa7d3626d1/supervisor/stormdist/test+topology-1-

1423452516/resources/wordcount.py",	line	19,	in	process

				raise	ValueError('abc')

ValueError:	abc

[2015-02-08	22:28:47,386][storm][ERROR]The	error	occurred	while	

processing	this	tuple:	['an']

Worker	wordcount	exiting	normally.

Summary
In	this	chapter,	you	learned	how	Petrel	makes	it	possible	to	develop	Storm	topologies	in
pure	Python.	We	created	and	ran	a	simple	topology,	and	you	learned	how	it	works.	You
also	learned	how	to	use	Petrel’s	--venv	self	option	and	Python	logging	to	streamline
your	development	and	debugging	process.

In	the	next	chapter,	we	will	see	some	more	complex	topologies,	including	a	spout	that
reads	from	a	real-world	data	source	(Twitter),	rather	than	randomly	generated	data.

Chapter	4.	Example	Topology	–	Twitter
This	chapter	builds	on	the	material	from	Chapter	3,	Introducing	Petrel.	In	this	chapter,
we’ll	build	a	topology	that	demonstrates	a	number	of	new	features	and	techniques.	In
particular,	we’ll	see	how	to:

Implement	a	spout	that	reads	from	Twitter
Build	topology	components	based	on	third-party	Python	libraries
Compute	statistics	and	rankings	over	rolling	time	periods
Read	custom	configuration	settings	from	topology.yaml
Use	“tick	tuples”	to	execute	logic	on	a	schedule

Twitter	analysis
Most	of	you	have	heard	of	Twitter,	but	if	you	have	not,	check	out	how	Wikipedia
describes	Twitter:

“an	online	social	networking	service	that	enables	users	to	send	and	read	short	140-
character	messages	called	“tweets”.”

In	2013,	users	posted	400	million	messages	per	day	on	Twitter.	Twitter	offers	an	API	that
gives	developers	real-time	access	to	streams	of	tweets.	On	it,	messages	are	public	by
default.	The	volume	of	messages,	the	availability	of	an	API,	and	the	public	nature	of
tweets	combine	to	make	Twitter	a	valuable	source	of	insights	on	current	events,	topics	of
interest,	public	sentiment,	and	so	on.

Storm	was	originally	developed	at	BackType	to	process	tweets,	and	Twitter	analysis	is	still
a	popular	use	case	of	Storm.	You	can	see	several	examples	on	the	Storm	website	at
https://storm.apache.org/documentation/Powered-By.html.

The	topology	in	this	chapter	demonstrates	how	to	read	from	Twitter’s	real-time	streaming
API,	computing	a	ranking	of	the	most	popular	words.	It’s	a	Python	version	of	the	“rolling
top	words”	sample	on	the	Storm	website
(https://github.com/apache/storm/blob/master/examples/storm-
starter/src/jvm/storm/starter/RollingTopWords.java),	and	consists	of	the	following
components:

Twitter	stream	spout	(twitterstream.py):	This	reads	tweets	from	the	Twitter	sample
stream.
Splitter	bolt	(splitsentence.py):	This	receives	tweets	and	splits	them	into	words.	It
is	an	improved	version	of	the	splitter	bolt	from	Chapter	3,	Introducing	Petrel.
Rolling	word	count	bolt	(rollingcount.py):	This	receives	words	and	counts	the
occurrences.	It	is	similar	to	the	word	count	bolt	from	Chapter	3,	Introducing	Petrel,
but	implements	a	rolling	count	(this	means	that	the	bolt	periodically	discards	old
data,	so	the	word	counts	only	consider	recent	messages).
Intermediate	rankings	bolt	(intermediaterankings.py):	This	consumes	word	counts
and	periodically	emits	the	n	most	frequently	seen	words.
Total	rankings	bolt	(totalrankings.py):	This	is	similar	to	the	intermediate	rankings
bolt.	It	combines	the	intermediate	rankings	to	produce	an	overall	set	of	rankings.

https://storm.apache.org/documentation/Powered-By.html
https://github.com/apache/storm/blob/master/examples/storm-starter/src/jvm/storm/starter/RollingTopWords.java

Twitter’s	Streaming	API
Twitter’s	public	API	is	both	powerful	and	flexible.	It	has	many	features	for	both	posting
and	consuming	tweets.	Our	application	needs	to	receive	and	process	tweets	in	real	time.
Twitter’s	streaming	API	was	designed	to	solve	this	problem.	In	computer	science,	a	stream
is	a	sequence	of	data	elements	(in	this	case,	tweets)	made	available	over	time.

The	streaming	API	is	explained	in	detail	at	https://dev.twitter.com/streaming/overview.	To
use	it,	an	application	first	creates	a	connection	to	Twitter.	The	connection	remains	open
indefinitely	to	receive	tweets.

The	Streaming	API	offers	several	ways	to	choose	which	tweets	your	application	receives.
Our	topology	uses	the	so-called	sample	stream,	which	provides	a	small	subset	of	all	tweets
arbitrarily	chosen	by	Twitter.	The	sample	stream	is	intended	for	demos	and	testing.
Production	applications	generally	use	one	of	the	other	stream	types.	For	more	information
about	the	available	streams,	refer	to	https://dev.twitter.com/streaming/public.

https://dev.twitter.com/streaming/overview
https://dev.twitter.com/streaming/public

Creating	a	Twitter	app	to	use	the	Streaming	API
Before	we	can	use	Twitter’s	Streaming	API,	Twitter	requires	us	to	create	an	app.	This
sounds	complicated,	but	it’s	quite	easy	to	set	up;	basically,	we	just	fill	in	a	form	on	the
website:

1.	 If	you	don’t	have	a	Twitter	account,	create	one	at	https://twitter.com/.
2.	 Once	you	have	an	account,	log	in	and	go	to	https://apps.twitter.com/.	Click	on	Create

New	App.	Fill	in	the	form	for	creating	an	application.	Leave	the	Callback	URL	field
blank.	The	default	access	level	is	read-only,	which	means	that	this	application	can
only	read	tweets;	it	can’t	post	or	make	other	changes.	Read-only	access	is	fine	for	this
example.	Finally,	click	on	Create	your	Twitter	application.	You	will	be	redirected
to	your	app’s	page.

3.	 Click	on	the	Keys	and	Access	Tokens	tab,	then	click	on	Create	my	access	token.
Twitter	will	generate	an	access	token	consisting	of	two	parts:	Access	Token	and
Access	Token	Secret.	While	connecting	to	Twitter,	your	application	will	use	this
token	along	with	Consumer	Key	and	Consumer	Secret.

The	following	screenshot	shows	the	Keys	and	Access	Tokens	tab	after	generating
the	access	token:

https://twitter.com/
https://apps.twitter.com/

The	topology	configuration	file
Now	that	we’ve	set	up	a	Twitter	account	with	API	access,	we’re	ready	to	create	the
topology.	First,	create	topology.yaml.	We	first	saw	a	basic	topology.yaml	file	in	Chapter
3,	Introducing	Petrel.	Here,	topology.yaml	will	also	hold	the	connection	parameters	for
Twitter.	Enter	the	following	text,	replacing	the	four	oauth	values	with	your	own	Twitter
credentials	from	https://apps.twitter.com/:

nimbus.host:	"localhost"

topology.workers:	1

oauth.consumer_key:	"blahblahblah"

oauth.consumer_secret:	"blahblahblah"

oauth.access_token:	"blahblahblah"

oauth.access_token_secret:	"blahblahblah"

https://apps.twitter.com/

The	Twitter	stream	spout
Now,	let’s	look	at	the	Twitter	spout.	Enter	this	code	in	twitterstream.py:

import	json

import	Queue

import	threading

from	petrel	import	storm

from	petrel.emitter	import	Spout

from	tweepy.streaming	import	StreamListener

from	tweepy	import	OAuthHandler,	Stream

class	QueueListener(StreamListener):

				def	__init__(self,	queue):

								self.queue	=	queue

				

				def	on_data(self,	data):

								tweet	=	json.loads(data)

								if	'text'	in	tweet:

												self.queue.put(tweet['text'])

								return	True

class	TwitterStreamSpout(Spout):

				def	__init__(self):

								super(TwitterStreamSpout,	self).__init__(script=__file__)

								self.queue	=	Queue.Queue(1000)

				def	initialize(self,	conf,	context):

								self.conf	=	conf

								thread	=	threading.Thread(target=self._get_tweets)

								thread.daemon	=	True

								thread.start()

				@classmethod

				def	declareOutputFields(cls):

								return	['sentence']

				def	_get_tweets(self):

								auth	=	OAuthHandler(

												self.conf['oauth.consumer_key'],

												self.conf['oauth.consumer_secret'])

								auth.set_access_token(

												self.conf['oauth.access_token'],

												self.conf['oauth.access_token_secret'])

								stream	=	Stream(auth,	QueueListener(self.queue))

								stream.sample(languages=['en'])

				def	nextTuple(self):

								tweet	=	self.queue.get()

								storm.emit([tweet])

								self.queue.task_done()

def	run():

				TwitterStreamSpout().run()

How	does	the	spout	communicate	with	Twitter?	The	Twitter	API	imposes	a	number	of
requirements	on	API	clients:

Connections	must	be	encrypted	using	the	Secure	Sockets	Layer	(SSL)
API	clients	must	be	authenticated	using	OAuth,	a	popular	authentication	protocol
used	to	interact	with	secure	web	services
Because	it	involves	a	long-lived	connection,	the	streaming	API	involves	more	than	a
simple	HTTP	request

Fortunately,	there	is	a	library	called	Tweepy	(http://www.tweepy.org/)	that	implements
these	requirements	in	a	simple	and	easy-to-use	Python	API.	Tweepy	provides	a	Stream
class	to	connect	to	the	Streaming	API.	It	is	used	in	_get_tweets().

Creating	a	Tweepy	stream	requires	the	four	Twitter	connection	parameters	listed	earlier.
We	could	hardcode	these	directly	in	our	spout,	but	then	we’d	have	to	change	the	code	if
the	connection	parameters	change.	Instead,	we	put	this	information	in	the	topology.yaml
configuration	file.	Our	spout	reads	these	settings	in	the	initialize()	function.	Storm
calls	this	function	when	a	task	for	this	component	starts	up,	passing	it	information	about
the	environment	and	configuration.	Here,	the	initialize()	function	captures	the
topology	configuration	in	self.conf.	This	dictionary	includes	the	oauth	values.

The	following	sequence	diagram	shows	how	the	spout	communicates	with	Twitter,
receives	tweets,	and	emits	them.	You	may	have	noticed	that	the	spout	creates	a
background	thread.	This	thread	receives	the	tweets	from	Tweepy	and	passes	them	to	the
main	spout	thread	using	a	Python	queue.

Why	does	the	spout	use	a	thread?	Often,	threads	are	used	to	support	concurrent
processing.	That’s	not	the	case	here.	Rather,	there	is	simply	a	mismatch	between	the

http://www.tweepy.org/

behavior	of	Tweepy	and	the	Petrel	spout	API.

When	reading	from	a	Twitter	stream,	Tweepy	blocks	execution,	calling	an	application-
supplied	event	handler	function	for	each	tweet	received.

In	Petrel,	the	nextTuple()	function	on	a	spout	must	return	from	the	function	after	each
tuple.

Running	Tweepy	in	a	background	thread	that	writes	to	a	queue	provides	a	simple	and
elegant	solution	to	these	conflicting	requirements.

Splitter	bolt
The	splitter	bolt	here	is	similar	in	structure	to	the	one	in	Chapter	3,	Introducing	Petrel.
This	version	has	two	improvements	that	make	it	more	useful	and	realistic.

Tip
Ignore	words	that	are	so	common	that	they	are	not	interesting	or	useful	in	a	“top	words”
list.	This	includes	English	words	such	as	“the,”	as	well	as	word-like	terms	that	appear
frequently	in	Tweets,	such	as	“http,”	“https,”	and	“rt.”

Omit	punctuation	when	splitting	a	Tweet	into	words.

A	Python	library	called	Natural	Language	Toolkit	(NLTK)	makes	it	easy	to	implement
both.	NLTK	has	many	other	fascinating,	powerful	language	processing	features,	but	those
are	beyond	the	scope	of	this	book.

Enter	this	code	in	splitsentence.py:

import	nltk.corpus

from	petrel	import	storm

from	petrel.emitter	import	BasicBolt

class	SplitSentenceBolt(BasicBolt):

				def	__init__(self):

								super(SplitSentenceBolt,	self).__init__(script=__file__)

								self.stop	=	set(nltk.corpus.stopwords.words('english'))

								self.stop.update(['http',	'https',	'rt'])

				def	declareOutputFields(self):

								return	['word']

				def	process(self,	tup):

								for	word	in	self._get_words(tup.values[0]):

												storm.emit([word])

				def	_get_words(self,	sentence):

								for	w	in	nltk.word_tokenize(sentence):

												w	=	w.lower()

												if	w.isalpha()	and	w	not	in	self.stop:

																yield	w

def	run():

				SplitSentenceBolt().run()

Rolling	word	count	bolt
The	rolling	word	count	bolt	is	similar	to	the	word	count	bolt	in	Chapter	3,	Introducing
Petrel.	The	bolt	in	the	earlier	chapter	simply	accumulated	the	word	counts	indefinitely.
This	is	not	good	for	analyzing	top	words	on	Twitter,	where	popular	topics	can	change
from	one	moment	to	the	next.	Rather,	we	want	counts	that	reflect	the	latest	information.
To	do	this,	the	rolling	word	count	bolt	stores	data	in	time-based	buckets.	Then,	it
periodically	discards	buckets	that	exceed	5	minutes	in	age.	Thus,	the	word	counts	from
this	bolt	only	consider	the	last	5	minutes	of	data.

Enter	the	following	code	in	rollingcount.py:

from	collections	import	defaultdict

from	petrel	import	storm

from	petrel.emitter	import	BasicBolt

class	SlotBasedCounter(object):

				def	__init__(self,	numSlots):

								self.numSlots	=	numSlots

								self.objToCounts	=	defaultdict(lambda:	[0]	*	numSlots)

				def	incrementCount(self,	obj,	slot):

								self.objToCounts[obj][slot]	+=	1

				def	getCount(self,	obj,	slot):

								return	self.objToCounts[obj][slot]

				def	getCounts(self):

								return	dict((k,	sum(v))	for	k,	v	in	self.objToCounts.iteritems())

				def	wipeSlot(self,	slot):

								for	obj	in	self.objToCounts.iterkeys():

												self.objToCounts[obj][slot]	=	0

				def	shouldBeRemovedFromCounter(self,	obj):

								return	sum(self.objToCounts[obj])	==	0

				def	wipeZeros(self):

								objToBeRemoved	=	set()

								for	obj	in	self.objToCounts.iterkeys():

												if	sum(self.objToCounts[obj])	==	0:

																objToBeRemoved.add(obj)

								for	obj	in	objToBeRemoved:

												del	self.objToCounts[obj]

class	SlidingWindowCounter(object):

				def	__init__(self,	windowLengthInSlots):

								self.windowLengthInSlots	=	windowLengthInSlots

								self.objCounter	=	/

												SlotBasedCounter(

																self.windowLengthInSlots)

								self.headSlot	=	0

								self.tailSlot	=	self.slotAfter(self.headSlot)

				def	incrementCount(self,	obj):

								self.objCounter.incrementCount(obj,	self.headSlot)

				def	getCountsThenAdvanceWindow(self):

								counts	=	self.objCounter.getCounts()

								self.objCounter.wipeZeros()

								self.objCounter.wipeSlot(self.tailSlot)

								self.headSlot	=	self.tailSlot

								self.tailSlot	=	self.slotAfter(self.tailSlot)

								return	counts

				def	slotAfter(self,	slot):

								return	(slot	+	1)	%	self.windowLengthInSlots

class	RollingCountBolt(BasicBolt):

				numWindowChunks	=	5

				emitFrequencyInSeconds	=	60

				windowLengthInSeconds	=	numWindowChunks	*	\

								emitFrequencyInSeconds

				def	__init__(self):

								super(RollingCountBolt,	self).__init__(script=__file__)

								self.counter	=	SlidingWindowCounter(

												self.windowLengthInSeconds	/

																self.emitFrequencyInSeconds

				@classmethod

				def	declareOutputFields(cls):

								return	['word',	'count']

				def	process(self,	tup):

								if	tup.is_tick_tuple():

												self.emitCurrentWindowCounts()

								else:

												self.counter.incrementCount(tup.values[0])

				def	emitCurrentWindowCounts(self):

								counts	=	self.counter.getCountsThenAdvanceWindow()

								for	k,	v	in	counts.iteritems():

												storm.emit([k,	v])

				def	getComponentConfiguration(self):

								return	{"topology.tick.tuple.freq.secs":

												self.emitFrequencyInSeconds}

def	run():

				RollingCountBolt().run()

The	SlotBasedCounter	stores	a	list	of	numSlots	(five)	count	values	for	each	word.	Each
slot	stores	emitFrequencyInSeconds	(60)	seconds	of	data.	Count	values	more	than	5
minutes	old	are	discarded.

How	does	the	bolt	know	when	60	seconds	have	elapsed?	Storm	makes	this	easy	by
providing	a	feature	called	tick	tuples.	This	feature	is	useful	when	you	need	to	execute
some	logic	within	your	bolts	as	per	a	schedule.	To	use	this	feature,	perform	the	following
steps:

In	getComponentConfiguration(),	return	a	dictionary	containing	a
topology.tick.tuple.freq.secs	key.	The	value	is	the	desired	number	of	seconds
between	ticks.
In	process(),	check	whether	the	tuple	is	a	normal	tuple	or	a	tick	tuple.	When	a	tick
tuple	is	received,	the	bolt	should	run	its	scheduled	processing.

The	intermediate	rankings	bolt
The	intermediate	rankings	bolt	maintains	a	dictionary	of	the	top	maxSize	(10)	items
ranked	by	occurrence	count,	and	emits	those	items	every	emitFrequencyInSeconds	(15)
seconds.	In	production,	the	topology	will	run	many	instances	of	this	bolt,	with	each	of
them	maintaining	the	top	words	for	a	subset	of	the	overall	words	seen.	Having	many
instances	of	the	same	component	allows	the	topology	to	process	large	numbers	of	tweets
and	easily	keep	all	the	counts	in	the	memory,	even	if	the	number	of	distinct	words	is	quite
large.

Enter	this	code	in	intermediaterankings.py:

from	petrel	import	storm

from	petrel.emitter	import	BasicBolt

def	tup_sort_key(tup):

				return	tup.values[1]

class	IntermediateRankingsBolt(BasicBolt):

				emitFrequencyInSeconds	=	15

				maxSize	=	10

				def	__init__(self):

								super(IntermediateRankingsBolt,	self).__init__(script=__file__)

								self.rankedItems	=	{}

				def	declareOutputFields(self):

								return	['word',	'count']

				def	process(self,	tup):

								if	tup.is_tick_tuple():

												for	t	in	self.rankedItems.itervalues():

																storm.emit(t.values)

								else:

												self.rankedItems[tup.values[0]]	=	tup

												if	len(self.rankedItems)	>	self.maxSize:

																for	t	in	sorted(

																								self.rankedItems.itervalues(),	key=tup_sort_key):

																				del	self.rankedItems[t.values[0]]

																				break

				def	getComponentConfiguration(self):

								return	{"topology.tick.tuple.freq.secs":

												self.emitFrequencyInSeconds}

def	run():

				IntermediateRankingsBolt().run()

The	total	rankings	bolt
The	total	rankings	bolt	is	very	similar	to	the	intermediate	rankings	bolt.	There	is	only	one
instance	of	this	bolt	in	the	topology.	It	receives	the	top	words	from	each	instance	of	that
bolt,	choosing	the	top	maxSize	(10)	items	overall.

Enter	the	following	code	in	totalrankings.py:

import	logging

from	petrel	import	storm

from	petrel.emitter	import	BasicBolt

log	=	logging.getLogger('totalrankings')

def	tup_sort_key(tup):

				return	tup.values[1]

class	TotalRankingsBolt(BasicBolt):

				emitFrequencyInSeconds	=	15

				maxSize	=	10

				def	__init__(self):

								super(TotalRankingsBolt,	self).__init__(script=__file__)

								self.rankedItems	=	{}

				def	declareOutputFields(self):

								return	['word',	'count']

				def	process(self,	tup):

								if	tup.is_tick_tuple():

												for	t	in	sorted(

																				self.rankedItems.itervalues(),

																				key=tup_sort_key,

																				reverse=True):

																log.info('Emitting:	%s',	repr(t.values))

																storm.emit(t.values)

								else:

												self.rankedItems[tup.values[0]]	=	tup

												if	len(self.rankedItems)	>	self.maxSize:

																for	t	in	sorted(

																								self.rankedItems.itervalues(),

																								key=tup_sort_key):

																				del	self.rankedItems[t.values[0]]

																				break

												zero_keys	=	set(

																k	for	k,	v	in	self.rankedItems.iteritems()

																if	v.values[1]	==	0)

												for	k	in	zero_keys:

																del	self.rankedItems[k]

				def	getComponentConfiguration(self):

								return	{"topology.tick.tuple.freq.secs":	

self.emitFrequencyInSeconds}

def	run():

				TotalRankingsBolt().run()

Defining	the	topology
Here	is	the	create.py	script	that	defines	the	structure	of	the	topology:

from	twitterstream	import	TwitterStreamSpout

from	splitsentence	import	SplitSentenceBolt

from	rollingcount	import	RollingCountBolt

from	intermediaterankings	import	IntermediateRankingsBolt

from	totalrankings	import	TotalRankingsBolt

def	create(builder):

				spoutId	=	"spout"

				splitterId	=	"splitter"

				counterId	=	"counter"

				intermediateRankerId	=	"intermediateRanker"

				totalRankerId	=	"finalRanker"

				builder.setSpout(spoutId,	TwitterStreamSpout(),	1)

				builder.setBolt(

								splitterId,	SplitSentenceBolt(),	1).shuffleGrouping("spout")

				builder.setBolt(

								counterId,	RollingCountBolt(),	4).fieldsGrouping(

												splitterId,	["word"])

				builder.setBolt(

								intermediateRankerId,

								IntermediateRankingsBolt(),	4).fieldsGrouping(

												counterId,	["word"])

				builder.setBolt(

								totalRankerId,	TotalRankingsBolt()).globalGrouping(

												intermediateRankerId)

The	structure	of	this	topology	is	similar	to	the	word	count	topology	from	Chapter	3,
Introducing	Petrel.	TotalRankingsBolt	has	a	new	wrinkle.	As	described	earlier,	there	is
just	one	instance	of	this	bolt,	and	it	uses	globalGrouping(),	so	all	tuples	from
IntermediateRankingsBolt	are	sent	to	it.

You	may	be	wondering	why	the	topology	needs	both	an	intermediate	ranking	and	a	total
ranking	bolt.	In	order	for	us	to	know	the	top	words	overall,	there	needs	to	be	a	single	bolt
instance	(total	rankings)	that	sees	across	the	entire	tweet	stream.	But	at	high	data	rates,	a
single	bolt	can’t	possibly	keep	up	with	the	traffic.	The	intermediate	rankings	bolt	instances
“shield”	the	total	rankings	bolt	from	this	traffic,	computing	the	top	words	for	their	slice	of
the	tweet	stream.	This	allows	the	final	rankings	bolt	to	compute	the	most	common	words
overall,	while	consuming	only	a	handful	of	the	overall	word	counts.	Elegant!

Running	the	topology
We	have	a	few	more	small	items	to	address	before	we	run	the	topology:

1.	 Copy	the	logconfig.ini	file	from	the	second	example	in	Chapter	3,	Introducing
Petrel,	to	this	topology’s	directory.

2.	 Create	a	file	called	setup.sh.	Petrel	will	package	this	script	with	the	topology	and
run	it	at	startup.	This	script	installs	the	third-party	Python	libraries	used	by	the
topology.	The	file	looks	like	this:

pip	install	-U	pip

pip	install	nltk==3.0.1	oauthlib==0.7.2	tweepy==3.2.0

3.	 Create	a	file	called	manifest.txt	with	these	two	lines:

logconfig.ini

setup.sh

4.	 Before	running	the	topology,	let’s	review	the	list	of	files	that	we’ve	created.	Make
sure	you	have	created	these	files	correctly:

topology.yaml

twitterstream.py

splitsentence.py

rollingcount.py

intermediaterankings.py

totalrankings.py

manifest.txt

setup.sh

5.	 Run	the	topology	with	this	command:

petrel	submit	--config	topology.yaml	--logdir	`pwd`

Once	the	topology	starts	running,	open	another	terminal	in	the	topology	directory.	Enter
the	following	command	to	see	the	log	file	for	the	total	rankings	bolt,	sorted	from	oldest	to
newest:

ls	-ltr	petrel*totalrankings.log

If	this	is	the	first	time	you’ve	run	the	topology,	there	will	be	only	one	log	file	listed.	A	new
file	is	created	for	each	run.	If	there	are	several	files	listed,	choose	the	most	recent	one.
Enter	this	command	to	monitor	the	contents	of	the	log	file	(the	exact	filename	will	be
different	on	your	system):

tail	-f	petrel24748_totalrankings.log

About	every	15	seconds,	you	will	see	log	messages	with	the	top	10	words	in	descending
order	of	popularity,	like	this:

Summary
In	this	chapter,	we	developed	a	complex	topology	using	a	number	of	new	techniques	and
libraries.	After	reading	this	example,	you	should	be	ready	to	begin	applying	Petrel	and
Storm	to	solve	real	problems.

In	the	upcoming	chapter,	we’ll	take	a	closer	look	at	some	of	Storm’s	built-in	features	that
are	useful	while	operating	a	cluster,	such	as	logging	and	monitoring.

Chapter	5.	Persistence	Using	Redis	and
MongoDB
It	is	often	necessary	to	store	tuples	in	a	persistent	data	store,	such	as	a	NoSQL	database	or
a	fast	key-value	cache,	in	order	to	perform	additional	analysis.	In	this	chapter,	we	will
revisit	the	Twitter	trending	analysis	topology	from	Chapter	4,	Example	Topology	–	Twitter
with	the	help	of	two	popular	persistence	media:	Redis	and	MongoDB.

Redis	(http://redis.io/)	is	an	open	source	and	BSD-licensed	advanced	key-value	cache	and
store.	MongoDB	is	a	cross-platform,	document-oriented	database
(https://www.mongodb.org/).

Here	are	the	two	problems	that	we	will	solve	in	this	chapter:

Finding	the	top	trending	tweet	topics	using	Redis
Computing	hourly	aggregates	of	city	mentions	using	MongoDB

http://redis.io/
https://www.mongodb.org/

Finding	the	top	n	ranked	topics	using
Redis
The	topology	will	compute	a	rolling	ranking	of	the	most	popular	words	in	the	past	5
minutes.	The	word	counts	are	stored	in	individual	windows	of	60	seconds	in	length.	It
consists	of	the	following	components:

Twitter	stream	spout	(twitterstream.py):	This	reads	tweets	from	the	Twitter	sample
stream.	This	spout	is	unchanged	from	Chapter	4,	Example	Topology	–	Twitter.
Splitter	bolt	(splitsentence.py):	This	receives	tweets	and	splits	them	into	words.
This	is	also	identical	to	the	one	in	Chapter	4,	Example	Topology	–	Twitter.
Rolling	word	count	bolt	(rollingcount.py):	This	receives	words	and	counts	the
occurrences.	The	Redis	keys	look	like	twitter_word_count:<start	time	of
current	window	in	seconds>,	and	the	values	are	stored	in	a	hash	using	the
following	simple	format:

{

				"word1":	5,

				"word2",	3,

}

This	bolt	uses	the	Redis	expireat	command	to	discard	old	data	after	5	minutes.
These	lines	of	code	perform	the	key	work:

						self.conn.zincrby(name,	word)

						self.conn.expireat(name,	expires)

						Total	rankings	bolt	(totalrankings.py)

In	this	bolt,	the	following	code	does	the	most	important	work:

self.conn.zunionstore(

				'twitter_word_count',

				['twitter_word_count:%s'	%	t	for	t	in	xrange(

								first_window,	now_floor)])

for	t	in	self.conn.zrevrange('twitter_word_count',	0,	self.maxSize,	

withscores=True):

				log.info('Emitting:	%s',	repr(t))

				storm.emit(t)

This	bolt	computes	the	top	maxSize	words	across	the	last	num_windows	periods.	The
zunionstore()	combines	the	word	counts	across	the	periods.	The	zrevrange()	sorts	the
combined	counts,	returning	the	top	maxSize	words.

In	the	original	Twitter	example,	roughly	the	same	logic	was	implemented	in
rollingcount.py,	intermediaterankings.py,	and	totalrankings.py.	With	Redis,	we
can	implement	the	same	calculations	in	just	a	few	lines.	The	design	delegates	much	of	the
work	to	Redis.	Depending	on	your	data	volumes,	this	may	not	scale	as	well	as	the
topology	in	the	previous	chapter.	However,	it	demonstrates	that	Redis’s	capabilities	go	far
beyond	simply	storing	data.

The	topology	configuration	file	–	the	Redis	case
Coming	up	is	the	topology	configuration	file.	Depending	on	your	Redis	installation,	you
may	need	to	change	the	value	of	redis_url.

Enter	this	code	in	topology.yaml:

nimbus.host:	"localhost"

topology.workers:	1

oauth.consumer_key:	"your-key-for-oauth-blah"

oauth.consumer_secret:	"your-secret-for-oauth-blah"

oauth.access_token:	"your-access-token-blah"

oauth.access_token_secret:	"your-access-secret-blah"

twitter_word_count.redis_url:	"redis://localhost:6379"

twitter_word_count.num_windows:	5

twitter_word_count.window_duration:	60

Rolling	word	count	bolt	–	the	Redis	case
The	rolling	word	count	bolt	is	similar	to	the	word	count	bolt	in	Chapter	3,	Introducing
Petrel.	The	bolt	in	the	earlier	chapter	simply	accumulated	the	word	count	indefinitely.	This
is	not	good	for	analyzing	the	top	words	on	Twitter,	where	the	popular	topics	can	change
from	one	moment	to	the	next.	Rather,	we	want	counts	that	reflect	the	latest	information.
As	explained	earlier,	the	rolling	word	count	bolt	stores	data	in	time-based	buckets.	Then,	it
periodically	discards	buckets	that	exceed	5	minutes	in	age.	Thus,	the	word	counts	from
this	bolt	only	consider	the	last	5	minutes	of	data.

Enter	this	code	in	rollingcount.py:

import	math

import	time

from	collections	import	defaultdict

import	redis

from	petrel	import	storm

from	petrel.emitter	import	BasicBolt

class	RollingCountBolt(BasicBolt):

				def	__init__(self):

								super(RollingCountBolt,	self).__init__(script=__file__)

				def	initialize(self,	conf,	context):

								self.conf	=	conf

								self.num_windows	=	self.conf['twitter_word_count.num_windows']

								self.window_duration	=	

self.conf['twitter_word_count.window_duration']

								self.conn	=	redis.from_url(conf['twitter_word_count.redis_url'])

				@classmethod

				def	declareOutputFields(cls):

								return	['word',	'count']

				def	process(self,	tup):

								word	=	tup.values[0]

								now	=	time.time()

								now_floor	=	int(math.floor(now	/	self.window_duration)	*	

self.window_duration)

								expires	=	int(now_floor	+	self.num_windows	*	self.window_duration)

								name	=	'twitter_word_count:%s'	%	now_floor

								self.conn.zincrby(name,	word)

								self.conn.expireat(name,	expires)

				def	run():

								RollingCountBolt().run()

Total	rankings	bolt	–	the	Redis	case
Enter	the	following	code	in	totalrankings.py:

import	logging

import	math

import	time

import	redis

from	petrel	import	storm

from	petrel.emitter	import	BasicBolt

log	=	logging.getLogger('totalrankings')

class	TotalRankingsBolt(BasicBolt):

				emitFrequencyInSeconds	=	15

				maxSize	=	10

				def	__init__(self):

								super(TotalRankingsBolt,	self).__init__(script=__file__)

								self.rankedItems	=	{}

				def	initialize(self,	conf,	context):

								self.conf	=	conf

										self.num_windows	=	\

												self.conf['twitter_word_count.num_windows']

								self.window_duration	=	\

												self.conf['twitter_word_count.window_duration']

								self.conn	=	redis.from_url(

												conf['twitter_word_count.redis_url'])

				def	declareOutputFields(self):

								return	['word',	'count']

				def	process(self,	tup):

								if	tup.is_tick_tuple():

												now	=	time.time()

												now_floor	=	int(math.floor(now	/	self.window_duration)	*

																self.window_duration)

												first_window	=	int(now_floor	-	self.num_windows	*

																self.window_duration)

												self.conn.zunionstore(

																'twitter_word_count',

																['twitter_word_count:%s'	%	t	for	t	in	xrange(first_window,	

now_floor)])

												for	t	in	self.conn.zrevrange('

																'twitter_word_count',	0,

															self.maxSize,	withScores=True):

																log.info('Emitting:	%s',	repr(t))

																storm.emit(t)

				def	getComponentConfiguration(self):

										return	{"topology.tick.tuple.freq.secs":

												self.emitFrequencyInSeconds}

			def	run():

							TotalRankingsBolt().run()

Defining	the	topology	–	the	Redis	case
Here	is	the	create.py	script	that	defines	the	structure	of	the	topology:

from	twitterstream	import	TwitterStreamSpout

from	splitsentence	import	SplitSentenceBolt

from	rollingcount	import	RollingCountBolt

from	totalrankings	import	TotalRankingsBolt

def	create(builder):

				spoutId	=	"spout"

				splitterId	=	"splitter"

				counterId	=	"counter"

				totalRankerId	=	"finalRanker"

				builder.setSpout(spoutId,	TwitterStreamSpout(),	1)

				builder.setBolt(

								splitterId,	SplitSentenceBolt(),	1).shuffleGrouping("spout")

				builder.setBolt(

								counterId,	RollingCountBolt(),	4).fieldsGrouping(

												splitterId,	["word"])

				builder.setBolt(

								totalRankerId,	TotalRankingsBolt()).globalGrouping(

												counterId)

Running	the	topology	–	the	Redis	case
We	have	a	few	more	small	things	to	address	before	we	run	the	topology:

1.	 Copy	the	logconfig.ini	file	from	the	second	example	in	Chapter	3,	Introducing
Petrel,	to	this	topology’s	directory.

2.	 Create	a	file	called	setup.sh.	Petrel	will	package	this	script	with	the	topology	and
run	it	at	startup.	This	script	installs	the	third-party	Python	libraries	used	by	the
topology.	The	file	looks	like	this:

pip	install	-U	pip

pip	install	nltk==3.0.1	oauthlib==0.7.2

tweepy==3.2.0

3.	 Create	a	file	called	manifest.txt	with	these	two	lines:

logconfig.ini

setup.sh

4.	 Install	the	Redis	server	on	a	well-known	node.	All	workers	will	store	state	here:

									sudo	apt-get	install	redis-server

5.	 Install	the	Python	Redis	client	on	all	Storm	worker	machines:

									sudo	apt-get	install	python-redis

6.	 Before	running	the	topology,	let’s	review	the	list	of	files	that	we’ve	created.	Make
sure	you	have	created	these	files	correctly:

topology.yaml

twitterstream.py

splitsentence.py

rollingcount.py

totalrankings.py

manifest.txt

setup.sh

7.	 Run	the	topology	with	the	following	command:

petrel	submit	--config	topology.yaml	--logdir	`pwd`

Once	the	topology	is	running,	open	another	terminal	in	the	topology	directory.	Enter	this
command	to	see	the	log	file	for	the	total	rankings	bolt,	sorted	from	oldest	to	newest:

ls	-ltr	petrel*totalrankings.log

If	this	is	the	first	time	you	are	running	the	topology,	there	will	be	only	one	log	file	listed.	A
new	file	is	created	for	each	run.	If	there	are	several	listed,	choose	the	most	recent	one.
Enter	this	command	to	monitor	the	contents	of	the	log	file	(the	exact	filename	will	be
different	on	your	system):

tail	-f	petrel24748_totalrankings.log

Periodically,	you	will	see	an	output	like	the	following,	listing	the	top	5	words	in
descending	order	of	popularity:

Example	output	from	totalrankings:

[2015-08-10	21:30:01,691][totalrankings][INFO]Emitting:	('love',	74.0)

[2015-08-10	21:30:01,691][totalrankings][INFO]Emitting:	('amp',	68.0)

[2015-08-10	21:30:01,691][totalrankings][INFO]Emitting:	('like',	67.0)

[2015-08-10	21:30:01,692][totalrankings][INFO]Emitting:	('zaynmalik',	61.0)

[2015-08-10	21:30:01,692][totalrankings][INFO]Emitting:	('mtvhottest',	

61.0)

[2015-08-10	21:30:01,692][totalrankings][INFO]Emitting:	('get',	58.0)

[2015-08-10	21:30:01,692][totalrankings][INFO]Emitting:	('one',	49.0)

[2015-08-10	21:30:01,692][totalrankings][INFO]Emitting:	('follow',	46.0)

[2015-08-10	21:30:01,692][totalrankings][INFO]Emitting:	('u',	44.0)

[2015-08-10	21:30:01,692][totalrankings][INFO]Emitting:	('new',	38.0)

[2015-08-10	21:30:01,692][totalrankings][INFO]Emitting:	('much',	37.0)

Finding	the	hourly	count	of	tweets	by	city	name
using	MongoDB
MongoDB	is	a	popular	database	for	storing	large	amounts	of	data.	It	is	designed	for	easy
scalability	across	many	nodes.

To	run	this	topology,	you	first	need	to	install	MongoDB	and	configure	some	database-
specific	settings.	This	example	uses	a	MongoDB	database	called	cities	with	a	collection
named	minute.	In	order	to	compute	the	counts	by	city	and	minute,	we	must	create	a
unique	index	on	the	cities.minute	collection.	To	do	this,	launch	the	MongoDB
command-line	client:

mongo

Create	a	unique	index	on	the	cities.minute	collection:

use	cities

db.minute.createIndex({	minute:	1,	city:	1	},	{	unique:	true	})

This	index	stores	a	per	minute	time	series	of	city	counts	in	MongoDB.	After	running	the
example	topology	to	capture	some	data,	we’ll	run	a	standalone	command-line	script
(city_report.py)	to	sum	the	per	minute	city	counts	by	hour	and	city.

This	is	a	variant	of	the	earlier	Twitter	topology.	This	example	uses	the	Python	geotext
library	(https://pypi.python.org/pypi/geotext)	to	find	city	names	in	tweets.

Here	is	an	overview	of	the	topology:

Read	the	tweets.
Split	them	into	words	and	find	city	names.
In	MongoDB,	count	the	number	of	times	a	city	is	mentioned	each	minute.
Twitter	stream	spout	(twitterstream.py):	This	reads	tweets	from	the	Twitter	sample
stream.
City	count	bolt	(citycount.py):	This	finds	city	names	and	writes	to	MongoDB.	It	is
similar	to	the	SplitSentenceBolt	from	the	Twitter	sample,	but	after	splitting	by
words,	it	looks	for	city	names.

The	_get_words()	function	here	is	slightly	different	from	earlier	examples.	This	is
because	geotext	does	not	recognize	lowercase	strings	as	city	names.

It	creates	or	updates	MongoDB	records,	taking	advantage	of	the	unique	index	on	minute
and	city	to	accumulate	the	per	minute	counts.

This	is	a	common	pattern	for	representing	time	series	data	in	MongoDB.	Each	record	also
includes	an	hour	field.	The	city_report.py	script	uses	this	to	compute	the	hourly	counts.

Enter	this	code	in	citycount.py:

Import	datetime

import	logging

import	geotext

import	nltk.corpus

https://pypi.python.org/pypi/geotext

import	pymongo

from	petrel	import	storm

from	petrel.emitter	import	BasicBolt

log	=	logging.getLogger('citycount')

class	CityCountBolt(BasicBolt):

				def	__init__(self):

								super(CityCountBolt,	self).__init__(script=__file__)

								self.stop_words	=	set(nltk.corpus.stopwords.words('english'))

								self.stop_words.update(['http',	'https',	'rt'])

								self.stop_cities	=	set([

												'bay',	'best',	'deal',	'man',	'metro',	'of',	'un'])

				def	initialize(self,	conf,	context):

								self.db	=	pymongo.MongoClient()

				def	declareOutputFields(self):

								return	[]

				def	process(self,	tup):

								clean_text	=	'	'.join(w	for	w	in	self._get_words(tup.values[0]))

								places	=	geotext.GeoText(clean_text)

								now_minute	=	self._get_minute()

								now_hour	=	now_minute.replace(minute=0)

								for	city	in	places.cities:

												city	=	city.lower()

												if	city	in	self.stop_cities:

																continue

												log.info('Updating	count:	%s,	%s,	%s',	now_hour,	now_minute,	

city)

												self.db.cities.minute.update(

																{

																				'hour':	now_hour,

																				'minute':	now_minute,

																				'city':	city

																},

																{'$inc':	{	'count'	:	1	}	},

																upsert=True)

				@staticmethod

				def	_get_minute():

								return	datetime.datetime.now().replace(second=0,	microsecond=0)

				def	_get_words(self,	sentence):

								for	w	in	nltk.word_tokenize(sentence):

												wl	=	w.lower()

												if	wl.isalpha()	and	wl	not	in	self.stop_words:

																yield	w

def	run():

				CityCountBolt().run()

Defining	the	topology	–	the	MongoDB	case
Enter	the	following	code	in	create.py:

from	twitterstream	import	TwitterStreamSpout

from	citycount	import	CityCountBolt

def	create(builder):

				spoutId	=	"spout"

				cityCountId	=	"citycount"

				builder.setSpout(spoutId,	TwitterStreamSpout(),	1)

				builder.setBolt(cityCountId,	CityCountBolt(),	

1).shuffleGrouping("spout")

Running	the	topology	–	the	MongoDB
case
We	have	a	few	more	small	things	to	address	before	we	run	the	topology:

1.	 Copy	the	logconfig.ini	file	from	the	second	example	in	Chapter	3,	Introducing
Petrel	to	this	topology’s	directory.

2.	 Create	a	file	called	setup.sh:

pip	install	-U	pip

pip	install	nltk==3.0.1	oauthlib==0.7.2	tweepy==3.2.0	geotext==0.1.0	

pymongo==3.0.3

3.	 Next,	create	a	file	called	manifest.txt.	This	is	identical	to	the	Redis	example.

Install	the	MongoDB	server.	On	Ubuntu,	you	can	use	the	instructions	given	at
http://docs.mongodb.org/manual/tutorial/install-mongodb-on-ubuntu/.

4.	 Install	the	Python	MongoDB	client	on	all	Storm	worker	machines:

pip	install	pymongo==3.0.3

5.	 To	verify	that	pymongo	is	installed	and	the	index	is	created	correctly,	start	an
interactive	Python	session	by	running	python.	Then	use	this	code:

import	pymongo

from	pymongo	import	MongoClient

db	=	MongoClient()

for	index	in	db.cities.minute.list_indexes():

				print	index

You	should	see	the	following	output.	The	second	line	is	the	index	that	we	added:

SON([(u'v',	1),	(u'key',	SON([(u'_id',	1)])),	(u'name',	u'_id_'),	

(u'ns',	u'cities.minute')])

SON([(u'v',	1),	(u'unique',	True),	(u'key',	SON([(u'minute',	1.0),	

(u'city',	1.0)])),	(u'name',	u'minute_1_city_1'),	(u'ns',	

u'cities.minute')])

6.	 Next,	install	geotext:

pip	install	geotext==0.1.0

7.	 Before	running	the	topology,	let’s	review	the	list	of	files	that	we	created.	Make	sure
you	have	created	these	files	correctly:

topology.yaml

twitterstream.py

citycount.py

manifest.txt

setup.sh

8.	 Run	the	topology	with	the	following	command:

http://docs.mongodb.org/manual/tutorial/install-mongodb-on-ubuntu/

petrel	submit	--config	topology.yaml	--logdir	`pwd`

The	city_report.py	file	is	a	standalone	script	that	generates	a	simple	hourly	report	from
the	data	inserted	by	the	topology.	This	script	uses	MongoDB	aggregation	to	compute	the
hourly	totals.	As	noted	earlier,	the	report	depends	on	the	presence	of	an	hour	field.

Enter	this	code	in	city_report.py:

import	pymongo

def	main():

				db	=	pymongo.MongoClient()

				pipeline	=	[{

								'$group':	{	

										'_id':			{	'hour':	'$hour',	'city':	'$city'	},

										'count':	{	'$sum':	'$count'	}	

								}	

						}]

				for	r	in	db.cities.command('aggregate',	'minute',	pipeline=pipeline)

['result']:

								print	'%s,%s,%s'	%	(r['_id']['city'],	r['_id']['hour'],	r['count'])

if	__name__	==	'__main__':

				main()

Summary
In	this	chapter,	we	saw	how	to	use	two	popular	NoSQL	storage	engines	(Redis	and
MongoDB)	with	Storm.	We	also	showed	you	how	to	create	data	in	a	topology	and	access
it	from	other	applications,	demonstrating	that	Storm	can	be	an	effective	part	of	an	ETL
pipeline.

Chapter	6.	Petrel	in	Practice
In	previous	chapters,	we	saw	working	examples	of	Storm	topologies,	both	simple	and
complex.	In	doing	so,	however,	we	skipped	some	of	the	tools	and	techniques	that	you’ll
need	while	developing	your	own	topologies:

Storm	is	a	great	environment	for	running	your	code,	but	deploying	to	Storm	(even	on
your	local	machine)	adds	complexity	and	takes	extra	time.	We’ll	see	how	to	test	your
spouts	and	bolts	outside	of	Storm.
When	components	run	inside	Storm,	they	can’t	read	from	the	console,	which
prevents	the	use	of	pdb,	the	standard	Python	debugger.	This	chapter	demonstrates
Winpdb,	an	interactive	debugging	tool	suitable	for	debugging	components	inside
Storm.
Storm	lets	you	easily	harness	the	power	of	many	servers,	but	performance	of	your
code	still	matters.	In	this	chapter,	we’ll	see	some	ways	of	measuring	the	performance
of	our	topology’s	components.

Testing	a	bolt
Storm	makes	it	easy	to	deploy	and	run	Python	topologies,	but	developing	and	testing	them
in	Storm	is	challenging,	whether	running	in	standalone	Storm	or	a	full	Storm	deployment:

Storm	launches	programs	on	your	behalf—not	only	your	Python	code	but	auxiliary
Java	processes	as	well
It	controls	the	Python	components’	standard	input	and	output	channels
The	Python	programs	must	respond	regularly	to	heartbeat	messages	or	be	shut	down
by	Storm

This	makes	it	difficult	to	debug	Storm	topologies	using	the	typical	tools	and	techniques
used	for	other	pieces	of	Python	code,	such	as	the	common	technique	of	running	from	the
command	line	and	debugging	with	pdb.

Petrel’s	mock	module	helps	us	with	this.	It	provides	a	simple,	standalone	Python	container
for	testing	simple	topologies	and	verifying	that	the	expected	results	are	returned.

In	Petrel	terms,	a	simple	topology	is	one	that	only	outputs	to	the	default	stream	and	has	no
branches	or	loops.	The	run_simple_topology()	assumes	that	the	first	component	in	the
list	is	a	spout,	passing	the	output	of	each	component	to	the	next	component	in	the
sequence.

Example	–	testing	SplitSentenceBolt
Let’s	look	at	an	example.	Here	is	the	splitsentence.py	file	from	the	first	example	in
Chapter	3,	Introducing	Petrel	with	a	unit	test	added:

from	nose.tools	import	assert_equal

from	petrel	import	mock,	storm

from	petrel.emitter	import	BasicBolt

from	randomsentence	import	RandomSentenceSpout

class	SplitSentenceBolt(BasicBolt):

				def	__init__(self):

								super(SplitSentenceBolt,	self).__init__(script=__file__)

				def	declareOutputFields(self):

								return	['word']

				def	process(self,	tup):

								words	=	tup.values[0].split("	")

								for	word	in	words:

										storm.emit([word])

def	test():

				bolt	=	SplitSentenceBolt()

				mock_spout	=	mock.MockSpout(

								RandomSentenceSpout.declareOutputFields(),

								[["Madam,	I'm	Adam."]])

				

				result	=	mock.run_simple_topology(

								None,	[mock_spout,	bolt],	result_type=mock.LIST)

								assert_equal([['Madam,'],	["I'm"],	['Adam.']],	result[bolt])

def	run():

				SplitSentenceBolt().run()

To	run	the	test,	enter	the	following	commands:

pip	install	nosetests

1.	 First,	install	the	Python	nosetests	library	by	running	the	following:

pip	install	nosetests

2.	 Next,	run	this	line:

nosetests	-v	splitsentence.py

If	all	goes	well,	you’ll	see	the	following	output:

splitsentence.test…	ok

--

Ran	1	test	in	0.001s

OK

Nose	is	a	very	powerful	tool	with	many	features.	We	won’t	cover	it	in	detail	here,	but	you
can	find	the	documentation	at	https://nose.readthedocs.org/en/latest/.

https://nose.readthedocs.org/en/latest/

Example	–	testing	SplitSentenceBolt	with
WordCountBolt
The	next	example	shows	how	to	test	a	sequence	of	related	components.	In	the	following
code,	we	see	a	new	version	of	wordcount.py	that	tests	the	interaction	between
SplitSentenceBolt	and	WordCountBolt:

from	collections	import	defaultdict

from	nose.tools	import	assert_equal

from	petrel	import	mock,	storm

from	petrel.emitter	import	BasicBolt

from	randomsentence	import	RandomSentenceSpout

from	splitsentence	import	SplitSentenceBolt

class	WordCountBolt(BasicBolt):

				def	__init__(self):

								super(WordCountBolt,	self).__init__(script=__file__)

								self._count	=	defaultdict(int)

				@classmethod

				def	declareOutputFields(cls):

								return	['word',	'count']

				def	process(self,	tup):

								word	=	tup.values[0]

								self._count[word]	+=	1

								storm.emit([word,	self._count[word]])

def	test():

				ss_bolt	=	SplitSentenceBolt()

				wc_bolt	=	WordCountBolt()

				mock_spout	=	mock.MockSpout(

								RandomSentenceSpout.declareOutputFields(),

								[["the	bart	the"]])

					result	=	mock.run_simple_topology(

							None,

							[mock_spout,	ss_bolt,	wc_bolt],

							result_type=mock.LIST)

							assert_equal([['the',	1],	['bart',	1],	['the',	2]],	result[wc_bolt])

def	run():

				WordCountBolt().run()

The	test	is	pretty	straightforward;	we	simply	instantiate	both	components	and	include
them	in	the	right	sequence	when	calling	mock.run_simple_topology().

Note

Both	example	tests	specify	result_type=mock.LIST	while	calling
run_simple_topology().	This	parameter	option	tells	Petrel	which	format	to	use	when
returning	output	tuples.	The	options	include:
STORM_TUPLE

LIST

TUPLE

NAMEDTUPLE

Generally,	LIST	is	a	good	choice	for	components	with	a	small	number	of	output	fields,
while	NAMEDTUPLE	is	more	readable	for	a	larger	number	of	fields	(that	is,	by	allowing	the
test	to	access	result	fields	by	field	name	rather	than	numeric	indices).	STORM_TUPLE	is
useful	if	the	test	needs	to	check	other	attributes	of	the	result,	for	example,	the	lesser-used
stream	property.

Debugging
Until	now,	we’ve	debugged	topologies	using	log	messages	and	automated	tests.	These
techniques	are	very	powerful,	but	sometimes	it	may	be	necessary	to	debug	directly	inside
the	Storm	environment.	For	example,	the	problem	may:

Depend	on	running	as	a	particular	user
Occur	only	with	real	data
Occur	only	when	there	are	many	instances	of	the	component	running	in	parallel

This	section	introduces	a	tool	for	debugging	inside	Storm.

Winpdb	is	a	portable,	GUI-based	debugger	for	Python,	with	support	for	embedded
debugging.	If	you’re	not	familiar	with	the	term	“embedded	debugging”,	note	this:	it
simply	means	that	Winpdb	can	attach	to	a	program	that	was	launched	in	some	other	way
and	not	necessarily	from	WinDbg	or	your	command	shell.	For	this	reason,	it	is	a	good	fit
for	debugging	Petrel	components	that	run	in	Storm.

Installing	Winpdb
Activate	your	Petrel	virtual	environment	and	then	use	pip	to	install	it:

source	<virtualenv	directory>/bin/activate

pip	install	winpdb

Add	Winpdb	breakpoint
In	the	splitsentence.py	file,	add	the	following	at	the	beginning	of	the	run()	function:

import	rpdb2

rpdb2.start_embedded_debugger('password')

The	'password'	value	can	be	anything;	this	is	simply	the	password	that	you	will	use	in	the
next	step	to	attach	to	splitsentence.py.

When	this	line	of	code	executes,	the	script	will	freeze	for	a	default	period	of	5	minutes,
waiting	for	a	debugger	to	attach.

Launching	and	attaching	the	debugger
Now	run	the	topology:

petrel	submit	--config	topology.yaml

Once	you	see	log	messages	from	the	spout,	you	will	know	that	the	topology	is	up	and
running,	so	you	can	connect	with	the	debugger.

Launch	Winpdb	simply	by	running	winpdb.

For	more	details	on	how	to	use	Winpdb	for	embedded	debugging,	see	the	documentation
at	http://winpdb.org/docs/embedded-debugging/.

When	the	window	appears,	select	File	|	Attach	from	the	menu.	A	password	dialog	will
appear.	Here,	enter	the	same	password	that	you	passed	to	start_embedded_debugger()
and	click	on	the	OK	button,	as	shown	in	this	screenshot:

Next,	choose	the	process	to	attach	to	and	click	on	OK,	as	shown	in	the	following
screenshot:

http://winpdb.org/docs/embedded-debugging/

Now	you’ll	see	the	main	Winpdb	window,	with	the	line	below	the	breakpoint	highlighted.
If	you’ve	used	other	debuggers,	Winpdb	should	be	straightforward	to	use.	If	you	need	help
using	Winpdb,	the	following	tutorial	is	very	good	for	you:

https://code.google.com/p/winpdb/wiki/DebuggingTutorial.

https://code.google.com/p/winpdb/wiki/DebuggingTutorial

Profiling	your	topology’s	performance
Performance	can	be	a	concern	for	any	application.	This	is	true	for	Storm	topologies	as
well,	perhaps	more	so.

When	you’re	trying	to	push	a	lot	of	data	through	a	topology,	raw	performance	is	certainly
a	concern—faster	components	means	that	more	data	can	be	processed.	But	it’s	also
important	to	understand	the	tuple	processing	performance	of	individual	components.	This
information	can	be	used	in	two	ways.

The	first	is	knowing	which	components	are	slower,	because	this	tells	you	where	to	focus
your	attention	if	you	are	trying	to	make	the	code	faster.	Once	you	know	which	component
(or	components)	is	slow,	you	can	use	tools	such	as	the	Python	cProfile	module
(http://pymotw.com/2/profile/)	and	the	line	profiler	(https://github.com/rkern/line_profiler)
to	understand	where	the	code	is	spending	most	of	its	time.

Even	after	profiling,	some	components	will	still	be	faster	than	others.	In	this	case,
understanding	the	relative	performance	between	components	can	help	you	configure	the
topology	for	best	performance.

This	second	point	is	somewhat	subtle,	so	let’s	look	at	an	example.	In	the	following	code,
we	see	log	excerpts	for	two	Storm	components	from	the	word	count	topology.	These	log
messages	are	generated	automatically	by	Petrel.	The	first	is	the	split	sentence	bolt,	and	the
second	is	the	word	count	bolt:

[2015-05-07	22:51:44,772][storm][DEBUG]BasicBolt	profile:	

total_num_tuples=79,	num_tuples=79,	avg_read_time=0.002431	(19.1%),	

avg_process_time=0.010279	(80.7%),	avg_ack_time=0.000019	(0.2%)

[2015-05-07	22:51:45,776][storm][DEBUG]BasicBolt	profile:	

total_num_tuples=175,	num_tuples=96,	avg_read_time=0.000048	(0.5%),	

avg_process_time=0.010374	(99.3%),	avg_ack_time=0.000025	(0.2%)

[2015-05-07	22:51:46,784][storm][DEBUG]BasicBolt	profile:	

total_num_tuples=271,	num_tuples=96,	avg_read_time=0.000043	(0.4%),	

avg_process_time=0.010417	(99.3%),	avg_ack_time=0.000026	(0.2%)

[2015-05-07	22:51:47,791][storm][DEBUG]BasicBolt	profile:	

total_num_tuples=368,	num_tuples=97,	avg_read_time=0.000041	(0.4%),	

avg_process_time=0.010317	(99.4%),	avg_ack_time=0.000021	(0.2%)

http://pymotw.com/2/profile/
https://github.com/rkern/line_profiler

Split	sentence	bolt	log
The	following	is	the	split	sentence	bolt	log:

[2015-05-07	22:51:44,918][storm][DEBUG]BasicBolt	profile:	

total_num_tuples=591,	num_tuples=591,	avg_read_time=0.001623	(95.8%),	

avg_process_time=0.000052	(3.1%),	avg_ack_time=0.000019	(1.1%)

[2015-05-07	22:51:45,924][storm][DEBUG]BasicBolt	profile:	

total_num_tuples=1215,	num_tuples=624,	avg_read_time=0.001523	(94.7%),	

avg_process_time=0.000060	(3.7%),	avg_ack_time=0.000025	(1.5%)

[2015-05-07	22:51:46,930][storm][DEBUG]BasicBolt	profile:	

total_num_tuples=1829,	num_tuples=614,	avg_read_time=0.001559	(95.4%),	

avg_process_time=0.000055	(3.3%),	avg_ack_time=0.000021	(1.3%)

[2015-05-07	22:51:47,938][storm][DEBUG]BasicBolt	profile:	

total_num_tuples=2451,	num_tuples=622,	avg_read_time=0.001547	(95.7%),	

avg_process_time=0.000049	(3.0%),	avg_ack_time=0.000020	(1.3%)

Word	count	bolt	log
These	logs	demonstrate	that	the	split	sentence	bolt	spends	0.010338	seconds	processing
and	acknowledging	each	tuple	(0.010317	+	0.000021),	while	the	word	count	bolt	spends
0.000069	seconds	(0.000049	+	0.000020)	per	tuple.	The	split	sentence	bolt	is	slower,
which	suggests	that	you	may	want	more	instances	of	the	split	sentence	bolt	than	the	word
count	bolt.

Note
Why	wasn’t	the	read	time	considered	in	the	preceding	calculation?	Read	time	includes	the
CPU	time	taken	to	read	tuples	from	Storm,	but	it	also	includes	time	spent	waiting	(that	is,
sleeping)	for	the	tuples	to	arrive.	If	the	upstream	component	is	providing	data	slowly,	we
don’t	want	to	count	that	time	against	our	component.	So	for	simplicity,	we	omitted	the
read	time	from	the	calculation.

Of	course,	the	per-tuple	performance	is	only	part	of	the	picture.	You	must	also	consider
the	sheer	number	of	tuples	to	be	processed.	During	the	4	seconds	covered	by	the	preceding
logs,	the	split	sentence	bolt	received	97	tuples	(sentences),	while	the	word	count	bolt
received	622	tuples	(words).	Now	we’ll	apply	these	numbers	to	the	per-tuple	processing
times:

0.010338	seconds/tuple	*	97	tuples	=	1.002786	seconds	(Split	sentence)

0.000069	seconds/tuple	*	622	tuples	=	0.042918	seconds	(Word	count)

The	total	time	used	by	the	split	sentence	bolt	is	much	larger	(roughly	23	times	greater),
and	we	should	take	this	into	account	while	configuring	the	parallelism	of	the	topology.	For
example,	we	might	configure	topology.yaml	as	follows:

petrel.parallelism.splitsentence:	24

petrel.parallelism.wordcount:	1

By	configuring	the	topology	in	this	way,	we	help	ensure	that	at	high	traffic	rates,	there	are
enough	split	sentence	bolts	to	avoid	becoming	a	bottleneck,	keeping	the	word	count	bolts
busy	all	the	time.

Note
The	logs	from	the	preceding	section	used	a	version	of	the	split	sentence	bolt	that	was
deliberately	modified	to	run	slower	and	make	the	example	clearer.

Summary
In	this	chapter,	you	learned	some	skills	that	will	help	make	you	more	productive	building
your	own	topologies.	As	you	develop	spouts	or	bolts,	you	can	test	them	individually
before	assembling	them	into	a	complete	topology	and	deploying	on	Storm.	If	you
encounter	a	tricky	problem	that	occurs	only	while	running	in	Storm,	you	can	use	Winpdb
in	addition	to	(or	instead	of)	log	messages.	When	your	code	is	working,	you	can	get
insights	into	which	components	take	most	of	the	time,	so	you	can	focus	on	improving
performance	in	those	areas.	With	these	skills,	you	are	now	ready	to	go	out	and	build	your
own	topologies.	Good	luck!

Appendix	A.	Managing	Storm	Using
Supervisord
This	appendix	gives	you	an	overview	of	the	following	topics:

Storm	administration	over	a	cluster
Introducing	supervisord
Components	of	supervisord
Supervisord	installation	and	configuration

Storm	administration	over	a	cluster
There	are	many	tools	available	that	can	create	multiple	virtual	machines,	install	predefined
software	and	even	manage	the	state	of	that	software.

Introducing	supervisord
Supervisord	is	a	process	control	system.	It	is	a	client-server	system	that	allows	its	users	to
monitor	and	control	a	number	of	processes	on	Unix-like	operating	systems.	For	details,
visit	http://supervisord.org/.

http://supervisord.org/

Supervisord	components
The	server	piece	of	the	supervisor	is	known	as	supervisord.	It	is	responsible	for	starting
child	programs	upon	its	own	invocation,	responding	to	commands	from	clients,	restarting
crashed	or	exited	subprocesses,	logging	its	subprocess	stdout	and	stderr	output,	and
generating	and	handling	“events”	corresponding	to	points	in	subprocess	lifetimes.	The
server	process	uses	a	configuration	file.	This	is	typically	located	in
/etc/supervisord.conf.	This	configuration	file	is	a	Windows-INI	style	config	file.	It	is
important	to	keep	this	file	secure	via	proper	filesystem	permissions	because	it	might
contain	decrypted	usernames	and	passwords:

supervisorctl:	The	command-line	client	piece	of	the	supervisor	is	known	as
supervisorctl.	It	provides	a	shell-like	interface	for	the	features	provided	by
supervisord.	From	supervisorctl,	a	user	can	connect	to	different	supervisord
processes.	They	can	get	the	status	on	the	subprocesses	controlled	by,	stop	and	start
subprocesses	of,	and	get	lists	of	running	processes	of	a	supervisord.	The	command-
line	client	talks	to	the	server	across	a	Unix	domain	socket	or	an	Internet	(TCP)
socket.	The	server	can	assert	that	the	user	of	a	client	should	present	authentication
credentials	before	it	allows	them	to	use	commands.	The	client	process	typically	uses
the	same	configuration	file	as	the	server,	but	any	configuration	file	with	a
[supervisorctl]	section	in	it	will	work.
Web	server:	A	(sparse)	web	user	interface	with	functionality	comparable	to
supervisorctl	may	be	accessed	via	a	browser	if	you	start	supervisord	against	an
Internet	socket.	Visit	the	server	URL	(for	example,	http://localhost:9001/)	to
view	and	control	the	process	status	through	the	web	interface	after	activating	the
configuration	file’s	[inet_http_server]	section.
XML-RPC	interface:	The	same	HTTP	server	that	serves	the	web	UI	serves	up	an
XML-RPC	interface	that	can	be	used	to	interrogate	and	control	the	supervisor	and	the
programs	it	runs.	See	XML-RPC	API	Documentation.
Machines:	Let’s	assume	that	we	have	two	EC2	machines	of	IP	addresses	172-31-19-
62	and	172.31.36.23.	We	will	install	supervisord	on	both	machines	and	later
configure	to	decide	what	services	of	Storm	would	be	running	on	each	machine.
Storm	and	Zookeeper	setup:	Let’s	run	Zookeeper,	Nimbus,	supervisor,	and	the	UI
on	machine	172.31.36.23	and	only	the	supervisor	on	172-31-19-62.
Zookeeper	version:	zookeeper-3.4.6.tar.gz.
Storm	version:	apache-storm-0.9.5.tar.gz.

Here	is	the	process	of	the	Zookeeper	server	setup	and	configuration:

1.	 Download	Zookeeper’s	latest	version	and	extract	it:

tar	–xvf	zookeeper-3.4.6.tar.gz

2.	 Configure	zoo.cfg	in	the	conf	directory	to	start	Zookeeper	in	cluster	mode.
3.	 Zookeeper	conf:

server.1=172.31.36.23:2888:3888

tickTime=2000

initLimit=10

syncLimit=5

#	the	directory	where	the	snapshot	is	stored.

dataDir=/home/ec2-user/zookeeper-3.4.6/tmp/zookeeper

clientPort=2181

4.	 Make	sure	that	the	directory	specified	in	dataDir	is	created	and	the	user	has	read	and
write	permissions	on	it.

5.	 Then,	go	to	the	Zookeeper	bin	directory	and	start	the	zookeeper	server	using	the
following	command:

[ec2-user@ip-172-31-36-23	bin~]$	zkServer.sh	start

Storm	server	setup	and	configuration:

1.	 Download	Storm’s	latest	version	from	the	Apache	Storm	website	and	extract	it:

tar	–xvf	apache-storm-0.9.5.tar.gz

2.	 Here	is	the	configuration	of	the	Storm	Nimbus	machine	as	well	as	the	slave
(added/changed	configuration	only):

storm.zookeeper.servers:	-	"172.31.36.23"

nimbus.host:	"172.31.36.23"

nimbus.childopts:	"-Xmx1024m	-Djava.net.preferIPv4Stack=true"

ui.childopts:	"-Xmx768m	-Djava.net.preferIPv4Stack=true"

supervisor.childopts:	"-Djava.net.preferIPv4Stack=true"

worker.childopts:	"-Xmx768m	-Djava.net.preferIPv4Stack=true"

storm.local.dir:	"/home/ec2-user/apache-storm-0.9.5/local"

supervisor.slots.ports:

				-	6700

				-	6701

				-	6702

				-	6703

Supervisord	installation
It	is	possible	to	install	supervisord	by	the	following	two	ways:

1.	 Installing	on	a	system	with	Internet	access:

Download	the	Setup	tool	and	use	the	easy_install	method.

2.	 Installing	on	a	system	without	Internet	access:

Download	all	dependencies,	copy	to	each	machine,	and	then	install	it.

We	will	follow	the	second	method	of	installation,	the	one	in	which	Internet	access	is	not
required.	We	will	download	all	dependencies	and	supervisord,	and	copy	it	to	the	servers.

Supervisord	[supervisor-3.1.3.tar.gz]	requires	the	following	dependencies	to	be
installed:

Python	2.7	or	later
setuptools	(latest)	from	http://pypi.python.org/pypi/setuptools
elementtree	(latest)	from	http://effbot.org/downloads#elementtree.	elementtree-
1.2-20040618.tar.gz

meld3-0.6.5.tar.gz

Let’s	install	supervisord	and	the	necessary	dependencies	on	both	machines,	172.31.36.23
and	172-31-19-62.

The	following	are	the	steps	for	installing	the	dependencies:

1.	 setuptools:

Unzip	the	.zip	file	using	this	command:

[ec2-user@ip-172-31-19-62	~]$	tar	-xvf	setuptools-17.1.1.zip

Go	to	the	setuptools-17.1.1	directory	and	run	the	installation	command	with
sudo:

[ec2-user@ip-172-31-19-62	setuptools-17.1.1]$	sudo	python	setup.py	

install

storm.zookeeper.servers:	-	"172.31.36.23"

nimbus.host:	"172.31.36.23"

nimbus.childopts:	"-Xmx1024m	-Djava.net.preferIPv4Stack=true"

ui.childopts:	"-Xmx768m	-Djava.net.preferIPv4Stack=true"

supervisor.childopts:	"-Djava.net.preferIPv4Stack=true"

http://pypi.python.org/pypi/setuptools
http://effbot.org/downloads#elementtree

worker.childopts:	"-Xmx768m	-Djava.net.preferIPv4Stack=true"

storm.local.dir:	"/home/ec2-user/apache-storm-0.9.5/local"

supervisor.slots.ports:

				-	6700

				-	6701

				-	6702

				-	6703

2.	 meld3:

Extract	the	.ts.gz	file	using	the	following	command:

[ec2-user@ip-172-31-19-62	~]$	tar	-xvf	meld3-0.6.5.tar.gz

Go	to	the	meld3.-0.6.5	directory	and	run	this	command:

[ec2-user@ip-172-31-19-62	meld3-0.6.5]$	sudo	pyth	setup.py	install

3.	 elementtree:

Extract	the	.ts.gz	file:

[ec2-user@ip-172-31-19-62	~]$	tar	-xvf	elementtree-1.2-

20040618.tar.gz

Go	to	elementtree-1.2-20040618	and	run	the	following	command:

[ec2-user@ip-172-31-19-62	elementtree-1.2-20040618]$	sudo	python	

setup.py	install

The	following	are	the	supervisord	installations:

Extract	supervisor-3.1.3	using	this	command:

[ec2-user@ip-172-31-19-62	~]$	tar	-xvf	supervisor-3.1.3.tar.gz

Go	to	the	supervisor-3.1.3	directory	and	run	the	following	command:

[ec2-user@ip-172-31-19-62	supervisor-3.1.3]$	sudo	python	setup.py	

install

Note
A	similar	setup	of	supervisord	is	required	on	another	machine,	that	is,	172.31.36.23.

Configuration	of	supervisord.conf

Lets	configure	services	on	the	172.31.36.23	machine	and	assume	that	the	supervisord
installation	is	done	as	explained	previously.	Once	supervisor	is	installed,	you	can	build	the
supervisord.conf	file	to	start	the	supervisord	and	supervisorctl	commands:

Make	the	supervisor.conf	file.	Put	it	into	the	/etc	directory.
We	can	refer	get	sample	supervisord.conf	using	the	following	command:

[ec2-user@ip-172-31-36-23	~]$	echo_supervisord_conf

Take	a	look	at	the	supervisord.conf	file:

[unix_http_server]

file	=	/home/ec2-user/supervisor.sock

chmod	=	0777

[inet_http_server]									;	inet	(TCP)	server	disabled	by	default

port=172.31.36.23:9001								;	(ip_address:port	specifier,	*:port	for	all	

iface)

username=user														;	(default	is	no	username	(open	server))

password=123															;	(default	is	no	password	(open	server))

[rpcinterface:supervisor]

supervisor.rpcinterface_factory	=	

supervisor.rpcinterface:make_main_rpcinterface

[supervisord]

logfile_backups=10											;	(num	of	main	logfile	rotation	

backups;default	10)

logfile=/home/ec2-user/supervisord.log	;	(main	log	file;default	

$CWD/supervisord.log)

logfile_maxbytes=50MB								;	(max	main	logfile	bytes	b4	rotation;default	

50MB)

pidfile=/home/ec2-user/supervisord.pid	;	(supervisord	pidfile;default	

supervisord.pid)

nodaemon=false															;	(start	in	foreground	if	true;default	false)

minfds=1024																		;	(min.	avail	startup	file	descriptors;default	

1024)

[supervisorctl]

;serverurl	=	unix:///home/ec2-user/supervisor.sock

serverurl=http://172.31.36.23:9001	;	use	an	http://	url	to	specify	an	inet	

socket

;username=chris														;	should	be	same	as	http_username	if	set

;password=123																;	should	be	same	as	http_password	if	set

[program:storm-nimbus]

command=/home/ec2-user/apache-storm-0.9.5/bin/storm	nimbus

user=ec2-user

autostart=false

autorestart=false

startsecs=10

startretries=999

log_stdout=true

log_stderr=true

stdout_logfile=/home/ec2-user/storm/logs/nimbus.out

logfile_maxbytes=20MB

logfile_backups=10

[program:storm-ui]

command=/home/ec2-user/apache-storm-0.9.5/bin/storm	ui

user=ec2-user

autostart=false

autorestart=false

startsecs=10

startretries=999

log_stdout=true

log_stderr=true

stdout_logfile=/home/ec2-user/storm/logs/ui.out

logfile_maxbytes=20MB

logfile_backups=10

[program:storm-supervisor]

command=/home/ec2-user/apache-storm-0.9.5/bin/storm	supervisor

user=ec2-user

autostart=false

autorestart=false

startsecs=10

startretries=999

log_stdout=true

log_stderr=true

stdout_logfile=/home/ec2-user/storm/logs/supervisor.out

logfile_maxbytes=20MB

logfile_backups=10

Start	the	supervisor	server	first:

[ec2-user@ip-172-31-36-23	~]	sudo	/usr/bin/supervisord	-c	

/etc/supervisord.conf

Then,	start	all	processes	using	supervisorctl:

[ec2-user@ip-172-31-36-23	~]	sudo	/usr/bin/supervisorctl	-c	

/etc/supervisord.conf	status

storm-nimbus																					STOPPED			Not	started

storm-supervisor																	STOPPED			Not	started

storm-ui																									STOPPED			Not	started

[ec2-user@ip-172-31-36-23	~]$	sudo	/usr/bin/supervisorctl	-c	

/etc/supervisord.conf	start	all

storm-supervisor:	started

storm-ui:	started

storm-nimbus:	started

[ec2-user@ip-172-31-36-23	~]$	jps

14452	Jps

13315	QuorumPeerMain

14255	nimbus

14233	supervisor

14234	core

[ec2-user@ip-172-31-36-23	~]$

We	can	view	the	supervisord	web	UI	and	control	processes	on	the	browser.
52.11.193.108	is	the	public	IP	address	of	the	172-31-36-23	machine
(http://52.11.193.108:9001):

Configuration	of	supervisord.conf	on	172-31-19-62

Keep	only	the	following	services	in	the	configuration	file:

[unix_http_server]

[rpcinterface:supervisor]

[supervisord]

[supervisorctl]

[program:storm-supervisor]

After	that,	you	can	start	the	supervisor	server	and	all	processes	using	supervisorctl	on
172-31-19-62	machine.

Summary
In	this	chapter,	we	saw	how	distributed	Storm	processes	running	over	multiple	machines
can	be	managed	using	the	supervisord	process.	There	are	many	options	available	in
supervisord,	such	as	autostart=true.	If	we	set	this	option	for	any	Storm	process,	it	also
increases	the	reliability	of	the	overall	system	and	manages	failure	of	Nimbus.

Index
B

bolt
testing	/	Testing	a	bolt
SplitSentenceBolt,	testing	/	Example	–	testing	SplitSentenceBolt
SplitSentenceBolt,	testing	with	WordCountBolt	/	Example	–	testing
SplitSentenceBolt	with	WordCountBolt

C
cluster	modes,	Storm

about	/	Storm	cluster	modes
developer	mode	/	Developer	mode
single-machine	/	Single-machine	Storm	cluster
multimachine	/	Multimachine	Storm	cluster
Storm	client	/	The	Storm	client

D
Data	Specification	Language	(DSL)	/	Key	features	of	Storm
debugging

about	/	Debugging
declareOutputFields()	function	/	Sentence	spout
Distributed	Remote	Procedure	Call	(DRPC)	/	Starting	daemons

E
easy_install	method	/	Supervisord	installation
elementtree

URL	/	Supervisord	installation
executer	/	The	worker	process,	executor,	and	task,	Executors
Extraction,	Transformation,	and	Load	(ETL)	/	Overview	of	Storm

G
Git

URL	/	Storm	installation

I
installation

Petrel	/	Installing	Petrel
installation,	Storm

native	(Netty	only)	dependency	/	Enabling	native	(Netty	only)	dependency
optional	configurations,	using	/	Playing	with	optional	configurations

installation	prerequisites,	Storm
about	/	Prerequisites	for	a	Storm	installation
Zookeeper	/	Zookeeper	installation

J
jps	command	/	The	Storm	client

K
key	features,	Storm	/	Key	features	of	Storm

M
MongoDB

used,	for	finding	hourly	count	of	tweets	by	city	/	Finding	the	hourly	count	of
tweets	by	city	name	using	MongoDB
topology,	defining	/	Defining	the	topology	–	the	MongoDB	case
topology,	running	/	Running	the	topology	–	the	MongoDB	case

MongoDB	server
URL	/	Running	the	topology	–	the	MongoDB	case

N
native	(Netty	only)	dependency

enabling	/	Enabling	native	(Netty	only)	dependency
Netty	configuration	/	Netty	configuration
daemons,	starting	/	Starting	daemons

Natural	Language	Toolkit	(NLTK)	/	Splitter	bolt
nextTuple()	function	/	The	Twitter	stream	spout
Nimbus	/	Single-machine	Storm	cluster
Nose

URL	/	Example	–	testing	SplitSentenceBolt

O
optional	configurations

using	/	Playing	with	optional	configurations

P
performance	profiling,	topology

about	/	Profiling	your	topology’s	performance
split	sentence	bolt	log	/	Split	sentence	bolt	log
word	count	bolt	log	/	Word	count	bolt	log

Petrel
about	/	What	is	Petrel?
topology,	building	/	Building	a	topology
topology,	packaging	/	Packaging	a	topology
events,	logging	/	Logging	events	and	errors
errors,	logging	/	Logging	events	and	errors
third-party	dependencies,	managing	/	Managing	third-party	dependencies
key	features	/	Managing	third-party	dependencies
installing	/	Installing	Petrel
URL	/	Installing	Petrel,	Troubleshooting
productivity	tips	/	Productivity	tips	with	Petrel

process()	function	/	Splitter	bolt
processes,	Storm

about	/	Storm	processes
supervisor	/	Supervisor
Zookeeper	/	Zookeeper
Storm	UI	/	The	Storm	UI

productivity	tips,	Petrel
about	/	Productivity	tips	with	Petrel
startup	performance,	improving	/	Improving	startup	performance
logging,	enabling	/	Enabling	and	using	logging
logging,	using	/	Enabling	and	using	logging
fatal	errors,	automatic	logging	/	Automatic	logging	of	fatal	errors

PyPI	website
URL	/	Troubleshooting

Python	geotext	library
URL	/	Finding	the	hourly	count	of	tweets	by	city	name	using	MongoDB

Python	logging
URL	/	Enabling	and	using	logging

R
Redis

used,	for	searching	top	n	ranked	topics	/	Finding	the	top	n	ranked	topics	using
Redis
topology	configuration	file	/	Finding	the	top	n	ranked	topics	using	Redis,	The
topology	configuration	file	–	the	Redis	case
word	count	bolt,	rolling	/	Rolling	word	count	bolt	–	the	Redis	case
total	rankings	bolt	/	Total	rankings	bolt	–	the	Redis	case
topology,	defining	/	Defining	the	topology	–	the	Redis	case
topology,	running	/	Running	the	topology	–	the	Redis	case

S
server	setup	and	configuration,	Zookeeper

steps	/	Supervisord	components
setuptools

URL	/	Supervisord	installation
simple	topology	/	Testing	a	bolt
SplitSentenceBolt

testing	/	Example	–	testing	SplitSentenceBolt
testing,	with	WordCountBolt	/	Example	–	testing	SplitSentenceBolt	with
WordCountBolt

Storm
overview	/	Overview	of	Storm
use	cases	/	Overview	of	Storm
history	/	Before	the	Storm	era
key	features	/	Key	features	of	Storm
cluster	modes	/	Storm	cluster	modes
installation,	prerequisites	/	Prerequisites	for	a	Storm	installation
installation	/	Storm	installation
URL,	for	download	/	Storm	installation
processes	/	Storm	processes
topology-specific	terminologies	/	Storm-topology-specific	terminologies
Twitter	analysis	example,	URL	/	Twitter	analysis
rolling	top	words,	URL	/	Twitter	analysis
administration,	over	a	cluster	/	Storm	administration	over	a	cluster
supervisord	/	Introducing	supervisord

storm-starter
URL	/	What	is	Petrel?

Storm	UI	/	The	Storm	UI
Streaming	API,	Twitter

stream	spout	/	Twitter	analysis,	The	Twitter	stream	spout
splitter	bolt	/	Twitter	analysis,	Splitter	bolt
word	count	bolt,	rolling	/	Twitter	analysis,	Rolling	word	count	bolt
intermediate	rankings	bolt	/	Twitter	analysis,	The	intermediate	rankings	bolt
total	rankings	bolt	/	Twitter	analysis,	The	total	rankings	bolt
about	/	Twitter’s	Streaming	API
URL	/	Twitter’s	Streaming	API
URL,	references	/	Twitter’s	Streaming	API
Twitter	app,	creating	/	Creating	a	Twitter	app	to	use	the	Streaming	API
topology	configuration	file	/	The	topology	configuration	file
topology,	defining	/	Defining	the	topology

supervisor	/	Supervisor
Supervisor	/	Single-machine	Storm	cluster
supervisord

about	/	Introducing	supervisord
URL	/	Introducing	supervisord
components	/	Supervisord	components
installations	/	Supervisord	installation
dependencies,	installing	/	Supervisord	installation
.conf,	configuring	/	Configuration	of	supervisord.conf

supervisord.conf
configuring	/	Configuration	of	supervisord.conf,
Configurationsupervisord.confconfiguring	of	supervisord.conf	on	172-31-19-62

supervisord	components
about	/	Supervisord	components
supervisorctl	/	Supervisord	components
web	server	/	Supervisord	components
XML-RPC	interface	/	Supervisord	components
machines	/	Supervisord	components
Storm	and	Zookeeper	setup	/	Supervisord	components
Zookeeper	version	/	Supervisord	components
Storm	version	/	Supervisord	components

T
task	/	The	worker	process,	executor,	and	task
Thrift	/	Building	a	topology
tick	tuples	/	Rolling	word	count	bolt
top	n	ranked	topics

searching,	with	Redis	/	Finding	the	top	n	ranked	topics	using	Redis
topology

building	/	Building	a	topology
packaging	/	Packaging	a	topology
creating	/	Creating	your	first	topology
sentence	spout	/	Creating	your	first	topology
implementing,	in	Storm	/	Creating	your	first	topology
splitter	bolt	/	Creating	your	first	topology,	Splitter	bolt
word	count	bolt	/	Creating	your	first	topology,	Word	Counting	Bolt
spout,	implementing	/	Sentence	spout
running	/	Running	the	topology,	Running	the	topology
performance,	profiling	/	Profiling	your	topology’s	performance

topology,	Redis
running	/	Running	the	topology	–	the	Redis	case
hourly	count	of	tweets,	finding	with	MongoDB	/	Finding	the	hourly	count	of
tweets	by	city	name	using	MongoDB

topology-specific,	Storm
local	mode	/	Storm-topology-specific	terminologies
distributed	mode	/	Storm-topology-specific	terminologies
worker	/	The	worker	process,	executor,	and	task
executor	/	The	worker	process,	executor,	and	task,	Executors
task	/	The	worker	process,	executor,	and	task
worker,	process	/	Worker	processes

topology.yaml	file
URL	/	Running	the	topology

troubleshooting
running	/	Troubleshooting

Tweepy
URL	/	The	Twitter	stream	spout

Twitter
analysis	/	Twitter	analysis
Streaming	API	/	Twitter’s	Streaming	API
URL	/	Creating	a	Twitter	app	to	use	the	Streaming	API,	The	topology
configuration	file
login,	URL	/	Creating	a	Twitter	app	to	use	the	Streaming	API
stream	spout	/	The	Twitter	stream	spout

twitter
stream	spout	/	Finding	the	top	n	ranked	topics	using	Redis

splitter	bolt	/	Finding	the	top	n	ranked	topics	using	Redis
word	count	bolt,	rolling	/	Finding	the	top	n	ranked	topics	using	Redis

U
use	cases,	Storm

ETL	pipeline	/	Overview	of	Storm
trending	topic	analysis	/	Overview	of	Storm
regulatory	check	engine	/	Overview	of	Storm

W
Winpdb

installing	/	Installing	Winpdb
breakpoint,	add	/	Add	Winpdb	breakpoint
debugger,	launching	/	Launching	and	attaching	the	debugger
debugger,	attaching	/	Launching	and	attaching	the	debugger

word	count	bolt
topology,	defining	/	Defining	a	topology

worker
processes	/	The	worker	process,	executor,	and	task

Y
yaml	configuration

URL	/	Playing	with	optional	configurations

Z
Zookeeper

about	/	Single-machine	Storm	cluster,	Zookeeper
installation,	URL	/	Zookeeper	installation
setup,	URL	/	Zookeeper	installation
installation	/	Zookeeper	installation

	Building Python Real-Time Applications with Storm
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Getting Acquainted with Storm
	Overview of Storm
	Before the Storm era
	Key features of Storm
	Storm cluster modes
	Developer mode
	Single-machine Storm cluster
	Multimachine Storm cluster
	The Storm client
	Prerequisites for a Storm installation
	Zookeeper installation
	Storm installation
	Enabling native (Netty only) dependency
	Netty configuration
	Starting daemons
	Playing with optional configurations
	Summary
	2. The Storm Anatomy
	Storm processes
	Supervisor
	Zookeeper
	The Storm UI
	Storm-topology-specific terminologies
	The worker process, executor, and task
	Worker processes
	Executors
	Tasks
	Interprocess communication
	A physical view of a Storm cluster
	Stream grouping
	Fault tolerance in Storm
	Guaranteed tuple processing in Storm
	XOR magic in acking
	Tuning parallelism in Storm – scaling a distributed computation
	Summary
	3. Introducing Petrel
	What is Petrel?
	Building a topology
	Packaging a topology
	Logging events and errors
	Managing third-party dependencies
	Installing Petrel
	Creating your first topology
	Sentence spout
	Splitter bolt
	Word Counting Bolt
	Defining a topology
	Running the topology
	Troubleshooting
	Productivity tips with Petrel
	Improving startup performance
	Enabling and using logging
	Automatic logging of fatal errors
	Summary
	4. Example Topology – Twitter
	Twitter analysis
	Twitter's Streaming API
	Creating a Twitter app to use the Streaming API
	The topology configuration file
	The Twitter stream spout
	Splitter bolt
	Rolling word count bolt
	The intermediate rankings bolt
	The total rankings bolt
	Defining the topology
	Running the topology
	Summary
	5. Persistence Using Redis and MongoDB
	Finding the top n ranked topics using Redis
	The topology configuration file – the Redis case
	Rolling word count bolt – the Redis case
	Total rankings bolt – the Redis case
	Defining the topology – the Redis case
	Running the topology – the Redis case
	Finding the hourly count of tweets by city name using MongoDB
	Defining the topology – the MongoDB case
	Running the topology – the MongoDB case
	Summary
	6. Petrel in Practice
	Testing a bolt
	Example – testing SplitSentenceBolt
	Example – testing SplitSentenceBolt with WordCountBolt
	Debugging
	Installing Winpdb
	Add Winpdb breakpoint
	Launching and attaching the debugger
	Profiling your topology's performance
	Split sentence bolt log
	Word count bolt log
	Summary
	A. Managing Storm Using Supervisord
	Storm administration over a cluster
	Introducing supervisord
	Supervisord components
	Supervisord installation
	Configuration of supervisord.conf
	Configuration of supervisord.conf on 172-31-19-62
	Summary
	Index

