
Garofalo
Liccardi
Aponte

Shelve in
Web Development/General

User level:
Beginning

www.apress.com

SOURCE CODE ONLINE

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Building Windows 8.1 Apps
from the Ground Up

RELATED

This book is the perfect introduction for anyone wanting to create sophisticated
Windows 8 apps for the first time.

Assuming only a basic knowledge of HTML and CSS we’ll walk you through the
development process using C# and VB. The book will familiarize you with the tools
you’ll need to use in order to make the most of Windows’ stunning new features.
You’ll discover how to take advantage of the built-in functionality to create high
quality user experiences.

What You’ll Learn:

• How to plan out your app and its user-experience
• The pros and cons of the different development languages available to you
• To build well-structured apps that can be easily customized and reused
• Manage data stores and cloud storage
• Why accessibility and globalization matter, even to the smallest of apps
• Use Windows 8’s features to interact with the world around you

9 781430 247012

53999
ISBN 978-1-4302-4701-2

www.allitebooks.com

http://www.allitebooks.org

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

www.allitebooks.com

http://www.allitebooks.org

iii

Contents at a Glance

About the Authors.. ..xi

About the Technical Reviewer ...xiii

Chapter 1: Introduction to Windows 8.1 ■ ..1

Chapter 2: Windows Runtime Environment ■ ..31

Chapter 3: Designing the User Experience ■ ..73

Chapter 4: Choose Your Way ■ ..121

Chapter 5: Managing the Application Life Cycle ■ ..129

Chapter 6: Start Up Your App ■ ...143

Chapter 7: Take Advantage of the Environment ■ ..151

Chapter 8: Data Management ■ ..195

Chapter 9: Listening to the World ■ ..263

Chapter 10: Accessibility and Globalization ■ ..281

Chapter 11: Sell Your App ■ ..301

Appendix A: Live Tile and Toast Templates ■ ..335

Appendix B: Windows Store Developer Account ■ ...359

Index ...363

www.allitebooks.com

http://www.allitebooks.org

1

Chapter 1

Introduction to Windows 8.1

This chapter introduces you to Windows 8.1 and Windows Store apps, starting with the history of Windows,
including a discussion on the evolution of user interfaces (UIs) from the textual interfaces up to modern gestures on
multitouch devices. After we’ve refreshed your memory and highlighted the concepts of modern UIs, you’ll be ready
to understand what’s under the hood of Windows 8.1. You will look at the Immersive apps and learn the philosophy
behind the Windows Store apps’ UI and how it has influenced the development of Windows 8.1 to give you the
knowledge to create user-centric applications. Obviously, having knowledge without the tools to implement it doesn’t
make much sense; so during this introduction, we’ll also show you the developer environment that you need to use to
develop applications for Windows 8.1.

Once Upon a Time in Windows
This section introduces you to the history of Windows versions, starting from version 1.0 up to Windows 8.1. We’ll list
improvements introduced by Microsoft version to version, and we’ll follow the upgrade path made to the concept of
the UI, starting from its introduction up to the new Windows 8.1 UI.

From Windows 1.0 to 3.1
Once upon a time, everything had a text interface; then along came the mouse and everything changed. Microsoft’s
first OS was MS-DOS, which was a simple command parser. This type of interface couldn’t be called a GUI and
certainly did not encourage less-technical users to use a computer. To compensate, in 1983 Microsoft announced the
Windows project (code name Interface Manager).

After 2 years, Microsoft released the first version of Windows (1.0), which many still think was simply a graphical
interface for MS-DOS, but the executables that ran under this release were significantly different by format. Instead,
Windows 1.0 was a complete system ready to work with multitasking, which offered the possibility to swap between
various applications without having to close them. This was different from MS-DOS because it was a monotasking
operating system (OS). Looking at Windows 1.0 as a real OS is still an error; more properly, it was a graphical
environment hosting applications that ran on it.

The use of hand-eye coordination in UIs was the real turning point in User Experience (UX) because users were
catapulted from pure text interfaces made of long sequences of key combinations to the ability to access software
commands—and into a world of menu bars, scrollbars, and “windows.”

Two years later, Microsoft released Windows 2.0, designed to support Intel 286 processors. Shortly afterward,
when Intel released the 386 processor, Windows/386 supported the functionality of extended memory that this
processor was offering. With this release, the first software companies began to produce software for Windows. These
apps were the first signs of the success of the Microsoft OS, supported by the fact that computers became “personal”
(becoming part of everyday office employees’ lives).

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ IntroduCtIon to WIndoWs 8.1

2

The real breakthrough in the world of personal computers came in 1990, when versions 3.0 and 3.1 of Windows
were released in rapid sequence (see Figure 1-1). These two versions of the OS from Redmond sold 10 million copies
in the first 2 years and decreed the dominance of Microsoft in the world of personal computers. The main features of
the 3.x releases were 16-color graphics; Program Manager; File Manager; and Print Manager, enriched by features that
are included in the multimedia upgrade kits that comprised a CD-ROM drive and a sound card.

Figure 1-1. Windows 3.0 interface

In addition to the features that Microsoft has introduced for users since version 3.0, the story got interesting for
developers with a new version of the Windows SDK that simplified software development. The PCs entered peoples’
homes as well as their workplaces, so there was a need for software capable of supporting users in their small daily
tasks. With version 3.11 for Workgroups, Windows added support for peer-to-peer networks and domains, casting PCs
as an integral part of the structures of client/server networks that emerged.

Windows 95 to 2000
The growing interest by the community of developers and dizzying sales led Microsoft to invest in what would become
the father of its own modern OS: Windows 95, a consumer-oriented OS. Among the various improvements for users were
context menus; built-in Internet support, which was gradually becoming more widespread in the world; Plug and Play
capabilities to easily install hardware; and a taskbar with a button named Start (see Figure 1-2), from which the user has
access to virtually any element of the OS. Considering the whole of Windows 95, you can guess that the key to its success
lay in the simplicity of use for nontechnical users, a concept that became crucial in the evolution of computing.

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ IntroduCtIon to WIndoWs 8.1

3

The next step in the evolution of Microsoft’s OS was the Memphis project known as Windows 98, which
introduced several new features such as USB, support for DVD, and the Fat32 file system. But its main feature was
the integration of Internet Explorer (IE) with the shell of the OS. This enabled another feature, Active Desktop, which
allowed users to view and access HTML contents directly from the desktop.

The same features were also present in Windows Millennium Edition (ME), a version that has enjoyed little fame
because it differed from Windows 98 only by multimedia features. The most publicized change from Windows 98 was
that it didn’t include real mode MS-DOS; it included a MS-DOS virtual machine (VM). Windows ME was intended
to be an update of Windows 98 instead of a new version; it supported domestic use with multimedia capabilities,
providing software such as Windows Media Player 7 and Windows Movie Maker.

Note ■ the integration of Ie some years later would cost Microsoft a legal battle with the european Commission on
charges of abuse of dominant position.

Windows ME was probably the most unstable version of Microsoft’s OSs; Windows 2000, often abbreviated as
W2K, replaced it. It was an OS based on Windows NT, thought to work with advanced network capabilities; ready
to be used as a client in professional version; and used as a server with Server, Advanced Server, and Datacenter
Server versions.

Windows 2000 was the link that joined the desktop to enterprise versions of the Microsoft OS, merging in the
NT line of OSs some features from the Windows 9x branch, such as Windows Desktop Update, Outlook Express,
and others. Among the more interesting features for the consumer market was the support for NTFS (a file system
that manages the allocation of blocks in a more intelligent manner to avoid waste of space and allows users to easily
manage security settings files by using different features). Another interesting enhancement was made to Windows
Explorer, which allows users to customize the way folders look and behave. Unfortunately, this feature paved the way
for malicious scripts and other form of infection.

Figure 1-2. Taskbar with Start button

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ IntroduCtIon to WIndoWs 8.1

4

From Windows XP to Windows Vista
In 2000, Microsoft merged the team members of project Neptune, a new consumer version of Windows built on
Windows NT, into the team working on Windows Odyssey, an upgrade for Windows 2000 for business purposes. This
new team worked on a project named Whistler. In the 2001 Microsoft release, Project Whistler was better known
as Windows XP (eXPerience). After the experiment to reunite the desktop and server versions in a single product,
Microsoft resumed the usual conduct, dividing them again into two separate lines.

For the server version, the next release was Windows Server 2003; but for the desktop version, there was the
launch of Windows XP, still the longest-running OS from Microsoft. Windows XP came with a new fresh UI, improved
by many visual effects, which the OS decide to use or not depending on system resources. All the explorer windows
contained a sidebar window, Common Tasks, including the Open Documents folder or Images folder or Access to
Network. From a technical point of view, Windows XP included GDI+, a sort of facade responsible for drawing lines
and curves, and rendering fonts.

The taskbar supported the grouping of windows (see Figure 1-3). Many enhancements were included in the new
version of the kernel, touching Power Management, Memory Management, I/O Subsystem, Logon, Registry, and
much more.

Figure 1-3. Grouping windows in the taskbar

Microsoft released three service packs for Windows XP:

•	 Service Pack 1: Released in September 2002, it contained a lot of security and stability fixes,
and offered support for hard drives larger than 137 GB.

•	 Service Pack 2: Released in August 2004, it contained other security fixes, such as support for
Wi-Fi Protected Access (WPA) encryption for Wi-Fi and enhancements for Windows Firewall.

•	 Service Pack 3: Released in April 2008, side by side with other security fixes, it introduced support
for SHA-2 signatures in X.509 certificates and descriptive security options in Group Policy.

Five years after the release of Windows XP (in 2007), Microsoft announced the next version of Windows that was
code-named Longhorn and better known as Windows Vista. From a nontechnical point of view, the most important
updates in this version were the following:

Windows Aero (which stood for authentic, energetic, reflective and open) was the new •	
version of the Windows UI, intended to be cleaner, including glass-like effects that applied
to window borders.

Another interesting feature was Windows Flip 3d, which arranged the preview of all opened •	
windows in a sort of carousel. Always referring to the preview effect, with Aero you could point
to a Windows taskbar button to display a preview of the window (or windows, when grouped).

The Start menu was changed, again losing the label and showing the Windows orb (see •	
Figure 1-4), and showed a text box to search inside the computer for applications, files, and
mail; and to run applications by just writing the name. Another significant change was the
disappearance of the All Programs item, replaced with the entry Programs.

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ IntroduCtIon to WIndoWs 8.1

5

Even Windows Explorer was changed in this version. The task panel was removed, and a new •	
panel contained the favorite folders and the Details pane, which displayed information about
the selected item. The address bar was modified, showing breadcrumbs about the current
path that allowed users to click everywhere on the hierarchy to rapidly change the folder
instead of pressing the Back button.

The technical aspects that changed in this version related largely to the core of the OS, in which audio, print,
networking, and display subsystems changed.

Windows supported IPv6 for all network devices installed and the Link Local Multicast Name Resolution
(LLMNR) protocol to resolve hostnames on networks without a DNS server.

Windows Vista had a rewritten audio stack that ran at user level, thus increasing the stability of the system. Every
application that needed to use the audio needed to start a session using the Windows Audio Session API (WASAPI)
that worked in two ways:

•	 Exclusive mode (DMA): Played only one stream from one application; was particularly efficient
for applications that needed to output compressed audio such as Dolby Digital or DTS.

•	 Shared mode: Audio streams were rendered by the application, the global audio engine mixed
the streams, and then the streams were rendered on the audio device.

Starting with this version of Windows was fully integrated support for speech recognition, which no longer
required the installation of Office and was improved to command the computer through voice by using the Microsoft
Speech API 5.3 and Speech Recognizer 8.

The print subsystem was rewritten to conform to the XML Paper Specification (XPS) and the Windows Presentation
Foundation (WPF). These two technologies repaired the defects of the graphics device interface (GDI), improving the
Color Management by adding support for a resolution-independent, vector–based, paged document format.

For programmers, it was the first version of Windows to use WPF to improve the UI, still retaining compatibility
with Windows Forms and previous versions of the .NET Framework. For the uninitiated, WPF also made its first
appearance with XAML, an XML dialect for designing graphical user interfaces (GUIs) that were used in this
technology, in Silverlight, and in Silverlight for Windows Phone.

Windows 7
We have now discussed 23 years of Windows history, and the user experience has been at the center of the
improvements introduced by Microsoft (which always considered the need to improve purely technical aspects to
reduce the gap that arose with other OSs of the new generation). First, Microsoft focused on time spent to boot up
the system. Until Windows 7, when you installed a service or a program that started with the OS, it meant that even
unused services consumed resources that might otherwise be helpful to enable the system to run rapidly. For this
reason, in Windows 7 you can set a service to start delayed in order to speed up the boot.

Figure 1-4. Windows Vista Start button

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ IntroduCtIon to WIndoWs 8.1

6

The taskbar has been modified in several ways: it is 10 pixels taller than in previous versions to allow touch
capabilities, and the user can pin the application to the bar (this feature replaces the old Quick Launch bar).

Another interesting feature is support for multitouch, which refers to the capability of a touch device (touchpad,
touchscreen, and so on) to recognize more than one point of contact on the surface.

The advent of multitouch devices shows endless horizons of evolution to developers and users; gestures are
some of them.

Following is a list of the most common gestures (see the examples in Figures 1-5 to 1-12):

•	 Tap: Single or double touch (single tap, double tap).

•	 Double finger tap: Tap with two fingers at the same time, taking care to keep the target in the
middle.

•	 Panning with inertia: Drag one or two fingers up and down.

•	 Press and tap: Press with a finger and tap using another finger.

•	 Pinch and stretch: Make a pinching motion with your fingers or move them apart.

•	 Rotate: Can be done in two ways: moving two fingers in opposing directions, or holding a
finger and moving around another.

•	 Press and hold: Press and wait a range of time (can vary between systems) and then release.

•	 Flick: Swipe your finger quickly in a direction.

•	 Drag: Drag one finger left or right.

Figure 1-5. Panning with inertia

Figure 1-6. Drag

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ IntroduCtIon to WIndoWs 8.1

7

Figure 1-7. Press and tap

Figure 1-8. Pinch

Figure 1-9. Rotate

Figure 1-10. Double finger tap

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ IntroduCtIon to WIndoWs 8.1

8

Not everyone knows that some of these gestures are implemented in the Windows 7 UI. For example, you can use
press and hold or press and tap instead of right-click, zoom in and out using pinch and stretch, and rotate items using
the rotate gesture.

With Windows 7, we conclude the history of Microsoft OSs and the most important features that have characterized
their existence. You’ll now learn about the important features that are part of the OS known as Windows 8.

Windows 8
The cardinal principle of Windows 8 is the adoption of the Microsoft Design Style UI, which was introduced with
Windows Phone and can be summarized in a few words: “Bring the immediacy of the signs we see every day in the
metropolis in a UI with tiles containing simple icons (minimal) that allow the user to understand, in a very intuitive
way, what functionality is being accessed.” Of course, these few words do not describe completely what is behind the
idea of Microsoft Design Style (the code name for the Windows Store apps UI), but we need only to introduce it to
explain what's new in Windows 8 (we will cover it in depth in the next section).

The feedback received regarding the Microsoft Design Style UI on Windows Phone inspired the idea to
standardize the interface of various platforms, giving end users the same User Experience (UX) moving from one
device type to another (e.g., phone, tablet, PC, or TV).

As we did with other OSs, we will examine the features of Windows 8 so you can compare it with other versions.
A first point of comparison is the disappearance of the Start button from the taskbar (as you can see in Figure 1-13).

To be precise, it disappeared only visually, but conceptually it has been replaced by the Start screen that includes a
mosaic of tiles (just like Windows Phone). We will discuss functionality from a technical point of view later in the book.

Figure 1-13. Windows 7 application bar

Figure 1-12. Flick

Figure 1-11. Press and hold

Chapter 1 ■ IntroduCtIon to WIndoWs 8.1

9

Tiles are a dynamic representation of applications. If your application doesn’t update the tile, it can be defined as
“static” and operates as a link used to launch the application to which it refers; whereas a “dynamic tile” acts both as a
link and as a summary of the actual state of the application.

The startup screen is the heart of the new UI concept that was created for the new OS. At first, many accused
Windows 8 of being too tablet-oriented or more generally touch-oriented. It can probably look like this with the use of
tiles that don’t seem to look like the classic menu and are made to have everything at users’ fingertips.

But consider the Microsoft point of view: to meet the new needs imposed by the modern era. Users are
increasingly accustomed to using touch devices, children grow up already learning to perform gestures on tablets, and
it doesn’t make sense to invest in a direction that isn’t related to new trends. The use of tiles responds to requests from
users to stay connected with the information they need. For a comprehensive assessment, we must also put ourselves
in the shoes of those who don’t use touch devices. For these users, Windows 8 retains all the stability of Windows 7
and (minimizing the concept) replaces the classic Start menu with the new Start screen, which will work both as a
dashboard and as a menu to launch applications.

The new Windows Store app interface has also changed the login/lock screen, which now includes information
such as date, time, pending notifications (only from a limited number of applications), and support for Picture
Password (a sequence of gestures to be performed on an image for faster access on touch devices).

More great news about Windows 8 is the presence of IE. Now in its tenth version with a new Microsoft Design
Style interface, it is ready for touchscreen, with full support for HTML5 and CSS3 to reduce the need of external
plug-ins (which means “No plug-in, no external applications”). All apps come from the Windows Store (we will talk
about that in the last chapter, which is dedicated to application publishing).

Windows 8 will resolve the problem linked to procedures (more or less complex) in order to put a Windows
self-consistent installation within a USB stick. For Windows-To-Go enterprise users (who sign the enterprise license),
it will create images of the PC and write them on a USB stick, so they can start the OS from any computer without
compromising corporate security.

Windows 8.1
Windows 8.1, a.k.a. Blue, is the evolution of Windows 8. Based on feedback received from customers, Microsoft made
many improvements. First, two new sizes of app tiles are available: one of 70 x 70 pixels and one of 310 x 310 pixels.
Because both sizes are square shapes, we cannot continue to reference the 150 x 150 pixels tile as a square tile. From
this version of Windows, the tiles sizes are named as follows:

Small tile: square 70 x 70 px•	

Medium tile: square 150 x 150 px•	

Wide tile: wide 310 x 150 px•	

Large tile square 310 x 310 px•	

These new tile sizes allow the user to customize the Start screen, showing more tiles or more information. And,
keeping an eye on the customization, from this version of Windows, the user can choose to have a slideshow as the
background of the lock screen.

Keeping our focus on the UX, we cannot forget to talk about the reintroduction of the Start button. In the
first release of Windows 8, many users missed the Start button because they were used to it as the entry point for
everything. With Windows 8.1, Microsoft integrates a new kind of Start button.

Clicking it with the primary button of your mouse (the left button if you are right-handed) will move you to the
Start screen. Otherwise, with the right-click a contextual menu appears, as shown in Figure 1-14, that allows you to
quickly access a list of system shortcuts, including the shutdown menu, (which was omitted in the first release and
disappointed many users). The second update that will make Windows 8.1 similar to older versions of Windows is the
Boot to Desktop feature that lets users boot directly to the desktop instead of the Start screen.

Chapter 1 ■ IntroduCtIon to WIndoWs 8.1

10

Another interesting feature is the introduction of aggregated search, which allows users to search on Bing, the
Internet, apps, and locally all at once, which improves the user experience.

There are other enhancements that Microsoft groups under the “bring-your-own-device” category that helps
users to rapidly associate resources with the OS. For example, the NFC Tap-to-Pair printing feature lets the user
configure a printer by simply reading the NFC tag of the printer from the NFC sensor of the device; Windows will do
everything else. Because users want to avoid the use of cables, Windows 8.1 introduced the support of Wi-Fi direct
printing that allows a peer-to-peer connection to a Wi-Fi printer, avoiding the need for an access point. To avoid the
use of wires, Microsoft introduced native support to Miracast Wireless Display that lets users use compatible devices
as a remote display. Not many compatible devices are currently available because this is an extremely new standard,
but we think that the Xbox One will surely be compatible.

Speaking of mobility enhancements, there is expanded support for a wider range of VPN clients, VPN
auto-triggered connections, and tethering.

Finally, Windows 8.1 has the eleventh version of IE, which is faster than previous versions, even with many tabs
on the Start page; and supports the SPDY protocol. The immersive version can now keep up to 100 tabs open instead
of 10 and allows multiple instances.

Thinking in Metro: Fundamentals of the Windows Store App UI
This chapter will introduce the philosophy behind the new interface in the Windows 8 Store app, starting with
different sources of inspiration and ending with the guidelines that a developer should follow.

Figure 1-14. Contextual menu on the Start button

Chapter 1 ■ IntroduCtIon to WIndoWs 8.1

11

What Is the Microsoft Design Style?
Microsoft Design Style is the code name for a new set of concepts that Microsoft has introduced in the Windows Phone
interface. The aim is to make the UI cleaner, more intuitive, and faster.

Figure 1-15 shows an example of the Windows Phone Start screen.

Figure 1-15. Windows Phone Start screen

The screen is formed by squared elements called hubs, each of which is alive: every hub can display real-time
notification and images.

Before Windows Phone, some of the distinct elements of the Microsoft Design Style were actually already present
in a few Microsoft products such as Encarta 95, MSN 2.0, Windows Media Center, and Zune (see Figure 1-16).

Chapter 1 ■ IntroduCtIon to WIndoWs 8.1

12

This new kind of interface garnered much approval from customers, and Microsoft decided to use the same
guidelines as a starting point for the Windows 8 UI. But what exactly are these concepts?

Origin of the Microsoft Design Style UI Design Language
The Microsoft Design Style UI is inspired by many sources. First are the signs that can be found in public transport
systems. In fact, Microsoft designers declared that the King County Metro transit system in Seattle was one of the
sources for the Microsoft Design Style because of its simplicity of providing information (see Figure 1-17).

Figure 1-16. Zune UI (Wikipedia)

Figure 1-17. King County Metro signage (Wikipedia)

Chapter 1 ■ IntroduCtIon to WIndoWs 8.1

13

Microsoft Design Style is influenced by three concepts:

Modern design•	

International typographic style•	

Motion design•	

The next sections provide details of each concept.

Modern Design
What do Windows Store apps have to do with modern design? To understand the reason why they are connected, we
have to figure out where modern design comes from.

One of the main sources of inspiration of modern design was the Bauhaus school, which opened in Germany
in 1919. The main principle of this school was to combine craftsmanship and the fine arts. All the works were
characterized by the absence of adornments to show the matter properties to emphasize the pursuit of a balance
between functionality, rationality, and technique.

All the Bauhaus ideas came from the historical context that preceded the period when the school was created
(see Figure 1-18). We are talking about the second half of the nineteenth century, in which the effect of the Industrial
Revolution, starting from the changes on every aspect of daily life, was spread all over the world.

Figure 1-18. The Bauhaus building in Dessau

The progress that was made until today in every field of human knowledge has changed the ways we live our
lives. Today, thanks to communication and travel, we feel more connected to each other.

For this reason, modern design fits very well in the Microsoft Design Style conception:

“Artisans were stills using yesterday’s design thinking"——Moreau (Designing Metro Style: Principles
and Personality; Build Conference 2011).

We need the essential, we need something that is direct, and we need something that is present in our age.

Chapter 1 ■ IntroduCtIon to WIndoWs 8.1

14

International Typographic Style
Also known as Swiss style, the International Typographic Style is a graphic design developed in Switzerland in the
1950s. It was actually created in the 1920s in Russia, Germany, and the Netherlands, but only Swiss graphic designers
were capable of expressing these principles in their work.

The main focus was the pursuit of simplicity, readability, and cleanliness. Craftspeople paid a lot of attention to
keeping their works essential by preferring typography, content layout, or images to the use of texture and illustration.

Some of the concepts behind the Swiss design are the widespread use of whitespace and geometrical
organization of the elements (thanks to the use of a grid system). In Figure 1-19, which shows a Helvetica format
example, the typography is the strong point because it enables messages expressed in simple and clean ways. The use
of hierarchy in the text also helps to organize information. And all that is not essential is removed.

Figure 1-19. An example of Swiss design based on a Helvetica font (Wikipedia)

Figure 1-20. Melbourne Airport signs (Wikipedia)

The way Swiss design expresses a message is so straightforward that today it is usually used in airport and metro
signs (see Figure 1-20).

Chapter 1 ■ IntroduCtIon to WIndoWs 8.1

15

Motion Design
Another source of inspiration for Microsoft Design Style is the use of design applied to cinematography. Many films
use a mixture of sounds, images, and typography to express motion. Some examples can be seen in the opening
credits by Saul Bass in the films Anatomy of a Murder, North by Northwest, and Ocean’s Eleven.

You can also find good examples in Steven Spielberg’s film Catch Me if You Can or in YouTube videos about
kinetic typography such as Where Good Ideas Come From (by Steven Johnson).

Microsoft Design Style Principles
All the previously discussed concepts about Microsoft Design Style are the fundamentals of the five principles that
every developer has to follow when designing apps.

Principle 1: Show Pride in Craftsmanship
Details are important and user experience is, too. When a developer has to design an application, he or she has to
consider these aspects. It’s important to organize the space in the UI to achieve balance, hierarchy, simplicity, and
clarity. It helps to use a grid in which the objects can be laid (see Figure 1-21). Remember that creating software is an
art, but creating a good UI is an art, too. Only if both are perfect will you have good software!

Figure 1-21. An example of using grid to lay text

Chapter 1 ■ IntroduCtIon to WIndoWs 8.1

16

Principle 2: Be Fast and Fluid
Life is always in motion. Whenever a person needs to use a device, he or she wants a simple, comprehensive, and
responsive interface. An application must be intuitive, and a user must be carried away by its UI (maybe by using
animations). Most of the modern devices are touch-based. The Microsoft Windows 8 development team has put lots
of effort into studying how people interact with a touch-based UI. Developers need to be aware of this.

Principle 3: Authentically Digital
We live in a digital era, which means that we are always connected. Social networks, blogs, and cloud services have one
thing in common: sharing information. All that matters today is information. And this is why typography is important.
People need to share their everyday lives, and they need to do it in a modern way by using images, colors, motion, and
typography.

Principle 4: Do More with Less
People need to see only what they are interested in. Content is the heart of the experience. There’s no need to always
see bars, buttons, and icons. Interfaces must be direct and essential, and users want to explore the content by dipping
into it.

Principle 5: Win as One
Embrace the Microsoft Design Style spirit. It is an entire ecosystem that your app can use to work, communicate,
and provide control to users. Fit into the UI model and you’ll be sure that users will love your applications. You can
integrate a set of built-in contracts to add features to your app.

Making Great Windows Store Apps
How can developers use all this information to create their applications? First, a developer must have all the
knowledge about the Windows 8 application life cycle. Then, by following Microsoft Design Style principles
and maybe with the help of a designer, he or she has to create a UI focused on the content. No chrome, nothing
unnecessary—just a clean and direct layout; well organized; and based on the use of images, colors, and typography.

Applications have to be touch. It’s important to understand how users interact with devices: by touching the
screen, using gestures, and with their fingers. A developer could use what is already available; there are built-in
controls and contracts that help to create full Windows Store apps. Last but not least, he or she shouldn’t be limited to
these principles! They are good starting points, but it’s up to them to use them and reinvent them.

Platform and Tools
Developing the Windows 8.1 Store app requires the installation of Visual Studio 2013 (VS2013), which is available in
full and express editions. The main differences are the price and the auxiliary tools: the Express Edition is free and
contains all available tools for Windows 8.1 application development; the full edition (professional or ultimate) also
provides tools not directly connected with Windows 8.1. All the examples in this book use the Express Edition, but the
code and procedures can be applied to all the major Visual Studio editions.

You can install VS2013 on Windows 8 or previous versions of Windows without restrictions, but if you don’t
choose Windows 8.1, you can’t develop the Windows 8.1 Store app. We’ll use Windows 8.1 for the book examples and
we advise you to do the same, even in a VM.

Chapter 1 ■ IntroduCtIon to WIndoWs 8.1

17

When you are developing your application, you should pay attention to the user experience provided by the
UI, following the Windows Store app guidelines for Windows 8.1. Visual Studio might not the best tool for this
requirement because the designer provided for managing the UI isn’t as user-friendly for this scope. In fact, Blend for
Visual Studio is more appropriate to design the user experience of your application, with an environment specifically
created for the designer who hides the UI code generation behind a collection of graphical designers.

Installing the Tools
You can download Visual Studio 2013 Express for Windows 8.1 from the Microsoft site:
http://go.microsoft.com/?linkid=9832256. When the download is complete, click winexpress_full.exe, agree
to the license terms and conditions, and click the Install button. Don’t interrupt the Internet connection because the
installation program must download the components for the installation process (see Figure 1-22).

Figure 1-22. Installation process

If the Express Edition of VS2013 for Windows is free, it requires a valid product key that can be generated
automatically by using a Windows Live account and following the steps suggested by the installation process
(see Figure 1-23).

www.allitebooks.com

http://go.microsoft.com/?linkid=9832256
http://www.allitebooks.org

Chapter 1 ■ IntroduCtIon to WIndoWs 8.1

18

The last step is to acquire the developer license for Windows Store development. It is absolutely free (at the
moment) and requires only a Windows Live account (see Figure 1-24).

Figure 1-24. VS2013 for Windows 8 environment

Figure 1-23. VS2013 for Windows 8 activation process

At the end of the installation process, you can launch Visual Studio, which shows an environment that is
completely new compared with previous versions (see Figure 1-25), all in Microsoft Design Style. If you use Visual
Studio for the first time, don’t panic; it’s quite simple to start with this environment.

Chapter 1 ■ IntroduCtIon to WIndoWs 8.1

19

There are five functional areas:

•	 Main menu (context sensitive): Area for all the commands available for the current view

•	 Command bar (context sensitive): Area of the main and most-used commands for the current view

•	 Toolbar (context sensitive): Area with all the tools for the current view

•	 Working area: Area with the code editors and/or the available designers

•	 Solution Explorer: Area in which you can explore the application structure

First, you have to create a new project with the New Project dialog box by clicking the New Project menu item of
the File menu, clicking the new project icon on the command bar, or using the Ctrl+Shift+N shortcut.

In this wizard, you can choose a starter template (Grid App in this example), a name for the project (FirstApp, in
this case), the location for the project files, and a solution name (by default, the same as the project name). Click OK
and wait for the project creation (see Figure 1-26).

Figure 1-25. Visual Studio 2013 for Windows

Chapter 1 ■ IntroduCtIon to WIndoWs 8.1

20

Starting Your Application in the Simulator
In the next chapters, you will analyze the code created by the template. At this time, try to launch the empty
application that was created. Starting from VS2012 (and even in VS2013), we have more control over the environment
that we want to use to test our app because the Play button (the F5 shortcut if you use the C# key configuration) is a
combo box button (see Figure 1-27).

Figure 1-27. Starting application options

Figure 1-26. New Project Wizard

Chapter 1 ■ IntroduCtIon to WIndoWs 8.1

21

The Simulator has a command bar on the right for changing the environment settings; these functionalities are
introduced in Table 1-1.

Figure 1-28. Windows 8 Simulator

You can choose to launch the current project in the following:

•	 Local Machine: Launches the current project directly on the OS.

•	 Simulator: Runs the application on a Windows 8.1 tablet Simulator. This is the best choice
if the current hardware doesn’t support touch or other device capabilities, and you want to
simulate them.

•	 Remote Machine: Launches the application on an external device connected to the current
device. This is the best choice if you can try the application on real hardware.

For example, choose Simulator and click the Play button (or press F5). Visual Studio launches the Simulator
(see Figure 1-28): a complete environment that tests all the capabilities offered from Windows 8.1 and the major
devices available for the market. Look at this simulation environment. The Simulator creates a terminal server
connection to your OS. This is very cool because if you use Simulator for tests, touch, or GPS, you can do it in your
Windows 8 configuration!

Chapter 1 ■ IntroduCtIon to WIndoWs 8.1

22

Table 1-1. Simulator Commands

Mouse Mode The Simulator input type is a mouse pointer.

Touch Mode The Simulator input type is touch–mode simulated with
the mouse.

Touch Emulation Pinch/Zoom The Simulator input is the touch combo for pinch and
zoom operations.

Touch Emulation Rotate The Simulator input is the touch rotation combo.

Rotate Simulator Clockwise 90 Degrees Rotates the Simulator screen 90 degrees clockwise.

Rotate Simulator Counterclockwise 90 Degrees Rotates the Simulator screen 90 degrees counterclockwise.

Change Resolution Changes the resolution used by the Simulator. Possible
values are these:
7" 1920 x 1200px
7.5" 1440 x 1080px
10.6" 1024 x 768px
10.6" 1366 x 768px
10.6" 1920 x 1080px
10.6" 2560 x 1440px
12" 1280 x 800pxu
23" 1920 x 1080px
27" 2560 x 1440px

Set Location Allows you to send geographic coordinates to a device
as a GPS device. During first use, the device requires the
authorization for GPS device configuration that wants
administrator privileges. Manually set the latitude (degrees),
longitude (degrees), altitude (meters), and error radius
(meters) with a simple form (see Figure 1-29).

Capture Screenshot Allows you to create a picture shoot of the Simulator content
in the location indicated into screenshot settings.

Screenshot Setting Allows you to change settings for the Capture Screenshot
command via a pop-up menu:

Save the screenshot as a file or in the •	
Clipboard

Quickly access the folder that contains the •	
saved screenshots

Change where on HD the screenshots •	
must be stored

Change Network Properties Access the Set Network Properties dialog box shown in
Figure 1-30.
Here you can set Network functionality such as to see if the
connection is near the data limit or whether the connection
has roaming enabled or not. This allows you to test your app
against various scenarios.

Help Opens the online help site for the Simulator.

Chapter 1 ■ IntroduCtIon to WIndoWs 8.1

23

On the bottom you can see the windows button for switching between the immersive desktop and the last
opened application. If the Simulator has the focus, the keyboard commands are captured from the Simulator, and you
can also use the windows button on your keyboard or all the keyboard shortcuts available for Windows 8.

To close the Simulator, press the right mouse button and choose the Exit menu item from the contextual menu;
the Minimize command obviously does not close the Simulator.

Blending for Microsoft Visual Studio 2013
If you are a designer, a user experience designer, or a developer who is creating the UI of an app, you probably prefer
to use tools specifically made for this type of task to simplify your work. For this purpose, Microsoft has the Expression
Studio suite, which is a component of the suite called Blend (see Figure 1-31).

Figure 1-30. Set Network Properties dialog box

Figure 1-29. Set location authorization form and set location form

Chapter 1 ■ IntroduCtIon to WIndoWs 8.1

24

When it created Expression Studio, Microsoft wanted not only to create a suite for graphic users but also to create
an environment to include graphics users in the team. In fact, Blend can open the same solution file of Visual Studio
and share the code with it as the same source control server application, as Team Foundation Server, and directly
launch the application with the classical F5 button. The idea is that the user experience designer is part of the team in
all aspects of the developing process.

You can also create a new project directly with Blend by selecting the classical menu item File ➤ New Project and
choosing your preferred options for the project creation (see Figure 1-32). If this is your first time working with Blend
and you are a developer, remember that this tool is for designer users, and all the operations should be done with the
graphical designer or the available palettes. You also can edit the HTML or the XAML directly. If you are a designer,
you will feel at home with the Blend UI because it is in line with the most famous Adobe tools. Note that starting from
VS2012 and so on to the 2013 XAML designer has been improved with many components in the past available only
with Blend, so if you are a developer and you don’t want other software, you can use the new designer and be happy.

Figure 1-31. Blend for Visual Studio 2013

Chapter 1 ■ IntroduCtIon to WIndoWs 8.1

25

Blend is made of five main components (shown in Figure 1-33):

•	 Menus: Area in which you can manage the project and have access to all application settings

•	 Tools Panel: Contains all available tools to modify applications

•	 Main Panels: Show all available main panels for projects

•	 Artboard: Area in which you can design applications

•	 Additional Panel: Area in which you can see all the other available panels with the current
kind of project

Figure 1-32. New Project Blend Wizard

Chapter 1 ■ IntroduCtIon to WIndoWs 8.1

26

Begin with the Tools Panel (shown in Figure 1-34), which provides these elements for interacting with the environment:

•	 Selection Tools: Composed of the first two buttons with the arrow icons; used to select and the
direct the selection of designer elements

•	 View Tools: Composed of the button with the hand and the magnifying glass; used for panning
and zooming actions

•	 Asset Tools: Used for fast access to the Assets Panel (explained later)

Figure 1-33. Five main Blend components

Chapter 1 ■ IntroduCtIon to WIndoWs 8.1

27

The area called Main Panels (see Figure 1-35) includes the most important panels in the UI design process:

•	 Projects Panel: Area in which all the files that compose applications are managed

•	 Assets Panel: Area in which all the available controls for the current project type can be found

•	 Platform Panel: Area for selecting all the platform settings such as resolution, available
views (landscape, filled, snapped, portrait), deploy target (local machine or Simulator),
and other options

Figure 1-34. Tools Panel

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ IntroduCtIon to WIndoWs 8.1

28

Other panels appear in this area, but they’re specific to project type. For example, the Styles Panel is for the CSS
file managing of HTML Windows 8 applications, and the States Panel is for XAML Windows 8 application visual states
managing (explained in Chapter 5).

Now we focus our attention on the Artboard (shown in Figure 1-36), which is the core of the environment. On
the top left (see element 1 in Figure 1-36), you can see the tabs of the current opened views; the current view is shown
in light gray in the designer. If you hover over these tabs, you can see the complete path of the files. Click once to
change the current view. On the top right (element 2 of Figure 1-36), if you are in design mode and you have to choose
HTML for your project, you see three buttons: the first shows the designer in full screen for helping you with element
positioning and manipulation, the second alerts you about errors in the current file (hover with the mouse for the
errors detail), and the third refreshes the designer.

Figure 1-35. Main Panels

Chapter 1 ■ IntroduCtIon to WIndoWs 8.1

29

With the buttons on the middle right (see element 4 of Figure 1-36), you can choose whether the middle area
must show the graphical designer (element 3 of Figure 1-36), the code editors (element 5 of Figure 1-36) or both
(splitting them). As shown in Figure 1-36, if you use HTML 5 for your project, the code editor shows you HTML and
the corresponding CSS elements.

The term Additional Panels means all the secondary panels shown, by default, on the right area of the Blend
UI. One of them is the Properties Panel that shows the properties of the current selection (or multiselection), and its
content is specific for the project type.

Figure 1-36. Artboard area

Chapter 1 ■ IntroduCtIon to WIndoWs 8.1

30

Conclusions
Window 8.1 introduces many improvements based on the WinRT and WinJS libraries, enabling you to create beautiful
Windows Store apps by using the Microsoft Design Style principles. This kind of app, also known as an immersive app,
opens new horizons of learning. These horizons are ready for desktop developers who come from WPF, Silverlight, or
simply from the Web because immersive apps can be designed with XAML or HTML. When you work with XAML, you
can write code using managed languages such as VB.NET and C#, or with C++. If you work with HTML, you know a lot
of JavaScript; the good news is that you can use your knowledge to inject code in your application.

Of course, if you want to write a Windows Store app, you must know what Microsoft Design Language is. Indeed,
this is the code name of the new UI introduced by Microsoft that resembles metropolitan signs, allowing you to design
your application with an intuitive look that helps users quickly find and access available functionalities.

The time of writing code in Notepad is certainly over, so in order to be productive, you must know which tools
you will need to use when you write a Windows Store app. The first tool is Visual Studio 2013 (VS2013), which you can
get (in the Express Edition) from this link: http://go.microsoft.com/?linkid=9832256. With VS2013, you can start
creating apps for the Windows Store using one of many templates included and choosing your preferred language.

This chapter gave you basic information about the philosophy and tools for Windows 8.1 Store app development.
Of course, you cannot start developing without a concrete introduction to the life cycle of the Windows Design Style
app or an introduction to the numerous possibilities that WinRT and WinJS offer that enable you to exploit all the
capabilities of this OS.

Come with us now to Chapter 2, in which we introduce you to the Windows Runtime environment.

http://go.microsoft.com/?linkid=9832256

31

Chapter 2

Windows Runtime Environment

After giving you a complete introduction to the basic principles of Windows Store apps and the related tools that
you need to develop an application, we now want to explore the environment and tell you about the new platform
architecture and its components. The following list shows the key concepts you need to know before writing
a new application:

•	 Communication: An introduction to Windows Runtime (WinRT) application programming
interfaces (APIs) that enable your applications to communicate with external sources

•	 Data: An introduction to all the APIs that allow applications to store and retrieve data

•	 Graphics: Classes that you can instantiate to draw something on your application

•	 Media: Classes that help you play video and audio in your applications

•	 Devices and printers: The support of Windows 8 for devices such as Camera, GPS, Printers, and
much more

Windows 8 Platform
Looking toward the future, Windows has been redesigned with a new set of core services shared between the classic
desktop applications and the new immersive Windows Store apps. Some of the main problems of Windows operating
systems (OSs) were end user problems with installing, uninstalling, searching, and trying applications. Consumers are
key (without forgetting business users) to meeting the needs of mobility and touch interactions. To enable developers
to create a new experience with Windows for consumer users, Microsoft introduced a new layer in the operating
system: Windows Runtime, also called WinRT.

WinRT is the evolution of the Component Object Model (COM) present in previous versions of Windows, with a
completely different type of system (no binary string, no variant, and no RegSvr32) and the deletion of the IDispatch
interface and connection points. It solves the main problems of actual applications in the absence of a marketplace
in which to find and install applications in a secure mode, without administration permission. WinRT improves
the performance and memory cost of necessary wrappers for the interoperability scenarios; it then simplifies the
use of native language with the managed language (as with C# and VB.NET) and makes not-blocking the call to the
input/output (I/O) device (net, disk, and so on). It also provides standard contracts for the data exchange among
applications—and among applications and the operating system.

WinRT integrates the .NET Common Language Runtime (CLR) as a subplatform and doesn’t substitute it; it is
responsible for many tasks of application memory management through the Garbage Collector, the compilation of the
Intermediate Language (IL) code through the just in time (JIT) compiler. Some aspects of the .NET platform influenced
many choices of WinRT—for example, the metadata format (ECMA-335), a standard that defines the Common
Language Infrastructure (CLI), in which applications written in multiple high-level languages can be executed in

Chapter 2 ■ WindoWs runtime environment

32

different system environments (http://www.ecma-international.org/publications/standards/Ecma-335.htm)
and libraries. The type system supports class, methods, properties, delegates, and events such as the .NET languages.
The base types are bool, int, float, enum, guid, type, and object. The string, at a binary level, is a value type (not
nullable), immutable and compatible with STL (wstring) and .NET (String). The reference types are all types that
implement a WinRT interface; the others are value types. There are observable collections and dictionaries, too
(Vector and Map). For user interfaces, there is a native implementation of XAML. Windows Presentation Foundation
(WPF) and Silverlight don’t run in immersive mode, only in desktop mode, but there is a special portable library that
allows the creation of DLL libraries shared between Windows Store apps, Desktop, Silverlight, Windows Phone, and
Xbox applications!

Figure 2-1 shows the Windows 8 platform. You can see the WinRT layer as a set of object-oriented class libraries
shared across programming languages. This is possible because the WinRT metadata are CLI metadata stored in a
separate WINMD file (because native code that is processor-specific can’t contain metadata) and can be reflected like
CLI assemblies.

Figure 2-1. Windows 8 platform

These WinRT APIs can be grouped into five logical blocks based on their functionalities:

•	 Application Model: Provides all functionalities for application life cycle management

•	 Communication and Data: Provides all functionalities for data storage and communication
between the internal and the external world

•	 Graphics and Media: Provides all functionalities for media management

•	 Devices: Provides all functionalities for managing available hardware devices

•	 Services: Provides all functionalities to connect to services such as Skydrive, Bing, Azure
Mobile, and Xbox Live

http://www.ecma-international.org/publications/standards/Ecma-335.htm

Chapter 2 ■ WindoWs runtime environment

33

In Figure 2-2, you see these blocks detailed in subcomponents (discussed later in this chapter). Now we make
some observations on application life cycle management, the importance of a responsive user interface (UI), and
the sandbox in which the applications run. Notice that some items in the picture contain the suffix *(one asterisk) or
** (double asterisks). The meaning of these asterisks is to show what feature has been updated (*) and what features
have been added (**) from the first version of the WinRT application programming interface (API) to version 8.1.

Figure 2-2. WinRT functionality blocks

When an application is activated for the first time, its process is created and running, and the user interface
is launched in full screen mode. If another application is activated, the first is hidden and is suspended after 5
seconds, sending a message to the application to save the current state. If it is reactivated, the system sends a resume
message to the app for loading the saved state, and the process becomes active. If the available memory is too low,
all suspended processes will be closed without notification messages to improve performance. Figure 2-3 shows
application life cycle management.

Chapter 2 ■ WindoWs runtime environment

34

One of the problems of the previous version of Windows was installing and uninstalling applications without
administration privilege. WinRT solves this problem in a way that doesn’t affect security. All Windows Store
applications can be exclusively installed from the Windows 8 Store (the only exception is the installation through
Visual Studio for developers’ purposes), the Microsoft Marketplace in which all developers can deploy its applications.
The installation package, a zip folder with an .appx extension, contains an application manifest with the required
information for the package installation, the application code files, a section called BlockMap with the hashes of all
the application files, and a signature for the package validation.

The application manifest is an .xml file named appxmanifest.xml that explicitly declares all the capabilities
required by the application: file access, device access, network and identity, file type association, and contracts. Don’t
worry; it isn’t necessary to manually edit this file because Visual Studio has a visual editor for this purpose.

When you choose an application from the store for the installation, the system downloads the package, validates
it, checks the integrity of all files through the hashes in BlockMap and checks the requirements declared in the
manifest file. A component called Security Broker checks this manifest file to ensure that nothing can be used without
user authorization (see Figure 2-4).

Figure 2-3. Application life cycle management

Figure 2-4. Execution application sandbox

Chapter 2 ■ WindoWs runtime environment

35

To allow compatibility among programming languages and WinRT, the projection mechanism was introduced to
remap and fit the libraries’ metadata. For example, it solves the problem of JavaScript that uses CamelCase notation
for properties and methods, PascalCase for types, and lowercase for events; while C++ and .NET use PascalCase
notation for all. The projections are specific for every language; Microsoft provides projections for C++, JavaScript, and
.NET; but in the future, other companies might provide projections for their languages. See Figure 2-5.

Figure 2-5. Metadata compatibility through projections

Application Model
The Application Model component of WinRT APIs refers to fundamental components of the library responsible for
application management. It’s composed of six main blocks:

Application Services•	

Threading & Timers•	

Memory Management•	

Authentication•	

Cryptography•	

Globalization•	

Diagnostics•	

The application services are located in the Windows.ApplicationModel namespace and contain the entire API for
managing the application life cycle and handling operating system events. For example, the window of an immersive
application, its thread, and its state changes are managed through the Windows.ApplicationModel.Core classes and
interfaces (see Figure 2-6).

Chapter 2 ■ WindoWs runtime environment

36

Another interesting element is the Windows.ApplicationModel.Background namespace, which provides classes
that enable an app to manage background tasks. Although the user interfaces of the immersive mode can appear to
be monotasking, Windows is a multitasking operating system, so you can execute different applications at the same
time and, with the background tasks, also execute more work items that do not require user interaction. Usually you
use these kinds of tasks for call services, reacting to a change of a system condition, showing a notification, and so
on. Later, we’ll analyze how to use this important feature, but now we are looking for a WinRT API that provides this
functionality. Figure 2-7 shows the main classes and interfaces involved in background task management.

Figure 2-6. Windows.ApplicationModel.Core classes and interfaces

Chapter 2 ■ WindoWs runtime environment

37

Like the main object-oriented frameworks, you need to implement an interface that establishes the contract
between your implementation and the system that executes your code. This interface is IBackgroundTask, which is
required to implement the simple Run() method. Without a user interface, there must be another entry point for the
execution of the task implemented, so you need to register your code for triggering an event with the SetTrigger()
and Register() methods of the BackgroundTaskBuilder class. SetTrigger() accepts any implementation of the
IBackgroundTrigger interface; WinRT offers PushNotificationTrigger, SystemTrigger, and MaintenanceTrigger,
which allow you to handle the main events of the Windows 8 system. The Register() method returns an instance of
the BackgroundTaskRegistration class, which is useful for handling Completed and Progress events.

With the marketplace system, the programmer can check some conditions of application usage, such as the
license state for managing an evaluation version of the app. The reference namespace for this purpose is
Windows.ApplicationModel.Store, which exposes the classes shown in Figure 2-8.

Figure 2-7. Windows.ApplicationModel Background main classes and interfaces

www.allitebooks.com

http://www.allitebooks.org

Chapter 2 ■ WindoWs runtime environment

38

The most important item is CurrentApp, a static class that exposes all information that you need: the application
identifier, the license information as an instance of the LicenseInformation class, and the link of the Windows Store
web catalog. The LicenseInformation class provides two Boolean values, isActive and isTrial, that you can use in
your application to enable or disable functionality.

The good news is that you don’t need to wait for the publication of your application for testing these values
because the namespace provides the CurrentAppSimulator class, too. You can use this static class to simulate the
CurrentApp behavior.

The remaining components of the Windows.ApplicationModel namespace are these:

•	 Windows.ApplicationModel.Activation: Defines the items that support event handling for
the contracts and extensions supported by Windows

•	 Windows.ApplicationModel.Appointments: Defines the items that support the creation of
appointments in a calendar

•	 Windows.ApplicationModel.Calls: Defines the items that support event handling for the
lock screen

•	 Windows.ApplicationModel.Contacts: Defines the items that support the use of the Contact
Picker to select and acquire information about contacts

•	 Windows.ApplicationModel.DataTransfer: Defines the items used for the data exchange
among applications such as the Clipboard

Figure 2-8. Windows.ApplicationModel.Store classes

Chapter 2 ■ WindoWs runtime environment

39

•	 Windows.ApplicationModel.Resources: Defines the items that simplify access to the
application resource, such as strings

•	 Windows.ApplicationModel.Search: Defines the items that support the use of the search
panel (discussed in the next section)

We will analyze these components in the sample applications, but now we focus on the Windows.Security
namespace that provides the items for the authentications and protections of the immersive applications.

Windows 8 natively integrates Windows Live Services for user authentication and provides the API for this
purpose in the Windows.Security.Authentication.OnlineId as well as different authentication services, such
as OAuth and OpenID with the API in the Windows.Security.Authentication.Web namespace, providing all the
mechanisms for the single sign-on (SSO) feature. Figure 2-9 shows the classes for the use of Windows Live services.

Figure 2-9. Windows.Security.Authentication.OnlineId classes

The main operations are shown by the OnlineIdAuthenticator class through the AuthenticateUserAsync()
and SignOutUserAsync() methods. Note that they are asynchronous operations; you can retrieve the instance of
the UserIdentity class, which contains all the information about the user, calling the GetResult() method of the
UserAuthenticationOperation retrieved by AuthenticateUserAsync().

Web services authentication is provided by a single static class called WebAuthenticationBroker (see Figure 2-10).
The operation is performed by the static asynchronous method AuthenticateAsync(), which returns an instance of
the WebAuthenticationResult class.

Chapter 2 ■ WindoWs runtime environment

40

For storing in a shared and secure way, user identification information can be used for the classes of the Windows.
Security.Credentials namespace, whereas encrypt and decrypt information can be used for the classes of the
Windows.Security.Cryptography namespace.

Starting from Windows 8.1, new ways of authentication are possible. We can now use fingerprint scans, smart
cards, and virtual smart cards to authenticate users.

The marketplace adds possible application customers from all countries that Windows Store supports. We
can choose our application to be sold in only a particular country, but why should we close the possibilities of the
global market? The System.Globalization namespace (see Figure 2-11) can help manage differences between
many target cultures. We can use different types of calendars, different languages, a 12-hour clock instead of a
24-hour clock, and so on.

Figure 2-11. Windows.Globalization classes and enumerations

Figure 2-10. Windows.Security.Authentication.Web classes

Chapter 2 ■ WindoWs runtime environment

41

To optimize application performance, you should run all tasks in parallel. For this purpose, WinRT provides
the Windows.System.Threading and Windows.System.Threading.Core namespaces (see Figure 2-12), in which the
ThreadPool static class exposes two overloads of RunAsync() methods to run the parallelizable codes in separate
threads. A thread pool is more efficient than a single thread because it can schedule work items when threads become
available. You cannot control the order in which the threads are executed, but you can use a ThreadPoolTimer to delay
the execution from the scheduling start and set a WorkItemPriority based on your needs.

Figure 2-12. Windows.System.Threading classes and enumerations

You can preallocate a work item before submitting it to the thread pool with the PreallocatedWorkItem
class of the Windows.System.Threading.Core namespace. This namespace contains another interesting class,
SignalNotifier, which can be used to create parallel work items to respond to named events or semaphores created
by the Win32 COM object.

Communication and Data
The Communication and Data components of WinRT APIs are referred to the components of the library responsible
for the communication of the application with the operating system and the external world, and support to the local
and cloud storage. There are 12 main blocks:

Contracts•	

Local and Cloud Storage•	

Networking•	

SMS•	

Streams•	

XML and JSON•	

Background Transfer•	

Syndication•	

Chapter 2 ■ WindoWs runtime environment

42

HTTP•	

Contacts•	

Appointments•	

PDF•	

The contracts establish the communication among applications, and among the applications and the operating
system by using a publisher/subscriber relation. There are many contracts in Windows 8; we now take a look at the
following:

•	 Search: Integrates the application data in the search panel

•	 Share: Shares documents, video, images, and so on

The goal of the search contract is to reuse the search functionality offered by the operating system, with the result
being a centralized and user-friendly feature. Through the contract, the application provides its data, and the user can
choose the application in the search criteria, too. The search contract uses the Windows.ApplicationModel.Search
classes shown in Figure 2-13 to manage the data exchange.

Figure 2-13. Windows.ApplicationModel.Search classes

Chapter 2 ■ WindoWs runtime environment

43

The main class is SearchPane, which provides the GetForCurrentView() method to retrieve a reference to
the search pane that can be used in the application. The Show() method shows the search panel and the property.
QueryText contains the search text provided by the user. You can subscribe to the events offered by this class for
managing the phases of search operations; for example, QueryChanged for when the user changes the search text, or
SuggestionRequested and ResultSuggestionChosen for managing the search suggestions provided to users by the
application. In the next chapters, we’ll show you how to use this interesting feature to improve the user experience of
your application.

The share contract enables communication between applications using the Share Panel provided by the
operating system. In the share contract, the source and the target application in the contract can be internal or
external to the operating system (for example, your application and Facebook or Twitter). The namespace that
contains the classes for this functionality is Windows.ApplicationModel.DataTransfer (its most important classes are
shown in Figure 2-14). In the DataPackage class, we store the data to share, classified according to following types:

Plain text•	

Uniform Resource Identifier (URI)•	

HTML•	

Formatted text•	

Bitmaps•	

Files•	

Developer-defined data•	

Figure 2-14. Windows.ApplicationModel.DataTransfer classes

For sharing the data stored in an instance of DataPackage class, we can use the DataTransferManager instance
class associated with the current window that can be retrieved using the method GetForCurrentView(). When a user
clicks a Share or Connect charm, the DataRequested event of the DataTransferManager fired; now we can share the
data with the application selected by the user.

Chapter 2 ■ WindoWs runtime environment

44

Our application can also be a target of data sharing; we’ll analyze this opportunity in the book sample application.
Each application needs to keep the information; in Windows 8, you can use three main solutions:

External services•	

Local storage•	

Cloud storage•	

External services can usually be applied when your Windows Store app is a client of an external application and
the connection availability to the services is a strong requirement for the application. Local storage is a useful solution
for applications that need to work also in disconnected mode, using an application reserved space of the device disk.
Cloud storage, which includes the use of Skydrive services, is a good solution for saving the application data on the
user’s cloud space. The WinRT API provides native objects for local storage; cloud storage is provided through an
external API such as Windows Live SDK.

The classes for managing the local storage are located in the Windows.Storage namespace, in which you can find
the classes shown in Figure 2-15.

Figure 2-15. Windows.Storage main classes

Chapter 2 ■ WindoWs runtime environment

45

The ApplicationData class provides the local storage access point through the Current property, with which
you can retrieve an ApplicationDataContainer class instance using its LocalSettings property and an instance of
the StorageFolder class from its LocalFolder property. The LocalFolder class provides asynchronous methods for
creating files and folders in local storage.

The web services of the WinRT API are available on the Windows.Web namespace, in which you can find the main
classes shown in Figure 2-16. You can iterate with Syndication web standards for exchanging data in XML format.

Figure 2-16. Windows.Web main classes

Windows 8 implements the concept of notifications, already introduced in Windows Phone 7, which enable the
system to send and receive asynchronous notification from cloud services. There are many types of notifications,
including these:

Toast notification•	

Raw notification•	

Tile notification•	

Badge notification•	

These notifications are available starting from the Windows.Networking.PushNotifications namespace that
contains the main classes shown in Figure 2-17. The main class is PushNotificationChannel, which exposes the
PushNotificationReceived event that fires when a notification occurs. An instance of this class can be created from
the PushNotificationChannelManager static class. The enumeration PushNotificationType enumerates the possible
type of notification. (Details on the notifications' functionalities and workflow will be explained in Chapter 9.)

Chapter 2 ■ WindoWs runtime environment

46

As notifications, all the network functionalities offered by the Windows Runtime API are located in the
namespace Windows.Networking, in which you can find the following:

Advanced download and upload transfer capabilities (•	 Windows.Networking
.BackgroundTransfer)

Information about connectivity, usage, and data plan information (•	 Windows.Networking
.Connectivity)

Mobile broadband account management (•	 Windows.Networking.NetworkOperators)

Support connection between devices that are within close range (•	 Windows.Networking
.Proximity)

Access to socket and WebSocket for network communications (•	 Windows.Networking
.Sockets)

Windows 8 also provides the Short Message System (SMS) service, but it is in the Windows.Device.Sms
namespace because it’s strictly connected to the device that Windows 8 runs. The SmsDevice class exposes all
necessary objects for SMS operations: call SendMessageAsync() to send a SMS and subscribe to SmsMessageReceived
to manage SMS receive events. See Figure 2-18.

Figure 2-17. Windows.Networking.PushNotifications main classes

Chapter 2 ■ WindoWs runtime environment

47

For reading and writing a sequential and random access stream, you can use the Windows.Storage.Streams
namespace, in which specified stream type reader and writer classes usually support you in operations with data. For
example, FileInputStream and FileOutputStream enable you to read and write file data. Very useful is the
Windows.Data.XML namespace, which provides all the classes for managing XML data with two child namespaces:

•	 Windows.Data.Xml.Dom explores the XML data tree

•	 Windows.Data.Xml.Xsl transforms XML data in other XML formats through the XSLT
transformation process.

Windows 8.1 introduces a new HTTP Client API located in the Windows.Web.Http namespace. This namespace
provides the following:

HTTP verbs•	

Authentication•	

Support for SSL•	

Cookies management•	

The main class is HttpClient, which is similar to the ASP.NET version.

Figure 2-18. Windows.Device.SMS main classes

www.allitebooks.com

http://www.allitebooks.org

Chapter 2 ■ WindoWs runtime environment

48

Graphics and Media
Graphics and media enable the developer to handle various aspects related to physical display, photos, audio, and video.

The first namespace we will discuss is Windows.Graphics.Display, which contains the objects shown in Figure 2-19.

Figure 2-19. Windows.Graphics.Display classes and enumerations

DisplayProperties, which is the main class of the namespace, enables you to get information about the physical
display of the device. The most common properties are AutoRotationPreferences, CurrentOrientation, and
LogicalDPI, which return the default orientation, the current orientation, and the number of pixels for inches for the
current resolution, respectively. Notice that the first one returns an object of the DisplayOrientations enum type.
Through public events, we can handle all changes of state for these properties. For example, LogicalDpiChanged is
triggered when the LogicalDpi or ResolutionScale properties were modified because of a zoom in/out on the screen
or a change to the screen resolution. OrientationChanged is triggered when users change the ways they move devices
in their hands (here we are referring to a tablet!).

The Windows.Graphics.Imaging namespace lets you manipulate different image formats (based on system
known codecs). Figure 2-20 shows the most useful elements in this namespace.

Chapter 2 ■ WindoWs runtime environment

49

ImageStream is a class that allows memorization of image data based on a stream format. It is possible to
manage the image data using the ReadAsync() and WriteAsync() methods. Other methods, such as Seek(),
GetInputStreamAt(), and GetOutputStreamAt(), can be used to position on the stream. An instance of the
ImageStream class can also be used as input for the CreateAsync() method inside the BitmapDecoder and
BitmapEncoder classes. These classes allow you to read an image or create, manage, and save an image in a file. The
CreateAsync() method (overload included) gets an inherited object of IRandomAccessStream. Moreover, both classes
contain the GetDecoderInformationEnumerator() method, which returns an object of the System.Collection.
Generic.IReadOnlyList<Windows.Graphics.Imaging.BitmapCodecInformation> type. Finally, GetPreviewAsync()
and GetThumbnailAsync() are useful whenever we need a preview or a thumbnail, returning a Windows.Graphics.
Imaging.ImageStream object.

Inside the Windows.Graphics namespace is the Windows.Graphics.Printing namespace (discussed later).
Windows.Media contains the classes shown in Figure 2-21.

Figure 2-20. Windows.Graphics.Imaging classes and enumerations

Chapter 2 ■ WindoWs runtime environment

50

The MediaControl class allows applications to subscribe to notifications by audio and video systems on the
device whenever it is triggered. It is possible to handle events that are triggered whenever a user presses a button
related to webcam or audio settings on the device. As shown in Figure 2-21, the MediaControl class contains events
such as PlayPressed, StopPressed, and RecordPressed. By managing these events, we can specify what instruction
is executed when they’re triggered (e.g., manipulating the AV stream). Other information about playing media can be
retrieved using MediaControl properties such as TrackName, ArtistName, IsPlaying, and SoundLevel (the last one is
an enumeration; refer to Figure 1-19).

In the same namespace is the MediaExtensionManager class, which enables registering a codec for a specific
audio/video stream. But there are some restrictions:

Registration is valid only for the lifetime of the •	 MediaExtensionManager instance.

Registration is valid only for the current application.•	

A plug-in can override media formats on the device.•	

Last but not least is the VideoEffects class, which allows a decrease in video shaking by the VideoStabilization
property. This property takes as input the name of the effect to apply to the video.

The Windows.Media.Capture namespace contains all the classes for photos, audio recordings, and videos
captured (see Figure 2-22).

Figure 2-21. Windows.Media interfaces, classes, and enumerations

Chapter 2 ■ WindoWs runtime environment

51

The MediaCapture class is used to save audio, videos, and photos. These capabilities are supplied by the
following methods:

Photo•	

•	 CapturePhotoToStorageFileAsync

•	 CapturePhotoToStreamAsync

Audio/video•	

•	 StartPreview[. . .]Async (where . . . are the different overloads)

•	 StartRecord[. . .]Async (where . . . are the different overloads)

•	 StopPreviewAsync()

•	 StopRecordAsync()

Figure 2-22. Windows.Media.Capture classes and enumerations

Chapter 2 ■ WindoWs runtime environment

52

In one available overload, stream capture needs to be initialized using the InitializeAsync() method, which
takes in input a class of Windows.Media.Capture.MediaCaptureInitializationSettings type that provides initial
settings for the capturing object (e.g., StreamingCaptureMode). During the first use, this method will show you a
pop-up asking permission to use the device microphone or webcam inside the application. It is a good practice to use
InitializeAsync() inside the main UI thread of your app.

The CameraCaptureUI class, which shows a full-screen UI to capture a single video or photo, is in the same
namespace. Photo or video can be saved using the CaptureFileAsync() method that takes in input an enumeration
of CameraCaptureUIMode type that defines the type of input: audio, video, or photo. All the information related to this
class is set using CameraCaptureUIPhotoCaptureSettings and CameraCaptureUIVideoCaptureSettings.

The Windows.Media.Devices namespace has classes to help manage audio, video, and communications such as
webcams or microphones (integrated or plugged). Figure 2-23 summarizes the most common classes.

Figure 2-23. Windows.Media.Device classes

Chapter 2 ■ WindoWs runtime environment

53

MediaDevice is the most important class in this namespace. It is a static class that contains five methods:

•	 GetAudioCaptureSelector() returns the device ID for capturing audio.

•	 GetAudioRenderSelector() returns the device ID for rendering audio.

•	 GetDefaultAudioCaptureId() returns the default device ID for capturing audio.

•	 GetDefaultAudioRenderId() returns the default device ID for rendering audio.

•	 GetVideoCaptureSelector() returns the device ID for capturing video.

GetDefaultAudioCaptureId() and GetDefaultAudioRenderId() return the default device ID for capturing or
rendering audio in a specific role: default (e.g., media) or communication.

In the same namespace are the following classes:

•	 AudioDeviceController sets properties as Muted or VolumePercent.

•	 VideoDeviceController, MediaDeviceControl, and MediaDeviceControlCapabilities
retrieve and manage settings related to the camera (e.g., zoom, brightness, focus, and
supported encoding properties).

•	 CallControl handles calls on a device that provides phone capabilities.

The Windows.Media.MediaProperties namespace (see Figure 2-24) contains classes that allow management
of properties related to the media stream. AudioEncodingProperties, ImageEncodingProperties, and
VideoEncodingProperties help to set audio, photo, and video properties. The ContainerEncodingProperties class
enables setting up properties about media containers. A media container stores information related to a media stream
and contains the following:

A header with all the properties on a media stream (such as the number and the format type)•	

An index to allow random access to the content•	

Content metadata (artist, title, and so on)•	

Chapter 2 ■ WindoWs runtime environment

54

The word container is more often used than file because it is common to refer to a container in a live streaming
context. You can use a container without having to save it to a file.

Figure 2-25 shows the content of Windows.Media.Playlists. This namespace contains only one class, Playlist,
which manages different playlist formats. Thanks to the methods LoadAsync()and SaveAsync() of Playlist, you can
read and save playlists in different formats using the PlaylistFormat enumeration.

Figure 2-24. Windows.Media.MediaProperties classes and enumerations

Chapter 2 ■ WindoWs runtime environment

55

The Windows.Media.PlayTo namespace helps to send audio, photo, and video toward remote certified devices.
This feature is based on the Digital Living Network Alliance (DLNA) technology that allows streaming media over
Wi-Fi (see http://en.wikipedia.org/wiki/Digital_Living_Network_Alliance). An application that needs to
use the PlayTo feature has to register with the SourceRequested event inside the PlayToManager class. This event is
triggered whenever a user clicks the Device item inside an application on the right. But it is really recommended to
use a specific Play To app button inside the application to open up the Play To flyout. This feature can be enabled
programmatically by calling the Windows.Media.PlayTo.PlayToManager.ShowPlayToUI() method (supported only in
Windows 8.1). The PlayToManager class manages all the settings related to the PlayTo feature.

As a destination for a media stream, you can also choose a specified target using the property
DefaultSourceSelection. Using the PlayToReceiver class, you can create a custom software PlayTo receiver
that allows you to play (or display), stop, or manage content stored on computers inside the network
(see Figure 2-26).

Figure 2-25. Windows.Media.Playlists classes and enumerations

http://en.wikipedia.org/wiki/Digital_Living_Network_Alliance

Chapter 2 ■ WindoWs runtime environment

56

The Windows.Media.Protection namespace provides classes to manage Digital Rights Management (DRM)
media contents (see Figure 2-27). The MediaProtectionManager class can be passed as input to the following:

A media playback API•	

The •	 msSetMediaProtectionManager attribute inside the tag’s video or audio

Figure 2-26. Windows.Media.PlayTo classes and enumerations

Chapter 2 ■ WindoWs runtime environment

57

The last namespace in Windows.Media is Windows.Media.Transcoding (see Figure 2-28), which transcodes audio
and video files. Transcoding a media file means converting it from one format to another. But that’s not all! You can
also add effects or trim pieces from the file.

Figure 2-27. Windows.Media.Protection classes

Figure 2-28. Windows.Media.Transcoding classes and enumerations

www.allitebooks.com

http://www.allitebooks.org

Chapter 2 ■ WindoWs runtime environment

58

Whereas the MediaTranscoder instance stores an object to convert, the PrepareFileTranscodeAsync class is
used to transcode an audio or video stream to a target format. This class contains a method called TranscodeAsync()
that takes as input an object of MediaEncodingProfile that provides some of the following methods:

•	 CreateMp3()

•	 CreateMp4()

•	 CreateWav()

•	 CreateWma()

•	 CreateWmv()

PrepareFileTranscodeAsync returns an instance of PrepareTranscodeResult that notifies the operation
outcome by FailureReasonProperty (this property returns a value of TranscodeFailureReason enumeration).

Windows 8 is a user-centric operating system that not only helps developers but also supports hardware
designers to provide the best UX. With Windows 8, a hardware vendor can customize components in the printing
system to give access to all functionalities of the device. Before the arrival of Windows 8, Windows used the v3 printer
driver model that functioned in desktop mode until now. Starting with this version, Windows supports a redesigned
printer driver model. It’s called the v4 printer driver model and it integrates Windows Store apps to provide a better
UX with a customized print UI. The framework of classes that helps device manufacturers create v4 drivers is fully
integrated with the Windows.Graphics.Printing namespace (shown in Figure 2-29) that you can use in your apps to
participate in printing.

Figure 2-29. The Windows.Graphics.Printing namespace

Chapter 2 ■ WindoWs runtime environment

59

The Windows.Graphics.Printing namespace contains two main classes: PrintManager and PrintTask.
PrintManager, which is the entry point for printing, allows you to subscribe to the PrintTaskRequested event
that fires when the user selects the Devices charm. This event uses the PrintTaskRequestedEventArgs class as an
argument, which enables you to create an instance of PrintTask that contains the content to print and options about
the process. For example, accessing the DisplayedOptions property of the Options property contained in PrintTask
enables you to easily manage options exposed by the default print UI, such as Copies or PrintQuality (a list of
standard print options are exposed by the StandardPrintTaskOptions class).

PrintTask is the core class on which Printing is based. Every PrintTask is a printing operation and can transit
through four states:

•	 Preview is managed by the Previewing event that occurs when the system makes a print
preview.

•	 Submit is managed by the Submitting event that fires when the user chooses to print the
document.

•	 Progress is managed by the Progressing event that fires when pages are submitted to the
printer, providing information about the remaining pages to print.

•	 Complete is managed by the Completion event that occurs when the process is finished,
providing information about the way the process is completed (successful, canceled, or
failed).

When we talk about printing in Windows 8, we must talk about the Windows.UI.Xaml.Printing namespace
(see Figure 2-30). If you use XAML, you know that through this technology you can prepare UIElements (the base
class used by languages based on XAML used as the core for components implementation) to be printed. These
functionalities are exposed under the Windows.UI.Xaml.Printing namespace from the PrintDocument class that
automatically interacts with PrintManager and allows you to create a page (written with XAML) and prints it as a
document.

Figure 2-30. PrintDocument class

Chapter 2 ■ WindoWs runtime environment

60

To conclude, use Windows.Graphics.Printing when you need to print your own document format and you
require greater control over the printing process; use Windows.UI.Xaml.Printing when you need to print UIElements.

The Windows 8.1 update brings also supports 3D printing. Two classes are responsible for the communication with
a 3D printer: IXpsDocumentPackageTarget3D and IXpsOMPackageWriter3D. The first is the job containing all the details and
a print queue. The second contains the methods to send data into the Windows spooler as an Open Packaging Conventions
(OPC) package. (You can find more information here: http://msdn.microsoft.com/en-us/magazine/cc163372.aspx).
In a few words, this package is based on two containers: parts and contents (see Figure 2-31).

Table 2-1. Device Capability Requirements

Category Type Description

Storage Space At least 100 GB of free space after the installation of the operating system

Firmware Firmware type Unified Extensible Firmware Interface (UEFI) firmware required

Networking WLAN and Bluetooth 4.0 These two components are required

Graphics GPU Direct3D10 support

Graphics Screen resolution Minimum 1366 x 768

Touch Five-finger touch Requires a touch monitor with five points of touch

Camera Front/user facing camera Minimum 720p camera

Sensors Ambient light sensor Necessary for auto-adjust screen brightness

Sensors Magnetometer

Sensors Accelerometer

Sensors Gyroscope

Device USB 2.0 At least one USB 2.0 controller with a port exposed

Output Speaker A speaker for audio output is required

Figure 2-31. OPC package

In the content, there is a 3D model component that contains XML markup to define the object to print.

Devices and Printing
Minimum device requirements for Windows 8 are not too restrictive and focus on tablet and hybrid tablet-laptop
devices. To install Windows 8 on a tablet, it has to provide the capabilities shown in Table 2-1.

http://msdn.microsoft.com/en-us/magazine/cc163372.aspx

Chapter 2 ■ WindoWs runtime environment

61

In addition to these components, others are available that are not required for the producer, such as the optional
A-GPS device that is ready to be managed from the system (and your app). When we talk about the Device and
Printing components of the WinRT API, it means the part of the library responsible for management of the following:

Geolocation•	

Portable•	

Sensors•	

NFC devices•	

Although these components are not required, you can write your app to exploit these components, giving the
Windows Store the task of managing the installation on the appropriate device.

Geolocation is located under the Windows.Devices.Geolocation namespace (see Figure 2-32) that enables your
app to retrieve the device’s geographic location, provided from multiple devices:

Wi-Fi triangulation•	

IP Geolocation•	

GPS devices•	

Figure 2-32. Geolocation namespace diagram

Geolocator is the entry point of Geolocation and provides events to track changes of position (identified by the
GeoPosition class that exposes the Geocoordinate and CivicAddress linked to the current position) and events to
track status changes. (It allows your app to know when the location device is ready to use.)

When you create your app, you’ll find APIs to manage Media Transfer Protocol (MTP) device services through
Windows Portable Devices (WPDs) inside the Windows.Devices.Portable namespace (shown in Figure 2-33). WPD
offers an infrastructure able to standardize data transfers between applications and portable devices such as portable
media players, digital still cameras, and mobile phones.

Chapter 2 ■ WindoWs runtime environment

62

MTP is the evolution of the Picture Transfer Protocol (PTP), with which you can transfer images from digital
cameras to computers without installing a driver. MTP allows more types of devices, such as digital audio players and
portable media, to communicate with the operating system. The ServiceDevice static class allows you to discover
and identify a MTP device service for a WPD. Access through this API to the MTP device service is available only to
Windows Store apps, giving privileged access by the device manufacturer. The StorageDevice class enables your apps
to access a storage device.

When you think about an app for tablets, you certainly assume that the device can be equipped with sensors
(e.g., Accelerometer). The Windows.Devices.Sensors namespace (see Figure 2-34) has several classes that
manage sensors.

Figure 2-33. Class diagram of the Windows.Devices.Portable namespace

Chapter 2 ■ WindoWs runtime environment

63

The Accelerometer class manages the sensors that measure the G-force applied along the three axes. If you come
from a Windows Phone platform, note that this class exposes an event called Shaken that occurs when the device is
shaken. The Compass class gives you information about true north and magnetic north.

Figure 2-34. Diagram of a subset of the Windows.Devices.Sensors namespace

Chapter 2 ■ WindoWs runtime environment

64

Note ■ the measurement of magnetic north is optional and depends on the capabilities of the sensor; only the true
north measurement is required. remember that the Compass sensor is not required.

The Gyrometer class reports the angular velocity with respect to the three axes and enables your app to manage
the rotation velocity of the device. Inclinometer manages the inclination of the device and reports information about
pitch, roll, and yaw. These terms are usually used for aeronautical, nautical, and automobile purposes:

•	 Pitch is the leaning back or forth of the muzzle.

•	 Roll is the oscillation around the longitudinal axis.

•	 Yaw is the oscillation around a vertical axis passing through the center of gravity of the item.

Through this sensor, you can evaluate how much a user tilts the device compared with the three axes.
LightSensor measures the ambient light using LUX as units. Using this sensor (if it’s present), you can personalize the
user experience depending on the available light (e.g., you can adaptively change the color of your UI depending on
ambient light, with a high-contrast combination if there is too much light, and vice versa).

Finally, you can retrieve information about the orientation of the device using OrientationSensor, which returns
a matrix (3 x 3) with rotation values and a Quaternion. You can use this sensor to adjust the in-game prospective of a
player, depending on the orientation of the device.

Note ■ avoid using OrientationSensor in your Windows store apps if it’s not necessary. Windows store apps already
support different orientations that change layouts relative to device orientation.

The last sensor is the simplified version of OrientationSensor called SimpleOrientationSensor. This simplified
version allows you to detect the current orientation of the device and its face-up and face-down status. For example,
you can use this sensor in a messenger app that shows the user as unavailable when the device is face down and then
notifies other users that it has come back when the device is face up.

Near field communication (NFC) is a standard for communication between devices and covers protocol and data
format, whereas communication is based on the existing radio-frequency identification (RFID) that regulates close
communication (no more than a few centimeters). The Windows.Devices.Proximity namespace (see Figures 2-35
and 2-36) contains APIs to support this standard. Using these APIs, you can write an app that shares content with
another computer near a user device. The entry point to use Proximity in order to know when a device enters and
leaves proximity is the ProximityDevice class (see Figure 2-35), which exposes two events:

•	 DeviceArrived: This event occurs when a compatible device enters the proximate range.

•	 DeviceDeparted: This event occurs when a connected device leaves the proximate range.

Chapter 2 ■ WindoWs runtime environment

65

For example, you can use proximity in a massive multiplayer role playing game (MMRPG), in which a user taps a
device to help another user. Or in an app that manages contacts, the user can simply share a business card with a tap.
The Windows.Devices.Proximity namespace exposes another interesting class named PeerFinder (see Figure 2-36)
that helps you find close devices (using different types of connection technologies, such as Wi-Fi Direct or Bluetooth)
that run your application to establish long-term connections.

Figure 2-35. Windows.Devices.Proximity namespace: ProximityDevice involved classes

Figure 2-36. Proximity namespace: PeerFinder involved class diagram

Chapter 2 ■ WindoWs runtime environment

66

Windows 8.1 also brings in new APIs to support the following types of device:

Human Interface Device (HID)•	

Point of Service (PoS)•	

USB•	

Bluetooth•	

Wi-Fi Direct•	

HIDs are supported on different type of transport: USB, Bluetooth, Bluetooth LE, and I2C. (Get more information
on HID here: http://msdn.microsoft.com/it-it/library/windows/hardware/jj126202.aspx.) There are few
limitations to the HID devices API: first, we can only use Windows 8.1 built-in drivers to access the device through the
API (unfortunately, vendor drivers are not supported). It might also block top-level collection that can take advantage
of the following usage pages:

•	 HID_USAGE_PAGE_UNDEFINED

•	 HID_USAGE_PAGE_GENERIC

•	 HID_USAGE_GENERIC_KEYBOARD

•	 HID_USAGE_GENERIC_KEYPAD

•	 HID_USAGE_GENERIC_SYSTEM_CTL

•	 HID_USAGE_PAGE_KEYBOARD

•	 HID_USAGE_PAGE_CONSUMER

•	 HID_USAGE_PAGE_DIGITIZER

•	 HID_USAGE_PAGE_SENSOR

•	 HID_USAGE_PAGE_BARCODE_SCANNER

•	 HID_USAGE_PAGE_WEIGHING_DEVICE

•	 HID_USAGE_PAGE_MAGNETIC_STRIPE_READER

•	 HID_USAGE_PAGE_TELEPHONY

The namespace to access HID devices is Windows.Devices.HumanInterfaceDevice, in which the main
classes to retrieve data from a device are HidDevice and HidInputReport (see Figure 2-37). HidDevice enables
connection to a device using the GetDeviceSelector() method to create a selector for a HID device and then the
FromIdAsync() method to open a connection. Instead, to retrieve data, methods such as GetNumericControl() and
GetBooleanControl() in HidInputReport can be used.

http://msdn.microsoft.com/it-it/library/windows/hardware/jj126202.aspx

Chapter 2 ■ WindoWs runtime environment

67

Because Windows 8 is created to run on different kinds of devices, PoS support can be really useful if you want to
create an application to handle payments in a shop. This API is contained in the Windows.Devices.PointOfService
namespace and it supports barcode scanners and magnetic stripe readers. Depending on what device you use, you
can instantiate a BarcodeScanner class or a MagneticStripeReader class (see Figure 2-38).

Figure 2-37. HID main classes inside the Windows.Devices.HumanInterfaceDevice namespace

www.allitebooks.com

http://www.allitebooks.org

Chapter 2 ■ WindoWs runtime environment

68

Figure 2-38. Windows.Devices.PointOfService namespace main classes

Chapter 2 ■ WindoWs runtime environment

69

For a barcode scanner, use the BarcodeScanner.GetDefaultAsync() method (or BarcodeScanner.ClaimScannerAsync()
method for exclusive use) to connect to a device. Then subscribe to the ClaimedBarcodeScanner.DataReceived()
event. Finally, use the ClaimedBarcodeScanner.EnableAsync() method to retrieve data.

For a magnetic stripe reader, use the MagneticStripeReader.GetDefaultAsync() method (or
MagneticStripeReader.ClaimReaderAsync method for exclusive use) to connect to a device. Then subscribe to the
ClaimedMagneticStripeReader.BankCardDataReceived or ClaimedMagneticStripeReader.AamvaCardDataReceived
event. Finally, use the ClaimedMagneticStripeReader.EnableAsync() method to retrieve data.

The USB API allows communication to a USB device for which Windows does not provide any built-in drivers.
There are few requirements:

The USB device has to use the •	 Winusb.sys driver.

Information about the device has to be provided in the app manifest (capability).•	

The device has to belong to one of these USB device classes:•	

•	 CDC control class (class code: 0x02; subclass code: any; protocol code: any)

•	 Physical class (class code: 0x05; subclass code: any; protocol code: any)

•	 PersonalHealthcare class (class code: 0x0f; subclass code: 0x00; protocol code: 0x00)

•	 ActiveSync class (class code: 0xef; subclass code: 0x01; protocol code: 0x01)

•	 PalmSync class (class code: 0xef; subclass code: 0x01; protocol code: 0x02)

•	 DeviceFirmwareUpdate class (class code: 0xfe; subclass code: 0x01; protocol code: 0x01)

•	 IrDA class (class code: 0; subclass code: 0x02; protocol code: 0x00)

•	 Measurement class (class code: 0xfe; subclass code: 0x03; protocol code: any)

•	 Vendor-specific class (class code: 0xff; subclass code: any; protocol code: any)

The Windows.Devices.Usb namespace contains all the classes to interact with a USB device. Figure 2-39 shows
the main classes.

Chapter 2 ■ WindoWs runtime environment

70

To connect to a USB device, we need to use the UsbDevice.GetDeviceSelector() to retrieve the device
information and then use the UsbDevice.FromIdAsync() to pass the device information previously retrieved.

Bluetooth APIs are contained inside the Windows.Devices.Bluetooth.RFCOMM and Windows.Devices.
Bluetooth.GenericAttributeProfile namespaces (see Figure 2-40). These APIs take advantage of the RFCOMM
Protocol or GATT Profile (used for Bluetooth LE devices) to communicate with devices. Notice that the Bluetooth
device needs to be discovered and paired before it can be used through the APIs.

Figure 2-39. Windows.Devices.USB namespace main classes

Chapter 2 ■ WindoWs runtime environment

71

Finally, Wi-Fi Direct APIs enable us to include the possibility to connect to Wi-Fi Direct–supported devices in the
app. The WiFiDirectDevice class manages connections through devices using the GetDeviceSelector() method and
the FromIdAsync() method. Figure 2-41 shows the Windows.Devices.WiFiDirect namespace classes.

Figure 2-40. Windows.Devices.Bluetooth.RFCOMM and Windows.Devices.Bluetooth.GenericAttributeProfile
namespace main classes

Chapter 2 ■ WindoWs runtime environment

72

Conclusion
Learning about the library that is the basis of the main new features of Windows 8 is essential for understanding how
to develop applications that take full advantage of the platform created by Microsoft. This chapter analyzed the main
components of Windows Runtime for the development of Windows Store apps, which will be useful in the following
chapters, in which you design and implement your first application.

Figure 2-41. Windows.Devices.WiFiDirect namespace

73

Chapter 3

Designing the User Experience

This chapter introduces you to controls available for Windows Store apps development and discusses when to use
them to provide a better User Experience (UX). But before we start talking about controls, we want to discuss some
concepts that you need to keep in mind while you develop your app. We will introduce you to some principles to
remember when you develop an app for Touch UX.

Touch Design Principles
Windows Store apps are designed to be “touched” by the user on a tablet, so you should design your app considering
postures that users will assume when working with your application. If you look at people using tablets, you’ll see that
while the tablet is in the landscape position, the hands are near the bottom-left and -right corners; in portrait position,
the hands are near the center. You should include controls near the users’ hands. For the same reason, you should put
content to be read (when possible) farther from their hands.

User Experience (UX) is a mandatory concept in Windows Store apps. If your application is designed to allow
interaction using hands, remember that fingers aren’t precise like the mouse. When you add a control to the user
interface (UI), remember to create it with a dimension that allows easy control for the user. Of course, it’s not easy to
choose the correct dimensions, but assuming a medium finger with a width about 11 millimeters, consider the following:

Fundamental actions must be provided by controls with good dimensions, so consider •	
using a 50-by-50 pixel area (minimum) because an incorrect interaction with your app can
disappoint users.

Incorrect touch situations can be resolved using controls with a minimum size of •	
40 x 40 pixels.

If you don’t have enough space on your UI, you can resolve an incorrect touch situation with •	
only one gesture by using 30 x 30 pixels as the minimum size.

In any case, remember that if two controls that can be touched are close, you must set a minimum of 30 pixels’
padding between them to avoid accidental interaction.

Now that you know some basics of touch interaction, we can start talking about controls and why you should
choose one control instead of another.

Control Library
This section discusses the rich control library available for Windows 8. We first explore the set of common controls
that are part of UI design from early versions of Windows and then we’ll discuss the new controls introduced to help
you to get the best from Windows 8, providing better UX.

Chapter 3 ■ Designing the User experienCe

74

The base class of all Windows Store apps controls is UIElement, which inherits from DependencyObject (which,
like every class in the .NET Framework, inherits from the Object class). Figure 3-1 shows a diagram of base classes
that are used by the framework to design the UI. All start from the DependencyObject class to create a class that
participates in the dependency property system, which means that a control can take part in the binding mechanism.
The UIElement class exposes a set of methods and events that help you manage a lot of standard behaviors such as
clicking or double-clicking.

Figure 3-1. UI base classes inheritance diagram

Figure 3-2. Example of a button

The direct descendant of the UIElement class is FrameworkElement, which extends the functionalities of base
classes and adds support to the Loaded/Unloaded event and a lot of functionality relative to binding.

Another thing to consider in your application development using XAML is the concept introduced by
ContentControl. When a control inherits from this class, it can define (single element) content. For example, Button
inherits (indirectly) from this class and can define content such as text, an image, or another control.

This is a summary of base classes that you must know in order to understand how you can customize behaviors,
styles, and control templates.

Common Controls
The controls library for Windows Store apps contains a lot of elements that aren’t unknown to Silverlight, Windows
Presentation Foundation (WPF), or more generally to Windows developers. These elements include Button,
ComboBox, CheckBox, RadioButton, TextBox, TextBlock, Image, Hyperlink, HyperlinkButton, PasswordBox, Slider,
and shapes.

Button
Button is the core of user interaction. The primary purpose of this control is to reply to a click with an event, starting
an elaboration. In Windows Store apps, Button appears as shown in Figure 3-2, and you can define a button that
contains simply a text or other framework elements such as an image (see Figure 3-3).

Chapter 3 ■ Designing the User experienCe

75

In order to be compliant with the Microsoft guidelines about the use of buttons, you must avoid using them for
navigation (with the exception of buttons such as Back and Next). Instead, you should use buttons for actions such as
form submission (see Figures 3-4 and 3-5) or resetting (see Figure 3-6), and for starting an immediate action such as a
save operation.

Figure 3-3. Button with an image

Figure 3-4. Standard submit button

Figure 3-5. Submit button with specific text

Figure 3-6. Reset button

Figure 3-3 shows a button with an image inside. This button offers information about something in the app,
but when you define a custom layout for a button, remember that what you use as the content of your button will be
critical for users to understand. You should use a self-explanatory text without too much information, which can be
confusing. For the same reason, you shouldn’t edit the content of a Submit button if not required for localization in
order to provide a consistent UX between various apps.

CheckBox
CheckBox (see Figure 3-7) gives a choice of checking or unchecking itself (some check boxes can be in indeterminate
states). CheckBox is useful when you want to give not-mutually-exclusive choices to the end user; when the user
must answer a question with a yes or no response (e.g., the Terms of Service agreement shown in Figure 3-8); or for a
mixed choice with check boxes grouped under another check box that, if checked, selects all or none of the grouped
check boxes.

Figure 3-7. CheckBox examples

Chapter 3 ■ Designing the User experienCe

76

Here are some best practices for CheckBox and its use:

•	 ToggleSwitch is another control with a behavior similar to CheckBox (discussed in the
“New Controls” section). But according to the Windows Store apps guidelines, you must
use CheckBox if a manipulation represents a change of status; if your selection represents
an action, you must use ToggleSwitch. So if the choice will be part of a submitted form, use
CheckBox; if the selection causes an immediate submit, use ToggleSwitch.

If you want to choose the best control for disabling a feature or to switch something on/off in •	
your app, use ToggleSwitch instead of CheckBox.

If your purpose is to allow users to check more than one option, use •	 CheckBox because a set of
check boxes provides the mental scheme for this goal.

TextBox
A lot of applications work on text, and TextBox (shown in Figure 3-9) is a control that allows users to input text in a
single or multiline way. Because you’ll often use a TextBox in your application, you must remember a lot of rules to
use it. One of these rules concerns the format of the text. If you need to have text that requires a particular format
(e.g., a product key), you should use TextBox to re-create the specific format and not apply a format to the text inside
the text box.

Figure 3-8. Yes or no response check box

Figure 3-10. Example of limited-length TextBox

Figure 3-9. An example of TextBox

Text input appears to be an easy concept, but you must follow some rules in order to provide a good UX to the
user. For example, if the user can input the path of a file directly in a text box, you must provide a button that allows
the user to select a correct value. Another interesting example is a complex text format in which the text must be on
multiple lines and must be formatted and enriched with styles. In this case, you must use RichEditBox (a Rich text box
for HTML) instead.

Another way to use a TextBox is for messaging applications. In this case, you probably will use formatted text.
If your application manages short messages with limited length, you must provide a way for users to see how many
characters they can still write (see Figure 3-10).

Chapter 3 ■ Designing the User experienCe

77

TextBox exposes a lot of properties, and some of them must be learned to work better with TextBox (see Table 3-1).

Table 3-1. Main Properties of TextBox

Name Description

XAML text HTML value Contains the text written in TextBox

MaxLength maxLength Contains the max number of characters
that can be written in TextBox

AcceptsReturn isMultiLine Indicates whether TextBox allows
newline or carriage return characters

SelectedText use selectionStart and selectionEnd Contains the text actually selected in
TextBox

TextWrapping use the TextArea control Indicates whether the text can
automatically wrap when reach the
maximum TextBox width

IsTextPredictionEnabled autocomplete Indicates whether the autocomplete
feature is active for TextBox

IsSpellCheckEnabled spellcheck Enables the spell check engine to
inspect the text inside TextBox

HyperlinkButton
HyperlinkButton helps you create a button with a URI to navigate. Depending on the format of the URI you use,
Windows will start the relative software. If you write an URI that starts with http, the default browser will be used; if
your URI starts with mailto, Windows will ask users if they want to start Mail software.

HyperlinkButton (shown in Figure 3-11) should be used only for navigation purposes, inside or outside of your
application. When you use this control, remember to set a tooltip on the link for users to see, even when they touch
the link. You should also put additional information in the tooltip, keeping the text of the link short enough

Figure 3-11. An example of HyperlinkButton with a tooltip

www.allitebooks.com

http://www.allitebooks.org

Chapter 3 ■ Designing the User experienCe

78

RadioButton
RadioButton is another control that helps with user choice, but unlike CheckBox, RadioButton options (shown in
Figure 3-12) are mutually exclusive and grouped. Its name is due to the way the options work, just like presets on a
radio, which can be selected only one at time.

Figure 3-13. An example of ToggleSwitch

Figure 3-12. An example of RadioButton

Because this control has been used since the dawn of the graphical interface, we believe it’s appropriate to
describe some best practices for its use. Sometimes we have found applications in which RadioButton was used to
collect a choice between two elements (for example, I agree/I don’t agree, Yes/No, True/False). This kind of choice
is better expressed with a single CheckBox. You should use a RadioButton when you want to emphasize selectable
options, forcing the user to pay attention to the choice. If you don’t need to draw attention to various options, you can
use a ComboBox control that helps save space on the UI.

Remember to create a RadioButton that encloses a label inside it, allowing the user to select the element by
touching the bullet and by touching the label. When you create two or more RadioButton groups, you should separate
them by using a label that indicates their purpose because if you put a group near another group without a logical
sense, the user might find it difficult to make the correct choice.

ToggleSwitch
Starting from the first version of Windows Phone, Microsoft has a new control named ToggleSwitch. ToggleSwitch,
just like CheckBox, helps you collect user choices; but according to Metro design guidelines, you must use
ToggleSwitch when a choice triggers an immediate change. For example, Figure 3-13 shows a ToggleSwitch that
allows the user to enable or disable notification from the application. When the user switches between On and Off, the
application activates or deactivates the notification system, giving the right feedback to users (they know that when
they touch the ToggleSwitch, the relative change becomes effective immediately).

On and Off are the default labels for this control, but if you need to use a specific label you can customize it
(e.g., Show/Hide), giving the user the right information in context. Of course, if there isn’t a real need to change these
labels, consider leaving standard values. And for situations that require a change to the label, make sure that the text
does not exceed four characters or else you will have space problems.

ToggleSwitch inherits a lot of properties from the Control class and extends it with a property
(see the descriptions in Table 3-2).

Chapter 3 ■ Designing the User experienCe

79

ToggleButton
ToggleButton is a button that can switch between two states (Checked/Unchecked). ToggleButton is the base class of
CheckBox and RadioButton (see the class diagram in Figure 3-14). If you need to create a custom control that toggles
between checked and unchecked states, use ToggleButton as the base class.

Table 3-2. Most Important ToggleSwitch Properties

XAML Property HTML
Data-Win-Options Attribute

Description

Header title A single UIElement that acts as a header of the control
(in Figure 3-13, it is the word Notifications).

HeaderTemplate N/A With this template, you can bind a DataTemplate as header.

OnContent labelOn With this property, you can define a single UIElement that
acts as content when the control is in an on state.

OffContent labelOff With this property, you can define a single UIElement that
acts as content when the control is in an off state.

OnContentTemplate
OffContentTemplate

N/A With these two templates, you can define how to bind data
when the control is in on or off states.

Figure 3-14. ToggleButton class diagram

The ToggleButton control (see Figure 3-15) exposes the IsChecked property that stores the information
about the state of the control and the IsThreeState property that, if enabled, allows the control to assume the
indeterminate state.

Figure 3-15. How ToggleButton displays

Chapter 3 ■ Designing the User experienCe

80

Note ■ the ToggleButton control is not available for htML.

ProgressBar and ProgressRing
When developing new Windows Store apps, you can use two controls to show users that your application is doing
something:

•	 ProgressBar: It’s not a really new control, but it was redesigned from its Windows Phone
introduction (see Figure 3-16). This control can be used in two ways:

To show progress about an operation (e.g., files to download, tasks to complete, •	
and so on)

Simply to show that something is going on in your application but not provide •	
information about progress (indeterminate, as shown in the bottom left of Figure 3-16)

•	 ProgressRing: A new control introduced with Windows 8 that shows a dotted ring when
activated (see the top right part of Figure 3-16).

Figure 3-16. Examples of ProgressBar and ProgressRing

Following Microsoft best practices about the use of progress controls, you must use these controls for
any application operations that need more than 2 seconds to complete. You should not use ProgressBar or
ProgressRing to track progress about a task made by a user. To follow the Microsoft guidelines, you should use a
“determinate” ProgressBar to track operations with a predictable duration (e.g., file download/upload). The use of an
“indeterminate” ProgressBar should be dedicated to operations with an unpredictable duration that don’t require a
“block” of UI (e.g., connection to a service that can be cancelled).

Of course, some cases require stopping user interactions while an operation with an undefined duration runs. In
these cases, you should use ProgressRing (e.g., installing a new feature). Obviously, we reiterate that your application
must be user-centric; if an operation blocks users from performing other things for more than 10 seconds, you must
provide a way to cancel this operation.

Per the Microsoft guidelines, when you create a ProgressBar, it must be accompanied by two labels. The first
must be placed above the ProgressBar to act as a title; the second is placed below the ProgressBar to display the
status of the operation (see Figure 3-17).

Chapter 3 ■ Designing the User experienCe

81

Sometimes progress controls are incorrectly used; for example, if your app loads a list of messages from the hard
drive while you load the oldest messages, displaying a progress control could be counterproductive because it wastes
space on the UI. Background operations that have a little importance for the user (e.g., sending voice messages)
don’t need progress control, either. In these cases, Microsoft recommends using ellipses instead (e.g., sending voice
message . . .).

When you work with a ProgressBar, you might need to switch between determinate and indeterminate
modality—for example, when an action starts with an operation with undefined duration and after information about
the progress can be provided from the context. For example, your app executes a download of a file and you can’t
predict how long the connection to the server will take, so you start with an indeterminate state. Later, when you are
downloading the file from a server, you can switch to determinate modality because you know how much data you
have downloaded and how much is left.

When the interaction with an AppBar (discussed in the next section) produces a task that blocks the UI, show
the ProgressBar inside the AppBar. If it is clear what is tracked, you can put the ProgressBar in the top of the AppBar
without the status and title.

AppBar
Every application needs a menu with some functions that help users interact with elements on the UI. AppBar is the
control that makes it easy. When you design your application, you can place the AppBar in the top or bottom of your
page using the TopAppBar and BottomAppBar properties of the Page class. (You can easily remember that TopAppBar
refers to the AppBar shown in the top of the screen, and BottomAppBar refers to the bottom part of the screen.)

When you choose where to put a button, you must remember that these two positions are conceptually different:
you should put the TopAppBar that allows the user to navigate in your app in the top of your application; with
BottomAppBar, you will put the classic toolbar with commands and tools.

In Figure 3-18, TopAppBar shows four buttons that refer to the navigation of the application.

Figure 3-17. An example of ProgressBar

Figure 3-18. Example of TopAppBar

Chapter 3 ■ Designing the User experienCe

82

In Figure 3-19, the BottomAppBar shows a set of buttons divided by use. On the left side, you can see the buttons
that are used to create and modify the set of elements displayed, and on the right side are the controls that interact
with items adding additional functionality compared with create, read, update, and delete (CRUD) operations.

Figure 3-19. Example of BottomAppBar

Creating menus for an app is both difficult and easy. It’s easier from the point of view of the developer because
the Windows 8 platform allows us to easily create them, but it could be difficult to design a good menu. First, if your
app needs a lot of items in a menu, consider grouping them logically. Avoid using labels such as Advanced or More:
the first because newbie users might be afraid of it, and the second because it might create confusion about the
functionalities exposed in this submenu.

When you design an application, always remember that your app can be executed in portrait and landscape
mode or snapped view. If you put up to ten commands in the AppBar, it will be automatically redrawn by the system
(adjusting padding and hiding labels) to fit the new space. In snapped view, Windows will create two rows of
commands, so if you want to avoid this behavior, you must limit your AppBar to five elements.

You can use AppBar to show contextual commands: you will set the dismissal mode of the AppBar to sticky,
which means that your AppBar will remain open until you close it programmatically. For example, you should set
sticky mode when users select items from a list to remove them; when they start to select, the AppBar appears with
the Remove command available and enabled. When they end by activating the Remove command, you must hide
the AppBar programmatically from your code. Be careful when you use sticky mode in a page that requires scrolling
horizontally because you must resize the scrolling area in order to put the scrollbar on top of the AppBar.

Another important rule refers to the Login and Logout commands. They must be moved to the Settings charm of
your application; if the login is required for your app, consider putting it on the main page.

When you design your AppBar, remember that out of the box you will have a lot of styles for buttons (shown in
Figure 3-20) that you can use to provide the same UX across applications.

Chapter 3 ■ Designing the User experienCe

83

Figure 3-20. Visual Studio menu of available button styles

Chapter 3 ■ Designing the User experienCe

84

AppBarButton, AppBarToggleButton, and AppBarSeparator
Windows 8.1 introduces three new controls to use inside an AppBar control, and it is recommended to use them if
your application has Windows 8.1 as its target platform:

•	 AppBarButton allows you to easily create a button for your AppBar. This control has three
properties:

•	 Label sets the content for the button.

•	 Icon sets the image for the button.

•	 IsCompact sets the view mode for the button (with or without showing Label).

•	 AppBarToggleButton creates a button that can have two states (i.e., play/pause) inside an AppBar.

•	 AppBarSeparator logically separates AppBarButton.

PasswordBox
Users’ personal information is valuable and should be protected. If your application collects some of this information,
the first security block that you can furnish is a password. Everyone from previous versions of Windows development
will appreciate our choice to put PasswordBox in the “New Controls” section. Indeed, the Windows Store apps
version of PasswordBox has been strongly redesigned, focusing on UX with touch devices. Figure 3-21 shows the new
PasswordBox with an eye drawing on the right side. Users with strong passwords might have difficulty writing their
passwords onscreen, so they can touch the “eye” to see the written text. And starting from Windows 8.1, you can set a
header to the control using the Header property, which does not accept any focus from the UI.

Figure 3-21. An example of PasswordBox

If your app needs the user to log in, you should move the logon UI to the Settings charm (explained in the
“Contracts and Extensions” section of this chapter) to keep your app in line with Microsoft guidelines about login
controls. Of course, if your app requires that the user have an account and must log in with it, you will show a login
UI in your app when it starts the first time. After the login, you must put the logout UI in the Settings charm.

If your app requires access with an account for some functionality about contents shown, you can put the login
UI inside the container that you want to use to show contents. When a login UI is optional, put the login UI in the
Settings charm to access other functionalities because the user can get a great experience using your app without
an account.

The WebView control allows you to use a smart iframe inside code. Starting from Windows 8.1, this control has
some advantages, such as the support for HTML5 (but not all features like AppCache or IndexedDB, geolocalitation
and Clipboard access), navigation, and capability to display a web site that does not support frame or iframe
visualization. A well-known bug called “airspace problem” has been fixed. This problem arose when attempting
to overlap XAML elements. Also, WebView now supports history and uses Internet Explorer 11 (IE11) in
document mode.

Chapter 3 ■ Designing the User experienCe

85

New Controls in Windows 8.1

Windows 8.1 introduces the following new controls:
•	 DatePicker (XAML)

•	 TimePicker (XAML)

•	 CommandBar

•	 Flyout (XAML)

•	 MenuFlyout (XAML)

•	 SettingsFlyout (XAML)

•	 SearchBox (XAML & HTML)

•	 Hub (XAML and HTML)

•	 BackButton (HTML)

•	 NavBar (HTML)

DatePicker and TimePicker enable you to use a specific control to let users choose date and time
(see Figure 3-22). These controls are really useful because they were really difficult to create previously They can
receive input by mouse, keyboard or even touch; and are localizable. You can also use pattern to format the date
or time and, thanks to the Header property, there’s no need to add a label for them. Now you can use them in your
XAML applications.

Figure 3-22. An example of DatePicker and TimePicker

CommandBar lets you easily customize a bottom bar in your applications. It allows AppBarButton or
AppBarToggleButton to use glymps for button styles. It can also be compact.

Flyout controls let you show a pop-up with text or other controls inside it that can be easily dismissed by clicking
outside of it. It is usually attached to a Button by using Attached Properties. MenuFlyout and SettingFlyout are
designed to show a menu of items or a menu of settings (similar to the Setting charm). SettingFlyout now enables
you to easily create a panel for setting, saving you from a really bad headache. Figure 3-23 shows an example of
Flyout and MenuFlyout.

Chapter 3 ■ Designing the User experienCe

86

The SearchBox control lets you use a search feature inside your app. It can be now included as a control in the
markup and supports full templating, styling, and the Input Method Editor (IME). Figure 3-24 show an example of a
SearchBox control.

Figure 3-24. An example of a SearchBox control

Figure 3-23. An example of Flyout

The Hub control is a great addition to the Windows Store app controls. It allows you to show heterogeneous data
provided from different sources in a simple and very spectacular way. It is divided into HubSection controls that
define areas with their own data source. It is also possible to create a Hub app using the specific template in the project
creation step. A great example of a Hub control is the Bing Sports app shown in Figure 3-25.

Chapter 3 ■ Designing the User experienCe

87

The BackButton control allows you to easily handle navigation between windows in your app. The BackButton
can access the navigation stack to determine whether the user can navigate backward; if not, the button is
automatically disabled.

The NavBar control lets you create a top AppBar to provide an easy way to navigate inside your app. The NavBar is
built using the NavBarContainer that contains one or more NavBarCommands. This is a very customizable control that
also provides paging for NavBarCommand. Figure 3-26 shows an example of NavBar:

Figure 3-25. Bing Sports app: a great example of a Hub app

www.allitebooks.com

http://www.allitebooks.org

Chapter 3 ■ Designing the User experienCe

88

List Management Controls
Regardless of which approach is used to develop Windows Store apps (discussed in detail in Chapter 4), list controls
show a list of items placed in different ways, depending on the control used. List controls in Metro style are included
in a namespace called Windows.UI.Xaml.Control (XAML) or WinJS.UI (HTML).

ItemsControl
For XAML, ItemsControl is the main control to show data collection. Although it’s not commonly used to achieve this
scope, all controls used to display collections of data inherit from it. Figure 3-27 shows a class diagram that displays
the hierarchy among the list controls of Windows.UI.Xaml.Control.

Figure 3-26. NavBar example

Figure 3-27. List control class diagram

All the controls inherit from ItemsControl, passing by the Selector class. This class gives you the ability to select
items. Figure 3-28 shows a simple example of ItemsControl usage.

Chapter 3 ■ Designing the User experienCe

89

Figure 3-28. An example of ItemsControl

This control does not provide an automatic vertical scrollbar for its content; you have to use a ScrollViewer.
Public members of ItemsControl are frequently used in a derived control to set its layout or features. These

members are shown in Figure 3-29 (surrounded by red rectangles).

Figure 3-29. ItemsControl public members

Chapter 3 ■ Designing the User experienCe

90

HTML and JavaScript (JS) don’t have an ItemsControl class, but they contain all the following controls (the
namespace is Win.JS.ControlName). Starting from the left, the first control is the ComboBox control, which displays a
read-only text box that, once selected, shows a drop-down list and allows users to select an item inside the list. It is
also possible, starting from Windows 8.1, to set an header to the control by using the Header property, which does not
accept any focus from the UI.

Figures 3-30, 3-31, and 3-32 show selection examples for a ComboBox control.

Figure 3-30. A ComboBox example

Figure 3-31. Open ComboBox

Figure 3-32. Selected item in ComboBox

The FlipView control allows users to “flip” among data collections. This control is ideal when you need to display
pictures (see Figure 3-33).

Chapter 3 ■ Designing the User experienCe

91

The declaration is similar to the other controls because FlipView inherits from the ItemsControl class. So you
can use a layout control such as StackPanel inside the DataTemplate, filled by other controls. Figure 3-33 shows an
output sample of FlipView. The arrows help navigate between the items.

One annoying problem related to FlipView is the difference of the transition between items. If you use touch,
there is a smooth transition; but if you use the mouse and the arrow, or switch among items programmatically,
there is no transition. Fortunately, this problem has been solved in the Windows 8.1 version with the
UseTouchAnimationsForAllNavigation property.

The ListBox control is represented as a list of selectable items. Figure 3-34 shows a simple example.

Figure 3-33. FlipView example

Figure 3-34. ListBox example

Chapter 3 ■ Designing the User experienCe

92

You can create a complex structure inside the ListBox with any kind of controls within (see Figure 3-35).

Figure 3-35. A complex structure inside a ListBox

Figure 3-36. Items order inside a GridView

As shown in Figure 3-36, GridView and ListView inherit from ListViewBase. This class contains common
features used in both controls and implements ISemanticZoomInterface.

Chapter 3 ■ Designing the User experienCe

93

GridView is a data control that shows items in a grid. It provides a definition for columns and rows, and data can
be associated using the ItemsSource property. GridView has an high level of customization and also allows grouping
and sorting of items. Figure 3-36 shows an example of its usage.

It’s interesting the way GridView lays the object in the output: the number in the title of a picture shows that the
placing will be by columns.

ListView, which is the most complete list control, has great flexibility and enables you to represent a complex
data layout.

Figure 3-37 shows the result. Although ListView looks very similar to the ListBox control, it is flagged as
obsolete, so using ListView is highly recommended. Also, ListView is a touch-and-animation-ready control that
provides a touch-spaced layout.

Figure 3-37. ListView example

Orientation and Layout
When you create an application, one of the main problems is how to locate objects inside the application. With
Windows 8, you have to consider different aspects, mostly regarding different targeting devices in which this operating
system (OS) will run.

Chapter 3 ■ Designing the User experienCe

94

Different Screen, Same Windows Version
One of the first goals of Windows 8 is its support for different devices and screen resolutions. Regardless of the
device, a UI will always remain the same, thanks to screen–resolution scaling capabilities. So whenever you use a
tablet or a multimonitor setup, your UI will be able to adapt its aspect based on the device’s resolution. Windows 8
does the following:

Provides the same interface on all devices•	

Helps developers build their apps that look the same on all devices•	

Screen devices can be classified in three different ways:

•	 Screen size: The size of the screen, usually measured in inches (e.g., 13.3” or 15.6”).

•	 Screen resolution: The number of pixels on a screen (e.g. 1366 x 768).

•	 Pixel density: The number of pixels within a physical area of the screen, which is usually
measured in dots per inch (DPI). The larger the screen resolution, the higher the pixel density.

Regardless of this classification, screen devices can have different ratios. For example, Figures 3-38, 3-39, and 3-40
show how object layouts adapt with different screen sizes and resolutions.

Figure 3-38. Screen size is 10.6”; resolution is 1024 x 768

Chapter 3 ■ Designing the User experienCe

95

Figure 3-39. Screen size is 12"; resolution is 1280 x 800

Figure 3-40. Screen size is 27"; resolution is 2560 x 1440

Here’s a list of Windows 8–supported screen sizes, default resolutions, and DPI densities:

•	 10.6"

2560 x 1440 (291 DPI)•	

1920 x 1080 (218 DPI)•	

1366 x 768 (155 DPI)•	

Chapter 3 ■ Designing the User experienCe

96

•	 11.6”

2560 x 1440 (253 DPI)•	

1920 x 1080 (190 DPI)•	

1366 x 768 (135 DPI)•	

•	 12”

1280 x 800 (125 DPI)•	

•	 14”

1920 x 1080 (157 DPI)•	

1366 x 768 (112 DPI)•	

•	 15.6”

1920 x 1080 (141 DPI)•	

•	 17”

1920 x 1080 (130 DPI)•	

•	 23”

1920 x 1080 (96 DPI)•	

•	 27”

2560 x 1440 (109 DPI)•	

All these screen resolutions have one thing in common: a minimum resolution of 1024 x 768 (see Figure 3-41).

Figure 3-41. Different screen resolutions with a minimum of 1024 x 768

Chapter 3 ■ Designing the User experienCe

97

Figure 3-42. Screen resolution setting in Visual Studio 2013 Simulator

A minimum resolution is chosen to help developers tailor their applications without regard to the way content
fits in resolutions lower than 1024 x 768 and to avoid targeting their applications for a specific resolution.

Choosing a minimum resolution is based on the following:

It’s the resolution in which Metro UI and its content fits the best.•	

Web sites are generally designed for a resolution of 1024 x 768.•	

The majority of Windows 7 users don’t use a lower resolution than 1024 x 768 •	
(http://blogs.msdn.com/b/b8/archive/2012/03/21/scaling-to-different-screens.aspx).

The default or suggested resolution for Windows 8 is 1366 x 768. •	

Whenever we use a larger screen or a higher resolution, more objects will be filled on the screen (refer to
Figures 3-38, 3-39, and 3-40).

In particular, there are two different techniques for settling objects in the UI:

•	 Adaptive: The higher the screen resolution, the higher number of objects in the UI.

•	 Scale: The higher the screen resolution, the larger the objects in the UI (games have benefits
using this technique).

Pixel density might be a problem, too! Different screen resolutions have different DPIs, so a developer can use
three percentages to scale images and ensure that they won’t be blurry:

100 percent when no scaling is applied•	

140 percent for HD tablets•	

180 percent for quad-XGA tablets •	

To help developers create layouts for their applications, Windows 8 developing tools include a set of built-in
features such as XAML attributes or CSS3 Flexible Box. And you haven’t heard the last of this!

Visual Studio 2013 provides a simulator with a setting option for the device resolution (see Figure 3-42). Blend for
Visual Studio 2013 provides a menu to select both the resolution and DPI of the destination platform (see Figure 3-43).
These tools help developers simplify their work.

http://blogs.msdn.com/b/b8/archive/2012/03/21/scaling-to-different-screens.aspx

Chapter 3 ■ Designing the User experienCe

98

Windows 8 also introduces improvements for multimonitor support. A multimonitor setup helps you to be more
productive by parallellizing work on different screens. According to recent research, people usually use a first (main)
monitor for work; a second monitor for e-mail or web browsing; and a third monitor for news, social networks, and
chat. Microsoft has listened to people who have commented on the Windows Feedback Program, designing the best
way to support multimonitor setups.

Major features are the following:

•	 Taskbar on all monitors: This option is fully customizable; you can set ways to show the
taskbar on secondary screens.

•	 Universal access: Now you can use the Start button or charms on every monitor.

•	 Side-by-side Windows Store apps: You can have multiple Windows Store apps on different
monitors.

•	 Desktop backgrounds: You can set multiple background images or span one image on different
monitors.

Layout
In Windows 8 (but not the later version starting from version 8.1), there are three different view states for Windows
Store apps:

Full screen view (see Figure •	 3-44)

Figure 3-43. Screen resolution setting in Blend 5

Chapter 3 ■ Designing the User experienCe

99

Snapped view (see Figure •	 3-45)

Figure 3-44. An example of full screen view

Figure 3-45. An example of snapped and fill views

Chapter 3 ■ Designing the User experienCe

100

Fill view (see Figure •	 3-46)

Figure 3-46. A screenshot from the Windows Store News app (full screen view)

Full screen view uses the whole screen to show an application. Snapped and fill views are enabled only if the
horizontal resolution is 1366 pixels or greater.

In this view state, 320 pixels are used for the snapped portion (the left side of Figure 3-45); 1046 pixels are
dedicated to the fill view (the right side of Figure 3-45). The remaining 22 pixels are used for the splitter.

To make a great app, consider the different view states and follow these rules:

Don’t change the context; maintain the user state and just resize the app.•	

Don’t use controls to modify the view state (this is the splitter’s job!).•	

Use the application’s API to understand view state changing.•	

Adjust the content in a stack shape (see Figures •	 3-46 and 3-47).

Chapter 3 ■ Designing the User experienCe

101

In Figure 3-46, the highlighted section (referring to 1, 2, and 3) is set in a stack layout visible in Figure 3-47. This
way, users always have the information needed to maintain the previous state shown in full screen view.

Things have changed in Windows 8.1, however. The snapped and fill views are gone. Every app can be resizable
with a default minimum width of 500 pixels that can be reduced to 320 pixels. It is possible to have two Windows Store
apps open on the same screen and to resize each one, and an app can open in one or more new windows at the same
time. Also, as many as three apps can be on the same full HD (1080-pixel) screen. For this reason, Microsoft guidelines
strongly recommend creating apps that work at any available size (especially the low ones).

To improve navigation, it is also recommended to adapt controls such as AppBar, NavBar, SearchBox, or Flyout to
lower resolution. There are also few changes in the ApplicationView class: some methods, such as the TryUnsnap or
Value properties, no longer work if the target platform is Windows 8.1.

Figure 3-48 shows a screenshot with the new windowing modes:

Figure 3-47. A screenshot from the Windows Store News app (snapped view)

Chapter 3 ■ Designing the User experienCe

102

Now that you have a good knowledge of screen settings, you can learn how to set controls in your UI.
Creating a layout means choosing the right container for controls. The choice depends on the type of application

that you want to develop. The main layout controls in the control library are as follows:

XAML•	

•	 Canvas

•	 Grid

•	 Stack Panel

•	 Virtualizing Stack Panel

HTML/CSS•	

Combination of HTML5 elements and CSS3 styles•	
A canvas is a drawing area, and all controls inside a canvas are positioned by absolute value (these values

correspond to the distance from the top/left corner). Because of absolute positioning, it cannot be used in
applications that need a scalable interface. Figure 3-49 shows an example of positioning a button inside a canvas.

Figure 3-48. New windowing modes in Windows 8.1

Chapter 3 ■ Designing the User experienCe

103

The Grid control helps create a grid structure. It can have rows and columns, and a cell can contain any other
control. Before you use it, the number of the rows and columns needs to be defined, and there are several ways to set
the size of the columns/rows. With the asterisk (*) you can autosize the cells, depending on the space available inside
the screen. Figure 3-50 shows an example of a grid declaration.

Figure 3-50. A grid with a text block and one button

Figure 3-49. A button inside a canvas

StackPanel enables you to position controls consecutively and set directions, such as horizontal or vertical.
Figures 3-51 and 3-52 show examples of the StackPanel control.

Chapter 3 ■ Designing the User experienCe

104

Orientation
Tablet devices usually provide a gyroscope or an accelerometer to detect screen orientation changes. There are two
types of orientation: landscape (see Figure 3-53) and portrait (see Figure 3-54).

Figure 3-51. StackPanel with horizontal orientation

Figure 3-52. StackPanel with vertical orientation

Chapter 3 ■ Designing the User experienCe

105

Figure 3-53. Landscape orientation

Chapter 3 ■ Designing the User experienCe

106

Figure 3-54. Portrait orientation

Chapter 3 ■ Designing the User experienCe

107

Developers have to identify orientation changes in their applications, which can be done using media queries in
CSS or using managed code catching the OrientationChanged event in the code-behind.

Developers can test orientation while developing the application using Visual Studio 2013 Simulator or Blend for
Visual Studio 2013 (see Figure 3-55).

Figure 3-55. Blend view support

Semantic Zoom
Semantic zoom is a new way to use zoom features to display contents. It is a touch-based technique that allows
navigation, display, and management of a large set of related data. It uses the pinch and stretch gesture to show more
or less information, and to navigate with the help of panning and scrolling gestures.

Two modes (or zoom levels) display the content:

•	 Zoomed-in: Contents are displayed in details, showing additional information such as photos
or item-related data

•	 Zoomed-out: Contents are summarized into semantic-based groups, allowing the user to
quickly navigate them

Figures 3-56 and 3-57 illustrate the difference between the modes.

Chapter 3 ■ Designing the User experienCe

108

Figure 3-56. An example of zoom-out on apps

Figure 3-57. An example of zoom-in on apps

Chapter 3 ■ Designing the User experienCe

109

In addition to the pinch gesture, you can reach semantic zoom using the mouse or keyboard. With the mouse,
you can hold down the Ctrl key while scrolling with the scroll wheel. With the keyboard, you can hold down the Ctrl
and Shift keys and press the + or – keys.

Panning and scrolling gestures can help navigation by localizing the content and then zooming in on it.
At first sight, semantic zoom might be confused with optical zoom. Actually, they are different, even though they

share the same interactions and behaviors. Optical zoom increases the level of details in a content area; semantic
zoom changes the level of details in which they’re shown, giving the data a different perspective.

Here are some recommendations for developers using semantic zoom. First, always define two levels of zoom.
It’s important to balance what contents are shown in the different levels to avoid having to repeat information and to
simplify the navigation. They must leave enough space among the elements to let the user zoom in or zoom out. Also,
the space for the element has to be big enough to use a finger (more information can be found in the touch targeting
size section of this chapter).

Developers should organize the content in sorted groups and take advantage of the pages (but being careful not
to overdo!). Finally, borders should be used only for semantic zoom control.

Contracts and Extensions
Contracts and extensions are the core of the interaction of an app with other apps or the OS. In this era of social
networks, people need to communicate, so when you write an app, don’t consider it stand-alone. Your app must be
ready to satisfy users’ needs: they want to tweet what they’re doing now or share what great news they read in your
app. You can do this and much more with contracts and extensions. Windows 8 allows you to create applications
that define an agreement with the OS or with other apps. When the agreement is made with Windows, it’s called an
extension; when the agreement is made with another application, it’s called a contract.

The following sections describe each one and explain what you need to know in order to follow Microsoft
guidelines. You’ll learn how to use them while we develop the case study.

Contracts
A contract defines the interaction between apps (source and target) mediated by a broker (the contract) that defines
what is required by your app to participate.

Types of contracts include the following:

Share contracts•	

Search contracts•	

Settings contracts•	

Play To contracts•	

App to App Picker contracts•	

Cached File Updated contracts•	

Share Contract
One of the most important features for a user-centric system is the chance to share contents with other apps and
services. Users love to share information, and with Windows 8 the Share charm is always near their fingers.

You can set your application to be a target of the Share contract by adding a Share target contract file to your
project. This file allows you to declare the data formats and file types your applications supports. When your
application has this contract as a target, remember that when Windows activates your application, it will open in the
snapped view state. It is a good practice to specify which page of your application to show.

Chapter 3 ■ Designing the User experienCe

110

When you write your app to participate as a target, keep in mind some best practices that help provide a better UX:

Avoid providing a way to leave the sharing context in your app; if users open your app for •	
sharing, you must hide everything that is not relevant for this function.

Don’t provide a back button; when activated to share, your app adds a back button that •	
navigates to the share target selection. Avoid using multiple pages when your app acts
as a target.

Put the button that shares the contents in an easily accessible location (normally the •	
bottom-right corner) and provide the simplest UX to the user for sharing contents rapidly.

Of course, if an app acts as a target, other apps can act as a source. In this case, in your application you must
declare the type of content shares and how many format types your application supports so it will be more interesting.
Source apps should also follow some best practices:

If your application shares contents available on the Web, share a link to the online content •	
rather than the content itself.

When you prepare the package to share, respect user selections. For example, if the user •	
wants to share a portion of text, you must share only the selected text, not the entire page or
document.

Provide some additional information (e.g., title, description, link, thumbnail, and so on), •	
which allows the target apps to improve their UX, providing the best look and feel to
their users.

To always provide the same UX, don’t create your own share button in your application.•	

When users want to share something from your app, they press the Share button in the Charm Bar (shown in
Figure 3-58). If your application is a source for sharing, the system will show something similar to the screen shown
in Figure 3-59. (Of course, the displayed items may vary, depending on which contents your app shares because only
applications that can manage them will be displayed.)

Figure 3-58. Share button in the Charm Bar

Chapter 3 ■ Designing the User experienCe

111

Search Contract
Suppose that your app manages contents and you want these contents to be searchable everywhere in the system.
This is what a Search contract offers: users can access data located in your app everywhere in the system or on the
Web, and you gain a lot of points in the UX. Windows provides a search pane opened by the Search charm that sorts
applications by frequency of use (see Figure 3-60).

Figure 3-60. Search button

Figure 3-59. Share contract in action

Chapter 3 ■ Designing the User experienCe

112

When you develop an application that participates in a Search contract, you can be sure that the user will find
your functionality easy to use and friendly because it is well integrated with the OS and offers a good UX. If you need
another good reason to integrate a Search contract in your applications, consider that your app will be more visible to
users for more use.

Note ■ You can write an app that participates in a search contract wherever your app stores data (locally or remotely).

If you use Windows 8 (not 8.1 or later), a pane appears on the right side of the screen when you select the Search
charm (see Figure 3-61). If your application is in the foreground, it will be automatically highlighted.

Figure 3-61. The App Store displays suggestions for the search query

Things are different in Windows 8.1: the Search charm has been redesigned. Now when you search something
through the Search charm, you can choose where to find it (see Figure 3-62). After you press Enter, another window
powered by Bing displays all results from different sources (see Figure 3-63).

Chapter 3 ■ Designing the User experienCe

113

Figure 3-63. The App Store displays suggestions for the search query (Windows 8.1)

Figure 3-62. The App Store displays suggestions for the search query (Windows 8.1)

Chapter 3 ■ Designing the User experienCe

114

Because the Search contract is part of the UX core provided by Windows 8, you must follow some guidelines
when you participate in this contract.

If you are using Windows 8.1, try to integrate the SearchBox control over the Search charm; otherwise, avoid
in-app UI elements that provide the same functionalities of the Search charm because your app may become difficult
to use. Provide search functionalities directly in your UI only for the Find in Page feature when users expect to remain
on the same page (this doesn't happen when they use the search pane that opens a new UI). The Find in Page feature
is particularly useful if your application manages documents. UI controls for Find in Page functionalities normally are
located in the AppBar, which must stay open (in sticky mode) while the user uses this functionality.

When the Search contract is the main application on the screen, it will be asked for suggestions, depending on
the search query. You should always provide a list of suggestions (refer to Figure 3-61).

Your application can provide two types of suggestions:

•	 Query suggestions: Suggestions for query text that the user inputs

•	 Result suggestions: Results that match the query actually written by the user

You should always provide search suggestions to speed up query input, providing the same result that a search
shows if the user inputs the truncated text. For example, if your app manages messages, and the user searches for
“Holidays,” you should provide all messages that contain this word (refer to your relevance algorithm).

Participating in this contract enables your app to provide suggestions about the search query, allowing users
to navigate directly to the details of the selected item. It speeds up the navigation, which helps the UX. You should
provide no more than five suggestions; if your app provides query suggestions and result suggestions, you must limit
the result to one item.

Some best practices to follow when your app participates in this contract include these:

You should provide a way to see what the user is looking for in the search page.•	

Combine the •	 ListView control and the Search contract to provide the same UX of Windows 8
(see Figure 3-64).

Figure 3-64. An example of search results (Windows 8)

Chapter 3 ■ Designing the User experienCe

115

If something is important to show, move it to the left side of the screen because the Search •	
charm appears on the right side over your application, hiding information on the search
results page.

Provide a way to see why an item inside your application matches the search query. If the user •	
looks for “Holidays,” you should show the word Holidays inside the description or the title of
the image in your application.

Provide a way to refine the search in your application. For example, if your application •	
contains images and text, you should provide a set of filters to limit the result to images or text
in the search page results.

When you contact a service to collect suggestions, use the •	
SearchPaneSuggestionsRequestDeferral class, which allows you to signal when your app
finishes collecting suggestions.

Settings Contract
The user touches the Settings charm (shown in Figure 3-65), and if your app participates in the Settings contract, you
can define a Settings page (see Figure 3-66). The Settings contract gives users access to your app’s settings from the
Settings charm. The purpose of the Settings contract is to give uniform access to app settings so users feel that the
apps are all integrated within the system.

Figure 3-65. Settings button in app charms

Chapter 3 ■ Designing the User experienCe

116

To participate in this contract, your application will use the SettingsCommand class that creates a setting entry
that you can add to the ApplicationCommands list (you’ll see how to use this class when the application’s setting
console in Chapter 7 is discussed). By default, if your application was downloaded from the Windows Store, Windows
provides two entries: one for permissions relative to your application; the other to rate and review your application
(not available for side-loaded enterprise apps).

Figure 3-66. Example of the Settings pane

Chapter 3 ■ Designing the User experienCe

117

We never tire of repeating that UX is the core concept of Windows 8, and to enable the user to obtain the best
experience from your application, you must follow some simple rules:

Choose well when determining the settings to include in the Settings pane, which includes •	
settings that influence the app’s behaviors.

Use the Settings charm to provide information not accessed very often, such as help or •	
copyright info.

Group similar settings to reduce entry points. For example, group uncommon settings under one •	
entry point to allow more common settings under their own entry point (e.g., group any About
policy support information under the About entry). Remember to limit entry points to four.

Avoid the use of app settings to change the application workflow; instead, use •	 AppBar for this
purpose. Don’t navigate in your application when users press the Settings charm because they
must be in the same place where they started when the setting windows close.

Limit the settings hierarchies to two levels in order to provide an easy-to-use menu.•	

Play To Contract
Imagine that your app shows videos, and your potential users are watching the video on their tablets while riding
the subway. They get home and decide to finish seeing the film on their new Digital Living Network Alliance
(DLNA)–compatible televisions. If your application participates in the Play To contract, your users can stream the
video by simply pressing the Play To charm. It’s easy to accomplish this: you handle only the SourceRequested event
of the PlayToManager class, which fires when the user selects the Devices charm, and then pass the media element to
the PlayToSourceRequestedEventArgs class.

As with other contracts, you should follow some best practices:

If your application manages videos, provide a way to stream them.•	

Register as the source of this contract only if you have contents to share.•	

If you share content with this contract, you must allow the user to continue navigating, •	
providing a way to keep the media element available.

App to App Picker Contract and Cached File Updated Contract
Modern OSs on tablets all have the same core concept: apps. The user needs to have an immersive application, but
these apps don’t integrate because every app is stand-alone. To solve this problem in Windows 8, you can participate
in the App to App Picker contract, which enables apps to access files inside other apps.

Although the App to App Picker contract provides opening and saving file capabilities, the Cached File Updated
contract allows you to update files.

The Cached File Updated contract allows your app to track file changes in order to update these files in a central
repository. For example, the SkyDrive application in Windows 8 allows you to share contents with other apps and
keep files updated with the SkyDrive service.

Extensions
Although contracts enable interaction with other apps, extensions enable you to integrate with the OS. Extensions
available in Windows 8 include these:

Account Picture Provider •	

AutoPlay •	

Chapter 3 ■ Designing the User experienCe

118

Background Tasks •	

Contact Picker •	

File Activation •	

Print Task Settings •	

Protocol Activation •	

Account Picture Provider
This extension allows users to open an app if they want to change their profile picture. Suppose that your application
edits images with some effects. Users of your app would use images edited within your software as profile pictures just
by clicking a button.

If your application allows users to change profile pictures, you can use three types of media:

Small format image•	

Large format image•	

Video•	

These three types can be set by your application in the same call, but remember that when you set a large image
or a video, you must always associate a small image as a thumbnail.

AutoPlay
With this extension, your application can open a device when it is added to the system. For example, if your
application edits images, it will be an option when a user connects a new device such as a camera, USB drive, or
Secure Digital (SD) card; or when the user starts a share using proximity.

Background Tasks
As discussed earlier, in Windows 8 only one application at a time is executed, reserving available resources for the
foreground app. You need some gears to keep the app’s information up to date. One of these gears is the Background
Tasks extension that you can use if you want to do work when your app is not active. Although background tasks are
very helpful in most scenarios (e.g., downloading e-mail), avoid using background tasks for Search for Extraterrestrial
Intelligence (SETI) workloads, for example, because it will drain the battery.

Starting a background task requires an event that triggers and launches the task. The triggers that raise various
trigger events are described in Table 3-3.

Chapter 3 ■ Designing the User experienCe

119

When you subscribe to a trigger in your task, you can set zero or more conditions to be satisfied in order to
start the task. For example, if your app manages e-mail, you can set a condition that an Internet connection must be
available. Task conditions are described in Table 3-4.

Table 3-3. Trigger Types

Trigger Type Event Occurrence

SystemEventTrigger InternetAvailable When an Internet connection is available

SystemEventTrigger ControlChannelReset When a network channel is reset

SystemEventTrigger NetworkStateChange When a network state changes, such as when
passing from a free to a paid connection

SystemEventTrigger OnlineIdConnectedStateChange When the online ID associated with the
account changes (refers to the online ID used
by Windows Live)

SystemEventTrigger ServicingComplete When the system ends to update the
application

SystemEventTrigger SmsReceived When a new Short Message System (SMS) is
received by an installed mobile broadband
device

SystemEventTrigger TimeZoneChange When the time zone changes on the device
(e.g., when the system adjusts the clock for
Daylight Saving Time [DST] or when the user
moves around the world)

SystemEventTrigger UserAway When the user is absent

SystemEventTrigger UserPresent When the user is present

ControlChannelTrigger ControlChannelTrigger On incoming messages on the control channel

MaintenanceTrigger MaintenanceTrigger When it is time for maintenance background
tasks

PushNotificationTrigger PushNotificationTrigger When raw notifications arrive on the WNS
channel

TimeTrigger TimeTrigger When a time event occurs

Table 3-4. Task Conditions

Condition Description

InternetAvailable An Internet connection must be available

InternetNotAvailable An Internet connection must be unavailable

SessionConnected The session must be connected

SessionDisconnected The session must be disconnected

UserNotPresent The user state must be set to away

UserPresent The user state must be set to present

Chapter 3 ■ Designing the User experienCe

120

When one of the triggers described here fires, the BackgroundTask infrastructure looks for apps registered for it
and launches the background task.

With Background Tasks, you can provide information about updating tiles in your app, and if your app is
authorized to publish on a locked screen, you can provide information about the state of your app. For example, if your
app manages messages, you can show the number of unread messages. You’ll see how to implement background
tasks in Chapter 7, when we talk about how to implement them in an app.

Contact Picker
Your app can register to provide contact data so that when an app requires contact information, your application
appears as a source. Imagine that you are writing a messaging app with a specific contact list. Other apps on the
system can use the list of contacts your app provides, even outside of your own app. This extension is another
important part of UX because it provides cross-app integration.

File Activation
Immersive apps are cool, but when users come from previous versions of Windows, they look for an application that
opens certain file types. For this reason, Windows 8 introduced the File Activation extension. When you declare in
your app that you can open certain files, the OS lists your app as a possible file destination. When your app has been
activated, you can handle the ActivationKind relative to the open file. Of course, because Windows 8 is a user-centric
OS, you can’t set the default app to use for a file type within your app, but Windows will ask users to choose the app
that they want as the default.

Printer Task Settings
When you think of a personal computer, you associate it with a printer; and when you think of a printer, you think
of the software products that manage them. Every printer manufacturer produces its own software to manage the
printer, and some of them also tell users about cartridge status.

Windows 8 offers some benefits to manufacturers. The app relative to a device is automatically downloaded from
the Windows Store when the user connects the device. Immersive apps for printers can be useful; for example, your
application can show the status of the printer in the tile and the cartridge status. Because your app will be distributed
through the Windows Store if you produce an update, it will be shown to all users. This is a great leap for the UX
because when users connect to a device, they will be immediately ready to work with its software.

Protocol Activation
With Protocol Activation, you can manage particular protocols. For example, consider an application that supports
Voice over Internet Protocol (VoIP). With this extension, the app can manage every hyperlink that uses the callto:\\
protocol. This extensions works like the File Activation extension: it is activated by the system when the user
selects your application to manage a protocol that you should specify in the App.Manifest. You will manage the
ActivationKind named protocol while your app handles the activated event.

Conclusion
This chapter helped you create an application with better UX, showed you how to choose the right control from
the rich control library to provide a consistent UX between apps, and how to further integrate your app with other
apps (and the system).

Chapter 4 introduces you to ways of developing applications for the Windows 8 platform and discusses reasons
for choosing one over another.

121

Chapter 4

Choose Your Way

Although this book is about the C# and Visual Basic (VB) languages, it also introduces all the possibilities offered by
the Windows Runtime (WinRT) platform. If you are interested in a language other than the ones presented in this
book, you can find an appropriate book in the Apress catalogue. This chapter analyzes the tools and the differences
between them, focusing attention on XAML and C# or VB for developing the Windows Store App.

Choosing Your Way
Why are very different languages used to develop Windows Store App applications? As you saw in Chapter 2, WinRT
allows the use of more languages to invoke the application programming interface (API) through the projections.
Out of the box, Microsoft enables the possibility of using C#, VB, JavaScript (JS), and C++ as programming languages,
and HTML5 (with CSS3) and XAML for the user interface (UI) definition.

Choose the language you know and are comfortable using. Of course, there are differences with namespaces,
objects, and ways to write code, but by understanding the application model and the features offered by WinRT, you
can use the language that is most productive for you. If you are a web developer, you probably will choose HTML 5,
CSS 3, and JS. If you are a Silverlight, Windows Presentation Foundation (WPF), or Windows Phone developer, you will
choose XAML and C# or VB. If you are a C++ developer, you need to learn only about XAML and use your experience
in C++ language to develop a Windows Store App.

If you are a Windows Phone developer, you can be happy: most of your knowledge about Windows Phone can be
ported on Windows Store Apps without effort, but remember that the user experience (UX) is different. For example,
panorama and pivot controls are not present, and the target devices are bigger than smartphones. Many controls are
equal, and Microsoft design language guidelines are similar, but the user and the use can be very different.

The key is to think about your potential users and to concentrate on satisfying user requirements. The language
you use is only a tool: choose the one that is most familiar.

Using XAML and the .NET Languages
XAML is a markup language introduced by Microsoft with the WPF technology, with the big objective of creating for
desktop applications the separation between contents and presentation already existing in the web application with
HTML and CSS. The eXtensible Application Markup Language (XML) uses a XML declarative syntax to instantiate .NET
UI components and initializes their properties.

Chapter 4 ■ Choose Your WaY

122

XAML Views and Binding
Chapter 3 introduced many controls to use inside a Windows Store App view. Let’s see how to use them in XAML
markup. First, a view is a subclass of the Page class, which means that the root element of an XAML view is a Page
element that can contain a layout controls with UI elements:

<Page
 x:Class="BlankApplication.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using: BlankApplication">
 <Page.Resources>

 </Page.Resources>
 <Grid>

 </Grid>
</Page>

A Page (or the application in general) can contain more elements, and many of them might have the same property
values. In this case, you can group common properties in a resource style to be reused in many contexts. For example,
with this markup you can set the font size to 48 pixels and the background to red for all buttons in a Page:

<Page.Resources>
 <Style TargetType="Button">
 <Setter Property="FontSize" Value="48" />
 <Setter Property="Background" Value="Red" />
 </Style>
</Page.Resources>

The Page.Resources section defines all resources of the current page. Through its Setter properties, the Style
element defines all the property values applied with the style. The required TargetType property selects the possible
UI elements target of the style in the example Button elements. If you don’t specify the optional x:Name property,
the style will be applied to all elements that match the TargetType property, which is very useful for a homogenous
application look and feel. If you want to create a style for specified elements that match the style’s TargetType, you
can set the property x:Name and use the XAML binding syntax to bind it to the elements. The previous example then
becomes the following:

<Page.Resources>
 <Style x:Name="MyButtonStyle" TargetType="Button">
 <Setter Property="FontSize" Value="48" />
 <Setter Property="Background" Value="Red" />
 </Style>
</Page.Resources>

And the Button target of the style can be declared as follows:

<Button Content="Click Me" Style="{StaticResource MyButtonStyle}" />

One of the most important features introduced by the XAML syntax is declarative binding. By using starting and
ending braces, you can indicate to the compiler that the content is not simply a string; it is an expression to evaluate
during the parsing process. In the previous example, the Style property is binding to the MyButtonStyle resource.

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

Chapter 4 ■ Choose Your WaY

123

But the power of the binding expression can be appreciated when is used to bind UI controls with application model
class properties or other UI control properties. For example, to show a Slider current value in a TextBlock, you can
use the following XAML:

<Slider Name="MySlider" Minimum="0" Maximum="100" Width="500" />
<TextBlock Text="{Binding ElementName=MySlider, Path=Value}" />

The binding is bidirectional by default, but you can specify a property called Mode that can have one of these
three values:

•	 OneTime: The binding is applied only once

•	 OneWay: For unidirectional binding

•	 TwoWay: For bidirectional binding (default)

When you bind a UI control with a data class property, the ElementName is not used because the Source instance
of the class will be set typically through the DataContext property of the UI element or its parent, or the Source
property of the binding. Look at this code:

C#
public class User
{
 public string Name { get; set; }
 public string Surname { get; set; }
}

VB
Public Class User
 Public Property Name As String
 Public Property Surname As String
End Class

If you have a domain class that represents a generic user of the application, you can set an instance of this class
to the DataContext page, which will make it available to the page controls for the binding. You can create an instance
of this class from the XAML, but the instance is usually created by a method of a business class. If you want to have a
UserManager business class, you can write the following code:

C#
User myUser = userManager.GetUser();
this.DataContext = myUser;

VB
Dim myUser as User = userManager.GetUser()
Me.DataContext = myUser

The XAML binding expression of a form that permits user field management can be written as follow:

<TextBlock Text="Name: " />
<TextBox Text="{Binding Path=Name}" />
<TextBlock Text="Surname: " />
<TextBox Text="{Binding Path=Surname}" />

Chapter 4 ■ Choose Your WaY

124

If the only binding property to set is Path, you can omit it; in the example, you can write {Binding Name} and
{Binding Surname}.

XAML has many other features, and the binding expressions have many other options (we will explain them
when they are used).

VB and C# Windows Store App Template
Now look at the project template for XAML and C# (on the left) and VB (on the right) in Figure 4-1.

Figure 4-1. XAML C# and VB blank Windows Store App template

A Windows Store App page has one XAML file and a correspondent code file with a .cs or .vb extension.
Figure 4-1 shows MainPage.xaml and the corresponding MainPage.xaml.cs and MainPage.xaml.vb files. A special file
is App.xaml (with the .cs and .vb files), which is used to manage the application life cycle. In the Windows 8.1 version,
there is no need to keep the StandardStyle file because default styles are now part of the framework.

The Asset folder contains the required images used for the application: Logo.png, SmallLogo.png,
SplashScreen.png, and StoreLogo.png.

A Quick Introduction to JavaScript and C++
HTML 5 and JavaScript
If you are a web developer, the good news is that you can reuse your skills for developing Windows Store Apps. After
the great success of HTML 5 and CSS 3, Microsoft looks at the future: supporting the current draft of this standard
(the final release is attending for 2014) in its browser, Internet Explorer (IE) and in its platform to meet the needs
of the web developers with the many options offered by the new specifics.

Chapter 4 ■ Choose Your WaY

125

Hypertext Markup Language (HTML) is a language that was born in the 1980s to supporting hypertext, the
electronic text composed of linked pages available through the World Wide Web. Since the 1980s, the language has
evolved and been standardized by the W3C (World Wide Web Consortium). It has two main objectives: a correct
syntax for a correct semantic interpretation by the main browser and new features to adapt an old language to the new
web requirements.

Windows Store Apps for JS support HTML 5. This means that you can use new tags in the markup code and
implement some JS code for features in your apps.

Another very useful feature introduced with HTML 5 (and most used with Windows Store Apps), are the
data-* attributes. You can use these attributes to store custom data in the page; for example, to store a validation
message. Many JS frameworks, such as jQuery mobile and unobtrusive validation jQuery plugins, use this attribute.
In the Windows Store, apps8 data-* are used to indicate the control used in the page and its parameter values. These
values are used from the Windows Store App JS framework: WinJS.

C++
C++ programmers can develop Windows Store Apps without learning another language by using the knowledge
garnered by years of experience. Unfortunately, Windows 8.1 architecture imposes some limitations on the classical
C++ application development.

Here are some things you can do with C++:

Write components for HTML5 and the JS UI•	

Write the code-behind of the XAML UI•	

Write the game engine for the DirectX UI•	

Games are very popular for users, and C++ with DirectX allows you to create high-performance 2D and 3D
games, accessing the powerful hardware available on the PC and tablet as the Tegra processors. If you are interested in
high-performance applications, C++ can be your best choice. The internal modules of Window 8.1 are also written in
C++ and expose an external surface for the WinRT calls and for native calls.

What Language Should You Choose?
As we said at the beginning of this chapter, it makes sense to choose one language you already know or prefer to use
to develop your application. This choice helps you write code easily and decreases development time. Even though all
the languages available to develop the Windows Store App share the same API subsystem, there are some variations
due to language design that can make the difference in term of learning curve and performance. The main reasons to
choose one language over any other are the requirements, which are all the features you want to introduce in your app.
Based on these requirements`, you can choose the language that gives the best performance with less development
effort. Let’s see what the differences are, starting with the creation of a UI.

XAML vs. HTML and CSS
Once again, based on the kind of application you are developing and what requirements you have, one language will
be the best fit for you. Take, for example, the creation of a Windows Store App for a graphic-intensive game: of course,
it is possible to use JS, but there might be a bit of performance degradation. As a matter of fact, controls such as Canvas
or using Scalable Vector Graphics (SVG) don’t have the same performance as other technologies. For example, Canvas
controls rebuild all pixels of the shapes to create motion, asking for resource to the runtime subsystem (remember
that Windows Store Apps written in JS run by a process called wwahost, which provides a subset of IE features).

In this case, XAML for the UI and C++ plus the DirectX API have the best performance (DirectX is a set of APIs for
game development). In this case, shapes rendering is more efficient.

Chapter 4 ■ Choose Your WaY

126

C#, VB, C++, and JavaScript
A wise choice is to use a language you already know so you can reuse our skills during development. But sometimes
you need to choose another way.

Indeed, considering what functional requirements are, it is possible to choose one language among the others.
Let’s go back for a moment to the game application: if it is a 3D graphic-intensive game, C++ is the best choice
because C++ is a low-level language that has low memory consumption). Native code differs from managed code
because it lacks a Garbage Collector (GC) that is a component for handling memory inside programs (creating and
freeing memory allocation). Besides, native code is directly compiled into machine code, whereas managed code is
compiled into Microsoft Intermediate Language (MSIL). Of course, you can use C# to create a game application; just
be aware of a minimal degradation of performance during execution.

A different case is porting. In this case, it is recommended to reuse the same technology or language and what
is already created, and then adapt it to WinRT. If it is a WPF, Silverlight, or Windows Phone application, migration is
simple. On the other hand, if it is a Windows Forms application, it might take more effort and time. If it is an ASP.NET
application instead, it is recommended to use C# or VB; that’s why rewriting the whole back end in JS is not so simple.
In the end, if it is a mobile application in HTML 5 and JS (or jQuery), it is better to use these technologies.

Another requirement might be the use of a programming pattern inside the code. C# and VB are object-oriented
languages, and it is easier to also create a complex architecture using patterns such as Domain Driven Design or Test
Driven Development. In this case, a database is often used to host data. As you will learn in Chapter 8, there are some
differences that can help you decide on the best language or technology to use.

Few observations are linked to code obfuscation and the destination platform. Remember the following:

JS is written in plain text.•	

C#/VB is compiled in managed code (MSIL) and can be decompiled with tools such •	
as .NET Reflector or ILspy.

C++ is unmanaged code that generates machine code, and it is not easy to decompile •	
(you will need a disassembler and few sleepless nights).

The destination platform could also be a decision point. .NET languages support “Any CPU” compilation, which
means that the output assembly could run on x86 or x64 platforms (remember that the output assembly is in MSIL
and needs a Common Language Runtime [CLR] to execute). It’s different for C++, in which the destination platform
must be specified. Table 4-1 summarizes the key point differences.

Table 4-1. Supported options by language

C#/ VB C++ JS

Level Middle Low High

Type system Static & Dynamic Static Dynamic

Garbage Collector Yes No (just ref-counted pointers) Yes

Output Assembly (MSIL) Machine Code Plain Text

Now you know that there are many reasons why one language is chosen over the others. What helps to make the
decision is always the context (i.e., requirements, porting, game applications, and so on).

Chapter 4 ■ Choose Your WaY

127

Conclusion
This chapter discussed the C# and VB languages that are used in this book to develop Windows Store Apps.
You learned that there are other languages available in the platform, and you can choose one by considering your
requirements. Of course, the simple way is to always choose what you already know; this way, you can maintain a
lower development effort in less time.

129

Chapter 5

Managing the Application Life Cycle

To make the most of Windows Store apps development, you must understand a lot of core concepts in order to have
control over the behavior of your application. One of these is the application life cycle, which is a basic concept for
writing a good application that resumes its state correctly when the user reopens an application after a suspension.

Dissecting the Application Life Cycle
The first step of the application life cycle, just after the user downloads it from the Windows Store, is the NotRunning
state, which is also the starting state when your app is crashed or closed. In the NotRunning state, your app can
assume the Running state, which happens in only two cases:

When the user opens your application by touching the tile or a notification•	

When your app is chosen by the user to interact with another application using •	
“Contracts and Extensions” (refer to Chapter 3 for an in-depth discussion)

Figure 5-1 shows different application execution states:

Activated

Resuming

Suspending

Running

Suspended

Terminated

ClosedByUser

NotRunning

Figure 5-1. Windows Store app life cycle

Chapter 5 ■ Managing the appliCation life CyCle

130

An application is activated when passing from a NotRunning to a Running state. You can initialize all resources
required for application execution by overriding the OnLaunched event.

There is a best practice that you must keep in mind: this transition is related to the time that the splash screen
is visible on the user’s screen device. For this reason, every background task needs to be as fast as possible to give
control over your application to the user. If you need to load a large amount of data or connect to a service, you should
not do it in the OnLaunched event; you should use an extended splash screen to avoid forcing the user having to wait for
completion.

Suppose that the user leaves your application and returns to the Start screen or switches to another application:
your app is still running. If you use the closing gesture, swiping the app from the top of the bottom of the screen, the
app is still running, but it saves resources. This behavior is introduced with Windows 8.1.

If you want to permanently close your app, you have to use the close gesture. Hold the app thumbnail for
about 2 seconds on the bottom of the screen, until it flips over. Then the runtime will maintain the app running
for about 10 seconds until it will be suspended and then closed. When the user switches from or to the app, the
VisibilityChanged event is called. This event can be used to manage an interaction (for example, stopping a timer if
your app is a game).

The app will remain in a Suspended state until it is terminated by the operating system (OS) for memory reasons
or from a closing gesture. The transition to the Suspended state raises the Suspending event, which you should handle
to save the application state and release resources that your application requires.

Windows can manage many applications in a Suspended state to ensure that users can switch quickly between
them. Of course, applications should not remain in a Suspended state, so they are terminated to recover resources.
You need to remember that your application does not receive notifications about terminating, so you have only one
opportunity to save the state of your application: the Suspending event.

By the way, although you cannot manage any terminating event, you can know how the application was
terminated by evaluating the PreviousExecutionState of Activated event arguments. This property returns one of
the following values from the ApplicationExecutionState enumeration:

•	 Terminated (or closed by the OS)

•	 ClosedByUser

•	 NotRunning

There is a lot of information to know about application termination. Unlike desktop applications, when you
develop an immersive application you must keep in mind that your app can’t offer a functionality to close itself,
except in rare cases such as security issues. In that event, Windows will consider your application to be crashed, which
could be a problem for users because when your app crashes (raises an exception or stops responding), the user is
asked for consent to send a report to Microsoft with a subset of the error information (as discussed in Chapter 4).
If you programmatically close your application with a button, you could receive a problem report every time a user
closes your application. If the application crashes when it starts, there is no notification of the crash (unless you have
your own internal code that tracks this issue) and the ApplicationExecutionState value will be NotRunning.

As you can see in Figure 5-1, from the Suspended state your app can reach the Running state by passing the
Resuming event that fires when the user switches to it. When resumed, your app will start from the same point it was
before being suspended, and you can handle the Resuming event to refresh contents of your application or require
some resources from the system.

This is a quick overview of the application life cycle, but theory is nothing without practice. The following
sections contain some code examples of how to manage the various events raised during the life cycle. Because this
book is based on the C# and VB.NET languages, we will show you code for these languages supported by Windows
Store apps, and you can be inspired by the language that meets your requirements and knowledge.

Chapter 5 ■ Managing the appliCation life CyCle

131

Activated Event
You start managing the Activated event in order to follow a logical flow. In this chapter, you will use a simple app;
in Chapter 6, you will learn about Windows Store app creation in detail. For now, just create a project inside Visual
Studio 2013. Inside of the section of your favorite programming language, choose the Blank App template to create
a new Windows Store app, as shown in Figure 5-2. The figure shows the C# section, but the steps are the same for
the other languages. Let’s see how to handle an Activated event in different languages.

Figure 5-2. Selecting a project template

After your project is created, you will see a default implementation of the OnLaunched method inside the
App.xaml.cs file. This file represents the main class of the application and inherits from the Application class
(shown in Figure 5-3). This class exposes methods, events, and properties that represent the behavior of the
application inside the OS.

Chapter 5 ■ Managing the appliCation life CyCle

132

What is interesting are the OnLaunched and OnActivated methods that you will override in order to manage the
application’s Launching and Activation events.

The OnLaunched method will be called when the user executes the application explicitly; conversely, OnActivated
will be called whenever your application is launched for other situations (for example, when it answers to Contract
subscription).

C#
In C#, the OnLaunched method looks like this (App.xaml.cs):

 protected override async void OnLaunched(LaunchActivatedEventArgs e)
 {

#if DEBUG
 // Show graphics profiling information while debugging.
 if (System.Diagnostics.Debugger.IsAttached)
 {
 // Display the current frame rate counters
 this.DebugSettings.EnableFrameRateCounter = true;
 }
#endif

Figure 5-3. Application class diagram

Chapter 5 ■ Managing the appliCation life CyCle

133

 Frame rootFrame = Window.Current.Content as Frame;

 // Do not repeat app initialization when the Window already has content,
 // just ensure that the window is active

 if (rootFrame == null)
 {
 // Create a Frame to act as the navigation context and navigate to the first page
 rootFrame = new Frame();
 //Associate the frame with a SuspensionManager key
 SuspensionManager.RegisterFrame(rootFrame, "AppFrame");
 // Set the default language
 rootFrame.Language = Windows.Globalization.ApplicationLanguages.Languages[0];

 if (e.PreviousExecutionState == ApplicationExecutionState.Terminated)
 {
 // Restore the saved session state only when appropriate
 try
 {
 await SuspensionManager.RestoreAsync();
 }
 catch (SuspensionManagerException)
 {
 //Something went wrong restoring state.
 //Assume there is no state and continue
 }
 }

 // Place the frame in the current Window
 Window.Current.Content = rootFrame;
 }
 if (rootFrame.Content == null)
 {
 // When the navigation stack isn't restored navigate to the first page,
 // configuring the new page by passing required information as a navigation
 // parameter
 if (!rootFrame.Navigate(typeof(GroupedItemsPage)))
 {
 throw new Exception("Failed to create initial page");
 }
 }
 // Ensure the current window is active
 Window.Current.Activate();
 }

The default implementation evaluates the PreviousExecutionState property of LaunchActivatedEventArgs to
see whether its value is equal to the Terminate value of the ApplicationExecutionState enumeration that you can
see in the class diagram shown in Figure 5-4. Remember this diagram because you will refer to it when you evaluate
other values of ApplicationExecutionState for other transitions. By checking the PreviousExecutionState, you
can restore a saved state. The #if DEBUG statement enables the framerate counter on the top of the screen (starting in
Windows 8.1).

Chapter 5 ■ Managing the appliCation life CyCle

134

The remaining code allows the application to start using a root content of your application as an instance of the
MainPage application page.

To manage the application activation completely, you must handle the OnActivated event this way:

protected override void OnActivated(IActivatedEventArgs args)
{
 switch (args.Kind)
 {
 case ActivationKind.CachedFileUpdater:
 //Do something here
 break;
 case ActivationKind.CameraSettings:
 //Do something here
 break;
 case ActivationKind.ContactPicker:
 //Do something here
 break;
 case ActivationKind.Device:
 //Do something here
 break;
 case ActivationKind.File:
 //Do something here
 break;

Figure 5-4. Application activation class and enumeration

Chapter 5 ■ Managing the appliCation life CyCle

135

 case ActivationKind.FileOpenPicker:
 //Do something here
 break;
 case ActivationKind.FileSavePicker:
 //Do something here
 break;
 case ActivationKind.PrintTaskSettings:
 //Do something here
 break;
 case ActivationKind.Protocol:
 //Do something here
 break;
 case ActivationKind.Search:
 //Do something here
 break;
 case ActivationKind.ShareTarget:
 //Do something here
 break;
 }
}

In this code, you are preparing your application to manage various types of activation, evaluating the Kind
property of the IActivatedEventArgs interface (see Figure 5-5). You may be wondering why you use an interface.
You do so because you’ll have a different implementation of IActivatedEventArgs depending on ActivationKind.
(It will be clarified when we talk about contracts and extensions).

Figure 5-5. Activation arguments class diagram

Chapter 5 ■ Managing the appliCation life CyCle

136

VB
As soon as you create your project, a file named App.xaml.vb is created. In this file is a standard implementation
of the OnLaunched method that looks like this:

 Protected Overrides Sub OnLaunched(e As
Windows.ApplicationModel.Activation.LaunchActivatedEventArgs)
#If DEBUG Then
 ' Show graphics profiling information while debugging.
 If System.Diagnostics.Debugger.IsAttached Then
 ' Display the current frame rate counters
 Me.DebugSettings.EnableFrameRateCounter = True
 End If
#End If

 Dim rootFrame As Frame = TryCast(Window.Current.Content, Frame)

 ' Do not repeat app initialization when the Window already has content,
 ' just ensure that the window is active

 If rootFrame Is Nothing Then
 ' Create a Frame to act as the navigation context and navigate to the first page
 rootFrame = New Frame()
 If e.PreviousExecutionState = ApplicationExecutionState.Terminated Then
 ' TODO: Load state from previously suspended application
 End If
 ' Place the frame in the current Window
 Window.Current.Content = rootFrame
 End If
 If rootFrame.Content Is Nothing Then
 ' When the navigation stack isn't restored navigate to the first page,
 ' configuring the new page by passing required information as a navigation
 ' parameter
 If Not rootFrame.Navigate(GetType(MainPage), e.Arguments) Then
 Throw New Exception("Failed to create initial page")
 End If
 End If

 ' Ensure the current window is active
 Window.Current.Activate()
 End Sub

If you compare this code with C# code, you’ll notice that there’s no difference between the implementations
except for a slight difference in syntax. And this consideration is valid also for the OnActivated override, which looks
like this:

Protected Overrides Sub OnActivated(args As IActivatedEventArgs)
 Select Case args.Kind
 Case ActivationKind.CachedFileUpdater
 'Do something here
 Case ActivationKind.CameraSettings
 'Do something here

Chapter 5 ■ Managing the appliCation life CyCle

137

 Case ActivationKind.ContactPicker
 'Do something here
 Case ActivationKind.Device
 'Do something here
 Case ActivationKind.File
 'Do something here
 Case ActivationKind.FileOpenPicker
 'Do something here
 Case ActivationKind.FileSavePicker
 'Do something here
 Case ActivationKind.PrintTaskSettings
 'Do something here
 Case ActivationKind.Protocol
 'Do something here
 Case ActivationKind.Search
 'Do something here
 Case ActivationKind.ShareTarget
 'Do something here
 End Select
End Sub

That’s all you have to do to manage the activation of your application. Now you learn how to manage the
VisibilityChanged event.

Visibility Changed Event
When the visibility of the application changes, the VisibilityChanged event fires, allowing you to manage this
change. All you need to do is to manage the VisibilityChanged event of CoreWindow class. In Figure 5-6, you can
see a class diagram that shows the classes used to manage this event.

Chapter 5 ■ Managing the appliCation life CyCle

138

To simulate a real situation in your C# and VB.NET code, you will stop a DispatcherTimer that measures time
elapsed in a game.

Note ■ DispatcherTimer, which is a class available only in a Windows Store app, provides a Timer that is integrated
in a Dispatcher queue. if you use this class, you can refer from your code to a Ui object; if you use a simple Timer and
do something on a Ui thread, you will get a CrossThreadException.

First, declare the DispatcherTimer and a CoreWindow reference to subscribe to the VisibilityChanged event.
You start the timer when visibility is true; you’ll stop it when it is false. Let’s play!

Figure 5-6. CoreWindow and VisibilityChangedEventArgs class diagrams

Chapter 5 ■ Managing the appliCation life CyCle

139

C#
As mentioned, you declare a private member of the DispatcherTimer type in the App class (App.xaml.cs) and
you initialize it inside the constructor, using 1 second as the TimeSpan to set the value of the Interval property of
DispatcherTimer.
private DispatcherTimer _timer;

...

public App()
{
 this.InitializeComponent();
 this.Suspending += OnSuspending;
 timer = new DispatcherTimer
 {
 Interval = TimeSpan.FromSeconds(1)
 };
}

Another thing that you need is a private member of the CoreWindow type, which you’ll initialize in the OnLaunched
method, getting an instance from the static method GetForCurrentThread of the CoreWindow class:

private CoreWindow coreWindow;

...

coreWindow = CoreWindow.GetForCurrentThread();

coreWindow.VisibilityChanged +=
 (s, e) =>
 {
 if (e.Visible)
 timer.Start();
 else
 timer.Stop();
 };

Note ■ you can get the same instance of CoreWindow by navigating the Current static property of the Window static
class and looking for the CoreWindow property.

In this way, when the app loses visibility, the timer stops running and starts again when the app becomes visible.
Of course, this is only an example of how to manage the VisibilityChanged event, and the code inside the event
handler will change based on your own application.

VB
As in C#, the first thing that you need is an instance of DispatcherTimer created in this way:

Dim _timer = New DispatcherTimer() With {.Interval = TimeSpan.FromSeconds(1)}

Chapter 5 ■ Managing the appliCation life CyCle

140

Then you need to add an event handler for the VisibilityChanged event, which is like this in VB:

Private Sub VisibilityChanged(sender As Windows.UI.Core.CoreWindow,
args As Windows.UI.Core.VisibilityChangedEventArgs)
 If args.Visible Then
 _timer.Start()
 Else
 _timer.Stop()
 End If
End Sub

Now that you have an event handler, you will get an instance of CoreWindow. Because VB is a managed language
like C#, you create an instance of CoreWindow inside the App class and then you can get the CoreWindow instance inside
the OnLaunched event in two ways:

Dim _coreWindow As Windows.UI.Core.CoreWindow
...
_coreWindow = coreWindow.GetForCurrentThread()
Or
_coreWindow = Window.Current.coreWindow;

There is no difference between these two methods because you will always get the same instance. The last thing
to do is to subscribe the event handler to the event, and you will do it inside the OnLaunched method in this way:

AddHandler coreWindow.VisibilityChanged, AddressOf VisibilityChanged

That’s it.

Suspending Event
As mentioned before, an app in the running state can reach only the Suspended state, which happens raising the
Suspending event. Here you’ll learn how to handle this event. Again, be careful about the Windows Store app’s
execution model; there is no assurance that the VisibilityChanged and Suspending events raise one after the other
in a short time.

When the OS fires the suspending event, it saves the actual state of your application in order to resume from the
same point later. In this way, the user gets the impression that the app is running in the background. The Suspending
event is where you’ll save app data and release resources such as devices because the OS doesn’t notify your app while
terminating.

Figure 5-7 shows a diagram of classes used during the Suspending event. The starting point is the
SuspendingEventArgs class that contains a property of the SuspendingOperation class. SuspendingOperation
contains a GetDeferral method that you can use during your process of saving in order to ask for “extra time” before
the suspension ends. This method returns an object of the SuspendingDeferral class, in which you’ll call the Complete
method to notify that your operation ended.

Chapter 5 ■ Managing the appliCation life CyCle

141

C#
Managing the Suspending event in C# is really simple. The first thing that you need is an event handler in
App.xaml.cs:

private async void OnSuspending(object sender, SuspendingEventArgs e)
{
 var deferral = e.SuspendingOperation.GetDeferral();
 await SuspensionManager.SaveAsync();
 deferral.Complete();
}

In the first line of code, you get an object of the SuspendingDeferral class in order to notify the OS that your
operations ended in the last line of code. Now that you have an event handler, you can attach your handler to the event:

this.Suspending += OnSuspending;

app is an instance of your application that you can refer to by using the this keyword if you are working in
App.xaml.cs or using the Current static property of the Application object:

Application.Current.Suspending += OnSuspending;

VB
The code to manage the Suspending event in VB is also really simple:

AddHandler Application.Current.Suspending, AddressOf OnSuspending
Private Async Sub OnSuspending(sender As Object, e As SuspendingEventArgs) Handles Me.Suspending
 Dim deferral As SuspendingDeferral = e.SuspendingOperation.GetDeferral()
 Await Common.SuspensionManager.SaveAsync()
 deferral.Complete()
End Sub

Figure 5-7. Classes used in a Suspending event

Chapter 5 ■ Managing the appliCation life CyCle

142

Resuming Event
From the Suspended state, your app can assume the NotRunning and Running states. You don’t have control over the
transition to the NotRunning state, but you can control the behavior when passed to the Running state by firing the
Resuming event.

C#
Managing the Resuming event is really easy. The event handler can be implemented as follows in App.xaml.cs:

void OnResuming(object sender, object e)
{
 //Place your code here
}

Attach the event handler to the Resuming event in the App() constructor:

this.Resuming += OnResuming;

VB.NET
In the App.xaml.vb file, use this code:

AddHandler Application.Current.Resuming, AddressOf App_Resuming

Private Sub App_Resuming(sender As Object, e As Object)
 ' TODO: Refresh network data
End Sub

Conclusion
In this chapter, you have seen different ways to handle application life cycle event inside your application. It is
important to understand that data is not loaded or saved automatically when your app is terminated. You need to save
it on the available storage as the local storage or the cloud storage to recover it when app is loaded again or refresh it
if necessary. Understanding the life cycle of a Windows Store app is necessary to avoid unexpected behavior during
runtime.

143

Chapter 6

Start Up Your App

The main objective of this book is to teach you how to create a Windows 8.1 application with the tools and languages
(C# and VB) offered by Microsoft. After the previous five chapters where we explained the required basic concepts
to entry in the platform, using the Microsoft Design Language guidelines with the Windows 8.1 Runtime and the
languages available within the Microsoft tools, we are ready now to illustrate how to prototype your app.

Design the User Interface
In the design process, the best way to show customers and programmers the product you want create to make a
mockup of the views that compose the application user interface. There are many solutions for this purpose, some
free and some for a fee, some for creating static mockups and others for creating functional mockups. If you want to
stay on the Microsoft stack, you can use Microsoft SketchFlow to create a mockup application that permits the actors
in the project to try the application flow and give you feedback. This tool is released with the enterprise version of
Microsoft Expression Blend and allows you to create a WPF or Silverlight application that shows a functional mockup
and captures user feedbacks.

For static mockups, there are two Microsoft products, Visio and PowerPoint Storyboard template. Visio allows you
to create many types of diagrams, with various components and also typical UI components. The PowerPoint Storyboard
template is a new tool, introduced with Team Foundation Server 2012; it’s a free template that allows you to create
static mockups, adding user interface components (you can also include Windows 8.x and Windows Phone elements)
on PowerPoint slides. At the end of your work, you have a PowerPoint presentation to show to your collaborators and
customers. Otherwise, if you want to use a non-Microsoft product such as Balsamiq Mockups, you can download the
stencils for Windows Store apps directly at http://msdn.microsoft.com/en-us/library/windows/apps/dn144786.aspx.

For this book’s purposes, we will use the PowerPoint Storyboard template, choosing from the assets the
Windows 8.1 Application components available through the last version of the template. In the following images,
we will show you how to create a mockup for an application that saves a user’s favorite places.

Figure 6-1 shows the Start screen of the app with mouse pointer about to click the app tile. Figure 6-2 shows
what happens after the user clicks the app title: the main view of the app appears, showing the grid visualization of
the places.

http://msdn.microsoft.com/en-us/library/windows/apps/dn144786.aspx

Chapter 6 ■ Start Up YoUr app

144

Figure 6-1. Mockup of the Start screen

Figure 6-2. Main page of the app

Chapter 6 ■ Start Up YoUr app

145

Note that Figure 6-1 does not provide a real value to your mockup, but it will help you involve the observer in
order to mimic the user experience.

The view in Figure 6-2 is based on the standard Windows Store Grid template available starting with Visual
Studio 2013, but in the tile, you will visualize the title of the item and a map snapshot. You can also show an example
of what happens when you select one or more elements by clicking or tapping: a special border will indicate that
the user’s selection was a success (as shown in Figure 6-3). By PowerPoint storyboarding, you can also show the
application bar (Figure 6-4) where you can see the available operations.

Figure 6-3. Item selection

Figure 6-4. Application bar

Finally, Figure 6-5 shows an example of how to create a mockup for an item detail page.

Chapter 6 ■ Start Up YoUr app

146

Using this kind of tool can help to simplify the design of your application and avoid misunderstanding with the
stakeholders. Use it as much as possible!

Choose the Right Tool
When your mockup is complete, it’s time to start coding your app. Even if the Visual Studio editor is equal to Blend,
this latter is still the best choice for designers. For this reason we’ll introduce you to Blend in this section and identify
core functionalities that you can use in this application.

Starting with VS2012, Blend is integrated with VS, so you can find in the contextual menu of Blend-compatible
projects an item labeled Edit in Blend (shown in Figure 6-6). This menu will open the solution in Blend and, if you
select a file, open it in the editor.

Figure 6-5. Item detail page

Chapter 6 ■ Start Up YoUr app

147

When you need to work with layout and styles, Blend should be your first choice because it’s made for this.
Blend ships with two workspaces, Design and Animation. Every workspace has its own widget disposition. As you
can imagine, the first one is dedicated to designing the UI, while the second one facilitates your work on animations.
This is the main difference between the UI design approach in VS or Blend: both are good for design, but Blend is
better for animation.

There are three types of animations:

•	 Transition Animations: Good for transition effects

•	 Theme Animations: Good for animation with a theme

•	 Custom Animations: For every case not covered by the previous two

Transition animations are used to render a control and are visible in the class diagram show in Figure 6-7. If you
want to apply one of these transitions, you can simply add one them to the TransitionCollection of a control in the
following way:

 <Button>
 <Button.Transitions>
 <TransitionCollection>
 <EntranceThemeTransition FromHorizontalOffset="-229"/>
 </TransitionCollection>
 </Button.Transitions>
</Button>

Figure 6-6. Open in Blend menu

Chapter 6 ■ Start Up YoUr app

148

In this example, we create an instance of EntranceThemeTransition with an initial offset of -229 pixels to the
Button, so when rendered it will appear with the effect of an entrance from the left.

Theme animations are built-in animations that are used in standard Windows Store app controls. This type of
animation is based on TimeLine class and must be triggered explicitly, because you must use them in conjunction
with a storyboard.

Note ■ a storyboard is the class used to define changes of value in a control’s dependency properties in a period.
a storyboard can only be started by using the StoryboardName.Begin() method, because you cannot use triggers to
modify the aspect of a control, only the VisualStateManager.

When you use a ThemeAnimation, you add it as a child of Storyboard in this way:

<Storyboard x:Name="MyStory">
 <FadeOutThemeAnimation TargetName="MyControl" />
</Storyboard>

And in your code-behind you must write MyStory.Begin() both for C# and VB.
The last category of animations is custom animations. Under this category are classified the classical storyboards

written in XAML. This type of animation has two categories:

Dependent•	

Independent•	

Figure 6-7. Transition class diagram

Chapter 6 ■ Start Up YoUr app

149

Dependent animation is an animation that needs information from the UI thread; for this reason by default it’s
not executed, so requires an opt-in from the app developer to enable it (PointAnimation.EnableDependentAnimation =
true). When enabled, this animation type runs smoothly on the UI thread, but when the system starts doing
something, the storyboard can stutter. For this reason, you should avoid dependent animations.

To create an independent animation your storyboard must respect these requirements:

Duration of the animation set to 0 (zero)•	

Animation can target•	

•	 UIElement.Opacity

•	 Canvas.Left or Canvas.Top

•	 Brush (using SolidColorBrush)

•	 RenderTransorm, Projection, Clip

•	 ObjectAnimationUsingKeyFrames

Conclusion
In this chapter, you took the first step in the creation of a Windows Store app. You also took a quick tour in Blend for
Visual Studio. Starting in the next chapter, you will go deep inside the Windows RT features. So let the fun begin!

151

Chapter 7

Take Advantage of the Environment

In this chapter, you will learn how to integrate your apps with the operating system, adding the ability to activate
functionality directly from the Charm Bar. The first section explores geolocation and sensors integration. You will
start sharing media content through the Digital Living Network Alliance (DLNA) protocol participating in the Play
To contract.

In the third section, you’ll see how to integrate your apps with the system, activating a Background Task that will
wait for an available Internet connection (but you will often see other types of activations) to perform tasks that will
keep your app useful even when closed, such as contacting your remote web service.

Finally, and importantly, you will take advantage of the environment with charms to implement contracts.
The first contract that you will implement is the Settings contract because usually your app requires a place to manage
settings to customize the user experience (UX). Then you will learn about the Share charm, with which you can
integrate through the Share contract.

Sensors
In this section, you will see how to enrich the UX in an app with the use of various sensors. First, you will see how
to use the Geolocation namespace (Windows.Devices.Geolocation) that will help us to retrieve the position of the
device using GeoCoordinate (Latitude, Longitude, and Altitude). Later you will learn how Windows 8.1 supports
a wide range of sensors and how you can access them through the classes contained in Windows.Device.Sensors
namespace. This namespace offers the following classes to support the relative sensor:

•	 Accelerometer

•	 Compass

•	 Gyrometer

•	 Inclinometer

•	 LightSensor

•	 OrientationSensor

•	 SimpleOrientationSensor

SimpleOrientationSensor doesn’t refer to a real class of sensor; it’s a simplified version of the orientation sensor
that helps you to easily access information about the current orientation of the device without the need to interpret
the SensorQuaternion that you can retrieve by using of OrientationSensor.

Chapter 7 ■ take advantage of the environment

152

Geolocation
The core class to manage is the Geolocator class available in the Windows.Devices.Geolocation namespace (shown in
Figure 7-1). Classes contained in this namespace are responsible to manage Geolocation (as the namespace suggest).
The Geolocator class is the entry point for these functionalities, through PositionChanged and StatusChanged, events
which respectively rise when the position of the device changes and when position data availability changes states
(every state will be expressed through a PositionStatus value). Otherwise, if you need a single position check, you can
use the available GetLocationAsync method.

Figure 7-1. Windows.Devices.Geolocation namespace

The Geolocator class has other interesting members such as the DesiredAccuracy property, which you can use
to express the accuracy needed by your app, and the MovementThreshold property, which you can set to specify the
threshold before the PositionChanged event fires.

When the PositionChanged event fires, you can get the actual position of the device by accessing the Position
property of the PositionChangedEventArgs instance passed as an argument of the event handler.

Chapter 7 ■ take advantage of the environment

153

The type of Position property is Geoposition, which provides information such as CivicAddress and
Geocoordinate. CivicAddress provides information about the Country, State, City, and PostalCode of the current
position.

Geocoordinate provides low-level information about the following:

•	 Latitude: The angular distance north or south of the earth’s equator, measured in degrees
along a meridian, as on a map or globe

•	 Longitude: The distance in degrees east or west of the prime meridian at 0 degrees, measured
by the angle between the plane of the prime meridian and that of the meridian through the
point in question, or by the corresponding time difference

•	 Altitude: The height of something above a reference level, especially above sea level or above
the earth’s surface

•	 Speed: The actual speed of the device expressed as meters per seconds

•	 Heading: The actual direction of the device expressed in degrees relative to true north

•	 Accuracy: The accuracy of a location in meters

Note ■ True north, also known as geodetic north, is the direction from any point toward the north pole.

Remember that only Latitude, Longitude, and Accuracy are always provided; whereas Altitude,
Accuracy, Heading, and Speed are provided only if available. You should keep this in mind to avoid possible
NullReferenceExceptions.

Prepare the UI
To show a map in XAML, you can use the Bing Maps SDK for Windows 8.1 Store apps (because this SDK adds a
control for XAML), which is available here:
http://visualstudiogallery.msdn.microsoft.com/224eb93a-ebc4-46ba-9be7-90ee777ad9e1

Before you can use Map control in your app, you need a Bing Maps key that you can get in this way:

 1. Connect to http://www.bingmapsportal.com/.

 2. Log on with a Windows Live account.

 3. Create a new Bing Maps key. Don’t worry about the application name; you can use a key
on every app.

 4. Inside the App.xaml file, create a resource identified by the BingCredentials key in this
way: <x:String x:Key="BingMapKey">your key</x:String>, where “your key” is the
Bing Maps key created before. This is a good practice if your app uses this control in
other pages, and it is a good way to keep only information about how to draw the view
inside the XAML.

http://visualstudiogallery.msdn.microsoft.com/224eb93a-ebc4-46ba-9be7-90ee777ad9e1
http://www.bingmapsportal.com/

Chapter 7 ■ take advantage of the environment

154

XAML

Note ■ for this version of the library, you must change target CpU to a specific platform instead of any CpU.

After the installation, add a reference to Bing Maps, as shown in Figure 7-2, so you can import the Bing.Maps
namespace into your code.

Figure 7-2. Referencing the Bing.Maps namespace

If your solution is configured to build for Any CPU, your project won’t compile and will notify you that something
has gone wrong (as you can see Figure 7-3).

Chapter 7 ■ take advantage of the environment

155

To solve this problem, open the Configuration Manager from the Build menu of Visual Studio. From the
Configuration Manager, you can select the target platform for projects inside your solution, changing the selected
value of the Active Solution Platform combo box (see Figure 7-4).

Figure 7-3. Invalid reference

Figure 7-4. Active solution platform drop-down list

Chapter 7 ■ take advantage of the environment

156

Now you are ready to include Map control inside your application and you will do it in a project dedicated to this
chapter named BW8AGU.Samples.CSharp/BW8AGU.Samples.VB in a page named GeoLocationSample. You must import
the Bing.Maps namespace inside the page of your app where you want to add the Map control. You can do so by adding
the bold XAML as an attribute of the Page element in XAML:

<Page
 x:Name="pageRoot"
 x:Class="BW8AGU.Samples.CSharp.GeoLocationSample"
 DataContext="{Binding DefaultViewModel, RelativeSource={RelativeSource Self}}"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:BW8AGU.Samples.CSharp"
 xmlns:common="using:BW8AGU.Samples.CSharp.Common"
 xmlns:maps="using:Bing.Maps"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d">

In this way, you have imported the Bing.Maps namespace, and then you are ready to add the Map control on
your user interface (UI). You will do it using the map element that you can find in the maps namespace (that you have
imported):

<maps:Map x:Name="MapControl" Credentials="{StaticResource BingMapKey}" ShowBuildings="False" />

Find Me Everywhere
The control is ready to show the position that you’ll retrieve using a GeoLocator instance. You just have to do
two steps:

 1. Declare in the app manifest that your application will use Location capability.

 2. Use Location capability in your code.

To declare that your application will use Location capability, you must open the app manifest and,
in Capabilities tab, check Location (see Figure 7-5).

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006

Chapter 7 ■ take advantage of the environment

157

To use location capability in your code, at the class level you can declare a Geolocator type variable and you can
create a method to initialize it. If you need to track the position of the user in your app (e.g., the Navigation app),
you can subscribe to the PositionChanged event, and if your code retrieves the position without the use of an async
pattern, you can subscribe to the StatusChanged event in order to detect the state of Geolocator. Now choose the
language that is appropriate for you and follow your directives.

In the code-behind of your XAML file, you must include the Windows.Devices.Geolocation and Bing.Maps
namespaces so you need an instance that you declare inside the page class as a class private field. After the
declaration, you will write a method that initializes the instance with an accuracy of 2 meters and a threshold of 1 meter.
Finally, you must subscribe to the PositionChanged event with an event handler that will report information on the
UI, updating the map center and updating the viewmodel used by the UI with information about longitude, latitude,
and other data provided by location services. You can do it with the following code:

C#

using Bing.Maps;
using Windows.Devices.Geolocation;

public sealed partial class GeoLocationSample : Page
 {
 private Geolocator locator = null;

 private void InitializeGeolocator()
 {
 if (locator == null)
 {
 locator = new Geolocator();
 locator.DesiredAccuracyInMeters = 2;

Figure 7-5. Using the Location capability

Chapter 7 ■ take advantage of the environment

158

 locator.MovementThreshold = 1;
 locator.PositionChanged += OnLocatorPositionChanged;
 }
 }

private async void OnLocatorPositionChanged(Geolocator sender, PositionChangedEventArgs args)
 {
 DefaultViewModel["Coordinate"] = args.Position.Coordinate;
 await MapControl.Dispatcher.RunAsync(Windows.UI.Core.CoreDispatcherPriority.Normal,
 () =>
 {
 MapControl.Center = new Bing.Maps.Location
 {
 Longitude = args.Position.Coordinate.Point.Position.Longitude,
 Latitude = args.Position.Coordinate.Point.Position.Latitude,
 };
 Pushpin pin = new Bing.Maps.Pushpin();
 pin.SetValue(Bing.Maps.MapLayer.PositionProperty,
new Bing.Maps.Location(MapControl.Center));
 MapControl.Children.Clear();
 MapControl.Children.Add(pin);

 MapControl.SetZoomLevel(10,TimeSpan.FromSeconds(1));
 });
 }
 ...
 }

VB

Imports Bing.Maps
Imports Windows.Devices.Geolocation

public sealed partial class GeoLocationSample : Page
 {
 Private locator As Geolocator

Private Async Sub InitializeGeolocator()
 If locator Is Nothing Then
 locator = New Geolocator()
 locator.DesiredAccuracyInMeters = 2
 locator.MovementThreshold = 1
 AddHandler locator.PositionChanged, AddressOf OnLocatorPositionChanged
 Dim actualPosition = Await locator.GetGeopositionAsync()
 AddHandler locator.StatusChanged, AddressOf OnStatusChanged
 End If
 End Sub

Private Async Sub OnLocatorPositionChanged(sender As Geolocator, args As PositionChangedEventArgs)
 DefaultViewModel("Coordinate") = args.Position.Coordinate
 Await MapControl.Dispatcher.RunAsync(Windows.UI.Core.CoreDispatcherPriority.Normal, Sub()

Chapter 7 ■ take advantage of the environment

159

 MapControl.Center = New Bing.Maps.Location() With {
 .Longitude = args.Position.Coordinate.Point.Position.Longitude,
 .Latitude = args.Position.Coordinate.Point.Position.Latitude
 }
 Dim pin As Pushpin = New Bing.Maps.Pushpin()
 pin.SetValue(Bing.Maps.MapLayer.PositionProperty, New Bing.Maps.Location(MapControl.Center))
 MapControl.Children.Clear()
 MapControl.Children.Add(pin)

 MapControl.SetZoomLevel(10, TimeSpan.FromSeconds(1))

 End Sub)
 End Sub
 ...

This code uses the Geolocator class to track the user position continuously. However, nothing until now has
called the InitializeGeolocator method; for this scope, you have a button on the UI to start tracking the user
position, and all you have to write is the following:

C#

private void OnGetPositionButtonClick(object sender, RoutedEventArgs e)
 {
 InitializeGeolocator();
 }

VB

Private Sub OnGetPositionButtonClick(sender As Object, e As RoutedEventArgs) Handles
GetPositionButton.Click
 InitializeGeolocator()
 End Sub

Windows.Device.Sensors
Windows.Device.Sensors is the namespace that contains all classes that you can use to access to sensors. In this
namespace, shown in Figure 7-6, you can find classes to manage:

•	 Accelerometer

•	 Compass

•	 Gyrometer

•	 Inclinometer

•	 LightSensor

•	 OrientationSensor

Chapter 7 ■ take advantage of the environment

160

All these classes offer the same methods and events (with the exception of the Shake event in the Accelerometer
class). Every class can be activated in the same way:

 1. Create an instance.

 2. Subscribe to the ReadingChanged event.

 3. Manage the reading changed event argument.

About the third step: you need to see it through because every class uses its own event argument implementation.
Moreover, as you can deduce from Figure 7-6, every sensor can be used following the same programming model.

For this reason, we will show you how to use a Compass sensor so that you learn how to also use other sensors. Of course,
every sensor will provide different kind of data, as shown in Figure 7-7.

Figure 7-6. Windows.Devices.Sensors namespace

Chapter 7 ■ take advantage of the environment

161

For the Compass sensor, the CompassReading class contains Heading data (Accuracy, Magnetic North, True
North) and the timestamp of the measurement. Just like the Inclinometer reading the accuracy is expressed by an
enumeration that shows how accurate the reading is.

Inclinometer provides information about Pitch, Roll, and Yaw through the InclinometerReading class. Using
data provided by this sensor, we could retrieve the position of the device against the horizon.

OrientationSensorReading is the class used by OrientationSensor to understand how the device is oriented,
against spherical coordinates. The Quaternion property is the SensorQuaternion type that contains values of versors
in a mathematical notation.

Gyrometer provides data through the GyrometerReading class that exposes four properties. Three properties
are dedicated to the angular velocity of the device against three axes, and the last one is the TimeStamp of the
measurement.

The behavior of Accelerometer is similar to Gyrometer, but it provides information about the acceleration of the
device on three axes.

Figure 7-7. Sensors data classes

Chapter 7 ■ take advantage of the environment

162

Finally, the LightSensor provides information about the light that hits the device. IlluminanceInLux assumes
values that you can use to understand at which type of light is exposed the device. Table 7-1 summarizes how to use
the value provided by this sensor.

Table 7-1. Illuminance Values

Lighting Condition From (lux) To (lux)

Pitch Black 0 10

Very Dark 11 50

Dark Indoors 51 200

Dim Indoors 201 400

Normal Indoors 401 1000

Bright Indoors 1001 5000

Dim Outdoors 5001 10,000

Cloudy Outdoors 10,001 30,000

Direct Sunlight 30,001 100,000

Compass Example
In this section, you see how to use the Compass sensor in order to learn the code required to work with sensors.
Your UI will be simple and will show information retrieved by the sensor in text form.

XAML

<Grid Grid.Row="1">
 <Grid.RowDefinitions>
 <RowDefinition Height="36"/>
 <RowDefinition Height="36"/>
 <RowDefinition Height="36"/>
 <RowDefinition Height="36"/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="118"/>
 <ColumnDefinition Width="Auto"/>
 <ColumnDefinition/>
 </Grid.ColumnDefinitions>
 <TextBlock Grid.Row="0" Text="Magnetic North" />
 <TextBlock Grid.Row="1" Text="True North" />
 <TextBlock Grid.Row="2" Text="Heading Accuracy" />
 <TextBlock Grid.Row="0" Grid.Column="1" Text="{Binding CompassData.MagneticNorth}" />
 <TextBlock Grid.Row="1" Grid.Column="1" Text="{Binding CompassData.TrueNorth}" />
 <TextBlock Grid.Row="2" Grid.Column="1" Text="{Binding CompassData.Accuracy}" />
 <Button Grid.Row="3" Content="Get Data" Click="OnGetDataButtonClick" />
 </Grid>

Chapter 7 ■ take advantage of the environment

163

C#

using Windows.Devices.Sensors;

private void OnGetDataButtonClick(object sender, RoutedEventArgs e)
 {
 var compass = Compass.GetDefault();
 if (compass == null)
 {
 this.DefaultViewModel["CompassData"] =
 new
 {
 MagneticNorth = "Compass not found",
 TrueNorth= "Compass not found",
 Accuracy = "Compass not found"
 };
 }
 else
 {
 var reading = compass.GetCurrentReading();
 compass.ReadingChanged += OnCompassReadingChanged;
 SetCompassReading(reading);
 }
 }

private void SetCompassReading(CompassReading reading)
 {
 this.DefaultViewModel["CompassData"] =
 new
 {
 MagneticNorth = reading.HeadingMagneticNorth,
 TrueNorth = reading.HeadingTrueNorth,
 Accuracy = reading.HeadingAccuracy
 };
 }

 private void OnCompassReadingChanged(Compass sender, CompassReadingChangedEventArgs args)
 {
 SetCompassReading(args.Reading);
 }

VB

private void OnGetDataButtonClick(object sender, RoutedEventArgs e)
 {
 var compass = Compass.GetDefault();
 if (compass == null)
 {
 this.DefaultViewModel["CompassData"] =
 new

Chapter 7 ■ take advantage of the environment

164

 {
 MagneticNorth = "Compass not found",
 TrueNorth= "Compass not found",
 Accuracy = "Compass not found"
 };
 }
 else
 {
 var reading = compass.GetCurrentReading();
 compass.ReadingChanged += OnCompassReadingChanged;
 SetCompassReading(reading);
 }
 }

 private void SetCompassReading(CompassReading reading)
 {
 this.DefaultViewModel["CompassData"] =
 new
 {
 MagneticNorth = reading.HeadingMagneticNorth,
 TrueNorth = reading.HeadingTrueNorth,
 Accuracy = reading.HeadingAccuracy
 };
 }

 private void OnCompassReadingChanged(Compass sender, CompassReadingChangedEventArgs args)
 {
 SetCompassReading(args.Reading);
 }

Media
Windows 8.1 offers various ways to manage Media elements, even a good update to the MediaElement control
(that was limited in Windows 8), which offers a standardized way to present media onscreen.

Stream Media Element
This section discusses using the Play To contract to stream Media elements contained in your application to DLNA
devices. The capability to stream media is provided by classes (shown in Figure 7-8) that you can find in the
Windows.Media.PlayTo namespace. Inside this namespace, you can find other classes that can act as DLNA clients.

Chapter 7 ■ take advantage of the environment

165

The entry point for the Play To contract is PlayToManager, which returns an instance of itself through the
GetForCurrentView method and allows you to subscribe to two events: SourceRequested and SourceSelected.

SourceRequested fires when the user interacts with the Device charm. The EventArg for this event is
PlayToSourceSelectedEventArgs, which contains the body of the request contained in the PlayToSourceRequest
class. This type allows you to set a source for the stream (that you can get from a MediaElement or Image control).
That is all you have to know to start streaming your contents.

In your app, you’ll simulate a video application that will allow the user to stream a video during its reproduction
to a DLNA-ready client (such as Xbox 360).

Note ■ if you want to test code in this section, you must have a dLna–compliant client device. if you don’t have one,
you can use Window media player to receive the stream. to enable this feature, start Windows media player, open the
Stream menu, and select allow remote Control of my player to enable this feature.

Prepare the UI
Before you start using the PlayToManager class, you need to add a MediaElement control to your page:

XAML

Inside the XAML file, you need one thing:

<MediaElement Source="{Binding Path='Path'}" AutoPlay="False" x:Name="mediaElement" />

Figure 7-8. PlayToSource fundamental classes

Chapter 7 ■ take advantage of the environment

166

Implementing the Play To Contract
To implement the Play To contract, you must declare and retrieve an instance of PlayToManager and an instance of
Dispatcher that will help you avoid the CrossThreadException later.

To start using the Play To contract, you need an instance of PlayToManager (contained in the Windows.Media.PlayTo
namespace) that is the entry point for DLNA features. You also need an instance of CoreDispatcher (available in the
Windows.UI.Core namespace) in order to stream contents asynchronously.

C#

...
using Windows.Media.PlayTo;
using Windows.UI.Core;
...
public sealed partial class PlayToSample : Page
 {
 private PlayToManager playtoManager = null;
 private CoreDispatcher dispatcher;
 ...
}

VB

...
Import Windows.Media.PlayTo
Import Windows.UI.Core
...
public sealed partial class PlayToSample : Page
 {
 private PlayToManager playtoManager = null;
 private CoreDispatcher dispatcher;
 ...
}

Of course, you must initialize it before use. For this reason, you will write the InitPlayToManager method that
initializes both the PlayToManager and Dispatcher objects.

C#

private void InitPlayToManager()
{
 dispatcher = Window.Current.CoreWindow.Dispatcher;
 if (playtoManager == null)
 {
 playtoManager = PlayToManager.GetForCurrentView();
 playtoManager.SourceRequested += OnPlayToSourceRequested;
 playtoManager.SourceSelected += OnPlayToSourceSelected;
 }
}

Chapter 7 ■ take advantage of the environment

167

VB

Private Sub InitPlayToManager()
 dispatcher = Window.Current.CoreWindow.Dispatcher
 If playtoManager Is Nothing Then
 playtoManager = PlayToManager.GetForCurrentView()
 AddHandler playtoManager.SourceRequested, AddressOf OnPlayToSourceRequested
 AddHandler playtoManager.SourceSelected, AddressOf OnPlayToSourceSelected
 End If
End Sub

This method will be called inside the LoadState method that was previously written in order to be sure that these
objects are initialized when the page is loaded.

C#

protected override void LoadState(Object navigationParameter, Dictionary<String, Object> pageState)
{
...
 InitPlayToManager();
...
}

VB

Protected Overrides Sub LoadState(navigationParameter As [Object], pageState As Dictionary(Of
[String], [Object]))
 ...
 InitPlayToManager()
 ...
End Sub

As you have seen, in the InitPlayToManager method, you subscribe to the SourceRequested and SourceSelected
events with the OnPlayToSourceSelected and OnPlayToSourceRequested event handlers. The first fires after the user
selects the device from the device pane; this event might be useful to retrieve information about the specific device
that the user selects. The second one fires when the user selects the Device charm and must be used to provide
content to the stream.

C#

private void OnPlayToSourceSelected(PlayToManager sender, PlayToSourceSelectedEventArgs args)
{
 //Report the name of the client
}

private async void OnPlayToSourceRequested(PlayToManager sender, PlayToSourceRequestedEventArgs e)
 {
 await dispatcher.RunAsync(Windows.UI.Core.CoreDispatcherPriority.Normal,
 () =>

Chapter 7 ■ take advantage of the environment

168

 {
 PlayToSourceDeferral deferral = e.SourceRequest.GetDeferral();
 PlayToSourceRequest sr = e.SourceRequest;
 sr.SetSource(videoMediaElement.PlayToSource);
 deferral.Complete();
 });
 }

VB

Private Sub OnPlayToSourceSelected(sender As PlayToManager, args As PlayToSourceSelectedEventArgs)
 'Report the name of the client
End Sub

Private Async Sub OnPlayToSourceRequested(sender As PlayToManager, e As
PlayToSourceRequestedEventArgs)
 Await coreDispatcherInstance.RunAsync(Windows.UI.Core.CoreDispatcherPriority.Normal,
 Async Sub()
 Dim deferral As PlayToSourceDeferral = e.SourceRequest.GetDeferral()
 Dim sr As PlayToSourceRequest = e.SourceRequest
 ‘Set the media element as source for incoming SourceRequest
 sr.SetSource(videoMediaElement.PlayToSource)
 deferral.Complete()
 End Sub)
End Sub

private async void OnPlayToSourceRequested(PlayToManager sender, PlayToSourceRequestedEventArgs e)
 {
 await dispatcher.RunAsync(Windows.UI.Core.CoreDispatcherPriority.Normal,
 () =>
 {
 PlayToSourceDeferral deferral = e.SourceRequest.GetDeferral();
 PlayToSourceRequest sr = e.SourceRequest;
 sr.SetSource(videoMediaElement.PlayToSource);
 deferral.Complete();
 });
 }

Background Task
With version 8, Windows introduced a new concept of application behavior. Every app works only while it is in the
foreground, but the environment offers various ways to “simulate” that your app is still working:

•	 Background Task: “Queues” a task in order to update data inside the application

•	 Push Notification: Notifies from the outside that something is ready for the application

•	 Background Transfer API: Starts a transfer that requires a long time and must continue while
the application is suspended

•	 Playback Manager: Provides content to play to the playback infrastructure

•	 File Share contract: Shares contents between applications

Chapter 7 ■ take advantage of the environment

169

This section discusses Background Tasks in Windows 8.1, which are enriched in this edition of the OS. This
feature enables your app to run code in the background, allowing you to write real-time applications such as a chat or
a Voice over Internet Protocol (VOIP) app. As you read before, a Background Task works even if your app is suspended
or not running. While you build one, you can specify a set of conditions that must be verified to run the task and one
trigger that launches the task. Figure 7-9 shows how the Background Task system works.

Figure 7-9. BackgroundTask process

First, register a task that will start with a specific trigger (see Table 7-2) with optional conditions (see Table 7-3).
When a trigger fires, the system infrastructure looks for Background Tasks registered for it. If conditions (optionally)
associated with the task are fulfilled, the task starts independently from the application status. In the case of
unsatisfied conditions, the infrastructure waits until all conditions are satisfied and then executes the task. This
mechanism is called latching because the infrastructure latches the trigger to a fired state.

Table 7-2. Background Task Triggers

Trigger Type Event When it Fires

ControlChannelTrigger ControlChannelTrigger When the control channel receives a message

MaintenanceTrigger MaintenanceTrigger When the device is plugged in

PushNotificationTrigger PushNotificationTrigger When a raw notification arrives

SystemEventTrigger InternetAvailable When the Internet becomes available

SystemEventTrigger LockScreenApplicationAdded When an app tile is added to the lock screen

SystemEventTrigger LockScreenApplicationRemoved When an app tile is removed from the lock screen

SystemEventTrigger ControlChannelReset When a network channel is reset

SystemEventTrigger NetworkStateChange When a change on network connectivity occurs

SystemEventTrigger OnlineIdConnectedStateChange When the online ID associated with the account
changes

SystemEventTrigger ServicingComplete When the app is updated

(continued)

Chapter 7 ■ take advantage of the environment

170

Every trigger type described in Table 7-2 reflects a class of framework (see Figure 7-10) that even shows the
SystemTriggerType enumeration, which reflects events that are classified as SystemEvent.

Table 7-3. Background Task Conditions

Condition Meaning

InternetAvailable The Internet must be available.

InternetNotAvailable The Internet must be unavailable.

SessionConnected The session must be connected (logged in).

SessionDisconnected The session must be disconnected (logged out).

UserNotPresent The user must have the status set to away.

UserPresent The user must have the status set to present.

Table 7-2. (continued)

Trigger Type Event When it Fires

SystemEventTrigger SessionConnected When the session is connected

SystemEventTrigger SessionDisconnected When the session is disconnected

SystemEventTrigger SmsReceived When a new Short Message System (SMS)
message is received (if the device supports it)

SystemEventTrigger TimeZoneChange When the time zone changes (e.g., for automatic
clock regulation for Daylight Saving Time [DST])

SystemEventTrigger UserAway When the user is absent

SystemEventTrigger UserPresent When user is present

TimeTrigger TimeTrigger After a time period elapses

LocationTrigger LocationTrigger When user is inside a Geofencing

Chapter 7 ■ take advantage of the environment

171

In this example, you’ll implement the infrastructure for an app that downloads messages from a server. Because
you don’t know that the user will be always connected, you can create a Background Task that will synchronize with
the server when the Internet becomes available. Figure 7-11 shows how to add a Background Task.

Figure 7-10. Trigger classes

Figure 7-11. Adding a Background Task

Chapter 7 ■ take advantage of the environment

172

Implementing the Background Task
When you work with C# and VB, you must add a new project to your solution using the template for the Windows
Runtime Component, as shown in Figure 7-12. You do this because when you create a Background Task, the output
type of the project must be set to Windows Runtime Component (see Figure 7-13), allowing the Background Task
infrastructure to manage it.

Figure 7-13. Project output type

Figure 7-12. Creating the project

Chapter 7 ■ take advantage of the environment

173

When the project is created, delete the autogenerated class and create a new class named
DownloadMessagesBackgroundTask. This class must be declared as sealed if you work with C# and as NotInheritable
if you use VB. In the declaration of the class, you must always implement the IBackgroundTask interface containing
only one method named Run (see Figure 7-14). Remember that when the Background Task works for a long time,
you should use the BackgroundTaskDeferral to tell the infrastructure of Windows 8.1 that your async process has
finished.

Figure 7-14. Background Task essential class and interface for C#, C++, and VB

Then your code will look like this, where MessagesDownloader is your class that exposes an operation that
simulates the download of 20 messages:

C#

using Windows.ApplicationModel.Background;

namespace SampleBackgroundTask
{
 public sealed class DownloadMessagesBackgroundTask : IBackgroundTask
 {
 public async void Run(IBackgroundTaskInstance taskInstance)
 {
 BackgroundTaskDeferral deferral = taskInstance.GetDeferral();
 await MessagesDownloader.GetMessagesAsync();
 deferral.Complete();
 }
 }
}

Chapter 7 ■ take advantage of the environment

174

VB
Imports Windows.ApplicationModel.Background

Namespace SampleBackgroundTask
 Public NotInheritable Class DownloadMessagesBackgroundTask
 Implements IBackgroundTask
 Public Async Sub Run(taskInstance As IBackgroundTaskInstance) Implements IBackgroundTask.Run
 Dim deferral As BackgroundTaskDeferral = taskInstance.GetDeferral()
 Await MessagesDownloader.GetMessagesAsync()
 deferral.Complete()
 End Sub
 End Class
End Namespace

Registering the Background Task
After the implementation of the Background Task, the most interesting part of the code to write is the registration
of the Background Task. In Figure 7-14, you can see the essential class and interface involved in Background Task
creation. IBackgroundTask is the previous interface that we developed in the introduction to the Background Task.
BackgroundTaskBuilder is the class to use to register the Background Task in the system.

To register a Background Task you will create a private method named RegisterBackgroundTask that you can call
wherever you prefer in your code. This method will do these next steps:

 1. Retrieves all tasks registered for the current application

 2. Looks for a task with a name equal to the string in the SaveTaskName constant

 3. If it is the first time that you are registering the Background Task, it creates an instance of
BackgroundTaskBuilder:

a. Sets as the name the content of the SaveTaskName constant

b. Sets as the TaskEntryPoint the full name of the SaveBackgroundTask type

c. Registers a trigger with the Internet available

d. Registers the Background Task and subscribes to the Progress (reporting) event and
the Completed event.

 4. If it is not the first registration, it:

a. Gets the task from the collection of registered tasks

b. Subscribes to the Progress (reporting) event, and the Completed event.

As you can read in the step-by-step method description, two events, Progress and Completed, are subscribed to,
exposed by the BackgroundTaskRegistration class. By handling the Completed event, you can notify users that the
Background Task has finished or simply use it to unregister the BackgroundTaskRegistration. The Progress event
fires when you set the Progress property of the IBackgroundTaskInstance argument inside the Run method.

Chapter 7 ■ take advantage of the environment

175

C#

public sealed partial class BackgroundTaskSample : Page
{
private const string GetMessagesTaskName = "GetMessagesTask";
 private void RegisterBackgroundTask()
 {
 var registeredTasks = BackgroundTaskRegistration.AllTasks;
 bool alreadyRegistered = registeredTasks.Any(t =>
t.Value.Name.Equals(GetMessagesTaskName));
 if (!alreadyRegistered)
 {
 BackgroundTaskBuilder backgroundTaskBuilder = new BackgroundTaskBuilder();
 backgroundTaskBuilder.Name = GetMessagesTaskName;
 backgroundTaskBuilder.TaskEntryPoint =
typeof(SampleBackgroundTask.DownloadMessagesBackgroundTask).FullName;
 backgroundTaskBuilder.SetTrigger(
 new SystemTrigger(SystemTriggerType.InternetAvailable, true));

 var registration = backgroundTaskBuilder.Register();
 registration.Progress += OnSaveBackgroundTaskProgressReported;
 registration.Completed += OnSaveBackgroundTaskCompleted;

 }
 else
 {
 //Use the task already registered
 var task = registeredTasks.First(t => t.Value.Name.Equals(GetMessagesTaskName));
 task.Value.Progress += OnSaveBackgroundTaskProgressReported;
 task.Value.Completed += OnSaveBackgroundTaskCompleted;
 }
 }

 private void OnSaveBackgroundTaskCompleted(BackgroundTaskRegistration sender,
BackgroundTaskCompletedEventArgs args)
 {
 //Put here the code to manage the end of a task
 //Notify the user about the end of the execution
 }

 private void OnSaveBackgroundTaskProgressReported(BackgroundTaskRegistration sender,
BackgroundTaskProgressEventArgs args)
 {
 //Put here the code to manage progress of a task
 //Notify task progress
 }
}

Chapter 7 ■ take advantage of the environment

176

VB

Public NotInheritable Class BackgroundTaskSample
 Inherits Page
...
Private Const GetMessagesTaskName As String = "GetMessagesTask"
 Private Sub RegisterBackgroundTask()
 Dim registeredTasks = BackgroundTaskRegistration.AllTasks
 Dim alreadyRegistered As Boolean = registeredTasks.Any(Function(t)
t.Value.Name.Equals(GetMessagesTaskName))
 If Not alreadyRegistered Then
 Dim backgroundTaskBuilder As New BackgroundTaskBuilder()
 backgroundTaskBuilder.Name = GetMessagesTaskName
 backgroundTaskBuilder.TaskEntryPoint = GetType(DownloadMessagesBackgroundTask).FullName
 backgroundTaskBuilder.SetTrigger(New SystemTrigger(SystemTriggerType.InternetAvailable, True))

 Dim registration = backgroundTaskBuilder.Register()
 AddHandler registration.Progress, AddressOf OnSaveBackgroundTaskProgressReported

 AddHandler registration.Completed, AddressOf OnSaveBackgroundTaskCompleted
 End If

 End Sub

 Private Sub OnSaveBackgroundTaskCompleted(sender As BackgroundTaskRegistration, args As
BackgroundTaskCompletedEventArgs)
 'Put here the code to manage the end of a task
 'Notify the user about the end of the execution
 End Sub

 Private Sub OnSaveBackgroundTaskProgressReported(sender As BackgroundTaskRegistration, args As
BackgroundTaskProgressEventArgs)
 Throw New NotImplementedException()
 End Sub
End Class

Declaring the Background Task
You’ve now created your Background Task and written code to register it in the system. But to make everything work,
you must declare in the application manifest that you intend to benefit from the Background Task infrastructure. To
do so, open the application manifest and click the Declarations tab; then open the Available Declarations combo box
(see Figure 7-15). From the list, select Background Task and click the Add button.

Chapter 7 ■ take advantage of the environment

177

This operation will open a panel like the one in Figure 7-16, in which you can set the entry point and task types.
There is a clarification that you must keep in mind about the configuration of task types: remember that TimeTrigger,
PushNotificationTrigger, ControlChannelTrigger and some SystemTriggerTypes (SessionConnected,
ControlChannelReset, UserPresent, and UserAway) require that your app is in lock screen to work. To complete this
operation, call the RequestAccessAsync method of the BackgroundExecutionManager class, which will ask the users
whether they want to add the application to the lock screen.

Figure 7-15. Declaring Background Tasks

Figure 7-16. Configuring Background Tasks

Chapter 7 ■ take advantage of the environment

178

For C# and VB projects, you must declare the entry point of the Background Task that is the full
name of the class that implements IBackgroundTask. In this case, it is set to SampleBackgroundTask.
DownloadMessagesBackgroundTask.

Debugging Background Tasks
Soon after the registration of the Background Task in the Debug Location bar, you can see the process ID (PID) that
Windows gives to your app and a combo button that allows you to fire events to help you debug your application.
Inside the combo box, you can see the name that you have given to your task (see Figure 7-17).

Figure 7-17. Background Task debugging

If you click your Background Task, it will run, enabling you to debug your code.

Charms
This section discusses how to integrate with the heart of the new Windows UI: charms. You will implement the
following:

•	 Search contract: Provides suggestions based on a list of names and results after a query from
the search pane

•	 Share contract: Allows the user to share as text the content of your application

•	 Settings contract: Provides a settings panel for your application

Search
The Search contract is definitely the simplest contract to implement; just right-click the app project and select Add ➤
New Item from the context menu. The Add New Item dialog box opens, as shown in Figure 7-18. Select the Windows
Store node on the left side and look for the Search Contract item. Select it and choose a name for the result page; then
click Add.

Chapter 7 ■ take advantage of the environment

179

When you add a Search contract to your project, Visual Studio automatically adds a new class named
BooleanNegationConverter. Now you must declare that your app is a search provider in the application manifest.
Open the app manifest; under Declaration, add the Search entry.

In version 8.1, Microsoft introduced the SearchBox control because the use of the Charm Bar is not as intuitive as
hoped because not all users read the OS user manual. For this reason, you can add search functionality on your own
app using the SearchBox control. This control is not properly related to the use of Search charm, but you should to see
how to provide search results in your app using both ways, so you can choose which one meets your needs.

Search Contract
The core class that the Search contract is based on is SearchPane (shown in Figure 7-19). The most important
method of SearchPane is GetForCurrentView, which returns an instance of SearchPane that you can use as an entry
point for search functionality. Another interesting member is the ShowOnKeyboardInput property that, if set to true,
automatically shows the search panel if the user writes something. SearchPane also exposes several events that you
can handle if you want to collect information about the usage of this functionality.

Figure 7-18. Adding a Search contract

Chapter 7 ■ take advantage of the environment

180

Adding a Search contract is not the only way to provide search functionality in your app. You can subscribe to
the QuerySubmitted event that delegates to your handler all the work to do. For example, you can use it in a game to
provide hints based on the query submitted.

When the user starts searching, your app can provide suggestions to autocomplete the word. To do it, you must
handle the SuggestionsRequested event that fires when the user changes the text in the search panel.

Another interesting event is ResultSuggestionChosen, which fires when the user hits a suggestion. This event
should be handled to collect suggestions usage information in order to see the most frequently used suggestions and
increase their points in your relevance algorithm.

For Win8Organizer, you start from the provided suggestions; in AppointmentManager, two new methods
were added to support search functionality. The first is GetSearchSuggestions, which accepts a string as input
and returns a list (a maximum of five elements) of the string that will populate the suggestions list. The second
method, GetAppointmentsFiltered, accepts the string to query, looks for it inside the description or subject of the
appointments, and returns a collection of appointments; we suggest limiting the number of items in the result page if
they’re too many to be charged.

Providing Suggestions

To provide suggestions inside your app, you subscribe to the SuggestionsRequested event with the
OnSearchSuggestionRequested handler, declaring a SearchPane object at the class level of the AppointmentsGrouped
page; the code will look like the examples in the next two sections.

Figure 7-19. SearchPane class

Chapter 7 ■ take advantage of the environment

181

Note ■ You must declare a SearchPane in order to initialize it inside the OnLaunched method, subscribing the
SuggestionsRequested event in order to provide suggestions while the user writes a query.

C#

sealed partial class App : Application
{

protected override async void OnLaunched(LaunchActivatedEventArgs e)
 {
 SearchPane.GetForCurrentView().SuggestionsRequested += OnSearchSuggestionRequested;
 }

}

private async void OnSearchSuggestionRequested(SearchPane sender,
SearchPaneSuggestionsRequestedEventArgs args)
 {
 var deferral = args.Request.GetDeferral();
 var suggestions = await SuggestionProvider.GetSuggestionsAsync(args.QueryText);
 args.Request.SearchSuggestionCollection.AppendQuerySuggestions(suggestions);
 deferral.Complete();
 }

VB

NotInheritable Class App
 Inherits Application

 Protected Overrides Async Sub OnLaunched(e As LaunchActivatedEventArgs)
...
 AddHandler SearchPane.GetForCurrentView().SuggestionsRequested, AddressOf
OnSearchSuggestionRequested
 End Sub

 Private Async Sub OnSearchSuggestionRequested(sender As SearchPane, args As
SearchPaneSuggestionsRequestedEventArgs)
 Dim deferral = args.Request.GetDeferral()
 Dim suggestions = Await SuggestionProvider.GetSuggestionsAsync(args.QueryText)
 args.Request.SearchSuggestionCollection.AppendQuerySuggestions(suggestions)
 deferral.Complete()
 End Sub

Chapter 7 ■ take advantage of the environment

182

Providing Results

We have added the SearchResultsPage before, which in standard implementation comes ready to manage a
query and provide filters in results. Because it is up to you to decide how to show search results in your app, we will
concentrate on what you need to do in order to complete the implementation of the Search contract.

You must override the OnSearchActivated Method, which fires even when the application was closed but
activated as a Search provider. In this method, you will do the same work as with the Launched method, changing the
destination page.

C#

protected async override void OnSearchActivated(Windows.ApplicationModel.Activation.
SearchActivatedEventArgs args)
 {
 var previousContent = Window.Current.Content;
 var frame = previousContent as Frame;

 // If the app does not contain a top-level frame, it is possible that this
 // is the initial launch of the app. Typically this method and OnLaunched
 // in App.xaml.cs can call a common method.
 if (frame == null)
 {
 // Create a Frame to act as the navigation context and associate it with
 // a SuspensionManager key
 frame = new Frame();
 SuspensionManager.RegisterFrame(frame, "AppFrame");

 if (args.PreviousExecutionState == ApplicationExecutionState.Terminated)
 {
 // Restore the saved session state only when appropriate
 try
 {
 await SuspensionManager.RestoreAsync();
 }
 catch (SuspensionManagerException)
 {
 //Something went wrong restoring state.
 //Assume there is no state and continue
 }
 }
 }

 frame.Navigate(typeof(SearchResultsPage), args.QueryText);
 Window.Current.Content = frame;

 // Ensure the current window is active
 Window.Current.Activate();
 }

Chapter 7 ■ take advantage of the environment

183

VB

Protected Overrides Async Sub OnSearchActivated(args
As Windows.ApplicationModel.Activation.SearchActivatedEventArgs)
 Dim previousContent = Window.Current.Content
 Dim frame = TryCast(previousContent, Frame)

 ' If the app does not contain a top-level frame, it is possible that this
 ' is the initial launch of the app. Typically this method and OnLaunched
 ' in App.xaml.cs can call a common method.
 If frame Is Nothing Then
 ' Create a Frame to act as the navigation context and associate it with
 ' a SuspensionManager key
 frame = New Frame()
 SuspensionManager.RegisterFrame(frame, "AppFrame")

 If args.PreviousExecutionState = ApplicationExecutionState.Terminated Then
 ' Restore the saved session state only when appropriate
 Try
 Await SuspensionManager.RestoreAsync()
 'Something went wrong restoring state.
 'Assume there is no state and continue
 Catch generatedExceptionName As SuspensionManagerException
 End Try
 End If
 End If

 frame.Navigate(GetType(SearchResultsPage), args.QueryText)
 Window.Current.Content = frame

 ' Ensure the current window is active
 Window.Current.Activate()
 End Sub

SearchBox
SearchBox is a new control that allows your app to implement an in-app search behavior. It is important to remember
that you must choose which strategy you want in your app. If you want the SearchBox, forget using the SearchPane
because it requires the activation of the contract (including the contract in the app) that will make the SearchBox
unable to work.

In the XAML file, the code needed to include the control looks like this:

<SearchBox Height="40" Width="200" />

Using this control, you can provide (in your app) the same UX that Windows provides in the SettingsPane, but
we suggest putting the control in a position in which the user can easily find it.

Chapter 7 ■ take advantage of the environment

184

Providing Suggestions

In this example, we provide suggestions to the control, using the list of files accessible to the app.

C#

private void navigationHelper_LoadState(object sender, LoadStateEventArgs e)
 {
 var settings = new Windows.ApplicationModel.Search.LocalContentSuggestionSettings
 {
 Enabled = true
 };
 settings.Locations.Add(Windows.Storage.KnownFolders.MusicLibrary);
 settings.Locations.Add(Windows.Storage.KnownFolders.PicturesLibrary);
 musicSearchBox.SetLocalContentSuggestionSettings(settings);
 }

VB

Private Sub navigationHelper_LoadState(sender As Object, e As LoadStateEventArgs)
 Dim settings = New Windows.ApplicationModel.Search.LocalContentSuggestionSettings() With {
 .Enabled = True
 }
 settings.Locations.Add(Windows.Storage.KnownFolders.MusicLibrary)
 settings.Locations.Add(Windows.Storage.KnownFolders.PicturesLibrary)
 mediaSearchBox.SetLocalContentSuggestionSettings(settings)
End Sub

With this approach, suggestions about the files container are shown in the Music and Pictures Library, so you can
apply this code in a music application.

Sharing
In recent years, the Internet has changed the way people live. They are always connected and every day they share
work with others using software. So you should allow your users to share contents from your app because if your
application favors user activity, they use it more readily.

The entry point for share source functionality is the DataTransferManager class (shown in Figure 7-20) that
allows you to manage the Search charm activation through the DataRequested event. When this event fires, you can
populate a DataPackage with data taken from the content you intend to distribute. You can put different types of data
inside the DataPackage:

•	 SetText adds a text as the body of your share

•	 SetBitmap adds an image as part of the data

•	 SetStorageItems adds files or folders stored

•	 SetUri adds an URI to the DataPackage

•	 SetRtf adds contents in Rich Text Format

•	 SetHtmlFormat adds HTML as body of the DataPackage

Chapter 7 ■ take advantage of the environment

185

Preparing Data to Share
To prepare your app to share content, you must modify the code-behind of your page, getting an instance of
DataTransferManager and subscribing the DataRequested event. Inside, the event handler will fill the DataPackage
with contents about the appointment:

C#

private void navigationHelper_LoadState(object sender, LoadStateEventArgs e)
 {
 Windows.ApplicationModel.DataTransfer.DataTransferManager manager =
Windows.ApplicationModel.DataTransfer.DataTransferManager.GetForCurrentView();
 manager.DataRequested += OnShareDataRequested;
 }

Figure 7-20. Share source core classes

Chapter 7 ■ take advantage of the environment

186

private void OnShareDataRequested(Windows.ApplicationModel.DataTransfer.DataTransferManager sender,
Windows.ApplicationModel.DataTransfer.DataRequestedEventArgs args)
 {
 args.Request.Data.Properties.Title = "Shared by Apress Sample App";
 args.Request.Data.SetText(shareableTextBox.Text);
 }

VB

Private Sub NavigationHelper_LoadState(sender As Object, e As Common.LoadStateEventArgs)
 Dim manager As Windows.ApplicationModel.DataTransfer.DataTransferManager =
 Windows.ApplicationModel.DataTransfer.DataTransferManager.GetForCurrentView()
 AddHandler manager.DataRequested, AddressOf OnShareDataRequested
 End Sub

Private Sub OnShareDataRequested(sender As DataTransfer.DataTransferManager, args As
DataTransfer.DataRequestedEventArgs)
 args.Request.Data.Properties.Title = "Shared by Apress Sample App"
 args.Request.Data.SetText(shareableTextBox.Text)
 End Sub

Settings
Most of the applications require a settings panel, a part of the UI dedicated to app configuration, in which users can
decide whether they want another color for text or how often the application can try to connect to the server. For this
reason, Microsoft UI engineers introduced the Settings charm.

The Settings charm offers a unified way for every application to show a menu of settings. It was discussed
theoretically in Chapter 3, and in this section you get your hand dirty with the code required to participate in this
contract. Every Windows Store app has two default entries inside the Settings pane:

•	 Rate: Used to rate the application in the Windows Store

•	 Permissions: Helps the user to choose app-specific permissions about capabilities

To help you become familiar with some concepts, we’ll create a settings pane that will be applied when user
navigates starts the application. For accuracy, remember that you can apply a new layout to your settings pane page
by page, in order to offer a specific settings pane between pages. This is in contrast with what you see implemented in
a lot of applications because a settings pane is intended to be global across the application; however, this example is
intended to explain the extreme freedom that you have.

Add a folder to your project and name it SettingsPanels. Inside this folder, add a UserControl named
ApplicationSettingsPanel.

As with other contracts, there is a class that acts as the entry point for the ApplicationSettings namespace
(shown in Figure 7-21). This class exposes the GetForCurrentView method, already seen in other contracts, that
returns an instance of SettingsPane specific for the current view you are using. The other method is Show, which opens
the Settings panel.

Chapter 7 ■ take advantage of the environment

187

What you haven’t yet seen is the Edge property that indicates whether the Settings pane will appear on the left or
right side of the screen. This property helps you (if you evaluate it) to define in which side of the screen your settings
view must appear.

Last but not least is the CommandsRequested event that fires when the user interacts with the Settings charm.
This event accepts as an EventArg a SettingsPaneCommandRequestedEventArgs that contains the Request property,
which in turn contains a collection of SettingsCommand.

SettingsCommand is what is called an “entry point” for settings in Chapter 3. Every instance of this class is an entry
for a submenu that will be designed as a UserControl.

Application Settings
The Application Settings panel (shown in Figure 7-22) enables you to choose the language that your application must
use and whether it must use push notification.

Figure 7-21. ApplicationSettings namespace

Chapter 7 ■ take advantage of the environment

188

XAML

To create this panel, we’ll skip a lot of uninteresting XAML that defines the template and visual state for the back
button so it’s really easy to read, and you can navigate from the code attached to this book. Here is the XAML required
to create the panel shown in Figure 7-22:

<Grid Background="{StaticResource SettingsPanelBackgroundBrush}" >
 <Grid.RowDefinitions>
 <RowDefinition Height="80" />
 <RowDefinition Height="Auto" />

 </Grid.RowDefinitions>

 <Grid Grid.Row="0" >
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>

 <StackPanel Margin="40,20,10,0" Orientation="Horizontal" Grid.Column="0"
VerticalAlignment="Center" HorizontalAlignment="Left">
 <Button Click="OnApplicationSettingsBackButtonClick" Style="{StaticResource
BackButtonStyle}"/>
 <TextBlock FontSize="25" Text="Application Settings" />
 </StackPanel>
 </Grid>
 <Grid Grid.Row="1" >

 <StackPanel Margin="40,20,10,0" >
 <TextBlock Text="Choose your language" />
 <ComboBox x:Name="languageCombobox" ItemTemplate="{StaticResource
CultureInfoDataTemplate}" />
 </StackPanel>
 </Grid>
 </Grid>

Figure 7-22. Application Settings panel

Chapter 7 ■ take advantage of the environment

189

CultureInfoDataTemplate is a data template created this way:

<DataTemplate x:Key="CultureInfoDataTemplate">
 <TextBlock Text="{Binding EnglishName}" />
</DataTemplate>

C#

public ApplicationSettings()
{
 this.InitializeComponent();
 Loaded += OnLoaded;
}

private void OnLoaded(object sender, RoutedEventArgs e)
{
 languageCombobox.ItemsSource = ApplicationSettingsHelper.Instance.AvailableLanguages;
 languageCombobox.SelectedItem = ApplicationSettingsHelper.Instance.CurrentCulture;
 languageCombobox.SelectionChanged += OnLanguageSelectionChanged;
}

private void OnLanguageSelectionChanged(object sender, SelectionChangedEventArgs e)
{
 //Set the language immediately (from Settings Charm guidelines)
 ApplicationSettingsHelper.Instance.CurrentCulture = e.AddedItems.First() as CultureInfo;
}

private void OnApplicationSettingsBackButtonClick(object sender, RoutedEventArgs e)
{
 Popup parent = this.Parent as Popup;
 if (parent != null)
 {
 parent.IsOpen = false;
 SettingsPane.Show();
 }
}

A Helper class was used previously. This time, you use ApplicationSettingsHelper, which is a singleton
application that helps you populate the Settings panel and has the following implementation:

public class ApplicationSettingsHelper
 {
 private static ApplicationSettingsHelper instance = new ApplicationSettingsHelper();

 private ApplicationSettingsHelper()
 {
 AvailableLanguages =
 new ObservableCollection<CultureInfo>
 {

Chapter 7 ■ take advantage of the environment

190

 new CultureInfo("en-US"),
 new CultureInfo("it-IT"),
 };
 }

 public static ApplicationSettingsHelper Instance
 {
 get
 {
 return instance;
 }
 }

 public ObservableCollection<CultureInfo> AvailableLanguages { get; set; }

 public CultureInfo CurrentCulture
 {
 //Read Settings in Get
 get;
 //Save Settings in Set
 set;
 }
 }

VB

Public Sub New()
 Me.InitializeComponent()
 AddHandler Me.Loaded, AddressOf OnLoaded
End Sub

 Private Sub OnLoaded(sender As Object, e As RoutedEventArgs) Handles Me.Loaded
 languageCombobox.ItemsSource = ApplicationSettingsHelper.Instance.AvailableLanguages
 languageCombobox.SelectedItem = ApplicationSettingsHelper.Instance.CurrentCulture
AddHandler languageCombobox.SelectionChanged, AddressOf OnLanguageSelectionChanged
End Sub

Private Sub OnLanguageSelectionChanged(sender As Object, e As SelectionChangedEventArgs)
 'Set the language immediatly (from Settings Charm guidelines)
 ApplicationSettingsHelper.Instance.CurrentCulture = TryCast(e.AddedItems.First(),
CultureInfo)
End Sub

Private Sub OnApplicationSettingsBackButtonClick(sender As Object, e As RoutedEventArgs)
 Dim parent As Popup = TryCast(Me.Parent, Popup)
 If parent IsNot Nothing Then
 parent.IsOpen = False
 SettingsPane.Show()
 End If
End Sub

Chapter 7 ■ take advantage of the environment

191

A Helper class was used previously. This time, you use ApplicationSettingsHelper, which is a singleton
application that helps you populate the Settings panel and has the following implementation:

Public Class ApplicationSettingsHelper
 Private Shared m_instance As New ApplicationSettingsHelper()

 Private Sub New()
 AvailableLanguages = New ObservableCollection(Of CultureInfo)()
 AvailableLanguages.Add(New CultureInfo("en-US"))
 AvailableLanguages.Add(New CultureInfo("it-IT"))
 }
 End Sub

 Public Shared ReadOnly Property Instance() As ApplicationSettingsHelper
 Get
 Return m_instance
 End Get
 End Property

 Public Property AvailableLanguages() As ObservableCollection(Of CultureInfo)
 Get
 Return m_AvailableLanguages
 End Get
 Set(value As ObservableCollection(Of CultureInfo))
 m_AvailableLanguages = value
 End Set
 End Property
 Private m_AvailableLanguages As ObservableCollection(Of CultureInfo)

 Public Property CurrentCulture() As CultureInfo
 'Read Settings in Get
 Get
 Return m_CurrentCulture
 End Get
 'Save Settings in Set
 Set(value As CultureInfo)
 m_CurrentCulture = value
 End Set
 End Property
 Private m_CurrentCulture As CultureInfo
End Class

Activating the Settings Charm on Master
You can now start creating an InitSettingsPane method inside the App.xaml.cs file that gets an instance of
SettingsPane and subscribes to the CommandsRequest event with the OnSettingsPaneCommandsRequested handler.
This handler clears the application commands collection (that populates the Settings entry in the Search panel).

Chapter 7 ■ take advantage of the environment

192

When you create a SettingsCommand, you must provide three things:

An identifier•	

A label to show on the panel•	

A method that accepts an •	 IUICommand object

This method is triggered when the user chooses an item from the panel. To simplify your life, we’ll create a class
named SettingsPanelHelper to create a pop-up that will have an instance of a CustomControl as a Child. Your code
will look like this:

C#

#region Settings Contract

 private SettingsPane settingsPane = null;

 private void InitSettingsPane()
 {
 settingsPane = Windows.UI.ApplicationSettings.SettingsPane.GetForCurrentView();
 settingsPane.CommandsRequested += OnSettingsPaneCommandsRequested;
 }

 private void OnSettingsPaneCommandsRequested(SettingsPane sender,
SettingsPaneCommandsRequestedEventArgs args)
 {
 args.Request.ApplicationCommands.Clear();
 args.Request.ApplicationCommands.Add(
 new SettingsCommand(
 "applicationCommand",
 "Application",
 ApplicationCommandInvokedHandler));

 args.Request.ApplicationCommands.Add(
 new SettingsCommand(
 "tileCommand",
 "Tile and Notifications",
 TileCommandInvokedHandler));
 }

 private void ApplicationCommandInvokedHandler(IUICommand command)
 {
 ApplicationSettings content =
 new ApplicationSettings
 {
 Width = 346,
 Height = Window.Current.Bounds.Height
 };
 Popup settingsPopup = SettingsPanelHelper.CreateSettingsPanel(content, Window.Current.Bounds);
 settingsPopup.IsOpen = true;
 }

 #endregion

Chapter 7 ■ take advantage of the environment

193

VB

Private Sub InitSettingsPane()
 settingsPane = Windows.UI.ApplicationSettings.SettingsPane.GetForCurrentView()
 AddHandler settingsPane.CommandsRequested, AddressOf OnSettingsPaneCommandsRequested
End Sub

Private Sub OnSettingsPaneCommandsRequested(sender As SettingsPane, args As
SettingsPaneCommandsRequestedEventArgs)
 args.Request.ApplicationCommands.Clear()
 args.Request.ApplicationCommands.Add(New SettingsCommand("applicationCommand", "Application",
ApplicationCommandInvokedHandler))
End Sub

Private Sub ApplicationCommandInvokedHandler(command As IUICommand)
 Dim content As New ApplicationSettings() With { _
 .Width = 346, _
 .Height = Window.Current.Bounds.Height _
 }
 Dim settingsPopup As Popup = SettingsPanelHelper.CreateSettingsPanel(content, Window.Current.
Bounds)
 settingsPopup.IsOpen = True
End Sub

Again, you use a Helper to improve the readability of the code. The CreateSettingsPanel of this class helps you
create a pop-up that will contain the UserControl that is the SettingsPane. The implementations of this class are
discussed in the following section.

A Look Inside SettingsPanelHelper
SettingsPanelHelper is a class that we wrote to support you with your development of Windows Store apps. It
enables you to avoid always writing the same code to show a Settings pane. The code is really simple: you accept a
UserControl that will be the content of the pop-up that the CreateSettingsPanel method returns. You also accept a
Rect instance that will be used to pass the actual resolution reserved to your application and a double with a default
value of 346 that specifies the size of the pop-up. This method evaluates whether the Search panel appears on the left
or right side of the screen and creates a pop-up that will be positioned in the right side.

C#

public class SettingsPanelHelper
{
 public static Popup CreateSettingsPanel(UserControl content, Rect bounds, double settingsSize = 346)
{
 Popup p = new Popup
 {
 IsLightDismissEnabled = true,
 Width = settingsSize,
 Height = bounds.Height
 };

Chapter 7 ■ take advantage of the environment

194

 p.ChildTransitions = new TransitionCollection
 {
 new PaneThemeTransition
 {
 Edge = SettingsPane.Edge == SettingsEdgeLocation.Right
 ? EdgeTransitionLocation.Right
 : EdgeTransitionLocation.Left
 }
 };
 p.SetValue(Canvas.LeftProperty,
 SettingsPane.Edge == SettingsEdgeLocation.Right ? (bounds.Width - settingsSize) : 0);

 p.SetValue(Canvas.TopProperty, 0);
 p.Child = content;
 return p;
 }
}

VB

Imports Windows.UI.ApplicationSettings
Imports Windows.UI.Xaml.Controls.Primitives
Imports Windows.UI.Xaml.Media.Animation

Public Class SettingsPanelHelper
 Public Shared Function CreateSettingsPanel(content As UserControl, bounds As Rect, Optional
settingsSize As Double = 346) As Popup
 Dim p As New Popup() With { _
 .IsLightDismissEnabled = True, _
 .Width = settingsSize, _
 .Height = bounds.Height _
 }
 p.ChildTransitions = New TransitionCollection()
 Dim transition As New PaneThemeTransition()
 transition.Edge = If(SettingsPane.Edge = SettingsEdgeLocation.Right,
EdgeTransitionLocation.Right, EdgeTransitionLocation.Left)
 p.ChildTransitions.Add(transition)

 p.SetValue(Canvas.LeftProperty, If(SettingsPane.Edge = SettingsEdgeLocation.Right,
(bounds.Width - settingsSize), 0))
 p.SetValue(Canvas.TopProperty, 0)

 p.Child = content
 Return p
 End Function
End Class

Conclusion
With Windows 8.1, it is really simple to integrate your app with others. The use of contracts follows the same flow
for all of them, which translates into a brief learning curve when you have to use a new contract. In the next chapter,
you’ll see how to persist the data of your application so you can save information about settings.

195

Chapter 8

Data Management

This chapter explains how an app can manage data through the new API available in WinRT. We will take a look at
data access and manipulation in different types of storage and how to handle user settings. Step by step, we will show
these features using examples.

Handling Data in a Windows Store App
The Windows Storage APIs are a simple way to access and manipulate data and files whether they are on the local
machine or elsewhere (such as the cloud). The APIs are located in the Windows.Storage namespace. All the languages
available for developing Windows Store apps allow the use of Windows Storage APIs but unfortunately there are slight
differences (as we explain later in this chapter). But first of all, we have to point out that there are two different kinds of
data that you can access or use inside your app:

•	 App Data: The data created, used, and dismissed by the application to maintain runtime state,
user preferences, and general settings.

•	 User Data: The data created by a user that uses the application, like documents or media files.

Both kinds of data can be stored on the local machine and, depending on what folder is used, permissions must
be set. Indeed, Windows Store app has restrictions regarding folder access: in order to read the content of a specific
folder, you have to set the relative app capability in your app using the package manifest. This can be opened inside
Visual Studio 2013 by double-clicking in Solution Explorer the Package.appmanifest item, and opening the Package
Designer, as shown in Figure 8-1.

Chapter 8 ■ Data ManageMent

196

In the Capabilities section, you can select what folder an app can access.

Note ■ the DocumentsLibrary capability is dropped starting with Windows 8.1. however, it can be enabled manually
by editing the Package.appmanifest and compiling the app, but we advise you to avoid this technique. and note that you
should use the DocumentsLibrary capability just for specific situations (like embedded content), not to store data! For
more information, go to blogs.msdn.com/b/wsdevsol/archive/2013/05/09/dealing-with-documents-how-not-to-
use-the-documentslibrary-capability-in-windows-store-apps.aspx.

Table 8-1 shows the available capabilities with their relative location.

Figure 8-1. The Package Designer

Chapter 8 ■ Data ManageMent

197

Table 8-1. Location and Capability

Location Capability

Documents Library (until Windows v.8) DocumentsLibrary (file extension in app manifest)

Music Library MusicLibrary

Pictures Library PicturesLibrary

Videos Library VideosLibrary

Homegroup Libraries One of the following:
MusicLibrary
PicturesLibrary
VideosLibrary

Removable devices RemovableDevices

Media Server Devices (DLNA) One of the following:
MusicLibrary
PicturesLibrary
VideosLibrary

Universal Naming Convention (UNC) PrivateNetworkClientServer
+
InternetClient or InternetClientServer
+
EnterpriseAuthentication (if needed)
+
File extension in app manifest

Figure 8-2. A pop-up in Visual Studio 2013 shows the System.UnauthorizedAccessException

Whenever an app tries to access to a folder without the proper capability, a System.UnauthorizedAccessException
is raised, as shown in Figure 8-2.

Chapter 8 ■ Data ManageMent

198

App Capabilities help developers take full control of what information apps can access or use. Besides, when
a Windows Store app is submitted to the Windows Store, the description is checked to see if it matches all enabled
capabilities. As a result, a customer always knows what data is used before he buys the app. Figure 8-3 shows a
description sample from the Contacts app.

Figure 8-3. An example of enabled app capabilities from Windows Store

Figure 8-4. A pop-up asking to use a capability

A good practice is to show on the first use of the app what capability is going to be enabled (Figure 8-4). And of
course you can always check what app capabilities are allowed inside the app by using the permission section in the
settings charm (Figure 8-5).

Chapter 8 ■ Data ManageMent

199

Once you have enabled app capabilities for your app, you must choose the way to access data: thanks to Storage
APIs, you have a simple way to do that!

Managing App Data
In a desktop app, all app data is stored inside the system registry, installation folder, or user profile folder (like AppData);
guidelines suggest to always use one of these locations! Otherwise, when you develop a Windows Store app, you can’t
access data directly where is stored, but you can use something called data stores: these are similar to data containers
and are created per-user once a Windows 8 Store app is installed.

There are three different types of data stores (Figure 8-6):

•	 Local Data: Data stored on the local machine.

•	 Roaming Data: Data stored on the cloud.

•	 Temporary Data: Data stored on the local machine in a temporary folder.

Figure 8-5. Permission section in settings charm

Chapter 8 ■ Data ManageMent

200

Of course, you know that local data stores keep your app data somewhere on the local machine, but only the
Storage APIs take care of accessing and manipulating it.

So why are data stores helpful? Using data stores offers some advantages. The first is isolation, which helps to
avoid data being shared in other apps or in other user instances. Next is the lifetime of the data, which is closely
related to the app lifetime: when you install an app, data is maintained in data stores and will remain so until the app
is uninstalled (except for roaming data, as you will see later).

Moreover, when you install updates, data is updated too, allowing for the possibility of versioning: with this
feature you can prevent a bad headache caused by incompatibility between data application versions. The way to do
this is simple: just check the version. If it is less than the installed app version, it needs to be updated.

Choosing one data store or the other depends on what the data contains and how long it needs to be kept. Let’s
see in detail how data stores work.

Local Data
Local data can be used to maintain information about the configuration of the app and to store large dataset without
any storage limit. This kind of storage is ideal if there is no need to share this data with other app instances on other
devices. Figure 8-7 shows the Storage APIs main classes.

Figure 8-6. The three data stores

Chapter 8 ■ Data ManageMent

201

These APIs allow storing of both data and files. Data is stored inside containers, which are created whenever they
are needed, and help to hide (and simplify) the access to the system registry. Containers can be nested up to 32 levels.
In the following code, a LocalSettings object is user to retrieve or store local information:

C#

public CultureInfo CurrentCulture
{
 get
 {
 var localSettings = Windows.Storage.ApplicationData.Current.LocalSettings;

 if (localSettings.Containers.ContainsKey("localization"))
 {
 var cultureName = localSettings.Containers["localization"].Values["language"] as String;
 return (cultureName != null) ? new CultureInfo(cultureName) : CultureInfo.CurrentCulture;
 }

 return new CultureInfo("en-US");
 }
 set
 {
 var localSettings = Windows.Storage.ApplicationData.Current.LocalSettings;

Figure 8-7. Windows Storage API main classes

Chapter 8 ■ Data ManageMent

202

 if (!localSettings.Containers.ContainsKey("localization"))
 {
 //Create a new container
 localSettings.CreateContainer("localization",
Windows.Storage.ApplicationDataCreateDisposition.Always);
 }

 localSettings.Containers["localization"].Values["language"] = value.Name;
 }
}

VB

Public Property CurrentCulture() As CultureInfo
 Get
 Dim localSettings = Windows.Storage.ApplicationData.Current.LocalSettings
 Dim culture As CultureInfo

 If localSettings.Containers.ContainsKey("localization") Then
 Dim cultureName = TryCast(localSettings.Containers("localization").Values("language"),
[String])
 culture = New CultureInfo(cultureName)
 Else
 culture = CultureInfo.CurrentCulture
 End If

 Return culture
 End Get
 Set(value As CultureInfo)
 Dim localSettings = Windows.Storage.ApplicationData.Current.LocalSettings

 If Not localSettings.Containers.ContainsKey("localization") Then
 'Create a new container
 localSettings.CreateContainer("localization",
Windows.Storage.ApplicationDataCreateDisposition.Always)
 End If

 localSettings.Containers("localization").Values("language") = value.Name
 End Set
End Property

Sometimes you need to store more values that are logically related. Storage APIs provide a specific
ApplicationDataCompositeValue (Figure 8-8). This type helps keep different values together, solving the problems
associated with data concurrency, consistency, and integrity.

Chapter 8 ■ Data ManageMent

203

The code below shows how to create a composite value.

C#

public CultureInfo CurrentCultureDetailed
{
 get
 {
 var localSettings = Windows.Storage.ApplicationData.Current.LocalSettings;

 if (localSettings.Containers.ContainsKey("localization"))
 {
 ApplicationDataCompositeValue composite =
(ApplicationDataCompositeValue)localSettings.Containers["localization"].Values["language"];

 return (composite != null) ? new CultureInfo(composite["selectedLanguage"].ToString())
 : CultureInfo.CurrentCulture;
 }

 return new CultureInfo("en-US");
 }
 set
 {
 var localSettings = Windows.Storage.ApplicationData.Current.LocalSettings;

 if (!localSettings.Containers.ContainsKey("localization"))
 {
 //Create a container
 localSettings.CreateContainer("localization",
 Windows.Storage.ApplicationDataCreateDisposition.Always);
 }

Figure 8-8. ApplicationDataCompositeValue class

Chapter 8 ■ Data ManageMent

204

 ApplicationDataCompositeValue composite = new ApplicationDataCompositeValue();
 composite["selectedLanguage"] = value.Name;
 composite["lastChangeTime"] = DateTime.Now.ToString();

 localSettings.Containers["localization"].Values["language"] = composite;
 }
}

VB

Public Property CurrentCultureDetailed() As CultureInfo
 Get
 Dim localSettings = Windows.Storage.ApplicationData.Current.LocalSettings

 If localSettings.Containers.ContainsKey("detailedLocalization") Then
 Dim composite As ApplicationDataCompositeValue =
 DirectCast(localSettings.Containers("detailedLocalization").Values("language"),
 ApplicationDataCompositeValue)

 Return If((composite IsNot Nothing), New
CultureInfo(composite("selectedLanguage").ToString()),
 CultureInfo.CurrentCulture)
 Else
 Return New CultureInfo("en-US")
 End If
 End Get
 Set(value As CultureInfo)
 Dim localSettings = Windows.Storage.ApplicationData.Current.LocalSettings

 If Not localSettings.Containers.ContainsKey("detailedLocalization") Then
 'Create a container
 localSettings.CreateContainer("detailedLocalization",
 Windows.Storage.ApplicationDataCreateDisposition.Always)
 End If

 Dim composite As New ApplicationDataCompositeValue()
 composite("selectedLanguage") = value.DisplayName
 composite("lastChangeTime") = DateTime.Now.ToString()

 localSettings.Containers("detailedLocalization").Values("language") = composite
 End Set
End Property

Besides settings, the Storage APIs also store files using CreateFileAsync() and GetFileAsync() methods from
the LocalFolder object. Files are accessed both in read and write mode. Because of the lack of a binary type inside
WinRT, sometimes files can be used as substitute. Some good examples are the SaveAsync() and RestoreAsync()
methods inside the SuspensionManager class, shown next.

Chapter 8 ■ Data ManageMent

205

C#

public static async Task SaveAsync()
{
 try
 {
 // Save the navigation state for all registered frames
 foreach (var weakFrameReference in _registeredFrames)
 {
 Frame frame;
 if (weakFrameReference.TryGetTarget(out frame))
 {
 SaveFrameNavigationState(frame);
 }
 }

 // Serialize the session state synchronously to avoid asynchronous access to shared
 // state
 MemoryStream sessionData = new MemoryStream();
 DataContractSerializer serializer =
 new DataContractSerializer(typeof(Dictionary<string, object>), _knownTypes);
 serializer.WriteObject(sessionData, _sessionState);

 // Get an output stream for the SessionState file and write the state asynchronously
 StorageFile file = await
 ApplicationData.Current.LocalFolder.CreateFileAsync(sessionStateFilename,
 CreationCollisionOption.ReplaceExisting);
 using (Stream fileStream = await file.OpenStreamForWriteAsync())
 {
 sessionData.Seek(0, SeekOrigin.Begin);
 await sessionData.CopyToAsync(fileStream);
 await fileStream.FlushAsync();
 }
 }
 catch (Exception e)
 {
 throw new SuspensionManagerException(e);
 }
}

public static async Task RestoreAsync()
{
 _sessionState = new Dictionary<String, Object>();

 try
 {
 // Get the input stream for the SessionState file
 StorageFile file =
 await ApplicationData.Current.LocalFolder.GetFileAsync(sessionStateFilename);

Chapter 8 ■ Data ManageMent

206

 using (IInputStream inStream = await file.OpenSequentialReadAsync())
 {
 // Deserialize the Session State
 DataContractSerializer serializer =
 new DataContractSerializer(typeof(Dictionary<string, object>), _knownTypes);
 _sessionState = (Dictionary<string, object>)serializer.ReadObject(inStream.AsStreamForRead());
 }

 // Restore any registered frames to their saved state
 foreach (var weakFrameReference in _registeredFrames)
 {
 Frame frame;
 if (weakFrameReference.TryGetTarget(out frame))
 {
 frame.ClearValue(FrameSessionStateProperty);
 RestoreFrameNavigationState(frame);
 }
 }
 }
 catch (Exception e)
 {
 throw new SuspensionManagerException(e);
 }
}

VB

Public Shared Async Function SaveAsync() As Task
 Try

 ' Save the navigation state for all registered frames
 For Each weakFrameReference As WeakReference(Of Frame) In _registeredFrames
 Dim frame As Frame = Nothing
 If weakFrameReference.TryGetTarget(frame) Then
 SaveFrameNavigationState(frame)
 End If
 Next

 ' Serialize the session state synchronously to avoid asynchronous access to shared
 ' state
 Dim sessionData As New MemoryStream()
 Dim serializer As New Runtime.Serialization.DataContractSerializer(
 GetType(Dictionary(Of String, Object)), _knownTypes)
 serializer.WriteObject(sessionData, _sessionState)

 ' Get an output stream for the SessionState file and write the state asynchronously
 Dim file As Windows.Storage.StorageFile =
 Await Windows.Storage.ApplicationData.Current.LocalFolder.CreateFileAsync(
 sessionStateFilename, Windows.Storage.CreationCollisionOption.ReplaceExisting)

Chapter 8 ■ Data ManageMent

207

 Using fileStream As Stream = Await file.OpenStreamForWriteAsync()
 sessionData.Seek(0, SeekOrigin.Begin)
 Await sessionData.CopyToAsync(fileStream)
 Await fileStream.FlushAsync()
 End Using
 Catch ex As Exception
 Throw New SuspensionManagerException(ex)
 End Try
End Function

Public Shared Async Function RestoreAsync() As Task
 _sessionState = New Dictionary(Of String, Object)()

 Try

 ' Get the input stream for the SessionState file
 Dim file As Windows.Storage.StorageFile =
 Await Windows.Storage.ApplicationData.Current.LocalFolder.GetFileAsync(sessionStateFilename)
 If file Is Nothing Then Return

 Using inStream As Windows.Storage.Streams.IInputStream =
Await file.OpenSequentialReadAsync()

 ' Deserialize the Session State
 Dim serializer As New Runtime.Serialization.DataContractSerializer(
 GetType(Dictionary(Of String, Object)), _knownTypes)
 _sessionState = DirectCast(serializer.ReadObject(inStream.AsStreamForRead()),
 Dictionary(Of String, Object))
 End Using

 ' Restore any registered frames to their saved state
 For Each weakFrameReference As WeakReference(Of Frame) In _registeredFrames
 Dim frame As Frame = Nothing
 If weakFrameReference.TryGetTarget(frame) Then
 frame.ClearValue(FrameSessionStateProperty)
 RestoreFrameNavigationState(frame)
 End If
 Next
 Catch ex As Exception
 Throw New SuspensionManagerException(ex)
 End Try
End Function

To access a file programmatically, you can use the StorageFile object (Figure 8-9). Remember that it is a really
good practice to use this Local Store just for data that is not needed on other devices or just for a large set of data.

Chapter 8 ■ Data ManageMent

208

Through this object you can also use the IsEqual property to check if two files are equal. Also, StorageFolder
includes a few methods to get files or folders async:

•	 GetFileAsync, to get a file asynchronously

•	 GetFilesAsync, to get a collection of files asynchronously

Figure 8-9. StorageFile and StorageFolder classes

Chapter 8 ■ Data ManageMent

209

•	 GetFoldersAsync, to get a folder asynchronously

•	 GetItemAsync, to get a file or a sub-folder asynchronously

It is also possible to use the method TryGetItemAsync to retrieve a file without worrying about an exception
when a file is not found. In this case, the method returns null.

Roaming Data
Roaming data stores are an innovative way to simplify data management inside Windows Store apps. The use of this
feature allows users to have the same user experience on different devices, thereby avoiding multiple configurations.
In addition, users are able to resume their activities when switching from one device from another (such as from a
home PC to a tablet).

Once a user has installed an app, he usually sets an initial configuration. This step can take some time, and
repeating the entire procedure on different devices is frustrating. Roaming data provides really good assistance
for this: after the first configuration, all user preferences are set to be roaming. Afterwards, when user installs the
Windows Store app on other devices, the user preferences are already available. Of course, the developer should
check the existence of settings and retrieve them from the cloud. The most interesting aspect is that the application
just needs to retrieve the settings using the Storage APIs object without any further configuration (e.g., services, login)!
In this way you can guarantee a full user experience.

All roaming data is synched to the cloud, using the user’s Microsoft account. The synch process is not
immediate and there is also a limit on the storage size that can be checked using the ApplicationData.Current.
RoamingStorageQuota property.

C#

var quota = ApplicationData.Current.RoamingStorageQuota; //Usually 100KB

VB

Dim quota = ApplicationData.Current.RoamingStorageQuota

If this limit is exceeded, data won’t be synched until the roaming data is less than the limit again. Because of
this, you should use roaming data only for small information like user preferences or small data files. It is also a good
practice to avoid sending the content of web pages and instead send links directly. Typically you should choose at
design time what data will roam, thereby avoiding serious headaches later. Here is how to take advantage of Roaming
Data using the RoamingSettings object.

C#

get
{
 var roamingSettings = Windows.Storage.ApplicationData.Current.RoamingSettings;

 if (roamingSettings.Containers.ContainsKey("localization"))
 {
 var cultureName = roamingSettings.Containers["localization"].Values["language"] as String;
 return (cultureName != null) ? new CultureInfo(cultureName) : CultureInfo.CurrentCulture;
 }

 return new CultureInfo("en-US");
}

Chapter 8 ■ Data ManageMent

210

set
{
 var roamingSettings = Windows.Storage.ApplicationData.Current.RoamingSettings;

 if (!roamingSettings.Containers.ContainsKey("localization"))
 {
 //Create a container
 roamingSettings.CreateContainer("localization",
Windows.Storage.ApplicationDataCreateDisposition.Always);
 }

 roamingSettings.Containers["localization"].Values["language"] = value.Name;
}

VB

Get
 Dim roamingSettings = Windows.Storage.ApplicationData.Current.RoamingSettings

 If roamingSettings.Containers.ContainsKey("localization") Then
 Dim cultureName =
 TryCast(roamingSettings.Containers("localization").Values("language"), [String])
 Return If((cultureName IsNot Nothing),
 New CultureInfo(cultureName), CultureInfo.CurrentCulture)
 End If

 Return New CultureInfo("en-US")
End Get
Set(value As CultureInfo)
 Dim roamingSettings = Windows.Storage.ApplicationData.Current.RoamingSettings

 If Not roamingSettings.Containers.ContainsKey("localization") Then
 'Create a container
 roamingSettings.CreateContainer("localization",
 Windows.Storage.ApplicationDataCreateDisposition.Always)
 End If

 roamingSettings.Containers("localization").Values("language") = value.Name
 End Set

It is possible to roam a group of settings together using the ApplicationDataCompositeValue object, increasing
data consistency:

C#

get
{
 var roamingSettings = Windows.Storage.ApplicationData.Current.RoamingSettings;

 if (roamingSettings.Containers.ContainsKey("localization"))
 {
 ApplicationDataCompositeValue composite =
 (ApplicationDataCompositeValue)roamingSettings.Containers["localization"].Values["language"];

Chapter 8 ■ Data ManageMent

211

 return (composite != null) ? new CultureInfo(composite["selectedLanguage"].ToString())
 : CultureInfo.CurrentCulture;
 }

 return new CultureInfo("en-US");
}
set
{
 var roamingSettings = Windows.Storage.ApplicationData.Current.RoamingSettings;

 if (!roamingSettings.Containers.ContainsKey("localization"))
 {
 //Create a container
 roamingSettings.CreateContainer("localization",
 Windows.Storage.ApplicationDataCreateDisposition.Always);
 }

 ApplicationDataCompositeValue composite = new ApplicationDataCompositeValue();
 composite["selectedLanguage"] = value.Name;
 composite["lastChangeTime"] = DateTime.Now.ToString();

 roamingSettings.Containers["detailedLocalization "].Values["language"] = composite;
}

VB

Get
 Dim roamingSettings = Windows.Storage.ApplicationData.Current.RoamingSettings

 If roamingSettings.Containers.ContainsKey("detailedLocalization") Then
 Dim composite As ApplicationDataCompositeValue =
 DirectCast(roamingSettings.Containers("detailedLocalization").Values("language"),
 ApplicationDataCompositeValue)

 Return If((composite IsNot Nothing),
 New CultureInfo(composite("selectedLanguage").ToString()),
CultureInfo.CurrentCulture)
 Else
 Return New CultureInfo("en-US")
 End If
End Get
Set(value As CultureInfo)
 Dim roamingSettings = Windows.Storage.ApplicationData.Current.RoamingSettings

 If Not roamingSettings.Containers.ContainsKey("detailedLocalization") Then
 'Create a container
 roamingSettings.CreateContainer("detailedLocalization",
 Windows.Storage.ApplicationDataCreateDisposition.Always)
 End If

Chapter 8 ■ Data ManageMent

212

 Dim composite As New ApplicationDataCompositeValue()
 composite("selectedLanguage") = value.DisplayName
 composite("lastChangeTime") = DateTime.Now.ToString()

 roamingSettings.Containers("detailedLocalization").Values("language") = composite
End Set

In order to better the user experience, you can use a special setting to override the order of the data
synch process, the HighPriority setting. Like the previous examples, is sufficient to create a container named
HighPriority.

The roaming engine will automatically prioritize this container among the others. It is not suggested to use the
HighPriority option to store settings related to user preferences; instead it’s better to memorize the last action or
state before an app is suspended (e.g., save the number of the actual page of an opened book). Then, when the app
is resumed, either on the same machine or another device, the values stored inside the HighPriority container will
be read. The HighPriority container can also store composite values, but be aware that there is a limit of 8kb. If the
container size hits this limit, the container will be roamed just like the others with no priority. In the default template
for a Windows Store app, if you suspend an app, an event called SaveAsync() saves the state for you. You can use the
same method to roam information on app suspension with HighPriority:

C#

SuspensionManager.cs:
// Save last suspending time
var storageSettings = ApplicationData.Current.RoamingSettings;
storageSettings.Values["HighPriority"] = DateTime.Now.ToString();

App.xaml.cs:
//Get the last suspending time
var roamingSettings = Windows.Storage.ApplicationData.Current.RoamingSettings;
if (roamingSettings.Values.Count > 0 && roamingSettings.Values["HighPriority"] != null)
{
 DateTime lastSuspensionTime =
Convert.ToDateTime(roamingSettings.Values["HighPriority"].ToString());
}

VB

SuspensionManager.vb:
' Save last suspending time
Dim storageSettings = ApplicationData.Current.RoamingSettings
storageSettings.Values("HighPriority") = DateTime.Now.ToString()

App.xaml.vb:
Dim roamingSettings = Windows.Storage.ApplicationData.Current.RoamingSettings
If roamingSettings.Values.Count > 0 And Not roamingSettings.Values("HighPriority") Is Nothing Then
 Dim lastSuspensionTime As DateTime =
 Convert.ToDateTime(roamingSettings.Values("HighPriority").ToString())
End If

Chapter 8 ■ Data ManageMent

213

A Windows Store application automatically checks for new roaming data. Inside the app, it is enough to register
to handle the DataChanged() event. Of course, the synchronization between devices is not immediate and it is not
recommended to use this technique to exchange data among PCs. Here is a usage example of forcing the trigger of the
DataChanged() event by calling SignalDataChanged() event.

C#

RoamingData.xaml.cs:
public RoamingData ()
{
 this.InitializeComponent();
 this.initComboBoxes();

 Windows.Storage.ApplicationData.Current.DataChanged +=
 new TypedEventHandler<Windows.Storage.ApplicationData, object>(DataChangedHandler);

 var roamingSettings = Windows.Storage.ApplicationData.Current.RoamingSettings;
 roamingSettings.Values["lastRoamingSettingDate"] = DateTime.Now.ToString();
 Windows.Storage.ApplicationData.Current.SignalDataChanged();
}

async void DataChangedHandler(Windows.Storage.ApplicationData sender, object args)
{
 // DataChangeHandler may be invoked on a background thread,
 // so use the Dispatcher to invoke the UI-related code on the UI thread.
 await this.Dispatcher.RunAsync(CoreDispatcherPriority.Normal, () =>
 {
 var roamingSettings = Windows.Storage.ApplicationData.Current.RoamingSettings;
 if (roamingSettings.Values.Count > 0)
 {
 DateTime lastSuspensionTime = Convert.ToDateTime(
 roamingSettings.Values["lastRoamingSettingDate"].ToString());
 }
 });
}

VB

RoamingData.xaml.vb:
Public Sub New()
 InitializeComponent()
 Me._navigationHelper = New Common.NavigationHelper(Me)
 AddHandler Me._navigationHelper.LoadState,
 AddressOf NavigationHelper_LoadState

 'Get quota
 Dim quota = ApplicationData.Current.RoamingStorageQuota
 'Usually 100KB
 RoamingDataQuota.Text = [String].Format("{0} KB", quota.ToString())

Chapter 8 ■ Data ManageMent

214

 'Roaming data - Single value
 RoamingSettingsSingleValue.Text = CurrentCulture.DisplayName

 'Roaming data - Composite data
 CurrentCultureDetailed = New CultureInfo("en-US")
 GetCompositeData()

 'Roaming Data - DataChanged Event Handler
 AddHandler Windows.Storage.ApplicationData.Current.DataChanged, AddressOf DataChangeHandler

 Dim roamingSettings = Windows.Storage.ApplicationData.Current.RoamingSettings
 roamingSettings.Values("lastRoamingSettingDate") = DateTime.Now.ToString()
 Windows.Storage.ApplicationData.Current.SignalDataChanged()
End Sub

Private Async Sub DataChangeHandler(ByVal appData As Windows.Storage.ApplicationData, ByVal o As
Object)
 ' DataChangeHandler may be invoked on a background thread,
 ' so use the Dispatcher to invoke the UI-related code on the UI thread.

 Await Me.Dispatcher.RunAsync(CoreDispatcherPriority.Normal,Sub()
 Dim roamingSettings = Windows.Storage.ApplicationData.Current.RoamingSettings
 Dim lastSuspensionTime As DateTime =
 Convert.ToDateTime(roamingSettings.Values("lastRoamingSettingDate").ToString())

 DataChangedInvoked.Text = "Yes"
 End Sub)
End Sub

Roaming data also provides application data versioning to avoid incompatibility between app versions. When the
data settings inside a Windows Store app are upgraded or the format is modified, there is no automatic mechanism to
upgrade data to the new version. It is up to the developer to check if the app data has the same version. Note that data
is roamed only if the version between apps matches. The Windows Storage APIs simplify version checking by providing
the Application.Version property to verify the version number and the ApplicationData.SetVersionAsync() to set
the version number:

C#

RoamingData.xaml.cs
...//Roaming Data - Check data version
 VersionHelper.CheckVersion();
...

VersionHelper.cs
public static class VersionHelper
{
 public static void CheckVersion()
 {
 uint version = ApplicationData.Current.Version;

Chapter 8 ■ Data ManageMent

215

 switch (version)
 {
 case 0:
 //Need to upgrade data from v0 to v1
 Upgrade_Version0_to_Version1();
 break;
 case 1:
 //Right version, do nothing...
 break;
 default:
 throw new Exception("Unexpected ApplicationData Version: " + version);
 }
 }

 static async void Upgrade_Version0_to_Version1()
 {
 await ApplicationData.Current.SetVersionAsync(1,
 new ApplicationDataSetVersionHandler(SetVersion1Handler));
 }

 private static void SetVersion1Handler(SetVersionRequest setVersionRequest)
 {
 SetVersionDeferral deferral = setVersionRequest.GetDeferral();

 //Change the data format for all needed settings
 ApplicationData.Current.LocalSettings.Values["LocalData"] = "this-is-a-new-data-format";

 deferral.Complete();
 }
}

VB

RoamingData.xaml.vb
'Roaming Data - Check data version
VersionHelper.CheckVersion()
...

VersionHelper.vb
Public NotInheritable Class VersionHelper
 Private Sub New()
 End Sub
 Public Shared Sub CheckVersion()
 Dim version As UInteger = ApplicationData.Current.Version

 Select Case version
 Case 0
 'Need to upgrade data from v0 to v1
 Upgrade_Version0_to_Version1()
 Exit Select

Chapter 8 ■ Data ManageMent

216

 Case 1
 'Right version, do nothing...
 Exit Select
 Case Else
 Throw New Exception("Unexpected ApplicationData Version: " + version)
 End Select
 End Sub

 Private Shared Async Sub Upgrade_Version0_to_Version1()
 Await ApplicationData.Current.SetVersionAsync(1,
 New ApplicationDataSetVersionHandler(AddressOf SetVersion1Handler))
 End Sub

 Private Shared Sub SetVersion1Handler(setVersionRequest As SetVersionRequest)
 Dim deferral As SetVersionDeferral = setVersionRequest.GetDeferral()

 'Change the data format for all needed settings
 ApplicationData.Current.LocalSettings.Values("LocalData") = "this-is-a-new-data-format"

 deferral.Complete()
 End Sub

 Public Shared ReadOnly Property AppVersion() As UInteger
 Get
 Return ApplicationData.Current.Version
 End Get
 End Property
End Class

In addition to settings, an app can also roam files. For this scope, the ApplicationData namespace contains
the RoamingFolder object. It is important to open and close any handles to the files before the roaming process
starts. Here is an extended version of the previous SaveAsync() and RestoreAsync() examples inside the
SuspensionManager class.

C#

public static async Task SaveAsync()
{
 try
 {
 // Save the navigation state for all registered frames
 foreach (var weakFrameReference in _registeredFrames)
 {
 Frame frame;
 if (weakFrameReference.TryGetTarget(out frame))
 {
 SaveFrameNavigationState(frame);
 }
 }

Chapter 8 ■ Data ManageMent

217

 // Serialize the session state synchronously to avoid asynchronous access to shared
 // state
 MemoryStream sessionData = new MemoryStream();
 DataContractSerializer serializer =
 new DataContractSerializer(typeof(Dictionary<string, object>), _knownTypes);
 serializer.WriteObject(sessionData, _sessionState);

 // Get an output stream for the SessionState file and write the state asynchronously
 StorageFile file = await
 ApplicationData.Current.RoamingFolder.CreateFileAsync(sessionStateFilename,
 CreationCollisionOption.ReplaceExisting);
 using (Stream fileStream = await file.OpenStreamForWriteAsync())
 {
 sessionData.Seek(0, SeekOrigin.Begin);
 await sessionData.CopyToAsync(fileStream);
 await fileStream.FlushAsync();
 }
 }
 catch (Exception e)
 {
 throw new SuspensionManagerException(e);
 }
}

public static async Task RestoreAsync()
{
 _sessionState = new Dictionary<String, Object>();

 try
 {
 // Get the input stream for the SessionState file
 StorageFile file =
 await ApplicationData.Current.RoamingFolder.GetFileAsync(sessionStateFilename);
 using (IInputStream inStream = await file.OpenSequentialReadAsync())
 {
 // Deserialize the Session State
 DataContractSerializer serializer =
 new DataContractSerializer(typeof(Dictionary<string, object>), _knownTypes);
 _sessionState = (Dictionary<string, object>)serializer.ReadObject(inStream.AsStreamForRead());
 }

 // Restore any registered frames to their saved state
 foreach (var weakFrameReference in _registeredFrames)
 {
 Frame frame;
 if (weakFrameReference.TryGetTarget(out frame))
 {
 frame.ClearValue(FrameSessionStateProperty);
 RestoreFrameNavigationState(frame);
 }
 }
 }

Chapter 8 ■ Data ManageMent

218

 catch (Exception e)
 {
 throw new SuspensionManagerException(e);
 }
}

VB

Public Shared Async Function SaveAsync() As Task
 Try

 ' Save the navigation state for all registered frames
 For Each weakFrameReference As WeakReference(Of Frame) In _registeredFrames
 Dim frame As Frame = Nothing
 If weakFrameReference.TryGetTarget(frame) Then
 SaveFrameNavigationState(frame)
 End If
 Next
 ' Serialize the session state synchronously to avoid asynchronous access to shared
 ' state
 Dim sessionData As New MemoryStream()
 Dim serializer As New Runtime.Serialization.DataContractSerializer(
 GetType(Dictionary(Of String, Object)), _knownTypes)
 serializer.WriteObject(sessionData, _sessionState)

 ' Get an output stream for the SessionState file and write the state asynchronously
 Dim file As Windows.Storage.StorageFile =
 Await Windows.Storage.ApplicationData.Current.RoamingFolder.CreateFileAsync(
 sessionStateFilename, Windows.Storage.CreationCollisionOption.ReplaceExisting)
 Using fileStream As Stream = Await file.OpenStreamForWriteAsync()
 sessionData.Seek(0, SeekOrigin.Begin)
 Await sessionData.CopyToAsync(fileStream)
 Await fileStream.FlushAsync()
 End Using
 Catch ex As Exception
 Throw New SuspensionManagerException(ex)
 End Try
End Function

''' <summary>
''' Restores previously saved <see cref="SessionState"/>. Any <see cref="Frame"/> instances
''' registered with <see cref="RegisterFrame"/> will also restore their prior navigation
''' state, which in turn gives their active <see cref="Page"/> an opportunity restore its
''' state.
''' </summary>
''' <returns>An asynchronous task that reflects when session state has been read. The
''' content of <see cref="SessionState"/> should not be relied upon until this task
''' completes.</returns>
Public Shared Async Function RestoreAsync() As Task
 _sessionState = New Dictionary(Of String, Object)()

Chapter 8 ■ Data ManageMent

219

 Try

 ' Get the input stream for the SessionState file
 Dim file As Windows.Storage.StorageFile =
 Await Windows.Storage.ApplicationData.Current.RoamingFolder.GetFileAsync
(sessionStateFilename)
 If file Is Nothing Then Return

 Using inStream As Windows.Storage.Streams.IInputStream = Await file.OpenSequentialReadAsync()

 ' Deserialize the Session State
 Dim serializer As New Runtime.Serialization.DataContractSerializer(
 GetType(Dictionary(Of String, Object)), _knownTypes)
 _sessionState = DirectCast(serializer.ReadObject(inStream.AsStreamForRead()),
 Dictionary(Of String, Object))
 End Using

 ' Restore any registered frames to their saved state
 For Each weakFrameReference As WeakReference(Of Frame) In _registeredFrames
 Dim frame As Frame = Nothing
 If weakFrameReference.TryGetTarget(frame) Then
 frame.ClearValue(FrameSessionStateProperty)
 RestoreFrameNavigationState(frame)
 End If
 Next
 Catch ex As Exception
 Throw New SuspensionManagerException(ex)
 End Try
End Function

Make sure to check if roaming a file exceeds the roaming storage quota!

Temporary Data
Temporary data stores can be used as a temporary area to store information. It is important to understand that files in
this location can be deleted at any time by the operating system internal tasks (for example, the Disk Cleanup utility).
For this reason, it is not guaranteed that these files are always available during app execution. Here is how to manage
this type of data using the TemporaryFolder object:

C#

TempDataHelper.cs
public async static void SaveTempData(string data)
{
 ;
 StorageFile tempFile =
 await ApplicationData.Current.TemporaryFolder.CreateFileAsync("temporary.txt",
 CreationCollisionOption.ReplaceExisting);
 await FileIO.WriteTextAsync(calFile, data);
}

Chapter 8 ■ Data ManageMent

220

public async static Task<String> GetTempData()
{
 try
 {
 StorageFile tempFile = await
ApplicationData.Current.TemporaryFolder.GetFileAsync("temporary.txt");
 String content = await FileIO.ReadTextAsync(tempFile);
 return content;
 }
 catch
 {
 throw new Exception("Data not found!");
 }
}

TempData.xaml.cs
private void SaveTempDataButton_Click(object sender, RoutedEventArgs e)
{
 TempDataHelper.SaveTempData(UserTempDataTextBox.Text);
}

private async void GetTempDataButton_Click(object sender, RoutedEventArgs e)
{
 StoredTempData.Text = await TempDataHelper.GetTempData();
}

VB

TempDataHelper.vb
Public NotInheritable Class TempDataHelper
 Private Sub New()
 End Sub
 Public Shared Async Sub SaveTempData(data As String)
 Dim tempFile As StorageFile =
 Await ApplicationData.Current.TemporaryFolder.CreateFileAsync(
 "temporary.txt", CreationCollisionOption.ReplaceExisting)
 Await FileIO.WriteTextAsync(tempFile, data)
 End Sub

 Public Shared Async Function GetTempData() As Task(Of [String])
 Try
 Dim tempFile As StorageFile =
 Await ApplicationData.Current.TemporaryFolder.GetFileAsync("temporary.txt")
 Dim content As [String] = Await FileIO.ReadTextAsync(tempFile)
 Return content
 Catch
 Throw New Exception("Data not found!")
 End Try
 End Function
End Class

Chapter 8 ■ Data ManageMent

221

TempData.xaml.vb
Private Sub SaveTempDataButton_Click(sender As Object, e As RoutedEventArgs)
 TempDataHelper.SaveTempData(UserTempDataTextBox.Text)
End Sub

Private Async Sub GetTempDataButton_Click(sender As Object, e As RoutedEventArgs)
 StoredTempData.Text = Await TempDataHelper.GetTempData()
End Sub

User Data
Until now you have seen the different ways to handle AppData inside your Windows Store app.

For user data, you need to use other classes to read or write data and files. First, this type of data can be stored in
one of the user libraries, installation folders, or accessible folders (based on the available capabilities). Storage APIs
offer a simple way to access to these locations using Windows.Storage.KnownFolders. Figure 8-10 shows the static
properties available in KnownFolders static class.

Figure 8-10. KnownFolders Properties

You can access PicturesLibrary after the related capability is enabled in Package.appxmanifest:

C#

UserData.xaml.cs
 private async void SaveDataButton_Click(object sender, RoutedEventArgs e)
 {
 StorageFile userFile = await KnownFolders.PicturesLibrary.CreateFileAsync("userdata.txt",
CreationCollisionOption.ReplaceExisting);
 await FileIO.WriteTextAsync(userFile, UserDataTextBox.Text);
 }

Chapter 8 ■ Data ManageMent

222

 private async void GetDataButton_Click(object sender, RoutedEventArgs e)
 {
 try
 {
 StorageFile userFile = await KnownFolders.PicturesLibrary.GetFileAsync("userdata.txt");
 StoredData.Text = await FileIO.ReadTextAsync(userFile);
 }
 catch
 {
 throw new Exception("Data not found!");
 }
 }

VB

UserData.xaml.vb
Private Async Sub SaveDataButton_Click(sender As Object, e As RoutedEventArgs)
 Dim userFile As StorageFile =
 Await KnownFolders.PicturesLibrary.CreateFileAsync("userdata.txt",
 CreationCollisionOption.ReplaceExisting)
 Await FileIO.WriteTextAsync(userFile, UserDataTextBox.Text)
End Sub

Private Async Sub GetDataButton_Click(sender As Object, e As RoutedEventArgs)
 Try
 Dim userFile As StorageFile = Await KnownFolders.PicturesLibrary.GetFileAsync("userdata.txt")
 StoredData.Text = Await FileIO.ReadTextAsync(userFile)
 Catch
 Throw New Exception("Data not found!")
 End Try
End Sub

Starting in Windows 8.1 it is also possible to use another class to retrieve all libraries folders: StorageLibrary.
With this object you can easily handle your libraries thanks to integration with the FilePicker object.

FilePicker and FolderPicker
In the previous section you saw how to access user libraries. The problem is that KnownFolders is the only available
location inside the app (if the relative app capability is enabled). If you want to store files in another location, you can
take advantage of the FilePicker class.

The FilePicker is a user-driven control that allows a user to choose the location for a file. This helps to minimize
the number of enables capabilities in the app and simplify the submission process to the Windows Store.

The following images show an example of FilePicker: you can see the current location (Figure 8-11), a scrollable
menu to navigate in the local folders (Figure 8-12), and the list of selected items (Figure 8-13).

Chapter 8 ■ Data ManageMent

223

Figure 8-11. An example of FilePicker

Figure 8-12. FilePicker available folders

Figure 8-13. Selected file inside FilePicker

Chapter 8 ■ Data ManageMent

224

Once a file is picked using the FilePicker, an instance of the StorageFile class is returned.
In addition to FilePicker, the Storage APIs also provide a FolderPicker object that lets the user choose a folder.

Once a folder is picked using the FolderPicker, an instance of StorageFolder is returned.
In order to use the FilePicker or the FolderPicker object, it is necessary to follow these steps:

 1. Create and customize a FilePicker/FolderPicker object, setting different properties
before the control. Some of these properties are listed in Table 8-2.

Table 8-2. FilePicker/FolderPicker Properties

Property Description Possible Values

ViewMode Item Visualization List, Thumbnail

SuggestedStartLocation Default folder A file system location

fileTypeFilter A list of different extension to filter showed items List of extensions

 2. Show the FilePicker/FolderPicker using

a. pickSingleFileAsync() (just one file)

b. pickMultipleFileAsync() (multiple files, returning a list of storage files)

c. pickSingleFolderAsync() (just one folder)

Also remember that file picker can be opened both in split-screen and a full-screen display.
Let’s add the code inside your Organizer app:

C#

UserData.xaml.cs
public async void GetFile()
{
 FileOpenPicker openPicker = new FileOpenPicker();
 openPicker.ViewMode = PickerViewMode.List;
 openPicker.SuggestedStartLocation = PickerLocationId.Desktop;
 openPicker.FileTypeFilter.Add(".txt");
 StorageFile file = await openPicker.PickSingleFileAsync();

 if (file != null)
 {
 //do something
 }
}

UserData.xaml.cs
public async void GetFolder()
{
 FolderPicker openPicker = new FolderPicker();
 openPicker.ViewMode = PickerViewMode.List;
 openPicker.SuggestedStartLocation = PickerLocationId.Desktop;
 openPicker.FileTypeFilter.Add(".txt");
 StorageFolder folder = await openPicker.PickSingleFolderAsync();

Chapter 8 ■ Data ManageMent

225

 if (folder != null)
 {
 //do something
 }
}

VB

UserData.xaml.vb
Public Async Sub GetFile()
 Dim openPicker As New FileOpenPicker()
 openPicker.ViewMode = PickerViewMode.List
 openPicker.SuggestedStartLocation = PickerLocationId.Desktop
 openPicker.FileTypeFilter.Add(".txt")
 Dim file As StorageFile = Await openPicker.PickSingleFileAsync()

 If file IsNot Nothing Then
 'do something
 End If
End Sub

UserData.xaml.vb
Public Async Sub GetFolder()
 Dim openPicker As New FolderPicker()
 openPicker.ViewMode = PickerViewMode.List
 openPicker.SuggestedStartLocation = PickerLocationId.Desktop
 openPicker.FileTypeFilter.Add(".txt")
 Dim folder As StorageFolder = Await openPicker.PickSingleFolderAsync()

 If folder IsNot Nothing Then
 'do something
 End If
End Sub

If you need to save a file to a location, you need to use the FileSavePicker. Once the window is opened by
calling the PickSaveFileAsync() method, the user can type a name or leave the default file name set using the
SuggestedFileName property. It is also possible to set the following:

The default folder using the •	 SuggestedStartLocation property

The default extension using the •	 DefaultFileExtension property

Then the user confirms the saving of the file and PickSaveFileAsync() returns a StorageFile object that is the
saved file. Remember that it is possible to share your files in other applications by integrating the file picker contracts.

Using SQLite for Windows Store Apps
Sometimes you need to store more structured data than single values or a data file. Often the appropriate choice in
this situation is a database. Unfortunately, in a Windows Store app you can’t directly access SQL Server or SQL Server
CE (the only way is to access to them using services). The available solution is SQLite.

Chapter 8 ■ Data ManageMent

226

For those who don't know, SQLite is an open source transactional database (more often defined as a library). It is
multi-platform and consists of a single file containing all the data (other details at en.wikipedia.org/wiki/SQLite).
In order to use SQLite in your application, you need to download it from www.sqlite.org/download.html (Figure 8-14)
and install it (Figure 8-15).

Figure 8-14. SQLite download page

Figure 8-15. SQLite VSIX Installer window

http://www.sqlite.org/download.html

Chapter 8 ■ Data ManageMent

227

Inside the windows that shows up (Figure 8-17), check the SQLite for Windows Runtime item.

Once installed (Figure 8-16), you need to add a reference to your Windows Store app project: right-click the
project name in the Solution Explorer, select the References item, and then Add New Reference.

Figure 8-16. Installed extension section

Chapter 8 ■ Data ManageMent

228

Now you can add through NuGet a wrapper to connect and use SQLite via the following command:

Install-Package sqlite-net

You are now ready to learn how to create a table for a SimpleAppointment entity and how to access to it:

C#

SQLiteHelper.cs
public async static void CreateDatabase()
{
 var storagePath = Windows.Storage.ApplicationData.Current.LocalFolder;
 var file = await storagePath.TryGetItemAsync("db.sqlite");

 if (file == null)
 {
 var dbPath = System.IO.Path.Combine(
 Windows.Storage.ApplicationData.Current.LocalFolder.Path, "db.sqlite");

Figure 8-17. Add reference window

Chapter 8 ■ Data ManageMent

229

 try
 {
 using (var db = new SQLiteConnection(dbPath))
 {
 db.CreateTable<SimpleAppointment>();
 }
 }
 catch (Exception ex)
 {
 throw ex;
 }
 }
}

public static void AddAppointment(SimpleAppointment appointment)
{
 var dbPath = System.IO.Path.Combine(
 Windows.Storage.ApplicationData.Current.LocalFolder.Path, "db.sqlite");

 try
 {
 using (var db = new SQLiteConnection(dbPath))
 {
 db.RunInTransaction(() =>
 {
 db.Insert(new SimpleAppointment()
 {
 Id = appointment.Id,
 Subject = appointment.Subject,
 Location = appointment.Location,
 StartDate = appointment.StartDate,
 EndDate = appointment.EndDate
 });
 }
);
 }
 }
 catch (Exception ex)
 {
 throw ex;
 }
}

public static SimpleAppointment GetAppointment(int id)
{
 var dbPath = System.IO.Path.Combine(
 Windows.Storage.ApplicationData.Current.LocalFolder.Path, "db.sqlite");

Chapter 8 ■ Data ManageMent

230

 try
 {
 using (var db = new SQLiteConnection(dbPath))
 {
 return db.Find<SimpleAppointment>(id);
 }
 }
 catch (Exception ex)
 {
 throw ex;
 }
}

SQLiteAccess.xaml.cs
private void SaveButton_Click(object sender, RoutedEventArgs e)
{
 SQLiteHelper.AddAppointment(new SimpleAppointment
 {
 Subject = SubjectTextBox.Text,
 Location = LocationTextBox.Text,
 StartDate = StartDatePicker.Date.Date,
 EndDate = EndDatePicker.Date.Date
 });

 ResultTextBlock.Text = "Appointment saved!";

}

private void ClearButton_Click(object sender, RoutedEventArgs e)
{
 SubjectTextBox.Text = String.Empty;
 LocationTextBox.Text = String.Empty;
 StartDatePicker.Date = DateTime.Now;
 EndDatePicker.Date = DateTime.Now;
}

private void LoadButton_Click(object sender, RoutedEventArgs e)
{
 SimpleAppointment appointment = SQLiteHelper.GetAppointment(1);

 SubjectTextBox.Text = appointment.Subject;
 LocationTextBox.Text = appointment.Location;
 StartDatePicker.Date = appointment.StartDate;
 EndDatePicker.Date = appointment.EndDate;
}

 public SQLiteAccess()
{
 this.InitializeComponent();
 this.navigationHelper = new NavigationHelper(this);

Chapter 8 ■ Data ManageMent

231

 //Create a SQLite database if not exists
 SQLiteHelper.CreateDatabase();
}

SimpleAppointment.cs
public class SimpleAppointment
{
 [SQLite.PrimaryKey]
 [SQLite.AutoIncrement]
 public int Id { get; set; }
 public string Subject { get; set; }
 public string Location { get; set; }
 public DateTime StartDate { get; set; }
 public DateTime EndDate { get; set; }
}

After adding a reference to SQLite in your project, a file named SQLite.cs is added. This file is a wrapper that
helps you use SQLite. Unfortunately, there’s no official wrapper for SQLite to use with languages other than C#. But
there are unofficial wrappers like Visual Basic Sqlite WinRT Wrapper (code.msdn.microsoft.com/windowsapps/
Visual-Basic-Sqlite-WinRT-bf6fe131).

There is another good way to use the official library inside your project via a language other than C#. You just
need to create a DLL (or WinRT component) and then add it to your project. A good explanation from Tim Heuer is at
timheuer.com/blog/archive/2012/08/07/updated-how-to-using-sqlite-from-windows-store-apps.aspx.

Finally, to explore SQLite data inside your db, you can use a tool like SQLite Browser: sourceforge.net/
projects/sqlitebrowser.

Retrieving Remote Data
Until now you’ve faced the management of user data that resides on the same machine where the app is running.
More often, however, you need data that is reachable through the Internet using web services.

Happily, Windows Store apps can retrieve remote data through the Internet from different sources, such as Active
Server Methods (ASMX), Windows Communication Services, and the new Windows Azure Mobile Services. In this
section, we will go to into details on how to retrieve remote data from these sources.

Retrieving Data from Windows Communication Foundation
Windows Store apps support a subset of features of Windows Communication Foundation (WCF for short). Table 8-3
summarizes them.

http://code.msdn.microsoft.com/windowsapps/Visual-Basic-Sqlite-WinRT-bf6fe131
http://code.msdn.microsoft.com/windowsapps/Visual-Basic-Sqlite-WinRT-bf6fe131
http://timheuer.com/blog/archive/2012/08/07/updated-how-to-using-sqlite-from-windows-store-apps.aspx
http://sourceforge.net/projects/sqlitebrowser
http://sourceforge.net/projects/sqlitebrowser

Chapter 8 ■ Data ManageMent

232

If you need to add a WCF service to your project, nothing changes from the past. The steps are the following:
right-click the Service Reference inside the project in Solution Explorer, choose Add Service Reference, type or paste
the URL into the Address box, press the Go button, and once the service shows up, click the Ok button. Visual Studio
2013 takes care to create all related files for the connection. But good news always has bad news behind it: there’s
no Windows Communication Foundation XML configuration! In Visual Studio 2013, in a project different from a
Windows Store app, you can change WCF bindings and behavior using the XML configuration. Instead, in a Windows
Store app, you must edit any configuration in the Reference.cs related to the referenced service. To open this file
(Figure 8-18), you need to enable the “All files” viewing option (1) and then open and edit Reference.cs file (2).

Table 8-3. WCF Features for Windows Store Apps

Binding BasicHttpBinding
NetTcpBinding
NetHttpBinding
CustomBinding

Binding Elements BinaryMessageEncodingBindingElement
TextMessageEncodingBindingElement
ConnectionOrientedTransportBindingElement
SslStreamSecurityBindingElement
WindowsStreamSecurityBindingElement
TcpTransportBindingElement
HttpTransportBindingElement
HttpsTransportBindingElement
TransportSecurityBindingElement

Enconding Text
Binary

Security Modes None
Transport
TransportWithMessageCredential
TransportCredentialOnly (for BasicHttpBinding)

ClientCredentialType None
Basic
Digest
Negotiate
Ntlm
Windows
Username (Message Security)
Windows (Transport Security)

Transfer Mode Buffered
Streamed
StreamedRequest
StreamedResponse

Serializer DataContractSerializer
DataContractJsonSerializer
XmlSerializer

Misc ChannelFactory
DuplexChannelFactory
CallbackBehaviorAttribute

Chapter 8 ■ Data ManageMent

233

Once open, note that all operations are generated using the Task-based asynchronous pattern and the
Configure() method is declared as partial class. But why? Unfortunately, every time you update the service reference,
all changes to the Configure() method are overwritten. So, if you want to keep your changes stored, you need to
implement a partial class for the client (pay attention to namespaces):

C#

FakeServiceClient.cs
namespace Win8Organizer.CSharp.Model.FakeServiceReference
{
 public partial class FakeServiceClient :
 System.ServiceModel.ClientBase<Win8Organizer.Csharp.Model.FakeServiceReference.IfakeService>,
 Win8Organizer.Csharp.Model.FakeServiceReference.IfakeService
 {
 static partial void ConfigureEndpoint(System.ServiceModel.Description.ServiceEndpoint
serviceEndpoint,
 System.ServiceModel.Description.ClientCredentials clientCredentials)
 {
 if (serviceEndpoint.Name ==
 FakeServiceReference.FakeServiceClient
 .EndpointConfiguration.BasicHttpBinding_IfakeService.ToString())
 {
 serviceEndpoint.Binding.SendTimeout = new System.TimeSpan(0, 1, 0);
 }
 }
 }
}

VB

Partial Public Class FakeServiceClient
 Inherits System.ServiceModel.ClientBase(Of FakeServiceReference.IFakeService)
 Implements FakeServiceReference.IFakeService

Figure 8-18. Reference.cs location

Chapter 8 ■ Data ManageMent

234

 Partial Private Shared Sub ConfigureEndpoint(ByVal serviceEndpoint As
System.ServiceModel.Description.ServiceEndpoint,
 ByVal clientCredentials As
System.ServiceModel.Description.ClientCredentials)
 ' Implementation is moved after the FakeServiceClient instantiation
 ' because partial method must have empty body
 End Sub

 Public Function GetSimpleAppointmentAsync() As Task(Of FakeServiceReference.SimpleAppointment)
 Implements FakeServiceReference.IFakeService.
GetSimpleAppointmentAsync
 Return MyBase.Channel.GetSimpleAppointmentAsync
 End Function
End Class

Now that you’ve configured the service reference, you are ready to create a proxy class and retrieve data inside
your application. Let’s see how to add your app to a WCF Service to get appointments information.

Note ■ You need a copy of Visual Studio Express 2013 for Web to create a WCF Service.

First, take a look at the FakeService.svc:

C#

IFakeService.cs
 [ServiceContract]
 public interface IFakeService
 {

 [OperationContract]
 SimpleAppointment GetSimpleAppointment();
 }

 // Use a data contract as illustrated in the sample below to add composite types to service operations.
 [DataContract]
 public class SimpleAppointment
 {
 [DataMember]
 public int Id { get; set; }

 [DataMember]
 public string Subject { get; set; }

 [DataMember]
 public string Location { get; set; }

 [DataMember]
 public DateTime StartDate { get; set; }

Chapter 8 ■ Data ManageMent

235

 [DataMember]
 public DateTime EndDate { get; set; }
 }

FakeService.svc.cs
public class FakeService : IFakeService
{
 SimpleAppointment IFakeService.GetSimpleAppointment()
 {
 return new SimpleAppointment()
 {
 Id = 1,
 Subject = "New Appointment",
 Location = "12, Kennedy Street, Washington",
 StartDate = DateTime.Now,
 EndDate = DateTime.Now.AddDays(1)
 };
 }
}

Note ■ You will reuse the same service for VB language.

In Figure 8-18 you saw how to add reference to the FakeService. Now let’s see how to call the web service.
Remember: web service calls must be asynchronous!

C#

WCFClient.xaml.cs
private async void LoadButton_Click(object sender, RoutedEventArgs e)
{
 try
 {
 FakeServiceReference.FakeServiceClient svc = new FakeServiceReference.FakeServiceClient();

 FakeServiceReference.SimpleAppointment appointment = await svc.GetSimpleAppointmentAsync();

 SubjectTextBox.Text = appointment.Subject;
 LocationTextBox.Text = appointment.Location;
 StartDatePicker.Date = appointment.StartDate;
 EndDatePicker.Date = appointment.EndDate;
 }
 catch
 {
 ResultTextBlock.Text = "Oops! Something went wrong!";
 }
}

Chapter 8 ■ Data ManageMent

236

VB

Private Async Sub LoadButton_Click(sender As Object, e As RoutedEventArgs)
 Try
 Dim svc As New FakeServiceReference.FakeServiceClient

 If svc.Endpoint.Name = FakeServiceReference.FakeServiceClient.EndpointConfiguration.
BasicHttpBinding_IFakeService.ToString() Then
 svc.Endpoint.Binding.SendTimeout = New System.TimeSpan(0, 1, 0)
 End If

 Dim appointment As FakeServiceReference.SimpleAppointment = Await
svc.GetSimpleAppointmentAsync()

 SubjectTextBox.Text = appointment.Subject
 LocationTextBox.Text = appointment.Location
 StartDatePicker.[Date] = appointment.StartDate
 EndDatePicker.[Date] = appointment.EndDate
 Catch
 ResultTextBlock.Text = "Oops! Something went wrong!"
 End Try
End Sub

WinRT provides also the SyndicationApi. It is a set of classes that helps retrieve feeds from the Web. The usage is
very simple: the class SyndicationClient performs the whole process, starting a connection, reading the feed,
and returning a list of SyndicationItem:

C#

RssHelper.cs
public async static Task<string> GetFeedTitleAsync()
{
 string response = String.Empty;
 SyndicationFeed feed = new SyndicationFeed();
 SyndicationClient client = new SyndicationClient();

 try
 {
 feed = await client.RetrieveFeedAsync(
 new Uri("http://www.apress.com/index.php/dailydeals/index/rss"));

 response = feed.GetXmlDocument(SyndicationFormat.Rss20).GetXml();
 }
 catch (Exception ex)
 {
 SyndicationErrorStatus status = SyndicationError.GetStatus(ex.HResult);
 if (status == SyndicationErrorStatus.InvalidXml)
 {
 response += "Invalid XML!";
 }

http://www.apress.com/index.php/dailydeals/index/rss

Chapter 8 ■ Data ManageMent

237

 if (status == SyndicationErrorStatus.Unknown)
 {
 response = ex.Message;
 }
 }

 return response;
}

VB

RSSHelper.vb
Public NotInheritable Class RssHelper
 Private Sub New()
 End Sub
 Public Shared Async Function GetFeedTitleAsync() As Task(Of String)
 Dim response As String = [String].Empty
 Dim feed As New SyndicationFeed()
 Dim client As New SyndicationClient()

 Try
 feed = Await client.RetrieveFeedAsync(New
Uri("http://www.apress.com/index.php/dailydeals/index/rss"))

 response = feed.GetXmlDocument(SyndicationFormat.Rss20).GetXml()
 Catch ex As Exception
 Dim status As SyndicationErrorStatus = SyndicationError.GetStatus(ex.HResult)
 If status = SyndicationErrorStatus.InvalidXml Then
 response += "Invalid XML!"
 End If

 If status = SyndicationErrorStatus.Unknown Then
 response = ex.Message
 End If
 End Try

 Return response
 End Function
End Class

Starting with Windows 8.1 there is new namespace to handle HTTP web requests and REST web services:
Windows.Web.Http. Inside this namespace you can find several helpful objects to achieve simple or complex tasks
related to the Web. The features include the following:

Handling HTTP common verbs (DELETE, GET, PUT and POST)•	

Support for common authentication settings and patterns•	

Support for SSL•	

Customized filters•	

Full support for cookies•	

Asynchronous operations•	

http://www.apress.com/index.php/dailydeals/index/rss

Chapter 8 ■ Data ManageMent

238

The main class is HTTPClient and it allows you to send and receive requests over the HTTP protocol. Using the
filtering mechanism, it is possible to customize the request based on the scenario:

C#

HTTPClient.xaml.cs
private async void navigationHelper_LoadState(object sender, LoadStateEventArgs e)
{
 // TODO: Create an appropriate data model for your problem domain to replace the sample data
 var item = await SampleDataSource.GetItemAsync((String)e.NavigationParameter);
 //this.DefaultViewModel["Item"] = item;

 ResultTextBlock.Text = await
 new HttpClient().GetStringAsync(
 new Uri("http://www.apress.com/index.php/dailydeals/index/rss"
)
);
}

VB

HTTPClient.xaml.vb
Private Async Sub NavigationHelper_LoadState(sender As Object, e As Common.LoadStateEventArgs)
 ' TODO: Create an appropriate data model for your problem domain to replace the sample data
 Dim item As Data.SampleDataItem = Await
Data.SampleDataSource.GetItemAsync(DirectCast(e.NavigationParameter, String))
 Me.DefaultViewModel("Item") = item

 ResultTextBlock.Text = Await New HttpClient().
 GetStringAsync(New Uri("http://www.apress.com/index.php/dailydeals/index/rss"))
End Sub

Retrieving Data from Windows Azure Mobile Services
Some of the big news these days about Windows Store apps is the full support for Windows Azure Mobile Service,
which allows you to store structured data on the cloud and provide authentication, push notification, and scalability.
All of these features can be configured using a very intuitive portal (which is the same for Microsoft Windows Azure).
Let’s start from beginning!

First, you need an active Microsoft Account. It can be created at https://signup.live.com/. After creating the
account, you must connect to Windows Azure Portal using the Microsoft Account at https://windows.azure.com/
and activate the trial period for Windows Azure (it will last 90 days) and participate in the preview program. Then,
in the Windows Azure menu (Figure 8-19) click the New button. Then select Compute and choose Create from the
Mobile Service items (Figure 8-20). At this point, you have created a mobile service. You need to provide a URL, like
buildingwindows8appsfromthegroundupmobileservice (it is the name of the mobile service and it will appear in the
final URL like this: https://buildingwindows8appsfromthegroundupmobileservice.azure-mobile.net/), choose
to create or re-use a database, and select the region (Figure 8-21). Click the Next button and type all the information
about the new database, such as name, server, login, and password, and then press the Complete button (Figure 8-22).

http://www.apress.com/index.php/dailydeals/index/rss
http://www.apress.com/index.php/dailydeals/index/rss
https://signup.live.com/
https://windows.azure.com/
https://buildingwindows8appsfromthegroundupmobileservice.azure-mobile.net/

Chapter 8 ■ Data ManageMent

239

Figure 8-19. Windows Azure menu

Figure 8-20. Mobile Service menu

Chapter 8 ■ Data ManageMent

240

Figure 8-21. Mobile service creation (1)

Figure 8-22. Mobile service creation (2)

Chapter 8 ■ Data ManageMent

241

Through these steps, you have created your first mobile service and you can check out its state using the
Windows Azure Portal in the main page by selecting the Mobile Services item on the menu: you can see your
buildingwindows8appsfromthegroundupmobileservice in Figure 8-23.

Figure 8-23. Mobile services summary in Windows Azure Portal

Clicking the mobile service name brings you to its dashboard (Figure 8-24).

Figure 8-24. Mobile service dashboard

In it, select DATA and create a new table named SimpleAppointment by using the “Add a table” button (Figure 8-25).

Chapter 8 ■ Data ManageMent

242

Finally, you have your table (Figure 8-26) and it has just one column (Figure 8-27) to handle all your data.

Figure 8-25. New table creation wizard

Figure 8-26. SimpleAppointment dashboard

Figure 8-27. SimpleAppointment columns

Chapter 8 ■ Data ManageMent

243

Other items in the Table menu are the following:

•	 Browse: To list all data

•	 Script: To apply some logic to CRUD operations in JavaScript code without the need of an
external application (Figure 8-28)

Figure 8-28. Script section in Table dashboard

Figure 8-29. Permissions section in Table dashboard

•	 Permission: To set user permissions to CRUD operations (Figure 8-29)

Let’s see how to call this service from your Organizer. First, you need to install the Mobile Services SDK
(download it at www.windowsazure.com/en-us/develop/mobile/developer-tools/). You can also use a quick and
simple NuGet command instead of the previous steps:

Install-Package WindowsAzure.MobileServices

Then, from your project inside Visual Studio 2013 right-click the project name, select Add, and then select
Connected Services (Figure 8-30). Now, in the Service Manager window, select Mobile Services and Import
Subscription to open a pop-up to load the subscription file for your Azure Account. If you don’t have the subscription
file (*.publishsettings), you can simply click Download Subscription File to connect to your account and download
it. Once the file is imported, you need to refresh the Services Manager window and your Mobile Service will appear.
Just click it and press OK (Figure 8-31).

http://www.windowsazure.com/en-us/develop/mobile/developer-tools/

Chapter 8 ■ Data ManageMent

244

Figure 8-30. Add a Windows Azure Mobile Service to your project

Figure 8-31. Services Manager window

To connect your app to the Windows Azure Mobile Service, you need an API key that is automatically added in
the previous step inside the App.xaml.cs or App.xaml.vb and is used to initialize the MobileServiceClient class:

Chapter 8 ■ Data ManageMent

245

C#

public static Microsoft.WindowsAzure.MobileServices.MobileServiceClient
 buildingwindows8appsfromthegroundupmobileserviceClient =
 new Microsoft.WindowsAzure.MobileServices.MobileServiceClient(
"https://buildingwindows8appsfromthegroundupmobileservice.azure-mobile.net/",
"YOUR_APP_KEY");

VB

Public Shared bw8agu_mobileserviceClient As New Microsoft.WindowsAzure.MobileServices.MobileServiceClient(
"https://buildingwindows8appsfromthegroundupmobileservice.azure-mobile.net/",
"YOUR_APP_KEY")

This key can be retrieved in the Windows Azure Mobile Services dashboard via the “Connect an existing
Windows Store app” item (Figure 8-32).

Figure 8-32. Mobile Service key and address

Here is how to execute some basic operations on the table behind the Windows Azure Mobile Service just
created:

C#

public static class AzureMobileServicesHelper
{
 public async static void InsertDataFromAzureMobileSvc(SimpleAppointment item)
 {
 await App.bw8agu_mobileserviceClient.GetTable<SimpleAppointment>()
 .InsertAsync(item);
 }

https://buildingwindows8appsfromthegroundupmobileservice.azure-mobile.net/
https://buildingwindows8appsfromthegroundupmobileservice.azure-mobile.net/

Chapter 8 ■ Data ManageMent

246

 public async static Task<MobileServiceCollection<SimpleAppointment, SimpleAppointment>>
GetDataFromAzureMobileSvc()
 {
 try
 {
 IMobileServiceTable<SimpleAppointment> table =
 App.bw8agu_mobileserviceClient
 .GetTable<SimpleAppointment>();

 return await table.ToCollectionAsync<SimpleAppointment>();
 }
 catch (Exception ex)
 { throw ex; }
 }

 public static void UpdateDataFromAzureMobileSvc(SimpleAppointment item)
 {
 try
 {
 IMobileServiceTable<SimpleAppointment> table =
App.bw8agu_mobileserviceClient.GetTable<SimpleAppointment>();

 table.UpdateAsync(item);
 }
 catch (Exception ex)
 {
 throw ex;
 }
 }
}

VB

Public NotInheritable Class AzureMobileServicesHelper
 Private Sub New()
 End Sub
 Public Shared Async Sub InsertDataFromAzureMobileSvc(item As SimpleAppointment)
 Await App.bw8agu_mobileserviceClient.GetTable(Of SimpleAppointment)().InsertAsync(item)
 End Sub

 Public Shared Async Function GetDataFromAzureMobileSvc() As Task
 As Task(Of MobileServiceCollection(Of SimpleAppointment, SimpleAppointment))
 Try
 Dim table As IMobileServiceTable(Of SimpleAppointment) =
 App.bw8agu_mobileserviceClient.GetTable(Of SimpleAppointment)()

 Return Await table.ToCollectionAsync()
 Catch ex As Exception
 Throw ex
 End Try
 End Function

Chapter 8 ■ Data ManageMent

247

 Public Shared Async Sub UpdateDataFromAzureMobileSvc(item As SimpleAppointment)
 Try
 Dim table As IMobileServiceTable(Of SimpleAppointment) =
 App.bw8agu_mobileserviceClient.GetTable(Of SimpleAppointment)()

 Await table.UpdateAsync(item)
 Catch ex As Exception
 Throw ex
 End Try
 End Sub
End Class

The following code can be used to call one of these operations.

C#

AzureMobileServices.xaml.cs
private void SaveButton_Click(object sender, RoutedEventArgs e)
{
 try
 {
 AzureMobileServicesHelper.InsertDataFromAzureMobileSvc(new SimpleAppointment
 {
 Subject = SubjectTextBox.Text,
 Location = LocationTextBox.Text,
 StartDate = StartDatePicker.Date.Date,
 EndDate = EndDatePicker.Date.Date
 });

 ResultTextBlock.Text = "Appointment saved!";
 }
 catch (Exception ex)
 {
 ResultTextBlock.Text = ex.Message;
 }

}

private void ClearButton_Click(object sender, RoutedEventArgs e)
{
 SubjectTextBox.Text = String.Empty;
 LocationTextBox.Text = String.Empty;
 StartDatePicker.Date = DateTime.Now;
 EndDatePicker.Date = DateTime.Now;
}

Chapter 8 ■ Data ManageMent

248

private async void LoadButton_Click(object sender, RoutedEventArgs e)
{
 SimpleAppointment appointment = (await
AzureMobileServicesHelper.GetDataFromAzureMobileSvc()).FirstOrDefault();

 SubjectTextBox.Text = appointment.Subject;
 LocationTextBox.Text = appointment.Location;
 StartDatePicker.Date = appointment.StartDate;
 EndDatePicker.Date = appointment.EndDate;
}

VB

AzureMobileServices.xaml.vb
Private Sub SaveButton_Click(sender As Object, e As RoutedEventArgs)
 Try
 AzureMobileServicesHelper.InsertDataFromAzureMobileSvc(New SimpleAppointment() With { _
 .Subject = SubjectTextBox.Text, _
 .Location = LocationTextBox.Text, _
 .StartDate = StartDatePicker.[Date].[Date], _
 .EndDate = EndDatePicker.[Date].[Date] _
 })

 ResultTextBlock.Text = "Appointment saved!"
 Catch ex As Exception
 ResultTextBlock.Text = ex.Message
 End Try
End Sub

Private Sub ClearButton_Click(sender As Object, e As RoutedEventArgs)
 SubjectTextBox.Text = [String].Empty
 LocationTextBox.Text = [String].Empty
 StartDatePicker.[Date] = DateTime.Now
 EndDatePicker.[Date] = DateTime.Now
End Sub

Private Async Sub LoadButton_Click(sender As Object, e As RoutedEventArgs)
 Dim appointment As SimpleAppointment = (
 Await AzureMobileServicesHelper.GetDataFromAzureMobileSvc()).FirstOrDefault()
 SubjectTextBox.Text = appointment.Subject
 LocationTextBox.Text = appointment.Location
 StartDatePicker.[Date] = appointment.StartDate
 EndDatePicker.[Date] = appointment.EndDate
End Sub

Data just inserted can be showed in the Mobile Services panel on the portal in the used table inside the Data
section (Figure 8-33).

Chapter 8 ■ Data ManageMent

249

Last but not least, the Windows Azure Mobile Services portal is a simple and useful environment to check the
state and the usage of your services. Indeed, the dashboard shows a chart containing all the API calls, CPU times, and
data out info (Figure 8-34). You can also manage notification, scalability, and authentication.

Figure 8-33. SimpleAppointment records

Figure 8-34. Windows Azure Mobile Service dashboard

Chapter 8 ■ Data ManageMent

250

Managing User Info
In this section you’ll get a quick look at user info management for issues such as roaming credentials, single sign-on
using a web authentication broker, and how to manage user contact. Be aware that some of these features require a
valid Microsoft Account and a Windows Store developer account (further information can be found in Chapter 11).

Credential Roaming
With these features, apps can store passwords inside the password vault using the Windows.Security.Credentials
namespace. The password vault, also called as Credential Locker, is a safe place that allows the credential to roam to
other trusted devices. The entire mechanism is based on the following steps.

 1. Sign in on Windows 8 using your own credentials. This will mark the machine
as a trusted device.

 2. Let the user choose to save or not save their password.

Through these steps, credentials will be roamed to the cloud and are available to the other devices (of course if
they are trusted devices too!). Figure 8-35 shows the Windows.Security.Credentials classes.

Figure 8-35. Windows.Security.Credentials classes

Chapter 8 ■ Data ManageMent

251

Now, let’s see how to memorize and retrieve passwords using the PasswordVault class inside the Login Settings
panel (Figure 8-36).

Figure 8-36. Login Settings panel

C#

PasswordVault.xaml.cs
private void LoginButton_Click(object sender, RoutedEventArgs e)
{
 if (PasswordVaultHelper.CheckPassword(UsernameTextBox.Text, PasswordTextBox.Password))
 {
 ResultTextBlock.Text = "Login succeeded!";
 }
 else
 {
 ResultTextBlock.Text = "Login failed!";
 }
 ClearTextboxes();
}

private void SaveButton_Click(object sender, RoutedEventArgs e)
{
 PasswordVaultHelper.SavePasswordToVault(UsernameTextBox.Text, PasswordTextBox.Password);

 ResultTextBlock.Text = "Credentials saved!";
 ClearTextboxes();
}

private void ClearButton_Click(object sender, RoutedEventArgs e)
{
 ClearTextboxes();
 ResultTextBlock.Text = String.Empty;
}

Chapter 8 ■ Data ManageMent

252

private void ClearTextboxes()
{
 UsernameTextBox.Text = String.Empty;
 PasswordTextBox.Password = String.Empty;
}

PasswordVaultHelper.cs
public class PasswordVaultHelper
{
 private static PasswordVault vault =
 new Windows.Security.Credentials.PasswordVault();

 public static IList<PasswordCredential> LoadPasswordVault()
 {
 //Load all credentials
 IReadOnlyList<PasswordCredential> creds = vault.RetrieveAll();

 return creds.ToList<PasswordCredential>();
 }

 public static bool CheckPassword(string username, string password)
 {
 bool res = false;

 try
 {
 IReadOnlyList<PasswordCredential> creds = vault.FindAllByUserName(username);

 foreach (PasswordCredential cred in creds)
 {
 cred.RetrievePassword();
 res = cred.Password == password;
 }
 }
 catch
 {
 //do nothing
 }

 return res;
 }

 public static void SavePasswordToVault(string username, string password)
 {
 LoadPasswordVault();

 PasswordCredential cred = new PasswordCredential("BW8AGU", username, password);

 vault.Add(cred);
 }
}

Chapter 8 ■ Data ManageMent

253

VB

PasswordVault.xaml.vb
Private Sub LoginButton_Click(sender As Object, e As RoutedEventArgs)
 If PasswordVaultHelper.CheckPassword(UsernameTextBox.Text, PasswordTextBox.Password) Then
 ResultTextBlock.Text = "Login succeeded!"
 Else
 ResultTextBlock.Text = "Login failed!"
 End If
 ClearTextboxes()
End Sub

Private Sub SaveButton_Click(sender As Object, e As RoutedEventArgs)
 PasswordVaultHelper.SavePasswordToVault(UsernameTextBox.Text, PasswordTextBox.Password)

 ResultTextBlock.Text = "Credentials saved!"
 ClearTextboxes()
End Sub

Private Sub ClearButton_Click(sender As Object, e As RoutedEventArgs)
 ClearTextboxes()
 ResultTextBlock.Text = [String].Empty
End Sub

Private Sub ClearTextboxes()
 UsernameTextBox.Text = [String].Empty
 PasswordTextBox.Password = [String].Empty
End Sub

PasswordVaultHelper.vb
Public Class PasswordVaultHelper
 Private Shared vault As PasswordVault = New Windows.Security.Credentials.PasswordVault()

 Public Shared Function LoadPasswordVault() As IList(Of PasswordCredential)
 'Load all credentials
 Dim creds As IReadOnlyList(Of PasswordCredential) = vault.RetrieveAll()

 Return creds.ToList()
 End Function

 Public Shared Function CheckPassword(username As String, password As String) As Boolean
 Dim res As Boolean = False

 Try
 Dim creds As IReadOnlyList(Of PasswordCredential) = vault.FindAllByUserName(username)

 For Each cred As PasswordCredential In creds
 cred.RetrievePassword()
 res = cred.Password = password
 Next
 'do nothing

Chapter 8 ■ Data ManageMent

254

 Catch
 End Try

 Return res
 End Function

 Public Shared Sub SavePasswordToVault(username As String, password As String)
 LoadPasswordVault()

 Dim cred As New PasswordCredential("BW8AGU", username, password)

 vault.Add(cred)
 End Sub
End Class

The Credential Locker also allows you to store multiple credentials, and it’s possible to set a default one using the
Default property in the PasswordCredential.Properties collection. Besides, you can share credentials across apps
using the ApplicationSuiteId property.

Working with Single Sign-On
Many social networks or picture-sharing web sites provide OAuth or Open ID protocols. Using these protocols with
single sign-on (SSO), you can avoid re-typing passwords each time you switch between devices. In a Windows Store
app, the WebAuthenticationBroker class handles this mechanism without any further interaction by users. Table 8-4
shows the steps to set SSO for a Windows Store app on both the developer and online provider sides.

Table 8-4. SSO Configuration Steps

SSO for
Developers

1. Use the WebAuthenticationBroker.AuthenticateAsync(WebAuthenticationOptions options,
Uri requestUri) method to automatically generate a callbackUri checking and merging the
value of the app’s package security identifier SID with ms-app://.

2. Retrieve your app’s SID using the WebAuthenticationBroker.
GetCurrentApplicationCallbackUri method.

3. Use the ms-app://<app’s-sid> to register your app with your online provider(*).

4. Use the WebAuthenticationOptions.SilentMode flag to prevent the visualization of any login
dialog box from the online provider.

SSO for Online
Providers

1. Permit apps to register the ms-app:// scheme as its redirect URI.

2. Allow the app to use only registered redirect URIs.

3. Use the protocol flows that don’t require implicit grants (e.g., OAuth 2.0).

(*): The ms-app URI can be found on the Developer Portal under the “Manage your cloud services” setting and
then “Application Authentication” under Advanced Features.

Let’s have a quick look at the WebAuthenticationBroker class. In the following code, you access Facebook and
send a post. Remember that you must register the app in the Facebook Developer page using this simple tutorial:
https://developers.facebook.com/docs/appcenter/.

https://developers.facebook.com/docs/appcenter/

Chapter 8 ■ Data ManageMent

255

C#

public static class FacebookHelper
{
 private const string _appID = "<your_app_id>"; //retrieved from Facebook app page
 private const string _url = "https://www.facebook.com/connect/login_success.html";
 private const string _wallUrl = "https://graph.facebook.com/<your_facebook_username>/feed";
 private static string _accessToken = String.Empty;
 private static string _urlAccessToken = String.Empty;

 public static async Task<bool> Authenticate()
 {
 bool res = false;

 try
 {
 String FacebookURL = "https://www.facebook.com/dialog/oauth?client_id=" +
 Uri.EscapeDataString(_appID) +
 "&redirect_uri=" + Uri.EscapeDataString(_url) +
 "&scope=read_stream,user_about_me,read_stream," +
 "publish_stream&display=popup&response_type=token";

 System.Uri requestUri = new Uri(FacebookURL);
 System.Uri callbackUri = new Uri(_url);

 WebAuthenticationResult WebAuthenticationResult =
 await WebAuthenticationBroker.AuthenticateAsync(
 WebAuthenticationOptions.None,
 requestUri,
 callbackUri);

 if (WebAuthenticationResult.ResponseStatus ==
 WebAuthenticationStatus.Success)
 {
 _urlAccessToken = WebAuthenticationResult.ResponseData.ToString();
 _accessToken = _urlAccessToken.Substring(_urlAccessToken.IndexOf('=') + 1);
 }
 else if (WebAuthenticationResult.ResponseStatus ==
 WebAuthenticationStatus.ErrorHttp)
 {
 throw new Exception("HTTP Error: " +
 WebAuthenticationResult.ResponseErrorDetail.ToString());
 }
 else
 {
 throw new Exception("Error: " +
 WebAuthenticationResult.ResponseStatus.ToString());
 }

 res = true;
 }

https://www.facebook.com/connect/login_success.html
https://graph.facebook.com/%3Cyour_facebook_username%3E/feed
https://www.facebook.com/dialog/oauth?client_id

Chapter 8 ■ Data ManageMent

256

 catch (Exception Error)
 {
 //log the error somewhere
 }

 return res;
 }

 public static async Task<string> PostOnFacebook(string text)
 {
 string res = String.Empty;

 try
 {
 var client = new HttpClient();

 // Create the HttpContent for the form to be posted.
 var requestContent = new FormUrlEncodedContent(new[] {
 new KeyValuePair<string, string>("message", text)
 });

 // Get the response.
 HttpResponseMessage response = await client.PostAsync(
 "https://graph.facebook.com/<your_facebook_username>/feed?access_token=" + _accessToken,
 requestContent);

 // Get the response content.
 HttpContent responseContent = response.Content;

 // Get the stream of the content.
 using (var reader = new StreamReader(await responseContent.ReadAsStreamAsync()))
 {
 // Write the output.
 res = reader.ReadToEnd();
 }
 }
 catch (Exception ex)
 {
 //log the error somewhere
 res = ex.Message;
 }

 return res;
 }
}

FacebookAuth.xaml.cs
private async void Authenticate()
{
 bool res = await FacebookHelper.Authenticate();

https://graph.facebook.com/%3Cyour_facebook_username%3E/feed?access_token

Chapter 8 ■ Data ManageMent

257

 if (!res)
 {
 ResultTextBlock.Text = "Something went wrong!";
 }
}

private void PostButton_Click(object sender, RoutedEventArgs e)
{
 Authenticate();

 PostIt();
}

private async void PostIt()
{
 ResultTextBlock.Text = await FacebookHelper.PostOnFacebook(MessageTextBox.Text);
}

VB

FacebookHelper.vb
Public NotInheritable Class FacebookHelper
 Private Sub New()
 End Sub
 Private Const _appID As String = "<your_app_id>"
 'retrieved from Facebook app page
 Private Const _url As String = "https://www.facebook.com/connect/login_success.html"
 Private Const _wallUrl As String = "https://graph.facebook.com/<your_facebook_username>/feed"
 Private Shared _accessToken As String = [String].Empty
 Private Shared _urlAccessToken As String = [String].Empty

 Public Shared Async Function Authenticate() As Task(Of Boolean)
 Dim res As Boolean = False

 Try
 Dim FacebookURL As [String] = "https://www.facebook.com/dialog/oauth?client_id=" +
 Uri.EscapeDataString(_appID) + "&redirect_uri=" + Uri.EscapeDataString(_url) +
 "&scope=read_stream,user_about_me,read_stream," +
 "publish_stream&display=popup&response_type=token"

 Dim requestUri As System.Uri = New Uri(FacebookURL)
 Dim callbackUri As System.Uri = New Uri(_url)

 Dim WebAuthenticationResult As WebAuthenticationResult =
 Await WebAuthenticationBroker.AuthenticateAsync(WebAuthenticationOptions.None,
requestUri, callbackUri)

 If WebAuthenticationResult.ResponseStatus = WebAuthenticationStatus.Success Then
 _urlAccessToken = WebAuthenticationResult.ResponseData.ToString()
 _accessToken = _urlAccessToken.Substring(_urlAccessToken.IndexOf("="c) + 1)

https://www.facebook.com/connect/login_success.html
https://graph.facebook.com/%3Cyour_facebook_username%3E/feed
https://www.facebook.com/dialog/oauth?client_id

Chapter 8 ■ Data ManageMent

258

 ElseIf WebAuthenticationResult.ResponseStatus = WebAuthenticationStatus.ErrorHttp Then
 Throw New Exception("HTTP Error: " + WebAuthenticationResult.ResponseErrorDetail.
ToString())
 Else
 Throw New Exception("Error: " + WebAuthenticationResult.ResponseStatus.ToString())
 End If

 res = True
 'log the error somewhere
 Catch [Error] As Exception
 End Try

 Return res
 End Function

 Public Shared Async Function PostOnFacebook(text As String) As Task(Of String)
 Dim res As String = [String].Empty

 Try
 Dim client = New HttpClient()

 ' Create the HttpContent for the form to be posted.
 Dim requestContent = New FormUrlEncodedContent(New () {
 New KeyValuePair(Of String, String)("message", text)})

 ' Get the response.
 Dim response As HttpResponseMessage = Await client.PostAsync(
Convert.ToString("https://graph.facebook.com/<your_facebook_username>/feed?access_token=") & _
accessToken, requestContent)

 ' Get the response content.
 Dim responseContent As HttpContent = response.Content

 ' Get the stream of the content.
 Using reader = New StreamReader(Await responseContent.ReadAsStreamAsync())
 ' Write the output.
 res = reader.ReadToEnd()
 End Using
 Catch ex As Exception
 'log the error somewhere
 res = ex.Message
 End Try

 Return res
 End Function
End Class

FacebookAuth.xaml.vb
Private Async Sub Authenticate()
 Dim res As Boolean = Await FacebookHelper.Authenticate()

https://graph.facebook.com/%3Cyour_facebook_username%3E/feed?access_token

Chapter 8 ■ Data ManageMent

259

 If Not res Then
 ResultTextBlock.Text = "Something went wrong!"
 End If
End Sub

Private Sub PostButton_Click(sender As Object, e As RoutedEventArgs)
 Authenticate()

 PostIt()
End Sub

Private Async Sub PostIt()
 ResultTextBlock.Text = Await FacebookHelper.PostOnFacebook(MessageTextBox.Text)
End Sub

Calling the method Authenticate() will open up Facebook login form (Figure 8-37).

Figure 8-37. Facebook login pop-up

Managing User Contacts
The Windows Store API provides an entire namespace to manage contacts: the Windows.ApplicationModel.Contacts
namespace. With it you can easily select one or more contacts from your contacts and retrieve information that you
need. Figure 8-38 shows the main classes inside the namespace.

Chapter 8 ■ Data ManageMent

260

The main class is ContactPicker. It has the same functionality of the FilePicker classes; the only difference that
instead of files, you can select contacts.

Before launch, use the PickSingleContactAsync() or PickMultipleContactsAsync() method to show the
picker. It’s suggested to set a few properties, such as the following:

•	 CommitButtonText, to help the user to confirm selection

•	 SelectionMode, to set what kind of information you need to retrieve. It allows
ContactSelectionMode enumeration values.

Figure 8-38. Windows.ApplicationModel.Contacts main classes

Chapter 8 ■ Data ManageMent

261

•	 Contacts, to select the entire contact

•	 Fields, to select just certain fields

•	 DesiredFields, to set what fields you want to use

The •	 Add() class method accepts as an input a KnownContactField. It allows multiple field
declarations, filtering the contact search. For example, if you set just one field, all contacts with
that field filled are considered. If you set more than one field, all contacts with any of these
filled are considered.

Here is how to use the ContactPicker class.

C#

ContactPicker.xaml.cs
private void ContactPickerButton_Click(object sender, RoutedEventArgs e)
{
 GetContact();
}

private async void GetContact()
{
 //Create a new instance of ContactPicker class
 var contactPicker = new Windows.ApplicationModel.Contacts.ContactPicker();
 contactPicker.CommitButtonText = "Select";

 //Set the selection mode
 contactPicker.SelectionMode = ContactSelectionMode.Fields;

 //Set desired fields
 contactPicker.DesiredFieldsWithContactFieldType.Add(ContactFieldType.Email);

 //Open the ContactPicker
 Contact contact = await contactPicker.PickContactAsync();

 if (contact != null)
 {
 ResultTextBlock.Text = contact.FirstName;
 }
}

VB

Private Sub ContactPickerButton_Click(sender As Object, e As RoutedEventArgs)
 GetContact()
End Sub

Private Async Sub GetContact()
 'Create a new instance of ContactPicker class
 Dim contactPicker = New Windows.ApplicationModel.Contacts.ContactPicker()
 contactPicker.CommitButtonText = "Select"

Chapter 8 ■ Data ManageMent

262

 'Set the selection mode
 contactPicker.SelectionMode = ContactSelectionMode.Fields

 'Set desired fields
 contactPicker.DesiredFieldsWithContactFieldType.Add(ContactFieldType.Email)

 'Open the ContactPicker
 Dim contact As Contact = Await contactPicker.PickContactAsync()

 If contact IsNot Nothing Then
 ResultTextBlock.Text = contact.FirstName
 End If
End Sub

Figure 8-39 shows an example of ContactPicker (for privacy, most parts of the image are blanked).

Conclusion
In this chapter, you took a deep look into data management for your Windows Store app. Probably most of the apps
you will develop are data-centric, so you must have a good understanding of these concepts to create a functional
application with a great user experience.

Figure 8-39. ContactPicker window

263

Chapter 9

Listening to the World

The first thing that a user sees after the installation of your app is the tile. This is a static representation of your app on
the Start screen and it allows the user to start it; this is true until you do not evolve a static tile in a live tile. At this point
of the book you know that Windows 8 keeps only one app active at a time; therefore you should use live tiles to give
real-time feedback to the user about the state of the app. You can update app tiles in one of two ways:

From your app code•	

Using push notifications•	

In this chapter, we will talk about different types of notifications. Most of them are configured with an XML template
that we will introduce in specific sections. The scope of this chapter is to explain how to choose the best template.

Notifications Overview
There are several ways to notify the user when the application is not in the foreground.

•	 Live Tiles: Useful to provide information when the user puts your app tile on the Start screen.

•	 Badge Notification: Provides a way to notify users about the status of your application.

•	 Lock Screen Notification: Useful to show textual information on the lock screen.

•	 Toast Notification: Pops up a message that shows information about something that happened
in your application (generated from local code or from a remote event).

If the user pins your app on the Start screen, you can provide information through live tiles.

Live Tiles
A live tile is a showcase for your app, and just like a shop, the showcase should persuade people to come in and buy
something. For this reason, a live tile must be well designed, providing a good set of helpful information for the user.
When we say “helpful information,” we mean content that the user will find valuable.

The more interesting and fresh the content shown in your live tile is, the more the user will want to touch or click it.
This must be a rule when you design your live tile. This rule can be explained in the following way:

•	 More interesting: You must show information related to the user’s interests, which can be
expanded upon in your app.

•	 Fresh: All the information that you put in your live tile must be current. For example, a weather
app should update the live tile to show the forecast for the next day. If the user sees the
forecast for three days ago, he/she will reconsider the use of your app.

Chapter 9 ■ Listening to the WorLd

264

•	 Content: Choosing what to put inside your live tile is probably the hardest part of its design.
The content must be clean, quick to understand, and well positioned. Happily, you can find
many templates ready to use for all tile sizes in the framework.

•	 More the user will want to touch or click it: This is not difficult to understand. If your live tile
follows the guidelines discussed here, there is a greater possibility that the user will like your
app, thereby promoting its tile to a prominent place on their Start screen and using your app
frequently.

We mentioned the square and wide tile sizes. If you look at Figure 9-1 you can see four tile formats.

The weather app, which shows information about forecast and temperature, is in a •	 large tile.

The desktop uses a •	 medium tile.

The travel app is in a •	 wide tile.

Skype, IE, VS, and Blend are in •	 small tiles.

Figure 9-1. Example of tile sizes

When choosing which tile size you want to support for your app, note that a wide format is useful for a high level
of information, while a square tile is good for a small amount of data. If your app does not support live tiles, you could
choose to support at most the square tile in order to avoid wasting space on the Start screen. Wide and large tiles are
best suited to be a live tile because they offer a lot of space for information.

You can declare which size of tile your app will support by modifying the app manifest. As you can see in
Figure 9-2, you can configure multiple tile sizes; for every size you can provide an image (used as default tile content),
and for each image you provide you enable the associated size. An exception is made for the small logo; if you don’t
provide an image, Windows will scale the medium image. Because Windows runs on multiple types of devices, and
every device has its own display resolution, in some scenarios Windows must scale your icon; for this reason you can
supply images to be used in that situation.

Chapter 9 ■ Listening to the WorLd

265

In Figure 9-2, you can see that we highlighted three areas. In area 1, you can choose which asset you want to
configure. In area 2, you can choose the text used as the short name on the tile of your application. Area 3 is contextual
to the item that you selected in area 1, and here you can configure the image to be used as a logo.

Every tile size has options for formatting: text only, images only, and peek. Peek templates are dynamic; this
means that when you use it, the tile will cycle between two frames—one with primary content and one with additional
information. An appropriate scenario for a peek template could be an e-mail app that shows the sender and subject in
a primary frame and part of the body in a secondary frame.

Every template is defined via an XML template, and is identified by a value in the TileTemplateType
enumeration. You can find details about these templates in Appendix A, where you can see examples of them. When
you work with live tiles you use mainly two classes, TileUpdateManager and TileNotification, both of which are
shown in Figure 9-3.

Figure 9-2. Default tile configuration

Chapter 9 ■ Listening to the WorLd

266

TileUpdater is the entry point for live tiles capability. To get an instance of TileUpdater you must invoke
TileUpdateManger’s methods CreateTileUpdaterForApplication or CreateTileUpdaterForSecondaryTile. With
TileUpdater you have complete control of your app tiles (primary and secondary). We will give particular attention
to the Update method that accepts a TileNotification instance as a parameter. This method updates the actual
layout of your live tiles. If you enable the notification queue, your update will be queued; otherwise your update will
overwrite every other update that you’ve made.

In your example, you’ll use the TileSquare150x150PeekImageAndText02 template to update your app tile.
The XML content for this template is as follows:

<tile>
 <visual version="2">
 <binding template="TileSquare150x150PeekImageAndText02" fallback="TileSquarePeekImageAndText02">
 <image id="1" src="" />
 <text id="1"></text>
 <text id="2"></text>
 </binding>
 </visual>
</tile>

Figure 9-3. Live tile classes

Chapter 9 ■ Listening to the WorLd

267

Inside your code, you will retrieve the XmlDocument associated with the template, then you will update
information about text and image, and then you will update the tile of your app.

C#
private void ShowTestNotification(object sender, RoutedEventArgs e)
 {
 var selectedTemplate = TileTemplateType. TileSquare150x150PeekImageAndText02;
 var template = TileUpdateManager.GetTemplateContent(selectedTemplate);

 var textItems = template.GetElementsByTagName("text");
 textItems[0].AppendChild(template.CreateTextNode("Title"));
 textItems[1].AppendChild(template.CreateTextNode("SubTitle"));
 var imgItems = template.GetElementsByTagName("image");
 ((XmlElement)imgItems[0]).SetAttribute("src", "ms-appx:///assets/picture.png");

 var updater = TileUpdateManager.CreateTileUpdaterForApplication();
 updater.Update(new TileNotification(template));
 }

VB
Private Sub ShowTestNotification(sender As Object, e As RoutedEventArgs)
 Dim selectedTemplate = TileTemplateType.TileSquare150x150PeekImageAndText02
 Dim template = TileUpdateManager.GetTemplateContent(selectedTemplate)

 Dim textItems = template.GetElementsByTagName("text")
 textItems(0).AppendChild(template.CreateTextNode("Title"))
 textItems(1).AppendChild(template.CreateTextNode("SubTitle"))
 Dim imgItems = template.GetElementsByTagName("image")
 DirectCast(imgItems(0), XmlElement).SetAttribute("src", "ms-appx:///assets/picture.png")

 Dim updater = TileUpdateManager.CreateTileUpdaterForApplication()
 updater.Update(New TileNotification(template))
End Sub

Badge Notification
A badge notification is a little summary shown on your app tile in the bottom right corner. This summary can be
numeric, with values from 1 to 99 (every number over 99 appears as 99+), or graphic, using a list of predefined glyphs
(shown in Table 9-1). This type of information, for example, would be useful for a messaging application that needs to
show how many new messages the user has received, or to alert the user that something has happened.

Chapter 9 ■ Listening to the WorLd

268

Table 9-1. Glyph Values

Value Icon

Activity

Alert

Available

Away

Busy

NewMessage

Paused

Playing

Unavailable

Error

Attention

Note ■ glyph notification is based on a string value (and not an enumeration) to recognize which icon must be applied;
for this reason, pay attention when you specify which value should be used.

Chapter 9 ■ Listening to the WorLd

269

Badge notification, just like other notification types, is based on an XML template that contains only one element
badge with one attribute named value, whose value depends on what type of badge you are going to use. For
example, <badge value="25"/> prepares a numeric badge notification, as shown in Figure 9-4. You can change the
value to one in Table 9-1 to show an associated image.

Figure 9-4. Badge notification sample

To update your app tile the core class is BadgeUpdater and it can call the methods CreateBadgeUpdaterForApplication
and CreateBadgeUpdaterForSecondaryTile of BadgeUpdateManager. This class exposes the method GetTemplateContent
that can be used to retrieve the XmlDocument to be used for the update.

C#
var template = BadgeUpdateManager.GetTemplateContent(BadgeTemplateType.BadgeNumber);
(template.GetElementsByTagName("badge")[0] as XmlElement).SetAttribute("value", 10);
BadgeUpdater updater = BadgeUpdateManager.CreateBadgeUpdaterForApplication();
updater.Update(new BadgeNotification(template));

VB
Dim template = BadgeUpdateManager.GetTemplateContent(BadgeTemplateType.BadgeNumber)
TryCast(template.GetElementsByTagName("badge")(0), XmlElement).SetAttribute("value", 10)
Dim updater As BadgeUpdater = BadgeUpdateManager.CreateBadgeUpdaterForApplication()
updater.Update(New BadgeNotification(template))

Lock Screen Notification
The presence of a lock screen is a privilege that the user gives to your app. He does it because the data in your app is
very important to him and he/she wants to be notified in real time about every update.

Lock screen notification is closely linked to badge notification and background tasks; an app that uses badge updates
and is chosen by the user to stay in lock screen automatically shows the same notification inside the tile and in lock screen.

For an app to stay in lock screen requires that background task are allowed, because there is no reason that
your apps updates its badge directly within the app. For this reason you should use one of the following types of
background tasks:

Control Channel•	

Push Notification•	

Timer•	

Chapter 9 ■ Listening to the WorLd

270

To use lock screen notification, you must declare it in the Application tab of your application manifest, as shown
in Figure 9-5.

Figure 9-6. Badge logo configuration

Figure 9-5. Lock screen notification capability

To do it correctly you must do at least two things:

Declare a background task of one of the types listed above.•	

Provide a badge logo in the Visual Assets tab, as show in Figure •	 9-6.

These settings will allow the code shown for badge notification to update the badge on the Start screen when
the user sets your app as lock screen badge.

Chapter 9 ■ Listening to the WorLd

271

Toast Notifications
A toast notification is an app-specific pop-up shown regardless of what app is in foreground and can be accompanied by
a system sound. This type of notification provides quick access to content in an app. When you use a toast notification,
you must keep in mind that is an invasive notification; for this reason you should avoid annoying the user with unwanted
messages.

There are two types of toast notifications:

•	 Standard Toast: This type of notification appears for seven seconds in the top-right corner
of the screen (top-left for right-to-left languages). This type of notification is useful for IM
applications or an organizer app for an incoming invitation.

•	 Long-Duration Toast: This type of notification is really bothersome because it appears for
25 seconds, looping the sound associated with it. This type of notification should be used only
in cases where it is necessary to force the user to pay attention to what is happening (such as
an invitation to accept an incoming call in a VOIP app).

A toast notification is just like other notifications: it uses an XML template that can be selected from a catalog
where every template is identified by a value in ToastTemplateType enumeration. In Table A-2 of Appendix A you can
see all the templates available for toast notifications along with the relative code to be used.

Sending Notifications
There are two ways to update a tile: using the Windows.UI.Notifications namespace or using push notifications.
In previous sections, you’ve seen how to use Windows.UI.Notifications namespace. In this section, you’ll see how to
use push notifications.

Using a Push Notification
Using a push notification is slightly more complicated than the other notification methods. The core part of the
operating system responsible for push notifications is named the Notification Platform (composed by three
DLLs: wpnapps.dll for Windows Push Notification Apps, wpncore.dll for Windows Push Notification Core, and
wpnprv.dll for Windows Push Notification Platform Connection Provider). The notification platform inside the
system is responsible for interacting with an app to provide a push notification channel, and to notify your app that
something has been received on it. A push notification channel is nothing more than an URI exposed by Windows
Push Notification Service (WNS), which is the cloud part (managed by Microsoft) of the notification platform, and is
responsible for collecting incoming messages sent to a specific channel and pushing them to the device.

Figure 9-7 is a simple diagram that shows the sequence of steps that are required to send a push notification.

 1. Your app requests a push notification channel from the Notification Platform.

 2. The Notification Platform asks WNS for a new channel (if the older one has been
dropped).

 3. The Notification Platform answers your app and provides an URI that identifies the
channel.

 4. Your app interacts with your service in the cloud that is responsible for storing the
information that identifies the device and associates it with the data related to the user.

 5. When something must be notified, your device authenticates itself on WNS and sends
the message.

Chapter 9 ■ Listening to the WorLd

272

In the class diagram in Figure 9-8, you can see all classes involved in the Push Notification feature.
PushNotificationChannelManager is the static class that must be used to create a new push notification channel.

 6. WNS looks for the device if connected.

a. If not, it manages a queue of five tile notifications and one badge notification,
if the queue is enabled.

b. If yes, it sends the notification to your app through the Notification Platform.

Figure 9-7. Push notification working schema

Chapter 9 ■ Listening to the WorLd

273

Figure 9-8. PushNotification namespace

Note ■ every channel expires after 30 days; for this reason you must keep track of the channel in order to update your
service data if something changes.

When your app contacts your service to store a channel, remember to use a secure connection to avoid security
issues. Every notification channel URI uses the domain notify.windows.com, and if your app receives a different
domain, you must avoid sending data to it or you may compromise user privacy.

http://notify.windows.com/

Chapter 9 ■ Listening to the WorLd

274

As discussed, your service must authenticate itself with WNS. This process is composed of three steps, where the
first is passive because it doesn’t depend on WNS or your service code but instead a registration on Window Store
Dashboard.

 1. You register your app in the Windows Store Dashboard in order to retrieve a Package
security identifier (SID) and a secret key that you will use to authenticate on the server.

 2. Your cloud service sends its credentials (Package SID, and key) to WNS using HTTPS
protocol according to OAuth 2.0 protocol (you’ll see how later).

 3. The service answers with an access token that your service can use until it expires.

Sending a Tile Notification
In this section, we’ll translate the concept introduced above into code. The code will be separated in two parts:

The client side code that registers a notification channel and sends it to your cloud service.•	

The server side code that authenticates with WNS and prepares a tile notification that is •	
received by the app, thereby updating the app tile.

Client Side

In your App class OnLaunched event handler you’ll call a RegisterPushNotifications method that is responsible for
creating a notification channel.

C#
private async void RegisterPushNotifications()
{
 var channel = await PushNotificationChannelManager
 .CreatePushNotificationChannelForApplicationAsync();
 channel.PushNotificationReceived += OnPushNotificationReceived;
 NotificationHelper.StoreNotificationChannel(channel.Uri);
}

VB
Private Async Sub RegisterPushNotifications()
 Dim channel = Await PushNotificationChannelManager
 .CreatePushNotificationChannelForApplicationAsync()
 AddHandler channel. PushNotificationReceived, AddressOf Me. OnPushNotificationReceived
 NotificationHelper.StoreNotificationChannel(channel.Uri)
End Sub

Server Side

On the server side, you’ll write code that will accomplish the following objectives:

Authenticate on WNS and get an access token.•	

Prepare and send a request.•	

To authenticate on WNS, you’ll create a class named WNSAuthToken that will contain the authentication token
deserialized via the JSON deserializer inside the GetAccessToken method contained in WNSAuthHelper.

Chapter 9 ■ Listening to the WorLd

275

C#
 [DataContract]
 public class WNSAuthToken
 {
 [DataMember(Name = "access_token")]
 public string AccessToken { get; set; }
 [DataMember(Name = "token_type")]
 public string TokenType { get; set; }
 }

public WNSAuthToken GetAccessToken(string secret, string sid)
{
 var urlEncodedSecret = HttpUtility.UrlEncode(secret);
 var urlEncodedSid = HttpUtility.UrlEncode(sid);
 var body = String
 .Format(
 "grant_type=client_credentials&client_id={0}&client_secret={1}&scope=notify.windows.com",
 urlEncodedSid,
 urlEncodedSecret);

 string response;
 using (var client = new WebClient())
 {
 client.Headers.Add("Content-Type", "application/x-www-form-urlencoded");
 response = client.UploadString("https://login.live.com/accesstoken.srf", body);
 }

 using (var ms = new MemoryStream(Encoding.Unicode.GetBytes(response)))
 {
 var ser = new DataContractJsonSerializer(typeof(WNSAuthToken));
 var wnsAuthToken = (WNSAuthToken)ser.ReadObject(ms);
 return wnsAuthToken;
 }
}

VB
<DataContract> _
Public Class WNSAuthToken
 <DataMember(Name := "access_token")> _
 Public Property AccessToken() As String
 Get
 Return m_AccessToken
 End Get
 Set
 m_AccessToken = Value
 End Set
 End Property

http://notify.windows.com/
https://login.live.com/accesstoken.srf

Chapter 9 ■ Listening to the WorLd

276

 Private m_AccessToken As String
 <DataMember(Name := "token_type")> _
 Public Property TokenType() As String
 Get
 Return m_TokenType
 End Get
 Set
 m_TokenType = Value
 End Set
 End Property
 Private m_TokenType As String
End Class

Public Function GetAccessToken(secret As String, sid As String) As WNSAuthToken
 Dim urlEncodedSecret = HttpUtility.UrlEncode(secret)
 Dim urlEncodedSid = HttpUtility.UrlEncode(sid)
 Dim body = [String].Format("grant_type=client_credentials&client_id={0}&client_
secret={1}&scope=notify.windows.com", urlEncodedSid, urlEncodedSecret)

 Dim response As String
 Using client = New WebClient()
 client.Headers.Add("Content-Type", "application/x-www-form-urlencoded")
 response = client.UploadString("https://login.live.com/accesstoken.srf", body)
 End Using

 Using ms = New MemoryStream(Encoding.Unicode.GetBytes(response))
 Dim ser = New DataContractJsonSerializer(GetType(WNSAuthToken))
 Dim wnsAuthToken = DirectCast(ser.ReadObject(ms), WNSAuthToken)
 Return wnsAuthToken
 End Using
End Function

These two classes are useful for the remaining part of the code, which is responsible for sending the notification
to the device. You define a method named NotifyNextAppointment that uses GetAccessToken method to retrieve the
access token to use WNS.

C#
public void NotifyNextAppointment(object sender, RoutedEventArgs e)
 {
 try
 {
 SendWideTileAppointmentNotification();
 }
 catch (WebException webException)
 {
 string exceptionDetails = webException.Response.Headers["WWW-Authenticate"];
 if (exceptionDetails.Contains("Token expired"))
 {
 GetAccessToken();
 SendWideTileAppointmentNotification();
 }

http://notify.windows.com/
https://login.live.com/accesstoken.srf

Chapter 9 ■ Listening to the WorLd

277

 else
 {
 // Log the response
 }
 }
 catch (Exception ex)
 {
 //manage the exception
 }

 }

 private void SendWideTileAppointmentNotification()
 {
 accessToken = GetAccessToken();
 string notificationType = "wns/tile";
 HttpWebRequest request = HttpWebRequest.Create(channelUri) as HttpWebRequest;
 request.Method = "POST";

 request.Headers.Add("X-WNS-Type", notificationType);
 request.Headers.Add("Authorization", String.Format("Bearer {0}",
accessToken.AccessToken));

 string xml = NotificationsHelper.PrepareWideTileNotification();
// THIS METHOD CREATES THE XML NOTIFICATION

 byte[] contentBytes = Encoding.UTF8.GetBytes(xml);

 using (Stream requestStream = request.GetRequestStream())
 requestStream.Write(contentBytes, 0, contentBytes.Length);
 string test = string.Empty;
 using (HttpWebResponse webResponse = (HttpWebResponse)request.GetResponse())
 test = webResponse.StatusCode.ToString();
 }

 private WNSAuthToken GetAccessToken()
 {
 var sid = WNSAuthHelper.GetAppSid();
 var secret = WNSAuthHelper.GetAppSecretKey();

 var urlEncodedSecret = HttpUtility.UrlEncode(secret);
 var urlEncodedSid = HttpUtility.UrlEncode(sid);

 var body = String.Format("grant_type=client_credentials&client_id={0}&client_
secret={1}&scope=notify.windows.com", urlEncodedSid, urlEncodedSecret);

http://notify.windows.com/

Chapter 9 ■ Listening to the WorLd

278

 string response;
 using (var client = new WebClient())
 {
 client.Headers.Add("Content-Type", "application/x-www-form-urlencoded");
 response = client.UploadString("https://login.live.com/accesstoken.srf", body);
 }

 using (var ms = new MemoryStream(Encoding.Unicode.GetBytes(response)))
 {
 var ser = new DataContractJsonSerializer(typeof(WNSAuthToken));
 var oAuthToken = (WNSAuthToken)ser.ReadObject(ms);
 return oAuthToken;
 }
}

VB
Public Sub NotifyNextAppointment(sender As Object, e As RoutedEventArgs)
 Try
 SendWideTileAppointmentNotification()
 Catch webException As WebException
 Dim exceptionDetails As String = webException.Response.Headers("WWW-Authenticate")
 If exceptionDetails.Contains("Token expired") Then
 GetAccessToken()
 SendWideTileAppointmentNotification()
 ' Log the response
 Else
 End If
 'manage the exception
 Catch ex As Exception
 End Try

End Sub

Private Sub SendWideTileAppointmentNotification()
 accessToken = GetAccessToken()
 Dim notificationType As String = "wns/tile"
 Dim request As HttpWebRequest = TryCast(HttpWebRequest.Create(channelUri), HttpWebRequest)
 request.Method = "POST"

 request.Headers.Add("X-WNS-Type", notificationType)
 request.Headers.Add("Authorization", [String].Format("Bearer {0}", accessToken.AccessToken))

 Dim xml As String = NotificationsHelper.PrepareWideTileNotification()

 Dim contentBytes As Byte() = Encoding.UTF8.GetBytes(xml)

 Using requestStream As Stream = request.GetRequestStream()
 requestStream.Write(contentBytes, 0, contentBytes.Length)
 End Using

https://login.live.com/accesstoken.srf

Chapter 9 ■ Listening to the WorLd

279

 Dim test As String = String.Empty
 Using webResponse As HttpWebResponse = DirectCast(request.GetResponse(), HttpWebResponse)
 test = webResponse.StatusCode.ToString()
 End Using
End Sub

Private Function GetAccessToken() As WNSAuthToken
 Dim sid = WNSAuthHelper.GetAppSid()
 Dim secret = WNSAuthHelper.GetAppSecretKey()

 Dim urlEncodedSecret = HttpUtility.UrlEncode(secret)
 Dim urlEncodedSid = HttpUtility.UrlEncode(sid)

 Dim body = [String].Format("grant_type=client_credentials&client_id={0}&client_
secret={1}&scope=notify.windows.com", urlEncodedSid, urlEncodedSecret)

 Dim response As String
 Using client = New WebClient()
 client.Headers.Add("Content-Type", "application/x-www-form-urlencoded")
 response = client.UploadString("https://login.live.com/accesstoken.srf", body)
 End Using

 Using ms = New MemoryStream(Encoding.Unicode.GetBytes(response))
 Dim ser = New DataContractJsonSerializer(GetType(WNSAuthToken))
 Dim oAuthToken = DirectCast(ser.ReadObject(ms), WNSAuthToken)
 Return oAuthToken
 End Using
End Function

Sending Other Notifications
The code shown in the previous section is useful for all types of notification; you can simply change the value of
notificationType accordingly to these values:

•	 wns/badge for badge notifications

•	 wns/tile (seen above) to send a tile notification

•	 wns/toast to send a toast notification

•	 wns/raw to trigger a background work item

This makes really simple to rapidly update the content in your application by choosing the appropriate template
for the notificationType chosen. Of course, for every update you think to send, you must remember to extract the
XML template from Windows 8.1 and send it from your cloud service.

Conclusion
In this chapter, we have introduced the code necessary to work with notifications. As you can see, the behavior of all
notification types is quite similar; for this reason, when you learn to use one of them, you know how to use all of them,
but you should never forget that every notification has its appropriate use.

http://notify.windows.com/
https://login.live.com/accesstoken.srf

281

Chapter 10

Accessibility and Globalization

Windows Store, discussed in the next chapter, is an online platform that allows developers to share and sell their apps.
This platform offers your app global exposure to people of different cultures, languages, points of view, disabilities,
and impediments. For this reason, if you are planning to expand your market to these people, you need to integrate
into your apps specific features. Planning for accessibility and globalization is a mandatory step!

WinRT already provides basic support features for these aspects. In this chapter we will explain through a simple
example how to integrate these features and prepare your apps for a global market.

Get Ready for Accessibility
The accessibility concept is directly linked to a user who suffers from a handicap or impediment that hinders everyday
tasks such as using a PC. These limitations can include issues with mobility, vision, color perception, hearing, speech,
cognition, and literacy. These limitations require using specific hardware or software linked to electronic devices like
a PC. Therefore, when planning to provide accessibility in your Windows Store app, you must consider the following:

Support for an interactive keyboard•	

Support for screen readers•	

Support for font customization, zooming (magnification), color, high-contrast settings•	

Luckily, XAML already has built-in support for these features, and they can be customized and extended.

Support for Assistive Technology
The medical equipment that helps people with disabilities accomplish everyday tasks usually tends to illustrate or
read what is shown inside a user interface. For this reason, all of the items inside a UI must support interaction with
the following:

On-screen keyboard software•	

Voice-recognition software•	

Screen readers•	

As mentioned, Windows Store apps have built-in support for these hardware/software instruments. For example,
every control inside a XAML page supports the Tab navigation or provides an “accessible name” that can be used
from the screen reader. Usually the value of this name is the inner text for controls. Sometimes this value needs to
be explicitly set using the AutomationProperties.Name field. Table 10-1 summarizes which controls have built-in
support for the accessible name and in which controls this property needs to be set.

Chapter 10 ■ aCCessibility and Globalization

282

Listing 10-1 shows an example of how to use AutomationProperties.Name.

Listing 10-1. AutomationProperties.Name

XAML
<StackPanel>
 <!-- Content property is used as accessible name -->
 <TextBlock Name="BuiltInSupport">This is an accessible name</TextBlock>
 <!-- This is an example of AutomationProperties.Name -->
 <TextBox AutomationProperties.Name="MyAccessibleName" Name="AccessibleNameTextBox" Width="100"/>
 <!-- This is an example of AutomationProperties.LabeledBy -->
 <TextBox
 AutomationProperties.LabeledBy="{Binding ElementName=BuiltInSupport}"
 Name="LabeledByTextBox" Width="100"/>
</StackPanel>

To fully support keyboard capabilities, all the controls inside a user interface must provide navigation through the
Tab key. Usually the navigation order is based on how the controls are added or listed in a XAML view, or how they are
programmatically added to a container. It is possible to override this setting using the TabIndex attribute, assigning
an incremental value corresponding to the order. If a control needs to be passed over the Tab key, IsEnabled or
IsTabStop properties must be set to False. Listing 10-2 shows an example.

Listing 10-2. TabIndex and IsTabStop Example

XAML
<StackPanel>
 <!-- Content property is used as accessible name -->
 <TextBlock Name="BuiltInSupport" TabIndex="1">This is an accessible name</TextBlock>
 <!-- This is an example of AutomationProperties.Name -->
 <TextBox AutomationProperties.Name="MyAccessibleName" Name="AccessibleNameTextBox" Width="100"
TabIndex="2" />
 <!-- This is an example of AutomationProperties.LabeledBy -->
 <TextBox
 AutomationProperties.LabeledBy="{Binding ElementName=BuiltInSupport}"
 Name="LabeledByTextBox" Width="100" IsTabStop="False" />
</StackPanel>

Table 10-1. Built-In Support for WinRT Controls

Element Description

Static Text Inner text (for example a TextBlock content property)

Images AutomationProperties.Name or AutomationProperties.LabeledBy

Form The accessible name must be linked to the Label associated to a specific control through
AutomationProperties.LabeledBy

Buttons and
links

If the button contains text, then the content is used. Otherwise, if the button contains an image, the
AutomationProperties.Name must be specified

Chapter 10 ■ aCCessibility and Globalization

283

In Listing 10-2, the third label won’t ever take focus using Tab key.
ItemsControls, also a Tab navigation feature, provides built-in navigation between shown data. This is reached

using directional arrows on the keyboard.
Sometimes is very helpful to provide shortcuts inside a user interface. There are two kinds of shortcuts:

•	 AccessKey, linked to a UI portion by a combination of Alt + letter key

•	 AcceleratorKey, linked to an app command by a combination of Ctrl + letter key

These shortcuts can be defined using the AutomationProperties.AccessKey and AutomationProperties.
AcceleratorKey attached properties, as shown in Listing 10-3.

Listing 10-3. AccessKey and AcceleratorKey Example

XAML
<StackPanel>
 <!-- This is an example of AutomationProperties.AccessKey -->
 <TextBox AutomationProperties.Name="MyAccessibleName" Name="AccessibleNameTextBox" Width="100"
TabIndex="2" ToolTipService.ToolTip="Shortcut key: Alt+P"
AutomationProperties.AccessKey="Alt P"
 />
 <Button x:Name="SubmitButton" Click="SubmitButton_Click"
 ToolTipService.ToolTip="Shortcut key: Ctrl+A"
 AutomationProperties.AcceleratorKey="Control A">
 <TextBlock>Submit</TextBlock>
 </Button>
</StackPanel>

Supporting High-Contrast Themes
High-contrast themes allow people with lower vision to identify controls on a user interface. Windows Store apps have
a built-in support for high-contrast themes because the default theme has the high-contrast support in it. If you need
to customize a theme, remember to check if support for high-contrast themes is present. If you use Blend to customize
a theme, it automatically generates a cloned theme for high-contrast support. You can also check programmatically if
a high-contrast theme is enabling by using the AccessibilitySettings class (Figure 10-1).

Figure 10-1. AccessibilitySettingsClass

Chapter 10 ■ aCCessibility and Globalization

284

There are two properties available in this class: HighContrast, which contains a value that indicates if
high-contrast feature is enabled, and HighContrastScheme, which contain the name of the high-contrast scheme.

Testing a Windows Store App for Accessibility
After your app provides all the features related to accessibility, you can take advantage of some tools to verify if these
functionalities are correctly implemented. Windows Software Development Kit for Windows 8.1 includes two tools
named Inspect and UI Accessibility Checker that can be found in <install_dir>\<Program Files>\Windows
Kits\8.1\bin\<version>.

Inspect allows you to verify accessible data in a UI element, reading available AutomationProperties
(Figure 10-2).

Figure 10-2. Inspect accessibility tool

UI Accessibility Checker (AccChecker) can be used to check if the app generates accessibility problems at
runtime. Once started, select the name of the application in the “Choose window from list” field, then select on the
right side what kind of verification routines need to be executed, and then click the Run Verification button. The
results will be display in a series of tabbed windows inside the tool (Figure 10-3).

Chapter 10 ■ aCCessibility and Globalization

285

Get Ready for Localization
Again, if you are planning to distribute your application to users in different cultures and languages, it is necessary to
provide localization for UI controls. There are few steps to follow.

Translate the UI resources•	

Convert the date and time format•	

Convert the number and currency format•	

Adapt layout and fonts for different languages•	

Use the Multilingual App Toolkit•	

The localization process is not simple, so it is best to use a global-ready format to simplify the process (if you
decide to distribute to a global market your app in the development stage).

Let’s start from resources.

Figure 10-3. UI Accessibility Checker window

Chapter 10 ■ aCCessibility and Globalization

286

Using UI Resources in Windows Store Apps
It’s a good practice to put strings shown in the user interface inside the resource file: this makes editing very simple.
Then the strings are ready to be referenced in the code or markup.

The first step is to set the Default Language property of a Windows Store app: double-click package.
appxmanifest in Visual Studio 2013 and find the Application UI tab. Type into the Default Language box en-US
(using the BCP-47 language tag, more info at tools.ietf.org/html/bcp47). This setting is used when no user
language or display language on the user machine is available inside the application (Figure 10-4).

Figure 10-5. Resources folder structure

Figure 10-4. How to set the default language in a Windows Store app

All the string resources are contained inside a resource file: to create an English-localized resource file these steps
need to be followed.

 1. Localize the Strings folder in the project root, and then add a subfolder named as the
BCP-47 language tag. Note that the project already has an en-US folder because it’s
the default language (Figure 10-5).

 2. Add a new item, selecting the “Resources File (.resw)” template from the list (Figure 10-6).
It is suggested to use the default name for the resource file (Resources.resw).

Chapter 10 ■ aCCessibility and Globalization

287

Finally, each localized string needs to be added to this file. After double-clicking Resources.resw, Visual Studio
2013 opens the Resource Editor. For each localized string, the following fields must be filled:

•	 Name: A unique name for the resource

•	 Value: The value for the resource

•	 Comment: A comment for the resource

It’s a good practice to always fill the comment field to simplify the translation process to other languages by other
people then the resource can be used inside the code (see Listing 10-4).

Listing 10-4. Use Resources Inside the Code

C#
var loader = new Windows.ApplicationModel.Resources.ResourceLoader();
var message = loader.GetString("WelcomeMessage");
VB
Dim loader = New Windows.ApplicationModel.Resources.ResourceLoader()
Dim message = loader.GetString("WelcomeMessage")

Figure 10-6. Resource File (.resw) item template

Chapter 10 ■ aCCessibility and Globalization

288

Another way to link a resource to a control is to use a pointed notation in the resource file. For example, to
insert text inside a TextBlock in Windows Store App UI with the x:Name equal to “WelcomeLabel”, you can add a new
resource using the syntax ControlId.ControlProperty in the Name field, as in Figure 10-7.

Figure 10-8. New localized resource file

Figure 10-9. Localized resource strings

Figure 10-7. How to define a resource for a control

Then you can set the x:UID field with the value of the x:Name, as shown in Listing 10-5.

Listing 10-5. Use Resources Inside Markup

XAML
<TextBlock x:Name="WelcomeLabel" x:Uid="WelcomeLabel"></TextBlock>

Now it is possible to add other languages to your Windows Store app by adding to the Resources folder a new
subfolder for the specific language. Figures 10-8 and 10-9 show the adding of another resource file already filled with
the value for the it-IT language.

To test the application in a different language, it is possible to change the display language on the development
machine in the Clock, Language and Region section of the Control Panel, as shown in Figure 10-10.

Chapter 10 ■ aCCessibility and Globalization

289

Note that the listed order is important: if the first language is not available in the application, the following
language is chosen as a display language replacement.

You can create more resource files for specific languages inside a language subfolder by using the same filename
in different available language subfolders. Figure 10-11 shows how to create a new resource file and Listing 10-6 shows
how to retrieve stored values using the syntax /ResourceFileName/StringName. In this case you use GetCurrentView,
passing in the name of the resource file.

Figure 10-10. How to test different languages in a Windows Store app

Chapter 10 ■ aCCessibility and Globalization

290

Listing 10-6. Use Multiple Resource Files

XAML
<TextBlock x:Name="ErrorLabel" x:Uid="/Errors/GenericError"></TextBlock>
C#
var res = Windows.ApplicationModel.Resources.ResourceLoader.GetForCurrentView("Errors");
ErrorLabel.Text = res.GetString("GenericError");
VB
Dim res = Windows.ApplicationModel.Resources.ResourceLoader.GetForCurrentView("Errors")
ErrorLabel.Text = res.GetString("GenericError")

How To Set Available Languages for a Windows Store App
Available languages in your Windows Store app can be set inside the Package.appxmanifest file: by doing this, the
Windows Store will show the same language in the app description. The following steps show how to set available
languages.

 1. Open the Package.appxmanifest with a right-click and then select View Code (Figure 10-12).

Figure 10-12. Open the Package.appxmanifest code editor

Figure 10-11. Multiple resource files in a Windows Store app

Chapter 10 ■ aCCessibility and Globalization

291

 2. Localize the Resources node.

 3. Comment the item <Resource Language=“x-generate” />.

 4. Type the code lines in Listing 10-7 containing the language tag available in the app.

Listing 10-7. Manually Set Available Languages

<Resources>
 <!-- <Resource Language="x-generate" /> -->
 <!-- Manually setting available languages -->
 <Resource Language="en-US" />
 <Resource Language="it-IT" />
</Resources>

How To Format Date and Time Properly
The date and time needs to be formatted using the current culture. If the date is provided by a user, it is possible to
use a DatePicker control that has a built-in support for localization. On the other hand, WinRT include the
Windows.Globalization.DateTimeFormatting namespace, which includes all the classes and enumeration to format
the date and time programmatically. Figure 10-13 shows its objects.

Figure 10-13. DateTimeFormatting namespace elements

Chapter 10 ■ aCCessibility and Globalization

292

The only available class is DateTimeFormatter, which allows you to format the date and time through
its constructors. Let’s see how to format a date inside a TextBlock using the display language. In this case,
DateTimeFormatter needs to be created with the correct culture and then the date is passed to the Format() method
of the current instance, as shown in Listing 10-8.

Listing 10-8. Use DateTimeFormatter

C#
DateTimeFormatter formatter =
 new DateTimeFormatter(HourFormat.Default, MinuteFormat.Default, SecondFormat.None);

DateNoSecondsTextblock.Text = formatter.Format(DateTime.Now);
VB

Dim formatter As New DateTimeFormatter(HourFormat.[Default], MinuteFormat.[Default],
SecondFormat.None)

DateNoSecondsTextblock.Text = formatter.Format(DateTime.Now)

In Listing 10-8, the output shows the date and the time without the seconds part. It is also possible to use
templates to format the date. In Listing 10-9, you reach the same result as you do in Listing 10-8.

Listing 10-9. Use DateTimeFormatter with Templates

C#
DateTimeFormatter formatter =
 new DateTimeFormatter("longdate shorttime");

DateMaskFormatTextblock.Text = formatter.Format(DateTime.Now);
VB

Dim formatter As New DateTimeFormatter("longdate shorttime")

DateMaskFormatTextblock.Text = formatter.Format(DateTime.Now)

Table 10-2 summarizes the date format templates.

Table 10-2. Date Format Templates

longdate shortdate Longtime

shorttime dayofweek dayofweek.full

dayofweek.abbreviated day Month

month.full month.abbreviated month.numeric

year year.full year.abbreviated

dayofweek day month year dayofweek day month day month year

day month month year hour

minute second hour minute second

hour minute minute second

Chapter 10 ■ aCCessibility and Globalization

293

Table 10-3. Date Format Patterns

Type Pattern

Year {year.<type>} where <type> is full / abbreviated / abbreviated(n)

Month {month.<type>} where <type> is full / abbreviated / abbreviated(n) / integer / integer(n)

Day {day.<type>} where <type> is integer / integer(n)

Hour {hour.<type>} where <type> is integer / integer(n)

Minute {minute.<type>} where <type> is integer / integer(n)

Second {second.<type>} where <type> is integer / integer(n)

There are also available patterns to format dates: these are delimited by braces. Listing 10-10 shows how to use them.

Listing 10-10. Use DateTimeFormatter with Patterns

C#
formatter = new DateTimeFormatter("{month.integer}/{day.integer}/{year.full}
 {hour.integer}:{minute.integer}");
DateTemplateTextblock.Text = formatter.Format(DateTime.Now);
VB

formatter = New DateTimeFormatter("{month.integer}/{day.integer}/{year.full}{hour.integer}:{minute.
integer}")
DateTemplateTextblock.Text = formatter.Format(DateTime.Now)

Table 10-3 lists the common date format patterns.

Starting with Visual Studio 2013, you can also take advantage of IntelliSense in XAML markup for these
patterns. A full list can be found at msdn.microsoft.com/en-us/library/windows/apps/windows.globalization.
datetimeformatting.datetimeformatter.aspx.

How To Format Number and Currency Properly
Every language has a way to format numbers and currency. WinRT provides one namespace to simplify the task:
Windows.Globalization.NumberFormatting. Figure 10-14 shows the included classes.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.globalization.datetimeformatting.datetimeformatter.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.globalization.datetimeformatting.datetimeformatter.aspx

Chapter 10 ■ aCCessibility and Globalization

294

Listing 10-11 shows a simple usage of DecimalFormatter that shows an integer part of the number grouped and
always using a decimal point.

Listing 10-11. Use DecimalFormatter

C#
DecimalFormatter formatter = new DecimalFormatter();
formatter.IsGrouped = true;
formatter.IsDecimalPointAlwaysDisplayed = true;
DecimalFormatterTextblock.Text = formatter.Format(12345.00);
VB
Dim formatter As New DecimalFormatter()
formatter.IsGrouped = True
formatter.IsDecimalPointAlwaysDisplayed = True
DecimalFormatterTextblock.Text = formatter.Format(12345.0)

Figure 10-14. Windows.Globalization.NumberFormatting classes

Chapter 10 ■ aCCessibility and Globalization

295

The same namespace also includes the CurrencyFormatter class that helps to format currencies. Usually the first
step is to retrieve the default currency (linked to the default language in the app manifest) and use it as input to create
a default formatter. Then it is possible to create a specific formatter based on an input string with the name of the
currency (i.e. USD) or the name of the currency associated to the BCP code and the geographical region (i.e. EUR), as
shown in Listing 10-12.

Listing 10-12. Use CurrencyFormatter

C#
// Determine the current user's default currency.
string currency = GlobalizationPreferences.Currencies[0];

// Create currency formatter with current preferences
CurrencyFormatter defaultCurrencyFormatter = new CurrencyFormatter(currency);
DefaultCurrencyTextblock.Text = defaultCurrencyFormatter.Format(1234.56);

// Create currency formatter for USD
CurrencyFormatter usdCurrencyFormatter = new CurrencyFormatter("USD");
USDCurrencyTextblock.Text = usdCurrencyFormatter.Format(1234.56);

// Create currency formatter for EUR
CurrencyFormatter eurITCurrencyFormatter = new CurrencyFormatter("EUR", new[] { "it-IT" }, "IT");
EurItCurrencyTextblock.Text = eurITCurrencyFormatter.Format(1234.56);
VB
' Determine the current user's default currency.
Dim currency As String = GlobalizationPreferences.Currencies(0)

' Create currency formatter with current preferences
Dim defaultCurrencyFormatter As New CurrencyFormatter(currency)
DefaultCurrencyTextblock.Text = defaultCurrencyFormatter.Format(1234.56)

' Create currency formatter for USD
Dim usdCurrencyFormatter As New CurrencyFormatter("USD")
USDCurrencyTextblock.Text = usdCurrencyFormatter.Format(1234.56)

' Create currency formatter for EUR
Dim eurITCurrencyFormatter As New CurrencyFormatter("EUR", New () {"it-IT"}, "IT")
EurItCurrencyTextblock.Text = eurITCurrencyFormatter.Format(1234.56)

Layout and Font Adjustment, Bi-Directional Support
Different languages may occupy more space than others in a user interface. For this reason, you should avoid setting
a fixed width to controls that show text; it’s preferable to add a string resource in a localized resource file that contains
the value. In Figure 10-15 you add a string named WelcomeLabel.Width with the value of 75 in the file Resources/en-
US/Resources.resw. This value is used when the default language is used. Instead, if the current language is Italian,
80 is the value used in Resources/it-IT/Resources.resw (Figure 10-16). You don’t need to add anything more to the
markup or code!

Chapter 10 ■ aCCessibility and Globalization

296

WinRT also provides built-in support for bi-directional text. In XAML it is possible to use the FlowDirection
control property to LeftToRight (0) or RightToLeft (1). This value can be set directly inside the resource files
(Figure 10-17).

Figure 10-16. A localized width for a TextBlock in the Italian resource file

Figure 10-17. How to set FlowDirection directly inside a resource file

Figure 10-15. A localized width for a TextBlock in the English resource file

The Multilingual App Toolkit
The translating process sometimes be very long and tedious. In these cases, the Multilingual App Toolkit may come in
handy. This is a tool directly integrated inside Visual Studio 2013 that provides the following capabilities:

Verify and track changes in resource files•	

Provide a useful UI for choosing languages•	

Support the XLIFF file format (more info at •	 www.oasis-open.org/committees/tc_home.
php?wg_abbrev=xliff)

Help translate and identify translating issues (it supports also Microsoft Translator)•	

The Multilingual App Toolkit is a free tool and can be downloaded from msdn.microsoft.com/en-US/windows/
apps/hh848309.aspx. Once installed, it needs to be enabled in Visual Studio in the Tools menu by clicking Enable
Multilingual App Toolkit (Figure 10-18).

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xliff
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xliff
http://msdn.microsoft.com/en-US/windows/apps/hh848309.aspx
http://msdn.microsoft.com/en-US/windows/apps/hh848309.aspx

Chapter 10 ■ aCCessibility and Globalization

297

This step adds a new folder with a file in it called Pseudo Language (Pseudo).xlf (Figure 10-19).

Figure 10-18. Enabling Multilingual App Toolkit in Visual Studio 2013

Figure 10-19. Pseudo language file

Now it is possible to add a new translation language inside your app by right-clicking the project name and
choosing the “Add translation languages” item (Figure 10-20).

Figure 10-20. Add a new translation to the project

This opens a pop-up window where you can choose the desired language (Figure 10-21).

Chapter 10 ■ aCCessibility and Globalization

298

As you can see, some items offer the Microsoft Translator to automate the resource translation process, but the
non-selectable Pseudo Language item is used during testing. After selecting the Italian [it] item, a new file is added to
the MultilingualResources folder (Figure 10-22).

Figure 10-21. Translation Languages pop-up window

Figure 10-22. Italian localized xlf file

Now you can rebuild the project and Visual Studio 2013 will automatically fill these files with all the available
resources in the project. To test if something went wrong, double-click the Italian localized xlf file. Visual Studio will
open the Multilingual Editor (Figure 10-23).

Chapter 10 ■ aCCessibility and Globalization

299

In this editor it is possible, using the Translate button, to automatically translate (through Microsoft Translator)
all the resources (Figure 10-24).

Figure 10-23. The Multilingual Editor

Figure 10-24. Automated translations in the Multilingual Editor

Chapter 10 ■ aCCessibility and Globalization

300

The main reason that XLIFF files are created is so that you can share them with others to create or check
translations. Visual Studio 2013 provides a very helpful feature called Send For Translation, which can be reached by
right-clicking the XLF file. This feature will open a pop-up where you can choose to export the XLF file inside a folder
or attach it and send through e-mail to a friend (Figure 10-25).

Figure 10-25. Send For Translation feature in Visual Studio 2013

Conclusion
In this chapter you learned the main guidelines that help developers create globally-ready Windows Store apps
that can be installed without problems on devices used by people in different cultures or by people who suffer
impediments. It is really important to clearly understand these concepts in order to create usable applications. The
next and last chapter of this book will explain in detail the process of publishing your app to the Windows Store.

301

Chapter 11

Sell Your App

In your life as a developer, regardless of which methodology you choose for your application lifecycle management,
you must deliver your app to the end user. In this chapter we are going to analyze what you need to do before you
submit your app to the Windows Store, and why your app should appear in the Store.

We will start with a brief introduction to the Windows Store and the opportunities it offers economically and in
terms of visibility for your application. Then we will show the entire process of app submission.

Windows Store
When we talk about the Windows Store we refer to the entire ecosystem that help us to distribute our apps to users
all around the world, and allows them to buy and install the apps on their devices. There are many reasons you might
choose to learn to develop Windows Store apps, but two popular reasons are the following:

Get paid for your work (and passion!).•	

Increase your visibility as a developer or company.•	

The Windows Store can be a good choice to accomplish these targets. We’ll explain why.

Presenting the Windows Store
The Windows Store is simply the Windows Store app marketplace. Inside this marketplace are a great number of apps
that can be installed on the Windows 8.x operating systems. Since Windows OSs are largely diffuse, it could be a good
way to expose your apps to a large number of customers. The Windows Store is right now accessible from over 200
countries and supports more than 100 languages. This means that you can choose to sell your apps in countries other
than your own, and you can enable different languages inside them (we will talk more about this later in the chapter).

Once your app is published, it can be found by potential customers directly on their PCs, using the Windows
Store integrated app. This app can be launched on the Windows 8.x operating system directly from Start window
(Figure 11-1).

Chapter 11 ■ Sell Your app

302

Once opened, it shows different apps in the store, based on category or relevance; you can also search a specific
app through the integrated search box (Figure 11-2).

Figure 11-1. The Windows Store integrated app tile

Figure 11-2. Search feature using the Windows Store integrated app

Inside the store, you can find free or paid apps. For this reasons you need to add a payment method in your
account settings (Figure 11-3).

Chapter 11 ■ Sell Your app

303

Inside the store, you can choose to install an app. Each app has a detail page, which shows the following
information (also shown in Figure 11-4):

Name•	

Price•	

Buttons to install, try, or buy the app•	

Rating•	

Terms of use and permissions•	

Description text•	

Rating certificate•	

App’s features•	

App’s screenshots•	

Publisher name•	

Copyright and trademark info•	

App’s category•	

App’s size (MB)•	

Age rating•	

Supported processor (x32, x64, ARM)•	

Languages•	

Keywords•	

Release date•	

Countries and regions•	

Figure 11-3. Payment method inside the Windows Store integrated app

Chapter 11 ■ Sell Your app

304

All of this information is filled in by the developer during the app’s submission process.
The installation process is executed in the background so you can continue to work (Figure 11-5). At the end of

the installation, a notification will appear (Figure 11-6).

Figure 11-5. App installation message

Figure 11-6. Notification after app installation

Figure 11-4. Angry Birds Star Wars app detail page

Chapter 11 ■ Sell Your app

305

A great feature of a Windows Store integrated app is the update management. It will automatically manage all
updates of an installed app, notifying the user when an update is available on the tile in the Start window (Figure 11-7)
and letting the user choose what update to install (Figure 11-8).

Figure 11-7. Windows Store app tile update notification

Figure 11-8. Windows Store app tile update options

Now that you understand the Windows Store, let’s see how to submit an app.

Note ■ Before submitting an app, you need a Windows Store app Developer account. appendix B fully explains the
entire creation process.

Chapter 11 ■ Sell Your app

306

Submit Your App
Once you have set all information related to your account, you are ready to submit the app. In the Dashboard of your
profile, you can select the “Submit an app” item. The submission process consists of the following steps (Figure 11-9):

App name•	

Selling details•	

Services•	

Age rating and rating certificates•	

Cryptography•	

Packages•	

Description•	

Notes to testers•	

Figure 11-9. App submission page

Let’s look at each one of these.

Chapter 11 ■ Sell Your app

307

App Name
One of the most important choices about your app is the name. This can be a difficult decision to make. I would
suggest that you make your app’s name:

•	 Short: Your app name is listed in the store or in tiles. It is better to choose a short one, although
it can have up to 256 characters.

•	 Simple: Just choose a simple, clear, and creative name. Avoid appending info at the end of the
name. Try to use different images for different app editions.

•	 Avoid trademarks: Don’t use trademarks. If you have chosen a trademarked name, your
app will be removed from the store and will be not published until the trademarked word is
completely removed from your app.

When you start to develop an app, you can decide to reserve a name. This can be realized through Visual Studio
using the following steps.

 1. Select the Store item in the menu and then select Reserve App Name (Figure 11-10).
This step will open the page to submit an app.

Figure 11-10. Reserve App Name menu item

Note ■ You can reserve an app name using the contextual menu of your solution project. this is the path: select
Store ➤ associate app with the Store. this will open a window to manage your apps, and below you can find the
“reserve a new app name” textbox (Figure 11-11). If you use an edition of Visual Studio 2013 different from the express
version, you can use just this path.

Chapter 11 ■ Sell Your app

308

 2. Click the App Name option.

 3. Type your app name in the App name textbox. If the name you have chosen for your app is
not available, an error message will appear.

 4. Click the “Reserve app name” button (Figure 11-12).

Figure 11-11. Another way to reserve an app name

Chapter 11 ■ Sell Your app

309

 5. If the file name is not already taken, a confirmation will be shown. Click the Save button
(Figure 11-13).

Figure 11-12. The process for reserving an app name

Figure 11-13. Saving app name information

It is also possible to reserve an app name in another language, if you plan to submit an app for a different market.
You can accomplish this by clicking “Reserve another name” on the App Name page in the Windows Dev Center
(Figure 11-14).

Chapter 11 ■ Sell Your app

310

Once you have completed the app name reservation, you need to change a few settings in your
Package.appxmanifest.

First, change the Display Name and Description properties in the Application section to match the name you
chose and add some information about what the app does (Figure 11-15). Then you can make the same change to the
Name property in the Packaging section (Figure 11-16).

Figure 11-14. Reserve another app name

Figure 11-15. Fill in the app info in the Application section

Figure 11-16. Fill in the app info in the Packaging section

Now you have completed the first step of the app submission process. Let’s move to the next step.

Chapter 11 ■ Sell Your app

311

Selling Details and Services
In this section, you can set all the information about app selling. The first subsection you need to select is if the app is
free to download and use or if the user needs to pay money to buy it. If you choose to sell your app, you can offer a free
trial period (Figure 11-17).

Figure 11-17. Select a price and a free trial period for your app

Note ■ Since the account is registered to a person that lives in europe, the price is shown in eur currency. of course,
a customer will see the price in their own currency inside the Windows Store.

Let’s change the app price to “Free” and then move to the next subsection.
In-app purchase is a simple way to add new features to your apps and then let the users pay for them. So let’s

say that you want to submit an app for free, you can choose to add new features using the Windows Store in-app
purchase system to manage them and sell them. You can also choose a third-party commerce system for in-app
purchases (Figure 11-18).

Figure 11-18. In-app purchases feature

If you select the link “Use the Windows Store in-app purchase system,” a new page will open (Figure 11-19),
which is the same page linked to the Services item you saw in Figure 11-9.

Chapter 11 ■ Sell Your app

312

In this page you can add up to 10 Windows Azure Mobile Services to integrate push notification, authentication,
or to store app data, or you can add In-app offers that a user can buy. Each offer has the following information:

•	 Product Id: A unique id for your app that you can use inside your app to enable features.
This key is not shown to the user, but could be linked to a description to show to the user.

•	 Price Tier: To set if the offer is free of charge or not.

•	 Product Lifetime: To set how long this offer is valid.

•	 Content Type: The category related to the offer.

Next subsection is Markets (Figure 11-20). Here you can choose all the markets in which your app will be
available. Be careful in this step, considering that each market could have some restrictions. For example, there are
few markets that only accept free apps (like Isle of Man) or that 18+ (minimal age for a user) apps are not allowed
in countries like Australia or Germany. Information on various restrictions can be found at msdn.microsoft.com/
en-us/library/windows/apps/hh694064.aspx.

Figure 11-19. In-app purchase options

http://msdn.microsoft.com/en-us/library/windows/apps/hh694064.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh694064.aspx

Chapter 11 ■ Sell Your app

313

Also, when you select a different market than your own, you need to provide some globalization features to your
app or it will not pass the submission tests. Some other things that need to be considered are the ethnic, cultural, and
religious perspectives. For example, if your app includes some information that goes against a religion foundation of
the country in your selected market, then the app will not pass the submission.

For a sample app, let’s choose two markets: United States and Italy.
The Release date subsection allows you to postpone the app release date to a specific day. This could cause delay

in the submission process (Figure 11-21).

Figure 11-20. List of available markets

Figure 11-21. Release date options

App category and subcategories let you choose in what category of the Windows Store your app will appear
(Figure 11-22). Subcategories are not are not always required. Always pick the correct category for the app. For this
sample app, choose “Productivity.”

Chapter 11 ■ Sell Your app

314

The next subsection is Hardware Requirements. Here you can select DirectX and RAM requirements that a
device needs to have to let the user download the app. For example, if you are submitting a game, you might need to
choose one of the available options to let the user play the game on a required platform (Figure 11-23).

Figure 11-22. Categories selection step

Figure 11-23. Hardware Requirements selection

Figure 11-24. Accessibility subsection

Finally, the last option in Selling Details is Accessibility. Once selected, your app will be tested to verify if all the
accessibility guidelines are met (Figure 11-24).

Chapter 11 ■ Sell Your app

315

Age Rating and Rating Certificates
In this section you can choose the suitable age for the app’s users and the rating certificates. The first option allows
you to select the minimum age for users. There are several options:

3+ Suitable for young children•	

7+ Suitable for ages 7 and older•	

12+ Suitable for ages 12 and older•	

16+ Suitable for ages 16 and older•	

18+ Suitable for adults only•	

Apps for young children should meet basic requirements such as no violence or sexual references. The 18+
option is available only for games that are rated by a third-party ratings board and follow all Windows content policies.
Usually the ratings board releases an approval to sell the game. These authorities check if the game is suitable for
an appropriate age group, and are not available in all countries (you can find more at msdn.microsoft.com/en-us/
library/windows/apps/hh694080.aspx). Once the game is rated, you can update a certificate (.GDF file) as a rating
certificate inside the Age Rating and Rating Certificates page (Figure 11-25). For this sample app, let’s select 3+ option
for the user age.

Cryptography
In this page, you can report if your app uses cryptography or encryption (Figure 11-26). If yes, you need to be aware of
the laws and regulations of the destination markets to avoid failing submission process. Some tasks are not considered
in the cryptography category, such as the following:

Password encryption•	

Copy protection•	

Figure 11-25. Age rating certificate section

http://msdn.microsoft.com/en-us/library/windows/apps/hh694080.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh694080.aspx

Chapter 11 ■ Sell Your app

316

Authentication•	

Digital rights management•	

Using digital signatures•	

If in your app you use any cryptography or encryption process different from those listed, you need an
Export Commodity Classification Number (ECCN). In this sample app you do not use any cryptography.

Figure 11-26. Cryptography settings

Chapter 11 ■ Sell Your app

317

Packages
In this step you submit your app packages to the Windows Store. This step is divided into three phases:

Validate your app with the •	 Windows App Certification Kit.

Create app packages in Visual Studio 2013.•	

Upload your app packages.•	

The Windows App Certification Kit is a tool that allows you to test the app before you submit it to the Store.
This helps you avoid submitting an app that does not follows all of the requirements.

This tool executes different tests on your app to check if everything is ok. The following is a list of tests that
are executed:

Crashes and Hangs Test•	

App Manifest Compliance Test•	

Windows Security Features Test•	

Supported Windows Store API Test•	

Performance Test•	

App Manifest Resources Test•	

Debug Configuration Test•	

Filed Encoding Test•	

App Capabilities Test•	

Windows Runtime Metadata Validation•	

Package Sanity Check•	

Resource Usage Test•	

The Windows App Certification Kit can be installed with the Windows 8.1 SDK here: msdn.microsoft.com/
en-us/windows/apps/bg127575. Note that if you are planning to deploy your app for an ARM device, you also need to
install the Windows App Certification Kit for Windows RT.

Note ■ Visual Studio express 2013 for Windows already installs the Windows app Certification Kit.

Let’s see how to use it. When you open the Windows App Certification Kit, you can pick one of the three following
items (Figure 11-27):

Validate Windows Store App•	

Validate Desktop App•	

Validate Desktop Device App•	

http://msdn.microsoft.com/en-us/windows/apps/bg127575
http://msdn.microsoft.com/en-us/windows/apps/bg127575

Chapter 11 ■ Sell Your app

318

Note ■ Windows Store allows also you to submit a Windows Desktop app. Check this here:
blogs.msdn.com/b/windowsstore/archive/2012/06/08/listing-your-desktop-app-in-the-store.aspx

After choosing the first item, Validate Windows Store App, a list of apps is shown so you can choose the one you
want to validate (Figure 11-28).

Figure 11-27. Windows App Certification Kit 3.1

Figure 11-28. App selection in Windows App Certification Kit

http://blogs.msdn.com/b/windowsstore/archive/2012/06/08/listing-your-desktop-app-in-the-store.aspx

Chapter 11 ■ Sell Your app

319

In this case, choose the “Get File Info” app that you are ready to submit to the store.

Note ■ If you could not find your app on the list, you can go into Visual Studio express 2013 for Windows, open your
app project, select “release” as a build configuration mode, and then click Build ➤ Deploy. after that deploy is complet-
ed, you can click the “My app isn’t listed” link.

Next, you need to choose what tests are executed by the Windows App Certification Kit (Figure 11-29). Let’s select
all tests and then click the Next button. In the next step, the app will be tested. This means that the app will be open
different times by the tool; it is suggested to let the tool work until it has finished (Figure 11-30). If the app did not pass
a test, you will be prompted to save a report file and the message in Figure 11-31 will be shown.

Figure 11-29. List of selectable tests

Chapter 11 ■ Sell Your app

320

Figure 11-30. Testing phase in Windows App Certification Kit

Figure 11-31. An example of a failed process

Chapter 11 ■ Sell Your app

321

If you want to understand what happened, you just need to click the link “Click here to view the results,” which
will open a web page with all the information about the error and resolution (Figure 11-32).

Figure 11-32. An example of an error and a hint for resolution

Once you have resolved all the issues, you can re-run the Windows App Certification Kit validation. If everything
is ok (Figure 11-33), you are ready to create the packages. Remember that if the Windows App Certification Kit
successfully validates your app, this does not mean that your app will pass app submission. It is just a tool to check
basic settings and configuration of your app.

Chapter 11 ■ Sell Your app

322

The process of creation of an app package is very simple. First, you need to go in the Solution Explorer, right-click
the project, and then go to Store ➤ Associate app with the Store (Figure 11-34). In this way, the Packaging section of
the Package.appxmanifest is updated with the information regarding the app name and author. A wizard is opened,
so type your credentials for the Windows Store account, select the app name (Figure 11-35) you want to use, and then
it will display all the updated information (Figure 11-36).

Figure 11-34. How to associate an app with the Store

Figure 11-33. Successful validation of a Windows Store app

Chapter 11 ■ Sell Your app

323

Figure 11-35. Select a reserved app name from the Store

Chapter 11 ■ Sell Your app

324

Figure 11-36. Review of the app name Store association

Now you need to create your app packages, which is a set of files with the .appxupload extension that you will
upload on the Windows Store. You go again to the Solution Explorer, right-click the project, and then go to
Store ➤ Create App Packages (Figure 11-37). Once again a wizard will open (Figure 11-37). In the first step you can
choose to create an app package to upload it in the store, or choose to create a package to use for testing purposes on
a device that has a developer license installed. Then you need to follow the same path as the app association until
you arrive at the step in Figure 11-38.

Chapter 11 ■ Sell Your app

325

Figure 11-37. App package creation wizard

Chapter 11 ■ Sell Your app

326

In this step you need to configure the following options:

•	 Output Location: The drop folder for the package.

•	 Version: The app version number. It can be set manually or automatically.

•	 Generate App Bundle: This option can be useful if you have a localized app with many
localized resources. This helps the customer to download only localized resources for
his language instead of all the localized files. There are three options: If needed, Always,
and Never.

•	 Select the packages to create and the solution configuration mappings: A package is created for
different platforms, and different build configuration can be chosen.

•	 Include public symbol files, if any, to enable crash analysis for the app: These files can be used
to collect information about bugs and crashes. If this option is selected, debug symbols are
included inside the .appxupload file.

Figure 11-38. Package configuration step

Chapter 11 ■ Sell Your app

327

After you click the Create button and the package is correctly created, you can re-execute the validation process
through Windows App Certification Kit (you can also choose a remote machine) or open the output location and
check if a file with extension .appxupload is in it (Figure 11-39).

Figure 11-39. Package creation completed

Now you have to submit your package to the Store. Go to the Windows Store dashboard and in the app section
select Edit ➤ Packages. On this page you can just drag and drop the package from the output location to the browser
and the package will be uploaded. Then click Save (Figure 11-40).

Chapter 11 ■ Sell Your app

328

There are two more steps to complete: Description and Notes to testers.

Description
In this step, you need to provide a description of your app based on supported languages and different platforms
(Windows 8 and 8.1). This step consists of the following sections:

•	 Description: Your main app description. It’s important to be very detailed to help customers
understand what your app does and wisely choose words to grab attention.

•	 App Features: These are short descriptions in a bulleted list for your app.

•	 Screenshot: You can provide up to nine app screenshots. These can be created directly from
Visual Studio 2013 using the Capture Screenshots menu item, as shown in Figure 11-34, that will
start the Windows Store App simulator. You can also choose a few settings using the Screenshot
Settings button (the default location is Windows Simulator folder in the Pictures library).

Figure 11-40. App package upload page

Chapter 11 ■ Sell Your app

329

You need to click the Copy Screenshot icon to create images (Figure 11-41). Each screenshot
must be in .png format with a size less than 2MB and a resolution of 1366x768 or 768x1366 and
must have a description.

Figure 11-41. Copy Screenshot button in the Windows Store App Simulator

•	 Notes: You can add few notes like the features in this release version.

•	 Recommended Hardware: Minimal hardware requirements for your app.

•	 Keywords: A list of tags that can improve your app searchability.

•	 Copyright and Trademark Info: Provide your copyright information.

•	 Additional License Terms: In this field you can provide more information about license
terms that are different from the Standard Application License Terms (more details at
msdn.microsoft.com/en-us/library/windows/apps/hh694058.aspx).

•	 Promotional Images: A set of images that can be used in the store to promote your app.

•	 App Web Site: The link to the web site that is about your app.

•	 Support Contact Info: An e-mail address or a web site link to help customers get support.

•	 Privacy Policy: In this field, you need to provide a URL that declares if you collect or use
personal info inside your app. For example, if you enable internet client capability, you must
specify a privacy policy description here and inside the app settings pane.

http://msdn.microsoft.com/en-us/library/windows/apps/hh694058.aspx

Chapter 11 ■ Sell Your app

330

Notes to Testers
In this step, you can provide any useful information to Microsoft testers to help them to understand and test your app
(Figure 11-42). This can help to accelerate the app submission process. Some useful information could include the
following:

Login credentials for testing purposes•	

Explain what feature your app provides that is visible or locked and how to test it•	

If an update, explain what has changed•	

Figure 11-42. Notes to testers page

You have finally completed app submission process. In the detail page of your app you have two new buttons at
the bottom: “Review release info” and “Submit for certification.” The first one shows all the information provided; the
second one sends your app for the submission process. After clicking the latter button, you need to wait about
six business days to know if your app has passed the submission process (Figure 11-43).

Chapter 11 ■ Sell Your app

331

If your app did not pass the submission process, a failure notification will be shown on the dashboard.
A full report about what went wrong is available, with notes from testers (see Figure 11-44).

Figure 11-43. App certification status

Chapter 11 ■ Sell Your app

332

After you have solved all certification errors, you can upload once again the package to restart the submission
process. Finally, once your app passes the submission process, it will be available in the chosen markets using the
search feature in the Windows Store.

Monitoring Your App
After your app is published in the store, you can check the number of downloads and the app usage. To check
download history, go to the Windows Dev Center dashboard, click the Details option on your app tile, and then
Downloads. This page shows a chart that lists all downloads over time (Figure 11-45). You can also export this
information in CSV format.

Figure 11-44. An example of failed certification

Chapter 11 ■ Sell Your app

333

To show app usage, go to the Windows Dev Center dashboard, click Details ➤ Usage. Here, you can use filters to
show app usage (Figure 11-46).

Figure 11-45. History download chart on the Download page

Figure 11-46. Usage chart on the Usage page

Another interesting feature is monitoring app quality on the Quality page. You can open this page in the Windows
Dev Center dashboard, clicking Details ➤ Quality. In this section, you can find charts and useful information
about app crashes, unresponsive events, and JavaScript exceptions. You can use all this information to fix bugs and
improve your app. To use this feature you need to enable telemetry data collection in your account profile. Also, your
.appxupload file needs to include public symbols.

Chapter 11 ■ Sell Your app

334

Updating Your App
If you have found bugs or you want to add new features to your app, you need to upload it again to the store. To submit
an app update, you just need to go to the Window Dev Center dashboard, and select Edit ➤ Packages. Here you just
drag and drop a new package of your app with an assembly version number greater than the actual release. You also
need to update the Notes section in the Description page and list new features. Then you can submit your app for
certification.

Conclusion
In this final chapter, you took a deep dive into the Windows Store and the Windows Store app submission process.
All this information will help you understand how to take advantage of the Store to improve your app downloads
and increase your earnings. Now that you have read all of these chapters, you’re finally ready to start creating a great
number of quality apps!

335

Appendix A

Live Tile and Toast Templates

This appendix lists all the templates available in Windows 8.1. Table A-1shows the template name (and the fallback
name where applicable), the XML of the template (which you manipulate to provide your content), and an image that
shows how your tile will appear after your update.

Live Tile
Table A-1. Template XML and Example

Template Name XML Example

TileSquare150x150Image
TileSquareImage

<tile>
<visual version="2">

<binding template="TileSquare150x150Image"
fallback="TileSquareImage">
<image id="1" src="Assets\picture.png" />

</binding>
</visual>

</tile>

TileSquare150x150Block
TileSquareBlock

<tile>
<visual version="2">

<binding template="TileSquare150x150Block"
fallback="TileSquareBlock">
<text id="1">text id="1"</text>
<text id="2">text id="2"</text>

</binding>
</visual>

</tile>

TileSquare150x150Text01
TileSquareText01

<tile>
<visual version="2">

<binding template="TileSquare150x150Text01"
fallback="TileSquareText01">
<text id="1">text id="1"</text>
<text id="2">text id="2"</text>
<text id="3">text id="3"</text>
<text id="4">text id="4"</text>

</binding>
</visual>

</tile>

(continued)

Appendix A ■ Live TiLe And ToAsT TempLATes

336

Template Name XML Example

TileSquare150x150Text02
TileSquareText02

<tile>
<visual version="2">

<binding template="TileSquare150x150Text02"
fallback="TileSquareText02">
<text id="1">text id="1"</text>
<text id="2">text id="2"</text>

</binding>
</visual>

</tile>

TileSquare150x150Text03
TileSquareText03

<tile>
<visual version="2">

<binding template="TileSquare150x150Text03"
fallback="TileSquareText03">
<text id="1">text id="1"</text>
<text id="2">text id="2"</text>
<text id="3">text id="3"</text>
<text id="4">text id="4"</text>

</binding>
</visual>

</tile>

TileSquare150x150Text04
TileSquareText04

<tile>
<visual version="2">

<binding template="TileSquare150x150Text04"
fallback="TileSquareText04">
<text id="1">text id="1"</text>

</binding>
</visual>

</tile>

TileSquare150x150PeekImage
AndText01
TileSquarePeekImageAndText01

<tile>
<visual version="2">

<binding template="TileSquare150x150PeekImage
AndText01" fallback="TileSquarePeekImageAndText01">
<image id="1" src="Assets\picture.png" />
<text id="1">text id="1"</text>
<text id="2">text id="2"</text>
<text id="3">text id="3"</text>
<text id="4">text id="4"</text>

</binding>
</visual>

</tile>

Table A-1. (continued)

(continued)

Appendix A ■ Live TiLe And ToAsT TempLATes

337

Template Name XML Example

TileSquare150x150PeekImage
AndText02
TileSquarePeekImageAndText02

<tile>
<visual version="2">

<binding template="TileSquare150x150PeekImage
AndText02" fallback="TileSquarePeekImageAndText02">
<image id="1" src="Assets\picture.png" />
<text id="1">text id="1"</text>
<text id="2">text id="2"</text>

</binding>
</visual>

</tile>

TileSquare150x150PeekImage
AndText03
TileSquarePeekImageAndText03

<tile>
<visual version="2">

<binding template="TileSquare150x150PeekImage
AndText03" fallback="TileSquarePeekImageAndText03">
<image id="1" src="Assets\picture.png" />
<text id="1">text id="1"</text>
<text id="2">text id="2"</text>
<text id="3">text id="3"</text>
<text id="4">text id="4"</text>

</binding>
</visual>

</tile>

TileSquare150x150PeekImage
AndText04
TileSquarePeekImageAndText04

<tile>
<visual version="2">

<binding template="TileSquare150x150PeekImage
AndText04" fallback="TileSquarePeekImageAndText04">
<image id="1" src="Assets\picture.png" />
<text id="1">text id="1"</text>

</binding>
</visual>

</tile>

Table A-1. (continued)

(continued)

Appendix A ■ Live TiLe And ToAsT TempLATes

338

Template Name XML Example

TileWide310x150Image
TileWideImage

<tile>
<visual version="2">

<binding template="TileWide310x150Image"
fallback="TileWideImage">
<image id="1" src="Assets\picture.png" />

</binding>
</visual>

</tile>

TileWide310x150ImageCollection
TileWideImageCollection

<tile>
<visual version="2">

<binding template="TileWide310x150ImageCollection"
fallback="TileWideImageCollection">
<image id="1" src="Assets\picture1.png" />
<image id="2" src="Assets\picture2.png" />
<image id="3" src="Assets\picture3.png" />
<image id="4" src="Assets\picture4.png" />
<image id="5" src="Assets\picture5.png" />

</binding>
</visual>

</tile>

TileWide310x150ImageAndText01
TileWideImageAndText01

<tile>
<visual version="2">

<binding template="TileWide310x150ImageAndText01"
fallback="TileWideImageAndText01">
<image id="1" src="Assets\picture.png" />
<text id="1">text id="1"</text>

</binding>
</visual>

</tile>

TileWide310x150ImageAndText02
TileWideImageAndText02

<tile>
<visual version="2">

<binding template="TileWide310x150ImageAndText02"
fallback="TileWideImageAndText02">
<image id="1" src="Assets\picture.png" />
<text id="1">text id="1"</text>
<text id="2">text id="2"</text>

</binding>
</visual>

</tile>

TileWide310x150BlockAndText01
TileWideBlockAndText01

<tile>
<visual version="2">

<binding template="TileWide310x150BlockAndText01"
fallback="TileWideBlockAndText01">
<text id="1">text id="1"</text>
<text id="2">text id="2"</text>
<text id="3">text id="3"</text>
<text id="4">text id="4"</text>
<text id="5">text id="5"</text>
<text id="6">text id="6"</text>

</binding>
</visual>

</tile>

Table A-1. (continued)

(continued)

Appendix A ■ Live TiLe And ToAsT TempLATes

339

Template Name XML Example

TileWide310x150Block
AndText02
TileWideBlockAndText02

<tile>
<visual version="2">

<binding template="TileWide310x150BlockAndText02"
fallback="TileWideBlockAndText02">
<text id="1">text id="1"</text>
<text id="2">text id="2"</text>
<text id="3">text id="3"</text>

</binding>
</visual>

</tile>

TileWide310x150PeekImage
Collection01
TileWidePeekImageCollection01

<tile>
<visual version="2">

<binding template="TileWide310x150PeekImage
Collection01" fallback="TileWidePeekImageCollection01">
<image id="1" src="Assets\picture1.png" />
<image id="2" src="Assets\picture2.png" />
<image id="3" src="Assets\picture3.png" />
<image id="4" src="Assets\picture4.png" />
<image id="5" src="Assets\picture5.png" />
<text id="1">text id="1"</text>
<text id="2">text id="2"</text>

</binding>
</visual>

</tile>

TileWide310x150PeekImage
Collection02
TileWidePeekImageCollection02

<tile>
<visual version="2">

<binding template="TileWide310x150PeekImage
Collection02" fallback="TileWidePeekImageCollection02">
<image id="1" src="Assets\picture.png" />
<image id="2" src="Assets\picture.png" />
<image id="3" src="Assets\picture.png" />
<image id="4" src="Assets\picture.png" />
<image id="5" src="Assets\picture.png" />
<text id="1">text id="1"</text>
<text id="2">text id="2"</text>
<text id="3">text id="3"</text>
<text id="4">text id="4"</text>
<text id="5">text id="5"</text>

</binding>
</visual>

</tile>

TileWide310x150PeekImage
Collection03
TileWidePeekImageCollection03

<tile>
<visual version="2">

<binding template="TileWide310x150PeekImage
Collection03" fallback="TileWidePeekImageCollection03">
<image id="1" src="Assets\picture.png" />
<image id="2" src="Assets\picture.png" />
<image id="3" src="Assets\picture.png" />
<image id="4" src="Assets\picture.png" />
<image id="5" src="Assets\picture.png" />
<text id="1">text id="1"</text>

</binding>
</visual>

</tile>

Table A-1. (continued)

(continued)

Appendix A ■ Live TiLe And ToAsT TempLATes

340

Template Name XML Example

TileWide310x150PeekImage
Collection04
TileWidePeekImageCollection04

<tile>
<visual version="2">

<binding template="TileWide310x150PeekImage
Collection04" fallback="TileWidePeekImageCollection04">
<image id="1" src="Assets\picture.png" />
<image id="2" src="Assets\picture.png" />
<image id="3" src="Assets\picture.png" />
<image id="4" src="Assets\picture.png" />
<image id="5" src="Assets\picture.png" />
<text id="1">text id="1"</text>

</binding>
</visual>

</tile>

TileWide310x150PeekImage
Collection05
TileWidePeekImageCollection05

<tile>
<visual version="2">

<binding template="TileWide310x150PeekImage
Collection05" fallback="TileWidePeekImageCollection05">
<image id="1" src="Assets\picture.png" />
<image id="2" src="Assets\picture.png" />
<image id="3" src="Assets\picture.png" />
<image id="4" src="Assets\picture.png" />
<image id="5" src="Assets\picture.png" />
<image id="6" src="Assets\picture.png" />
<text id="1">text id="1"</text>
<text id="2">text id="2"</text>

</binding>
</visual>

</tile>

TileWide310x150PeekImage
Collection06
TileWidePeekImageCollection06

<tile>
<visual version="2">

<binding template="TileWide310x150PeekImage
Collection06" fallback="TileWidePeekImageCollection06">
<image id="1" src="Assets\picture.png" />
<image id="2" src="Assets\picture.png" />
<image id="3" src="Assets\picture.png" />
<image id="4" src="Assets\picture.png" />
<image id="5" src="Assets\picture.png" />
<image id="6" src="Assets\picture.png" />
<text id="1">text id="1"</text>

</binding>
</visual>

</tile>

TileWide310x150PeekImage
AndText01
TileWidePeekImageAndText01

<tile>
<visual version="2">

<binding template="TileWide310x150PeekImage
AndText01" fallback="TileWidePeekImageAndText01">
<image id="1" src="Assets\picture.png" />
<text id="1">text id="1"</text>

</binding>
</visual>

</tile>

Table A-1. (continued)

(continued)

Appendix A ■ Live TiLe And ToAsT TempLATes

341

Template Name XML Example

TileWide310x150PeekImage
AndText02
TileWidePeekImageAndText02

<tile>
<visual version="2">

<binding template="TileWide310x150PeekImage
AndText02" fallback="TileWidePeekImageAndText02">
<image id="1" src="Assets\picture.png" />
<text id="1">text id="1"</text>
<text id="2">text id="2"</text>
<text id="3">text id="3"</text>
<text id="4">text id="4"</text>
<text id="5">text id="5"</text>

</binding>
</visual>

</tile>

TileWide310x150PeekImage01
TileWidePeekImage01

<tile>
<visual version="2">

<binding template="TileWide310x150PeekImage01"
fallback="TileWidePeekImage01">
<image id="1" src="Assets\picture.png" />
<text id="1">text id="1"</text>
<text id="2">text id="2"</text>

</binding>
</visual>

</tile>

TileWide310x150PeekImage02
TileWidePeekImage02

<tile>
<visual version="2">

<binding template="TileWide310x150PeekImage02"
fallback="TileWidePeekImage02">
<image id="1" src="Assets\picture.png" />
<text id="1">text id="1"</text>
<text id="2">text id="2"</text>
<text id="3">text id="3"</text>
<text id="4">text id="4"</text>
<text id="5">text id="5"</text>

</binding>
</visual>

</tile>

TileWide310x150PeekImage03
TileWidePeekImage03

<tile>
<visual version="2">

<binding template="TileWide310x150PeekImage03"
fallback="TileWidePeekImage03">
<image id="1" src="Assets\picture.png" />
<text id="1">text id="1"</text>

</binding>
</visual>

</tile>

Table A-1. (continued)

(continued)

Appendix A ■ Live TiLe And ToAsT TempLATes

342

Template Name XML Example

TileWide310x150PeekImage04
TileWidePeekImage04

<tile>
<visual version="2">

<binding template="TileWide310x150PeekImage04"
fallback="TileWidePeekImage04">
<image id="1" src="Assets\picture.png" />
<text id="1">text id="1"</text>

</binding>
</visual>

</tile>

TileWide310x150PeekImage05
TileWidePeekImage05

<tile>
<visual version="2">

<binding template="TileWide310x150PeekImage05"
fallback="TileWidePeekImage05">
<image id="1" src="Assets\picture.png" />
<image id="2" src="Assets\picture.png" />
<text id="1">text id="1"</text>
<text id="2">text id="2"</text>

</binding>
</visual>

</tile>

TileWide310x150PeekImage06
TileWidePeekImage06

<tile>
<visual version="2">

<binding template="TileWide310x150PeekImage06"
fallback="TileWidePeekImage06">
<image id="1" src="Assets\picture.png" />
<image id="2" src="Assets\picture.png" />
<text id="1">text id="1"</text>

</binding>
</visual>

</tile>

TileWide310x150SmallImage
AndText01
TileWideSmallImageAndText01

<tile>
<visual version="2">

<binding template="TileWide310x150SmallImage
AndText01" fallback="TileWideSmallImageAndText01">
<image id="1" src="Assets\picture.png" />
<text id="1">text id="1"</text>

</binding>
</visual>

</tile>

Table A-1. (continued)

(continued)

Appendix A ■ Live TiLe And ToAsT TempLATes

343

Template Name XML Example

TileWide310x150SmallImage
AndText02
TileWideSmallImageAndText02

<tile>
<visual version="2">

<binding template="TileWide310x150SmallImage
AndText02" fallback="TileWideSmallImageAndText02">
<image id="1" src="Assets\picture.png" />
<text id="1">text id="1"</text>
<text id="2">text id="2"</text>
<text id="3">text id="3"</text>
<text id="4">text id="4"</text>
<text id="5">text id="5"</text>

</binding>
</visual>

</tile>

TileWide310x150SmallImage
AndText03
TileWideSmallImageAndText03

<tile>
<visual version="2">

<binding template="TileWide310x150SmallImage
AndText03" fallback="TileWideSmallImageAndText03">
<image id="1" src="Assets\picture.png" />
<text id="1">text id="1"</text>

</binding>
</visual>

</tile>

TileWide310x150SmallImage
AndText04
TileWideSmallImageAndText04

<tile>
<visual version="2">

<binding template="TileWide310x150SmallImage
AndText04" fallback="TileWideSmallImageAndText04">
<image id="1" src="Assets\picture.png" />
<text id="1">text id="1"</text>
<text id="2">text id="2"</text>

</binding>
</visual>

</tile>

TileWide310x150SmallImage
AndText05
TileWideSmallImageAndText05

<tile>
<visual version="2">

<binding template="TileWide310x150SmallImage
AndText05" fallback="TileWideSmallImageAndText05">
<image id="1" src="Assets\picture.png" />
<text id="1">text id="1"</text>
<text id="2">text id="2"</text>

</binding>
</visual>

</tile>

TileWide310x150Text01
TileWideText01

<tile>
<visual version="2">

<binding template="TileWide310x150Text01"
fallback="TileWideText01">
<text id="1">text id="1"</text>
<text id="2">text id="2"</text>
<text id="3">text id="3"</text>
<text id="4">text id="4"</text>
<text id="5">text id="5"</text>

</binding>
</visual>

</tile>

Table A-1. (continued)

(continued)

Appendix A ■ Live TiLe And ToAsT TempLATes

344

Template Name XML Example

TileWide310x150Text02
TileWideText02

<tile>
<visual version="2">

<binding template="TileWide310x150Text02"
fallback="TileWideText02">
<text id="1">text id="1"</text>
<text id="2">text id="2"</text>
<text id="3">text id="3"</text>
<text id="4">text id="4"</text>
<text id="5">text id="5"</text>
<text id="6">text id="6"</text>
<text id="7">text id="7"</text>
<text id="8">text id="8"</text>
<text id="9">text id="9"</text>

</binding>
</visual>

</tile>

TileWide310x150Text03
TileWideText03

<tile>
<visual version="2">

<binding template="TileWide310x150Text03"
fallback="TileWideText03">
<text id="1">text id="1"</text>

</binding>
</visual>

</tile>

TileWide310x150Text04
TileWideText04

<tile>
<visual version="2">

<binding template="TileWide310x150Text04"
fallback="TileWideText04">
<text id="1">text id="1"</text>

</binding>
</visual>

</tile>

TileWide310x150Text05
TileWideText05

<tile>
<visual version="2">

<binding template="TileWide310x150Text05"
fallback="TileWideText05">
<text id="1">text id="1"</text>
<text id="2">text id="2"</text>
<text id="3">text id="3"</text>
<text id="4">text id="4"</text>
<text id="5">text id="5"</text>

</binding>
</visual>

</tile>

Table A-1. (continued)

(continued)

Appendix A ■ Live TiLe And ToAsT TempLATes

345

Template Name XML Example

TileWide310x150Text06
TileWideText06

<tile>
<visual version="2">

<binding template="TileWide310x150Text06"
fallback="TileWideText06">
<text id="1">text id="1"</text>
<text id="2">text id="2"</text>
<text id="3">text id="3"</text>
<text id="4">text id="4"</text>
<text id="5">text id="5"</text>
<text id="6">text id="6"</text>
<text id="7">text id="7"</text>
<text id="8">text id="8"</text>
<text id="9">text id="9"</text>
<text id="10">text id="10"</text>

</binding>
</visual>

</tile>

TileWide310x150Text07
TileWideText07

<tile>
<visual version="2">

<binding template="TileWide310x150Text07"
fallback="TileWideText07">
<text id="1">text id="1"</text>
<text id="2">text id="2"</text>
<text id="3">text id="3"</text>
<text id="4">text id="4"</text>
<text id="5">text id="5"</text>
<text id="6">text id="6"</text>
<text id="7">text id="7"</text>
<text id="8">text id="8"</text>
<text id="9">text id="9"</text>

</binding>
</visual>

</tile>

TileWide310x150Text08
TileWideText08

<tile>
<visual version="2">

<binding template="TileWide310x150Text08"
fallback="TileWideText08">
<text id="1">text id="1"</text>
<text id="2">text id="2"</text>
<text id="3">text id="3"</text>
<text id="4">text id="4"</text>
<text id="5">text id="5"</text>
<text id="6">text id="6"</text>
<text id="7">text id="7"</text>
<text id="8">text id="8"</text>
<text id="9">text id="9"</text>
<text id="10">text id="10"</text>

</binding>
</visual>

</tile>

Table A-1. (continued)

(continued)

Appendix A ■ Live TiLe And ToAsT TempLATes

346

Template Name XML Example

TileWide310x150Text09
TileWideText09

<tile>
<visual version="2">

<binding template="TileWide310x150Text09"
fallback="TileWideText09">
<text id="1">text id="1"</text>
<text id="2">text id="2"</text>

</binding>
</visual>

</tile>

TileWide310x150Text10
TileWideText10

<tile>
<visual version="2">
<binding template="TileWide310x150Text10"
fallback="TileWideText10">

<text id="1">text id="1"</text>
<text id="2">text id="2"</text>
<text id="3">text id="3"</text>
<text id="4">text id="4"</text>
<text id="5">text id="5"</text>
<text id="6">text id="6"</text>
<text id="7">text id="7"</text>
<text id="8">text id="8"</text>
<text id="9">text id="9"</text>

</binding>
</visual>

</tile>

TileWide310x150Text11
TileWideText11

<tile>
<visual version="2">

<binding template="TileWide310x150Text11"
fallback="TileWideText11">
<text id="1">text id="1"</text>
<text id="2">text id="2"</text>
<text id="3">text id="3"</text>
<text id="4">text id="4"</text>
<text id="5">text id="5"</text>
<text id="6">text id="6"</text>
<text id="7">text id="7"</text>
<text id="8">text id="8"</text>
<text id="9">text id="9"</text>
<text id="10">text id="10"</text>

</binding>
</visual>

</tile>

TileSquare310x310BlockAndText01 <tile>
<visual version="2">

<binding template="TileSquare310x310BlockAndText01">
<text id="1">text id="1"</text>
<text id="2">text id="2"</text>
<text id="3">text id="3"</text>
<text id="4">text id="4"</text>
<text id="5">text id="5"</text>
<text id="6">text id="6"</text>
<text id="7">text id="7"</text>
<text id="8">text id="8"</text>
<text id="9">text id="9"</text>

</binding>
</visual>

</tile>

Table A-1. (continued)

(continued)

Appendix A ■ Live TiLe And ToAsT TempLATes

347

Template Name XML Example

TileSquare310x310BlockAndText02 <tile>
<visual version="2">

<binding template="TileSquare310x310BlockAndText02">
<image id="1" src="Assets\picture.png" />
<text id="1">text id="1"</text>
<text id="2">text id="2"</text>
<text id="3">text id="3"</text>
<text id="4">text id="4"</text>
<text id="5">text id="5"</text>
<text id="6">text id="6"</text>
<text id="7">text id="7"</text>

</binding>
</visual>

</tile>

TileSquare310x310Image <tile>
<visual version="2">

<binding template="TileSquare310x310Image">
<image id="1" src="Assets\picture.png" />

</binding>
</visual>

</tile>

TileSquare310x310ImageAndText01 <tile>
<visual version="2">

<binding template="TileSquare310x310ImageAndText01">
<image id="1" src="Assets\picture.png" />
<text id="1">text id="1"</text>

</binding>
</visual>

</tile>

TileSquare310x310ImageAndText02 <tile>
<visual version="2">

<binding template="TileSquare310x310ImageAndText02">
<image id="1" src="Assets\picture.png" />
<text id="1">text id="1"</text>
<text id="2">text id="2"</text>

</binding>
</visual>

</tile>

Table A-1. (continued)

(continued)

Appendix A ■ Live TiLe And ToAsT TempLATes

348

Template Name XML Example

TileSquare310x310Image
AndTextOverlay01

<tile>
<visual version="2">

<binding template="TileSquare310x310Image
AndTextOverlay01">
<image id="1" src="Assets\picture.png" />
<text id="1">text id="1"</text>

</binding>
</visual>

</tile>

TileSquare310x310Image
AndTextOverlay02

<tile>
<visual version="2">

<binding template="TileSquare310x310Image
AndTextOverlay02">
<image id="1" src="Assets\picture.png" />
<text id="1">text id="1"</text>
<text id="2">text id="2"</text>

</binding>
</visual>

</tile>

TileSquare310x310Image
AndTextOverlay03

<tile>
<visual version="2">

<binding template="TileSquare310x310Image
AndTextOverlay03">
<image id="1" src="Assets\picture.png" />
<text id="1">text id="1"</text>
<text id="2">text id="2"</text>
<text id="3">text id="3"</text>
<text id="4">text id="4"</text>

</binding>
</visual>

</tile>

TileSquare310x310ImageCollection
AndText01

<tile>
<visual version="2">

<binding template="TileSquare310x310ImageCollection
AndText01">
<image id="1" src="Assets\picture.png" />
<image id="2" src="Assets\picture.png" />
<image id="3" src="Assets\picture.png" />
<image id="4" src="Assets\picture.png" />
<image id="5" src="Assets\picture.png" />
<text id="1">text id="1"</text>

</binding>
</visual>

</tile>

Table A-1. (continued)

(continued)

Appendix A ■ Live TiLe And ToAsT TempLATes

349

Template Name XML Example

TileSquare310x310ImageCollection
AndText02

<tile>
<visual version="2">

<binding template="TileSquare310x310ImageCollection
AndText02">
<image id="1" src="Assets\picture.png" />
<image id="2" src="Assets\picture.png" />
<image id="3" src="Assets\picture.png" />
<image id="4" src="Assets\picture.png" />
<image id="5" src="Assets\picture.png" />
<text id="1">text id="1"</text>
<text id="2">text id="2"</text>

</binding>
</visual>

</tile>

TileSquare310x310ImageCollection <tile>
<visual version="2">

<binding template="TileSquare310x310ImageCollection">
<image id="1" src="Assets\picture.png" />
<image id="2" src="Assets\picture.png" />
<image id="3" src="Assets\picture.png" />
<image id="4" src="Assets\picture.png" />
<image id="5" src="Assets\picture.png" />

</binding>
</visual>

</tile>

TileSquare310x310SmallImages
AndTextList01

<tile>
<visual version="2">

<binding template="TileSquare310x310SmallImages
AndTextList01">
<image id="1" src="Assets\picture.png" />
<image id="2" src="Assets\picture.png" />
<image id="3" src="Assets\picture.png" />
<text id="1">text id="1"</text>
<text id="2">text id="2"</text>
<text id="3">text id="3"</text>
<text id="4">text id="4"</text>
<text id="5">text id="5"</text>
<text id="6">text id="6"</text>
<text id="7">text id="7"</text>
<text id="8">text id="8"</text>
<text id="9">text id="9"</text>

</binding>
</visual>

</tile>

Table A-1. (continued)

(continued)

Appendix A ■ Live TiLe And ToAsT TempLATes

350

Template Name XML Example

TileSquare310x310SmallImages
AndTextList02

<tile>
<visual version="2">

<binding template="TileSquare310x310SmallImages
AndTextList02">
<image id="1" src="Assets\picture.png" />
<image id="2" src="Assets\picture.png" />
<image id="3" src="Assets\picture.png" />
<text id="1">text id="1"</text>
<text id="2">text id="2"</text>
<text id="3">text id="3"</text>

</binding>
</visual>

</tile>

TileSquare310x310SmallImages
AndTextList03

<tile>
<visual version="2">

<binding template="TileSquare310x310SmallImages
AndTextList03">
<image id="1" src="Assets\picture.png" />
<image id="2" src="Assets\picture.png" />
<image id="3" src="Assets\picture.png" />
<text id="1">text id="1"</text>
<text id="2">text id="2"</text>
<text id="3">text id="3"</text>
<text id="4">text id="4"</text>
<text id="5">text id="5"</text>
<text id="6">text id="6"</text>

</binding>
</visual>

</tile>

TileSquare310x310SmallImages
AndTextList04

<tile>
<visual version="2">

<binding template="TileSquare310x310SmallImages
AndTextList04">
<image id="1" src="Assets\picture.png" />
<image id="2" src="Assets\picture.png" />
<image id="3" src="Assets\picture.png" />
<text id="1">text id="1"</text>
<text id="2">text id="2"</text>
<text id="3">text id="3"</text>
<text id="4">text id="4"</text>
<text id="5">text id="5"</text>
<text id="6">text id="6"</text>

</binding>
</visual>

</tile>

Table A-1. (continued)

(continued)

Appendix A ■ Live TiLe And ToAsT TempLATes

351

Template Name XML Example

TileSquare310x310Text01 <tile>
<visual version="2">

<binding template="TileSquare310x310Text01">
<text id="1">text id="1"</text>
<text id="2">text id="2"</text>
<text id="3">text id="3"</text>
<text id="4">text id="4"</text>
<text id="5">text id="5"</text>
<text id="6">text id="6"</text>
<text id="7">text id="7"</text>
<text id="8">text id="8"</text>
<text id="9">text id="9"</text>
<text id="10">text id="10"</text>

</binding>
</visual>

</tile>

TileSquare310x310Text02 <tile>
<visual version="2">

<binding template="TileSquare310x310Text02">
<text id="1">text id="1"</text>
<text id="2">text id="2"</text>
<text id="3">text id="3"</text>
<text id="4">text id="4"</text>
<text id="5">text id="5"</text>
<text id="6">text id="6"</text>
<text id="7">text id="7"</text>
<text id="8">text id="8"</text>
<text id="9">text id="9"</text>
<text id="10">text id="10"</text>
<text id="11">text id="11"</text>
<text id="12">text id="12"</text>
<text id="13">text id="13"</text>
<text id="14">text id="14"</text>
<text id="15">text id="15"</text>
<text id="16">text id="16"</text>
<text id="17">text id="17"</text>
<text id="18">text id="18"</text>
<text id="19">text id="19"</text>

</binding>
</visual>

</tile>

TileSquare310x310Text03 <tile>
<visual version="2">

<binding template="TileSquare310x310Text03">
<text id="1">text id="1"</text>
<text id="2">text id="2"</text>
<text id="3">text id="3"</text>
<text id="4">text id="4"</text>
<text id="5">text id="5"</text>
<text id="6">text id="6"</text>
<text id="7">text id="7"</text>
<text id="8">text id="8"</text>
<text id="9">text id="9"</text>
<text id="10">text id="10"</text>
<text id="11">text id="11"</text>

</binding>
</visual>

</tile>

Table A-1. (continued)

(continued)

Appendix A ■ Live TiLe And ToAsT TempLATes

352

Template Name XML Example

TileSquare310x310Text04 <tile>
<visual version="2">

<binding template="TileSquare310x310Text04">
<text id="1">text id="1"</text>
<text id="2">text id="2"</text>
<text id="3">text id="3"</text>
<text id="4">text id="4"</text>
<text id="5">text id="5"</text>
<text id="6">text id="6"</text>
<text id="7">text id="7"</text>
<text id="8">text id="8"</text>
<text id="9">text id="9"</text>
<text id="10">text id="10"</text>
<text id="11">text id="11"</text>
<text id="12">text id="12"</text>
<text id="13">text id="13"</text>
<text id="14">text id="14"</text>
<text id="15">text id="15"</text>
<text id="16">text id="16"</text>
<text id="17">text id="17"</text>
<text id="18">text id="18"</text>
<text id="19">text id="19"</text>
<text id="20">text id="20"</text>
<text id="21">text id="21"</text>
<text id="22">text id="22"</text>

</binding>
</visual>

</tile>

TileSquare310x310Text05 <tile>
<visual version="2">

<binding template="TileSquare310x310Text05">
<text id="1">text id="1"</text>
<text id="2">text id="2"</text>
<text id="3">text id="3"</text>
<text id="4">text id="4"</text>
<text id="5">text id="5"</text>
<text id="6">text id="6"</text>
<text id="7">text id="7"</text>
<text id="8">text id="8"</text>
<text id="9">text id="9"</text>
<text id="10">text id="10"</text>
<text id="11">text id="11"</text>
<text id="12">text id="12"</text>
<text id="13">text id="13"</text>
<text id="14">text id="14"</text>
<text id="15">text id="15"</text>
<text id="16">text id="16"</text>
<text id="17">text id="17"</text>
<text id="18">text id="18"</text>
<text id="19">text id="19"</text>

</binding>
</visual>

</tile>

Table A-1. (continued)

(continued)

Appendix A ■ Live TiLe And ToAsT TempLATes

353

Template Name XML Example

TileSquare310x310Text06 <tile>
<visual version="2">

<binding template="TileSquare310x310Text06">
<text id="1">text id="1"</text>
<text id="2">text id="2"</text>
<text id="3">text id="3"</text>
<text id="4">text id="4"</text>
<text id="5">text id="5"</text>
<text id="6">text id="6"</text>
<text id="7">text id="7"</text>
<text id="8">text id="8"</text>
<text id="9">text id="9"</text>
<text id="10">text id="10"</text>
<text id="11">text id="11"</text>
<text id="12">text id="12"</text>
<text id="13">text id="13"</text>
<text id="14">text id="14"</text>
<text id="15">text id="15"</text>
<text id="16">text id="16"</text>
<text id="17">text id="17"</text>
<text id="18">text id="18"</text>
<text id="19">text id="19"</text>
<text id="20">text id="20"</text>
<text id="21">text id="21"</text>
<text id="22">text id="22"</text>

</binding>
</visual>

</tile>

TileSquare310x310Text07 <tile>
<visual version="2">

<binding template="TileSquare310x310Text07">
<text id="1">text id="1"</text>
<text id="2">text id="2"</text>
<text id="3">text id="3"</text>
<text id="4">text id="4"</text>
<text id="5">text id="5"</text>
<text id="6">text id="6"</text>
<text id="7">text id="7"</text>
<text id="8">text id="8"</text>
<text id="9">text id="9"</text>
<text id="10">text id="10"</text>
<text id="11">text id="11"</text>
<text id="12">text id="12"</text>
<text id="13">text id="13"</text>
<text id="14">text id="14"</text>
<text id="15">text id="15"</text>
<text id="16">text id="16"</text>
<text id="17">text id="17"</text>
<text id="18">text id="18"</text>
<text id="19">text id="19"</text>

</binding>
</visual>

</tile>

Table A-1. (continued)

(continued)

Appendix A ■ Live TiLe And ToAsT TempLATes

354

Template Name XML Example

TileSquare310x310Text08 <tile>
<visual version="2">

<binding template="TileSquare310x310Text08">
<text id="1">text id="1"</text>
<text id="2">text id="2"</text>
<text id="3">text id="3"</text>
<text id="4">text id="4"</text>
<text id="5">text id="5"</text>
<text id="6">text id="6"</text>
<text id="7">text id="7"</text>
<text id="8">text id="8"</text>
<text id="9">text id="9"</text>
<text id="10">text id="10"</text>
<text id="11">text id="11"</text>
<text id="12">text id="12"</text>
<text id="13">text id="13"</text>
<text id="14">text id="14"</text>
<text id="15">text id="15"</text>
<text id="16">text id="16"</text>
<text id="17">text id="17"</text>
<text id="18">text id="18"</text>
<text id="19">text id="19"</text>
<text id="20">text id="20"</text>
<text id="21">text id="21"</text>
<text id="22">text id="22"</text>

</binding>
</visual>

</tile>

TileSquare310x310TextList01 <tile>
<visual version="2">

<binding template="TileSquare310x310TextList01">
<text id="1">text id="1"</text>
<text id="2">text id="2"</text>
<text id="3">text id="3"</text>
<text id="4">text id="4"</text>
<text id="5">text id="5"</text>
<text id="6">text id="6"</text>
<text id="7">text id="7"</text>
<text id="8">text id="8"</text>
<text id="9">text id="9"</text>

</binding>
</visual>

</tile>

TileSquare310x310TextList02 <tile>
<visual version="2">

<binding template="TileSquare310x310TextList02">
<text id="1">text id="1"</text>
<text id="2">text id="2"</text>
<text id="3">text id="3"</text>

</binding>
</visual>

</tile>

Table A-1. (continued)

(continued)

Appendix A ■ Live TiLe And ToAsT TempLATes

355

Template Name XML Example

TileSquare310x310TextList03 <tile>
<visual version="2">

<binding template="TileSquare310x310TextList03">
<text id="1">text id="1"</text>
<text id="2">text id="2"</text>
<text id="3">text id="3"</text>
<text id="4">text id="4"</text>
<text id="5">text id="5"</text>
<text id="6">text id="6"</text>

</binding>
</visual>

</tile>

TileSquare310x310SmallImage
AndText01

<tile>
<visual version="2">

<binding template="TileSquare310x310SmallImage
AndText01">
<image id="1" src="Assets\picture.png" />
<text id="1">text id="1"</text>
<text id="2">text id="2"</text>
<text id="3">text id="3"</text>

</binding>
</visual>

</tile>

TileSquare310x310SmallImages
AndTextList05

<tile>
<visual version="2">

<binding template="TileSquare310x310SmallImages
AndTextList05">
<image id="1" src="Assets\picture.png" />
<image id="2" src="Assets\picture.png" />
<image id="3" src="Assets\picture.png" />
<text id="1">text id="1"</text>
<text id="2">text id="2"</text>
<text id="3">text id="3"</text>
<text id="4">text id="4"</text>
<text id="5">text id="5"</text>
<text id="6">text id="6"</text>
<text id="7">text id="7"</text>

</binding>
</visual>

</tile>

TileSquare310x310Text09 <tile>
<visual version="2">

<binding template="TileSquare310x310Text09">
<text id="1">text id="1"</text>
<text id="2">text id="2"</text>
<text id="3">text id="3"</text>
<text id="4">text id="4"</text>
<text id="5">text id="5"</text>

</binding>
</visual>

</tile>

Table A-1. (continued)

Appendix A ■ Live TiLe And ToAsT TempLATes

356

Table A-2. Toast Notification Templates

Enumeration Value
(JavaScript Value)

XML Template Example

ToastImageAndText01
(toastImageAndText01)

<toast>
<visual>

<binding template="ToastImageAndText01">
<image id="1" src="images/draw.png" />
<text id="1">Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor incididunt ut
labore et dolore magna aliqua. </text>

</binding>
</visual>

</toast>

ToastImageAndText02
(toastImageAndText02)

<toast>
<visual>

<binding template="ToastImageAndText02">
<image id="1" src="images/draw.png" />
<text id="1">Lorem ipsum dolor sit amet, consectetur
adipisicing elit</text>
<text id="2">Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod</text>

</binding>
</visual>

</toast>

ToastImageAndText03
(toastImageAndText03)

<toast>
<visual>

<binding template="ToastImageAndText03">
<image id="1" src="images/draw.png" />
<text id="1">Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod.</text>
<text id="2">Lorem ipsum dolor sit amet, consectetur
adipisicing elit.</text>

</binding>
</visual>

</toast>

ToastImageAndText04
(toastImageAndText04)

<toast>
<visual>

<binding template="ToastImageAndText04">
<image id="1" src="images/draw.png" />
<text id="1">Lorem ipsum dolor sit amet, consectetur
adipisicing elit.</text>
<text id="2">Lorem ipsum dolor sit amet, consectetur
adipisicing elit.</text>
<text id="3">Lorem ipsum dolor sit amet, consectetur
adipisicing elit.</text>

</binding>
</visual>

</toast>

Toast Templates
Table A-2 shows the various toast notification templates.

(continued)

Appendix A ■ Live TiLe And ToAsT TempLATes

357

Enumeration Value
(JavaScript Value)

XML Template Example

ToastText01
(toastText01)

<toast>
<visual>

<binding template="ToastText01">
<text id="1">Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor incididunt
ut labore et dolore magna aliqua. Ut enim ad minim
veniam.</text>

</binding>
</visual>

</toast>

ToastText02
(toastText02)

<toast>
<visual>

<binding template="ToastText02">
<text id="1">Lorem ipsum dolor sit amet, consectetur
adipisicing elit.</text>
<text id="2">Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor incididunt.
</text>

</binding>
</visual>

</toast>

ToastText03
(toastText03)

<toast>
<visual>

<binding template="ToastText03">
<text id="1">Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor incididunt ut
labore.</text>
<text id="2">Lorem ipsum dolor sit amet, consectetur
adipisicing elit.</text>

</binding>
</visual>

</toast>

ToastText04
(toastText04)

<toast>
<visual>

<binding template="ToastText04">
<text id="1">Lorem ipsum dolor sit amet, consectetur
adipisicing elit.</text>
<text id="2">Lorem ipsum dolor sit amet, consectetur
adipisicing elit.</text>
<text id="3">Lorem ipsum dolor sit amet, consectetur
adipisicing elit.</text>

</binding>
</visual>

</toast>

Table A-2. (continued)

359

Appendix B

Windows Store Developer Account

Before you start selling your apps in the Windows Store, you must have a developer account, which means that you
must register yourself at the Windows Developer Center. To do so, you must register with a Microsoft account at
https://appdev.microsoft.com/StorePortals/. The procedure has a cost: $49 as individual or $99 as company.
This will allow you to access the Windows Developer Center Dashboard. Optionally, if you are already registered
as a Windows Phone developer you can link these two accounts in order to use the same publisher name for both
platforms (see Figure B-1).

Figure B-1. Account type registration

https://appdev.microsoft.com/StorePortals/

Appendix B ■ WindoWs store developer Account

360

To create a developer account, you can log in with a Microsoft account. The process is simple. You choose the
type of account (Individual or Company) and then you add your personal or company information, like the name of
the publisher, country, phone, and e-mail. At the end, you will use a credit card to pay the registration fee
(see Figure B-2).

Figure B-2. Developer account steps

The Individual account has also some limitations that company account does not have; this account type is for
people who want to create apps for consumers, because one of the limitations is the ability to publish just Windows
Store apps. If you plan to publish both Windows Store and desktop apps, you must opt for a Company account.
Choosing a Company account type enables you to access special use capabilities like.

Enterprise authentication (enterpriseAuthentication) for Windows domain credentials use•	

Shared user certificates (sharedUserCertificates) to access software and hardware certificates •	
such as digital signature

Documents library (documentsLibrary) to gain access to the user’s Documents library •	
programmatically. You should use this capability only in particular scenarios where you
cannot use the file picker.

Each account needs to be verified by confirming registrant identity and payment method before you can
submit an app.

As mentioned, there are two reasons to start developing Windows Store apps, one of which is economic
opportunity. Microsoft knows that to attract new developers on this new platform, besides the number of potential
users, it must entice economically, providing an interesting revenue sharing rate. Initially, you make 70% of your app’s
price on each sale; when you reach $25,000 of sales, the percentage increases to 80% for the rest of your application’s
lifetime. Once your app has earned at least $200, you can get paid from the Windows Store by setting your bank
account information in the Payout section of your profile (see Figure B-3).

Appendix B ■ WindoWs store developer Account

361

Figure B-3. Setting a payout account

Figure B-4. Fill in the tax form

You also need to fill a tax form in the Tax section of your profile. If you live in the United States, the tax form is the
W-9; otherwise you need to fill out the W-8BEN form (see Figure B-4).

Once you have set this information, you are ready to submit your first app.

A���������
Accessibility

assistive technology
AccessKey and AcceleratorKey, 283
AutomationProperties.Name, 282
built-in support, WinRT controls, 281
ItemsControls, 283
TabIndex and IsTabStop, 282
Windows Store app, 281

high-contrast themes, 283
Windows Store App

inspect accessibility tool, 284
UI Accessibility Checker, 284

Activated event
application class diagram, 132
C#, 132
project template, 131
VB, 136

Age rating and rating certificates, 315
Angry Birds Star Wars app detail page, 304
Animations

custom animations, 147–148
dependent animations, 149
independent animations, 149
theme animations, 147
transition animations, 147

AppBar, 83
AppBarButton, 84
AppBarSeparator, 84
AppBarToggleButton, 84
Application life cycle

activated event, 131
close gesture, 130
execution states, 129
extended splash screen, 130
resuming event, 142
suspending event, 140
visibility changed event, 137

Application model, WinRT APIs
background tasks, 36
blocks, 35
components, 38
core classes and interfaces, 36
CurrentApp, 38
DataTransfer classes, 43
Globalization classes and enumerations, 40
search classes, 42
store classes, 38
System.Globalization namespace, 40
threading classes, 41
WebAuthenticationResult class, 39

App monitoring, 332
App selling details and services

accessibility, 314
category and subcategories, 313
hardware requirements, 314
in-app offers, 312
in-app purchase, 311
markets, 312
price selection and free trial period, 311
release date, 313

App submission
information, application section, 310
page, 306
process, 306
reserve APP name, 307

B���������
BackButton control, 87
Background Task

addition, 171
conditions, 170
debugging, 178
declaration, 176
definition, 168
implementation, 172

Index

363

latching, 169
process, 169
registration, 174
triggers classes, 169, 171
voice over internet protocol (VOIP) app, 169

Badge notification
C#, 269
definition, 267
glyph notification, 268
glyph values, 268
VB, 269

Bing Sports app, 87

C���������
C# and Visual Basic (VB) languages

and JavaScript, 126
C++, 125
HTML, 125
requirements, 125
Windows Phone developer, 121
Windows Store App applications, 121
Windows Store App Template, 124
XAML views and binding, 124
XAML vs. HTML and CSS, 125

Canvas, 103
Certification, 330
Charms

search
BooleanNegationConverter, 179
contract, 178–179
SearchBox, 183

setting
activation, 191
Application Settings, 187
ApplicationSettings namespace, 187
default entries, 186
SettingsPanelHelper, 193

sharing
data preparation, 185
DataTransferManager class, 184–185

CheckBox, 76
ComboBox control, 90
Communication and data components,

WinRT APIs
blocks, 41
data sharing, 43
external services, 44
local and cloud storage, 44
network functionalities, 46
PushNotifications, 46
SmsDevice class, 46
types of notifications, 45
Windows.Web.Http namespace, 47

Compass sensor, 162
Control library

AppBar, 83
AppBarButton, AppBarToggleButton

and AppBarSeparator, 84
button, 74
CheckBox, 76
common controls, 74
HyperlinkButton, 77
PasswordBox, 84
ProgressBar and ProgressRing, 81
RadioButton, 78
TextBox, 77
ToggleButton, 79
ToggleSwitch, 79
UIElement, 74
Windows 8.1, 88

Cryptography, 315

D���������
Data management

data stores, 199
FilePicker and FolderPicker, 222
local data

ApplicationDataCompositeValue
class, 203

containers, 201
LocalSettings, 201
Storage API main classes, 201
StorageFile and StorageFolder

classes, 207
SuspensionManager class, 204

remote data, 231
roaming data

ApplicationData.Current.RoamingStorageQuota
property, 209

ApplicationData.SetVersionAsync, 214
DataChanged, 213
HighPriority, 212
RoamingSettings, 209
SuspensionManager, 216

SQLite
add reference window, 228
definition, 226
download page, 226
installed extension section, 227
NuGet, 228
SimpleAppointment, 228
VSIX Installer window, 226

temporary data, 219
user data

KnownFolders Properties, 221
PicturesLibrary, 221
read/write data files, 221

■ index

364

Background Task (cont.)

user info
contact management, 259
Credential Locker, 250
PasswordVault, 251
Windows.Security.Credentials classes, 250
working with SSO, 254

WCF (see Windows Communication
Foundation (WCF))

Windows Azure Mobile Services (see Windows
Azure Mobile Services)

in Windows Store App
app capabilities, 198
App data, 195
location and capability, 197
Package Designer, 196
permission section in setting, 199
System.UnauthorizedAccessException, 197
User data, 195
Windows Storage APIs, 195

DatePicker, 85
Devices and printing

accelerometer class, 63
capability requirements, 60
geolocation namespace diagram, 61
Gyrometer class, 64
Media Transfer Protocol (MTP) device, 61
PeerFinder, 65
PointOfService namespace, 68
ProximityDevice class, 64
SimpleOrientationSensor, 64
StorageDevice class, 62
WiFiDirectDevice, 71
Windows.Devices.Bluetooth.

GenericAttributeProfile, 70
Windows.Devices.Usb, 69

Digital Living Network Alliance (DLNA) protocol, 151
Documents library, 360

E���������
Enterprise authentication, 360
Export Commodity Classification

Number (ECCN), 316

F���������
FlipView control, 91
Flyout, 86

G���������
Geolocation

active solution platform drop-down list, 155
Bing Maps key, 153
Geocoordinate, 153

Geolocator class, 152
Geoposition, 153
invalid reference, 155
loaction capability, 156
Windows.Devices.Geolocation namespace, 152

Graphics and media
capture classes, 51
display classes, 48
imaging classes, 49
interfaces, 50
IXpsDocumentPackageTarget3D, 60
IXpsOMPackageWriter3D, 60
MediaCapture class, 51
MediaTranscoder, 58
Open Packaging Conventions (OPC) package, 60
PlayToReceiver class, 55
PrintDocument class, 59
PrintTask, 59
Windows.Graphics.Printing namespace, 59
Windows.Media.Devices, 52
Windows.Media.MediaProperties, 53
Windows.Media.Playlists classes, 55
Windows.Media.Protection, 56

GridView controls, 93

H���������
Hub app, 87
Human Interface Device (HID), 66
HyperlinkButton, 77

I, J, K���������
International Typographic Style, 14
ItemsControl

class diagram, 88
example, 89
FlipView, 91
GridView, 93
ListBox, 92
ListView, 93
public members, 89

L���������
Landscape orientation, 105
ListBox control, 92
ListView control, 93
Live tile, 335
Live tiles notifications

C#, 267
classes, 266
default tile configuration, 265
definition, 263
designing, 263

■ index

365

sending
client side, 274
server side, 274

tile sizes, 264
TileSquare150x150PeekImageAndText02

template, 266
TileTemplateType, 265
TileUpdater, 266
VB, 267

Localization
classes, Windows.Globalization.Number

Formatting, 294
CurrencyFormatter, 295
date and time formatting

DateTimeFormatter, 292
namespace elements, 291
patterns, 293
templates, 292

DecimalFormatter, 294
layout and font adjustment, 295
Multilingual App Toolkit (see Multilingual

App Toolkit)
set available languages

Package.appxmanifest code editor, 290
steps, 290

UI control steps, 285
UI resources, Windows Store Apps

control, 288
default language, 286
folder structure, 286
Inside Markup, 288
inside the code, 287
localized resource file, 288
localized resource strings, 288
localized string, 287
multiple resource files, Windows

Store app, 290
Resources File (.resw) template, 286–287
testing, different language, 288

Lock screen notification
background tasks, 269
capability, 270
logo configuration, 270

M���������
Management controls

ItemsControl, 93
XAML and HTML, 88

Melbourne Airport signs (Wikipedia), 14
Microsoft Design Style

concepts, 13
International Typographic Style, 14
King County Metro signage (Wikipedia), 12

Modern Design, 13
Motion Design, 15
principles

authentically digital, 16
Be Fast and Fluid, 16
craftsmanship, 15
Do More with Less, 16
Win as One, 16

Windows Phone Start screen, 11
Zune UI (Wikipedia), 12

Modern Design, 13
Motion Design, 15
Multilingual App Toolkit

automated translations, 299
capabilities, 296
definition, 296
Italian localized xlf file, 298
Multilingual Editor, 299
Pseudo Language, 297
translation feature, Visual Studio 2013, 300
translation languages pop-up window, 298
translation, project, 297
Visual Studio 2013, 297

N���������
NavBar control, 87
Notifications

badge, 267
live tiles (see Live tiles notifications)
lock screen, 269
sending

push notification, 271
tile notification, 274
value, 279

toast notifications, 271

O���������
OnLaunched method, 131
Open Packaging Conventions (OPC)

package, 60

P, Q���������
Packages

Windows App Certification Kit
3.1 view, 318
app association with Store, 322
app name Store association, 324
app package creation wizard, 325
app package upload page, 328
app selection, 318
configuration step, 326
definition, 317

■ index

366

Live tiles notifications (cont.)

failed process, 320
package creation completed, 327
reserved app name selection, 323
resolution, error and hint, 321
testing phase, 320
tests, 317, 319
validation, Windows Store app, 322
Windows 8.1 SDK, 317

PasswordBox, 84
Picture Transfer Protocol (PTP), 62
Play To Contract, implementation, 166
Portrait orientation, 106
ProgressBar and ProgressRing, 80
Push notification

ChannelManager, 272
namespace, 273
Notification Platform, 271
sending steps, 271
WNS, 271
working schema, 272

R���������
RadioButton, 78
Resuming event

C#, 142
VB.NET, 142

S���������
SearchBox control, 86
Search Contract, 114
Semantic Zoom, 109
Sensors, 151
Settings Contract, 116
Share Contract, 111
Shared user certificates, 360
StackPanel control, 104
Stream media element, 164
Suspending event

C#, 141
classes, 140–141
VB, 141

Swiss design, Helvetica font
(Wikipedia), 14

T���������
TextBox, 77
The Bauhaus building, Dessau, 13
TimePicker, 85
Toast notification, 271
Toast templates, 356
ToggleSwitch, 79
Trigger types, 119

U���������
UIElement, 74
User contact management

ContactPicker, 260
Windows.ApplicationModel.Contacts

main classes, 260
Windows.ApplicationModel.Contacts

namespace, 259
User Experience (UX)

App Picker contract and Cached File
Updated contract, 117

AutoPlay, 118
background tasks, 120
contact picker, 120
contracts, 109
control library (see Control library)
different screen, same windows version, 98
extensions, 118
file activation, 120
layout, 104
management controls (see Management controls)
orientation, 107
Play To Contract, 117
printer task settings, 120
profile pictures, 118
protocol activation, 120
search contract, 114
semantic zoom, 109
settings contract, 116
share contract, 111
touch design principles, 73

V���������
Visibility changed event

C#, 139
class diagrams, 138
VB, 139

Visual Studio 2013, 97

W, X, Y, Z���������
WCF. See Windows Communication

Foundation (WCF)
Windows

Windows 1.0 to 3.1, 1
Windows 5, 7
Windows 8
Windows 8.1, 9
Windows 95 to 2000, 2
Windows XP to Windows Vista, 4

Windows 1.0 to 3.1
graphical interface, MS-DOS, 1
hand-eye coordination, UIs, 1

■ index

367

PCs, 2
simple command parser, 1
Windows 3.0 interface, 2
Windows/386 processor, 1

Windows 7
description, 5
history, Microsoft OSs, 8
multitouch devices, 6

Windows 8
devices and printing, 60
device’s resolution, 94
extensions, 118
full screen view, 99–100
Microsoft Design Style UI, 8
new Windows Store app interface, 9
ProgressRing, 80
snapped and fill views, 99
startup screen, 9
supported screen sizes, default resolutions

and DPI densities, 95
USB stick, 9
Windows 7 application bar, 8
WinRT APIs (see WinRT APIs)

Windows 8.1
contextual menu, Start button, 10
description, 9
mobility enhancements, 10
NFC Tap-to-Pair printing feature, 10

Windows 8 Store app
additional panels, 29
artboard area, 29
blend, Visual studio 2013, 23
components, blend, 25
functional areas, 19
installation process, 17
main panel, 27
Microsoft Design Style (see Microsoft

Design Style)
New Project Blend Wizard, 25
New Project Wizard, 20
price and auxiliary tools, 16
simulator commands, 22
starting application options, 20
Team Foundation Server, 24
Tools Panel, 26
Visual Studio 2013, 19
VS2013, activation process, 18
VS2013, environment, 18
Windows 8 simulator, 21

Windows 8.x operating systems, 301
Windows 95 to 2000

consumer-oriented OS, 2
features, 3
NTFS support, 3

taskbar with Start button, 3
Windows Millennium Edition (ME), 3

Windows Audio Session API (WASAPI), 5
Windows Azure Mobile Services

addition in project, 244
basic operations, execution, 245
dashboard, 249
Microsoft Account, 238
mobile service

ceartion (1), 240
ceartion (2), 240
dashboard, 241
in Windows Azure Portal, 241
key and address, 245
menu, 239

MobileServiceClient, 244
operation codes, 247
permissions section in table dashboard, 243
Script section in Table dashboard, 243
Services Manager window, 244
SimpleAppointment columns, 242
SimpleAppointment dashboard, 242
SimpleAppointment records, 249
table creation wizard, 242
Windows Azure menu, 239

Windows Communication Foundation (WCF)
Configure() method, 233
FakeService, 234
features, 232
reference.cs location, 233
SyndicationClient, 236
Visual Studio 2013, 232
Windows.Web.Http, 237

Windows devices sensors
accelerometer, 161
CompassReading class, 161
data classes, 161
gyrometer, 161
illuminance values, 162
inclinometer, 161
LightSensor, 162
namespace, 159–160
OrientationSensorReading, 161

Windows OSs, 301
Windows Runtime (WinRT)

description, 31
.NET Common Language Runtime (CLR), 31
Windows 8 platform, 32

Windows.Security.Authentication.OnlineId
classes, 39

Windows Store
age rating and rating certificates, 315
app monitoring, 332
app selling details and services (see App

selling details and services)

■ index

368

Windows 1.0 to 3.1 (cont.)

app submission (see App submission)
certification, 330
cryptography, 315
description, 328
development, 301
installation

Angry Birds Star Wars app detail page, 304
app installation message, 304
information, 303
notification, 304
tile update notification, 305
tile update options, 305

integrated app, 301
integrated search box, 302
notes to testers, 330
packages (see Packages)
payment methods, 302
updating app, 334

Windows Store app
Blend menu, 147
custom animations, 147–148
dependent animation, 149
developer

account steps, 360
payout account, 361
registration, 359
tax form, 361

independent animation, 149
theme animations, 147–148

transition animations, 147
user interface

application bar, 145
item detail page, 146
item selection, 145
main page, app, 144
Start screen, 144

Windows XP to Windows Vista
description, 4
grouping windows, taskbar, 4
service packs, 4
speech recognition, 5
updates, 4
Windows Audio Session API (WASAPI), 5
Windows Server 2003, 4
XPS and WPF, 5

WinRT APIs
application life cycle management, 33
application model, 35
blocks, 32
communication and data, 41
Execution application sandbox, 34
functionality blocks, 33
graphics and media (see Graphics and media)
local storage, 44
Metadata compatibility through

projections, 35
Security Broker, 34
storage classes, 44

■ index

369

Building Windows 8.1
Apps from the Ground Up

Emanuele Garofalo

Antonio Liccardi

Michele Aponte

Building Windows 8.1 Apps from the Ground Up

Copyright © 2014 by Emanuele Garofalo, Antonio Liccardi, Michele Aponte

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-4701-2

ISBN-13 (electronic): 978-1-4302-4702-9

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

President and Publisher: Paul Manning
Lead Editor: Ewan Buckingham
Technical Reviewer: Fabio Claudio Ferracchiati
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan, James T. DeWolf,

Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham,
Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft,
Gwenan Spearing, Matt Wade, Steve Weiss

Coordinating Editor: Anamika Panchoo
Copy Editors: Mary Behr, Nancy Sixsmith
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science +
Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to readers at
www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

orders-ny@springer-sbm.com
www.springeronline.com
rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/

v

Contents

About the Authors ..xi

About the Technical Reviewer ...xiii

Chapter 1: Introduction to Windows 8.1 ■ ..1

Once Upon a Time in Windows ��1

From Windows 1�0 to 3�1 ��� 1

Windows 95 to 2000 �� 2

From Windows XP to Windows Vista �� 4

Windows 7 ��� 5

Windows 8 ��� 8

Windows 8�1 �� 9

Thinking in Metro: Fundamentals of the Windows Store App UI ���10

What Is the Microsoft Design Style? �� 11

Origin of the Microsoft Design Style UI Design Language ��� 12

Microsoft Design Style Principles �� 15

Making Great Windows Store Apps�� 16

Platform and Tools ���16

Installing the Tools ��� 17

Starting Your Application in the Simulator ��� 20

Blending for Microsoft Visual Studio 2013 �� 23

Conclusions ���30

■ Contents

vi

Chapter 2: Windows Runtime Environment ■ ..31

Windows 8 Platform ��31

Application Model ��35

Communication and Data ��41

Graphics and Media ��� 48

Devices and Printing ���60

Conclusion ���72

Chapter 3: Designing the User Experience ■ ..73

Touch Design Principles ��73

Control Library ���73

Common Controls �� 74

New Controls in Windows 8�1 �� 85

Windows 8�1 introduces the following new controls: �� 85

List Management Controls ��88

ItemsControl �� 88

Orientation and Layout ��93

Different Screen, Same Windows Version�� 94

Layout �� 98

Orientation ��� 104

Semantic Zoom ���107

Contracts and Extensions ��109

Contracts ��� 109

Extensions ��� 117

Conclusion ���120

Chapter 4: Choose Your Way ■ ..121

Choosing Your Way ��121

Using XAML and the �NET Languages ���121

XAML Views and Binding ��� 122

VB and C# Windows Store App Template ��� 124

■ Contents

vii

A Quick Introduction to JavaScript and C++ ���124

HTML 5 and JavaScript �� 124

C++ ��� 125

What Language Should You Choose? ��125

XAML vs� HTML and CSS ��� 125

C#, VB, C++, and JavaScript �� 126

Conclusion ���127

Chapter 5: Managing the Application Life Cycle ■ ..129

Dissecting the Application Life Cycle ��129

Activated Event��131

C# �� 132

VB �� 136

Visibility Changed Event ��137

C# �� 139

VB �� 139

C# �� 141

VB �� 141

Resuming Event ��142

C# �� 142

VB�NET ��� 142

Conclusion ���142

Chapter 6: Start Up Your App ■ ...143

Design the User Interface ��143

Choose the Right Tool ��146

Conclusion ���149

Chapter 7: Take Advantage of the Environment ■ ..151

Sensors ��151

Geolocation �� 152

Windows�Device�Sensors��� 159

■ Contents

viii

Media ��164

Stream Media Element �� 164

Background Task ���168

Implementing the Background Task �� 172

Registering the Background Task �� 174

Declaring the Background Task ��� 176

Debugging Background Tasks ��� 178

Charms ��178

Search ��� 178

Sharing �� 184

Settings ��� 186

Conclusion ���194

Chapter 8: Data Management ■ ..195

Handling Data in a Windows Store App ���195

Managing App Data ��� 199

User Data ��� 221

FilePicker and FolderPicker ��� 222

Using SQLite for Windows Store Apps ���225

Retrieving Remote Data ��231

Retrieving Data from Windows Communication Foundation ���231

Retrieving Data from Windows Azure Mobile Services ���238

Managing User Info ���250

Credential Roaming ��� 250

Working with Single Sign-On ��� 254

Managing User Contacts�� 259

Conclusion ���262

Chapter 9: Listening to the World ■ ..263

Notifications Overview ��263

Live Tiles �� 263

Badge Notification ��� 267

■ Contents

ix

Lock Screen Notification �� 269

Toast Notifications ��� 271

Sending Notifications ��271

Using a Push Notification��� 271

Conclusion ���279

Chapter 10: Accessibility and Globalization ■ ..281

Get Ready for Accessibility ��281

Support for Assistive Technology ��� 281

Supporting High-Contrast Themes �� 283

Testing a Windows Store App for Accessibility �� 284

Get Ready for Localization ���285

Using UI Resources in Windows Store Apps �� 286

How To Set Available Languages for a Windows Store App ��� 290

How To Format Date and Time Properly��� 291

How To Format Number and Currency Properly��� 293

Layout and Font Adjustment, Bi-Directional Support ��� 295

The Multilingual App Toolkit ��� 296

Conclusion ���300

Chapter 11: Sell Your App ■ ..301

Windows Store ��301

Presenting the Windows Store �� 301

Submit Your App ��306

App Name �� 307

Selling Details and Services �� 311

Age Rating and Rating Certificates �� 315

Cryptography ��� 315

Packages ��� 317

Description �� 328

Notes to Testers ��� 330

■ Contents

x

Monitoring Your App ��332

Updating Your App ���334

Conclusion ���334

Appendix A: Live Tile and Toast Templates ■ ..335

Live Tile ���335

Toast Templates ���356

Appendix B: Windows Store Developer Account ■ ...359

Index ...363

xi

About the Authors

Emanuele Garofalo is a solution architect who specializes in development for the .NET Framework. He is an active
member of the DotNetCampania user group community. He is also speaker at technical conferences on the subject of
XAML and C# technologies.

Emanuele’s previous book, Windows Phone 7 Recipes, was also published by Apress. He is currently employed
by E-Fil s.r.l.

Antonio Liccardi works as chief technology officer, senior consultant, and trainer at BC Soft s.r.l., an Italian software
development company.

Antonio is both the cofounder of and regular speaker at the DotNetCampania user group community
(http://www.dotnetcampania.org). He is an accredited MCP, MCSD, MCST IT, and OCA.

Michele Aponte is cofounder and chairman of the DotNetCampania user group community
(http://www.dotnetcampania.org), for which he organizes technical events covering Microsoft technologies in the
Campania. He is cofounder and CEO of Blexin Srls (http://www.blexin.com), for which he develops applications for
Microsoft platforms.

Michele is an MCP, MCTS, MCPD, and MCT, and has been a Microsoft MVP for ASP.NET and IIS since
January 2011.

http://www.dotnetcampania.org
http://www.dotnetcampania.org
http://www.blexin.com

xiii

About the Technical Reviewer

Fabio Claudio Ferrachiati is a senior consultant and a senior analyst/developer using Microsoft technologies.
He works for Brain Force (http://www.brainforce.com) in its Italian branch (http://www.brainforce.it). Fabio is
a Microsoft Certified Solution Developer for .NET, a Microsoft Certified Application Developer for .NET, a Microsoft
Certified Professional, and a prolific author and technical reviewer. Over the past 10 years, he’s written articles for
Italian and international magazines and coauthored more than 10 books on a variety of computer topics.

http://www.brainforce.com
http://www.brainforce.it

	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Chapter 1: Introduction to Windows 8.1
	Once Upon a Time in Windows
	From Windows 1.0 to 3.1
	Windows 95 to 2000
	From Windows XP to Windows Vista
	Windows 7
	Windows 8
	Windows 8.1

	Thinking in Metro: Fundamentals of the Windows Store App UI
	What Is the Microsoft Design Style?
	Origin of the Microsoft Design Style UI Design Language
	Modern Design
	International Typographic Style
	Motion Design

	Microsoft Design Style Principles
	Principle 1: Show Pride in Craftsmanship
	Principle 2: Be Fast and Fluid
	Principle 3: Authentically Digital
	Principle 4: Do More with Less
	Principle 5: Win as One

	Making Great Windows Store Apps

	Platform and Tools
	Installing the Tools
	Starting Your Application in the Simulator
	Blending for Microsoft Visual Studio 2013

	Conclusions

	Chapter 2: Windows Runtime Environment
	Windows 8 Platform
	Application Model
	Communication and Data
	Graphics and Media

	Devices and Printing
	Conclusion

	Chapter 3: Designing the User Experience
	Touch Design Principles
	Control Library
	Common Controls
	Button
	CheckBox
	TextBox
	HyperlinkButton
	RadioButton
	ToggleSwitch
	ToggleButton
	ProgressBar and ProgressRing
	AppBar
	AppBarButton, AppBarToggleButton, and AppBarSeparator
	PasswordBox

	New Controls in Windows 8.1
	Windows 8.1 introduces the following new controls:

	List Management Controls
	ItemsControl

	Orientation and Layout
	Different Screen, Same Windows Version
	Layout
	Orientation

	Semantic Zoom
	Contracts and Extensions
	Contracts
	Share Contract
	Search Contract
	Settings Contract
	Play To Contract
	App to App Picker Contract and Cached File Updated Contract

	Extensions
	Account Picture Provider
	AutoPlay
	Background Tasks
	Contact Picker
	File Activation
	Printer Task Settings
	Protocol Activation

	Conclusion

	Chapter 4: Choose Your Way
	Choosing Your Way
	Using XAML and the .NET Languages
	XAML Views and Binding
	VB and C# Windows Store App Template

	A Quick Introduction to JavaScript and C++
	HTML 5 and JavaScript
	C++

	What Language Should You Choose?
	XAML vs. HTML and CSS
	C#, VB, C++, and JavaScript

	Conclusion

	Chapter 5: Managing the Application Life Cycle
	Dissecting the Application Life Cycle
	Activated Event
	C#
	VB

	Visibility Changed Event
	C#
	VB
	Suspending Event

	C#
	VB

	Resuming Event
	C#
	VB.NET

	Conclusion

	Chapter 6: Start Up Your App
	Design the User Interface
	Choose the Right Tool
	Conclusion

	Chapter 7: Take Advantage of the Environment
	Sensors
	Geolocation
	Prepare the UI
	XAML

	Find Me Everywhere
	C#
	VB
	C#
	VB

	Windows.Device.Sensors
	Compass Example
	XAML
	C#
	VB

	Media
	Stream Media Element
	Prepare the UI
	XAML

	Implementing the Play To Contract
	C#
	VB
	C#
	VB
	C#
	VB
	C#
	VB

	Background Task
	Implementing the Background Task
	C#
	VB

	Registering the Background Task
	C#
	VB

	Declaring the Background Task
	Debugging Background Tasks

	Charms
	Search
	Search Contract
	Providing Suggestions
	C#
	VB

	Providing Results
	C#
	VB

	SearchBox
	Providing Suggestions
	C#
	VB

	Sharing
	Preparing Data to Share
	C#
	VB

	Settings
	Application Settings
	XAML
	C#
	VB

	Activating the Settings Charm on Master
	C#
	VB

	A Look Inside SettingsPanelHelper
	C#
	VB

	Conclusion

	Chapter 8: Data Management
	Handling Data in a Windows Store App
	Managing App Data
	Local Data
	Roaming Data
	Temporary Data

	User Data
	FilePicker and FolderPicker

	Using SQLite for Windows Store Apps
	Retrieving Remote Data
	Retrieving Data from Windows Communication Foundation
	Retrieving Data from Windows Azure Mobile Services
	Managing User Info
	Credential Roaming
	Working with Single Sign-On
	Managing User Contacts

	Conclusion
	C#
	VB
	C#
	VB
	C#
	VB
	C#
	VB
	C#
	VB
	C#
	VB
	C#
	VB
	C#
	VB
	C#
	VB
	C#
	VB
	C#
	VB
	C#
	VB
	C#
	VB
	C#
	C#
	VB
	C#
	C#
	VB
	C#
	VB
	C#
	VB
	C#
	VB
	C#
	VB
	C#
	VB
	C#
	VB
	C#
	VB
	C#
	VB

	Chapter 9: Listening to the World
	Notifications Overview
	Live Tiles
	C#
	VB

	Badge Notification
	C#
	VB

	Lock Screen Notification
	Toast Notifications

	Sending Notifications
	Using a Push Notification
	Sending a Tile Notification
	Client Side
	C#
	VB

	Server Side
	C#
	VB
	C#
	VB

	Sending Other Notifications

	Conclusion

	Chapter 10: Accessibility and Globalization
	Get Ready for Accessibility
	Support for Assistive Technology
	Supporting High-Contrast Themes
	Testing a Windows Store App for Accessibility
	Using UI Resources in Windows Store Apps
	How To Set Available Languages for a Windows Store App
	How To Format Date and Time Properly
	How To Format Number and Currency Properly
	Layout and Font Adjustment, Bi-Directional Support
	The Multilingual App Toolkit

	Conclusion

	Chapter 11: Sell Your App
	Windows Store
	Submit Your App
	App Name
	Selling Details and Services
	Cryptography
	Packages
	Description
	Notes to Testers

	Monitoring Your App
	Updating Your App
	Conclusion

	Chapter 12:
Live Tile and Toast Templates
	Live Tile
	Toast Templates

	Chapter 13:
Windows Store Developer Account
	Index

