
[1]

www.allitebooks.com

http://www.allitebooks.org

Building a Game with Unity and
Blender

Learn how to build a complete 3D game using the
industry-leading Unity game development engine
and Blender, the graphics software that gives life to
your ideas

Lee Zhi Eng

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Building a Game with Unity and Blender

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2015

Production reference: 1251115

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-214-0

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Lee Zhi Eng

Reviewers
Matt Schoen

Tony V. Le

Gareth Wright

Acquisition Editor
Shaon Basu

Content Development Editor
Sumeet Sawant

Technical Editor
Edwin Moses

Copy Editors
Dipti Mankame

Jonathan Todd

Project Coordinator
Shweta H Birwatkar

Proofreader
Safis Editing

Indexer
Hemangini Bari

Graphics
Abhinash Sahu

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

www.allitebooks.com

http://www.allitebooks.org

About the Author

Lee Zhi Eng is a 3D artist-turned-programmer who is currently the cofounder-
cum-chief technical executive at Reonyx Tech, a technology firm based in Malaysia.

Before he cofounded the company, he worked as an artist and programmer in several
game studios before becoming a part-time lecturer for 2 years at a university to teach
game development subjects related to Unity Engine and Unreal Engine. He has not
only took part in various projects related to games, interactive apps, and virtual
reality, but also participated in multiple projects that are more oriented toward
software and system development, such as vehicle tracking systems, corporate
management systems, web applications, and so on and so forth.

When he is not writing code, he enjoys traveling, photography, and exploring new
technologies. You can find more information about him at www.zhieng.com.

www.allitebooks.com

www.zhieng.com
http://www.allitebooks.org

About the Reviewers

Matt Schoen is an indie games developer and Unity guru. His primary focus is on
systems and tools development with C#, but as a generalist, he's touched practically
every feature of Unity. In his day-to-day work, he also uses Visual Studio, Maya,
Blender, the Adobe Creative Suite, and a wide variety of creative and development
software. He's worked with Unity since its early days and has been a part of the
developer community for just as long. From presenting at and attending Boston
Unity Group meetings and Unite conferences to participation in the Unify Wiki and
Unity Forums, he has given and taken lots of help on a wide range of projects.
He cofounded Defective Studios and has been proud to work on a wide range of
internal projects and external contract work, including Archean Worldbuilder,
CosmoKnots, and a number of collaborations. He is currently in the early stages of
authorship on another PACKT title: Google Cardboard Projects with his co-author
Jonathan Linowes.

Tony V. Le is an independent game and web developer who was born and raised
in Chicago, IL where he attended Columbia College Chicago and graduated in
spring 2015 with a Bachelor’s Degree in Game Design and a Minor in web developer.
Currently now attending graduate school at DePaul University for his Master’s Degree
in Computer Game Development, he had also started up his own company, tvledesign
LLC, and is now working towards developing a professional career in both the game
and web industry. With the ongoing passion to continue learning and developing new
techniques, he not only takes on the role of being a student but he also loves to take on
the role of being a mentor, teaching and inspiring others like himself to create and live
for the passion they strive for.

www.allitebooks.com

http://www.allitebooks.org

Gareth Wright (known online by many as just Gruffy) has been an independent
game developer since his graduation from the University of Plymouth with a
bachelor of science honors degree in 2013. Using Unity 3D and the community-
developed Blender, he has provided 3D art for the past three years to a number of
clients and the community and for use in his own developments.

Due to enjoyment of the problem, as opposed to locking down one particular field,
Gareth enjoys working in both desktop application and frontend web application
development, but his main passion lies firmly with game development and using
Unity3D or UE4 engine to give his modular environment developments life.

As a photographer, Gareth has provided reference photography for game companies
seeking related reference shots due to his location near to the moors in Devon and
also provides postprocessing imagery to keep his digital art skills fresh.

You can find him lecturing on software and game development at South Devon
College, Paignton, to both FE and HE or at home in the office experimenting with
some mechanic idea inspired by a game he recently played or online at Unity
Answers looking for a challenging question or two.

Here's the list of his games:

• Tricade: This is a 3-player arcade game by Andrew Cuffe, Adrian De
Lurendium, Gareth Wright.

• Houndtor: This belongs to Histories and Legends, and developed by
Gareth Wright.

• Free Modular Environments: Unity Asset Store (Search "Gruffy")
Blender pipeline

• Flingy: 2016 release by Gareth Wright

www.allitebooks.com

http://www.allitebooks.org

Other companies which I worked for:

• Particles of Sound by Daryl Fensom, Audio Engineer and scripting advisor
• Protectus Security Services Ltd: OpenCV image matching algorithm

development (NDA)
• The Learning Clinic: Web application developer (NDA)

I would like to thank my family for the continued support at every
turn in my life. My sister for her continued bravery, my brother for
his continued devotion to progression, my mum and dad because
they are simply the most amazing people anyone could ever hope
to know.
Finally, thanks to technology and the technologists, without your
knowledge and will to share it, I wouldn't be half as capable as I am
today—just saying J.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

[i]

Table of Contents
Preface v
Chapter 1: Creating Your Game Concept 1

Job roles in game development 1
Gameplay design 2

Starting point 3
Choosing a game genre 3
Game mechanics 4
Level design 6
Rapid prototyping 7

Writing the game's story 7
Choosing a visual style 8
The characters concept 8
The environment concept 12
Summary 13

Chapter 2: Creating Characters 15
Downloading Blender 15

A brief history of Blender 16
The basic user interface of Blender 16

Creating the monster's 3D model 21
Unwrapping the monster's UV map 37
Creating the monster's texture 43
Creating the player character's 3D model 48
Unwrapping the player character's UV map 61
Summary 64

Chapter 3: Animating Your Characters 65
What is character rigging? 65
Creating a monster's armature 66
Creating the player character's armature 71

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Weight painting 77
Animating characters 80
The 12 basic principles of animation 84
Summary 86

Chapter 4: Creating the Environment 87
Building terrain and wall models 87
Building rock models 94
Creating rock and wall textures 96
Building grass models 98
Creating the grass texture 100
Summary 102

Chapter 5: Integrating Your Assets into the Game 103
Basic user interface of Unity 104
Importing environment assets 105

Introducing prefabs 108
Setting up the terrain 108
Setting up water surfaces 111
Setting up foliage 113
Setting up environment lighting 115
Optimizing the scene with Occlusion Culling 118

Importing character assets 120
Summary 127

Chapter 6: Developing the Game Structure 129
Introduction to game structure design 129
Planning the game flow 130
Designing the user interface structure 137
Player inputs and character movements 148
Creating basic artificial intelligence 164
Summary 170

Chapter 7: Creating Levels and Game Progression 171
Creating character attributes 171
Adding in-game items and power-ups 173
Improving enemy AI 178
Adding save points 180
Summary 189

Chapter 8: Post-Production and Visual FX 191
A basic particle system 191
Mist particles 198
Torch fire 201

Table of Contents

[iii]

Image FX 204
Quality settings 208
Summary 211

Chapter 9: Deploying the Game 213
Build settings 213

Shared settings 215
The webplayer 215
PC, Mac, and Linux standalone 216
iOS 216
Android 216
WebGL 216

Optimization level 217
Player Settings 219

Cursor hotspot 221
Summary 222

Index 223

[v]

Preface
In the wake of the indie game development scene, game development tools are
no longer luxury items costing up to millions of dollars but are now affordable
by smaller teams or even individual developers. Among these cutting-edge
applications, Blender and Unity stand out from the crowd as a powerful combination
that allows small to no budget indie developers or hobbyists alike to develop games
that they have always dreamt of creating.

What this book covers
Chapter 1, Creating Your Game Concept, will teach you how to design your own game,
such as writing the game's story, choosing a visual style, and designing characters
and environment concepts.

Chapter 2, Creating Characters, will be a step-by-step tutorial on how to create your
game character in 3D using Blender.

Chapter 3, Animating Your Characters, will help you learn how to bring your game
characters to life by creating different animations for the characters in Blender.

Chapter 4, Creating the Environment, will help you learn how to construct an
astonishing 3D environment for your game in Blender.

Chapter 5, Integrating Your Assets into the Game, is a step-by-step tutorial on how
to import your 3D assets from Blender to Unity and set up prefabs for later use.

Chapter 6, Developing the Game Structure, will help you learn how to create the
user interface and start writing C# scripts to create player movements and
artificial intelligence.

Preface

[vi]

Chapter 7, Creating Levels and Game Progression, will help you learn how to create
in-game power-ups to boost your player's ability and create save points to save
your game progression.

Chapter 8, Post-Production and Visual FX, will show you how to enhance your game's
visual quality by learning how to apply camera effects to your game and create
numerous types of particle effects.

Chapter 9, Deploying the Game, will help you learn how to deploy your game for
multiple types of platform with Unity.

What you need for this book
You need the latest version of Blender and Unity, preferably on Windows operating
system, but both programs will also work on Mac OS X.

Who this book is for
This book is primarily for beginners who have just started to learn how to create
their own games from scratch using free tools available on the Internet. This book
also targets those who have had experience in developing games but have used
some other expensive tools, such as Autodesk Maya, 3D Studio Max, and so on.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
we execute GotoMainMenu() by using the StartCoroutine() function, which
"We will declare later."

A block of code is set as follows:

void Start ()
{
 mainMenuUI.SetActive (true);
 startGameUI.SetActive (false);
 exitGameUI.SetActive (false);
 newGameUI.SetActive (false);
}

Preface

[vii]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

public void BackMainMenuPressed()
{
 selectedMode = mode.mainMenu;

 pauseMenuUI.SetActive (false);
 confirmUI.SetActive (true);
}

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Then, set
the AO map layer's Blend mode to Multiply."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

www.packtpub.com/authors

Preface

[viii]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the color images of this book
We also provide you a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in
the output. You can download this file from: http://www.packtpub.com/sites/
default/files/downloads/Building_a_Game_with_Unity_and_Blender_
ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

http://www.packtpub.com/sites/default/files/downloads/Building_a_Game_with_Unity_and_Blender_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Building_a_Game_with_Unity_and_Blender_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Building_a_Game_with_Unity_and_Blender_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[ix]

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[1]

Creating Your Game Concept
In this chapter, you will learn about the process of creating your game concept. It's
usually called the preproduction stage where designers will plan out all of the game
details ahead of time, that is, before entering the production stage where developers,
such as programmers and artists, will start doing their works based on the game
concept provided to them.

In this chapter, we will cover the following topics:

• Job roles in game development
• The gameplay design
• Writing the game's story
• Choosing a visual style
• The characters' concept
• The environment concept

Job roles in game development
Before we dive into the process of creating a game, let's take an overview on some
of the roles in game development. We are looking at the general level, where each
of these roles can be further split down into more specialized roles:

• Game designer: A game designer is a mastermind who designs the core
elements and gameplay mechanics of a game. They not only need to
understand how to design an interesting and fun game, but they also must
have the creative and technical capabilities to communicate with the artists
and programmers in order to make sure that both the artistic and technical
processes comply with the game design.

www.allitebooks.com

http://www.allitebooks.org

Creating Your Game Concept

[2]

• Scriptwriter: A scriptwriter is someone who helps to construct compelling
scenarios and dialogues for in-game cinematics based on the storyline and
direction set by the game designer. A good scriptwriter knows how to make
the players emerge into the game world through storytelling techniques and
esthetic wordings.

• Programmer: A programmer is a technical person who implements game
features that run and control the game, as well as develop tools for the
team to speed up the development process. They know every single bit of
what's happening behind the game and occasionally turns coffee into code,
too. Some of the specialized roles of a game programmer are a gameplay
programmer, a toolkit programmer, a network programmer, a graphics
programmer, and so on.

• Artist/Animator: A game artist is a creative person who designs and
creates art assets for a game, such as concept arts, 3D models, textures,
sprite sheets, particle effects, and so on. A game animator specializes in
creating animations for the game characters as well as producing the
in-game cinematics.

• Audio engineer: An audio engineer is an expert in creating the soundtrack
for a game, including music, sound effects, character voices, and ambient
effects. The audio engineer must be able to get the feel of the atmosphere of
the game and create a suitable soundtrack accordingly.

• Tester: A game tester helps to playtest the game during the development
phase to ensure that it's free of a programming bug and complies with
the requirements set by the publisher. They will also make sure that the
gameplay meets the expectation of the game designer and that it's fun to
play with.

There are many other job roles that we have not covered here, such as an AI
designer, a level editor, a lighting artist, and so on. Specialized roles like these are
normally only available in big studios, which have the resources to ensure that every
aspect of the game they are creating is at its highest standard.

For a smaller game development team, an individual team member can handle
multiple roles, and more than one person can share some roles in order to split the
workloads.

Gameplay design
The process of gameplay design can be divided into five major stages.

Chapter 1

[3]

Starting point
Different people have different approaches in designing a game. Some designers like
to start with the characters' design or storyline, and only after that, they will decide
what type of gameplay is suitable for it. On the other hand, some designers like to
start with the gameplay instead. There is no absolute rule on how to start designing a
game; it's entirely dependent on what inspires you in the first place: Did a good story
suddenly pop up in your mind? Were you inspired by a game you loved to play
during childhood? Or were you inspired through silly conversations with your best
friends? Write down your initial ideas; who knows, it could become the next popular
game one day.

For me, I like to start by choosing the game genre and designing the gameplay right
before anything else. I find that it's quite important to design a gameplay early on
so that it can be tested repeatedly and to check whether the gameplay is fun or not.
Otherwise, all the time we spent on writing a good storyline might be wasted if only
to find out the gameplay simply doesn't work the way we had imagined. You can try
to experiment on different approaches and see which method suits you more.

One mistake made by most of the newbie game developers is neglecting the
importance of a game design document (GDD). A GDD is usually a collaborative
effort within a development team to organize ideas and help convey the designer's
vision to the rest of the team. It also helps to make sure that everyone is working
together at the same page, avoiding assumptions, and conflicting workflows.

Besides this, GDD is also very helpful for solo developers. It allows you to see the
bigger picture of your game and easily spot any major flaws in the game design.
Other than this, you can also look at the list of every aspect of the game and decide
what needs to get done based on its priority.

Most of the time, a common office suite, such as Microsoft Office, OpenOffice, or
LibreOffice, is sufficient for creating the GDD. If you're in a team, however, it's
best to use an editor that has the capability of real-time collaboration between
team members. I personally find Google Documents very useful for this purpose,
especially during brainstorming sessions where every team member can contribute
their ideas and let others to see them during discussion. Try to pick the most suited
tool for you and your team.

Choosing a game genre
Picking a game genre early on is also very important. It gives you a sense of
direction, and it lays down the foundation for you to further improve and innovate.
There are many different types of game genres, such as first person shooter, role-
playing, real-time strategy, adventure, action, and puzzle.

Creating Your Game Concept

[4]

Alternatively, you may also invent your own genre if you are the type of person who
likes to try out new ideas and always think out of the box. Although this may sound
overly ambitious, but this is actually doable, as game genres are being invented all the
time. However, following this path requires a ton of prototyping to prove that your
idea is workable and fun as you're trying to create something that no one has even
seen before.

If you have no idea which genre to pick at the moment, you might want to look at
the statistics of the best-selling video game genres, and hopefully it will give you
some inspiration:

It's important to decide on the genre early before you start working on the game. Basically,
switching game genres during development means starting all over again from scratch.

Game mechanics
Gameplay is something that connects players' actions with the purpose of the game
and its main challenges. Gameplay will define what the player can or cannot do in
the game, as well as conditions that allow the player to progress through the game.
Gameplay design involves a wide range of designing aspects, such as a level design,
gameplay balancing, player behavior prediction, and choices planning. All of this
can be incorporated into something called game mechanics.

Chapter 1

[5]

Game mechanics are constructs of rules that make up the gameplay of a game.
It determines what actions the player can take, how the actions interact with the
game states, and how other game entities respond to the player's actions. Gameplay
defines what a game is to the player, whereas game mechanics are the parts that
define the gameplay itself. In other words, gameplay is nothing more than a set
of game mechanics. Oftentimes, gamers are popularizing famous games for its
game mechanics. For example, Gears of War was famous for its cover mechanic
when it first released in 2006. Prince of Persia blew peoples' minds away when first
showing two of its famous mechanics—the parkour mechanic as well as the time
manipulation mechanic. Angry Birds would not have been downloaded by two
billion times across the globe if it didn't feature the slingshot mechanic!

We can split a set of game mechanics into two main categories: core mechanics and
sub-mechanics. Core mechanics are the most important mechanics in your game. You
cannot simply change your game's core mechanics because it will break the nature
and essence of your game. For example, take away the shooting mechanic from
Counter Strike, and the game would simply become something else, but something
other than Counter Strike. It will not make any sense at all to play Counter Strike
without a shooting mechanic. Sub-mechanics, however, can be taken away without
breaking the game. Again, we use Counter Strike as an example, but this time, we
will take away just the jumping mechanic. Now the players can no longer jump, but
that doesn't make Counter Strike a different game; it's still a first person shooter, you
can still make the headshots. It's important to determine what are the core mechanics
of your game early on, but not so important for sub-mechanics. You can add in sub-
mechanics later on during the production stage because, as previously mentioned,
it won't break the game. A strong and solid core mechanics will ensure the success
of your game, so focus on it first before anything else. After this, you can try to
experiment on different sub-mechanics to enhance the gaming experience.

In short, proper planning will ensure that the gameplay is balanced, unpredictable,
and makes sense to the player. Even an experienced game designer can hardly
design a perfect gameplay in one shot. It takes a ton of testing and iterations in order
to get the gameplay to feel right and fun to play with. The formula is simple: test,
test, and more tests!

Creating Your Game Concept

[6]

Level design
A level is the venue where a player interacts with the gameplay elements. It can also
be called as a map or stage. As a level designer, you're responsible for designing
the layout of the levels to comply with the purposes of your gameplay: Does this
level carry missions? Is this level for multiplayer purposes? Roughly how long do
you expect the user to play this level? You need to ask yourself all sorts of questions
before you start designing your level.

One important aspect of level design is flow control. Game level with good flow
control can direct a player toward the goal of the level and prevent idling or moments
of unintentional confusion from occurring in game. You need to be clear about the
intent and purpose of the particular level and then by using the elements within the
level, such as lighting, props, and items. You can subconsciously lead the player
toward the goal. You will learn more about this later when we design the environment.

Let's have a look at the sample level I designed for this book. Players must search
for the key in order to open the gate and fight the final boss. While exploring the
environment, player will occasionally encounter monsters and involve in intensive
battles. There are also some items aligned randomly across the path for the player to
pick up, restore health, and help progress the game. Here's an image showing a simple
level with simple gameplay in mind to demonstrate what a map layout looks like:

Chapter 1

[7]

Rapid prototyping
Rapid prototyping is a good way to quickly test out your game idea and see if it
works the way you want. Sometimes, a game idea might sound good only on paper,
but it just doesn't work out like how you'd imagine it to be. The last thing you want
is to only realize that you have been working on a bad idea in the middle of the
development phase. Rapid prototyping not only saves you from this situation, but
also allows you to think out of the box and freely experiment on all kinds of random
ideas. If the idea works, then it is great; if it doesn't work, just scrap it and try the
other ideas.

When you rapidly prototype your game, you should stop worrying about the
graphics and just focus on the gameplay mechanics alone. The character could be
just a cube, a sphere, or anything simple. The level could be just a plane or with more
cubes on it acting as obstacles. You also shouldn't worry about the storyline at this
stage because you might be scrapping the idea minutes later.

Unity Game Engine, the game development tool that we will be using in this book,
is built for rapid prototyping in mind. It's extremely easy to just throw in some
primitive shapes, applying some scripts to the shapes, and you are good to go. You
can instantly start playtesting your ideas without much effort spent on setting up
the game engine. In addition, you can download sample game assets from the Unity
Asset Store, including 3D models, animations, and even sample scripts to kick-start
your prototyping process.

Besides this, there are also plenty of plugins available at the Unity Asset Store,
which provide extra tools for you to rapidly construct a demo level or create game
mechanics without the need of writing any code. All-and-all, Unity Game Engine
makes rapid prototyping even more rapid with the features mentioned previously.
You will only be learning how to use Unity in later chapters.

Writing the game's story
Almost every video game has a storyline behind it. Even a game that has neither
cinematic features nor a single line of dialogue could still contain a background story
that defines the world of the game. Oftentimes, video game storyline is parallel to the
progression of the gameplay. The further away the player progresses, the more they
will learn about the storyline of the game.

You don't necessarily need to present your game's story through narratives or
cinematic features unless you're making a story-heavy game, such as Last of Us. For
a simple game, it's better to let the players discover the background story themselves
by playing through your game. This is much more rewarding than directly telling
them everything!

Creating Your Game Concept

[8]

Choosing a visual style
Before we start designing the characters and environment, we need to set a visual
guideline in order to ensure a consistent design throughout the game. When
you place the characters together with the environment, they should fit with the
background, and they should not have too distinctive art style and quality from each
other as if the characters and environment were taken from different games.

Generally, visual style can be split between two categories: realistic and stylized. It's
entirely up to you what type of style you want to pick for your game, whether it's
ultrarealistic, extremely stylized, or somewhere in between. It depends on the vision
you set for your game as well as your team's capability in delivering the art style.
Discuss with your teammate what type of visual style they are comfortable with and
make sure that you understand your team before you start, which will prevent a lot
of troubles from happening during production stage.

The characters concept
The characters concept usually refers to the concept arts, which display the design
of your game characters. Concept artists have to come out with dozens of sketches
and color thumbnails before a final design is selected by the art director. Once the
character concept is confirmed and finalized, 3D artists start working on the 3D
models by referring to the concept arts provided for them.

It's not as difficult as you think to design a character from scratch. Make sure that
you truly understand the game you're trying to make. If you don't, try to read
through the GDD and the storyline repeatedly until you are very familiar with each
character's background story, personality, and their roles in the game. Once you're
familiar with the game characters, try to imagine how they should look like in the
visual style you chose earlier.

Chapter 1

[9]

When designing characters, it's best to start with the silhouette. Try to define the
character's personality using only the silhouette and ignore all other forms of
details. We don't need to worry about the color, texture, facial expression, clothing,
accessory, and anything else at this stage. Focus only on the body shape, size,
contour, and posture that can easily make a player recognize the character and be
able to tell the roles of the characters by simply judging from its outlook.

I prepared an image showing three characters' silhouettes. Try to guess what their
personality is by judging from their respective silhouette.

Let's take a closer look at this diagram:

• Character A: The first character looks small, cute, and vulnerable. He is
probably harmless to you, don't you think so?

• Character B: The second character looks like an ordinary person, but his
uneasy posture infers that he could be a sly character with bad intention.
Better not to get too close to him.

• Character C: The third character looks extremely dangerous even from afar!
Does he bite? I'm sure he does more than that!

Once you have chosen the silhouette of each character, you can now start adding
detail! However, no color should be used at this stage. Use only lines to sketch out
the appearance of the characters. Concept sketches should be fast, and it's okay for
the sketches to look messy at this stage because we want our brain to continuously
come out with different ideas without being distracted by small details. Don't be
afraid to experiment with different ideas you have, you might be surprised how
creative you could be!

Creating Your Game Concept

[10]

After you've done a dozen or so rough sketches, pick one that you think most
suitable for your game. Redraw the characters with fine lines and make sure that
they look clean this time because we are going to put some colors on it!

The following image shows the sample characters' concept that I used for this book.
I have chosen a more manga-ish, chibi style for my game characters. I skipped the
silhouette and rough-sketching steps because well, the game demo I'm showing in
this book is just a very, very simple game, so it's exceptional.

Now, let's take a closer look:

• Character A: Block out the character with simple shapes, only simple shapes!
• Character B: Start adding detail.
• Character C: Clean-up and finishing.

After you have done all the clean-up jobs, we will proceed to the next stage, which
is adding colors to your characters! Use only plain colors to fill in the design at
this moment. No lighting or shadow should be allowed because again, we want to
focus on experimenting different sets of color pallets on our characters and not be
distracted by elements.

Be cautious when deciding the color palette for your characters. Choosing
the wrong color could influence your player's interpretation toward
your character's personality and role. Wrong color could also affect the
visual focus of your character, making it hard to be seen on the screen (for
example, a green character standing on a grass field).

Here, I experimented with three different colors on my character. I picked the one
that, in my opinion, resembles his personality:

Chapter 1

[11]

• Character A: Although red color looks really nice on him, it looks way
too aggressive and that doesn't suit my faint-hearted character.

• Character B: Blue color looks more calm and friendly, which is suitable
for my character.

• Character C: Totally, not my cup of tea.

The same method is used for the monster design as well. Eventually, I picked the
one with red/pink patterns on its body. The color is more aggressive and at the same
time contradicts with the main character's color. Also, warm colors, such as red or
orange, often represent caution or danger. In order to speed up the process, I will
just pick monster C as the final boss.

www.allitebooks.com

http://www.allitebooks.org

Creating Your Game Concept

[12]

Finally, create a scale comparison chart to let everyone in your team know exactly
how big or small should the characters look like. This information is extremely
important for the 3D artists as well as gameplay designer. Make sure that everyone
in your team is aware of this chart.

The environment concept
The environment concept, as the name implies, is the concept design for your game's
environment. The difference between level design and environment design is that
the latter is more about the art—how to use artistic elements to make the scene look
more interesting. Many important guidelines will be given to the concept artists
before they start using the environment concept. Artists need to know the visual
style, color mood, detailed description of the environment, and most importantly,
the level layout.

Here is the environment concept I did for this book. I split the layout into several
parts and illustrated each of them based on the visual style and color mood I picked
earlier. Note how I use lighting to guide player toward the correct path.

Chapter 1

[13]

Summary
In this chapter, you learned all the important aspects on how to design your own
game as follows:

• Introduction to important elements that you need to include in your game
design, such as game genre, game mechanics, level design, storyline, and
visual style

• Explaining what is rapid prototyping and how it helps establish a solid
game idea

• The process of creating concepts for your game character and environment

In the next chapter, we will gain knowledge on how to turn our characters design
into 3D models using Blender.

[15]

Creating Characters
In the previous chapter, we learned the process of creating our own game concept,
which was mostly theoretical. In this chapter, however, we are going to get our
hands dirty by learning how to create 3D characters from scratch using Blender!

In this chapter, we will cover:

• Downloading Blender for Windows, Mac OS X, or Linux
• A quick look at the basic user interface of Blender
• Creating a 3D model of the monster from scratch
• Unwrapping UV and creating a texture for the monster
• Creating a 3D model of the player character from scratch
• Unwrapping UV and creating a texture for the player character

Downloading Blender
As we all know, a blender is an electric kitchen appliance used to blend vegetables
and fruits into drinks, sauces, or pastries. But in this tutorial, we will be using
another Blender, which is an open source 3D computer graphics software developed
and maintained by the Blender Foundation.

You can download Blender for free, at http://www.blender.org/
download.

Currently, three platforms are officially supported: Windows, Mac OS X, and Linux.
Due to Blender's open source nature, it can be easily ported to other operating
systems as well.

http://www.blender.org/download
http://www.blender.org/download

Creating Characters

[16]

A brief history of Blender
Blender was originally proprietary software developed in the mid 90's by Ton
Roosendaal for his animation company. Unfortunately, the company was shut
down by investors in early 2002, resulting in Ton losing the ownership of Blender.

Later that year, Ton founded a non-profit organization called the Blender Foundation
and successfully raised a total of 100,000 EUR in only seven weeks to convince the
former company investors to agree on open-sourcing Blender.

On Sunday, October 13, 2002, Blender was released to the world under the terms of
the GNU General Public License. Blender development has continued to thrive since
that day, driven by an ever-growing team of dedicated volunteers from around the
world led by Blender's original creator, Ton Roosendaal.

The basic user interface of Blender
After installing Blender to your computer, double-click on the Blender icon located
either on the desktop or the Start menu to launch the program. You will see
something like this once Blender is launched:

Chapter 2

[17]

At the time of writing this book, the latest stable release of Blender is version 2.74.
You might be seeing a different splash screen if you are using a different version of
Blender, which is completely normal.

You can also switch off the splash screen by going to File | User Preferences |
Interface and untick the Show Splash option.

Creating Characters

[18]

Blender has a completely unique user interface, which is quite different from any
other 3D programs out there. Next I have labeled the panels that form the default
Blender workspace and briefly explain what each of these panels is used for:

• The Header menu (1): The Header menu is a rectangular panel on the
top that provides you with access to application-specific functions such
as opening a project file, saving a file, importing/exporting data, user
preferences settings, toggling the window full screen, and so on.

• The Tool Shelf (2): The Tools shelf is a panel containing shortcuts to
frequently used operators such as buttons for creating and editing 3D
meshes, animation, and physics tools, as well as quick access to the
grease pencil.

• The Operator window (3): The Operator window displays properties related
to an operation that you have just used, such as adding primitives, applying
a rigid body to an object, and so on. If an operator does not have any
properties, the Operator panel will be empty.

• The 3D view menu (4): The 3D view menu is where you can access menus
related to the 3D view, such as adjusting the view and adding/selecting/
manipulating objects in the scene. You will be using this menu all the time if
you don't remember the shortcut keys.

Chapter 2

[19]

• The Animation timeline (5): The Animation timeline is where you adjust
your animation's key frames and curves. You can also find the Playback
button here.

• Main 3D view (6): The main 3D view is a window that displays your 3D
scene in real time for editing purposes. You will be doing all your work here.

• The Properties window (7): The Properties window displays the properties
of the current selected object. You can also adjust the render settings here.

• The Outliner window (8): The Outliner window displays the list of objects
in your 3D scene. You can select an object by simply clicking on it on the
Outliner instead of selecting it in the main 3D view.

Blender's user interface is highly customizable, which means you can modify the
workspace layout to fit your purposes. Every window can be moved, scaled, split,
and combined. You will find a split-window widget either on the top-right corner or
the bottom-left corner of every window. Clicking and dragging the widget inward
will cause the window to split in half, whereas dragging it outward will make it
combine with another window nearby. You can pick which window you want it to
combine with by moving the mouse in different directions while holding the left
mouse button. A big arrow will appear on the screen to indicate which window will
be removed.

Creating Characters

[20]

After you have customized your desired layout, you can save it by clicking on the
+ button besides the screen data block on the Header menu. You can easily switch
between different layouts by choosing from the screen data block drop-down menu.

On the Properties window, you will see a row of buttons that look like this:

The icons will look different depending on the type of object selected in 3D view.
Each of these buttons gives you access to a different context of the Properties
settings, such as:

• Render: All the settings that control the rendering of the final images, such as
the resolution, output format, performance, and so on.

• Render layers: Settings of each layer/render pass that get processed by the
rendering engine to produce the final images.

• Scene: Here lie the settings for color management, camera choice for
rendering, and units and gravity settings for physical modeling.

• World: These are the settings for the surrounding environment of which the
models are rendered, such as background sky color, mist and star settings
and environment lighting.

• Object: In here are settings that apply to all kinds of objects, such as
transformations, layer assignments, and grouping. The settings shown
here apply to the current selected object.

Chapter 2

[21]

• Object constraints: These are the settings that limit the motion of the object
for animation purposes. The limits can also be tied to the motion of other
objects in various ways.

• Object modifiers: Modifiers are components that make changes to the
geometry which only take effect at rendering time. Lamps, cameras, and
empty objects can't have modifiers.

• Object data: Here you will find settings specific to the type of object: mesh
vertex groupings, text font, lamp settings, camera settings, and so on. This is
reflected in the icon, which changes according to the type of object selected.

• Material: The material settings for an object control how it looks: its color,
whether it has a shiny or dull surface, how transparent it is, and so on.

• Texture: Textures are the graphical skins laid atop 3D models so they appear
to have surface detail. The texture settings allow you to change the texture of
a material or modify the properties of the texture.

• Particle: The Particle setting is used to change the way a set of particles
behave, producing effects like smoke, flames, or sparks.

• Physics: Here you will find settings that control how the object reacts to
forces like objects in the real world.

Most of these contexts are not really relevant to the game, so we can ignore them for
the time being. Since we only use Blender for creating models and animations, we
will only use the Object and Object modifiers settings most of the time.

For more information regarding the user interface, you can check out
Blender's user manual by going to Help | Manual on the Header menu
and click on Editors.

Creating the monster's 3D model
In this chapter, we will be using the character concepts from the previous chapter
to walk you through the process of constructing a 3D game character from scratch.
Once you have learned how to do that, you can then try to draw your own concepts
and turn it into a 3D model!

You may ask why we start constructing the monster first, and not the player
character. The reason for this is because the body shape of the monster is much
simpler compared to the player character. Constructing a humanoid 3D model is not
the best way for a newbie to learn the basics of 3D modeling. We will come back to
the player character once you have mastered the basic skills.

www.allitebooks.com

http://www.allitebooks.org

Creating Characters

[22]

The first thing we need to do is to refer back to our monster concept art and try to
imagine its body shape using just the combination of primitive geometries. This
will help you see through the complexity of details such as texture, color, facial
expression, and so on, and focus solely on the shape. This will help you in
planning the steps needed to build the mesh.

Although most of the time a 3D model can be constructed from a cube, in this case
(the preceding image) the monster's body is an oval shape and it's easier to build
with a sphere. Therefore, the first thing we need to do is to delete the cube that is
placed by Blender into the scene by default. First, select the cube by pressing the
right mouse button. Next, click on the X key (or the Delete key) on your keyboard and
a confirmation dialog will appear. Click on the Delete option on the dialog or press
the Enter key to execute the delete operator. Now, the cube is gone. Hooray!

Chapter 2

[23]

Unlike any other 3D programs, Blender uses the right mouse button for
object selection instead of the left mouse button.

Now, you may have already noticed the little red-and-white striped circle with
black crosshairs that changes its position whenever you left-clicked on the screen.
It's called the 3D cursor, which is quite a unique feature not seen in any other 3D
modeling tool. Most of the time, the 3D cursor is used for placement, whereby a
newly created object will be placed exactly at the location of the 3D cursor. Besides
that, it can also be used as the median point for translation, rotation, and scaling, as
well as changing the pivot point of a mesh. You can read more about the usage of the
3D cursor in the Blender Reference Manual at https://www.blender.org/manual/
editors/3dview/3d_cursor.html.

Next, we want to add a new object. To do that, you can either use the buttons in
the Tools Shelf or simply press Shift + A. Select UV Sphere and now you will see a
sphere that resembles a disco ball appearing in the scene. But before you do anything
else, lower down the Segments and Rings values in the Operator window so that
the number of polygons is reduced. You must do this right after the object is being
created because you won't be able to set the properties again once you execute
other operators.

https://www.blender.org/manual/editors/3dview/3d_cursor.html
https://www.blender.org/manual/editors/3dview/3d_cursor.html

Creating Characters

[24]

While the sphere is still being selected, go to the Tool Shelf and find the Smooth
button under the Shading category. Click on the Smooth button and now you get a
pretty-looking low polygon sphere that resembles a rock.

In order to look at your 3D model more closely and from all directions, you can use
your mouse to navigate the 3D view. This, however, will only work if your mouse
cursor is positioned within the 3D view's boundary. To zoom in and out from the
view, scroll your mouse wheel accordingly; to rotate the view around the viewing
point, hold the middle mouse button and move the cursor; to pan your view around,
hold the Shift key and the middle mouse button at the same time and move the
cursor. For more information, you can check out Blender's user manual by going to
Help | Manual on the Header menu and search for Navigating.

Now, let's go back to the sphere we just created. We need to change the shape of the
sphere to become slightly oval so that it matches our monster's body shape. There
are many ways to manipulate the mesh, but I will teach you one of the fastest ways
to do it—using shortcut keys. In this case, we want to scale the mesh along the y axis,
so let's press the S key and then press the Y key. Now you can scale the mesh by
simply moving your cursor. At this stage, however, the scaling is not applied to the
mesh; you can either click on the left mouse button to apply the scaling, or cancel the
operator by clicking on the right mouse button.

Chapter 2

[25]

Do notice that the initial distance between your mouse cursor and the model when
you initiate the scaling mode will affect the magnitude of scaling to your model.
Try to put your mouse cursor slightly further away from the 3D model when you're
about to press the S key, as that will give you a more natural scaling and it is easier
for you to control it.

Next, what I'm going to do is to remove half of the model and ask Blender to
mirror the other side of the model later. By doing this, you only need to edit half
of the model and the other side will be automatically handled by Blender. This is
only useful for 3D models that are symmetrical, such as humanoid characters
and animals.

Creating Characters

[26]

To remove the other half of the mesh, what we need to do is to keep the mesh
selected and press the Tab key to enter the Edit mode. Once you're in the Edit mode,
you can manipulate up to every individual polygon and every vertex. Next, press A
to deselect the vertices and press Z to enter the wireframe mode. Then, adjust your
view to the front of the mesh, press B to batch-select vertices, and select half of
the model.

After that, press X and select Vertices from the menu that pops up. You will now get
a half-spherical object that looks like the one in the following screenshot. Press the Z
key to turn off wireframe mode and press Tab again to return to object mode.

Chapter 2

[27]

To mirror the 3D model, exit the Edit mode and go to the modifier tab at the
Properties window. Click on the Add Modifier drop-down menu and choose
Mirror under the Generate category. The mirror modifier will automatically
generate identical but flipped geometries of the object the modifier is attached to,
along the axis set by the user. Do notice that all the modifiers are non-destructive
effects, meaning as long as you have not clicked on the Apply button, the effect of
the modifier is not actually applied to your mesh yet, and you can easily change its
settings or remove it completely without harming your model. This, however, will
cost a bit more of your CPU power for Blender to display the previewing result of
the modifier.

To save your working file in Blender, press Ctrl + S. If it is not
the first time you have saved, Blender will automatically create a
backup for your previous saved file. You will find an extra file with a
.blend1 extension being generated alongside your latest saved file
that has the .blend extension.

Creating Characters

[28]

Next, we will be adding legs to the monster. Enter Edit mode again, but this time,
we want to select the faces instead of vertices. To do that, press Ctrl + Tab and select
Face. Then, hold Shift and use the right mouse button to select four faces where we
want the legs to grow on.

Next, press E to extrude the faces. But do not move the faces away from the original
position; press the right mouse button to cancel the extrusion. Why? Because we
wouldn't want a leg the size of an elephant! Even though you have canceled the
extrusion, the faces have actually duplicated at the original position. Now, press S to
scale down the duplicated faces to roughly half the original size. Before we extrude
the faces again, try to adjust the vertices so that the surface looks smooth so that you
get a good-looking mesh from the extrusion.

Chapter 2

[29]

It's always a good practice to make sure the model looks fine before moving to the
next steps. This is because every small mistake accumulated along the way may
result in more problems in a later stage, which may cause frustration when you are
trying to fix those issues that could be avoided in the first place.

Once you are ready, press E again to grow the leg! Now you will notice that the other
half of the body is mimicking exactly what you're doing; that's the mirror modifier
doing its job. This way, you will be twice as productive and won't worry about the
model not being symmetrical.

Creating Characters

[30]

After you have extruded the leg, scale down the tip of the leg slightly and reposition
the whole leg to the side. If we take real animals as a reference, we can notice their
legs are not growing out from the chest, but rather from the shoulders and hips
that are located at the side of the body. Usually this takes some time to adjust but
it will make your life easier later on because it will be extremely hard to change the
structure of the model once it's getting more complex in a later stage.

The leg currently looks very straight and rigid, so let's add more lines to it by
pressing Ctrl + R for initiating the loop cut operator. You will now see a pink line
appearing whenever you move your cursor around the 3D model. Move your cursor
to the area between the thigh and the tip of the monster's leg, then press the left
mouse button to confirm the cutting. After that, scale it slightly bigger to make the
leg look bulkier.

Chapter 2

[31]

Repeat the same steps to create the other legs. With all four legs sticking out from the
body, it's now starting to look like a living creature instead of a rock!

Next, we will do the bunny ears. Just like what we did previously, again, we select a
face that we want the ear to be extruded from. Extrude it once at the original position
and scale it down slightly.

www.allitebooks.com

http://www.allitebooks.org

Creating Characters

[32]

Once you are happy with its size and shape, press E again to extrude from it. This
time, make it really long so that it matches the length shown in the concept art.

If you extruded a surface but never moved it away, you will be getting
duplicated geometries that may cause problems later. To remove
duplicated geometries, select all the faces/edges/vertices of the model,
press the W key and select Remove Double from the menu. Blender will
automatically detect the doppelgangers and remove them.

Then, like what we did previously to the leg, we make a loop cut in the middle of the
ear by pressing Ctrl + R. Once you've done that, adjust the shape of the ear until it
looks like the concept art.

Chapter 2

[33]

Now let's move on to the last part—the tail. You might think the shape of the tail is
very difficult to construct, since it has a non-uniform shape and appears to be very
curvy. However, try to recall what I told you previously when I mentioned how the
body shape of the monster can actually be formed by using just primitive shapes. We
are actually going to do that now—let's create a primitive shape.

Have you noticed the small cursor that seems to do nothing but keep changing
position whenever you mistakenly press the left mouse button? It's called the 3D
cursor, a multi-purpose movable pivot point that I find very useful from time to
time. You can rotate an object around the 3D cursor, or change an object's center of
origin to where it's positioned, or any other operators that require position data. In
this case, we want to create a sphere behind the monster, so let's move our mouse
cursor to somewhere behind the monster and press the left mouse button.

Although now it appears to be positioned behind the monster, when you move your
view around you will notice it's actually not positioned exactly there. To solve this
problem, we will use the snapping operator by pressing Shift + S and choose Snap
Cursor to Grid. If you can't remember all the shortcut keys, you can press the space
bar and search for the function you're looking for. For example, I type the word snap
and all the operators related to it will appear on the menu, including the one I was
using—Snap Cursor to Grid.

Creating Characters

[34]

Once you have created the sphere, set the value of Segments to 8 and that of Rings
to 6 to keep the polygon low. Now, rotate it 90 degrees along the x axis by pressing
R and then X, and then type 90 on the keyboard. It's basically a combo shortcut key
that makes the process really quick.

After that, select the faces at the back of the sphere and extrude it outward.

Chapter 2

[35]

Then, rotate the faces along the x axis to make it face up.

Adjust the tip of the sphere until it looks pointy.

Creating Characters

[36]

Lastly, add a loop cut to make the curve look more even and smooth. After that, you
can join both the body and tail meshes together into one, by pressing Ctrl + J.

There we have it! The monster's model is now completed. You might find some small
problems here and there later on but that's fine. It's completely normal to have tons
of iterations along the way.

Chapter 2

[37]

Unwrapping the monster's UV map
UV mapping is the process of converting the texture space of the 3D mesh into a 2D
representation so that a texture can later be applied correctly.

To unwrap our monster's UV map in Blender, we need to first open up the UV editor
window. Click and drag the split-window widget located in the top-right corner of
your 3D view to split open a new window. Choose UV/Image Editor from the editor
type drop-down menu and now you will see the UV editor alongside your 3D view.

Creating Characters

[38]

The first step to UV unwrapping is to find out where to cut out the seams. First,
select the edges that connect the ears and legs to the body.

Then, press Ctrl + E to open up the menu containing all operators related to edges.
Click on Mark Seam to tell Blender to cut these edges when we unwrap the UV map.
The edges will then be marked with thick red lines.

Chapter 2

[39]

After that, mark all the other seam lines with the same method. Try to mark the
edges that are hard to notice from the player's view so that any visual artifacts that
might happen along the seam lines can be well hidden. Next I have highlighted the
seam lines that I applied to the monster using white lines so that you can refer to
it. Notice how I try to flatten the face UV as much as possible to minimize texture
distortion on the face.

Creating Characters

[40]

When you're done marking the seam lines, press U and select Unwrap. Blender will
automatically unwrap the UV map based on the seam lines that you set beforehand.
However, it's not done yet.

We need to check whether the UVs are being unwrapped correctly by using a
checker texture. Under the UV editor window, click the + New button and a dialog
box will appear. Change the Generated Type option to UV Grid and click on OK.

Chapter 2

[41]

A checker texture will now be applied to your 3D model, but you still won't be able
to see it until you change the 3D view's Viewport Shading option to Texture mode.

You will now see the checker texture being wrapped around the monster. This way,
any distortions can be noticed and fixed easily. If the distortions happen at the area
that can hardly be noticed by the player, then it's OK to just ignore it provided it's
not causing any serious artifacts.

www.allitebooks.com

http://www.allitebooks.org

Creating Characters

[42]

After that, we will arrange the UV islands so that it occupies most of the empty
spaces on the texture. The first thing I usually do is to move all the UV islands
outside the map area and slowly move it inside the map one by one. It's proven
to be quite a clean and efficient way to arrange UV islands because you won't get
distracted by other islands while doing the placement.

UV editing in Blender is exactly the same as editing a 3D model: right-click on the
area to select a point, press B to batch select, G to move things around, R for rotation,
S for scale, and so on. The workflow remains unchanged even though we're in a
different type of window doing a different task.

It may take some time to properly arrange all the UV islands. While doing it, you
might find issues related to the seam lines and require a re-unwrap. Try to correct
the UV as much as possible at this point to avoid problems occurring during the
texturing stage.

The following screenshot shows the final UV map for the monster. We can now
export the UV map by clicking on the UVs menu below the UV editor window and
choose Export UV Layout. Export the UV map to your computer and let's move on
to texturing!

Chapter 2

[43]

Creating the monster's texture
Once you're happy with the UV map, you can now remove the checker texture and
replace it with a blank texture by clicking on the + New button and pick Blank as
the Generated Type. What I'm trying to do now is to bake the soft shadow that we
usually call the ambient occlusion onto the blank texture. This AO map not only
serves as a guideline for texture painting but also makes the final texture look more
realistic. This step is not necessary depending on what style you're trying to do.

Creating Characters

[44]

On the Properties window, switch over to the World tab and check Ambient
Occlusion. Then, scroll down a little bit and you will see the Gather category.
Change the Samples value from 5 to 15.

Next, go to the Render tab and open up the Bake category. Change Bake mode to
Ambient Occlusion and check Normalized. The normalized setting will make the
AO map look brighter and clean.

Once you're done with the settings, click on the Bake button and watch the
magic happen!

Chapter 2

[45]

Although the ambient occlusion now looks pretty good, there are some noticeable
artifacts. This happens because the mesh is too low-polygon for Blender to bake the
AO correctly. To solve this issue, we need to temporarily increase the polycount for
baking the AO map, and then reduce it back to the original polycount. Sounds scary?
You can actually achieve that using Blender's Subdivision Surface modifier.

While the mesh is selected, switch over to the Modifier tab and click on Add
Modifier. From the drop-down menu, select Subdivision Surface to apply the
modifier to the monster. Set the Subdivision settings to 4 and uncheck Subdivide
UVs. We want to increase the polygon and not affect our UV map. Blender's
modifiers are non-destructive to your mesh, which means it will keep a copy of
your original mesh in the memory and can be recovered anytime by removing
the modifiers from the mesh, as long as you don't click on the Apply button on
the modifier.

Creating Characters

[46]

After you have applied the subdivision modifier to the monster, try to bake the AO
map again. This time, you will get a much better ambient occlusion that looks nice
and clean. The subdivision modifier can then be removed from the mesh by clicking
on the X button on its top-right corner. To export the AO map, simply go to Image |
Save as Image on the bottom of your UV/Image Editor.

Open up your image editing software that support multilayer editing, such as
Photoshop, GIMP, Sumo Paint, Krita, and so on. Then, place the UV map and AO
map into a different layer so that you can easily turn it on and off when you're
creating the texture. Set the ambient occlusion layer's blending mode to Multiply so
that it will blend with the texture layers below it.

Chapter 2

[47]

And finally, the texture is ready!

To apply the texture onto the mesh, click on Image and choose Open Image from the
UV editor menu. Pick the texture you have just created and there you have it.

Creating Characters

[48]

Notice how the flat UV on the face area makes the texturing process easier. The eyes
and mouth appear to match exactly the texture because there aren't any stretches
on the UV. This is why you should always put more effort into UV unwrapping to
avoid problems during the texturing stage. We have completed the monster model.
Hip hip hooray!

Blender's material system is not used when creating 3D assets for game
engines other than the BGE (Blender Game Engine). Other game engines
are using their own distinctive material system, hence it's not possible
to export Blender's materials to these game engines. Instead of using the
materials in Blender, textures are opened directly in the UV/Image Editor
for preview purposes.

Creating the player character's 3D model
Now that you are equipped with all the basic modeling skills, let's move on to create
the player character. Phew, we have come such a long way!

Although a humanoid character tends to look very complicated, if we take away the
details and just look at its simplified form, what we will see is a bunch of cylindrical
shapes stuck together with a spherical head on top.

Chapter 2

[49]

That is exactly what we are going to do next—create a bunch of cylinders and a
sphere at a low segments count; I usually go for 6-8 segments so it's easier to edit.
Then, arrange the cylinders and sphere nicely so that it look like a stickman.

Creating Characters

[50]

Next, join all the shapes together into one single object by pressing Ctrl + J. Then,
delete the other half of the model (only the body part, not the head) and apply the
mirror modifier to make our lives easier. Do note that if your object's pivot point is
not in the middle, your model will look extremely wrong when the mirror modifier
is applied.

To solve this problem, place the 3D cursor at the center of the grid and click on
Set Origin followed by Origin to 3D Cursor on the Tool Shelf. What this does is
change the pivot point of the mesh to where the 3D cursor is located. The mirror
modifier uses the mesh's pivot point to calculate where to generate and position
.the mirrored twin.

Chapter 2

[51]

After that, we need to delete the faces hidden between the cylinders so that later we
can merge the cylinders together by welding the vertices.

Press Ctrl + R to make a loop cut around the upper body. Then, make another loop
cut in the middle as we are going to make a hole for the arm to connect to the body.

www.allitebooks.com

http://www.allitebooks.org

Creating Characters

[52]

Next, we will merge all the parts together by welding the vertices together. Select
two or more vertices and press W followed by choosing Merge from the menu, and
then choose At First/At Last/At Center/At Cursor to execute the merge operator.

Once you are done merging the vertices, make a few more loop cuts around the
model in preparation for modeling the knees and elbows.

Chapter 2

[53]

Create the knees by joining some of the vertices together and then manually move
the vertices until the leg looks something like this:

After that, repeat the same steps to create the shape of the arm.

Creating Characters

[54]

Once you're happy with the legs and arms, we will move on to create the character's
head. The shape of a humanoid head is much more complex than other parts of the
body. If we look into a mirror, we will realize that our head is in fact more than just a
sphere, because there is something called a face growing out from the sphere, like so:

However, since we are making a low-polygon model, it's simply impossible to
replicate the complicated shape of our face. What we can do, however, is to emulate
the shape through approximation. In fact, we are going to just move a few vertices in
front to make it look like the face of a wrapped mummy.

Chapter 2

[55]

Next, adjust the vertices at the bottom of the head. Leave some space for the jaws and
the rest is for the neck.

Extrude the neck out from the head and weld the vertices to the body. Don't forget to
delete any faces that are hidden within the inner side of the model.

Creating Characters

[56]

After that, connect both the legs together by creating the pubis using extrusion. Make
sure the Clipping option is checked on your mirror modifier so that the vertices will
not cross to the other side.

Next, we will create the feet through a combination of loop-cutting and extrusion.
First, make a loop cut at the bottom of the leg. Then, extrude the faces in front
followed by merging the top vertices with the bottom to make it look like a foot.

Chapter 2

[57]

Once you're done with that, extrude the front part of the arm several times and
manually adjust the shape of the fist. If you're unsure about what a fist looks like,
try to look at yours!

Then, we will create the sleeve using extrusion. Try to separate the vertices of the
arm that connect to the shirt. It will cause Z-fighting problems later in the game.

Z-fighting is a visual artifact that occurs when two or more polygons
are occupying the same space, causing the polygons to fight among
themselves to determine who should be rendered on the screen, resulting
in a flickering effect.

Creating Characters

[58]

Next, we will create the hem of the shirt. This part requires more work as the shape
is much more complicated. Try not to use a transparent texture for this purpose, or
should I say, try not to use any transparent textures in your game whenever possible.
That's because transparency sorting requires comparing the depth between each
pixel, which will impact the performance of your game; use it only at a minimum.

After you have done the hem, let's move on to the visor. It's a very simple shape
that can be done using a plane. Create a plane by pressing Shift + A and select
Mesh followed by Plane.

Chapter 2

[59]

After that, create the pivot of the visor by simply adding a cylinder shape and scale
it down.

Next, we're going to create the ears. Just like how we did the ears of the monster,
we first select the faces of the face (no pun intended) and extrude it one time
without moving its position, then scale it down roughly to the size of an ear. After
that, extrude it a few times and manually move the vertices to make it look like an
ear. After the ear is done, I also adjusted the edges of the face to reduce shading
distortion and make it look better.

Creating Characters

[60]

Then, we will be making the features on the helmet. This is also done using
just planes.

Next, I created a sword from a box using a combination of loop-cutting, extrusion,
and moving vertices around.

After a lot of time and effort, we finally get this splendid result!

Chapter 2

[61]

Unwrapping the player character's UV
map
Before we unwrap the UV map of the character model, we need to identify where
to cut the seam lines so that the resulting UV will have minimum stretches, while
effectively hiding the texture seams. Next I have highlighted the seams I marked on
the character model using white lines. Since I used the mirror modifier on this model
(except the feathers), most of the UV islands only appear in half, which means the
other side of the mesh is sharing the exact UV space with the original mesh. This
saves a lot of UV space, thus allowing us to enlarge all the UV islands that enable us
to display the finer details of the texture.

www.allitebooks.com

http://www.allitebooks.org

Creating Characters

[62]

For this character, I'm more focusing on the face and torso's UVs because those areas
have more important details than other parts of the mesh. I manually straighten the
UVs of these two parts so that I can more easily create the texture without worrying
about stretches and distortions. I wasn't too concerned about the other parts that
have no details but only flat colors. Focus on the parts that really matter.

Before I start creating the texture for this character, I bake the ambient occlusion
map just like we did previously when creating the monster's 3D model. Due to the
complexity of this character in both the mesh structure as well as the shared UV map,
quite a few visual artifacts occurred on the AO map. This, however, is not really a big
issue as we can fix it later in the image editing software when creating the texture.

Chapter 2

[63]

After that, put both the UV map and AO map into the image editing software
and place them into separate layers. Then, set the AO map layer's Blend mode to
Multiply. The rest is entirely up to your own creativity.

When I was working on the character's texture, I forgot the face and body are both
mirrored and thus unable to draw the hair and sword belt onto the texture map. To
solve this problem, I created the hair and sword belt using polygons instead, which
turns out pretty well. The following is what the character looks like after applying
the texture!

To learn more about the hotkeys available in Blender, download
the Blender Hotkey Reference document at the following link:
http://download.blender.org/documentation/
BlenderHotkeyReference.pdf.

http://download.blender.org/documentation/BlenderHotkeyReference.pdf
http://download.blender.org/documentation/BlenderHotkeyReference.pdf

Creating Characters

[64]

Summary
In this chapter, we have learned how to use Blender to build low-polygon 3D models
from scratch. We have gone through the most important topics such as 3D modeling,
UV unwrapping, and texturing, which enable us to create beautiful assets for any
types of games.

In the next chapter, we will learn how to set up bones and rigs for our characters and
start animating them.

[65]

Animating Your Characters
In this chapter, you will learn how to bring your characters to life by adding skeleton
to them and creating animations, which will be used later for the game project.

In this chapter, we will cover the following topics:

• What is character rigging?
• Creating a monster's armature
• Creating a player character's armature
• Weight painting
• Animating characters

What is character rigging?
Rigging is the process of creating a custom-sized skeleton (which we refer as an
armature), which will later be bidden into the character model through a process
named skinning, to make its body parts movable. In AAA quality games, character
rigs often contain more than just bones. For example, controllers are parented to
groups of bones in order to animate them more easily, without directly touching the
bones, but at the cost of spending more time in setting up the controllers.

Sometimes, constraint modifiers are also used when building a complex rig.
However, such advanced features are not supported by all game engines. Therefore,
game artists have to be really sure that their game engine supports these features
before using them on their art assets.

Animating Your Characters

[66]

Unity Engine does not import constraint modifiers from 3D
modeling software. Therefore, it's not advisable to use constraints
in your character rigs. If you do, however, you are required to
bake the animation before exporting it to the FBX format. We'll
look at this more in a later chapter.

Creating a monster's armature
We will start rigging our monster character by adding an armature into the scene.
You can do this by pressing Shift + A, going to Armature, and clicking on Single
Bone. This will create an armature set that contains only a single bone. Don't worry
about it for now, as we can add more bones later on. Make sure that the armature is
placed within the monster's mesh.

Chapter 3

[67]

You will realize that you can hardly see the bone as it's now completely blocked
by the mesh. Keep the armature selected, then go to the Properties panel under the
Armature tab, scroll down to the Display section, and select the X-Ray option. The
bone is now rendered in front of the mesh instead of being blocked by it. This allows
you to edit the bones as well as animate the character with ease.

Next, we will start adding more bones to the armature. While the armature is being
selected, press Tab to enter the Edit mode; you can now select, move, rotate, and
scale individual bones just like you edit the 3D mesh. The first thing we need to do
is to rotate the only bone around the x axis by 90 degrees. You can achieve this by
selecting the individual bone and using the rotate manipulator to rotate it, or by
using the shortcut key, which is much faster and flexible. Simply press R, press X,
and type 90; you have now rotated the bone in lightning speed!

The first bone is often named the root bone. It is probably the only bone that has no
parent, but it is linked by a chain of children bones. Thus, when you move the root
bone, all the other bones will be moved along with it because the root bone sits on
top of the chain hierarchy. Therefore, we will place the root bone somewhere in the
middle of the mesh as when the animator moves or rotates the bone in the torso, it
makes sense for the entire monster to move or rotate as well. On the other hand, it
would not make any sense, for example, if the entire body rotates when the animator
is just rotating the head bone.

Animating Your Characters

[68]

To move the root bone, you can use the transformation manipulator or simply press
the G key. Once you have positioned the root bone, select one of the small spheres
at the tip of the bone and press E to extrude a child bone from it. Select the bone you
have just extruded and press E again to extrude a child bone from it. Repeat this step
several times until you get this:

At this point, we have created a chain of bones resembling the spine as well as the
tail. We are about to create the bones of the limbs and ears, but we are not going to
extrude them one by one as it's very time consuming and difficult to make the bones
perfectly symmetrical on each side.

Just like what we did when we modeled the character mesh, we can mirror our
armature with Blender as well, but not in the form of a modifier. The armature comes
with an option named X-Axis Mirror. You can select this option in the Options
tab on the Tools Shelf panel. You must enter the Edit mode while the armature is
selected in order to see this option.

Chapter 3

[69]

Once the X-Axis Mirror option is ticked, you can now extrude two bones
simultaneously by pressing Shift + E. The other bone is the mirrored version and
is thus is automatically positioned on the other side of the bone you just extruded.
You can still extrude a single bone by pressing E without holding the Shift key. Play
around with it until you get something like this:

Next, we are going to bind the armature to the mesh using a process named
skinning. To do this, quit the Edit mode and select the mesh. Then, hold Shift and
select the armature. The selection order is very important—the armature must be the
last selected object in order for this to work. Press Ctrl + P, and a menu with the title
Set Parent to will pop out. Select Armature Deform with Automatic Weights and
we're done.

Animating Your Characters

[70]

What we actually did was ask Blender to automatically assign weights to the skin
when binding the armature to the mesh. This usually only works well with a simple
mesh, like the one we're working on now, and may cause problems with a more
complicated mesh. The other options require a different setup, so we will ignore
those for now.

In order to test the rig, select the armature and enter Pose mode by choosing the Pose
Mode option from the combo box, as shown in the following screenshot

Keep in mind that the Pose Mode option is only available when an
armature is selected, and it will not appear otherwise.

Chapter 3

[71]

Once you're in Pose mode, you can freely move or rotate the bones around without
actually affecting the original posture of the armature. If you try to go back to Edit
mode, you will see all the bones returned to their original position and rotation. This
allows you to edit your bones at any time in the middle of animating your character.
Blender is such a flexible tool!

Move the bones around and make some poses to see whether any problems occur
with the mesh deformation. For a simple mesh like this one, there are usually no
major problems, and only a few very minor ones. You can come back to fix the minor
problems once we have learned how to do skin weight painting. More details on this
will be covered later in the chapter.

Creating the player character's armature
The process of creating the armature for the player character is very similar to that
of the monster. The first thing we need to do is create a new armature by pressing
Shift + A, followed by going to Armature | Single Bone. Next, place it somewhere
around the hip, and not in the upper torso. This is where the center of mass lies in
the human body, so it's most natural to place the root bone around that area.

www.allitebooks.com

http://www.allitebooks.org

Animating Your Characters

[72]

After this, select one of the small spheres at the tip of the root bone and press E to
create a child bone from it. Repeat the same step on the child bones until you get
something like this:

Next, enable X-Axis Mirror and create bones for the limbs by pressing Shift + E to
mirror-extrude the bones. Slowly adjust the bones until it look something like this:

Chapter 3

[73]

After you have done creating all the bones for the character, we will now try to bind
the armature to the character mesh using the same method as before. Press Ctrl + P;
a menu will pop out. Now, select Armature Deform with Automatic Weights. This
time, however, instead of successful binding of the armature to the mesh, you will
get an error:

This happens because the character mesh is simply too complicated for Blender to
automatically assign weights to the skin. Therefore, we can't use this method this
time and we will require some manual labor to make it work. To do this, we need to
first of all understand how skinning works.

Skinning is the process of attaching your character's mesh to the armatures
you have created so that when one of the bones moves, the vertices of the mesh
will also follow the movement of the bone. How does a vertex know which bone
is associated with it? Well, the scaling factor has many names, often named vertex
weight, blend weight, or skin weight. The higher the value of the skin weight of a
vertex associated with a specific bone, the more it will be affected by the movement
of that bone.

For example, if the skin weight of a vertex associated with a bone is at the factor of
1.0, it will move exactly like how the bone is moving. If the skin weight is 0.0, then
the vertex will not move at all when the bone is moving. Likewise, if the skin weight
is at the factor of 0.5, the vertex will only move half as much as the bone.

In Blender, the value of the skin weight is represented with different colors. The
higher the value, the more reddish the color will be. You can check the skin weight
value by entering the weight paint mode. More details will be covered later in
this chapter.

Animating Your Characters

[74]

Here's an example of how the skin weight looks like in Blender:

Now, what we need to do is properly name all the bones of the player character. You
can do this by selecting each bone and changing its name in the Properties panel.
You must give the same name for both the mirrored bones with a _L or _R behind the
name, otherwise the mirror effect will be broken.

Next, select the mesh and go to the Vertex Groups section under the Data tab in the
Properties panel. Create new vertex groups and give each of them the same name as
the bones. Each of these vertex groups will act as a container to store the skin weight
values in for each of the bones in the armature.

Chapter 3

[75]

The name of the vertex groups needs to be exactly the same as the bones so that
Blender knows which vertex group will be linked to which bone.

After this, batch-select the vertices that you want to be associated with a specific
bone and assign them to the vertex group, which has the same name as the bone.

Animating Your Characters

[76]

After you have assigned all the vertices to the bones, we can try to bind the armature
to the mesh again. This time, however, instead of choosing automatic weights, we
will pick the first option named Armature Deform. By choosing this option, Blender
will help associate all the vertices in the vertex groups to the bones that it's named
after and will simply assign the full skin weight (factor of 1.0) to these vertices. Don't
worry about the values of the skin weights because we can adjust them later on.

If we don't adjust the skin weight, the mesh deformation will look really odd, and
that makes the character look like a robot. To make the character look organic when
animating, we need to adjust the values of the skin weights in the Weight Paint
option. To enter the weight paint mode, select the mesh and click on Weight Paint in
the combo box below the 3D view.

Chapter 3

[77]

Weight painting
After you have entered the paint weight mode, you will see the whole character
turn blue with a small section of red on its body. These colors represent the skin
weight values of the vertices associated with a particular bone. You can try to select
a different vertex group and see the colors changing. This is because you're now
viewing the skin weight values associated with another bone.

To change the value of the skin weights, we can paint the values using our mouse
cursor. To change the size of the brush, go to the Tool Shelf and you will see the
radius property under the Brush section. There are also some other options that you
can set, such as the types of brushes, weight value, strength of the brush, blending
mode, and so on and so forth.

Animating Your Characters

[78]

There are also some advanced settings below it, but we will skip those for now.

To make the skin more fluid and less robotic when animating, make sure that each
bone has some minor influence over the neighboring vertices beside the ones that
are fully under its control. This will create slight stretches to the neighboring vertices
when moving the bone, and this will create the illusion that the object is organic.

Chapter 3

[79]

You may also note some visual artifacts when moving some of the bones. This
happens because some of the vertices are not assigned to a vertex group due to
carelessness. This problem can also be fixed by applying a full weight value to the
vertices using the brush tool.

Play around with weight painting until there are no major problems occurring with
your rig. Rigging and skinning are both very time consuming, but they're fun to
work on once you're used to them!

Animating Your Characters

[80]

Animating characters
Before we start animating our game characters, we need to set an important setting.
Go to the Render tab in the Properties panel and find the Frame Rate option. Change
the frame rate to 60 fps because that's what video games are running at. If you chose
another option instead, your animation will seem like it is being played at a very
slow speed in the game engine. So, make sure that this option is set before you start
animating your character because prevention is better than cure.

Game animation has adopted a technique from traditional animation named
key-framing. Key-framing is the process of assigning a posture or specific parameter
(such as position, rotation, and scale) to a character or object at a specific point in
time. Each of these key-frames is then processed by the computer to generate the in-
between frames through a process named interpolation. This eliminates the need to
animate every single frame, which is a very tedious job.

There are several ways you can set key-frames to your bones. One of the methods is
to tell Blender to automatically assign a new key-frame whenever you make some
changes to a bone. This option can be activated by pressing the button with a red dot
below the animation timeline. To deactivate it, press the button again.

Chapter 3

[81]

However, I would not recommend you use automatic key-framing because despite
its convenience, it often makes things worse by automatically recording all your
mistakes as well. For example, you might want to do some testing on the rig but
you've forgotten to turn off automatic key-framing. Once you've realized, you have
already made tons of changes to the bones, which are now all being automatically
recorded to the timeline. What could possibly go wrong?

To manually insert a key-frame, press I while the bone is still selected. A menu will
pop up and ask you which parameter(s) need to be saved to the key-frame. This is
very flexible as it allows you to save only those parameters that you need.

Animating Your Characters

[82]

Always plan before you animate your character. I personally prefer to draw the
poses on paper before touching Blender. This is because I can quickly draw out
the poses on paper quickly and instantly decide whether it's a good posture or not,
and then make changes without messing around with the software. "Oh, what's the
shortcut key for rotation again?"

The advantage of having a proper plan for your animations is that you have
already done all the brainstorming beforehand and once you're in Blender, you can
straightaway lay down the key-frames quickly by following your sketches for every
key-frame. This really speeds up the work; all you need to do now is make some
minor adjustments and focus on the smaller details.

Chapter 3

[83]

To adjust the key-frames, split your viewport and change the other half into the
animation graph editor. The graph editor controls how key-frames are interpolated.
You can adjust the animation curves, which represent parameters that are being
interpolated from one key-frame to another. Alternatively, you can also use the NLA
editor and dope sheet to adjust your key-frames.

Regardless of which animation editor you're using, the controls are still identical to
the 3D view: press A to select all or deselect all, press B for batch-select, X to delete
key-frames, G to move key-frames, R to rotate, S for scale, and so on.

Animating Your Characters

[84]

The 12 basic principles of animation
Animation is not something that can be mastered in a day or two. It takes tons of
practice to become a good animator. However, if you learn the correct way to work
on animations, such as by following a set of rules or principles, it will help you to
achieve better results in a short amount of time.

The following are the 12 basic animation principles introduced by traditional hand-
drawn animators from Disney back in the 1980's, which is now regarded as the Bible
of animation by animators around the world.

1. Squash and stretch: Squash and stretch is a great way to exaggerate
animations and add more appeals to the movement. It can be applied to
everything, from a non-living object to a humanoid character. The best
example of this is to look at a bouncing ball. As the ball starts to fall, it will
stretch out just before impact, and as the ball impacts the ground, it squashes.
Then, the ball stretches again as it takes off.

2. Anticipation: Anticipation is used in animation to get the audience ready for
an action which is about to happen. For example, when a character is about
to jump, it will squat down before making the jumping movement. This
not only gets the momentum up, but also allows the audience to know this
character is about to move.

3. Staging: Staging refers to the method used to set up the scene to keep the
audience focused on the main subject and without getting distracted by
other things. Although this principle is not relevant to in-game character
animation, it will be really helpful when you work on the in-game
cinematics.

4. Straight ahead action and pose to pose: Straight ahead and pose to pose
refers to the two different techniques of animation. With straight ahead, you
will create each pose of the animation one after another as you are going.
With pose to pose, it's much more planned out; the most important poses are
required to properly inform the actions that are added first to ensure that the
posing and timing is correct before adding more details.

5. Follow through and overlapping action: Follow through is the idea that
separate parts of the body will continue moving after the character has come
to a stop. For example, a character may have stopped its footsteps, but the
arms will continue to move for a while before settling. Overlapping action
means different parts of the body will move at different time and speed, for
example, movements in real life.

Chapter 3

[85]

6. Ease in and ease out: Ease in and ease out is sometimes also referred to
as slow in and slow out. As an object or character starts to move or goes to
stop, there needs to be time for acceleration and deceleration to achieve a
natural look.

7. Arc: In real life, almost everything moves in some kind of arcing motion,
except robots. In order to achieve a natural and realistic movement, you
should adhere to the principle of arcs when animating your game character.

8. Secondary action: Secondary action refers to creating actions that support
the main action without taking away its attention.

9. Timing and spacing: Timing and spacing in animation is what gives objects
and characters the illusion of moving within the laws of physics. The timing
refers to the number of frames between two poses. Spacing, on the other
hand, refers to how those individual frames are placed. If the spacing is close
to the frames, the object moves slower; if the spacing is further apart the
object moves faster.

10. Exaggeration: Exaggeration is used to push movements of a character further
and create the illusion of the character's weight. Although exaggeration is
mostly used to create extremely cartoony movements for stylized animation,
it can also be used for realistic animation to make a movement more readable
while staying true to reality.

11. Solid drawing: This principal only applies to 2D hand-drawn animation.
A solid and accurate drawing is important in 2D animation in keeping the
volume and weight of the characters consistent.

12. Appeal: Appeal is probably one of the most important things in animation.
Your character design has to look charismatic and fit the character's
personality. This holds true for both heroes and villains. Appeal also
comes to the movement style of each of the character, which should reflect
the uniqueness of that particular character so that it can stick out in the
audience's (or player's, in this case) memory.

Even though some of the principles are not relevant to 3D in-game animation (such
as staging and solid drawing), they might help you in the future when you work on
2D sprite animation or prerendered game cinematics.

Animating Your Characters

[86]

Summary
In this chapter, you learned how to create simple rigs for our characters and how to
animate them using Blender. We covered topics such as character rigging and how
to create armature for both the monster and the player character. You also learned
how to do weight-painting and how to animate the characters.

In the next chapter, we will learn how to create a beautiful game environment
using Blender.

[87]

Creating the Environment
In this chapter, you will learn how to build the terrain and props for our game's
environment. In this chapter, we will cover the following topics:

• Building terrain and wall models
• Building rock models
• Creating textures for terrain, wall, and rocks
• Building grass models
• Creating grass textures

Building terrain and wall models
We start building the environment by constructing the overall shape of the level,
which consists of the terrain and the wall surrounding it, since this level is located
in an underground setting. Always check back the environment concept art to make
sure you don't leave out any of the important details.

Creating the Environment

[88]

Let's recall again how the environment concept art looks.

Even though Unity Engine has a built-in terrain editor, it's more suitable for an open
world environment. In this case, however, we have to manually build the terrain
from scratch in Blender and later import it to Unity.

In order to build the terrain accurately, we need to overlay the level layout design
behind the 3D view in Blender so that we can follow it exactly when we build the
terrain model. To do this, open up the 3D view's Properties panel by pressing N.
Scroll down to the bottom and open up the section named Background Images.
After this, click on Add Image and open the level layout design we did in Chapter 1,
Creating Your Game Concept.

Chapter 4

[89]

You probably won't see the layout appearing anywhere now because, by default,
Blender uses the perspective view in the 3D viewport. In order to see the image, we
have to switch from the perspective view to orthographic view by pressing the 5 key
on your numpad. Then, press 7 on your numpad to switch to the top view so that we
can construct the terrain by following the layout design.

Numpad (or numeric keypad) allows you to navigate between different views in
Blender. You can switch between the top view, front view, and side view by pressing
7, 1, and 3 respectively on your numpad. You can also switch between perspective
and orthographic views using 5 on your nampad.

If you are using a laptop that has no numpad on it, you can ask Blender to reassign
the keyboard numbers to act like the numpad buttons by going to File | User
Preferences and clicking on the Input button on top. Then, on the left, you will see
an option named Emulate Numpad. Tick the checkbox; you can now use the regular
number buttons to switch between different views.

Creating the Environment

[90]

For more information, check out Blender's user manual here:
http://www.blender.org/manual/getting_started/

index.html

After you have switched to the orthographic top view, create a plane and start
constructing the ground by using the various tools that we have learned in previous
chapters. The best practice would be to move around the vertices using the grab tool
and extrude the edges to fill in any empty spaces.

You don't have to worry about the height of the ground at this stage, just filling
in the ground from a 2D point of view. You can refine the path and further adjust
the width of the tunnels at this point. It's best to place the character model with the
actual size on the ground and check whether the layout works as you imagined.

http://www.blender.org/manual/getting_started/index.html
http://www.blender.org/manual/getting_started/index.html

Chapter 4

[91]

Then, select part of the ground vertices and move them slightly downwards. If you
refer to the level concept, there are stairs somewhere in the level, which means that
the latter part of the level is slightly lower in terms of terrain height.

Next, create the tunnel's wall by selecting all the outer edges of the ground and extrude
it upwards. You can hold the Alt key and right-click on the edges to batch-select the
other edges that are connected to the one you're currently selecting. This speeds up the
process a lot compared to manually selecting them edge by edge.

Creating the Environment

[92]

After this, extrude the wall outwards against the ground direction and connect
it to the neighboring wall if there is one. Always check whether there are any
hidden faces inside the mesh by switching over to the wireframe mode using the
X key. Hidden faces may cause visual artifacts and should be fixed during the
modeling stage.

Chapter 4

[93]

Finally, we will create cliffs by extruding the ground downwards. If you refer to the
level concept, this area will be surrounded by water, which is why there is no wall
around it.

Creating the Environment

[94]

Building rock models
Next, we will construct rock models that will be used throughout the level. Props
like this add variation to the level and hide texture seams on both the terrain and
tunnel wall. We will get into this later on.

The easiest way to build a rock model is to start from a cube, and then slowly refine
the shape using the loop-cut and knife tool. The knife tool is a handy tool in Blender
that is used to split polygons into pieces. A user can initiate the knife tool by pressing
K, and can define the cutting line by first clicking at the beginning of the line,
followed by clicking on where you want the line to end.

In the following example, a cube is created using Shift + A and then going to Mesh
| Cube. Then, enter Edit mode by pressing Tab, and then press Ctrl + R to initiate
the Loop Cut tool. With this tool, cut the cube twice in two different directions and
adjust the vertices manually to make it look more rounded. After this, use the knife
tool by pressing K and cut out the top part into a shape of a rock.

Chapter 4

[95]

Do make sure that all the faces are either quads or triangles because any surfaces
that consist of more than four vertices might cause a problem when the model is
imported to the game engine. To avoid this problem, select all the faces and press
Ctrl + T to triangulate all faces or press Alt + J if you want to convert them into quads
instead of triangles.

Do note that most of the game engines, including the Unity Engine, which we're
using in this book, prefer triangle faces instead of quad. However, when you export
the mesh to the FBX format, the exporter will usually automatically convert the
quads into triangles. This process does come with a risk because the exporter will
decide on its own which direction the triangles should be when converting the faces,
which might cause problems in parts of your model that will be deformed during
animation, such as the elbow or the wrist. The best practice is to manually convert
the faces of those critical parts into triangles while leaving the rest as quads. This
way, your model will be easy to view in Blender, with less wireframe showing on
screen, while keeping the topology correct for deformation.

Next, you can turn these rocks into larger boulder, by deleting the bottom surface
and applying a mirror modifier to it. By using the preceding methods, you can easily
create different types of rocks and make your level look more interesting.

Creating the Environment

[96]

Creating rock and wall textures
Now we have created the models for the terrain, walls, and a bunch of rocks.
However, without any textures, the players will not be able to tell what they actually
resemble. Therefore, texturing is a very important step that helps to enhance the
visual identity of a 3D object.

There are different ways to create a texture, depending on the art style you're after.
For this game demo, I chose a semi-realistic environment art style, so I will be using
photos to create all my environment textures. If you chose a cartoony style instead of
realistic, you will need to manually paint your own texture. You can still make use of
these photos but only as a reference for painting. Since the terrain, walls, and rocks
belong to the same environment, logically, they all belong to the same type of mineral
species. Therefore, we just need to create one single texture and reuse it for all the
different 3D models. This not only makes the 3D assets look visually identical, but
also increases your game's performance, which will be discussed in a later chapter.

In the following example, I used three different photos to create my final texture.
Each of the photos contributes a very different level of detail to the final texture: an
extremely rough surface with big cracks, a medium surface with decent bumpiness,
and a fine surface with tiny poles. When you combine all of these different layers of
detail into one, you will create a rather interesting looking texture, which is both rich
in details but also harmonic to the eyes.

Chapter 4

[97]

Then, I made the texture seamless so that it can be tiled on large models such as the
terrain and walls. Different image editing software does this differently; if you're
using Photoshop, go to Filter | Other | Offset to make your texture offset a certain
amount of pixels. After this, use either the Healing Brush or Stamp Tool to remove
the texture seam and you're almost done. Finally, since I'm going for a semi-realistic
style, I have also adjusted the color of the texture and made it slightly more saturated
to fit in with the cartoony characters.

Now I can apply the same textures to all the different rocks, and they will all look
equally awesome!

Creating the Environment

[98]

For the terrain and walls, however, you will note that there are some repeating
patterns when your camera is far away. Also, it looks super ugly and flat at this
moment! Don't worry about this for now, though, as awesomeness will prevail
after we add some lights and decals to the scene in a later chapter. Be patient.
For now, it's all good.

Building grass models
When I was designing the level concept for this game demo, I thought it would be
better to have something to break the singularity of having only one type of hue in
the level due to the fact that in an underground setting, there aren't many props that
we can place to the level beside rocks. Well, we can place crystals all over the level,
which will emit different colors of light, but that sounds like a lazy solution to me;
besides, aren't most other games out there doing the same thing? I thought we could
go for something different, so instead of shiny crystals, I decided to place a bunch of
grass around the level instead.

Chapter 4

[99]

First of all, grass can still grow underground provided that there are holes on the
ceiling that allow the sunlight to enter underground. Second, this allows us to play
around with the lighting to make the underground level look more interesting, and
finally, by combining a green color with brown, we achieved color harmonic for this
level, and that will definitely enhance the visual quality of this game due to the fact
that these two colors are complementary colors on the color wheel. Complementary
colors are any two colors that are directly opposite each other, such as red and green,
red and purple, as well as yellow and green. When a pair of opposite colors is placed
next to each other, it creates some striking optical effects whereby both colors cancel
each other out, resulting in what we called color harmonic.

For more information regarding complementary colors and color
harmonies, search for basic color theory on a search engine.

The process of building a grass model is actually much easier than you would have
imagined. Until this day, game developers around the world, including the AAA
studios, are still using this same old technique to create the illusion of living grass in
their games—using a bunch of planes and intersecting them in random directions.
This technique is not perfect, of course, but so far, it's the best method, which is
well-balanced between visual quality and performance.

To create a grass model in Blender, start with a plane, scale it slightly using the S key,
and then duplicate the plane several times using Shift + D and rotate all the planes
using the R key to cover all different directions. You can slowly adjust the planes'
rotation again after applying texture to the model because it's easier to examine the
result with texture on it.

Creating the Environment

[100]

Before we're done with the grass model, combine all the planes into a single object
by selecting all the planes and then pressing Ctrl + J. Then, duplicate the grass model
and flip the normals of the duplicated mesh by entering Edit mode, and then select
all the faces and go to Mesh | Normals | Flip Normals from the 3D View Menu.

The reason we do this is because in the game engine, only one side of the polygon
will be rendered, unlike in Blender where both sides will be rendered. To address
this issue, we have duplicated the entire mesh and flipped the normals of the
duplicated mesh so that the other side of the polygon is also being rendered when
the model is imported to the game engine.

Creating the grass texture
Next, we will create the texture for our grass. This is also a lot easier than you might
have thought. First of all, using your choice of image editing software, draw out
the shape of a clump using just plain color. You can use any tools you like, such as
the paint tool, lasso tool, pen tool, and so on. It also doesn't need to be extremely
accurate because we're going for a semi-realistic style. After you are done with the
shape, apply a gradient color to it: darker green at the bottom and lighter green on
top. Next, overlay a leaf texture on top of it to add some subtle details to the texture.

Chapter 4

[101]

Then, you're done!

You can now apply the texture to the grass model and adjust the planes again until
you're satisfied. Do refer to Chapter 2, Creating Characters, if you have forgotten how
to apply the texture to your model.

Creating the Environment

[102]

Summary
In this chapter, you learned how to create interesting looking environment models
and props based on the initial-level concept design. We discussed how to construct
an entire terrain in Blender and how to create different types of props with beautiful
textures to enhance the visual quality of the game environment.

In the next chapter, you will learn how to import all the assets that we created in
Blender into Unity Game Engine and start creating the actual game!

[103]

Integrating Your Assets into
the Game

In this chapter, we will learn how to use software named Unity, which is used to
develop games. We will learn how to import the 3D models that we built in Blender,
as well as the textures that we created earlier into Unity. After this, we will put
everything together to form a level.

In this chapter, we will cover the following:

• Basic user interface of Unity
• Import environment assets
• Introducing prefabs
• Setting up terrain
• Setting up water surfaces
• Setting up foliage
• Setting up environment lighting
• Optimizing scenes with occlusion culling
• Importing character assets

Integrating Your Assets into the Game

[104]

Basic user interface of Unity
First of all, let's take a look at its user interface. Unity's user interface is much simpler
when compared with Blender because Blender is complex software that allows you
to do so many things, including modeling, texturing, sculpting, rigging, animation,
tracking, and compositing. However, Unity is software that focuses only on game-
related functionality. Therefore, you can't edit the 3D models in Unity but instead
have to import them from 3D modeling software like Blender.

Without wasting much time, let's take a look at Unity's user interface, as shown here:

• Toolbars (A): Here lies the application menu toolbar as well as a simple
navigation toolbar located below it. There are three special buttons located
in the middle of the navigation toolbar, which are unique to Unity. When the
play button is pressed, you will instantly enter to the game mode and will
start testing your game. To exit from the game mode, simply press the stop
button. This allows you to quickly test your game repeatedly and iterate the
game variables to make sure that your game is balanced.

Chapter 5

[105]

• Hierarchy (B): This is where all the objects in the scene are listed. The list
also shows the parent-child relationship between objects, and it allows you
to change the relationship by simply selecting the object from the list and
dragging it to another object.

• Scene View and Game View (C): The Scene panel is where you edit your
game scene, and the Game panel is where you test your game. When the play
button is pressed, Unity will automatically switch over to the game panel
and then back to the scene panel again when you pressed the stop button.

• Project Browser (D): The Project Browser displays all the assets in your
project. This panel splits into two sides: on the left, we have the directory
hierarchy and when you click on one of the folders, the assets contained in
the selected folder will be shown to the right of the panel.

• Inspector (E): When an object from the scene is selected, the object's
components and properties will be shown in this Inspector panel. You can
add/remove components or change its properties on this panel.

Unity provides more panels/windows than what we have just introduced. However,
the other panels are being hidden by default. You can unhide them by going to the
menu toolbar and choose Windows and select the panel you want to unhide. By
default, when you open up a new panel, it will appear as an individual window. You
can join the window with other existing panels by clicking on the window's Header
tab and dragging it to the side of the other panels that you want it to join together
with. Then, release your mouse and see the window disappear and turn into a panel
instead, being located side by side with the other panels. Unity's user interface is
very flexible and able to fit to your preferences.

Importing environment assets
After learning about Unity's user interface, let's import all the assets we did in the
previous chapters into our Unity project! There are several ways in which you can
import your assets. The first way is to copy the files into the Assets folder in your
project directory. Unity will detect the files and convert them to its native format
automatically.

Don't worry as Unity practices non-destructive approaches, which means it doesn't
actually do anything to your original files. Instead, it places the converted files into
temporary folders within the project directory, which are hidden away from the
engine users.

Integrating Your Assets into the Game

[106]

The second method is to drag the source files directly to the Project panel in Unity.
Your files will be copied to the Assets folder and get converted to the native format
automatically. After this, you will be able to see thumbnails of your assets showing
up on the Project Browser. You will also see an additional folder being created
named Materials. This will happen when you import any 3D models to your game
project. The folder contains materials that are having the same name and basic
properties (usually color and texture) as the 3D models that you just imported. It
saves your time for having to create the materials one by one from scratch.

The first thing I always do after importing all the assets to my game project is to tidy
up the directory. I categorize the assets and place them into different subfolders,
such as Meshes, Textures, and so on. It's always a good thing to start arranging your
assets properly early on. As your project progresses, there will be more and more
assets being added to your project, and it will be much harder to tidy up your project
directory by then.

Chapter 5

[107]

Before we start placing the meshes to the scene, one important step that we need
to do is to ensure that the import settings have been set correctly. Select one of the
meshes in the Project Browser and you will see the import settings appearing on the
Inspector panel. The import settings can be set differently depending on how you
use the mesh in your game: whether your mesh has blend shapes or colliders, or
require an extra UV map for light map baking, and so on. It really depends on your
game's requirement.

In this case, I need all my rocks and terrain to have collision, as well as a UV map to
generate light map; therefore, I enable those options in the import settings.

I have also enabled Optimize Mesh and set the Mesh Compression setting to
Medium so that Unity helps to automatically optimize the meshes without any
manual labor work. These options, however, might cause visual artifacts to the
meshes, so you really have to check it multiple times to avoid such problems. Try to
lower down the Mesh Compression setting if it causes visual artifacts to your mesh.
I applied the same settings to all the rock meshes as well as the terrain. For the grass
model, I disabled Generate Colliders because we don't want our characters to collide
and get stuck within the bushes. Instead, we want them to be able to move through
the grass without any obstruction.

Integrating Your Assets into the Game

[108]

After this, start placing each of the meshes to the scene by dragging them from the
Project Browser to the Scene View. Alternatively, you can also drag the meshes to
the Hierarchy panel, both ways work the same. The reason we do this is to set up the
meshes properly. Later on, we will turn them into what we call prefabs.

Introducing prefabs
Prefabs are basically templates from which you can create new object instances in the
scene. We only need to set up the asset once—the material, texture, physics settings,
and so on—and pack them into prefabs. After this, we only need to place the prefabs
around the scene without repeating the same steps (setting up the material, texture,
physics settings, and so on) again and again for each identical asset. When we change
the properties of a prefab (for example, changing the texture), the same properties in
all the instances linked to this particular prefab will also be changed.

Prefab is something really important, that often saves us from lots of trouble and
hassle. For example, say you have finally placed all the 300 palm tree meshes to
your game scene without using any prefab. Then, all of a sudden, your art director
realized that the size of the trees is very big and should be scaled down by 20%.
Without using any prefab, the only way to do this is to scale all the tree meshes one
by one. Likewise, you will only need to set the correct scale in the source prefab, and
all the tree instances in the scene will be changed instantly. Work smart!

Setting up the terrain
At this stage, place only the terrain and rock meshes to the scene because they all
share the same texture and material. Then, create a new material and rename it to
rock. Click on the small rectangle icon in front of the Albedo property and select the
rock texture.

Chapter 5

[109]

Now, apply this material to the meshes in the scene by dragging the material from
the Project Browser directly to the specific object in the scene.

Integrating Your Assets into the Game

[110]

Now that we have placed the terrain and all rocks to the scene and applied the
material to all of them, it's time to pack them into prefabs! It's extremely easy to
achieve this. All you need to do is drag the game object from the Hierarchy panel
back to the Project Browser. When you change the properties of a prefab instance in
the scene, the properties of the other instances will not be changed. However, if you
click on the Apply button on the Inspector panel, it will then apply the changes to
the source prefab, which subsequently changes all the other prefab instances as well.

After this, place the rock prefabs around the scene to make it look more interesting!
The terrain, especially the wall, looks really smooth now, so we need to place some
rocks on the wall to make the surface uneven and look more rockier. You can do
this in Blender as well, but it's very hard to change it later on, and furthermore,
the polygon count will be extremely high because each rock is a totally distinct
individual mesh with a set of polygon data.

Chapter 5

[111]

If you do this in Unity, however, each rock is just an instance of an existing prefab,
which shares the polygon data across the entire map; this saves a lot of resources
and gain better performance for your game. Besides, since the prefab instances are
not combined together as a huge chunk of mesh unlike what happens if you do it in
Blender, it can also take advantage of the occlusion culling feature in Unity, which
hides any game object, that is not within the eyesight of the game camera. We will
discuss more about this later.

Setting up water surfaces
After you have done placing all the rock prefabs around the scene, we will now
proceed to something simpler, but interesting—water surfaces. If you refer back to
the environment concept, there are basically two areas that have water containment:
one is the small area within the terrain and another one is a big volume of water
surrounding the terrain.

Normally in video games, water surfaces are planes with fancy material applied on
it to make it look like water. It's the same in our case; let's create a plane by going to
Game Object | 3D Object | Plane. Select the plane by using the left mouse button
and press W to enable transform manipulator. Move the plane to the location you
want and scale the plane by switching over to scale manipulator using the R key in
order to fill the entire pit with the water. It is okay to intersect the plane with the
terrain as the player will not be able to see what's underneath the terrain.

Integrating Your Assets into the Game

[112]

Then, create a new material and apply a texture to the Albedo property. I grabbed
a free seamless water texture from the Internet, which looks really nice and fits my
purpose. In my case, my water texture looks too whitish, so I adjusted the color of
the albedo to bright ocean blue. I also adjusted the metallic and smoothness values
to give the water surface a little bit of specularity. Do note that if you set the alpha
value of the color lower, your water doesn't actually become more transparent. This
is because the rendering mode of your material is currently set to Opaque. You need
to set it to the Transparent mode to make use of the alpha value. Depending on the
size of your water surface, you might also want to change the tiling value of your
texture so that the scale of your texture matches your visual goal.

Chapter 5

[113]

Next, create another plane. This time, scale it into a massive gigantic plane and place
it somewhere below the ground level. Duplicate the previous material by selecting
the material in the project panel and press Ctrl + D. Rename the material and set
the texture tilling to an even higher value to match the size of the plane. Your level
should look something like this by now.

Setting up foliage
Currently, our cave looks really boring with just rocky surfaces everywhere, so let's
pull in the grass model and the decal texture that we did in the previous chapter!
For the decal, the method is similar to what we did to the water surface—create a
plane, a material with the decal texture applied to its albedo property, and apply
the material to the plane you just created. Then, set the rendering mode to Fade and
you'll get a nice-looking decal with smooth transparency around the texture. The
transparent mode is not suitable in this case, as it will create a white halo around the
transparent area, which is not the correct visual that we're looking for. After this, pull
the game object back to the Project Browser to pack it into a prefab.

Integrating Your Assets into the Game

[114]

Next, place the grass model into the scene, create a new material for it, and apply
the grass texture to the Albedo property. For the grass material, set the rendering
mode to Cutout instead of any other modes. If you set the rendering mode to Fade
or Transparent, the polygon sorting will not be correct, and hence there will be an
odd-looking visual artifact created. After this, drag the grass object to the Project
Browser to pack it into a prefab.

The reason we created the decal is to use it as a carpet below the grass models.
Without the decal, the grass will look as if it suddenly pops out from the rock and
won't look as convincing to viewers. Instead, if we place the grass models on top of
the decals, it will look more natural and make more sense.

Chapter 5

[115]

Setting up environment lighting
After you have placed the grass around, it's time to set up the lighting. There are
several types of lighting, including ambient light, spot light, directional light, point
light, and so on. Each type of light serves a different purpose and produces different
effect, so you have to be really sure what kind of outcome you're looking for before
deciding the type of light to use.

The first thing you need to do is delete all the existing lights in the scene. It's better to
start from complete dark and slowly add in different light sources one by one. Next,
go to Window | Lighting and open up a new Lighting panel. Change Ambient
Source to Gradient and set the three colors below it to something bluish, gradually
becoming darker. This will set the overall ambient mood for our scene.

Since our scene is supposedly located in a dungeon, we shouldn't be seeing the
sky at all. So, I went back to Blender and created a huge cave wall surrounding the
terrain. This can be easily achieved by creating a sphere; squash it a little and adjust
some of the vertices to add some irregularity to its appearance. Then, select all
the faces and flip the normal's direction by going to the Tool Shelf and clicking on
Shading/UVs tab, click on the Flip Direction option under Normals. Export the cave
from Blender to Unity and viola! If the texture scale seems to be off, you can either
change the texture tilling settings in the material or adjust the UV scale of the cave
wall in Blender.

Integrating Your Assets into the Game

[116]

Viola! The scene now looks more like a dungeon.

Next, we will start adding actual light sources to the scene. If you haven't already
deleted all the lights in the scene, especially the default sun light (directional light),
do it now. Since our scene is located in a dungeon, no sun light is able to reach here,
and it's not logical to use directional light in this case. Besides this, I always turn off
the Continuous Baking setting on the Lighting panel because I prefer to manually
bake the lighting.

Create a point light by going to Game Object | Light | Point Light. Adjust the range
and intensity to something that you think matches your visual goal and then place
more lights to the entire scene by duplicating the first point light.

Chapter 5

[117]

Use the light sources to guide the player around the level, because players tend to
subconsciously follow the path that has brighter light on the other end and won't go
for the dark.

Once the lighting has been set up, select all the meshes in the scene and tick the
Static option on the Inspector panel. This step is crucial because the light map will
only be generated for the static meshes. Then, go to Lighting panel and click on the
Build button. If the lightmap is not baked correctly, check your mesh settings again.
Select the meshes in the Project Browser and make sure that the Generate lightmap
UV into UV2 option is enabled.

Integrating Your Assets into the Game

[118]

A light map is essentially a texture that stores the brightness of the
surface of a 3D model the later use. The brightness is precalculated
by the game engine based on the surrounding lighting set up
by the level designer. The light map allows the game to display
sophisticated lighting effects, such as Global Illumination, at a
relatively low computational cost.

If everything goes flawlessly, you should be able to get a nicely lit dungeon that
gives players the sense of danger—mysterious and adventurous!

Optimizing the scene with Occlusion Culling
Next, we will optimize the scene by using a method named Occlusion Culling.
This technique generates partitions in the 3D space and assigns each game object
into the partition that occupies the same space with the object. During the game
mode, Unity will hide all the game objects that are not being seen by the in-game
camera by checking which partition is within the camera view frustum and which
partition is not.

Chapter 5

[119]

Open up the Occlusion panel by going to Window | Occlusion Culling. Click on
the Bake button to generate the partitions for the first time to check whether the size
is correct. Each partition (or occluder) should not be too huge as it will decrease the
effectiveness of the culling process. Set the Smallest Occluder setting to adjust the
size of the partitions. The screenshot that illustrates the different outcome by putting
a different value to the Smallest Occluder setting is as follows. After the baking
process is complete, you can check the result by selecting the camera and choose
Visualize option in the drop-down menu located in the small Occlusion Culling
window appearing in your scene panel. Do note that the more complex your scene is,
the longer it will take to bake the light maps.

Integrating Your Assets into the Game

[120]

Importing character assets
We have just completed our level's environment. Now, let's import the characters!
The process is similar to importing the environment assets—drag the models to
the scene, apply a material to it, and we're almost done. One of the most important
aspects that makes the characters feel alive is animation. Without any animation,
your characters will just look like props and not living things. In previous chapters,
you have already learned how to animate the characters in Blender and how to
export the animations alongside the 3D models. Even though we are not using the
animations in this chapter yet, we need the right settings so that the animations are
ready to be used at anytime in the following chapters.

Chapter 5

[121]

To set up animations for the characters, we need to go back to the Project Browser
and select the character's mesh. In the Inspector panel, click on the Animations
button to open up the animation settings interface. Under the Clips section, you can
add or remove animations by clicking on the + and − buttons. To edit each of the
animations, select the animation from the list and all the properties of the animation
will be shown below the list. You can change the name, start frame, end frame as
well as other properties. You can also preview the animation at the bottom part of
the panel. Once you're done, click on the Apply button and you're good to go!

Next, you will learn how to call these animations during gameplay. Even though we
have set the animations, such as idle, run, and attack, the animations are not linked
to your character prefab just yet. In order to do so, you need to create something
named Animator Controller in Unity, which is part of the animation system in Unity
named Mechanim. An Animator Controller allows you to arrange and maintain a set
of animations for a character or an object and manages the various animation states
and transitions between them using a flow chart system named state machine.

Integrating Your Assets into the Game

[122]

An Animation controller exists as an asset in Unity, so in order to create one, you
can go to Assets | Create | Animator Controller, or just right-click on the Project
Browser and then go to Create | Animator Controller to create one. To edit the
controller, double-click on the file you just created, and Unity will automatically
open up an Animator window.

Let's take a closer look at the Animator window:

• Layers: This allows you to manage complex state machines for different
body parts. For example, if you have a character who walks around while
shooting, you can create two different animation layers: one for the upper
body and another for the lower body, with each control different state
machines of different body part, allowing both running and shooting
animations to coexist within the same character mesh.

Chapter 5

[123]

• Parameters: This contains the variables that are defined within an animator
controller that can be accessed and assigned values from scripts. This is how
you can control or affect the flow of the state machine through scripting.

• Show/Hide side panel: You can show or hide the side panel on the animator
window by pressing this button.

• Node Editor: This is the main layout of the Animator window where you
would edit the flow of the animation states. Each state is represented by a
rectangular block, which we refer as a node. Every node can be linked to each
other for state transition. Above the Editor panel, you can see another panel
with the word Base Layer. This is the hierarchical breadcrumb where you
can jump back and forth to the substates of a node or to the parent states of
the current state.

• Auto Live Link: When Auto Live Link is enabled, Unity will display an
animation with a highlight on the Animator window to show which state is
being played during gameplay.

By default, you will see two bars within the Animator window: Any State and Entry.
Each of these bars is called an animation state, and they can be navigated to one
another based on the conditions you set and the way you link the states together. The
Entry state is where the state machine starts from. The state that it points to will be
the default animation state of the controller. On the other hand, the Any State state
allows you to make a transition from any one of the animation states to the state it's
pointing to.

Now it's time to add the animations that we have set up previously to the animator
controller. It's very easy to get this done, all you need to do is click on the little arrow
icon besides the character mesh to expand it and search for the animation clips,
which you created previously by setting the start frame and end frame. Click and
drag the animation clip directly to the animator window and you will see a new
animation state being added to the animator window with the name matching the
clip you just dragged.

Integrating Your Assets into the Game

[124]

The first animation clip being added to the animator window will be linked to the
entry state and change its color from gray to orange, which indicates that it is the
default state. Alternatively, you can also drag the mesh to the Animator window
without expanding it, and that will directly add all the animation clips contained
within the mesh.

Next, we will make a transition from the Idle state to the Running state by right-
clicking on the Idle state and select Make Transition from the pop-up menu. A
line with an arrow in the middle will appear and follow your cursor around, which
indicates that the animation state is now ready to link to the other state. Move your
cursor to the animation state, which you want it to navigate to, in this case, the
Running state, and left-click on it. The line will now connect from the Idle state to
the Running state; this indicates that the Running state can be navigated from the
Idle state if the conditions meet, which we will discuss later. Now, let's right-click
on the Running state, select Make Transition and click on the Idle state to make a
transition back to the Idle state.

Chapter 5

[125]

This is important because we want to return to idling animation when the character
is not running around.

After this, we need to create a parameter in order to be used as a condition for the
animation states to change. The condition to change from idling to running, and vice
versa, is obviously the movement speed of the player. Therefore, we need to create a
floating point number as a parameter for the condition. To do this, go to the Parameter
tab on the side panel of Animation window, click on the + button, and select Float
from the pop-out menu. A new parameter will then be added to the Parameters tab.
Rename the parameter to runningSpeed and lead the default value as 0.0.

Now that you have created the parameter, we can use it as the condition to navigate
between states. Click on one of the arrows connecting the Idle state and Running
state, the Inspector window will now display the properties of that particular
transition. Scroll down to the bottom of the Inspector window and you will see a
section named Condition. Click on the + button below it to add a new condition
and then select the parameter you want from the drop-down box. If you only have
one parameter, it will be selected automatically by default. You will see another
drop-down box besides the parameter name with two options: Greater and Less,
and a text field besides it. These three options form a condition that allows a state to
transition to another state when the requirement is met.

Integrating Your Assets into the Game

[126]

For example, if we want to navigate from the Idle state to the Running state, the
runningSpeed should be higher than zero because the player will start moving.
Therefore, the condition for the transition should be:

runningSpeed Greater 0

On the other hand, if we want the animation to return to Idle state when player stops
moving, the condition will look like so:

runningSpeed Less 1

The number behind varies between different projects due to different scaling factor,
so make sure that you check what number is best suited for you.

Chapter 5

[127]

You can create several other conditions for different animations, such as jump,
attack, damage, death, and so on. Usually, animations that are related to movements
(running, jumping, and so on) use float or integer parameter type for its condition,
whereas other types of animations that get played by triggering (attack, damage,
death, and so on) usually use Boolean or trigger parameter type for its condition.
You can learn more about animation parameters from the Unity Manual at
http://docs.unity3d.com/Manual/AnimationParameters.html.

Once you have linked all the animation states together, the animator controller is
now ready to be used by the character prefab! Select your character prefab and look
for the Animator component. By default, the Controller option is empty. Drag the
animator controller you created previously from the Project Browser directly to the
Controller option on the Inspector window. Then, click on the Apply button at the
top of the Inspector window to save your character prefab and it's now ready to be
used! You will learn how you can change the parameters of the animation controllers
and make it navigate between different animation states in the next chapter because
it has to be done via scripting.

Summary
In this chapter, you learned how to import environment assets and pack them into
reusable templates named prefabs. You have also learned how to form a game level
by putting all the assets together and rearrange them accordingly. Besides, you also
learned how to set up lighting and optimize the scene so that your game can be
run in the best performance. Last but not least, you also learned how to set up the
characters including their animations.

In the next chapter, we will discuss how to develop the game structure, implement
the gameplay, and start writing some serious code!

http://docs.unity3d.com/Manual/AnimationParameters.html

Chapter 6

[129]

Developing the
Game Structure

In this chapter, we will learn what game structure is and how we design our game
structure using flow charts, and implement it in our game in Unity using C language.

In this chapter, we will cover:

• Introduction to game structure design
• Planning the game flow
• Designing the user interface structure
• Player inputs and character movements
• Creating basic artificial intelligence

Introduction to game structure design
Video games have evolved over the past decades to become more and more
sophisticated in both their storytelling techniques and gameplay mechanics. This,
in turn, has made the game development process even more complicated as game
programmers are no longer the ones who also design the game mechanics or the
ones who decide the storyline.

Therefore, game developers had to find a way to streamline the development
workflow so that both the designers and programmers could communicate more
closely to make sure that there is no conflict between the game design and technical
implementation during the production stage. This resulted in an emphasis on the
importance of game structure design during the pre-production stage. From the
game structure, developers will be able to see the bigger picture and point out
possible improvements for the game before they start implementing it.

Developing the Game Structure

[130]

Game structure consists of several different categories, including the flow of the
user interface, finite state machine, game mechanics design, decision-making chart
for AI, and so on. Before we even start writing any game code, we should first of all
plan the flow of our game: how the game should behave, starting from the moment
it's launched; what should happen next; whether to display a cinematic before
proceeding to the main menu; what the enemies do when they have detected the
presence of the player, and so on. From there, we break down the structures into
different subcategories and start designing it using a flow chart.

There are plenty of free tools out there that can be used to draw the flow charts,
such as OpenOffice, LibreOffice, draw.io, Gliffy, and so on. Pick the tool that is most
suited to you.

Planning the game flow
Let's start creating our game structure by planning the game flow. Game flow is the
overall flow of our game, from the moment it's launched to finally quitting the game.
From the game flow, we will be able to see the big picture of how our game is going
to work.

For example, a typical game flow may look like this:

Chapter 6

[131]

A flow chart like this usually starts from the top going downwards. You can also put
an indication for the starting node such as a different background color, apply bold
text, or put an icon beside the text. After that, arrows will be used to indicate how the
game state is being navigated based on given conditions. Diamond shapes will be
used when there is more than one condition, and each of them will yield a different
result, hence its arrow will be pointing to a different state. Two-way arrows will be
used for two-way navigation between two states.

By looking at the preceding chart, we are able to tell that the game contains an
introduction cinematic right after the splash screen, as well as a tutorial level that
can be entered from the main menu. The flow chart is self-explanatory and requires
no extra explanation for the developers to understand the flow of the game, and this
automatically makes the communication between different departments easier.

By looking at the flow chart, game programmers are able to list the features that are
required for the game (for example, a full-screen video player is required in order
to play the intro cinematic) and start working on them. At this point, however, we
shouldn't dive into the details, such as how the main menu works, what the tutorial
should look like, and so on. We should first get the overall picture right before going
into details. This way, we can avoid design problems that may occur during the
production stage. For our game, however, it is much simpler. We do not have any
introduction cinematic, game options, as well as a tutorial level, so we will just keep
those three out from our chart.

Developing the Game Structure

[132]

Now that we have the flow chart ready, you can send it to your team members and
get them to implement the game flow. If you are the sole developer, however, I will
teach you how to implement the flow chart into your game! Since the splash screen
is the first state in the flow chart, and also probably the easiest one to make, we will
learn how to create our game's splash screen in Unity.

First, open up your Unity project from the previous chapter. Then, create a new
scene and name it SplashScreen. The naming is important because we will be using
it for jumping from one scene to another later in this chapter. After that, we will see
an empty scene that has a sky box applied by default. We don't want that for our
splash screen, so we will create a 2D background to hide the sky box from the player.

To do that, we need to first of all create a canvas that acts like a container for our
user interface objects. Go to Game Object | UI | Canvas to create the canvas. After
that, create an image object by selecting the canvas and going to Game Object | UI
| Image. A white rectangle will be created on the screen, but it does not cover the
entire screen. To solve that issue, select the image object and open up the Inspector
panel. In the Inspector panel, you will see a box icon under Rect Transform. Click on
that icon to open up the Anchor Presets window.

Select the icon in the bottom-right corner, which will make the image stretch
along both axes. After that, make sure "Left", "Top", "Right", and "Bottom" are all
set to 0. Now, the white image will cover the entire screen, which covers the 3D
scene entirely.

Chapter 6

[133]

Next, create another image object and apply your team's logo to it. Make sure the
texture type of the image is set to "Sprite (2D and UI)", otherwise it cannot be used
in the image object.

Once you're done, you will get this result:

But we don't want a static splash screen like this as it's kind of boring. Let's learn
how to create a splash screen that fades in slowly before jumping over to the main
menu. To achieve this, you'll need some scripting.

Developing the Game Structure

[134]

Create a new C# script in Unity by going to Assets | Create | C# Script. Name the
script as SplashScreen.cs and double-click on it to open it up with the default
script editor, that installed together with Unity, called MonoDevelop. By default, the
newly created script is not empty. Unity has already written the class for you, which
is named after your script's filename.

Inside the class, there are two functions: one called Start() and another called
Update(). Both of these functions are built-in functions of Unity, which will be
automatically called by Unity when the game is running. The Start() function
only runs once when the scene has started (or when an object has spawned), as the
function name implies. The Update() function, however, gets called by Unity in
every game loop (or every tick). If your game is running at 60 frames per second,
the Update() function will be called 60 times in a second.

Before you start writing any code, let's add this dependency called UnityEngine.UI
to the top of your script. This is required for later use.

using UnityEngine.UI;

After that, within the SplashScreen class, we will add three variables: the first is the
pointer to the logo object, the second variable is the color of the logo for us to change
the opacity later, and the third is the speed of the opacity change. I added public in
front of Image and lerp multiplier variables so that the variables will later appear on
Unity's Inspector panel for us to link the logo object to this script.

public Image logo;
Color logoColor;
public lerpMultiplier = 0.02f;

Next, we will tell Unity what to do when the scene is first loaded, by writing code
within the Start() function. We declare the logoColor variable in the form of
RGBA and set it to transparent. Then, we make our logo transparent by applying
logoColor to its color variable. After that, we execute GotoMainMenu() by using
the StartCoroutine() function, which we will declare later.

void Start ()
{
 logoColor = new Color (1, 1, 1, 0);
 logo.color = logoColor;

 StartCoroutine (GotoMainMenu());
}

Chapter 6

[135]

A coroutine is a special function that can stretch out over many ticks
without stopping the rest of the game from going forward.

GotoMainMenu is a custom function that we wrote ourselves, which means Unity will
not bother about it until we execute the function ourselves. In the GotoMainMenu()
function, we ask the function to delay for 4 seconds before executing the next line of
the function, which loads the main menu scene.

IEnumerator GotoMainMenu()
{
 yield return new WaitForSeconds(4);
 Application.LoadLevel ("MainMenu");
}

After that, we will write the code that makes the logo fade in over time. To achieve
this, we need to write the code inside the Update() function, because the Update()
function gets called on every tick; therefore, it can alter the transparency value
over time.

We use a function from the Color class called Lerp(), which does exactly this—
changing a color variable to a target color over a period of time. The Lerp()
function requires three input variables: the first one is the original color, which is the
color of the logo; the second variable is the target color; and the last variable is the
speed at which the color changes over time. After that, we apply the color again to
the logo.

void Update ()
{
 logoColor = Color.Lerp(logoColor, new Color(1, 1, 1, 1),
 Time.time * lerpMultiplier);
 logo.color = logoColor;
}

Developing the Game Structure

[136]

There you have it; we have completed the splash screen. However, don't forget to
apply the SplashScreen script to an object in the scene; in this case, I applied the
script to the camera, and then dragged the logo object to the logo variable of the
script in the Inspector panel.

This is an overview of the full script:

using UnityEngine;
using System.Collections;

using UnityEngine.UI;

public class SplashScreen : MonoBehaviour
{
 public Image logo;
 Color logoColor;
 public lerpMultiplier = 0.02f;

 void Start ()
 {
 logoColor = new Color (1, 1, 1, 0);
 logo.color = logoColor;

 StartCoroutine (GotoMainMenu());
 }

 IEnumerator GotoMainMenu()
 {
 yield return new WaitForSeconds(4);
 Application.LoadLevel ("MainMenu");
 }

 void Update ()

Chapter 6

[137]

 {
 logoColor = Color.Lerp(logoColor, new Color(1, 1, 1, 1),
 Time.time * lerpMultiplier);
 logo.color = logoColor;
 }

Designing the user interface structure
Since we have already done the splash screen, let's dive into the main menu! The
previous flow chart doesn't actually explain anything about how the main menu
should function. Therefore, we need to design another flow chart to explain the
structure of the main menu.

Our game is really simple, so we don't have many buttons on the menu—just simple
start game and quit game buttons. By clicking on the different buttons, it will bring
us to another user interface that does a different thing. We need to brainstorm all
these details and put them into the flow chart.

After you have done that, we will move over to Unity again and start designing
our main menu based on the preceding flow chart. First, create a new scene called
MainMenu, because the name of the scene has to match the name specified in the
Application.LoadLevel() function in our previous script.

Developing the Game Structure

[138]

The first thing we see right after the splash screen is a menu with two buttons: Start
Game and Quit Game, which are contained in a panel object. Above it is the game
logo. The way to construct the main menu is quite similar to the splash screen, except
an additional panel object and two buttons are added to the user interface.

The panel can be created by going to Game Object | UI | Panel, and the buttons
can be added by going to Game Object | UI | Button. It's pretty simple and
straightforward. You can change the button text by expanding the button from the
hierarchy, and you will now see a text object under the button. Select it and you will
be able to change the text on the Inspector panel. Subsequently, you can delete the
text object, if you are going for a fully graphical type of button.

Below are the other menus that are present in the flow chart. At this moment, the
user interface is not yet functional, but you have to be aware of their functionality
and why it's being added to the UI in the first place. If you have any doubts or are
questioning the design, it's never too late to go back to the flow chart and make
some changes.

Chapter 6

[139]

Each of these menus is contained in a separate canvas, which makes it easy to show
and hide the entire menu from the script. You can try it in the Unity Editor by
selecting one of the canvases and checking/unchecking the checkbox located beside
the object name on the Inspector panel. You will see the entire menu disappear and
reappear when you do that. More on this will be covered later in the chapter.

Once everything has been confirmed and all the required UI elements have been put
in place, we will start writing the code to make it functional!

In Unity, create a new C# script called MainMenu.cs. This time, we are not
manipulating the color or anything related to the UI elements, so we don't have to
include the UnityEngine.UI dependency. However, we will activate and deactivate
different canvases based on the state of the UI. To do that, we need to declare four
variables to store the pointers to all the different menus for later use.

public GameObject mainMenuUI;
public GameObject startGameUI;
public GameObject exitGameUI;
public GameObject newGameUI;

Developing the Game Structure

[140]

Make sure they are public so that it will appear on the Inspector panel in the Unity
Editor. Next, we only want the first menu to appear when the scene is loaded, and not
the others. One way to do this is to make sure that only the first menu is shown and
the rest are hidden before building the game, but sometimes we tend to be careless, so
in order to avoid such a problem, we manually set it in the Start() function.

void Start ()
{
 mainMenuUI.SetActive (true);
 startGameUI.SetActive (false);
 exitGameUI.SetActive (false);
 newGameUI.SetActive (false);
}

After that, we have to create several functions that will be called by each of the
buttons when pressed. What the functions do are mostly switch between different
UIs by calling the SetActive() function to turn on or turn off the canvases. It's very
easy to do this if we have designed the flow chart early on and have just followed it.
This is why it's very important to make sure the flow chart is correct before we start
writing any code.

The full code is here:

using UnityEngine;
using System.Collections;

public class MainMenu : MonoBehaviour
{
 public GameObject mainMenuUI;
 public GameObject startGameUI;
 public GameObject exitGameUI;
 public GameObject newGameUI;

 void Start ()
 {
 mainMenuUI.SetActive (true);
 startGameUI.SetActive (false);
 exitGameUI.SetActive (false);
 newGameUI.SetActive (false);
 }

 public void StartGamePressed ()
 {
 mainMenuUI.SetActive (false);

Chapter 6

[141]

 startGameUI.SetActive (true);
 }

 public void QuitGamePressed ()
 {
 mainMenuUI.SetActive (false);
 exitGameUI.SetActive (true);
 }

 public void ContinuePressed ()
 {
 Application.LoadLevel ("Level01");
 }

 public void NewGamePressed ()
 {
 startGameUI.SetActive (false);
 newGameUI.SetActive (true);
 }

 public void QuitGameYesPressed ()
 {
 // Quit game and close the application
 Application.Quit ();
 }

 public void QuitGameNoPressed ()
 {
 exitGameUI.SetActive (false);
 mainMenuUI.SetActive (true);
 }

 public void NewGameYesPressed ()
 {
 // Jump to game level
 Application.LoadLevel ("Level01");
 }

 public void NewGameNoPressed ()
 {
 newGameUI.SetActive (false);
 startGameUI.SetActive (true);
 }
}

Developing the Game Structure

[142]

For now, both the Continue and New Game buttons will bring the player to the
game scene without loading any saved data. This is because we will only learn how
to save progression in the next chapter. Stay tuned.

To hook up the buttons to the preceding functions, select one of the buttons and
scroll down to the bottom of the Inspector panel. There you will see a column with
a label called On Click(). Then, click on the + button and drag the game object that
has the MainMenu script attached to the input field. Then, click on the combo box on
the right side and select the function that you want to call when the button is clicked.
This is a really handy feature in Unity.

Once you are done setting all the buttons in the main menu scene, let's move on to
the pause menu. If you refer back to the game structure, you will see a pause menu
in the flow chart that can be accessed from the in-game scene. That particular flow
chart, however, never explained how the pause menu actually works. Therefore, we
need to create another flow chart just for the pause menu. Most of the things in the
pause menu are similar to the main menu, except this time, we have to deal with
keyboard input because the pause menu will be triggered when the player presses
the Escape button on the keyboard.

Chapter 6

[143]

As for constructing the user interface, the steps are also very similar to the previous
UI. The only difference now is that the background image is in black with 50%
transparency. This is because we want the player to still be able to look at the 3D
scene in the background when the game is paused.

Developing the Game Structure

[144]

For the coding part, it's very similar to the main menu as well—switching between
different canvases when clicking on the buttons. This time, however, we have two
confirmation dialogs that look exactly the same but gog to different states when
the buttons are pressed. We don't want to create the same UI twice, so instead we
make use of enumeration (or enum for short) in C# to check which state we should
navigate to when clicking on the buttons on the dialog.

First, create a new C# script called PauseMenu.cs. Then, at the top of your script,
declare an enumeration called mode, which consists of two members: mainMenu
and quit. Enumeration is essentially a way to assign a meaningful name to a set of
integers so that programmers can easily remember it when writing code.

enum mode { mainMenu, quit };

Inside your PauseMenu class, declare two variables for the UI pointers and an integer
variable called selectedMode. We will set this variable when a button is pressed to
call out the confirmation dialog. This way, we will know which state it's going to
navigate when the button on the dialog is pressed.

public GameObject pauseMenuUI;
public GameObject confirmUI;
mode selectedMode;

In the Start() function, again, manually display the first canvas and hide the other
one to avoid a careless mistake.

void Start ()
{
 pauseMenuUI.SetActive (false);
 confirmUI.SetActive (false);
}

In the Update() function, we check whether the Esc key is pressed by calling
Input.GetKeyDown() and insert KeyCode.Escape as the input variable. The function
will return true if the Esc key is pressed, and thus pausing the game.

There are many ways to pause a game. The simplest method is to just stop the
in-game time by setting the time scale to zero. This way, everything will be frozen,
including all animations, special effects, and game logic that relies on in-game time.
By setting the time scale back to one, the game will continue as it is.

Another thing that I have added to the pause menu script is unlocking the game
cursor and unhiding it when the game resumes. This is because later in this chapter, I
will be hiding the game cursor when constructing character movement. More on this
will be covered later.

void Update ()

Chapter 6

[145]

{
 if (Input.GetKeyDown (KeyCode.Escape))
 {
 if (Time.timeScale == 1)
 {
 Time.timeScale = 0;
 pauseMenuUI.SetActive (true);

 Cursor.lockState = CursorLockMode.None;
 Cursor.visible = true;
 }
 else
 {
 Time.timeScale = 1;
 pauseMenuUI.SetActive (false);

 Cursor.lockState = CursorLockMode.Locked;
 Cursor.visible = false;
 }
 }
}

Now, I will explain a little bit about the usage of enumeration we declared earlier in
this script. If we refer back to the flow chart, we can see that the confirmation menu
is used to navigate to two different states: one to the main menu, and another one to
quit the game completely.

Therefore, when the Back to Main Menu button is pressed, we need to set the
selectedMode variable to mainMenu before activating the confirmation dialog.

public void BackMainMenuPressed()
{
 selectedMode = mode.mainMenu;

 pauseMenuUI.SetActive (false);
 confirmUI.SetActive (true);
}

The same goes for the Quit Game button. Set the selectedMode variable to quit
before showing the dialog.

public void QuitGamePressed()
{
 selectedMode = mode.quit;

 pauseMenuUI.SetActive (false);

Developing the Game Structure

[146]

 confirmUI.SetActive (true);
}

Thus, when clicking on the Yes button on the confirmation dialog, we must check
the selectedMode variable and trigger the relevant action accordingly, which in this
case, is loading the main menu scene if selectedMode is mainmenu and quitting
the game completely if otherwise.

public void YesPressed()
{
 if (selectedMode == mode.mainMenu)
 {
 Application.LoadLevel("MainMenu");
 }
 else
 {
 Application.Quit();
 }
}

The full code is here:

using UnityEngine;
using System.Collections;

enum mode { mainMenu, quit };

public class PauseMenu : MonoBehaviour
{
 public GameObject pauseMenuUI;
 public GameObject confirmUI;
 mode selectedMode;

 void Start ()
 {
 pauseMenuUI.SetActive (false);
 confirmUI.SetActive (false);
 }

 void Update ()
 {
 if (Input.GetKeyDown (KeyCode.Escape))
 {
 if (Time.timeScale == 1)
 {

Chapter 6

[147]

 Time.timeScale = 0;
 pauseMenuUI.SetActive (true);

 Cursor.lockState = CursorLockMode.None;
 Cursor.visible = true;
 }
 else
 {
 Time.timeScale = 1;
 pauseMenuUI.SetActive (false);

 Cursor.lockState = CursorLockMode.Locked;
 Cursor.visible = false;
 }
 }
 }

 public void ContinueGamePressed()
 {
 Time.timeScale = 1;
 pauseMenuUI.SetActive (false);
 }

 public void BackMainMenuPressed()
 {
 selectedMode = mode.mainMenu;

 pauseMenuUI.SetActive (false);
 confirmUI.SetActive (true);
 }

 public void QuitGamePressed()
 {
 selectedMode = mode.quit;

 pauseMenuUI.SetActive (false);
 confirmUI.SetActive (true);
 }

 public void YesPressed()
 {
 if (selectedMode == mode.mainMenu)
 {
 Application.LoadLevel("MainMenu");

Developing the Game Structure

[148]

 }
 else
 {
 Application.Quit();
 }
 }

 public void NoPressed()
 {
 confirmUI.SetActive (false);
 pauseMenuUI.SetActive (true);
 }
}

Player inputs and character movements
We are now done constructing the basic user interface. Now, let's move on to player
inputs and character movements! A game character, especially the one who gets
controlled by the player, usually contains tons of different states, such as idling,
running, attack, and so on, which changes frequently based on the mix of player
inputs and other conditions, such as health point, timer, and so on.

The following is an example of a basic character structure displayed in a flow chart:

Chapter 6

[149]

In Unity, there are many ways to move an object or a character, such as adjusting
the variables of the transform directly, or applying force to a rigid body, or using a
navigation mesh agent to automatically calculate the shortest path, and so on. In this
case, we would need to use the character controller instead, which can be found at
Component | Physics | Character Controller. After adding the character controller
component to your game character, we can start writing the code. We will create a
new C# script called PlayerMovement.cs.

First of all, there are several variables that we need to declare, such as the walking
speed, jumping strength, value for acceleration, and so on, which will be used
to simulate the movements later on. Besides that, we also need to declare the
CharacterController variable in order for us to use it to apply motion to
the character.

public float walkSpeed = 5;
public float walkSideSpeed = 3;
public float walkReverseSpeed = 2;
public float rotateSpeed = 100;
public float jumpStrength = 0.4f;

Vector3 walkAcceleration = new Vector3(0, 0, 0);
float jumpAcceleration = 0;
int jumpCount = 0;

public CharacterController playerController;
public Animator playerAnimator;

Next, we create two custom functions: KeyboardInputs() and Movements()—to
separate the code to avoid messy code. This way, we can manage and debug the
code easily without having to scroll through the script and wonder which part of the
code does what.

void Update ()
{
 KeyboardInputs();
 Movements();

// Pass the movement speed to animator for switching between
animation states
playerAnimator.SetFloat("runningSpeed",
walkAcceleration.magnitude);
playerAnimator.SetFloat("jumpingSpeed", jumpAcceleration);

}

Developing the Game Structure

[150]

We will start writing the Movements() function first. The logic is actually quite
simple: we use the Move() function in the character controller to move it on every
single tick. However, we control the value of the walkAcceleration variable
to move or stop the character. It's like a car engine that is always turned on and
running, but only when you lock in the gear will the car start moving. For example,
if walkAcceleration is set to Vector3(0, 0, 0), the character will not move, even
if the Move() function is being executed on every tick.

// Horizontol movements
playerController.Move(walkAcceleration * Time.deltaTime);

// Vertical movements
playerController.Move(new Vector3(0, jumpAcceleration, 0));

Time.deltaTime refers to delta time or delta timing; it's a variable
that tells you how many milliseconds have passed between the last
frame and the current frame. Delta time is used to add up the speed of
moving objects so that it all move at a consistent speed across different
computers despite running at different frame rates. We also call this
framerate-independent motion or time-based motion. In Unity, the value
of delta time is provided by the game engine at every frame, which you
can use in the form of a variable by typing Time.deltaTime.

In this script, we have executed the Move() function twice in every tick: one for
walking (horizontal movements) and another one for jumping (vertical movements).
At the same time, the character's rotation is also being adjusted based on the mouse's
movement along the X axis. The mouse movement can be obtained by calling Input.
GetAxis("Mouse X") and specifying the axis you want.

// Rotation
playerController.transform.Rotate(new Vector3(0,
Input.GetAxis("Mouse X"), 0) * Time.deltaTime * rotateSpeed);

Besides acceleration during movements, we also have to write the code for
deceleration. In real life, nothing stops instantly, especially when no external force
is applied to the moving object. Many newbie programmers always make the same
mistake—stopping the character instantly when the keyboard button is not pressed.
This looks OK when the character is walking on the ground, but it will look very
unnatural if the character is jumping or falling in the air.

Chapter 6

[151]

To solve this issue, we need to check if the character is standing on the ground by
checking the variable in the character controller called isGrounded. If the character is
in the air, slowly decrease the walkAcceleration vector over time using a function
from the Vector3 class called MoveTowards(), which interpolates a given vector
to a target value over a period of time. This makes the falling movement look more
realistic and fluid.

As for vertical deceleration, always adjust the jumpAcceleration variable back to
-0.98, because that is the actual value of gravity. The jumpAcceleration variable,
in this case, is not a vector but rather a floating point number. So, instead of using
Vector3.MoveTowards(), we use Mathf.MoveTowards() instead.

// Horizontal deceleration
if (playerController.isGrounded)
{
 walkAcceleration = Vector3.zero;
 jumpCount = 0;
}
else
{
 walkAcceleration = Vector3.MoveTowards(walkAcceleration,
 Vector3.zero, Time.deltaTime);
}

// Vertical deceleration
if (jumpAcceleration > -0.98f)
{
 jumpAcceleration = Mathf.MoveTowards(jumpAcceleration,
 -0.98f, Time.deltaTime * 2);
}

After that, we will learn how to write the code for player inputs. Like I mentioned
previously, all the code for player inputs is written in the KeyboardInputs()
function so that it's easier for us to look for the code.

Let's start from the WASD keys, which is considered standard in the games industry
for first-person and third-person character movements. I will show you an example
of the W key movement, which is moving the character forward. The rest are mostly
similar to this code, the only differences being the key that is being pressed as well as
the direction of the movements.

Developing the Game Structure

[152]

First off, we need to check if the character is on the ground or in the air. This is very
important because when the character is walking on the ground, you need to keep on
adding force to it because the friction of the ground will reduce the force over time.
However, if the character is jumping or falling in the air, there is no friction that can
cause it to slow down. In this case, if we keep on adding force to the character while
in the air, he will fly away like a rocket, which is not what we want. Instead, we just
need to apply a constant vector to it, and it will all look right.

if (Input.GetKey(KeyCode.W))
{
 // Prevent player to fly away like bullet when not on ground
 if (playerController.isGrounded)
 {
 walkAcceleration += playerController.transform.forward *
 walkSpeed;
 }
 else
 {
 walkAcceleration = playerController.transform.forward *
 walkSpeed;
 }
}

For other keys, such as A, S, and D, the only major difference is the movement
direction, for which you just need to change playerController.transform.forward
to playerController.transform.right, as well as making the plus-equal sign to
minus-equal, depending on which direction you want it to move.

You can check out the following full code for further details:

using UnityEngine;
using System.Collections;

public class PlayerMovement : MonoBehaviour
{
 public float walkSpeed = 5;
 public float walkSideSpeed = 3;
 public float walkReverseSpeed = 2;
 public float rotateSpeed = 100;
 public float jumpStrength = 0.4f;

 Vector3 walkAcceleration = new Vector3(0, 0, 0);
 float jumpAcceleration = 0;

Chapter 6

[153]

 int jumpCount = 0;

 public CharacterController playerController;
 public Animator playerAnimator;

 void Update ()
 {
 KeyboardInputs();
 Movements();

// Pass the movement speed to animator for switching
 between animation states
 playerAnimator.SetFloat("runningSpeed",
 walkAcceleration.magnitude);
 playerAnimator.SetFloat("jumpingSpeed", jumpAcceleration);
 }

 void KeyboardInputs()
 {
 if (Input.GetKey(KeyCode.W))
 {
 // Prevent player to fly away like bullet when not on ground
 if (playerController.isGrounded)
 {
 walkAcceleration += playerController.transform.
 forward * walkSpeed;
 }
 else
 {
 walkAcceleration = playerController.transform.forward
 * walkSpeed;
 }
 }

 if (Input.GetKey(KeyCode.A))
 {
 // Prevent player to fly away like bullet when not on ground
 if (playerController.isGrounded)
 {
 walkAcceleration += playerController.transform.right
 * -walkSideSpeed;
 }
 else

Developing the Game Structure

[154]

 {
 walkAcceleration = playerController.transform.right
 * -walkSideSpeed;
 }
 }

 if (Input.GetKey(KeyCode.S))
 {
 // Prevent player to fly away like bullet when not on ground
 if (playerController.isGrounded)
 {
 walkAcceleration += playerController.transform.forward
 * -walkReverseSpeed;
 }
 else
 {
 walkAcceleration = playerController.transform.forward
 * -walkReverseSpeed;
 }
 }

 if (Input.GetKey(KeyCode.D))
 {
 // Prevent player to fly away like bullet when not on ground
 if (playerController.isGrounded)
 {
 walkAcceleration += playerController.transform.right
 * walkSideSpeed;
 }
 else
 {
 walkAcceleration = playerController.transform.right
 * walkSideSpeed;
 }
 }

 if (Input.GetKeyDown(KeyCode.Space))
 {
 // Double jump
 if (jumpCount < 2)
 {
 jumpAcceleration = jumpStrength;

Chapter 6

[155]

 jumpCount += 1;
 }
 }
 }

 void Movements()
 {
 // Horizontol movements
 playerController.Move(walkAcceleration * Time.deltaTime);

 // Vertical movements
 playerController.Move(new Vector3(0, jumpAcceleration, 0));

 // Rotation
 playerController.transform.Rotate(new Vector3(0,
 Input.GetAxis("Mouse X"), 0) * Time.deltaTime * rotateSpeed);

 // Horizontal deceleration
 if (playerController.isGrounded)
 {
 walkAcceleration = Vector3.zero;
 jumpCount = 0;
 }
 else
 {
 walkAcceleration = Vector3.MoveTowards(walkAcceleration,
 Vector3.zero, Time.deltaTime);
 }

 // Vertical deceleration
 if (jumpAcceleration > -0.98f)
 {
 jumpAcceleration = Mathf.MoveTowards(jumpAcceleration,
 -0.98f, Time.deltaTime * 2);
 }
 }
}

Now that our character can finally move, there is one more thing that we need to
settle—camera movement. We need a camera that follows the character around so
that we can see where our character is going. However, before we start writing the
code, we must set up our camera properly so that it is compatible with the method
we used in the code.

Developing the Game Structure

[156]

You need to create three empty game objects and place them exactly where the
character is standing. Then, rename the objects as Position, Yaw, and Pitch. After
that, make Yaw the child of Position, Pitch the child of Yaw, and finally make the
game camera the child of Pitch. Keep all three empty objects where they are, but
move the game camera to where you want it to be, in this case, behind the character.
It may seem confusing at the moment, but you will understand later on when I start
explaining in detail.

Basically, the Position object will follow the character's position wherever he goes.
It is simply interpolating its position to the character's pivot point, which is located
between the feet. Next, the Yaw object will handle the yaw rotation, and the Pitch
object will handle the pitch rotation. By separating the rotation handling to different
objects, we can avoid mathematical problems caused by Euler angles. Lastly, because
the camera is the child of all three objects, the position and rotation are all inherited
to the camera, resulting in a smooth and fluid camera movement.

Therefore, when we start writing the camera code, we need to declare the pointers
to the player's transform, the Yaw object as well as the Pitch object, so that we can
include them into the movement calculations. Other than that, we also need to
declare some variables such as movement speed and rotation speed. Let's create a
C# script called PlayerCamera.cs and then declare all the public variables:

public bool lockCursor = true;
public float followSpeed = 10;

Chapter 6

[157]

public float yawSpeed = 10;
public float pitchSpeed = 50;

public Transform playerTransform;
public Transform yawPivot;
public Transform pitchPivot;

After that, in the Start() function, we ask Unity to hide and lock the game cursor so
that we can move the camera around using the mouse without getting stopped when
the mouse reaches the edge of the screen.

void Start ()
{
 if (lockCursor)
 {
 Cursor.lockState = CursorLockMode.Locked;
 Cursor.visible = false;
 }
}

Then, inside the Update() function, there are three things that we need to do: move
the Position object to where the player is located, rotate the Yaw object based
on where the character is facing, and rotate the Pitch object based on the mouse
movement along the y axis.

transform.position = Vector3.Lerp(transform.position,
playerTransform.position, Time.deltaTime * followSpeed);

Vector3 yawRotation = yawPivot.localRotation.eulerAngles;
yawRotation.y = Mathf.LerpAngle (yawRotation.y,
playerTransform.localRotation.eulerAngles.y, Time.deltaTime *
yawSpeed);
yawPivot.localRotation = Quaternion.Euler (yawRotation);

Vector3 pitchRotation = pitchPivot.localRotation.eulerAngles;
pitchRotation.x -= Input.GetAxis ("Mouse Y") * Time.deltaTime
* pitchSpeed;
pitchPivot.localRotation = Quaternion.Euler (pitchRotation);

Lastly, we need to limit the Pitch object's rotation so that we will not get an inverted
camera view if we move the mouse too much along the y axis.

// Limit the angle
if (pitchPivot.localRotation.eulerAngles.x > 55 &&
pitchPivot.localRotation.eulerAngles.x < 90)
{
 pitchRotation = pitchPivot.localRotation.eulerAngles;

Developing the Game Structure

[158]

 pitchRotation.x = 55;
 pitchPivot.localRotation = Quaternion.Euler (pitchRotation);
}
else if (pitchPivot.localRotation.eulerAngles.x < 335 &&
pitchPivot.localRotation.eulerAngles.x > 90)
{
 pitchRotation = pitchPivot.localRotation.eulerAngles;
 pitchRotation.x = 335;
 pitchPivot.localRotation = Quaternion.Euler (pitchRotation);
}

This is the full code:

using UnityEngine;
using System.Collections;

public class PlayerCamera : MonoBehaviour
{
 public bool lockCursor = true;
 public float followSpeed = 10;
 public float yawSpeed = 10;
 public float pitchSpeed = 50;

 public Transform playerTransform;
 public Transform yawPivot;
 public Transform pitchPivot;

 void Start ()
 {
 if (lockCursor)
 {
 Cursor.lockState = CursorLockMode.Locked;
 Cursor.visible = false;
 }
 }

 void Update ()
 {
 transform.position = Vector3.Lerp(transform.position,
 playerTransform.position, Time.deltaTime * followSpeed);

 Vector3 yawRotation = yawPivot.localRotation.eulerAngles;
 yawRotation.y = Mathf.LerpAngle (yawRotation.y,
 playerTransform.localRotation.eulerAngles.y, Time.deltaTime
 * yawSpeed);

Chapter 6

[159]

 yawPivot.localRotation = Quaternion.Euler (yawRotation);

 Vector3 pitchRotation = pitchPivot.localRotation.eulerAngles;
 pitchRotation.x -= Input.GetAxis ("Mouse Y") *
 Time.deltaTime * pitchSpeed;
 pitchPivot.localRotation = Quaternion.Euler (pitchRotation);

 // Limit the angle
 if (pitchPivot.localRotation.eulerAngles.x > 55
 && pitchPivot.localRotation.eulerAngles.x < 90)
 {
 pitchRotation = pitchPivot.localRotation.eulerAngles;
 pitchRotation.x = 55;
 pitchPivot.localRotation = Quaternion.Euler (pitchRotation);
 }
 else if (pitchPivot.localRotation.eulerAngles.x < 335 &&
 pitchPivot.localRotation.eulerAngles.x > 90)
 {
 pitchRotation = pitchPivot.localRotation.eulerAngles;
 pitchRotation.x = 335;
 pitchPivot.localRotation = Quaternion.Euler (pitchRotation);
 }
 }
}

Finally, we can move our character around in the level! How cool is that!

Developing the Game Structure

[160]

Now that we can move our character around, what should we do next? Attack,
of course!

The reason why I chose to teach how to do a melee attack instead of shooting
projectiles is because there are simply too many tutorials out there that focus on
shooting projectiles, but hardly any teach you how to do short-range combat.

There are, of course, many different ways to do a melee attack, depending on how
sophisticated you want it to be. However, in our case, we just want a normal melee
attack, which basically detects who is near to the player and who is not. Then, when
the player is doing the attack, apply the damages to those who are standing nearby.
This is actually not as difficult as you might think.

But before that, let's create the flow chart for the melee attack so that we are really
clear about how the attack should be done.

Chapter 6

[161]

From the preceding flow chart, you will notice there is a cool down after every
attack. This is to avoid the player from doing multiple attacks by clicking the left
mouse button multiple times in a row. It makes sure that the player can only make
a single attack between every interval. Do notice that I will not be showing how to
implement the special attack because it will be shown in the next chapter. Stay tuned.

Then, you also notice that there is something called nearby enemy array in the flow
chart. This array is basically a list used to record which monster is nearby, ignoring
those that are far away. When the player is doing the melee attack, only the monsters
that are registered in the array will be damaged.

So, the first thing when we write the code is to declare all the variables needed for
later use, such as the hit point, cool down interval, and the nearbyEnemy array:

public float attackDamage = 10;
public float attackCooldownInterval = 1;
float attackCooldownTime = 0;

ArrayList nearbyEnemy;

Next, we must create the array in the Start() function; otherwise, you will not be
able to use it later.

void Start ()
{
 nearbyEnemy = new ArrayList ();
}

After that, we detect whether any monster is standing in front of the character by
using the built-in function called OnTriggerEnter(). This function will only work
if you have a trigger attached to the character. Add the trigger box to your character
if you have not done it. When the function is triggered, it will tell you which object
is colliding with it, so you can then check if it's a monster by comparing its tag. If the
object is indeed a monster, add it to the nearbyEnemy array:

void OnTriggerEnter (Collider col)
{
 // Add nearby enemy to array if within attack distance
 if (col.tag == "Monster")
 {
 nearbyEnemy.Add(col.gameObject);
 }
}

Developing the Game Structure

[162]

However, if a monster is too far away and is now outside the trigger box, do a for
loop to check each of the objects registered with the nearbyEnemy array. Then,
remove it from the array if it matches the monster that left the trigger box:

void OnTriggerExit (Collider col)
{
 // Remove enemy from array if not within attack distance
 if (col.tag == "Monster")
 {
 for (int i = 0; i < nearbyEnemy.Count; i++)
 {
 if (nearbyEnemy[i] == col.gameObject)
 {
 nearbyEnemy.RemoveAt(i);
 }
 }
 }
}

Finally, in the Update() function, we detect if the left mouse button is clicked by
calling Input.GetMouseButtonDown(0). Then, we check if it's still cooling down or
ready for the next attack by comparing the game's total elapsed second—Time.time
with the attackCooldownTime variable. Whenever we successfully made a single
attack, we must set the attackCooldownTime variable to the future time, by adding
the current game time with attackCooldownInterval.

For example, if the current game time (total elapsed seconds) is at 1000th second,
and attackCooldownInterval is 1, that means attackCooldownTime will be at
the 1001st second, and the player will not be able to make the next attack until 1
second later.

To apply damages to nearby enemies, simply loop through the nearbyEnemy array
and call the GetDamage() function, which we will create later in this chapter.

void Update ()
{
 if (Input.GetMouseButtonDown(0))
 {
 if (Time.time > attackCooldownTime)
 {
 if (nearbyEnemy.Count > 0)
 {
 // Apply damage to all nearby enemies
 for (int i = 0; i < nearbyEnemy.Count; i++)

Chapter 6

[163]

 {
 (nearbyEnemy[i] as GameObject).GetComponent<EnemyAI>().
 GetDamage(attackDamage);
 }
 }

 // Set cool down time
 attackCooldownTime = Time.time + attackCooldownInterval;
 }
 }
}

The full code for the melee attack is shown next:

using UnityEngine;
using System.Collections;

public class PlayerAttack : MonoBehaviour
{
 public float attackDamage = 10;
 public float attackCooldownInterval = 1;
 float attackCooldownTime = 0;

 ArrayList nearbyEnemy;

 void Start ()
 {
 nearbyEnemy = new ArrayList ();
 }

 void Update ()
 {
 if (Input.GetMouseButtonDown(0))
 {
 if (Time.time > attackCooldownTime)
 {
 if (nearbyEnemy.Count > 0)
 {
 // Apply damage to all nearby enemies
 for (int i = 0; i < nearbyEnemy.Count; i++)
 {
 (nearbyEnemy[i] as GameObject).GetComponent<EnemyAI>
 ().GetDamage(attackDamage);
 }

Developing the Game Structure

[164]

 }

 // Set cool down time
 attackCooldownTime = Time.time + attackCooldownInterval;
 }
 }
 }

 void OnTriggerEnter (Collider col)
 {
 // Add nearby enemy to array if within attack distance
 if (col.tag == "Monster")
 {
 nearbyEnemy.Add(col.gameObject);
 }
 }

 void OnTriggerExit (Collider col)
 {
 // Remove enemy from array if not within attack distance
 if (col.tag == "Monster")
 {
 for (int i = 0; i < nearbyEnemy.Count; i++)
 {
 if (nearbyEnemy[i] == col.gameObject)
 {
 nearbyEnemy.RemoveAt(i);
 }
 }
 }
 }
}

Creating basic artificial intelligence
Phew, we have come a long way, haven't we? But the most exciting part is just about
to start—we will learn how to create basic game AI in Unity!

In a nutshell, artificial intelligence is all about making decisions autonomously based
on a set of conditions and requirements. If a given condition has been met, then the
AI will try to move from its current state to the other state that fits the criteria. This is
what we call the finite state machine.

Chapter 6

[165]

In order to know what conditions we need to set in our AI and what decisions it can
make, we will design yet another flow chart for the AI:

In this chapter, we will only focus on the part where the AI will start chasing the
player whenever the player is nearby. We will learn how to make the AI patrol
around a given area in the next chapter, so stay tuned.

Before we start writing the code, we need to add a component called Nav Mesh
Agent to our monster prefab. Without this component, our monster will lose the
ability to find the shortest path and move toward the player.

After that, we will create a C# script called EnemyAI and attach it to our monster
prefab. We will start writing the code by declaring the variables needed by the script:

public NavMeshAgent agent;
public float healthPoint = 50;
public Animator animator;
GameObject player;

Developing the Game Structure

[166]

Then, in the Start() function, we will find the player by calling GameObject.
FindWithTag() and save it to the player variable. Since there is only one player in
the entire scene, it's OK to search through the entire scene to find the player when the
game started. Do not, however, use this function in the Update() function because
that will greatly slow down the performance of the game.

After that, in the Update() function, we will calculate the distance between the
monster and the player character. If the player is nearby, then the monster will start
chasing him by calling the SetDestination() function from the Nav Mesh Agent.

void Update ()
{
 if (player != null)
 {
 // Check if player is nearby
 if (Vector3.Distance(transform.position,
 player.transform.position) <= 6)
 {
 // Move toward player
 agent.SetDestination(player.transform.position);
 // Pass the movement velocity to animator
 animator.SetFloat("runningSpeed", agent.velocity.magnitude);
 }
 }
}

Finally, we also create the GetDamage() function that was used previously in the
melee attack script so that the Unity compiler will no longer display an error that
says GetDamage() function not found. In this function, we will deduct the health
points of the monster and check if the health point has reached zero. If it does, it
will be removed from the scene by calling the Destroy() function:

public void GetDamage (float damage)
{
 healthPoint -= damage;

 if (healthPoint <= 0)
 {
 Die ();
 }
}

void Die ()

Chapter 6

[167]

{
 Destroy (gameObject);
}

The following is the full code for the artificial intelligence:

using UnityEngine;
using System.Collections;

public class EnemyAI : MonoBehaviour
{
 public NavMeshAgent agent;
 public float healthPoint = 50;
 public Animator animator;
 GameObject player;

 void Start ()
 {
 // Find player
 player = GameObject.FindWithTag ("Player");
 }

 void Update ()
 {
 if (player != null)
 {
 // Check if player is nearby
 if (Vector3.Distance(transform.position,
 player.transform.position) <= 6)
 {
 // Move toward player
 agent.SetDestination(player.transform.position);
 // Pass the movement velocity to animator
 animator.SetFloat("runningSpeed", agent.velocity.magnitude);
 }
 }
 }

 public void GetDamage (float damage)
 {
 healthPoint -= damage;

 if (healthPoint <= 0)

Developing the Game Structure

[168]

 {
 Die ();
 }
 }

 void Die ()
 {
 Destroy (gameObject);
 }
}

Before the monsters are able to chase the player, you need to open up the navigation
panel by going to Window | Navigation and click on the Bake button on top, and
then click again on the Bake button in the lower-right corner. After several seconds,
you will see blue polygons being generated all over the level. These blue polygons
are what we call navigation meshes and are used by the Nav Mesh Agent to calculate
path finding.

These are the options for navigation mesh baking:

• Agent Radius: This option defines how close the bake agent can get to a wall
or a ledge.

• Agent Height: Agent Height determines the height that can be reached by
the bake agent.

Chapter 6

[169]

• Max Slope: This defines how steep the ramps are that the bake agent walk up.
• Step Height: This determines how high the obstructions are that the bake

agent can step on.
• Drop Height: This parameter controls what is the highest distance for the

bake agent to link two off-link meshes for dropping.
• Jump Distance: This determines the further distance for the bake agent to

link two off-link meshes for jumping.
• Manual Voxel Size: By enabling this option, you can manually set the

accuracy of the baking process by changing the voxel size.
• Voxel Size: The default setting resulting in 3 voxels per agent radius, which

means the whole agent width is 6 voxel. Changing this value will affect both
the accuracy as well as the baking speed.

• Min Region Area: Using this, regions that have a surface area smaller than
the specified value will be removed.

• Height Mesh: By enabling this option, you can get a more accurate
placement of your character on the navmesh surface, However, this will
take up more memory and processing at runtime, and it will also take a little
longer to bake the mesh.

Once you have generated the navigation meshes, try duplicating the monster prefabs
across the level, and have fun getting chased by them!

Developing the Game Structure

[170]

Summary
In this chapter, you have learned how to design your game structures with flow
charts and implement them in the Unity Engine. You have also learned how to create
a basic user interface in Unity, how to make your game character move around, and
how to create basic AI that can chase you around in your game.

In the next chapter, we will walk you through how to create game progression and
start building some power-ups!

[171]

Creating Levels
and Game Progression

In this chapter, we will discuss how to create player stats and alter it through
power-up items. We will also discuss how to create a more advanced enemy
AI that is able to patrol randomly in the game level, as well as how to create
save points that can be used by the players to save their game progression.

In this chapter, we will cover the following:

• Creating character attributes
• Adding in-game items and power-ups
• Improving enemy AI
• Adding save points

Creating character attributes
In the previous chapter, we learned how to create a lively in-game character that
is able to move around based on the player's input. However, this is not enough to
make your game fun and addictive. There is no standard definition on what makes a
game fun. However, by observing successful titles that have been proven (from the
sales figure) to be fun, we can easily find one similarity between these games—they
all have a well-planned progression throughout the game.

The key behind a good progression is to let the players learn and improve their
playing skill over time while facing greater challenges in every new level. Besides
this, players should also be given larger rewards to solve a difficult puzzle or quest,
which creates a satisfactory feeling that will keep the player coming back for
bigger rewards.

Creating Levels and Game Progression

[172]

Game rewards can be divided into several different types and categories. One of the
most familiar is the player's level. Every level up will increase the strength, speed,
or other attribute of the player character, and hence allowing it to challenge stronger
enemies. Besides this, one of the other types of reward is to give in-game items to the
player, such as a new weapon, new equipment, and so on, which also increases the
attributes of the player character. This not only makes it stronger but also changes
the outlook of the character.

Another type of reward is unlocking features that are hidden away from the player
before he/she has reached a certain level or achieved a specific goal. Examples of
locked features are special skills, extra movements (double jump, dash, and so on),
or special ability that allows the player to enter a path that he/she wouldn't be
able to do so previously—for example, crossing a broken bridge by unlocking the
flying ability.

To create player attributes in Unity, first let's create the C# script named
PlayerAttribute.cs. This script only serves as a container for the attributes
and contains no logic in it.

using UnityEngine;
using System.Collections;

public class PlayerAttribute : MonoBehaviour
{
 public int level = 1;
 public float healthPoint = 100;
 public float manaPoint = 0;
 public float attackDamage = 10;
 public float specialAttackDamage = 50;
 public float defense = 2;
}

The preceding code is pretty self-explanatory. The script is used to save the player's
attributes, such as level, health point, hit point, and so on. Other scripts will have
to access this script if it needs the player's attributes. I will try to explain this by
adjusting the PlayerAttack.cs script that we created in the previous chapter.
Since we have already accessed the attackDamage (hit point) attribute from the
PlayerAttribute script, we can now remove this variable:

public float attackDamage = 10;

Replace it with the following:

public PlayerAttribute playerAttr;

Chapter 7

[173]

After this, have a look at the following line:

(nearbyEnemy[i] as GameObject).GetComponent<EnemyAI>
().GetDamage(attackDamage);

Change the preceding line to the following:

(nearbyEnemy[i] as GameObject).GetComponent<EnemyAI>().
GetDamage(playerAttr.attackDamage);

We have just removed the local variable attackDamage completely. When the
player is trying to attack the monster enemy, the playerAttack script will use the
attackDamage variable in the playerAttribute script instead.

Adding in-game items and power-ups
Next, you will learn how to alter the player's attributes by creating in-game items
that can be picked up by the player. Let's create the prefab in the Unity Editor before
proceeding to the script. I did a simple cross-shape prefab using boxes, removed the
colliders from the boxes, and attached a sphere collider component to it, which are
marked as a trigger. I also set its tag as Item so that we can use it later. The tag is a
very useful functionality in Unity, which allows you to group game objects into the
same category for your scripts to identify them during gameplay. For example, you
might define Player and Enemy tags for player-controlled characters and non-player
characters respectively.

Creating Levels and Game Progression

[174]

Instead of creating an individual script for every item of different purpose, we can
create one universal power-up script that alters different player attributes depending
on how we set the variables.

Therefore, the first thing we need to add to the power-up script is to define all the
variables of the item:

public float addHealthPoint = 0;
public float addManaPoint = 0;
public float addAttackDamage = 0;
public float addSpecialAttackDamage = 0;
public float addDefense = 0;

By default, all these variables are set to zero. Developers can then apply this script to
an item prefab and set the values they want for a particular variable, which means
if the player obtains this item, the variable(s) that is not zero will be added to the
player's attributes of similar name; for instance, addHealthPoint will be added to
player's healthPoint variable.

Next, we will detect whether the item is colliding with the player. If it does, the
script will try to access to its PlayerAttribute script and alter the player's
attributes. Last but not least, we need to destroy the item once it has done its job.
Make sure that you have set the tag of your player as Player so that the following
code will work properly:

void OnTriggerEnter (Collider col)
{
 if (col.tag == "Player")
 {
 PlayerAttribute playeAttr =
 col.gameObject.GetComponent<PlayerAttribute>();
 playeAttr.manaPoint += addManaPoint;
 playeAttr.healthPoint += addHealthPoint;
 playeAttr.attackDamage += addAttackDamage;
 playeAttr.specialAttackDamage += addSpecialAttackDamage;
 playeAttr.defense += addDefense;

 Destroy(gameObject);
 }
}

The full script looks like this:

using UnityEngine;
using System.Collections;

public class Powerup : MonoBehaviour
{
 public float addHealthPoint = 0;

Chapter 7

[175]

 public float addManaPoint = 0;
 public float addAttackDamage = 0;
 public float addSpecialAttackDamage = 0;
 public float addDefense = 0;

 void OnTriggerEnter (Collider col)
 {
 if (col.tag == "Player")
 {
 PlayerAttribute playeAttr =
 col.gameObject.GetComponent<PlayerAttribute>();
 playeAttr.manaPoint += addManaPoint;
 playeAttr.healthPoint += addHealthPoint;
 playeAttr.attackDamage += addAttackDamage;
 playeAttr.specialAttackDamage += addSpecialAttackDamage;
 playeAttr.defense += addDefense;

 Destroy(gameObject);
 }
 }
}

Once we're done with the healing item, we will move on to create another type of
item which restores the mana point. Since we have already written the item script
that can be used to add different attributes, we can reuse the script and skip the
coding part! What we need to do next is create the item prefab. Look at the following
simple item prefab using several cylinders:

Creating Levels and Game Progression

[176]

In order to test the effect of the item, we will create the special attack for the player!
The special attack will be huge magic bullets shooting out from the player toward
eight different directions. The special attack, however, requires the mana point to be
full in order to trigger the attack.

First, we will create the prefab for the bullets. For this demo, I will just use a simple
sphere created in Unity as follows:

Then, we will create a C# script named BulletMovement.cs and attach it to the
prefab we have just created. Within the script, we will ask Unity to move the object
toward its front direction and destroy the bullet after 5 seconds. The code looks
like this:

using UnityEngine;
using System.Collections;

public class BulletMovement : MonoBehaviour
{
 void Start ()
 {
 StartCoroutine (DestroyBullet());
 }

 void Update ()
 {
 transform.position += transform.forward * Time.deltaTime * 5;

Chapter 7

[177]

 }

 IEnumerator DestroyBullet ()
 {
 yield return new WaitForSeconds(5);
 Destroy (gameObject);
 }
}

Note that in the Update() function, Time.deltaTime * 5 is added behind the
movement equation. Time.deltaTime is basically the time passed in each tick/
frame. By multiplying the direction vector with the delta time, the movement
becomes frame rate independent and the movement speed is guaranteed to be
consistent across different computers. The number 5 behind the delta time is the
speed of the movement. You can increase the number to make the movement faster
or decrease it to make it slower.

After this, open up PlayerAttack script that we created in the previous chapter.
Declare a variable named bulletPrefab at the beginning of the PlayerAttack class:

public GameObject bulletPrefab;

Then, add the following code to the bottom of the Update() function:

if (Input.GetMouseButtonDown(1))
{
 if (playerAttr.manaPoint >= 100)
 {

 for (int i = 0; i < 8; ++i)
{
 Instantiate(bulletPrefab, transform.position +
 new Vector3(0, 1, 0), transform.rotation * Quaternion.Euler(new
 Vector3(0, 45 * i, 0)));
}

 playerAttr.manaPoint -= 100;
 }
}

The preceding code will check whether the player's mana point is 100 (full mana).
If it does, then it will spawn eight bullets at the player's position, each having a 45
degree increment in its rotation value. After spawning the bullet prefabs, we will
decrease the mana point and make it empty.

Creating Levels and Game Progression

[178]

This is how it looks in action:

After you have triggered the special attack for the first time, try to trigger it again,
and this time nothing happens. This is because the mana point is not 100, and thus
you need to go and get the power-up to restore the mana point before you can use
the special attack again.

Improving enemy AI
In the previous chapter, we learned how to create enemies that will chase the player
if too close with it. However, the enemies look very stiff because they don't move at
all when the player is not within its sight. Therefore, we will adjust the AI script a
little bit to make the enemies able to patrol around the level randomly if the player is
not detected.

First of all, open up the EnemyAI script and add these variables on top:

Vector3 randomPos;
float pauseInterval = 0;
float pauseTime = 0;

The randomPos variable is where the enemy will be moving to during patrolling.
The randomPos variable will be recalculated if the enemy has reached that position.
The enemy will stand still for a while before moving to the next random position.

Chapter 7

[179]

Next, add CalculateRandomPosition() to the Start() function:

void Start ()
{
 // Find player
 player = GameObject.FindWithTag ("Player");
 CalculateRandomPosition ();
}

This is how the CalculateRandomPosition() function looks:

void CalculateRandomPosition ()
{
 NavMeshHit hit;
 NavMesh.SamplePosition (transform.position + Random.
 insideUnitSphere * Random.Range(3, 10), out hit, 10,
 NavMesh.AllAreas);

 randomPos = hit.position;
}

Basically, what CalculateRandomPosition() does is randomly pick a position
around a given range from the enemy's current position.

After this, replace the entire Update() function with the following code:

void Update ()
{
 if (player != null)
 {
 // Check if player is nearby
 if (Vector3.Distance(transform.position,
 player.transform.position) < 6)
 {
 // Move toward player
 agent.SetDestination(player.transform.position);
 }
 else
 {
 // If reached the nearby random position
 if (Vector3.Distance(transform.position, randomPos) < 3)
 {
 // Recalculate nearby random position
 CalculateRandomPosition();

Creating Levels and Game Progression

[180]

 // Calculate the time to start moving again
 pauseInterval = Random.Range(2, 10);
 pauseTime = Time.time + pauseInterval;
 }
 else
 {
 // Already passed the pausing interval
 if (pauseTime < Time.time)
 {
 // Move to random nearby location
 agent.SetDestination(randomPos);

 // Just in-case if the AI stuck,
 recalculate random point
 if (agent.velocity == Vector3.zero)
 {
 CalculateRandomPosition();
 }
 }
 }
 }
 }
}

Adding save points
We want to allow the player to save his/her game progression and continue
playing the game in some other days. Some games allow the player to save the
game anytime, but some require the player to reach the save point in order to do
so. For the first option, you'll need to save a lot more data, especially if the game is
action-heavy and not turn-based; otherwise, problems may occur. This is because
an action-heavy genre, such as action RPG and FPS, has so many events happening
at the same time that if you don't save the current states of all the AIs, events,
movements, physics, and so on, the game will not be correctly restored when the
player tries to load back the saved game next time.

With the save point, problems like this can be avoided because the game designer
will make sure that the save point is being placed at a place where player is certainly
safe and no important game event is going on in that area at that time; therefore, less
data is needed to be saved.

Chapter 7

[181]

Here, I made a save point prefab using several cubes and parented the cube to an
empty object. Then, I applied a sphere collider to it and ticked the is trigger option.

After this, I also created a dialog user interface for player to confirm whether to save
the game, as shown in the following screenshot:

Creating Levels and Game Progression

[182]

Then, we will create two C# scripts, one called SavePoint.cs and another called
SaveManager.cs. Basically, the SavePoint script will trigger the save dialog,
whereas the SaveManager script will handle the game saving mechanism.

SavePoint.cs is very simple; it will detect if an enemy has collided with the player
and ask the saveManager object to show the save dialog user interface if it does.
Here's the script for SavePoint.cs:

using UnityEngine;
using System.Collections;

public class SavePoint : MonoBehaviour
{
 public SaveManager saveManager;

 void OnTriggerEnter (Collider col)
 {
 if (col.tag == "Player")
 {
 saveManager.ShowSaveDialogUI ();
 }
 }
}

SaveManager.cs, however, is much more complicated. The script is divided
into two parts: the first part consists of functions related to the save dialog user
interface and the second part is where the game saving code is written. Here is the
first part of the script, which consists of two functions: ShowSaveDialogUI() and
HideSaveDialogUI(), which are both self-explanatory by their names:

public GameObject saveDialogUI;

void Start ()
{
 HideSaveDialogUI ();
}

public void ShowSaveDialogUI ()
{
 saveDialogUI.SetActive (true);

 // Stop time and unhide cursor
 Time.timeScale = 0;

Chapter 7

[183]

 Cursor.lockState = CursorLockMode.None;
 Cursor.visible = true;
}

public void HideSaveDialogUI ()
{
 saveDialogUI.SetActive (false);

 // Continue time and hide cursor
 Time.timeScale = 1;
 Cursor.lockState = CursorLockMode.Locked;
 Cursor.visible = false;
}

After this, we will dive into the SaveGame() function, which handles the game
saving mechanism. PlayerPrefs is a class in the Unity API that handles data saving.
You can save a value by using SaveFloat(), SaveInt(), or SaveString(), and then
you can load it back by calling GetFloat(), GetInt(), or GetString().

For more information regarding PlayerPrefs, do check out the
Scripting API documentation at http://docs.unity3d.com/
ScriptReference/PlayerPrefs.html.

First thing we need to do is clear all the previously saved data using
PlayerPrefs.DeleteAll() so that we don't overlap some of the old data that no
longer exists in the current state. For example, the player has saved the game in level
A, but has continued to level B and is trying to save the data in the second level.
This will cause the data of level B to be overlapped with the data of level A and
may cause a lot of trouble when loading back the game. To make sure that no such
problem occurs in our game, delete everything before saving the new data.

After this, we will save the current level name so that we know which level to
load when we click on Continue Game from the main menu. Then, we will proceed
with saving the player's data. There are few things that we need to save here—the
position and rotation of the player character and its attributes, including level, health
point, mana point, and so on. After this, we also need to save the player camera's
position and rotation so that when the game is loaded, the camera view is at the
correct location.

http://docs.unity3d.com/ScriptReference/PlayerPrefs.html
http://docs.unity3d.com/ScriptReference/PlayerPrefs.html

Creating Levels and Game Progression

[184]

Then, we will save the enemies' data. For this one, we will need to find all the
enemies in the scene with the Monster tag by calling GameObject.FindGameObjects
WithTag("Monster") and loop through all the resulting game objects to save data of
each enemy. To distinguish between each enemy, we will save its instance ID set by
Unity, which is guaranteed to be unique, by calling gameObject.GetInstanceID().
When the saved game is loaded back, we will match the instance ID of all the
enemies with the saved data to correctly restore the states of the enemies. We are not
only saving the position, rotation, and health point of the enemies, but also an alive
state, which determines whether the enemy has been defeated or not. If it's already
defeated, it will be deleted when the saved game is being loaded.

Last but not least, we will save the data of all the items in the scene. The same
method is being used for the items, that is, find all the items in the scene with the
Item tag, loop through the resulting game objects, and save its exist state. If the item
has already been taken by the player, it will no longer exist, and thus the exist state
will not be saved. Items that have no exist state will be removed when the saved
game is being loaded.

The full code of SaveGame() function is shown here:

public void SaveGame ()
{
 // Clear everything
 PlayerPrefs.DeleteAll ();

 // Save game level data
 PlayerPrefs.SetString ("level_name",
 Application.loadedLevelName);

 // Save player data
 GameObject player = GameObject.FindWithTag ("Player");

 PlayerPrefs.SetFloat ("player_posX",
 player.transform.position.x);
 PlayerPrefs.SetFloat ("player_posY",
 player.transform.position.y);
 PlayerPrefs.SetFloat ("player_posZ",
 player.transform.position.z);

 PlayerPrefs.SetFloat ("player_rotX",
 player.transform.rotation.x);
 PlayerPrefs.SetFloat ("player_rotY",
 player.transform.rotation.y);

Chapter 7

[185]

 PlayerPrefs.SetFloat ("player_rotZ",
 player.transform.rotation.z);

 PlayerStat playerStat = player.GetComponent<PlayerStat>();

 PlayerPrefs.SetFloat ("player_level", playerStat.level);
 PlayerPrefs.SetFloat ("player_healthPoint",
 playerStat.healthPoint);
 PlayerPrefs.SetFloat ("player_manaPoint", playerStat.manaPoint);
 PlayerPrefs.SetFloat ("player_attackDamage",
 playerStat.attackDamage);
 PlayerPrefs.SetFloat ("player_specialAttackDamage",
 playerStat.specialAttackDamage);
 PlayerPrefs.SetFloat ("player_defense", playerStat.defense);

 // Save player camera data
 GameObject gameCamera = GameObject.FindWithTag ("Camera");

 PlayerPrefs.SetFloat ("camera_posX",
 gameCamera.transform.position.x);
 PlayerPrefs.SetFloat ("camera_posY",
 gameCamera.transform.position.y);
 PlayerPrefs.SetFloat ("camera_posZ",
 gameCamera.transform.position.z);

 PlayerPrefs.SetFloat ("camera_rotX",
 gameCamera.transform.rotation.x);
 PlayerPrefs.SetFloat ("camera_rotY",
 gameCamera.transform.rotation.y);
 PlayerPrefs.SetFloat ("camera_rotZ",
 gameCamera.transform.rotation.z);

 // Save monsters data
 GameObject[] allMonsters = GameObject.
 FindGameObjectsWithTag ("Monster");
 foreach (GameObject monster in allMonsters)
 {
 PlayerPrefs.SetInt("monster" + monster.GetInstanceID()
 + "_alive", 1);

 PlayerPrefs.SetFloat ("monster" + monster.GetInstanceID()
 + "_posX", monster.transform.position.x);
 PlayerPrefs.SetFloat ("monster" + monster.GetInstanceID()
 + "_posY", monster.transform.position.y);

Creating Levels and Game Progression

[186]

 PlayerPrefs.SetFloat ("monster" + monster.GetInstanceID()
 + "_posZ", monster.transform.position.z);

 PlayerPrefs.SetFloat ("monster" + monster.GetInstanceID()
 + "_rotX", monster.transform.rotation.x);
 PlayerPrefs.SetFloat ("monster" + monster.GetInstanceID()
 + "_rotX", monster.transform.rotation.y);
 PlayerPrefs.SetFloat ("monster" + monster.GetInstanceID()
 + "_rotX", monster.transform.rotation.z);

 EnemyAI enemyStat = monster.GetComponent<EnemyAI>();

 PlayerPrefs.SetFloat ("monster" + monster.GetInstanceID()
 + "_healthPoint", enemyStat.healthPoint);
 }

 // Save item data
 GameObject[] allItems = GameObject.FindGameObjectsWithTag
 ("Item");
 foreach (GameObject item in allItems)
 {
 PlayerPrefs.SetInt("item" + item.GetInstanceID() +
 "_exist", 1);
 }

 HideSaveDialogUI ();
}

Unity's PlayerPrefs class saves all the data unencrypted. If data
security is critical for your game project, you can search for encrypted
PlayerPrefs in the Unity Asset Store.

Next, we will write the LoadGame() function used to restore the saved data. It's
basically very similar to the preceding SaveGame() function; the only difference
is that instead of SetFloat() and SetInt(), we use GetFloat and GetInt() to
retrieve data from the disk. Here's the code for the LoadGame() function:

public void LoadGame ()
{
 // Load player data
 GameObject player = GameObject.FindWithTag ("Player");

 Vector3 playerPos = new Vector3 ();
 playerPos.x = PlayerPrefs.GetFloat ("player_posX", 0);
 playerPos.y = PlayerPrefs.GetFloat ("player_posY", 0);

Chapter 7

[187]

 playerPos.z = PlayerPrefs.GetFloat ("player_posZ", 0);
 player.transform.position = playerPos;

 Quaternion playerRot = new Quaternion ();
 playerRot.x = PlayerPrefs.GetFloat ("player_rotX", 0);
 playerRot.y = PlayerPrefs.GetFloat ("player_rotY", 0);
 playerRot.z = PlayerPrefs.GetFloat ("player_rotZ", 0);
 player.transform.rotation = playerRot;

 PlayerStat playerStat = player.GetComponent<PlayerStat>();

 playerStat.level = PlayerPrefs.GetInt ("player_level", 0);
 playerStat.healthPoint = PlayerPrefs.GetFloat
 ("player_healthPoint", 0);
 playerStat.manaPoint = PlayerPrefs.GetFloat
 ("player_manaPoint", 0);
 playerStat.attackDamage = PlayerPrefs.GetFloat
 ("player_attackDamage", 0);
 playerStat.specialAttackDamage = PlayerPrefs.GetFloat
 ("player_specialAttackDamage", 0);
 playerStat.defense = PlayerPrefs.GetFloat ("player_defense", 0);

 // Load player camera data
 GameObject gameCamera = GameObject.FindWithTag ("Camera");

 Vector3 cameraPos = new Vector3 ();
 cameraPos.x = PlayerPrefs.GetFloat ("camera_posX", 0);
 cameraPos.y = PlayerPrefs.GetFloat ("camera_posY", 0);
 cameraPos.z = PlayerPrefs.GetFloat ("camera_posZ", 0);
 gameCamera.transform.position = cameraPos;

 Quaternion cameraRot = new Quaternion ();
 cameraRot.x = PlayerPrefs.GetFloat ("camera_rotX", 0);
 cameraRot.y = PlayerPrefs.GetFloat ("camera_rotY", 0);
 cameraRot.z = PlayerPrefs.GetFloat ("camera_rotZ", 0);
 gameCamera.transform.rotation = cameraRot;

 // Load monsters data
 GameObject[] allMonsters = GameObject.FindGameObjectsWithTag
 ("Monster");
 foreach (GameObject monster in allMonsters)
 {
 // Check if monster already defeated previously
 if (PlayerPrefs.GetInt("monster" + monster.GetInstanceID()
 + "_alive", 0) == 0)

Creating Levels and Game Progression

[188]

 {
 // Monster died
 Destroy(monster);
 }
 else
 {
 Vector3 monsterPos = new Vector3 ();
 monsterPos.x = PlayerPrefs.GetFloat ("monster" +
 monster.GetInstanceID() + "_posX", 0);
 monsterPos.y = PlayerPrefs.GetFloat ("monster" +
 monster.GetInstanceID() + "_posY", 0);
 monsterPos.z = PlayerPrefs.GetFloat ("monster" +
 monster.GetInstanceID() + "_posZ", 0);
 monster.transform.position = monsterPos;

 Quaternion monsterRot = new Quaternion ();
 monsterRot.x = PlayerPrefs.GetFloat ("monster" +
 monster.GetInstanceID() + "_rotX", 0);
 monsterRot.y = PlayerPrefs.GetFloat ("monster" +
 monster.GetInstanceID() + "_rotX", 0);
 monsterRot.z = PlayerPrefs.GetFloat ("monster" +
 monster.GetInstanceID() + "_rotX", 0);
 monster.transform.rotation = monsterRot;

 EnemyAI enemyStat = monster.GetComponent<EnemyAI>();

 enemyStat.healthPoint = PlayerPrefs.GetFloat ("monster"
 + monster.GetInstanceID() + "_healthPoint", 0);
 }
 }

 // Load item data
 GameObject[] allItems = GameObject.FindGameObjectsWithTag
 ("Item");
 foreach (GameObject item in allItems)
 {
 if (PlayerPrefs.GetInt("item" + item.GetInstanceID() +
 "_exist", 0) == 0)
 {
 Destroy (item);
 }
 }
}

Chapter 7

[189]

With the preceding code, we get the following output:

Summary
In this chapter, you learned how to create player attributes and change its values
through in-game items and power-ups, as well as to utilize the attributes for special
attacks. You also learned how to create much more sophisticated enemies that
patrol around the game level if player is not within its line of sight. Finally, you also
learned how to save the game progression as well as being able to restore it correctly
anytime you want.

In the next chapter, we will walk you through on how to improve the visual
aesthetics using screen effects and particles!

Chapter 8

[191]

Post-Production and
Visual FX

In this chapter, we will learn how to enhance our game's visual appearance by using
particles and image effects.

In this chapter, we will cover:

• A basic particle system
• Mist particles
• Torch fire
• Image FX
• Quality settings

A basic particle system
Particle systems are often overlooked by rookie game developers because they are
not something that will affect game mechanics, or make the AI smarter. However, a
particle system is very important in games because not only does it make a static and
boring scene look a lot livelier, but it can also create different moods and affect the
player's emotion. Particles can be applied to game environments, props, power-ups,
weapons, magic skills, and so on.

Post-Production and Visual FX

[192]

To create a particle system, go to Create | Particle System, and it will create an
empty object with the particle system attached to it. The particle system in Unity is in
the form of a component and it has to be attached onto a game object in order for it to
be functional, which means you can add the particle system to any game object, not
necessarily an empty object only. Then, you will see something like this:

When a particle system is selected, a small window will appear at the bottom-right
corner of your 3D scene. You can use this window to play, pause, or stop the particle
system for testing purposes. You can also adjust the playback speed and playback
time when testing the particles.

.

Next, you will also see a bunch of settings appearing on the Inspector window. Don't
worry, as we will go through the settings one by one.

Chapter 8

[193]

• The Main module: This contains the global properties of the particle, such as
duration, looped, start size, start color, gravity multiplier, and so on. Unlike
all the other modules, this module cannot be disabled.

• Emission: The Emission module controls the rate and timing of particle
emissions.

• Shape: This module is used to select the shape of the emission volume where
particles are spawned from within it. The types of shapes include sphere,
hemisphere, cone, box, mesh, circle, and edge.

• Velocity over Lifetime: You can set this to increase or decrease the velocity
of the particles over their lifetime, relative to either the local space or the
world space.

• Limit Velocity over Lifetime: This module controls how the speed of
particles is reduced over their lifetime.

• Force over Lifetime: You can add additional forces to the particles to
simulate wind, attraction, and so on. You can also select whether the force
has been applied in the local space or world space.

Post-Production and Visual FX

[194]

• Color over Lifetime: This module controls the color of particles over time.
• Color by Speed: This module changes the color of the particles according to

its speed in distance units per second.
• Size over Lifetime: You can make the particles expand or shrink over time

using this module.
• Size by Speed: The size of a particle can be set here to change according to its

speed in distance units per second.
• Rotation over Lifetime: You can make your particles look more realistic by

assigning an angular velocity to them as they move.
• Rotation by Speed: The rotation of a particle can be set here to change

according to its speed in distance units per second.
• External Forces: By enabling this module, your particles will be affected

by the wind zones in your game scene. The higher the value you set for the
multiplier property, the stronger it will be affected by the wind zones.

• Collision: This controls the way particles collide with solid objects in
the scene.

• Sub Emitters: If you want to spawn additional particle systems at certain
stages of its lifetime, you can enable this module. Phases of the particle's life
include birth, collision, and death.

• Texture Sheet Animation: You can animate your particles' texture by using
this module. All you need to do is provide a texture with image sequence fits
in grids, and then set the properties of this module to let it know how many
rows there are in total and how many frames of animation there are to play
as time progresses.

• Renderer: This module's settings determine how a particle's image or mesh is
transformed, shaded, and overdrawn by other particles. You can also change
the material of the particle here.

After we have learned all the modules within a particle system, it's time for us to
make use of them. Let's try to create a simple particle effect that gets spawned when
the player has obtained an item or power-up.

First, change the settings in the Main module, as follows:

• Duration: 0.5
• Start Lifetime: 0.4
• Start Speed: 8
• Start Size: 0.5
• Max Particle: 1000

Chapter 8

[195]

Then, change the emission rate to 50. After that, change the emitter shape from cone
to sphere, and keep the radius as 1. Then, enable Size over Lifetime and click on the
little box besides the Size setting. Make sure that the line in the box turns red after
you've clicked on it. After that, scroll up a little bit until you see the Open Editor
button in the Inspector window. Click on it to open up the particle graph editor,
which looks something like this:

Post-Production and Visual FX

[196]

Change the graph under Size over Lifetime into a slanted line, as you can see in the
preceding screenshot. This means the particle's size will decrease from the start size
(0 in this case) to zero overtime.

Once you're done with all the settings, let's create a new C# script called
ItemParticles.cs. The script is very simple; what it does is destroy the particle
after two seconds:

using UnityEngine;
using System.Collections;

public class ItemParticles : MonoBehaviour
{
 void Start()
 {
 StartCoroutine (DestroyParticles());
 }

 IEnumerator DestroyParticles()
 {
 yield return new WaitForSeconds(2);
 Destroy (gameObject);
 }
}

Apply the script to your particle game object and save it as a prefab. Then, we will
change the PowerUp.cs script so that it will spawn the particle when the player is
colliding with it. We only have to add two new lines of code to the PowerUp script, as
shown in the following highlight:

using UnityEngine;
using System.Collections;

public class PowerUp : MonoBehaviour
{
 public float addHealthPoint = 0;
 public float addManaPoint = 0;
 public float addAttackDamage = 0;
 public float addSpecialAttackDamage = 0;
 public float addDefense = 0;

 public GameObject particlePrefab;

 void OnTriggerEnter (Collider col)

Chapter 8

[197]

 {
 if (col.gameObject.CompareTag("Player"))
 {
 PlayerAttribute playeAttr =
 col.gameObject.GetComponent<PlayerAttribute>();
 playeAttr.manaPoint += addManaPoint;
 playeAttr.healthPoint += addHealthPoint;
 playeAttr.attackDamage += addAttackDamage;
 playeAttr.specialAttackDamage += addSpecialAttackDamage;
 playeAttr.defense += addDefense;

 Instantiate(particlePrefab, transform.position,
 transform.rotation);

 Destroy(gameObject);
 }
 }
}

Lastly, link the particle prefab to all the powerup prefabs so that it will work
properly. Here's the final result:

Post-Production and Visual FX

[198]

Mist particles
Next, we will learn how to add some spooky and mysterious atmospherics to our
game scene by creating a mist particle system. Start by creating an empty game
object, then apply a particle system component to it. Because our scene is so huge,
we'll need to make the particle system cover the entire scene. To achieve that, change
the shape of the emitter to Box, and change its scale until it covers the entire scene.
After that, check the Random Direction option so that particles will be spawned
facing a random direction. That will make the mist look more natural.

Then, we will adjust the settings in the Main module:

• Duration: 100
• Looping: Enable
• Prewarm: Enable
• Start Lifetime: 100
• Start Speed: 0.1
• Start Size: 1
• Start Color: A gradient of total transparency to opaque white

Chapter 8

[199]

• Max Particle: 10000

The start color looks something like this in the gradient editor:

Post-Production and Visual FX

[200]

We want the particles to be totally transparent when it gets spawned, and gradually
change to opaque. After that, set the emission rate to 10 and enable the Color over
Lifetime module. Set the color to the reverse order from the start color because we
want the particles to slowly fade out over time. Then, enable Rotation over Lifetime
and change Constant to Random between Two Constants. Set the values to -5 and 5,
just to give the particles a little bit of random rotation to make the mist look
more natural.

After we're done with the particle settings, we will move on to create the material for
the mist particles. Use a texture that has a black color background:

The black color will be converted to transparency by selecting the texture and
checking both Alpha from Grayscale and Alpha is Transparency on the Inspector
window. Next, create a new material, change the shader type to Particles/Additive
(Soft), and apply the texture to it. Finally, replace the default material in the
Renderer module of the mist particle system with the new material that you
just created.

Chapter 8

[201]

The mist particles in action:

Torch fire
Next, we will learn how to create a more sophisticated particle by using a texture
sheet. For this example, we will be creating a torch and a particle system that will be
used as the torch fire. Again, we will create an empty game object and apply a new
particle system to it. Then, we will set the settings in the Main module:

• Duration: 1
• Looping: Enable
• Start Lifetime: 1
• Start Speed: 0
• Start Size: 2

Post-Production and Visual FX

[202]

• Max Particles: 1

Then, set the emission rate to 1. In this case, we only need one single particle
to be spawned by the particle system and kept alive until the animation has
finished playing.

Next, we will create a new material and apply the following texture to the material:

After that, let's get back to the particle system again, and set the shader type of the
material to Particles/Additive. After that, enable the Texture Sheet Animation
module and set the Tiles setting to:

• X: 8

Chapter 8

[203]

• Y: 4

You can easily get this number by looking at how many columns and rows of frames
there are on the texture. Then, apply the material to your particle system at the
Renderer module. Create a cylinder, scale it, and apply the fire particle on top of
it to emulate a torch.

The end result looks like this:

Post-Production and Visual FX

[204]

Image FX
Normally, in the post-production stage of a live-action film or an animation, video
editors will start adjusting the visuals of the video footage before compiling it into
the final video. Tons of effects will be applied to the footage and the overall color
and mood will be carefully adjusted to fit the style they want. This process is what
we call compositing.

In video games, a similar process exists at the end of production to enhance the
visual quality, as well as to create the intended mood. In Unity, there is no built-in
system for you to do this. However, you can download the free Standard Assets
pack provided by Unity Technologies at the Unity Asset Store. This package includes
image effect scripts that we will be using to enhance our game's visuals.

After you have downloaded the Standard Assets package, import it to your Unity
project. The package is mixed with some other things that we don't need at the
moment, so we will just enable the Editor folder and the Effects folder. Then, click
on the Import button to start importing.

Chapter 8

[205]

Once you have imported the package to your project, you can now apply the image
effects to your game camera by going to Component | Image Effects. There are
numerous amounts of image effects that you can find in the Image Effects menu,
which is divided into several different categories:

• Bloom and Glow: This category includes screen effects such as bloom
and lens flares. Bloom is the optical effect where light from a bright source
appears to leak into surrounding objects. It can be used to achieve both a
dream-like visual or to enhance realism, depending on how much bloom
effect you set to your camera. There are several different types of bloom
effects in this category, and one of them also generates anamorphic lens flares
to help evoke a cinematic feeling.

• Blur: The second category consists of screen effects that cause the screen to
become blurry. The blur script simply allows you to blur the entire screen,
and the motion blur script simulates motion trails when a camera moves.

Post-Production and Visual FX

[206]

• Camera: The Camera category contains several screen effects such as camera
motion blur, depth of field, tilt shift, vignette, and chromatic aberration.
The camera motion blur is an enhancement to the motion blur script in the
previous category. This modern approach to motion blur keeps track of every
moving object and generates a velocity buffer in order to apply different
levels of blurriness to different areas of the screen based on the movement
speed of each object, as well as its depth in relation to the camera. The depth
of field script simulates the properties of a camera lens by focusing sharply
on an object at a specific distance and blurring out other areas that are not
in focus. Similarly, the tilt shift effect blurs the screen based on the distance
to the center, instead of focusing on a certain object in the distance. Lastly,
vignette and chromatic aberration introduce darkening, blur, and spectral
color separation at the edges and corners of the screen to simulate a view
through the camera lens, but can also be used to create abstract effects.

• Color Adjustments: This category consists of scripts that change the color of
the rendered image onscreen. The color correction scripts make adjustments
to the hue, saturation, brightness, and contrast of the screen using different
methods, such as using color correction curves, ramp texture, or lookup
texture. The contrast enhancement script, on the other hand, only changes
the contrast of the screen according to the intensity value that you set. Other
than that, the gray scale and sepia tone scripts are both used to remap the
screen colors to a single set of hue, making the visuals resemble an old
photograph. Lastly, the tone mapping script is the process of mapping color
values from HDR (high dynamic range) to LDR (low dynamic range).
This enables interesting dynamic effects, such as a simulation of the natural
adaption that happens when entering or leaving a dark tunnel into bright
sunlight. Note that tone mapping will only work properly if the used camera
is HDR enabled.

• Edge Detection: Both the crease shading and edge detection scripts
contained in this category are common non-photorealistic rendering (NPR)
techniques that enhance the visibility of objects by adding outlines or black
edges of variable thickness.

• Displacement: This contains screen effects that cause distortion to the
rendered image, such as fish eye, twirl, and vortex effects.

Chapter 8

[207]

• Rendering: Screen effect scripts such as global fog, screen space ambient
occlusion, screen space ambient obscurance, and sun shaft can be found
in this category. Global fog, as its name implies, simulates a camera-based
exponential fog effect based on world space calculation. Screen space
ambient occlusion is an image effect that darkens creases, holes, and surfaces
that are close to each other, imitating a real-life scenario where such areas
tend to block out or occlude ambient light, and hence they appear darker.
Screen space ambient obscurance, on the other hand, is an improvement to
the screen space ambient occlusion in terms of quality and speed. Instead of
relying on a generated normals buffer, it creates the effect on the fly based
on depth. Other than that, this category also contains the sun shaft effect
script. Sun shaft (also known as cloud ray or god ray) is an image effect
that simulates the radial light scattering that arises when a very bright light
source is partly obscured.

• Noise: This consists of camera effects such as noise, grain, and scratches that
simulate noise and film grain, which is a typical effect that happens in film,
photography, or TV/VCR.

• Other: This contains two scripts: antialiasing and screen overlay. Antialiasing
as a post-processing effect offers a set of algorithms designed to give a
smoother appearance to graphics. When two areas of different colors adjoin
in an image, the shape of the pixels can form a very distinctive staircase along
the boundary. This effect is known as aliasing, and hence antialiasing refers
to any measure that reduces the effect. There are several different types of
antialiasing that you can choose from the script, such as SSAA, NFAA, FXAA
II, FXAA III, DLAA, and so on. Each algorithm produces a slightly different
result and varies in performance. The screen overlay script, on the other
hand, introduces an easy way to blend different kinds of textures over the
entire screen to create custom looks or effects.

It's very easy to apply these effects to your game. All you need to do is add the image
effect script to your active game camera and you're done! You can also apply several
scripts to the camera at the same time, but do notice that the more effects you have
applied to your game camera, the more computational power is needed to generate
these effects, which may not work on older computers or mobile phones.

Post-Production and Visual FX

[208]

The following is the result of adding screen space ambient occlusion, bloom, and
depth of field effects to my camera; pretty neat!

Quality settings
Last but not least, it's also very important to set the quality settings for our game in
order to balance visual quality and performance. Unity allows us to pick a different
set of quality settings for different platforms. You can open up the QualitySettings
window by going to Edit | Project Settings | Quality.

Chapter 8

[209]

As you can see, all the mobile platforms have been set to the Simple quality level
compared to the rest, which are set to Fantastic or Good. You can change the default
quality level of each platform by clicking on the small arrow below the quality levels.
You can still change the quality level inside the game provided that you have a
quality settings UI for the players to do so.

Each quality level contains a set of settings that affect how Unity handles the
rendering process. The settings include:

• Pixel Light Count: The maximum number of pixel lights when forward
rendering is used.

• Texture Quality: This allows you to choose the maximum resolution of the
textures used in your game. The options are Full Res, Half Res, Quarter Res,
and Eighth Res.

• Anisotropic Textures: This enables if and how anisotropic textures will be
used. The options are Disabled, Per Texture, and Forced On.

Post-Production and Visual FX

[210]

• Antialiasing: This sets the level of antialiasing that will be used. This
antialiasing is different from the antialiasing effect script that we learned in
the previous section. Instead of applying an effect to the rendered image,
this Antialiasing setting simply tells the Unity renderer to render the image
several times larger than the window screen, then scale it back to the screen
size again to reduce the staircase effect. This technique is what we call multi-
sampling. The options for the antialiasing are 2x, 4x, and 8x multi-sampling.

• Soft Particles: This is set if soft blending should be used for particles.
• Real-time Reflection Probes: This is set if reflection probes should be

updated during gameplay.
• Billboard Face Camera Position: This is set if the billboards face toward the

camera position or face toward the camera plane.
• Shadows: This determines which type of shadows should be used. The

available options are Hard and Soft Shadows, Hard Shadows Only, and
Disable Shadows.

• Shadow Resolution: This sets the resolution of the shadow. Options are
Low, Medium, High, and Very High. The higher the resolution, the greater
the processing overhead will be.

• Shadow Projection: This setting is used to determine the method used for
shadow projection. There are two different options for this. The first one is
called Close Fit, which renders the shadow at a higher resolution but may
cause a wobble effect when the camera moves. The second option is called
Stable Fit, which renders lower-resolution shadows but they don't wobble
with camera movements.

• Shadow Distance: This indicates the maximum distance from the camera at
which shadows will be visible. Shadows that fall beyond this distance will
not be rendered.

• Shadow Cascades: A higher number of cascades gives a better-quality
shadow but at the expense of processing overhead. The options for this are
zero, two, and four. You can also set how the cascades are being split.

• Blend Weights: This indicates the number of bones that can affect a
given vertex during an animation. The available options are one, two,
or four bones.

• V Sync Count: Set the V Sync Count setting to enable synchronization of the
rendering with the display device's refresh rate to avoid tearing artifacts.

Chapter 8

[211]

• LOD Bias: The LOD (level of details) levels are chosen based on the
onscreen size of an object. When the size is between two LOD levels, the
choice can be biased toward the less detailed or more detailed of the two
models available.

• Maximum LOD Level: This setting is used to determine the highest LOD
that will be used by the game.

• Particle Ray cast Budget: The maximum number of ray casts to use for
approximate particle system collisions can be set here.

Most of the time, the default settings work just fine. However, if you want more
control on how your game should work, Unity provides you with all these options to
do just that!

Summary
In this chapter, you have learned how to enhance the visual of your game by creating
particle effects and applying image effects to the game camera. You have also
learned how to adjust the quality settings for your game so that you don't sacrifice
performance for good visuals.

In the next chapter, we will walk you through how to deploy your game!

[213]

Deploying the Game
In this chapter, we will learn how to configure our game's settings, such as
window title, icon, rendering settings, and so on before deploying the game
to a chosen platform.

In this chapter, we will cover:

• Build settings
• Player settings

Build settings
Deploying a game in Unity is quite straightforward; if you have already set the
build settings and built the game before, just go to File | Build & Run to
straightaway build it again without changing the settings. If you have not built
the game before and have clicked on Build & Run, Unity will automatically
open up the Build Settings window for you, which you can also access by going
to File | Build Settings.

Deploying the Game

[214]

The Build Settings window looks like so:

As you can see from the window, the settings are minimal and could be different
depending on which target platform you're selecting. You can try to choose a
different platform, then click on the Switch Platform button to make the switch.
It may take some time for Unity to automatically convert all the game assets into
formats that are compatible with the selected platform, and no action is required on
your side. However, some target platforms are not available in the free version of
Unity; check out Unity's official website to find out more about this.

Chapter 9

[215]

On the lower-right of the Build Settings window, you will see several different
options, such as target platform, architecture, development build, and so on. Again,
it varies depending on the platform you've chosen. Next I have listed the settings
for some of the more popular platforms, such as Web Player, PC, iOS, Android, and
WebGL, and I will explain to you what each of these settings mean.

Shared settings
Shared settings is where you define various parameters that are shared across
different target platforms.

• Development Build: If this option is checked, Unity will display debugging
information in your game, such as outlines and logs, for easy debugging.
Unity will also include debugging symbols and enable the ability to connect
to the profiler.

• Autoconnect Profiler: This only becomes active if you checked Development
Build. It will allow Unity to automatically pick up an active profiler during
debugging.

• Script Debugging: This option will allow Unity to inspect your code at
runtime. It can help you determine when a function is called and with which
values. Unity uses MonoDevelop to debug the scripts in your game, so make
sure that MonoDevelop is installed on your computer.

The webplayer
The webplayer is in an odd state at the time of writing this book. Due to the
discontinued support of NPAPI in the latest versions of Chrome, Unity web player
no longer work on the Chrome browser. Moreover, other web browsers will likely
follow suit, which means if there is no alternative to NPAPI, Unity web player will
most likely become obsolete in the near future.

• Streamed: Instead of waiting for all the contents of the game level to be
downloaded before allowing the player to start playing your game, this
option allows the game to start running while downloading the contents at
the same time. However, this requires a lot of tuning and structuring to your
game so that it can seamlessly run and load without the player noticing it.

• Offline Deployment: By checking this option, Unity will place the
UnityObject.js file, which is used to interface the player with the host page,
alongside the web player during the build. This enables the player to work
with the local script file even when there is no network connection.

Deploying the Game

[216]

PC, Mac, and Linux standalone
Here, you can set the build settings for all the three major desktop operating systems:
Windows, Mac OS X, and Linux.

• Target Platform: You can choose between Windows, Mac OS X, or Linux as
the target platform for deployment.

• Architecture: For Windows, you can choose between x86 (32 bit) or x86_64
(64 bit). For Mac OS X and Linux, you can choose between x86, x86_64, or
Universal build (32 bit + 64 bit).

iOS
This section provides an extra option specifically for the iOS platform.

• Symlink Unity Libraries: Symlink Unity Libraries creates a link to the
original core libraries that have already been built on the Unity side of the
project when generating an iOS Xcode project for faster iteration time and
smaller build folders.

Android
This is where you change the build settings for the Android platform.

• Texture Compression: By default, Unity uses the ETC1/RGBA16 format
for all the textures used in the game. If you wish to build your game for a
specific hardware architecture, you can override this default behavior by
choosing a different format from the drop-down box. This option is designed
for advanced users.

• Google Android Project: By checking this option, Unity generates a project
that can be opened by Android Studio, instead of directly generating an APK
file and exporting it to the device.

WebGL
WebGL is a relatively new platform compared to the others. It is still not very stable
at the time of writing this book; however, it may become the "de facto" web platform
in Unity if the web player is to be deprecated in the near future.

Chapter 9

[217]

Optimization level
This option allows you to select an optimization flag for the compiler that builds your
game. When set to Slow, Unity produces an unoptimized build that is bigger in size
and causes slower performance but is much faster to build. This allows you to quickly
test your game and iterate on code issues. The Fast option produces optimized builds,
and Fastest enables some additional optimizations, but makes your builds take longer
to complete. Use the Fastest option only for your final releases.

After you are done setting up the build settings (normally, the default settings work
just fine), please make sure that you have added all your scenes to the build list,
otherwise you will not be able to load that scene from the script. To add your current
scene to the build list, go to File | Build Settings and click on the Add Current
button. Once everything is good, click either the Build or Build and Run button.
A window will pop out and ask you to key in the name of your game's executable.
After that, click on Save.

Deploying the Game

[218]

Then, Unity will start the process of building your game. It may take some time,
depending on how many scenes you have and how many assets are linked to these
scenes. The build process is quite different based on the target platform you've
selected, and produces a different result too.

For web player, Unity will generate a .unity3d file that gets embedded into an
HTML file. For PC, Unity will generate an executable and a data folder that keeps all
the game assets in it. Mobile platforms such as iOS and Android are quite different;
in this case, Unity will instead generate a project folder and launch its respective
compiler (Xcode for iOS, Android SDK for Android) to build the game and deploy it
directly to the mobile device. WebGL, on the other hand, is quite similar to the web
player as it generates an HTML file too. However, instead of a .unity3d file, Unity
will produce a bunch of JavaScript files that empower your game.

The entire build process is automated so you can sit down, drink a cup of coffee, and
relax while waiting for it to finish the job!

After your game has been built by Unity, you can then try to run your game! Since
I'm building the game for PC, a graphics configuration window will pop out by
default when the game is launched, which you can disable at the player settings;
there will be more on that later. There are several options on the window, such as
screen resolution, graphics quality, windowed mode, and monitor selection. You can
also change the input mapping if you want to.

Chapter 9

[219]

Click on Play! to start playing your game!

Player Settings
Even though you game has been successfully built and is now able to be playtested
on the target platform, you may have already noticed that there are several things
that look kind of odd. For instance, the game title has not been set, the game icon is
showing the Unity logo, and several other things are not to your liking. Don't worry!
This is because the player settings have not been properly configured.

Deploying the Game

[220]

To open up the player settings window, you can either go to Edit | Project Settings
| Player, or go to File | Build Settings and click on the Player Settings button.

Do note that the word player in this context does not mean the
person who plays the game, but rather the system that runs the game
and renders the graphics; in other words, the player application that
is the build output.

You will see two different sections on the player settings window. The top section is
the general settings of your game, such as your company name, product name, game
icon, and so on. These settings are shared among the different platforms.

• Company Name: The name of your company. It will be used to locate the
preferences file.

• Product Name: This will be displayed as the window title for the PC game
or the display name below the icon for the mobile app. It will also be used to
locate the preferences file.

• Default Icon: The default icon for your game on every platform. You can also
override this for specific platforms.

• Default Cursor: The default cursor of your game. Only for platforms that
support a cursor.

Chapter 9

[221]

Cursor hotspot
Cursor hotspot in pixels from the top-left of the default cursor. You can set this to
offset the hotspot position on your cursor used to simulate click.

At the bottom, you will see a long list of settings that are specific for the target
platform you have selected. These settings are categorized into several different
categories, such as Resolution and Presentation, Icon, Splash Image, and Other
Settings. Each of these categories contains very different options depending on your
target platform.

• Resolution and Presentation: This category contains all the settings related
to your game's resolution, aspect ratio, screen orientation, and other options
related to graphics rendering.

• Icon: You can override your game's icon for a specific platform by checking
the Override for [platform name] option and selecting the icons you want
underneath it.

• Splash Image (Pro only): The splash image is the image shown while the
game is launching. You can set your own splash image here if you're using
Unity Pro.

Deploying the Game

[222]

• Other Settings: As the name implies, any other settings that do not fit in
the preceding categories are placed within this category. It contains settings
related to rendering, configuration, optimization, and so on, which again
varies depending on the target platform.

• Debugging and Crash Reporting (iOS only): This is an additional category
for iOS related to debugging and crash reporting. You can set whether to log
an uncaught exception in Objective-C, enable the CrashReport API, whether
to silently exit or crash the game if there is an unhandled exception in .Net,
and so on.

• Publishing Settings (Android only): Publishing Settings is an additional
category for Android that is used to set the keystore for your application
before publishing it to the play store. You can also use the Split Application
Binary option here.

Summary
Unity makes multiplatform publishing easy for game developers with just a click of a
button, which traditionally costs a big sum of money just to port a game to a different
platform. This has totally changed the landscape of game development, where smaller
game developer teams are now able to publish their games for multiple platforms
without worrying about the budget and technical know-how. On the other hand, big
studios can also take advantage of this to reduce development risk and gain more
sales to cover their enormous development costs.

We have now come to the end of the book. I hope you have gained the sufficient
knowledge and acquired the skills to kickstart your first game project! I sincerely
apologize if you think there is anything that I could have done better or if there is
anything you feel is lacking in the book. Do contact me if there is. All the best!

[223]

Index
Symbols
3D model, monster

creating 21-36
3D model, player character

creating 48-60

A
Albedo property 108
aliasing 207
animation 84
animation principles

anticipation 84
appeal 85
arc 85
ease in 85
ease out 85
exaggeration 85
follow through 84
overlapping action 84
pose to pose 84
secondary action 85
solid drawing 85
squash and stretch 84
staging 84
straight ahead action 84
timing and spacing 85

animation state 123
animator 2
Animator Controller 121
Animator window

Auto Live Link 123
layers 122
Node Editor 123
parameters 123

Show/Hide side panel 123
artificial intelligence

creating 164-169
artist 2
audio engineer 2

B
Blender

downloading 15
history 16
URL 90
user interface 16-21

Blender Game Engine (BGE) 48
blend weight 73
build settings

about 213, 214
shared settings 215

build settings, for Android
Google Android Project 216
Texture Compression 216

build settings, for iOS
Symlink Unity Libraries 216

build settings, for Linux standalone
architecture 216
build settings 216
Target Platform 216

build settings, for web player
about 215
Offline Deployment 215
Streamed option 215

buttons, Properties window
material 21
object 20
object constraints 21
object data 21

[224]

object modifiers 21
particle 21
physics 21
render 20
render layers 20
scene 20
texture 21
world 20

C
character assets

importing 120-127
character attributes

creating 171-173
character movements

implementing 148-162
character rigging 65
characters

animating 80-83
characters concept 8-12
cloud ray (god ray) 207
compositing 204
constraint modifiers 65
coroutine 135
cursor hotspot

about 221, 222
settings 221, 222

D
delta time 150

E
enemy AI

improving 178, 179
environment assets

environment lighting, setting up 115-118
foliage, setting up 113
importing 105-107
prefabs 108
scene, optimizing with

Occlusion Culling 118, 119
terrain, setting up 108-110
water surfaces, setting up 111-113

environment concept 12

F
finite state machine 164
foliage

setting up 113, 114

G
game concept

creating 1
game design document (GDD) 3
game designer 1
game development

job roles 1
game environment

grass model, building 98-100
grass texture, creating 100, 101
rock models, building 94, 95
rock textures, creating 96-98
terrain, building 87-93
wall models, building 87-92
wall textures, creating 96-98

game flow
planning 130-136

gameplay design
about 2
game genre, selecting 3
game mechanics 4, 5
level design 6
rapid prototyping 7
starting point 3

game story
writing 7

game structure design 129, 130

H
high dynamic range (HDR) 206

I
Image Effects menu, categories

Bloom and Glow 205
Blur 205
Camera 206
Color Adjustments 206
Displacement 206
Edge Detection 206

[225]

Noise 207
Other 207
Rendering 207

Image FX
applying 204-207

in-game items
adding 173-178

interpolation process 80

J
job roles, game development

animator 2
artist 2
audio engineer 2
game designer 1
programmer 2
scriptwriter 2
tester 2

K
key-framing 80

L
level of details (LOD) 211
light map 118
low dynamic range (LDR) 206

M
Mac

build settings 216
Mechanim 121
mist particles

creating 198-200
monster

3D model, creating 21-36
texture, creating 43-48
UV map, unwrapping 37-42

monster's armature
creating 66-71
root bone 67

multi-sampling 210

N
Nav Mesh Agent 165

non-photorealistic rendering (NPR) 206

O
Occlusion Culling

for scene optimization 118, 119

P
panels, Blender

3D view menu 18
Animation timeline 19
Header menu 18
Main 3D view 19
Operator window 18
Outliner window 19
Properties window 19
Tools Shelf 18

particle system
about 191
creating 192-197
Main module 193

PC
build settings 216

player character
3D model, creating 48-60
armature, creating 71-76
UV map, unwrapping 61-63

player inputs
adding 148-162

PlayerPrefs
URL 183

player settings
about 219
cursor hotspot 221
sharing, on different platforms 220

Pose Mode option 70
power-ups

adding 173-177
prefabs 108
programmer 2

Q
quality settings

adjusting 208-210

R

[226]

rock models
building 94, 95

rock textures
creating 96-98

S
save points

adding 180-189
scriptwriter 2
shared settings, parameters

Autoconnect Profiler 215
Development Build 215
Script Debugging 215

skinning process 65, 69
skin weight 73
state machine 121

T
terrain

building 87-92
setting up 108-111

tester 2
torch fire

creating 201-203

U
Unity

URL 127
user interface 104, 105

Unity Engine 66
user interface, Blender 16-18
user interface structure

designing 137-146
user interface, Unity

about 104, 105
hierarchy 105
Inspector 105
Project Browser 105
Scene View and Game View 105
toolbars 104

UV map, player character
unwrapping 61-63

V

vertex weight 73
visual style

selecting 8

W
wall models

building 87-92
wall textures

creating 96-98
water surfaces

setting up 111-113
WebGL

about 216
optimization level 217, 218

weight painting
performing 77-79

Z
z-fighting 57

[227]

Thank you for buying
Building a Game with Unity and Blender

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Unity 3D Game Development by
Example Beginner's Guide: LITE
ISBN: 978-1-84969-160-4 Paperback: 104 pages

Get up and running as a Unity game developer

1. Fast paced crash course in game design,
programming, and Unity.

2. Build your first complete game in Unity.

3. Humorous writing style, serious content.

Blender 3D Basics
Beginner's Guide
Second Edition
ISBN: 978-1-78398-490-9 Paperback: 526 pages

A quick and easy-to-use guide to create 3D modeling
and animation using Blender 2.7

1. Explore Blender's unique user interface and
unlock Blender's powerful suite of modeling
and animation tools.

2. Learn how to use Blender, and also the
principles that make animation, lighting,
and camera work come alive.

3. Start with the basics and build your skills
through a coordinated series of projects
to create a complex world.

Please check www.PacktPub.com for information on our titles

Unity 3D Game Development
by Example Beginner's Guide
ISBN: 978-1-84969-054-6 Paperback: 384 pages

A seat-of-your-pants manual for building fun, groovy
little games quickly

1. Build fun games using the free Unity 3D game
engine even if you've never coded before.

2. Learn how to "skin" projects to make totally
different games from the same file – more
games, less effort!

3. Deploy your games to the Internet so that
your friends and family can play them.

4. Packed with ideas, inspiration, and advice
for your own game design and development.

Learning Unity 2D Game
Development by Example
ISBN: 978-1-78355-904-6 Paperback: 266 pages

Create your own line of successful 2D games
with Unity!

1. Dive into 2D game development with
no previous experience.

2. Learn how to use the new Unity 2D toolset.

3. Create and deploy your very own 2D game
with confidence.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Creating Your Game Concept
	Job roles in game development
	Gameplay design
	Starting point
	Choose a game genre
	Game mechanics
	Level design
	Rapid prototyping

	Writing the game's story
	Choosing a visual style
	The characters concept
	The environment concept
	Summary

	Chapter 2: Creating Characters
	Downloading Blender
	A brief history of Blender
	The basic user interface of Blender

	Creating the monster's 3D model
	Unwrapping the monster's UV map
	Creating the monster's texture
	Creating the player character's 3D model
	Unwrapping the player character's UV map
	Summary

	Chapter 3: Animating Your Characters
	What is character rigging?
	Creating a monster's armature
	Creating the player character's armature
	Weight painting
	Animating characters
	The 12 basic principles of animation
	Summary

	Chapter 4: Creating the Environment
	Building terrain and wall models
	Building rock models
	Creating rock and wall textures
	Building grass models
	Creating the grass texture
	Summary

	Chapter 5: Integrating Your Assets into the Game
	Basic user interface of Unity
	Importing environment assets
	Introducing prefabs
	Setting up the terrain
	Setting up water surfaces
	Setting up foliage
	Setting up environment lighting
	Optimizing the scene with Occlusion Culling

	Importing character assets
	Summary

	Chapter 6: Developing the
Game Structure
	Introduction to game structure design
	Planning the game flow
	Designing the user interface structure
	Player inputs and character movements
	Creating basic artificial intelligence
	Summary

	Chapter 7: Creating Levels
and Game Progression
	Creating character attributes
	Adding in-game items and power-ups
	Improving enemy AI
	Adding save points
	Summary

	Chapter 8: Post-Production and
Visual FX
	A basic particle system
	Mist particles
	Torch fire
	Image FX
	Quality settings
	Summary

	Chapter 9: Deploying the Game
	Build settings
	Shared settings
	The webplayer
	PC, Mac, and Linux standalone
	iOS
	Android
	WebGL
	Optimization level

	Player Settings
	Cursor hotspot

	Summary

	Index

