
Building an
Enterprise Chatbot

Work with Protected Enterprise Data
Using Open Source Frameworks
—
Abhishek Singh
Karthik Ramasubramanian
Shrey Shivam

www.allitebooks.com

http://www.allitebooks.org

Building an Enterprise
Chatbot

Work with Protected
Enterprise Data Using Open

Source Frameworks

Abhishek Singh
Karthik Ramasubramanian
Shrey Shivam

www.allitebooks.com

http://www.allitebooks.org

Building an Enterprise Chatbot: Work with Protected Enterprise Data

Using Open Source Frameworks

ISBN-13 (pbk): 978-1-4842-5033-4		 ISBN-13 (electronic): 978-1-4842-5034-1
https://doi.org/10.1007/978-1-4842-5034-1

Copyright © 2019 by Abhishek Singh, Karthik Ramasubramanian, Shrey Shivam

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: Matthew Moodie
Coordinating Editor: Aditee Mirashi

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233
Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
978-1-4842-5033-4. For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Abhishek Singh
New Delhi, Delhi, India

Karthik Ramasubramanian
New Delhi, Delhi, India

Shrey Shivam
Donegal, Donegal, Ireland

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-5034-1
http://www.allitebooks.org

Abhishek and Karthik dedicate this book to their parents
for their unwavering support and love.

Shrey dedicates this book in memory of his grandparents,
the late Mr. Ravindra Narayan Singh and

late Dr. Ganga Prasad Singh, for being the source of
his inspiration and pride.

www.allitebooks.com

http://www.allitebooks.org

v

Chapter 1: Processes in the Banking and Insurance Industries������������1

Banking and Insurance Industries���1

A Customer-Centric Approach in Financial Services��6

Benefits from Chatbots for a Business��9

Chatbots in the Insurance Industry��10

Automated Underwriting��12

Instant Quotations��13

AI-Based Personalized Experience���13

Simplification of the Insurance Buying Process���13

Registering a Claim��13

Finding an Advisor��13

Answering General Queries��14

Policy Status���14

Instant Notifications���14

New Policy or Plan Suggestions���14

Conversational Chatbot Landscape��14

Summary���17

Table of Contents

About the Authors���xiii

About the Technical Reviewer���xvii

Acknowledgments��xix

Introduction��xxi

www.allitebooks.com

http://www.allitebooks.org

vi

Chapter 2: Identifying the Sources of Data��19

Chatbot Conversations���19

General Conversations��20

Specific Conversations���20

Training Chatbots for Conversations��21

Self-Generated Data���22

Customer Interactions��23

Customer Service Experts��25

Open Source Data���26

Crowdsourcing���26

Personal Data in Chatbots��27

Introduction to the General Data Protection Regulation (GDPR)���������������������������29

Data Protected Under the GDPR���29

Data Protection Stakeholders���30

Customer Rights Under the GDPR��30

Chatbot Compliance to GDPR���32

Summary���33

Chapter 3: Chatbot Development Essentials��35

Customer Service-Centric Chatbots���35

Business Context��36

Policy Compliance��38

Security, Authentication, and Authorization��39

Accuracy of User Input Translation to Systems��41

Chatbot Development Approaches���42

Rules-Based Approach���43

AI-Based Approach���45

Conversational Flow���47

Table of ContentsTable of Contents

vii

Key Terms in Chatbots���49

Utterance��49

Intent��50

Entity��50

Channel��51

Human Takeover���51

Use Case: 24x7 Insurance Agent��52

Summary���53

Chapter 4: Building a Chatbot Solution���55

Business Considerations��55

Chatbots vs. Apps���56

Growth of Messenger Applications���57

Direct Contact vs. Chat���57

Business Benefits of Chatbots���58

Cost Savings���58

Customer Experience���59

Success Metrics���60

Customer Satisfaction Index���60

Completion Rate���60

Bounce Rate���61

Managing Risks in Chatbots Service���61

Third-Party Channels��61

Impersonation��62

Personal Information��62

Confirmation Check��63

Table of ContentsTable of Contents

viii

Generic Solution Architecture for Private Chatbots��63

Workflow Description���64

Key Features���67

Technology Stack���68

Maintenance���68

Summary���69

Chapter 5: Natural Language Processing, Understanding,
and Generation��71

Chatbot Architecture��73

Popular Open Source NLP and NLU Tools���76

NLTK���77

spaCy��77

CoreNLP��79

gensim��80

TextBlob��81

fastText���82

Natural Language Processing��82

Processing Textual Data���83

Word Search Using Regex��85

Word Search Using the Exact Word��86

NLTK���87

spaCy��94

CoreNLP��106

TextBlob��110

Multilingual Text Processing���113

Natural Language Understanding��116

Sentiment Analysis���117

Language Models���118

Table of ContentsTable of Contents

ix

Information Extraction Using OpenIE��133

Topic Modeling Using Latent Dirichlet Allocation���136

Natural Language Generation��141

Markov Chain-Based Headline Generator���142

SimpleNLG��145

Deep Learning Model for Text Generation��152

Applications���168

Topic Modeling Using spaCy, NLTK, and gensim Libraries����������������������������169

Gender Identification��175

Document Classification���179

Intent Classification and Question Answering��184

Summary���191

Chapter 6: A Novel In-House Implementation of a
Chatbot Framework���193

Introduction to IRIS��194

Intents, Slots, and Matchers��195

Intent Class���197

IntentMatcherService Class��198

The getIntent Method of the IntentMatcherService class�����������������������������201

Matched Intent Class��205

Slot Class��207

IRIS Memory���212

Long- and Short-Term Sessions���212

The Session Class��213

Dialogues as Finite State Machines���219

State���221

Shields��222

Table of ContentsTable of Contents

x

Transition��223

State Machine��224

Building a Custom Chatbot for an Insurance Use Case��������������������������������������230

Creating the Intents��233

IrisConfiguration���243

Managing State��271

Exposing a REST Service��273

Adding a Service Endpoint���277

Summary���278

Chapter 7: Introduction to Microsoft Bot, RASA, and
Google Dialogflow��281

Microsoft Bot Framework��281

Introduction to QnA Maker��282

Introduction to LUIS��290

Introduction to RASA��292

RASA Core��294

RASA NLU���295

Introduction to Dialogflow��296

Summary���301

Chapter 8: Chatbot Integration Mechanism���������������������������������������303

Integration with Third-Party APIs���303

Market Trends���304

Stock Prices��310

Weather Information���316

Connecting to an Enterprise Data Store���321

Integration Module���325

Table of ContentsTable of Contents

xi

Demonstration of AskIris Chatbot in Facebook Messenger�������������������������������338

Account Balance���338

Claim Status���339

Weather Today��340

Frequently Asked Questions���341

Context Switch Example���342

Summary���344

Chapter 9: Deployment and a Continuous Improvement
Framework��345

Deployment to the Cloud��345

As a Stand-Alone Spring Boot JAR on AWS EC2���346

As a Docker Container on AWS EC2��349

As an ECS Service��352

Smart IRIS Alexa Skill Creation in Less Than 5 Minutes������������������������������������357

Continuous Improvement Framework��368

Intent Confirmation (Double-Check)���369

Predict Next Intent��371

A Human in the Loop��373

Summary���375

Index��377

Table of ContentsTable of Contents

xiii

About the Authors

Abhishek Singh is on a mission to profess

the de facto language of this millennium, the

numbers. He is on a journey to bring machines

closer to humans, for a better and more

beautiful world by generating opportunities

with artificial intelligence and machine

learning. He leads a team of data science

professionals solving pressing problems in

food security, cyber security, natural disasters,

healthcare, and many more areas, all with the

help of data and technology. Abhishek is in

the process of bringing smart IoT devices to smaller cities in India so that

people can leverage technology for the betterment of life.

He has worked with colleagues from many parts of the United States,

Europe, and Asia, and strives to work with more people from various

backgrounds. In seven years at big corporations, he has stress-tested

the assets of U.S. banks at Deloitte, solved insurance pricing models at

Prudential, made telecom experiences easier for customers at Celcom,

and created core SaaS data products at Probyto. He is now creating data

science opportunities with his team of young minds.

He actively participates in analytics-related thought leadership,

authoring, public speaking, meetups, and training in data science. He is a

staunch supporter of responsible use of AI to remove biases and fair use of

AI for a better society.

Abhishek completed his MBA from IIM Bangalore, a B.Tech. in

Mathematics and Computing from IITGuwahati, and has a PG Diploma in

Cyber Law from NALSAR University, Hyderabad.

xiv

Karthik Ramasubramanian has over seven

years of practice in data science and business

analytics in retail, FMCG, e-commerce, and

information technology for a multi-national

and two unicorn startups. He is a researcher

and problem solver with a diverse set of

experiences in the data science lifecycle,

starting from a data problem discovery to

creating a data science prototype/product.

On the descriptive side of data science, he

designed, developed, and spearheaded many A/B experiment frameworks

for improving product features, conceptualized funnel analysis for

understanding user interactions and identifying the friction points within

a product, and designed statistically robust metrics and visual dashboards.

On the predictive side, he developed intelligent chatbots which

understand human-like interactions, customer segmentation models,

recommendation systems, identified medical specialization from a patient

query for telemedicine, and other projects.

He actively participates in analytics-related thought leadership,

authoring blogs and books, public speaking, meet-ups, and training and

mentoring for data science.

Karthik completed his M.Sc. in Theoretical Computer Science at

PSG College of Technology, India, where he pioneered the application of

machine learning, data mining, and fuzzy logic in his research work on the

computer and network security.  

About the AuthorsAbout the Authors

xv

Shrey Shivam has extensive experience in

leading the design, development, and delivery

of solutions in the field of data engineering,

stream analytics, machine learning, graph

databases, and natural language processing. In

his seven years of experience, he has worked

with various conglomerates, startups, and

big corporations, and has gained relevant

exposure to digital media, e-commerce,

investment banking, insurance, and a suite of

transaction-led marketplaces across the music, food, lifestyle, news, legal,

and travel domains.

He is a keen learner and is actively engaged in designing the next

generation of systems powered by artificial intelligence-based analytical

and predictive models. He has taken up various roles in product

management, data analytics, digital growth, system architecture, and full

stack engineering. In this era of rapid acceptance and adoption of new and

emerging technologies, he believes in strong technical fundamentals and

advocates continuous improvement through self-learning.

Shrey is currently leading a team of machine learning and big data

engineers across the U.S., Europe, and India to build robust and scalable

big data pipelines to implement various statistical and predictive models.

Shrey completed his BTech in Information Technology from Cochin

University of Science and Technology, India.  

About the AuthorsAbout the Authors

xvii

About the Technical Reviewer

Santanu Pattanayak currently works at

GE, Digital as a Staff Data Scientist and

is the author of Pro Deep Learning with

TensorFlow - A Mathematical Approach to

Advanced Artificial Intelligence in Python. He

has 12 years of overall work experience with

8 years of experience in the data analytics/

data science field. He also has a background

in development and database technologies.

Prior to joining GE, Santanu worked at

companies such as RBS, Capgemini, and

IBM. He graduated with a degree in Electrical Engineering from Jadavpur

University, Kolkata and is an avid math enthusiast. Santanu is currently

pursuing a master’s degree in Data Science from Indian Institute of

Technology (IIT), Hyderabad. He also devotes time to data science

hackathons and Kaggle competitions where he ranks within the top 500

across the globe. Santanu was born and brought up in West Bengal, India

and currently resides in Bangalore, India with his wife.  

xix

Acknowledgments

We are grateful to our teachers at various universities and their continued

support in our professional lives.

Abhishek Singh thanks his colleagues at Probyto who inspire him to

write impactful content for better use of AI for public use; the idea of this

book evolved through discussions with his colleagues and his work in the

EU market. A special mention goes to his parents, Mr. Charan Singh and

Mrs. Jayawati, for their intriguing insights on how to think about general

human use of AI. Their support and demand for the simplistic design of

solutions using AI-generated data inspires his day-to-day design of data

products.

Karthik is immensely grateful to his parents, Mr. S Ramasubramanian

and Mrs. Kanchana, for their unwavering support throughout his life

and during the development of this book. This book was made possible

by hundreds of researchers who shared their life’s work as open-source

offerings. He thanks all such researchers who make this world better and

passionately share their work with everyone. Lastly, a large part of his work

and success comes from his mentors and colleagues from work, where he

continuously learns and improves.

Shrey is hugely grateful to his parents, Mr. Vijay Pratap Singh and Mrs.

Bharti Singh, for their love, care, and sacrifice in helping him fulfill his

dreams. He expresses gratitude to his uncle, Mr. Tarun Singh, for being

a pillar of strength. Shrey also thanks his past and current colleagues,

including Dipesh Singh and Jaspinder Singh Virdee, for their continuous

encouragement and support in taking up challenging and innovative ideas

to execution.

xx

Finally, this book would not have been possible without the support of

the Apress team: Aditee, Celestin, Matthew, and the production support

staff. We also acknowledge and thank our Technical Reviewer (TR) for their

critical reviews that helped to make the book even better.

AcknowledgmentsAcknowledgments

xxi

Introduction

There are numerous frameworks and propriety off-the-shelf chatbot

offerings, but most do not clearly map out the much-needed control

of data by an organization. Often the propriety offerings take an

organization’s private data for training on the cloud and provide the

outcome as a model. In this book, we will focus on data privacy and

control over the development process. The chatbot that you will learn how

to develop could be completely built in-house using open-source JAVA

frameworks and NLP libraries in Python.

The beginning of the book helps you understand the processes in

the banking industry and delves into identifying the sources of data to

mine for the intent from customer queries. The second part focuses on

natural language processing, understanding, and generation, which

are demonstrated using Python. These three concepts are the core

components of a chatbot. In the final part, you take up the development of

a chatbot called IRIS using open-source frameworks written in JAVA.

The following are the key topics this book offers:

•	 Identify the business processes where chatbots could

be used in an industry and suitably guide the design in

a solution architecture

•	 Focus on building a chatbot for one industry and one

use-case, rather than building a ubiquitous and generic

chatbot

•	 Natural language understanding, processing, and

generation

xxii

•	 Learn how to deploy a complete in-house-built chatbot

using an open source technology stack like RASA and

Botpress (such chatbots avoid sharing any PIIs with any

third-party tools)

•	 Develop a chatbot called IRIS from scratch by

customizing an existing open-source chatbot

framework

•	 Use APIs for chatbot integration with internal data

sources

•	 Deployment and continuous improvement framework

through representational learning

We hope you enjoy the journey.

IntroductionIntroduction

1© Abhishek Singh, Karthik Ramasubramanian, Shrey Shivam 2019
A. Singh et al., Building an Enterprise Chatbot,
https://doi.org/10.1007/978-1-4842-5034-1_1

CHAPTER 1

Processes in
the Banking and
Insurance Industries
According to Darwin’s On the Origin of Species, it is not the most

intellectual of the species that survives; it is not the strongest that survives;

the species that survives is the one that is best able to adapt and adjust to

the changing environment in which it finds itself. The same analogy can

apply to enterprises and their survival opportunities in the 21st century. In

this digital era, it is of utmost importance for enterprises to adapt to the

latest trends and technology advancements. With this book, we intend to

prepare you with an emerging skill of building chatbots in the financial

services domain, with a specific use case of an insurance agent (replicable

to a bank assistant as well).

�Banking and Insurance Industries
Banks and insurers have been in existence for a long time and facilitate

economic activities for us. Banking and insurance play essential roles in

the economic growth of a country and society. Both institutions provide

the essential services of commercial transactions and covering risks.

2

Insurance services evolved from the practice of risk management

for uncertain events. The risk is defined as the uncertainty of outcome

in the normal process. The risks are quantified in monetary terms with

consequences that are unfavorable to the process. The insurance function

tends to manage the risk by providing a security net against a payment. In

financial terms, insurance transfers the risk of the unfavorable event to the

insurer against a payment of a premium.

As seen in Figure 1-1 , the primary function of an insurance company

is to manage the fund created by the premiums paid by the insured. The

critical function of an insurance company is to measure the risk of loss

arising from the pool to decide on premiums and, in case of an accident/

adverse outcome, pay the policyholder the loss amount. As the count

of adverse outcomes decreases with an increasing population, smaller

premiums can be levied while a higher payout can be made to the insured

who faces an adverse outcome.

Figure 1-1.  Theoretical framework of insurance

Chapter 1 Processes in the Banking and Insurance Industries

3

The insurance industry is comprises of evolved financial services

and products which are centuries old. With the advent of technology, the

insurance industry has seen a surge in number of big insurance companies

and deeper penetration with new products. Having a concentration brings

better premiums for the insured and allows companies to cover a broader

set of risks. As seen in Figure 1-2, typically the insurance products can be

divided into two categories: life insurance and general insurance.

Life insurance provides coverage to the risk of mortality. The insured

beneficiary receives a face amount in case of death during the coverage

period. In this manner, this insurance product safeguards against financial

losses arising from the death of a critical member of the family. The

risk covered is called mortality risk. The actuarial science is the study of

mortality behavior and used in study of fair pricing of premiums for the

given subject for life insurance.

Insurance is not just limited to insuring against the risk of death. The

insurance concept has been extended to other forms of risk as well. The

other bucket of coverage is known as general insurance; this includes

health insurance covering the financial risk of ill health, vehicle insurance

Insurance

Life Insurance General Insurance

• Health
• Vehicle
• Travel
• Home
• Corporate
• Others

Figure 1-2.  Insurance product categorization

Chapter 1 Processes in the Banking and Insurance Industries

4

for accidents, travel insurance for flight delays, and so on. The established

insurance companies offer multiple products to customers and institutions

as per their needs. Some of these products have standard features, where

some insurance companies can create custom deals as per client needs, for

instance covering the risk of severe weather during a significant event. The

key differentiator between a good and bad insurer is how diligently and

accurately it can measure the risk involved in the underlying events.

Banking services, on the other hand, do not cover uncertain risk,

but they work in economic activities of a financial nature. Banking has

also evolved to be of many types, serving different purposes for different

commercial entities. However, the basic premise of banking remains as a

broker between lenders and borrowers. The spread between lending and

borrowing rates is also called a spread, and the bank manages to create

economic activities in the system.

Figure 1-3 depicts a fundamental framework of a bank or a banking

company.

Lenders have access to capital, such as institutional members having

excess cash or a small retail customer who has some savings. The borrower

is short of capital, but they have some economic activities which can bring

returns on their investment. The bank comes into the play to solve this gap

in the financial system and creates an opportunity for the lender to earn

interest on deposits and lets the borrower get the required capital for an

Figure 1-3.  Theoretical framework of banking

Chapter 1 Processes in the Banking and Insurance Industries

5

interest rate. In the example in Figure 1-3, a lender deposits $10,000 into

the bank and receives 2% interest (i.e., $200), while the bank lends $10,000

to the borrower at 9% interest (i.e., gaining $900 in the transaction). The

spread of 7% (i.e., 900-200=700) is the income for bank, which it can use to

run operations and create new products.

Like insurance, banks have also evolved to provide various services for

different types of customers and entities. Figure 1-4 is basic classification

of types of banks. It is a not an exhaustive list of the types of banks and

banking services. However, they are the primary type of banks.

Within the scope of this book, we will point out the typical process for

an end customer for accessing financial service. The customer for a retail

bank and life insurance company are the same, except for a few cases.

This makes it easier to illustrate how insurance company touchpoints with

customers are similar to those for banking customers. Once we set up the

generic nature of these touchpoints, we will move ahead with the chatbot

build process.

Figure 1-4.  Common types of banks

Chapter 1 Processes in the Banking and Insurance Industries

6

In retail banking, an end customer, usually an entity or individual,

deposits savings in a bank, and other entities or individuals borrow that

money for other purposes. Apart from that, banks also facilitate online

transactions, paying billers, transferring money to other entities, timed

deposits, and many other services for retail customers.

�A Customer-Centric Approach in Financial
Services
Customer behavior and interactions have evolved to a personalized

approach over the last two decades. Competition and greater reliance on

technology for delivery of services are keys to this change in customer

behavior. The importance of a customer-centric approach in products and

services is far greater than ever before. The customer-centric approach

involves many direct and indirect interventions through multiple channels

(see Figure 1-5).

Customer
centricity

Customer-
focused

leadership

Feedback
drives

continuous
improvement

Understanding
your customer

Metrics that
matter

Design the
experience

Empower the
front line

Figure 1-5.  Customer centricity in financial services

Chapter 1 Processes in the Banking and Insurance Industries

7

The core element of customer centricity is a focused customer

leadership. If the leadership aligns the strategy to become a customer-

centric organization, the whole outlook and communications become

customer-centric. Amazon has proved this and is now seen as the

benchmark for a customer-centric approach. Understanding the customer

and designing experiments to validate the hypothesis form the next steps

in a customer-centric approach. Once we set up a successful connection

with customers, we need to empower the front line, track essential metrics,

and keep the feedback cycle. These are some indicative steps to achieve a

customer-centric approach.

In financial services, primarily referring to retail products/services,

the interaction points are many, and all touchpoints are critical to being

customer focused. Banks and insurance companies deal with many

individuals customers daily via multiple channels.

Digital interventions are redefining the ways customer engagement

happens. There are some critical trends among customers accessing

banking and insurance services.

•	 More natural interactions: The user experience is of

the utmost importance. The customers are looking for

easier access to products, an appealing experience, and

easy action in a few clicks.

•	 More touchpoints and flexibility: The customer does

not want fixed 9 am to 5 pm branch visits or no access

on weekends. Customers want to be able to access and

buy products anytime and via multiple channels. It may

be a mobile app or a web app or phone banking, but

they want more flexibility in how they interact.

Chapter 1 Processes in the Banking and Insurance Industries

8

•	 Responsive service: Customers expect that the bank/

insurer knows about them and is responsive to their

needs. They want individual attention and appreciate

responsive customer service.

•	 Clear product information: With so many players

and products, customers want concise and relevant

information to be delivered to them. Additional details

they can seek with follow-ups. The customer does not

want a pile of information or to get confused.

•	 Great value from the products: The product features

are numerous and many times the customer is unaware

of how to make the best use of them. Customers expect

the bank/insurer to keep reminding them to draw the

best value out of a product and if possible, offer new

products that might be useful.

The growing digital presence of financial institutions also requires

multiple changes in the technology landscape. Traditional database systems

and applications are now becoming obsolete. Powerful endpoint computing

(i.e., smartphones), excellent internet connectivity (i.e., 4G/5G), and cloud

platforms are the magic trinity for a digital revolution in the financial sector.

In this book, we will explore the evolution and working of chatbots

in many endpoint interactions with customers. While conversational

agents have existed for a long time (remember the IVRS systems?), new

technology developments have made them driven by natural language,

offering customer-centric delivery of information. Chatbots are designed

to carry out specific and structured interactions; the complex service

interactions are still better served by an experienced customer service

representative. In coming chapters, we will cover different aspects of

building a chatbot for an insurance agent.

Chapter 1 Processes in the Banking and Insurance Industries

9

�Benefits from Chatbots for a Business
According to the Grand View Research 2018 report,1 the global chatbot

market is expected to reach $1.25 billion by 2025, with a CAGR of 24.3%

(average annual growth rate). The chatbot market will grow significantly

across the financial services sectors, as they are among the largest

customer-facing businesses (in our context, the insurance business).

The immediate value creation for institutions happens by significantly

reducing the operating cost and bringing customer satisfaction.

Technically speaking, chatbots are a combination of technology,

artificial intelligence (AI), and business process designs.

•	 The technology provides the carrier for exchanging

messages between chatbots and customers, and

chatbots and internal systems, delivering information

in real time over mobile phone or the Web.

•	 The AI builds the core brain of the chatbot, which

understands the natural language decoded from

machine instructions. They also make decisions during

conversations.

•	 The most critical piece is the business process design,

which identifies the standard process to access

information, what information can be shared with

whom, and convenient ways to buy/sell/inquire about

current products.

While chatbots offer immense monetary value for the company

regarding reducing the cost of customer service and as a new channel for

revenue by sales of products and services, they also add immense value to

the customer’s experience.

1�www.grandviewresearch.com/press-release/global-chatbot-market

Chapter 1 Processes in the Banking and Insurance Industries

http://www.grandviewresearch.com/press-release/global-chatbot-market

10

•	 24x7 availability: Chatbots are available 24x7 through

phones or the Web. This gives the customer options of

when to interact with the services.

•	 Zero human touch experience: Chatbots allow

customers to have a zero human touch experience

for their basic requirements. This way of getting the

necessary information without going through the

manual route is entirely new.

•	 Simplicity: Chatbots simplify the process for customers

by decoding the process into clear steps. The

information delivered by chatbots is also very concise

and to the point, as per the customer query.

Daily, the ever-changing chatbot market is coming up with disruptive

ideas and delivering value across the spectrum.

�Chatbots in the Insurance Industry
Gone are the days of waiting for the next available operator or taking the

effort to get the information. The customer-centric approach is one of the

critical differentiators for a company today. Chatbots are helping augment

customer engagement and brand presence, and they are proving to be very

useful in most industries including the insurance industry. The emergence

of mobile and social media has not only provided new channels of

communication between people but has also made people feel closer to

businesses. Companies are investing heavily in creating and maintaining a

robust digital presence and implementing new solutions so they can have

a better customer reach.

Chapter 1 Processes in the Banking and Insurance Industries

11

Traditionally, the insurance industry has been slow to change. Due to

the complexity of insurance, covering a diverse set of risks, the operating

model has been cumbersome, with a lot of paperwork, background

checks, and approvals. With the new era of digital business and increasing

competition, the insurance industry is also addressing the needs of the

always-on, always-connected digital world.

Roughly 70% of calls to a call center of an insurance company are

queries that can be addressed without a human interface, such as

customers requesting details on their claim status, policy renewal, or

information on financial advisors. According to World Wide Call Centers,2

in a shared call center, an inbound call rate ranges from $.35-$.45/minute

at low-cost international agencies to $.75-$.90/minute in the U.S./Canada

and from $8-$15 internationally to $22-$28 in the U.S./Canada. A typical

large insurance company gets more than 10 million calls every year.

Considering a call rate of $5 per call, even if a chatbot can address half of

these queries, that’s a potential savings of $25 million per year.

Where live agents can handle only two to three conversations at a

time, a chatbot can operate without any such limit and reduce the human

resources required to handle such queries. It can also automate repetitive

work. These calls to call centers have an average wait time of 3 minutes

until they are assigned to an agent, and customers who browse the website

typically spend around 5 to 10 minutes to find the information they

require. Virtual agents such as chatbots provide this information in real

time, which is significant use of technology to make the interaction faster

and more efficient. The services can be accessed 24x7 through multiple

digital interaction platforms such as mobile apps, Facebook Messenger,

Twitter, SMS, Skype, Alexa, and web UI chat, providing omnichannel

support to customers.

Figure 1-6 shows the ways in which chatbots are transforming the

insurance industry.

2�www.worldwidecallcenters.com/call-center-pricing/

Chapter 1 Processes in the Banking and Insurance Industries

http://www.worldwidecallcenters.com/call-center-pricing/

12

Some of the most common applications of a chatbot in the life

insurance industry are in the following sectors.

�Automated Underwriting
With a wealth of information available about individuals online, machine

learning techniques are being used to assess the risk index of an individual

accurately. Companies are using virtual digital agents (chatbots) to provide

a simplified way of buying life insurance and getting an instant decision.

Chatbots
in

Insurance

Automated
Underwriting

Instant
Quotations

AI-Based
Personalized
Experience

Simplification
of Insurance

Buying
Process

Registering a
Claim

Answer to
General
Queries

Policy Status

Instant
Notifications

Policy or Plan
Suggestions

Finding an
Advisor

Figure 1-6.  Chatbots in the insurance industry

Chapter 1 Processes in the Banking and Insurance Industries

13

�Instant Quotations
Customers can get insurance eligibility and quotation details on the

platform of their choice instantly.

�AI-Based Personalized Experience
Since chatbots are designed to simulate human interaction, they can

leverage AI to understand context and user needs in order to provide a

better customer satisfaction experience.

�Simplification of the Insurance Buying Process
The general public has an aversion to insurance-related paperwork due to

long forms that are difficult to understand. Chatbots can ask the customer

simple questions in a conversational language and use the answers to

auto-populate some of the fields on the online form, speeding up the

application process.

�Registering a Claim
Since chatbots are virtual agents, they are available 24×7. Hence, they

can help customers with the claim process regardless of the time of the

incident. Time-to-settle-claim is an important metric that plays a critical

role in improving the efficiency of an insurance business, and chatbots are

playing an essential role in reducing the overall time to settle.

�Finding an Advisor
Some companies use insurance agents or advisors. The natural language-

based interaction model of the chatbots makes them convenient for

customers to quickly inquire about insurance agents or financial advisors

based on location or insurance type.

Chapter 1 Processes in the Banking and Insurance Industries

14

�Answering General Queries
As many as 30% of the queries to the call center are general queries

asking about policy cash value, policy premium due date, interest rates,

FAQs, company and product information, account-related issues such

as password reset, updating the beneficiary, and details around the

application process. These queries can be addressed by a chatbot in real

time in a customer-centric way.

�Policy Status
The customer can check policy status and statuses of claims or other

complaints or requests by interacting with a chatbot anywhere anytime.

�Instant Notifications
Chatbots can remind customers about the policy premium due date, next

billing cycle, and so forth.

�New Policy or Plan Suggestions
Chatbots not only perform the role of service agents but also provide new

marketing opportunities. User interaction and social media behavior

on digital platforms such Facebook can be tailored to suggest content,

products, or services as per their needs.

�Conversational Chatbot Landscape
In this internet era, every time a person requires a service or information,

the person must find an appropriate website. In the mobile era, native

apps took center stage with the same purpose as a website. Every business

Chapter 1 Processes in the Banking and Insurance Industries

15

nowadays has one website and one mobile app at the bare minimum.

Now, in the AI era, a customer is flooded with information on the website

and the mobile app, and there aren’t as many employees to help the many

customers who are seeking the service or information. Moreover, even if a

company finds many employees, the cost is very high. Conversational bots

or chatbots are playing a pivotal role in the AI era by addressing the critical

problem of information deluge at an affordable cost.

The organization is going through a digital transformational journey

where chatbots are being discussed in roadmaps. The primary objective is

to improve customer experience through simplified touchpoints and faster

service time. This objective often results in higher conversion for newer

products and services and reduced cost of operations.

A massive growth of bot frameworks (technology) and advancements

in the natural language understanding (AI) has led to the adaption of

chatbots in many industries. Companies are building chatbots across the

lifecycle of their customers, namely

•	 Acquisition

•	 Engagement

•	 Servicing

•	 Feedback

Acquisition and engagement help companies build a strong top line for

the business while servicing helps in reducing cost and feedback increases

customer retention.

Figure 1-7 shows an industry-wide adaption of chatbots and various

use-cases.

Chapter 1 Processes in the Banking and Insurance Industries

16

• Claim and Coverage Queries
• Underwriting
• Automated Advisory

Insurance

• Account Management
• Product Guidance
• Predictive Offers
• Market Updates
• Online Subscription Managements

Financial Services

• Discovery and Scheduling
• Care Management
• Drug Information
• Diagnostic Test Appointments
• Assist Non-Emergency Patient Queries

Healthcare

• Automatic Flight Reminders and Updates
• Virtual AI Travel Agent
• Book Hotels, Cabs, and Restaurants
• Suggest Sight-Seeing and Restaurants

Travel

• Product Search in Super Marts
• Recipe Search
• Locate Nearby Stores
• Order Food

Retail

• Billing and Accounts Services
• Offers and Plan Changes
• Customer Support and Self-Service
• Training and Operations Productivity

Telecommunications

Figure 1-7.  Conversational chatbot landscape

Chapter 1 Processes in the Banking and Insurance Industries

17

In terms of benefits, insurance companies are now able to process their

claims 24% faster,3 and telcos are achieving as much as 90%4 reduction

in their customer service calls, in which 75% is reduced by self-service

guides and automatic tips and an additional 15% of calls with the help of

an artificial intelligence agent. This leaves only 10% to the costly phone call

operator. By answering up to 80% of routine questions in a service center,

the customer service cost is reduced by 30%5 and companies like Autodesk

saw 99%6 improvement in response time for their level 1 queries. The

benefits are continually increasing with more adaption and improvements.

In the upcoming chapters, we will delve into the details of NLU

and various technologies to build a fully functional enterprise-grade

chatbot. In the next chapter, we will discuss how to identify the customer

interactions points, the data collection strategy, the importance of being

compliant with privacy laws and understanding the data flow for each

interaction with the client.

�Summary
This chapter focused on processes in the banking and insurance industry

where chatbots are bringing a new wave of innovation. Tasks that were

earlier thought to be possible only by humans are now getting automated.

3�www.avaamo.com/
4�www.mckinsey.com/industries/telecommunications/our-insights/a-future-
for-mobile-operators-the-keys-to-successful-reinvention

5�https://chatbotsmagazine.com/how-with-the-help-of-chatbots-customer-
service-costs-could-be-reduced-up-to-30-b9266a369945

6�www.ibm.com/blogs/watson/2017/10/how-chatbots-reduce-customer-
service-costs-by-30-percent/

Chapter 1 Processes in the Banking and Insurance Industries

http://www.avaamo.com/
http://www.mckinsey.com/industries/telecommunications/our-insights/a-future-for-mobile-operators-the-keys-to-successful-reinvention
http://www.mckinsey.com/industries/telecommunications/our-insights/a-future-for-mobile-operators-the-keys-to-successful-reinvention
https://chatbotsmagazine.com/how-with-the-help-of-chatbots-customer-service-costs-could-be-reduced-up-to-30-b9266a369945
https://chatbotsmagazine.com/how-with-the-help-of-chatbots-customer-service-costs-could-be-reduced-up-to-30-b9266a369945
http://www.ibm.com/blogs/watson/2017/10/how-chatbots-reduce-customer-service-costs-by-30-percent/
http://www.ibm.com/blogs/watson/2017/10/how-chatbots-reduce-customer-service-costs-by-30-percent/

18

Such innovation brings the cost down and helps in achieving scale. We

also discussed chatbots in various other industries including healthcare

and travel. Various industry reports were highlighted to prove the benefits

of using AI-driven chatbots in an industry. In the coming chapters, we will

build a conversational chatbot from scratch, keeping the focus on banking

and insurance.

Chapter 1 Processes in the Banking and Insurance Industries

19© Abhishek Singh, Karthik Ramasubramanian, Shrey Shivam 2019
A. Singh et al., Building an Enterprise Chatbot,
https://doi.org/10.1007/978-1-4842-5034-1_2

CHAPTER 2

Identifying the
Sources of Data
Chatbots are one more channel of providing conversational flows to

customers. In the previous chapter, we discussed how the banking and

insurance industries are structured and what kinds of interactions

happen with the customers in those industries. There are many

types of touchpoints a bank or insurer provides to customers in the

day-to-day operations, starting from selling a new policy to settling

escalations of claims. All these touchpoints are sources of data for building

an AI Assistant, i.e., chatbot. In this chapter, we will start by introducing

chatbot types and sources of data for training chatbots and then we will

introduce the General Data Protection Regulation (GDPR) in context of the

chatbot for personal data.

�Chatbot Conversations
The chatbot tries to mimic the conversation of a real human. In the

context of interacting with a business, the conversations can be of a broad,

generic subject or particular to the product or service. Based on the scope

of conversation, we can divide the conversation into two types: general

conversations and specific conversations. The type of conversation decides

20

the scope of questions and knowledge the chatbot or human assistant

needs in order to interact with a customer.

�General Conversations
A general conversation is a typical conversation that happens when a

customer and assistant are not confined to a specific topic or concern. The

conversations can start from any point and can transverse to any direction

based on the knowledge level of an assistant.

An example of such a conversation is

•	 A user walks into the bank and wants to talk to

the manager. Before the start of the conversation,

we don’t know who this person is and why he is

visiting the manager. The conversation can be about a

sponsorship event, a loan account or utility payment,

or something else.

To deal with such conversations, the chatbot needs to be built with

many types of contexts and appropriate replies. The replies for such

general conversations are also not heuristic in nature; they involve human

natural intelligence and information/experience that is not available for

the chatbot to build a conversation.

Many advances are happening in AI; we try to mimic complete human

behavior by training with massive datasets and scenarios. However, we

are still far away in terms of having complete general-conversation-based

chatbots for industrial use cases.

�Specific Conversations
Specific conversations are limited to some predesigned outcomes. These

types of conversations have higher clarity of the scope of the talk and clear

instructions to fall back on or cross-references to other sources.

Chapter 2 Identifying the Sources of Data

21

Any deviations from the set conversations are generally directed to

predefined outcomes. All other cases are redirected to appropriate

channels, or the conversations ends.

An example of such a conversation is

•	 A customer walks into a store and goes to the refund

desk. In this case, the refund desk has some specific

conditions to process a refund and maybe some other

particular functions. The customer cannot expect any

other query than a refund to be offered at the refund

desk. If he asks a question regarding discounts, he is

directed by the refund desk to another counter.

Specific conversations are more predictable and can be handled

with higher accuracy. The chatbots designed for specific tasks can

communicate with information. The conversations are outcome-oriented

and end once the outcome is achieved.

�Training Chatbots for Conversations
Chatbots need to be taught how to have a conversation. The training

of chatbots involves exposing chatbots to both rules and natural

conversations. For general conversation chatbots, the amount of training

data required is enormous, and so far we have not succeeded in creating

an accurate general conversation chatbot. Alexa, Siri, and Google Home

are few examples in this direction.

Creating chatbots also requires a set of rules documented or tacit to

proceed with conversations. For example, if a chatbot asks for a customer’s

name, it must expect a first name and a last name. If the last name is not

captured, it must go back and confirm the name. This is important to make

sure the conversation is specific to the correct customer.

Chapter 2 Identifying the Sources of Data

22

To train a chatbot for conversations, we need to have a corpus of

training data. The training data can be accessed from multiple sources

based on the use case. In the following sections, we discuss some datasets

for use in training chatbots.

�Self-Generated Data
Chatbot developers need to start with some data to make the chatbot come

alive. Usually, that data is generated by developers for some necessary flow

themselves. This way they get some high-level flow defined by themselves

so that they can keep developing the chatbot with assumptions.

In many cases, developers create multiple inputs and self-annotate

them for training basic flows; being generated by developers for testing

the flows, they are not the complete set for training. These inputs help

developers get the chatbot ready for a beta release and collect data from

real users. Self-generated data is only a way to start development; it’s not

for general public use.

The data generated by developers is used to establish the data

pipelines and system integration testing. Once the beta is deployed, the

internal users can be exposed to the chatbot and more data is collected to

keep training the natural language module.

Note D o not confuse self-generated data with natural language
generative (NLG) models. You will learn more about natural language
generation from the small dataset in Chapter 5.

Chapter 2 Identifying the Sources of Data

23

�Customer Interactions
Customer interaction is the best source for training the chatbots. These

conversations are the best to mimic for mainly two reasons:

•	 Typical queries can be captured, and chatbot training

can be prioritized for specific conversations.

•	 The conversations capture real solutions provided in

the past by experienced customer representatives.

Customer interactions happen through multiple channels, and these

channels produce data for training chatbots as a new channel for customer

interactions. Figure 2-1 shows the six main types of customer interaction

channels for any modern business, applicable to our case of an insurance

and bank as well.

Figure 2-1.  Customer interaction/service channels

Chapter 2 Identifying the Sources of Data

24

�Phone

Phone calls are attended by experienced call center representatives and

mostly accessed when the customer requires an immediate resolution to

their queries. In modern days, this mode is recommended as the last step

since it is costly for companies to maintain.

From the call center, we can get call transcripts, call recordings, core

issues, and their resolutions. Core issues identified during calls and

their resolution can help our chatbot learn to identify issues and provide

solutions.

�Emails

Email conversations are usually detailed and have a chronology of events

explained and a clear statement of what the customer wants. These

emails can be a good source to capture issues that need more than one-

dimensional data to solve them.

Customer email records can be accessed in plain text format, with

original emails and the response trail to developed conversations.

�Chat

Many financial institutions use online web chat with customer service

representatives to make sure they can serve multiple clients at the same

time and reduce dropout of incoming queries at the call center.

This data set is very close to what a chatbot needs to mimic a

conversation. Past chatlogs can be accessed as plain text files.

�Social Media

Social media become popular when social media companies allowed

business accounts to be created on their platforms. The interaction of

social media tends to be generic and difficult to track with the actual

customer of the general population.

Chapter 2 Identifying the Sources of Data

25

Some platforms allow business accounts to download their data while

some allow extracting data from API endpoints.

�Customer Self-Service

Some necessary troubleshooting processes are created as self-service

portals for customers. They may be as trivial as changing the PIN or

offering FAQs for more information. Successful self-service cases are good

for creating processes to train the chatbot to help people who ignore or

can’t use self-service.

This data is usually structured as a tree of conversations leading to the

solution of specific problems.

�Mobile

Mobile here is considered the interactions that happen via mobile apps

and mobile browsing history by customers. The data captured from these

mobile applications is captured as activity logs of customers.

�Customer Service Experts
Customer service experts play a significant role in identifying typical

customer queries and how they handle them in real situations. Their

inputs are also helpful in creating default replies and designing fall-over

options. The years of experience dealing with customers can be used to

train as well as test the initial chatbot release.

Experts need to be part of the process of developing chatbots for

quality assessment of the chatbots’ experience and accuracy.

Chapter 2 Identifying the Sources of Data

26

�Open Source Data
Open source data is instrumental when you want to create general

conversation chatbots and want to include some general flavor for specific

talk. There are plenty of data sources available for training chatbots in

natural language conversations.

A few of the open data sources are listed below; you can have more

datasets as per your need.

•	 Yahoo Language Data, created from Yahoo Answers

(www.cs.cmu.edu/~ark/QA-data/)

•	 WikiQA corpus, created from bing queries that

redirect to wiki pages with a solution (http://

research.microsoft.com/apps/mobile/download.

aspx?p=4495da01-db8c-4041-a7f6-7984a4f6a905)

•	 Ubuntu Dialogue corpus, created from Ubuntu

technical support (www.kaggle.com/rtatman/ubuntu-

dialogue-corpus)

•	 Twitter data on Kaggle, created from customer support

at Twitter (www.kaggle.com/thoughtvector/customer-

support-on-twitter)

�Crowdsourcing
The most critical training data comes from REAL people interacting with

your chatbot in real time. This not only helps in building the corpus for

training but also help developers see darker zones where the chatbots fail.

In best practice cases, all chatbots released at beta version are exposed

to real conversations with selected customers and internal employees.

The data is collected, and NLP models are retrained for each real instance.

Another outcome of crowdsourcing is laying down the guidelines and

scope of the chatbot.

Chapter 2 Identifying the Sources of Data

http://www.cs.cmu.edu/~ark/QA-data/
http://research.microsoft.com/apps/mobile/download.aspx?p=4495da01-db8c-4041-a7f6-7984a4f6a905
http://research.microsoft.com/apps/mobile/download.aspx?p=4495da01-db8c-4041-a7f6-7984a4f6a905
http://research.microsoft.com/apps/mobile/download.aspx?p=4495da01-db8c-4041-a7f6-7984a4f6a905
http://www.kaggle.com/rtatman/ubuntu-dialogue­corpus
http://www.kaggle.com/rtatman/ubuntu-dialogue­corpus
http://www.kaggle.com/thoughtvector/customer-support-on-twitter
http://www.kaggle.com/thoughtvector/customer-support-on-twitter

27

Customer service experts also use the crowdsourcing inputs to build

response languages and intensity for different conversations.

If you are building a chatbot in a regional language, you need to rely on

crowdsourcing of training data. Some companies can provide you access

to people who will interact with your chatbot to build the training corpus.

�Personal Data in Chatbots
When we try to emulate human-like conversations with chatbots, we allow

the humans to reveal information about themselves to the chatbot machine.

This information then becomes risk for unauthorized access and may violate

privacy laws and terms. This concern is of the utmost importance when you

deal with customer queries that connect them to internal databases and

required customer-specific information to process requests.

The customer can reveal the personal data both intentionally and

unintentionally:

•	 Intentionally: To get an account balance, you need to

provide an account number and PIN.

•	 Unintentionally: To know the claim process, you may

end up revealing your policy number.

In both cases, the data is being captured by the chatbot, and the

chatbot engine tries to process that data. Even if the chatbot can’t process

the data, it still creates a copy of a conversation that contains private and

personal data of customers.

Another area where we expose personal data to our chatbots is at

the time of training the chatbot. Internal data of customers might have

personal, financial, and demographic information without the developer’s

full knowledge. For example, an email conversation regarding a claim

settlement will contain a lot more details than just the customer-agnostic

settlement process.

Chapter 2 Identifying the Sources of Data

28

In deployment and training, personal data is captured and is

vulnerable for law infringement and hacking, but this data is important

for developing custom-centric chatbots. If we do not capture the data,

we will not be able to design a chatbot that can take actions and provide

information from internal databases.

We require more information than a normal conversation to be able

to develop a chatbot that can access customer data and provide real-time

information, securely and privately. The personal information helps in

developing

•	 Authentication and access

•	 Compliance to company policies

•	 A customer information retrieval system

•	 A third-party API retrieval system

There are other related services and databases that require personal

information to allow access to customer information in the private data zone.

As we just explained, we need personal data and other private data

from customers to make the 24x7 AI assistant function with relevant data.

This requires us to be very sure of both the customer agreements and

local/international data regulations. Complying with regulations becomes

of the utmost importance for banks and insurance companies to build

specific conversation chatbots.

This is a challenge for companies because it limits the companies from

using well developed, third-party chatbot services like Alexa, Dialogflow,

and Watson. These services require the data to be sent to their server and

stored for chatbot conversations. The limitations have created a vacuum to

be filled by frameworks that can develop state-of-art chatbots internal to

the companies.

It is essential to get awareness about what data privacy regulations

require of companies when dealing with customer data. The General Data

Protection Regulation (GDPR) is the leading regulation from the EU region

Chapter 2 Identifying the Sources of Data

29

and it’s also relevant to other parts of the world. In the next section, we give

a high-level overview of its requirements, which are essential to consider

when developing a chatbot.

�Introduction to the General Data Protection
Regulation (GDPR)
The GDPR is the successor to the 1995 Data Protection Directive,

which was a regulation, not a directive. While the directive was left to

member states to be transposed into national laws by legislation, the

GDPR regulation is immediately enforceable as law in all member states

simultaneously. It is a regulation on data protection for European Union

citizens. It also applies to the transfer of personal data outside of the EU

area. The GDPR gives users control over their personal information and

whether they want to share or keep their data private.

It was adopted by all EU states and came into force on May 25, 2018.

The regulation enforces hefty fines against non-compliant organizations

(fees up to 4% of annual revenues or 20M € ,  whichever is greater).

�Data Protected Under the GDPR
The GDPR in its definition of data is very broad and covers a multiverse

of data generated and captured by companies. As per the GDPR, the

protected data includes

Necessary identity information (name and surname; date of birth;

phone number; a home address; an email address; ID card number and

Social Security number etс.); web data (location, IP address, cookie data);

health and genetic data; biometric data (data that identifies a person);

racial and ethnic origin; religious beliefs; political opinions.

This includes data that chatbots deal with in the course of

conversations.

Chapter 2 Identifying the Sources of Data

30

�Data Protection Stakeholders
As per the regulation, any company that collects and processes EU citizens’

personal information or that stores personal data of EU residents must

comply with the GDPR, regardless of whether the company is present in

EU territory or not. This scope means that most global businesses need to

be GDPR-compliant.

The regulation defines three stakeholders to the GDPR:

•	 Data subject: A person whose data is being processed

by a controller or processor.

•	 Data controller: An individual or company that

determines the purpose and conditions of collecting

and processing personal data from users.

•	 Data processor: An individual or company that

processes personal data for data controllers.

The definition of stakeholders directly impacts how we design

our chatbots and ensure the rights of our customers who interact with

chatbots. For example, a customer interacting with a chatbot is a data

subject, and the bank or insurer or company becomes the data controller.

The CRM or database system authorized personal also becomes the data

controller. If your chatbot uses Dialogflow for processing the data, then it

becomes the data processor.

The details of the law can be read from the source here: https://eur-

lex.europa.eu/eli/reg/2016/679/oj.

�Customer Rights Under the GDPR
It is essential for the chatbot developer team and leadership to understand

what rights are enshrined in the GDPR for the customers. The chatbot

functionality must abide by them.

Chapter 2 Identifying the Sources of Data

https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/reg/2016/679/oj

31

Right Data Controller Responsibilities

1 Right to be
Informed

Be transparent in how much you collect and process

personal information and the purpose you intend to use it

for. Inform your customer of their rights and how to carry

them out.

2 Right of Access Your customers have the right to access their data. You

need to enable this either through the business process or

technical process.

3 Right to
Rectification

Your customer has the right to correct information that they

believe is inaccurate.

4 Right to Erasure You must provide your customer with the right to be

forgotten, provided that your legitimate interest to hold

such information does not override theirs.

5 Right to
Restriction of
Processing

Your customer has the right to request that you stop

processing their data.

6 Right to Data
Portability

You need to enable the machine and human readable

export of your customers’ personal information.

7 Right to Object Your customer has the right to object to you using their data.

8 Right Regarding
Automated
Decision Making

You customer has the right not to be subject to a decision

based solely on automated processing, including profiling.

The rights under GDPR are stated below for your reference:

Chapter 2 Identifying the Sources of Data

32

�Chatbot Compliance to GDPR
In the above sections, we discussed that the chatbots are no longer the

subject of business communication only; chatbot makers must consider

them in a data controlling and processing manner. This requires the

chatbots to face the strict scrutiny of the GDPR.

Some of the generic and minimum steps that the chatbots makers need

to take to be ready for GDPR compliance are listed below. The list is not

comprehensive; it is just an indicative list for internal assessment. Please

consider a full audit of a chatbot before making it public for general use.

•	 The chatbots, before starting a conversion, must clearly

state what data will be collected in the conversation

and must be able to access what data is being collected.

•	 The chatbot user must be allowed to access, review,

download, and erase the data collected by the chatbot.

•	 The chatbot logs must be securely stored and made

accessible to users. Also, you must have the explicit

permission of the user before processing the log to train

your chatbots.

•	 A clearly stated privacy policy and contact information

for a Data Officer for any concerns.

•	 The option of talking to a real operator rather than a

machine chatbot.

These items are an indicative list of the steps that the chatbot owner

needs to take. A full audit may reflect more areas to make sure the chatbot

is fully compliant.

Chapter 2 Identifying the Sources of Data

33

�Summary
In this chapter, we classified conversations into generic and specific areas.

While developing a chatbot for general nature requires a multiverse of

data, the specific conversation chatbots require only the corpus of data to

have those conversations. We introduced different data sources captured

from a developer’s understanding of the functionality, data generated

from customer interactions across all channels, and also, we discussed

the significance of open data. Crowdsourcing of data for generic chatbots

was also discussed. The significance and challenges of personal data

were discussed with examples, and their impact of the design of chatbot

was also explained. The most crucial part of a chatbot’s implementation

is the impact of regulations when chatbots deal with personal data. We

introduced the General Data Protection Regulation (GDPR) which protects

the data of EU citizens, not only within the EU but outside as well. A short

checklist of customers’ rights was provided along with some standard steps

to be taken for chatbots to be GDRP compliant. In the next chapter, we will

discuss how to design the chatbot and create conversation flows for a 24x7

insurance assistant.

Chapter 2 Identifying the Sources of Data

35© Abhishek Singh, Karthik Ramasubramanian, Shrey Shivam 2019
A. Singh et al., Building an Enterprise Chatbot,
https://doi.org/10.1007/978-1-4842-5034-1_3

CHAPTER 3

Chatbot Development
Essentials
Chatbots need to have features that enable human-like conversations.

The goal is to make a chatbot conversation more human and thus better

than the menu-driven approach of modern apps. In the previous chapters,

we discussed types of chatbots and the regulatory constraints to consider

for an in-house-developed chatbot. In this chapter, we will discuss the

simplified approach to building the integral components of chatbots. Later

sections will introduce conversation flow for a sample request to facilitate

the context build-up in a chatbot conversation. The chapter will end with

the introduction to the “24x7 Insurance Agent” chatbot, which will be the

use case discussed throughout the rest of the book.

�Customer Service-Centric Chatbots
The customer service process involves the exchange of private customer

information and accessing data sources to fetch current information. The

information exchange through the chatbot requires accuracy and the

36

enforcement of strict security and privacy policies. There are three critical

considerations in chatbot development to achieve the intended use case

from a chatbot:

•	 Business context

•	 Policy compliance

•	 Security, authentication, and authorization

The accuracy of a system in resolving input queries is another

consideration for the NLP module.

�Business Context
Business context refers to the peculiarities of the business the chatbot is

developed for. In general conversations, we can infer meanings to unsaid

things or implicit things in a conversation.

The concept of live chat is still relevant in many large companies.

The core purpose of live chat was to reduce call center costs and provide

another layer of conversation, but it also created another conversation silo

and, in many cases, lousy customer experience crept in.

In live chats, the business context was maintained by the chat

executive and the customer needed to spell out the context every time. The

modern chatbot system needs to identify and sustain settings to construct

a minimal conversation flow. Usually, the conversations done through

chatbots depend on what is explicitly passed to a chatbot for processing

(conversation history), what channel is used to converse (channel), and

the medium of the message (text, image, voice, emoji, etc.). The unsaid

thing is the context, which needs to be maintained by a successful chatbot.

For example, below is a conversation showing how context is

important.

Conversation context: User chatting about the food

order (2345) he canceled last night.

Chapter 3 Chatbot Development Essentials

37

Case 1: No Context Maintained Case 2: Context of Chat Maintained

User: Why refund not processed for my

food order?

Chatbot: Please provide your OrderID

User: 2345

Chatbot: Your refund is processed and

will be updated in your account in 2 days.

User: Why refund not processed for my

food order?

Chatbot: Your refund is processed and

will be updated in your account in 2 days.

In Case 1, the context is not maintained, so every conversation needs

all the information to be supplied to the chatbot. In Case 2, the chatbot

keeps the context of the conversation from where it started and also tries to

identify the query to the same meaning.

Building on this generic example, the chatbot needs to be trained in

specific business language, terminologies and operating dialect. If you are

developing a chatbot for a bank, you need to understand that “time deposit

account,” “checking account,” and “roll over” refer to specific features at a

bank. This is very important, since your user won’t want to explain what

they are talking about to the chatbot time and again.

The business context is built at the Natural Language Processing (NLP)

layer, and the conversation framework manages functionality. This specific

training for global business context and language requires looking into

past conversations with customers.

Note E very conversation may have a global context and a dialogue-
specific context. For example, talking about life insurance is the
global context, and within that, talking about a particular policy is the
conversation context.

Chapter 3 Chatbot Development Essentials

38

�Policy Compliance
Every conversation can lead to many types of requests to be fulfilled by

the chatbot. The crucial questions then becomes, to fulfill a user request,

what is the compliant way to dispose of that information? The policies and

government regulations decide what is allowed and what is not allowed,

and if allowed, how to access that information.

For example, suppose a user wants to update his home address for his

insurance. This, from a technology perspective, can be as simple as passing

the following information to the chatbot (after authentication):

User: Update my home address to XYZ, sector-8,

India

Chatbot: Address updated to XYZ, sector-8, India

But there are new questions. Is customer allowed to change his

address by just providing this command? How would this happen at an

actual bank branch? What are the processes and policies that govern an

address change?

A policy and regulation guide is essential to drive the conversation

through the chatbot. The business process, as well as statutory

compliance, needs to be followed across channels for any request to be

persisted in the system. For example, updating the address should not be

performed even if the request has been confirmed. It may require asking

for address proof, reason, waiting three days, or some other process before

updating the address.

The chatbots created for customer service need to be carefully taught

the must-follow rules or steps to fulfill a request. These rules can differ

based on the business and purpose of the chatbot. These steps need to be

implemented as strict “AND” conditions in chatbot logic.

Chapter 3 Chatbot Development Essentials

39

�Security, Authentication, and Authorization
Chatbots can be allowed to access private information or remain on

another channel to distribute public information conversationally.

Authenticating and authorization are two essential layers for securing

a conversation. A secure communication channel is vital to make sure

the data exchanged between the user and the chatbot is encrypted and

transferred over a very secure medium.

Security policies can be enforced by having conversations over the

HTTPS protocol, having a firewall, and other industry best practices.

The security layer must be taken care of by the network technology and

technical architecture to secure all the conversations. The security features

can be inherited from the existing framework of the business and need not

be designed separately, in most cases.

As seen in Figure 3-1, the user first needs to establish the identity via

the authentication process. The authentication process generally involves

providing a username and password, and in multi-factor authentication,

additional information like an OTP or PIN. The successful authentication

establishes the user identity as per system records. The next process is to

establish the permissions the user has in the system. Authorization is also

called role management in business terminology, and hence the business

needs to assign roles/permissions for each authenticated user before

deployment of the chatbot.

Chapter 3 Chatbot Development Essentials

40

The chatbot needs to authenticate its users to ascertain if they are

allowed to access chatbot features, and if allowed, which features are

allowed for which user. This becomes more important when your chatbot

connects to the backend system for accessing information like HRM, CRM,

and other methods. In many cases, an Identity Management System (IMS)

like Active Directory can be used to create authentication and access the

control mechanism for the chatbot as well. A typical authentication can be

a multi-factor login system or an access PIN for authorized users.

Authorization is another essential layer in the accountability

framework and it allows the enterprise to control access to the resources.

This also controls the access control layer where the systems check what

areas or functionality the authenticated user is allowed to access. This is

very important because multiple users will want to use the same source

Figure 3-1.  Reference accountability framework

Chapter 3 Chatbot Development Essentials

41

of information in multiple independent conversations, and we want to

protect the data and deliver only what the user is authorized to access as

per their role and policies.

Figure 3-2 shows how typical access is granted for an application;

it’s valid for chatbots as well. We can create a full, custom authentication

and authorization service or use third-party tools like AuthO, Active

Directory, etc. In the shown approach, the application asks the user for

their credentials and sends them to the auth service. Once authenticated,

it returns a token with authorization details, which can be used by the

chatbot to interact with the user.

�Accuracy of User Input Translation to Systems
The chatbot logic creates an interface between the user inputs in

natural language and machine actionable inputs for retrieving

information. This interface needs to make sure that the translation is

accurate before the output is delivered to the user. This is the biggest

Figure 3-2.  Authentication and authorization service

Chapter 3 Chatbot Development Essentials

42

challenge NLP-based chatbots face today, and hence one of the

substantial research areas. Let’s explain this with an example:

Input Chatbot Logic Generated Query System Output

User: Tell me the status

of my salary for April

2019

Select status from payroll_table where

empID=UserID and month=“ April” and

year=“2019”

Your salary status

is “<RESPONSE

FROM QUERY>”

User: When I will get

my last month’s salary?

Select status from payroll_table where

empID=UserID and month= ?? and

year= ??

Your salary status

is “<RESPONSE

FROM QUERY>”

In this example, Input 1 and Input 2 need to get the same result from

the system. The chatbot logic needs to resolve for the two inputs before it

can fetch the correct information for the user. Here are the challenges and

requirements of making sure the query gets accurate data for the system

to respond. If the chatbot logic is unable to create the right question, the

results will not be correct and may even cause unauthorized information

to be shared with users unintentionally.

�Chatbot Development Approaches
The chatbot development approach refers to how to build the chatbot

logic. The critical consideration in selecting the approach is the balance

between natural language abilities and accuracy of results. As you know,

NLP comes with a challenge of understanding the natural conversations

and translating them to machine actions; a balance must be maintained.

As shown in Figure 3-3, there is a general classification of chatbots

based on their abilities and the extent of AI built within them. The critical

axis over which we classify chatbots is conversation scope and machine

responses.

Chapter 3 Chatbot Development Essentials

43

The focus of this book and our discussion is on closed domain

conversations, where we can have either a rule-based approach or create

smart machines using an AI-based approach. In this section, we describe

the two popular types of development approaches.

�Rules-Based Approach
The rules-based approach, also called the menu-driven approach, works

as an extension of self-help portals with a better experience. The critical

difference is with the navigation to solutions. In a self-help portal, you

need to navigate to the right options manually, while in menu-based

chatbots, the navigation can be done using natural language and then

actions are performed using menus. See Figure 3-4.

These kinds of chatbots are prevalent and usually high in usage across

industry use cases that are integrated with CRM and other data systems.

Impossible

Rule-Based
[Easiest]

General AI
[Hardest]

Smart Machine
[Hard]

Open
Domain

Closed
Domain

Retrieval Based Generative Based

Machine Responses

Co
nv

er
sa

tio
n

Sc
op

e

Figure 3-3.  Chatbot classification based on conversation types and
response types

Chapter 3 Chatbot Development Essentials

44

As shown in Figure 3-4, a chatbot attempts to understand the user

question and then presents a menu to choose the next action. The list

makes sure the backend knows what exact operation needs to be done to

fulfill the request.

�Advantages of the Menu-Based Approach

There are some advantages to the menu-based approach:

•	 The accuracy of the response is confirmed by the design.

Figure 3-4.  Menu-driven chatbot interface

Chapter 3 Chatbot Development Essentials

45

•	 It’s based on heuristics rather than complicated NLP,

and is easy to understand and implement.

•	 It’s easy to extend to new menu items without

retraining the core.

�Disadvantages of the Menu-Based Approach

With the advantage of excellent accuracy and easy implementation, there

come some limitations:

•	 The functionality is strictly limited to the templates’ code.

•	 The fulfillment is of two steps: understand the context

and bring the menu up. After the menu click, fulfill

the request.

•	 It offers limited natural language conversations since the

chatbot do not understand beyond the coded situations.

Even with these limitations, the menu-driven approach is very

successful when accuracy is more important than the experience of a

natural conversation.

�AI-Based Approach
The AI-based approach is based on an advanced NLP engine to support

natural language and fulfill the request based on ML algorithms and

system integration for dynamic information retrieval. The accuracy of the

chatbot is lower at the start and increases over time.

The critical difference between the menu-based and AI-based

approach is the NLP engine. An NLP engine is responsible for extracting

the information present in the user input. Moreover, based on the

extracted information, the chatbot needs to decide the next steps.

Chapter 3 Chatbot Development Essentials

46

As shown in Figure 3-5, the critical role of the NLP engine is to

extract information from the natural language input. The accuracy of the

information extraction is critical because it will decide the outcome of the

conversation and be persisted in the system. The NLP engine needs to

extract the information required to instruct the system to act. In the menu-

driven approach, the user must engage with menus to select exact details

before the system can act.

�Advantages of the AI-Based Approach

The AI-based approach comes with many advantages and customer-

centric benefits:

•	 Advanced conversations can happen without the user

going into multiple steps for actions.

•	 The NLP engine can deal with unseen scenarios and

numerous texts.

•	 The chatbot can learn to create custom responses from

scratch (natural language generation).

Figure 3-5.  The NLP engine extracts exact information based on ML
techniques

Chapter 3 Chatbot Development Essentials

47

�Disadvantages of the AI-Based Approach

The problems of the AI-based approach are mostly due to the complexity

involved:

•	 The NLP engine is complex to train, maintain, and

improve.

•	 The accuracy of responses suffers since the NLP output

is not 100% correct.

•	 It requires a vast amount of data for a working chatbot

NLP engine.

�Conversational Flow
Chatbots for closed-domain applications are built with a defined purpose

and functionalities that the chatbot will provide as features to the user. To

be able to cover the possible cases of conversation or the user inputs, we

must define the scope and all of the flows possible. The flow definitions are

essential since we must follow policies to be able to provide access to the

required data.

Conversation flow is a decision tree that describes the possible list

of events, decisions, and outcomes of a conversation at any point in the

conversation. This type of flow secures higher relevance when the context

needs to be maintained and the response from the system is not a single

step. An example of a conversation flow is shown in Figure 3-6.

Chapter 3 Chatbot Development Essentials

48

The flow starts with a welcome message and either provides a menu

(if it’s a rule-based chatbot) or the user asks a sentence (entirely AI-driven

chatbot). Once the chatbot NLP logic identifies which functionality

the user requires, there is a decision point to take the user to that

conversation path. If the user wants to check the status of an order, his

next conversational decision point is to enter the order number. Once the

chatbot receives a valid order id, the backend calls for action to retrieve

information for that order and take it back to the user. This flow maintains

the context as well, so if he needs to track another order, he need not start

from the root but can just enter another order id and the chatbot will know

to track the order status.

In more advanced chatbots, you can pass multi-intents in one line,

but technically the chatbot will process the request in the same flow.

Welcome Message

Check what’s new Place an order

Please provide the order ID Order ID matched?

Trigger search in DB for
status

Your order is out for
delivery

Take back to Enter screen

Track an Order Other

NO

YES

Figure 3-6.  Sample conversation flow

Chapter 3 Chatbot Development Essentials

49

So “Track my order number 465” is a single input from the user, which

should fetch the same result. The multi-intent chatbots are difficult to

build, and chances of error are high.

Creating a chatbot flow is essential since this defines the scope

of features and improves the accuracy of the chatbot for the user. It is

imperative to make it clear to the user what the chatbot is meant to do for

them and maybe define the features beforehand. The exception cases can

always be transferred to default responses or a human executive.

�Key Terms in Chatbots
The development of chatbots has become a full-bodied development

process, which means it is essential for you to understand the terminology

of chatbots before you attempt to develop one. The key terms used in

chatbot development also have multiple variants as professed by leading

chatbot platform providers like Amazon, Google, etc.

In this section, we will discuss some key terms frequently used in

chatbot development. In further chapters, we will use these concepts and

terminologies to show how to develop the chatbot from scratch.

�Utterance
Utterance refers to anything that user inputs to the chatbot. The full end-

to-end input makes an utterance, such as “Get me status of my order id

345,” “What is the temperature today?,” “Hello,” “Good Morning,” etc.

Utterances are used to develop a classifier for intents in development.

The chatbot stores as many possible utterances in the database, which

are the questions asked by the user, and clusters them in different intents,

which represent what the user wanted to say.

For developing a chatbot for insurance, we will need to capture actual

questions asked by users from different channels, such as chats, emails,

Chapter 3 Chatbot Development Essentials

50

office visits, customer value center, etc. We will use all this historical data

to train the chatbot to know the actual requirement of the user and which

conversational flow to use.

�Intent
The intent is the intention of the user identified from the utterance

captured by the chatbot. Identifying intent is the essential function of a

chatbot. In menu-driven chatbots, the menus help the user to pinpoint the

intent, while in AI-based chatbots, identifying intent is a task done by the

NLP engine.

The successful matching of intent decides the flow of conversation and

delivers the correct response to the user. In domain-specific chatbots, the

intents could be different from general intents, and hence domain-specific

training is required.

For example, for the utterance of “Show me the stock price of Apple,”

the intent is to find the stock price. Let’s call this intent as showStockPrice.

showStockPrice is the main intent of the user, while the term “Apple” is the

entity, also called a slot.

�Entity
Entity gives meaning to the intent by providing additional value to the

utterance. An entity can be defined as subordinate to the intent, which tells

us the intent is related to which subclass. In this example, “Apple” is the

entity of @company_name for the intent #showStockPrice.

Entities, or slots, when maintained in sessions, help retain the

context of the conversation. In this example, after this first utterance we

replied with the price. Just after that, the next utterance could be “and

for Microsoft.” In this case, the chatbot has already captured the intent as

showStockPrice, so the slot changes to Microsoft and the chatbot can fetch

a stock price of Microsoft.

Chapter 3 Chatbot Development Essentials

51

�Channel
The channel is the medium used by the chatbot to connect with the user

and fulfill their request. Nowadays, all social media messengers allow

chatbots for conversations (e.g., Facebook Messenger, Slack, Skype, etc.).

However, for an application like our 24x7 Insurance Agent, we want

to have our developed channel remain compliant with privacy laws and

provide an added layer of security when we access the private information

of users.

�Human Takeover
The human takeover is a term used to denote human fallback during

a conversation. Modern chatbots come with the feature of fallback to

human assistance when the chatbot fails to understand intents and extract

entities, or the confidence is NLP output is low.

Human takeovers can be of two types:

•	 A human takeover by choice: At any moment the user

can choose to talk to a human, maybe because they

are more comfortable with humans or the chatbot isn’t

solving their issues.

•	 A human takeover by confidence: A confidence

filter may decide if we can fulfill the request with

high confidence; if not, the request is automatically

transferred to a human without a choice for the user.

This provides a seamless experience for the user.

Chapter 3 Chatbot Development Essentials

52

�Use Case: 24x7 Insurance Agent
The chatbot that will be discussed throughout the book is based on the use

case of an insurance agent. AI-driven chatbots will be discussed using the

multiple aspects of security, natural language ML techniques, deployment,

and business purposes. Each chapter will discuss some component of

developing this chatbot.

Now you know the essential conditions for planning the 24x7

Insurance Agent, including setting the business context, type of

development policies, and other considerations. In this section, we will

define the aspects for 24x7 Insurance Agent, due to scope all features will

not be explicitly implemented.

•	 Business context: The 24x7 Insurance Agent will be

able to have necessary conversations in the insurance

domain. People may ask about their policies,

premiums, etc.

•	 Policy compliance: The policies can be taken from

the standard procedure followed at the customer

care center.

•	 Security, authentication, and authorization: We can

create a PIN-based authorization, while an IDS-based

authentication can also be used if the users already

have a product.

•	 Accuracy of user input translation to systems:

To ensure this, we can create a confidence filter-based

human takeover mechanism.

•	 The AI-based approach or menu-based approach:

Both should be fine as per need and balance between

flexibility and accuracy.

Chapter 3 Chatbot Development Essentials

53

•	 Conversational flows: The flows must be created by

sitting with the business and exploring its policies.

•	 The NLP training will require data of old conversations,

intent list, most frequent entities, etc.

These decisions will help the developer to select the right structure and

architecture for the chatbot solution.

�Summary
Chatbots offer opportunities and challenges. The opportunities outweigh

the challenges faced while developing one. In this chapter, we discussed

important considerations as you embark on the journey of developing

a chatbot, including defining business context, understanding policies

to access data, adopting best practices for security of conversations and

systems, and ensuring the accuracy of responses. Then we introduced the

types of development approaches and their advantages and disadvantages:

menu-based and AI-based. The concept of designing conversational flows

was covered, which helps create scope and deterministic structure to

respond to users. Critical terms used frequently in chatbot development

were explained: utterances, intent, entity, channel, and human takeover. In

the end, we outlined how to structure the solution for the 24x7 Insurance

Agent. The next chapter will introduce the solution architecture and how

enterprises can build a successful chatbot in-house.

Chapter 3 Chatbot Development Essentials

55© Abhishek Singh, Karthik Ramasubramanian, Shrey Shivam 2019
A. Singh et al., Building an Enterprise Chatbot,
https://doi.org/10.1007/978-1-4842-5034-1_4

CHAPTER 4

Building a Chatbot
Solution
Chatbots are complete solutions and are created as an independent

layer in any solution. The senior management also looks at chatbot

functionalities and ROI as an independent entity. The focus on

conversational technologies further demands a holistic view on chatbots

from solution and business returns perspectives. In previous chapters,

we demystified the essentials of developing a chatbot for a closed

domain. In this chapter, we will focus on how to build solutions using the

best available resources for a closed domain use case. The chapter will

also cover a thought process on how to measure success for a chatbot

implementation and managing the risks associated with chatbots.

�Business Considerations
Any business will ask the question, “What business value does a chatbot

add?” This question is to be answered with objectivity and time targets.

Technological advancements may allow us to implement advanced

chatbots and other solutions, but how they add value to the business is a

very subjective call. The business needs to evaluate all factors to ascertain

how a chatbot is good for their business.

56

�Chatbots vs. Apps
From technological point of view, the business must tackle an important

question, specifically relevant to closed domain chatbots: whether to go

for an app or a chatbot. In terms of functional features, both can provide

the same information for a given feature set. The key differential happens

to be chatbots being conversational in nature, while apps are self-service

applications.

The key considerations of chatbots vs. apps as mentioned by 2018 State

of Chatbot Report (www.drift.com/wp-content/uploads/2018/01/2018-

state-of-chatbots-report.pdf) are

•	 Chatbots are preferred to get quick answers for

questions and 24-hour access.

•	 Apps are preferred for ease of use and convenience.

A survey in the report lists some factors that a business must check

with their current needs:

•	 Quick answers to simple questions

•	 Getting 24-hour service

•	 Convenience

•	 Quick answers to complex questions

•	 Ease of communication

•	 Ability to easily register a complaint

•	 Getting detailed/expert answers

•	 A good customer experience

•	 Friendliness and approachability

•	 Having a complaint resolved quickly

Chapter 4 Building a Chatbot Solution

https://www.drift.com/wp-content/uploads/2018/01/2018-state-of-chatbots-report.pdf
https://www.drift.com/wp-content/uploads/2018/01/2018-state-of-chatbots-report.pdf

57

�Growth of Messenger Applications
Another factor driving the need for chatbots is the increasing usage of

messenger applications and a stable growth rate of having a mobile-

focused approach by companies. The customer is now connected 24 hours

to the Internet through their mobile handsets and wants to access services

via easy-to-use interfaces.

In early 2011, messenger applications started coming up and had

good adoption rates as mobile devices, internet connectivity, and cloud

computing also picked up at same time (www.businessinsider.com/

the-messaging-app-report-2015-11). Sometime in early 2015 we got

to the point where messenger applications, specifically WhatsApp and

Facebook Messenger, were at meteoric adoption rates and equalled the

activity on social networks. As the trend suggests, people are more active

on messenger applications compared to social media networks.

This trend points out the shift in consumer behaviors where chat is a

preferred mode of communication. And this implies that businesses need

to enable this channel of communication with customers as well using

either chatbots or human chats.

�Direct Contact vs. Chat
The increasing use of messenger apps has shifted the way customers want

to interact with businesses. In the early days of messenger apps, the studies

showed an increasing preference for contact via chats.

The survey by BI Intelligence as summarized by Chatbots Magazine

(https://chatbotsmagazine.com/chatbot-report-2018-global-trends-

and-analysis-4d8bbe4d924b) shows that as early as 2016, the mature

market customers adopted chats very quickly. The consumers believed

they could solve their issues faster over chat than calling a customer care

representative. They also felt more comfortable with chats because they

could keep them as a record for follow-ups, unlike phone conversations.

Chapter 4 Building a Chatbot Solution

http://www.businessinsider.com/the-messaging-app-report-2015-11
http://www.businessinsider.com/the-messaging-app-report-2015-11
https://chatbotsmagazine.com/chatbot-report-2018-global-trends-and-analysis-4d8bbe4d924b
https://chatbotsmagazine.com/chatbot-report-2018-global-trends-and-analysis-4d8bbe4d924b

58

�Business Benefits of Chatbots
Considering essential business aspects allows a company to decide

whether it wants to go ahead and build a chatbot or improve current apps/

channels. If the company decides to go ahead with a chatbot solution, it

needs to understand the key value creation by chatbots. Chatbots are now

accepted by users with different percentages in different industries, with

different adoption rates.

In the aforementioned Chatbots Magazine questionnaire, which asked

how comfortable you are with being assisted by an AI-based chatbot for

business communication, the response showed that people are most ready

for such conversations for online retail, generic healthcare queries, and

telecommunications.

Further, in the 2018 State of Chatbot Report, the top reasons for not

preferring chatbots are the need for assistance from a real person, less

awareness of chatbots, and possible blocks due to lack of accessibility of

channels (i.e., not having a Facebook account or access to a smartphone).

The studies indicate that there is a value in adding this channel if the

benefits for the company are high and your customer is comfortable being

assisted by AI-based chatbots. The two topmost value creations from

chatbots are discussed in following sections.

�Cost Savings
Undoubtedly the most important benefit for the company is cost savings

on customer service. The cost savings makes the best case for bringing

chatbots into the service delivery channel of company. While there are

lot of other strategic and growth benefits, the cost needs to justify all the

efforts and resources used for chatbot development and maintenance.

A BI Intelligence study (www.businessinsider.com/intelligence/

research-store?&vertical=mobile#!/The-Messaging-Apps-

Report/p/56901061) shows potential annual savings on salaries by

Chapter 4 Building a Chatbot Solution

https://﻿www.businessinsider.com/intelligence/research-store?&vertical=mobile#!/The-Messaging-Apps-Report/p/56901061﻿
https://﻿www.businessinsider.com/intelligence/research-store?&vertical=mobile#!/The-Messaging-Apps-Report/p/56901061﻿
https://﻿www.businessinsider.com/intelligence/research-store?&vertical=mobile#!/The-Messaging-Apps-Report/p/56901061﻿

59

augmenting the chatbots across various business functions. The highest

expenditure area for salaries is the customer service representatives,

where the savings are also highest. The cost reduction is clearly visible and

attributable to the use of chatbots across the functions in insurance sales,

reporting, sales, and customer service.

�Customer Experience
Customer experience is the second most impactful factor for introducing

chatbots to a business. The customer experience brings a multitude of

values to the business, not just limited to direct sales or savings. The

benefits of good customer experience include

•	 High brand value and recall

•	 High lifetime values (improved engagement)

•	 Brand differentiator from competitors

There are many other derived factors due to a happy customer

experience. A loyal customer base is a recipe for long-term success.

The Chatbots Magazine summary points out features that contribute

to a good and unique customer experience derived from chatbots. The key

points are listed below for reference:

•	 24-hour service

•	 Getting an instant response

•	 Answers to simple questions

•	 Easy communication

•	 Complaints resolved quickly

•	 A good customer experience

•	 Detailed/expert answers

Chapter 4 Building a Chatbot Solution

60

•	 Answers to complex questions

•	 Friendliness and approachability

The variety of new features attracts customers and creates unique

value for companies.

�Success Metrics
Success metrics are important to define at the start of any chatbot

development. The metrics work as a compass to direct the solution and the

intended benefits of the chatbot. While there are success metrics related to

the accuracy of the NLP engine, the intent classifiers, and other technical

aspects, in this section we will only talk about success metrics from a

business perspective.

The success metrics need to be manageable and measurable with a

simple explanation to the business. We will discuss a few metrics that can

be used to track and manage the success of chatbots. The metrics focus on

success when you compare a chatbot interaction with a human interaction.

�Customer Satisfaction Index
The Customer Satisfaction Index (CSI) measures a customer service

representative’s quality of interaction by following up with the customer

with a small survey and capturing their experience of the interaction. CSI

is one of the most impactful metrics to monitor because it provides not

only the satisfaction scale but also the areas of improvement.

�Completion Rate
The Completion Rate (CR) is defined as the proportion of interactions

with a chatbot that ended as the solution resolved for the customer. This

metric tells us how many times the chatbot can complete a conversation

Chapter 4 Building a Chatbot Solution

61

and deliver the required responses to the user. A higher completion rate

indicates a more efficient chatbot service.

�Bounce Rate
Bounce rate (BR) can be defined as how many users move away from chat

after typing in one or two inputs to the chatbot. A high bounce rate means

the chatbot is not successful in engaging the user and this must reflect in

some of the customer feedback.

Along with bounce rate, we also measure the reuse rate (RR), which

refers to how many customers come back and use the chatbot again. BR

is a perfect metric to identify those people who more tend to use chatbots

and target similar customer segments.

�Managing Risks in Chatbots Service
New technology channels do bring risks. Customers and companies need

to understand the risks involved with using chatbots for any transaction

or information exchanged through chatbots. The risk is to be understood,

communicated, and mitigated before general customers are allowed to use

the chatbot services.

�Third-Party Channels
Banks and other financial institutions are very much aware about

opening a new channel for users to access financial services. While it adds

convenience to the customers, it brings some risks as well. Technology is

growing way faster than the risk frameworks we have. By the time a general

user is able to figure out the risk with usage or best practices for using

chatbots, they may already face a security breach.

Chapter 4 Building a Chatbot Solution

62

Top security risks arise from the communication channels for chatbots

because they are external to the bank’s security control. For example, a

customer interacting through Facebook Messenger is interacting with the

bank systems using the Facebook platform, which may have vulnerabilities

and is not designed for banking operations, just generic chats among people.

In a 2018 survey undertaken by Synopsys, 36% of respondents indicated

that customer-facing web applications remain the top security risk to

businesses in the Asia-Pacific. September 2018’s admission by Facebook

that a security breach had affected more than 50 million accounts came as a

timely reminder that even tech giants aren’t spared. (Source: finews.asia).

These cases require financial institutions to limit functionalities through

public channels for chatbot messengers. Developing an end-to-end chatbot

experience can reduce this risk as well, but adoption remains a challenge.

�Impersonation
Another very prominent risk arises from impersonation. Impersonation

can result in similar looking chatbots, or humans having conversations

using fake windows, hacking social media, and other sources of

impersonation. The banks already face a lot of fraud due to criminal

ingenuity from fraudsters and spend millions in education for phishing,

vishing, and other impersonation attacks.

Two-factor authentications are one possible way to reduce the

impersonation attacks by having two-step verification from two different

sources. In most cases, hackers are not able to crack both factors of

authentication and are less likely to be successful in fraudulent transactions.

�Personal Information
Personal information revealed through the chatbot channels is a

challenge for banks to manage. It is challenging to control users who may

accidentally enter their personal information to get access to a service.

Chapter 4 Building a Chatbot Solution

63

As the chatbots are driven by natural language, the chances of revealing

personal details are high.

The chatbots need to make sure that they use as little information as

possible. It’s better to create a PIN with adequate access control so that the

user never needs to disclose personal information; they can just use the

PIN. Educating the users is an essential step to make sure the user is aware

and alert for any fraud.

�Confirmation Check
Confirmation is the most impactful and sometimes last resort to make

sure transactions done via chatbots are legitimate. Fraudulent or mistaken

transactions are possible using chatbots. As new technology comes into

user service, it takes time for the users to understand the right use of the

service, and in this process, they might do some illegal transactions as well.

For any transaction that seems to be an anomaly or unexpected,

it’s always good to call up the customer and ask for confirmation before

processing it. This check saves the user and bank from fraud.

�Generic Solution Architecture for Private
Chatbots

Solution architecture is a practice of defining and describing
an architecture of a system delivered in context of a specific
solution and as such it may encompass a description of an
entire system or only its specific parts. Definition of a solution
architecture is typically led by a solution architect.

Source: Wikipedia

In this section, we present a reference solution architecture you can

apply, with minor modification, to the ideas presented so far (Figure 4-1).

Chapter 4 Building a Chatbot Solution

64

The architecture captures at a high level how the solution will work.

This is not the same as technical architecture, which explains the specific

components and their configurations to make the solution work. The

precise technical architecture is built as per requirements and is out of

scope for the book to cover. The following subsections expand the solution

architecture with other vital information to explain it.

�Workflow Description
Here is the workflow:

	 1)	 Conversation interface: We will develop the

interface from scratch; it does not depend upon

third-party interfaces (e.g., Skype, Telegram, etc.).

This will help us create customized interfaces for

the organization’s need and extend other features as

required. The interface can be an entirely new mobile

app for the iOS, Android, and Windows platforms.

Figure 4-1.  Solution architecture of the 24x7 Insurance Agent

Chapter 4 Building a Chatbot Solution

65

	 2)	 MFA and Active Directory: The authentication

system will be built at the back end to authenticate

devices (MS Intune), users (Active Directory), and

applications (by PIN). We will make it on a node

environment to allow integration to other identity

management services as well. In the natural form,

we will only have PIN verification to access the

application.

	 3)	 NLP engine: The NLP engine will be built to accept

text inputs from a queue and extract intent and

apply context to the incoming query. Once the

question is broken into the required components,

it’s sent to the bot logic.

	 4)	 Bot logic: This is the core handler of the incoming

request. It will have two core inputs before

processing the request. The bot logic does not call

information services until it has satisfied the process

set as per the below two methods. If there isn’t

enough information for the bot logic to reply, it’ll

ask the user for more information.

	 a)	 Policy interaction flows: These flows are bank expert-

designed workflows for the incoming request (e.g., if

someone asks for an update of address, what are the essential

steps for a reply?) The steps will make sure the user complies

with the steps to get an answer. This ensures that all policies,

statutory or internal, are followed by the bot, just like an

informal HR. Also, policies and FAQ can be defined here.

Chapter 4 Building a Chatbot Solution

66

	 b)	 Machine learning: The request that requires a machine

learning algorithms to improvise the output is requested

from here (e.g., can I request a statement from March 15 to

March 18?) This needs a machine to apply appropriate logic

to extract dates, an employee id, and an existing account

balance to create the right query to the information system.

Further, sophisticated features like the mood of the employee,

the urgency of the request, and the sentiment of the question

will be built here.

	 5)	 Information service: This is the place where

real-time information is fetched for the employee

request. This service handles all appeals and

prepares responses AND can also send a request for

actions as well. The information service will talk to

three core data services:

	 a)	 Data lake/databases: If some data needs to be fetched from

some database or data lake of corporate.

	 b)	 Third-party APIs/ODBCs: Interacts with HR systems via

ODBC/APIs or some other method that exposes itself with

REST APIs.

	 c)	 Human HR: If there’s a low score of confidence in the reply, it

will transfer the request to HR for a response through the chat

interface.

Chapter 4 Building a Chatbot Solution

67

	 6)	 Actions: The information service will also route

the requests asking for some work to the actions

item management queue (e.g., a request for leave

for tomorrow). This request requires an update

in PeopleSoft or the HR system. All such change

requests will be routed to an HR approval (can be

direct as well); once approved, either by real HR or

by a policy-based rule, it will be sent to an action

queue. HR can support broadcast here, and they can

be delivered by an actions workflow.

	 7)	 Updates in real systems: For authorized and

approved requests, we update them directly in the

HR system and trigger a notification to the chatbot

user and also trigger emails and other built-in

process flows of the banking system.

�Key Features
Below are the key features:

•	 Built for you: We will make the bot for specific needs,

not fitting those needs to existing bot frameworks.

•	 Data privacy by design: The bot is developed with data

privacy by design. It will be fully compliant with local

laws and internal laws.

•	 Developed with a microservices architecture:

The entire application will be based on principles of

microservices and hence will allow future-proof design

and also advanced application development on top of

the framework.

Chapter 4 Building a Chatbot Solution

68

•	 Options for deployment: We can choose which

components we want to deploy on-premise or on

the public cloud. Based on needs, we can create a

deployment plan.

•	 Extensible: We can integrate as many APIs or AI/

Ml features as deemed fit for use. All the new future

changes can be consumed as APIs in the framework.

�Technology Stack
Now the technology stack:

•	 Core engine: Java and JavaScript

•	 Backend server: NodeJS and other JavaScript

•	 Front-end server: Mobile apps based on native

frameworks

•	 Log management: Cloud store of a small Hadoop

cluster. Also, these stored conversational logs provide

data for AI/ML model training.

•	 Visualization: Can be custom created using D3; if self-

service is required, then Tableau/PowerBI integration

with the logs.

•	 Search: Elastic Search to search the conversation logs.

�Maintenance
There are two critical streams in terms of maintenance scope:

•	 The technology: Application uptime will be

maintained with the help of on-premise engineers and

an on-call channel for all queries.

Chapter 4 Building a Chatbot Solution

69

•	 The AI/ML brain: This will be done offsite by a team

of data scientists and updates will be pushed to the

systems when ready.

�Summary
The chapter described the business considerations for a chatbot solution

and listed the benefits of the chatbot. The market growth of messengers is

a good sign, indicating that users are adapting to messengers, so a service

chatbot can add to their experience and reduce the cost for the company.

Third-party studies show the impact chatbots are creating in businesses

and how they are bringing digital channels close to natural language.

The next section talked about the success metrics that must be defined

to manager and improve the chatbot. The essential metrics include the

Customer Satisfaction Index (CSI) and Conversion Index (CI).

Further, the chapter also discussed the potential risks of chatbots

and how to manage them. The most prominent risks are impersonation

and hacking of credentials. Both of these risks require education and

secure authentication systems. In the end, we show a reference solution

to develop a chatbot. The architecture, workflow, technology stack, and

maintenance notes provide enough information to build your chatbot

solution as per certain needs. In the following chapters, you will learn

about critical areas of natural language sciences, including understanding

(NLU), processing (NLP), and generation (NLG). And then we will discuss

the implementation of features using open source technology and in-

house-developed frameworks.

Chapter 4 Building a Chatbot Solution

71© Abhishek Singh, Karthik Ramasubramanian, Shrey Shivam 2019
A. Singh et al., Building an Enterprise Chatbot,
https://doi.org/10.1007/978-1-4842-5034-1_5

CHAPTER 5

Natural Language
Processing,
Understanding,
and Generation
The human brain is one of the most advanced machines when it comes

to processing, understanding, and generating (P-U-G) natural language.

The capabilities of the human brain stretch far beyond just being able

to perform P-U-G on one language, dialect, accent, and conversational

undertone. No machine has so far reached the human potential of

performing all three tasks seamlessly. However, the advances in machine

learning algorithms and computing power are making the distant dream of

creating human-like bots a possibility.

In this chapter, we will explore the P-U-G of natural languages and

their nuances with references to use cases and examples. Table 5-1

provides a quick summary of natural language processing (NLP), natural

language understanding (NLU), and natural language generation (NLG)

with a few functions and real-world applications. We will get into more

details on natural language processing, understanding, and generation in

their respective sections.

72

Ta
bl

e
5-

1.
 N

LP
, N

LU
, a

n
d

N
LG

Ty
pe

NL
P

NL
U

NL
G

Br
ie

f
Pr

oc
es

s
an

d
an

al
yz

e
w

rit
te

n
or

sp
ok

en
 te

xt
 b

y
br

ea
ki

ng
 it

 d
ow

n,

co
m

pr
eh

en
di

ng
 it

s
m

ea
ni

ng
, a

nd

de
te

rm
in

in
g

th
e

ap
pr

op
ria

te
 a

ct
io

n.
 It

in
vo

lv
es

 p
ar

si
ng

, s
en

te
nc

e
br

ea
ki

ng
,

an
d

st
em

m
in

g.

A
sp

ec
ifi

c
ty

pe
 o

f N
LP

 th
at

he
lp

s
to

 d
ea

l w
ith

 re
ad

in
g

co
m

pr
eh

en
si

on
, w

hi
ch

 in
cl

ud
es

th
e

ab
ili

ty
 to

 u
nd

er
st

an
d

m
ea

ni
ng

 fr
om

 it
s

di
sc

ou
rs

e

co
nt

en
t a

nd
 id

en
tif

y
th

e
m

ai
n

th
ou

gh
t o

f a
 p

as
sa

ge
.

NL
G

is
 o

ne
 o

f t
he

 ta
sk

s
of

 N
LP

to
 g

en
er

at
e

na
tu

ra
l l

an
gu

ag
e

te
xt

 fr
om

 s
tru

ct
ur

ed
 d

at
a

fro
m

 a

kn
ow

le
dg

e
ba

se
. I

n
ot

he
r w

or
ds

,

it
tra

ns
fo

rm
s

da
ta

 in
to

 a
 w

rit
te

n

na
rr

at
iv

e.

Fu
nc

tio
ns

Id
en

tif
y

pa
rt

of
 s

pe
ec

h,
 te

xt

ca
te

go
riz

in
g,

 n
am

ed
 e

nt
ity

 re
co

gn
iti

on
,

tra
ns

la
tio

n,
 s

pe
ec

h
re

co
gn

iti
on

Au
to

m
at

ic
 s

um
m

ar
iz

at
io

n,

se
m

an
tic

 p
ar

si
ng

, q
ue

st
io

n

an
sw

er
in

g,
 s

en
tim

en
t a

na
ly

si
s

Co
nt

en
t d

et
er

m
in

at
io

n,

do
cu

m
en

t s
tru

ct
ur

in
g,

ge
ne

ra
tin

g
te

xt
 in

 in
te

ra
ct

iv
e

co
nv

er
sa

tio
n

Re
al

-W
or

ld

Ap
pl

ic
at

io
n

Ar
tic

le
 c

la
ss

ifi
ca

tio
n

fo
r d

ig
ita

l n
ew

s

ag
gr

eg
at

io
n

co
m

pa
ny

Bu
ild

in
g

a
Q&

A
ch

at
bo

t,
br

an
d

se
nt

im
en

t u
si

ng
 T

w
itt

er
 a

nd

Fa
ce

bo
ok

 d
at

a

Ge
ne

ra
tin

g
a

pr
od

uc
t d

es
cr

ip
tio

n

fo
r a

n
e-

co
m

m
er

ce
 w

eb
si

te
 o

r a

fin
an

ci
al

 p
or

tfo
lio

 s
um

m
ar

y

Chapter 5 Natural Language Processing, Understanding, and Generation

73

�Chatbot Architecture
When it comes to building an enterprise chatbot, you have so far seen

how to identify data sources, design the chatbot architecture, list business

use cases, and many other concepts that help an enterprise to process

efficiently, reduce manual labor, and reduce the cost of operations. In this

chapter, we will focus on the core part of a chatbot: the ability to process

textual data and take part in a human-like conversation. Figure 5-1 shows

an architecture that utilizes the techniques from NLP, NLU, and NLG to

build an enterprise chatbot.

Figure 5-1.  Architecture diagram for chatbots

Chapter 5 Natural Language Processing, Understanding, and Generation

74

Let’s say an airline company has built a chatbot to book a flight via

their website or social media pages. The following are the steps as per the

architecture shown in Figure 5-1:

	 1.	 Customer says, “Help me book a flight for tomorrow

from London to New York” through the airline’s

Facebook page. In this case, Facebook becomes

the presentation layer. A fully functional chatbot

could be integrated into a company’s website, social

network page, and messaging apps like Skype and

Slack.

	 2.	 Next, the message is carried to the messaging

backend where the plain text passes through

an NLP/NLU engine, where the text is broken

into tokens, and the message is converted into a

machine-understandable command. We will revisit

this in greater detail throughout this chapter.

	 3.	 The decision engine then matches the command

with preconfigured workflows. So, for example,

to book a flight, the system needs a source and a

destination. This is where NLG helps. The chatbot

will ask, “Sure, I will help in you booking your flight

from London to New York. Could you please let me

know if you prefer your flight from Heathrow or

Gatwick Airport?” The chatbot picks up the source

and destination and automatically generates

a follow-up question asking which airport the

customer prefers.

Chapter 5 Natural Language Processing, Understanding, and Generation

75

	 4.	 The chatbot now hits the data layer and fetches

the flight information from prefed data sources,

which could typically be connected to live booking

systems. The data source provides flight availability,

price, and many other services as per the design.

Some chatbots are heavy on generative responses, and others are built

for retrieving information and fitting it in a predesigned conversational

flow. For example, in the flight booking use case, we almost know all the

possible ways the customer could ask to book a flight, whereas if we take

an example of a chatbot for a telemedicine company, we are not sure

about all the possible questions a patient could ask. So, in the telemedicine

company chatbot, we need the help of generative models built using NLG

techniques, whereas in the flight booking chatbot, a good retrieval-based

system with NLP and an NLP engine should work.

Since this book is about building an enterprise chatbot, we will focus

more on the applications of P-U-G in natural languages rather than going

deep into the foundations of the subject. In the next section, we’ll show

various techniques for NLP and NLU using some of the most popular

tools in Python. There are other Java and C# bases libraries; however,

Python libraries provide more significant community support and faster

development.

Further, to differentiate between NLP and NLU, the Venn diagram in

Figure 5-2 shows a few applications of NLP and NLU. It shows NLU as a

subset of NLP. The segregation is only in the tasks, not in the scope. The

overall objective is to process and understand the natural language text to

make machines think like humans.

Chapter 5 Natural Language Processing, Understanding, and Generation

76

�Popular Open Source NLP and NLU Tools
In this section, we will briefly explore various open source tools available

to perform natural language processing, understanding, and generation.

While each of these tools does not differentiate between the P-U-G of

natural language, we will demonstrate the capabilities of tools under the

corresponding three separate headings.

Figure 5-2.  Applications of NLP and NLU

Chapter 5 Natural Language Processing, Understanding, and Generation

77

�NLTK
The Natural Language Toolkit (NLTK) is a Python library for processing

English vocabulary. It has an Apache 2.0 open source license. NLTK is

written in the Python programming language. The following are some of

the tasks NLTK can perform:

•	 Classification of text: Classifying text into a different

category for better organization and content filtering

•	 Tokenization of sentences: Breaking sentences into

words for symbolic and statistical natural language

processing

•	 Stemming words: Reducing words into base or root form

•	 Part-of-speech (POS) tagging: Tagging the words

into POS, which categorizes the words into similar

grammatical properties

•	 Parsing text: Determining the syntactic structure of

text based on the underlying grammar

•	 Semantic reasoning: Ability to understand the

meaning of the word to create representations

NLTK is the first choice of a tool for teaching NLP. It is also widely used

as a platform for prototyping and research.

�spaCy
Most organizations that build a product involving natural language data

are adapting spaCy. It stands out with its offering of a production-grade

NLP engine that is accurate and fast. With the extensive documentation,

the adaption rate further increases. It is developed in Python and Cython.

All the language models in spaCy are trained using deep learning, which

provides high accuracy for all NLP tasks.

Chapter 5 Natural Language Processing, Understanding, and Generation

78

Currently, the following are some high-level capabilities of spaCy:

•	 Covers NLTK features: Provides all the features of

NLTK-like tokenization, POS tagging, dependency

trees, named entity recognition, and many more.

•	 Deep learning workflow: spaCy supports deep

learning workflows, which can connect to models

trained on popular frameworks like Tensorflow, Keras,

Scikit-learn, and PyTorch. This makes spaCy the most

potent library when it comes to building and deploying

sophisticated language models for real-world

applications.

•	 Multi-language support: Provides support for more

than 50 languages including French, Spanish, and

Greek.

•	 Processing pipeline: Offers an easy-to-use and very

intuitive processing pipeline for performing a series

of NLP tasks in an organized manner. For example,

a pipeline for performing POS tagging, parsing the

sentence, and named the entity extraction could be

defined in a list like this: pipeline = ["tagger,"

"parse," "ner"]. This makes the code easy to read

and quick to debug.

•	 Visualizers: Using displaCy, it becomes easy to draw a

dependency tree and entity recognizer. We can add our

colors to make the visualization aesthetically pleasing

and beautiful. It quickly renders in a Jupyter notebook

as well.

Chapter 5 Natural Language Processing, Understanding, and Generation

79

�CoreNLP
Stanford CoreNLP is one of the oldest and most robust tools for all natural

language tasks. Its suite of functions offers many linguistic analysis

capabilities, including the already discussed POS tagging, dependency

tree, named entity recognition, sentiment analysis, and others. Unlike

spaCy and NLTK, CoreNLP is written in Java. It also provides Java APIs to

use from the command line and third-party APIs for working with modern

programming languages. The following are the core features of using

CoreNLP:

•	 Fast and robust: Since it is written in Java, which is

a time-tested and robust programming language,

CoreNLP is a favorite for many developers.

•	 A broad range of grammatical analysis: Like NLTK

and spaCy, CoreNLP also provides a good number

of analytical capabilities to process and understand

natural language.

•	 API integration: CoreNLP has excellent API

support for running it from the command line and

programming languages like Python via a third-party

API or web service.

•	 Support multiple Operating Systems (OSs): CoreNLP

works in Windows, Linux, and MacOS.

•	 Language support: Like spaCy, CoreNLP provides

useful language support, which includes Arabic,

Chinese, and many more.

Chapter 5 Natural Language Processing, Understanding, and Generation

80

�gensim
gensim is a popular library written in Python and Cython. It is robust and

production-ready, which makes it another popular choice for NLP and NLU.

It can help analyze the semantic structure of plain-text documents and come

out with important topics. The following are some core features of gensim:

•	 Topic modeling: It automatically extracts semantic

topics from documents. It provides various statistical

models, including latent Dirichlet analysis (LDA) for

topic modeling.

•	 Pretrained models: It has many pretrained models

that provide out-of-the-box capabilities to develop

general-purpose functionalities quickly.

•	 Similarity retrieval: gensim’s capability to extract

semantic structures from any document makes it an

ideal library for similarity queries on numerous topics.

Table 5-2 from the spaCy website summarizes if a given NLP feature is

available in NLTK, spaCy, and CoreNLP.

Table 5-2.  Features available in spaCy, NLTK, and CoreNLP

S.No. Feature spaCy NLTK CoreNLP

1 Programming language Python Python Java/Python

2 Neural network models Yes No Yes

3 Integrated word vectors Yes No No

4 Multi-language support Yes Yes Yes

5 Tokenization Yes Yes Yes

(continued)

Chapter 5 Natural Language Processing, Understanding, and Generation

81

�TextBlob
TextBlob is a relatively less popular but easy-to-use Python library that

provides various NLP capabilities like the libraries discussed above. It

extends the features provided by NLTK but in a much-simplified form. The

following are some of the features of TextBlob:

•	 Sentiment analysis: It provides an easy-to-use method

for computing polarity and subjectivity kinds of scores

that measures the sentiment of a given text.

•	 Language translations: Its language translation is

powered by Google Translate, which provides support

for more than 100 languages.

•	 Spelling corrections: It uses a simple spelling

correction method demonstrated by Peter Norvig

on his blog at http://norvig.com/spell-correct.

html. Currently the Engineering Director at Google, his

approach is 70% accurate.

S.No. Feature spaCy NLTK CoreNLP

6 Part-of-speech tagging Yes Yes Yes

7 Sentence segmentation Yes Yes Yes

8 Dependency parsing Yes No Yes

9 Entity recognition Yes Yes Yes

10 Entity linking No No No

11 Coreference resolution No No Yes

Table 5-2.  (continued)

Chapter 5 Natural Language Processing, Understanding, and Generation

http://norvig.com/spell-correct.html
http://norvig.com/spell-correct.html

82

�fastText
fasText is a specialized library for learning word embeddings and text

classification. It was developed by researchers in Facebook’s FAI Research

(FAIR) lab. It is written in C++ and Python, making it very efficient and fast

in processing even a large chunk of data. The following are some of the

features of fastText:

•	 Word embedding learnings: Provides many word

embedding models using skipgram and Continous Bag

of Words (CBOW) by unsupervised training.

•	 Word vectors for out-of-vocabulary words: It provides

the capability to obtain word vectors even if the word is

not present in the training vocabulary.

•	 Text classification: fastText provides a fast text

classifier, which in their paper titled “Bag of Tricks

for Efficient Text Classification” claims to be often at

par with many deep learning classifiers’ accuracy and

training time.

In the next few sections, you will see how to apply these tools to

perform various tasks in NLP, NLU, and NLG.

�Natural Language Processing
Language skills are considered the most sophisticated tasks that a human

can perform. Natural language processing deals with understanding and

manicuring natural language text or speech to perform specific useful

desired tasks. NLP combines ideas and concepts from computer science,

linguistics, mathematics, artificial intelligence, machine learning, and

psychology.

Chapter 5 Natural Language Processing, Understanding, and Generation

83

Mining information from unstructured textual data is not as

straightforward as performing a database query using SQL. Categorizing

documents based on keywords, identifying a mention of a brand in a

social media post, and tracking the popularity of a leader on Twitter are all

possible if we can identify entities like a person, organization, and other

useful information.

The primary tasks in NLP are processing and analyzing written

or spoken text by breaking it down, comprehending its meaning, and

determining appropriate action. It involves parsing, sentence breaking,

stemming, dependency tree, entity extraction, and text categorization.

We will see how words in a language are broken into smaller tokens

and how various transformations work (transforming textual data into a

structured and numeric value). We will also explore popular libraries like

NLTK, TextBlob, spaCy, CoreNLP, and fastText.

�Processing Textual Data
We will use the Amazon Fine Food Review dataset throughout this chapter

for all demonstrations using various open-source tools. The dataset can

be downloaded from www.kaggle.com/snap/amazon-fine-food-reviews,

which is made available with a CC0: Public Domain license.

�Reading the CSV File

Using a read_csv function from the pandas library, we read the Reviews.

csv file into a food_review data frame and print the top rows (Figure 5-3):

import pandas as pd

food_review = pd.read_csv("Reviews.csv")

food_review.head()

Chapter 5 Natural Language Processing, Understanding, and Generation

http://www.kaggle.com/snap/amazon-fine-food-reviews

84

As can be seen, the CSV contains columns like ProductID, UserID, Product

Rating, Time, Summary, and Text of the review. The file contains almost 500K

reviews for various products. Let’s sample some reviews to process.

�Sampling

Using the sample function from the pandas data frame, let’s randomly pick

the text of 1000 reviews and print the top rows (see Figure 5-4):

food_review_text = pd.DataFrame(food_review["Text"])

food_review_text_1k = food_review_text.sample(n= 1000,random_

state = 123)

food_review_text_1k.head()

Figure 5-4.  Samples

Figure 5-3.  A CSV file

Chapter 5 Natural Language Processing, Understanding, and Generation

85

�Tokenization Using NLTK

As discussed, NLTK offers many features for processing textual data. The

first step in processing text data is to separate a sentence into individual

words. This process is called tokenization. We will use the NLTK’s word_

tokenize function to create a column in the food_review_text_1k data

frame we created above and print the top six rows to see the output of

tokenize (Figure 5-5):

food_review_text_1k['tokenized_reviews'] = food_review_

text_1k['Text'].apply(nltk.word_tokenize)

food_review_text_1k.head()

Figure 5-5.  Top rows

�Word Search Using Regex
Now that we have the tokenized text for each review, let’s take the first row

in the data frame and search for the presence of the word using a regular

expression (regex). The regex searches for any word that contains c as

its first character and i as the third character. We can write various regex

searches for a pattern of interest. We use the re.search() function to

perform this search:

#Search: All 5-letter words with c as its first letter and i as

its third letter

Chapter 5 Natural Language Processing, Understanding, and Generation

86

search_word = set([w for w in food_review_text_1k['tokenized_

reviews'].iloc[0] if re.search('^c.i..$', w)])

print(search_word)

{'chips'}

�Word Search Using the Exact Word
Another way of searching for a word is to use the exact word. This can be

achieved using the str.contains() function in pandas. In the following

example, we search for the word “great” in all of the reviews. The rows of

the reviews containing the word will be retrieved. They can be considered

a positive review. See Figure 5-6.

#Search for the word "great" in reviews

food_review_text_1k[food_review_text_1k['Text'].str.contains('great')]

Figure 5-6.  Samples with a specific word

Chapter 5 Natural Language Processing, Understanding, and Generation

87

�NLTK
In this section, we will use many of the features from NLTK for NLP, such

as normalization, noun phrase chunking, named entity recognition, and

document classifier.

�Normalization Using NLTK

In many natural language tasks, we often deal with the root form of the

words. For example, for the words “baking” and “baked,” the root word

is “bake.” This process of extracting the root word is called stemming or

normalization. NLTK provides two functions implementing the stemming

algorithm. The first is the Porter Stemming algorithm, and the second is

the Lancaster stemmer.

There are slight differences in the quality of output from both

algorithms. For example, in the following example, the Porter stemmer

converts the word “sustenance” into “sustain” while the Lancaster

stemmer outputs “sust.”

words = set(food_review_text_1k['tokenized_reviews'].iloc[0])

print(words)

porter = nltk.PorterStemmer()

print([porter.stem(w) for w in words])

Before

{'when', 'always', 'great', 'vending', 'for', 'make', "'m",

'just', 'I', '.', 'love', 'a', 'They', 'with', 'healthy',

'these', 'snack', 'the', 'at', 'work', 'chips', 'machine',

'stuck', 'sustenance', '!'}

Chapter 5 Natural Language Processing, Understanding, and Generation

88

After

['when', 'alway', 'great', 'vend', 'for', 'make', "'m", 'just',

'I', '.', 'love', 'a', 'they', 'with', 'healthi', 'these',

'snack', 'the', 'at', 'work', 'chip', 'machin', 'stuck',

'susten', '!']

lancaster = nltk.LancasterStemmer()

print([lancaster.stem(w) for w in words])

['when', 'alway', 'gre', 'vend', 'for', 'mak', "'m", 'just',

'i', '.', 'lov', 'a', 'they', 'with', 'healthy', 'thes',

'snack', 'the', 'at', 'work', 'chip', 'machin', 'stuck',

'sust', '!']

�Noun Phrase Chunking Using Regular Expressions

Above you saw the tokens as a fundamental unit in any NLP processing.

Since in natural language, a group of tokens combined often reveals

the meaning or represents a concept, we create chunks. Multi-token

sequences are created by segmenting using a process called chunking. In

Figure 5-7, the smaller boxes show word-level tokenization and the larger

boxes shows multi-token sequences, also called higher-level chunks.

Such chunks are created using regular expressions or by using the n-gram

(more on this in later sections) method. Chunking is essential for entity

recognition, which we will shortly explore.

Figure 5-7.  Tokens and chunks

Chapter 5 Natural Language Processing, Understanding, and Generation

89

Let’s consider a single review as shown in the following code. The

grammar finds a noun using a rule that says, find noun chunk where zero or

one (?) determiner (DT) is followed by any number (*) of adjectives (JJ) and

a noun (NN). In the POS tree shown in the output of the following code, all

the chunks marked as NP are the noun phrases:

import nltk

from nltk.tokenize import word_tokenize

#Noun phrase chunking

text = word_tokenize("My English Bulldog Larry had skin

allergies the summer we got him at age 3, I'm so glad that now

I can buy his food from Amazon")

#This grammar rule: Find NP chunk when an optional determiner

(DT) is followed by any number of adjectives (JJ) and then a

noun (NN)

grammar = "NP: {<DT>?<JJ>*<NN>}"

#Regular expression parser using the above grammar

cp = nltk.RegexpParser(grammar)

#Parsed text with pos tag

review_chunking_out = cp.parse(nltk.pos_tag(text))

#Print the parsed text

print(review_chunking_out)

(S

 My/PRP$

 English/JJ

 Bulldog/NNP

 Larry/NNP

 had/VBD

 skin/VBN

Chapter 5 Natural Language Processing, Understanding, and Generation

90

 allergies/NNS

 (NP the/DT summer/NN)

 we/PRP

 got/VBD

 him/PRP

 at/IN

 (NP age/NN)

 3/CD

 ,/,

 I/PRP

 'm/VBP

 so/RB

 glad/JJ

 that/IN

 now/RB

 I/PRP

 can/MD

 buy/VB

 his/PRP$

 (NP food/NN)

 from/IN

 Amazon/NNP)

You can see many NPs such as “the summer” and “age” where “the

summer” is not a single word token. Above you see that the POS is in a

tree representation. Another way of representing the chunk structures

is by using tags. The IOB tag representation is a general standard. In

this scheme, each token is represented as I (Inside), O (Outside), and B

(Begin). Chunk tag B represents the beginning of a chunk. Subsequent

tokens within a chunk are tagged I and all other tokens are tagged O.

Figure 5-8 provides one example of an IOB tag representation.

Chapter 5 Natural Language Processing, Understanding, and Generation

91

The following code uses the CoNLL 2000 Corpus to convert the tree to

tags using the function tree2conlltags(). CoNLL is Wall Street Journal

text that has been tagged and chunked using IOB notation.

from nltk.chunk import conlltags2tree, tree2conlltags

from pprint import pprint

#Print IOB tags

review_chunking_out_IOB = tree2conlltags(review_chunking_out)

pprint(review_chunking_out_IOB)

[('My', 'PRP$', 'O'),

 ('English', 'JJ', 'O'),

 ('Bulldog', 'NNP', 'O'),

 ('Larry', 'NNP', 'O'),

 ('had', 'VBD', 'O'),

 ('skin', 'VBN', 'O'),

 ('allergies', 'NNS', 'O'),

 ('the', 'DT', 'B-NP'),

Figure 5-8.  IOB tag representation of chunk structures

Chapter 5 Natural Language Processing, Understanding, and Generation

92

 ('summer', 'NN', 'I-NP'),

 ('we', 'PRP', 'O'),

 ('got', 'VBD', 'O'),

 ('him', 'PRP', 'O'),

 ('at', 'IN', 'O'),

 ('age', 'NN', 'B-NP'),

 ('3', 'CD', 'O'),

 (',', ',', 'O'),

 ('I', 'PRP', 'O'),

 ("'m", 'VBP', 'O'),

 ('so', 'RB', 'O'),

 ('glad', 'JJ', 'O'),

 ('that', 'IN', 'O'),

 ('now', 'RB', 'O'),

 ('I', 'PRP', 'O'),

 ('can', 'MD', 'O'),

 ('buy', 'VB', 'O'),

 ('his', 'PRP$', 'O'),

 ('food', 'NN', 'B-NP'),

 ('from', 'IN', 'O'),

 ('Amazon', 'NNP', 'O')]

�Named Entity Recognition

Once we have the POS of the text, we can extract the named entities.

Named entities are definite noun phrases that refer to specific

individuals such as ORGANIZATION and PERSON. Some other entities

are LOCATION, DATE, TIME, MONEY, PERCENT, FACILITY, and

GPE. The facility is any human-made artifact in the architecture and civil

engineering domain, such as Taj Mahal or Empire State Building. GPE

means geopolitical entities such as city, state, and country. We can extract

all these entities using the ne_chunk() method in the nltk library.

Chapter 5 Natural Language Processing, Understanding, and Generation

93

The following code uses the POS tagged sentence and applies the

ne_chunk() method to it. It identifies Amazon as GPE and Bulldog Larry as

a PERSON. In this case, this is both true and false. Amazon is identified as

ORGANIZATION, which we expect here. Later in the chapter, we will train

our own named entity recognizer to improve the performance.

tagged_review_sent = nltk.pos_tag(text)

print(nltk.ne_chunk(tagged_review_sent))

(S

 My/PRP$

 English/JJ

 (PERSON Bulldog/NNP Larry/NNP)

 had/VBD

 skin/VBN

 allergies/NNS

 the/DT

 summer/NN

 we/PRP

 got/VBD

 him/PRP

 at/IN

 age/NN

 3/CD

 ,/,

 I/PRP

 'm/VBP

 so/RB

 glad/JJ

 that/IN

 now/RB

 I/PRP

 can/MD

Chapter 5 Natural Language Processing, Understanding, and Generation

94

 buy/VB

 his/PRP$

 food/NN

 from/IN

 (GPE Amazon/NNP))

�spaCy
While spaCy offers all the features of NLTK, it is regarded as one of the best

production grade tools for an NLP task. In this section, we will see how to

use the various methods provided by the spaCy library in Python.

spaCy provides three core models: en_core_web_sm (10MB), en_

core_web_md (91MB), and en_core_web_lg (788MB). The larger model

is trained on bigger vocabulary and hence will give higher accuracy.

So depending on your use case, choose wisely the model that fits your

requirements.

�POS Tagging

After loading the model using spaCy.load(), you can pass any string to

the model, and it provides all the methods in one go. To extract POS, the

pos_method is used. In the following code, after tokenizing, we print the

following:

•	 text: The original text

•	 lemma: Token after stemming, which is the base form of

the word

•	 pos: Part of speech

•	 tag: POS with details

•	 dep: The relationship between the tokens. Also called

syntactical dependency.

Chapter 5 Natural Language Processing, Understanding, and Generation

95

•	 shape: The shape of the word (i.e., capitalization,

punctuation, digits)

•	 is_alpha: Returns True if the token is an alphanumeric

character

•	 is.stop: Returns True if the token is a stopword like

“at,” “so,” etc.

POS tagging

import spacy

nlp = spacy.load('en_core_web_sm')

doc = nlp(u"My English Bulldog Larry had skin allergies the

summer we got him at age 3, I'm so glad that now I can buy his

food from Amazon")

for token in doc:

 �print(token.text, token.lemma_, token.pos_, token.tag_,

token.dep_, token.shape_, token.is_alpha, token.is_stop)

My -PRON- DET PRP$ poss Xx True True

English English PROPN NNP compound Xxxxx True False

Bulldog Bulldog PROPN NNP nsubj Xxxxx True False

Larry Larry PROPN NNP nsubj Xxxxx True False

had have VERB VBD ccomp xxx True True

skin skin NOUN NN compound xxxx True False

allergies allergy NOUN NNS dobj xxxx True False

the the DET DT det xxx True True

summer summer NOUN NN npadvmod xxxx True False

we -PRON- PRON PRP nsubj xx True True

got get VERB VBD relcl xxx True False

him -PRON- PRON PRP dobj xxx True True

Chapter 5 Natural Language Processing, Understanding, and Generation

96

at at ADP IN prep xx True True

age age NOUN NN pobj xxx True False

3 3 NUM CD nummod d False False

, , PUNCT , punct , False False

I -PRON- PRON PRP nsubj X True True

'm be VERB VBP ROOT 'x False True

so so ADV RB advmod xx True True

glad glad ADJ JJ acomp xxxx True False

that that ADP IN mark xxxx True True

now now ADV RB advmod xxx True True

I -PRON- PRON PRP nsubj X True True

can can VERB MD aux xxx True True

buy buy VERB VB ccomp xxx True False

his -PRON- DET PRP$ poss xxx True True

food food NOUN NN dobj xxxx True False

from from ADP IN prep xxxx True True

Amazon Amazon PROPN NNP pobj Xxxxx True False

�Dependency Parsing

The spaCy dependency parser has a rich API which helps to navigate

the dependency tree. It also provides the capability to detect sentence

boundaries and iterate through the noun phrase or chunks. In the

following example, the noun_chunks method in the model is iteratable with

the following methods:

•	 text: Original noun chunk

•	 root.text: Original word connecting the noun chunk

to the rest of the noun chunk parse

•	 root.dep: Dependency relation connecting the root to

its head

•	 root.head: Root token’s head

Chapter 5 Natural Language Processing, Understanding, and Generation

97

From the example, “My English Bulldog” is a noun phrase, where

“Bulldog” is root text with “nsubj” relation and “had” as its root head.

#Dependency parse

import spacy

nlp = spacy.load("en_core_web_sm")

doc = nlp(u"My English Bulldog Larry had skin allergies the

summer we got him at age 3, I'm so glad that now I can buy his

food from Amazon")

for chunk in doc.noun_chunks:

 print(chunk.text, chunk.root.text, chunk.root.dep_,

 chunk.root.head.text)

My English Bulldog Bulldog nsubj had

Larry Larry nsubj had

skin allergies allergies dobj had

we we nsubj got

him him dobj got

age age pobj at

I I nsubj 'm

I I nsubj buy

his food food dobj buy

Amazon Amazon pobj from

�Dependency Tree

spaCy provides a method called displayCy for visualization. We can

draw the dependency tree of a given sentence using displaCy

(see Figures 5-9, 5-10, and 5-11).

Chapter 5 Natural Language Processing, Understanding, and Generation

98

import spacy

from spacy import displacy

nlp = spacy.load("en_core_web_sm")

doc = nlp(u"My English Bulldog Larry had skin allergies the

summer we got him at age 3")

displacy.render(doc, style='dep')

Figure 5-9.  Dependency tree, part 1

Figure 5-10.  Dependency tree, part 2

Figure 5-11.  Dependency tree, part 3

Chapter 5 Natural Language Processing, Understanding, and Generation

99

From the dependency trees, you can see that there are two compound

word pairs, “English Bulldog” and “skin allergies,” and NUM “3” is the

modifier of “age.” You can also see “summer” as the noun phrase as an

adverbial modifier (npadvmod) to the token “had.” You can also observe

many direct objects (dobj) of a verb phrase, which is a noun phrase, like (got,

him) and (had, allergies) and object of a preposition (pobj) like (at, age). A

detailed explanation of the relationships in a dependency tree can be found

here: https://nlp.stanford.edu/software/dependencies_manual.pdf.

�Chunking

spaCy provides an easy-to-use retrieval of chunk information such as

VERB and NOUN from a given text. The noun_chunks method provides

noun phrases, and from pos, we can search for VERB. The following code

extracts noun phrases and verbs from the chunks:

pip install spacy

python -m spacy download en_core_web_sm

import spacy

Load English tokenizer, tagger, parser, NER, and word vectors

nlp = spacy.load("en_core_web_sm")

Process whole documents

text = ("My English Bulldog Larry had skin allergies the summer

we got him at age 3, I'm so glad that now I can buy his food

from Amazon")

doc = nlp(text)

Analyze syntax

print("Noun phrases:", [chunk.text for chunk in doc.noun_chunks])

print("Verbs:", [token.lemma_ for token in doc if token.pos_ ==

"VERB"])

Chapter 5 Natural Language Processing, Understanding, and Generation

https://nlp.stanford.edu/software/dependencies_manual.pdf

100

Noun phrases: ['My English Bulldog', 'Larry', 'skin allergies',

'we', 'him', 'age', 'I', 'I', 'his food', 'Amazon']

Verbs: ['have', 'get', 'be', 'can', 'buy']

�Named Entity Recognition

spaCy has an accuracy of 85.85% in named entity recognition (NER) tasks.

The en_core_web_sm model provides the function ents, which provides

the entities. The model is trained on the OntoNotes dataset, which can be

found at https://catalog.ldc.upenn.edu/LDC2013T19.

The default models in spaCy provide the entities shown in Table 5-3.

Table 5-3.  Types

TYPE DESCRIPTION

PERSON Names of people including fictional characters

NORP Nationalities or religious or political groups

FAC Civil engineering structures or infrastructures like buildings,

airports, highways, bridges, etc.

ORG Organization names like companies, agencies, institutions, etc.

GPE A geopolitical entity like countries, cities, states

LOC Non-GPE locations like mountain ranges, water bodies

PRODUCT Objects, vehicles, foods, etc. (not services)

EVENT Named hurricanes, battles, wars, sports events, etc.

WORK_OF_ART Titles of books, songs, etc.

LAW Named documents made into laws

LANGUAGE Any named language

(continued)

Chapter 5 Natural Language Processing, Understanding, and Generation

https://catalog.ldc.upenn.edu/LDC2013T19

101

TYPE DESCRIPTION

DATE Absolute or relative dates or periods

TIME Times smaller than a day

PERCENT Percentage, including %

MONEY Monetary values, including unit

QUANTITY Measurements, as of weight or distance

ORDINAL “first,” “second,” etc.

CARDINAL Numerals that do not fall under another type

Table 5-3.  (continued)

The following code extracts the English Bulldog Larry as a PERSON

entity and Amazon as entity ORG. Unlike NLTK, where it identified

Amazon as GPE, spaCy correctly identifies the context of the sentence to

figure out that Amazon is an organization in the given sentence.

import spacy

Load English tokenizer, tagger, parser, NER, and word vectors

nlp = spacy.load("en_core_web_sm")

Process whole documents

text = ("My English Bulldog Larry had skin allergies the summer

we got him at age 3, I'm so glad that now I can buy his food

from Amazon")

doc = nlp(text)

Find named entities

for entity in doc.ents:

 print(entity.text, entity.label_)

English Bulldog Larry PERSON

Amazon ORG

Chapter 5 Natural Language Processing, Understanding, and Generation

102

We can also visualize the entities using the displacy method (shown

in Figure 5-12):

import spacy

from spacy import displacy

from pathlib import Path

text = "I found these crisps at our local WalMart & figured I

would give them a try. They were so yummy I may never go back

to regular chips, not that I was a big chip fan anyway. The

only problem is I can eat the entire bag in one sitting. I give

these crisps a big thumbs up!"

nlp = spacy.load("en_core_web_sm")

doc = nlp(text)

svg = displacy.serve(doc, style="ent")

output_path = Path("images/sentence_ne.svg")

output_path.open("w", encoding="utf-8").write(svg)

Figure 5-12.  Results

�Pattern-Based Search

spaCy also provides a pattern or rule-based search. We can define our

pattern on top of a function like LOWER. For example, in the following

code, we define a search span as “Walmart” in lowercase followed by a

punctuation mark. This pattern could be written like

pattern = [{"LOWER": "walmart"}, {"IS_PUNCT": True}]

Chapter 5 Natural Language Processing, Understanding, and Generation

103

In the search span, if we want to find the word “Walmart,” we define

this using the matcher.add method and pass pattern as the argument to

the method.

This syntax is more user-friendly than a cumbersome regular

expression, which is hard to understand. The result of the search reveals

that the word “Walmart” is found at the seventh position in the string

and ends at the ninth position. The output also shows the span text as

“Walmart &,” which we defined in the pattern.

Spacy - Rule-based matching

import spacy

from spacy.matcher import Matcher

nlp = spacy.load("en_core_web_sm")

matcher = Matcher(nlp.vocab)

#Search for Walmart after converting the text in lower case and

pattern = [{"LOWER": "walmart"}, {"IS_PUNCT": True}]

matcher.add("Walmart", None, pattern)

doc = nlp(u"I found these crisps at our local WalMart & figured

I would give them a try. They were so yummy I may never go back

to regular chips, not that I was a big chip fan anyway. The

only problem is I can eat the entire bag in one sitting. I give

these crisps a big thumbs up!")

matches = matcher(doc)

for match_id, start, end in matches:

 �string_id = nlp.vocab.strings[match_id] # Get string

representation

 span = doc[start:end] # The matched span

 print(match_id, string_id, start, end, span.text)

16399848736434528297 Walmart 7 9 WalMart &

Chapter 5 Natural Language Processing, Understanding, and Generation

104

�Searching for Entity

Using the matcher method, we can also search for a type of entity in a

given text. In the following code, we search for the entity ORG (defined by

“label”) named “walmart.”

from spacy.lang.en import English

from spacy.pipeline import EntityRuler

nlp = English()

ruler = EntityRuler(nlp)

patterns = [{"label": "ORG","pattern":[{"lower":"walmart"}]}]

ruler.add_patterns(patterns)

nlp.add_pipe(ruler)

doc = nlp(u"I found these crisps at our local WalMart & figured

I would give them a try. They were so yummy I may never go back

to regular chips, not that I was a big chip fan anyway. The

only problem is I can eat the entire bag in one sitting. I give

these crisps a big thumbs up!")

print([(ent.text, ent.label_) for ent in doc.ents])

[('WalMart', 'ORG')]

�Training a Custom NLP Model

In many real-world datasets, the entities are not detected as per the

expectations. The models in spaCy or NLTK are not trained on those words

or tokens. In such cases, we can train a custom model using a private

dataset. We have to create training data in a particular format. In the

Chapter 5 Natural Language Processing, Understanding, and Generation

105

following code, we pick two sentences and tag an entity PRODUCT with its

start and end position in the text. The syntax looks like this:

(

 �u"As soon as I tasted one and it tasted like a corn chip I

checked the ingredients. ",

 {

 "entities": [(45, 49, "PRODUCT")]

 }

)

We tag the food product “corn” in the two sentences. Here we take just

two sentences, and spaCy trains the model well with just them. If you don’t

get the right entity with a smaller dataset, you might need to add a few

more examples before the model will pick the right entity.

import spacy

import random

train_data = [

 �(u"As soon as I tasted one and it tasted like a corn

chip I checked the ingredients. ", {"entities": [(45,

49, "PRODUCT")]}),

 �(u"I found these crisps at our local WalMart & figured

I would give them a try", {"entities": [(14, 20,

"PRODUCT")]})

]

other_pipes = [pipe for pipe in nlp.pipe_names if pipe != "ner"]

with nlp.disable_pipes(*other_pipes):

 optimizer = nlp.begin_training()

 for i in range(10):

 random.shuffle(train_data)

Chapter 5 Natural Language Processing, Understanding, and Generation

106

 for text, annotations in train_data:

 nlp.update([text], [annotations], sgd=optimizer)

nlp.to_disk("model/food_model")

We saved the trained model to disk and named it food_model. In the

following code, we load the food_model from disk and try to predict the

entity on a test sentence. We see it does a good job here in identifying corn

as a PRODUCT entity.

import spacy

nlp = spacy.load("model/food_model")

text = nlp("I consume about a jar every two weeks of this,

either adding it to fajitas or using it as a corn chip dip")

for entity in text.ents:

 print(entity.text, entity.label_)

corn PRODUCT

�CoreNLP
CoreNLP is another popular toolkit for linguistic analysis such as POS

tagging, dependency tree, named entity recognition, sentiment analysis,

and many others. We are going to use the CoreNLP features from Python

through a third-party wrapper called Stanford-corenlp. It can be installed

using pip install in the command line or cloned from GitHub here:

https://github.com/Lynten/stanford-corenlp.

Once you install or download the code, you need to specify the path to

the Stanford-corenlp code from where it picks up the necessary model for

the various NLP tasks.

Chapter 5 Natural Language Processing, Understanding, and Generation

https://github.com/Lynten/stanford-corenlp

107

�Tokenizing

As with NLTK and spaCy, you can extract words or tokens. The model

provides a method named word_tokenize for performing the tokenization:

Simple usage

from stanfordcorenlp import StanfordCoreNLP

nlp = StanfordCoreNLP(<Path to CoreNLP folder>)

sentence = 'I consume about a jar every two weeks of this,

either adding it to fajitas or using it as a corn chip dip'

print('Tokenize:', nlp.word_tokenize(sentence))

Tokenize: ['I', 'consume', 'about', 'a', 'jar', 'every', 'two',

'weeks', 'of', 'this', ',', 'either', 'adding', 'it', 'to',

'fajitas', 'or', 'using', 'it', 'as', 'a', 'corn', 'chip', 'dip']

�Part-of-Speech Tagging

POS can be extracted using the method pos_tag in the

stanford-corenlp:

print('Part of Speech:', nlp.pos_tag(sentence))

Part of Speech: [('I', 'PRP'), ('consume', 'VBP'), ('about',

'IN'), ('a', 'DT'), ('jar', 'NN'), ('every', 'DT'), ('two',

'CD'), ('weeks', 'NNS'), ('of', 'IN'), ('this', 'DT'), (',',

','), ('either', 'CC'), ('adding', 'VBG'), ('it', 'PRP'),

('to', 'TO'), ('fajitas', 'NNS'), ('or', 'CC'), ('using',

'VBG'), ('it', 'PRP'), ('as', 'IN'), ('a', 'DT'), ('corn',

'NN'), ('chip', 'NN'), ('dip', 'NN')]

Chapter 5 Natural Language Processing, Understanding, and Generation

108

�Named Entity Recognition

Stanford-corenlp provides the method ner to extract the named entities.

Observe that the output by default is in the IOB (Inside, Outside, and

Begin) format.

print('Named Entities:', nlp.ner(sentence))

Named Entities: [('I', 'O'), ('consume', 'O'), ('about', 'O'),

('a', 'O'), ('jar', 'O'), ('every', 'SET'), ('two', 'SET'),

('weeks', 'SET'), ('of', 'O'), ('this', 'O'), (',', 'O'),

('either', 'O'), ('adding', 'O'), ('it', 'O'), ('to', 'O'),

('fajitas', 'O'), ('or', 'O'), ('using', 'O'), ('it', 'O'),

('as', 'O'), ('a', 'O'), ('corn', 'O'), ('chip', 'O'), ('dip',

'O')]

�Constituency Parsing

Constituency parsing extracts a constituency-based parse tree from a given

sentence that is representative of the syntactic structure according to a

phase structure grammar. See Figure 5-13 for a simple example.

print('Constituency Parsing:', nlp.parse(sentence))

Constituency Parsing: (ROOT

 (S

 (NP (PRP I))

 (VP (VBP consume)

 (PP (IN about)

 (NP (DT a) (NN jar)))

 (NP

 (NP (DT every) (CD two) (NNS weeks))

 (PP (IN of)

 (NP (DT this))))

Chapter 5 Natural Language Processing, Understanding, and Generation

109

 (, ,)

 (S

 (VP (CC either)

 (VP (VBG adding)

 (NP (PRP it))

 (PP (TO to)

 (NP (NNS fajitas))))

 (CC or)

 (VP (VBG using)

 (NP (PRP it))

 (PP (IN as)

 (NP (DT a) (NN corn) (NN chip) (NN dip)))))))))

Figure 5-13.  A simple example of constituency parsing

Chapter 5 Natural Language Processing, Understanding, and Generation

110

�Dependency Parsing

Dependency parsing is about extracting the syntactic structure of a

sentence. It shows the associated set of directed binary grammatical

relations that hold among the words in a given sentence. In the spaCy

dependency tree, we show a visual representation of the same.

print('Dependency Parsing:', nlp.dependency_parse(sentence))

Dependency Parsing: [('ROOT', 0, 2), ('nsubj', 2, 1), ('case',

5, 3), ('det', 5, 4), ('nmod', 2, 5), ('det', 8, 6), ('nummod',

8, 7), ('nmod:tmod', 2, 8), ('case', 10, 9), ('nmod', 8, 10),

('punct', 2, 11), ('cc:preconj', 13, 12), ('dep', 2, 13),

('dobj', 13, 14), ('case', 16, 15), ('nmod', 13, 16), ('cc',

13, 17), ('conj', 13, 18), ('dobj', 18, 19), ('case', 24, 20),

('det', 24, 21), ('compound', 24, 22), ('compound', 24, 23),

('nmod', 18, 24)]

Since Stanford-corenlp is Python in a wrapper on top of the

Java-based implementation, you should close the server once the

processing is completed. Otherwise, the Java Virtual Memory (JVM) heap

will be continuously utilized, hampering other processes in your machine.

nlp.close() # Close the server or it will consume much memory.

�TextBlob
TextBlob is a simple library for beginners in NLP. Although it offers few

advanced features like machine translation, it is through a Google API. It

is for simply getting to know NLP use cases and on generic datasets. For

more sophisticated applications, consider using spaCy or CoreNLP.

Chapter 5 Natural Language Processing, Understanding, and Generation

111

�POS Tags and Noun Phrase

Similar to the other libraries, TextBlob provides method tags to extract the

POS from a given sentence. It also provides the noun_phrase method.

#First, the import

from textblob import TextBlob

#create our first TextBlob

s_text = TextBlob("Building Enterprise Chatbot that can

converse like humans")

#Part-of-speech tags can be accessed through the tags property.

s_text.tags

[('Building', 'VBG'),

 ('Enterprise', 'NNP'),

 ('Chatbot', 'NNP'),

 ('that', 'WDT'),

 ('can', 'MD'),

 ('converse', 'VB'),

 ('like', 'IN'),

 ('humans', 'NNS')]

#Similarly, noun phrases are accessed through the noun_phrases

property

s_text.noun_phrases

WordList(['enterprise chatbot'])

�Spelling Correction

Spelling correction is an exciting feature of TextBlob, which is not provided

in the other libraries described in this chapter. The implementation is

based on a simple technique provide by Peter Norvig, which is only 70%

accurate. The method correct in TextBlob provides this implementation.

Chapter 5 Natural Language Processing, Understanding, and Generation

112

In the following code, the word “converse” is misspelled as “converce,”

which the correct method was able to identify correctly. However, it made

a mistake in changing the word “Chatbot” to “Whatnot.”

Spelling correction

Use the correct() method to attempt spelling correction.

Spelling correction is based on Peter Norvig's "How to Write

a Spelling Corrector" as implemented in the pattern library. It

is about 70% accurate

b = TextBlob("Building Enterprise Chatbot that can converce

like humans. The future for chatbot looks great!")

print(b.correct())

Building Enterprise Whatnot that can converse like humans. The

future for charcot looks excellent!

�Machine Translation

The following code shows a simple example of text translated from English

to French. The method translates calls a Google Translate API, which

takes an input “to” where we specify the target language to translate. There

is nothing novel in this implementation; it is a simple API call.

#Translation and language detection

Google Translate API powers language translation and detection.

en_blob = TextBlob(u'Building Enterprise Chatbot that can

converse like humans. The future for chatbot looks great!')

en_blob.translate(to='fr')

TextBlob("Construire un chatbot d'entreprise capable

de converser comme un humain. L'avenir de chatbot est

magnifique!")

Chapter 5 Natural Language Processing, Understanding, and Generation

113

�Multilingual Text Processing
In this section, we will explore the various libraries and capabilities in

handling languages other than English. We find the library spaCy is one

of the best in terms of number of languages it supports, which currently

stands at more than 50. We will try to perform language translation, POS

tagging, entity extraction, and dependency parsing on text taken from the

popular French news website www.lemonde.fr/.

�TextBlob for Translation

As shown in the example above, we use TextBlob for machine translation

so non-French readers can understand the text we process.

The English translation of the text shows that the news is about a

match to be played on Friday between two French tennis players, Paire

and Mahut, in Roland-Garros.

from textblob import TextBlob

#A News brief from the French news website: https://www.lemonde.fr/

fr_blob = TextBlob(u"Des nouveaux matchs de Paire et Mahut au

retour du service à la cuillère, tout ce qu'il ne faut pas rater

à Roland-Garros, sur les courts ou en dehors, ce vendredi.")

fr_blob.translate(to='en')

TextBlob("New matches of Paire and Mahut after the return

of the service with the spoon, all that one should not miss

Roland-Garros, on the courts or outside, this Friday.")

�POS and Dependency Relations

We use the model fr_core_news_sm from spaCy in order to extract the POS

and dependency relation from the given text. To download the model, type

python -m spacy download fr_core_news_sm

Chapter 5 Natural Language Processing, Understanding, and Generation

http://www.lemonde.fr/

114

from a command line.

import spacy

#Download: python -m spacy download fr_core_news_sm

nlp = spacy.load('fr_core_news_sm')

french_text = nlp("Des nouveaux matchs de Paire et Mahut

au retour du service à la cuillère, tout ce qu'il ne faut

pas rater à Roland-Garros, sur les courts ou en dehors, ce

vendredi.")

for token in french_text:

 print(token.text, token.pos_, token.dep_)

Des DET det

nouveaux ADJ amod

matchs ADJ nsubj

de ADP case

Paire ADJ nmod

et CCONJ cc

Mahut PROPN conj

au CCONJ punct

retour NOUN ROOT

du DET det

service NOUN obj

à ADP case

la DET det

cuillère NOUN obl

, PUNCT punct

tout ADJ advmod

ce PRON fixed

qu' PRON mark

il PRON nsubj

ne ADV advmod

Chapter 5 Natural Language Processing, Understanding, and Generation

115

faut VERB advcl

pas ADV advmod

rater VERB xcomp

à ADP case

Roland PROPN obl

- PUNCT punct

Garros PROPN conj

, PUNCT punct

sur ADP case

les DET det

courts NOUN obl

ou CCONJ cc

en ADP case

dehors ADP conj

, PUNCT punct

ce DET det

vendredi NOUN obl

. PUNCT punct

Its performance of French POS and dependency relation is entirely

accurate. It can identify almost all the VERBS, NOUNS, ADJ, PROPN, and

many other tags. Next, let’s see how it performs on the entity recognition task.

�Named Entity Recognition

The syntax to retrieve the NER remains the same. We see here that the

model identified Paire, Mahur, Roland, and Garros as PER entities. We

expect the model to give the entity EVENT, since Rolland-Garros is a tennis

tournament, as a sports event. Perhaps you could consider training a

custom model to extract this entity.

Chapter 5 Natural Language Processing, Understanding, and Generation

116

Find named entities, phrases, and concepts

for entity in french_text.ents:

 print(entity.text, entity.label_)

Paire PER

Mahut PER

Roland PER

Garros PER

�Noun Phrases

Noun chunks can be extracted using the noun_chunks method provided in

the French model from the spaCy library:

for fr_chunk in french_text.noun_chunks:

 print(fr_chunk.text, fr_chunk.root.text, fr_chunk.root.dep_,

 fr_chunk.root.head.text)

et Mahut Mahut conj matchs

du service service obj retour

il il nsubj faut

�Natural Language Understanding
In recent times, both industry and academia have shown tremendous

interest in natural language understanding. This has resulted in an explosion

of literature and tools. Some of the major applications of NLU include

•	 Question answering

•	 Natural language search

•	 Web-scale relation extraction

•	 Sentiment analysis

Chapter 5 Natural Language Processing, Understanding, and Generation

117

•	 Text summarization

•	 Legal discovery

The above applications can be majorly grouped into four topics:

•	 Relation extraction: Finding the relationship between

instances and database tuples. The outputs are discrete

values.

•	 Semantic parsing: Parse sentences to create logical

forms of text understanding, which humans are good at

performing. Again, the output here is a discrete value.

•	 Sentiment analysis: Analyze sentences to give a score

in a continuous range of values. A low value means a

slightly negative sentiment, and a high score means a

positive sentiment.

•	 Vector space model: Create a representation of words

as a vector, which then can help in finding similar

words and contextual meaning.

We will explore some of the above applications in this section.

�Sentiment Analysis
TextBlob provides an easy-to-use implementation of sentiment analysis.

The method sentiment takes a sentence as an input and provides polarity

and subjectivity as two outputs.

�Polarity

A float value within the range [-1.0, 1.0]. This scoring uses a corpus of

positive, negative, and neutral words (which is called polarity) and detects

the presence of a word in any of the three categories. In a simple example,

the presence of a positive word is given a score of 1, -1 for negative, and 0 for

Chapter 5 Natural Language Processing, Understanding, and Generation

118

neutral. We define polarity of a sentance as the average score, i.e., the sum of

the scores of each word divided by the total number of words in the sentance.

If the value is less than 0, the sentiment of the sentence is negative and

if it is greater than 0, it is positive; otherwise, it’s neutral.

�Subjectivity

A float value within the range [0.0, 1.0]. A perfect score of 1 means “very

subjective.” Unlike polarity, which reveals the sentiment of the sentence,

subjectivity does not express any sentiment. The score tends to 1 if the

sentence contains some personal views or beliefs. The final score of the

entire sentence is calculated by assigning each word on subjectivity score

and applying the averaging; the same way as polarity.

The TextBlob library internally calls the pattern library to calculate

the polarity and subjectivity of a sentence. The pattern library uses

SentiWordNet, which is a lexical resource for opinion mining, with polarity

and subjectivity scores for all WordNet synsets. Here is the link to the

SentiWordNet: https://github.com/aesuli/sentiwordnet.

In the following example, the polarity of the sentence is 0.5, which

means it’s “more positive” and the subjectivity of 0.4375 means it is “very

subjective.”

s_text = TextBlob("Building Enterprise Chatbot that can

converse like humans. The future for chatbot looks great!")

s_text.sentiment

Sentiment(polarity=0.5, subjectivity=0.4375)

�Language Models
The first task of any NLP modeling is to break a given piece of text into

tokens (or words), the fundamental unit of a sentence in any language.

Once we have the words, we want to find the best numeric representation

Chapter 5 Natural Language Processing, Understanding, and Generation

http://sentiwordnet.isti.cnr.it/
https://github.com/aesuli/sentiwordnet

119

of the words because machines do not understand words; they need

numeric values to perform computation. We will discuss two: Word2Vec

(Word to a Vector) and GloVe (Global Vectors for Word Representation).

For Word2Vec, a detailed explanation is provided in the next section.

�Word2Vec

Word2Vec is a machine learning model (trained with a vast vocabulary of

words using the neural network) that produces word embeddings, which

are vector representations of words in the vocabulary. Word2vec models

are trained to construct the linguistic context of words. We will see some

examples in Python using the gensim library to understand what linguistic

context means. Figure 5-14 shows the neural network architecture for

training the Word2Vec model.

Training Data

Building an enterprise chatbot that can converse like humans

Building an enterprise chatbot that can converse like humans

Building an enterprise chatbot that can converse like humans

Building an enterprise chatbot that can converse like humans

Raw Text

(Building, an)
(Building, enterprise)

(an, Building)
(an enterprise)
(an chatbot)

(enterprise, Building)
(enterprise, an)
(enterprise, chatbot)
(enterprise, that)

(chatbot, an)
(chatbot, enterprise)
(chatbot, that)
(chatbot, can)

Figure 5-14.  Generating training sample for the neural network
using a window size of 2

A skip-gram neural network model for Word2Vec computes the

probability for every word in the vocabulary of being the “nearby word”

that we select. Proximity or nearness of words can be defined by a

Chapter 5 Natural Language Processing, Understanding, and Generation

120

parameter called window size. Figure 5-14 shows the possible pair of

words for training a neural network with window size of 2.

Any one of the tools can be used to generate such n-grams. In the

following code, we use the TextBlob library in Python to generate the

n-grams with a window size of 2.

#n-grams

#The TextBlob.ngrams() method returns a list of tuples of n

successive words.

#First, the import

from textblob import TextBlob

blob = TextBlob("Building an enterprise chatbot that can

converse like humans")

blob.ngrams(n=2)

[WordList(['Building', 'an']),

 WordList(['an', 'enterprise']),

 WordList(['enterprise', 'chatbot']),

 WordList(['chatbot', 'that']),

 WordList(['that', 'can']),

 WordList(['can', 'converse']),

 WordList(['converse', 'like']),

 WordList(['like', 'humans'])]

In the input sentence, “Building an enterprise chatbot that can

converse like humans” is broken into words and with a window size of 2,

we take two words each from left and right of the input word. So, if the

input word is “chatbot,” the output probability of the word “enterprise”

will be high because of its proximity to the word “chatbot” in the window

size of 2. This is only one example sentence. In a given vocabulary, we will

have thousands of such sentences; the neural network will learn statistics

from the number of times each pairing shows up. So, if we feed many more

Chapter 5 Natural Language Processing, Understanding, and Generation

121

training samples like the one shown in Figure 5-14, it will figure out how

likely the words “chatbot” and “enterprise” are going to appear together.

�Neural Network Architecture

The input vector to the neural network is a one-hot vector representing the

input word “chatbot,” by storing 1 in the ith position of the vector and 0 in

all other positions, where 0 ≤ i ≤ n and n is the size of the vocabulary (set

of all the unique words)

In the hidden layer, each word vector of size n is multiplied with a

feature vector of size, let’s say 1000. When the training starts, the feature

vector of size 1000 are all assigned a random value. The result of the

multiplication will select the corresponding row in the n x 1000 matrix

where the one-hot vector has a value of 1.
Finally, in the output layer, an activation function like softmax is applied

to shrink the output value to be between 0 and 1. The following equation

represents the softmax function, where K is the size of the input vector:

s z
e

e
i

z

j

K z

i

j
() =

=å 1

,

for i K and z z zk
K= ¼ = ¼()Î1 1, , , , 

So, if the input vector representing “chatbot” is multiplied with the

output vector represented by “enterprise,” the softmax function will be

close to 1 because in our vocabulary, both the words appeared together

very frequently.

Neural networks train the network and update the edge weights over

many iterations of training. The final set of weights represents learnings.

Figure 5-15 shows the neural network architecture to train a Word2Vec

model.

Chapter 5 Natural Language Processing, Understanding, and Generation

122

�Using the Word2Vec Pretrained Model

In the following code, we use the pretrained Word2Vec model from a

favorite Python library called gensim. Word2Vec models provide a vector

representation of words that make various natural language tasks possible,

such as identifying similar words, finding synonyms, word arithmetic, and

many more. The most popular Word2Vec models are GloVe, CBOW, and

skip-gram. In this section, we will use all three models to perform various

tasks of NLU.

In the demo, we use the model to perform many syntactic/semantic

NLU word tasks.

Figure 5-15.  Neural network architecture to train a Word2Vec model

Chapter 5 Natural Language Processing, Understanding, and Generation

123

Step 1: Load the required libraries:

from gensim.test.utils import get_tmpfile

from gensim.models import Word2Vec

import gensim.models

Step 2: Pick some words from the Amazon Food Review and make a list:

review_texts = [['chips', 'WalMart', 'fajitas'],

 ['ingredients', 'tasted', 'crisps', 'Chilling', 'fridge', 'nachos'],

 ['tastebuds', 'tortilla', 'Mexican', 'baking'],

 ['toppings', 'goodness', 'product, 'fantastic']]

Step 3: Train the Word2Vec model and save the model to a temporary

path. The function Word2Vec trains the neural network on the input

vocabulary supplied to it. The following are what the arguments mean:

•	 review_texts: Input vocabulary to the neural

network (NN).

•	 size: The size of NN layer corresponding to the degree

of freedom the algorithm has. Usually, a bigger network

is more accurate, provided there is a sizeable dataset to

train on. The suggested range is somewhere between

ten to thousands.

•	 min_count: This argument helps in pruning the less

essential words from the vocabulary, such as words

that appeared once or twice in the corpus of millions of

words.

•	 workers: The function Word2Vec offers for training

parallelization, which speeds up the training process

considerably. As per the official docs on gensim, you

need to install Cython in order to run in parallelization

mode.

Chapter 5 Natural Language Processing, Understanding, and Generation

124

path = get_tmpfile("word2vec.model")

model = Word2Vec(review_texts, size=100, window=5, min_count=1,

workers=4)

model.save("word2vec.model")

Note  After installing Cython, you can run the following code to
check if you have the FAST_VERSION of word2vec installed.

from gensim.models.word2vec import FAST_VERSION

FAST_VERSION

Step 4: Load the model and get the output word vector using the

attribute wv from the word vector model. The word “tortilla” was one of

the words in the vocabulary. You can check the length of the vector which,

based on the parameter size set during training, is 100; the type of vector is

a numpy array.

model = Word2Vec.load("word2vec.model")

vector = model.wv['tortilla']

vector

Out[6]:

array([3.4357556e-03, 3.0461869e-03, -1.4244991e-03, -4.6549197e-03,

 -1.8324883e-03, 1.9077188e-04, -1.7216217e-03, -4.5330520e-03,

 3.5653920e-03, 1.4612208e-03, 2.3089715e-03, -2.7617093e-03,

 6.8887050e-04, -5.6756934e-04, 1.1901358e-03, 8.0038357e-04,

 3.0033696e-03, -6.6507862e-05, -4.9998574e-03, -3.6887771e-03,

 2.9287676e-03, 3.6550803e-06, -6.3992629e-04, 4.0531787e-04,

 7.9464359e-04, 3.8370243e-03, 1.5980378e-03, 3.2125930e-03,

 -4.0334738e-03, 2.2513322e-03, 1.6611509e-03, -1.8190868e-03,

 6.9712318e-04, 4.2551439e-03, 1.5517352e-03, -2.8593470e-03,

 3.2627038e-03, -3.9196378e-03, 2.0745063e-04, -2.4973995e-03,

Chapter 5 Natural Language Processing, Understanding, and Generation

125

 -1.9995500e-03, 4.3865214e-03, 2.7636185e-03, 4.1850037e-03,

 -4.4220770e-03, -1.9331808e-03, -2.4466095e-03, 3.4395256e-03,

 2.7979608e-03, 7.6796720e-04, -2.2225662e-03, -2.3218829e-03,

 1.4716865e-03, 2.5831673e-03, -2.7626422e-03, -3.8978728e-03,

 -7.1556045e-05, -5.0603821e-06, 3.7337472e-03, 1.7892369e-03,

 9.4844203e-04, 4.2107059e-03, 2.0532655e-03, 4.8830300e-03,

 3.9778049e-03, 7.7870529e-04, -3.0672669e-03, 2.4687734e-03,

 -5.6728686e-04, -3.1949261e-03, -3.5277463e-03, -2.8095061e-03,

 1.9295703e-03, -2.7000166e-03, 3.8331877e-03, -3.7821392e-03,

 -2.8160575e-03, -2.1306602e-03, -3.4921553e-03, 1.4594033e-03,

 2.9177510e-03, -7.1679556e-04, -4.6973061e-03, -5.6215626e-04,

 -4.7952992e-05, 1.4449660e-03, 3.9334581e-03, -4.7264448e-03,

 1.3655510e-03, 3.0361500e-03, -3.9414247e-03, -2.2786416e-03,

 -2.0382130e-03, 1.2625570e-03, 3.3640184e-03, 3.2833132e-03,

 -4.9897577e-03, 1.3328259e-03, -3.8654597e-03, -3.4675971e-03],

 dtype=float32)

type(vector)

numpy.ndarray

len(vector)

100

Step 5: The Word2Vec model we saved in step 3 can be loaded again

and we can continue the training on more words using the train function

in the Word2Vec model.

more_review_texts = [['deceptive', 'packaging', 'wrappers'],

 ['texture', 'crispy', 'thick', 'cruncy', 'fantastic', 'rice']]

model = Word2Vec.load("word2vec.model")

model.train(more_review_texts, total_examples=2,epochs=10)

(2, 90)

Chapter 5 Natural Language Processing, Understanding, and Generation

126

�Performing Out-of-the-Box Tasks Using
a Pretrained Model

One of the useful features of gensim is that it offers several pretrained word

vectors from gensim-data. Apart from Word2Vec, it also provides GloVe,

another robust unsupervised learning algorithm for finding word vectors.

The following code downloads a glove-wiki-gigaword-100 word vector

from gensim-data and performs some out-of-the-box tasks.

Step 1: Download one of the pretrained GloVe word vectors using the

gensim.downloder module:

import gensim.downloader as api

word_vectors = api.load("glove-wiki-gigaword-100")

Step 2: Compute the nearest neighbors. As you have seen, word

vectors contain an array of numbers representing a word. Now it becomes

possible to perform mathematical computations on the vectors. For

example, we can compute Euclidean or cosine similarities between any

two-word vectors. There are some interesting results that we obtain as a

result. The following code shows some of the outcomes.

Figure 5-14 shows an example of how the input data for training the

neural network was created by shifting the window of a size 2. In the

following example, you will see that “apple” on the Internet is no longer

fruit; it has become synonymous with the Apple Corporation and shows

many companies like it when we compute a word similar to “apple.” The

reason for such similarity is because of the vocabulary used for training,

which in this case is a Wikipedia dump of close to 6 billion uncased tokens.

More such pretrained models are available at https://github.com/RaRe-

Technologies/gensim-data.

Chapter 5 Natural Language Processing, Understanding, and Generation

https://github.com/RaRe-Technologies/gensim-data
https://github.com/RaRe-Technologies/gensim-data

127

In the second example, when we find similar words to “orange,” we

obtain words corresponding to colors like red, blue, purple, and fruits like

lemon, which is a citrus fruit like an orange. Such relations are easy for

humans to understand. However, it is exciting how the Word2Vec model

can crack it.

result = word_vectors.most_similar('apple')

print(result)

[('microsoft', 0.7449405789375305), ('ibm',

0.6821643114089966), ('intel', 0.6778088212013245),

('software', 0.6775422096252441), ('dell', 0.6741442680358887),

('pc', 0.6678153276443481), ('macintosh', 0.66175377368927),

('iphone', 0.6595611572265625), ('ipod', 0.6534676551818848),

('hewlett', 0.6516579389572144)]

result = word_vectors.most_similar('orange')

print(result)

[('yellow', 0.7358633279800415), ('red', 0.7140780687332153),

('blue', 0.7118035554885864), ('green', 0.7111418843269348),

('pink', 0.6775072813034058), ('purple', 0.6774232387542725),

('black', 0.6709616184234619), ('colored', 0.665260910987854),

('lemon', 0.6251963376998901), ('peach', 0.616862416267395)]

Step 3: Identify linear substructures. The relatedness of two words

is easy to compute using the similarity or distance measure, whereas to

capture the nuances in a word pair or sentences in a more qualitative way,

we need operations. Let’s see the methods that the gensim package offers

to accomplish this task.

Chapter 5 Natural Language Processing, Understanding, and Generation

128

Word Pair Similarity

In the following example, we find a similarity between a word pair. For

example, the word pair [‘sushi’, ‘shop’] is more similar to the word pair

[‘japanese’, ‘restaurant’] than to [‘Indian’, ‘restaurant’].

sim = word_vectors.n_similarity(['sushi', 'shop'], ['indian',

'restaurant'])

print("{:.4f}".format(sim))

0.6438

sim = word_vectors.n_similarity(['sushi', 'shop'], ['japanese',

'restaurant'])

print("{:.4f}".format(sim))

0.7067

Sentence Similarity

We can also find distance or similarity between two sentences. gensim

offers a distance measure called Word Mover’s distance, which has proved

quite a useful tool in finding out the similarity between two documents

that contain many sentences. The lower the distance, the more similar

the two documents. Word Mover’s distance underneath uses the word

embeddings generated by the Word2Vec model to first understand the

concept of the query sentence (or document) and then find all the similar

sentences or documents. For example, when we compute the Mover’s

distance between two unrelated sentences, the distance is high compared

to when we compare two sentences that are contextually related.

In the first example, sentence_one talks about diversity in Indian

culinary art, and sentence_two specifically talks about the food in Delhi. In

the second example, sentence_one and sentence_two are unrelated, so we

get a higher Movers distance than the first example.

Chapter 5 Natural Language Processing, Understanding, and Generation

129

sentence_one = 'India is a diverse country with many culinary

art'.lower().split()

sentence_two = 'Delhi offers many authentic food'.lower().split()

similarity = word_vectors.wmdistance(sentence_one, sentence_two)

print("{:.4f}".format(similarity))

4.8563

sentence_one = 'India is a diverse country with many culinary

art'.lower().split()

sentence_two = 'The all-new Apple TV app, which brings together

all the ways to watch TV into one app'.lower().split()

similarity = word_vectors.wmdistance(sentence_one, sentence_two)

print("{:.4f}".format(similarity))

5.2379

Arithmetic Operations

Even more impressive is the ability to perform arithmetic operations like

addition and subtraction on the word vector to obtain some form of linear

substructure because of the operation. In the first example, we compute

woman + king – man, and the most similar word to this operation is queen.

The underlying concept is that man and woman are genders, which may

be equivalently specified by other words like queen and king. Hence, when

we take out the man from the addition of woman and king, the word we

obtain is queen. GloVE word representation provides few examples here:

https://nlp.stanford.edu/projects/glove/.

Similarly, the model is good at picking up concepts like language and

country. For example, when we add French and Italian, it gives Spanish,

which is a language spoken in a nearby country, Spain.

Chapter 5 Natural Language Processing, Understanding, and Generation

https://nlp.stanford.edu/projects/glove/

130

result = word_vectors.most_similar(positive=['woman', 'king'],

negative=['man'])

print("{}: {:.4f}".format(*result[0]))

queen: 0.7699

result = word_vectors.most_similar(positive=['french',

'italian'])

print("{}: {:.4f}".format(*result[0]))

spanish: 0.8312

result = word_vectors.most_similar(positive=['france', 'italy'])

print("{}: {:.4f}".format(*result[0]))

spain: 0.8260

Odd Word Out

The model adapts to find words that are out of context in a given sequence

of words. The way it works is the method doesnt_match computes the

center point by taking the mean of all the word vectors in a given list of

words and finding the cosine distance from the center point. The word

with the highest cosine distance is returned as an odd word that does not

fit in the list.

In the following two examples, the model was able to pick the food

pizza as an odd word out from the list of countries. Similarly, in the second

example, the model picked up the Indian Prime Minister Modi from the

list of all US Presidents.

print(word_vectors.doesnt_match("india spain italy pizza".split()))

pizza

print(word_vectors.doesnt_match("obama trump bush modi".split()))

modi

Chapter 5 Natural Language Processing, Understanding, and Generation

131

Language models like Word2Vec and GloVe are compelling in

generating meaningful relationships between words, which comes

naturally to a human because of our understanding of languages. It is an

excellent accomplishment for machines to be able to perform at this level

of intelligence in understanding the use of words in various syntactic and

semantic forms.

�fastText Word Representation Model

Similar to gensim, fastText also provides many pretrained word embedding

models. Its fast and efficient processing makes it a very popular library for

text classification and tasks related to word representation such as finding

similar text. The models in fastText use subword information, all the

substrings contained in a word between the minimum size (minn) and the

maximal size (maxn), which give better performance.

import fasttext

Skipgram model

model_sgram = fasttext.train_unsupervised('dataset/amzn_food_

review_small.txt', model='skipgram')

or, cbow model

model_cbow = fasttext.train_unsupervised('dataset/amzn_food_

review_small.txt', model='cbow')

print(model_sgram['cakes'])

[0.00272718 0.01386657 0.00484232 -0.01444803 0.00204112

 0.00787148

 -0.00759551 0.00263086 -0.01182229 -0.00530771 -0.02338764

 0.01398039

 0.00218989 0.0154795 -0.01450872 -0.01040525 -0.00762093

-0.01090531

Chapter 5 Natural Language Processing, Understanding, and Generation

132

 0.00802671 -0.02447837 0.00507444 0.01049152 -0.00054866

 0.01148072

 -0.02119654 -0.01219683 0.00658704 -0.00171852 0.01495257

 0.00328717

 -0.01289422 0.01350378 -0.01774059 0.01281367 0.00123221

-0.01672287

 -0.00940464 -0.01039432 -0.00618952 0.01418524 -0.03802125

 0.00976629

 0.01477897 0.01039862 0.02141832 -0.01620196 0.00617392

-0.01073407

 -0.00289557 -0.00856876 -0.00785293 -0.01535104 0.00439641

-0.00760364

 0.00825184 0.03034449 -0.00980587 0.01319963 -0.00710381

 0.00040615

 -0.0074836 0.01588171 0.03172321 0.00821354 0.00569351

-0.00976394

 -0.00666583 0.00810414 -0.00969361 -0.00378272 0.00782087

 0.01669582

 0.01114488 0.00669733 -0.0053518 -0.0059374 -0.00554186

 0.01869696

 0.01529924 -0.00877811 0.03367095 0.01772366 0.0037948

 0.01354953

 -0.0086841 0.01565165 -0.0031147 0.00028975 -0.00047118

-0.00779429

 -0.00646258 0.00798804 0.04278774 -0.00381226 -0.01868668

-0.01809955

 -0.02041707 -0.00328311 -0.01909724 -0.01288191]

print(model_sgram.words)

['the', 'I', 'a', 'and', 'to', '</s>', 'of', 'for', 'it', 'in',

'is', 'was', 'are', 'not', 'this', 'that', 'but', 'on', 'my',

Chapter 5 Natural Language Processing, Understanding, and Generation

133

'have', 'as', 'they', 'like', 'you', 'great', 'This', 'so',

'them', 'than', 'body', 'soap', 'just', 'The', 'very', 'find',

'with', 'taste', 'cake', 'what', 'these', 'had', 'when', 'buy',

'get', 'be', 'It', 'sprinkles', 'from', 'really', "it's",

'Great', 'other', 'Giovanni', 'best', 'we', 'good', 'all',

'were', 'out', 'wash', 'one', 'only', 'their', 'make', 'about',

'or', 'color', 'bag', '/><br', 'some', 'These', 'using',

'bought', 'tried', 'your', 'more', 'same', 'any', "I've",

'also', 'love', 'has', 'washes']

Similar to the examples discussed in this section, using either the skip-

gram or CBOW model, various tasks can be performed. We can evaluate

the performance to choose the best model for our final implementation.

It’s possible to use the fastText model from within the gensim library by

importing the fastText module:

from gensim.models.fasttext import FastText

�Information Extraction Using OpenIE
The Open Information Extractor (OpenIE) annotator extracts open-

domain relation triples representing subject, predicate, and object, often

called a triplet. OpenIE can be a useful tool when there is minimal training

data available.

There is no stable implementation of OpenIE in Python. In order to

use OpenIE provided by CoreNLP library, download corenlp and from the

command line, type cd into the CoreNLP directory. Then run the following

command. Note that this process requires the right amount of RAM. In the

following code, we set 2GB RAM for running this process. Otherwise, the

JVM might throw an out of memory error.

java -mx2g -cp "*" edu.stanford.nlp.naturalli.OpenIE

Chapter 5 Natural Language Processing, Understanding, and Generation

134

Once the above command runs, it takes one sentence as input. Provide

a sentence of your choice. To reproduce the same result as shown in

Table 5-3, use the following example sentence:

Narendra Modi is an Indian politician serving as the 14th and

current Prime Minister of India since 2014

Table 5-4 shows the possible triplets from the given sentence. At first,

many triplets may look the same. On careful examination, you can see that

all the objects are all unique using the subject “Narendra Modi” or “Modi”

and predicate or the relation “is.”

Table 5-4.  The Possible Triplets from the Example Sentence Using

OpenIE

S.No Subject Predicate Object

1 Narendra Modi is politician serving as 14th Prime Minister

2 Narendra Modi is Indian politician serving as 14th Prime

Minister

3 Narendra Modi is politician serving as Prime Minister

4 Narendra Modi is Politician

5 Modi is Indian

6 Narendra Modi is Indian politician serving as 14th Prime

Minister of India

7 Narendra Modi is Indian politician serving as Prime

Minister

8 Narendra Modi is Indian politician serving as Prime

Minister of India since 2014

(continued)

Chapter 5 Natural Language Processing, Understanding, and Generation

135

S.No Subject Predicate Object

9 Narendra Modi is Indian politician serving as Prime

Minister since 2014

10 Narendra Modi is politician serving as Prime Minister of

India since 2014

11 Narendra Modi is politician serving as 14th Prime Minister

of India since 2014

12 Narendra Modi is politician serving as 14th Prime Minister

since 2014

13 Narendra Modi is Indian politician serving as 14th Prime

Minister since 2014

14 Narendra Modi is politician serving as Prime Minister of

India

15 Narendra Modi is politician serving as Prime Minister

since 2014

16 Narendra Modi is Indian politician

17 Narendra Modi is Indian politician serving as Prime

Minister of India

18 Narendra Modi is Indian politician serving since 2014

19 Narendra Modi is politician serving as 14th Prime

Minister of India

20 Narendra Modi is politician serving since 2014

21 Narendra Modi is Indian politician serving as 14th Prime

Minister of India since 2014

Table 5-4.  (continued)

Chapter 5 Natural Language Processing, Understanding, and Generation

136

�Topic Modeling Using Latent Dirichlet Allocation
Topic modeling is one of the typical applications of understanding natural

language. Given a collection of documents, we can draw an “abstract

topic” that represents all the docs in the collection. Latent Dirichlet

allocation (LDA) is a favorite statistical model used for topic modeling. It

helps in discovering the semantic structures in a given text.

In this section, for a demonstration, we will use three example reviews

from the Amazon Fine Food review dataset to train an LDA model. We will

see one other example of topic modeling using additional tools like spaCy,

NLTK, and gensim in the “Applications” sections.

�Collection of Documents

Three reviews from the dataset are assigned to a variable named

documents. We expect the topics to have words like “chips,” “fajitas,” and

“crisps” as these three reviews seem to be talking about “corn chips.” We

are not much concerned about the sentiment in the review.

documents = ["I consume about a jar every two weeks of this,

either adding it to fajitas or using it as a corn chip dip,"

 �"As soon as I tasted one and it tasted like a corn

chip I checked the ingredients",

 �"I found these crisps at our local WalMart &

figured I would give them a try"

]

Chapter 5 Natural Language Processing, Understanding, and Generation

137

�Loading Libraries and Defining Stopwords

As a first preprocessing step, we remove all the stopwords from the given

text. For a simple implementation, we have only defined a few stopwords

in a list:

Import pretty printer

from pprint import pprint

from collections import defaultdict

stoplist = set('for a of the and to in'.split())

�Removing Common Words and Tokenizing

Using the stopwords in the list above, we run through a for-loop to remove

the words. Note that this is a simple implementation and is not the most

efficient way of removing the stopwords.

Remove common words and tokenize

texts = [

 �[word for word in document.lower().split() if word not in

stoplist]

 for document in documents

]

�Removing Words That Appear Infrequently

Now that we have removed the stopwords, we compute the frequency of

occurrence of each word in the document collection. Again, we implement

this using a simple two for-loop structure that reads each word in the

document and increments the count whenever we encounter a word more

than once.

Remove words that appear only once

frequency = defaultdict(int)

Chapter 5 Natural Language Processing, Understanding, and Generation

138

for text in texts:

 for the token in text:

 frequency[token] += 1

texts = [

 [token for token in text if frequency[token] > 1]

 for text in texts

]

pprint(texts)

[['i', 'it', 'it', 'as', 'corn', 'chip'],

 ['as', 'as', 'i', 'tasted', 'it', 'tasted', 'corn', 'chip', 'i'],

 ['i', 'i']]

Now we see the words that occur more than once. For our example, it

seems like there are not many words with more than one occurrence. We

expect the model not to perform very well. However, let’s still go ahead

with training the model.

�Saving the Training Data as a Dictionary

The gensim library provides the method Dictionary, which stores the

tokens into a dictionary. We save the tokens extracted from the review in

the review.dict file on disk.

from gensim import corpora

dictionary = corpora.Dictionary(texts)

dictionary.save('review.dict')

print(dictionary)

Dictionary(6 unique tokens: ['as', 'chip', 'corn', 'i', 'it']...)

Chapter 5 Natural Language Processing, Understanding, and Generation

139

print(dictionary.token2id)

{'as': 0, 'chip': 1, 'corn': 2, 'i': 3, 'it': 4, 'tasted': 5}

new_doc = "tasty corn"

new_vec = dictionary.doc2bow(new_doc.lower().split())

print(new_vec)

[(2, 1)]

�Generating the Bag of Words

Words in the dictionary can be converted to a bag-of-words (BOW)

representation using the method doc2bow. The BOW can then be serialized

using MmCorpus and stored as review.mm. Another popular approach is

to represent the words in an n-gram, where the text is ordered rather than

unordered in case BOW. N-grams helps to find the cooccurrence among

words.

corpus = [dictionary.doc2bow(text) for text in texts]

corpora.MmCorpus.serialize('review.mm', corpus)

�Training the Model Using LDA

Finally, using the bag-of-words dictionary of words, we train the latent

Dirichlet allocation model. LDA is a generative statistical model where,

given an input variable X and target variable Y, the model based on joint

probability is X ∗ Y,  P(X, Y). LDA is a favorite machine learning model

widely used in topic modeling. Each document (in our example, each

review) is a mixture of various topics, where each document is assigned a

set of topics by LDA.

For example, the LDA model may assign a topic for a review

(documents), something like “corn chips” related. This topic has

probabilities of generating various words like “crispy,” “tasty,” and so on.

Chapter 5 Natural Language Processing, Understanding, and Generation

140

from gensim import models

tfidf = models.TfidfModel(corpus)

corpus_tfidf = tfidf[corpus]

lsi = models.LsiModel(corpus_tfidf, id2word=dictionary, num_

topics=2)

corpus_lsi = lsi[corpus_tfidf]

lsi.print_topics(2)

[(0,

 �'0.556*"it" + 0.542*"tasted" + 0.428*"as" + 0.328*"chip" +

0.328*"corn" + 0.000*"i"'),

 (1,

 �'-0.804*"tasted" + 0.528*"it" + 0.190*"corn" + 0.190*"chip" +

0.041*"as" + 0.000*"i"')]

The gensim library provides a method called LsiModel(), which trains

an LDA model. Latent semantic indexing (LSI) is used in the context of

LDA’s application in information retrieval.

In the model above, we set num_topics = 2, asking the model to

generate two topics. The following two topics give weight to “corn” and

“chip,” which seems to be the topic from the three reviews we used for

training.

	 1.	 Topic 1: 0.556∗“it” + 0.542∗“tasted” + 0.428∗“as” +

0.328*“chip” + 0.328*“corn” + 0.000∗“i”

	 2.	 Topic 2: -0.804∗“tasted” + 0.528∗“it” + 0.190*“corn”
+ 0.190*“chip” + 0.041∗“as” + 0.000∗“i”

Note that a more accurate model would need plenty of data for training

and perhaps many more interesting topics might evolve.

Chapter 5 Natural Language Processing, Understanding, and Generation

141

�Natural Language Generation
Natural language generation is a subfield of NLP and computational

linguistics that can produce understandable human text in various

languages. The ability to use the language representation and knowledge

of the domain to produce documents, explanations, help messages,

reports, and even poems makes NLG the most researched area just now.1

In the future, NLG will play a vital role in human-computer interfaces.

The significant differences between NLU and NLG are that NLP

maps sentences into internal semantic representations (called parsing

in NLU systems), whereas NLG maps the semantic representation into

surface sentences (called realization in NLG systems). Both of these types

of mapping are achieved through bidirectional grammar, which uses a

declarative representation of a language’s grammar.

We will demonstrate NLG applications using Python- and Java-based

libraries like markovify and simpleNLG. We will also use a deep learning

model for text generation. Such deep learning models are behind the

popular use cases where machines are writing poems or generating

musical notes given a sizeable corpus of data.

Some popular applications of NLG are

•	 Automating the documentation of code and procedures

•	 Generating reports from financial data or annual

reports

•	 Summarizing graphical reports and numbers from

tabular data

•	 Generating discharge summaries and pathology reports

•	 Helping meteorologists compose weather forecasts

1�https://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture15-
nlg.pdf

Chapter 5 Natural Language Processing, Understanding, and Generation

https://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture15-nlg.pdf
https://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture15-nlg.pdf

142

There are many more use cases that are evolving quickly, especially

with the emerging sophistication of deep learning algorithms and

increasing computation power of machines.

�Markov Chain-Based Headline Generator
The Markov chain model is a stochastic model describing the sequence

of possible events in which the probability of each event depends only on

the state achieved in the previous state. Markov chains statistically model

random processes. Markov chains are defined by transition probabilities

and states, where a process moves from one state to another based on a

preset probability value.

Markov chain models are mathematically robust methods that give

superior results if modeled correctly. Unlike many machine learning

algorithms, which work in a brute-force approach, Markov chains need a

diligent design to model a stochastic process.

The following are some applications of Markov chains:

•	 Computer simulation of numerous real-world

phenomena such as weather modeling, stock market

fluctuations, and water flow in a dam

•	 Biological modeling like population processes

•	 Algorithmic music composition

•	 Model boards game like Snakes and Ladders or Hi Ho!

Cherry-O

•	 Population genetics to describe changes in gene

frequencies in small populations affected by genetic

drift

Let’s use the markovify library from Python to generate some

headlines.

Chapter 5 Natural Language Processing, Understanding, and Generation

143

�Loading the Library

Load the libraries such as pandas and markovify. We use pandas to read

and process the CSV files from an ABC news dataset. The markovify

library, a simple Markov chain generator, generates random text.

#Loading required packages

import pandas as pd # data processing, CSV file I/O (e.g.

pd.read_csv)

import markovify #Markov chain generator

�Loading the File and Printing the Headlines

Read the ABC news dataset from a CSV file using the read_csv() method

and print the top three news headlines. The dataset contains over 15

years of news headlines published by the Australian Broadcasting Corp.

The dataset contains more than 1 million news headlines. The dataset

is available for download from www.kaggle.com/therohk/million-

headlines/data. See Figure 5-16.

#Reading input text file

Input_text = pd.read_csv('data/abcnews-date-text.csv')

Input_text.head(3)

Chapter 5 Natural Language Processing, Understanding, and Generation

https://www.kaggle.com/therohk/million-headlines/data
https://www.kaggle.com/therohk/million-headlines/data

144

�Building a Text Model Using Markovify

Markovify offers a method called NewlineText to take the input as

headline_text from the dataset and a paramet value of state_size as 2. This

method works best with large and well-punctuated text. Each word is a

state in a sequence, and the probability measures which word is likely to

come next after the occurrence of one word.

#Building the text model with markovify

text_model = markovify.NewlineText(input_text.headline_text,

state_size = 2)

�Generating Random Headlines

Once you markovify the text, the model can be used to make sentences

using the method make_sentence(). This method randomly generates

sentences using the model build using the Newlinetext() method in the

markovify library. Many of the examples in the random sentences below

form meaningful headlines.

publish_date headline_text

Figure 5-16.  Output

Chapter 5 Natural Language Processing, Understanding, and Generation

145

#Generate random text

Print ten randomly-generated sentences using the built model

for i in range(10):

 print(text_model.make_sentence())

coalitions grand plan for fertiliser price hurting jewellers

police seek 18 over brawl outside black magic rape sentencing

dojokvic eases past querrey; murray wins at ascot

life at the waca

police shoot terrorism suspect to undergo mental check

beazley stands by online petition to stop roxon

ocean queen docks in fremantle with yacht damaged in downpour

ministerial clout needed to beat deadline

port macquarie waterfront land row

�SimpleNLG
Unlike Makov chains, which generate random text based on state

transition probabilities, SimpleNLG offers a utility to generate sentences

in English that are grammatically correct. It's written in Java for NLG. To

generate the sentences, we specify the content of the sentence and encode

this information in SimpleNLG syntax, which in turn generates the

grammatically correct sentences based on the grammar specifications.

Significant tasks that SimpleNLG perform are

•	 Orthography: This refers to the conventions for writing

languages. It includes capitalization, whitespaces in

sentences, and paragraphs, punctuation, emphasis,

and hyphenation.

Chapter 5 Natural Language Processing, Understanding, and Generation

146

•	 Morphology: The study of words, their formation, and

relationship with other words in the same language.

It analyzes the structure of words and parts of words,

such as stems, root words, prefixes, and suffixes.

•	 Simple grammar: Ensures grammatical correctness

like noun-verb agreement and creating well-formed

verb groups (e.g. “does not play”).

In the terminology of NLG, SimpleNLG is a realizer for simple

grammar. It can be useful for creating documentations and reports that

need to use grammatically correct sentences. The demonstration in this

section uses nglib, which is a Python library that is mainly a wrapper

around SimpleNLG.

�Loading the Library

Load the SimpleNLG realizer from the nlglib library. Set the host

parameter in the Realiser() class as nlg.kutlak.info. Next, we define

methods for the various tasks SimpleNLG is capable of doing.

import logging

from nlglib.realisation.simplenlg.realisation import Realiser

from nlglib.microplanning import *
realise = Realiser(host='nlg.kutlak.info')

�Tense

The method named tense() defines a clause and the tense we would

like to convert it to. In the following code, the clause declares “Subject,”

“Predicate” (or relationship), and “Object,” and then we set the attribute

TENSE in the clause object to PAST and FUTURE separately.

Chapter 5 Natural Language Processing, Understanding, and Generation

147

def tense():

 c = Clause('Harry', 'bought', 'these off amazon')

 c['TENSE'] = 'PAST'

 print(realise(c))

 c['TENSE'] = 'FUTURE'

 print(realise(c))

Harry bought these off amazon.

Harry will buy these off amazon.

�Negation

Similar to the method tense(), we define the method negation(), which

again takes a triplet and creates a negation of the sentence.

def negation():

 c = Clause('Harry', 'bought', 'these off amazon')

 c['NEGATED'] = 'true'

 print(realise(c))

Harry does not buy these off amazon.

�Interrogative

We can also generate sentences with YES or NO kinds of interrogative

sentences or questions like WHO. The following code shows two examples.

Note that WHO doesn’t go well with “Harry” in the example.

def interrogative():

 c = Clause('Harry', 'bought', 'these off amazon')

 c['INTERROGATIVE_TYPE'] = 'YES_NO'

 print(realise(c))

 c['INTERROGATIVE_TYPE'] = 'WHO_OBJECT'

 print(realise(c))

Chapter 5 Natural Language Processing, Understanding, and Generation

148

Does Harry buy these off amazon?

Who does Harry buy?

�Complements

In a given clause, certain complement phrases can also be added. In the

following code, we show two complement phrases added to the main

clause. The good part of SimpleNLP is that it can form grammatically

correct sentences given the clause and complements.

def complements():

 c = Clause('Harry', 'bought', 'these off amazon',

 �complements=['on first day of sales',

'despite high price'])

 print(realise(c))

Harry buys these off amazon on first day of sales despite high

price.

�Modifiers

In the following code, we first add the adjective to the subject or the noun

and then we add an adverb to the verb. In the example, the adjective

“impulsive” is added to the noun “Harry” and the adverb “quickly”

is added to the verb “buys.” Both the adjective and adverb are called

modifiers. Observe that the grammar of the sentence is still intact.

def modifiers():

 subject = NP('Harry')

 verb = VP('bought')

 objekt = NP('these', 'off','amazon')

 subject += Adjective('Impulsive')

 c = Clause()

 c.subject = subject

Chapter 5 Natural Language Processing, Understanding, and Generation

149

 c.predicate = verb

 c.object = objekt

 print(realise(c))

 verb += Adverb('quickly')

 c = Clause(subject, verb, objekt)

 print(realise(c))

Impulsive Harry buys this off amazon.

Impulsive Harry quickly buys this off amazon.

�Prepositional Phrases

Prepositional phrases using “at,” “on,” “in,” and “by” are easy to add to the

clause using SimpeNLP. In a prepositional phrase, you can also define

the noun term separately and it structures it appropriately based on the

grammar.

def prepositional_phrase():

 c = Clause('Harry', 'bought', 'these off amazon')

 c.complements += PP('by', 'surprise')

 print(realise(c))

 c = Clause('Harry', 'bought', 'these off amazon')

 c.complements += PP('for', NP('Eva'))

 print(realise(c))

Harry buys these off amazon by surprise.

Harry buys these off amazon for Eva.

�Coordinated Clauses

In a coordinated clause, two or more sentences (clauses) can be combined

to make one sentence. In the following code, two clauses are combined

using a conjunction. And each clause can have its own structure. For

Chapter 5 Natural Language Processing, Understanding, and Generation

150

example, in one clause, “He likes jeans,” we use the PRESENT tense and in

the second clause, “He will return t-shirt,” we use the FUTURE tense.

def coordinated_clause():

 �s1 = Clause('Harry', 'buy', 'these off amazon',

features={'TENSE': 'PAST'})

 �s2 = Clause('he', 'like','jeans', features={'TENSE':

'PRESENT'})

 �s3 = Clause('he', 'return', 't-shirt', features={'TENSE':

'FUTURE'})

 c = s1 + s2 + s3

 c = CC(s1, s2, s3)

 print(realise(s1))

 print(realise(s2))

 print(realise(s3))

 print(realise(s1 + s2))

 print(realise(c))

Harry bought these off amazon.

He likes jeans.

He will return t-shirt.

Harry bought these off amazon and he likes jeans

Harry bought these off amazon and he likes jeans and he will

return t-shirt

�Subordinate Clauses

We can introduce a conjunction in a clause with a COMPLIMENTIZER

like “because” and put the sentence in the past tense. We call this a

subordinate clause.

def subordinate_clause():

 p = Clause('Harry', 'like', 'amazon')

 q = Clause('product', 'is', 'good')

Chapter 5 Natural Language Processing, Understanding, and Generation

151

 q['COMPLEMENTISER'] = 'because'

 q['TENSE'] = 'PAST'

 p.complements += q

 print(realise(p))

Harry likes amazon because product was good.

�Main Method

The main method calls the methods we created above if we need to run all

the code together at once.

def main():

 c = Clause('Harry', 'bought', 'these off amazon')

 print(realise(c))

 tense()

 negation()

 interrogative()

 complements()

 modifiers()

 prepositional_phrase()

 coordinated_clause()

 subordinate_clause()

�Printing the Output

Let’s print the output of all the methods together here in the main method:

if __name__ == '__main__':

 logging.basicConfig(level=logging.WARNING)

 main()

Harry buys these off amazon.

Harry bought these off amazon.

Chapter 5 Natural Language Processing, Understanding, and Generation

152

Harry will buy these off amazon.

Harry does not buy these off amazon.

Does Harry buy these off amazon?

Who does Harry buy?

Harry buys these off amazon on first day of sales despite high

price.

Impulsive Harry buys this off amazon.

Impulsive Harry quickly buys this off amazon.

Harry buys these off amazon by surprise.

Harry buys these off amazon for Eva.

Harry bought these off amazon.

He likes jeans.

He will return t-shirt.

Harry bought these off amazon and he likes jeans

Harry bought these off amazon and he likes jeans and he will

return t-shirt

Harry likes amazon because product was good.

As you can see, SimpleNLG offers an easy-to-use syntax to generate

grammatically correct sentences in English programmatically. Next, let’s

dive into a deep learning model to generate the next words given a piece of

text. Unlike SimpleNLG, we are not sure if we’ll get a grammatically correct

sentence in such a deep learning model.

�Deep Learning Model for Text Generation
Text generation using deep learning is built for language models and

applications like speech-to-text, conversational chatbots, and text

summarizations. Such language models predict the occurrences of a word

based on the previous sequence of words. Many deep learning network

architectures such as recurrent neural networks are available for language

modeling.

Chapter 5 Natural Language Processing, Understanding, and Generation

153

RNNs are deployed in a variety of applications like speech recognition,

language modeling, translation, image captioning, and many more.

Figure 5-17 shows how the hidden layers in RNNS are stacked up in

a sequence of the chain. The rolled and unrolled versions help in

understanding how internal processing happens.

In the demonstration code, we use a deep learning model called the

long short-term memory model (LSTM). LSTMs are a particular type of

RNN, capable of learning long term dependency, which RNNs are not very

good at leaning. One significant difference in the capability between RNNs

and LSTM is the ability to understand the context of a word, which might

not come from its immediate predecessor but instead could come from

a couple of words ahead. For example, if we are trying to predict the next

word based on the previous ones, in “I grew up in France... I speak fluent

French,” the context for French is present further back in the sentence than

just the previous word. Figure 5-17 shows the RNN network after unrolling.

Observe that each of the neural network chunks labelled N are exactly

the same.

Figure 5-17.  RNN architecture in rolled and unrolled forms

Chapter 5 Natural Language Processing, Understanding, and Generation

154

Although RNNs are capable of picking up such long-term dependency

in sentences, they requires a careful selection of parameters, which is often

difficult in many practical problems. This is where LSTMs come to the

rescue.

Figure 5-18 shows the architecture of the LSTM network.

Figure 5-18.  Architecture of an LSTM

There are four major parts in LSTMs networks:

•	 Cell state: The line that runs through from the top with

few direct interactions like pairwise multiplication and

addition, which could add or remove any information

from the cell state.

•	 Forget gate layer: Gates are a mechanism by which the

LSTMs control how much of the information should be

passed through the cell state. Here a sigmoid function

is used, which has an output value between 0 to 1. If the

value is 1, it means let everything pass; 0 means do not

let anything pass.

Chapter 5 Natural Language Processing, Understanding, and Generation

155

•	 Input gate layer: The sigmoid layer called an input

gate layer decides which values we will update.

•	 Tanh layer: The tanh activation function layer creates

a vector of new candidate values given the input and

hidden state values from the previous time step.

�Loading the Library

Load the required libraries from Keras, an open source neural network

library built in Python. It’s a popular library used for building deep learning

models in standalone mode or on top of frameworks like TensorFlow,

CNTK, and Theano. It provides fast experimentation with deep learning

models with user-friendly, modular, and extensible syntax and structure.

from keras.preprocessing.sequence import pad_sequences

from keras.layers import Embedding, LSTM, Dense, Dropout

from keras.preprocessing.text import Tokenizer

from keras.callbacks import EarlyStopping

from keras.models import Sequential

import keras.utils as ku

import numpy as np

�Defining the Training Data

We took a review from the Amazon Fine Food review dataset. However,

more data would get better results.

review_data = ""Chilling in the fridge seems to boost the

flavor even more;

and using them, rather than corn chips, to make nachos will

have your tastebuds

singing like Janet Jackson but without any of the associated

wardrobe risks."

Chapter 5 Natural Language Processing, Understanding, and Generation

156

�Data Preparation

Let’s define a method called dataset_preparation to perform the

following major tasks:

	 1.	 Convert the input review text into lowercase and split

the review into sentences split by a newline character,

\n. The split function created three sentences in the

corpus. The following is the result of the operation:

corpus = review_data.lower().split("\n")

print(corpus)

['chilling in the fridge seems to boost the flavor

even more; ', 'and using them, rather than corn chips,

to make nachos will have your tastebuds ', 'singing

like janet jackson but without any of the associated

wardrobe risks.']

	 2.	 Tokenize the input reviews from the dataset. Use

the Keras fit_on_text() method. The method

internally represents the words in a dictionary

with each word getting an index based on the

frequency of its occurrence. So, if the word “the” in

our review text appears the most, it gets an internal

representation with the least index value like

word_index["the"] = 0. In our review, except for

the words “the” and “to,” all other words appear just

once. The following is the output of the operation:

review_tokenizer.fit_on_texts(corpus)

print(review_tokenizer.word_index)

{'the': 1, 'to': 2, 'chilling': 3, 'in': 4, 'fridge':

5, 'seems': 6, 'boost': 7, 'flavor': 8, 'even': 9,

Chapter 5 Natural Language Processing, Understanding, and Generation

157

'more': 10, 'and': 11, 'using': 12, 'them': 13,

'rather': 14, 'than': 15, 'corn': 16, 'chips': 17,

'make': 18, 'nachos': 19, 'will': 20, 'have': 21,

'your': 22, 'tastebuds': 23, 'singing': 24, 'like': 25,

'janet': 26, 'jackson': 27, 'but': 28, 'without': 29,

'any': 30, 'of': 31, 'associated': 32, 'wardrobe': 33,

'risks': 34}

	 3.	 Transform each word in the review into a

sequence of integers. Each word gets the integer

value corresponding to the index obtained using

fit_on_text(). The following is the output of

token_list = review_tokenizer.texts_to_

sequences([line])[0]

print(token_list)

[3, 4, 1, 5, 6, 2, 7, 1, 8, 9, 10]

[11, 12, 13, 14, 15, 16, 17, 2, 18, 19, 20, 21, 22, 23]

[24, 25, 26, 27, 28, 29, 30, 31, 1, 32, 33, 34]

Note that we generate the index using fit_

on_text() once and could use the texts_to_

sequence() as many times we want. The integer

value assigned to each word makes the computation

in neural network feasible. This approach is superior

to assigning a random number to each word at the

start of the neural network training.

	 4.	 Generate n-gram values using the integer sequence

for each sentence in the corpus. In each iteration of

the for loop, the list input_review_sequences gets

updated. In the final output, all possible n-grams of

length 1 to len(token_list) get generated.

Chapter 5 Natural Language Processing, Understanding, and Generation

158

 for line in corpus:

 �token_list = review_tokenizer.texts_to_

sequences([line])[0]

 for i in range(1, len(token_list)):

 n_gram_sequence = token_list[:i+1]

 �input_review_sequences.append(n_gram_

sequence)

 print(input_review_sequences)

Iteration 1:

[[3, 4], [3, 4, 1], [3, 4, 1, 5], [3, 4, 1, 5, 6], [3,

4, 1, 5, 6, 2], [3, 4, 1, 5, 6, 2, 7], [3, 4, 1, 5, 6,

2, 7, 1], [3, 4, 1, 5, 6, 2, 7, 1, 8]]

Iteration 2:

[[3, 4], [3, 4, 1], [3, 4, 1, 5], [3, 4, 1, 5, 6], [3,

4, 1, 5, 6, 2], [3, 4, 1, 5, 6, 2, 7], [3, 4, 1, 5,

6, 2, 7, 1], [3, 4, 1, 5, 6, 2, 7, 1, 8], [3, 4, 1, 5,

6, 2, 7, 1, 8, 9], [3, 4, 1, 5, 6, 2, 7, 1, 8, 9, 10],

[11, 12], [11, 12, 13], [11, 12, 13, 14], [11, 12, 13,

14, 15], [11, 12, 13, 14, 15, 16], [11, 12, 13, 14, 15,

16, 17], [11, 12, 13, 14, 15, 16, 17, 2], [11, 12, 13,

14, 15, 16, 17, 2, 18], [11, 12, 13, 14, 15, 16, 17, 2,

18, 19], [11, 12, 13, 14, 15, 16, 17, 2, 18, 19, 20],

[11, 12, 13, 14, 15, 16, 17, 2, 18, 19, 20, 21], [11,

12, 13, 14, 15, 16, 17, 2, 18, 19, 20, 21, 22], [11,

12, 13, 14, 15, 16, 17, 2, 18, 19, 20, 21, 22, 23]]

...

	 5.	 Pad the sequence. Since each n-gram sequence is

different in length, the matrix computation in the

neural network would not be possible. For this reason,

each n-gram sequence is padded with 0 to make it

Chapter 5 Natural Language Processing, Understanding, and Generation

159

equal in length. For example, the first sequence in the

list [3, 4] is padded as [0 0 0 0 0 0 0 0 0 0 0 0 3 4]. The

following is the view of the matrix after padding:

max_sequence_len = max([len(x) for x in input_review_

sequences])

input_review_sequences = np.array(pad_sequences(input_

review_sequence,

maxlen=max_sequence_len, padding='pre'))

print(input_review_sequences)

[[0 0 0 0 0 0 0 0 0 0 0 0 3 4]

 [0 0 0 0 0 0 0 0 0 0 0 3 4 1]

 [0 0 0 0 0 0 0 0 0 0 3 4 1 5]

 [0 0 0 0 0 0 0 0 0 3 4 1 5 6]

 [0 0 0 0 0 0 0 0 3 4 1 5 6 2]

 [0 0 0 0 0 0 0 3 4 1 5 6 2 7]

 [0 0 0 0 0 0 3 4 1 5 6 2 7 1]

 [0 0 0 0 0 3 4 1 5 6 2 7 1 8]

 [0 0 0 0 3 4 1 5 6 2 7 1 8 9]

 [0 0 0 3 4 1 5 6 2 7 1 8 9 10]

 [0 0 0 0 0 0 0 0 0 0 0 0 11 12]

 [0 0 0 0 0 0 0 0 0 0 0 11 12 13]

 [0 0 0 0 0 0 0 0 0 0 11 12 13 14]

 [0 0 0 0 0 0 0 0 0 11 12 13 14 15]

 [0 0 0 0 0 0 0 0 11 12 13 14 15 16]

 [0 0 0 0 0 0 0 11 12 13 14 15 16 17]

 [0 0 0 0 0 0 11 12 13 14 15 16 17 2]

 [0 0 0 0 0 11 12 13 14 15 16 17 2 18]

 [0 0 0 0 11 12 13 14 15 16 17 2 18 19]

 [0 0 0 11 12 13 14 15 16 17 2 18 19 20]

 [0 0 11 12 13 14 15 16 17 2 18 19 20 21]

 [0 11 12 13 14 15 16 17 2 18 19 20 21 22]

Chapter 5 Natural Language Processing, Understanding, and Generation

160

 [11 12 13 14 15 16 17 2 18 19 20 21 22 23]

 [0 0 0 0 0 0 0 0 0 0 0 0 24 25]

 [0 0 0 0 0 0 0 0 0 0 0 24 25 26]

 [0 0 0 0 0 0 0 0 0 0 24 25 26 27]

 [0 0 0 0 0 0 0 0 0 24 25 26 27 28]

 [0 0 0 0 0 0 0 0 24 25 26 27 28 29]

 [0 0 0 0 0 0 0 24 25 26 27 28 29 30]

 [0 0 0 0 0 0 24 25 26 27 28 29 30 31]

 [0 0 0 0 0 24 25 26 27 28 29 30 31 1]

 [0 0 0 0 24 25 26 27 28 29 30 31 1 32]

 [0 0 0 24 25 26 27 28 29 30 31 1 32 33]

 [0 0 24 25 26 27 28 29 30 31 1 32 33 34]]

	 6.	 Set the last word as the label for each n-gram

sequence. For example, in the n-gram sequence

[3,4] corresponding to the words [“chilling,” “in”], the

label is “in.” Moreover, in the n-gram sequence [3,4,1]

corresponding to the words [“chilling,” “in,” “the”],

the label is “the.” Since the model is for predicting

the next possible word as part of the text generation

process, the sequence of predictor and label will

help the neural network train on which word is more

likely to occur next following a sequence of words.

The following code is the label for each of the above

n-gram sequences in the above matrix; observe that

it is the last inter in each row of the above matrix:

predictors, label = input_review_sequences[:,:-1],

input_review_sequences[:,-1]

print(label)

[4 1 5 6 2 7 1 8 9 10 12 13 14 15 16 17 2 18

19 20 21 22 23 25 26 27 28 29 30 31 1 32 33 34]

Chapter 5 Natural Language Processing, Understanding, and Generation

161

	 7.	 As a final step in the preprocessing, we convert

each label into a one-hot encoded vector to make

it feasible for matrix computation in the neural

network training. to_categorical() is a method

from the keras.utils library. Here is the output:

label = ku.to_categorical(label, num_classes=total_words)

print(label)

[[0. 0. 0. ... 0. 0. 0.]

 [0. 1. 0. ... 0. 0. 0.]

 [0. 0. 0. ... 0. 0. 0.]

 ...

 [0. 0. 0. ... 1. 0. 0.]

 [0. 0. 0. ... 0. 1. 0.]

 [0. 0. 0. ... 0. 0. 1.]]

Putting all the above preprocessing into a single method, we get the

following code:

#Tokenization to extract terms or words from a corpus

review_tokenizer = Tokenizer()

def dataset_preparation(review_data):

 corpus = review_data.lower().split("\n")

 review_tokenizer.fit_on_texts(corpus)

 total_words = len(review_tokenizer.word_index) + 1

 #Convert the corpus into a flat dataset

 input_review_sequences = []

 for line in corpus:

 �token_list = review_tokenizer.texts_to_

sequences([line])[0]

 for i in range(1, len(token_list)):

 n_gram_sequence = token_list[:i+1]

 input_review_sequences.append(n_gram_sequence)

Chapter 5 Natural Language Processing, Understanding, and Generation

162

 #Pad the sequences

 �max_sequence_len = max([len(x) for x in input_review_

sequences])

 �input_review_sequences = np.array(pad_sequences(input_

review_sequences, maxlen=max_sequence_len, padding='pre'))

 #Predictor and label data

 �predictors, label = input_review_sequences[:,:-1],input_

review_sequences[:,-1]

 label = ku.to_categorical(label, num_classes=total_words)

 return predictors, label, max_sequence_len, total_words

�Creating an RNN Architecture Using a LSTM Network

As discussed in the introduction, using the predictors and labels generated

in the dataset preprocessing step above, we create a model using the

following layers:

	 1.	 Embedding: It is a dense vector representation for

each word index. The fixed integers of the predictor

are converted into randomly selected dense vectors.

For example, [3,4] could be converted into [[0.26,

0.14], [0.2, -0.4]]. The dimension of the dense

vector is provided by the second argument, output_

dim, to the embedding method in Keras. The first

argument to the method is input_dim, which is the

total number of words in the review. The argument

input_length is set equal to the max sequence

length minus 1.

Chapter 5 Natural Language Processing, Understanding, and Generation

163

	 2.	 LSTM: The long short-term memory layer takes

units as the dimensionality of the output space.

The activation function by default is tanh, and the

recurrent activation function is a hard sigmoid

function by default. Other available activation

functions are softmax, Rectified Linear Unit (ReLU),

and others. With LSTMs it is recommended to use

tanh and sigmoid.

	 3.	 Dropout: RNN networks have a tendency to

overfit the data. In the dropout method in Keras, it

randomly sets a fraction of input units to 0 based on

the value in the argument rate. In the example, the

rate is set to 0.1, which means randomly drop 10% of

the input units.

	 4.	 Dense: The dense method creates a regular densely

connected neural network. This holds the output

layer where a softmax activation function is applied

to give values between 0 and 1. The word with a

value close to 1 is highly probable to be the next

word in the sequence based on the input predictor.

Finally, using the fit method, we train the model. In the fit function,

we give predictors, labels, and epochs as the input arguments. Epochs

decide the number of iterations for training. After the predefined epochs,

the training stops. The compile() method sets the loss function to

categorical_crossentropy and the adam optimizer is chosen as a learning

algorithm, which is based on the stochastic descent approach. The metric

accuracy is set to observe the improvement in the training accuracy as the

epochs increase.

Chapter 5 Natural Language Processing, Understanding, and Generation

164

#RNN model

def create_model(predictors, label, max_sequence_len, total_

words):

 input_len = max_sequence_len - 1

 model = Sequential()

 �model.add(Embedding(input_dim = total_words, output_dim = 10,

input_length=input_len))

 model.add(LSTM(150))

 model.add(Dropout(0.1))

 model.add(Dense(total_words, activation='softmax'))

 �model.compile(loss='categorical_crossentropy',

optimizer='adam')

 model.fit(predictors, label, epochs=100, verbose=1)

 return model

�Defining the Generate Text Method

The following method, using the trained model, predicts the most

probable next word. The word with the highest probability is given as

an output of the model. Since the input to the model is the sequence of

integers from the word indexes, a final mapping to the corresponding word

is performed in the for loop in the following code. A sample seed text is

used in the prediction to generate the text. We can control the number of

words we would like to generate.

def generate_text(seed_text, next_words, max_sequence_len, model):

 for j in range(next_words):

 �token_list = review_tokenizer.texts_to_sequences([seed_

text])[0]

 token_list = pad_sequences([token_list], maxlen=

 max_sequence_len-1, padding='pre')

 predicted = model.predict_classes(token_list, verbose=0)

Chapter 5 Natural Language Processing, Understanding, and Generation

165

 output_word = ""

 for word, index in review_tokenizer.word_index.items():

 if index == predicted:

 output_word = word

 break

 seed_text += " " + output_word

 return seed_text

�Training the RNN Model

Finally, now we use the dataset_preparation() method to prepare the

data and then pass the output to the create_model() method to start the

training. The training automatically stops after 100 epochs. Since epoch

is a hyperparameter, we could change the value to reduce the loss value

further.

X, Y, max_len, total_words = dataset_preparation(review_data)

model = create_model(X, Y, max_len, total_words)

Epoch 1/100

34/34 [==============================] - ETA: 0s - loss:

3.5555 - acc: 0.0000e+0 - 4s 129ms/step - loss: 3.5560 - acc:

0.0000e+00

Epoch 2/100

34/34 [==============================] - ETA: 0s - loss:

3.5527 - acc: 0.093 - 0s 1ms/step - loss: 3.5528 - acc: 0.0882

Epoch 3/100

34/34 [==============================] - ETA: 0s - loss:

3.5514 - acc: 0.093 - 0s 1ms/step - loss: 3.5513 - acc: 0.0882

Epoch 4/100

34/34 [==============================] - ETA: 0s - loss:

3.5492 - acc: 0.187 - 0s 1ms/step - loss: 3.5497 - acc: 0.1765

Chapter 5 Natural Language Processing, Understanding, and Generation

166

...

Epoch 79/100

34/34 [==============================] - ETA: 0s - loss:

2.2720 - acc: 0.312 - 0s 1ms/step - loss: 2.3008 - acc: 0.2941

Epoch 80/100

34/34 [==============================] - ETA: 0s - loss:

2.4143 - acc: 0.250 - 0s 1ms/step - loss: 2.4352 - acc: 0.2647

Epoch 81/100

34/34 [==============================] - ETA: 0s - loss:

2.2882 - acc: 0.187 - 0s 2ms/step - loss: 2.2994 - acc: 0.1765

Epoch 82/100

34/34 [==============================] - ETA: 0s - loss:

2.6602 - acc: 0.187 - 0s 1ms/step - loss: 2.7360 - acc: 0.1765

Epoch 83/100

34/34 [==============================] - ETA: 0s - loss:

2.5597 - acc: 0.250 - 0s 1ms/step - loss: 2.5235 - acc: 0.2353

Epoch 84/100

34/34 [==============================] - ETA: 0s - loss:

2.2769 - acc: 0.218 - 0s 1ms/step - loss: 2.2392 - acc: 0.2353

Epoch 85/100

34/34 [==============================] - ETA: 0s - loss:

2.4094 - acc: 0.218 - 0s 1ms/step - loss: 2.4340 - acc: 0.2059

Epoch 86/100

34/34 [==============================] - ETA: 0s - loss:

2.4646 - acc: 0.187 - 0s 1ms/step - loss: 2.4646 - acc: 0.1765

Epoch 87/100

34/34 [==============================] - ETA: 0s - loss:

2.3705 - acc: 0.218 - 0s 1ms/step - loss: 2.3532 - acc: 0.2353

Epoch 88/100

34/34 [==============================] - ETA: 0s - loss:

2.2616 - acc: 0.312 - 0s 1ms/step - loss: 2.2674 - acc: 0.2941

Chapter 5 Natural Language Processing, Understanding, and Generation

167

Epoch 89/100

34/34 [==============================] - ETA: 0s - loss:

2.3206 - acc: 0.156 - 0s 1ms/step - loss: 2.3513 - acc: 0.1765

Epoch 90/100

34/34 [==============================] - ETA: 0s - loss:

2.3629 - acc: 0.187 - 0s 1ms/step - loss: 2.3760 - acc: 0.2059

Epoch 91/100

34/34 [==============================] - ETA: 0s - loss:

2.3248 - acc: 0.218 - 0s 1ms/step - loss: 2.3491 - acc: 0.2059

Epoch 92/100

34/34 [==============================] - ETA: 0s - loss:

2.1996 - acc: 0.218 - 0s 1ms/step - loss: 2.2334 - acc: 0.2059

Epoch 93/100

34/34 [==============================] - ETA: 0s - loss:

2.2162 - acc: 0.156 - 0s 1ms/step - loss: 2.2047 - acc: 0.1765

Epoch 94/100

34/34 [==============================] - ETA: 0s - loss:

2.2623 - acc: 0.250 - 0s 1ms/step - loss: 2.2318 - acc: 0.2647

Epoch 95/100

34/34 [==============================] - ETA: 0s - loss:

2.3510 - acc: 0.218 - 0s 1ms/step - loss: 2.3256 - acc: 0.2353

Epoch 96/100

34/34 [==============================] - ETA: 0s - loss:

2.3909 - acc: 0.218 - 0s 1ms/step - loss: 2.3408 - acc: 0.2647

Epoch 97/100

34/34 [==============================] - ETA: 0s - loss:

2.1507 - acc: 0.250 - 0s 1ms/step - loss: 2.1700 - acc: 0.2353

Epoch 98/100

34/34 [==============================] - ETA: 0s - loss:

2.2254 - acc: 0.218 - 0s 1ms/step - loss: 2.1525 - acc: 0.2353

Epoch 99/100

Chapter 5 Natural Language Processing, Understanding, and Generation

168

34/34 [==============================] - ETA: 0s - loss:

2.1904 - acc: 0.281 - 0s 1ms/step - loss: 2.1384 - acc: 0.2941

Epoch 100/100

34/34 [==============================] - ETA: 0s - loss:

2.1210 - acc: 0.281 - 0s 1ms/step - loss: 2.1275 - acc: 0.2941

�Generating Text

Now, using the model, we can predict the next word given a seed text. In

the following example, the seed text is “signing like,” and we ask to predict

the next three words. The results are near what we expect. However,

instead for predicting “janet,” it predicted “jackson.” Note that we took a

small sample of data to train the model. More data would further improve

performance. As we also observed in training, the training accuracy by the

end of 100 epochs stayed at 29%, which is not quite high.

text = generate_text("singing like", 3, max_len, model)

print(text)

singing like jackson jackson the

�Applications
In this section, using the knowledge gained so far, we will build the

following four applications of NLP:

•	 Topic modeling using the spaCy, NLTK, and gensim
libraries: This is an extension of the topic modeling

we performed using LDA earlier in the chapter. In this

demonstration, we will use the combined knowledge of

spaCy, NLTK, and gensim to perform various tasks in

topic modeling.

Chapter 5 Natural Language Processing, Understanding, and Generation

169

•	 Classify between male and female gender by using
the person name: Using features like the last letter of a

name and a corpus of male and female names, we will

classify between a male and female name. This might

help in filtering through the reviews and identifying any

gender-based distinctions in the reviews for a product.

•	 Given a document, classifying it into a different
category: Classify a review into positive and

negative. We will use the NLTK library to perform the

preprocessing and classification using the Naïve Bayes

classifier.

•	 Intent classification and question answering: In

this application, we will build an intent classifier and

context-based question-answering utility which could

be integrated with any chatbot application. We will use

pretrained deep learning models using the DeepPavLov

library in Python.

�Topic Modeling Using spaCy, NLTK, and gensim
Libraries
In the demonstration, we will use spaCy for tokenizing the review text,

NLTK for the lemmatization and preprocessing the text, and the LDA

model from gensim for training the model.

Chapter 5 Natural Language Processing, Understanding, and Generation

170

�Tokenizing and Cleaning the Text

Using the en_core_web_md language model in spaCy (which is a slightly

bigger pretrained model than sm, meaning it's trained on the larger

vocabulary of words), we will do the following in the cleaning process for

each token:

	 1.	 Detect URLs and screen names, and append them

separately into the lda_review_tokens list. This

is to ensure the URLs and screen names are not

processed further.

	 2.	 Convert the rest of the tokens into lowercase.

Clean

import spacy

spacy.load('en_core_web_md')

from spacy.lang.en import English

parser = English()

def tokenize_review_text(text):

 lda_review_tokens = []

 review_tokens = parser(text)

 for token in review_tokens:

 if token.orth_.isspace():

 continue

 elif token.like_url:

 lda_review_tokens.append('URL')

 elif token.orth_.startswith('@'):

 lda_review_tokens.append('SCREEN_NAME')

 else:

 lda_review_tokens.append(token.lower_)

 return lda_review_tokens

Chapter 5 Natural Language Processing, Understanding, and Generation

171

�Lemmatization

Using the wordnext method, return the lemma for each word.

Lemmatization keeps only the root of the word, not its different forms.

import nltk

nltk.download('wordnet')

from nltk.corpus import wordnet as wordNet

def get_lemma(word):

 lemma = wordNet.morphy(word)

 if lemma is None:

 return word

 else:

 return lemma

�Preprocessing the Text Method for LDA

In the preprocessing step, we perform the following functions:

	 1.	 Remove all the stopwords in the English vocabulary.

We need to download the dataset named stopwords

before we can check for the presence of them in the

token.

	 2.	 Extract the lemma for each token after removing the

stopwords.

The following code shows the result of preprocessing on a sample text:

from nltk.stem.wordnet import WordNetLemmatizer

def get_lemma2(word):

 return WordNetLemmatizer().lemmatize(word)

Remove English stopwords

nltk.download('stopwords')

Chapter 5 Natural Language Processing, Understanding, and Generation

172

en_stop = set(nltk.corpus.stopwords.words('english'))

def preprocess_text_for_lda(input_review_text):

 tokens = tokenize_review_text(input_review_text)

 tokens = [token for token in tokens if len(token) > 4]

 tokens = [token for token in tokens if token not in en_stop]

 tokens = [get_lemma(token) for token in tokens]

 return tokens

preprocess_text_for_lda("I consume about a jar every two weeks of

this, either adding it to fajitas or using it as a corn chip dip")

['consume', 'every', 'week', 'either', 'add', 'fajitas', 'using']

�Reading the Training Data

We read the review file named corn_review.txt, which contains a few

sample reviews related to a “corn” based product in the Amazon Fine

Food review dataset. The following code prints the first few reviews after

preprocessing the reviews from the file:

review_text_data = []

with open('data/corn_review.txt') as f:

 for line in f:

 tokens = preprocess_text_for_lda(line)

 print(tokens)

 review_text_data.append(tokens)

['consume', 'every', 'week', 'either', 'add', 'fajitas', 'using']

['taste', 'taste', 'check', 'ingredient']

['found', 'crisp', 'local', 'walmart', 'figure', 'would']

...

Chapter 5 Natural Language Processing, Understanding, and Generation

173

�Bag of Words

Now using the gensim library, we convert the processed review text from

the previous step into a bag-of-words corpus and store it on the disk as a

pickle file. We later load the file and train the LDA model. Also, we save the

dictionary of words created using corpora.Dictionary.

#LDA gensim

from gensim import corpora

corn_review_dict = corpora.Dictionary(review_text_data)

corn_review_corpus = [corn_review_dict.doc2bow(text) for text

in review_text_data]

import pickle

pickle.dump(corpus, open('corn_review_corpus.pkl', 'wb'))

dictionary.save('corn_review_dict.gensim')

�Training and Saving the Model

Finally, using the ldamodel from genism, we train the model to generate

five topics and save the model on disk for later use. Observe that the

model gives topic representation using words and their weights in deciding

the topic.

import gensim

number_of_topics = 5

corn_review_ldamodel = gensim.models.ldamodel.LdaModel(corn_

review_corpus, num_topics = number_of_topics, id2word=corn_

review_dict, passes=15)

corn_review_ldamodel.save('corn_review_ldamodel.gensim')

topics = corn_review_ldamodel.print_topics(num_words=4)

for topic in topics:

 print(topic)

Chapter 5 Natural Language Processing, Understanding, and Generation

174

(0, '0.020*"ginger" + 0.018*"flavor" + 0.015*"recipe" +

0.015*"syrup"')

(1, '0.021*"chips" + 0.014*"tortilla" + 0.014*"flavor" +

0.014*"rather"')

(2, '0.016*"using" + 0.016*"add" + 0.016*"fajitas" +

0.016*"consume"')

(3, '0.003*"ginger" + 0.003*"vernor" + 0.003*"taste" +

0.003*"sugar"')

(4, '0.034*"taste" + 0.019*"check" + 0.019*"ingredient" +

0.003*"product"')

From the output above, it looks like topics 0 and 3 are about a “ginger

flavor corn syrup” while topics 2 and 4 are not very clear on what they

convey. Moreover, topic 1 talks about “tortilla chips.”

�Predictions

Now, using the above model, let’s see how well the model does on a new

text. In order to predict the topic, we need to first preprocess and convert

the corpus into a bag-of-words representation. From the prediction, it

looks like the first example is more related to topic 0, which has the highest

probability. Moreover, the second example talks about “tortilla chips,”

which is represented by topic 1 above.

#Prediction

new_doc = 'Corn is typically yellow but comes in a variety of

other colors, such as red, orange, purple, blue, white, and

black.'

new_doc = preprocess_text_for_lda(new_doc)

new_doc_bow = corn_review_dict.doc2bow(new_doc)

print(new_doc_bow)

print(corn_review_ldamodel.get_document_topics(new_doc_bow))

Chapter 5 Natural Language Processing, Understanding, and Generation

175

[(100, 1), (219, 1)]

[(0, 0.73304677), (1, 0.066701755), (2, 0.0667417), (3,

0.066757984), (4, 0.066751845)]

new_doc = 'corn tortilla or just tortilla is a type of thin,

unleavened flatbread'

new_doc = preprocess_text_for_lda(new_doc)

new_doc_bow = corn_review_dict.doc2bow(new_doc)

print(new_doc_bow)

print(corn_review_ldamodel.get_document_topics(new_doc_bow))

[(230, 2)]

[(0, 0.06699851), (1, 0.73296124), (2, 0.066678636),

(3, 0.06668124), (4, 0.06668032)]

�Gender Identification
In this application, we use a corpus of male and female names to build a

model for predicting gender from a given name. It is a simple model with

the only feature as the last letter of the name. The core idea is that female

and male names generally show certain distinctive features. For example,

most female names end with a, e, and i. We use the NLTK library to build

this model.

�Loading the NLTK Library and Downloading
the Names Corpus

Download the male and female name corpus from the NLTK library. The

corpus mostly consists of English names. The model is generic and is

applicable to non-English names. However, note that the feature we derive

might not be applicable for all names.

Chapter 5 Natural Language Processing, Understanding, and Generation

176

import nltk

nltk.download('names')

[nltk_data] Downloading package names to

[nltk_data] C:\Users\KARTHIK\AppData\Roaming\nltk_data...

[nltk_data] Unzipping corpora\names.zip.

�Loading the Male and Female Names

After downloading, we create a list of male and female separately to

process it further.

names = nltk.corpus.names

names.fileids()

male_names = names.words('male.txt')

female_names = names.words('female.txt')

�Common Names

We can print a few common names that are in both the male and female

corpus, such as Abbie, Andy, and Barrie.

#Common names

print([w for w in male_names if w in female_names])

['Abbey', 'Abbie', 'Abby', 'Addie', 'Adrian', 'Adrien', 'Ajay',

'Alex', 'Alexis', 'Alfie', 'Barrie', 'Ariel', 'Allie', 'Angel'

, 'Angie' , 'Andrea', 'Andy', 'Allyn', 'Andie', 'Alix',

'Ashley', 'Aubrey', 'Augustine', 'Austin', 'Averil', 'Ali',

'Barry', 'Beau', 'Bennie', 'Benny',...]

Chapter 5 Natural Language Processing, Understanding, and Generation

177

�Extract Features

As a feature to our model, we extract the last letter of each name.

Generally, the last name is a good indicator of a person’s gender. We will

further see in the output of the model how the last letter of the person

name plays an important role in the gender prediction model.

def gender_features(word):

 return {'last_letter': word[-1]}

gender_features('Shrek')

{'last_letter': 'k'}

�Randomly Splitting into Train and Test

Now we train the model. We split the male and female corpus of names

into training and testing sets. The split is chosen after shuffling the names

randomly using the library random in Python. From the resulting corpus,

we assign the first 500 names into training and the next 500 into testing.

from nltk.corpus import names

labeled_names = ([(name, 'male') for name in names.words('male.

txt')] + [(name, 'female') for name in names.words('female.

txt')])

import random

random.shuffle(labeled_names)

featuresets = [(gender_features(n), gender) for (n, gender) in

labeled_names]

train_set, test_set = featuresets[500:], featuresets[:500]

Chapter 5 Natural Language Processing, Understanding, and Generation

178

�Training the Model

We train the model using the Naïve Bayes (NB) classifier on the training

dataset. NB is based on the Bayes Theorem, which computes the prior

and posterior probabilities based on whether a given name is male or

female. The discussion on NB is beyond the scope of this book. Interested

readers can refer to the NLTK documentation at the following link which

explains the implementation: www.nltk.org/_modules/nltk/classify/

naivebayes.html.

classifier = nltk.NaiveBayesClassifier.train(train_set)

�Model Prediction

Using the model built above, we predict the gender of a few names like

John and Sascha. Also, we try a few common names and see in which class

the model predicts.

classifier.classify(gender_features('John'))

'male'

classifier.classify(gender_features('Sascha'))

'female'

�Model Accuracy

The model seems to have an accuracy of 81.6%, which is quite a good

model. We need to incorporate more features if we wish to be more precise

in the prediction.

print(nltk.classify.accuracy(classifier, test_set))

0.816

Chapter 5 Natural Language Processing, Understanding, and Generation

http://www.nltk.org/_modules/nltk/classify/naivebayes.html
http://www.nltk.org/_modules/nltk/classify/naivebayes.html

179

�Most Informative Features

Using the show_most_informative_features() method from the model,

we can see which last letters from the names are essential for classifying

the male and female names.

Looking the following output, a name that contains a as the last letter is

almost 36 times more likely to be female than male, while a name that has

k as the last letter is 32 times more likely to be male. The accuracy of this

model is more than 80%.

classifier.show_most_informative_features(5)

Most Informative Features

 last_letter = 'a' female : male = 35.7 : 1.0

 last_letter = 'k' male : female = 32.0 : 1.0

 last_letter = 'p' male : female = 19.7 : 1.0

 last_letter = 'f' male : female = 15.8 : 1.0

 last_letter = 'v' male : female = 9.8 : 1.0

�Document Classification
A common task in NLP is when we tag a document (could also be a

collection of sentences) into a specific category. An example is a news

aggregator classifying articles into political, sports, and business. Such

classification is useful when there is an enormous amount of unstructured

textual data, and no manual labor is available for tagging them. The

automatic document classifier could speed-track the process of tagging.

Another domain where it’s useful is in classifying movie and product

reviews into positive and negative sentiments.

Chapter 5 Natural Language Processing, Understanding, and Generation

180

�Loading Libraries

We will use the CategorizedPlaintextCorpusReader method from the

NLTK library to create a corpus of review with categories stored with it.

import os

import random

from nltk.corpus.reader.plaintext import

CategorizedPlaintextCorpusReader

�Reading the Dataset into the Categorized Corpus

We have created two sets of reviews, negative and positive. Each positive

and negative review is stored in a separate text file with names like

1_neg.txt and 1_pos.txt, and put into a common folder. The following

code reads each of the files and categorizes the review into either “pos”

for positive and “neg” for negative. There are 10 text files in each of the

categories. This is stored as CategorizedPlaintextCorpusReader.

Directory of the corpus

corpusdir = 'corpus/'

review_corpus = CategorizedPlaintextCorpusReader(corpusdir,

r'.*\.txt', cat_pattern=r'\d+_(\w+)\.txt')

list of documents(fileid) and category (pos/neg)

documents = [(list(review_corpus.words(fileid)), category)

 for category in review_corpus.categories()

 for fileid in review_corpus.fileids(category)]

random.shuffle(documents)

for category in review_corpus.categories():

 print(category)

output:

neg

Chapter 5 Natural Language Processing, Understanding, and Generation

181

pos

type(review_corpus)

nltk.corpus.reader.plaintext.CategorizedPlaintextCorpusReader

len(documents)

20

�Computing Word Frequency

Now we count the frequency of occurrence of each word in a given corpus

using the FreqDist() method from NLTK. The following code prints the

top 200 words in descending order of frequency of occurrence:

import nltk

all_words = nltk.FreqDist(w.lower() for w in review_corpus.words())

word_features = list(all_words)[:200]

print(word_features)

['warning', '!', '-', 'alcohol', 'sugars', '!,"', 'buyer',

'beware', 'please', 'this', 'sweetener', 'is', 'not',

'for', 'everybody', '.', 'maltitol', 'an', 'sugar', 'and',

'can', 'be', 'undigestible', 'in', 'the', 'body', 'you',

'will', 'know', 'a', 'short', 'time', 'after', 'consuming',

'it', 'if', 'are', 'one', 'of', 'unsuspecting', 'many',

'who', 'cannot', 'digest', 'by', 'extreme', 'intestinal',

'bloating', 'cramping', 'massive', 'amounts', 'gas', 'person',

'experience', 'nausea', ',', 'diarrhea', '&', 'headaches',

'also', 'experienced', 'i', 'learned', 'my', 'lesson', 'hard',

'way', 'years', 'ago', 'when', 'fell', 'love', 'with', 'free',

'chocolates', 'suzanne', 'sommers', 'used', 'to', 'sell',

'thought', "'", 'd', 'found', 'chocolate', 'nirvana', 'at',

'first', 'taste', 'but', 'bliss', 'was',..]

Chapter 5 Natural Language Processing, Understanding, and Generation

182

�Checking the Presence of Frequent Words

We define a method called document_features(), which checks whether

a frequent word is present in any of the neg and pos review text files read

earlier. If it finds a frequent contains, the print statement will print the word.

#Check whether most frequent word is present in the doc or not

def document_features(document):

 document_words = set(document)

 features = {}

 for word in word_features:

 �features['contains({})'.format(word)] = (word in

document_words)

 return features

print(document_features(review_corpus.words('1_pos.txt')))

{'contains(warning)': False, 'contains(!)': False,

'contains(-)': False, 'contains(alcohol)': False,

'contains(sugars)': False, 'contains(!,")': False,

'contains(buyer)': False,...}

print(document_features(review_corpus.words('1_neg.txt')))

{'contains(warning)': False, 'contains(!)': False,

'contains(-)': False, 'contains(alcohol)': False,

'contains(sugars)': False, 'contains(!,")': False,...}

Chapter 5 Natural Language Processing, Understanding, and Generation

183

�Training the Model

We use 15 randomly selected docs for training and 5 for testing. We then

use the Naïve Bayes classifier for classification. We also print the accuracy

on testing and training data. It seems to give a very low accuracy of 20% on

testing and 67% on training. The accuracy could be improved with more

data training data.

featuresets = [(document_features(d), c) for (d,c) in documents]

train_set, test_set = featuresets[5:], featuresets[:5]

classifier = nltk.NaiveBayesClassifier.train(train_set)

print(nltk.classify.accuracy(classifier, test_set))

0.2

print(nltk.classify.accuracy(classifier, train_set))

0.6666666666666666

�Most Informative Features

Again, using the show_most_informative_features from the model, we

check which words are more likely to decide whether a review will be

negative or positive. This gives an explanation for why the review was

classified as negative and positive.

classifier.show_most_informative_features(5)

Most Informative Features

 contains(not) = True neg : pos = 5.2 : 1.0

 contains(this) = False neg : pos = 5.2 : 1.0

 contains(like) = True neg : pos = 4.3 : 1.0

 contains(not) = False pos : neg = 4.0 : 1.0

 contains(this) = True pos : neg = 4.0 : 1.0

 contains(so) = True neg : pos = 3.3 : 1.0

Chapter 5 Natural Language Processing, Understanding, and Generation

184

 contains(me) = True neg : pos = 3.3 : 1.0

 contains(good) = True neg : pos = 2.6 : 1.0

 contains(have) = True neg : pos = 2.6 : 1.0

 contains(much) = True neg : pos = 2.4 : 1.0

In this corpus, a review that mentions “not” is almost five times more

likely to be negative than positive, while a review that mentions “good” is

only about three times more likely to be negative than positive. Perhaps

the negative-ness of the word “good” might stem from the customers with

reviews of the nature, “the product is good but ...” where they may have one

or two complain.

If we add more reviews to this corpus of positive and negative, the

accuracy will start to improve.

�Intent Classification and Question Answering
The two most important NLU tasks a chatbot should perform well are

to classify the intent of a given user query and answer questions by

understanding the context. While there are many propriety frameworks

around these two tasks, they don’t provide the visibility of what happens

behind the scene. In this section, we will use a Python library called

deeppavlov. It’s an open-source deep learning library for end-to-end

dialog systems and chatbots. The library provides many pretrained deep

learning models as part of its offering.

�Intent Classification

We need to classify a given query (input from the user) into an intent class.

Once an intent class is identified, a chatbot can trigger the respective

logic as a response to a user query. For example, if the query is “how is the

weather today,” the intent classification should trigger the weather services

API from within the chatbot and fetch the result.

Chapter 5 Natural Language Processing, Understanding, and Generation

185

The deeppovlav library provides many built-in intent classification

models. In the following demo, we will use a pretrained NLU benchmark

dataset called SNIPS. It is trained for the following seven intents:

•	 GetWeather

•	 BookRestaurant

•	 PlayMusic

•	 AddToPlaylist

•	 RateBook

•	 SearchScreeningEvent

•	 SearchCreativeWork

Setting tensorflow as the Back End

In order to use the KerasClassificationModel in the Windows platform,

we need to set the KERAS_BACKEND to “tensorflow”. The following code is

used for the same:

import os

os.environ["KERAS_BACKEND"] = "tensorflow"

Building the Model

We install deeppavlov in either the virtualenv or conda environments.

In the following command line example, we create a conda environment

named deeppavlov and then install and download the required libraries

and model files for using SNIPS intents:

(deeppavlov) C:\Users\Karthik\ Code>python -m deeppavlov

install "C:\ProgramData\Anaconda3\Lib\site-packages\deeppavlov\

configs\classifiers\intents_snips.json"

Chapter 5 Natural Language Processing, Understanding, and Generation

186

(deeppavlov) C:\Users\Karthik\ Code>python -m deeppavlov

download "C:\ProgramData\Anaconda3\Lib\site-packages\

deeppavlov\configs\classifiers\intents_snips.json"

Once the installation and download is successful, the following code

builds the model using build_model method. Note that the first time you

run this code, you need to set the download = True for downloading all

required pretrained model. The size of download is approximately 3GB.

from deeppavlov import build_model, configs

CONFIG_PATH = configs.classifiers.intents_snips # could also

be configuration dictionary or string path or `pathlib.Path`

instance

#model = build_model(CONFIG_PATH, download=True) # run it once

model = build_model(CONFIG_PATH, download=False) # otherwise

2019-07-02 19:48:10.74 INFO in 'deeppavlov.models.embedders.

fasttext_embedder'['fasttext_embedder'] at line 67: [loading

fastText embeddings from `C:\Users\Karthik\.deeppavlov\

downloads\embeddings\dstc2_fastText_model.bin`]

Using TensorFlow backend.

2019-07-02 19:51:04.703 INFO in 'deeppavlov.models.classifiers.

keras_classification_model'['keras_classification_model'] at

line 273: [initializing `KerasClassificationModel` from saved]

2019-07-02 19:51:05.866 INFO in 'deeppavlov.models.classifiers.

keras_classification_model'['keras_classification_model'] at

line 283: [loading weights from model.h5]

2019-07-02 19:51:07.653 INFO in 'deeppavlov.models.classifiers.

keras_classification_model'['keras_classification_model'] at

line 134: Model was successfully initialized!

Model Summary:

...

Chapter 5 Natural Language Processing, Understanding, and Generation

187

Total params: 235,475

Trainable params: 233,725

Non-trainable params: 1,750

Classifying the Intent

Now we can use the model. In the following code, we try a few intents like

GetWeather, BookRestaurant, RateBook, and SearchScreeningEvent.

print(model(["will it rain in Edgbaston, Birmingham today?"]))

[['GetWeather']]

print(model(["book one table at a good restaurant?"]))

[['BookRestaurant']]

print(model(["Give Da Vinci Code a 5 star on my amazon purchase"]))

[['RateBook']]

print(model(["what are the show times for The Lion King"]))

[['SearchScreeningEvent']]

You can train a custom model to classify the intent for a specific use

case. More details on training a custom model can be found at

http://docs.deeppavlov.ai/en/latest/components/classifiers.

html#how-to-train-on-other-datasets. Training a custom model is a

resource-intensive process. So, if you are trying to build a generic chatbot,

we suggest you first explore all the pretrained models shown here before

deciding to build your own model: http://docs.deeppavlov.ai/en/

latest/components/classifiers.html#pre-trained-models.

Chapter 5 Natural Language Processing, Understanding, and Generation

http://docs.deeppavlov.ai/en/latest/components/classifiers.html#how-to-train-on-other-datasets
http://docs.deeppavlov.ai/en/latest/components/classifiers.html#how-to-train-on-other-datasets
http://docs.deeppavlov.ai/en/latest/components/classifiers.html#pre-trained-models
http://docs.deeppavlov.ai/en/latest/components/classifiers.html#pre-trained-models

188

�Question Answering

Chatbots often need to understand the context of the conversation to

answer a particular query from a user. The deeppavlov library provides

a pretrained model trained on Stanford Question Answering Dataset

(SQuAD) dataset, a reading comprehension dataset consisting of

crowdsourced questions on a set of Wikipedia articles. More details on the

dataset can be found at https://rajpurkar.github.io/SQuAD-explorer/.

The main task the model trained on SQuAD dataset performs is to

identify a given context and answer a question within the given context.

Building the Model

Similar to intent classification, we use the build_model method with

configurations of the SQuAD pretrained model. Run the following code

once with download = True to get all the required models. Also, run the

following command to install the squad_bert pretrained model:

python -m deeppavlov install squad_bert

from deeppavlov import build_model, configs

#model = build_model(configs.squad.squad, download=True)

model = build_model(configs.squad.squad)

Context and Question

Now that the model is built, here are some examples of a given context and

a question. Then we will see how well the model does. In the first example,

we give a context about a chatbot called IRIS, and then ask the model

“What is IRIS?” It correctly picks up the most relevant part from the context

and gives us the output, starting from the eighth character.

model(['IRIS is an enterprise chatbot completely built in-house

and uses private data'], ['What is IRIS?'])

Chapter 5 Natural Language Processing, Understanding, and Generation

https://rajpurkar.github.io/SQuAD-explorer/

189

[['an enterprise chatbot completely built in-house'], [8],

[832987.875]]

In the next example, we give one of the reviews from the Amazon Food

Review dataset as a context and then ask, “How many cakes were made?”

The model is able to give the correct answer as 20.

model(['Great morning cake!,We must have made about 20 of these

cakes last fall They are so good. Also very easy to make. This

was great with bacon and eggs in the morning. It was also great

for dessert (as I believe it was intended ;). We didnt put the

icing on as suggested as the cake was great without it. Now that

its getting a little chilly out we are excited to start making

our favorite fall cake again'], ['how many cakes were made?'])

[['20'], [44], [42414.3046875]]

In the following example, we test whether the model is able to identify

a phrase in the given context which might tell “Is the customer happy

about the purchase?” The model picks up the right phrase, which talks

about a particular sentiment: “disappointed.” It tells us the customer

was happy about the purchase. In this question we haven’t used any

words from the context, but the model still was able to extract the most

appropriate phrase.

model(['I used these rainbow jimmies for a rainbow cupcake

topper and added them to rice krispie treats for my daughters

6th birthday. Obviously, it was a rainbow party. The package

didnt look like the picture, but I was not disappointed in the

product. I would buy from this company again.'], ['is the

customer happy about the purchase?'])

[['I was not disappointed'], [209], [2021.420166015625]]

Chapter 5 Natural Language Processing, Understanding, and Generation

190

Serving the DeepPavlov Model

In DeepPavlov terminology, each skill or component can be made

available as a REST API. Once a skill or component is hosted as a skill, any

application or service can call the API to get a response. In the following

example, if we host the “intents_snips” component using the following

command line argument

(deeppavlov) C:\Users\Karthik\ Code>python -m deeppavlov

riseapi "C:\ProgramData\Anaconda3\Lib\site-packages\deeppavlov\

configs\classifiers\intents_snips.json"

by the end of the above command, we should see the following output,

where a Flask app is created and the API is running on the local host. You

can specify your own port and URL for hosting the API. More on this can

be found at http://docs.deeppavlov.ai/en/latest/devguides/rest_

api.html.

Now, a POST request like the following should return a JSON response

with the intent class [['SearchScreeningEvent']]:

{"context":[" what are the show times for The Lion King"]}

In the next chapter, we will introduce our enterprise chatbot

named IRIS, where we can directly call the above REST API for intent

classification. Note that you still have to train your own model on the

private enterprise data in order to integrate it with the chatbot. Even

though we will build IRIS using a Java framework, the REST API we have

created above is easily called from within the Java application. We can

Chapter 5 Natural Language Processing, Understanding, and Generation

http://docs.deeppavlov.ai/en/latest/devguides/rest_api.html
http://docs.deeppavlov.ai/en/latest/devguides/rest_api.html

191

create many applications using the powerful libraries of Python for NLP,

NLU, and NLG tasks and simply host all of it as a REST API, which is

language and platform agnostic.

�Summary
We started by identifying the differences between natural language

processing, understanding, and generation, and then discussed various

open source tools available to process and understand natural languages.

Then we delved into NLP, where we showed how to use tools like

NLTK, spaCy, CoreNLP, genism, and TextBlob for various task such

as processing textual data, normalizing text, part-of-speech tagging,

dependency parsing, spelling correction, machine translation, and named

entity recognition.

In the NLU section, we showed language models like Word2Vec and

GloVe for performing out-of-the-box tasks such as word and sentence

similarity, finding linear substructures between words, and performing

arithmetic operations on word embedding vectors to find meaningful

semantic relationships between words. As an important part of NLG, we

explored the relationship extraction from a given sentence using the OpenIE

tool and built a topic modelling tool using latent Dirichlet allocation (LDA).

We then moved into NLG, where we explored use cases like a random

headline generator using the markovify library in Python. And then

we explored SimpleNLG, an English grammar-based natural language

generation utility. It offers grammatical structures such as generating the

past tense, negation, complements, and prepositional phrases. In the NLG

section, we built a deep learning-based model for predicting the next word

in a given phrase or a sentence. The model used a popular deep learning

architecture called long short-term memory.

Chapter 5 Natural Language Processing, Understanding, and Generation

192

In the final part, we covered applications of NLP and NLU: topic

modelling, gender, document classification, intent classification, and

question answering. In the topic modeling, we utilized all of the available

open source tools from the previous sections of the chapter.

Overall, in this chapter we explored extensively the P-U-G of natural

languages. The availability of many open source tools from Python and

Java facilitated a great number of demonstrations to understand and

model natural languages. We covered a varied level of topics starting from

parsing text data to building generative models using a deep learning

model. Our aim with this chapter was to provide an exhaustive collection

of methods and tools to empower you to build chatbots with basic and

advanced levels of natural language processing, understanding, and

generation capabilities.

Next, we will build and deploy a fully functional in-house enterprise

chatbot on private datasets. Since there are many chatbot frameworks

with support for NLP and NLU, the methods discussed in this chapter at

first might seem not so readily usable; however, under the hood, many

frameworks like RASA and LUIS internally uses the techniques discussed

in this chapter. Also, many ideas from NLG are still not available in any

standard chatbot framework, so they are often built from scratch. We

believe the ideas taught in this chapter will come handy when you build an

enterprise chatbot.

Chapter 5 Natural Language Processing, Understanding, and Generation

193© Abhishek Singh, Karthik Ramasubramanian, Shrey Shivam 2019
A. Singh et al., Building an Enterprise Chatbot,
https://doi.org/10.1007/978-1-4842-5034-1_6

CHAPTER 6

A Novel In-House
Implementation
of a Chatbot
Framework
In previous chapters, we explained intents and different ways of classifying

intents using natural language techniques. We also discussed the various

data sources that are available in designing an enterprise chatbot. There

are many chatbot builder platforms and frameworks available in the

market that can be used to build chatbots. These frameworks abstract

much complex functionality and provide components that are reusable,

extendable, and scalable.

Designing an enterprise chatbot without using a framework has the

following benefits:

•	 Provides better security and control

•	 Data protection from third-party vendors

•	 Minimizes operational cost

•	 In-depth analytics

194

•	 Flexible design of architecture

•	 Change control management

•	 Interoperability

•	 Easy and quick integration with enterprise-wide

available services and frameworks

•	 Integration with messenger platforms

•	 Integration with custom machine learning models

•	 Flexibility to customize with changes in the organization

In this chapter, we will discuss and implement a custom-built chatbot

called IRIS (Intent Recognition and Information Service). We will explain

the implementation concepts of the understanding developed in previous

chapters. We will talk about designing and implementing state machines,

transitions from one state to another in a conversational chatbot, and

how they are critical to maintaining the context of user utterances as well

as how to make a chatbot mimic human conversation with short-term

memory and long-term memory.

In IRIS, the backbone engine of the chatbot is written in Java, and an

integration module connects IRIS with different messenger platforms

such as Facebook Messenger. The integration module is written in NodeJS,

which is discussed in the next chapter.

�Introduction to IRIS
We developed IRIS as an open source chatbot framework to provide a

novice level of understanding and implementation of a chatbot from

scratch. IRIS provides the ability to use our templates of machine learning-

based extraction of information from users’ utterances, such as by using

named-entity recognition (NER). It provides customized enhancements

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

195

such as custom intent matching implementation and conversational state

management and many other features.

The design is inspired by our collective experience and exploration of

how other popular frameworks such as Amazon’s Echo natural language

understanding model, Alexa Skills, RASA, Mutters, Dialogflow, and

Microsoft Bot Builder are designed and implemented. IRIS derives many

methods and implmentation from Mutters, an open source Java-based

framework for building bot brains, and reuses some of its design and code

concepts to create a simple and modified backend code base. Platforms like

Mutters provide a lot of out-of-box features, support, and easy integration.

Apart from our custom chatbot framework, we will discuss widely popular

platforms and frameworks, and how they work, in the next chapter.

�Intents, Slots, and Matchers
In the previous chapter, we showed that intents are an outcome of

the behavior and focus of the user’s utterance. In this chapter, we will

describe various components of an intent and discuss the implementation

approach of creating and classifying intents. The following components

define an intent:

•	 A name

•	 Sample utterances

•	 Slots (entities)

•	 A slot matcher

Each intent can have zero or more slots, which are used to extract

entities from user utterances. For example, if a chatbot helps us discover

restaurants nearby, one of the intents could be defined as the following:

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

196

Intent name Restaurant search

Sample utterances •	 Looking for restaurants around me

•	 Restaurants nearby

•	 Best restaurants near me

•	 Good continental restaurants nearby

•	 Best Chinese restaurants

Slots/Entity Cuisine

Slot matcher Custom Entity Match Model

Figure 6-1 explains the meaning of intent, slot, and utterance.

Now, we’ll procedurally go through all the steps involved in creating

intent, slot, and matcher classes in Java.

In our new Java project, we will create a package called com.iris.bot.

intent in which we will define classes required for intent creation and

classification.

Figure 6-1.  The meanings of intent, slot, and utterance

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

197

�Intent Class
We define a Java class called Intent with a name variable to store the intent

name. Intent has slots that contain a list of 0 or more slots defined for this

particular intent. We have getters and setters of the name and slots.

public class Intent {

 /** The name of the intent. */

 protected String name;

 /** The slots for the intent.

 * There could be 0 or more slots defined for each intent.

 * �Slots contain a list of Slot and methods to add and

get Slot */

 protected Slots slots = new Slots();

 /**
 Constructor with the name as a parameter.

 It sets the Intent name at the time of intent creation.

 */

 public Intent(String name) {

 this.name = name;

 }

 /**
 * Returns the name of the intent.

 */

 public String getName() {

 return name;

 }

 /**
 * Adds a slot to the intent.

 */

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

198

 public void addSlot(Slot slot) {

 slots.add(slot);

 }

 /**
 * Returns the slots for the intent.

 */

 public Collection<Slot> getSlots() {

 �return Collections.unmodifiableCollection(slots.

getSlots());

 }

}

Now that we have defined Intent, we need to define the

IntentMatcherService class.

�IntentMatcherService Class
This service takes user utterances and responds with the matched intent.

As explained in the previous chapter, there are multiple ways to classify

intents. In this example, we have a separate intent classification service

that classifies user utterances into one of the user-defined intents with a

certain probability or score (refer to Chapter 5 for more details on intent

classification).

public class IntentMatcherService {

 /** �A map of possible intent names and intents that are

defined in the Iris Configuration */

 �private HashMap<String, Intent> intents = new

HashMap<String, Intent>();

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

199

 /** �The slot matcher method to use for named entity

recognition. */

 private CustomSlotMatcher slotMatcher;

 /** �Intent Matcher Service constructor that sets slot

matcher */

 �public IntentMatcherService(CustomSlotMatcher slotMatcher) {

 this.slotMatcher = slotMatcher;

 }

 /*
 * �RestTemplate is a synchronous Java client to perform

HTTP requests, exposing a simple template method

API over underlying HTTP client libraries. The

RestTemplate offers templates for common scenarios by

HTTP method, in addition to the generalized exchange

and execute methods that support less frequent cases.

 */

 protected RestTemplate restTemplate = new RestTemplate();

 /** �This method takes a user utterance and session as

an input, obtains matched intent from an intent

classification service, performs named entity

recognition on slots defined for the matched intent,

and sets the matched intent into the user session.

The session is a server-side storage mechanism

that stores a user's interaction and resets the

information or persists based on the interaction

duration and the type of information.

 */

 �public MatchedIntent match(String utterance, Session

session) {

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

200

 // getIntent method returns the matched intent.

 Intent matchedIntent = getIntent(utterance);

 /*
 * �We define slots associated with each Intent in

the Iris Configuration class. Each of these

slots has a matching method defined to describe

how entities are to be matched. Depending on

the entity and implementation, various NER

models can be used to recognize entities. This

method returns a map of the slot and matched

slot object. The slot contains a slot name and

a matching method, and MatchedSlot contains slot

that was matched, the value that was used to

match on, and the value that was matched.

 */

 �HashMap<Slot, MatchedSlot> matchedSlots =

slotMatcher.match(session, matchedIntent, utterance);

 /*
 * �Once we get the matched intent, we set the

value of the intent in session. We will discuss

session under the IRIS Memory topic.

 */

 �session.setAttribute("currentIntentName",

matchedIntent.getName());

 /*
 * �Finally, an object with matched intent, matched

slots, and the utterance against which the

intents and slots were matched and returned.

 */

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

201

 �return new MatchedIntent(matchedIntent,

matchedSlots, utterance);

 }

}

In the code snippet above, Intent matchedIntent =

getIntent(utterance) is the method that provides intent classification.

�The getIntent Method of the
IntentMatcherService class
As discussed, there are many ways in which this method can be

implemented. It takes a user utterance as an input and returns an Intent

that is classified with maximum probability by the intent engine. For now,

let’s see how to define this method in a simple way:

/*

* getIntent method takes a user utterance and returns an object

of type Intent. This is then used by the match method to match

slots for that intent.

 */

 public Intent getIntent(String utterance) {

 /*
 * �Intent Response is a plain Java object with

three attributes - utterance, intent name, and

probability returned by the intent service.

 */

 IntentResponse matchedIntent = new IntentResponse();

 /*
 * �If the intent classification engine is not able

to classify the utterance into some intent with

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

202

some threshold or if the engine is unable to

return a valid response, we fallback it to be a

general query intent to be on the safe side.

 */

 String defaultIntentName = "generalQueryIntent";

 String matchedIntentName = null;

 /*
 * �ObjectMapper provides functionality for reading

and writing JSON, either to and from basic

POJOs (Plain Old Java Objects), or to and from

a general-purpose JSON Tree Model (JsonNode),

as well as related functionality for performing

conversions. ObjectMapper is a part of the com.

fasterxml.jackson.databind package, which is a

high-performance JSON processor for Java.

 */

 ObjectMapper mapper = new ObjectMapper();

 /*
 * �There is specific enumeration that defines

simple on/off features to set for ObjectMapper.

ACCEPT_CASE_INSENSITIVE_PROPERTIES is a feature

that allows for more forgiving deserialization

of incoming JSON.

 �FAIL_ON_UNKNOWN_PROPERTIES is a feature that

determines whether encountering of unknown

properties (ones that do not map to a property,

and no "any setter" or handler can handle it)

should fail (by throwing a JsonMappingException)

or not.

 */

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

203

 �mapper.configure(MapperFeature.ACCEPT_CASE_

INSENSITIVE_PROPERTIES, true)

 �.configure(DeserializationFeature.FAIL_ON_UNKNOWN_

PROPERTIES, false);

 try {

 �matchedIntent = restTemplate.

getForObject("http://localhost:8080" + "/

intent/" + utterance, IntentResponse.class);

 �if(matchedIntent != null && matchedIntent.

getIntent()!=null){

 �matchedIntentName = matchedIntent.

getIntent();

 }

 else

// If matched intent is null, we consider the default intent to

be the matched intent.

 matchedIntentName = defaultIntentName;

 } catch (Exception e) {

// In case of an exception too, we consider default.

 matchedIntentName = defaultIntentName;

 }

// Finally, we return the intent object with the matched intent

name back to the match method of Intent Matcher Service.

 return intents.get(matchedIntentName);

 }

There are two essential things to be discussed in the getIntent

method, and we cover them in the next sections.

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

204

�Intent Classification Service

We are assuming here that there is an intent classification service running

on localhost on port 8080 that accepts HTTP GET requests and returns a

JSON response:

http://localhost:8080/intent/user-utterance

Here’s the JSON representation of a response:

{

"utterance": "i want a life insurance quote",

"intent": "QUOTE",

"probability": 89.5,

}

�General Query Intent

Most chatbots today are based on general queries and look like an

automated Q&A system. The reason for this is that most developers are

unsure how to model the chatbot to be conversational. Also, they find it

difficult to make the bot interactive.

A general query is never an explicit intent in a chatbot that is

conversational and that mimics human conversation modeled as dialogs.

Hence, when no intent is matched by the classification engine or if the

match probability is not good enough for that utterance, we tend to classify

it as general intent. We have seen that this approach is very efficient in

practical situations. In another way, if the intent engine is not able to

classify the utterance, the utterance could be a generic ask and not aimed

for a specific action. We will show later how to use this intent for first

looking for an answer in a FAQ repository and then later as a fallback,

performing a general search to return a relevant response if possible.

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

205

�Matched Intent Class
The last thing that we need to include in the com.iris.bot.intent

package is a MatchedIntent class. It holds the intent that was matched, a

map of slots that were matched against the defined slots for the intent, and

the utterance against which they were matched.

public class MatchedIntent {

 /** The intent that was matched. */

 private Intent intent;

 /** Map of slots that were matched. */

 private HashMap<Slot, MatchedSlot> slotMatches;

 /** The utterance that was matched against. */

 private String utterance;

 /**
 * Constructor.

 *
 * @param intent

 * The intent that was matched.

 * @param slotMatches

 * The slots that were matched.

 * @param utterance

 * The utterance that was matched against.

 */

 �public MatchedIntent(Intent intent, HashMap<Slot,

MatchedSlot> slotMatches, String utterance) {

 this.intent = intent;

 this.slotMatches = slotMatches;

 this.utterance = utterance;

 }

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

206

 /**
 * Returns the Intent that was matched.

 */

 public Intent getIntent() {

 return intent;

 }

 /**
 * Returns the slots that were matched.

 */

 public Map<Slot, MatchedSlot> getSlotMatches() {

 return Collections.unmodifiableMap(slotMatches);

 }

 /**
 * �Returns the specified slot match if the slot was

matched.

 *
 * @param slotName

 * The name of the slot to return.

 * �@return The slot match or null if the slot was not

matched.

 */

 public MatchedSlot getSlotMatch(String slotName) {

 for (MatchedSlot match : slotMatches.values()) {

 �if (match.getSlot().getName().

equalsIgnoreCase(slotName)) {

 return match;

 }

 }

 return null;

 }

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

207

 /**
 * Returns the utterance that was matched against.

 *
 * @return The utterance that was matched against.

 */

 public String getUtterance() {

 return utterance;

 }

}

�Slot Class
We covered intent, intent matcher service, and matched intents so far.

Designing classes of slots is similar to intents. We define slot-related

classes in the com.iris.bot.slot package:

/*
 * �Slot is defined as an abstract class. The concrete class

of Slot implements a match method that contain the entity

recognition logic.

 �getName returns the slot name that is described in concrete

slot classes.

 */

public abstract class Slot {

 public abstract MatchedSlot match(String utteranceToken);

 public abstract String getName();

}

With Slot defined, we create slots for the intent. Slots is an attribute

specified in the Intent class and slot details are provided in the IRIS

configuration.

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

208

/** The slots for the intent.

 * There could be 0 or more slots defined for each intent.

 * �Slots contain a list of Slot and methods to add and get

Slot */

public class Slots {

/** The map of slots. */

 �private HashMap<String, Slot> slots = new HashMap<String,

Slot>();

 /**
 * Adds a slot to the map.

 */

 public void add(Slot slot) {

 slots.put(slot.getName().toLowerCase(), slot);

 }

 /**
 * Gets the specified slot from the map.

 */

 public Slot getSlot(String name) {

 return slots.get(name.toLowerCase());

 }

 /**
 * Returns the slots in the map.

 */

 public Collection<Slot> getSlots() {

 �return Collections.unmodifiableCollection(slots.

values());

 }

}

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

209

Similarly to MatchedIntent class, we create the MatchedSlot class to

hold the details of the slots that were matched:

/*
 * �MatchedSlot contains slot-related information such as the

slot that was matched, the original value that was was used

to match on, and the value that was matched.

 */

public class MatchedSlot {

 /** The slot that was matched. */

 private Slot slot;

 /** The original value that was used to match on. */

 private String originalValue;

 /** The value that was matched. */

 private Object matched value;

 �public MatchedSlot(Slot slot, String originalValue,

Object value) {

 this.slot = slot;

 this.originalValue = originalValue;

 this.setMatchedValue(value);

 }

 /**
 * Returns the slot that was matched.

 */

 public Slot getSlot() {

 return slot;

 }

 /** Returns the original value.

 */

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

210

 public String getOriginalValue() {

 return originalValue;

 }

 /*
 * Returns the matched value.

 */

 public Object getMatchedValue() {

 return matched value;

 }

 /*
 * �Sets the matched value in the constructor. The method

is declared as private as the value is only set in

constructor.

 */

 private void setMatchedValue(Object matchedValue) {

 this.matchedValue = matchedValue;

 }

}

We defined Slot, Slots, and MatchedSlot so far under the com.iris.

bot.slot package. Now let’s see how a custom slot matcher is defined.

CustomSlotMatcher is invoked in IntentMatcherService to get the slot

match information once an intent is obtained from the intent classification

service:

/*
 * �The CustomSlotMatcher class is used to iterate on all the

slots for the matched intent and execute a match method

of each of those slots to return all the matched slots.

This class can be further customized and designed to have

multiple types of slot matcher implementation.

 */

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

211

public class CustomSlotMatcher {

 /*
 * �The match method takes session, intent, and user

utterance as an input and returns a map of Slot and

MatchedSlot details.

 * �This method can further contain business logic

depending upon the implementation.

 */

 public �HashMap<Slot, MatchedSlot> match(Session session,

Intent intent, String utterance) {

 �HashMap<Slot, MatchedSlot> matchedSlots = new

HashMap<Slot, MatchedSlot>();

// Iterate intent to get all slots defined for this matched intent.

 for (Slot slot : intent.getSlots()) {

/*

* �Use case-specific business logic handling.

askQuoteLastQuestion is a session variable, and its logic

will be explained when we discuss state machines and

conversation flow management.

 */

 �String slotCheck = String.valueOf(session.

getAttribute("askQuoteLastQuestion"));

 �if (slot.getName().equalsIgnoreCase(slotCheck)

|| slotCheck.equalsIgnoreCase("null")) {

// The match method defined in each slot is executed, and

MatchedSlot is returned.

 �MatchedSlot match = slot.

match(utterance);

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

212

 �if (match != null && match.

getMatchedValue() != "null") {

 matchedSlots.put(slot, match);

 }

 }

 }

 return matchedSlots;

 }

}

We have so far covered how intent- and slot-related classes can be

defined for IRIS. We briefly discussed how IRIS memory is managed by

session attributes. Let’s go through this in some more detail.

�IRIS Memory
A conversational chatbot needs to hold certain information to be able to

closely mimic human-like responses. IRIS is designed to hold information

in memory through sessions.

�Long- and Short-Term Sessions
Session contains two types of attributes:

•	 Long-term attributes

•	 Short-term attributes

�Long-Term Attributes

Certain entities such as name, date of birth, and gender of the user are

information that does not change over time. Also, in the real world, we

don’t expect our advisors and agents to ask these details every time

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

213

we interact with them. In the current design of IRIS, what we have

demonstrated is that not all attributes are reset after the user session.

The long-term attributes that span sessions are supposed to be held in

a fast, reliable, and persistent storage databases such as Redis. Redis is

an in-memory database. In the code snippet that follows, we show this

using a HashMap. Information in HashMaps are stored in JVM when the

application is running and get cleared when the application goes down.

Hence, even though they are long-term attributes, unless we persist them

in a permanent storage like SQL databases, we can’t retrieve them again.

�Short-Term Attributes

Unlike name and gender, certain attributes are limited to the scope of the

user session. In most cases, the expectation is that the values will vary in

each session. An example is a user providing a ZIP code when asking for

an insurance agent nearby or providing a face amount for a life insurance

eligibility quotation. Moreover, to manage the conversation flow, certain

values such as current intent, state, and last question asked are stored as

short-term attributes. Short-term attributes reset with each new session or

if a session expires.

�The Session Class
The Session class helps in conversation flow management by storing

state- and intent-related information in attributes. It also helps in

maintaining the information exchange between the user and the server

by serving as a temporary storage layer. There is a reset method that

reinitialize attributes when called. A session is created with a current

timestamp and an empty attributes map.

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

214

public class Session {

 /*
 * �We defined a session to be 30 minutes long and this is

number should vary based on use case, and for how long

do you want a session to be active.

 */

 public long expiryTimeinMilliSec = 30 * 60 * 1000l;

 �private HashMap<String, Object> attributes = new

HashMap<String, Object>();

 /*
 * �Long-term attributes do not get reset when the session

expires or when the reset method is called.

 */

 �private HashMap<String, Object> longTermAttributes = new

HashMap<String, Object>();

 // �Time in milliseconds when the session was created.

This is used to check whether the session is valid.

 private long timestamp;

 /*
 * �A default session constructor is called and it assigns

current time in milliseconds to the timestamp variable.

 */

 public Session() {

 this.timestamp = System.currentTimeMillis();

 }

 public void updateCurrentState(State currentState) {

 attributes.put("current_state", currentState);

 }

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

215

 public void updateCurrentIntent(String currentIntent) {

 attributes.put("current_intent", currentIntent);

 }

 /*
 * Checks if this is a valid session. Returns boolean.

 */

 public boolean isValid() {

 �if (timestamp + expiryTimeinMilliSec < System.

currentTimeMillis())

 return false;

 return true;

 }

 /*
 * Returns a session attribute.

 */

 public Object getAttribute(String attribute) {

 return attributes.get(attribute);

 }

 /*
 * Sets a session attribute.

 */

 public void setAttribute(String key, Object object) {

 attributes.put(key, object);

 }

 /**
 * Removes the specified attribute from the session.
 */

 public void removeAttribute(String attributeName) {

 attributes.remove(attributeName.toLowerCase());

 }

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

216

 /**
 * �Resets the session, removing all attributes. Long-term

attributes

 * are not removed from the session.

 */

 public void reset() {

 attributes = new HashMap<String, Object>();

 }

}

We also need a helper class called SessionStorage to create sessions

as well as maintain Session for each user. Slots matched in the match

method are also saved to session for later use.

/*
 * �Helper class which holds all user sessions and also provides

method to get or create session.

 */

public class SessionStorage {

 // A map of user id and sessions.

 �HashMap<String, Session> userSession = new

HashMap<String, Session>();

 /*
 * �This method first checks if there is a session for

this user (user ID). It also checks if the session is

valid.

 *�If there is no session for that user or if the session

has expired, it will create a new session. Else it will

return the active session.

 */

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

217

 public Session getOrCreateSession(String userId) {

 �if (!userSession.containsKey(userId) ||

!userSession.get(userId).isValid()) {

 Session session = new Session();

 userSession.put(userId, session);

 }

 return userSession.get(userId);

 }

 /**
 * �Gets a String value from the session (if it exists) or

the slot (if a match exists).

 *
 * @param match

 * The intent match.

 * @param session

 * The session.

 * @param slotName

 * The name of the slot.

 * @param defaultValue

 * �The default value if not a value found in

the session or slot.

 * @return The string value.

 */

 �public static String getStringFromSlotOrSession(Matched

Intent match, Session session, String slotName,

 String defaultValue) {

 �String sessionValue = (String) session.

getAttribute(slotName);

 if (sessionValue != null) {

 return sessionValue;

 }

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

218

 �return getStringSlot(match, slotName,

defaultValue);

 }

 /**
 * Gets a String based slot value from an intent match.

 *
 * @param match

 * �The intent match to get the slot value from.

 * @param slotName

 * The name of the slot.

 * @param defaultValue

 * The default value to use if no slot found.

 * @return The string value.

 */

 �public static String getStringSlot(MatchedIntent match,

String slotName, String defaultValue) {

 �if (match.getSlotMatch(slotName) != null && match.

getSlotMatch(slotName).getMatchedValue() != null) {

 �return (String) match.

getSlotMatch(slotName).getMatchedValue();

 } else {

 return defaultValue;

 }

 }

 /**
 * �Saves all the matched slots for an IntentMatch into

the session.

 *
 * @param match

 * The intent match.

 * @param session

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

219

 * The session.

 */

 �public static void saveSlotsToSession(MatchedIntent

match, Session session) {

 �for (MatchedSlot matchedSlot : match.

getSlotMatches().values()) {

 �session.setAttribute(matchedSlot.getSlot().

getName(), matchedSlot.getMatchedValue());

 }

 }

}

So far we showed how to create intent and slot classes and the

matchers, and we discussed IRIS long-term and short-term memory.

We will now discuss an essential concept for chatbot: conversation

management. In the next section, we will explain how conversations can

be modeled as finite state machines and used in IRIS.

�Dialogues as Finite State Machines
Typically, a simple Q&A-based chatbot or a FAQ-based chatbot is not

capable of having a conversation. A conversational chatbot should support

complex dialog flow between the user and the bot, and we aim to build a

chatbot that can mimic human conversation as much as possible. Usually,

chatbots are limited to a request-response based flow and are not driven as

dialog or conversations.

Building a chatbot by conversational state management helps in

transitioning from one state to another. As shown in Figure 6-2, a state

machine reads a series of inputs and switches to another state once it

receives an input required to perform that transition.

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

220

We’ll explain this with a simple example. In Figure 6-3, we have a finite

state representation of switching off and on a light bulb. There are two

states: OFF and ON.

As in a finite state graph, you can only be in one state at a time. In the

example of a light bulb, as shown in Figure 6-3, either it can be OFF or ON

but not both at the same time. Also, to move from one state to another, a

transition must take place. If the bulb is in the OFF state and we need to

transition to ON state, we need to flip the switch up, which is an action/

condition/prerequisite to transition to the ON state.

Figure 6-3.  State machine for a switch ON and OFF

Figure 6-2.  Showing a finite state machine with states and
transitions between states

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

221

A state machine has the following components:

•	 States: Different states a bot can be in and transition to.

•	 Initial State: This is the start state when the user first

interacts with IRIS.

•	 Transitions: The action(s) that should trigger a

possible state change.

•	 Shields: A prerequisite or condition to transition to a

target state.

A state machine can be designed in multiple ways. It can be modeled

as a graph, the conversation could be modeled as a script, or it could

be implemented using a very naive approach like HashMaps and some

classes we will discuss next.

We need to create a new package in our project called com.iris.bot.

state to contain the base classes for the state machine.

�State
Let’s first define State:

/*
 * �State is an abstract class. Concrete State classes implement

an execute method which is triggered when a transition to

that state happens.

 */

public abstract class State {

 String name;

 public String toString() {

 return name;

 }

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

222

 public State(String stateName) {

 name = stateName;

 }

 public String getName() {

 return name;

 }

 /*
 * �The execute method takes a session and matched intent

as an argument. The action of the state is defined in

this method.

 */

 �public abstract String execute(MatchedIntent matchedIntent,

Session session);

}

The transition from one state to another may sometimes require a

validation condition. We’ll explain this with an example. If you are searching

for a restaurant of your choice by interacting with a restaurant table booking

chatbot, you can ask for cancellation only if you have booked a table at a

restaurant. Otherwise, you cannot reach the state of cancellation.

�Shields
To maintain any preconditions that may include business logic, we have

Shield, which validates whether the transition to the desired state is

possible or not.

/*
 * �Shield is an interface. The class that implements Shield

implements the validate method and returns true if the

validation condition is met.

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

223

 * �Otherwise false will be returned and transition to that

state will not happen.

 */

public interface Shield {

 �public boolean validate(MatchedIntent match, Session

session);

}

�Transition
It is the Transition class that holds Shield and the target state

information. The transition is an elementary class with two member

variables, toState and shield, and their getters and setters as defined here:

/*
 * Transition class holds target state and shield information

 */

public class Transition {

 private State toState;

 private Shield shield;

/*
 * Constructor with target State (toState) and shield being set.

 */

 public Transition(State toState, Shield shield) {

 super();

 this.shield = shield;

 this.toState = toState;

 }

 public State getToState() {

 return toState;

 }

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

224

 public void setToState(State toState) {

 this.toState = toState;

 }

 public Shield getShield() {

 return shield;

 }

 public void setShield(Shield shield) {

 this.shield = shield;

 }

}

�State Machine
All of these pieces are stitched together in StateMachine. StateMachine is

the backbone of state management in IRIS and knows the start state, the

list of defined states, all the state transitions that are defined in the IRIS

configuration, and has methods to add a state, add a transition, and most

importantly, trigger the execution of the execute method upon successful

transition:

/*
 * �StateMachine is the backbone class for IRIS state

management. It contains start state, a map of states,

 * �and a map of state transitions, all of which are defined in

the Iris Configuration.

 */

public class StateMachine {

 /*
 * �In start state, there will always be a predefined start

state which will be the initial conversation state.

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

225

 * Start state is initialized in Iris configuration class.

 */

 private State startState;

 // A map of all the defined states.

 �private HashMap<String, State> states = new

HashMap<String, State>();

 // �A map of transition key and a list of possible transitions.

 �private HashMap<String, List<Transition>> stateTransitions =

new HashMap<String, List<Transition>>();

 public void setStartState(State state) {

 this.startState = state;

 }

 // Method to add states in the state map.

 private void addState(State state) {

 states.put(state.getName(), state);

 if (startState == null) {

 startState = state;

 }

 }

 /*
 * �The addTransition method is used to add a transition

from one state to another. It requires intent name,

from state, and to state to define the transition.

 */

 �public void addTransition(String intentName, State

fromState, State toState) {

// When no Shield is passed, it is passed as null.

 addTransition(intentName, fromState, toState, null);

 }

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

226

 /*
 * �Overloaded addTransition method that is similar to above

but Shield is to be validated for this transition.

 */

 �public void addTransition(String intentName, State

fromState, State toState, Shield shield) {

 if (!states.containsKey(fromState.getName())) {

 addState(fromState);

 }

 if (!states.containsKey(toState.getName())) {

 addState(toState);

 }

 String key = makeTransitionKey(intentName, fromState);

 �List<Transition> transitionList = stateTransitions.

get(key);

 if (transitionList == null) {

 �transitionList = new ArrayList<Transition>();

 stateTransitions.put(key, transitionList);

 }

 transitionList.add(new Transition(toState, shield));

 }

 /*
 * �This method is the heart of the state machine. It

receives the matched intent as an input along with

session to know the current state. It then does a

series of things: obtains the current state from a

session or initializes the start state if no current

state, then gets the matched intent, generates a

transition key to look up in the transition map, and

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

227

finally triggers the execute method of the target

state and updates the state in session.

 */

 �public String trigger(final MatchedIntent matchedIntent,

final Session session) {

 State currentState = startState;

// Gets the current state from the session. If it is a new

session, this will be null.

 �String currentStateName = (String)

session.getAttribute("currentStateName");

 if (currentStateName != null) {

 currentState = states.get(currentStateName);

// At this point, the current state should not be null, and

hence an exception is thrown as the handling of this condition

is unknown.

 if (currentState == null) {

 �throw new IllegalStateException("Illegal

current state in session:" +

currentStateName);

 }

 }

 Intent intent = matchedIntent.getIntent();

 �String intentName = (intent != null) ? intent.

getName() : null;

// intent should not null here as it is expected that the

matched intent will be an intent from the defined intent list.

 if (intentName == null) {

 �throw new IllegalArgumentException("Request

missing intent." + matchedIntent.toString());

 }

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

228

// Generate transition key by using the pattern "intentname-

statename".

 �String key = makeTransitionKey(intentName,

currentState);

// Get the target state transition list from the state

transitions map.

 �List<Transition> transitionToStateList =

stateTransitions.get(key);

 /*
 * �If there is a condition where the intent is

valid and the current state is valid but there

is no transaction defined, and if there is no

definition of where to go, it is an illegal

state condition and cannot be handled.

 */

 if (transitionToStateList == null) {

 �throw new IllegalStateException("Could not

find state to transition to. Intent: " +

intentName

 �+ " Current State: " +

currentState);

 }

 State transitionToState = null;

// Find first matching to-state and check shield conditions.

This method iterates one by one to find a successful transition

target state.

 for (Transition transition : transitionToStateList) {

 if (transition.getShield() == null) {

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

229

// If there is no shield condition and there is a valid

transition, assign the transitionToState as that target state.

 �transitionToState = transition.

getToState();

 break;

 } else {

// If there is a shield condition, it will be validated and

upon successful validation, the target state will be assigned

as transitionToState.

 �if (transition.getShield().

validate(matchedIntent, session)) {

 �transitionToState = transition.

getToState();

 break;

 }

 }

 }

// If state machine didn't find any matching states, it is an

illegal state as it is not defined.

 if (transitionToState == null) {

 �throw new IllegalStateException("Could not

find state to transition to. Failed all

guards. Intent: "

 �+ intentName + " Current State: "

+ currentState);

 }

// Action to be performed upon successful transition and

response returned.

 �String response = transitionToState.

execute(matchedIntent, session);

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

230

// Current state is now updated in the session.

 �session.setAttribute("currentStateName",

transitionToState.getName());

 return response;

 }

 /*
 * �Transition key is defined to store transition key and

a list of transitions.

 */

 �private String makeTransitionKey(String intentName, State

state) {

 return intentName + '-' + state.getName();

 }

}

We are done with defining the base classes and their

implementations. Until now whatever we discussed formed the core of

the IRIS framework. Now let’s go further with a sample business use case

and use the details to create specific intent classes, their slots, different

states, and their possible transitions.

�Building a Custom Chatbot for an Insurance
Use Case
We discussed in Chapter 1 some of the most common applications of a

chatbot in the life insurance industry. Now that we have some idea of the

IRIS core, let’s dive into building an insurance-focused chatbot using the

IRIS framework.

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

231

At the end of this exercise, our chatbot should be capable of providing

•	 Account balance

•	 Life insurance quotation

•	 Claim status

•	 An advisor

•	 Answers to general enquiries

•	 Market trends

•	 Stock prices

•	 Weather details

The high-level functional architecture is described in Figure 6-4. There

are communication client channels such as Facebook Messenger, web

chat, and Alexa, via which the users can connect to IRIS. In Figure 6-4, a

channel integration module acts as a gateway module. It integrates with

services such as Facebook Messenger, receives the request, and delegates

the request for IRIS to respond. The response is sent back to Messenger by

this module.

Then there is the IRIS Engine Core that handles all the domain-specific

business logic that controls the behavior of the chatbot platform as well

as defines and manages the transition from one state to another. Core

connects with the intent classification engine that predicts the intent from

a user’s utterance. The capabilities of IRIS that we discussed require an

information retrieval module that can query its semantic knowledge base,

a quotation service that provides life insurance quotations based on user

inputs, a website search service, a user module that connects to a user

database to get account balance information, a claims module to fetch

claim details, and other third-party services to get market trends, stock

prices, and weather information.

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

232

We require the following intents to be defined for our example use case:

•	 AccountBalanceIntent

•	 AskForQuoteIntent

•	 ClaimStatusIntent

•	 ExitIntent

•	 FindAdvisorIntent

•	 GeneralQueryIntent

•	 GetAccTypeIntent

•	 GetClaimIdIntent

•	 MarketTrendIntent

•	 StockPriceIntent

•	 WeatherIntent

Figure 6-4.  High-level function architecture

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

233

�Creating the Intents
Let’s create a User Intent class named AccountBalanceIntent:

public class AccountBalanceIntent extends Intent {

 public AccountBalanceIntent() {

 super("accountBalanceIntent");

 }}

All the other intent classes are created in the same way with their intent

names. Some of these intents will have one or more slots defined as well.

AskForQuoteIntent requires four slots to provide a life insurance

quote in our example:

•	 Age (CustomNumericSlot type)

•	 Height (CustomNumericSlot type)

•	 Smoker (BooleanLiteralSlot type)

•	 Weight (CustomNumericSlot type)

AccountBalanceIntent requires two slots: account type for which

the account balance is required and a user PIN to authenticate the user.

ipin is just a way of demonstrating how a very basic authentication can

be performed. In an actual implementation, more complex forms of

authentication should be used.

•	 Account Type (AccTypeSlot type)

•	 ipin (IPinSlot type)

ClaimStatusIntent and GetClaimIdIntent intents require claimId

(AlphaNumericSlot type)

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

234

�CustomNumericSlot

Next, let’s see the code showing how the above mentioned slot types are

implemented for providing a simple approach to fulfill our requirements:

/*
 * Custom numeric slot

 */

public class CustomNumericSlot extends Slot {

 private String name;

 public CustomNumericSlot(String name) {

 super();

 this.name = name;

 }

 /*
 * �match CustomNumericSlot takes user utterance and

returns MatchedSlot if there is a slot match.

 * �In this method we use regex and hard-coded words to

number logic to identify if there is a number.

 * example - 18, eighteen

 */

 public MatchedSlot match(String utterance) {

 String token = utterance.replaceAll("[^0-9]+", "");

 if (token.isEmpty()) {

 �token = String.valueOf(wordStringToNumber

(utterance));

 }

 �return new MatchedSlot(this, token, token.

toLowerCase());

 }

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

235

/*

* �This method converts words to numbers. The logic is derived

from https://stackoverflow.com/questions/26948858/converting-

words-to-numbers-in-java.

*/

 public Number wordStringToNumber(String wordString) {

 if (wordString == null || wordString.length() < 1) {

 return null;

 }

 wordString = wordString.replaceAll("-", " ");

 wordString = wordString.replaceAll(",", " ");

 �wordString = wordString.toLowerCase().replaceAll

(" and", " ");

 �String[] splittedParts = wordString.trim().

split("\\s+");

 long finalResult = 0;

 long result = 0;

 for (String str : splittedParts) {

 if (str.equalsIgnoreCase("zero")) {

 result += 0;

 } else if (str.equalsIgnoreCase("one")) {

 result += 1;

 } else if (str.equalsIgnoreCase("two")) {

 result += 2;

 } else if (str.equalsIgnoreCase("three")) {

 result += 3;

 } else if (str.equalsIgnoreCase("four")) {

 result += 4;

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

236

 } else if (str.equalsIgnoreCase("five")) {

 result += 5;

 } else if (str.equalsIgnoreCase("six")) {

 result += 6;

 } else if (str.equalsIgnoreCase("seven")) {

 result += 7;

 } else if (str.equalsIgnoreCase("eight")) {

 result += 8;

 } else if (str.equalsIgnoreCase("nine")) {

 result += 9;

 } else if (str.equalsIgnoreCase("ten")) {

 result += 10;

 } else if (str.equalsIgnoreCase("eleven")) {

 result += 11;

 } else if (str.equalsIgnoreCase("twelve")) {

 result += 12;

 } else if (str.equalsIgnoreCase("thirteen")) {

 result += 13;

 } else if (str.equalsIgnoreCase("fourteen")) {

 result += 14;

 } else if (str.equalsIgnoreCase("fifteen")) {

 result += 15;

 } else if (str.equalsIgnoreCase("sixteen")) {

 result += 16;

 } else if (str.equalsIgnoreCase("seventeen")) {

 result += 17;

 } else if (str.equalsIgnoreCase("eighteen")) {

 result += 18;

 } else if (str.equalsIgnoreCase("nineteen")) {

 result += 19;

 } else if (str.equalsIgnoreCase("twenty")) {

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

237

 result += 20;

 } else if (str.equalsIgnoreCase("thirty")) {

 result += 30;

 } else if (str.equalsIgnoreCase("forty")) {

 result += 40;

 } else if (str.equalsIgnoreCase("fifty")) {

 result += 50;

 } else if (str.equalsIgnoreCase("sixty")) {

 result += 60;

 } else if (str.equalsIgnoreCase("seventy")) {

 result += 70;

 } else if (str.equalsIgnoreCase("eighty")) {

 result += 80;

 } else if (str.equalsIgnoreCase("ninety")) {

 result += 90;

 } else if (str.equalsIgnoreCase("hundred")) {

 result *= 100;

 } else if (str.equalsIgnoreCase("thousand")) {

 result *= 1000;

 finalResult += result;

 result = 0;

 } else if (str.equalsIgnoreCase("million")) {

 result *= 1000000;

 finalResult += result;

 result = 0;

 } else if (str.equalsIgnoreCase("billion")) {

 result *= 1000000000;

 finalResult += result;

 result = 0;

 } else if (str.equalsIgnoreCase("trillion")) {

 result *= 1000000000000L;

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

238

 finalResult += result;

 result = 0;

 } else {

 // unknown word

 return null;

 }

 }

 finalResult += result;

 result = 0;

 return finalResult;

 }

 @Override

 public String getName() {

 return name;

 }

}

�BooleanLiteralSlot

Here we’ve highlighted a match method snippet of the

BooleanLiteralSlot class:

/*

* �match method of BooleanLiteralSlot. We need to recognize

if the user meant no or yes in any which way. One of the

simplest ways to implement this is to verify by string

matching the most commonly used words.

*/

 @Override

 public MatchedSlot match(String utterance) {

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

239

 �if (utterance.toLowerCase().contains("yes") ||

utterance.toLowerCase().contains("yeah")

 �|| utterance.toLowerCase().

contains("ya") || utterance.

toLowerCase().contains("yup")) {

 �return new MatchedSlot(this, utterance, "yes");

 �} else if (utterance.toLowerCase().contains("no")

|| utterance.toLowerCase().contains("na")

 �|| utterance.toLowerCase().

contains("nopes") || utterance.

toLowerCase().contains("noo")

 �|| utterance.toLowerCase().

contains("nope") || utterance.

toLowerCase().contains("dont")

 �|| utterance.toLowerCase().

contains("don't") || utterance.

toLowerCase().contains("do not")) {

 �return new MatchedSlot(this, utterance, "no");

 }

 return null;

 }

�AccTypeSlot

AccTypeSlot is implemented to understand the account type. If no slot

match happens, the state engine will reprompt as the system could not

identify the account type:

 /*
 * �For intent where we want to understand what type

of account balance the user is looking for, a

straightforward method is to apply a

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

240

 * �string match of possible account types. Since we are

only looking for whether the utterance contains any of

those keywords,

 * all of the below possibilities are covered:

 * i am looking for annuities account balance

 * annuities

 * annuities balance

 * tell 401k balance

 * want my retirement balance etc.

 */

 @Override

 public MatchedSlot match(String utterance) {

 �if (utterance.toLowerCase().contains("annuities")

|| utterance.toLowerCase().contains("annuity")) {

 �return new MatchedSlot(this, "annuities",

"annuities");

 �} else if (utterance.toLowerCase().contains("401k")

|| utterance.toLowerCase().contains("retirement")

 �|| utterance.toLowerCase().

contains("401") || utterance.

toLowerCase().contains("401 k")) {

 �return new MatchedSlot(this, "401k", "401k");

 }

 return null;

 }

�IPinSlot

In an actual implementation, this type of slot may not be defined but to

highlight how a basic authentication can be implemented, we use this

entity. We have considered in the example that users will have their own

ipin generated in some way and stored in the back end and that it will be

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

241

a six- digit number. In a real world, a much more complex number and a

set of authentication mechanisms will exist such as username, password,

and ZIP code.

In the method snippet below, if the value is 123456, only then will the

account balance be displayed. Any other number will result in a wrong ipin

provided by the user.

Warning  Never implement such a weak authentication system. It
will compromise your enterprise security. The purpose here is to only
complete the flow of discussion. In no way do we endorse such weak
authentication.

@Override

 public MatchedSlot match(String token) {

 �if (token.matches("[0-9]+") && token.length() == 6

&& token.equalsIgnoreCase("123456")) {

 return new MatchedSlot(this, token, token);

 }

 return null;

 }

�AlphaNumericSlot

As the name suggests, the entity is supposed to be alphanumeric, and

if there is a word that is alphanumeric, MatchedSlot is returned. In

the example, AphaNumericSlot is used for processing claims that are

alphanumeric.

@Override

 public MatchedSlot match(String utterance) {

 /*

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

242

 * �User utterance is split into utterance tokens.

We need to see if there is any alphanumeric word

in the utterance

 * �This implementation is useful for scenarios

mentioned below:

 * �my claim id is gi123 can you tell the claim status

 * claim the status of abc123

 */

 �ArrayList<String> utteranceTokens = new

ArrayList<String>(Arrays.asList(utterance.split

("\\s+")));

 String claimId = null;

 for (String token : utteranceTokens) {

 if (!token.matches("[a-zA-Z]+")) {

 token = token.replace(".", "");

 token = token.trim();

 claimId = token;

 �return new MatchedSlot(this, claimId,

claimId);

 }

 }

 return null;

 }

Now that we have defined all the possible intents that will be classified

by our intent classification service, defined slots, and slot type, let’s

see what the IRIS configuration looks like. As explained, intents, intent

matcher, slot matcher, and different slot and slot types are defined in the

IrisConfiguration class.

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

243

�IrisConfiguration
We put IrisConfiguration class in a separate package named com.iris.

bot.config:

public class IrisConfiguration {

 public IntentMatcherService getIntentMatcherService() {

 �CustomSlotMatcher slotMatcher = new

CustomSlotMatcher();

 �IntentMatcherService intentMatcherService = new Int

entMatcherService(slotMatcher);

 Intent findAdvisorIntent = new FindAdvisorIntent();

 Intent askForQuoteIntent = new AskForQuoteIntent();

 // Slots for askForQuote intent fulfillment.

 �askForQuoteIntent.addSlot(new

CustomNumericSlot("age"));

 �askForQuoteIntent.addSlot(new

CustomNumericSlot("height"));

 �askForQuoteIntent.addSlot(new

CustomNumericSlot("weight"));

 �askForQuoteIntent.addSlot(new

BooleanLiteralSlot("smoked"));

 Intent generalQueryIntent = new GeneralQueryIntent();

 Intent stockPriceIntent = new StockPriceIntent();

 Intent marketTrendIntent = new MarketTrendIntent();

 �Intent accountBalanceIntent = new

AccountBalanceIntent();

 �accountBalanceIntent.addSlot(new

AccTypeSlot("accType"));

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

244

 accountBalanceIntent.addSlot(new IpinSlot("ipin"));

 Intent getAccTypeIntent = new GetAccTypeIntent();

 �getAccTypeIntent.addSlot(new

AccTypeSlot("accType"));

 getAccTypeIntent.addSlot(new IpinSlot("ipin"));

 Intent weatherIntent = new WeatherIntent();

 Intent claimStatusIntent = new ClaimStatusIntent();

 �claimStatusIntent.addSlot(new

AlphaNumericSlot("claimId"));

 Intent getClaimIdIntent = new GetClaimIdIntent();

 �getClaimIdIntent.addSlot(new

AlphaNumericSlot("claimId"));

 Intent exitIntent = new ExitIntent();

/*
 * �All the intents we defined above are added to the intent

matcher service.

 */

 intentMatcherService.addIntent(findAdvisorIntent);

 intentMatcherService.addIntent(askForQuoteIntent);

 intentMatcherService.addIntent(generalQueryIntent);

 intentMatcherService.addIntent(stockPriceIntent);

 intentMatcherService.addIntent(marketTrendIntent);

 intentMatcherService.addIntent(exitIntent);

 intentMatcherService.addIntent(getAccTypeIntent);

 intentMatcherService.addIntent(accountBalanceIntent);

 intentMatcherService.addIntent(weatherIntent);

 intentMatcherService.addIntent(claimStatusIntent);

 return intentMatcherService;

 }

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

245

 public StateMachine getStateMachine() {

 // discussed in detail below

 return null;

 }

}

�Adding States

Before we add state machine configurations, let’s see how many possible

states we have:

	 1.	 Start state

	 2.	 Ask for quote state

	 3.	 Get quote state

	 4.	 Find an advisor state

	 5.	 General query state

	 6.	 Stock price state

	 7.	 Market trend state

	 8.	 Get account balance state

	 9.	 Get account type state

	 10.	 Get weather state

	 11.	 Get claim status state

	 12.	 Exit state

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

246

The getStateMachine method is now added to IrisConfiguration

with the states listed above:

public StateMachine getStateMachine() {

/*
Creates an instance of StateMachine that holds start state, a

map of states, and a map of state transitions, all of which are

defined below in IrisConfiguration.

 */

 StateMachine stateMachine = new StateMachine();

 State startState = new StartState();

 State askforQuoteState = new AskForQuoteState();

 State getQuoteState = new GetQuoteState();

 �Shield haveQuoteDetailShield = new

HaveQuoteDetailShield();

 �Shield dontHaveQuoteDetailsShield = new

DontHaveQuoteDetailsShield();

 State findAdvisorState = new FindAdvisorState();

 State generalQueryState = new GeneralQueryState();

 State stockPriceState = new StockPriceState();

 State marketTrendState = new MarketTrendState();

 �State getAccountBalanceState = new

GetAccountBalanceState();

 Shield haveAccTypeShield = new HaveAccTypeShield();

 �Shield dontHaveAccTypeShield = new

DontHaveAccTypeShield();

 State getAccTypeState = new GetAccTypeState();

 State getWeatherState = new GetWeatherState();

 State getClaimStatusState = new GetClaimStatus();

 Shield haveClaimIdShield = new HaveClaimIdShield();

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

247

 State getClaimIdState = new GetClaimIdState();

 State exitState = new ExitState();

/*

* �Here we initialize the start state. The Start state execute

method is never supposed to be called.

 */

 stateMachine.setStartState(startState);

/*

* We need to define state transitions here.

 */

 }

In getStateMachine method, we define the state classes and Shields.

�Shields

As discussed, Shields provide a Boolean condition for transition from one

state to another. If all the information required for transitioning to another

state is available, Shields returns true.

We implement five shields in our example in the getStateMachine

method, each implementing the validate method.

DontHaveAccTypeShield

We need accType and a valid ipin in order to transition to

GetAccountBalanceState. This shield returns true if either of them is not

provided.

public boolean validate(MatchedIntent match, Session session) {

 // save slots to session

 SessionStorage.saveSlotsToSession(match, session);

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

248

// Get all validation entities from session.

String accType = SessionStorage.getStringFromSlotOrSession(match,

session, "accType", null);

 �String ipin = SessionStorage.getStringFromSlotOr

Session(match, session, "ipin", null);

// Returns true if accType or ipin is null.

 return (accType == null || ipin == null);

 }

DontHaveQuoteDetailsShield

We need age, smoker info, height, and weight to provide insurance

quotation eligibility. This shield returns true if we do not have information

on any of them. The state remains in AskForQuoteState until we have

answers for all questions and then transitions to GetQuoteState.

Public boolean validate(MatchedIntent match, Session session) {

// Save slots into session.

 SessionStorage.saveSlotsToSession(match, session);

 �String age = SessionStorage.getStringFromSlotOr

Session(match, session, "age", null);

 �String smoked = SessionStorage.getStringFromSlotOr

Session(match, session, "smoked", null);

 �String height = SessionStorage.getStringFromSlotOr

Session(match, session, "height", null);

 �String weight = SessionStorage.getStringFromSlotOr

Session(match, session, "weight", null);

/*
 * �If we don't have all the slots fulfilled, we need to return

true so that askForQuote state is executed again. As there are

multiple questions asked in the askForQuote state, unless all

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

249

questions are answered and all values populated, the state

remains the same, unless the intent of the user changes.

 */

 �return (age == null || smoked == null || height ==

null || weight == null);

 }

HaveAccTypeShield

This shield returns true if both accType and ipin are available from the

user and allows a transition to the GetAccountBalanceState:

Public boolean validate(MatchedIntent match, Session session) {

 SessionStorage.saveSlotsToSession(match, session);

 �String accType = SessionStorage.getStringFromSlotOr

Session(match, session, "accType", null);

 �String ipin = SessionStorage.getStringFromSlotOr

Session(match, session, "ipin", null);

// Returns true only if both accType and ipin are available.

 return (accType != null && ipin != null);

 }

HaveClaimIdShield

This shield returns true if claimId is not null and hence allows a transition

to the GetClaimStatus state:

public boolean validate(MatchedIntent request, Session session) {

 SessionStorage.saveSlotsToSession(request, session);

 �String claimId = SessionStorage.getStringFromSlotOr

Session(request, session, "claimId", null);

// Returns true only if claimId is not null.

 return (claimId != null);

 }

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

250

HaveQuoteDetailShield

This shield returns true if all the values required to transition to

GetQuoteState are present:

public boolean validate(MatchedIntent match, Session session) {

 // Saves slots to session.

 SessionStorage.saveSlotsToSession(match, session);

 // Gets all validation entities from session.

 �String age = SessionStorage.getStringFromSlotOr

Session(match, session, "age", null);

 �String smoked = SessionStorage.getStringFromSlotOr

Session(match, session, "smoked", null);

 �String height = SessionStorage.getStringFromSlotOr

Session(match, session, "height", null);

 �String weight = SessionStorage.getStringFromSlotOr

Session(match, session, "weight", null);

 //Returns true if all values exist, else return false.

 �return (age != null && smoked != null && height !=

null && weight != null);

 }

We have two more things yet to be discussed to complete

IrisConfiguration related concepts:

•	 The execute method of each state

•	 State transitions

�Adding Execute Methods

Let’s start by implementing the execute method of each state described in

the example.

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

251

Exit State

The execute method of ExitState responds with a simple reply. In an

actual implementation, it could also support saving the session and

context to a persistent storage before resetting them.

public class ExitState extends State {

 public ExitState() {

 super("exitState");

 }

/*
 * �When this state is reached, the execute method is invoked.

As a result, a reply is sent back.

 */

 @Override

 �public String execute(MatchedIntent matchedIntent,

Session session) {

 �String reply = "Anything else that I may help you

with?";

 return reply;

 }

}

FindAdvisorState

The execute method of FindAdvisorState would typically call a search API

with required parameters such as advisor name, ZIP code, etc. to return

relevant advisors to the user. We demonstrate how to reach here but we

skip the implementation.

public String execute(MatchedIntent matchedIntent, Session session) {

 �String reply = "You know what, I dont have the data

about financial advisors with me."

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

252

 �+ "\nBut I hope you do get the point

that I could have surely provided

it to you if I was connected to a

database.\n"

 �+ "I will let my boss know that you

were asking for it. Next time you wont

be disappointed, I promise.\n Here,

ask me anything else for now please!";

 return reply;

 }

GetAccountBalanceState

The execute method of this state returns the account balance. Transition to

this state only happens when the shield validates that we have the account

type and ipin.

 �Public String execute(MatchedIntent matchedIntent,

Session session) {

 String reply = null;

 Random rand = new Random();

 �String accType = SessionStorage.getStringFromSlotOr

Session(matchedIntent, session, "accType", null);

 if (accType.equalsIgnoreCase("Annuities")) {

/*

* �In a real-world implementation, we would call a service or

query a database to get the account balance. For the sake of

implementation here, we are returning a random integer.

*/

 �reply = "Your Annuities account balance is: "

+ (rand.nextInt(1000) + 100) + "."

 �+ "\nAnything else that I can do

for you? ";

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

253

 } else if (accType.equalsIgnoreCase("401k"))

 �reply = "Your 401K account balance is: " +

(rand.nextInt(4000) + 500) + "."

 �+ "\nAnything else that you want

to know? ";

 else

 �reply = "Sorry, I am not able to retrieve

your " + accType + " balance right now.\nHow

else can I help you? ";

/*

* �Slot details saved in session attributes previously are now

removed. We cannot store these details even at a session

level as the user may request for account balance again, but

this time he may need balance details of a different type

of account. However, we still store these values in session

until we reach here so that we know that this information

have been answered by user and shields can then validate.

*/

 session.removeAttribute("acctype");

 session.removeAttribute("getaccTypeprompt");

 session.removeAttribute("getipinprompt");

 session.removeAttribute("ipin"s);

 return reply;

 }

GetAccTypeState

The execute method of this state prompts for the ipin and account type

information to be provided by user.

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

254

 �public String execute(MatchedIntent matchedIntent,

Session session) {

 �SessionStorage.saveSlotsToSession(matchedIntent,

session);

 String reply = null;

 �if (SessionStorage.getStringFromSlotOrSession

(matchedIntent, session, "ipin", null) == null) {

 �if (SessionStorage.getStringFromSlotOrSession

(matchedIntent, session, "getipinprompt",

null) == null)

 �reply = "Sure I will help you with

that! Since this is a confidential

information, I will need additional

details to verify "

 �+ "your identity. Can you

tell me your 6 digits IPIN

please?";

 else

 �reply = "Either you have not entered 6

digits code or the IPIN entered by you is

incorrect. Please verify and type again !";

 session.setAttribute("getipinprompt", "flag1");

 }

 �else if (SessionStorage.getStringFromSlotOrSession(

matchedIntent, session, "accType", null) == null) {

 �if (SessionStorage.getStringFromSlotOr

Session(matchedIntent, session,

"getaccTypeprompt", null) == null)

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

255

 �reply = "Your IPIN was successfully

verified. Are you looking for Annuities

balance or 401k account balance?";

 else

 �reply = "I did not understand that.

Did you say annuities or 401k?";

 �session.setAttribute("getaccTypeprompt",

"flag1");

 }

 return reply;

 }

GetClaimIdState

The execute method of this state obtains a claim ID from the user’s

utterance and sets it in the session attribute.

 �public String execute(MatchedIntent matchedIntent,

Session session) {

 �SessionStorage.saveSlotsToSession(matchedIntent,

session);

 �if (SessionStorage.getStringFromSlotOrSession

(matchedIntent, session, "claimId", null) == null) {

 �if (SessionStorage.getStringFromSlotOr

Session(matchedIntent, session,

"getclaimidprompt", null) == null)

 �reply = "No Problem. Could you tell me

the Claim Id Please?";

 else

 �reply = "Sorry, I did not get the claim

ID. Can you please re-enter it?";

 }

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

256

 session.setAttribute("getclaimidprompt", "flag1");

 return reply;

 }

AskForQuote State

The execute method of this state gets age, smoker info, height, and weight

from user. It also stores the last question asked to map it back to the follow

up answer.

 �public String execute(MatchedIntent matchedIntent,

Session session) {

 �SessionStorage.saveSlotsToSession(matchedIntent,

session);

// Default reply

 �String reply = "I am having trouble understanding...";

// Checking for age

 �if (SessionStorage.getStringFromSlotOrSession

(matchedIntent, session, "age", null) == null) {

// Age is set in session to be the last question asked in

askQuote at this point.

 �session.setAttribute("askQuoteLastQuestion",

"age");

/*

* �To differentiate between whether we are asking this question

for the first time or we asked before and the user didn't

answer, we use "getageprompt." If the "getageprompt" value

is null, we have not asked this question to the user before

in that particular session. It helps to differentiate the

reply message.

 */

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

257

if (SessionStorage.getStringFromSlotOrSession(matchedIntent,

session, "getageprompt", null) == null)

 �reply = "Sure, I will help you with

that. May I know your age?";

 else

/*

* �Let's say we are expecting that the user will enter his age

and that is the current question in conversation. However,

instead of replying age, the user changes the intent by

asking about the weather. IRIS is designed to handle intent

switches from one context to another. But, next time, if the

user desires to get a quote again, we will not ask questions

already answered and even the ask message will be different,

just like how its mentioned in the if-else reply message here.

 */

 �reply = "I am not sure if I got your age

right last time. Please type again";

// Setting getageprompt in session to note that age has been

asked before.

 �session.setAttribute("getageprompt", "flag1");

// Same logic applies for whether the user answered to his

smoking status or not.

 �} else if (SessionStorage.getStringFromSlotOrSession

(matchedIntent, session, "smoked", null) == null) {

 �session.setAttribute("askQuoteLastQuestion",

"smoked");

 �if (SessionStorage.getStringFromSlotOrSession

(matchedIntent, session, "getsmokedprompt",

null) == null)

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

258

 �reply = "Have you smoked in the last

12 months?";

 else

 �reply = "Last time you did not tell me

if you smoked in the last 12 months,

Have you?";

 �session.setAttribute("getsmokedprompt",

"flag1");

// Same logic applies for height.

 �} else if (SessionStorage.getStringFromSlotOrSession

(matchedIntent, session, "height", null) == null) {

 �session.setAttribute("askQuoteLastQuestion",

"height");

 �if (SessionStorage.getStringFromSlotOrSession

(matchedIntent, session, "getheightprompt",

null) == null)

 �reply = "What's your height (in

centimeters)?";

 else

 �reply = "What's your height (in

centimeters)? Please help me

understand again?";

 �session.setAttribute("getheightprompt",

"flag1");

// Lastly, same logic for weight.

 �} else if (SessionStorage.getStringFromSlotOrSession

(matchedIntent, session, "weight", null) == null) {

 �session.setAttribute("askQuoteLastQuestion",

"weight");

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

259

 �if (SessionStorage.getStringFromSlotOrSession

(matchedIntent, session, "getweightprompt",

null) == null)

 �reply = "What's your weight (in

pounds)?";

 else

 �reply = "Tell me your weight in pounds

again. I did not get it the last time";

 �session.setAttribute("getweightprompt",

"flag1");

 }

 return reply;

 }

GetQuote State

The execute method of this state provides quotation eligibility based on

the age, smoker info, height, and weight. The method implements a simple

business logic to calculate if the user is eligible or not. However, in a real-

world scenario, more complex business logic exists and all of this information

will be passed to another API that will provide the eligibility information.

Public String execute(MatchedIntent matchedIntent, Session

session) {

 �SessionStorage.saveSlotsToSession(matchedIntent,

session);

 Boolean eligible = true;

 String answer = "";

 �int age = Integer.parseInt(SessionStorage.getString

FromSlotOrSession(matchedIntent, session, "age",

null));

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

260

 �String smoked = SessionStorage.getStringFromSlotOr

Session(matchedIntent, session, "smoked", null);

 �int weight = Integer.parseInt(SessionStorage.get

StringFromSlotOrSession(matchedIntent, session,

"weight", null));

 �int height = Integer.parseInt(SessionStorage.get

StringFromSlotOrSession(matchedIntent, session,

"height", null));

 /*
 * �Checking business logic and calculating BMI

(body mass index).

 * �In the example, eligibility is defined based on

whether BMI is less than or greater than 33.

 */

 if (age > 60 || age < 18)

 eligible = false;

 if (smoked.equalsIgnoreCase("yes"))

 eligible = false;

 double weightInKilos = weight * 0.453592;

 double heightInMeters = ((double) height) / 100;

 �double bmi = weightInKilos / Math.

pow(heightInMeters, 2.0);

 if (bmi > 33)

 eligible = false;

 if (eligible) {

 �answer = "Great News! You are eligible for

an accelerated UW Decision.\nPlease proceed

with your application "

 �+ "at this link: https://www.

dummylink.com \n"

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

261

 �+ "Anything else that I could

help you with?";

 } else {

 �answer = "Unfortunately, You are not eligible

for an Accelerated UW Decision.\nPlease

register at https://www.dummylink.com "

 �+ "and our representatives

will contact with you shortly

to further process your

application\n"

 �+ "Anything else that I could

help you with?";

 }

/*

* �Remove attributes stored in the session. All of these four

attributes are treated as short term in the example. We used

the session also to store details of which slots to prompt

for and which not to based on whether user answered them.

*/

 session.removeAttribute("getageprompt");

 session.removeAttribute("getsmokedprompt");

 session.removeAttribute("getheightprompt");

 session.removeAttribute("getweightprompt");

 session.removeAttribute("askquotelastquestion");

 session.removeAttribute("height");

 session.removeAttribute("age");

 session.removeAttribute("smoked");

 session.removeAttribute("weight");

 return answer;

 }

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

262

Start State

This state is the starting state and the “current” state by default when the

user interacts in a new session. A start state is never executed due to the

result of any behavior.

public String execute(MatchedIntent matchedIntent, Session

session) {

 �throw new IllegalStateException("You shouldn't be

executing this state!");

 }

GeneralQuery State

We mentioned that in a chatbot where there are multiple intents such

as a user looking for account balance, claim status, weather details, life

insurance quote, etc., the general query is not an explicit intent. We classify

an utterance into a general query if no other intent matches explicitly.

In the general query state, we perform two steps:

	 1.	 Match if a user utterance is a question that has an

answer in our knowledge repository. The knowledge

repository is where the most frequently asked

questions and their answers are stored. A knowledge

repository could also have general user information

parsed and stored in a way that can be queried to find

a meaningful answer. A knowledge repository could

be represented in the form of a graph, RDF semantic

web, or implemented using a simple search engine.

	 2.	 If there is no matching answer in our knowledge

repository, we perform a search on our portal to find

any matching result that could be replied to the user.

If there is no response from the search service as well,

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

263

we reply to the user saying we cannot help on this ask

because we don’t have much information about it now.

public String execute(MatchedIntent matchedIntent, Session

session) {

 �String answer = "I am so Sorry, I do not have any

information related to your query. Can I help you

with something else?";

 �String uri = "https://www.dummy-knowledge-base-

service-url?inputString=";

 uri = uri + matchedIntent.getUtterance();

 RestTemplate restTemplate = new RestTemplate();

 �String result = restTemplate.getForObject(uri,

String.class);

 ObjectMapper mapper = new ObjectMapper();

 try {

 if(result!=null){

/*

* �If the result is not null and contains a response (answer),

we parse that information and assign it to the answer

variable answer = "PARSED-INFORMATION from result" + "\

nAnything else that you would like to ask?";

 */

}

 else{

/*
 * �If no answer was obtained from the knowledge repository, then

to back fill with some valid response, we call the enterprise

search API and pass the utterance as a search string.

*/

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

264

 �uri = "https://www.my-enterprise-

website.com/searchservice/fullsearch?&

inputSearchString=";

/*

* �The utterance is added to the HTTP GET request. Depending on

the implementation it could be GET or POST and the service

may have different parameters.

*/

 �uri = uri + matchedIntent.

getUtterance();

 �result = restTemplate.

getForObject(uri, String.class);

 mapper = new ObjectMapper();

 try {

/*

* �Here we try to parse the JSON response and if there is a

result with a decent score returned from the search engine,

we read the title and description of the result and add it

before sending the response back.

*/

 �answer = "Sorry I do not have an

exact answer to this right now. "

 �+ "You may get

some details on

the page - " +

"TITLE OF THE PAGE

OBTAINED FROM

RESPONSE"

 �+ ". Click here ->

" + "URL LINK" + "

for more info."

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

265

 �+ "\nAnything else

that you would like

to ask?";

 } catch (Exception e) {

 �answer = "I am so Sorry, I do

not have any information related

to your query. Can I help you

with something else?";

 }

 }

 } catch (Exception e) {

 e.printStackTrace();

 �answer = "I am so Sorry, I do not have any

information related to your query. Can I

help you with something else?";

 }

 return answer;

 }

Market trends, stock prices, weather state, and claim status state

require integration with third-party data sources or connecting to a

database. We will discuss this in the next chapter in detail.

�Adding State Transitions

In the getStateMachine method of the IrisConfiguration class, we

define the transitions from one state to another. For example, we can

transition to any state from a start state, as explained in the following

snippet. The first argument of the addTransition method is the intent

name, the second argument is the current state, the third argument is the

target state, and the fourth argument is an optional shield.

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

266

In this example, since we are defining transitions from startState and

fromState, all transitions will be startState.

 /*
 * �This transition says that if we are in the start

state, and a generalQueryIntent is obtained,

 * �we remain in the generalQueryState (and trigger

execute method of this state).

 */

 �stateMachine.addTransition("generalQueryIntent",

startState, generalQueryState);

 /*
 * �This transition says that if we are in the

start state, and an askForQuoteIntent intent is

obtained,

 * �we change to the target state which is

getQuoteState if the shield conditions are

validated.

 * Else we check the next transition condition.

 */

 �stateMachine.addTransition("askForQuoteIntent",

startState, getQuoteState, haveQuoteDetailShield);

 /*
 * �If the shield conditions are not validated for

the askForQuoteIntent, it means that we do not

have all the information

 * �for switching to getQuoteState, which provides

quote details. Hence, in that case, we switch to

askforQuoteState without the need

 * of a shield.

 */

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

267

 �stateMachine.addTransition("askForQuoteIntent",

startState, askforQuoteState);

 �stateMachine.addTransition("findAdvisorIntent",

startState, findAdvisorState);

 �stateMachine.addTransition("stockPriceIntent",

startState, stockPriceState);

 �stateMachine.addTransition("marketTrendIntent",

startState, marketTrendState);

 /*
 * �If we are in the start state and the user

intends to get an account balance, we validate

with a shield if we have an account type

 * �and ipin details to switch to getAccountBalanceState

and trigger its execute method.

 */

 �stateMachine.addTransition("accountBalanceIntent",

startState, getAccountBalanceState,

haveAccTypeShield);

 /*
 * �Otherwise, if shield does not validate, it means

we do not have all the details and hence we

switch to getAccTypeState

 * to get all the details.

 */

 �stateMachine.addTransition("accountBalanceIntent",

startState, getAccTypeState);

 �stateMachine.addTransition("weatherIntent",

startState, getWeatherState);

 �stateMachine.addTransition("claimStatusIntent",

startState, getClaimStatusState,

haveClaimIdShield);

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

268

 �stateMachine.addTransition("claimStatusIntent",

startState, getClaimIdState);

Similarly, we can define state transitions from the findAdvisor state:

 �stateMachine.addTransition("exitIntent",

findAdvisorState, exitState);

 �stateMachine.addTransition("marketTrendIntent",

findAdvisorState, marketTrendState);

 �stateMachine.addTransition("findAdvisorIntent",

findAdvisorState, findAdvisorState);

 �stateMachine.addTransition("askForQuoteIntent",

findAdvisorState, askforQuoteState);

 �stateMachine.addTransition("generalQueryIntent",

findAdvisorState, generalQueryState);

 �stateMachine.addTransition("weatherIntent",

findAdvisorState, getWeatherState);

 �stateMachine.addTransition("claimStatusIntent",

findAdvisorState, getClaimStatusState,

haveClaimIdShield);

 �stateMachine.addTransition("claimStatusIntent",

findAdvisorState, getClaimIdState);

 �stateMachine.addTransition("accountBalanceIntent",

findAdvisorState, getAccountBalanceState,

haveAccTypeShield);

 �stateMachine.addTransition("accountBalanceIntent",

findAdvisorState, getAccTypeState);

 �stateMachine.addTransition("stockPriceIntent",

findAdvisorState, stockPriceState);

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

269

Let’s see what the state transitions from GetAccountBalance state are:

 �stateMachine.addTransition("accountBalanceIntent",

getAccountBalanceState, getAccountBalanceState,

haveAccTypeShield);

 �stateMachine.addTransition("accountBalanceIntent",

getAccountBalanceState, getAccTypeState);

 �stateMachine.addTransition("askForQuoteIntent",

getAccountBalanceState, askforQuoteState);

 �stateMachine.addTransition("marketTrendIntent",

getAccountBalanceState, marketTrendState);

 �stateMachine.addTransition("findAdvisorIntent",

getAccountBalanceState, findAdvisorState);

 �stateMachine.addTransition("stockPriceIntent",

getAccountBalanceState, stockPriceState);

 �stateMachine.addTransition("weatherIntent",

getAccountBalanceState, getWeatherState);

 �stateMachine.addTransition("claimStatusIntent",

getAccountBalanceState, getClaimStatusState,

haveClaimIdShield);

 �stateMachine.addTransition("claimStatusIntent",

getAccountBalanceState, getClaimIdState);

Similarly, we can create transitions for other states.

However, note that there is a difference in state transitions

defined by GetAccountBalanceState and FindAdvisorState. You

can go to GeneralQueryState from FindAdvisorState but not from

GetAccountBalanceState. This is where we define which transitions are

possible from each state. In the example here, we don’t want users to be

asking general questions after they ask for account balance details.

A better explanation of this is when the user wants to know his account

balance. IRIS will prompt the user on whether he/she wants to know the

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

270

retirement account balance or annuities account balance and should be

expecting a response like one of the following:

•	 I am looking for a retirement account balance

•	 Retirement

•	 401k balance

•	 Annuities balance

•	 Want to know 401k account balance

•	 401k

•	 annuities

Now, in responses to “annuities” or “401k,” it is difficult to understand

whether the intent is to respond to the question asked or if the user

switched the context and is asking something very general that can be

searched by IRIS in its knowledge base. For example, a user can also

respond with something like

•	 What’s the weather in Dublin

•	 My claim ID is abc123 can you tell the claim status

•	 Insurance

•	 401k

•	 Retirement funds

Now, contextually, it is difficult to differentiate between a general

query search vs. a response to an account type. Here, we can decide that

we will not allow a transition to GeneralQueryState.

Another question is how to understand if it is a general query ask.

A general query is never an intent. If no other intent, such as asking for

weather details, stock price, market trend, claim status, etc., is applicable

and the intent classification engine is not able to classify the user

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

271

utterance into any of these intent categories with high probability, we by

default switch it to a general query.

At this stage, we are done with implementing the IrisConfiguration

class, and we have defined intents, matchers, slot, slot types, states,

different state transitions, and shields in this class.

�Managing State
We now need a helper layer that holds this configuration and seamlessly

performs intent matching and then passes this information to trigger state

machine actions. This helper layer is StateMachineManager:

public class StateMachineManager {

 /** The intent matcher service for IRIS bot. */

 protected IntentMatcherService intentMatcherService;

 /** The state machine */

 protected StateMachine stateMachine;

 /**
 * �Constructs the bot by passing a configuration class that

sets up the intent matcher service and state machine.

 *
 */

 �public StateMachineManager(IrisConfiguration configuration) {

 �intentMatcherService = configuration.

getIntentMatcherService();

 stateMachine = configuration.getStateMachine();

 }

 �public String respond(Session session, String utterance)

throws Exception {

 try {

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

272

 /*
 * �Invokes the intentMatcherService.match

method that returns matched intent.

 * �This method sends the user utterance and

session as an input and obtains matched

intent from the intent classification

service.

 */

 �MatchedIntent matchedIntent =

intentMatcherService.match(utterance, session);

 /*
 * �This method sends the matched intent as

an input along with session and gets the

response back from the state machine.

 */

 �String response = stateMachine.

trigger(matchedIntent, session);

 // The response is returned.

 return response;

 } catch (IllegalStateException e) {

 throw new Exception("Hit illegal state", e);

 }

 }

At this point, we have IRIS ready for the insurance industry. However,

to make it functional, we expose it as a REST service. We need to create a

ConversationRequest, a ConversationResponse, a ConversationService,

and a ConversationController.

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

273

�Exposing a REST Service
IRIS is exposed as a REST service and accepts HTTP GET requests. The

following is an example of the service running on localhost on port 8080 to

accept HTTP GET requests:

http://localhost:8080/respond?sender=sender-id&message=user-

message

This is a JSON representation:

{"message":"response-message-from-service"}

�ConversationRequest

We create a sample ConversationRequest class in the com.iris.bot.

request package that a front-end client can use to send a request to the

IRIS bot engine back end via an integration module. In the example client,

we integrate with Facebook Messenger. Facebook Messenger provides a

sender id, which is a unique user id. This single user identifier helps in

creating and maintaining sessions for the user and storing long-term and

short-term attributes in memory.

public class ConversationRequest {

 /**
 * Sender id as per Facebook.

 */

 private String sender;

 /**
 * Actual text message.

 */

 private String message;

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

274

 /**
 * Timestamp sent by Facebook.

 */

 private Long timestamp;

 /**
 * Sequence number of the message.

 */

 private Long seq;

}

�ConversationResponse

ConversationResponse is created in the com.iris.bot.response package.

The response from the IRIS bot is sent to the integration module through

an object of this class.

public class ConversationResponse {

 /**
 * Actual reply from the bot

 */

 private String message;

}

�ConversationService

ConversationService creates a static instance of the state machine

manager, which is passed to IrisConfiguration in constructor arguments.

It further creates a static instance of the SessionStorage class. These

classes are created as static because only one instance of this class should

be instantiated. Further, the singleton design pattern could also be used

to design these single instances. ConversationService calls a respond

method of StateMachineManager and returns a response to the controller.

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

275

The controller calls a getResponse method of ConversationService by

passing the ConversationRequest.

public class ConversationService {

 �private static StateMachineManager

irisStateMachineManager = new StateMachineManager(new

IrisConfiguration());

 �private static SessionStorage userSessionStorage = new

SessionStorage();

 �public ConversationResponse

getResponse(ConversationRequest req) {

// Default response to be sent if there is a server side exception.

 �String response = "Umm...I apologise. Either I am

not yet trained to answer that or I think I have

had a lot of Guinness today. "

 �+ "I am unable to answer that at the

moment. " + "Could you try asking

something else Please !";

// If the request message is a salutation like hi or hello,

then instead of passing this information to statemachine

manager, a hard-coded response to salutation can be returned

from the service layer.

 �if (req.getMessage().equalsIgnoreCase("hi") || req.

getMessage().equalsIgnoreCase("hey iris")) {

 �response = "Hi There! My name is IRIS (isn't

it nice! My creators gave me this name). I

am here to help you answer your queries, get

you the status of your claims,"

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

276

 �+ " tell you about stock prices,

find you a financial advisor,

inform you about current market

trends, help you check your life

insurance eligibility "

 �+ "or provide you your account

balance information.\n"

 �+ "Hey, you know what, I can

also tell you about current

weather in your city. Try asking

me out ! ";

 }

// Gets the session object for the sender of the request.

 �Session session = userSessionStorage.

getOrCreateSession(req.getSender());

// Creates a response object.

 �ConversationResponse conversationResponse = new

ConversationResponse();

 try {

// Calls the respond method of state manager by passing session

and message (user utterance).

 �response = irisStateMachineManager.

respond(session, req.getMessage());

// Response is set to the the conversationResponse and returned

to the controller.

 conversationResponse.setMessage(response);

 } catch (Exception e) {

 conversationResponse.setMessage(response);

 }

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

277

 return conversationResponse;

 }

}

�ConversationController

Finally, there’s the controller that exposes ConversationService as a

REST API by creating an endpoint /respond. The implementation is

straightforward: the controller receives a GET request, it passes to the

service, and the service responds with the response message.

�Adding a Service Endpoint
Let’s create REST service endpoint using Spring Boot. In Spring’s approach

to building RESTful web services, HTTP requests are handled by a

controller. These components are easily identified by the @RestController

annotation. The @RequestMapping annotation ensures that HTTP requests

to /respond are mapped to the getKeywordresults() method.

More on how to build a RESTful web service using Java and Spring can

be found at https://spring.io/guides/gs/rest-service/.

@RestController

public class ConversationController {

 @Autowired

 ConversationService conversationService;

 �@RequestMapping(value = "/respond", method = RequestMethod.

GET, produces = MediaType.APPLICATION_JSON_VALUE)

 @ResponseBody

 �public ConversationResponse getKeywordresults

(@ModelAttribute ConversationRequest request) {

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

https://spring.io/guides/gs/rest-service/

278

 return conversationService.getResponse(request);

 }

}

If we run this on localhost, a sample GET request will be

http://localhost:8080/respond?sender=SENDER_ID&message=USER_

MESSAGE×tamp=TIMESTAMP&seq=MESSAGE_SEQUENCE

We create attributes of ConversationRequest based on attributes that

are sent by Facebook. Hence in the request structure we have timestamp

and seq. However, we do not make use of these two attributes in the demo

implementation for intent classification or state transition. Note that these

attributes of Messenger webhook events may change with new versions

of the Facebook API and can be used in your code depending on your

requirements.

�Summary
Let’s summarize what we discussed in this chapter. We started with the

idea of building a basic chatbot framework and why a custom designed

chatbot is a needed for the enterprise. Then we discussed the core

components of the framework.

First, we discussed intents, utterances, and slots, and defined a

custom intent and slot matcher. We also created the MatchedSlot and

MatchedIntent classes.

Then we discussed IRIS memory and how the session can be used to

store attributes for the long term and the short term. We discussed the

Session and SessionStorage classes.

We then discussed how a conversation can be modeled as a state

machine problem. We discussed the different components of a state

machine such as states, transitions, shields, and the StateMachine

backbone class.

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

279

Then we discussed an insurance-focused use case capable of

performing certain actions based on different intents and states. We

defined various intents, slots, and slot types for the use case. We added

these definitions to the configuration class.

We then discussed all the possible states for the use case and explained

the execution part of all of these states. As some of the states require a

validator before transition, we discussed shields that are required for our

example use case. We briefly talked about the general query state and

how to leverage an enterprise search in case the utterance is not classified

into any of the explicit intents and does not match any document in the

knowledge repository.

We then described possible transitions from one state to another

depending on the user intent.

We then discussed StateMachineManager, which uses the

configuration and performs intent matching before triggering state actions.

Lastly, we discussed how to make IRIS functional. We briefly explained

how to expose IRIS as a REST service by the creation of service and

controller layers.

In the next chapter, we will discuss the other chatbot frameworks

available in the marketplace such as RASA, Google Dialogflow, and

Microsoft Bot Framework. These frameworks, unlike our build-from-

scratch approach, provide many plug-and-play features and make

development faster. However, we recommend that you understand the

requirements of your enterprise thorougly before making a choice between

the available frameworks.

Chapter 6 A Novel In-House Implementation of a Chatbot Framework

281© Abhishek Singh, Karthik Ramasubramanian, Shrey Shivam 2019
A. Singh et al., Building an Enterprise Chatbot,
https://doi.org/10.1007/978-1-4842-5034-1_7

CHAPTER 7

Introduction
to Microsoft Bot,
RASA, and Google
Dialogflow
In the previous chapter, we discussed how to build an in-house chatbot

framework with natural language and conversation capabilities. Building

a solution from scratch has advantages that we discussed previously.

However, there are use cases and scope where it could be easier, quicker,

and cheaper to use readily available online intent classification and

conversation management frameworks to build your chatbot client.

In this chapter, we will introduce some of the popular online chatbot

frameworks and how to use them.

�Microsoft Bot Framework
Microsoft Bot Framework is a comprehensive framework for building

enterprise-grade conversational AI experiences. It offers a set of

cognitive services through its cloud hosting service called Azure. Azure

Cognitive Services enable us to build intelligent enterprise-grade bots.

282

We can use its QnA Maker service to build a quick FAQ bot or use LUIS

(Language Understanding Intelligent Service) to build a sophisticated

virtual assistant. Figure 7-1 shows the various cognitive services of

the bot framework and other components required for an end-to-end

conversational AI experience.

�Introduction to QnA Maker
Microsoft’s QnA Maker provides a quick way of building a bot on FAQ

URLs, structured documents, manuals, and soon. Its powerful crawler and

parser engine extracts all possible questions and answers from the content

and makes them available via bot. It is a cognitive service tool that builds

and trains a simple QnA bot.

QnA Maker is a free service that responds to a user’s utterances or asks

in a natural conversational way. It is able to provide helpful answers to

semi-structured data with its question/answer mechanism based on its

language processing techniques.

Figure 7-1.  Components of a bot framework

Chapter 7 Introduction to Microsoft Bot, RASA, and Google Dialogflow

283

A common challenge for most informational bot scenarios is

to separate out the content management from the bot design and

development, since content owners are usually domain experts who may

not be technical. QnA Maker addresses this by enabling a no-code QnA

management experience.

QnA Maker allows you to edit, remove, or add QnA pairs with an easy-

to-use interface and then publish your knowledge base as an API endpoint

for a bot service. It’s simple to train the bot using a familiar chat interface,

and the active learning feature automatically learns question variations

from users over time and adds them to the knowledge base. Use the QnA

Maker endpoint to seamlessly integrate with other APIs like a language

understanding service and speech APIs to interpret and answer user

questions in different ways.

We discussed previously that having a knowledge base is essential

to answer users’ queries. It is the underlying information repository

that provides answers to users’ queries. A knowledge base is a logical

term for various types of structured, semi-structured, and unstructured

information that can be stored in an underlying database with test

processing capabilities. QnA Maker exposes its knowledge base/database

through API services.

Once we create an account and log in to www.qnamaker.ai, it will ask

us to create a new knowledge base.

The first step is to create a new Azure QnA service for our knowledge

base, which requires creation of the following in Azure:

	 1.	 Creation of a resource group: Some of the services

of QnA Maker are not available in all regions at

this point, so we used the (US) west US region for

creating and deploying all the components for the

demo, as seen in Figure 7-2.

Chapter 7 Introduction to Microsoft Bot, RASA, and Google Dialogflow

https://﻿www.qnamaker.ai﻿

284

	 2.	 Creation of a QnA Maker resource: As see in

Figure 7-3, we need to provide a name and other

details for the resource creation. Please note that we

used the Azure Free Tier subscription for the demo.

Pricing tiers and subscriptions may vary based on

your account.

Figure 7-2.  Resource group creation step

Chapter 7 Introduction to Microsoft Bot, RASA, and Google Dialogflow

285

Once the QnA Maker resource is created, different resource

components will be visible in the Azure All Resources dashboard, as

shown in Figure 7-4.

Figure 7-3.  QnA Maker creation

Figure 7-4.  The All Resources dashboard

Chapter 7 Introduction to Microsoft Bot, RASA, and Google Dialogflow

286

Now, we log into www.qnamaker.ai/Create and follow the five steps

required to create a knowledge base:

	 1.	 Create a QnA service in Microsoft Azure (which we

just did).

	 2.	 Connect the QnA service to the knowledge base.

As shown in Figure 7-5, you can select the previously

created Azure QnA service upon refreshing this page.

	 3.	 Name your knowledge base.

	 4.	 Populate the knowledge repository.

We found a FAQ page on the website of Prudential

Financial, a fortune 500 insurance company. The

FAQ page had 73 questions and answers that we

could use for the demo. This information will be

added to the knowledge repository, as shown in

Figure 7-6. The reference page URL used for the

demo is www.prudential.com/faq.

Figure 7-5.  Connecting the QnA service to the knowledge base

Chapter 7 Introduction to Microsoft Bot, RASA, and Google Dialogflow

https://﻿www.qnamaker.ai/Create﻿
http://www.prudential.com/faq

287

	 5.	 Create the knowledge base.

The QnA maker service crawls the provided URL

and extracts information in the form of questions

and answers for us to review, add more data, and

save and train, as shown in Figure 7-7. There are

more options, such as testing the service before

publishing.

Figure 7-6.  Populating the knowledge base with data from a URL
source

Chapter 7 Introduction to Microsoft Bot, RASA, and Google Dialogflow

288

The next step is to publish this knowledge base for use by the bot by

clicking the Publish button, as shown in Figure 7-8.

Upon publishing the knowledge base, the previously created qna-

maker-demo QnA service is ready to be used. We can then make a POST

request to the service to query the knowledge base with a question and

it will respond with an answer. Figures 7-9 and 7-10 show an example

request via POSTMAN for the question asked (“change beneficiary”),

which the QnA service matched with a similar question in the knowledge

base (“How do I change my beneficiary?”).

Figure 7-7.  Extraction of question/answer pairs by the QnA service

Figure 7-8.  Publishing the knowledge repository

Chapter 7 Introduction to Microsoft Bot, RASA, and Google Dialogflow

289

You can see how to use Microsoft QnA Maker using Azure to quickly

build a fully functional Q&A service. This service can be integrated with

a WebApp bot client or Facebook Messenger or any other third-party

messaging service.

The functionality of the QnA Maker service is essentially a relevant

search engine in the back end that indexes content data and uses a text-

based scoring logic to rank best matching content. However, this service

Figure 7-9.  HTTP POST request to demo-faq-kb knowledge base
with authorization

Figure 7-10.  The question asked for the response shown in Figure 7-9

Chapter 7 Introduction to Microsoft Bot, RASA, and Google Dialogflow

290

is not conversational and does not perform language understanding to

identify user intents before taking an action. Microsoft provides another

cognitive service called LUIS that is created for this purpose.

�Introduction to LUIS
Language Understanding Intelligent Service (LUIS) is a cloud-based API

service and a component of cognitive services, as shown in Figure 7-1.

It takes user input and applies machine learning techniques to predict

user intent. It also uses its Named Entity Recognition (NER) matching

techniques to identify named entities in the user utterance to provide a

meaningful response. This is illustrated in Figure 7-11. In a nutshell, LUIS

is an intent classification engine that provides the best matching (top

scoring) intent based on the user utterance.

The first step in the process is to create a LUIS app consisting of a

domain-specific language model. At the time of creation of the app, we can

select a prebuilt domain model, build our own natural language model, or

leverage the prebuilt domain with our own customization.

•	 Prebuilt model: LUIS provides many prebuilt domain

models including predefined intents of common usage

with various utterances and prebuilt entities of various

domains. These prebuilt entities can also be leveraged

without having to use intents and utterances of the

prebuilt model. Depending on whether the prebuilt

model is suitable for your use case, prebuilt models can

be a good, quick starter.

•	 Custom entities: LUIS provides several ways in which

we can define our custom intents along with sample

utterances. We can also define our domain-centric

custom entities leveraging NER matching capabilities.

Chapter 7 Introduction to Microsoft Bot, RASA, and Google Dialogflow

291

The creation of a LUIS app is simple and similar to what we will discuss

when we create an Alexa app (for integration with IRIS) in Chapter 9, so we

will skip the explanation of the same in this chapter.

Once the intents, utterances, and domain-related entities are defined

using the custom or prebuilt model, the LUIS app is then published.

Publishing an app means making it available for use. Once published,

a client application can send utterances to a LUIS service endpoint, as

illustrated in Figure 7-12. LUIS responds with a JSON response.

Figure 7-11.  LUIS intent classification illustration

Figure 7-12.  Example LUIS bot flow

Chapter 7 Introduction to Microsoft Bot, RASA, and Google Dialogflow

292

�Introduction to RASA
RASA is an open source stack of machine learning libraries for developers

to create contextual chatbots. RASA also provides a paid enterprise-grade

platform. Client services can connect with various APIs in the RASA

platform. More details on the RASA platform can be found at https://

rasa.com/products/rasa-platform/.

The RASA stack has two main components:

•	 Core: A chatbot framework similar to Mutters, with

machine learning-based dialog management

•	 NLU: An intent classification module providing intent

classification and entity extraction.

As shown in Figure 7-13, both Core and NLU modules provide various

functionalities that can be customized, trained, and integrated on a

custom dataset for contextual AI-based virtual assistants.

Figure 7-13.  Functionalities of Core and NLU modules

Chapter 7 Introduction to Microsoft Bot, RASA, and Google Dialogflow

https://rasa.com/products/rasa-platform/
https://rasa.com/products/rasa-platform/

293

•	 Turn natural language into structured data: This

functionality is similar to what we discussed in the QnA

Maker example, in which structured, semi-structured,

and unstructured data was parsed in some meaningful

form in the knowledge base for querying.

•	 ML-based dialogue: RASA provides its own dialogue

management module that can be customized and

modelled via a series of simple steps. We discussed an

implementation of conversation management in IRIS

in Chapter 6 with finite state machines.

•	 Custom word vectors: RASA provides customization

to train word vectors for our domain. Several word

embeddings are generated in the process, which helps

the engine in better intent classification. Word2vec is

a popular neural network model that generates word

embeddings from user text.

•	 Entity extraction: By using the built-in or custom-built

entity recognition models, RASA can identify entities in

user utterances.

•	 Match messages to multiple intents: A user utterance

can be matched to multiple intents, and different

match scores along with the best matching intent are

returned in response.

•	 Interactive learning: We discussed in the last

chapter how to enhance IRIS by extending the design

to support a continuous improvement framework

through interactive learning. RASA also provides

simple ways to enable interactive learning that teaches

the bot new skills.

Chapter 7 Introduction to Microsoft Bot, RASA, and Google Dialogflow

294

The RASA framework for chatbots makes use of the two models to

effectively flow the conversation, as shown in Figure 7-14.

The message is basically handled at two stages: one at the Core

module, which manages the conversation, and one at the NLU module,

which provides the essential language services. The external API calls or

CRM connections are dealt with by the RASA platform with the help of

RASA core trackers. The next section discusses some more details on how

the two modules work.

�RASA Core
RASA Core refers to the main component, which receives and responds

to the requests. The module is robust and has a flow-based approach to

handle all requests, as shown in Figure 7-15.

Figure 7-14.  Flow of conversation using the Core and NLU modules
of RASA

Chapter 7 Introduction to Microsoft Bot, RASA, and Google Dialogflow

295

The RASA framework has a six-step flow to handle all incoming

messaging requests and respond to them. The steps are described below;

however, more details can be found at http://rasa.com/docs/#rasa_

core.agent.Agent.

The interpreter receives the message and converts it into a dictionary

including the original text, the intent, and any entities that were found.

The tracker keeps track of the conversations and passes on the state with

new message to policy. The policy module prepares the response for the

request. Once the response is ready in the policy module, it is passed to the

tracker and action. The tracker updates the state of conversation and the

action sends the response back to the user.

The above implementation helps all the conversations to flow through

RASA and at the same time keeps track of conversations to maintain states

of conversations.

�RASA NLU
RASA Natural Language Understanding (NLU) module is a tool that does

the intent classification and entity extraction for all the messages incoming

from the user. It is a fully open source tool developed for the core purpose

of being used in chatbot development.

Figure 7-15.  Working on the RASA framework

Chapter 7 Introduction to Microsoft Bot, RASA, and Google Dialogflow

http://rasa.com/docs/#rasa_core.agent.Agent
http://rasa.com/docs/#rasa_core.agent.Agent

296

The RASA NLU can be hosted as a service for your chatbot to use. The

RASA NLU also allows you to train different types of models using your

own data. From the perspective of chatbot developers, the RASA NLU

module has two parts:

•	 Training: This module allows you to train models on

your own data. Having your own data to train allows

you to develop a NLU that is business specific.

•	 Server: This module serves as the training model to the

chatbot. It can be hosted as an API service and runs at

the back end.

The key benefit of using the open source NLU module is that you don’t

need to send your data outside to Google or Amazon to train on intents

and entities. And, being open source, you can tweak the models or develop

your own models as per your needs. The architecture for the RASA NLU

also allows it to run from everywhere as a service. You may not need to

make network calls if your architecture demands that.

Refer to the extensive documentation of RASA at https://rasa.com/

docs/.

�Introduction to Dialogflow
Dialogflow is an offering of Google for developing human-computer

interactions. It was formerly known as API.ai as a platform for managing

APIs for chatbots. Google bought the company in September 2016 and

renamed it Dialogflow in 2017. It is now a core offering on Google for

voice-based application development for all of its platforms including

Google Home, Google Assistant, and other voice-enabled services. The

capability of Dialogflow to integrate with virtually all platforms including

wearables, home applications, speakers, smart devices, etc. makes it one of

the most popular platforms for developing chatbots.

Chapter 7 Introduction to Microsoft Bot, RASA, and Google Dialogflow

https://rasa.com/docs/
https://rasa.com/docs/

297

Google Dialogflow functioning is similar to the previous discussed

chatbots, with some variations in naming technology and technical

architecture on how it implements the flow. A typical conversation with a

chatbot in Dialogflow looks like Figure 7-16.

The user responses are allowed in both written format and in voice/

speech. The responses are captured by the Google Assistance module and

then converted into text to allow the chatbot to be voice enabled. Google

Assistance can be replaced by other integration options as well.

The key steps to building a chatbot with Dialogflow are discussed

below. You are encouraged to go through the official documentation for

Dialogflow at https://dialogflow.com/.

•	 The first step is to create a Dialogflow account and

then create a Dialogflow agent, which lets you define a

natural language understanding model.

•	 The second step is to define how information is

extracted from user utterances. This is done by defining

extract parameters for entities. This is helpful to

understand important attributes in user utterances,

providing better matches based on extracted entities.

•	 In order for a chatbot to be conversational, we need to

define and manage states with contexts in the next step.

Figure 7-16.  Dialogflow-based chatbot

Chapter 7 Introduction to Microsoft Bot, RASA, and Google Dialogflow

https://dialogflow.com/

298

•	 Finally, the Dialogflow agent can be integrated with

Google Assistant, which lets us deploy the agent.

This allows users to invoke actions through the

assistant to interact.

The above tutorial details can be found at https://dialogflow.com/

docs. Below we present selected steps in the process to build a chatbot

using Dialogflow.

Creating an agent means creating an NLU model that will understand

the chats happening with that agent. So, if you want to create a chatbot for

two different domains, you may need to create two different agents and

train them accordingly. See Figure 7-17.

The next step is to create intents using the Dialogflow console. The

intent can be defined along with the utterances using the rich UI of

Dialogflow. The console window looks similar to Figure 7-18.

Figure 7-17.  Creation of an agent in Dialogflow

Chapter 7 Introduction to Microsoft Bot, RASA, and Google Dialogflow

https://dialogflow.com/docs
https://dialogflow.com/docs

299

The Dialogflow console also provides a simulator at the right side

of the window to test the trained intents in a simulated environment.

This helps you to test your model before deploying it to production. The

simulation window looks similar to Figure 7-19.

Figure 7-18.  Intent creation in Dialogflow

Figure 7-19.  Dialogflow simulation window

Chapter 7 Introduction to Microsoft Bot, RASA, and Google Dialogflow

300

Actions and parameters are extracted from the entity extraction

module of Dialogflow. The parameters extracted then can be used for

fulfilment and generating the responses. The Entity extraction mechanism

is driven by powerful Google ML models. A basic training phase and entity

extraction in Dialogflow is shown in Figure 7-20.

The contexts can be managed by the console as well, and your bot can

be trained on missed intents that the chatbot was not able to understand.

Every time you simulate the model, it gets trained on the latest data

provide to its intent engine.

Dialogflow connects with outside services and CRMs using its

fulfilment service. The fulfillment service allows you to create custom API

endpoints and expose them to your chatbot. The fulfillment service in

Dialogflow is called Web Hooks.

One of the great features is the capability to integrate the chatbot with

multiple platforms with just few clicks. Figure 7-21 shows the integration

options available with Dialogflow. The ecosystem of Dialogflow is very

Figure 7-20.  Entity extraction in Dialogflow

Chapter 7 Introduction to Microsoft Bot, RASA, and Google Dialogflow

301

strong, and it offers good integration models in Nodejs for developers to

build chatbots and features as per their requirements.

�Summary
We discussed different chatbot frameworks and how they are useful to

build a simple chatbot client. However, these frameworks have advantages

and disadvantages.

Figure 7-21.  Integration options in Dialogflow

Chapter 7 Introduction to Microsoft Bot, RASA, and Google Dialogflow

302

Microsoft Bot Framework is open source and available on GitHub but

some of its services such as Lex or Azure come at an additional cost. It’s

designed to be easy to use as a set of services.

RASA is also open source and provides enterprise platform support.

It requires development and programming knowledge since it is designed

for developers. It does not provide out-of-the-box integration to other

messaging clients. It can be hosted on-premise, but it does not provide

direct user info management support.

Dialogflow provides out-of-the-box integration with some popular

messaging platforms such as Facebook Messenger, Skype, and Google

Assistant and provides the complete toolkit required for building bots.

However, it cannot be operated on-premise.

The chapter also discussed the key features of various platforms and

presented essential information required for developers to start working

on these platforms. The chapter concluded with an introduction to an

enterprise-level paid platform.

In the next chapter, we will discuss how the custom chatbot designed

in previous chapters can be extended to integrate with various third-party

services and enterprise databases to provide responses to the client.

Chapter 7 Introduction to Microsoft Bot, RASA, and Google Dialogflow

303© Abhishek Singh, Karthik Ramasubramanian, Shrey Shivam 2019
A. Singh et al., Building an Enterprise Chatbot,
https://doi.org/10.1007/978-1-4842-5034-1_8

CHAPTER 8

Chatbot Integration
Mechanism
In Chapter 6, we designed a simple chatbot framework in Java which we

called the IRIS (Intent Recognition and Information Service) framework.

We discussed the core components of IRIS, such as how to define intents

and how state machine can be implemented for defining state and

transitions for building a conversational chatbot. An example use case

focused on the insurance domain. In the example, we outlined specific

capabilities that IRIS is supposed to perform such as providing market

trend details, stock price information, weather details, and claim status.

In this chapter, we will focus on the integration modules of IRIS, which

shows how we can connect with external data sources and third-party APIs

for information retrieval.

�Integration with Third-Party APIs
In our example, the three functionalities of IRIS require integration with

third-party APIs (Figure 8-1):

•	 Market trends

•	 Stock prices

•	 Weather information

304

�Market Trends
There are plenty of free and paid APIs available online that can provide

these details. We explored www.alphavantage.co, which provides free APIs

to get real-time and historical stock market data. Alpha Vantage APIs are

grouped into four categories:

•	 Stock time series data

•	 Physical and digital/crypto currencies (e.g., Bitcoin)

•	 Technical indicators

•	 Sector performances

All APIs are in real time: the latest data points are derived from the

current trading day.

Upon providing just three necessary details, which are the type of

user, institution/organization name, and an email address, we get an API

key, and it is free for a lifetime as per the website. The free API key can be

obtained by providing details at www.alphavantage.co/support/#api-key.

Once we have the API key, there are various APIs of Alpha Vantage

grouped under multiple API suites, as shown in Figure 8-2.

Figure 8-1.  IRIS integration with third-party APIs

Chapter 8 Chatbot Integration Mechanism

http://www.alphavantage.co
http://www.alphavantage.co/support/#api-key

305

•	 Stock time series

•	 Forex

•	 Technical indicators

•	 Cryptocurrencies

•	 Sector performances

More details on each of these APIs can be found at www.alphavantage.

co/documentation/.

For our example use case, we want to know how to get the current

market trend and stock price of a particular stock. For the current market

trend, we leverage the Sector Performances API, details of which are

available at www.alphavantage.co/documentation/#sector-information.

Figure 8-2.  Alpha Vantage’s multiple API suites

Chapter 8 Chatbot Integration Mechanism

http://www.alphavantage.co/documentation/
http://www.alphavantage.co/documentation/
http://www.alphavantage.co/documentation/#sector­information

306

A sample HTTP GET request to obtain real-time, sector-wise

performance details is at www.alphavantage.co/query?function=SECTOR&

apikey=demo.

The JSON response received from the API is

{

Meta Data:

{

Information: "US Sector Performance (realtime & historical)",

Last Refreshed: "03:44 PM ET 03/04/2019"

},

Rank A: Real-Time Performance:

{

Real Estate: "0.47%",

Materials: "0.39%",

Utilities: "0.11%",

Energy: "-0.10%",

Communication Services: "-0.10%",

Consumer Staples: "-0.22%",

Consumer Discretionary: "-0.23%",

Industrials: "-0.33%",

Information Technology: "-0.50%",

Financials: "-0.65%",

Health Care: "-1.49%"

},

Rank B: 1 Day Performance:

{

Energy: "1.81%",

Health Care: "1.41%",

Consumer Discretionary: "0.92%",

Communication Services: "0.78%",

Information Technology: "0.71%",

Chapter 8 Chatbot Integration Mechanism

http://www.alphavantage.co/query?function=SECTOR&apikey=demo
http://www.alphavantage.co/query?function=SECTOR&apikey=demo

307

Financials: "0.54%",

Utilities: "0.19%",

Industrials: "0.09%",

Real Estate: "-0.13%",

Materials: "-0.16%",

Consumer Staples: "-0.17%"

},

Rank C: 5 Day Performance:

{},

Rank D: 1 Month Performance:

{},

Rank E: 3 Month Performance:

{},

Rank F: Year-to-Date (YTD) Performance:

{},

Rank G: 1 Year Performance:

{},

Rank H: 3 Year Performance:

{},

Rank I: 5 Year Performance:

{},

Rank J: 10 Year Performance:

{}

}

In this response, some data points are available such as real-time

performance, one day, five days, and one-month performance. The

Real-Time Performance key in the JSON response describes the different

sectors of the market along with their percentage change in real time. We

use this information to provide current market trend information in the

MarketTrendState:

Chapter 8 Chatbot Integration Mechanism

308

public String execute(MatchedIntent matchedIntent, Session

session) {

// Third-party API that provides us the current market trend

String uri = "https://www.alphavantage.co/query?function=SECTOR

&apikey=YOUR_KEY";

// Java client that performs HTTP request and gets a response

by performing a GET call to the URL

 RestTemplate restTemplate = new RestTemplate();

/*

* �Response is mapped to a string object below. However, in

actual development, we should create a Java Bean (POJO) that

will be used to map the response into a Java response object

by using the getForObject method.

*/

 �String result = restTemplate.getForObject(uri,

String.class);

 String answer = "";

/*

* �ObjectMapper provides functionality for reading and writing

JSON, either to and from basic POJO. It is part of Jackson,

a standard Java library for parsing JSON.

 */

 ObjectMapper mapper = new ObjectMapper();

 try {

/*

* �JsonNode is used to parse response in a JSON tree model

representation by Jackson. JsonNode is a base class for all

JSON nodes, which form the basis of JSON Tree Model that

Jackson implements. One way to think of these nodes is to

consider them similar to DOM nodes in XML DOM trees

Chapter 8 Chatbot Integration Mechanism

309

 */

 �JsonNode actualObj = mapper.

readTree(result);

 �JsonNode jsonNode1 = actualObj.get("Rank A:

Real-Time Performance");

 �answer = "Energy Sector is " + jsonNode1.

get("Energy").textValue() + ". Utilities at "

 �+ jsonNode1.get("Utilities").

textValue() + ". Real Estate at "

 �+ jsonNode1.get("Real Estate").

textValue() + ". Consumer

Staples at "

 �+ jsonNode1.get("Consumer

Staples").textValue() + ".

Health Care at "

 �+ jsonNode1.get("Health Care").

textValue() + ". Materials at "

 �+ jsonNode1.get("Materials").

textValue() + ".

Telecommunication Services at "

 �+ jsonNode1.

get("Telecommunication

Services").textValue() + ".

Industrials at "

 �+ jsonNode1.get("Industrials").

textValue() + ". Information

Technology at "

 �+ jsonNode1.get("Information

Technology").textValue() + ".

Consumer Discretionary at "

Chapter 8 Chatbot Integration Mechanism

310

 �+ jsonNode1.get("Consumer

Discretionary").textValue() +

". Financials at "

 �+ jsonNode1.get("Financials").

textValue() + "\nWhat else do

you want to know?";

 } catch (Exception e) {

 e.printStackTrace();

 �Result = "I am unable to retrieve this

information right now. There is some problem

at my end.\nTry asking something else!";

 }

 return answer;

 }

�Stock Prices
A user may interact with IRIS and may ask for stock price information. The

utterance(s) could be

•	 What is the current stock price of microsoft

•	 Pru stock price

•	 Infy stock today

•	 Share price of hdfc

When the utterance is received by IRIS Core, it passes the utterance

to the intent classification engine, which knows that the user is looking

for 'STOCK_PRICE'. Based on this intent and current state, a transition to

StockPriceState happens. The execute method of this state then makes a

call to the third-party API.

To retrieve the stock price details, we use a TIME_SERIES_DAILY API

from the Stock time series API suite of Alpha Vantage.

Chapter 8 Chatbot Integration Mechanism

311

A sample HTTP GET request:

www.alphavantage.co/query?function=TIME_SERIES_DAILY&symbol=MSF

T&apikey=demo

A sample API response:

 {

Meta Data:

{

1. �Information: "Daily Prices (open, high, low, close) and

Volumes",

2. Symbol: "MSFT",

3. Last Refreshed: "2019-03-04 16:00:01",

4. Output Size: "Compact",

5. Time Zone: "US/Eastern"

},

Time Series (Daily):

{

2019-03-04:

{

1. open: "113.0200",

2. high: "113.2000",

3. low: "110.8000",

4. close: "112.2600",

5. volume: "25684300"

},

2019-03-01:

{

1. open: "112.8900",

2. high: "113.0200",

3. low: "111.6650",

Chapter 8 Chatbot Integration Mechanism

http://www.alphavantage.co/query?function=TIME_SERIES_DAILY&symbol=MSFT&apikey=demo
http://www.alphavantage.co/query?function=TIME_SERIES_DAILY&symbol=MSFT&apikey=demo

312

4. close: "112.5300",

5. volume: "23501169"

},

2019-02-28:

{

1. open: "112.0400",

2. high: "112.8800",

3. low: "111.7300",

4. close: "112.0300",

5. volume: "29083934"

},

2019-02-27:

{},

2019-02-26:

{}

}

}

A sample execute method of StockPriceState could look like:

 �public String execute(MatchedIntent matchedIntent,

Session session) {

/*

* �In the URL below, we have hard-coded symbol=MSFT. MSFT is the

symbol for Microsoft. In an actual implementation, we should

retrieve the company name from the user utterance and find

its symbol and then pass it in the GET request below. There

are many ways to convert from company name to symbol such as

by calling publicly available services or by maintaining a

mapping.

*/

Chapter 8 Chatbot Integration Mechanism

313

 �String uri = "https://www.alphavantage.co/

query?apikey=YOUR_KEY&function=TIME_SERIES_DAILY&o

utputsize=compact&symbol=MSFT";

 RestTemplate restTemplate = new RestTemplate();

 �String result = restTemplate.getForObject(uri,

String.class);

// Default answer in case the third-party API does not respond

or if there is any network related issue

 �String answer = "I am somehow unable to retrieve

stock price details right now. But I will be able

to help you with your other queries.";

 ObjectMapper mapper = new ObjectMapper();

 try {

/*
 * �As we know, the stock market does not run on the weekends

and certain holidays. IRIS is expected to provide real-time

stock performance data. In a normal working day, we parse

out performance detail of current day but for a holiday or

if the stock market was closed or if the stock did not trade

that day, we get the performance detail of the previous day.

 */

 Date date = new Date();

 �String today = new SimpleDateFormat("yyyy-

MM-dd").format(date);

 �String yday = new SimpleDateFormat("yyyy-MM-

dd").format(yesterday(1));

 �String dayBeforeYday = new

SimpleDateFormat("yyyy-MM-dd").

format(yesterday(2));

Chapter 8 Chatbot Integration Mechanism

314

 �JsonNode actualObj = mapper.readTree(result);

 �JsonNode jsonNode1 = �actualObj.get("Time

Series (Daily)");

 JsonNode jsonNode2 = jsonNode1.get(today);

 JsonNode jsonNode3 = jsonNode1.get(yday);

 �JsonNode jsonNode4 = �jsonNode1.

get(dayBeforeYday);

 if (jsonNode2 != null) {

 �answer = "Today Microsoft stock opened

at " + jsonNode2.get("1. open").

textValue() + " and closed at "

 �+ jsonNode2.get("4.

close").textValue();

 �answer = answer + " It saw an

intraday high of " + jsonNode2.

get("2. high").textValue()

 �+ " and an intraday low

of " + jsonNode2.get("3.

low").textValue();

 �answer = answer + ". Total volume

traded is " + jsonNode2.get("5.

volume").textValue() + "\n"

 �+ "How else can I help

you?";

 } else if (jsonNode3 != null) {

 �answer = "I don't have the trading

info for today as of now, but

Yesterday PRU stock opened at "

 �+ jsonNode3.get("1.

open").textValue() + "

and closed at "

Chapter 8 Chatbot Integration Mechanism

315

 �+ jsonNode3.get("4.

close").textValue();

 �answer = answer + " It saw an

intraday high of " + jsonNode3.

get("2. high").textValue()

 �+ " and an intraday low

of " + jsonNode3.get("3.

low").textValue();

 �answer = answer + ". Total volume

traded is " + jsonNode3.get("5.

volume").textValue() + "\n"

 �+ "How else can I help

you?";

 } else if (jsonNode4 != null) {

 �answer = "On friday, before weekend,

PRU stock opened at " + jsonNode4.

get("1. open").textValue()

 �+ " and closed at "

+ jsonNode4.get("4.

close").textValue();

 �answer = answer + " It saw an

intraday high of " + jsonNode4.

get("2. high").textValue()

 �+ " and an intraday low

of " + jsonNode4.get("3.

low").textValue();

 �answer = answer + ". Total volume

traded is " + jsonNode4.get("5.

volume").textValue() + "\n"

 �+ "How else can I help

you?";

Chapter 8 Chatbot Integration Mechanism

316

 }

 } catch (Exception e) {

 e.printStackTrace();

 }

 return answer;

 }

 /*
 * �A method to return 'days' before the current day. If

the value of 'days' is 1, yesterday's date is returned.

 * �If the value is 2, the day before yesterday is

returned and so on.

 */

 private Date yesterday(int days) {

 final Calendar cal = Calendar.getInstance();

 cal.add(Calendar.DATE, -days);

 return cal.getTime();

 }

�Weather Information
There are plenty of digital bots available that provide weather details.

People often ask Siri, Google voice assistant, and Alexa to give details on

the weather. Let’s see how we can use a third-party API to integrate with

IRIS for weather information.

To get the weather report, we leverage http://openweathermap.org,

which provides the API to get weather details of the requested city. It offers

multiple data points such as current weather data, 5-day forecast, 16-day

forecast, and other historical information about the city. It currently

includes weather details for over 200,000 cities around the world. The

current weather is frequently updated based on global models and data

from more than 40,000 weather stations. OpenWeather also provides APIs

Chapter 8 Chatbot Integration Mechanism

http://openweathermap.org

317

for relief maps, managing personal weather stations, bulk downloading,

weather alerting, UV index, and air pollution.

For our example, we need the current weather in a given city. We need

to obtain an API key. OpenWeather provides multiple API plans, the details

of which can be found at https://openweathermap.org/price.

There is a free plan that allows a maximum of 60 calls per minute,

which is more than enough for the demo. We use the Current Weather data

API that can be called in multiple ways to get weather details such as the

following:

•	 Call the current weather data for one location:

•	 By city name

•	 By city ID

•	 By geographic coordinates

•	 By ZIP code

•	 Call the current weather data for several cities:

•	 Cities within a rectangle zone

•	 Cities in cycle

•	 Call for several city IDs

A sample HTTP GET request when querying by city name (passed in q):

http://api.openweathermap.org/data/2.5/weather?appid=YOUR_APP_

ID&q=dublin

The JSON response:

{

coord:

{},

weather:

[

Chapter 8 Chatbot Integration Mechanism

https://openweathermap.org/price
http://api.openweathermap.org/data/2.5/weather?appid=YOUR_APP_ID&q=dublin
http://api.openweathermap.org/data/2.5/weather?appid=YOUR_APP_ID&q=dublin

318

{

id: 501,

main: "Rain",

description: "moderate rain",

icon: "10n"

}

],

base: "stations",

main:

{

temp: 277.07,

pressure: 993,

humidity: 100,

temp_min: 275.93,

temp_max: 278.15

},

visibility: 10000,

wind:

{

speed: 6.2,

deg: 230

},

rain:

{

1h: 1.14

},

clouds:

{

all: 75

},

dt: 1551735821,

Chapter 8 Chatbot Integration Mechanism

319

sys:

{

type: 1,

id: 1565,

message: 0.0045,

country: "IE",

sunrise: 1551683064,

sunset: 1551722984

},

id: 2964574,

name: "Dublin",

cod: 200

}

A sample execute method of GetWeatherState may contain the

following code snippet:

public String execute(MatchedIntent matchedIntent, Session

session) {

/*

* �Default response in case there is a network issue or if the

third-party API takes a lot of time or if there is some other

exception

*/

 �String answer = "I am unable to get the weather

report right now. But I hope it be a nice and

charming day for you :) ";

 /*
 * GET API that provides weather details

 */

 �String uri = "http://api.openweathermap.org/

data/2.5/weather?appid=YOUR_API_KEY&q=";

Chapter 8 Chatbot Integration Mechanism

320

 String cityName = "dublin";

 try {

 RestTemplate restTemplate = new RestTemplate();

 �String result = restTemplate.

getForObject(uri, String.class);

 ObjectMapper mapper = new ObjectMapper();

 �JsonNode actualObj = mapper.readTree(result);

 �ArrayNode jsonNode1 = (ArrayNode) actualObj.

get("weather");

 JsonNode jsonNode2 = actualObj.get("main");

 �String description = jsonNode1.get(0).

get("description").textValue();

 �String temperature = jsonNode2.get("temp").

toString();

 �Double tempInCelsius = Double.

parseDouble(temperature) - 273.15;

 �double roundOff = Math.round(tempInCelsius *

100.0) / 100.0;

 �String humidity = jsonNode2.get("humidity").

toString();

 �answer = "It seems to be " + description +

" at the moment in " + cityName + ". The

temperature is "

 �+ roundOff + " degrees.

Humidity" + " is close to " +

humidity

 �+ ".\n I wish I were human to

feel it. Anyways, what else do

you want to know from me? ";

Chapter 8 Chatbot Integration Mechanism

321

 } catch (Exception e) {

 }

 return answer;

 }

�Connecting to an Enterprise Data Store
In our example, we use GetClaimStatus to demonstrate how to connect to

a database and query claims information.

Note that although we are demonstrating this capability of querying a

database directly, the modern design approach across the industry does

not recommend it. Any database should be queried only through a service

created on top of the database. There are multiple reasons for this, such

as security and access control, database load and connection handling,

encapsulation, and portability.

public class GetClaimStatus extends State {

 /*
 * �Java Database Connectivity (JDBC) is an application

programming interface (API) for the programming

language Java, which defines how a client may

access a database. It is a Java-based data access

technology used for Java database connectivity. It

is part of the Java Standard Edition platform, from

Oracle Corporation

 * DB_URL is the database connection URL.

 * �The URL used is dependent upon the particular

database and JDBC driver. It will always begin with

the "JDBC:" protocol, but the rest is up to the

specific vendor. In our example, we use a MySQL

database.

 */

Chapter 8 Chatbot Integration Mechanism

322

 static final String JDBC_DRIVER = "com.mysql.jdbc.Driver";

 // database name is a test

 static final String DB_URL = "jdbc:mysql://localhost/test";

 /*
 * Database access credentials

 */

 static final String USERNAME = "ClaimsReadOnlyUser";

 static final String PASSWORD = "**********";

 public GetClaimStatus() {

 super("getClaimStatus");

 }

 @Override

 �public String execute(MatchedIntent matchedIntent,

Session session) {

 Connection conn = null;

 Statement stmt = null;

 String status = null;

/*

* �Retrieve claim Id from a session or slot of the matched

intent. If this state is executed, it is supposed to mean

that we have the claim Id; otherwise Shield would not have

validated transition to this state.

 */

 �String claimId = SessionStorage.getStringFromSlotOr

Session(matchedIntent, session, "claimId", null);

// Default answer

 �String answer = "We dont have any info related to

" + claimId + " in our system.\n"

Chapter 8 Chatbot Integration Mechanism

323

 �+ "Please contact our call service

representative for further inquiry

on the number 1800 333 0333 between

Mondays to Fridays, 8:30 am to

5:30 pm.\n"

 �+ "If you're dialling from overseas

or via a payphone, please call

+65 633 30333.\nIs there anything

else I can help you with?";

 try {

 //Register JDBC driver

 Class.forName("com.mysql.jdbc.Driver");

 �// Open a connection (Connecting to

database...)

 �conn = DriverManager.getConnection(DB_URL,

USERNAME, PASSWORD);

 // Execute a query

 stmt = conn.createStatement();

/*

* �SQL query to query row from test database and claims table.

This query means - return status of the row from claims table

where claim id is given claim Id.

*/

 �String sql = "SELECT status FROM claims

where claimId='" + claimId + "'";

 //executing SQL

 ResultSet rs = stmt.executeQuery(sql);

 //Extract data from the result set

 while (rs.next()) {

Chapter 8 Chatbot Integration Mechanism

324

 //record fetched

 status = rs.getString("status");

 }

 �//Clean up environment and close active

connections.

 rs.close();

 stmt.close();

 conn.close();

 } catch (Exception e) {

 e.printStackTrace();

 } finally {

/*

* �In a try-catch, a finally block is always executed even if an

exception happens. In case of exceptions in the above code for

any reason, the statements and connections will not get closed.

Hence we apply an extra check to close it in finally block.

 */

 try {

 if (stmt != null)

 stmt.close();

 } catch (SQLException se2) {

 }

 try {

 if (conn != null)

 conn.close();

 } catch (SQLException se) {

 se.printStackTrace();

 }

 }

Chapter 8 Chatbot Integration Mechanism

325

// If we received status from the database for that claims, we

override the default answer with actual status details.

 if (status != null) {

 �answer = "The status of your claim for

claimId " + claimId + " is - " + status

 �+ ".\nContact our

representatives at HELPLINE-

NUMBER "

 �+ "between Mondays to Fridays,

8:30am to 5:30pm if you want to

inquire more. Anything else that

you want to know as of now?";

 }

 // Remove claim Id related attributes from the session

 session.removeAttribute("getclaimidprompt");

 session.removeAttribute("claimid");

 return answer;

 }

}

�Integration Module
The integration module is the piece that connects the core of IRIS with

different messaging platforms such as Facebook Messenger, Twitter,

the Web, mobile apps, Alexa, etc. Each of these platforms has their own

integration mechanism, and building a customized integration layer for

each of the channels is very difficult and not the core objective in this

book. The integration module is a middle-layer service exposed to the

outside world, acting as a gateway for IRIS, as shown in Figure 8-3.

Chapter 8 Chatbot Integration Mechanism

326

Many open source tools provide simple customized integrations with

various channels without us having to write a lot of code, and they take

care of a lot of complexity required for the integrations. In this illustration,

we focus on bootkit, a leading development tool providing customized

combinations with multiple messaging platforms:

https://github.com/howdyai/botkit.

In this chapter, we will discuss integration of IRIS with Facebook

Messenger. Before we get into the integration code, we need to ensure

we have the following in order to be able to put IRIS on a Facebook

Messenger page:

•	 A Facebook page: A Facebook page is used as the

identity of your bot. When people chat with your app,

they see the page name and profile picture.

Figure 8-3.  IRIS channel integration module

Chapter 8 Chatbot Integration Mechanism

https://github.com/howdyai/botkit

327

•	 A Facebook developer account: Your developer

account is required to create new apps, which are the

core of any Facebook integration. You can create a new

developer account by going to Facebook for Developers

and clicking the Get Started button.

•	 Facebook App for Web: The Facebook app contains the

settings for your Messenger bot, including access tokens.

•	 A webhook URL: Actions that take place in

conversations with your bot, such as new messages, are

sent as events to your webhook. This is the URL of our

integration module, which we cover next.

The setup process requires adding the Messenger platform to your

Facebook app, configuring the webhook of the app, and subscribing your

app to the Facebook page. The details on setting up the Facebook app

can be found at https://developers.facebook.com/docs/messenger-

platform/getting-started/app-setup/.

A step-by-step guide to configuring the botkit and Facebook

Messenger is available at www.botkit.ai/docs/provisioning/facebook_

messenger.html.

	 1.	 Create the app and select the Messenger platform.

See Figure 8-4.

Chapter 8 Chatbot Integration Mechanism

https://developers.facebook.com/docs/messenger-platform/getting-started/app-setup/
https://developers.facebook.com/docs/messenger-platform/getting-started/app-setup/
https://www.botkit.ai/docs/provisioning/facebook_messenger.html
https://www.botkit.ai/docs/provisioning/facebook_messenger.html

328

	 2.	 We created a Facebook page called AskIris and

generated a page access token for the app. See

Figure 8-5.

The callback URL is https://YOURURL/facebook/receive. See

Figure 8-6. This URL must be publically available and SSL-secured. We

provide a localtunnel callback URL; in our case, it’s the NodeJs server

URL tunneled to localhost. We will discuss how to create this endpoint and

use of localtunnel in the next section.

Figure 8-4.  Creation of new app ID on Facebook

Figure 8-5.  Showing the page access token screen

Chapter 8 Chatbot Integration Mechanism

329

The AskIris page should be connected to the newly created app, and

the settings should show the app details. See Figure 8-7.

Figure 8-6.  Showing page subscription details along with our
callback URL

Chapter 8 Chatbot Integration Mechanism

330

As described above, setting up the webhook requires an HTTPS callback

URL. This URL is the API endpoint of our integration module, which will

receive messages from Messenger. We create a NodeJS application for this

purpose because it is the requirement for setting up the webhook.

More details on setting up are described in Facebook developer page at

https://developers.facebook.com/docs/messenger-platform/

getting-started/webhook-setup.

Here are the steps to create a simple NodeJS application:

	 1.	 Create an HTTP Server (server.js):

// Import modules required in server.js

var express = require('express');

var bodyParser = require('body-parser');

Figure 8-7.  The AskIris page settings

Chapter 8 Chatbot Integration Mechanism

https://developers.facebook.com/docs/messenger-platform/getting-started/webhook-setup
https://developers.facebook.com/docs/messenger-platform/getting-started/webhook-setup

331

var https = require('https');

var http = require('http');

var fs = require('fs');

var localtunnel = require('localtunnel');

// Custom JavaScripts

var conf = require(__dirname + '/conf.js');

function server(ops) {

 // Create App

 /* �Express is a popular Node web framework and

provides a mechanism to write handlers.

 */

 var app = express();

 /* �body-parser is Node.js middleware that parses

incoming request bodies in a middleware before

handlers.

 */

// parse JSON

 app.use(bodyParser.json());

//Returns middleware that only parses urlencoded bodies

 app.use(bodyParser.urlencoded({

//This object will contain key-value pairs, where

the value can be a string or array (when extended is

false), or any type (when extended is true).

 extended: true

 }));

// Path to static files

 app.use(express.static(__dirname + conf.static_dir));

/* �Declare option and create a HTTPS server by reading

SSL key and SSL cert path from config file.

*/

Chapter 8 Chatbot Integration Mechanism

332

 var options = {

 port : conf.securePort,

 key : fs.readFileSync(conf.sslKeyPath),

 cert : fs.readFileSync(conf.sslCertPath),

 requestCert : false,

 rejectUnauthorized : false

 };

 https.createServer(options, app)

 .listen(conf.securePort, conf.hostname, function()

{

 �console.log('** Starting secure webserver on

port ' + conf.securePort);

 });

 http.createServer(app)

 .listen(conf.port, conf.hostname, function() {

 �console.log('** Starting webserver on port ' +

conf.port);

 });

/*
localtunnel exposes localhost to the world for easy

testing and sharing. It will connect to the tunnel

server, set up the tunnel, and tell you what URL to use

for your testing. We used localtunnel to get an https

endpoint on http://localhost:9080/respond to test with

Facebook Messenger.

*/

 if(ops.lt) {

 �var tunnel = localtunnel(conf.port, {subdomain:

'askiris'}, function(err, tunnel) {

 if (err) {

Chapter 8 Chatbot Integration Mechanism

333

 console.log(err);

 process.exit();

 }

 �console.log("Your bot is available on the

web at the following URL: " + tunnel.url +

'/facebook/receive');

 });

 tunnel.on('close', function() {

 �console.log("Your bot is no longer available

on the web at the local tunnel.me URL.");

 process.exit();

 });

 }

 return app;

}

/* �module.exports is an object that the current module

returns when it is "required" in another program or

module

*/

module.exports = server;

	 2.	 Add the Facebook webhook endpoints (Webhooks.js):

const fetch = require("node-fetch");

// This is the IRIS API URL endpoint

const url = "http://localhost:9080/respond";

function webhooks(controller){

/* �This is the initial message a user sees before

interacting with Iris for THE first time.

*/

Chapter 8 Chatbot Integration Mechanism

334

 �controller.api.messenger_profile.greeting('Hi, my

name is IRIS. I am continuously training to become

your Digital Virtual Assistant\'s.');

// All messages will be sent to the API.

 �controller.hears(['.*'], 'message_received,facebook_

postback', function(bot, message) {

// Facebook request message contains text, senderID,

seq, and timestamp.

 var params = {

 message: message.text,

 sender: message.sender.id,

 seq: message.seq,

 timestamp: message. timestamp

 };

 var esc = encodeURIComponent;

 var query = Object.keys(params)

 .map(k => esc(k) + '=' + esc(params[k]))

 .join('&');

/* �fetch makes a HTTP GET call and receives a response

and passes the 'message' back to Facebook.

*/

 fetch(url +query)

 .then(response => {

 response.json().then(json => {

 bot.reply(message, json.message);

 });

 })

 .catch(error => {

 bot.reply(message, "");

 });

Chapter 8 Chatbot Integration Mechanism

335

 });

}

module.exports = webhooks;

	 3.	 Add webhook verification. More details on specific

of botkit-facebook integration are explained in detail

at www.botkit.ai/docs/readme-facebook.html.

var Botkit = require('botkit');

var commandLineArgs = require('command-line-args');

var localtunnel = require('localtunnel');

// Reading static files

var server = require(__dirname + '/server.js');

var conf = require(__dirname + '/conf.js');

var webhook = require(__dirname + '/webhooks.js');

// Command line arguments to run in local mode vs

server; we need to use localtunnel to connect to

Facebook Messenger webhook in local mode as it requires

an HTTPS endpoint.

const ops = commandLineArgs([

 �{name: 'lt', alias: 'l', args: 1, description:

'Use localtunnel.me to make your bot available on

the web.',

 type: Boolean, defaultValue: false},

 {name: 'ltsubdomain', alias: 's', args: 1,

 �description: 'Custom subdomain for the

localtunnel.me URL. This option can only be used

together with --lt.',

 type: String, defaultValue: null},

]);

Chapter 8 Chatbot Integration Mechanism

http://www.botkit.ai/docs/readme-facebook.html

336

// Create the Botkit controller, which controls all

instances of the bot.

var controller = Botkit.facebookbot({

 debug: true,

 log: true,

 access_token: conf.access_token,

 verify_token: conf.verify_token,

 app_secret: conf.app_secret,

 validate_requests: true

});

// Create server

var app = server(ops);

// Receive post data from FB; this will be the messages

you receive.

app.post('/facebook/receive', function(req, res) {

 �if (req.query && req.query['hub.mode'] ==

'subscribe') {

 �if (req.query['hub.verify_token'] == controller.

config.verify_token) {

 res.send(req.query['hub.challenge']);

 } else {

 res.send('OK');

 }

 }

 �// Respond to Facebook that the webhook has been

received.

 res.status(200);

 res.send('ok');

 var bot = controller.spawn({});

Chapter 8 Chatbot Integration Mechanism

337

 // Now, pass the webhook to be processed.

 controller.handleWebhookPayload(req, res, bot);

});

// Perform the FB webhook verification handshake with

your verify token. The verification token is stored in

the conf.js file.

app.get('/facebook/receive', function(req, res) {

 if (req.query['hub.mode'] == 'subscribe') {

 �if (req.query['hub.verify_token'] == controller.

config.verify_token) {

 res.send(req.query['hub.challenge']);

 } else {

 res.send('OK');

 }

 }else{

 res.send('NOT-OK');

 }

});

// Ping URL

app.get('/ping', function(req, res) {

 res.send('{"status":"ok"}');

});

webhook(controller);

Once we are all done with the above and have tested the endpoints, we

are all set to start interacting with IRIS on Facebook Messenger.

Chapter 8 Chatbot Integration Mechanism

338

�Demonstration of AskIris Chatbot
in Facebook Messenger
Let’s go through some example interactions. We can begin interacting

with IRIS with a simple salutation to which IRIS replies with details about

herself. See Figure 8-8.

�Account Balance
When the user asks IRIS for an account balance, it responds with a message

asking for the confidential IPIN in order to proceed forward. As stated

previously, demo implementation should not be adopted as a practice

for setting a PIN. More complex and standard security authentication

mechanism are available and should be followed. Upon a successful IPIN

(which is a hard-coded value in the example use case), IRIS will retrieve the

account balance for the account type the user asked for. See Figure 8-9.

Figure 8-8.  Interaction with IRIS

Chapter 8 Chatbot Integration Mechanism

339

�Claim Status
The claim example demonstrates

•	 Identification of intent as well as slot required for intent

fulfilment in one utterance. In example 1 below, intent

(CLAIM_STATUS) and claim ID (gi123) are obtained at

the same time.

•	 This demonstrates the potential of natural language

processing to analyze natural user utterances,

including spelling mistakes.

•	 Also, it shows the handling of variations in which the

user asks for the same information. In example 1, we

have natural language-based inference of intent and

slot. In example 2, since the slot is not obtained, IRIS

prompts for this information just like any other typical

conversation. See Figure 8-10.

Figure 8-9.  Asking for account balance details

Chapter 8 Chatbot Integration Mechanism

340

�Weather Today
The weather example is a demonstration of how we can build a chatbot to

integrate with third-party services in real time. User utterances such as the

following return the live temperature information as available from the API

(see Figure 8-11):

•	 What’s the weather in Letterkenny today

•	 Dublin weather today

•	 Weather in Ranchi now

Figure 8-10.  Requesting claim status

Chapter 8 Chatbot Integration Mechanism

341

�Frequently Asked Questions
First, you can see the correct response to an FAQ. Then, when a user

utterance (401k) neither matches any explicit intent nor any document in

the knowledge repository, IRIS performs a search. See Figure 8-12.

Figure 8-11.  Real time weather info from IRIS

Figure 8-12.  FAQ example

Chapter 8 Chatbot Integration Mechanism

342

�Context Switch Example
In Figure 8-13, the user starts by asking for a life insurance quote. IRIS

prompts for age, smoker info, height, and weight. The user provides all

other information as expected except for weight. Instead of providing

weight, user asks for a stock price. Instead of replying to the user that

they have not entered the weight correctly or that their weight was not

recognized, IRIS understands the switch in context and hence the switch in

intent and seamlessly provides the requested detail. Later, when the user

asks for life insurance again, notice that the already answered questions

are not asked again. This is done because of short term memory in which

these details were stored.

When the user provides the answer to the question that they didn’t

answer earlier, the intent is fulfilled and the response is obtained.

Chapter 8 Chatbot Integration Mechanism

343

Figure 8-13.  Life insurance example illustrating context switch

Chapter 8 Chatbot Integration Mechanism

344

�Summary
In this chapter, we showed how to extend the functionalities of IRIS to

support integration with various third-party services. Connecting with an

enterprise database to fetch user data was also explained. We discussed

the integration module through which IRIS is exposed to the outside

world. We implemented integration of IRIS with Facebook Messenger and

followed the step-by-step process required for a successful integration.

Finally, we illustrated what interaction with Facebook Messenger and

IRIS looks like. We showed a few use cases via examples and explained

behind the scenes what was discussed in previous chapters.

In the next chapter, we will discuss deploying this in-house

framework to the cloud. We will explore various ways in which we

can deploy our services to AWS. We will also discuss how IRIS can be

integrated with Alexa in less than 5 minutes by going through a step-

by-step process. We will conclude by discussing how this framework

can be improved and the scope for further enhancements such as the

implementation of a feedback loop.

Chapter 8 Chatbot Integration Mechanism

345© Abhishek Singh, Karthik Ramasubramanian, Shrey Shivam 2019
A. Singh et al., Building an Enterprise Chatbot,
https://doi.org/10.1007/978-1-4842-5034-1_9

CHAPTER 9

Deployment
and a Continuous
Improvement
Framework
In the previous chapters, we designed a basic chatbot framework from

scratch and explored integration options with third-party services and

other backend systems. We also explained how to expose the IRIS chatbot

framework as a Spring Boot REST API.

In this chapter, we will discuss different ways in which IRIS can be

deployed on a remote server. We will also discuss how to integrate IRIS with

Alexa in less than 5 minutes. At the end of the chapter, we will discuss how

IRIS can be extended to be part of a continuous improvement framework by

implementing a self-learning module and bringing a human into the loop.

�Deployment to the Cloud
The IRIS framework exposed via RESTful APIs can be deployed to a

remote server in multiple ways. In this section, we will discuss three

different ways.

346

�As a Stand-Alone Spring Boot JAR on AWS EC2
This is the most basic installation and deployment of a Spring Boot JAR. We

follow a few steps for the JAR to run on the EC2 machine on port 8080

We log into the AWS account and select EC2 from the list of services

seen in Figure 9-1. EC2 stands for elastic compute cloud servers provided by

AWS. More details on EC2 can be found at https://aws.amazon.com/ec2/.

We launch an EC2 instance from the EC2 dashboard as shown in

Figure 9-2.

Launching an EC2 instance requires seven steps:

	 1.	 We choose an AMI (Amazon Machine Image). We

use Amazon Linux 2 AMI (HVM), SSD Volume Type

64 bit x86.

Figure 9-1.  Different AWS services

Figure 9-2.  Launching an EC2 instance wizard on AWS

Chapter 9 Deployment and a Continuous Improvement Framework

https://aws.amazon.com/ec2/

347

	 2.	 We choose the instance type. We select t2.micro

(also free tier eligible if you are using this service of

AWS for the first time). The t2.micro instance has

one vCPUs and 1 GB of memory, which is enough

for the APIs to run.

	 3.	 The next step requires configuring instance details.

We can use a checklist to protect against accidental

termination. This step is optional.

	 4.	 We add storage details in the next step. By default,

we get 8GB of SSD, and the volume is attached to

the instance. However, we can add more volumes

or increase the storage of the default volume if we

want. This step is also optional, and 8GB of storage

is enough for deployment for the demo.

	 5.	 We add tags to instances and storage volume for better

management of EC2 resources. This is also optional.

	 6.	 This step, as shown in Figure 9-3, requires

configuring a security group. A security group is a set

of firewall rules that control the traffic for an instance.

We want to expose port 80 to be accessed from

everywhere and port 22, which is a secure shell port,

to be accessed only from our local machine.

Figure 9-3.  EC2 security group inbound rules configuration

Chapter 9 Deployment and a Continuous Improvement Framework

348

	 7.	 We review the configuration and launch the

instance. Each EC2 instance requires a key-pair

PEM file that we need to log into the instance

securely. We will be asked to generate a new file, or

we can use an existing one.

Now once the instance is launched, it will have a public DNS name or

IPv4 Public IP that we can use to log in.

	 1.	 The login command to log in from any Unix

machine:

ssh -i chatbot-iris.pem ec2-user@ec2-instance-ip.

compute-1.amazonaws.com

	 2.	 Once we log in, we can then copy our Spring Boot

JAR from local using the SCP command:

scp -i chatbot-iris.pem /path/to/iris.jar ec2-user@

ec2-instance-ip.compute-1.amazonaws.com:/path/to/your/

jarfile

	 3.	 Once the JAR is copied, we can run the JAR by

issuing the command

java -jar path/to/your/jarfile.jar fully.qualified.

package.Application

	 4.	 By default, the server starts on port 8080. However,

if we want to change the port details, we can set the

server.port as a system property using command

line options such as -DServer.port=8090 or add

application.properties in src/main/resources/

with server.port=8090.

Chapter 9 Deployment and a Continuous Improvement Framework

349

If we used maven to build our code, we could also use

mvn spring-boot:run

�As a Docker Container on AWS EC2
Docker performs operating-system-level virtualization. Docker is used

to run software packages called containers. Docker makes it easier from

an operations perspective because it packages the code, libraries, and

runtime components together as Docker images that can be deployed with

a lot of ease. For more details on Docker, visit www.docker.com/.

We perform the following steps to run an application on Docker on EC2:

	 1.	 We update the installed packages and package

cache on the instance:

sudo yum update -y

	 2.	 We install the most recent Docker Community

Edition package:

sudo amazon-linux-extras install docker

	 3.	 We start the Docker service:

sudo service docker start

	 4.	 We add the ec2-user to the Docker group in order

to execute Docker commands without using

sudo - sudo usermod -a -G docker ec2-user

	 5.	 We log out and log back in again to pick up the new

Docker group permissions. To do so, we close the

current SSH terminal window and reconnect to an

instance in a new one. The new SSH session will

have the appropriate Docker group permissions.

Chapter 9 Deployment and a Continuous Improvement Framework

https://www.docker.com/

350

	 6.	 We verify that the ec2-user can run Docker

commands without sudo.

	 7.	 We create a Dockerfile in the root directory of

the code base. A Dockerfile is a manifest that

describes the base image to use for the Docker

image and whatever is installed and running on

it. This dockerfile uses the openjdk:8-jdk-alpine

image because we are building an image of a Java

application. The VOLUME instruction creates a mount

point with the specified name and marks it as holding

externally mounted volumes from native host or other

containers. The ARG instruction defines a variable that

users can pass at build-time to the builder. The JAR is

named as app.jar, and an ENTRYPOINT allows us to

configure a container that will run as an executable. It

contains the command to run the JAR:

FROM openjdk:8-jdk-alpine

VOLUME /tmp

ARG JAR_FILE

ADD ${JAR_FILE} app.jar

ENTRYPOINT ["java","-Djava.security.egd=file:/dev/./

urandom","-jar","/app.jar"]

	 8.	 We build a Docker image by issuing the following

command:

docker build -t iris --build-arg JAR_FILE=”JAR_NAME”.

The following is the output from the build command

executed on a machine:

Sending build context to Docker daemon 21.9MB

Step 1/5 : FROM openjdk:8-jdk-alpine

Chapter 9 Deployment and a Continuous Improvement Framework

351

8-jdk-alpine: Pulling from library/openjdk

bdf0201b3a05: Pull complete

9e12771959ad: Pull complete

c4efe34cda6e: Pull complete

Digest: sha256:2a52fedf1d4ab53323e16a032cadca89aac47024

a8228dea7f862dbccf169e1e

Status: Downloaded newer image for openjdk:8-jdk-alpine

 ---> 3675b9f543c5

Step 2/5 : VOLUME /tmp

 ---> Running in dc2934059ab8

Removing intermediate container dc2934059ab8

 ---> 0c3b61b6f027

Step 3/5 : ARG JAR_FILE

 ---> Running in 36701bf0a68e

Removing intermediate container 36701bf0a68e

 ---> da1c1f51c29d

Step 4/5 : ADD ${JAR_FILE} app.jar

 ---> 0aacdba5baf0

Step 5/5 : ENTRYPOINT ["java","-Djava.security.

egd=file:/dev/./urandom","-jar","/app.jar"]

 ---> Running in f40f7a276e18

Removing intermediate container f40f7a276e18

 ---> 493abfce6e8c

Successfully built 493abfce6e8c

Successfully tagged iris:latest

	 9.	 We run the newly created Docker image via the

following command:

docker run -t -i -p 80:80 iris

Chapter 9 Deployment and a Continuous Improvement Framework

352

�As an ECS Service
In the previous two methods, you saw that you could deploy and run the

Spring Boot JAR as a standalone service or by installing Docker and using it

to run the API in the Docker container. This method discusses a service of

AWS called ECS (Elastic Container Service). See Figure 9-4.

Amazon ECS makes it easy to deploy, manage, and scale Docker

containers running applications, services, and batch processes. Amazon

ECS places containers across your cluster based on your resource needs

and is integrated with familiar features like elastic load balancing, EC2

security groups, EBS volumes, and IAM roles. More details on ECS can be

found at https://aws.amazon.com/ecs/.

There are various steps required in running Docker images on ECS. Here’s

a walkthrough of the deployment process via the AWS management console:

	 1.	 When discussing how to deploy a JAR as a Docker

container on AWS EC2, we created a Docker image.

We need to add this previously created Docker

image to ECR. Amazon Elastic Container Registry

(ECR) is a fully-managed container registry that

makes it easy for developers to store, manage, and

deploy container images.

Figure 9-4.  Diagram of ECS objects and how they relate

Chapter 9 Deployment and a Continuous Improvement Framework

https://aws.amazon.com/ecs/

353

Once the repository is created as shown in Figure 9-5,

the next step is to tag the Docker image so we can

push the image to this repository:

docker tag iris:latest aws_account_id.dkr.ecr.us-

east-1.amazonaws.com/iris:latest

Then we run the following command to push this

image to ECR repository:

docker push aws_account_id.dkr.ecr.us-east-1.amazonaws.

com/iris:latest

More details on pushing Docker images to ECR can be

found at https://docs.aws.amazon.com/AmazonECR/

latest/userguide/docker-push-ecr-image.html.

	 2.	 Then we need to define the container definition. In the

ECS service in the AWS management console, under

Get Started, we can choose a container definition to

use. We need to provide the ECR repository URL and

Docker image name and tag, as shown in Figure 9-6.

Figure 9-5.  Creating an ECR repository in AWS

Chapter 9 Deployment and a Continuous Improvement Framework

https://docs.aws.amazon.com/AmazonECR/latest/userguide/docker-push-ecr-image.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/docker-push-ecr-image.html

354

	 3.	 We define the task definition. A task definition is a

blueprint for an application and describes one or

more containers through attributes. Some attributes

are configured at the task level, but the majority of

attributes are configured per container. In Figure 9-7,

we create a task definition for IRIS.

Figure 9-6.  Container definition configuration

Figure 9-7.  Task definition

Chapter 9 Deployment and a Continuous Improvement Framework

355

	 4.	 Define a service. A service allows us to run and

maintain a specified number (the desired count)

of simultaneous instances of a task definition in an

ECS cluster. See Figure 9-8.

	 5.	 We configure a cluster. The infrastructure in a Fargate

cluster is fully managed by AWS. Our containers run

without us managing and configuring individual

Amazon EC2 instances. See Figure 9-9.

Figure 9-8.  Service definition details

Chapter 9 Deployment and a Continuous Improvement Framework

356

	 6.	 Once we review and click Create, we should see the

progress of the creation of ECS. Once the cluster is

set up and task definitions are complete, the Spring

Boot service should be up and running.

Figure 9-10 is an example of a basic ECS cluster creation using the task

definition outlined above.

Figure 9-9.  Cluster configuration details

Figure 9-10.  The ECS Launch Status screen

Chapter 9 Deployment and a Continuous Improvement Framework

357

�Smart IRIS Alexa Skill Creation in Less Than
5 Minutes
We will explore how IRIS can be integrated with Amazon Alexa in a few

easy steps. In order to do so, the first step is to log into Alexa Developer

Console at https://developer.amazon.com/alexa and create a skill.

Creating a skill requires providing a skill name and the default language.

We will choose a custom model to add to the skill. See Figure 9-11.

The custom model has a few checklists to be provided for the skill to work:

•	 Invocation name

•	 Intents, sample, and slots

•	 Building an interaction model

•	 Setting up a web service endpoint

In our example use case of IRIS, since we already have custom defined

different possible intents, intent slots, and dialogs modeled as a state

machine, we aim to redirect the user’s utterance on Alexa to the IRIS

backend API so that it can process the utterance and respond.

We use the invocation name as Iris. This will enable users to invoke

this skill by asking Alexa to “ask” Iris. See Figure 9-12.

Figure 9-11.  Creating the Alexa skill name

Chapter 9 Deployment and a Continuous Improvement Framework

https://developer.amazon.com/alexa

358

Next, we define a custom intent and a custom slot type so that all of

the user’s utterances are matched to this intent and slot type. The aim is to

redirect the utterance to IRIS and not do any intent classification-related

processing on the Alexa layer.

We first create a custom slot type called IrisCustomSlotType; see

Figure 9-13.

Now, we define a custom intent named as IrisAllIntent. This

intent has a slot called utteranceSlot. The most important thing is

{utteranceSlot}. We intend to fit all user utterances into this slot, as

shown in Figure 9-14. It is a regex, which means the entire utterance value

is under the utteranceSlot slot. This will be used later while reading the

user utterance when Alexa requests the IRIS HTTPS endpoint.

Figure 9-12.  Adding the skill invocation name

Figure 9-13.  A custom slot type

Chapter 9 Deployment and a Continuous Improvement Framework

359

The utteranceSlot is defined to be of slot type IrisCustomSlotType,

as shown in Figure 9-15.

At this stage, we should have the intents, slots, and slot types created

in the interaction model of our Alexa skill, as shown in Figure 9-16. In

the figure, you can see that there are other built-in intents as well what is

present for a standard interaction with Alexa devices such as stop or cancel.

Figure 9-14.  The utteranceSlot in IrisAllIntent

Figure 9-15.  Custom slot and its type created for IRIS integration

Chapter 9 Deployment and a Continuous Improvement Framework

360

Once we have defined all of the required attributes for our custom

interaction model, we can build the model. Building the model requires us

to click the Build Model button, which saves the skill manifest and builds

the model. See Figure 9-17.

Figure 9-16.  Interaction model screen

Chapter 9 Deployment and a Continuous Improvement Framework

361

The last thing to complete the setup is to provide an HTTPS endpoint

of IRIS to host all the intent classifications and response generation logic,

and receive a POST request from Alexa. See Figure 9-18.

Let’s now test the setup by using the simulator available on the

developer console, as shown in Figure 9-19. We ask Alexa to ask Iris for

Figure 9-17.  The progress of the build process of the IRIS custom
interaction model

Figure 9-18.  The skill’s service endpoint configuration

Chapter 9 Deployment and a Continuous Improvement Framework

362

“weather in Dublin.” The response from Iris is as follows, which can be

heard in the voice of Alexa.

The request details sent from Alexa to the IRIS API are

 {

 "version": "1.0",

 "session": {

 "new": true,

 "sessionId": �"amzn1.echo-api.session.XXXXXXX-2b66-

XXXX-XXX-XXXXXXXXX",

 "application": {

 "applicationId": �"amzn1.ask.skill.XXXXXX-

e624-XXXXXX-XXX-XXXXXXX"

 },

 "user": {

 "userId": "amzn1.ask.account.XXXXXXXX"

 }

 },

Figure 9-19.  The simulator available on the Alexa developer console

Chapter 9 Deployment and a Continuous Improvement Framework

363

 "context": {

 "AudioPlayer": {

 "playerActivity": "IDLE"

 },

 "System": {

 "application": {

 "applicationId": �"amzn1.ask.skill.

XXXXXXX-XXX-XXXXX-

XXXX-XXXXXXXXX"

 },

 "user": {

 "userId": "amzn1.ask.account.XXXXXX"

 },

 "device": {

 "deviceId": "amzn1.ask.device.XXXXX",

 "supportedInterfaces": {

 "AudioPlayer": {}

 }

 },

 "apiEndpoint": �"https://api.eu.amazonalexa.

com",

 "apiAccessToken": "XXXXXXXX"

 },

 "Viewport": {

 "experiences": [

 {

 "arcMinuteWidth": 246,

 "arcMinuteHeight": 144,

 "canRotate": false,

 "canResize": false

 }

],

Chapter 9 Deployment and a Continuous Improvement Framework

364

 "shape": "RECTANGLE",

 "pixelWidth": 1024,

 "pixelHeight": 600,

 "dpi": 160,

 "currentPixelWidth": 1024,

 "currentPixelHeight": 600,

 "touch": [

 "SINGLE"

]

 }

 },

 "request": {

 "type": "IntentRequest",

 "requestId": "amzn1.echo-api.request.XXXXXXXXXXX",

 "timestamp": "2019-04-21T11:22:56Z",

 "locale": "en-US",

 "intent": {

 "name": "irisAllIntent",

 "confirmationStatus": "NONE",

 "slots": {

 "utteranceSlot": {

 "name": "utteranceSlot",

 "value": "weather in Dublin",

 "resolutions": {

 "resolutionsPerAuthority":

[

 {

Chapter 9 Deployment and a Continuous Improvement Framework

365

 �"authority":

"amzn1.er-

authority.echo-

sdk.amzn1.ask.

skill.XXXXXXXX-

XXXX-XXXX-

XXXX-XXXXXXX.

IrisCustom

SlotType",

 "status": {

 �"code":

"ER_

SUCCESS_

NO_MATCH"

 }

 }

]

 },

 "confirmationStatus": "NONE",

 "source": "USER"

 }

 }

 }

 }

}

Response from IRIS:

{

 "body": {

 "version": "string",

 "response": {

 "outputSpeech": {

Chapter 9 Deployment and a Continuous Improvement Framework

366

 "type": "PlainText",

 "text": �"It seems to be clear sky at

the moment in dublin. The

temperature is 19.13 degrees.

Humidity is close to 48.\n

I wish I were human to feel

it. Anyways, what else do you

want to know from me? "

 },

 "type": "_DEFAULT_RESPONSE"

 },

 "sessionAttributes": {}

 }

}

In Chapter 6, we created a NodeJS application that provides an external

API endpoint for Facebook Messenger. For integrating with Alexa, we need

to add the Alexa endpoint as described below:

// new API endpoint 'alexa' that expects a POST request

app.post('/alexa', function(req, res) {

// receive the user's utterance by reading the utteranceSlot

value from JSON

 var text = req.body.request.intent.slots.utteranceSlot.value;

 var session = req.body.session.user.userId;

 var timestamp = req.body.request.timestamp;

/* GET request parameters to the IRIS backend service.

'Message' param contains user utterance

*/

 var params = {

 message: text,

Chapter 9 Deployment and a Continuous Improvement Framework

367

 sender: session,

 seq: 100,

 timestamp: 1524326401

 };

 var esc = encodeURIComponent;

 var query = Object.keys(params)

 .map(k => esc(k) + '=' + esc(params[k]))

 .join('&');

//url is the IRIS API url

 fetch(url +query).then(response => {

 response.json().then(json => {

 var alexaResp = {

 "version": "string",

 "sessionAttributes": {},

 "response": {

 "outputSpeech": {

 "type": "PlainText",

 "text": json.message,

 "ssml": "<speak>"+json.message+"</speak>"

 }

 }

 }

 res.json(alexaResp);

 });

 })

 .catch(error => {

 var alexaResp = {

 "version": "string",

 "sessionAttributes": {},

Chapter 9 Deployment and a Continuous Improvement Framework

368

 "response": {

 "outputSpeech": {

 "type": "PlainText",

 �"text": "Sorry, My team is having bad day

to get this information to you. Please try

again in some time.",

 �"ssml": "<speak>Sorry, My team is having bad

day to get this information to you. Please

try again in some time.</speak>"

 }

 }

 }

 res.json(alexaResp);

 });

});

The details on hosting a custom skill as a web service are available at

https://developer.amazon.com/docs/custom-skills/host-a-custom-

skill-as-a-web-service.html.

�Continuous Improvement Framework
In practical cases, it is very possible that a user’s utterances are not

classified or understood by our intent engine due to several reasons such

as the utterance being an external intent not part of the intent engine or

the intent engine not confident due to the low intent match score. In a

production environment, it is observed that there are a decent number

of user utterances that are either misunderstood or not understood by

the engine at all. We propose a framework that can help IRIS to become

smarter and more intelligent towards mimicking a natural human

conversation.

Chapter 9 Deployment and a Continuous Improvement Framework

https://developer.amazon.com/docs/custom-skills/host-a-custom-skill-as-a-web-service.html
https://developer.amazon.com/docs/custom-skills/host-a-custom-skill-as-a-web-service.html

369

In the self-learning module, we propose three improvement

components, shown in Figure 9-20:

•	 Intent confirmation (double-check)

•	 Next intent prediction

•	 A human in the loop

�Intent Confirmation (Double-Check)
Let’s take an example of a user’s utterance of “life insurance,” which may

match with one of the possible intent scenarios; see Figure 9-21.

Figure 9-20.  IRIS functional components for continuous
improvement

Figure 9-21.  Intent matches and corresponding scores

Chapter 9 Deployment and a Continuous Improvement Framework

370

When we match the user utterance against the list of possible intents

shown in Figure 9-21, we get a list of intents and respective match scores.

The intent engine module of IRIS returns with an intent match only when

the match score is above 0.75. We also call this as the minimum threshold

score below which an intent match is not considered in response. In the

example of “life insurance,” LIFE_INSURANCE_QUOTE_INTENT is returned in

response from the intent engine.

An optimization to this implementation could be to introduce a

minimum match score that is below the threshold score but relevant

enough for further processing. We previously stated that the minimum

threshold score is the score below which an intent match is not returned

in response from the intent classification engine. A minimum match score

is the score above which an intent is considered for further processing if it

does not match the minimum threshold score.

Let’s understand with another example of a user utterance: “life

insurance cost,” for which the match score is shown in Figure 9-22.

In this example, the scores are below the minimum threshold score

and in the current implementation the user utterance will default to search

since no explicit intent was returned by the intent classification engine.

If we consider a minimum match score of 0.5, intent LIFE_INSURANCE_

QUOTE_INTENT could be considered for further confirmation.

These scores of 0.75 (minimum threshold score) and 0.5 (minimum

match score) should be derived from training and test datasets, and could

Figure 9-22.  Another example showing different intent matches and
corresponding scores

Chapter 9 Deployment and a Continuous Improvement Framework

371

also change later on based on actual user utterance data and performance

of intent classification engine.

Hence, we could make changes in IRIS to prompt for confirmation if

the utterance was classified between 0.5 to 0.75.

With the above implementation, a typical conversation can then flow

in the following ways:

User: Hello

IRIS: Hello

User: life insurance cost

IRIS: �I could not understand your query correctly. Do you want

a life insurance quote?

User: Yes

IRIS: Sure, I can help you with that. May I know your age?

�Predict Next Intent
This functionality enables IRIS to use logs to understand and predict the

possible next best intent of the user. Figure 9-23 shows user logs.

In a simple summarization of INTENT-A, shown in Figure 9-24, we find

that INTENT-B is the most frequent next intent overall.

Figure 9-23.  User logs with intent and sequence

Chapter 9 Deployment and a Continuous Improvement Framework

372

We can also use techniques of path prediction, association rules, and

frequent itemsets to obtain the most predictable next user intent.

A typical conversation with IRIS without the predicted intent may

happen as follows:

User: Hi

IRIS: Hello

User: I want a life insurance quote

IRIS: Sure, I will help you with that. May I know your age?

User: My age is 24

IRIS: Have you smoked in the last 12 months?

User: no

IRIS: What's your height?

User: my height is 181 cms

IRIS: What's your weight?

User: 163 pounds

IRIS: Great news! You are eligible for an accelerated UW decision.

User: Thanks. I would like to buy life insurance policy.

IRIS: �Sure. Can you provide me your email ID so that I start with

the application process?

User: user@gmail.com

....

Figure 9-24.  Log summarization to predict next intent sequence

Chapter 9 Deployment and a Continuous Improvement Framework

373

With predicted next intent capability, this conversation would happen

like:

User: Hi

IRIS: Hello

User: I want a life insurance quote

IRIS: Sure, I will help you with that. May I know your age?

User: My age is 24

IRIS: Have you smoked in the last 12 months?

User: no

IRIS: What's your height?

User: my height is 181 cms

IRIS: What's your weight?

User: 163 pounds

IRIS: �Great news! You are eligible for an accelerated UW

decision. May I know your email ID so that I can start

with the application process?

User: user@gmail.com

....

�A Human in the Loop
The third improvement to the framework we introduced in this

chapter was a human in the loop. Figure 9-20 shows various functional

components for continuous improvement. Regardless of the techniques we

use in making IRIS understand intent in a better way, there will always be

some conversation that IRIS will not be able to understand. This is for the

simple reason that IRIS does not have all the information of the universe

and will always be designed to fulfill only a known set of functionalities.

We know that IRIS is designed to perform certain operations like

calculating insurance eligibility, providing account balance, claim status, etc.

Let’s assume that a certain percentage of users are asking IRIS for a change

Chapter 9 Deployment and a Continuous Improvement Framework

374

of address of their insurance policy. This is not supported by IRIS today, and

it is challenging for machines to interpret this kind of new information.

Let’s assume some of the user utterances are as shown in Figure 9-25.

With a human in the loop, these utterances can be analyzed further.

In Figure 9-26, the first two utterances can be classified into one intent.

Since this intent is 66% of the total logs, IRIS can be enhanced to support

ADDRESS_CHANGE depending on the product decision. In some cases, an

utterance can be mapped to an existing intent such as the last utterance.

This will help the intent classification engine to further classify intents

better due to the availability of more dataset.

Figure 9-25.  Utterances and counts

Figure 9-26.  Utterances, intents, and counts

Chapter 9 Deployment and a Continuous Improvement Framework

375

Utterances such as questions around non-related things such as users

asking about cricket match scores or details on Brexit or train timings will

also happen. They are logs that do not need further processing and will be

ignored by subject matter experts enhancing the IRIS feedback loop.

�Summary
In this concluding chapter, we discussed the various ways to deploy a

chatbot into the cloud, we demonstrated a 5-minute introduction to

integrating IRIS with Alexa, and we discussed the continuous improvement

of IRIS through feedback loops via log files and humans in the loop.

In this book, we have kept a fine balance with three pillars: business

context, theoretical foundations on machines’ handling of natural

languages, and real-world development of a chatbot from scratch. We

believe these three pillars will help build a truly enterprise-grade chatbot,

with a well-defined ROI. Additionally, we also focused on ethical concerns

in using personal data and how countries in European Union have agreed

upon the GDPR regulations to safeguard people’s privacy.

Chapter 9 Deployment and a Continuous Improvement Framework

377© Abhishek Singh, Karthik Ramasubramanian, Shrey Shivam 2019
A. Singh et al., Building an Enterprise Chatbot,
https://doi.org/10.1007/978-1-4842-5034-1

Index

A
AccTypeSlot, 239–240
addTransition method, 265
Advent of technology, 3
AphaNumericSlot, 241
Architecture, private chatbots

key features, 67, 68
maintenance, 68, 69
technology stack, 68
workflow, 64–67

AskIris Chatbot, Facebook
Messenger

account balance, 338, 339
claim status, 339, 340
IRIS, 338
life insurance, 342, 343
weather, 340, 341

Authentication, 39
Authorization, 39

B
Bag-of-words (BOW), 139, 173, 174
Banks and insurers

chatbot build process, 5
commercial transactions, 2
lenders and borrowers, 4
mortality, 3

risk of loss, 2
theoretical framework, 2, 4
types of banks, 5

Bounce rate (BR), 61

C
CategorizedPlaintextCorpusReader

method, 180
Chatbots, 73

agents/advisors, insurance, 13
AI-based approach

advantages, 46
disadvantages, 47
NLP engine, 45, 46

vs. apps, 56
architecture, 64, 73, 74 (see also

Architecture, private
chatbots)

automated underwriting, 12
benefits, business, 58

cost savings, 58, 59
customer experience, 59, 60

business, 9, 10, 55
channel, 51
conversations, 20–21, 42
vs. direct contact, 57
entity, 50

https://doi.org/10.1007/978-1-4842-5034-1

378

human takeover, 51
insurance buying process, 13
insurance industry, 10–12
intent, 50
machine responses, 42
messenger applications, 57
NLP vs. NLU, 75, 76
personal data, 27–29
plan suggestions, 14
policy status, 14
quality assessment, 25
queries, 14
quotation details, 13
registering a claim, 13
risks, 61

confirmation, 63
impersonation, 62
personal information, 62, 63
third party channels, 61, 62

rules-based approach (see
Menu-driven approach)

success metrics, 60
utterance, 49
24x7 insurance agent,

use case, 52, 53
Chatbots, customer service-centric

Active Directory, 40
authentication, 39, 41
authorization, 39–41
business context

conversation, 36
live chat, 36
NLP layer, 37

information exchange, 35
policy compliance, 38
secure channel, 39
user inputs, 41

Chunking, 88
CoNLL, 91, 92
IOB tag, 91
noun phrases, 89
tokens, 88

Cloud deployment
AWS services, 346
docker container, 349–351
EC2 instance wizard launching,

346, 347
EC2 security group, 347–349
ECS, 352

Completion rate (CR), 60
Confirmation check, 63
Constituency parsing, 108, 109
Continous Bag of Words (CBOW),

82, 122
Continuous improvement

framework
functional components, 373
intent confirmation, 369–371
IRIS functional components, 369
predict next intent

sequence, 371–373
self-learning module, 369
utterances and counts, 374, 375

Conversational chatbot
landscape, 14–17

Conversation flow
chatbot flow, 49

Chatbots (cont.)

INDEX

379

defined, 47
example, 47, 48
multi-intent chatbot, 49
NLP logic, 48

CoreNLP, 79
constituency parsing, 108, 109
dependency parsing, 110
NER, 108
POS, 107
tokenization, 107

create_model() method, 165
Crowdsourcing, 26
Customer centricity, financial

services
customers accessing, 7–8
core element, 7
delivery of services, 6

Customer interactions
chat, 24
email, 24
mobile, 25
phone, 24
self-service, 25
social media, 24

Customer satisfaction index
(CSI), 60

Customer service experts, 25

D
dataset_preparation() method, 165
Deep learning model, NLG

data preparation, 156–162
data training, 155

generate text method, 164, 165
libraries, 155
LSTM, 153

architecture, 154
networks, 154, 155

RNN architecture, LSTM
network, 162–164

RNNs, 153
text generation, 168
training RNN model, 165–167

Dependency parsing, 110
Dialogflow

agent creation, 298
based chatbot, 297
definition, 296
documentation, 297, 298
entity extraction, 300
integration options, 301
intent creation, 299
simulation, 300

Document classification, 179
categorized corpus, 180, 181
informative features, 183, 184
NLTK library, 180
training model, 183
word frequency, 181, 182

E
Elastic Container Service (ECS),

352–356
cluster configuration, 356
container definition

configuration, 354

Index

380

ECR repository, creation, 353
objects, 352
service definition, 355
task definition, 354

Enterprise data store, 321–325

F
FasText, 82
FreqDist() method, 181

G, H
Gender identification, 175

common names, 176
extract features, 177
informative features, 179
male/female, names, 176
model accuracy, 178
model prediction, 178
NB, 178
NLTK library, 175
training/testing sets, 177

General data protection regulation
(GDPR), 19

chatbot compliance, 32
customer rights, 31
data protection, 29
stakeholders, 30
user control, 29

General insurance, 3
Gensim, 80, 81, 119, 126, 138, 168,

169, 173
getIntent method, 201–203
getKeywordresults() method, 277
getResponse method, 275
getStateMachine method,

246–247, 265

I
Identity Management System

(IMS), 40, 52
Impersonation, 62
Insurance-focused chatbot

adding execute method
adding state transitions, 265,

266, 268–270
AskForQuote State, 256–259
ExistSate, 250
FindAdvisorState, 251
GeneralQuery State, 262–265
GetAccountBalanceState, 252
GetAccTypeState, 253, 254
GetClaimIdState, 255
GetQuote State, 259–261
managing state, 271, 272
Start State, 262

adding service endpoint,
277, 278

creating intents
AccountBalanceIntent, 233

Elastic Container Service
(ECS) (cont.)

INDEX

381

AccTypeSlot, 239, 240
AphaNumericSlot, 241, 242
AskForQuoteIntent, 233
BooleanLiteralSlot class, 238
CustomNumericSlot, 234,

235, 237, 238
IPinSlot, 240, 241

High-level function
architecture, 231, 232

intents, 232
IrisConfiguration class

add state machine, 245–247
DontHaveAccType

Shield, 247
DontHaveQuoteDetails

Shield, 248
HaveAccTypeShield, 249
HaveClaimIdShield, 249
HaveQuoteDeatilShield, 250
package, 243, 244
shields, 247

REST service
ConversationController, 277
ConversationRequest class,

273, 274
ConversationResponse, 274
ConversationService,

274, 276
Integration module

app ID, 327, 328
AskIris, 328–330
Facebook Messenger, 326, 327

IRIS channel, 325, 326
NodeJs, 328

HTTP Server, 330–333
webhook endpoints,

add, 333, 334
webhook verification,

335–337
subscription details, 329

Intent classification, 184
SNIPS, 185
tensorflow, 185
virtualenv/conda

environments, 185, 187
Intent recognition and information

service (IRIS), 188, 194–195,
212, 303

Intents/slots/matches
components, 195
getIntent method

classification service, 204
General query, 204
user utterence, 201–203

intent class, 197
intent matcher service class,

198–201
MatchedIntent class, 205–207
meaning of, 195, 196
slot class, 207–209, 211

IRIS Alexa skill creation
custom model, 357
custom slot type, 358–360
developer console, 362–366

Index

382

endpoint configuration, 361
interaction model, 361
invocation name, 358
name creation, 357
NodeJS application, 366–368
utteranceSlot, 359

IRIS third-party integration
market trend

Alpha Vantage, 304, 305
categories, 304
JSON response, 306
MarketTrendState, 307–310
real-time performance, 307

stock price, 310
API response, 311, 312
HTTP GET request, 311
StockPriceState, 312–315

weather information
GetWeatherState, 319, 320
HTTP GET request, 317
JSON response, 317–319
one location, 317
OpenWeather, 317
several cities, 317

J
Java virtual memory (JVM), 110,

133, 213

K
KERAS_BACKEND, 185

L
Language models, NLU

fastText, 131–133
neural network architecture,

121, 122
Out-of-the-Box tasks (see

Out-of-the-Box tasks,
pretrained model)

pretrained model, Word2Vec,
122, 123, 125

Word2Vec, 119, 120
Language understanding intelligent

service (LUIS), 282
bot flow, 291
build natural language

model, 290
intent classification, 291
NES, 290

Latent dirichlet allocation
(LDA), NLU

BOW, 139
documents collection, 136
gensim, 138
stopwords, 137
topic modelling, 139

Latent dirichlet analysis (LDA), 80
Latent semantic indexing

(LSI), 140
Lemmatization, 171
Live chat, 36
Long short-term memory model

(LSTM), 153, 154, 162–164
LsiModel() method, 140

IRIS Alexa skill creation (cont.)

INDEX

383

M
Markov chain model, NLG, 142

libraries, 143
markovify, 144
random headlines,

generation, 144, 145
read_csv() method, 143

Markovify, 142–144
match method, 216, 238
Menu-driven approach

advantages, 44–45
interface, 44
limitations, 45
self-help portals, 43

Microsoft Bot framework
components, 282
QnA Maker

create knowledge base,
286, 287

creation in Azure, 283–285
definition, 282
knowledge base, 288, 289
publishing knowledge

repository, 288
resources dashboard, 285

Mortality risk, 3
Multilingual text processing

NER, 115–116
noun chunks, 116
POS/dependency relation,

113–115
TestBlob, translation, 113

N
Naïve Bayes (NB), 169, 178, 183
Named entity recognition (NER),

92–94, 100–102, 108,
194, 290

Natural language generation (NLG),
69, 71–75, 141–142, 145

Natural language processing
(NLP), 71, 72, 82, 83

applications, 168, 169
chunking (see Chunking)
CoreNLP (see CoreNLP)
multilingual text processing

(see Multilingual text
processing)

NER, 92, 94
NLTK, stemming/

normalization, 87, 88
spaCy (see spaCy, NLP)
TextBlob (see TextBlob)
textual data (see Textual data)
word search

regular expression (regex), 85
specific word, 86

Natural language toolkit (NLTK),
77, 78, 80, 85, 87–88, 169,
175–176

Natural language understanding
(NLU), 71, 72, 116

applications, 117
language models (see Language

models, NLU)

Index

384

LDA (see Latent dirichlet
allocation (LDA), NLU)

OpenIE, extraction, 133, 135
sentiment analysis, 117

polarity, 117
subjectivity, 118

negation() method, 147
NLP engine, 45
noun_chunks method, 99, 116
Novel In-House implementation

finite state machines
components, 221
shield, 222, 223
State, 221, 222
StateMachine, 224–230
transition class, 219, 220,

223, 224
insurance use case (see

Insurance-focused
chatbot)

IRIS memory
long-term attributes, 212
session class, 213–215,

218, 219
short-term attributes, 213

O
Open source data, 26
Out-of-the-Box tasks, pretrained

model, 127

arithmetic operations, 129, 130
odd word out, 130, 131
sentence similarity, 128, 129
word pair similarity, 128

P
Part-of-speech (POS), 77–79,

94–96, 107, 111, 113–115
Pattern/rule-based

search, 102, 103
Personal data, chatbots, 27–28
Personal information, 62–63
Processing, understanding,

and generating (P-U-G),
71, 75, 76

Q
QnA Maker, 282–290

R
RASA

core, 294, 295
framework, 294
NLU module, 295, 296

Realiser() class, 146
Regular expression (regex), 85
@RequestMapping

annotation, 277
@RestController annotation, 277
Reuse rate (RR), 61

Natural language understanding
(NLU) (cont.)

INDEX

385

S
Self-learning module, 369
show_most_informative_features()

method, 179, 183
SimpleNLG, 145, 146

complement phrases, 148
coordinated clause,

149, 150
interrogative, 147
main method, 151
modifiers, 148
negation, 147
nlglib library, 146
output, 151, 152
prepositional phrases, 149
subordinate clause, 150
tense method, 146

spaCy, 77, 78, 94, 169
spaCy, NLP

chunking, 99, 100
custom model, 104, 106
dependency parsing, 96, 97
dependency tree, 97–99
entity search, 104
NER, 100–102
pattern/rule-based search,

102, 103
POS, 94–96

SQuAD dataset
build_model method, 188
context/question, 188, 189
DeepPavlov terminology,

190, 191

Stanford Question Answering
Dataset (SQuAD), 188

str.contains() function, 86

T, U
tense() method, 146
TextBlob, 81

machine translation, 112
POS, 111
spelling correction, 111, 112

Textual data
csv file, 83, 84
sampling, 84
tokenization, NLTK, 85

Topic modeling
BOW, 173
ldamodel, 173, 174
lemmatization, 171
predictions, 174, 175
preprocessing, LDA, 171, 172
read, training data, 172
spaCY, 170

Training chatbots for conversations
crowdsourcing, 26
customer interactions, 23
customer service experts, 25
open source data, 26
rules documented, 21
self-generated data, 22

V, W, X, Y, Z
validate method, 247

Index

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Processes in the Banking and Insurance Industries
	Banking and Insurance Industries
	A Customer-Centric Approach in Financial Services
	Benefits from Chatbots for a Business
	Chatbots in the Insurance Industry
	Automated Underwriting
	Instant Quotations
	AI-Based Personalized Experience
	Simplification of the Insurance Buying Process
	Registering a Claim
	Finding an Advisor
	Answering General Queries
	Policy Status
	Instant Notifications
	New Policy or Plan Suggestions

	Conversational Chatbot Landscape
	Summary

	Chapter 2: Identifying the Sources of Data
	Chatbot Conversations
	General Conversations
	Specific Conversations

	Training Chatbots for Conversations
	Self-Generated Data
	Customer Interactions
	Phone
	Emails
	Chat
	Social Media
	Customer Self-Service
	Mobile

	Customer Service Experts
	Open Source Data
	Crowdsourcing

	Personal Data in Chatbots
	Introduction to the General Data Protection Regulation (GDPR)
	Data Protected Under the GDPR
	Data Protection Stakeholders
	Customer Rights Under the GDPR
	Chatbot Compliance to GDPR

	Summary

	Chapter 3: Chatbot Development Essentials
	Customer Service-Centric Chatbots
	Business Context
	Policy Compliance
	Security, Authentication, and Authorization
	Accuracy of User Input Translation to Systems

	Chatbot Development Approaches
	Rules-Based Approach
	Advantages of the Menu-Based Approach
	Disadvantages of the Menu-Based Approach

	AI-Based Approach
	Advantages of the AI-Based Approach
	Disadvantages of the AI-Based Approach

	Conversational Flow
	Key Terms in Chatbots
	Utterance
	Intent
	Entity
	Channel
	Human Takeover

	Use Case: 24x7 Insurance Agent
	Summary

	Chapter 4: Building a Chatbot Solution
	Business Considerations
	Chatbots vs. Apps
	Growth of Messenger Applications
	Direct Contact vs. Chat

	Business Benefits of Chatbots
	Cost Savings
	Customer Experience

	Success Metrics
	Customer Satisfaction Index
	Completion Rate
	Bounce Rate

	Managing Risks in Chatbots Service
	Third-Party Channels
	Impersonation
	Personal Information
	Confirmation Check

	Generic Solution Architecture for Private Chatbots
	Workflow Description
	Key Features
	Technology Stack
	Maintenance

	Summary

	Chapter 5: Natural Language Processing, Understanding, and Generation
	Chatbot Architecture
	Popular Open Source NLP and NLU Tools
	NLTK
	spaCy
	CoreNLP
	gensim
	TextBlob
	fastText

	Natural Language Processing
	Processing Textual Data
	Reading the CSV File
	Sampling
	Tokenization Using NLTK

	Word Search Using Regex
	Word Search Using the Exact Word
	NLTK
	Normalization Using NLTK
	Noun Phrase Chunking Using Regular Expressions
	Named Entity Recognition

	spaCy
	POS Tagging
	Dependency Parsing
	Dependency Tree
	Chunking
	Named Entity Recognition
	Pattern-Based Search
	Searching for Entity
	Training a Custom NLP Model

	CoreNLP
	Tokenizing
	Part-of-Speech Tagging
	Named Entity Recognition
	Constituency Parsing
	Dependency Parsing

	TextBlob
	POS Tags and Noun Phrase
	Spelling Correction
	Machine Translation

	Multilingual Text Processing
	TextBlob for Translation
	POS and Dependency Relations
	Named Entity Recognition
	Noun Phrases

	Natural Language Understanding
	Sentiment Analysis
	Polarity
	Subjectivity

	Language Models
	Word2Vec
	Neural Network Architecture
	Using the Word2Vec Pretrained Model
	Performing Out-of-the-Box Tasks Using a Pretrained Model
	Word Pair Similarity
	Sentence Similarity
	Arithmetic Operations
	Odd Word Out

	fastText Word Representation Model

	Information Extraction Using OpenIE
	Topic Modeling Using Latent Dirichlet Allocation
	Collection of Documents
	Loading Libraries and Defining Stopwords
	Removing Common Words and Tokenizing
	Removing Words That Appear Infrequently
	Saving the Training Data as a Dictionary
	Generating the Bag of Words
	Training the Model Using LDA

	Natural Language Generation
	Markov Chain-Based Headline Generator
	Loading the Library
	Loading the File and Printing the Headlines
	Building a Text Model Using Markovify
	Generating Random Headlines

	SimpleNLG
	Loading the Library
	Tense
	Negation
	Interrogative
	Complements
	Modifiers
	Prepositional Phrases
	Coordinated Clauses
	Subordinate Clauses
	Main Method
	Printing the Output

	Deep Learning Model for Text Generation
	Loading the Library
	Defining the Training Data
	Data Preparation
	Creating an RNN Architecture Using a LSTM Network
	Defining the Generate Text Method
	Training the RNN Model
	Generating Text

	Applications
	Topic Modeling Using spaCy, NLTK, and gensim Libraries
	Tokenizing and Cleaning the Text
	Lemmatization
	Preprocessing the Text Method for LDA
	Reading the Training Data
	Bag of Words
	Training and Saving the Model
	Predictions

	Gender Identification
	Loading the NLTK Library and Downloading the Names Corpus
	Loading the Male and Female Names
	Common Names
	Extract Features
	Randomly Splitting into Train and Test
	Training the Model
	Model Prediction
	Model Accuracy
	Most Informative Features

	Document Classification
	Loading Libraries
	Reading the Dataset into the Categorized Corpus
	Computing Word Frequency
	Checking the Presence of Frequent Words
	Training the Model
	Most Informative Features

	Intent Classification and Question Answering
	Intent Classification
	Setting tensorflow as the Back End
	Building the Model
	Classifying the Intent

	Question Answering
	Building the Model
	Context and Question
	Serving the DeepPavlov Model

	Summary

	Chapter 6: A Novel In-House Implementation of a Chatbot Framework
	Introduction to IRIS
	Intents, Slots, and Matchers
	Intent Class
	IntentMatcherService Class
	The getIntent Method of the IntentMatcherService class
	Intent Classification Service
	General Query Intent

	Matched Intent Class
	Slot Class

	IRIS Memory
	Long- and Short-Term Sessions
	Long-Term Attributes
	Short-Term Attributes

	The Session Class

	Dialogues as Finite State Machines
	State
	Shields
	Transition
	State Machine

	Building a Custom Chatbot for an Insurance Use Case
	Creating the Intents
	CustomNumericSlot
	BooleanLiteralSlot
	AccTypeSlot
	IPinSlot
	AlphaNumericSlot

	IrisConfiguration
	Adding States
	Shields
	DontHaveAccTypeShield
	DontHaveQuoteDetailsShield
	HaveAccTypeShield
	HaveClaimIdShield
	HaveQuoteDetailShield

	Adding Execute Methods
	Exit State
	FindAdvisorState
	GetAccountBalanceState
	GetAccTypeState
	GetClaimIdState
	AskForQuote State
	GetQuote State
	Start State
	GeneralQuery State

	Adding State Transitions

	Managing State
	Exposing a REST Service
	ConversationRequest
	ConversationResponse
	ConversationService
	ConversationController

	Adding a Service Endpoint

	Summary

	Chapter 7: Introduction to Microsoft Bot, RASA, and Google Dialogflow
	Microsoft Bot Framework
	Introduction to QnA Maker
	Introduction to LUIS

	Introduction to RASA
	RASA Core
	RASA NLU

	Introduction to Dialogflow
	Summary

	Chapter 8: Chatbot Integration Mechanism
	Integration with Third-Party APIs
	Market Trends
	Stock Prices
	Weather Information

	Connecting to an Enterprise Data Store
	Integration Module
	Demonstration of AskIris Chatbot in Facebook Messenger
	Account Balance
	Claim Status
	Weather Today
	Frequently Asked Questions
	Context Switch Example

	Summary

	Chapter 9: Deployment and a Continuous Improvement Framework
	Deployment to the Cloud
	As a Stand-Alone Spring Boot JAR on AWS EC2
	As a Docker Container on AWS EC2
	As an ECS Service

	Smart IRIS Alexa Skill Creation in Less Than 5 Minutes
	Continuous Improvement Framework
	Intent Confirmation (Double-Check)
	Predict Next Intent
	A Human in the Loop

	Summary

	Index

