
www.allitebooks.com

http://www.allitebooks.org

Building an FPS Game
with Unity

Create a high-quality first person shooter game using
the Unity game engine and the popular UFPS and
Probuilder frameworks

John P. Doran

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Building an FPS Game with Unity

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2015

Production reference: 1271015

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78217-480-6

www.packtpub.com

Cover image by John P. Doran

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
John P. Doran

Reviewers
Schuyler L. Acosta

Alex Madsen

Tony Pai

Chittersu Raghu Vamsi

Nevin Vu

Commissioning Editor
Edward Bowkett

Acquisition Editor
Vivek Anantharaman

Content Development Editor
Riddhi Tuljapurkar

Technical Editor
Shivani Kiran Mistry

Copy Editor
Akshata Lobo

Project Coordinator
Sanchita Mandal

Proofreader
Safis Editiing

Indexer
Hemangini Bari

Graphics
Disha Haria

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Foreword

My first love affair with an FPS game was in 1995. I was an intern at a local radio
station and someone had installed the shareware version of DOOM on the CD
database computer. A fast, sprawling ballet of violence unfolded before my eyes.
This was what a computer game was supposed to be like! Running around 3D
dungeons, guns blazing, blood splattering, and demons growling and scaring the
bejeezus out of me before they were being blown to bits. We didn't get a whole
lot of work done that summer. And my fate was sealed; I was going to be a
game developer.

It took me a good 4 years of modding, scripting, and 3D modeling to land a
job at a small startup game studio. Thrilled, I found myself working on a real
multiplayer FPS game as a part of a team of 15 people. Coming from a hobbyist,
do-it-all-by-yourself mindset, I remember my jaw hitting the floor as the project
manager told me some numbers over lunch. He estimated that for one single
person to create the whole game, it would take 65 years. 65 years!

In the following months, Moore's law and a relentless push for realism saw budgets
and team sizes skyrocket. Soon it wasn't uncommon for an FPS project to have a
head count in the hundreds. The would-be-indie developer inside me mourned these
figures as I pondered my secret indie ambitions and sensed those already impossible
65 years stretching into 650.

Of course, back then, everybody was building their own game engine from scratch.
Game programming books would explain in great detail how to construct your
code from the bare metal up, going into hardware specifics, the basics of rasterizing
polygons, brutal 3D math, and communicating with different brands of audio cards.
You could license a game engine, but it would set you back hundreds of thousands
of dollars. Besides, game coders loved to do everything from scratch back then (and
as a result rarely got around to finishing their games).

www.allitebooks.com

http://www.allitebooks.org

Then, something happened. During the early 2000s, affordable and free engines such
as Torque, Auran Jet, Crystal Space, and Ogre started popping up. Around the same
time, the idea of "gap games" revitalized the indie movement. They were of real high
quality, but were limited in scope; not your multimillion dollar production, but no
scrawny "bedroom programmer" games either. They were fantastic looking games
that could realistically be created by a small team with a good off-the-shelf engine in
a reasonable amount of time. The dream was revived.

The Unity engine was first built for the Mac game GooBall. As the story goes,
the team realized that, in the end, their game didn't show as much promise as
their game engine, and Unity3d was announced at the 2005 Apple Worldwide
Developers Conference. Initially, what Unity had going for it was the ability to run
high-definition 3D games on a web browser. When the iOS and Android support
was added, it became the engine of choice for mobile game development, and
everything just exploded. Today, Unity3d is a free, extremely popular, powerful, and
multiplatform AAA game engine. It has triggered an incredible surge in indie game
development and spawned untold indie game successes. The addition of the Unity
Asset Store allows thousands of pros and hobbyists to share and trade high-quality
scripting, art, sound, design, and services.

UFPS started out as my side project dubbed by Ultimate FPS Camera. I released it as a
small script pack in the Asset Store just to see what would happen. The response was
overwhelming. Three years later, the system has grown into a full blown FPS solution.
My team has assisted many hundreds of indies in pursuing their game ideas. We've
seen many awesome and original games take shape; some released to critical acclaim.
I've also had the privilege of working with the authors of several amazing Unity assets,
including Gabriel and Karl, the developers of ProBuilder, two incredibly dedicated
and talented guys who have put innumerable hours of hard work into their tool suite
(so you won't have to). It's with a sense of joy and excitement that I learned of this book
being written and featuring ProBuilder along with UFPS.

In this book, John has summarized not only how to take advantage of the awesome
power of Unity and Asset Store. In a casual and direct way, he explains how to arrive
at a small, complete FPS in the shortest amount of steps possible. He doesn't go into
the nitty gritty details of programming camera systems, level editors, or a combat
AI from scratch. Instead, he helps you free up time for the core activities that make
your game fun with creative game- and level-design. If you're prototyping a game or
just starting out as a game developer, the power available to you through this book,
Unity, and its Asset Store would have been unthinkable just a few years ago.

Good luck with your dream game!

Calle Lundgren
Creator of UFPS

www.allitebooks.com

http://www.allitebooks.org

About the Author

John P. Doran is a technical game designer, who has been creating games for over
10 years. He has worked on an assortment of games in teams from just himself to
over 70 students, mod, and professional projects.

He previously worked at LucasArts on Star Wars 1313 as a game design intern.
He later graduated from DigiPen Institute of Technology in Redmond, WA,
with a bachelor of science in game design.

John is currently a designer in DigiPen's research and development branch in
Singapore. He is also the lead instructor of the DigiPen-Ubisoft Campus Game
Programming Program, instructing graduate-level students in an intensive,
advanced-level game programming curriculum. In addition to this, he also tutors
and assists students on various subjects while giving lectures on C#, C++, Unreal,
Unity, game design, and more.

In addition to this title, he is the author of Unreal Engine Game Development Cookbook,
Unity Game Development Blueprints, Getting Started with UDK, UDK Game Development,
and Mastering UDK Game Development, and also the co-author of UDK iOS Game
Development Beginner's Guide, all by Packt Publishing. More information on him
can be found on his website (http://johnpdoran.com/).

www.allitebooks.com

http://johnpdoran.com/
http://www.allitebooks.org

Acknowledgment

Firstly, I would like to thank my family for being patient with me while I took
yet another challenge that reduced the amount of time I could spend with them.
Especially Hien, my wife, who has taken a big part of that sacrifice, and also Chris,
my brother, who encourages me in his particular way.

This book also couldn't have been written at all without the amazing support from
the game development community. Most of all, I'd like to thank Calle Lundgren at
VisionPunk for being so supportive of the project and providing his very valuable
insights for it. I'd also want to thank Gabriel Williams from ProCore3D and Nick
Canafax at Rival Theory for their assistance.

In addition, the reason the projects in the book look so good is due to the artistic
talents of the guys at GameTextures.com, who provided some amazing textures to
work with as well as Paul Blackham for letting me use his awesome gun model.

On this same note, I also want to thank Samir Abou Samra and Elie Hosry for their
support and encouragement while working on this book, as well as the rest of the
DigiPen Singapore staff.

Thanks again to the wonderful guys at Packt, who were a pleasure to work with,
including Vivek Anantharaman, who approached me about the project in the first
place, and Riddhi Tuljapurkar, who worked with me as the book was being written.

Last, but not least, I want to thank my parents Sandra and Joseph Doran, who took
me seriously when I told them that I wanted to make games for a living.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Schuyler L. Acosta is a graduate from the Art Institute of California, San
Francisco, with a bachelor of science in game art and design. In his free time, he
enjoys working on 2D/3D portfolio projects. This is his first book review. His other
passion besides art is music, playing the piano and electric/acoustic guitar.

I would like to thank Pooja Mhapsekar, Sanchita Mandal, and
Riddhi Tuljipurkar for their feedback and support in reviewing this
book. I'd also like to thank my parents, Bonnie and Edwin Acosta,
and my sister, Angel Acosta, for their continued support and
encouragement.

Alex Madsen is a Gameplay Programmer at Pure Arts Ltd., Shanghai. He is a tech
enthusiast that loves finagling with anything that is based on computers: Arduino,
Linux, and the like. He started his career programming Excel spreadsheets for a rural
Alberta tree farm, and got an opportunity to work in Shanghai.

He works at Pure Arts Ltd., Shanghai.

I would love to thank my parents and beloved friends, and Stark, the
big dumb dog.

Tony Pai is an indie game developer from Taiwan. He learned Unity for about a
year and a half and is now working with his friends to make games. They released
two games to date, The Guys and Elpis. This is his first book review.

I want to thank Sanchita Madal, project coordinator, and everyone at
Packt for their help in producing this book.

www.allitebooks.com

http://www.allitebooks.org

Chittersu Raghu Vamsi is a professional programmer, game developer, analyst,
and designer. He has a computer science background, which he pursued at one of
the most reputed colleges in India, BITS Pilani. He has an experience of over 3 years
in the field of game development. He has done projects on machine learning and
artificial intelligence. His other interests include reading novels, making short films,
and writing articles.

I would like to thank my family and friends for their encouragement
and support. I also thank Packt Publishing for providing me such a
great opportunity.

Nevin Vu graduated with a diploma in game design. While he was out to complete
his diploma, he gained valuable experience by interning at Panasonic Avionics,
Singapore. He is currently pursuing a degree in computer science to ensue his
passion in programming. Upon graduation, he hopes to work in the video game
industry to contribute to the gaming development community with his knowledge in
programming. He has developed various games from platforms to FPS games, which
are available on his website, http://www.n3evin.com.

I would like to thank my parents for giving me this opportunity and
being supportive of my interest in programming. Moreover, I am
thankful to the rest of my family and friends for encouraging me to
pursue my passion.

http://www.n3evin.com

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

[i]

Table of Contents
Preface v
Chapter 1: Getting Started on an FPS 1

Prerequisites 2
Project creation 4
Getting started with the Asset Store 6

Installing UFPS 9
Installing Prototype 12
File organization 15
Customizing Unity's layout 16
Summary 17

Chapter 2: Building Custom Weapons 19
Prerequisites 20
Setting up a testbed 20
Getting models/sounds for weapons 22
Building our weapon – the mesh 24
Creating a UnitBank 29
Creating the weapon 30
Customizing our weapon's properties 34
Summary 39

Chapter 3: Prototyping Levels with Prototype 41
Prerequisites 42

Level design 101 – planning 42
Creating the architectural overview 44

3D modeling software 44
Constructing geometry with brushes 44
Modular tilesets 45

Creating geometry 46
Building a doorway 60

Table of Contents

[ii]

Duplicating rooms / creating a hallway 68
Preventing falls - collision 73
Adding stairways 76
Coloring your world 84
Summary 86

Chapter 4: Creating Exterior Environments 87
Prerequisites 87
Introduction to Terrain 88

Height maps 88
Hand sculpting 90

Creating the Terrain 91
Adding color to our Terrain – textures 97
Adding water 106
Adding trees 108
Adding details – grass 112
Building the atmosphere – Skyboxes and Fog 114
Summary 120

Chapter 5: Building Encounters 121
Prerequisites 121
Adding a simple turret enemy 122
Integrating an AI system – RAIN 129
Integrating an AI system – Shooter AI 153
Spawning enemies with the help of a trigger 164
Spawning multiple enemies at once 179
Cleaning up dead AI 184
Placing healthpacks/ammo 186
Summary 188

Chapter 6: Breathing Life into Levels 189
Prerequisites 189
Building an explosive barrel 190
Using triggers for doors 198
Creating an elevator 208
Summary 214

Chapter 7: Adding Polish with ProBuilder 215
Prerequisites 215
Upgrading from Prototype to ProBuilder 216
Creating material 223
Working with ProBuilder – placing materials 227
Meshing your levels 249
Summary 253

Table of Contents

[iii]

Chapter 8: Creating a Custom GUI 255
Prerequisites 255
Creating a main menu: part 1 – adding text 256
Creating a main menu: part 2 – adding buttons 261
Creating a main menu: part 3 – button functionality 265
Replacing the default UFPS HUD 270
Summary 278

Chapter 9: Finalizing Our Project 279
Prerequisites 279
Building the game in Unity 279
Building an installer for Windows 283
Building an installer for Windows 287
Summary 296

Index 297

[v]

Preface
Unity, available in free and pro versions, is one of the most popular third-party game
engines available. It is a cross-platform game engine, making it easy to write your
game once and then port it to PCs, consoles, and even the Web, making it a great
choice for both indie and AAA developers.

Building an FPS Game with Unity takes readers on an exploration of how to use Unity
to create a 3D first-person shooter (FPS) title. Over the course of the book, you will
learn how to work with Unity's own tools while also leveraging the powerful UFPS
framework by VisionPunk and Prototype/ProBuilder 2.0 by ProCore3D. In addition,
readers will learn how to create AI characters using both RAIN and Shooter AI.

After setting up the computer, you will start by learning how to create custom
weapons, prototype levels, create exterior and interior environments, and breathe life
into your levels. You will then polish the levels. Finally, you will create a custom GUI
and menus for your title to create a complete package.

What this book covers
Chapter 1, Getting Started on an FPS, will give readers a brief overview, from a
beginner's point of view, of the exciting world of Unity development for the creation
of a first-person shooter (FPS) title. We will start off by creating a project and then
set up our project by installing UFPS and Prototype. We'll also see how we can
customize Unity's layout and organize our files effectively.

Chapter 2, Building Custom Weapons, will talk about one of the most important things
in the FPS game: the weapons. In this chapter, we will create a testbed to work on
and learn how to build a weapon in UFPS from a model while also learning about
UFPS features such as UnitBanks and various weapon properties to give your
weapons a feel "just right" for you.

Preface

[vi]

Chapter 3, Prototyping Levels with Prototype, will help us take on the role of a level
designer, who has been tasked to create a level prototype to prove that our gameplay
is solid. We will make use of the free tool Prototype to help in this endeavor. In
addition, you will also learn some beginning level designing.

Chapter 4, Creating Exterior Environments, explores the various ways to add more
organic-feeling areas to your levels, making use of Unity's different terrain tools
while also adding water, trees, grass, custom skyboxes, and fog to create a complete
environment that can be used in your project.

Chapter 5, Building Encounters, will show how to create various types of encounters
that players may experience to create effective gameplay scenarios starting with a
simple turret, then creating a melee enemy using the free RAIN AI Engine as well
as a ranged enemy using Shooter AI. You will then learn how to place enemies as
well as spawn them into our scene. Lastly, you will learn how to place ammo and
healthpacks in the level to guide players through the level.

Chapter 6, Breathing Life into Levels, will explore some of the ways we can breathe life
into our levels with moving objects and more things that the player can interact with,
such as exploding barrels, moving doors, and elevators.

Chapter 7, Adding Polish with ProBuilder, will take all of the pieces we created in the
previous chapters and put them together to create a finished level. You will learn
how to upgrade Prototype levels to using ProBuilder, gaining the ability to add
materials to wall faces and create custom UVs. You will also learn how to create
materials and how to mesh your levels to create a complete environment.

Chapter 8, Creating a Custom GUI, will demonstrate how to use Unity's new GUI
system to create a custom GUI to replace the one given to us by UFPS to help our
project stand out.

Chapter 9, Finalizing Our Project, will focus on exporting our game from Unity and
then creating an Installer so that we can give it to all of our friends, family, and
prospective customers.

What you need for this book
Throughout this book, we will be working within the Unity 3D game engine that you
can download from http://unity3d.com/ unity/download/. The projects were
created using version 5.0.1, but the project should work with minimal changes.

For simplicity's sake, we will assume that you are working on a Windows-powered
computer. Though Unity allows you to code in either C# or UnityScript, for this
book, we will be using C#.

http://unity3d.com/ unity/download/

Preface

[vii]

We will also be using assets that are available from the Asset Store in Unity, most
notably UFPS which costs money ($95 normally, but it also has sales where it can
be gotten for cheaper). Aside from UFPS, all of the other topics will cover how to
use a free asset to accomplish things while also discussing an easier to use asset
which does cost. Readers will use ProCore3D's free Prototype tool for the creation of
levels while also learning how you may upgrade your project to using ProBuilder in
Chapter 9, Finalizing Our Project, for advanced functionality, but it also costs money.
For enemies, you will also learn how to use the free RAIN toolkit for melee enemies
and how to use Shooter AI for ranged enemies, which costs money.

Who this book is for
This book is for those who want to create an FPS game in Unity and gain knowledge
on how to customize it to be their very own. If you are familiar with the basics of
Unity, you will have an easier time, but it should make it possible for someone with
no prior experience to learn Unity at an accelerated pace.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We can include other contexts through the use of the include directive."

A block of code is set as follows:

 void OnTriggerEnter(Collider other)
 {
 //If the player touches the trigger, and if it hasn't
 //been triggered before
 if(other.tag == "Player" && hasTriggered == false)
 {
 // Spawn a new enemy using the properties from the
 // spawnPoint object
 GameObject newEnemy = Instantiate(enemy,
 spawnPoint.position,
 spawnPoint.rotation)
 as GameObject;
 // We only want this to happen once.
 hasTriggered = true;
 }
 }

www.allitebooks.com

http://www.allitebooks.org

Preface

[viii]

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

 void OnTriggerEnter(Collider other)
 {
 //If the player touches the trigger, and if it hasn't
 //been triggered before
 if(other.tag == "Player" && hasTriggered == false)
 {
 // Spawn a new enemy using the properties from the
 // spawnPoint object
 GameObject newEnemy = Instantiate(enemy,
 spawnPoint.position,
 spawnPoint.rotation)
 as GameObject;

 //Tell enemy to go to the player's position
 newEnemy.GetComponent<NavMeshAgent>().SetDestination(other.
 transform.position);

 // We only want this to happen once.
 hasTriggered = true;
 }
 }

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Once
completed, select Create project."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

Preface

[ix]

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from https://www.packtpub.
com/sites/default/files/downloads/Building_FPS_Games_with_Unity.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/Building_FPS_Games_with_Unity.pdf
https://www.packtpub.com/sites/default/files/downloads/Building_FPS_Games_with_Unity.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[x]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

Getting Started on an FPS
Welcome to Building an FPS Game with Unity! This chapter is dedicated to offer
a brief overview, from a beginner's point of view, of the exciting world of Unity
development for the creation of a First Person Shooter (FPS) title, leveraging the
powerful Ultimate First Person Shooter (UFPS) framework by VisionPunk and
Prototype/ProBuilder 2.0 by ProCore3D. But, before we get started, we first
need to get all of the resources we'll need and set up our project for success.

Over the course of this book, we will be creating a 3D FPS game similar to the
popular games in the market such as Call of Duty: Black Ops III and Halo 5: Guardians.

We will learn how we can create custom weapons of our own as well as how we
can create interior and exterior environments. After creating our environments, we
will populate them with different combat encounters for players to fight as well as
include intractable objects such as exploding barrels. We'll then customize our user
interface using Unity's new GUI system before we package our game and create an
installer to get the game out into the world!

This project will be split into a number of tasks. It will be a simple step-by-step
process from the beginning to the end. Here is the outline of our tasks:

• Project creation
• Getting started with Unity's Asset Store
• Installing UFPS
• Installing Prototype
• File organization
• Customizing Unity's layout

Getting Started on an FPS

[2]

Prerequisites
Before we start, we will need to get the latest Unity version. You can always
download it from http://unity3d.com/ unity/download/. At the time of
writing this book, the page looks like this:

http://unity3d.com/ unity/download/

Chapter 1

[3]

Once you get to this page, click on the CHOOSE YOUR UNITY + DOWNLOAD
button (this page onward, I will be using the PERSONAL EDITION version).
Then, click on the DOWNLOAD INSTALLER option.

Getting Started on an FPS

[4]

The download assistant should be installed from your default downloads directory.
Once it is installed, double-click on the file to open it.

Once there, go through the installation using the default properties. At the time
of writing, we are using Unity 5.0.0f4, but most things should work with minimal
changes but be sure to check out the book's website to check for any errata.

Since it needs to download Unity, this process may take some time.

Project creation
At this point, I assume that you have freshly installed Unity and have started it up.
Follow these steps to create a new project in Unity:

1. With Unity started, go to New Project. Enter a Project Name value such as
FPS Game - Chapter 1 as that's what we are making and the chapter we're
making it for, or whatever you want to call your project. Select Location of
your choice somewhere on your hard drive and ensure that you have your
game set to 3D. Once completed, select Create project. At this point, we do
not need to import any packages as we'll be doing it manually.

Chapter 1

[5]

2. Here on, if you see the Welcome to Unity pop up, feel free to close it as we
won't be using it. At this point, you will be brought to the general Unity
layout, which should look as follows:

Getting Started on an FPS

[6]

I'm assuming you have some familiarity with Unity before you read
this book. If you want more information on the interface, please
visit http://docs.unity3d.com/Documentation/Manual/
LearningtheInterface.html.

Getting started with the Asset Store
Since Unity 3, the Asset Store has been similar to Apple's/Android's app stores,
except, instead of apps, you can buy prebuilt assets that can be imported directly into
your project. We will be using this in our project; but, before we do so, we will need
to have an account, that can be created using the following steps:

1. To open the Asset Store via Unity, we can go to Window | Asset Store from
the top toolbar.

You may also open the panel by pressing Ctrl + 9 (command +
9 on Mac). If nothing happens, make sure Unity is focused on
window by clicking on the program and trying again. If you
prefer working outside Unity, you may also go to the Asset
Store website at https://www.assetstore.unity3d.com/.
However, you'll need to download assets from Unity via the
Download Manager, which you can learn about from the link
given later in this chapter.

http://docs.unity3d.com/Documentation/Manual/LearningtheInterface.html
http://docs.unity3d.com/Documentation/Manual/LearningtheInterface.html
https://www.assetstore.unity3d.com/

Chapter 1

[7]

2. Next, go to the top-right corner of the panel and click on the Create Account
button. Fill out your information and click on Create account at the bottom of
the screen.

3. You should receive an activation e-mail shortly after you submit the form.
Open it and click on the activation link provided to verify your account.

www.allitebooks.com

http://www.allitebooks.org

Getting Started on an FPS

[8]

4. Once this is done, go to Log In from the top-right corner of the panel and
enter the information you put in when you created the account. If all goes
well, the top-right corner of the window will change to reflect that you are
logged in.

Chapter 1

[9]

With this, we can download and purchase assets from the Asset Store!

Do not be concerned if you do not see 11 by your account, it just shows
that I have a Unity Pro account.
For more information on the Asset Store and how to navigate using it, visit
http://docs.unity3d.com/Manual/AccessNavigation.html.

Installing UFPS
Creating a game completely from scratch takes a considerable amount of time.
Creating a first-person shooter relies on having a lot of knowledge as well as
problem solving with things such as physics, mathematics, graphics, and
programming. Now, books of each of these subjects could have been written
based on it; but we are assuming that you want results in the fastest amount
of time possible.

Rather than taking the tens of thousands of hours it would take to create it from
scratch, we will leverage the very popular Unity add-on UFPS (Ultimate FPS)
from VisionPunk. It will give us a solid foundation to create our own project with
hundreds of parameters, which we can customize to create a project exactly the way
we want it to be.

It's important to note that UFPS does cost money. But considering that a solid game
programmer generally makes $50 or more an hour, the amount of time saved really
makes it a worthwhile investment.

Now that we are logged into the Asset Store, let's purchase and install UFPS:

1. Now, from the search bar directly below the login information, search for
UFPS. You should see an icon that looks similar to the following:

http://docs.unity3d.com/Manual/AccessNavigation.html

Getting Started on an FPS

[10]

2. Click on the first option, which will bring you to the following page:

3. Now, click on the Buy button and purchase the asset. Once it is purchased,
the screen will change the Buy button to a Download button. You can click
on it to download the asset and bring it into your project.

Chapter 1

[11]

4. Once it is downloaded, an Importing package window will open, giving you
the option to choose which parts of the package you wish to import. We want
everything, so just click on the Import button.

If, for some reason, you get an error (the bottom
bar, or Console, in the Unity interface) while
importing that says something like 'Fatal error!
getManagerFromContext:…". This is a bug in
Unity due to the large file size UFPS has. Just Quit
and continue with the import once again, when you
restart Unity.

Getting Started on an FPS

[12]

5. Once the project is imported, close the Asset Store window and go
back into the Unity Editor. From there, go down to the Project tab in the
bottom-left corner of the screen and double-click on the UFPS folder. Go to
Base\Content\Levels\SkyCity and double-click on the SkyCity file to
open an example level. Then, press the Play button at the top-center of the
project to start the project!

With this, we know that UFPS is installed correctly!

Installing Prototype
In general, creating levels in Unity is a painful experience. You have to type in the
values for each piece that you want to add or you have to create everything inside a
modeling program and import it, which will require you to have 3D modeling skills.

Other game engines have tools like Binary Space Partitioning (BSP) or Constructive
Solid Geometry (CSG), which allow you to build geometry from scratch and apply
materials to it to create areas for play. Filling in the gap that Unity has, ProCore3D
has created a toolkit that allows for in-editor construction.

Chapter 1

[13]

We will later on use ProBuilder to polish up our final product; but, in the meantime,
we will use Prototype, their free version to build the basic structure and flow of our
levels without wasting time, thus making things visually appealing until we polish
it. Perform the following steps to install Prototype:

1. Open the Asset Store once again by going to the toolbar, searching for
Prototype, and looking for the following icon:

2. Click on the first option in the top-left corner and you should be brought to a
page like the following one:

Getting Started on an FPS

[14]

After the writing of this book, Prototype will in the near
future be replaced by ProBuilder Basic which is still 100%
free but has additional features. I've talked with the creators
about this, and they've confirmed with me after reading the
book that everything discussed here should still work with
the new version. For more information on this, check out
http://www.protoolsforunity3d.com/probuilder/.

3. Click on the Download button and wait for it to finish. Then, import the
entire package by clicking on Import.

4. We will now test it out to see whether everything is imported correctly.
Create a new scene inside Unity by going to File | New Scene. Once there,
press Ctrl + K to create a new cube using Prototype.

http://www.protoolsforunity3d.com/probuilder/

Chapter 1

[15]

With this, we know that it was installed correctly! It may look pretty simple now,
but we will be diving even more into using these tools later on.

For more information on Prototype, check out
http://www.protoolsforunity3d.com/prototype/.

File organization
Keeping your Unity project organized is incredibly important. As your project moves
from a small prototype to a full game, more and more files will be introduced to your
project. If you don't start organizing it from the beginning and keep planning to tidy
it up later on, things may get quite out of hand as the deadlines keep coming.

Setting up a project structure at the start and sticking to it will save you countless
minutes in the long run. It will only take a few seconds and is what we'll be
doing now.

1. Go to the Assets folder from the Project tab in the bottom-left corner of the
screen. Once there, click on the Create drop-down menu. Click on Folder and
you'll notice that a new folder has been created inside your Assets folder.

Similarly, you can right-click on the negative space within the
Project window to create a folder.

2. After the folder is created, you can type in the name of your folder. Once it is
named, press Enter. Let's now create a folder called MyGame. We also need to
create folders for the following directories inside the MyGame folder:

 ° Prefabs

 ° Scenes

 ° Scripts

If you happen to create a folder inside another folder, you can
simply drag and drop it from the left toolbar. If you need to
rename a folder, just simply click on it once and wait, you'll be able
to edit it again. Alternatively, on the keyboard you can press F2.

http://www.protoolsforunity3d.com/prototype/

Getting Started on an FPS

[16]

Your project should now look like this:

Customizing Unity's layout
While working with Unity in this book, I will mostly be using its default layout. If,
for some reason, your layout does not look like the earlier screenshot, you can reset
it by going to the top-right corner of the window and selecting Layout | Default.

You can customize the layout by clicking and dragging any tab to wherever you
want it to be. There are also additional options such as making the Project tab use a
one-column layout by right-clicking on the tab and selecting One Column Layout.
Sometimes, I like to split the center with the Scene tab on one side and the Game
tab on the other, so I can see how things change from a different angle. For those
of you with multiple monitors, you may use a monitor just for the game. It's all up
to your preferences, but keep your changes in mind, as I'll assume that you'll be
using Default.

For more information on customizing your Unity layout,
check out http://docs.unity3d.com/Manual/
CustomizingYourWorkspace.html.

http://docs.unity3d.com/Manual/CustomizingYourWorkspace.html
http://docs.unity3d.com/Manual/CustomizingYourWorkspace.html

Chapter 1

[17]

Summary
Hopefully, you've enjoyed taking the first few steps toward becoming an FPS game
developer with Unity! In this chapter, we learned how to create a project inside
Unity 5. We then learned how to create an account and navigate the Unity Asset
Store. After this, we learned about UFPS and Prototype and installed them. Finally,
we touched upon file organization and customized Unity's layout.

In the next chapter, we will delve deeper into using Unity Editor and UFPS by
creating our own custom weapons!

[19]

Building Custom Weapons
Now that we have everything installed, let's start working on one of the most
important things that a first-person shooter game needs—the weapons. Often, it is
the weapons of the games that become characters in their own right and tweaking
them to be "just right" is something that many will try to do.

This project will be split into a number of tasks. It will be a simple step-by-step
process from the beginning to the end. Here is the outline of our tasks:

• Importing new models/sound effects
• Replacing the default weapon
• Creating a new weapon template
• Customizing weapon position/behavior
• Recoil/Muzzle Flash
• Changing firerate
• Creating new ammo type
• Creating new ammo pickup
• Customize sound effects
• Determining behavior

Building Custom Weapons

[20]

Prerequisites
Before we start, we need to have a project created that already has UFPS installed.
If you do not have it already, follow the steps described in the previous chapter.

Setting up a testbed
Now, before we get started, let's create an area that we can use to test our
new weapons.

1. Open up the project and a scene for us to work with. We can create a new
level but, in this instance, UFPS comes with a nice scene for us to start with.
From the Project tab, go to the UFPS/Base/Content/Levels/CleanScene
folder and double-click on the CleanScene file.
This scene (or level) is a simple terrain with a basic first-person camera
and controller intended for prototyping, which is perfect for us, except we
want our player to be already set up. To do this, we will remove this simple
camera and replace it with a built-in one.

2. From the Hierarchy tab, select the Camera object by clicking on it and delete
it by pressing the Delete key.

3. Next, go to the UFPS/Base/Content/Prefabs/Players folder and drag and
drop an AdvancedPlayer prefab into your game world. To see the object,
double-click on it in Hierarchy (or press the F hotkey with it selected) and
it'll zoom directly to its position.

4. You may notice that there are quite a few things attached to this player, but
the most important thing to notice right now is the light green capsule shape,
or half capsule shape, depending on how it's positioned. Move this object up
on the Y axis until the entire capsule is above the ground plane by grabbing
on to the green arrow and dragging it upward. (If you do not see the arrows,
press the W hotkey to select the Translation tool. Alternatively, you can set
the Transform component's Position Y property to -7 using Inspector.)

Chapter 2

[21]

This capsule is where the player will collide with the world, so
it's important that we're up, on the top of the ground or else we
may fall through the ground into the void below!

5. Now, click on the Play button. You should note that we can now control
a player.

Building Custom Weapons

[22]

If you press keys from 1 to 4, you should be able to shoot using various weapons.

Here are the various other controls you can use:

Key Action
WASD Move
C Crouch
Space Jump
Shift Sprint
R Reload
Right Mouse Button Aim Down Sights / Zoom
ESC Quit app (if offline standalone player)
Enter Toggle menu

Getting models/sounds for weapons
Before we start creating our custom weapons, we will first require the models and
sound effects that are needed for our project. Of course, you could model them
yourselves, but it would require modeling knowledge (and the knowledge of using
3D modeling software such as Blender, Autodesk's Maya, or 3ds Studio Max), which
is out of the scope of this book. For simplicity, we are going to use some free assets
that you can obtain from the Asset Store.

If you would like to build a gun of your very own, some information
on making the model set up for UFPS can be found at http://www.
visionpunk.com/hub/assets/ufps/manual/weapons.

1. To open the Asset Store inside Unity, we can go to Window | Asset Store
from the top toolbar.

2. If you aren't already logged in, go to Log In from the top-right corner
of the panel and enter the information that you put in when you created
the account.

3. From the right-hand side menu, go to 3D Models | Props | Weapons |
Guns and select a weapon that you'd like. I, personally, would choose
Close Quarters Assault Rifle that you can see next:

http://www.visionpunk.com/hub/assets/ufps/manual/weapons
http://www.visionpunk.com/hub/assets/ufps/manual/weapons

Chapter 2

[23]

The link to this content is https://www.assetstore.unity3d.com/
en/#!/content/21025.
This rifle was created by Paul Blackham, whose portfolio can be seen at
https://www.behance.net/PaulBlackham.

4. Next, download Asset and import it in your project.

https://www.assetstore.unity3d.com/en/#!/content/21025
https://www.assetstore.unity3d.com/en/#!/content/21025
https://www.behance.net/PaulBlackham

Building Custom Weapons

[24]

Building our weapon – the mesh
Now that we have the resources to create the weapon, let's first get the mesh ready
with a hand to hold it like in a normal FPS game.

1. To start off, go to the UFPS/Base/Content/Prefabs/Weapons folder and
drag the Pistol prefab out into the world. Move the object and camera until
you get to the point where you can see it clearly.

In case you need a refresher on the camera controls, here are
the most commonly used ones:

• Zoom In/Out: Alt + the right mouse button/scroll
the middle mouse
button up/down

• Rotate Around Selected Object: Alt + the left
mouse button

• Panning: Alt + the middle mouse button

Now, this is the fully created pistol we used previously that is already
attached to a hand. We are going to use this pistol as a base to create our
very own weapon by placing our new weapon where the old one is.

Chapter 2

[25]

2. From the Project tab, drag out the CQAssaultRifle file that we downloaded
earlier (Assets/Close Quarters Assault Rifle/CQAssaultRifle) and
bring it into the world.

3. If the object placed in the scene is not scaled in comparison to the pistol
object, look underneath the Inspector window. You will be able to
increase/decrease the scale values (X, Y, and Z) equally. In the case of
the CQAssaultRife mesh, it is very tiny, so we first need to scale it to an
appropriate size. In this case, we'll go to the Inspector tab with the selected
object and, from the Transform component, we will change the Scale value
to 3,3,3.

Alternatively, we can press the R button and drag it from the
center box to scale it up and down as needed.

After this, we have to place the weapon in the player's hand in the exact same
position as the trigger hand.

Building Custom Weapons

[26]

4. To help with this, use the camera gizmo at the top-right of the Scene tab.
Rotate it to face the hand by clocking on the right or left edges and then
clicking on the center cube to switch to toggle to an isometric camera.
This will make it really easy to see exactly where it needs to go.

5. Once there, move the object until it fits your trigger finger, like the following:

Alternatively, we can press F on the keyboard to focus. We can also
hold the right-click to rotate the camera in the direction we want and
hold the middle mouse button to move the camera as needed.

Chapter 2

[27]

6. After completing the side view, move on to the Top camera view. Let it be
centered to the hand as well:

Keep at it, making adjustments via the Translate tool until it looks perfect
to you.

www.allitebooks.com

http://www.allitebooks.org

Building Custom Weapons

[28]

Once you're satisfied with the weapon's placement, you need to remove the
original pistol. Thankfully, it's very easy to do this.

7. Open the Hierarchy of the Pistol by clicking on the arrow to the left of
its name and select the Mesh actor. You'll notice that the mesh has three
Materials on it, one of which is the hand/arm and the others are the gun.
From the Mesh Renderer component, expand the Materials tab and change
the Size value to 1, eliminating the others and giving us an empty hand to
work with.

8. Now, from the Hierarchy tab, drag and drop the CQAssaultRifle object
from our level on top of the Pistol prefab to make it a part of the group.

9. Rename CQAssaultRifle to WeaponMesh and the Pistol object to
CQAssaultRifle.

10. Once this is done, from the Project tab, go to the Assets folder and create a
new folder called Weapons. Drag and drop the CQAssaultRifle object there,
creating a prefab in the process.

Chapter 2

[29]

11. With this, we can delete CQAssaultRifle inside the Hierarchy tab (not the
one from the Project tab).

Creating a UnitBank
The next thing we need to do is to create a weapon that will associate with the mesh
we just created. In UFPS, any kind of weapon that uses some kind of resource is
referred to as a UnitBank. These UnitBanks use Units to fire. To create a UnitBank
perform the following steps:

1. Let's create a UnitBank for our weapon by going to the top menu and
selecting UFPS | Wizards | Create Item Type | UnitBank.

2. Once created, go over to the Project tab and change the name of the New
UnitBank Type file to CQAssaultRifle by clicking on the file and renaming
it (or by pressing F2).

3. From the Inspector tab, under Display Name, change the value to CQ
Assault Rifle and, under Unit, select the type of bullet you want to
use. In this case, I will use MachinegunBullet.

Building Custom Weapons

[30]

4. Next, select the Capacity value to 32. This means that the weapon can fire 32
shots before it needs to be reloaded.

5. Finally, we will drag and drop the file into the Weapons folder.

More information on UnitBanks can be found in the Item Types section
at http://www.visionpunk.com/hub/assets/ufps/manual/
inventory.

Creating the weapon
Next, let's add the weapon by performing the following steps so that our player can
use it:

1. From the Hierarchy tab, go to the AdvancedPlayer object and expand it.
Expand the FPSCamera object to show all of the weapons that the player can
use. From there, click on the 1Pistol object and press Ctrl + D to duplicate
the object (alternatively, use Edit | Duplicate).

2. Move the newly created object below the 4Mace object and rename it to 5CQ
Assault Rifle.

http://www.visionpunk.com/hub/assets/ufps/manual/inventory
http://www.visionpunk.com/hub/assets/ufps/manual/inventory

Chapter 2

[31]

If we were to play the game right now, we could press 5 and a second pistol
would be displayed. Let's make it so that it will display our new weapon by
replacing the weapon that is being rendered in the Vp_FP Weapon (Script)
component. The Vp_FP Weapon (Script) component is used to animate
a weapon using its procedural motion properties. This means that the
component will manipulate the weapon transform's position and rotation
using springs, bob, and perlin noise.

3. With the 5CQ Assault Rifle object selected in Hierarchy, go to the
Inspector tab, scroll down to the Vp_FP Weapon (Script) component, and
extend the Rendering options. From there, set 1st Person Weapon to the
CQAssaultRifle prefab we created earlier in the Assets/Weapons folder
with the hand by dragging and dropping it in the slot. This will replace the
mesh to use the model of our rifle instead of the pistol.
Next, we need to say that this is an Assault Rifle. To do this, we need to
modify the Vp_ItemIdentifier (Script) class. The item identifier can be
slapped onto any game object to basically say that "this is an item of type X."
It is what allows the weapon handler to associate a particular first-person
weapon object with the information from the inventory.

Building Custom Weapons

[32]

4. Scroll all the way down in the Inspector tab to the Vp_Item Identifier
(Script). Click on X to the right of the Pistol (UnitBank) identifier.
Then, go to the Assets/UFPS/Base/Content/ItemTypes/Weapons
folder and drag and drop the CQAssaultRifle UnitBank in the slot.

Now, if we were to play the game, we would not be able to use the 5 key
anymore. This is because even though we created the blueprint of the
weapon, the player does not have it in their inventory (it was using the
earlier pistol, which is included by default).

5. Next, select the AdvancedPlayer object, go to the Vp_Player Inventory
(Script) component, and open Item Records. Click on the circle to the
right of the Drag an ItemType object here selection and select the
CQAssaultRifle file.

Chapter 2

[33]

For more information on the Inventory class, check out http://www.
visionpunk.com/hub/assets/ufps/manual/inventory.

6. Now, let's play the game and press the 5 key.

http://www.visionpunk.com/hub/assets/ufps/manual/inventory
http://www.visionpunk.com/hub/assets/ufps/manual/inventory

Building Custom Weapons

[34]

With this, our weapon is all set to be used!

Customizing our weapon's properties
Now, it's great that the weapon looks like our new weapon, but it fires and moves
exactly like a pistol. In this section, we are going to modify the properties of our
weapon to give it the behavior we want by using the following steps:

1. Now, let's start off by switching over to the Game tab and unchecking the
Maximize on Play option if it is currently enabled so we can still access the
Inspector while the game is being played. We will play the game and press 5
to bring out our weapon.
It's important to note that while the game is being played, any changes we've
made would be undone when we exist; but we can get around this by copy/
pasting the component values.

2. Press Enter to return the control to your mouse. Then, from the Hierarchy
tab, select the weapon, which can be found in AdvancedPlayer | FPSCamera
| 5CQ AssaultRifleTransform | 5CQ Assault Rifle.

Chapter 2

[35]

3. Now, with the object selected, move down to the Vp_FP Weapon (Script)
component and extend the Position Springs property. Generally, these
heavier weapons tend to be lower and closer to the players. So, click and
drag on the Offset and set X, Y, and Z properties till you get them to where
you want your weapon to be. I, personally, used 0.28, -0.41, and -0.09.

This Offset property is where the weapon "wants to be" and it will move
toward this target position if anything causes it to change, such as recoil.

Information on the Position Springs properties can be
found at http://www.visionpunk.com/hub/assets/
ufps/manual/camera.

The next thing we are going to change is the recoil. Right now, it is reacting
very violently to an occurring shot. To alter this, we will need to modify the
Spring2 Stiffness and Spring 2 Damping variables.

http://www.visionpunk.com/hub/assets/ufps/manual/camera
http://www.visionpunk.com/hub/assets/ufps/manual/camera

Building Custom Weapons

[36]

In layman's terms, stiffness determines how loosely or rigidly the weapon
spring will behave. Damping makes the spring velocity wear off as it
approaches its rest state.
In addition to modifying the Position Springs properties, we will also need
to modify the Rotation Springs properties to higher numbers so the gun
doesn't fly into the air on being fired.

4. Under the Positional Springs, set Spring2 Stiffn to .8 and Spring2 Damp.
to .9.

5. Next, under Rotation Springs, change Spring2 Stiffn. to .5 and Spring2
Damp. to 1.

6. Finally, right-click on the Vp_FP Weapon (Script) component and select
Copy Component. Quit the game; notice that the values have changed to
what they were before. Now, right-click on your component and select
Paste Component Values. Perfect!

Information on the Rotation Springs properties can be
found at http://www.visionpunk.com/hub/assets/
ufps/manual/weapons.

The next thing we are going to adjust is the muzzle flash because, right now,
the position doesn't really reflect where the bullets should be coming out.
To do this, we will need to access the Vp_FPWeapon Shooter (Script)
component. The Vp_FPWeapon Shooter (Script) class adds firearm
properties to a weapon, which allows us to manipulate the recoil and
manages the firing rate, accuracy, sounds, muzzle flashes, and spawning of
projectiles and shell casings. It also has basic ammo and reloading features.

7. Next, go to the Vp_FPWeapon Shooter (Script) component and open the
Muzzle Flash option. Inside Prefab, click on the circle and, from the search
bar, select the MuzzleFlashPistol01 prefab to give us a muzzle flash when
we shoot.

8. Check the Show Muzzle Fl. option that allows us to see the muzzle to easily
adjust and modify the position until it's at the correct position.

http://www.visionpunk.com/hub/assets/ufps/manual/weapons
http://www.visionpunk.com/hub/assets/ufps/manual/weapons

Chapter 2

[37]

Now, we can adjust the shell. Currently, it pops out from the top of our gun
but, for this one in particular, it comes out from the side.

9. Inside the Vp_FP Weapon Shooter (Scripts) component, expand the Shell
property. Then, change Eject Position to .2, -0.05, .5.

10. After this, change Eject Direction to 5,1,1. This means that it will move
five times in the X direction and once in the Y and Z directions modified
by Eject Velocity.

Building Custom Weapons

[38]

With this, the shell flies out of our weapon correctly!

More information on the Shell and its properties can be
found at http://www.visionpunk.com/hub/assets/
ufps/manual/shells.

The weapon currently fires very slowly, because it's using the pistol's speed.
Our rifle is going to shoot a lot quicker.

11. Under the Vp_FPWeapon Shooter (Scripts) component, open the Projectile
section and change Firing Rate to .10. This means that the bullets will fire
once in every .10 seconds.

I'm sure you can now tell that it's already shooting a lot quicker. Depending
on the weapon, you may want it to take a longer or shorter distance. You
may also want the player to shoot faster if they are tapping instead of just
holding down the mouse button, this is what the Tap Firing Rate property
is for.
We can use the current sound for this weapon but, for sake of completion,
I'm going to show how we can use our own sound as well.

http://www.visionpunk.com/hub/assets/ufps/manual/shells
http://www.visionpunk.com/hub/assets/ufps/manual/shells

Chapter 2

[39]

12. Open the Sound section and set the Fire property to MachinegunFire.
Then, change Fire Pitch to 1.5, 1.5.
Fire is the sound that plays when you fire the weapon, while Dry Fire plays
when you are out of ammo and try to fire. The Fire Pitch property is used
to alter the pitch of the sound for some variations, which may be useful to
differentiate your weapons.

For more information on the Sound properties, please visit
http://www.visionpunk.com/hub/assets/ufps/
manual/shooters.

13. Once you are finished with the Vp_FWeapon Shooter (Script) component,
click on the Save button at the bottom. Name the file as CQAssault and
continue. Once you exit the game, click on the Load button and bring the
properties in!

14. Select the AdvancedPlayer object and, from the Inspector tab at the top,
click on the Apply button in the Prefab section. This will save all of the
newly created data for any other advanced players we wish to create in
the future.

15. Finally, we are going to save our progress and our scene by going to
File | Save Scene.

Summary
With this, you've hopefully gotten a taste of all of the various toys working with
UFPS gives you, allowing you to only be limited, in terms of your imagination, to
what you want to do with your weapons. Specifically, in this chapter, you learned
how to create a gameplay testbed. We imported assets for a new weapon, created
a mesh for the weapon, added it to our player, added it to the inventory, and then
customized it to suit what we wanted.

In the next chapter, we will delve into level creation by prototyping some levels,
making use of the Prototype tool.

http://www.visionpunk.com/hub/assets/ufps/manual/shooters
http://www.visionpunk.com/hub/assets/ufps/manual/shooters

Chapter 3

[41]

Prototyping Levels with
Prototype

In the game industry, while there are many different roles in the process of
developing games, there are two main roles in level creation, the environment
artist and the level designer.

An environment artist is the person who builds the assets to go into the environment.
They use tools such as 3ds Max or Maya to create the model and then use other tools
like Photoshop to create textures and normal maps.

The level designer is responsible for assembling the assets that an environment artist
creates in an environment for players to enjoy. They design the gameplay elements,
create the scripted events, and test the gameplay. Typically, a level designer will
create environments through a combination of scripting and use some tools that
may be in development. In our case, that tool is Unity.

One thing that is important to note is that most companies have their own
definition for different roles. In some companies, a level designer may
need to create assets and an environment artist may need to create a level
layout. There are also some places that hire someone just for lighting or to
place meshes (called a mesher) because they're so good at it.

Prototyping Levels with Prototype

[42]

In this chapter, we take on the role of a level designer who has been tasked to create
a level prototype to prove that our gameplay is solid. We will use the free tool
Prototype to help in this endeavor. In addition, you will also learn some of the
basics of level designing.

This project will be split into a number of tasks. It will be a simple step-by-step
process from the beginning to the end. Here is the outline of our tasks:

• Creating geometry—building a room
• Building a doorway
• Duplicating rooms / creating a hallway
• Preventing falls—collision
• Adding stairways
• Coloring your world

Prerequisites
Before we start, we will need to have a project created that already has UFPS and
Prototype installed. If you do not have these, follow the steps described in Chapter 1,
Getting Started on an FPS.

Level design 101 – planning
Now, because we are going to be diving straight into Unity, I feel it's important to
talk a little more about how level designing is done in the game industry. While you
may think a level designer will just jump into the editor and start playing, the truth
is you normally need to do tons of planning ahead of time before you even open
your tool.

Generally, a level begins with an idea. This can come from anything; maybe you saw
a really cool building or a photo on the Internet gave you a certain feeling; maybe
you want to teach the player a new mechanic. Turning this idea into a level is what
a level designer does. Taking all of these ideas, the level designer will create a level
design document that will outline exactly what you're trying to achieve with the
entire level from start to end.

Chapter 3

[43]

A level design document will describe everything inside the level, listing all of the
possible encounters, puzzles, so on and so forth that the player will need to complete
as well as any side quests that the player will be able to achieve. To prepare for this,
you should include as many references as you can with maps, images, and movies
similar to what you're trying to achieve. If you're working with a team, making
this document available on a website or Wiki will be a great asset so that you know
exactly what is being done in the level, what the team can use in their levels, and how
difficult their encounters can be. Generally, you'll also want a top-down layout of
your level done either on a computer or graph paper with a line showing the player's
general route through the level with the encounters and missions planned out.

Of course, you don't want to be too tied down to your design document. It will
change as you playtest and work on the level, but the documentation process will
help solidify your ideas and give you a firm basis to work on.

For those of you interested in seeing some level design documents, feel free to check
out Adam Reynolds (Level Designer on Homefront and Call of Duty: World at War) at
http://wiki.modsrepository.com/index.php?title=Level_Design:_Level_
Design_Document_Example.

If you want to learn more about level designing, check out Beginning
Game Level Design, Marc Scattergood and John Feil (previously my
teacher), Cengage Learning PTR. For more of an introduction to all of
game designing from scratch, check out Level Up!: The Guide to Great
Video Game Design, Scott Rogers, Wiley and The Art of Game Design, Jesse
Schell, CRC Press.
For some online resources, Scott has a neat GDC talk called Everything I
Learned About Level Design I Learned from Disneyland that can be found at
http://mrbossdesign.blogspot.com/2009/03/everything-
i-learned-about-game-design.html, and World of Level Design
(http://worldofleveldesign.com/) is a good source for learning
about level designing, though it does not talk about Unity specifically.

In addition to a level design document, you can also create a game design document
(GDD) that goes beyond the scope of just levels and includes story, characters,
objectives, dialogue, concept art, level layouts, and notes about the game's content.
But it is something that you have to do on your own.

http://wiki.modsrepository.com/index.php?title=Level_Design:_Level_Design_Document_Example
http://wiki.modsrepository.com/index.php?title=Level_Design:_Level_Design_Document_Example
http://mrbossdesign.blogspot.com/2009/03/everything-i-learned-about-game-design.html
http://mrbossdesign.blogspot.com/2009/03/everything-i-learned-about-game-design.html
http://worldofleveldesign.com/

Prototyping Levels with Prototype

[44]

Creating the architectural overview
As a level designer, one of the most time-consuming tasks of your job will be to
create environments. There are many different ways out there to create levels. By
default, Unity gives us some default meshes such as a Box, Sphere, and Cylinder.
While it's technically possible to build a level in this manner, it could get tedious
very quickly. Next, I'm going to go through the most popular options to build levels
for the games made in Unity before we jump into building a level of our own.

3D modeling software
Opening up a 3D modeling software package and building architectures this way
is what professional game studios often do. This gives you maximum freedom to
create your environment and allows you to do exactly what you'd like to do; but this
requires you to be proficient in that tool, be it Maya, 3ds Max, Blender (that can be
downloaded for free at http://www.blender.org/), or some other tool. Then, you
just need to export your models and import them in Unity.

Unity supports a lot of different formats for 3D models (the most commonly
used are .obj and .fbx), but there are a lot of issues to consider. For some best
practices when it comes to creating art assets, please visit http://blogs.unity3d.
com/2011/09/02/art-assets-best-practice-guide/.

Constructing geometry with brushes
Using Constructive Solid Geometry (CSG), commonly referred to as brushes, is a
tool artists/designers use to quickly block out pieces of a level from scratch. Using
brushes inside the in-game level editor has been a common approach for artists/
designers to create levels. Unreal Engine 4, Hammer, Radiant, and other professional
game engines make use of this building structure, making it quite easy for people to
create and iterate through levels quickly through a process called whiteboxing as it's
very easy to make changes to simple shapes. However, just like learning a modeling
software tool, there can be higher barriers in creating complex geometry using a 3D
application, but using CSG brushes will provide a quick solution to create shapes
with ease.

http://www.blender.org/
http://blogs.unity3d.com/2011/09/02/art-assets-best-practice-guide/
http://blogs.unity3d.com/2011/09/02/art-assets-best-practice-guide/

Chapter 3

[45]

Unity does not support building things like using brushes (CSG) by default, but
there are several tools in the Unity Asset Store that allow you to do so. For example,
sixbyseven studio has an extension called ProBuilder that can add this functionality
to Unity, making it very easy to build our levels. The only possible downside is
the fact that it costs money, though it is worth every penny. However, sixbyseven
has kindly released a free version of their tools called Prototype that we installed
earlier, which contains everything we would need for this chapter. But it does not
allow us to add custom textures and some of the more advanced tools. We will be
using ProBuilder later on in the book to polish the entire product. You can find more
information on ProBuilder at http://www.protoolsforunity3d.com/probuilder/.

Modular tilesets
Another way to generate architecture is through the use of tiles that are created by
artists to build levels. Similar to using Lego pieces, we can use these tiles to snap
together walls and other objects to create a building. With the creative use of tiles,
you can create a lot of content with minimal assets. This is probably the easiest way
to create a level at the expense of not being able to create unique-looking buildings,
since you only have a few pieces to work with. Titles such as Skyrim use this to great
extents to create their large world environments.

Mix and match
Of course, it's also possible to use a mixture of the previously mentioned tools to use
the advantages of doing things in certain ways. For example, you could use brushes
to block out an area and then use a group of tiles called a tileset to replace the boxes
with highly detailed models, which is what a lot of AAA studios do. In addition, we
could also place brushes initially to test our gameplay and then add in props to break
up the repetitiveness of the levels.

http://www.protoolsforunity3d.com/probuilder/

Prototyping Levels with Prototype

[46]

Creating geometry
The first thing we are going to do is to learn how to create geometry as follows:

1. From the top menu, go to File | New Scene. This will give us a fresh start to
build our project.

2. Next, because we already have Prototype installed, let's create a cube by
hitting Ctrl + K.

Chapter 3

[47]

3. Right now, the Position value of our cube (with its name as pb-Cube-1562 or
something similar) is 2, -7, -2. But for simplicity's sake, I'm going to place it
in the middle of the world. We can do this by typing in 0, 0, 0 by going over
to the Inspector tab, going to the Transform component and then clicking
on the X position. Notice that the cursor is now automatically in the Y slot.
Type in 0 and press Tab again. Then, in the Z slot, press 0.

Alternatively, you can right-click on the Transform
component and select Reset Position.

Prototyping Levels with Prototype

[48]

4. Next, to center the camera back on our Cube object, we will go over to the
Hierarchy tab and double-click on the Cube object (or select it and press F).

5. Now, to actually modify this cube, we are going to open Prototype. We can
do this by first selecting our Cube object, going to the Pb_Object (Script)
component, and then clicking on the green Open Prototype button.

Chapter 3

[49]

Alternatively, you can also go to Tools | Prototype |
Prototype Window.

Prototyping Levels with Prototype

[50]

This is going to bring up a window much like the one I have displayed in the
preceding screenshot. This new Prototype tab can be detached from the main
Unity window, or if you drag it from the tab over to Unity, it can be "hooked"
into place elsewhere, like the following screenshot shows by dragging and
dropping it to the right of the Hierarchy tab.

6. Next, select the Scene tab at the center of the screen and press the G key to
toggle us into the Object/Geometry mode. Alternatively, you can also click
on the Element button in the Scene tab. Unlike the default Object/Top Level
mode, this will allow us to modify the cube directly to build on it.

For more information on the different modes, check
out the modes and elements section at http://www.
protoolsforunity3d.com/docs/probuilder/#
buildingAndEditingGeometry.

You'll notice that the top of the Prototype tab has three buttons. These stand
for the selection type you currently want to use. The default is the Vertex or
Point mode, which will allow us to select individual parts to be modified.
Next are Edge and Face. Face is a good standard to use at this stage, because
we only want to extend things out.

http://www.protoolsforunity3d.com/docs/probuilder/#buildingAndEditingGeometry
http://www.protoolsforunity3d.com/docs/probuilder/#buildingAndEditingGeometry
http://www.protoolsforunity3d.com/docs/probuilder/#buildingAndEditingGeometry

Chapter 3

[51]

7. Select the Face mode by either clicking on the button or pressing the H key
twice till it says Editing Faces on the screen. Afterward, select the box's
right side.

For a list of keyword shortcuts included with
Prototype/ProBuilder, check out http://
www.protoolsforunity3d.com/docs/
probuilder/#keyboardShortcuts.

http://www.protoolsforunity3d.com/docs/probuilder/#keyboardShortcuts
http://www.protoolsforunity3d.com/docs/probuilder/#keyboardShortcuts
http://www.protoolsforunity3d.com/docs/probuilder/#keyboardShortcuts

Prototyping Levels with Prototype

[52]

8. Now, pull the red handle to extend the brush outward.

Easy enough. Note that, by default, while pulling things out, it is done with
an increment of .1. This is nice when we are polishing our levels and trying
to make things exactly where we want them to be; but right now, we are
just prototyping, so it is paramount to get it out as quickly as possible to
test if it's enjoyable. To help with this, we can use a feature of Unity called
Unit Snapping.

9. Undo the previous change we made by pressing Ctrl + Z, move the camera
over to the other side, and select our longer face. Drag it out to be 9 units by
holding down the Ctrl key (command on Mac).

ProCore3D also has another tool out called ProGrids that
has some advanced unit-snapping functionality, but we
are not going to be using it. For more information on it,
check out http://www.protoolsforunity3d.com/
progrids/.
If you'd like to change the distance travelled while
using unit-snapping, set it using the Edit | Snap
Settings… menu.

http://www.protoolsforunity3d.com/progrids/
http://www.protoolsforunity3d.com/progrids/

Chapter 3

[53]

10. Next, drag both the sides out till they are 9 x 9 wide. To make things easier to
see, select the Directional Light object in the scene via the Hierarchy tab and
reduce the Light component's Intensity value to .5.

So, at this point, we have a nice looking floor, but to create our room, we first
need to create the ceiling.

Prototyping Levels with Prototype

[54]

11. Select the floor we have created and then press Ctrl + D to duplicate the
brush. Once completed, go back to the Object/Top Level editing mode and
move the brush so that its Position value is at 0, 4, 0.

Alternatively, you can click on the duplicated object and,
in the Inspector tab, change the Position value of Y to 4.

Chapter 3

[55]

12. Go back to the sub-selection mode by hitting H to go back to the Faces mode.
Hold down Ctrl and select all of the edges of our floor. Then, click on the
Extrude button in the Prototype panel.

This creates a new part on each of the four edges that is, by default, .5 wide
(change it by clicking on the + button at the edge). This adds additional edges
and/or faces to our object.

Prototyping Levels with Prototype

[56]

13. Next, we are going to extrude again. But rather than doing it from the menu,
we do it manually by selecting the top of our newly created edges, holding
down the Shift button, and dragging it up along the Y (green) axis. We then
hold down Ctrl after we start the extrusion to have it snap appropriately to fit
around our ceiling.

Note that the box may not look like this as soon as you
let go, as Prototype needs time to compute the lighting
and materials, which it will mention in the bottom-right
corner of Unity.

Chapter 3

[57]

14. Next, select Main Camera in the Hierarchy tab, hit W to switch to the
Translate mode and F to center-align the selection, and move our camera
into the room.
You'll notice that it's completely dark because of the ceiling, but we can add a
light to the world to fix that!

15. Let's add in a point light by going to GameObject | Light | Point Light and
positioning it at the center of the room toward the ceiling (in my case, it is at
4.5, 2.5, 3.5). Then, up the Range value to 25 so that it hits the entire room.

Prototyping Levels with Prototype

[58]

16. Finally, add in a player to see how he interacts. Delete the Main Camera
object from Hierarchy as we won't need it. Then, go to the Project tab and
open the Assets\UFPS\Base\Content\Prefabs\Players folder. Drag and
drop the AdvancedPlayer prefab in such that it doesn't collide with the
walls, floors, or ceiling. Place it a little higher than the ground, as shown in
the following screenshot:

Chapter 3

[59]

17. Next, save the level (Chapter 3_1_CreatingGeometry) and hit the
Play button.

It may be a good idea for you to save your levels, so you
can go back and see what was covered in each section for
each chapter, making things easier to find in the future.

Again, remember that we can pull a weapon out by pressing
the 1 to 5 keys.

With this, we now have a simple room that we can interact with.

Prototyping Levels with Prototype

[60]

Building a doorway
As awesome as it is to have a room, our levels are actually going to be much larger
than this. Let's open an opening to the rest of the levels by creating a doorway.

Now, if we had ProBuilder, we could use the subdivide tool and modify the faces
to open up a doorway. But in our case, we will rebuild our room, taking the door
into consideration:

1. Let's go ahead and delete our floor/walls object and move our original
ceiling back down to 0, 0, 0.

Chapter 3

[61]

2. Let's press Ctrl + K to spawn a new brick and bring it into our scene. Move
it so that it snaps to the edge of our room, making sure that the Prototype
subselection is turned off before the movement.

Prototyping Levels with Prototype

[62]

3. In the Prototype tab, switch back to the Element/Geometry mode and select
the face nearest to you. Move it so that it is 3 units wide, leaving room for our
doorway in the center. Hold down Ctrl while you do so for it to be even.

4. Hold down the Shift key to extrude and pull it forward a bit. Then, hold
down Ctrl to start snapping again and pull it so it is 3 units wide again.
Finally, perform the same steps again to reach the end of the area. If all goes
well, you should have it subdivided into three separate pieces that you can
select individually.

Chapter 3

[63]

5. Select the two sides of the wall and pull it up in the same manner used
previously, extruding out again to be 3 units tall.

Prototyping Levels with Prototype

[64]

6. Our doorway isn't going to take up the entire wall, so let's extrude one of the
edges again and use its side to fill up the rest of the wall to be 4 units tall.

7. Using the center face of the ceiling, extrude using Shift + the left mouse
button. Drag and then hold Ctrl to snap and fill in the top of the door frame.

Once you've created this, raise up the top part once again to make it flush
with the ceiling we are going to create in the future.

8. Now, let's create a ceiling like the last time by duplicating the floor and
moving it to 5 on the Y axis, making it 6 units tall.

Chapter 3

[65]

9. Now that we have the door part of the doorway ready, let's add the rest of
the walls to our room. We could create a block using Ctrl + K and then resize
it to fit the box, but let's make use of the rotation tool instead.

10. Select the floor object and duplicate it. Hit E to go to the Rotation mode.
Rotate it on the Z axis while holding Ctrl to rotate it by 90 degrees with
snapping to make it easier to get there.

11. Then, snap the height of the top face down by 4 units to flush it with
the ceiling.

Prototyping Levels with Prototype

[66]

12. Duplicate the newly created wall (Ctrl + D) and translate (W) it to the other
side. Finally, do another rotation (E) of 90/-90 on the Y axis and use the
Prototype subselection to pull out the face by 1 unit to flush it with the wall.

13. Next, for the sake of cleanliness, let's clean up Hierarchy. Create an empty
game object by going to GameObject | Create Empty. Reset its position and
change the name to Simple Room. Then, drag and drop all of the Cube objects
and Point light into it as a child.

For the sake of a clean workspace, you can also
rename the child objects to wall_l, wall_r,
wall_back, wall_floor, wall_ceiling,
and wall_doorway, respectively.

Chapter 3

[67]

14. Finally, save the level and play the game.

With this, we now have a door.

www.allitebooks.com

http://www.allitebooks.org

Prototyping Levels with Prototype

[68]

Duplicating rooms / creating a hallway
Now that we've created a single room, let's see how easy it is to create an
additional one.

1. In the Project tab, select Create | Folder and name the new folder Prefabs.
Move the newly created folder to the MyGame folder we created previously
and double-click on the folder to enter it.

2. Make sure you are in the Object/Top Level mode and then select the Simple
Room object from the Hierarchy tab. Drag and drop it into our Prefabs
folder from the Project tab. You'll notice that the object in the Hierarchy tab
will turn blue to indicate that it is a prefab.
Prefabs or the prefabricated objects are the objects we set aside to make
copies of during runtime, such as AdvancedPlayer we used previously from
UFPS. With this blueprint, we can create as many as we want. When you
add a Prefab folder to a scene, you will create an instance of it. All of these
instances are clones of the object located in our Assets. Whenever you change
something in the prefab located in the Prefab folder, the changes are applied
to all of the objects that are already inside the scene. For example, if you add
a new component to a Prefab, all of the other objects we have in the scene
will instantly contain the component as well. However, it is also possible
to change the properties of a single instance while keeping the link intact.
Simply change any property of a prefab instance inside your Scene and that
particular value will be bolded to show that the value is overridden; they
will not be affected by the changes in the source Prefab. This allows you to
modify the Prefab instances to make them unique from their source Prefabs
without breaking the Prefab link.

Chapter 3

[69]

3. After this, drag and drop one of the prefabs into the level, setting the X, Y,
and Z values to be similar to the original room to make it easier for us to line
it up later.

Prototyping Levels with Prototype

[70]

4. Drag the object over to be away from the old room (I used a Position value
of -21, 0, 7). Switch to the Rotation tool and rotate it by 180 degrees on the
Y axis, making sure that the pivot near the top-left corner of the menu is set
to Center.

Chapter 3

[71]

5. Next, in order to connect the rooms together, switch to the Translate tool and
then switch back to the Geometry/Element mode. Create a new Cube and
connect them together.

You could also extrude from the bottom of our
doorway, but it prevents our ability to modify in
the future as needed.

Prototyping Levels with Prototype

[72]

6. Save the level and hit the Play button.

There we go! Now, we have two rooms and a connection between them.

Depending on if its still building or not, in-game rendering might not
display all the objects appropriately. If this happens, pause the game,
try saving it again, and run it again.

Chapter 3

[73]

Preventing falls - collision
We don't want to have players always be stuck in walls, but we also want to make
sure they don't fall down into the void. We can fix this problem with the addition
of colliders:

1. Select our "bridge" between the two areas and duplicate the object by hitting
Ctrl + D. Reduce the newly created object's width to 1 unit and have it go up
to be 3 units tall.

2. Switch back to the Object mode, duplicate the object, and then move it to the
other side.

Prototyping Levels with Prototype

[74]

3. Select both the objects and, in the Prototype panel, click on the Set
Collider button.

Chapter 3

[75]

You'll notice that there is now some nice semitransparent boxes in the areas
where our full boxes were. These are colliders or rather volumes that will
block the player upon colliding.

4. Save the level and play the game.

You'll notice that the colliders aren't visible. They, in fact, block us from going out of
the level. Perfect!

Prototyping Levels with Prototype

[76]

Adding stairways
One of the benefits of creating a 3D game is that we can have a vertical element
to play, adding in areas for players to snipe or high ground that players would
intuitively go to. To help players traverse in these areas, we can use stairways.
However, instead of creating the brush from scratch, we can use another tool of
Prototype, Shape Tool.

1. In the Prototype tab, click on the Shape button to bring up the Shape Tool
dialog box.

This menu will allow us to create some commonly used objects in games that
we can use to make the building process much simpler.

2. In the Shape Tool dialog, select the Shape Selector dropdown and then
select Stair. Change the Width value to 5 and click on Build Stair.

Chapter 3

[77]

3. After this, click on X to close Shape Tool and move the stairs to face the
first room.

4. Next, raise the other room to fit the stairs and extend the colliders to fit our
newly added ground.

Prototyping Levels with Prototype

[78]

5. Next, switch back to the Top Level Editing mode and move the colliders 1
unit away on both sides.

6. Then, select one of the colliders and click on the eye icon to the right of the
Set Collider button to toggle its visibility. The colliders will still be active;
this is just an option to keep them out of the way while we're building
the geometry.

7. With this finished, go to the hallway's edges and extend them out. Do the
same for the edges in the top room.

Chapter 3

[79]

This looks pretty good, but when we go and play the game…

Prototyping Levels with Prototype

[80]

The stairs block us till we jump. Now, we could just rebuild the stairs with
more steps; but even this will be jagged, unless there are a lot of steps.
Thankfully, we can use colliders in another way.

8. Go back to the Top Level Editing mode and duplicate the hallway brush.
Move it up by 1 unit on the Y axis and reduce its size on the X axis by
dragging it to start at a distance of 1 unit from the front of the stairs.

9. From the camera widget in the top-right corner of the Scene tab, click on
the edge that is closest to the backside of the staircase. To help with the
movement of multiple vertices, click on the middle button of our camera
widget (also known as the Scene Gizmo) to change our camera to the
Isometric mode.

Chapter 3

[81]

The Isometric mode allows us to view objects "straight on" so
that the pieces on the same spot via a grid overlap rather than
be slightly askew like in the Perspective mode. Alternatively,
think of it as if you are making a 2D game with all the game
being on a plane. While in the Isometric mode, you can hold
down the right mouse button and drag to orbit the camera
around. You can also hold down Alt and the middle mouse
button and drag to pan the camera.
For information on the Scene Gizmo, check out http://docs.
unity3d.com/Manual/SceneViewNavigation.html.

10. From there, do a marquee selection from the top-right vertices of our box.
Then, use the Translate tool to move it 1 unit down to be flushed with the
other vertices.

A marquee selection is a quick way to select or deselect a
group of actors within a certain area in the viewport. This
type of selection involves clicking and dragging the mouse
to define a box. All the vertices within the box will be
selected, including those behind the one on the front.

http://docs.unity3d.com/Manual/SceneViewNavigation.html
http://docs.unity3d.com/Manual/SceneViewNavigation.html

Prototyping Levels with Prototype

[82]

11. From the left side, select the two vertices on the left side and then move them
to the right 1 unit. Next, select the top-left vertices and move them up to
flush them with the top stair to create a ramp.

This is starting to look like a nice ramp, but you can still notice the ridges of
the steps. This is important to note because, if we play the game now, the
player will have to stop at these points and jump to continue to move up.

12. Drag the right side over until all of the edges are gone. When you are
finished, click on the camera gizmo again to switch back to Perspective.
Switch back to the Object mode and then, with the ramp selected, click
on Set Collider.

Chapter 3

[83]

13. Save your level and play the game.

Prototyping Levels with Prototype

[84]

Coloring your world
This is looking good. We've got a nice foundation to build upon, but it's pretty
barren. We can't use textures yet, as it's a ProBuilder-only tool. But we can apply
colors to our walls to help differentiate the areas. Let's see how we can do this now.

1. Go back to our first room and select the top section of our doorway walls.
Then, click on the Vertex Colors button from the Prototype tab.

This will bring up an example number of colors, but we can customize them
by clicking on the bottom section.

2. Now, with the faces selected, click on the blue button.

Chapter 3

[85]

3. With this, we have some color. Let's add some color to the other room from
the outside. Select the sides and top of the room and click on the red button.

Prototyping Levels with Prototype

[86]

4. Then, do the same to the other sides for both of the changes we made.
5. Save the level and start the game.

There, we have it! This was a simple example; as you build your levels in the future,
this can be a good way to help players mark certain areas or help break issues with
only using white. However, you'll need to extrude the faces you want to color,
unless you want the entire wall to be colored!

Summary
We've now gone over most of the features of Prototype, giving a good basis on which
you should be able to create a first-person shooter level using interior spaces.

For those wanting to see more of ProBuilder/Prototype in action, here is a video
series involving Gabriel Williams creating the famous E1M1 map from the original
Doom game. https://www.youtube.com/watch?v=f2ia28kSiLs&list=PLrJfHfcFk
LM9dWnj31b8XTdePDLIOWk7e

In the next chapter, we will delve into creating exterior areas, making use of Unity's
terrain features.

https://www.youtube.com/watch?v=f2ia28kSiLs&list=PLrJfHfcFkLM9dWnj31b8XTdePDLIOWk7e
https://www.youtube.com/watch?v=f2ia28kSiLs&list=PLrJfHfcFkLM9dWnj31b8XTdePDLIOWk7e

Chapter 4

[87]

Creating Exterior
Environments

In the previous chapter, you learned how to create areas quickly, making use
of Prototype. Now, this is a great tool when you're trying to create something
man-made, such as houses, streets, and space stations. But for more organic
things, such as hills, this can lead to issues. In this chapter, we are going to
explore ways to add more organic-feeling areas to our level.

This project will be split into a number of tasks. It will be a simple step-by-step
process from the beginning to the end. Here is the outline of our tasks:

• How to create a Terrain
• How to add textures to our Terrain
• Adding reflective water
• Adding trees
• Adding grass for details
• How to build the atmosphere of our levels

Prerequisites
Before we start, we need to have a project created that already has UFPS and
Prototype installed. If you do not have these already, follow the steps described
in Chapter 1, Getting Started on an FPS.

Creating Exterior Environments

[88]

Introduction to Terrain
Terrain is basically anything that is nonman-made such as hills, deserts, mountains,
and so on. Unity's way of dealing with Terrains is different than what most engines
do in the fact that there are two ways to make them, one being to use a height map
and the other being to sculpt from scratch.

Height maps
Height maps are a common way for game engines to support Terrain. Rather than
creating tools to build Terrain within the level, the artist/designer can use a graphic
designing software (such as Adobe Photoshop) to create a greyscale image. These
values are then interpreted by the software to calculate its dimensional height based
on lightness or darkness. We can translate the image into a Terrain by using this
height map.

We've already seen an example of a height map in CleanScene that we used in
Chapter 2, Building Custom Weapons. You'll notice that there is an object called
Terrain in the Hierarchy tab. This object encompasses all the bumps and hills
within the scene.

Chapter 4

[89]

In the UFPS/Base/Content/Levels/CleanScene/Terrain folder, you'll notice
that there is a file called Heightmap, which is of the RAW type. Unity can load this
data in and produce the following hills scene. If we were to open this file in Adobe
Photoshop, it would appear like the following:

The lighter values of the colors within HeightMap are calculated to make the Terrain
taller in 3D space, and dark grey or black values are calculated to push the Terrain
lower in 3D space. Generally speaking, black is the lowest and white is the highest in
terms of creating the altitude of our Terrain.

The Terrain Height property sets how high white actually is in
comparison to black.

Creating Exterior Environments

[90]

In order to apply a height map to a Terrain object, inside the Terrain component,
click on the Settings button and scroll down to Import Raw….

For more information on Unity's Height tools, check out http://
docs.unity3d.com/Manual/Terrain-Height.html.
If you want to learn more about creating your own HeightMaps
using Photoshop, check out http://worldofleveldesign.com/
categories/udk/udk-landscape-heightmaps-photoshop-
clouds-filter.php. While this tutorial is for UDK, the area in
Photoshop is the same.
Others also use software such as Terragen to create heightmaps. More
information on this is available at http://planetside.co.uk/
products/terragen3.

Hand sculpting
The other way of creating the Terrain is to do so by hand. This allows us to have
everything exactly as we want it, and is the way we will be doing it in this chapter.

http://docs.unity3d.com/Manual/Terrain-Height.html
http://docs.unity3d.com/Manual/Terrain-Height.html
http://worldofleveldesign.com/categories/udk/udk-landscape-heightmaps-photoshop-clouds-filter.php
http://worldofleveldesign.com/categories/udk/udk-landscape-heightmaps-photoshop-clouds-filter.php
http://worldofleveldesign.com/categories/udk/udk-landscape-heightmaps-photoshop-clouds-filter.php
http://planetside.co.uk/products/terragen3
http://planetside.co.uk/products/terragen3

Chapter 4

[91]

Creating the Terrain
In Unity, the best tool to use to create a natural landscape is the terrain tool.
Unity's terrain system allows us to sculpt and shape the landscape of our level.
This tool is frequently used to create outdoor environments, because the ground
is never completely flat in nature. This tool will help the artist create organic and
asymmetrical details as well as a realistic ground plane for your player to walk on.
After the Terrain is sculpted and formed, we can complete our environment by
adding in bushes, trees, and fading materials.

To see how easy it is to use the tool, let's get started with creating the Terrain:

1. First, let's create a new scene from scratch by going to File | New Scene.
2. Next, we need to actually create the Terrain we'll be placing for the world.

Let's first create a Terrain by selecting GameObject | 3D Object | Terrain.

At this point, you should see the Terrain.

If for some reason you have problems seeing the Terrain object,
go to the Hierarchy tab and double-click on the terrain object to
focus your camera on it and move in as needed.

Creating Exterior Environments

[92]

Right now, it's just a flat plane, but we'll be doing a lot to it to make it shine.
If you look to the right with the terrain object selected, you'll see the Terrain
editing tools that do the following (from left to right):

 ° Raise/Lower height: This will allow us to raise or lower the height of
our Terrain in a certain radius to create hills, rivers, and more.

 ° Paint height: If you already know the exact height a part of your
Terrain needs to be, this tool will allow you to paint a spot at
that location.

 ° Smooth height: Averages the area that it is in and attempts to
smoothen the areas and reduce the appearance of abrupt changes.

 ° Paint texture: Allows us to add textures to the surface of our Terrain.
One of its nice features is the ability to lay multiple textures on top of
each other.

 ° Place trees: Allows us to paint objects in our environment that will
appear on the surface. Unity attempts to optimize these objects by
billboarding distant trees, so we can have dense forests without
having a horrible frame rate.

 ° Paint details: In addition to trees, you can also have small things
such as rocks or grass covering the surface of your environment by
using 2D images to represent individual clumps and using a bit of
randomization to make it appear more natural.

 ° Terrain settings: Settings that will affect the overall properties of the
particular Terrain; options such as the size of the Terrain and wind
can be found here.

By default, the entire Terrain is set to be at the bottom. But we want to have
ground above and below us, so we can add in things such as lakes.

3. With the Terrain object selected, click on the second button to the left of the
Terrain component (the Paint height mode).

Chapter 4

[93]

4. From there, set the Height value under Settings to 100 and then press the
Flatten button. At this point, you should see the plane moving up, so now
everything is above ground level by default.

5. Next, we are going to create some interesting shapes in our world with some
hills by painting on the surface. With the Terrain object selected, click on the
first button to the left of our Terrain component (the Raise/Lower Terrain
mode). Once this is completed, you should see a number of different brushes
and shapes that you can select from.
Our use of Terrain is to create hills in the background of our scene, so it does
not seem like the world is completely flat.

6. Under Settings, change the Brush Size and Opacity value of your brush
to 100 and click around the edges of the world to create some hills. You
can increase the height of the current hills by clicking on the top of the
previous hills.

Creating Exterior Environments

[94]

While creating hills, it's a good idea to look at them from
multiple angles, so you can make sure that none are too
high or too short. Generally, having tall hills around the
outside of the Terrain prevents the player from seeing
where the Terrain cuts off, which is a good thing.
In the Scene view, to move your camera around, you can
use the toolbar at the top-right or right-click and drag the
mouse in the direction you want the camera to move in,
pressing the WASD keys to pan. In addition, you can hold
down the middle button and drag the mouse to move the
camera around. The mouse wheel can be scrolled to zoom
in and out from where the camera is.
Even though you should plan the level ahead of time
on something like a graph paper to plan encounters and
so on, you should avoid making the level entirely from
above, as when the player is actually in the game, they
will not see it that way at all (most likely). Referencing the
map from the same perspective of your character will help
ensure that the map looks great.
To see many different angles at the same time, you can use
a layout with multiple views of the scene such as 4 Split,
which you can go to by clicking on the Layout dropdown
menu at the top-right of the screen and then selecting it.

7. Of course, we should see how the Terrain looks in the game with our player
first. So, we select the Main Camera object in our Hierarchy tab and delete it
by pressing the Delete key.

Chapter 4

[95]

8. Go to the UFPS/Base/Content/Prefabs/Players folder and drag and drop
an Advanced Player prefab into our world. Place it into the scene and then
select it to ensure that the collider is above the Terrain to avoid collision
problems, causing the player to fall through the map. Now, if you play the
game, you'll get a good view as to how the level currently looks.

9. Once our land is ready, we can create some holes in the ground to fill water
in later. This will provide a natural barrier in our world that players will
know they cannot pass.

Creating Exterior Environments

[96]

10. To do this, we first need to go back to the Raise/Lower Terrain mode. We
then create a moat by changing the Brush Size value to 50 and then holding
down the Shift key and clicking around the middle of our texture. In this
case, it's okay to use the top view; remember that this will eventually be
water to fill in the lakes, rivers, and so on.

To make it easier to see, you can click on the sun-looking light icon in the Scene tab
to disable the lighting's settings for the time being. Alternatively, if you'd still like
to see shadows, you can select the Directional Light object in the Hierarchy tab and
decrease the light's intensity by about 25%.

At this point, in a traditional studio, you'd spend time playtesting the
level and iterating on it before an artist or you took the time to make it
look great. However, in this case, we want to create a finished project as
soon as possible. While designing your own games, be sure to play your
level and have others play your level before you polish it.
For more information on greyboxing, check out http://www.
worldofleveldesign.com/categories/level_design_
tutorials/art_of_blocking_in_your_map.php.
If you are interested in checking out how a level is built in greybox from
start to finish, check out this article from PC Gamer, which has images
of each step, at http://www.pcgamer.com/building-crown-
part-one-the-first-look-at-the-next-big-counter-
strike-go-competitive-map/. The whole thing is worth a read.

http://www.worldofleveldesign.com/categories/level_design_tutorials/art_of_blocking_in_your_map.php
http://www.worldofleveldesign.com/categories/level_design_tutorials/art_of_blocking_in_your_map.php
http://www.worldofleveldesign.com/categories/level_design_tutorials/art_of_blocking_in_your_map.php
http://www.pcgamer.com/building-crown-part-one-the-first-look-at-the-next-big-counter-strike-go-competitive-map/
http://www.pcgamer.com/building-crown-part-one-the-first-look-at-the-next-big-counter-strike-go-competitive-map/
http://www.pcgamer.com/building-crown-part-one-the-first-look-at-the-next-big-counter-strike-go-competitive-map/

Chapter 4

[97]

Adding color to our Terrain – textures
This is interesting enough, but it would be quite boring to be in an all-white world.
Thankfully, it's very easy to add textures to everything. But first, we need to have
some textures to paint onto the world and, for this instance, we will make use of
some of the free assets that Unity provides us with. To make use of these assets
perform the following steps:

1. To download it, we'll use the Asset Store again. So, with this in mind,
select Window | Asset Store.

2. In the top-right corner of the screen, you'll see a search bar where you can
type in Terrain assets and press Enter. Once there, the first asset you'll see
is Terrain Assets that is released by Unity Technologies for free. Click on it
and then once in the menu, click on the Download button.

Creating Exterior Environments

[98]

3. Once it finishes downloading, you should see the Importing package
dialogue box popup (if it doesn't pop up, click on the Import button,
where the Download button used to be).

4. Generally, you'll want to select only the assets that you want to use and
uncheck the others. But since you're exploring the tools right now, we'll
just click on the Import button to place them all.

5. Close the Asset Store if it's still opened and go back to our Game view.
You should notice the new Terrain Assets folder placed in our Assets
folder. Double-click on it and then enter the Textures folder.

Chapter 4

[99]

These will be the textures we will be placing in our environment.

6. Select the Terrain object and click on the fourth button from the left
(that looks like a paint brush) to select the Paint Texture button.

7. Here on, you'll notice that it looks quite similar to the previous sections we've
seen. If you look under the Terrain Assets section for Textures, you will
notice that it says No Terrain textures defined. So, let's fix this. Click on the
Edit Textures button and select Add Texture.

Creating Exterior Environments

[100]

8. You'll see an Add Terrain Texture dialogue popup. Under the Albedo (RGB)
variable, place the Grass (Hill) texture (use the search dialog) and then click
on the Add button.

The left texture slot labeled Albedo (RGB) Smoothness (A) is just a complex
way of saying diffuse/color map. RGB stands for the colors red, green, and
blue and A stands for Alpha. This texture slot has the ability to provide color
and opacity to a texture, which is usually saved in a separate channel within
the image file. Grass and shrubs in videogames frequently have alphas
within their color/diffuse maps to create an illusion that they aren't a
bunch of planes with a texture slapped on.

Chapter 4

[101]

The Normal map slot to the right is generally used in tandem with colored
maps. It uses brightly colored RGB information to give more realism and
depth to a color texture. We will be using these more later on in the book.
At this point, you should see the entire world change to green if you're far
away. If you zoom in, you'll see that now the entire Terrain is using the
Grass (Hill) texture.

Creating Exterior Environments

[102]

9. Now, we don't just want the entire world to have grass. We will next be
adding cliffs around the edges where the water is. To do this, we will add an
additional texture by going to Edit Textures... | Add Texture. Select Cliff
(Layered Rock) as Texture and click on Add. Now, if you select Terrain
from the Inspector tab, you should see two textures. With the Cliff texture
selected, paint the edges of the moat by clicking and holding the mouse,
modifying the Brush Size value as needed.

You may also spend time painting the mountains on the outside of the area
to create a nicer looking environment such as the following screenshot:

Chapter 4

[103]

Now, it's starting to look really nice. But if we play the game and look at the
ground, at a distance, you will see some repetitiveness in the textures.

Creating Exterior Environments

[104]

Thankfully, Unity has some things we can do in order to break up this
monotony, namely that we can mix the textures.

10. To reduce the appearance of texture duplication, we can introduce new
materials with a very soft opacity that we will place in patches in the areas
where there is just plain ground. For example, let's create a new texture with
the Grass (Meadow) texture. Change the Brush Size value to 16 and the
Opacity value to something really low, like 6, and then start painting in the
areas that look too static. Feel free to select the first brush again to have a
smoother touch up.

Chapter 4

[105]

11. Now, suppose we were to zoom into the world as if we were a character
there. I can tell that the first grass texture is way too big for the environment,
but this can be changed very easily. Double-click on the texture to change the
Size to (8,8). This will make the texture smaller before it duplicates. It's a
good idea to have different textures with different sizes so that the seams of
each texture aren't visible to others.

As you can see, it already looks a lot nicer in the scene, but as it stands, it's just a
couple of hills without much else to guide the player. To really add to the high
quality of this level, we're going to need to add in some additional features to
make it appear like a real place.

Creating Exterior Environments

[106]

Adding water
We created the lower section of our gameplay area to be at the water level or where
the water would be. This can be a useful tool as a level designer to designate places
where players can't go to if they can't swim. Thankfully, it's also quite easy to add
to our level and, due to it being included in Unity, we won't need to go to the Asset
Store to get it.

1. Go to Assets | Import Package | Environment and wait for it to load all
of the objects it has. Once the entire package loads, we only want the basic
water materials. First click on the None button at the bottom, shrink all of
the folders, expand Standard Assets folder, and then check the Water
folder. After you've done all of this, click on the Import button.

During the import process, keep in mind that sometimes it may seem like
Unity is frozen if the game is still running.

Chapter 4

[107]

2. Next go to the Standard Assets/Environment/Water/Water/Prefabs
folder to drag and drop the WaterProDaytime prefab into the scene.

3. Once in the scene, change the object's Position value to 250, 90, 250 and
give it a Scale value of 250, 1, 250, so it covers the entire area. Next, in the
Water (Script) component from the Inspector tab, change Water Mode to
Reflective. So, instead of seeing what's underneath the water, we see the
reflection of what's around us.

Creating Exterior Environments

[108]

4. Save the level and play the game to take a look at your newly created water.

For more information on creating water or learning how to create
water from scratch, check out http://docs.unity3d.com/
Manual/HOWTO-Water.html.

Adding trees
Hills typically aren't just grass. Vegetation can be used to block a player's visibility
and give a better look to our environment. Perform the following steps to add tress:

1. From the Project tab, go to the Assets/Terrain Assets/Trees Ambient-
Occlusion folder and drag and drop a tree into the world (I'm using
ScotsPineTree).
By default, these trees do not contain collision information, so our player
could just walk through it. This is actually great for the areas that the player
will not reach, as we can add more trees without having to do meaningless
calculations. But we need to stop the player from walking through them, so
we're going to add a collider.

http://docs.unity3d.com/Manual/HOWTO-Water.html
http://docs.unity3d.com/Manual/HOWTO-Water.html

Chapter 4

[109]

2. To do so, select the tree, select Component | Physics | Capsule Collider,
and then change the Radius value to 1.

You have to use a Capsule Collider for collision to carry
over to the Terrain.

3. After this, move our newly created tree into the Assets\MyGame\Prefabs
folder under the Project tab and change its name to CollidingTree.

4. Once we verify that the object exists as a prefab, delete the object from the
Hierarchy tab. With that done, go back to our Terrain object and click on the
Place Trees mode button (the one that looks like two trees). Just like with
Textures, there are no trees in it by default, so click on Edit Trees… | Add
Tree, add our Colliding Tree, and then select Add.

To check the names of each button, you can hold the
mouse over the image for a second. It will display what
it is.

Creating Exterior Environments

[110]

5. Next, under Settings, change Tree Density to 15 and, with our new tree
selected, paint the areas where you'd like to see trees. However, do not place
them on the hills yet, since we know the player will not go there so they do
not need to have collision.
If you hold down Shift and paint, you will remove trees instead of
placing them.

6. You should also verify that Enable Tree Colliders in the Terrain Collider
component is enabled.

7. Find the Colliding Tree prefab in the Project tab, duplicate it by pressing the
Alt + left mouse button, and drag it to the negative space to create a copy.
Select the new tree and rename it to TreeNoCollision. Remove the collision
component from it by scrolling down to Capsule Collider. Click on the Gear
drop down menu and select remove component.

Chapter 4

[111]

8. Next, go to Edit Trees | Add Tree and in the TreeNoCollision object.
We can add these in much higher numbers if needed and place them
on the other side of the water where the hills are.

9. Save your level and play the game.

As you can see, the world is already much better to look at.

If you want to add more details to your levels, you can add additional
trees and/or materials to the area as long as it makes sense for them to
be there.
For more information on the Terrain Engine that Unity has, please visit
http://docs.unity3d.com/Manual/script-Terrain.html.

http://docs.unity3d.com/Manual/script-Terrain.html

Creating Exterior Environments

[112]

Adding details – grass
Let's now see how we can use the Paint Details tool to add more details to our maps.

1. The mode to the right of the Plant Trees mode is the Paint Details mode.
Click on it, then click on the Edit Details… button, and select Add Grass
Texture. Select the Grass texture inside of the TerrainAssets\Grass folder
for Detail Texture. After this, set Healthy Color and Dry Color by using the
eyedropper and choosing a color similar to our textures. Once you're done
modifying the settings, click on Apply.

The eyedropper can actually pick up colors from anywhere, including the
textures on the Terrain, making it very easy for us to pick out similar colors.

Chapter 4

[113]

2. Once created, start dragging around to paint the grass in the world in the
same way we did the textures. If you can't see it being placed, zoom in as you
need to be close to see it. You can adjust Opacity and Target Strength to a
lower value to make the grass more dispersed and not so close to each other.

Depending on the power of your computer, you may want to have less grass
and/or details. You can see the grass further away by increasing the Detail
Distance property if you have a powerful computer.

3. Lastly, our current island is very flat and while that's okay for cities, nature
is random. From the Inspector tab with the Terrain object selected, go back
to the Height Raise/Lower mode in the Terrain component and gently raise
and lower the levels of some areas to give the illusion of depth. Do note that
your trees and grass will rise and fall with the changes you make.

Creating Exterior Environments

[114]

4. Once you're finished, save your level and play the game.

This aspect of level creation isn't very difficult, it is just time-consuming.
However, it's the time taken to put in these details that really sets a
game apart from other titles. Generally, you'll want to playtest and
make sure that your level is fun before you perform these actions. But
I feel, it's important for you to have an idea of how it is done for your
future projects.

Building the atmosphere – Skyboxes
and Fog
Now the base of our world is created. Let's add some effects to make the game more
visually appealing.

Chapter 4

[115]

The first part of creating the atmosphere is to add something to the sky. Now, in
Unity 5, we are given a Skybox by default, but we will be using one of our own that's
provided by UFPS. Skybox is a method of creating backgrounds to make the area
seem bigger than it really is by putting an image in the areas that are currently being
filled with the light blue color, staying still while we move just like the sky doesn't
move when we go around because it's so far away.

The reason we say Skybox is because we save six textures (one for each side of a
cube). Game engines such as unreal have skydomes that do the same thing just
with a hemisphere instead of a cube:

1. To modify the skybox, we can go to Window | Lighting. Once in there, click
on the Scene button to look at the lighting properties of the current scene.

2. In the Project tab, click on the search bar in the top-right corner and type
in Skybox. You'll see that there are a couple of Skyboxes that we've already
imported that are a part of UFPS. Drag and drop the Sunny2 Skybox object
into the Skybox property from the Environment Lighting tab.

Creating Exterior Environments

[116]

3. Save your scene and play the game.

For more information on building you own Skybox, check out
http://docs.unity3d.com/Manual/HOWTO-UseSkybox.html.

This already makes our level look a lot nicer and full of life, but there are also some
other things we can do to make it look even better.

Fog is another way to create the atmosphere of a level. Fog obscures far away objects,
which both, adds to the atmosphere and saves rendering power. The denser the
fog, the more the game will feel like a horror game. The first game of the Silent Hill
franchise used fog to make the game run at an acceptable frame-rate as it had a large
3D environment on the early PlayStation hardware. Because of how well it spooked
players, they continued using it in the later games even though they could render
larger areas with the current technology.

http://docs.unity3d.com/Manual/HOWTO-UseSkybox.html

Chapter 4

[117]

This being said, if you think fog is only used in this way, you'd be mistaken. If you've
ever been to a mountain range or seen something further away at a distance, you
may notice that things get more tinted in a blue color with an aerial perspective.

You can find more information on aerial perspective at
http://en.wikipedia.org/wiki/Aerial_perspective.

To create the atmosphere using Fog perform the following steps:

1. Scroll down the Lighting tab till you see the Fog section and check it.

If you were to play the game right now, it would look like the previous
image. Right now, it looks a bit too grey because of the Fog Color property
that is set. Change it instead to the same color as the sky.

http://en.wikipedia.org/wiki/Aerial_perspective

Creating Exterior Environments

[118]

2. Go to Fog Color and change the color to be the same as they sky using the
eyedropper tool and then run the game.

Fog is also really great in terms of not letting our players know what's too far
ahead of them to create suspense. The scene is already looking better.
Lastly, our current form of lighting is very bland and one-dimensional. Due
to the way the lighting is done, if your lighting is done at an angle, all of the
areas affected by shadows will have little to no light, making it very hard to
see things.
To add to this, we can create another directional light in the opposite
direction with less intensity (also known as a fill light) to ensure that the
areas are lit better and we can see as much details as possible.

3. Select our Directional Light object and press Ctrl + D to duplicate it.
4. Go to Edit | Snap Settings and change the Rotation snap to 180. This will

ensure that, when we rotate, it will be exactly the opposite (to rotate all the
way around an object is 360 degrees. 360/2 is 180).

Chapter 4

[119]

5. Select the newly created Directional Light and then rotate it till it snaps
(a Rotation of 310, 150, 0).

6. Next, change the color to blue and change the Intensity value to .5.
The reason we are using blue is that it is a complimentary color to
yellow, which means that they look good together in general.

For more information on complimentary colors, check out
http://en.wikipedia.org/wiki/Complementary_colors.
To find complimentary colors, you can use a tool such as
ColorHexa. For example, here is the page about our light's default
color: http://www.colorhexa.com/fff4d6.

After this, save the level and play the game.

We now have a completed environment.

http://en.wikipedia.org/wiki/Complementary_colors
http://www.colorhexa.com/fff4d6

Creating Exterior Environments

[120]

Summary
With this, we have a good looking exterior level for our game. In addition, we
covered a lot of features that exist in Unity that you can use in your own future
projects. Specifically, we covered how to build our Terrain; use textures; add water,
trees, and details with grass; how to create atmosphere.

With this in mind, in the next chapter, you will learn how to take your knowledge of
environments to build different combat scenarios.

Chapter 5

[121]

Building Encounters
We now have all the knowledge that we need in order to create our gameplay
environments, but right now, they're just places that we can walk around in and
shoot at. In this chapter, we are going to learn how to create various types of
encounters in order to generate effective gameplay scenarios.

Now, as a level designer and/or scripter for a project, you'll often need to implement
various encounters that a player will need to go through in the project. There are
way too many possibilities for encounters to cover here, but I'll go into some of the
most common ones that you'll often see in an FPS.

This project will be split into a number of tasks. It will be a simple step-by-step
process from the beginning to the end. Here is an outline of our tasks:

• Adding a simple turret enemy
• Integrating an AI system
• Setting up enemy characters
• Spawning a group of enemies with the help of a trigger
• Cleaning up dead AI
• Placing ammo/healthpacks

Prerequisites
Before we start, we will need to have a project created that already has UFPS and
Prototype installed. If you do not have these installed already, follow the steps
described in Chapter 1, Getting Started on an FPS. In addition to this, I am also
assuming that you have a level you want to add encounters to.

Building Encounters

[122]

Adding a simple turret enemy
To start off with, UFPS already comes built in with an example enemy that we
can work with, that is, a turret that will fire at a player if they get too close. More
importantly, the turret is an example of how to damage a player, as well as how
the player can damage objects. This will be quite useful once we create enemies.
Let's take a look at how it's used in an example level:

1. From the Project tab, go to the UFPS/Base/Content/Levels/SkyCity folder
and then-double click on the UFPS_SkyCity.unity file to open it.

If you haven't gotten a chance to play this demo map yet, give it a try so that
you're more familiar with the stuff that we will be talking about.

Notice that in certain areas, there will be security
cameras on the walls and ceiling that will fire at you
if you come close to them in their range. These are
the first things that we are going to look into.

Chapter 5

[123]

2. The turrets that show up in this level are named SecurityGun. So, with this
information, we can go to the Hierarchy tab and then type in the name to
be able to find them easily. Double-click on the first name to be taken to the
position of it.

3. It is very difficult at this point for us to see the turret due to the light that's
placed on top of it. To fix this issue, underneath the Scene tab, click on the
Gizmos dropdown and drag the 3D Gizmos property all the way to the
left-hand side of the window to get rid of it. Then, select the object once
again if needed.

4. Now that we can see the SecurityGun object, click on the X button on the
right-hand side of the search bar to once again see everything in Hierarchy.
Now we can extend the SecurityGun object to see the objects that are
its children.

Building Encounters

[124]

5. WallMount and the Pole objects are simple meshes and are there for fluff
(aside from the security cam that uses the pole to rotate from). The one that
we want to take a closer look at is the Gun object. Select it, and then you'll
see some important classes in the Inspector window: vp_Shooter,
vp_DamageHandler, vp_SecurityCamTurret, and vp_Respawner.

 ° vp_Shooter: This component gives the object that is attached to it the
ability to fire projectiles, including but not limited to bullets (it's fired
by calling the TryFire function). Here, we can set the properties for
what it will shoot, very similar to what we did earlier in the custom
weapons chapter.

 ° vp_DamageHandler: This component gives an object the ability to
take damage, die, and respawn if needed. This will allow us to set
the health of the object as well. We damage this object by calling the
SendMessage function, which we will see later.

Chapter 5

[125]

 ° vp_SecurityCamTurret: This component gives the object the
back and forth movement that looks for a player to fire at. It's a
child of the vp_SimpleAITurret class, which looks for a player
(ScanForLocalPlayer) and attacks them (AttackTarget)
as needed.

 ° vp_Respawner: This script specifies how an object will respawn.
This will determine if the object will respawn at the same position as
before or at a random spawn point such as (vp_SpawnPoints).

6. Now that we've seen this turret in a professional example, let's put it into our
own level. Let's open the level that we created over the course of Chapter 3,
Prototyping Levels with Prototype.

7. SecurityGun is already created as a prefab that we can easily place into our
levels. With this in mind, go to the Project tab, the UFPS/Base/Content/
Prefabs/Misc folder, and then drag the SecurityGun object into the world.

Building Encounters

[126]

8. I'm going to position the object so that it faces the upward side of the door
that we're walking to. Then, from the Inspector tab, I'm going to change
the Rotation's Y axis to -90. Once I've positioned the object on one side of
the door, I'll duplicate the object by hitting Ctrl + D and dragging it to the
other side.

Chapter 5

[127]

9. In addition to a security camera that moves back and forth, there's also a
simple AI Turret, which will only look at you and fire if you get too close.
Drag and drop the SimpleAITurret object into the room that the turrets
are protecting.

www.allitebooks.com

http://www.allitebooks.org

Building Encounters

[128]

10. Now that we have the turrets inside the game, let's save our level and start
the game!

With this, we now have two security cameras covering a particular area and
if we walk into the room, we come up to another turret that has an explosive
reaction when it's defeated!

Chapter 5

[129]

This is a great start! Now we know how to place stationary enemies into our level!

Integrating an AI system – RAIN
Artificial intelligence (AI) is one of the things that can make or break a game.
In this section, you will learn how to integrate an AI package for Unity in order
to have characters roam around and attack players.

Building Encounters

[130]

At the time of writing this, people generally tend to either use RAIN by Rival Theory
(http://rivaltheory.com/rain/download/) or Shooter AI by Gateway Games
(https://www.assetstore.unity3d.com/#/content/11292) if they are not
writing their own package when dealing with AI using UFPS.

In this book, we will discuss both tools using RAIN to create a melee attacking
enemy and Shooter AI to create a basic ranged shooting enemy. This is so that you
have a better idea of how each works, and you can then weigh their pros and cons
for your own title.

Note that I will mention the differences in using both tools in this chapter, but in
later chapters, you will be able to choose which of the following you'd like to use
for your own levels and encounters.

To start off, we will use RAIN in this particular example as it is a free solution that
has been out for a while and is pretty mature since it is the most widely used AI
engine in digital entertainment. It also has its own active community that can help
you should you wish to take this example further.

1. Before starting, create a copy of your current project to save the progress
you've made so far. While there shouldn't be any problems when using this
project, it's always better to be safe than sorry.

2. To download it, we'll need to visit Rival Theory's website to download
RAIN. So, keeping this in mind, open up your web browser and go to
http://rivaltheory.com/rain/download/:

http://rivaltheory.com/rain/download/
https://www.assetstore.unity3d.com/#/content/11292
http://rivaltheory.com/rain/download/

Chapter 5

[131]

3. From there, click on the RAIN – UNITY 5 button to download the latest
version of RAIN.

4. After this, we will want to download a sample project, which will contain an
animated character with sample behavior, that we can plug into the game.
CodersExpo has created such a sample project that can be found in Rival
Theory's forum under the Sample Projects section at http://rivaltheory.
com/forums/topic/using-waypoint-routes-and-paths/.

5. From there, click on the PatrolDetectAttackSearchExamples.unitypackage
file for us to use at http://rivaltheory.com/?ddownload=10240.

http://rivaltheory.com/forums/topic/using-waypoint-routes-and-paths/
http://rivaltheory.com/forums/topic/using-waypoint-routes-and-paths/
http://rivaltheory.com/?ddownload=10240

Building Encounters

[132]

6. Once the PatrolDetectAttackSearchExamples.unitypackage and
RAIN_U5_2.1.11.0.unitypackage files finish downloading, it's time to
import them into our Unity project. Start with the Sample Project, click on
the Import button, and wait for the project to finish importing:

7. While importing, it may ask you to update your scripts. Since we already
made a backup in step 1, click on the I Made a Backup. Go Ahead! button.

Chapter 5

[133]

8. You may need to wait for the Updating RAIN Components menu.
Afterwards, it will ask you if you'd like to automatically search for any
updates. In our case, we want to do it manually, so for now, click on Don't
Allow and then Ok in the following dialog box.

9. Next, let's update RAIN to the latest version ourselves by double clicking
to open the RAIN unitypackage file and unchecking the files in the
RAIN/Editor/ScriptTemplates folder as it will attempt to create
duplicates of the files that are already causing errors.

Building Encounters

[134]

10. Once imported, you may see the Console window open up with an error in
the Assets/Actions/AIRandomWander.cs file. If so, open it in MonoDevelop
(you can double-click on the warning/error that's to be taken to the line) and
change line 36 with the following code (I've made the changes in bold):
found = NavigationManager.Instance
 .GraphsForPoints(ai.Kinematic.Position, loc,
 ai.Motor.MaxHeightOffset, NavigationManager
 .GraphType.Navmesh, ((BasicNavigator)
 ai.Navigator).GraphTags);

To help clarify where in the file to look, take a look at the following screenshot:

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books
you have purchased. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support

Chapter 5

[135]

11. Save the file, and then once all of the errors have gone away, open the
PatrolAttackSearch.unity file from the Assets folder in the Project tab.
To verify whether everything is working properly, if you play the game, you
should see a character called Max walking along a path defined in the scene.

To see an explanation of what this sample project consists of, how
it was built, and what each of these things mean, in more detail,
check out CodersExpo's own video on starting projects with RAIN at
https://www.youtube.com/watch?v=sQlewYFwCOU. You can
also check out this Quick Start guide by RAIN's creator, Rival Theory,
at https://www.youtube.com/watch?v=YuaBBCL5PSs.

https://www.youtube.com/watch?v=sQlewYFwCOU
https://www.youtube.com/watch?v=YuaBBCL5PSs

Building Encounters

[136]

You may also notice that if you move the white enemies closer to Max, he will run up
and attempt to punch them:

Now, RAIN and UFPS are two separate systems that work well in their respective
fields, but we can make them work together if we can give RAIN a way to receive
damage from UFPS as well as make RAIN damage a UFPS player. Keeping this in
mind, we will need to create two scripts in order to carry out these actions:

1. To start off with, we need some way to communicate our health to RAIN.
To do so, go to the Hierarchy tab, extend the MAX object, and select its child,
which is named AI. From there, you should see the AI Rig component in the
Inspector tab. Next, click on the lightbulb button to open the Memory tab.

Chapter 5

[137]

Information on the AI Rig component and what each
tab does can be found at http://rivaltheory.com/
wiki/rainelements/airig.

2. The Memory tab is used to store and share values within different AI
elements that exist. We want the AI elements to be able to die at some point,
so we will need to add in the ability to check when our health is 0. To do this,
from the Add Variable dropdown, select float and see the new item that's to
be added. With regard to this new item, change its Name to currentHealth
and the Value to 2.
A regular pistol bullet that can be found in the UFPS/Base/Content/
Prefabs/Projectiles folder, currently has a Damage value of 1 from its
Vp_Hitscan Bullet component. Therefore, it will require the player to shoot
our enemy twice in order to defeat it.

3. Create a new C# Script called RAIN_DamageReciever. Open it in
MonoDevelop and fill it with the following code:
using UnityEngine;
using RAIN.Core; // AIRig
using RAIN.Memory; // RAINMemory

/// <summary>

http://rivaltheory.com/wiki/rainelements/airig
http://rivaltheory.com/wiki/rainelements/airig

Building Encounters

[138]

/// Allows RAIN to receive damage messages from UFPS
/// </summary>
public class RAIN_DamageReciever : MonoBehaviour
{
 private AIRig aiRig;
 private RAINMemory memory;

 void Start()
 {
 // Access the AI Rig component which allows us to use
 // any of the properties in them
 aiRig = GetComponent<AIRig>();

 if (aiRig != null)
 {
 memory = aiRig.AI.WorkingMemory;
 }
 }

 void Damage(float damage)
 {
 if (memory != null)
 {
 // Get our current health from RAIN
 float currentHealth =
 memory.GetItem<float>("currentHealth");

 // Subtract damage from the current health value
 currentHealth -= damage;

 // Update RAIN where our health is at
 memory.SetItem<float>("currentHealth",
 currentHealth);
 }
 }

 // Secondary support for this function when using
 // projectiles
 private void Damage(vp_DamageInfo projectileInfo)
 {
 Damage(projectileInfo.Damage);
 }
}

Chapter 5

[139]

This script allows us to receive the damage events sent by UFPS. Once UFPS
finds a bullet that collides with another object (which means it needs to have
a collider of some sort), it will attempt to call a function called Damage using
either a float or the vp_DamageInfo input. We then take this information and
modify the currentHealth variable we created earlier in the Memory tab.
Later on, we will see the enemy die as a result of falling down.

4. Attach the newly created component to the AI child of the MAX object.
5. Next, create a new file called RAIN_DamageSender and use the

following code:
using UnityEngine;

public class RAIN_DamageSender : MonoBehaviour
{
 /// <summary>
 /// When called will send a message to the target as
 /// well as its
 /// parent objects to call the Damage function if it
 /// exists.
 /// Note: UFPS uses a function called Damage to damage
 /// the player
 /// </summary>
 /// <param name="target">The target to inflict
 /// damage.</param>
 /// <param name="damage">The amount of damage to do to
 /// the player.</param>
 public static void SendDamage(Transform target, float
 damage)
 {
 target.SendMessageUpwards("Damage", damage,
 SendMessageOptions.DontRequireReceiver);
 }
}

Since we've made this function static, it allows us to use the function without
having to create an instance of the class, and we can simply refer to it as
RAIN_DamageSender.SendDamage.

For more information on the static modifier, check out: https://
msdn.microsoft.com/en-us/library/98f28cdx.aspx.

https://msdn.microsoft.com/en-us/library/98f28cdx.aspx
https://msdn.microsoft.com/en-us/library/98f28cdx.aspx

Building Encounters

[140]

6. We then need to write new behavior for actually having this AI
damage the player. To do this, we will create a new script called
ForwardAttackBehaviour, which will look like this:
using UnityEngine;
using System.Collections;

public class ForwardAttackBehaviour : MonoBehaviour {
 /// <summary>
 /// Where the Raycast will start drawing from.
 /// </summary>
 public Transform origin = null;

 /// <summary>
 /// How far from the origin will we look for an object to
 /// hit.
 /// </summary>
 public float distance = 2.2f;

 public void AttemptAttack(float damage)
 {
 RaycastHit hit;
 Vector3 direction = Quaternion.Euler(0, 90, 0) *
 origin.forward;

 if(Physics.Raycast(origin.position, direction, out hit,
 distance))
 {
 RAIN_DamageSender.SendDamage(hit.transform, damage);
 }
 }

 private void OnDrawGizmos()
 {
 if(origin != null)
 {
 Vector3 direction = Quaternion.Euler(0, 90, 0) *
 origin.forward;
 Debug.DrawLine(origin.position,
 origin.position + (direction * distance),
 Color.red);
 }
 }
}

Chapter 5

[141]

7. Add the ForwardAttackBehaviour component to the MAX object, and then
from the Inspector tab, go to the component and assign Origin to the child
of Max called Bip 001 R Hand (use the Hierarchy tab's search bar to find the
object easily).

Note the red line being drawn. This is due to the OnDrawGizmos function that we
added previously, which draws a line in the editor for us to see exactly where we
will be checking when AttemptAttack is called.

Next, we need to customize our punch animation so that it calls the SendDamage
function for us when the AI attacks. When the .fbx file is imported with animations,
it is in a ReadOnly mode, so we will need to duplicate it in order to make any
modifications to the original version of the animation by performing the
following steps:

1. To do this, go to the Assets/max folder and select the punch animation.
Once selected, hit Ctrl + D in order to duplicate AnimationClip. Rename
the newly created animation as punchDamage.

Building Encounters

[142]

2. Then, we need to tell the character to use this punching animation instead. To
do this, go the Hierarchy tab, select the MAX object, and from the Animation
component, expand the Animations property. From there, replace Element 5
from punch to our punchDamage by dragging and dropping the new element
into it.

3. We also need to update AI so that it plays the correct animation. Select the
AI object, and then from the AI Rig component, select the Animation tab,
which looks like a running person. From there, scroll down until you get to
the punch state, and then change Animation Clip to punchDamage.

Chapter 5

[143]

4. Next, we need to actually modify our animation, which we can take a look at
by selecting the MAX object and then navigating to Window | Animation.

5. After this, go to the drop-down menu below the record button and select the
punchDamage option:

Building Encounters

[144]

Once this is done, you'll see a number of little diamonds that are keys and
ways in which an animator can set where each part of this character will be
at a certain time.

If you have not used the Animation tab before, or you
want to know more about this, check out http://
docs.unity3d.com/Manual/animeditor-
UsingAnimationEditor.html.

6. We want to attempt an attack when the enemy's fist is all the way extended,
which is at frame 19, so from the little box that currently says 0, type 19 and
hit Enter.

Alternatively, you can also use the playback head (the
red line) to view the animation and find where you'd
like to place your keyframe.

7. From here to the right-hand side of the little box showing the frame we
are at, you'll see two buttons to the right-hand side of the first one with a
diamond (Add Key). Then, you'll see the second one, which looks like a
vertical rectangle with a pointed end. This one is called Add Event; click
on it.

http://docs.unity3d.com/Manual/animeditor-UsingAnimationEditor.html
http://docs.unity3d.com/Manual/animeditor-UsingAnimationEditor.html
http://docs.unity3d.com/Manual/animeditor-UsingAnimationEditor.html

Chapter 5

[145]

8. In the menu that pops up from the Function: menu, select the
AttemptAttack function, and then for the Float value, put in the amount
of damage you want to do to the player if he punches you. In my own case,
I'll use 1.
Currently, in the AdvancedPlayer prefab, the Vp_FP Player Damage
Handler component lists our player's Max Health as 10, so if we decrease
the value by 1, it'll be 10% of their health:

9. Next, let's bring in a player and create a scenario where our RAIN character
recognizes this player. Drag and drop an AdvancedPlayer prefab from the
Assets/UFPS/Base/Content/Prefabs/Players folder into the game world.
After adding our player, we won't need to have Main Camera in the scene
anymore. So, select it in the Hierarchy tab and then delete it by hitting the
Delete key.
If you were to play the game, you'd notice that Max doesn't notice us because
we aren't registered as an enemy to him.

10. From the Hierarchy tab, select the Enemy object and expand it to show its child
named Entity. Select this object and note that it has an EntityRig component.
RAIN provides the Entity component as a way to encapsulate the attributes,
properties, or characteristics of the game object it is associated with, which
the AI can then reference later on in its behavior. This can be done by
defining custom elements and/or aspects. In this instance, we have
said that this object has an aspect called aEnemy.

Building Encounters

[146]

If we open Behavior Editor for the MAX object by navigating to RAIN |
Behavior Tree Editor, you'll notice that the CanSee sensor is looking for
an aspect of aEnemy. If it finds it, it will assign the varEnemy variable to this
object, and when varEnemy has a value, the AI will follow this enemy to the
best of its ability.

For more information on RAIN's Entity Rig component,
check out http://rivaltheory.com/wiki/
gettingstarted/createentity.

http://rivaltheory.com/wiki/gettingstarted/createentity
http://rivaltheory.com/wiki/gettingstarted/createentity

Chapter 5

[147]

11. Duplicate the Entity object (Ctrl + D), and then drag it over to be a child
of the AdvancedPlayer object that we created in the Hierarchy tab. Next,
change the Entity Rig component's Form variable to the AdvancedPlayer
object by dragging and dropping the object into the slot.

It's also possible for you to create an Entity by selecting
the Advanced Player object from Hierarchy. Then, from
the toolbar at the top of the window, navigate to RAIN
| Create New | Entity. After it's created, move over
to the Inspector tab and go down to our newly created
component. From there, select Visual Aspect from the
Add Aspect dropdown, and then from the newly created
aspect, change Aspect Name to aEnemy. Remove the
value for Mount Point by selecting it and hitting the
Delete key.

Building Encounters

[148]

12. Save our project and play the game to verify that everything is
working correctly.

And as you can see, we can now be attacked by the character and UFPS
updates its health correctly! Now, we just need to get the other way
around working.

13. The first thing we need to do is create a collider of some sort for UFPS to
recognize that the player has been hit as the current AI has no collision. Select
the AI object once again and add a Capsule Collider component. Once done,
change the Y value of Center to 1, Radius to .1, and Height to 2. This is done
so that UFPS can communicate with the RAIN_Damage Reciever function.
If we wanted the character's collision box to be very accurate, we can
always add the Box Collider and DamageReciever components around
each of the parts of the character rig. However, the more you add, the more
computationally expensive the calculations will be. The advantage of doing
this is that your bullet marks will look much better.

14. After this, we need to have the AI react to taking damage and dying.
Select MAX, go to the toolbar at the top of the window, and navigate to
RAIN | Behavior Tree Editor.

Chapter 5

[149]

15. Once there, right-click on the StateSelect option by navigating to Create |
Decisions | Constraint. Then, change Name of the newly created constraint
to Death, and under Constraint, add currentHealth <= 0.

For more information on the Behaviour Tree Editor
and to see how you can debug it while the game is
on, check out http://rivaltheory.com/wiki/
behaviortrees/behaviortreeeditor.

16. Next, we need it to play the proper animation, so right-click on the Death
constraint, and then navigate to Create | Actions | Animate. In Animation
State:, put in death. This is done so that it plays the death animation.

17. After this, we don't want the character to start moving again as we want
it to get destroyed after a while. So, let's create a new yield action first by
right-clicking on and navigating to Create | Actions | Yield.

http://rivaltheory.com/wiki/behaviortrees/behaviortreeeditor
http://rivaltheory.com/wiki/behaviortrees/behaviortreeeditor

Building Encounters

[150]

18. Afterwards, create a timer by navigating to Create | Actions | Timer and
plug in 5 for Seconds.
This is done so that when we die, we can play the animation before removing
the character from the scene.

19. Next, we need to add in some custom code to actually destroy our character,
so right-click on Death once again, and this time, navigate to Create |
Actions | Custom Action. From the Class: property, select Create New
Custom Action. Under Custom action name:, add DestroyBodyAction
and make sure that Script type: is still at CSharp.

20. Once you've confirmed the values, click on the OK button and open up the
script MonoDevelop (it's located in your Assets/AI/Actions folder) and put
in the following bold lines:
using UnityEngine;
//using System.Collections;
//using System.Collections.Generic;

Chapter 5

[151]

using RAIN.Core;
using RAIN.Action;

[RAINAction]
public class DestroyBodyAction : RAINAction
{
 public DestroyBodyAction()
 {
 actionName = "DestroyBodyAction";
 }

 public override void Start(AI ai)
 {
 base.Start(ai);
 }

 public override ActionResult Execute(AI ai)
 {
 MonoBehaviour.Destroy(ai.Body);
 return ActionResult.SUCCESS;
 }

 public override void Stop(AI ai)
 {
 base.Stop(ai);
 }
}

In addition to this, you can also remove the lines that I've commented out
since the script doesn't actually use them.

21. In the behavior tree, we also need to make sure that we can exit out of the
constraints in order to go to Death. Under Can See for Constraint, put
in: (varEnemy != null) && (currentHealth > 0). For Can't See, use
varEnemy == null && DoSearch == 0 && currentHealth > 0. Then,
under the first constraint, put in varEnemy==null && DoSearch==1 &&
currentHealth > 0. With this in place, we should be finished with the
behavior, so go ahead and exit the menu!

22. Finally, let's rename MAX to RAIN_Enemy and drag and drop it to the
MyGame\Prefabs folder so that it can be used later on.

23. In addition to this, select the Advanced Player object, and click on the Prefab
Apply button so that the other advanced players contains the changes we've
made as well.

Building Encounters

[152]

24. Save your script and now try out the project!

For those of you interested in using RAIN, check out another useful
tutorial that is specfic to RAIN itself at http://cocoateam.com/
post/105258624839/creating-a-fully-functional-enemy-
behavior-using.

At this point, we now have an enemy that can both damage us as well as be
damaged, and we've also touched on how to remove enemies from a scene
after a period of time!

Rival Theory have a premium version of AI characters made in RAIN
called Squad Command or the Advanced Warfighter AI, which can
be found at Unity Asset Store. This can be useful for those of you
who wish to get more complex AI up and running fairly quickly, but
it does cost money. At the time of writing this, you'll also still need
to add the changes we made in this tutorial to get it to work with
UFPS characters. If you're interested in checking the assets out, take
a look at https://www.assetstore.unity3d.com/en/#!/
content/23526.

http://cocoateam.com/post/105258624839/creating-a-fully-functional-enemy-behavior-using
http://cocoateam.com/post/105258624839/creating-a-fully-functional-enemy-behavior-using
http://cocoateam.com/post/105258624839/creating-a-fully-functional-enemy-behavior-using
https://www.assetstore.unity3d.com/en/#!/content/23526
https://www.assetstore.unity3d.com/en/#!/content/23526

Chapter 5

[153]

Integrating an AI system – Shooter AI
As mentioned in the previous section, there is another tool called Shooter AI, which
is currently available at the Asset Store. However, unlike the base RAIN program, it
is not free and will require a purchase. However, it is the simpler of the two to set up
and also uses Unity's own NavMesh system instead of RAIN's proprietary version.
Keeping this in mind, let's create a ranged enemy to shoot at us.

As of this writing, there is talk of AI Shooter being replaced by another AI
System called Paragon Shooter AI.
Most of the content regarding the AI system should work similarly to
what's described here. For more information on that check out: http://
forum.unity3d.com/threads/paragon-ai-first-third-
person-shooter-ai.305971/.

1. To download Shooter AI, we'll use the Asset Store again. In order to do this,
navigate to Window | Asset Store.

2. In the top-right corner, you'll see a search bar. Type in Shooter AI and
press Enter. Once you do this, the first asset you'll see is Shooter AI – the
AI solution for ANY combat situation. Left-click on it, and then once
you've purchased the asset, click on the Download button and accept the
license agreement.

http://forum.unity3d.com/threads/paragon-ai-first-third-person-shooter-ai.305971/
http://forum.unity3d.com/threads/paragon-ai-first-third-person-shooter-ai.305971/
http://forum.unity3d.com/threads/paragon-ai-first-third-person-shooter-ai.305971/

Building Encounters

[154]

3. Once it finishes downloading, you should see the Importing Package
dialogue box pop up. (If it doesn't, click on the Import button where
the Download button used to be):

Chapter 5

[155]

4. Click on the Import button to place all the packages into our project and wait
for it to finish importing into the project.

5. Close the Asset Store if it's still open, go back into our game view,
and you will notice the new Shooter AI folder placed in the Assets
folder. Double-click on it and then enter the Prefabs folder.

6. Now, Shooter AI contains a lot of new things for us to work with, the first of
which is a new demo map and prefabs for enemies. To take a look at the new
demo level, go to the Project tab. Then, go to the ShooterAI/Scenes/Demo
Scene folder and click on Shooter AI Demo.unity.

7. Upon opening the map, you should be able to click on Play and watch a team
versus team combat.

Pretty cool, huh? Once this is done, we'll know that Shooter AI is
installed properly.

Building Encounters

[156]

8. To get started working with Shooter AI, we're going to place our player into
this level and get the soldier to work as an enemy for us. This level contains
two objects in Hierarchy: Team 1 and Team 2. Disable Team 2 completely by
checking off the checkmark beside the object's name. Also, deactivate all but
one of the soldiers from Team 1. Double-click on the enabled object to zoom
into him.

9. Now, we need to customize the solder to actually work with UFPS. To do so,
select the Solder T1 object, select the Gateway Games Brain component,
and open the Enemy Data variable. Under Tag of Enemy:, select Player.

10. After this, we will want to add our player into this map. Then, go to UFPS/
Base/Content/Prefabs/Players and drag and drop the AdvancedPlayer
prefab into the level away from the enemy.

Chapter 5

[157]

These are a great first few steps. If we play the game now, the player can
walk around and can damage the enemy… but when the enemy attacks back,
it does not damage us! To fix this we will need to modify how damage is
done by the Shooter AI.

11. Open the Soldier T1 children and select the MainWeapon(Clone) object,
and then in Inspector under the Gateway Games Weapon component,
scroll down and change the Damage Model property to Global.
The reason we have chosen Global is that UFPS does damage to enemies
no matter where you hit the object; Shooter AI by default will do more
damage if you hit the head instead of the body, but UFPS doesn't support
this by default.

Building Encounters

[158]

12. Now that we have enemies ready to be used in our project, let's create a
prefab of our own that we can use in our own levels. Select our Soldier
object and navigate to GameObject | Break Prefab Instance. After this,
rename it to UFPS_Enemy so we know that it's to be used with our system.
Then, open up the MyGame/Prefabs folder and drag and drop the
UFPS_Enemy object there.

Chapter 5

[159]

13. Lastly, save your level and play the project!

This is now starting to look really nice! We have an enemy that is ready to be
used inside our actual game!

Building Encounters

[160]

14. Now to continue with this train of thought, let's go ahead and spawn the AI
inside one of the levels we've created. To do this, let's open the map that we
created in Chapter 4, Creating Exterior Environments.

We next need to add Navigation information to the map in the form of a
navigation mesh, NavMesh for short, which is what gives AIs information
on where they can and can't go.

Note that RAIN does not use this method of navigation
for its characters. We will talk about how RAIN's form of
NavMeshes work in the Spawning enemies with the help of a
trigger section.

Chapter 5

[161]

15. Before we can make a NavMesh, we need to make our environment static,
which is to say that our characters cannot move. Select the Terrain object
and confirm that the Static checkbox from the top right-hand side menu
is checked.

16. To create the NavMesh, we need to navigate to Window | Navigation. From
here, we will then select the Bake tab. Leave the default parameters as they
are now, and then click on the Bake button.

Building Encounters

[162]

Next, we will need to wait for it to finish, which may take a while based on
how powerful your computer is. Once it's finished, we should be able to see a
ton of blue on the screen:

This blue area represents places that the AI can actually travel to.

Chapter 5

[163]

17. Now, drag and drop UFPS_Enemy into the game world where the player was
spawned. He will now wander the area using the waypoint specified in the
Gateway Games Patrol Manager component and will engage with you when
he sees you.

With all this in place, we've seen how easy it is to integrate an AI system into
our project!

If you're interested in checking out the documentation for Shooter AI
and learning more about the specific variables that are used for it, check
out https://www.dropbox.com/s/u7wi7wb8azmmlaf/Manual.
pdf?dl=0.

https://www.dropbox.com/s/u7wi7wb8azmmlaf/Manual.pdf?dl=0
https://www.dropbox.com/s/u7wi7wb8azmmlaf/Manual.pdf?dl=0

Building Encounters

[164]

Spawning enemies with the help of a
trigger
Enemies are computationally expensive to have spawned throughout the entire
game project. A little trick that we use as game developers is spawning enemies right
before a player enters an area; this way, they don't need to be created until they're
ready to be seen! We can to this through the use of a property called a trigger.

1. Let's first open the level that we created in Chapter 3, Prototyping Levels
with Prototype that we used earlier in this chapter. We will need to add in
navigation data to make things easier to work with. Create an empty game
object by navigating to GameObject | Create Empty and set Position as
0,0,0. Then, call the game Environment.

2. Once we have the object created, drag and drop all our cubes and rooms
into it as children. After this, click on the Static button to ensure that the
objects don't move by selecting Yes, change children. This is an optional
step as RAIN can still make a NavMesh without this, but it's a way for us to
show that we will not, make these objects move. If you are using Shooter AI,
however, you must perform this step.
For RAIN, follow these steps:

1. Now, in order for the RAIN characters to recognize where to travel,
we need to use RAIN's own Navigation Meshes. To do this, we will
need to go to the toolbar at the top of the window and navigate to
RAIN | Create New | Navigation Mesh. This will create a white
box within which we will want to have our entire area fit in by
scaling the object.

Chapter 5

[165]

2. Once you've finished resizing, click on the Generate Navigation
Mesh button and wait for it to finish its calculations.

3. After this, switch to the navigation tab and under the Bake section,
click on the Bake button. You'll see it complete, but the steps will not
show up correctly.

Building Encounters

[166]

4. Set Step Height to .9 and run it again.

5. Now, jump to step 3.

For Shooter AI, follow these steps:

1. Switch to the navigation tab and under the Bake section, click on
the Bake button. You'll see it complete, but the steps will not show
up correctly.

2. Set Step Height to .9 and run it again.

Chapter 5

[167]

Another way to use navigation is through a system
called A*, which finds paths at runtime and is included
in Shooter AI. For more information on how to set
it up, check out https://www.youtube.com/
watch?v=4p3ZehTNL6s.

3. Now, jump to the next step.

3. Now that we have our navigation mesh (NavMesh for short) completed, it's
time to spawn our enemies. My plan is that when we exit the first door, an
enemy will be spawned in the other room and run out to see the player.

https://www.youtube.com/watch?v=4p3ZehTNL6s
https://www.youtube.com/watch?v=4p3ZehTNL6s

Building Encounters

[168]

4. Open up Prototype again, which we learned before in Chapter 3, Prototyping
Levels with Prototype, and create a cube (Ctrl + K) that covers the door to the
first room.

5. Once you have the room created, from the Prototype window, switch to
Object mode if you haven't already, and then click on the Set Trigger button.
You'll see that it has changed color to a yellow semi-transparent box,
as shown in the following screenshot:

Chapter 5

[169]

6. You'll also notice that on the Mesh Collider component, the Is Trigger
property has also been toggled. This means that Unity will let us know
when a collision has occurred, but it will not stop the player from moving.
Now we need to create a new component for the trigger to spawn our enemy.
In order to do this, we will need to dive into some code.

7. Go to the MyGame/Scripts folder, navigate to Create | New C# Script, and
call it SpawnEnemyOnTrigger. Once finished, double-click on the created file
to open up MonoDevelop, the built-in development environment for Unity.

8. Once inside, change the code to this:
If you are using RAIN:
using UnityEngine;
using System.Collections;

public class SpawnEnemyOnTrigger : MonoBehaviour {

 // Enemy to spawn
 public GameObject enemy;

 // Where to be spawned at

Building Encounters

[170]

 public Transform spawnPoint;

 // Has this happened already?
 private bool hasTriggered = false;

 void OnTriggerEnter(Collider other)
 {
 //If the player touches the trigger, and if
 //it hasn't been triggered before
 if(other.tag == "Player" && hasTriggered == false)
 {
 // Spawn a new enemy using the properties from the
 // spawnPoint object
 GameObject newEnemy = Instantiate(enemy,
 spawnPoint.position,
 spawnPoint.rotation)
 as GameObject;

 // We only want this to happen once.
 hasTriggered = true;
 }
 }
}

If you are using Shooter AI, add the following code to have the AI go to
the player:

using UnityEngine;
using System.Collections;

public class SpawnEnemyOnTrigger : MonoBehaviour {

 // Enemy to spawn
 public GameObject enemy;

 // Where to be spawned at
 public Transform spawnPoint;

 // Has this happened already?
 private bool hasTriggered = false;

 void OnTriggerEnter(Collider other)
 {
 //If the player touches the trigger, and

Chapter 5

[171]

 //if it hasn't been triggered before
 if(other.tag == "Player" && hasTriggered == false)
 {
 // Spawn a new enemy using the properties from the
 // spawnPoint object
 GameObject newEnemy = Instantiate(enemy,
 spawnPoint.position,
 spawnPoint.rotation)
 as GameObject;

 //Tell enemy to go to the player
 newEnemy.GetComponent<NavMeshAgent>()
 .SetDestination(other.transform.position);

 // We only want this to happen once.
 hasTriggered = true;
 }
 }
}

This code does a number of things for us. It uses three variables and a single
function. Variables are holders for data, and functions are ways for us to act
upon this data. The two public properties we have here are for the object that
we wish to spawn (the enemy) and where we want to spawn it (in the room).
We also have a private property, which is only available to the class. Since we
only want to trigger this once, we need to know whether we've executed this
before or not.
The OnTriggerEnter function is a built-in method in Unity that is called for
us whenever an object of any kind has touched the trigger or when the object
has a collider and the Is Trigger option is toggled. We first check if it's the
player and if it is, we then spawn an enemy. We can later extend this to make
it fit a more interesting encounter, but this is a good starting point.

9. Next, we need to attach this component to our trigger. Select it and then drag
and drop the appropriate SpawnEnemyonTrigger file on top of it. If you are
using RAIN, follow along; if you are using Shooter AI, skip ahead to just
after step 16.

10. Once the component is attached, drag and drop our RAIN_Enemy prefab
under the Enemy property and the SimpleAITurret object as the spawn
point. This way, we will use the turret's position and rotation when we
spawn our enemy, but we could also create an empty object and use this
as well.

Building Encounters

[172]

Now, if we were to run the game now and run up to the enemy, he would
indeed start chasing us… but there's a bit of a problem:

By default, the motor that the object is using is called a BasicMotor, which
is great and efficient but doesn't make use of gravity. Thankfully, there is
another motor class included called a CharacterControllerMotor that we
can add, which will work well for us.

For more information on the different kinds of motors
as well as how to make your own, check out http://
rivaltheory.com/wiki/rainelements/
charactercontrollermotor.

11. First, in order to make it easier to modify the prefab, let's bring one into the
scene. So with this in mind, from the Project tab go to the MyGame/Prefabs
folder, and then drag and drop a RAIN_Enemy prefab into the scene.

http://rivaltheory.com/wiki/rainelements/charactercontrollermotor
http://rivaltheory.com/wiki/rainelements/charactercontrollermotor
http://rivaltheory.com/wiki/rainelements/charactercontrollermotor

Chapter 5

[173]

12. From the Hierarchy tab, extend the newly created object's children and
select the AI object. From here, click on the feet icon to open the Motion tab.
Then, change the Motor property to CharacterControllerMotor from the
dropdown that has popped up.

13. This will require our RAIN_Enemy object to have a CharacterController
component, so let's add one real quick. Select the parent object from the
Hierarchy tab, and then from the top bar, navigate to Component | Physics
| CharacterController.
You'll notice that there is now a new capsule that's been added. This is what
RAIN will use to base its movement on.

14. From the Inspector tab, scroll down to the Character Controller component
and change the Center Y property to 1, Radius to .9 (slightly smaller than
the collider we created to receive hit events), and leave Height at 2.

15. After making all these changes, let's update our original prefab by scrolling
up to the top of the Inspector tab, and then from the top Prefab section, click
on the Apply button. This is so that our prefab object now has all the changes
we made to the previous version.

Building Encounters

[174]

16. After this, you can delete the object from our Hierarchy as we won't need
it anymore.
At this point our enemy will now go up and down stairs correctly and move
towards us. However, if we happen to go back to our first room to hide from
the enemy...

Our bullets aren't going through the trigger. This is because when we shoot
in UFPS it draws an invisible line and sees if anything hits it. Right now,
the trigger we created counts as something so it uses that as what it hits.
(by default, things will be hit by bullets even if their colliders are triggers).
Thankfully, this is a pretty simple fix.

Chapter 5

[175]

17. Select our trigger object, and from the Inspector tab, select Layer
and IgnoreBullets.

The enemy can't follow us and our bullets aren't going through the trigger.
This is because the bullet is drawing a line and seeing that there is something
there due to the layer that it has (by default, things will be hit by bullets even
if their colliders are triggers). Thankfully, this is a pretty simple fix.

If you're using Shooter AI, you should now do the following:

1. Select our trigger object and from the Inspector tab, select Layer
and Trigger.

Building Encounters

[176]

2. Now, save your scene and run again!

With all this place, we now have our trigger working perfectly, and we can shoot
through it as well! Now, go ahead and skip the rest of this section and continue on to
the Clean Up Date AI section.

We may also want to have the AI move rather than just stay in place for the
beginning of the combat. Our current behavior tree states that if we don't have an
enemy nearby, we can search for a Waypoint Route component from an object called
SimpleWayPointRig (which you can check out for yourself in the Behaviour Editor
from the waypointpatrol decision). If you're using RAIN, follow these steps:

1. From the toolbar at the top of the window, navigate to RAIN | Create New |
Waypoint Route. From Inspector, rename this object to SimpleWayPointRig.
Next, click on the Add button to add a waypoint and you'll see a single circle
there, which will be the first place that the enemy will go to.

Chapter 5

[177]

2. After creating this first key, press Ctrl + W to create a new key, which will
show up nearby and you can move this via translation tools. You can create
as many parts of this key as you like to create a patrol route for the AI
to take.

Currently, when you finish the route, you will go back to the previous
waypoints, so there is no need to try to make them all match.

Building Encounters

[178]

3. Now, save your scene and run it again!

As you can see, our enemy will now spawn and follow the route we've created,
and if we have him get to the trigger, bullets will fire as well!

Chapter 5

[179]

Now, our enemy's functioning as we want it to!

Spawning multiple enemies at once
Taking this a little further, we can create another script that can be used to spawn
multiple enemies at once.

1. Go to the MyGame/Scripts folder, navigate to Create | New C# Script, and
call it SpawnEnemiesOnTrigger. Once you've finished, double-click on the
created file to open MonoDevelop.

2. Once the file is opened, put in the following code if you're using RAIN:
using UnityEngine;
using System.Collections;
using System.Collections.Generic; // List

public class SpawnEnemiesOnTrigger : MonoBehaviour
{
 // Enemy to spawn
 public GameObject enemy;

 // Where to be spawned at

Building Encounters

[180]

 public List<Transform> spawnPoints;

 // Has this happened already?
 private bool hasTriggered = false;

 void OnTriggerEnter(Collider other)
 {
 //If the player touches the trigger, and if it hasn't
 // been triggered before
 if(other.tag == "Player" && hasTriggered == false)
 {
 foreach(var spawnPoint in spawnPoints)
 {
 // Spawn a new enemy using the properties from the
 // spawnPoint object
 GameObject newEnemy = Instantiate(enemy,
 spawnPoint.position,
 spawnPoint.rotation)
 as GameObject;
 }

 // We only want this to happen once.
 hasTriggered = true;
 }
 }
}

If you're using Shooter AI, add in the following code:
using UnityEngine;
using System.Collections;
using System.Collections.Generic; // List

public class SpawnEnemiesOnTrigger : MonoBehaviour
{
 // Enemy to spawn
 public GameObject enemy;

 // Where to be spawned at
 public List<Transform> spawnPoints;

 // Has this happened already?
 private bool hasTriggered = false;

 void OnTriggerEnter(Collider other)

Chapter 5

[181]

 {
 //If the player touches the trigger, and if it hasn't
 // been triggered before
 if(other.tag == "Player" && hasTriggered == false)
 {
 foreach(var spawnPoint in spawnPoints)
 {
 // Spawn a new enemy using the properties from the
 // spawnPoint object
 GameObject newEnemy = Instantiate(enemy,
 spawnPoint.position,
 spawnPoint.rotation)
 as GameObject;
 //Tell enemy to go to the player
 newEnemy.GetComponent<NavMeshAgent>()
 .SetDestination(other.transform.position);
 }

 // We only want this to happen once.
 hasTriggered = true;
 }
 }
}

This code is different from our previously created one in a few ways. For
instance, now, spawnPoint is spawnPoints and its type is List<Transform>
or a list of transforms. This is basically a group of multiple objects with the
Transform component attached, which we can then walk through (known
in programmer lingo as iteration, which is what foreach is for) and do
something about for each point, in this case, spawning an enemy.

3. Save the file and go back into the editor. Now, remove our previously created
component by right-clicking on the component in the Inspector tab and
selecting Remove Component. After this, drag the SpawnEnemiesOnTrigger
script that we've just written onto the object to add it.
At this point, you may notice that we can do everything that we did with
SpawnEnemyOnTrigger inside the SpawnEnemiesOnTrigger class, so you can
delete it if you'd like.

4. Next, in the Inspector tab, go down to the newly created component and
drag and drop our Enemy prefab into the Enemy slot just like we did before.
Then, expand the Spawn Points property. Next, change Size to 2 and you'll
see two slots open up.

Building Encounters

[182]

5. We need to create two objects to be our spawn points. A little trick to this is
that when we select an object in the Hierarchy tab and create a new Game
Object, it will be created in the center of this object. So, select the Simple
Room that our enemies are in, and then navigate to Game Object | Create
Empty Child. With the new object created, change its name to Spawn Point.
By default, the object is invisible unless we have it selected, in which case,
we can see the transform gizmo, so we may want to add some visuals to it to
make it easier to see and position it where we want it to be placed.

6. Click on the icon to the left-hand side of the name and you'll see the Select
Icon window pop up. Select one of the top icons and you'll see that the object
will have the object's name appear where it is currently located.

For information on the Icon Display controls, check out
http://docs.unity3d.com/420/Documentation/
Manual/GizmoandIconVisibility.html.

http://docs.unity3d.com/420/Documentation/Manual/GizmoandIconVisibility.html
http://docs.unity3d.com/420/Documentation/Manual/GizmoandIconVisibility.html

Chapter 5

[183]

7. Now, we can move this object where we want it, duplicate it, and move
it to another position so that we now have two spawn points to spawn
something from.

8. Lastly, select our trigger object once more, go back to the Inspector tab,
and assign the spawn points into each element of the spawn points.

Building Encounters

[184]

9. Save your scene and play the game!

We can now spawn as many enemies as we want and have them come in from
multiple directions! We're now in a position to create many different kinds of
combat scenarios!

Cleaning up dead AI
Another thing that you will need to do when dealing with AIs is that if you're
using Shooter AI, when they die, they don't disappear, at least by default. This adds
realism to our world, but it's still very computationally expensive to have them
around. Thankfully, we can add another component to make it quite easy for us
to clean up enemies of our choice.

1. From the Project tab, open the MyGame/Prefabs folder and select the
UFPS_Enemy that we created earlier.

Chapter 5

[185]

2. From the Inspector tab, scroll all the way down and press the Add
Component button. From here, navigate to Shooter AI | Clean Up
After Death.

3. By default, it has the Cleanup Time property set to 10, which means that
after 10 seconds it will disappear. Since we want to see it quickly, change
the value to 2.

4. Save your project and start the game again.

After we kill our enemy, it will disappear! This will really help with things, such as
performance and keep our game running smoothly!

Building Encounters

[186]

Placing healthpacks/ammo
Other tools in a level designer's toolbox are ammo/health pack pickups. These are
often used as rewards for a player who's exploring a layout as well as providing an
incentive to travel to certain places, sometimes at risk.

1. From the Assets tab, go to the UFPS/Base/Content/Prefabs/Pickups/
Powerups folder. Once here, you'll see a number of powerups that can be
placed in the world as follows:

 ° PickupHealth: This will increase a player's health and will
also respawn

 ° PickupHealthLoot: This will increase a player's health by a little
bit and it will not respawn

 ° PickupSlomo: This will slow down enemies with a bullet-time
effect for time-based gameplay.

 ° PickupSpeed: With this, players will be able to travel much faster
than they normally can when there is a need for speed.

Chapter 5

[187]

A tutorial to create your own custom health and ammo
pickups can be found at https://www.youtube.com/
watch?v=BEHimn5UeF0.

2. Drag and drop some pickups along the way to the other room to lead the
player toward this area. Also, place some ammo for weapons that you want
the player to use (in the UFPS/Base/Content/Prefabs/Pickups/Weapons/
Ammo folder).

A nice write-up on item placement in FPS maps can
be found at https://dfspspirit.wordpress.
com/2015/03/26/designing-great-1vs1-fps-
maps-part-1/.

3. Once you're finished, save your level and play the game!

https://www.youtube.com/watch?v=BEHimn5UeF0
https://www.youtube.com/watch?v=BEHimn5UeF0
https://dfspspirit.wordpress.com/2015/03/26/designing-great-1vs1-fps-maps-part-1/
https://dfspspirit.wordpress.com/2015/03/26/designing-great-1vs1-fps-maps-part-1/
https://dfspspirit.wordpress.com/2015/03/26/designing-great-1vs1-fps-maps-part-1/

Building Encounters

[188]

Now, our world is a little more interesting and our players have the incentive to go
out and face danger!

For more information on Shooter AI and to resolve any questions
that you may have, visit its official thread on the Unity forums at
http://forum.unity3d.com/threads/shooter-ai-the-
ultimate-artificial-intelligence-solution.204220/.

Summary
We now have some interesting encounters for our game! In addition to these, we
covered a lot of features that exist in Unity for you to be able to use in your own
future projects. We specifically covered placing turrets, integrating RAIN in our
project, integrating Shooter AI in our project, spawning enemies using triggers,
placing pickups and healthpacks, and so on. Keeping all this in mind, in the next
chapter, we'll learn how to take our knowledge of environments and build different
combat scenarios!

http://forum.unity3d.com/threads/shooter-ai-the-ultimate-artificial-intelligence-solution.204220/
http://forum.unity3d.com/threads/shooter-ai-the-ultimate-artificial-intelligence-solution.204220/

[189]

Breathing Life into Levels
Of course, it's great to have an environment and enemies. But if these were all there
was in a game, you'd just be walking from one encounter to the next with nothing
more interesting to look forward to. In this chapter, we will be exploring some of the
ways we can breathe life into our levels with moving objects and more things players
can interact with.

This project will be split into a number of tasks. It will be a simple step-by-step
process from the beginning to the end. Here is the outline of our tasks:

• Building an explosive barrel prefab
• Triggers for gameplay (doors)
• Creating an elevator with interaction

Prerequisites
Before we start, we need to have a project created that already has UFPS and
Prototype installed. If you do not have these, follow the steps described in Chapter 1,
Getting Started on an FPS. In addition, I am also assuming you have a level that you
want to add encounters to.

Breathing Life into Levels

[190]

Building an explosive barrel
One of the first things we are going to look at is the common FPS staple: explosive
barrels. These will allow the player to get a "leg up" on their enemies by causing
explosions when damaged enough. They're also fairly simple to create.

1. To start off, let's open up the level we created in the Chapter 5, Building
Encounters (Chapter 5_5_ HealthPacksPickups.unity in the example
files you can get from the Packt Publishing website).

Chapter 6

[191]

Let's get the implementation of the functionality to work correctly, then we
can make it look nice.

2. Create an object to represent our barrel. To do this, go to GameObject | 3D
Object | Cylinder.
This will create a 3D object that will look like a cylinder and give it a collider
so that it blocks our player if he/she walks into it. It can also be hit by bullets.

3. Change the object's name to Barrel. The default cylinder is a bit too large to
be a barrel, so we will change the Y value of the Scale property to .75. Then,
we will position it so that it fits the ground (-7, 1.7, 5.1 in this case).

Breathing Life into Levels

[192]

4. Next, we want it to react to being damaged. So, we will need to add a
VP_Damage Handler component to it. To do this, from the Inspector tab,
click on the Add Component button, type in damage, and select it from the
dropdown menu.

The VP_DamageHandler component gives objects the ability to take
damage and die. It's important to note that this will not respawn objects
(use the VP_Respawner component for that). As we don't want the barrels
to respawn, it is fine to use this component. In this case, if we play the
game and shoot the barrel, it will disappear.

For more information on the Damage Handler, check
out http://www.visionpunk.com/hub/assets/
ufps/manual/damage.

http://www.visionpunk.com/hub/assets/ufps/manual/damage
http://www.visionpunk.com/hub/assets/ufps/manual/damage

Chapter 6

[193]

5. We don't want a single small bullet to destroy the barrel, so in the
Vp_Damage Handler component, we will set the Max Health and Current
Health variables to 5. The higher the number used here, the more is the
damage needed to be done to the barrel before it is destroyed.

Currently, when we kill the barrel, the object just disappears. Instead,
let's have an explosion occur that will damage everything nearby.

6. Under the Vp_Damage Handler component, expand the Death Spawn
Objects variable and change the Size value to 1.

Breathing Life into Levels

[194]

7. From the Project tab, go to the Assets/UFPS/Base/Content/Prefabs/
Explosions folder and move the CubeExplosion prefab to the Death
Spawn Object slot by holding down the mouse button over it and dragging
it into the slot.

Now, if we were to walk up to the barrel and attack it, we would get knocked
back. However, enemy AIs don't seem to respond to it. This is because the
Shooter AI characters do not come with a Damage Handler component.
However, we can do a quick fix for this to work.

Chapter 6

[195]

8. Back in the Project tab, select the CubeExplosion prefab. From the
Vp_Explosion component, uncheck the Require Damage Handler property.

This tells the explosions that any object within its radius will have the Damage
function called, which our enemies have an implementation for, even if it
doesn't have a Vp_Damage Handler component.

Breathing Life into Levels

[196]

9. Now, let's create a prefab of our barrel by going to the Project tab, opening
the Assets/Prefab folder, and dragging the Barrel game object from the
Hierarchy tab into the folder.

10. Now, to confirm whether everything is working correctly, create a copy
of the barrel by dragging it from the Prefabs folder into the game world.
You'll notice that it will automatically try to place itself on the floor for us.

Chapter 6

[197]

11. Save the level and run the game.

There we go! When we destroy the barrel, our enemies will be damaged by being
caught in the explosion.

Breathing Life into Levels

[198]

Using triggers for doors
Earlier, you learned how to use triggers to do something simple, such as spawning
enemies to be attacked. In this section, you're going to learn how to use the same
principles for doors.

1. Since we're using the first doorway we created to spawn enemies, let's create
our new door in the second one. To do this, open up Prototype and select
Create to add a new Cube into the world, placing it in such a way that it fits
the front of the doorway we created earlier.

For a refresher on how Prototype works, refer to
Chapter 3, Prototyping Levels with Prototype.

Chapter 6

[199]

2. Now, switch to the Object mode and press the M key to specify this object as
a Mover. To make it easier to tell the difference between the normal stuff and
it, select the Vertex Colors option and make the object green.

Breathing Life into Levels

[200]

3. Next, duplicate the object, click on the Set Trigger button, and drag it out
toward both the sides of the door.

4. To make it easier to look at, rename the trigger to DoorTrigger and the door
to Door. Then, make the Door object a child of Door Trigger.
Now, why are we making the trigger the parent? Well, later on, when we are
creating animations, the door will be moving. If the door was the parent, then
the trigger would move as well.

Chapter 6

[201]

5. We also need to set the Layer value of DoorTrigger to Trigger so that it
cannot be hit by bullets. A dialogue box will open up, asking if you want to
apply the layer to the child; in this case, we will say no, because the bullet
should actually hit the door, but not the trigger.
Now, we need to make it such that when the player hits the trigger, the door
will open and when they leave, it will close. To do this, we will need to write
some script; but before we do that, we'll need to create an animation for the
door to move.

Breathing Life into Levels

[202]

6. From the Hierarchy tab, select the Door object and go to Window |
Animation. This will open up the Animation window, which is where we
create animations inside Unity. Drag and drop the window to where the
Project tab is to work with it with ease. Then, click on the Create button on
the left-hand side of the Animation tab (clicking the up and down arrow
keys for the dropdown menu) and select [Create New Clip], as shown in the
following screenshot:

7. Unity will ask you where you want to save the animation file. Go to
the Assets folder and create a new folder called Animations. Type in
DoorOpen.anim and press Save.

Chapter 6

[203]

8. Exit Prototype if it is open and switch to the Translate tool (W). Click on
the record button and drag the red bar to the 0:30 spot by dragging the
mouse on the bar with the image's measurements. Then, with the Door
object selected in the Hierarchy tab, drag the door over to the side.

You should notice that the animation has automatically created two key
frames, one at the start 0:00 and one where we moved the red bar to.

For more details on the Animation tool and the many ways
you can use this tool to modify any value, check out https://
unity3d.com/learn/tutorials/modules/beginner/
live-training-archive/animate-anything.

9. Click on the record button again to stop recording. Now, by default, this
newly created animation will be played over and over again. To fix this,
go to the Door object and, from the newly added Animator component,
double-click on the Controller variable (called Door) to open up the
Animator window.

https://unity3d.com/learn/tutorials/modules/beginner/live-training-archive/animate-anything
https://unity3d.com/learn/tutorials/modules/beginner/live-training-archive/animate-anything
https://unity3d.com/learn/tutorials/modules/beginner/live-training-archive/animate-anything

Breathing Life into Levels

[204]

10. Right-click, select Create State | Empty, and name it Idle. Then, right-click
on the newly created Idle object again and select Set As Layer Default State.

Now, our animation will only play when we ask it to and not by default.
However, once we play it, it will play over and over again.

11. To fix this, from the Project tab, go to the Assets/Animations folder and
click on the Door Open object. Then, uncheck the Loop Time property so that
it will not loop.

Chapter 6

[205]

12. After this, create a DoorClose animation doing the reverse of what we
did before.
That being said, now that we have the animation, we need to call it within
the code or it'll never happen.

13. Go to the MyGame/Scripts folder, select Create | New C# Script, and name
it DoorBehaviour. Once finished, double-click on the created file to open
MonoDevelop.

Breathing Life into Levels

[206]

14. Once inside, change the code to the following:
using UnityEngine;
using System.Collections;

public class DoorBehaviour : MonoBehaviour {

 /// <summary>
 /// The Animator component of our door object
 /// </summary>
 public Animator doorAnim;

 // Called whenever an object with a collider enters our trigger
 void OnTriggerEnter(Collider other)
 {
 // Check if the player hit the trigger
 if(other.name.Contains("Player"))
 {
 Debug.Log ("Open Door");

 // Play our door animation like normal (speed at 1)
 doorAnim.StopPlayback ();
 doorAnim.Play ("DoorOpen", -1, 0.0f);
 }
 }

 // Called whenever an object with a collider exits our trigger
 void OnTriggerExit(Collider other)
 {
 // Check if the player hit the trigger
 if(other.name.Contains("Player"))
 {
 Debug.Log ("Close Door");

Chapter 6

[207]

 // Play our door animation reversed (speed at -1)
 doorAnim.StopPlayback ();
 doorAnim.Play ("DoorClose");
 }
 }
}

This code uses two built-in functions inside Unity: OnTriggerEnter and
OnTriggerExit. When our player hits the trigger, we will play our door
animation. On exiting, we will play the same animation, but reversed.
This way, the door will close for us.

15. Next, we need to attach this component to our trigger. Select it and drag and
drop the DoorBehaviour file on top of it.

16. Once the component is attached, drag and drop our Door object under the
doorAnim property.

Breathing Life into Levels

[208]

17. Now, save your scene and run again.

With this, we now have doors that will open and close when we approach them.

Creating an elevator
Continuing with what you learned from the previous section, we can take
animations to another level by making moving platforms. However, UFPS
comes with its own built-in way of doing this.

1. From the Project tab, open the Chapter 6_3_ElevatorStart level. This will
give us a simple starting point to create an elevator.

Chapter 6

[209]

Alternatively, use a level that we created previously and add an elevator
to it.

2. From Prototype, create a cube by pressing Ctrl + K. Move it to ground level
in a 3 x 3 x 1 size cube.

Breathing Life into Levels

[210]

3. Go to the Object editing mode and set Vertex Color to Grab to make it easy
for us to see.

4. Rename the object to Platform01. Finally, from the Prototype tab, click on
the Set Mover button to make the object a mover.

5. Create a new game object by going to GameObject | Create Empty.
Name this new object Platform01Path.

6. Create a duplicate of our Platform01 object by selecting it from the
Hierarchy tab and pressing Ctrl + D. Rename this object to 01 and
make it a child of Platform01Path.

Chapter 6

[211]

7. Next, duplicate the 01 object and move it up till it faces the point where we
want the elevator to go.

8. Now, select the original Platform01 object and add a Vp_MovingPlatform
component to it.

Breathing Life into Levels

[212]

9. Once added, from the Inspector, expand the Path property and assign the
Platform01Path object to the Waypoints property.

10. Finally, we need to have the path waypoints to not be visible when the
game is playing, so select both objects in the path (01 and 02) and then from
the Prototype tab click on Set Trigger. We don't need the Mesh Colliders
though, so go ahead and remove them by right clicking on them and
selecting Remove Component.

Chapter 6

[213]

If we play the game now, the elevator should move up and down
continuously. This is great, but there are some additional properties
we can set to have the elevator react to our player, such as the paths
we could have the object go.

11. From the Vp_Moving Platform component, change Type to Target. This
mode will have the platform start off still and then move when the player
stands on it. We also have some additional parameters we can change. Set
Return Delay and Cooldown to 1.
Return Delay is the duration the platform will wait at the destination before
it goes back. The Cooldown property is how long the platform will stay at
the end of its animation before going back.

Breathing Life into Levels

[214]

12. Save your level and start the game.

Now, our new moving elevator platform will work in a much more player-friendly
way. We have exactly what we're looking for!

For more information on moving platforms and their paths, check out
the UFPS' documentation at http://www.visionpunk.com/hub/
assets/ufps/manual/platforms.

Summary
At this point, we have a firm foundation for you to create more interesting
encounters and functionality in your levels. Specifically, we covered how to build
an explosive barrel prefab and triggers for gameplay (doors) and create an elevator
with interaction.

With this in mind, in the next chapter, you will learn how to polish our levels with
effects while you finalize your game.

http://www.visionpunk.com/hub/assets/ufps/manual/platforms
http://www.visionpunk.com/hub/assets/ufps/manual/platforms

Chapter 7

[215]

Adding Polish with ProBuilder
At this point, we have levels that we can work with and have play-tested and refined
them to the point where we're ready to start polishing them to get ready for release.

Previously, we have been using Prototype to do our indoor level creation. This has
been great, but when we want to start building professional-quality levels, we need
to start adding more details such as textures to the level.

Different companies and game engines deal with this in different ways. Some
will take their prototyped levels and then export them to a file to bring them into
a 3D modeling tool, such as 3dsMax or Maya, to create their environment, often
converting the original brushes into colliders. Other companies will instead refine
their prototypes, add in more details, and then add materials to the brushes that
were created; this is the approach that we are going to use.

Now, Prototype doesn't come with this feature, but its ProBuilder tool does. In this
chapter we are going to explore how to use this tool to create the best levels that
we can.

Here is an outline of our tasks:

• Upgrading from Prototype to ProBuilder
• Creating materials
• Working with ProBuilder—placing materials and UVs
• Meshing your levels

Prerequisites
Before we start, we will need to have a project created that already has UFPS and
Prototype installed. If you do not have that already, follow the steps described in
Chapter 1, Getting Started on an FPS. In addition, I am also assuming you have a level
that you want to add encounters to.

Adding Polish with ProBuilder

[216]

Upgrading from Prototype to ProBuilder
Upgrading our projects so we can use them in ProBuilder isn't as simple as deleting
Prototype and adding ProBuilder because of the way it is programmed; they both
use different types of components. Thankfully, there is a tool that can act as a
intermediate stage and that will save all of the data needed so we won't have
to redo everything. So let's learn how to go about doing it.

Before continuing, I do want to mention that the upgrade process is not
reversible, and if an error occurs, you will almost certainly lose all your
work. Make a backup of your entire project before attempting to do this!
It's also important to note if you are using ProBuilder Basic and updating
to Advanced and are using 2.4.7 or higher, all you need to do is import
your new package.
To be completely sure of the steps needed and what to do for whatever
version of the tools you're using check out the following page: http://
www.protoolsforunity3d.com/docs/probuilder/#installingA
ndUpgrading

1. To start off we will need to go to the ProBuilder site to download a new
Unity package called the ProBuilder Upgrade Kit. To do that open up your
web browser and visit: http://www.protoolsforunity3d.com/docs/
probuilder/ProBuilderUpgradeKit.html.

2. From there click on the ProBuilder Upgrade Kit link to download the
package, clicking on Download once you get to the Dropbox file.

http://www.protoolsforunity3d.com/docs/probuilder/#installingAndUpgrading
http://www.protoolsforunity3d.com/docs/probuilder/#installingAndUpgrading
http://www.protoolsforunity3d.com/docs/probuilder/#installingAndUpgrading
http://www.protoolsforunity3d.com/docs/probuilder/ProBuilderUpgradeKit.html
http://www.protoolsforunity3d.com/docs/probuilder/ProBuilderUpgradeKit.html

Chapter 7

[217]

3. Once it's finished downloading, open up your Unity project (making sure
to back up your previous one first), then go to the top bar, and then select
Assets | Import Package | Custom Package… Then browse to your
Downloads folder to select the ProBuilderUpgradeKit.unitypackage file.

4. Once it comes up, verify that everything is checked and then click on the
Import button.

Adding Polish with ProBuilder

[218]

5. Next, open up each scene in your project that uses Prototype and then go
to the top bar and select Tools | Prototype | Upgrade | Prepare Scene
for Upgrade. It will bring up a popup saying that it will store the data and
remove the old content. Click on the Okay button:

6. Once it finishes, another popup will appear saying that it successfully
serialized the objects. Click on the Save Scene button and then do this
again for every other level.

If you look at the scene, you'll notice that the Prototype components
have been replaced with a new Pb_Serialized Component (Script)
component. This is the data needed by ProBuilder to recreate your scene with
the new functionality built in and ensures we can remove Prototype safely.

Chapter 7

[219]

7. Now that all of the objects in all scenes are fixed, we can delete Prototype
from our project. From the Project tab, select the ProCore folder and then
delete it. At this point your screen may look something like this:

Adding Polish with ProBuilder

[220]

You may also see some errors on the console. This is perfectly normal and
expected because some of the data is no longer there.

8. Now we need to get ProBuilder, so let's go to the Asset Store by going to the
top bar and then selecting Window | Asset Store. Log in as discussed before,
search for ProBuilder, and select ProBuilder 2. Purchase the asset if you
haven't already, and once finished download the asset.

9. Now, when the popup starts up click on the Import button to bring it in.

Chapter 7

[221]

10. Now that we have ProBuilder completed, we need to go through all of our
scenes; from the top bar select Tools | ProBuilder | Upgrade | Re-attach
ProBuilder Scripts. You should notice everything going back to normal and
if you select an object you'll know everything has gone correctly if you see
there is a Pb_Object component with Open ProBuilder as an option.

11. In levels where you have special properties such as Triggers, Colliders, and
Movers, everything will work correctly when you play the game, but in the
Editor mode the materials may be the normal colliders instead of the special
ones from Prototype. To fix this, after conversion you may need to select the
object again; from Object mode, select the Set Trigger (or whatever it is)
option once more and save the level.

Adding Polish with ProBuilder

[222]

12. Once you are finished with all of the scenes, you can then optionally delete
the ProBuilderUpgradeKit folder.

If you do delete the folder and there is a scene that
hasn't been converted then you'll lose all that data,
so be very careful!

And with that, we have ProBuilder completely installed!

For another video example of the upgrading process,
check out: https://www.youtube.com/watch?v=O-
Dz0Q3KgCs&feature=youtu.be.

https://www.youtube.com/watch?v=O-Dz0Q3KgCs&feature=youtu.be
https://www.youtube.com/watch?v=O-Dz0Q3KgCs&feature=youtu.be

Chapter 7

[223]

Creating material
Of course, we wouldn't have spent all this time getting ProBuilder ready if we
weren't about to use it to make our projects nicer, so let's start this process by
adding more details to our walls, making use of the materials. But, of course,
we will actually need to have materials to do that, so let's get started with that!

1. To start off, we will need to open up a level to work with. Either open up
your own level created previously or open Chapter8_SampleMap provided
in the Example Code project.

This level uses the concepts that we learned about in the previous chapters,
building a level in Prototype on top of the terrain that we created previously.
Notice that, even though the objects are a tad more complicated than what
we created before, I simply looked at real-life buildings for inspiration and
fleshed them out with more details.
Now that we have a level here for us to work with, we will also need to have
something to actually put on the walls. In Unity, we can control the visual
appearance of game objects making use of materials. Materials control the
visual aspect of an object. This will include the shader used on the object as
well as its color, shinyness, and how bumpy it is in addition to many other
properties. To create Materials, we usually apply textures, or image files,
into various properties to adjust the settings. Let's see how that works.

Adding Polish with ProBuilder

[224]

2. In the Example Code folder for this chapter, you'll see a folder called
GameTextures. Drag-and-drop this folder into your project and wait for
it to import.

These textures were provided by the great folks at
GameTextures.com, which has a huge array of ready-to-use
materials for use in games with little to no effort. It's been a
huge time-saver for someone like myself who doesn't have the
time to build materials from scratch and is used by thousands
of other indie titles as well as several huge-name AAA studios.
You can find them at: http://gametextures.com/.

3. Each of these folders will contain the files that we will need in order to
create a material. To get started, let's open up the BrownBrick folder from
the Project tab and then click on Create | New Material. Once it's created
give it the name BrownBrick.

4. Select the object and you should see a large number of properties in the
Inspector tab. Drag-and-drop the brownBrick_unity_albedo file onto the
box to the left of the Albedo property, the brownBrick_unity_height file
onto the Height Map and Occlusion properties, and the brownBrick_unity_
normal file onto the Normal Map property. Under the Metallic property, set
Metallic to 0 from the slider and Smoothness to .1. Under the Height Map,
change the slider to .08.

http://gametextures.com/

Chapter 7

[225]

5. Once you do that you'll see text appear below the Normal Map saying that
the texture isn't marked as a normal map. Click the Fix Now button and you
should notice the material has become much nicer to look at.

Newly introduced in Unity 5, the Standard Shader is now the default way
to create all materials for non-mobile platforms. It's a powerful tool, but may
be a bit complex for newcomers. Here is a quick description of each of the
properties we used.

 ° The Albedo property stands for the base color to be used on the
surface of the object to be placed.

 ° The Normal Map property is what's referred to as a bump map,
which is a special kind of texture that will add bumps and other
aspects to the material to artificially add depth to the object, as you
can see in the changes done to the material.

 ° The Height Map property is another kind of bump map but, instead
of showing the difference in direction the surface appears to face, it
shows how high the surface should appear to be raised (black not at
all, white all the way). The Height Map property has a slider that will
allow you to scale how high or low the bricks appear in your image.

Adding Polish with ProBuilder

[226]

 ° Finally, the Occlusion map provides information on what parts of the
material should receive indirect lighting from Directional Light and
the like.

 ° The Metallic parameter sets the reflectivity and light response of the
object. It contains two sliders, Metallic and Smoothness. Metallic
sets how "metal-like" the surface is. 1.0 is pure metal, 0 is not metal
at all. Smoothness is how smooth the surface appears to be. For
instance, if Smoothness and Metallic are both at 1 you'll get a mirror.

For more information on the Standard
parameters of Shader check out: http://
docs.unity3d.com/Manual/
StandardShaderMaterialParameters.html.

6. Go through the other materials and do the same thing, making sure to use
the sliders to get what looks right for you specfically while learning how each
property modifies the material. While doing so you may want to change the
Ghetto Window on the bottom so that instead of showing a sphere you show
a box instead. You can do this by clicking on the sphere icon to the right of
the play button to the right of the Ghetto Window text.

http://docs.unity3d.com/Manual/StandardShaderMaterialParameters.html
http://docs.unity3d.com/Manual/StandardShaderMaterialParameters.html
http://docs.unity3d.com/Manual/StandardShaderMaterialParameters.html

Chapter 7

[227]

And at that point you should have a new group of materials that you can use
with ProBuilder!

Alternatively, you can also use the
GameTexturesCompleted.unitypackage file
from the Example Code folder for this chapter to
use what I am using.

Working with ProBuilder – placing
materials
Now that we have the materials to work with, let's learn how we can place them into
the scene by making use of ProBuilder's Material tools.

1. There are many ways to apply material to objects and faces with ProBuilder.
For the easiest, simply select an object in your scene and then drag-and-drop
one of the materials on top of it. For instance, in the next screenshot I've taken
the BrownBrick material and applied it onto one of the houses in our level.

Adding Polish with ProBuilder

[228]

As you can see, all of the faces of the object now are using the brick material
instead of the default. However, we may not want to use the material on
every single face of the building. In addition, we may also want the bricks
to be bigger, because right now they look incredibly tiny.

2. Open up the ProBuilder window and change to Face mode. From there,
select the faces on the top of the house that we will want to replace with a
different texture; for now, some trim around the roof will do nicely.

Chapter 7

[229]

3. After that you can simply drag-and-drop a material onto your selection
and it should apply the material to what you currently have selected
(and nothing else).

Don't worry if things look a bit freaky for a period of time,
Unity needs time to rebuild lighting after the Materials on
objects have changed. Alternatively, if you want things to
go quicker, go to the Lighting tab by going to Window |
Lighting and then from the Object section uncheck the
Continuous Baking button, but be sure to turn it back on
before finishing the project!

Adding Polish with ProBuilder

[230]

4. Alternatively, we may want to paint the faces individually. This is also easy
enough to do. Select your object once again. From the ProBuilder tab, click
on the Material button to bring up the Material Editor dialog box.

The Material Palette allows users to set up often-used materials and then just
press certain hotkeys to apply them to whatever is selected. In addition there
is the Quick Material parameter, which is what we're going to use now.

Chapter 7

[231]

5. Drag-and-drop the streakyBlocks material into the Quick Material
parameter; once that's completed, hold down the Ctrl + Shift keys and then
start clicking on faces, such as the heater on the top of the house. This will
allow you to quickly start applying faces.

For more information on Applying Materials check out:
http://www.protoolsforunity3d.com/docs/
probuilder/#texturesAndUVs.

Alternatively, you can select a number of faces and then
click on the Apply button to apply them all at once. You
can also select any face in your level and click Match
Selection to automatically select whatever material
you used there—nice for when you're trying to find
something specific for your level.

http://www.protoolsforunity3d.com/docs/probuilder/#texturesAndUVs
http://www.protoolsforunity3d.com/docs/probuilder/#texturesAndUVs

Adding Polish with ProBuilder

[232]

6. Now that we have some materials placed, let's fix the whole size and
placement issue. Let's first fix the brick texture. Select the bricks around the
house and then open up the UV Editor window by going to the ProBuilder
tab and then selecting UV Editor.

When you zoom out the camera, you'll notice a lot of lines and some blue
boxes. Well, the blue boxes are what you currently have selected in the Scene
tab, and the white lines represent the UVs of the object: what will be painted
onto the surface of the polygon. Rather than use an X and Y position, to
avoid confusion they call the coordinates U and V.
Movement in the UV Editor is very similar to normal movement in Unity;
you can hold the middle mouse button and move the mouse in order to pan
the camera and use the mouse wheel to zoom in and out.

7. On the left-hand side, you'll see a number of properties in the Actions tab.
What we want to look at is the Scale property. From there click on the 4
button to make our object have a scale of .25, which makes the plane four
times smaller; this will make the texture applied to it four times larger.

Chapter 7

[233]

This is what it looks from the UV side; from the unreal side, you'll notice that
the texture got larger.

Adding Polish with ProBuilder

[234]

8. Next we'll select the top section and scale that up as well to 2 instead:

However, at this point there are some additional issues. The top row is facing
a different way from the sides, and the bricks are different sizes in different
places. Thankfully, we can fix this in a flash.

9. Select one of the top pieces that is rotated in the wrong direction. We can
fix this by moving the Rotation property in the UV Editor with that face
selected to 90.

Chapter 7

[235]

It's starting to get there, but what we really want is for the brick to fit the
brush we created. It'd be a lot easier to just tweak it in the Scene view till it
looks correct, and that's what we're going to do next.

10. With our face selected, at the top (on the left side of the right part of the
toolbar), you'll see some arrows pointing out in directions. Click on this to
lock the SceneView map handles to the UVs instead of the object.

Adding Polish with ProBuilder

[236]

11. Now, back in the Scene view in the Unity editor, you can use the same tools
we've been using in the environment to modify the UVs.

12. When you go back into the UV Editor you'll notice the properties have been
set to whatever you did in the Scene view. Copy the Scale value, as we will
use it for the other parts.

Chapter 7

[237]

13. Select the face to the right, paste the Scale values in, and then translate them
until they fit within the brush we created as well.

Adding Polish with ProBuilder

[238]

It's looking better, but the edges aren't meeting up correctly. Here we have
two choices. We could either place a mesh here to hide the issue, or we can
translate the UVs to make a small block there. In this case, I will make a small
block, as follows:

14. Next we will want to do the insides of the blocks.

Chapter 7

[239]

As you can see, the blocks are looking even better!

15. You may notice that the blocks on the outside look much larger than the
others; that's because the top section here is broken up into two pieces. To
have them show up correctly, we can use the Group tool. Select both outer
faces by clicking on one and then holding down Shift and selecting the other.

Adding Polish with ProBuilder

[240]

16. Then back in the UV Editor tab click on the Group Selected Faces option.
Once you've done that you'll see that the two separate UVs are now
connected to each other and function as one.

17. You should then be able to move the object and scale it correctly to fit each
part of the outside. After that, I scaled up the top of the small addition on the
top of the house to get rid of the grime and then applied that material on the
top, grouping everything so that it fits the top.

Chapter 7

[241]

And with that we have one single house completed! This gives us a pretty
good picture of how to build UVs for different things, but I wanted to show
one more example that may help you deal with more complex things such
as curves.

Adding Polish with ProBuilder

[242]

18. Continuing from the player's starting area, you'll see a curved road. Select
those faces and then assign the Sidewalk material to the object. Once that's
done, open up the UV Editor once again.

19. Currently things are too small and they're all going in a certain direction
and not flowing correctly. To start fixing this, in the UV Editor select Group
Selected Faces.

Chapter 7

[243]

You'll see that the objects are now connected to each other, but still look
incorrect in the Scene view. What we want to do is have the UVs curve
with our brushes.

Adding Polish with ProBuilder

[244]

20. Still in the UV Editor, click on the three dots button to switch to Vertex mode
and using the Translation tool move the vertices to the right away from the
other pieces so we don't make any mistakes. Then select the two vertices
above the bottom one and move them so that they are parallel to the ones
below it.

Chapter 7

[245]

21. Then continue to the next edge and move to the side as well. As you do this,
the top two pieces will break apart. Just select them again and move them up
as well. At the end it should look like this:

Adding Polish with ProBuilder

[246]

And inside the editor it should look like this:

As you can see, the path is going in the correct direction! Now, the material
this is based on is four different blocks in two parts, one half normal and the
other half with some destruction. For now, we will scale the material up so
that it will only show the clean part.

Chapter 7

[247]

22. Use the UV Editor and scale the objects down to fit only one part of the
sidewalk; translate them to fit snugly. When you're done, it should look
like this:

Adding Polish with ProBuilder

[248]

Now that we have that experience, we can go ahead and texture the remaining parts
of the level. When you're finished and you turn Continuous Baking back on, your
level should look something like this:

We're now well on our way to having a full and polished level!

For a more in-depth video showing all aspects of the UV Editing
and Unwrapping tools, check out: https://www.youtube.
com/watch?v=U_5f8RlciWQ.

https://www.youtube.com/watch?v=U_5f8RlciWQ
https://www.youtube.com/watch?v=U_5f8RlciWQ

Chapter 7

[249]

Meshing your levels
In the game industry, there is often a role known as a mesher; this is a person whose
role is to fill levels with meshes, or additional details, to make the level even nicer.
Generally, these additions do not affect the gameplay, or are not meant to. At times,
designers and meshers will argue about whether certain things should be added to
the scene due to realism or gameplay. However, since you're doing it all, there's no
issue this time!

1. From the Project tab, open up the UFPS/Base/Content/Prefabs/Props
folder. This folder contains a large number of objects that we can play
with in our level.

2. Move your camera into the warehouse of the scene and drag-and-drop a
Crate prefab object on top of one of the shelves.

Adding Polish with ProBuilder

[250]

If you play the game now and go to the crate, you'll find that it's already
created in such a way that, if you shoot it, the crate will be destroyed!

The object can also be picked up and moved—perfect
for use in simple puzzles.

3. Now duplicate this box, doing small, repetitive changes in rotation every
time to break up the similarities between the objects.

Chapter 7

[251]

Once you've created a small group, you can select all of those objects and
then duplicate them, continuing to make small changes!

Adding Polish with ProBuilder

[252]

As you can see, it already looks much more like a lived-in environment.

4. We can also add in the Ladder prefab, to allow our players to move up to the
top of the warehouse, and the Barrel prefab we made from the last level as
well in order to add more cool features to the level!

5. Save your level and start up the game!

Chapter 7

[253]

As you can see, our level is looking great! Take the time to play around with other
models, through the project, from the Asset Store, or of your own creation if you're
inclined to make your level unique!

Summary
At this point, we now have our levels in place and ready to publish! Specifically,
we learned about upgrading from Prototype to ProBuilder, creating materials,
working with ProBuilder to place materials and UVs, and meshing your levels

With that in mind, in the next chapter we will learn how to customize the GUI of our
game and add a main menu for us to start and exit our project!

Chapter 8

[255]

Creating a Custom GUI
Now that we've completed all of our levels, it's time for us to customize the
Graphical User Interface (GUI for short).

A Graphical User Interface or GUI is the way players interact with your games.
You've actually been using a GUI in the previous chapter, and also when you interact
with your operating system of choice. Without a GUI of some sort, you wouldn't be
able to make your electronics do anything (apart from by using a command prompt,
as in DOS and UNIX).

When working on GUIs we want them to be as intuitive as possible and only contain
the information that is pertinent to the player at any given time. There are people
whose entire job is programming and/or designing user interfaces and colleges
provide degrees on the subject. Thus, while we won't talk about everything having to
do with working on GUIs, I do want to touch on aspects that should be quite helpful
when working on your own projects in the future.

Here is the outline of our tasks:

• Creating a main menu: part 1 – adding text
• Creating a main menu: part 2 – adding buttons
• Creating a main menu: part 3 – button functionality
• Replacing the default UFPS HUD

Prerequisites
Before we start, we will need to have created a project that already has UFPS and
Prototype installed with all of the levels that you want to have inside your game
project. If you do not have that already, follow the steps described in all of the
previous chapters.

Creating a Custom GUI

[256]

Creating a main menu: part 1 – adding
text
Games don't just launch straight into the gameplay. Generally they start off with
some kind of Title Screen with the game's name and the option for you to play or
quit. This will be a good way to get some familiarity with how the new Unity GUI
system (as of Unity 4.6) works with some simple UI elements. To start off, let's add
some descriptive text that will display our game's name.

1. To start off we will need to create a new level for our main menu to exist in,
so to do that go to File | New Scene.

2. Now we could add objects into this level, but for our purposes let's make it
blank. From the Hierarchy tab, select the Main Camera object, under Clear
Flags select Solid Color, and then under Background change the color
to black.

3. In order to create a GUI we need to have something called a Canvas in our
scene, so to do this, we need to go to GameObject | UI | Canvas.

4. It may be hard to see the object at this point, so let's go into 2D mode. We can
do that by clicking on the 2D button below the Scene tab.

Chapter 8

[257]

You'll notice that now when we double-click it becomes a lot easier to see
what's there because we're viewing the scene in an orthographic way,
or straight-on like a 2D game would be. Of course, 3D interfaces are also
popular, but in that case you'll be moving around just like a normal object
in 3D space.

The Canvas acts as a space in which we can place different UI elements in the
scene. It can either be drawn on top of the game like we will be doing here, or
it can actually be placed inside the game world, leading to cool effects.

For more information on the canvas, please visit http://
docs.unity3d.com/Manual/UICanvas.html

You'll also notice that another object was created, EventSystem, which will
allow us to interact with the UI we'll learn about later.
It's important to note that UI elements will only show up in the Scene if they
are a child of a Canvas object.

5. Next let's add some text for our game. With our Canvas object selected from
the Hierarchy tab, from the top toolbar click on GameObject | UI | Text.

http://docs.unity3d.com/Manual/UICanvas.html
http://docs.unity3d.com/Manual/UICanvas.html

Creating a Custom GUI

[258]

6. From the Hierarchy tab, select the newly created Text object and then, from
the Inspector tab, change its name to GameTitle. Under the Rect Transform
component change the Pos X and Pos Y values to 0 by either typing them in
or right-clicking on the Rect Transform component and then selecting
Reset Component.
You may have noticed that this object doesn't have a Transform component
in the Inspector. In its place we have Rect Transform. This transform has
a number of new properties designed for working with UIs, such as pivots
to dictate which directions the UI can scale from as well as Anchors to
hold the object at a certain place within the scene. This is very useful in
terms of creating UIs because we want to be able to support many different
resolutions and have it work correctly. We'll discuss these properties in more
detail as they come up in this chapter.

7. Under the Text component, change the Text property to your game's name
(I used Awesome FPS Game) and in the Paragraph section change the
Alignment to Center Align and Middle Align (the center of the choices).

8. We're making progress, but now let's make the text larger. Change the Font
Size to 32 and you'll notice it disappears; that's because our width and
height are too small for this element. Back in the Rect Transform component,
change the Width to 350 and the Height to 60.

Chapter 8

[259]

9. Our background is currently black so let's change the text's color as well.
Back in the Text component change the Color property to white.

10. We can also change the font to whatever we'd like as well. UFPS comes
with a font, so let's just use it. Click on the circle icon to the right of the Font
property and select Aldrich-Regular from the list that pops up.
You can also drag-and-drop any font file you have on your computer into the
Unity project and use it as well!

Okay, we're starting to make headway. Let's move it up as well.

11. Back in the Rect Transform component, change the Anchors section's Min
and Max Y values to .75.
Notice that the Pos Y value goes from 0 to a negative number. This is saying
that the text is a certain number of pixels away from being 75% up to the top
of the screen.
Anchors are convenient because, when working with larger or smaller
resolutions, objects will stay in the same relative positions in space, even if
we change the aspect ratio. Depending on what the Anchors variables are
set to, Rect Transform will show different variables to allow you to position
your object.

Creating a Custom GUI

[260]

If you set Anchors to a single point, without stretching, you'll see the Pos X,
Pos Y, Width and Height Properties, like we have currently.

In code, the Pos X and Pos Y values are stored in a
variable known as anchoredPosition, which may be
a more appropriate name for them.

However, if you set Anchors in a way that stretches your UI Element, you'll
get Left and Right and/or Top and Bottom. To set your anchors easily, there
are a number of presets which you can access from the button in the top left
of the Rect Transform component. In addition to that, if you click on one of
the buttons while holding Alt it will automatically move the object selected
as well.
Do note that, when you change the value, it doesn't actually move the object
as it adjusts the position to put it in the same place; with that in mind, you'll
still need to set the position.

12. Change the Pos Y value to 0 and you'll see that now the value is higher!

And with that we now have a clean logo for our project!

Chapter 8

[261]

For more information about the Text component, please visit
http://docs.unity3d.com/Manual/script-Text.html

Creating a main menu: part 2 – adding
buttons
We have now created the simplest type of UI there is. Let's start adding in some
interactive objects with buttons that will allow us to start or close the game while
also learning about Layout Groups.

1. To start off, we will need to create a holder for the buttons we want to create
to make it easy for us to add additional options to our HUD with minimal
fuss. To do that we will select our Canvas object from the Hierarchy tab and
then create a Panel by going to the top toolbar and selecting GameObject |
UI | Panel.
The panel object is simply an object with Rect Transform and an Image
component attached that is set to take up the entire screen.

2. Next let's create a button object. From our canvas object, select GameObject
| UI | Button.

http://docs.unity3d.com/Manual/script-Text.html

Creating a Custom GUI

[262]

The button that we just created actually consists of two objects: the button
itself, which has the background image, and a button script that dictates how
it animates and interacts. It also has a child text object that has the text that's
being displayed.
The text is displayed on top of the button because the Canvas renders objects
from the top down; thus, the Button is drawn first, then the Text on top of it.
You can change the order by dragging objects as needed

3. Select the Text object and in the Text component set the Text variable to
Start Game. Rename the Button object to StartGameButton.

4. After that, let's add this button as a child of the panel by dragging and
dropping buttons on top of the Panel object.

5. Now let's add a second button to the screen by selecting the button and
pressing Ctrl + D. Rename this newly created object to QuitGameButton and
drag it away from the original object. Under its Text object change the Text
component's Text variable to Quit Game.

Now we could hand-place these buttons to fit on our screen nicely but,
rather than do that, let's explore how we can use Layout Groups to make
our job easier.

Chapter 8

[263]

6. From the Hierarchy tab, select the Panel object and then from the Inspector
go all the way down and select Add Component. From there type in Grid
and select Grid Layout Group.

As you can see, now that we've added a Layout Group to our parent object,
all of the children now have their Rect Transform component values set by
this grid.

For more info on different kinds of Layouts, check
out http://docs.unity3d.com/Manual/comp-
UIAutoLayout.html.

7. Let's make this look a little nicer. In the Inspector tab, go to the Grid Layout
Group component and change the Cell Size to (125, 35); you'll notice that
the elements are changing at the same time.

8. Then set the Spacing in the X and Y fields to 20 and you'll notice that the
objects are moving away from each other.

http://docs.unity3d.com/Manual/comp-UIAutoLayout.html
http://docs.unity3d.com/Manual/comp-UIAutoLayout.html

Creating a Custom GUI

[264]

Next change Child Alignment to Middle Center to center the objects.

9. We don't want the Panel to fill the screen, but it may be nice as a holder
for all of the buttons in our menu. Select the Panel object, click the Add
Component button, and add a Content Size Fitter component to the object.
Next, inside our newly created component, change the Horizontal Fit to
Preferred Size and Vertical Fit to Min Size.
You'll see that now the panel has been resized to fit the contents of its
children, and no more. This is great because, if we create a number of
other buttons, the object will resize as necessary, making it easy to expand.
However, I think it looks a little strange being so tightly bound, so let's add
some padding to the sides.

10. Next, in the Grid Layout Group expand the Padding variable and set the
Left, Right, Top, and Bottom values to 20.
And with that, we're almost there but it looks a little awkward in the center,
so I'm going to lower it down just a little bit.

Chapter 8

[265]

11. In the Panel's Rect Transform component, change Y under Pivot to .25 and
set Pos Y to 0.

We now have the visuals for the buttons created, and have a good understanding as
to how the buttons are placed.

Creating a main menu: part 3 – button
functionality
Now that we have the buttons in the scene, let's make it such that, when we click on
them, they will both start and quit the games, respectively.

Our buttons need to have some functionality on clicking them, but we need to
provide a function for them to call to go to another level. Let's create a new object
with a new component that we will use to do this.

1. Go to GameObject | Create Empty. Rename our newly created object
to MainMenuEvents.

2. From the Project tab, open up the MyGame/Scripts folder and then select
Create | C# Script and call it MainMenuEvents.

Creating a Custom GUI

[266]

3. Double-click on the script to bring it into MonoDevelop. Once opened,
replace what is there with the following code:
using UnityEngine;
using System.Collections;

public class MainMenuEvents : MonoBehaviour
{

 public void LoadGameLevel(string level)
 {
 Application.LoadLevel(level);
 }

 public void QuitGame()
 {
 print ("Quit Game");
 Application.Quit();
 }
}

This class contains two functions for us to work with: QuitGame, which will
have the application quit once it's called, and LoadGameLevel, which will
take in a string and open up the level with that name (if it's part of the build).

4. Attach the MainMenuEvents component to the MainMenuEvents game object.
5. Now let's add this to our buttons. Select the QuitGameButton and from the

Inspector tab move down to the bottom of the Button component. From
there click the + button at the bottom of the On Click () list.

6. Drag the MainMenuEvents object from the Hierarchy tab to the slot to the left
of the newly added item in the list.

7. Then, from the drop-down that currently says No Function, click and select
Main Menu Events | Quit Game.

Chapter 8

[267]

8. Save the scene and play the game!

Creating a Custom GUI

[268]

If you'll notice now, when we click the Quit Game button, the words Quit
Game are displayed on the bottom left where Console outputs are displayed!
As Application.Quit doesn't do anything in the editor, this shows us that
the function is being called correctly.

9. Now let's do the same thing for the Start Game button. Select the object and
then click on the + below the OnClick () list.

10. Once created, drag-and-drop the MainMenuEvents object in and then, from
the drop-down, select MainMenuEvents | LoadGameLevel. You'll notice
that unlike the last time there's now a new slot placed below the function's
name. This is where we will put the game level we want to load (in this case I
am going to put Chapter 7_MeshingYourLevels because that's the name of
my final created game level).
However if you were to play the game, you would notice that nothing
happens when we click the Start Game button; or rather we'd see the
Console giving us an error.

Chapter 8

[269]

11. Go into File | Build Settings. You'll notice there are already a number of
levels included, and this is because of defaults in UFPS.

12. Select all of the levels currently in the Scenes in Build property and delete
them by pressing the Del key. Next add both the Main Menu and the Game
levels with the Main Menu being at the top (the top is the level that will
start if you export the game). If it is not there, feel free to drag it up there
via the mouse.
You can add levels by either pressing Add Current after loading each level or
by dragging-and-dropping the levels from the Project tab.

Creating a Custom GUI

[270]

13. Once finished, save your work and start the game again!

At this point, whenever we click on the Start Game button it will load our
level correctly!

Replacing the default UFPS HUD
We now have a Main menu, but our regular game level is showing a default UI.
While it's fine for testing purposes, we may want to make something a little more
custom for our finished product.

1. Start off by opening up any of the levels you've created that have the
AdvancedPlayer prefab inside it (I chose Chapter7_MeshingYourLevel).

Chapter 8

[271]

2. From there select your AdvancedPlayer and look at it from the Inspector.
One of the components you'll see is the vp_SimpleHUD component.

This is what draws the screen in the default way and can be a good reference
when it comes to accessing variables. However, we do not want to use it in
this case.

3. Right-click on the vp_SimpleHUD component and select Remove Component.
4. Now that we've removed the previous HUD, it's time to add in our own.

Create a Canvas by selecting GameObject | UI | Canvas.
5. For our purposes we're going to be using Slider as the basis of our lifebar.

To do that with the Canvas selected, go to GameObject | UI | Slider.

Creating a Custom GUI

[272]

A slider is a graphic with a handle that the user can drag to change a value
between a min and max value. In this instance we are using a slider for
display purposes rather than the interaction that it offers but let's first see
what it does. If you go into the Inspector and scroll down to the Slider
component you'll see a value called Value; when you change it you'll see
the slider move as well.

6. Next let's customize how this looks so it fits the roll of a healthbar better.
Expand the Slider object in the Hierarchy to see the Fill Area and Handle
Slide Area objects. Delete Handle Slide Area as we will not be needing it.

7. After that, from the Hierarchy tab inside the Slider object expand the Fill
Area object to see its children and from there select the Fill object. From there
set the Color on the Image component to green to make it look more like a
health bar.

8. Next let's position this to the top left of the screen. Select the Slider object
and then click on the anchor helper button, hold down the Alt key, and then
press the top left option.

Chapter 8

[273]

When you hold down the Alt key and click on the button, you're also setting
the position of the object in addition to setting the anchor.

9. You'll notice now that it's placed in the correct position, but Pos X is 80 when
we'd rather it be 0; so we need to change X in the Pivot section to 0 and Y to
1. Then set Pos X to 10 to give some spacing from the edge of the screen.
Next, we need to add and display some information about our weapon:
its name and the ammo we have.

10. Go to GameObject | UI | Text. This time put the object in the bottom
left corner.

11. Change the Text inside the object to WeaponName and rename the object to
Weapon Name.

12. Change the Font Size to 20 and the Color to white.
13. After that, to make it easier to read, let's add an Outline component

by selecting the object and then clicking Add Component and selecting
Outline after typing it in.

Creating a Custom GUI

[274]

14. Then select the Weapon Name object and duplicate it (Ctrl + D). Move the
duplicated object above the current one and rename it to Weapon Info. Then
change Pos Y to 40 and Text to 200/200: this will be where we will tell the
player how much ammo they have in the currently selected weapon.

Now that we have the base UI in, let's add in some code to display the correct
data for these UI elements.

15. In the Project tab go into the MyGame/Scripts folder and create a new C#
Script called GameHUD.

16. Double-click on the script to open up MonoBehaviour and use the
following code:
using UnityEngine;
using UnityEngine.UI; // Text, Slider

/// <summary>
/// Updates and provides details for the in-game HUD.
/// </summary>
public class GameHUD : MonoBehaviour
{
 // Will show Object References at the top of these
 //variables
 [Header("Object References")]

Chapter 8

[275]

 public Slider slider;
 public Text weaponName;
 public Text weaponInfo;
 public Transform advancedPlayer;

 // Contains all of the info we need for the HUD
 protected vp_FPPlayerEventHandler m_Player = null;

 void OnLevelWasLoaded ()
 {
 m_Player = advancedPlayer.
 GetComponent<vp_FPPlayerEventHandler>();
 }

 // Update is called once per frame
 void Update ()
 {
 // Only do the actions if m_Player has a value other
 // than null
 if(m_Player)
 {
 // First we'll set the health
 slider.value = m_Player.Health.Get() /
 m_Player.MaxHealth.Get();

 // Next, we want to display the ammo
 int currentAmmo = m_Player
 .CurrentWeaponAmmoCount.Get();
 int maxAmmo = m_Player
 .CurrentWeaponMaxAmmoCount.Get();

 // If we have ammo, display the details
 if((maxAmmo > 0) && (currentAmmo > 0))
 {
 weaponInfo.text = currentAmmo.ToString() + "/" +
 maxAmmo.ToString();
 }
 else
 {
 //If we don't, just be blank
 weaponInfo.text = "";
 }

 // Lastly, let's display what weapon we're using
 weaponName.text = m_Player.CurrentWeaponName.Get();
 }
 }
}

Creating a Custom GUI

[276]

17. After that, attach the newly created script to the Canvas object and assign the
variables to the objects with the same name.

You'll notice that we now have a header on top of the object references. This
is due to the decorator drawer that we used. These are actually one of my
favorite parts of the engine as they allow you to customize how variables are
shown and their layout.

For more info on these and other kinds of drawers, check out:
http://blogs.unity3d.com/2012/09/07/property-
drawers-in-unity-4/.

http://blogs.unity3d.com/2012/09/07/property-drawers-in-unity-4/
http://blogs.unity3d.com/2012/09/07/property-drawers-in-unity-4/
http://blogs.unity3d.com/2012/09/07/property-drawers-in-unity-4/

Chapter 8

[277]

18. Save your game, and play!

And, as you can see, we're almost there. The information is being displayed
properly using the names of the objects and the healthbar is working
correctly; however, it's very small compared to how it was used in our editor
window. We can make this HUD scale with the size of the screen by making
use of the Canvas Scalar property. Let's do that now:

19. Select your Canvas object in the Hierarchy and from the Inspector tab go
to the Canvas Scalar component. Under UI Scale Mode change the value
to Scale with Screen Size and leave the other values at their defaults
for now.

Creating a Custom GUI

[278]

20. Save the game and play it!

As you can see, things are much clearer now!

For more information on making your UI fit with multiple different
resolutions, check out: http://docs.unity3d.com/Manual/
HOWTO-UIMultiResolution.html.

Summary
With this, you have learned how you can get data from UFPS about your characters
and display them in a HUD of your own design. Specifically, we created a main
menu and added text, added buttons and their functionalities, and replaced the
default UFPS HUD.

In the next and last chapter, you will learn about how to get your game out into the
world; in other words, publishing the project and getting it seen!

http://docs.unity3d.com/Manual/HOWTO-UIMultiResolution.html
http://docs.unity3d.com/Manual/HOWTO-UIMultiResolution.html

[279]

Finalizing Our Project
Once you finish your game project, it's important to take the time to get your projects
out in the correct way.

Here is the outline of our tasks:

• Building the game in Unity
• Building an installer for Windows

Prerequisites
Before you start, you need to have your project completed just the way that you want
it to be when you send it out into the world.

Building the game in Unity
There are many times during development you may want to see how your game will
appear if you build it outside the editor. It can give you a sense of accomplishment;
I know, I felt that way the first time I pushed a build to a console development kit.

Finalizing Our Project

[280]

No matter what platform we wish to create out game for in order to build it we need
to go to the Build Settings menu.

1. In order to access Build Settings, we will need to go to File | Build Settings
from the top menu (or by pressing Ctrl + Shift + B).

2. Once you're ready, select Platform from the bottom-left menu. The Unity
logo will show the one you're currently compiling for. We're going to
compile for Windows now, so if it is currently not set to PC, Mac & Linux
Standalone, select it and press the Switch Platform button.

3. Once you have all of this set up, press the Build button. It will ask you for
a name and a location to place the game. I'm going to name it FPSGame and
put it in an Export folder located in the same directory as the Assets and
Library folders. Afterward, hit Save.

Chapter 9

[281]

4. You may need to wait a bit, but as soon as it finishes, it will open up the
folder with your new game.

While building for Windows, you should get something like the preceding
screenshot. We have the executable, but we also have a Data folder that contains all
of the assets for our application (right now called FPSGame_Data). You must include
the Data folder with your game or it will not run. This is troublesome; but later on in
this chapter, will create an installer that will put it on a computer without any hassle.

Finalizing Our Project

[282]

If you build for Mac, it will bundle the app and data together. So, once you export it,
all you need to give people is the application.

If you are interested in submitting your Mac game to the Mac App Store,
there is a nice tutorial on how to do it at http://www.conlanrios.
com/2013/12/signing-unity-game-for-mac-app-store.html.

If you double-click on the .exe file in order to run the game, you'll see the
following screenshot:

http://www.conlanrios.com/2013/12/signing-unity-game-for-mac-app-store.html
http://www.conlanrios.com/2013/12/signing-unity-game-for-mac-app-store.html

Chapter 9

[283]

As you can see, the game pops up and we can play it.

For more information on publishing and the specific things to
look out for, check out http://docs.unity3d.com/Manual/
PublishingBuilds.html.

Building an installer for Windows
Now that we know what happens by default, let's take some time to customize the
project to make it look as nice as possible. PlayerSettings is where we can define
different parameters for each platform that we want to put the game onto.

1. To open PlayerSettings, you can either click on the PlayerSettings button
from the Build Settings menu or go to Edit | Project Settings | Player.

http://docs.unity3d.com/Manual/PublishingBuilds.html
http://docs.unity3d.com/Manual/PublishingBuilds.html

Finalizing Our Project

[284]

PlayerSettings is actually shown in Inspector. There are some key properties
at the top that are cross-platform, which means that they will apply to all
platforms (or rather will be the defaults you can override later).

2. From the Project tab, create a new folder within the MyGame folder and name
it Sprites.

3. Now, in the Example Code folder, you'll find a cursor_hand image. Drag
and drop it to the Assets/MyGame/Sprites folder of the Project browser.
Once there, select the image and change Texture Type to Cursor.
Note that, while the image I created works, you're more than welcome to
create your own cursor and put it here to suit your particular game.

4. Then, in Player Settings, drag and drop the cursor image into Default
Cursor and Default Icon to the MachinegunBullet64x64 image that is
located in the Assets/UFPS/Base/Content/GUI/HUD.
If you would like your game to have multiple cursors or change cursors
at runtime, the Cursor.SetCursor function would be quite helpful.
For more information on this, check out http://docs.unity3d.com/
ScriptReference/Cursor.SetCursor.html.
However, while dealing with UFPS' certain functionalities (such as the
obsolete Screen.LockCursor Unity command, which doesn't work with
UFPS), if you'd like to have both mouse cursor input and FPS gameplay
co-exist in UFPS, check out http://visionpunk.vanillaforums.com/
discussion/comment/243/#Comment_243.
For more information on working with mouse input with projects using
UFPS, check out http://www.visionpunk.com/hub/assets/ufps/manual/
input.

5. On your computer, in the Example Code folder, move the ConfigBanner
image into the Assets/MyGame folder. Select the object and under Texture
Type, change it to Editor GUI and Legacy GUI and then click on Apply.

6. Then, under the PlayerSettings section in Inspector, click on the Splash
Image section to open the Config Dialog Banner property in which you
should set the newly imported image.

http://docs.unity3d.com/ScriptReference/Cursor.SetCursor.html
http://docs.unity3d.com/ScriptReference/Cursor.SetCursor.html
http://visionpunk.vanillaforums.com/discussion/comment/243/#Comment_243
http://visionpunk.vanillaforums.com/discussion/comment/243/#Comment_243
http://www.visionpunk.com/hub/assets/ufps/manual/input
http://www.visionpunk.com/hub/assets/ufps/manual/input

Chapter 9

[285]

If you want to create a Config Dialog Banner property of your own, make
sure that you make the image 432 x 200 pixels in size or smaller.

7. Next, you'll need to decide whether you want Display Resolution Dialog
to be displayed or not. If you want to keep it hidden, skip this step, since
it's disabled by one of the assets we've imported. Otherwise, open the
Resolution and Presentation section and, under Standalone Player
Options, set Display Resolution Dialog to Enabed.

8. With this finished, go to File | Save Project and build the game once more,
overwriting the previously created one.

Finalizing Our Project

[286]

Depending on your choices, you'll either see the game again or you'll see the
following menu:

We can see that it has been modified with the image we created and a cursor
showing up on the main menu and whenever we're not in the main game.

The game already looks much better and more polished than before. There are a
number of other things you can do like restrict the kind of aspect ratios your game
runs on or its resolution, or force windowed or full screen. I leave it to you to play
around and make your project as nice as possible before you move ahead.

For more information on all of the properties for all of the different
platforms that are available, check out http://docs.unity3d.com/
Manual/class-PlayerSettings.html.

Note that the Input tab on this screen will not work with UFPS. However, UFPS
has its own input manager in order to be able to support the rebinding of controls
through script at runtime. For more information on this, check out http://www.
visionpunk.com/hub/assets/ufps/manual/input.

http://docs.unity3d.com/Manual/class-PlayerSettings.html
http://docs.unity3d.com/Manual/class-PlayerSettings.html
http://www.visionpunk.com/hub/assets/ufps/manual/input
http://www.visionpunk.com/hub/assets/ufps/manual/input

Chapter 9

[287]

There is also a third-party asset called cInput that provides the preceding
functionality along with a very nice ingame GUI to rebind the controls.

It exists as an affordable Unity asset and a free bridge script for UFPS, and is
available at https://www.assetstore.unity3d.com/en/#!/content/18471
and https://www.assetstore.unity3d.com/en/#!/content/25471.

Building an installer for Windows
Like I mentioned previously, having a separate Data folder with .exe is somewhat
of a pain. Rather than give people a .zip file and hope they extract it all and keep
everything in the same folder, I'd let the process be automatic and give the person an
opportunity to install it just like a professional game. With this in mind, I'm going to
go over a free way to create a Windows installer.

1. The first thing we need to do is to get our setup program. For our
demonstration, I will be using Jordan Russell's Inno Setup installer. Go to
http://jrsoftware.org/isinfo.php and click on the Download Inno
Setup link.

https://www.assetstore.unity3d.com/en/#!/content/18471
https://www.assetstore.unity3d.com/en/#!/content/25471
http://jrsoftware.org/isinfo.php

Finalizing Our Project

[288]

2. Click on the Stable Release button and select the isetup-5.5.6.exe file.
Then, double-click on the executable to open it, click on the Run button if it
shows a Security Warning dialog, and select Yes to allow changes.

3. In the Select Setup Language window, leave the selected language to
English and click on OK.

Chapter 9

[289]

4. Run through the installation, making sure that the Install Inno Setup
Preprocessor option is unchecked since we won't be using it. Upon
finishing, make sure that Launch Inno Setup is checked and then
press the Finish button.
When you open the program, it will look similar to the following screenshot:

5. Choose Create a new script file using the Script Wizard and select OK.

Finalizing Our Project

[290]

6. Click on the Next button and you'll come to the Application Information
section. Fill in your information and press Next.

7. Next, you'll see some information on the Application folder. In general,
you will not want to change this information, so you can go ahead and
click on Next.

8. You'll be brought to the Application Files section, where you need to specify
the files you want to install. Under the application main executable file, select
Browse to go to the location of your Export folder, select the .exe file, and
click on Open.

Chapter 9

[291]

9. Now you need to add the Data folder. Click on the Add Folder… button,
select the Data folder, and then press OK.

Finalizing Our Project

[292]

10. It will ask whether the files in the subfolders should be included as well.
Select Yes. Then, select the folder in the Other Applications file section and
press the Edit button. Set the Destination subfolder property to the same
name as your Data folder, press OK, and then press Next.

11. In the next menu, check whichever options you'd like and press Next.

Chapter 9

[293]

12. Now, you'll have an option to include a license file, such as an EULA or
whatever your publisher may require and any personal stuff you want to tell
your users before or after installation. The program accepts .txt and .rtf
files. Once you're ready, click on the Next button.

13. Next, they'll allow you to specify the languages you want the installation
to work for. I'll just go for English, but you can add more. Afterward,
click on Next.

14. Finally, you need to set where you want the setup to be placed as well as
the icon for it or a password. I created a new folder on my desktop called
TwinstickSetup and used it. Then, click on Next.

If you want to include a custom icon but don't have an .ico file
you can use http://www.icoconverter.com/

http://www.icoconverter.com/

Finalizing Our Project

[294]

15. Next, you'll be brought to the successfully completed Script Wizard screen.
After this, click on Finish!

16. Now, it will ask you if you'd like to compile the script. Select Yes. It'll also
ask if you want to save your script. Select Yes; I saved it to the same folder as
my exporting. It'll take a minute or two; but as soon as you see Finished in
the console window, it should be done.

Chapter 9

[295]

17. If you go to the same place as your export folder, you should see
your installer.

18. If you run it, it'll look something like the following screenshot:

With this, we have a working installer for our game.

Finalizing Our Project

[296]

Summary
We now have our game compiled and running on multiple platforms. Specifically,
you learned how to build the game in Unity and build an installer for Windows.

[297]

Index
A
aerial perspective

reference 117
AI Shooter

using 153-163
Animation tool

reference link 203
architectural overview, level prototype

3D modeling software 44
creating 44
geometry, constructing with brushes 44
modular tilesets 45

Artificial intelligence (AI) 129
Asset Store 6-9
atmosphere

building 115
Fog 116
Skybox 115

B
Behaviour Tree Editor

reference 149
Binary Space Partitioning (BSP) 12

C
canvas

about 257
reference 257

collision
preventing 73-75

colors
applying to walls 84-86

complimentary colors
reference 119

Constructive Solid Geometry (CSG) 12, 44
Cursor.SetCursor function

reference link 284
custom GUI

button functionality 265-269
buttons, adding 261-265
creating 255
default UFPS HUD, replacing 270-278
prerequisites 255
text, adding 256-260

custom health and ammo pickups
reference 187

custom weapons
building 19
creating 30-34
mesh, creating 24-28
models, obtaining for 22, 23
prerequisites 20
properties, customizing 34-39
sound effects 22, 23
testbed, setting up 20-22
UnitBank, creating 29, 30

D
Damage Handler

reference link 192
dead AI

cleaning up 184, 185
doors

triggers, using for 198-208
doorway

building 60-67
drawers

reference 276

[298]

E
elevator

creating 208-214
encounters, building

AI Shooter, using 153-163
AI system, integrating 129
dead AI, cleaning up 184, 185
enemies, spawning with trigger 164-179
healthpacks/ammo, placing 186, 187
multiple enemies,

spawning at once 179-184
prerequisites 121
RAIN, using 130-152
simple turret enemy, adding 122-129

environment artist 41
explosive barrel

building 190-197
exterior environments

atmosphere, building 114-119
creating 87
grass, adding 112, 113
prerequisites 87
terrain 88
terrain, creating 91-96
trees, adding 108-111
water, adding 106-108

F
falls

preventing 73, 75
file organization 15
First Person Shooter (FPS)

about 1
prerequisites 2-4
project creation 4

Fog
about 116
for creating atmosphere 117-119

free bridge script, UFPS
reference link 287

G
game

building, in Unity 279-283
game design document (GDD) 43
geometry

creating 46-59
Graphical User Interface (GUI) 255
grass

adding 112, 113

H
hallway

creating 68-72
healthpacks/ammo

placing 186, 187

I
ICO converter

reference link 293
Icon Display controls

reference 182
Inno Setup

reference link 287
input manager, UFPS

reference link 286
installer

building, for Windows 283-295
iteration 181

L
Layouts

reference 263
level designer 41
level prototype

creating 42
prerequisites 42

levels
meshing 249-253

[299]

M
Mac App Store

reference link 282
marquee selection 81
material

creating 223-227
placing 227-248

mesher 41, 249
modular tilesets

about 45
mix and match 45

motor 172
mouse cursor

reference link 284
mouse input

reference link 284
multiple enemies

spawning, at once 179-184

N
NavMesh

using 160

P
Paint Details tool 112
PickupHealth 186
PickupHealthLoot 186
PickupSlomo 186
PickupSpeed 186
Position Springs properties

reference 35
prerequisites, level prototype

about 42
architectural overview, creating 44
level design 101 42, 43

ProBuilder
about 45
levels, meshing 249-253
material, creating 223-227
prerequisites 215
reference 45
working with 227-248

ProGrids
about 52
reference 52

properties, for platforms
reference link 286

Prototype
about 42, 45
doorway, building 60-67
geometry, creating 46-59
installing 12-14
reference 15
upgrading, to ProBuilder 216-222

publishing
reference link 283

R
RAIN

using 129-152
Rect Transform component 258
rooms

duplicating 68-72
Rotation Springs properties

reference 36

S
Scene Gizmo

about 80
reference 81

Shell properties
reference 38

simple turret enemy
adding 122-129

Skybox
about 115
modifying 115, 116
reference 116

skydomes 115
Sound properties

reference 39
stairways

adding 76-83
Standard Shader 225

[300]

T
terrain

about 88
color, adding 97-105
creating 91, 92
hand sculpting 90
height maps 88, 89
textures 97

Terrain editing tools
Paint details 92
Paint height 92
Paint texture 92
Place trees 92
Raise/Lower height 92
Smooth height 92
Terrain settings 92

Text component
reference 261

tileset 45
trees

adding 108-110
triggers

using, for doors 198-208

U
Ultimate First Person Shooter (UFPS)

about 1
installing 9-12
reference link 214

UnitBank
about 29
creating 29, 30
reference 30

Unit Snapping 52
Unity

about 41
game, building in 279-283
layout, customizing 16

Unity asset
reference link 287

UV Editing and Unwrapping tools
reference 248

V
vp_DamageHandler component 124
vp_Respawner component 125
vp_SecurityCamTurret component 125
vp_Shooter component 124

W
WASD keys 94
water

adding 106-108
Windows

installer, building for 283-295

Thank you for buying
Building an FPS Game with Unity

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Unity 3D UI Essentials
ISBN: 978-1-78355-361-7 Paperback: 280 pages

Leverage the power of the new and improved UI
system for Unity to enhance your games and apps

1. Discover how to build efficient UI layouts
coping with multiple resolutions and
screen sizes.

2. In-depth overview of all the new UI features
that give you creative freedom to drive your
game development to new heights.

3. Walk through many different examples of UI
layout from simple 2D overlays to in-game 3D
implementations.

Building Levels in Unity
ISBN: 978-1-78528-284-3 Paperback: 274 pages

Create exciting 3D game worlds with Unity

1. Craft game environments with extreme clarity
by adding realism to characters, objects,
and props.

2. Import and set up custom assets such as
meshes, textures, and normal maps in Unity.

3. A step-by-step guide written in a practical
format to take advantage of the many features
available in Unity.

Please check www.PacktPub.com for information on our titles

Learning Unity Android Game
Development
ISBN: 978-1-78439-469-1 Paperback: 338 pages

Learn to create stunning Android games using Unity

1. Leverage the new features of Unity 5 for the
Android mobile market with hands-on projects
and real-world examples.

2. Create comprehensive and robust games
using various customizations and additions
available in Unity such as camera, lighting,
and sound effects.

3. Precise instructions to use Unity to create an
Android-based mobile game.

Unity 2D Game Development
Cookbook
ISBN: 978-1-78355-359-4 Paperback: 256 pages

Over 50 hands-on recipes that leverage the features
of Unity to help you create 2D games and game
prototypes

1. Create 2D games right from importing assets
to setting them up in Unity and adding them to
your game scenes.

2. Program the game logic and events as well as
the game controls and user interface using the
C# scripting language and Monodevelop.

3. A step-by-step guide written in a practical
format to take advantage of the many features
available in Unity.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	Foreword
	About the Author
	Acknowledgment
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started on an FPS
	Prerequisites
	Project creation
	Getting started with the Asset Store
	Installing UFPS

	Installing Prototype
	File organization
	Customizing Unity's layout
	Summary

	Chapter 2: Building Custom Weapons
	Prerequisites
	Setting up a testbed
	Getting models/sounds for weapons
	Building our weapon – the mesh
	Creating a UnitBank
	Creating the weapon
	Customizing our weapon's properties
	Summary

	Chapter 3: Prototyping Levels with Prototype
	Prerequisites
	Level design 101 – planning
	Creating the architectural overview
	3D modeling software
	Constructing geometry with brushes
	Modular tilesets

	Creating geometry
	Building a doorway
	Duplicating rooms / creating a hallway
	Preventing falls - collision
	Adding stairways
	Coloring your world
	Summary

	Chapter 4: Creating Exterior Environments
	Prerequisites
	Introduction to Terrain
	Height maps
	Hand sculpting

	Creating the Terrain
	Adding color to our Terrain – textures
	Adding water
	Adding trees
	Adding details – grass
	Building the atmosphere – Skyboxes
and Fog
	Summary

	Chapter 5: Building Encounters
	Prerequisites
	Adding a simple turret enemy
	Integrating an AI system – RAIN
	Integrating an AI system – Shooter AI
	Spawning enemies with the help of a trigger
	Spawning multiple enemies at once
	Cleaning up dead AI
	Placing healthpacks/ammo
	Summary

	Chapter 6: Breathing Life into Levels
	Prerequisites
	Building an explosive barrel
	Using triggers for doors
	Creating an elevator
	Summary

	Chapter 7: Adding Polish with ProBuilder
	Prerequisites
	Upgrading from Prototype to ProBuilder
	Creating material
	Working with ProBuilder – placing materials
	Meshing your levels
	Summary

	Chapter 8: Creating a Custom GUI
	Prerequisites
	Creating a main menu: part 1 – adding text
	Creating a main menu: part 2 – adding buttons
	Creating a main menu: part 3 – button functionality
	Replacing the default UFPS HUD
	Summary

	Chapter 9: Finalizing Our Project
	Prerequisites
	Building the game in Unity
	Building an installer for Windows
	Building an installer for Windows
	Summary

	Index

