

kindle:embed:0002?mime=image/jpg

Table	of	Contents
Introduction

What's	New	in	the	Second	Edition

Who	This	Book	Is	For

What	This	Book	Covers	(And	What	It	Doesn't)

The	Wrox	24-Hour	Trainer	Approach

How	This	Book	Is	Structured

What	You	Need	to	Use	This	Book

Conventions

Source	Code

Errata

p2p.wrox.com

Section	I:	The	Visual	Studio	IDE	and	Controls

Lesson	1:	Getting	Started	with	the	Visual	Studio	IDE

Installing	C#

Configuring	the	IDE

Building	Your	First	Program

Copying	Projects

Exploring	the	IDE

Try	It

Exercises

Lesson	2:	Creating	Controls

Understanding	Controls

Creating	Controls

Setting	Control	Properties

Arranging	Controls

WPF	Controls

Try	It

Exercises

Lesson	3:	Making	Controls	Arrange	Themselves

Restricting	Form	Size

Using	Anchor	Properties

Using	Dock	Properties

Layout	Containers

Try	It

Exercises

Lesson	4:	Handling	Events

Making	Event	Handlers

Using	Event	Parameters

Removing	Event	Handlers

Adding	and	Removing	Event	Handlers	in	Code

Useful	Events

Try	It

Exercises

Lesson	5:	Making	Menus

Creating	Menus

Setting	Menu	Properties

Handling	Menu	Events

Creating	Context	Menus

WPF	Menus

WPF	Context	Menus

WPF	Commanding

Try	It

Exercises

Lesson	6:	Making	Tool	Strips	and	Status	Strips

Using	Tool	Strips

Using	Tool	Strip	Containers

Using	Status	Strips

Try	It

Exercises

Lesson	7:	Using	RichTextBoxes

Using	RichTextBox	Properties

Giving	the	User	Control

Using	RichTextBox	Methods

Using	WPF	Commands

Try	It

Exercises

Lesson	8:	Using	Standard	Dialogs

Using	Dialogs	in	General

Using	Dialog	Properties

Using	File	Filters

Using	Dialogs	in	WPF

Try	It

Exercises

Lesson	9:	Creating	and	Displaying	New	Forms

Adding	New	Forms

Understanding	Classes	and	Instances

Displaying	Forms

Controlling	Remote	Forms

Try	It

Exercises

Lesson	10:	Building	Custom	Dialogs

Making	Custom	Dialogs

Setting	the	Dialog	Result

Using	Custom	Dialogs

Try	It

Exercises

Section	II:	Variables	and	Calculations

Lesson	11:	Using	Variables	and	Performing	Calculations

What	Are	Variables?

Data	Types

Declaring	Variables

Literal	Values

Type	Conversions

Performing	Calculations

Constants

Try	It

Exercises

Lesson	12:	Debugging	Code

Deferred	Techniques

Debugging	Then	and	Now

Setting	Breakpoints

Reading	Variables

Stepping	Through	Code

Using	Watches

Using	the	Immediate	Window

Try	It

Exercises

Lesson	13:	Understanding	Scope

Scope	within	a	Class

Accessibility

Restricting	Scope	and	Accessibility

Try	It

Exercises

Lesson	14:	Working	with	Strings

String	Methods

Format	and	ToString

Try	It

Exercises

Lesson	15:	Working	with	Dates	and	Times

Creating	DateTime	Variables

Local	and	UTC	Time

DateTime	Properties	and	Methods

TimeSpans

Try	It

Exercises

Lesson	16:	Using	Arrays	and	Collections

Arrays

Collection	Classes

Try	It

Exercises

Lesson	17:	Using	Enumerations	and	Structures

Enumerations

Structures

Structures	Versus	Classes

Where	to	Put	Structures

Try	It

Exercises

Section	III:	Program	Statements

Lesson	18:	Making	Choices

Decision	Statements

if	Statements

if-else	Statements

Cascading	if	Statements

Nested	if	Statements

Switch	Statements

Try	It

Exercises

Lesson	19:	Repeating	Program	Steps

for	Loops

Foreach	Loops

while	Loops

do	Loops

break	and	continue

Try	It

Exercises

Lesson	20:	Reusing	Code	with	Methods

Method	Advantages

Method	Syntax

Using	ref	Parameters

Using	out	Parameters

Try	It

Exercises

Lesson	21:	Handling	Errors

Errors	and	Exceptions

try-catch	Blocks

TryParse

Throwing	Exceptions

Try	It

Exercises

Lesson	22:	Preventing	Bugs

Input	Assertions

Other	Assertions

Try	It

Exercises

Section	IV:	Classes

Lesson	23:	Defining	Classes

What	Is	a	Class?

Class	Benefits

Making	a	Class

Try	It

Methods

Events

Try	It

Inheritance

Polymorphism

Try	It

Exercises

Lesson	24:	Initializing	Objects

Initializing	Objects

Constructors

Destructors

Invoking	Other	Constructors

Try	It

Exercises

Lesson	25:	Fine-Tuning	Classes

Overloading	Methods

Overriding	Methods

Overriding	ToString

Try	It

Exercises

Lesson	26:	Overloading	Operators

Overloadable	Operators

Unary	Operators

Binary	Operators

Comparison	Operators

Conversion	Operators

Try	It

Exercises

Lesson	27:	Using	Interfaces

Interface	Advantages

Implementing	Interfaces

Defining	Interfaces

Try	It

Exercises

Lesson	28:	Making	Generic	Classes

Defining	Generic	Classes

Using	Generic	Constraints

Making	Generic	Methods

Try	It

Exercises

Section	V:	System	Interactions

Lesson	29:	Using	Files

Filesystem	Classes

Path

Streams

Try	It

Exercises

Lesson	30:	Printing

Windows	Forms	Printing

WPF	Printing

Printing	Visuals

Try	It

Exercises

Section	VI:	Windows	Apps

Lesson	31:	Windows	Store	Apps

Navigation	Style

App	Styles

App	Images

Deployment

WPF	Techniques

Try	It

Exercises

Lesson	32:	Windows	Phone	Apps

Building	Apps

Navigation	Style

App	Styles

App	Images

Try	It

Exercises

Section	VII:	Specialized	Topics

Lesson	33:	Localizing	Programs

Understanding	Localization

Building	Localized	Interfaces

Testing	Localizations

Processing	Locale-Specific	Values

Try	It

Exercises

Lesson	34:	Programming	Databases,	Part	1

Connecting	to	a	Database

Displaying	Data	in	a	Grid

Displaying	Data	One	Record	at	a	Time

Try	It

Exercises

Lesson	35:	Programming	Databases,	Part	2

Searching

Filtering

Sorting

Try	It

Exercises

Lesson	36:	LINQ	to	Objects

LINQ	Basics

where	Clauses

Order	By	Clauses

Select	Clauses

Try	It

Exercises

Lesson	37:	LINQ	to	SQL

Connecting	to	the	Database

Making	LINQ	to	SQL	Classes

Writing	Code

Using	LINQ	Queries

Understanding	Nullable	Fields

Understanding	Query	Execution

Using	LINQ	to	SQL	with	Access

Try	It

Exercises

Afterword:	What's	Next?

End	User	License	Agreement

List	of	Illustrations
Lesson	1:	Getting	Started	with	the	Visual	Studio	IDE

Figure	1.1

Figure	1.2

Figure	1.3

Figure	1.4

Figure	1.5

Figure	1.6

Figure	1.7

Figure	1.8

Lesson	2:	Creating	Controls

Figure	2.1

Figure	2.2

Figure	2.3

Figure	2.4

Figure	2.5

Figure	2.6

Figure	2.7

Figure	2.8

Figure	2.9

Figure	2.10

Figure	2.11

Figure	2.12

Figure	2.13

Figure	2.14

Figure	2.15

Figure	2.16

Figure	2.17

Lesson	3:	Making	Controls	Arrange	Themselves

Figure	3.1

Figure	3.2

Figure	3.3

Figure	3.4

Figure	3.5

Figure	3.6

Figure	3.7

Figure	3.8

Figure	3.9

Figure	3.10

Figure	3.11

Figure	3.12

Lesson	4:	Handling	Events

Figure	4.1

Figure	4.2

Figure	4.3

Figure	4.4

Figure	4.5

Figure	4.6

Figure	4.7

Figure	4.8

Lesson	5:	Making	Menus

Figure	5.1

Figure	5.2

Figure	5.3

Figure	5.4

Figure	5.5

Figure	5.6

Figure	5.7

Figure	5.8

Figure	5.9

Figure	5.10

Lesson	6:	Making	Tool	Strips	and	Status	Strips

Figure	6.1

Figure	6.2

Figure	6.3

Figure	6.4

Figure	6.5

Figure	6.6

Figure	6.7

Figure	6.8

Lesson	7:	Using	RichTextBoxes

Figure	7.1

Figure	7.2

Figure	7.3

Figure	7.4

Figure	7.5

Figure	7.6

Figure	7.7

Lesson	8:	Using	Standard	Dialogs

Figure	8.1

Figure	8.2

Figure	8.3

Figure	8.4

Figure	8.5

Figure	8.6

Lesson	9:	Creating	and	Displaying	New	Forms

Figure	9.1

Figure	9.2

Figure	9.3

Figure	9.4

Figure	9.5

Figure	9.6

Lesson	10:	Building	Custom	Dialogs

Figure	10.1

Figure	10.2

Figure	10.3

Figure	10.4

Figure	10.5

Figure	10.6

Lesson	11:	Using	Variables	and	Performing	Calculations

Figure	11.1

Figure	11.2

Figure	11.3

Figure	11.4

Lesson	12:	Debugging	Code

Figure	12.1

Figure	12.2

Figure	12.3

Figure	12.4

Figure	12.5

Figure	12.6

Figure	12.7

Lesson	13:	Understanding	Scope

Figure	13.1

Figure	13.2

Figure	13.3

Lesson	14:	Working	with	Strings

Figure	14.1

Lesson	15:	Working	with	Dates	and	Times

Figure	15.1

Lesson	16:	Using	Arrays	and	Collections

Figure	16.1

Figure	16.2

Figure	16.3

Figure	16.4

Figure	16.5

Figure	16.6

Lesson	17:	Using	Enumerations	and	Structures

Figure	17.1

Figure	17.2

Figure	17.3

Figure	17.4

Figure	17.5

Lesson	18:	Making	Choices

Figure	14.1

Figure	18.2

Figure	18.3

Lesson	19:	Repeating	Program	Steps

Figure	19.1

Figure	19.2

Figure	19.3

Lesson	20:	Reusing	Code	with	Methods

Figure	20.1

Figure	20.2

Lesson	21:	Handling	Errors

Figure	21.1

Figure	21.2

Lesson	22:	Preventing	Bugs

Figure	22.1

Figure	22.2

Figure	22.3

Figure	22.4

Lesson	23:	Defining	Classes

Figure	23.1

Figure	23.2

Figure	23.3

Lesson	24:	Initializing	Objects

Figure	24.1

Lesson	25:	Fine-Tuning	Classes

Figure	25.1

Figure	25.2

Figure	25.3

Lesson	26:	Overloading	Operators

Figure	26.1

Figure	26.2

Lesson	27:	Using	Interfaces

Figure	27.1

Figure	27.2

Figure	27.3

Figure	27.4

Figure	27.5

Figure	27.6

Figure	27.7

Lesson	28:	Making	Generic	Classes

Figure	28.1

Figure	28.2

Lesson	29:	Using	Files

Figure	29.1

Figure	29.2

Lesson	31:	Windows	Store	Apps

Figure	31.1

Figure	31.2

Figure	31.3

Figure	31.4

Lesson	32:	Windows	Phone	Apps

Figure	32.1

Figure	32.2

Figure	32.3

Figure	32.4

Figure	32.5

Figure	32.6

Lesson	33:	Localizing	Programs

Figure	33.1

Figure	33.2

Figure	33.3

Figure	33.4

Figure	33.5

Figure	33.6

Figure	33.7

Figure	33.8

Lesson	34:	Programming	Databases,	Part	1

Figure	34.1

Figure	34.2

Figure	34.3

Figure	34.4

Figure	34.5

Figure	34.6

Figure	34.7

Figure	34.8

Lesson	35:	Programming	Databases,	Part	2

Figure	35.1

Lesson	36:	LINQ	to	Objects

Figure	36.1

Figure	36.2

Figure	36.3

Lesson	37:	LINQ	to	SQL

Figure	37.1

Figure	37.2

Figure	37.3

Figure	37.4

Figure	37.5

Figure	37.6

Figure	37.7

Figure	37.8

Figure	37.9

List	of	Tables
Lesson	2:	Creating	Controls

Table	2.1

Table	2.2

Table	2.3

Lesson	3:	Making	Controls	Arrange	Themselves

Table	3.1

Lesson	4:	Handling	Events

Table	4.1

Lesson	5:	Making	Menus

Table	5.1

Lesson	7:	Using	RichTextBoxes

Table	7.1

Table	7.2

Table	7.3

Table	7.4

Lesson	8:	Using	Standard	Dialogs

Table	8.1

Table	8.2

Table	8.3

Table	8.4

Table	8.5

Table	8.6

Table	8.7

Table	8.8

Lesson	11:	Using	Variables	and	Performing	Calculations

Table	11.1

Table	11.2

Table	11.3

Table	11.4

Table	11.5

Table	11.6

Table	11.7

Table	11.8

Table	11.9

Lesson	13:	Understanding	Scope

Table	13.1

Lesson	14:	Working	with	Strings

Table	14.1

Table	14.2

Table	14.3

Table	14.4

Table	14.5

Table	14.6

Table	14.7

Table	14.8

Lesson	15:	Working	with	Dates	and	Times

Table	15.1

Table	15.2

Table	15.3

Lesson	16:	Using	Arrays	and	Collections

Table	16.1

Table	16.2

Table	16.3

Table	16.4

Lesson	26:	Overloading	Operators

Table	26.1

Lesson	29:	Using	Files

Table	29.1

Table	29.2

Table	29.3

Table	29.4

Table	29.5

Table	29.6

Table	29.7

Table	29.8

Lesson	31:	Windows	Store	Apps

Table	31.1

Lesson	32:	Windows	Phone	Apps

Table	32.1

Lesson	35:	Programming	Databases,	Part	2

Table	35.1

Table	35.2

Introduction
So	you	want	to	learn	C#	programming?	Excellent	choice!

C#	is	a	powerful,	general-purpose	programming	language	that	lets	you	build
desktop,	Windows	Store,	Windows	Phone,	and	web	apps.	C#	provides	all	of	the
tools	that	you	need	to	build	a	huge	variety	of	applications	such	as:

Database	applications

Point	of	sales	systems

Two-	and	three-dimensional	graphics	programs

Image-processing	and	photo-manipulation	systems

Computer-aided	design	(CAD)	systems

Document	layout	and	printing	systems

Hardware	control	systems

High-performance	games

Much,	much	more

NOTE

In	case	you	ever	need	to	mention	it	at	parties,	C#	is	pronounced	“see	sharp.”
It's	written	C#	because	the	number	sign	(#)	is	the	closest	most	keyboards	can
get	to	the	musical	sharp	symbol	 .

Of	course,	you	won't	be	able	to	solve	every	problem	with	C#.	If	you	want	a
program	that	picks	the	winning	number	on	a	roulette	wheel	or	that	can	predict
stock	prices,	you	may	have	better	luck	using	tarot	cards	(or	a	degree	in
economics),	but	for	tractable	problems	C#	is	a	great	choice.

This	book	is	a	self-paced	guide	to	C#	programming	in	the	Visual	Studio
environment.	It	uses	easy-to-follow	lessons,	reinforced	by	step-by-step
instructions,	screencasts,	and	supplemental	exercises,	to	help	you	master	C#
programming	quickly	and	painlessly.	It	explains	how	to	write	C#	programs	that
interact	with	the	user	to	read	inputs,	calculate	results,	and	display	outputs.	It
shows	how	to	read	and	write	files,	make	printouts,	and	use	databases.	It	shows
how	to	build	programs	that	run	on	the	Windows	desktop,	on	tablet	computers,
and	on	Windows	Phones.

This	book	won't	make	you	an	expert,	but	it	will	give	you	a	solid	understanding	of
how	to	write	C#	programs.	When	you've	finished	reading	this	book	and	working
through	the	Try	It	sections	and	exercises,	you'll	be	able	to	write	non-trivial
programs	of	your	own.	You	may	not	be	able	to	accurately	pick	winning	lottery
numbers	(if	you	do,	please	let	me	know!),	but	you	will	be	able	to	build	some	useful
programs	and	you'll	be	ready	to	learn	more	about	more	specialized	topics	that
interest	you	such	as	database	programming,	file	processing,	and	graphics.

What's	New	in	the	Second	Edition
This	second	edition	has	been	modified	and	expanded	to	provide	more	material
than	the	first	edition,	but	it's	not	intended	to	be	the	second	in	a	series.	If	you	read
the	first	edition,	don't	get	the	second	edition	because	there's	a	lot	of	overlap.

The	main	differences	between	this	edition	and	the	first	are:

More	exercises	(almost	400!)

More	screencast	videos	(more	than	12	hours!)

Windows	Store	apps

Windows	Phone	apps

A	lot	more	material	about	Windows	Presentation	Foundation	(WPF)	and
eXtensible	Markup	Language	(XAML)	(which	you	can	use	to	build	Windows
Store	and	Windows	Phone	style	apps)

To	make	room	for	the	new	material,	some	of	the	old	material	had	to	go.	This
edition	doesn't	cover:

The	clipboard	and	drag-and-drop

Bitmap	manipulation

Parallel	programming

Console	applications

I'd	love	to	include	those	topics	and	many	others,	but	there	just	isn't	room	in	a
book	of	this	size.

Who	This	Book	Is	For
This	book	is	for	anyone	who	wants	to	learn	how	to	write	programs	using	C#.
Whether	you	want	to	move	into	a	lucrative	career	as	a	software	developer,	add	a
few	new	skills	to	your	résumé,	or	pick	up	a	fascinating	new	hobby,	this	book	can
get	you	started.

This	book	does	not	assume	you	have	any	previous	programming	experience.	It
assumes	you're	uninformed	rather	than	an	idiot	or	a	dummy.	It	assumes	you	can
turn	your	computer	on	and	surf	the	web	but	that's	about	it	for	previous
qualifications.	It	is	suitable	as	a	first	programming	book	for	high	school	or	college
students,	but	its	self-paced	hands-on	approach	also	makes	it	ideal	if	you're	trying
to	learn	to	program	on	your	own.

(I	don't	want	to	receive	a	bunch	of	flaming	e-mails	complaining	that	the	material
in	this	book	is	too	basic,	so	I'm	warning	you	right	now.	If	you've	been
programming	in	C++	or	Visual	Basic	for	16	years,	don't	blame	me	if	a	lot	of	this
material	seems	pretty	simple	to	you.	Instead	of	wasting	your	time	complaining,	go
find	a	more	advanced	book.)

What	This	Book	Covers	(And	What	It	Doesn't)
This	book	explains	C#	programming.	It	explains	how	to	write,	debug,	and	run
applications	that	interact	with	the	user	and	the	computer.	It	shows	how	to
understand	object-oriented	concepts,	perform	calculations,	manipulate	files	and
strings,	produce	printouts,	and	interact	with	simple	databases.	It	explains	how	to
run	programs	on	your	desktop,	from	the	Windows	Start	menu,	with	a	Windows
tablet-style	interface,	and	on	a	Windows	Phone.

Programming	in	any	language	is	an	enormous	topic,	however,	so	this	book	doesn't
cover	everything.	It	doesn't	explain	how	to	design	databases,	build
cryptographically	secure	web	applications,	create	multithreaded	programs	that
run	on	multiple	CPUs,	or	build	Xbox	games,	all	tasks	that	are	possible	using	C#.
When	you're	finished	reading	this	book,	however,	you'll	be	ready	to	move	on	to
more	advanced	books	that	cover	those	topics.

The	Wrox	24-Hour	Trainer	Approach
Educators	have	known	for	many	years	that	different	people	use	different	learning
styles	most	effectively.	Different	students	may	learn	best	by:

Reading	a	textbook

Looking	at	nonwritten	material	such	as	pictures	and	graphs

Listening	to	an	instructor	lecture

Watching	someone	demonstrate	techniques

Doing	exercises	and	examples

(Personally,	I	learn	best	by	watching	and	doing.)

Good	instructors	try	to	incorporate	material	that	helps	students	with	all	of	these
learning	styles.	Combining	text,	lecture,	demonstration,	discussion,	and	exercises
lets	every	student	pick	up	as	much	as	possible	using	whichever	methods	work
best.

Like	a	good	instructor,	this	book	uses	materials	that	address	each	learning	style.	It
uses	text	and	figures	to	help	visual	learners,	screencasts	that	provide	visual
demonstrations	and	auditory	instruction,	step-by-step	instructions	to	help	you	do
it	yourself,	and	exercises	for	further	study.

The	book	is	divided	into	small,	bite-sized	lessons	that	begin	with	a	discussion	of	a
particular	concept	or	technique,	complete	with	figures,	notes,	tips,	and	other
standard	fare	for	instructional	books.	The	lessons	are	short	and	tightly	focused	on
a	single	task	so	you	can	finish	each	one	in	a	single	sitting.	You	shouldn't	need	to
stop	in	the	middle	of	a	lesson	and	leave	concepts	half-learned	(at	least	if	you	turn
off	your	phone).

NOTE

The	“24-Hour”	in	the	title	means	the	book	is	available	to	train	you	24	hours
per	day,	not	that	you	should	be	able	to	read	then	entire	book	in	24	hours.
Unless	you	just	skim	the	text	and	skip	all	of	the	Try	Its	and	exercises,	I'd	be
surprised	if	anyone	could	work	through	the	whole	thing	in	24	hours.

After	describing	the	main	concept,	the	lesson	includes	a	Try	It	section	that	invites
you	to	perform	a	programming	exercise	to	solidify	the	lesson's	ideas.

The	Try	It	has	several	subsections.	Lesson	Requirements	describes	the	exercise	so
you	know	what	should	happen.	Hints	gives	pointers	about	possible	confusing
aspects	of	the	problem,	if	they're	needed.	Step-by-Step	provides	a	numbered
series	of	steps	that	show	how	to	solve	the	problem.

A	screencast	on	the	accompanying	DVD	shows	me	working	through	the	Try	It
problem.	Additional	commentary	at	the	end	of	the	screencast	highlights
extensions	of	the	lesson's	main	concepts.

After	the	Try	It's	Step-by-Step	section,	the	lesson	concludes	with	extra	exercises
that	you	can	solve	for	further	practice	and	to	expand	the	lesson's	main	ideas.	Some
of	the	exercises	extend	the	material	in	the	main	lesson,	so	I	recommend	that	you
at	least	skim	the	exercises	and	ask	yourself	if	you	think	you	could	do	them.
Solutions	to	the	Try	Its	and	all	of	the	exercises	are	available	for	download	on	the
book's	website.	Additional	screencasts	show	how	to	work	through	many	of	the
exercises.

Websites
To	find	the	book's	web	page,	go	to	www.wrox.com/go/csharp24hourtrainer2e.
There	you	can	find	solutions	to	all	of	the	Try	Its	and	exercises,	plus	some
additional	resources.	You	can	view	the	screencasts	at
www.wrox.com/go/csharp24hourtrainer2evideos.

The	one	thing	that	a	good	classroom	experience	has	that	this	book	doesn't	is	direct
interaction.	You	can't	shout	questions	at	the	instructor,	work	in	a	team	with	fellow
students,	and	discuss	exercises	with	other	students	in	the	campus	coffee	house.

Although	the	book	itself	can't	help	here,	you	can	do	at	least	three	things	to	get	this
kind	of	interaction.	First,	join	the	Wrox	P2P	(peer-to-peer)	discussion	forum	for
this	book.	As	the	section	“P2P.WROX.COM”	later	in	this	lesson	says,	you	can	join	the
discussion	forum	to	post	questions,	provide	answers,	see	what	other	readers	are
doing	with	the	book's	material,	and	generally	keep	tabs	on	book-related	topics.

You	can	also	sign	up	for	other	discussion	groups	on	the	Internet,	too.	You	can	post
questions	on	those	discussions,	but	it's	also	very	interesting	to	see	what	other

http://www.wrox.com/go/csharp24hourtrainer2e
http://www.wrox.com/go/csharp24hourtrainer2evideos
http://WROX.COM

people	are	asking.	Book	discussion	groups	often	don't	have	as	much	traffic,	so	the
topics	tend	to	be	more	limited	than	those	in	these	other	groups.	(Although	I	watch
my	P2P	groups	closely,	so	go	there	if	you	want	me	to	answer.)

Finally,	if	you	get	stuck	on	an	exercise	or	some	other	program	you're	working	on,
e-mail	me	at	RodStephens@CSharpHelper.com.	I	won't	solve	the	exercises	for	you	but
I'll	try	to	clarify	problems	or	give	you	the	hints	you	need	to	solve	them	yourself.

mailto:RodStephens@CSharpHelper.com

Getting	the	Most	out	of	the	Book

This	book	provides	a	lot	of	tools	that	you	can	use	to	best	match	your	learning
style,	but	you	have	to	use	them.	If	you	learn	best	by	reading	text,	spend	more
time	on	the	text.	If	you	like	step-by-step	instructions,	focus	on	the	Try	Its	and
their	step-by-step	instructions.	If	you	learn	best	by	watching	and	listening,
focus	on	the	screencasts.

Then,	after	you've	finished	a	lesson,	use	the	exercises	to	verify	that	you've
mastered	the	material.	Most	of	the	lessons	are	fairly	easy	to	just	read	through
quickly.	Unless	you	practice	what	you've	learned,	you	can't	be	sure	it's
sticking,	so	plan	to	spend	some	time	on	the	exercises.	It	would	not	be	strange
to	spend	half	an	hour	reading	the	lesson	and	then	several	hours	working
through	the	Try	It	and	exercises.

And	don't	be	afraid	to	invent	programs	of	your	own.	Just	because	an	idea	isn't
in	the	book	doesn't	mean	it	wouldn't	make	good	practice.	Modify	the
programs	you	build	for	the	exercises	to	find	out	what	you	can	accomplish.

How	This	Book	Is	Structured
This	book	is	divided	into	seven	sections,	each	containing	a	series	of	short	lessons.
The	lessons	are	generally	arranged	in	order,	with	later	lessons	depending	on
earlier	ones,	so	you	should	study	the	lessons	more	or	less	in	order,	at	least	through
the	first	four	sections.	The	lessons	in	sections	V,	VI,	and	VII	cover	slightly	more
specialized	topics	and	you	can	study	them	in	any	order.

Many	of	the	exercises	are	tagged	with	a	topic	as	in	[Games]	or	[WPF].	Those
indicate	a	theme	that	you	may	find	interesting.	For	example,	the	[Games]
exercises	involve	techniques	that	you	may	find	useful	if	you	want	to	build	game
programs.	The	topics	include:

[WPF]—These	ask	you	to	use	WPF.	They	are	often	harder	than	corresponding
Windows	Forms	programs,	but	they	sometimes	produce	better-looking	results.
(You	also	need	to	use	WPF	to	build	tablet-style	and	Windows	Phone	apps.)

[Games]—These	are	generally	amusing	or	demonstrate	techniques	that	may	be
useful	in	building	game	programs.

[SimpleEdit]—This	is	a	simple	word	processing	application	that	is	built	and
enhanced	over	a	sequence	of	exercises	in	several	lessons.

[Drawing]—These	exercises	make	a	program	that	draws	lines	and	shapes.

[Hard]—Exercises	with	this	tag	are	generally	harder	than	most	of	the	other
exercises	so	they	may	take	some	extra	time.	(I	bet	you	guessed	that!)

[Advanced]—These	exercises	use	more	advanced	techniques	and	may	be
harder.

[Bonus]—These	exercises	extend	the	topic	covered	in	the	lesson	and	include
extra	instructions	for	performing	a	technique	not	covered	in	the	main	lesson.

Persistent	Programs

Many	of	the	exercises	ask	you	to	edit	an	earlier	version	of	a	program.	Just
copy	the	previous	version	into	a	new	directory	and	modify	it	there.	(The
section	“Copying	Projects”	in	Lesson	1	explains	how	to	do	that.)

If	you	skip	an	exercise,	you	may	later	not	have	a	version	that	you	need	to	copy.
In	that	case	just	download	the	version	you	need	from	the	book's	website.

For	example,	the	instructions	for	Exercise	24-1	ask	you	to	copy	the	program
you	built	for	Exercise	23-1.	If	you	skipped	that	exercise,	you	can	download	the
Lesson	23	material	from	the	book's	website	and	use	the	version	that	it
contains.

The	book's	sections	are:

I:	The	Visual	Studio	IDE	and	Controls—These	lessons	explain	how	to	use
the	Visual	Studio	integrated	development	environment	(IDE)	and	how	to	use
the	controls	that	make	up	a	user	interface.	You	need	to	study	these	lessons	to
get	started.

II:	Variables	and	Calculations—These	lessons	deal	with	variables	and
calculations.	They	explain	what	variables	are	and	how	a	program	can	use	them
to	calculate	results.	They	also	explain	how	to	debug	programs.

III:	Program	Statements—These	lessons	describe	program	statements	and
syntax.	They	explain	how	to	control	the	program's	flow,	make	decisions,	and
repeat	operations.

IV:	Classes—These	lessons	deal	with	classes.	They	explain	how	to	create	and
use	classes	and	how	to	use	more	advanced	class	features	such	as	generics	and
operator	overloading.

V:	System	Interactions—These	lessons	explain	ways	in	which	a	program
can	interact	with	the	operating	system	by	reading	and	writing	files	and	by
generating	printouts.

VI:	Windows	Apps—These	sections	explain	how	you	can	build	Windows
Store	and	Windows	Phone	apps.

VII:	Specialized	Topics—These	lessons	introduce	topics	that	don't	fit	well
in	the	other	sections.	They	explain	how	to	localize	programs	for	different	parts
of	the	world,	how	to	build	simple	database	programs,	and	how	to	use	Language
Integrated	Query	(LINQ)	to	manipulate	data	in	objects	and	databases.

What	You	Need	to	Use	This	Book
To	get	the	most	out	of	this	book,	you	need	to	install	Visual	Studio	and	C#.	You
don't	need	any	fancy	version	of	Visual	Studio	or	C#	Professional	Edition.	In	fact,
Visual	Studio	Professional	and	the	other	full-featured	versions	don't	really	add	all
that	much	that	you're	likely	to	want	to	use	for	a	long	time.	Mostly	they	add
support	for	performing	unit	tests,	managing	test	cases,	profiling	code,	building
code	libraries,	and	performing	other	tasks	that	are	more	useful	for	programming
teams	than	they	are	for	individuals.

To	work	through	this	book,	the	Community	Edition	should	be	good	enough.	(And
it's	free!)

NOTE

In	previous	versions	of	Visual	Studio,	the	free	“starter”	version	was	called
Visual	Studio	Express	Edition.	Microsoft	seems	to	be	changing	the	name	to
Visual	Studio	Community	Edition.	It	hasn't	changed	the	name	everywhere
and	some	small	differences	exist	between	the	earlier	editions	and	the	latest
one,	but	you	should	be	able	to	work	with	either	version.

The	following	list	describes	some	links	that	you	may	find	useful	for	learning	about
and	installing	different	Visual	Studio	products:

Compare	Visual	Studio	2015	Offerings:
www.visualstudio.com/products/compare-visual-studio-2015-products-

vs.aspx

Visual	Studio	homepage:	msdn.microsoft.com/vstudio

Visual	C#	resources:	msdn.microsoft.com/vstudio/hh341490.aspx

Visual	Studio	free	products	page:	www.visualstudio.com/products/free-
developer-offers-vs

Visual	Studio	Express:	www.visualstudio.com/products/visual-studio-
express-vs.aspx

Visual	Studio	Downloads:	www.visualstudio.com/downloads/download-visual-
studio-vs.aspx

C#	Express	Edition	homepage:	www.microsoft.com/express/vcsharp

At	a	minimum,	visit	the	Visual	Studio	Express	Edition	page
(www.visualstudio.com/products/visual-studio-express-vs)	and	download	and
install	Visual	Studio	Community	Edition.

Running	any	version	of	Visual	Studio	will	require	that	you	have	a	reasonably	fast,
modern	computer	with	a	large	hard	disk	and	lots	of	memory.	For	example,	I'm
fairly	happy	running	my	Intel	Core	2	system	at	1.60	GHz	with	8	GB	of	memory
and	a	huge	1	TB	hard	drive.	(That's	a	lot	more	disk	space	than	necessary	but	disk
is	relatively	cheap.)

http://www.visualstudio.com/products/compare-visual-studio-2015-products-vs.aspx
http://msdn.microsoft.com/vstudio
http://msdn.microsoft.com/vstudio/hh341490.aspx
http://www.visualstudio.com/products/free-developer-offers-vs
http://www.visualstudio.com/products/visual-studio-express-vs.aspx
http://www.visualstudio.com/downloads/download-visual-studio-vs.aspx
http://www.microsoft.com/express/vcsharp
http://www.visualstudio.com/products/visual-studio-express-vs

Conventions
To	help	you	get	the	most	from	the	text	and	keep	track	of	what's	happening,	we've
used	several	conventions	throughout	the	book.

Splendid	Sidebars

Sidebars	such	as	this	one	contain	additional	information	and	side	topics.

WARNING

Boxes	like	this	one	hold	important,	not-to-be-missed	information	that	is
directly	relevant	to	the	surrounding	text.

NOTE

Notes	such	as	this	contain	tips,	hints,	tricks,	and	asides	to	the	current
discussion.	They	are	offset	and	placed	in	italics	like	this.

As	for	styles	in	the	text:

New	terms	and	important	words	are	highlighted	when	they	are	introduced.

Keyboard	strokes	look	like	this:	Ctrl+A.

Code,	URLs,	and	e-mail	addresses	within	the	text	are	shown	in	monofont	type
as	in	x	=	10,	www.vb-helper.com,	and	RodStephens@CSharpHelper.com.

Code	snippets	are	shown	in	a	monofont	type	like	this.

The	code	editor	in	Visual	Studio	provides	a	rich	color	scheme	to	indicate	various
parts	of	code	syntax	such	as	variables,	comments,	and	C#	keywords.	That's	a	great
tool	to	help	you	learn	language	features	in	the	editor	and	to	help	prevent	mistakes
as	you	code,	but	the	colors	don't	show	up	in	the	book.

http://x%20=%2010,www.vb-helper.com
mailto:RodStephens@CSharpHelper.com

Source	Code
As	you	work	through	the	examples	in	this	book,	you	may	choose	either	to	type	in
all	the	code	manually	or	to	use	the	source	code	files	that	accompany	the	book.	(I
like	to	type	in	the	code	because	it	helps	me	focus	on	it	so	I	get	a	better
understanding.)

Many	of	the	examples	show	only	the	code	that	is	relevant	to	the	current	topic	and
may	be	missing	some	of	the	extra	details	that	you	need	to	make	the	example	work
properly.	If	you	get	stuck,	e-mail	me	or	download	the	solution	from	the	book's	web
page.

All	of	the	source	code	used	in	this	book	is	available	for	download	on	the	book's
website.	Any	updates	to	the	code	will	be	posted	there.

Errata
The	Wrox	editors	and	I	make	every	effort	to	ensure	that	there	are	no	errors	in	the
text	or	in	the	code.	However,	no	one	is	perfect,	and	mistakes	do	occur.	If	you	find
an	error	in	one	of	our	books,	like	a	spelling	mistake	or	faulty	piece	of	code,	we
would	be	very	grateful	for	your	feedback.	By	sending	in	errata	you	may	save
another	reader	hours	of	frustration	and	at	the	same	time	you	will	be	helping	us
provide	even	higher	quality	information.

To	find	the	errata	page	for	this	book,	go	to	www.wrox.com	and	locate	the	title	using
the	Search	box	or	one	of	the	title	lists.	Then,	on	the	book	details	page,	click	on	the
Errata	link.	On	this	page	you	can	view	all	errata	that	have	been	submitted	for	this
book	and	posted	by	Wrox	editors.	A	complete	book	list	including	links	to	each
book's	errata	is	also	available	at	www.wrox.com/misc-pages/booklist.shtml.

If	you	don't	spot	“your”	error	on	the	Book	Errata	page,	go	to
www.wrox.com/contact/techsupport.shtml	and	complete	the	form	there	to	send	us
the	error	you	have	found.	We'll	check	the	information	and,	if	appropriate,	post	a
message	to	the	book's	errata	page	and	fix	the	problem	in	subsequent	editions	of
the	book.

http://www.wrox.com
http://www.wrox.com/misc-pages/booklist.shtml
http://www.wrox.com/contact/techsupport.shtml

p2p.wrox.com
For	author	and	peer	discussion,	join	the	P2P	forums	at	p2p.wrox.com.	The	forums
are	a	web-based	system	for	you	to	post	messages	relating	to	Wrox	books	and
related	technologies	and	interact	with	other	readers	and	technology	users.	The
forums	offer	a	subscription	feature	to	e-mail	you	topics	of	interest	of	your
choosing	when	new	posts	are	made	to	the	forums.	Wrox	authors,	editors,	other
industry	experts,	and	your	fellow	readers	are	present	on	these	forums.

At	http://p2p.wrox.com	you	will	find	a	number	of	different	forums	that	will	help
you	not	only	as	you	read	this	book	but	also	as	you	develop	your	own	applications.
To	join	the	forums,	just	follow	these	steps:

1.	 Go	to	p2p.wrox.com	and	click	on	the	Register	link.

2.	 Read	the	terms	of	use	and	click	Agree.

3.	 Complete	the	required	information	to	join,	as	well	as	any	optional	information
you	wish	to	provide,	and	click	Submit.

4.	 You	will	receive	an	e-mail	with	information	describing	how	to	verify	your
account	and	complete	the	joining	process.

http://p2p.wrox.com
http://p2p.wrox.com
http://p2p.wrox.com

NOTE

You	can	read	messages	in	the	forums	without	joining	P2P,	but	to	post	your
own	messages,	you	must	join.

Once	you	join,	you	can	post	new	messages	and	respond	to	messages	other	users
post.	You	can	read	messages	at	any	time	on	the	web.	If	you	would	like	to	have	new
messages	from	a	particular	forum	e-mailed	to	you,	click	on	the	“Subscribe	to	this
Forum”	icon	by	the	forum	name	in	the	forum	listing.

For	more	information	about	how	to	use	Wrox	P2P,	be	sure	to	read	the	P2P	FAQs
for	answers	to	questions	about	how	the	forum	software	works,	as	well	as	many
common	questions	specific	to	P2P	and	Wrox	books.	To	read	the	FAQs,	click	on	the
FAQ	link	on	any	P2P	page.

Using	the	P2P	forums	allows	other	readers	to	benefit	from	your	questions	and	any
answers	they	generate.	I	monitor	my	book's	forums	and	respond	whenever	I	can
help.

If	you	have	other	comments,	suggestions,	or	questions	that	you	don't	want	to	post
in	the	forums,	feel	free	to	e-mail	me	at	RodStephens@CSharpHelper.com.	I	can't
promise	to	solve	every	problem	but	I'll	try	to	help	you	out	if	I	can.

mailto:RodStephens@CSharpHelper.com

Section	I

The	Visual	Studio	IDE	and	Controls
The	lessons	in	this	section	of	the	book	explain	how	to	use	the	Visual	Studio
integrated	development	environment	(IDE).	They	explain	how	to	use	the	IDE	to
create	forms,	place	controls	on	the	forms,	and	set	control	properties.	These
lessons	describe	some	of	C#'s	most	useful	controls	and	give	you	practice	using
them.

You	can	do	practically	all	of	this	in	the	IDE	without	writing	a	single	line	of	code!
That	makes	C#	a	great	environment	for	rapid	prototyping.	You	can	build	a	form,
add	controls,	and	run	the	program	to	see	what	it	looks	like	without	ever	creating	a
variable,	declaring	a	method,	or	getting	stuck	in	an	infinite	loop.

The	lessons	in	this	section	explain	how	to	get	that	far.	A	few	of	these	lessons	show
how	to	add	a	line	or	two	of	code	to	make	a	form	more	interesting,	but	for	now	the
focus	is	on	using	the	IDE	to	build	forms	and	controls.	Writing	code	(and	fixing	the
inevitable	bugs)	comes	later.

Lesson	1:	Getting	Started	with	the	Visual	Studio	IDE

Lesson	2:	Creating	Controls

Lesson	3:	Making	Controls	Arrange	Themselves

Lesson	4:	Handling	Events

Lesson	5:	Making	Menus

Lesson	6:	Making	Tool	Strips	and	Status	Strips

Lesson	7:	Using	RichTextBoxes

Lesson	8:	Using	Standard	Dialogs

Lesson	9:	Creating	and	Displaying	New	Forms

Lesson	10:	Building	Custom	Dialogs

Lesson	1

Getting	Started	with	the	Visual	Studio	IDE
The	Visual	Studio	integrated	development	environment	(IDE)	plays	a	central	role
in	C#	development.	In	this	lesson	you	explore	the	IDE.	You	learn	how	to	configure
it	for	C#	development,	and	you	learn	about	some	of	the	more	useful	of	the	IDE's
windows	and	what	they	do.	When	you	finish	this	lesson,	you'll	know	how	to	create
a	new	project.	It	may	not	do	much,	but	it	will	run	and	will	prepare	you	for	the
lessons	that	follow.

Visual	C#

Visual	Studio	is	a	development	environment	that	you	can	use	with	several
programming	languages	including	Visual	C#,	Visual	Basic,	Visual	C++,	and
F#.	All	of	those	are	high-level	programming	languages	that	you	can	use	to
perform	complex	calculations,	organize	your	Pokémon	cards,	draw	pretty
fractals	(see	en.wikipedia.org/wiki/Fractal	and
mathworld.wolfram.com/Fractal.html),	play	games,	download	cat	pictures
from	the	Internet,	and	do	everything	else	you	would	expect	from	a	program.

They	can	also	contain	bugs	that	delete	files	accidentally,	discard	an	hour's
worth	of	typing	without	warning,	balance	your	checkbook	incorrectly,	and
cause	all	sorts	of	other	problems.	Programming	languages	can	help	you	do
things,	but	they	can't	force	you	to	do	the	right	things.	That's	up	to	you.

Visual	C#	combines	C#	with	the	Visual	Studio	development	environment.	You
can	use	a	text	editor	to	write	C#	programs	without	Visual	Studio,	but	it's	a	lot
of	work.	You	don't	get	all	of	the	nice	features	that	Visual	Studio	provides,	such
as	special	code	editing	features,	drag-and-drop	control	creation,	and	a
debugger.	In	short,	it's	a	lot	less	fun,	so	I	won't	cover	that	kind	of
programming	in	this	book.

Visual	C#	and	C#	go	together	like	hockey	and	fistfights:	if	you	mention	one,
most	people	assume	you're	also	talking	about	the	other.	Most	people	simply
say	C#,	so	this	book	does,	too,	unless	there's	a	reason	to	distinguish	between
C#	and	Visual	C#.

The	.NET	Framework	also	plays	an	important	role	in	C#	programs.	It
includes	classes	that	make	performing	certain	tasks	easier,	runtime	tools	that
make	it	possible	to	execute	C#	programs,	and	other	plumbing	necessary	to
build	and	run	C#	programs.

Normally	you	don't	need	to	worry	about	whether	a	feature	is	provided	by
Visual	Studio,	the	C#	language,	or	the	.NET	Framework.	They	all	go	together,
so	for	the	purposes	of	this	book	at	least	you	can	ignore	the	difference.

http://en.wikipedia.org/wiki/Fractal
http://mathworld.wolfram.com/Fractal.html

Installing	C#
Before	you	can	use	C#	to	write	the	next	blockbuster	first-person	Xbox	game,	you
need	to	install	it.	So	if	you	haven't	done	so	already,	install	C#.

You	can	install	one	of	the	free	Express	Editions	at
www.microsoft.com/express/Windows.	As	I	write	this,	that	page	lists	versions	of
Visual	Studio	2015,	but	when	you	visit	that	page	it	should	let	you	install	the	latest
version.	(I'm	using	a	preview	build	of	Visual	Studio	2015	to	write	the	programs
that	go	with	this	book.)

Several	versions	are	available	on	that	page,	so	be	sure	you	pick	the	right	one.
Here's	a	quick	summary	of	some	of	the	versions	that	may	be	available:

Community—This	version	lets	you	build	web,	Windows	Store	(including
tablet	and	phone	apps),	Windows	Desktop,	Android,	and	iOS	applications.
This	is	probably	the	best	version	for	you	to	download.

Express	for	Web—This	version	focuses	on	building	websites.

Express	for	Windows—This	version	focuses	on	building	Windows	Phone
and	Windows	Store	apps.

Express	for	Windows	Desktop—This	version	focuses	on	desktop
applications.	You	run	these	from	the	Windows	desktop,	not	the	start	screen.

Team	Foundation	Server	Express—This	edition	is	for	people	working	in
teams.	This	includes	tools	that	you	don't	need	right	now	and	that	can	provide
extra	opportunities	for	confusion,	so	skip	this	version.	(If	you	don't	think
things	are	confusing	enough,	e-mail	me	and	I'll	suggest	some	more	confusing
topics	for	you	to	study.)

The	Community	Edition	includes	tools	to	get	started	building	any	of	these	kinds	of
applications,	so	it's	a	good	choice.	You	may	never	use	it	to	build	websites	or	iOS
applications,	but	having	those	abilities	installed	won't	hurt	you.

The	Express	Editions	are	only	intended	to	get	you	started,	but	they're	seriously
powerful	so	you	probably	won't	need	anything	else	for	quite	a	while.	I've	been
happily	using	Express	Editions	for	about	two	decades.

If	you	think	you	need	some	other	version	of	Visual	Studio	(for	example,	you're
working	on	a	big	project	and	you	need	test	management,	source	code	control,	and
other	team	programming	tools),	go	to	msdn.microsoft.com/vcsharp	and	install	the
version	that's	right	for	you.

All	of	these	are	big	installations	(5	or	6	GB),	so	they	could	take	a	while.	While	a
constant	supply	of	cookies,	caffeine,	and	conversation	will	help	you	pass	the	time
more	quickly,	the	other	customers	won't	thank	you	if	you	hammer	the	Starbucks
Wi-Fi	for	12	straight	hours.	Be	sure	you	have	a	reasonably	fast	connection	before
you	start.

http://www.microsoft.com/express/Windows
http://msdn.microsoft.com/vcsharp

Talkin'	'Bout	My	Generation

Developers	talk	about	different	generations	of	programming	languages
ranging	from	the	very	primitive	to	the	remarkably	advanced.	In	a	nutshell,	the
different	generations	of	languages	are:

1GL—Machine	language.	This	is	a	series	of	0s	and	1s	that	the	machine	can
understand	directly.	Here's	a	sample:	01001010	11010100	10101011
10001000.	Pretty	hard	to	read,	isn't	it?

2GL—Assembly	language.	This	is	a	collection	of	mnemonic	codes	that
represent	machine	language	instructions.	It	is	slightly	more	readable	but
provides	no	higher-level	structure	for	performing	complex	tasks.	Here's	a
sample:	brfalse.s	IL_0028	leave.s	IL_007a	ldloc.0	ldloc.1.	This	may
be	easier	to	read	than	binary,	but	it	still	looks	like	gibberish	to	me.

3GL—A	higher-level	language	such	as	FORTRAN	or	BASIC.	These	provide
additional	structure	(such	as	looping	and	subroutines)	that	makes	building
complex	programs	easier.	Here's	a	sample:	num_players	=	num_players	+
1.	Finally	something	I	can	read	and	almost	understand!

4GL—An	even	higher-level	language	or	a	development	environment	that
helps	build	programs,	typically	in	a	specific	problem	domain.

5GL—A	language	where	you	specify	goals	and	constraints	and	the
language	figures	out	how	to	satisfy	them.	For	example,	the	database
Structured	Query	Language	(SQL)	allows	you	to	use	statements	like	SELECT
FirstName	FROM	Employees.	You	don't	need	to	tell	the	database	how	to	get
the	names;	it	figures	that	out	for	you.

Visual	Studio	provides	code	snippets	that	let	you	copy	standard	chunks	of
code	into	your	program,	IntelliSense	that	helps	you	select	and	use	functions
and	other	pieces	of	code,	refactoring	tools	that	help	you	rearrange	and
restructure	your	code,	and	much	more.	That	makes	Visual	C#	a	4GL.	(Or
perhaps	a	3.5GL	depending	on	how	high	your	standards	are.)

Configuring	the	IDE
When	you	first	run	Visual	Studio,	the	dialog	shown	in	Figure	1.1	appears	to	let	you
configure	the	IDE.	(You	may	also	see	a	few	other	dialogs	before	that	point	asking
you	to	log	in	to	your	Microsoft	profile.	You	can	create	one	if	you	don't	already	have
one.)

Figure	1.1

The	dialog	lets	you	pick	settings	for	general	development,	Visual	Basic,	Visual	C#,
and	so	forth.	Because	you're	going	to	be	focusing	on	C#	development,	select	that
option.

NOTE

These	settings	determine	such	things	as	what	keystrokes	activate	certain
development	features.	You	can	certainly	write	C#	programs	with	the	Visual
C++	settings,	but	we	may	as	well	use	the	same	playbook,	so	when	I	say,
“Press	F5,”	the	IDE	starts	your	program	instead	of	displays	a	code	window
or	whatever	Visual	C++	thinks	F5	should	do.

The	dialog	also	lets	you	pick	a	color	scheme.	Pick	the	one	you	think	you'll	like	best
(admittedly	without	getting	to	try	them	out)	and	click	Start	Visual	Studio.	(Then
be	ready	to	wait	again	because	the	initial	configuration	can	take	a	while.)

If	you	ever	want	to	switch	to	different	settings	(for	example,	if	you	initially	picked
the	Dark	colors	but	then	discovered	that	they	give	you	a	headache),	you	can	always
change	them	later.

To	change	the	settings,	open	the	Tools	menu	and	select	Import	and	Export
Settings	to	display	the	Import	and	Export	Settings	Wizard.	You	can	use	this	tool	to
save	your	current	settings,	reload	previously	saved	settings,	or	restore	the	settings
to	their	default	values.

To	reset	the	settings,	select	the	Reset	All	Settings	option	on	the	wizard's	first	page
and	click	Next.

On	the	next	page,	indicate	whether	you	want	to	save	your	current	settings.	When
you've	made	your	choice,	click	Next	to	display	the	page	shown	in	Figure	1.2.	Select
the	Visual	C#	choice	and	click	Finish.

Figure	1.2

Then	sit	back	and	wait.	Or	better	still,	go	get	something	to	drink	because	this
could	take	a	while.	Visual	Studio	has	a	lot	of	settings	to	reset,	and	it	could	take
several	minutes	depending	on	how	fast	your	computer	is.	(And	how	busy	your
computer	is	playing	YouTube	videos.)

Building	Your	First	Program
Now	that	you've	installed	C#,	you're	ready	to	build	your	first	program.	Launch
Visual	Studio	by	double-clicking	its	desktop	icon,	selecting	it	from	the	system's
Start	menu,	finding	it	with	the	Windows	Search	tool,	or	doing	whatever	you	do	to
run	programs	on	your	version	of	Windows.

When	it	starts,	Visual	Studio	should	look	more	or	less	like	Figure	1.3.	You	can	use
the	links	in	the	center	pane	to	get	more	information	about	Visual	Studio,	.NET,
Azure,	and	whatever	else	Microsoft	thinks	is	important	today.

Figure	1.3

You	can	use	the	links	in	the	left	pane	to	create	a	new	project	or	open	an	existing
project.	You	can	also	create	a	new	project	by	opening	the	File	menu,	expanding
the	New	submenu,	and	selecting	Project.	Or	if	you're	in	a	hurry	to	create	your	first
project,	just	press	Ctrl+Shift+N.

NOTE

Often	you	have	several	ways	to	do	something	in	Visual	Studio.	You	may	be
able	to	use	a	menu	command,	keyboard	shortcut,	or	toolbar	button	to	do	the
same	thing.	Usually	I'll	just	mention	one	or	two	ways	to	do	something,	such
as	creating	a	new	project,	but	you'll	probably	discover	other	ways,	too.

All	of	those	methods	display	the	New	Project	dialog	shown	in	Figure	1.4.	Expand
the	Visual	C#	project	types	folder	on	the	left	and	select	the	template	for	the	type	of
project	that	you	want	to	build	on	the	right.	For	most	of	this	book,	that	will	be	a
Visual	C#	Windows	Forms	Application.

Figure	1.4

After	you	select	a	project	type,	you	need	to	enter	several	pieces	of	information:

Name—This	is	the	application's	name.	Visual	Studio	creates	a	folder	with	this
name	to	hold	the	program's	files.	It	also	uses	this	name	for	some	key	values	in
the	project.

Location—This	is	where	you	want	Visual	Studio	to	put	the	project's	folder.

Solution	Name—If	the	Create	Directory	for	Solution	box	is	checked	(which	it
is	by	default),	Visual	Studio	creates	a	folder	with	this	name	at	the	location	you
entered.	It	then	places	the	application's	folder	inside	the	solution's	folder.

So	if	the	Create	Directory	for	Solution	box	is	checked,	you	get	a	filesystem	layout
that	looks	like	this:

SolutionFolder

SolutionFiles

ApplicationFolder

ApplicationFiles

If	the	Create	Directory	for	Solution	box	is	not	checked,	you	get	a	filesystem	layout
that	looks	like	this:

ApplicationFolder

ApplicationFiles

NOTE

A	project	typically	includes	the	files	that	make	up	a	single	application.	A
solution	can	contain	several	projects.	A	solution	is	useful	when	you	want	to
build	applications	that	go	closely	together.	For	example,	a	project	could
contain	one	program	that	builds	three-dimensional	data	sets,	another	that
displays	them,	and	a	third	that	lets	you	print	them	from	different	points	of
view.

Solutions	are	particularly	useful	if	you	want	to	build	a	library	of	routines
plus	an	executable	program	to	test	the	library.

The	applications	you	build	in	this	book	are	single	programs	so	they	don't	really
need	to	be	inside	a	separate	solution	folder.	Most	of	the	time,	I	uncheck	the	Create
Directory	for	Solution	box	to	keep	my	filesystem	simpler.

NOTE

By	default,	Visual	Studio	places	new	projects	in	your	Projects	folder	at	some
obscure	location	such	as	C:\Users\MyUserName\Documents\Visual	Studio
2016\Projects.	Later	it	can	be	hard	to	find	these	projects	in	File	Explorer	(for
example,	to	make	a	copy).

To	make	finding	projects	easier,	set	the	location	to	something	more	intuitive
such	as	the	desktop	or	a	folder	on	the	desktop.	In	fact,	you	might	want	to
make	a	folder	to	hold	projects	for	this	book	and	then	give	each	lesson	a
subfolder.

The	next	time	you	create	a	new	project,	Visual	Studio	will	remember	your
last	choice,	so	from	now	on	it'll	be	easy	to	find	your	projects.

If	you	open	the	New	Project	dialog	while	you	have	another	project	open,	you'll	see
an	additional	dropdown	that	lists	the	choices	Create	New	Solution	and	Add	to
Solution.	The	first	choice	closes	the	current	solution	and	creates	a	new	one.	The
second	choice	adds	the	new	application	to	the	solution	you	currently	have	open.
Normally	you'll	want	to	create	a	new	solution.

After	you	display	the	New	Project	dialog	and	enter	a	Name,	Location,	and	Solution
Name,	click	OK.	The	result	should	look	like	Figure	1.5.

Figure	1.5

NOTE

If	you	have	previously	edited	a	project,	you	can	quickly	reload	it	from	the
File	menu's	Recent	Projects	and	Solutions	submenu.	You	can	also	load	a
solution	into	the	IDE	by	using	File	Explorer	to	double-click	the	solution's	.sln
file.

The	rest	of	this	lesson	deals	with	the	features	available	in	Visual	Studio,	some	of
which	are	displayed	in	Figure	1.5.	Before	you	launch	into	an	inventory	of	useful
features,	however,	open	the	Debug	menu	and	select	Start	Debugging.	Or	if	you're
in	a	hurry,	just	press	F5.

Your	first	program	should	look	like	Figure	1.6.	Admittedly	this	first	program	isn't
very	fancy,	but	by	the	same	token	you	didn't	need	to	do	much	to	build	it.	All	you
did	was	press	Ctrl+Shift+N	and	then	F5!

Figure	1.6

This	first	program	may	not	seem	terribly	impressive,	but	there's	a	lot	going	on
behind	the	scenes.	C#	has	built	a	form	with	a	bunch	of	useful	features,	including:

A	resizable	border	and	a	draggable	title	bar.

Working	minimize,	maximize,	and	close	buttons	in	the	upper-right	corner.

A	system	menu	in	the	upper-left	corner	that	contains	working	Restore,	Move,
Size,	Minimize,	Maximize,	and	Close	commands.

An	icon	in	the	system	taskbar	that	lets	you	minimize,	restore,	and	close	the
program.

The	ability	to	use	Alt+Tab	and	Flip3D	(Win+Tab)	to	move	between	the
application	and	others.

Other	standard	window	behaviors.	For	example,	if	you	double-click	the	form's
title	bar	it	maximizes	(or	restores	if	it	is	already	maximized),	and	if	you	press

Alt+F4,	the	form	closes.

Unless	you're	an	absolute	beginner	to	Windows,	you	probably	take	all	of	these
features	for	granted,	but	providing	them	is	actually	a	huge	amount	of	work.	Not
too	long	ago	you	would	have	had	to	write	around	100	lines	of	code	to	provide	a
subset	of	those	features.	Now	Visual	Studio	automatically	builds	a	form	that
handles	most	of	the	details	for	you.

You	can	still	get	in	and	change	the	way	things	work	if	you	want	to	(for	example,
you	can	set	a	form's	minimum	and	maximum	allowed	sizes),	but	usually	you	can
ignore	all	of	those	issues	and	concentrate	on	your	particular	application	instead	of
the	Windows	decorations.

A	Suitable	Executable

Whenever	you	run	a	program	in	the	IDE,	Visual	Studio	builds	an	executable
program,	normally	in	the	project's	bin\Debug	subdirectory.	You	can	run	the
executable	by	finding	it	in	File	Explorer	and	double-clicking	it.

Unfortunately	that	doesn't	mean	the	executable	can	run	on	any	old	computer!
If	you	copy	that	file	to	another	computer,	it	won't	run	unless	the	.NET
Framework	runtime	libraries	have	been	installed	there.	If	that	computer	has
Visual	Studio	installed,	you're	all	set,	but	if	it	doesn't	you'll	need	to	install	the
redistributable	yourself.

To	install	these	libraries,	go	to	Microsoft's	download	web	page
www.microsoft.com/downloads	and	search	for	“.NET	Framework
redistributable.”	Pick	the	version	that	matches	the	one	you're	using	(probably
the	most	recent	version	if	you	just	installed	Visual	Studio)	and	install	it	on	the
target	computer.

Now	you	can	copy	C#	executables	onto	the	other	computer	and	run	them.

http://www.microsoft.com/downloads

Copying	Projects
Sometimes	you	may	want	to	copy	a	project.	For	example,	you	might	want	to	save
the	current	version	and	then	make	a	new	one	to	try	things	out.	Or	you	may	want	to
give	a	copy	of	the	project	to	a	friend	or	your	programming	instructor	so	he	or	she
can	tell	you	why	its	New	button	makes	the	program	exit.

You	might	look	in	Visual	Studio's	File	menu	and	see	the	Copy	As	commands.
Don't	be	tempted!	Those	commands	copy	single	files,	not	the	entire	project.	Later
when	you	try	to	open	one	of	those	files,	you'll	discover	that	Visual	Studio	cannot
find	all	of	the	other	pieces	that	it	needs	and	you'll	be	left	with	nothing	usable.

To	correctly	copy	a	project,	copy	the	entire	solution	or	application	folder	and	its
directory	hierarchy.	Alternatively,	you	can	compress	the	project	directory	and
then	copy	the	compressed	file.	Just	be	sure	that	whatever	copying	method	you	use
brings	along	all	of	the	project's	files.

Note	that	you	can	delete	the	bin	and	obj	subdirectories	if	you	like	to	save	space.
Those	directories	contain	files	that	Visual	Studio	creates	when	it	loads	and	builds
a	program,	and	it	will	re-create	them	whenever	it	needs	them	later.

You	can	also	delete	the	.vs	directory,	which	contains	user	settings.	Unfortunately
that	directory	is	hidden	by	default	so	it	may	be	hard	to	find.	To	make	File	Explorer
show	you	hidden	files,	open	the	Control	Panel,	click	Appearance	and
Personalization,	and	select	Folder	Options.	On	the	View	tab,	select	Show	Hidden
Files	and	Folders,	and	then	click	OK.	Now	you	can	see	the	.vs	directory	to	delete
it.

NOTE

Compressing	a	project	is	very	useful	because	it	keeps	all	of	its	files	together
in	a	package.	In	particular,	if	you	ever	need	to	e-mail	a	project	to	someone
(for	example,	if	you	e-mail	me	at	RodStephens@CSharpHelper.com	for	help),
you	can	remove	the	bin,	obj,	and	.vs	directories,	compress	the	project
folder,	and	e-mail	the	package	as	a	single	file.

If	you're	sending	the	project	to	your	instructor	as	part	of	an	assignment,
rename	the	compressed	file	so	it	contains	your	name	and	the	name	of	the
assignment;	for	example,	RodStephens6-1.zip.

mailto:RodStephens@CSharpHelper.com

Exploring	the	IDE
The	Visual	Studio	IDE	contains	a	huge	number	of	menus,	toolbars,	windows,
wizards,	editors,	and	other	components	to	help	you	build	applications.	Some	of
these,	such	as	the	Solution	Explorer	and	the	Properties	window,	you	will	use	every
time	you	work	on	a	program.	Others,	such	as	the	Breakpoints	window	and	the
Connect	to	Device	dialog,	are	so	specialized	that	it	may	be	years	before	you	need
them.

Figure	1.7	shows	the	IDE	with	a	simple	project	loaded	and	some	of	the	IDE's	most
important	pieces	marked.	The	following	list	describes	those	pieces.

Figure	1.7

1.	 Menus—The	menus	provide	all	sorts	of	useful	commands.	Exactly	which
commands	are	available,	which	are	enabled,	and	even	which	menus	are	visible
depends	on	what	kind	of	editor	is	open	in	the	editing	area	(#4).	Some
particularly	useful	menus	include	File	(opening	old	projects	and	creating	new
ones),	View	(finding	windows),	Project	(adding	new	forms	and	other	items	to	a
project),	Debug	(build,	run,	and	debug	the	project),	and	Format	(arrange
controls	on	a	form).

2.	 Toolbars—The	toolbars	provide	shortcuts	for	executing	commands	similar	to
those	in	the	menus.	Use	the	Tools	menu's	Customize	command	to	determine
which	toolbars	are	visible.

3.	 Solution	Explorer—The	Solution	Explorer	lists	the	files	in	the	project.	One
of	the	most	important	is	Form1.cs,	which	defines	the	controls	and	code	for	the
form	named	Form1.	If	you	double-click	a	file	in	the	Solution	Explorer,	the	IDE

opens	it	in	the	editing	area.

4.	 Editing	Area—The	editing	area	displays	files	in	appropriate	editors.	Most
often	you	will	use	this	area	to	design	forms	(place	controls	on	them	and	set
control	properties)	and	write	code	for	forms,	but	you	can	also	use	this	area	to
edit	other	files	such	as	text	files,	bitmaps,	and	icons.

5.	 Toolbox—The	Toolbox	contains	controls	and	components	that	you	can	place
on	a	form.	Select	a	tool	and	then	click	and	drag	to	put	a	copy	of	the	tool	on	the
form.	Notice	that	the	Toolbox	groups	controls	in	tabs	(All	Windows	Forms,
Common	Controls,	Containers,	Menus	&	Toolbars,	and	so	on)	to	make	finding
the	controls	you	need	easier.

6.	 Properties	Window—The	Properties	window	lets	you	set	control	properties.
Click	a	control	on	the	Form	Designer	(shown	in	the	editing	area	in	Figure	1.7)
to	select	it,	or	click	and	drag	to	select	multiple	controls.	Then	use	the
Properties	window	to	set	the	control(s)	properties.	Notice	that	the	top	of	the
Properties	window	shows	the	name	(label1)	and	type
(System.Windows.Forms.Label)	of	the	currently	selected	control.	The	currently
selected	property	in	Figure	1.7	is	Text,	and	it	has	the	value	First	Name:.	You'll
spend	a	lot	of	time	working	with	the	Properties	window.

7.	 Property	Description—The	property	description	gives	you	a	reminder
about	the	current	property's	purpose.	In	Figure	1.7,	it	says	that	the	Text
property	gives	the	text	associated	with	the	control.	(Duh!)

8.	 Other	Windows—This	area	typically	contains	other	useful	windows.	The
tabs	at	the	bottom	let	you	quickly	switch	between	different	windows.

Figure	1.7	shows	a	fairly	typical	arrangement	of	windows,	but	Visual	Studio	is
extremely	flexible	so	you	can	rearrange	the	windows	if	you	like.	You	can	hide	or
show	windows,	make	windows	floating	or	docked	to	various	parts	of	the	IDE,
make	windows	part	of	a	tab	group,	and	make	windows	automatically	hide
themselves	if	you	don't	need	them	constantly.

If	you	look	closely	at	the	right	side	of	the	title	bar	above	one	of	the	windows	in
Figure	1.7	(for	example,	the	Properties	window),	you'll	see	three	icons:	a
dropdown	arrow	(),	a	thumbtack	(),	and	an	X	().

If	you	click	the	dropdown	arrow	(or	right-click	the	window's	title	bar),	a	menu
appears	with	the	following	choices:

Float—The	window	breaks	free	of	wherever	it's	docked	and	floats	above	the
IDE.	You	can	drag	it	around	and	it	will	not	re-dock.	To	make	it	dockable	again,
open	the	menu	again	and	select	Dock.

Dock—The	window	can	dock	to	various	parts	of	the	IDE.	(This	is	kind	of	fun
and	I'll	say	more	about	it	shortly.)

Dock	as	Tabbed	Document—The	window	becomes	a	tab	in	a	tabbed	area

similar	to	#8	in	Figure	1.7.	Unfortunately,	it's	not	always	obvious	which	area
will	end	up	holding	the	window.	To	make	the	window	a	tab	in	a	specific	tabbed
area,	make	it	dockable	and	drag	it	onto	a	tab	(described	shortly).

Auto	Hide—The	window	shrinks	itself	to	a	small	label	stuck	to	one	of	the
IDE's	edges	and	its	thumbtack	icon	turns	sideways	()	to	indicate	that	the
window	is	auto-hiding.	If	you	float	the	mouse	over	the	label,	the	window
reappears.	As	long	as	the	mouse	remains	over	the	expanded	window,	it	stays
put,	but	if	you	move	the	mouse	off	the	window,	it	auto-hides	itself	again	(like	a
cockroach	when	you	turn	on	the	lights).	Select	Auto	Hide	again	or	click	the
sideways	thumbtack	to	turn	off	auto-hiding.	Auto-hiding	gets	windows	out	of
the	way	so	you	can	work	in	a	bigger	editing	area.

Hide—The	window	disappears	completely.	To	get	the	window	back,	you'll
need	to	find	it	somewhere	in	the	bewildering	assortment	of	menus.	You	can
find	many	of	the	most	useful	windows	in	the	View	menu,	the	View	menu's
Other	Windows	submenu,	and	the	Debug	menu's	Windows	submenu.

The	thumbtack	in	a	window's	title	bar	works	just	like	the	dropdown	menu's	Auto
Hide	command	does.	Click	the	thumbtack	to	turn	on	auto-hiding.	Expand	the
window	and	click	the	sideways	thumbtack	to	turn	off	auto-hiding.	(Turning	off
auto-hiding	is	sometimes	called	pinning	the	window.)

The	()	symbol	in	the	window's	title	bar	hides	the	window	just	like	the	dropdown
menu's	Hide	command	does.

In	addition	to	using	a	window's	title	bar	menu	and	icons,	you	can	drag	windows
into	new	positions.	As	long	as	a	window	is	dockable	or	part	of	a	tabbed	window,
you	can	grab	its	title	bar	and	drag	it	to	a	new	position.

As	you	drag	the	window,	the	IDE	displays	little	drop	targets	to	let	you	dock	the
window	in	various	positions.	If	you	move	the	window	so	the	mouse	is	over	a	drop
target,	the	IDE	displays	a	translucent	blue	area	to	show	where	the	window	will
land	if	you	drop	it.	If	you	drop	when	the	mouse	is	not	over	a	drop	target,	the
window	becomes	floating.

Figure	1.8	shows	the	Properties	window	being	dragged	in	the	IDE.	The	mouse	is
over	the	right	drop	target	above	the	editing	area	so,	as	the	translucent	blue	area
shows,	dropping	it	there	would	dock	the	window	to	the	right	side	of	the	editing
area.	The	picture	is	kind	of	messy,	but	it's	not	too	hard	to	see	what's	going	on	if
you	give	it	a	try.

Figure	1.8

The	drop	area	just	to	the	left	of	the	mouse	represents	a	tabbed	area.	If	you	drop	on
this	kind	of	target,	the	window	becomes	a	tab	in	that	area.

Customization	Moderation

Visual	Studio	lets	you	move,	dock,	float,	hide,	auto-hide,	and	tabify	windows.
If	you	have	multiple	monitors,	you	can	float	a	window	and	move	it	to	another
monitor,	giving	you	a	larger	editing	area.	It's	so	flexible	that	it	can	present	as
many	different	faces	as	a	politician	during	an	election	year.

Feel	free	to	customize	the	IDE	to	suit	your	needs,	but	if	you	do,	keep	in	mind
that	your	version	of	Visual	Studio	may	look	nothing	like	the	pictures	in	this
book.	To	minimize	confusion,	you	may	want	to	keep	the	IDE	looking	more	or
less	like	Figure	1.7,	at	least	until	you	get	a	better	sense	of	which	tools	will	be
most	useful	to	you.

Try	It
In	this	Try	It,	you	prepare	for	later	work	throughout	the	book.	You	locate	web
resources	that	you	can	use	when	you	have	questions	or	run	into	trouble.	You
create	and	run	a	program,	explore	the	project's	folder	hierarchy,	and	make	a	copy
of	the	project.	You	also	get	a	chance	to	experiment	a	bit	with	the	IDE,	displaying
new	toolbars,	moving	windows	around,	and	generally	taking	the	IDE	for	a	test
drive	and	kicking	the	tires.

NOTE

Note	that	the	solutions	for	this	lesson's	Try	It	and	exercises	are	not	all
available	on	the	book's	website.	The	Try	It	and	some	of	the	exercises	ask	you
to	experiment	with	the	IDE	rather	than	produce	a	finished	program,	so
there's	really	nothing	to	download.	In	later	lessons,	example	solutions	to	the
Try	It	and	exercises	are	available	on	the	book's	website.

Lesson	Requirements
In	this	lesson,	you:

Find	and	bookmark	useful	web	resources.

Launch	Visual	Studio	and	start	a	new	Visual	C#	project.

Experiment	with	the	IDE's	layout	by	displaying	the	Debug	toolbar,	pinning	the
Toolbox,	and	displaying	the	Output	window.

Run	the	program.

Find	the	program's	executable,	copy	it	to	the	desktop,	and	run	it	there.

Copy	the	project	folder	to	a	new	location	and	make	changes	to	the	copy.

Compress	the	project	folder	to	make	a	backup.

NOTE

You	can	download	the	code	and	resources	for	this	lesson	from	the	website	at
www.wrox.com/go/csharp24hourtrainer2e.

Hints
When	you	create	a	new	project,	be	sure	to	specify	a	good	location	so	you	can
find	it	later.

Before	you	compress	the	project,	remove	the	bin,	obj,	and	.vs	directories	to
save	space.

Step-by-Step
Find	and	bookmark	useful	web	resources.

1.	 Open	your	favorite	web	browser.

2.	 Create	a	new	bookmark	folder	named	C#.	(See	the	browser's
documentation	if	you	don't	know	how	to	make	a	bookmark	folder.)

3.	 Go	to	the	following	websites	and	bookmark	the	ones	you	like	(feel	free	to
search	for	others,	too):

My	C#	Helper	website	(www.CSharpHelper.com)

This	book's	web	page	(www.CSharpHelper.com/24hour.html)

This	book's	Wrox	web	page	(go	to	www.wrox.com	and	search	for	C#	24-
Hour	Trainer,	Second	Edition)

Visual	C#	Express	Edition	MSDN	forum
(social.msdn.microsoft.com/Forums/en-US/Vsexpressvcs/threads)

Visual	C#	IDE	MSDN	forum	(social.msdn.microsoft.com/Forums/en-
US/csharpide/threads)

Visual	C#	Language	MSDN	forum
(social.msdn.microsoft.com/Forums/en-US/csharplanguage/threads)

Visual	C#	General	MSDN	forum
(social.msdn.microsoft.com/Forums/en-US/csharpgeneral/threads)

MSDN	(msdn.microsoft.com)

Stack	Overflow	(www.stackoverflow.com)

Code	Project	(www.codeproject.com)

Launch	Visual	Studio	and	start	a	new	Visual	C#	project.

1.	 If	you	don't	have	a	desktop	or	taskbar	icon	for	Visual	Studio,	create	one.

http://www.wrox.com/go/csharp24hourtrainer2e
http://www.CSharpHelper.com
http://www.CSharpHelper.com/24hour.html
http://www.wrox.com
http://social.msdn.microsoft.com/Forums/en-US/Vsexpressvcs/threads
http://social.msdn.microsoft.com/Forums/en-US/csharpide/threads
http://social.msdn.microsoft.com/Forums/en-US/csharplanguage/threads
http://social.msdn.microsoft.com/Forums/en-US/csharpgeneral/threads
http://msdn.microsoft.com
http://www.stackoverflow.com
http://www.codeproject.com

For	example,	in	Windows	8,	follow	these	steps:

a.	 Open	the	Charms	area,	click	Search,	and	type	VS	Express	(or	part	of
the	name	of	the	version	you	installed).	If	Visual	Studio	isn't	in	the	result
list,	make	sure	the	search	box's	dropdown	list	has	Everywhere	selected.

b.	 In	the	search	results,	right-click	the	program	and	select	Pin	to	Start	or
Pin	to	Taskbar.

2.	 Launch	Visual	Studio	by	clicking	the	tile	you	just	pinned	to	the	start	screen
or	the	icon	you	just	pinned	to	the	taskbar.

3.	 Create	a	new	project.

a.	 Press	Ctrl+Shift+N	or	open	the	IDE's	File	menu,	expand	the	New
submenu,	and	select	Project.

b.	 Expand	the	Visual	C#	project	types	folder	and	select	the	Windows
Forms	Application	template.

c.	 Enter	a	project	name	and	a	good,	easy-to-find	location	like	the	desktop
or	a	folder	named	C#	Projects	on	the	desktop.

d.	 Uncheck	the	Create	Directory	for	Solution	box.

e.	 Click	OK.

Experiment	with	the	IDE's	layout	by	displaying	the	Debug	toolbar,	pinning	the
Toolbox,	and	displaying	the	Output	window.

1.	 Open	the	Tools	menu	and	select	Customize.	On	the	Customize	dialog,	select
the	Toolbars	tab	and	check	the	box	next	to	the	Debug	toolbar.	Experiment
with	the	other	toolbars	if	you	like.	Close	the	dialog	when	you're	done.

2.	 If	the	Toolbox	is	auto-hiding	(it	should	be	after	you	first	install	Visual
Studio),	float	the	mouse	over	it	until	it	expands.	Click	the	thumbtack	to	pin
it.

3.	 To	display	the	Output	window,	open	the	View	menu	and	select	Output.
Grab	the	Output	window's	title	bar	and	drag	it	around.	Move	it	over	some
drop	targets	to	see	where	it	lands.	When	you're	finished,	drop	it	at	the
bottom	of	the	IDE	as	shown	in	Figure	1.7.

Run	the	program.

1.	 Press	F5	or	open	the	Debug	menu	and	select	Start	Debugging.

2.	 Try	out	the	form's	minimize,	maximize,	and	close	buttons	and	the
commands	in	the	form's	system	menu.	Move	the	form	around	and	resize	it.
Marvel	at	the	fact	that	you	didn't	need	to	write	any	code!

Find	the	program's	executable,	copy	it	to	the	desktop,	and	run	it	there.

1.	 Start	File	Explorer	and	navigate	to	the	location	that	you	specified	when	you
created	the	new	program.

2.	 There	you	should	find	a	folder	named	after	the	program.	Open	that	folder
and	examine	the	files	inside.	Notice	the	.sln	file	that	you	can	double-click
to	reopen	the	solution	in	Visual	Studio.	Notice	also	the	bin,	obj,	and	.vs
directories.

3.	 Enter	the	bin	directory	and	move	into	its	Debug	subdirectory.	It	contains
several	files	including	the	executable,	named	after	the	program	but	with	the
.exe	extension.	Right-click	the	executable	and	select	Copy.

4.	 Right-click	the	desktop	and	select	Paste	to	copy	the	executable	to	the
desktop.

5.	 Double-click	the	copy	of	the	executable	on	the	desktop.

Copy	the	project	folder	to	a	new	location	and	make	changes	to	the	copy.

1.	 In	File	Explorer,	go	to	the	directory	that	contains	the	project	folder.

2.	 Right-click	the	project's	folder	and	select	Copy.

3.	 Right-click	the	desktop	and	select	Paste	to	copy	the	project	folder.

4.	 Open	the	copied	project	folder	and	double-click	the	.sln	file	to	open	the
copied	project	in	Visual	Studio.	If	the	form	doesn't	open	in	the	Form
Designer	(#4	in	Figure	1.7),	look	in	Solution	Explorer	and	double-click	the
file	Form1.cs.

5.	 In	the	Form	Designer,	grab	the	handle	on	the	form's	lower-right	corner	and
resize	the	form	to	make	it	tall	and	skinny.

6.	 Run	the	modified	program.	Then	go	back	to	the	original	project	(which
should	still	be	running	in	another	instance	of	Visual	Studio)	and	run	it.
Notice	that	the	two	versions	display	forms	of	different	sizes.

Compress	the	project	folder	to	make	a	backup.

1.	 In	Visual	Studio,	close	the	project.	(Or	close	Visual	Studio.)

2.	 In	File	Explorer,	return	to	the	project's	folder	and	delete	the	bin,	obj,	and
.vs	directories.	(Note	that	you	can't	delete	the	bin	directory	if	Visual	Studio
has	the	project	open.)

3.	 Move	up	one	level	to	the	directory	that	contains	the	project	folder.	Right-
click	the	folder,	expand	the	Send	To	submenu,	and	select	Compressed
(Zipped)	Folder.

4.	 E-mail	copies	of	your	first	project	to	all	of	your	friends	and	relatives.	I'm
sure	they'll	thank	you!

Exercises
1.	 Build	a	solution	that	contains	two	projects.	(Create	a	project	named	Project1.
Check	the	Create	Directory	for	Solution	box	and	name	the	solution
TwoProjects.	Then	open	the	File	menu,	expand	the	Add	submenu,	and	select
New	Project	to	add	a	new	project	named	Project2.)

2.	 This	lesson	explains	only	a	tiny	fraction	of	the	ways	you	can	customize	Visual
Studio.	Try	another	one	by	making	your	own	toolbar.	Select	the	Tools	menu's
Customize	command.	On	the	Toolbars	tab,	click	the	New	button,	and	name	the
new	toolbar	MyTools.	On	the	Commands	tab,	select	the	Toolbar	radio	button
and	then	select	the	new	toolbar	from	the	dropdown	list.	Now	use	the	Add
Commands	button	to	add	some	commands	to	the	toolbar.

3.	 This	lesson	also	describes	only	a	few	of	the	windows	Visual	Studio	offers.	Use
the	menus	to	find	and	display	the	Output,	Immediate,	Error	List,	and	Task	List
windows.	Put	them	all	in	tabs	at	the	bottom	of	Visual	Studio	(#8	in	Figure	1.7).

4.	 Some	tools	are	available	only	when	Visual	Studio	is	in	a	certain	state.	Look	in
the	Debug	menu's	Windows	submenu.	Then	start	the	program	and	look	there
again.	Most	of	those	windows	are	useful	only	when	the	program	is	running	and
you	are	debugging	it.	(I	talk	about	some	of	them	in	later	lessons.)

5.	 [WPF]	Create	a	new	WPF	application.	Run	it	side	by	side	with	a	Windows
Forms	application.	What	are	the	differences?	(Hint:	There	shouldn't	be	many
and	they	should	be	cosmetic.	You	learn	about	more	important	but	less	obvious
differences	in	later	lessons.)

NOTE

Please	select	the	videos	for	Lesson	1	online	at
www.wrox.com/go/csharp24hourtrainer2evideos.

http://www.wrox.com/go/csharp24hourtrainer2evideos

Lesson	2

Creating	Controls
Way	back	in	the	computer	stone	ages,	when	programmers	worked	by	candlelight
on	treadle-powered	computers	and	hand-carved	wooden	monitors,	input	and
output	were	very	simple.	The	computer	wrote	text	in	toxic	green	on	the	bottom	of
a	monitor	and	the	text	scrolled	up	as	the	monitor	became	full.	The	user	typed	on	a
keyboard	to	enter	text	at	a	single	input	prompt,	and	that	was	about	it.	Multiple
windows	performing	useful	work	simultaneously,	mice,	and	forms	displaying
many	labels	and	textboxes,	buttons,	scrollbars,	and	full-color	images	existed	only
in	the	fevered	dreams	of	science-fiction	writers.

Today	these	things	are	so	commonplace	that	we	take	them	completely	for	granted.
They	appear	in	desktop	software,	web	pages,	laptops,	handheld	computers,	and
even	cell	phones.

Building	these	sorts	of	objects	in	the	old	days	would	have	been	extremely	difficult,
but	today	it's	practically	trivial	to	add	them	to	your	application.

You	already	saw	in	Lesson	1	how	easy	it	is	to	make	an	application	(albeit	a	trivial
one)	that	displays	a	form	that	runs	independently	of	the	others	on	the	computer.
It's	almost	as	easy	to	use	labels,	textboxes,	buttons,	scrollbars,	images,	menus,
popups,	and	everything	else	that	makes	up	a	modern	application.

C#	makes	all	of	these	objects	and	more	available	as	controls.

In	this	lesson,	you	learn	how	to	add	controls	to	a	form.	You	learn	how	to	size,
position,	and	arrange	controls.	You	also	learn	how	to	use	a	control's	properties	to
change	its	appearance	and	behavior	at	design	time	and	at	run	time.	When	you're
done	with	this	lesson,	you'll	be	able	to	build	a	professional-looking	form.

Understanding	Controls
A	control	is	a	programming	entity	that	combines	a	visible	appearance	on	the
screen	and	code	to	manage	it.	The	code	defines	the	control's	appearance	and
behavior.

For	example,	a	TextBox	control	displays	a	blank	area	on	the	screen	where	the	user
can	type	information.	The	code	inside	the	control	determines	how	the	control
draws	itself	and	provides	normal	textbox	features	such	as	multiline	or	single-line
behavior;	scrolling	and	scrollbars	displayed	as	needed;	copy,	cut,	and	paste;	a
context	menu	displayed	when	you	right-click	the	control;	the	ability	to	navigate
when	the	user	presses	the	Tab	key;	and	much	more.

What's	in	a	Name?

By	convention,	in	C#	the	names	of	control	types	(and	other	types)	use	Pascal
casing	where	multiple	words	are	strung	together	with	the	first	letter	of	each
word	capitalized;	for	example,	TextBox,	ProgressBar,	Button,	and	PictureBox.

In	addition	to	controls,	C#	provides	components.	A	component	is	similar	to	a
control	except	it	has	no	visible	piece	on	the	form.	For	example,	the	Timer
component	acts	as	a	clock	to	let	the	program	do	something	at	regular	intervals.
The	Timer	interacts	with	the	program	but	doesn't	display	anything	visible	to	the
user.	(Some	components	such	as	ErrorProvider	and	ToolTip	may	display	visible
effects	on	the	screen,	but	the	components	themselves	are	not	visible	on	the	form.)

The	features	of	controls	(and	components)	fall	into	three	categories:	properties,
methods,	and	events.

Properties
A	property	determines	the	appearance	and	state	of	a	control.	If	a	Car	were	a
control,	its	properties	would	be	things	like	Color,	TransmissionType,	CurrentSpeed,
and	NumberOfCupHolders.	Your	program	could	set	a	Car's	Color	to	HotPink	(to
attract	the	attention	of	other	drivers)	or	set	its	CurrentSpeed	to	110	(to	attract	the
attention	of	the	police).

For	a	programming	example,	the	TextBox	control	has	a	Font	property	that
determines	the	font	it	uses	and	a	ForeColor	property	that	determines	the	color	of
its	text.

Methods
A	method	is	a	feature	of	a	control	that	makes	the	control	perform	some	action.
Your	code	can	call	a	method	to	make	the	control	do	something.	For	example,	the
Car	control	might	have	methods	such	as	Start,	Stop,	EjectPassenger,	and
OilSlick.	Your	program	could	call	the	OilSlick	method	to	make	the	car	spray	oil
out	the	back	so	you	can	escape	from	spies.

For	a	programming	example,	the	TextBox	has	a	Clear	method	that	blanks	the
control's	text	and	an	AppendText	method	that	adds	text	to	the	end	of	whatever	the
control	is	currently	displaying.

Events
An	event	occurs	when	something	interesting	happens	to	the	control.	The	control
raises	or	fires	the	event	to	tell	the	program	that	something	happened.	For
example,	a	Car	might	have	RanOutOfGas	and	Crashed	events.	The	Car	control	would
raise	the	Crashed	event	to	tell	the	program	that	the	user	had	driven	it	into	a	tree.
The	program	could	then	take	action	such	as	calling	an	ambulance	and	a	tree

surgeon.

For	a	programming	example,	the	TextBox	has	a	TextChanged	event	that	tells	the
program	that	its	text	has	changed.	When	the	event	occurs,	the	program	could
examine	the	text	to	see	if	the	user	had	entered	a	valid	input.	For	example,	if	the
TextBox	should	hold	a	number	and	the	user	entered	“One,”	the	program	could
beep	and	change	the	TextBox's	BackColor	property	to	Yellow	to	indicate	an	error.

Later	lessons	discuss	events	and	the	code	that	handles	them	in	greater	detail.	This
lesson	focuses	on	adding	controls	to	a	form,	arranging	them,	and	setting	their
properties.

Creating	Controls
Adding	controls	to	a	form	is	easy.	In	fact,	it's	so	easy	and	there	are	so	many
different	ways	to	add	controls	to	a	form	that	it	takes	a	while	to	describe	them	all.

Start	by	creating	a	new	project	as	described	in	Lesson	1.	Open	the	form	in	the
Form	Designer.	(If	the	form	isn't	already	open,	double-click	it	in	Solution
Explorer.)

The	following	list	describes	some	of	the	ways	you	can	put	controls	on	the	form:

Click	a	tool	in	the	Toolbox	to	select	it.	Then	click	and	drag	on	the	form.	When
you	release	the	mouse,	Visual	Studio	creates	the	control	in	the	area	you
selected	and	then	selects	the	pointer	in	the	Toolbox.

Click	a	tool	in	the	Toolbox	to	select	it.	Then	hold	down	the	Ctrl	key	while	you
click	and	drag	on	the	form	to	place	a	copy	of	the	control	on	the	form.	When	you
release	the	mouse,	Visual	Studio	creates	the	control	in	the	area	you	selected
and	keeps	the	control's	tool	selected	in	the	Toolbox	so	you	can	make	another
control	of	that	type.

Double-click	a	tool	in	the	Toolbox	to	create	an	instance	of	the	control	on	the
form	at	a	default	size	and	position.	(You'll	then	probably	want	to	resize	and
reposition	it.)

Select	one	or	more	controls	that	are	already	on	the	form,	press	Ctrl+C	to	copy
them,	and	then	press	Ctrl+V	to	paste	them	onto	the	form.	You	can	even	copy
and	paste	from	one	instance	of	Visual	Studio	to	another.

Select	one	or	more	controls	on	the	form.	While	holding	down	the	Ctrl	key,	drag
the	controls	to	a	new	location.	Visual	Studio	makes	a	copy	of	the	controls,
leaving	the	originals	where	they	started.

NOTE

You	have	several	ways	to	select	controls	on	the	Form	Designer.	Click	a
control	to	select	only	it.	Click	and	drag	to	select	multiple	controls.

Hold	down	the	Shift	or	Ctrl	key	while	clicking	or	clicking	and	dragging	to
toggle	whether	controls	are	in	the	current	selection.

And,	if	you	want	to	deselect	all	controls,	simply	click	an	empty	part	of	the
form	or	press	Esc.

The	first	method	(select	a	tool	and	then	click	and	drag	to	create	a	control)	is
probably	used	most	often,	but	some	of	the	other	methods	are	particularly	useful
for	creating	groups	of	similar	controls.

For	example,	the	form	in	Figure	2.1	displays	five	rows,	each	of	which	holds	a	Label
and	a	TextBox.	You	could	easily	build	all	of	these	controls	individually,	but	you	can
build	them	even	faster	by	using	copy	and	paste.	First	place	one	Label	and	TextBox
on	the	form,	arrange	them	next	to	each	other,	and	give	them	any	property	values
that	you	want	all	of	the	Labels	or	TextBoxes	to	share.	(For	example,	you	may	want
to	set	their	fonts	or	colors.)	Now	click	and	drag	to	select	both	controls,	copy	and
paste,	and	drag	the	new	controls	into	position.	Repeat	this	three	more	times	and
you'll	have	all	of	the	controls	in	position.	You'll	still	need	to	change	the	Labels'	text
but	the	basic	arrangement	will	be	done	without	going	back	and	forth	to	the
Toolbox.

Figure	2.1

Setting	Control	Properties
After	you've	added	controls	to	a	form,	you	can	use	the	Properties	window	to	view
and	change	their	property	values.	If	you	have	more	than	one	control	selected,	the
Properties	window	shows	only	the	properties	that	the	controls	have	in	common.

For	example,	if	you	select	a	TextBox	and	a	Label,	the	Properties	window	shows	the
Text	property	because	both	Labels	and	TextBoxes	have	a	Text	property.	However,
it	won't	display	the	Multiline	property	because	the	TextBox	control	has	that
property	but	the	Label	control	does	not.

The	Properties	window	provides	special	support	for	many	control	properties.	For
example,	Figure	2.2	shows	the	Properties	window	when	a	TextBox	is	selected.

Figure	2.2

Notice	that	the	Font	property	contains	its	own	sub-properties:	Name,	Size,	Unit,
Bold,	and	so	forth.	Click	the	plus	or	minus	sign	next	to	a	property	to	expand	or
collapse	it	and	show	or	hide	its	sub-properties.

Also	notice	in	Figure	2.2	the	ellipsis	to	the	right	of	the	Font	property.	If	you	click
that	ellipsis,	the	dialog	shown	in	Figure	2.3	appears.	You	can	use	this	dialog	to	edit
the	font	sub-properties	and	see	a	sample	of	the	font.

Figure	2.3

The	Properties	window	provides	appropriate	support	when	it	can	for	other
properties.	Many	properties	can	hold	only	certain	values.	For	example,	the	Font's
Italic,	Bold,	Strikeout,	and	Underline	sub-properties	can	only	take	the	values
True	or	False.	The	Font's	Unit	sub-property	can	only	take	the	values	World,	Pixel,
Point,	Inch,	Document,	and	Millimeter.	In	these	cases,	the	Properties	window
provides	a	dropdown	listing	the	allowed	choices.

Figure	2.4	shows	the	editor	that	the	Properties	window	displays	when	you	click
the	dropdown	arrow	to	the	right	of	a	TextBox's	BackColor	property.	The	Custom
tab	lets	you	pick	a	color	from	a	palette,	the	Web	tab	lets	you	pick	standard	web
page	colors,	and	the	System	tab	lets	you	pick	system	colors	such	as	the	normal
control	background	color	or	the	menu	highlight	color.

Figure	2.4

By	using	the	Properties	window's	editors	and	typing	in	values	when	there	is	no
editor,	you	can	change	a	control's	appearance	and	behavior.

Control	Names
Whenever	you	create	a	control,	Visual	Studio	gives	it	a	rather	nondescript	name
such	as	label2,	textBox5,	or	pictureBox1.	Although	these	names	tell	you	what	kind
of	object	the	control	is,	they	don't	tell	you	what	it	is	for	and	that's	much	more
important	when	you	later	need	to	use	the	control	in	your	code.	Names	like
firstNameTextBox,	hatSizeTrackBar,	and	mediaTypeComboBox	are	much	more
meaningful	than	textBox3	and	textBox7.

Note	that	you	don't	need	to	give	good	names	to	every	control,	just	the	ones	that
you	will	need	to	use	later	in	the	code.	You	often	don't	need	to	name	Labels,
GroupBoxes,	and	other	purely	decorative	controls.

You	can	learn	more	about	Microsoft's	naming	conventions	on	the	web	page
“Guidelines	for	Names”	at	msdn.microsoft.com/library/ms229002.aspx.

http://msdn.microsoft.com/library/ms229002.aspx

What's	in	a	Name,	Redux

Earlier	in	this	lesson	I	said	that	control	type	names	use	Pascal	casing.	By
convention,	the	names	of	specific	instances	of	controls	use	camel	casing,
where	multiple	words	are	strung	together	with	the	first	letter	of	each	word
capitalized,	except	for	the	first	word.	For	example,	the	control	type	TextBox
uses	Pascal	casing	and	the	specific	control	name	firstNameTextBox	uses	camel
casing.

It's	called	camel	casing	because	it	sort	of	looks	like	a	camel	lying	down:	low	at
the	ends	with	one	or	more	humps	in	the	middle.	I	guess	stateLabel	would	be	a
dromedary	(one-humped)	camel,	priceTextBox	would	be	a	Bactrian	(two-
humped)	camel,	and	numberOfEmployeesCoveredByInsurancePlanTrackBar
would	be	some	sort	of	camel	created	by	Dr.	Seuss.

What's	in	a	Name,	Part	3

Most	C#	developers	add	a	control's	type	as	a	suffix	to	its	name	as	in
firstNameTextBox	or	resultLabel,	but	it's	becoming	more	common	for
developers	to	use	a	more	generic	word	such	as	value	or	field.	The	idea	is	that
if	you	decide	to	change	the	type	of	control	that	handles	the	value,	you	won't
need	to	change	the	code	that	refers	to	the	control.

For	example,	suppose	your	program	uses	a	TrackBar	to	let	the	user	select	the
number	of	UFO	detectors	to	purchase.	If	you	name	this	control
numUfoDetectorsValue,	then	you	won't	need	to	change	the	code	if	you	later
decide	to	let	the	user	select	the	value	from	a	NumericUpDown	control	instead	of	a
TrackBar.

Some	developers	even	omit	the	suffix	completely	as	in	numUfoDetectors,
although	that	can	be	confusing	if	you	need	more	than	one	control	to	represent
a	similar	concept	or	if	you	want	a	variable	inside	the	code	that	holds	the
numeric	value	represented	by	the	control.

For	now,	I	recommend	that	you	stick	with	the	control's	full	type	name	as	a
suffix.

Popular	Properties
You'll	learn	about	key	control	properties	as	you	go	along,	but	for	now	Table	2.1
summarizes	some	of	the	most	useful	properties.	Note	that	not	all	controls	have
every	property.	For	example,	a	Button	cannot	display	a	border	(or	it	always
displays	a	border,	depending	on	your	point	of	view)	so	it	has	no	BorderStyle
property.

Table	2.1

Property Purpose

Anchor Determines	how	the	control	sizes	itself	to	use	the	available
space.	This	property	is	described	further	in	Lesson	3.

AutoSize Determines	whether	the	control	automatically	resizes	itself	to	fit
its	contents.	This	can	be	True	or	False.	By	default,	Labels	are
born	with	AutoSize	=	True.

BackColor Determines	the	control's	background	color.

BackgroundImage Determines	the	image	that	the	control	displays.

BorderStyle Determines	whether	the	control	displays	a	border.	This	can	be
None,	FixedSingle,	or	Fixed3D.

Dock Determines	how	the	control	sizes	itself	to	use	the	available
space.	This	property	is	described	further	in	Lesson	3.

Enabled Determines	whether	the	control	will	interact	with	the	user.
Many	controls	display	a	special	appearance	when	disabled	such
as	being	grayed	out.	This	can	be	True	or	False.

Font Determines	the	font	that	the	control	uses	to	display	text.

ForeColor Determines	the	control's	foreground	color.	For	controls	that
display	text,	this	is	usually	the	text's	color.

Image Determines	the	image	that	the	control	displays.	(Some	controls
have	Image,	others	have	BackgroundImage,	a	few	have	both,	and
many	cannot	display	any	image.	No	one	said	this	was
completely	consistent!)

Items For	controls	such	as	ListBox	and	ComboBox,	this	is	the	list	of
items	that	the	user	can	select.

Location Gives	the	control's	location	in	pixels	from	the	upper-left	corner
of	whatever	it	is	in	(for	now,	assume	it's	in	the	form).	Location
includes	X	and	Y	sub-properties.	For	example,	the	value	(10,	20)
means	the	control	is	10	pixels	from	the	form's	left	edge	and	20
pixels	from	its	top	edge.

Name Gives	the	control	a	name	that	your	code	can	use	to	refer	to	it
later.	You	should	always	give	a	good	name	to	any	control	that
you	will	refer	to	in	code.

Size Gives	the	control's	width	and	height	in	pixels.	For	example,	the
value	(75,	30)	means	the	control	is	75	pixels	wide	and	30	pixels
tall.

Tag This	property	can	hold	any	value	that	you	want	to	store	with	the
control.	For	example,	you	might	put	text	or	a	number	in	the	Tag
properties	of	some	Buttons	so	the	code	can	easily	tell	the	Buttons
apart.

Text Many	controls	have	a	Text	property	that	determines	what	the
control	displays.	For	Labels	and	TextBoxes,	Text	determines	the
text	they	show	(pretty	obvious).	For	controls	such	as	ComboBoxes
and	ListBoxes,	Text	determines	the	control's	current	selection.
For	a	Form,	which	in	a	real	sense	is	just	another	kind	of	control,
Text	determines	what's	displayed	in	the	title	bar.

TextAlign Determines	how	text	is	aligned	within	the	control.

Visible Determines	whether	the	control	is	visible.	This	can	be	True	or
False.	Set	it	to	False	to	hide	a	control	from	the	user.

If	you	want	some	practice	with	these	properties,	create	a	new	project	and	give
them	a	try.	Create	a	Button	and	set	its	Text	property.	Also	click	the	form	and	set	its
Text	property.	Change	the	form's	Font	property	and	see	what	happens	to	the	form

and	the	button	it	contains.	Experiment	with	some	of	the	other	properties	such	as
Image	and	ForeColor	if	you	like.

Modifying	Properties	in	Code
This	lesson	doesn't	really	go	into	handling	control	events	very	much	(that's	the
subject	of	Lesson	4),	but	I	do	want	to	explain	how	to	set	properties	in	code	and
you	need	event	handlers	to	do	that.	Besides,	it's	easy	and	sort	of	fun,	and	it'll	let
you	make	a	program	that	does	something	more	than	just	sitting	there	looking
pretty.

To	make	a	simple	event	handler	for	a	control,	double-click	the	control	in	the	Form
Designer.	That	opens	the	Code	Editor	and	creates	an	empty	event	handler	for	the
control's	default	event.	For	Button	controls,	that's	the	Click	event.	Whenever	the
user	clicks	the	control	at	run	time,	it	raises	its	Click	event	and	this	code	executes.

To	change	a	property	in	code,	type	the	control's	name,	a	dot	(or	period),	the	name
of	the	property,	an	equals	sign,	and	finally	the	value	that	you	want	to	give	the
property.	Finish	the	line	of	code	with	a	semicolon.	For	example,	the	following
statement	sets	the	Left	property	of	the	label	named	greetingLabel	to	100.	That
moves	the	label	so	it's	100	pixels	from	the	left	edge	of	its	container:

greetingLabel.Left	=	100;

The	following	code	shows	a	complete	event	handler:

//	Move	the	Label.

private	void	moveLabelButton_Click(object	sender,	EventArgs	e)

{

				greetingLabel.Left	=	100;

}

In	this	code,	I	typed	the	first	line	that	starts	with	two	slashes.	That	line	is	a
comment,	a	piece	of	text	that	is	contained	in	the	code	but	that	is	not	executed	by
the	program.	Any	text	that	comes	after	the	//	characters	is	ignored	until	the	end	of
the	current	line.	You	can	(and	should)	use	comments	to	make	your	code	easier	to
understand.	They	don't	make	the	executable	program	bigger	or	slower,	so	don't	be
stingy	with	your	comments!

I	also	typed	the	line	that	sets	the	Label's	Left	property.

Visual	Studio	typed	the	rest	when	I	double-clicked	the	moveLabelButton	control.
You	don't	need	to	worry	about	the	details	of	this	code	right	now,	but	briefly	the
sender	parameter	is	the	object	that	raised	the	event	(the	Button	in	this	example)
and	the	e	parameter	gives	extra	information	about	the	event.	The	extra
information	can	be	useful	for	some	events	(for	example,	in	the	MouseClick	event	it
tells	where	the	mouse	was	clicked),	but	it's	not	very	interesting	for	a	Button's	Click
event.

Simple	numeric	values	such	as	the	100	used	in	this	example	are	easy	to	set	in

code,	but	some	properties	aren't	numbers.	In	that	case,	you	must	set	them	to
values	that	have	the	proper	data	type.

For	example,	a	Label's	Text	property	is	a	string	so	you	must	give	it	a	string	value.
The	following	code	sets	the	greetingLabel	control's	Text	property	to	the	string
Hello:

greetingLabel.Text	=	"Hello";

NOTE

Notice	that	you	must	include	the	string	Hello	in	double	quotes	to	tell	C#	that
this	is	a	literal	string	and	not	some	sort	of	C#	command.	If	you	leave	the
quotes	off,	C#	gets	confused	and	gives	you	the	error	“The	name	‘Hello’	does
not	exist	in	the	current	context.”

Over	time,	you'll	get	used	to	messages	like	this	and	they'll	make	sense.	In	this
case,	the	message	just	means,	“I	don't	know	what	the	word	‘Hello’	means.”

Other	property	values	have	more	exotic	data	types	such	as	Date,	AnchorStyles,
Point,	and	BindingContext.	When	you	set	these	properties,	you	must	make	sure
that	the	values	you	give	them	have	the	correct	data	types.	I'm	going	to	ignore	most
of	these	for	now,	but	one	data	type	that	is	relatively	simple	and	useful	is	Color.

A	control's	ForeColor	and	BackColor	properties	have	the	data	type	Color	so	you
cannot	simply	set	them	equal	to	strings	such	as	Red	or	Blue.	Instead	you	must	set
them	equal	to	something	that	also	has	the	type	Color.	The	easiest	way	to	do	that	is
to	use	the	colors	predefined	by	the	Color	class.	This	may	seem	a	bit	confusing,	but
in	practice	it's	actually	quite	easy.

For	example,	the	following	two	statements	set	a	Label's	BackColor	and	ForeColor
properties	to	HotPink	and	Blue,	respectively:

greetingLabel.BackColor	=	Color.HotPink;

greetingLabel.ForeColor	=	Color.Blue;

The	following	code	shows	how	the	MoveButton	example	program,	which	is
available	as	part	of	this	lesson's	code	download	on	the	book's	website,	changes
several	Label	properties	when	you	click	a	Button:

//	Change	a	Label's	properties.

private	void	moveLabelButton_Click(object	sender,	EventArgs	e)

{

				greetingLabel.Left	=	100;

				greetingLabel.Text	=	"Hello";

				greetingLabel.BackColor	=	Color.HotPink;

				greetingLabel.ForeColor	=	Color.Blue;

}

Arranging	Controls
The	Form	Designer	provides	several	tools	to	help	you	arrange	controls	at	design
time.	The	following	sections	describe	some	of	the	most	useful:	snap	lines,	arrow
keys,	the	Format	menu,	and	the	Layout	toolbar.

Snap	Lines
When	you	drag	a	control	around	on	the	form,	the	Form	Designer	displays	snap
lines	that	show	how	the	control	lines	up	with	the	form	and	with	other	controls.
Figure	2.5	shows	the	Form	Designer	displaying	light	blue	snap	lines	indicating
that	the	control	is	standard	distances	away	from	the	form's	top	and	left	edges.

Figure	2.5

You	can	drag	the	control	away	from	this	position	and,	if	you	do	so,	the	snap	lines
disappear.	When	you	drag	the	control	close	to	one	of	the	form's	edges,	the	control
jumps	to	the	standard	distance	and	the	Form	Designer	displays	the	snap	lines
again.

The	Form	Designer	also	displays	snap	lines	to	show	how	controls	align.	In	Figure
2.6,	I	dragged	a	second	Button	below	the	first.	Different	snap	lines	show	that:

The	second	Button	is	the	standard	distance	from	the	form's	left	edge.

The	second	Button's	left	and	right	edges	line	up	with	the	first	Button's	edges.

The	second	Button	is	a	standard	distance	below	the	first	Button.

Figure	2.6

Other	snap	lines	show	how	the	control	contents	line	up.	In	Figure	2.7	snap	lines
show	that	the	Label	is	the	standard	distance	from	the	second	Button	and	that	the
Label's	text	baseline	lines	up	with	the	baseline	of	the	second	Button.

Figure	2.7

For	a	more	realistic	example,	consider	Figure	2.8.	In	this	figure	I	was	laying	out	a
small	data	entry	form,	and	I	wanted	all	of	the	Labels	and	TextBoxes	to	line	up
nicely.	In	this	figure,	snap	lines	show	that	the	Street	TextBox	is	lined	up	on	the	left
and	right	with	the	other	TextBoxes,	is	a	standard	distance	from	the	TextBoxes
above	and	below,	is	a	standard	distance	from	the	form's	right	edge,	and	has	its
baseline	lined	up	with	the	Street	Label.

Figure	2.8

Arrow	Keys
In	addition	to	dragging	controls	with	the	mouse,	you	can	move	controls	by
pressing	the	arrow	keys.	Select	one	or	more	controls	and	then	use	the	left,	right,
up,	and	down	arrow	keys	to	move	the	control(s)	one	pixel	at	a	time.	This	method
is	slower	than	using	the	mouse	but	gives	you	finer	control.

When	you	move	controls	with	the	arrow	keys,	the	Form	Designer	doesn't	display
snap	lines	so	you	may	want	to	keep	an	eye	on	the	control's	Location	property	in
the	Properties	window	to	see	where	it	is.

The	Format	Menu	and	Layout	Toolbar
The	Format	menu	contains	many	commands	that	arrange	one	or	more	controls.
Table	2.2	summarizes	the	Format	menu's	submenus.

Table	2.2

Submenu Commands

Align Aligns	groups	of	controls	on	their	lefts,	middles,	rights,	tops,
bottoms,	or	centers.

Make
Same	Size

Makes	controls	have	the	same	width,	height,	or	both.

Horizontal
Spacing

Adjusts	the	horizontal	spacing	between	controls.	It	can	make	the
space	between	controls	equal,	smaller,	larger,	or	zero.

Vertical
Spacing

Works	like	the	Horizontal	Spacing	submenu	except	it	adjusts	the
vertical	spacing	between	controls.

Center	in
Form

Centers	the	controls	vertically	or	horizontally	in	their	container.	If
the	controls	are	inside	a	container	like	a	Panel	or	GroupBox,	these
commands	center	the	controls	within	the	container,	not	the	form.

Order These	commands	send	a	control	to	the	front	or	back	of	the	stacking
order.	This	is	useful	if	you	have	controls	that	overlap	so	some	are
behind	others.

The	Layout	toolbar	contains	the	same	commands	as	the	Format	menu	but	in	a
handy	toolbar	so	they're	easier	to	use.	The	buttons	display	little	pictures	that	show
how	they	align	controls.

NOTE

How	these	tools	arrange	controls	depends	on	how	you	select	the	controls.
One	of	the	selected	controls,	normally	the	first	one	you	select,	is	the	group's
dominant	control.	The	dominant	control	is	marked	with	white	boxes	at	its
corners,	whereas	the	other	controls	are	marked	with	black	boxes.

When	you	use	an	arranging	tool,	the	dominant	control	determines	how	the
others	are	arranged.	For	example,	if	you	select	the	Format	 	Align	 	Lefts
command,	the	other	controls	are	moved	so	their	left	edges	line	up	with	the
dominant	control's	left	edge.

To	change	the	dominant	control	in	a	selected	group,	click	the	one	you	want
to	be	dominant	(without	holding	down	the	Ctrl	or	Shift	keys).

WPF	Controls
WPF	applications	use	their	own	set	of	controls,	some	of	which	are	similar	to
controls	used	by	Windows	Forms	applications.	Visual	Studio	for	Windows	lets	you
create	WPF	applications	in	roughly	the	same	way	Visual	Studio	for	Windows
Desktop	lets	you	make	Windows	Forms	applications.	Both	provide	an	editor
where	you	can	click	and	drag	to	create	controls	and	a	Properties	window	where
you	can	set	control	properties.

One	big	difference	is	that	Visual	Studio	also	displays	a	XAML	code	editor	for	WPF
applications.	XAML,	which	stands	for	“eXtensible	Application	Markup	Language”
and	which	is	usually	pronounced	“zammel,”	is	a	language	that	Visual	Studio	uses
to	define	user	interfaces	for	WPF	applications.

Sometimes	it's	easier	to	edit	the	XAML	code	directly	than	it	is	to	use	the	Window
editor.	In	particular,	it's	often	easier	to	make	copies	of	controls	by	copying	and
pasting	XAML	code	(and	changing	the	new	controls'	names)	than	it	is	to	copy
controls	in	the	Window	editor.

For	now,	you	should	probably	start	with	the	Window	editor,	but	you	may	also
want	to	look	at	the	XAML	code	and	experiment	with	it	a	bit	to	see	how	it	works.

Try	It
In	this	Try	It,	you	get	some	practice	building	a	user	interface.	You	place	controls
on	a	form	and	arrange	them	so	they	line	up	nicely.	You	also	get	some	practice
setting	control	properties	at	design	time	and	changing	them	at	run	time.

Lesson	Requirements
In	this	lesson,	you:

Add	controls	to	a	form	and	arrange	them	as	shown	in	Figure	2.9.	(Note	the
form's	title	and	the	fact	that	the	form	has	a	non-resizable	border.)

Figure	2.9

Give	the	key	controls	names.

Set	properties	at	design	time	on	the	result	label	(at	the	bottom	in	Figure	2.9)	to
make	the	label:

Display	its	text	centered.

Show	a	border.

Use	a	16-point	font.

Remain	invisible	until	the	user	clicks	one	of	the	buttons.

Make	the	OK	button	be	the	form's	default	button	so	it	fires	when	the	user
presses	Enter.	Make	the	Cancel	button	be	the	form's	cancel	button	so	it	fires
when	the	user	presses	Esc.

Add	code	behind	the	OK	button	to	display	the	result	label	with	a	green
background	as	shown	in	Figure	2.9.

Add	code	behind	the	Cancel	button	to	display	the	result	label	with	a	hot	pink
background	and	the	text	“Operation	Canceled.”

NOTE

You	can	download	the	code	and	resources	for	this	lesson	from	the	website	at
www.wrox.com/go/csharp24hourtrainer2e.

Hints
Create	the	First	Name	Label	and	TextBox	first	and	arrange	them.	Then	copy
and	paste	them	to	make	more	Labels	and	TextBoxes.

Use	the	Format	menu	or	Layout	toolbar	to	center	the	buttons	and	the	result
label.

Step-by-Step
Add	controls	to	a	form	and	arrange	them	as	shown	in	Figure	2.9.	(Note	the
form's	title	and	the	fact	that	the	form	has	a	nonresizable	border.)

1.	 Start	a	new	project	named	NewCustomer.	Remember	to	put	it	somewhere
easy	to	find.

2.	 Use	the	Properties	window	to	set	the	form's	Text	property	to	New
Customer.

3.	 Use	the	Properties	window	to	set	the	form's	FormBorderStyle	property	to
FixedDialog.	(Feel	free	to	experiment	with	the	other	values.)

4.	 Create	the	First	Name	TextBox.

a.	 Click	the	Toolbox's	TextBox	tool	and	then	click	and	drag	to	place	a
TextBox	on	the	form.

b.	 Drag	the	TextBox	into	the	form's	upper-right	corner	until	the	snap	lines
show	that	it	is	a	standard	distance	from	the	top	and	right	edges	of	the
form.

5.	 Create	the	First	Name	Label.

a.	 Click	the	Toolbox's	Label	tool	and	then	click	and	drag	to	create	the
Label.

b.	 Drag	the	Label	to	the	form's	upper-left	corner	so	the	snap	lines	show
that	the	Label	is	a	standard	distance	from	the	form's	left	edge	and	that
its	baseline	aligns	with	the	TextBox's	baseline.

c.	 To	determine	the	Label's	width,	you	need	to	set	its	text.	Use	the
Properties	window	to	set	the	Label's	Text	property	to	First	Name.

d.	 Click	the	TextBox.	Click	the	drag	handle	on	the	TextBox's	left	edge	and
drag	it	until	it	is	a	standard	distance	from	the	Label.

http://www.wrox.com/go/csharp24hourtrainer2e

6.	 Make	copies	of	the	Label	and	TextBox.

a.	 Click	and	drag	to	select	both	the	Label	and	the	TextBox.

b.	 Press	Ctrl+C	to	copy	the	controls.	Then	press	Ctrl+V	to	paste	new	copies
of	the	controls.

c.	 With	the	new	controls	still	selected,	click	and	drag	the	TextBox	until	the
snap	lines	show	it	is	standard	distances	away	from	the	TextBox	above
and	from	the	form's	right	edge.

d.	 Use	the	Properties	window	to	set	the	new	Label's	Text	property	to	Last
Name.

e.	 Repeat	this	four	more	times	(using	appropriate	Text	values)	until	you
have	five	rows	of	Labels	and	TextBoxes.

7.	 Make	the	ZIP	Label.

a.	 Set	the	bottom	TextBox's	Text	property	to	12345-6789.	Then	use	the
TextBox's	left	drag	handle	to	resize	it	so	it's	a	bit	bigger	than	its	Text
value	(see	Figure	2.9).

b.	 Create	a	Label	for	the	ZIP	code	and	set	its	Text	property	to	ZIP.	Drag	it
so	the	snap	lines	show	its	baseline	aligns	with	the	baseline	for	the	Label
and	TextBox	on	that	same	line,	and	it	is	the	standard	distance	to	the	left
of	the	TextBox.

c.	 Use	the	Properties	window	to	set	the	TextBox's	TextAlign	property	to
Right.

8.	 Make	the	State	ComboBox.

a.	 Use	the	Toolbox	to	make	a	ComboBox.	Set	its	Text	property	to	WW	and
resize	it	so	the	text	fits	reasonably	well.

b.	 Drag	the	ComboBox	so	the	snap	lines	show	its	baseline	aligns	with	the
Labels	on	that	row	and	its	left	edge	aligns	with	the	left	edges	of	the
TextBoxes	above.

c.	 With	the	ComboBox	selected,	look	in	the	Properties	window	and	click	the
Items	property.	Then	click	the	ellipsis	(…)	button	on	the	right	to	open
the	String	Collection	Editor.	Enter	CO,	AZ,	WY,	UT,	and	any	other
state	abbreviations	that	you	want	to	use	and	click	OK.	(If	you	want	to
enter	Confusion	and	Denial,	you'll	need	to	make	the	ComboBox	wider.)

d.	 Use	the	Properties	window	to	set	the	DropDownStyle	property	to
DropDownList.

NOTE

The	DropDownStyle	value	Simple	makes	the	ComboBox	display	a	TextBox
where	the	user	can	type	and	a	list	below	it	where	the	user	can	make
selections.

The	value	DropDown	makes	the	ComboBox	display	a	TextBox	where	the
user	can	type	and	a	dropdown	arrow	that	makes	a	dropdown	list
appear.

The	value	DropDownList	is	similar	to	DropDown	except	the	user	can	only
select	from	the	dropdown	list	and	cannot	type	new	values.
DropDownList	is	often	the	best	choice	because	it	prevents	the	user	from
typing	invalid	values.

9.	 Make	the	Buttons.

a.	 Double-click	the	Toolbox's	Button	tool	twice	to	make	two	Buttons	with
standard	sizes.

b.	 Drag	one	Button	so	it	is	a	nice	distance	below	the	TextBoxes.	Drag	the
other	Button	so	it's	aligned	vertically	with	the	first,	positioning	it	some
reasonable	distance	to	the	side	(the	exact	distances	don't	matter	here).

c.	 Click	and	drag	to	select	both	Buttons.	Select	Format	 	Center	in	Form	
Horizontally.

d.	 Use	the	Properties	window	to	give	the	Buttons	the	Text	values	OK	and
Cancel.

10.	 Use	the	Toolbox	to	make	the	result	Label.	(Don't	worry	too	much	about	its
size	and	position	right	now.	Just	drop	it	somewhere	close	to	where	it	is
shown	in	Figure	2.9.)

Give	the	key	controls	names.

1.	 Give	the	key	controls	the	names	shown	in	Table	2.3.	You	don't	need	to	give
names	to	the	other	controls	because	the	program	won't	need	to	refer	to
them.	(Actually	this	example	doesn't	refer	to	the	TextBoxes	or	ComboBox
either,	but	a	real	program	certainly	would.	A	form	wouldn't	contain
TextBoxes	and	ComboBoxes	that	it	won't	use.)

Table	2.3

Control Name

First	Name	TextBox firstNameTextBox

Last	Name	TextBox lastNameTextBox

Street	TextBox streetTextBox

City	TextBox cityTextBox

State	ComboBox stateComboBox

ZIP	TextBox zipTextBox

OK	Button okButton

Cancel	Button cancelButton

Result	Label resultLabel

Set	properties	at	design	time	on	the	result	label	(at	the	bottom	in	Figure	2.9)	to
make	the	label:

Display	its	text	centered.

1.	 Set	the	Label's	TextAlign	property	to	MiddleCenter.	(Use	the	Properties
window's	TextAlign	editor	to	select	the	middle	position.)

2.	 Set	the	Label's	AutoSize	property	to	False.

3.	 Set	the	Label's	Size	property	to	218,	37.	(Or	expand	the	Size	property
and	set	the	Width	and	Height	sub-properties	separately.)

4.	 Use	the	Format	menu	or	Layout	toolbar	to	center	the	Label	on	the	form.

Show	a	border.

1.	 Set	the	Label's	BorderStyle	property	to	Fixed3D.

Use	a	16-point	font.

1.	 Expand	the	Properties	window's	Font	entry.	Set	the	Size	sub-property	to
16.

Remain	invisible	until	the	user	clicks	one	of	the	buttons.

1.	 Set	the	Label's	Visible	property	to	False.

Make	the	OK	button	be	the	form's	default	button	so	it	fires	when	the	user
presses	Enter.	Make	the	Cancel	button	be	the	form's	cancel	button	so	it	fires
when	the	user	presses	Esc.

1.	 Click	the	form	and	use	the	Properties	window	to	set	the	form's
AcceptButton	property	to	okButton.

2.	 Similarly,	set	the	form's	CancelButton	property	to	cancelButton.

Add	code	behind	the	OK	button	to	display	the	result	label	with	a	green

background	as	shown	in	Figure	2.9.

1.	 Double-click	the	OK	button	to	create	an	event	handler	for	its	Click	event.

2.	 Type	the	bold	text	in	the	following	code	so	the	event	handler	looks	like	this:

//	Create	the	new	customer.

private	void	okButton_Click(object	sender,	EventArgs	e)

{

				resultLabel.Text	=	"New	Customer	Created";

				resultLabel.BackColor	=	Color.LightGreen;

				resultLabel.Visible	=	true;

}

Add	code	behind	the	Cancel	button	to	display	the	result	label	with	a	hot	pink
background	and	the	text	“Operation	Canceled.”

1.	 Double-click	the	Cancel	button	to	create	an	event	handler	for	its	Click
event.

2.	 Type	the	bold	text	in	the	following	code	so	the	event	handler	looks	like	this:

//	Don't	create	the	new	customer.

private	void	cancelButton_Click(object	sender,	EventArgs	e)

{

				resultLabel.Text	=	"Operation	Canceled";

				resultLabel.BackColor	=	Color.HotPink;

				resultLabel.Visible	=	true;

}

Now	run	the	program	and	experiment	with	it.	Notice	what	happens	when	you
press	the	Enter	and	Esc	keys	while	focus	is	in	a	TextBox.	See	what	happens	if	focus
is	on	one	of	the	Buttons.

Exercises
1.	 [Games]	Build	a	checkerboard	similar	to	the	one	shown	in	Figure	2.10.	(Hints:
The	squares	are	PictureBoxes	with	different	background	colors.	Give	the	form
a	bluish	background.	Finally,	use	the	Format	menu	or	Layout	toolbar	to	align
the	controls.)

Figure	2.10

2.	 [Games,	WPF]	Repeat	Exercise	1	with	a	WPF	application.	(Hints:	Place	colored
Rectangles	inside	a	WrapPanel	with	a	width	that	makes	the	Rectangles	wrap	in
eight	columns.)

3.	 [Games]	Make	a	tic-tac-toe	(or	naughts-and-crosses)	board	similar	to	the	one
shown	in	Figure	2.11.	(Hints:	Make	three	Labels	for	each	square,	named	after
the	rows	and	columns.	For	the	upper-left	square,	name	them	x00Label	for	the
little	X	Label,	o00Label	for	the	little	O	Label,	and	taken00Label	for	the	big
Label.	Give	the	smaller	Labels	Click	event	handlers	that	set	the	Text	property
of	the	corresponding	big	Label.	Don't	worry	about	the	rules	such	as	not
allowing	someone	to	take	a	square	that	is	already	taken.)

Figure	2.11

4.	 [Games,	WPF]	Repeat	Exercise	3	with	a	WPF	application.	(Hints:	For	each
square,	use	a	Border	with	Margin	values	set	to	5.	A	Border	can	hold	only	one
content	control,	so	put	a	Canvas	in	each	Border.	Then	put	the	three	Labels
inside	the	Canvas.	Put	the	nine	Borders	inside	a	WrapPanel	sized	so	they	form
three	columns.	See	the	video	Making	Event	Handlers	for	instructions	on	how
to	make	the	small	Labels	act	like	buttons.	Add	interesting	backgrounds	if	you
like.)

5.	 [Games]	Modify	the	tic-tac-toe	program	from	Exercise	3	so	instead	of
displaying	X	or	O	in	each	square,	it	displays	pictures.	Use	your	favorite	football
team	logos,	a	cat	and	a	dog,	your	picture	and	your	boss's,	or	whatever.	(Hints:
Use	PictureBoxes	instead	of	the	large	Labels.	Add	two	hidden	PictureBoxes	to
the	form.	To	set	their	Image	properties,	click	the	ellipsis	next	to	the	Image
property	in	the	Properties	window,	click	the	Import	button,	and	browse	for	the
image	files.	Finally,	instead	of	setting	a	Label's	Text	property,	the	Click	event
handlers	should	set	the	appropriate	PictureBox's	Image	property	equal	to	one	of
the	hidden	PictureBox's	Image	properties.	Set	all	SizeMode	properties	of	the
PictureBoxes	to	Zoom.)

6.	 [WPF]	Repeat	Exercise	5	with	a	WPF	application.	(Hints:	Use	Image	controls
instead	of	the	large	Labels.	Use	two	Images	with	Visiblity	=	Hidden	to	store
the	X	and	O	images.	In	an	event	handler,	use	code	similar	to
taken21Image.Source	=	oImage.Source.)

7.	 Make	a	program	with	a	Label	that	says	“Move	Me”	and	four	Buttons	with	text
(0,	0),	(200,	200),	(200,	0),	and	(0,	200).	Make	each	Button	move	the	Label	to
the	corresponding	position	by	setting	its	Left	and	Top	properties.

8.	 [WPF]	Repeat	Exercise	7	with	a	WPF	application.	(Hints:	Set	the	Label's
position	with	code	similar	to	moveMeLabel.Margin	=	new	Thickness(0,	200,	0,
0).)

9.	 The	solution	to	Exercise	7	moves	its	Label	in	two	steps	by	setting	its	Left	and
Top	properties.	Modify	the	program	so	it	sets	the	Label's	Location	property	in	a
single	step	using	code	similar	to	this:

moveMeLabel.Location	=	new	Point(0,	0);

10.	 Build	a	hotel	menu	form	similar	to	the	one	shown	in	Figure	2.12.	(Hints:	Copy
and	paste	the	Labels	and	TextBoxes	from	the	Try	It	program.	To	set	the
PictureBox's	image,	look	in	the	Properties	window	and	click	the	ellipsis	next	to
the	Image	property.	In	the	Select	Resource	dialog,	click	Import	and	browse	to
select	a	picture.	Finally,	set	the	PictureBox's	SizeMode	property	to	AutoSize.)

Figure	2.12

11.	 [WPF]	Repeat	Exercise	10	with	a	WPF	application.

12.	 Build	a	form	similar	to	the	one	shown	in	Figure	2.13.	(Don't	worry	about
making	the	program	perform	any	calculations.	You'll	learn	how	to	do	that
later.)

Figure	2.13

13.	 [WPF]	Repeat	Exercise	12	with	a	WPF	application.

14.	 Build	a	form	similar	to	the	one	shown	in	Figure	2.14.	(Search	the	Internet	for
“labeled	diagram”	and	pick	an	interesting	image.	Use	MS	Paint	or	some	other
image	editing	program	to	remove	the	labels.	Then	add	TextBoxes	where	the
labels	were	so	the	user	can	fill	them	in.)

Figure	2.14

15.	 [WPF]	Repeat	Exercise	14	with	a	WPF	application.

16.	 Build	a	bar	chart	similar	to	the	one	shown	in	Figure	2.15.	(Hints:	Use	a
PictureBox	for	the	chart's	background	and	Labels	for	the	bars.)

Figure	2.15

17.	 [WPF]	Repeat	Exercise	16	with	a	WPF	application.	Give	the	chart	background

a	color	gradient	and	label	the	Y	axis	with	a	sideways	label	that	says
“Occurrences.”

18.	 Build	a	bar	chart	similar	to	the	one	shown	in	Figure	2.16.	(Hints:	Use
PictureBoxes	for	the	bars.)

Figure	2.16

19.	 [WPF	hard]	Repeat	Exercise	18	with	a	WPF	application	but	fill	the	bar	Image
controls	with	a	tile	brush	that	uses	a	small	picture	of	a	car.	Set	the	brush's
TileMode	=	Tile	and	Stretch	=	None.	Use	the	XAML	editor	to	add	the	code
Viewport="0,0,55,27"	ViewportUnits="Absolute"	inside	the	brush's	definition.
The	result	should	be	bars	that	are	tiled	with	little	pictures	of	cars.

20.	 Modify	the	program	you	made	for	Exercise	18	to	add	tooltips	for	the	bars.	(Add
a	ToolTip	control	named	peopleToolTip	to	the	form.	Then	use	the	Properties
window	to	set	the	“ToolTip	on	peopleToolTip”	property	for	the	bar	labels.	For
example,	make	the	second	bar's	tooltip	say	“2	people.”)

21.	 [WPF]	Repeat	Exercise	20	with	a	WPF	application.	(Hint:	In	WPF	you	don't
need	to	use	a	ToolTip	control.	Just	set	the	bars'	ToolTip	properties.)

22.	 [WPF	hard]	Build	a	WPF	program	similar	to	the	one	shown	in	Figure	2.17.
(Hints:	For	the	reflected	text,	use	a	Label.	Make	its	Foreground	brush	shade
from	medium	gray	to	light	gray.	In	the	Transform	property	category,	set	the
scale	in	the	Y	direction	to	–1	and	set	the	skew	in	the	X	direction	to	30.)

Figure	2.17

23.	 [Games]	Make	a	program	named	MovingButton.	Make	a	Button	named	
clickMeButton	that	says	“Click	Me.”	Add	a	Timer	named	moveButtonTimer	to	the
form	and	set	its	Interval	property	to	500.

Next	double-click	the	Timer	to	open	the	code	for	its	Tick	event	and	add	the	bold
text	so	the	event	handler	looks	like	the	following:

Random	Rand	=	new	Random();

private	void	moveButtonTimer_Tick(object	sender,	EventArgs	e)

{

				clickMeButton.Left	=	Rand.Next(0,	250);

				clickMeButton.Top	=	Rand.Next(0,	250);

}

Now	double-click	the	Button	and	add	the	bold	text	in	the	following	code	to
create	its	event	handler:

private	void	clickMeButton_Click(object	sender,	EventArgs	e)

{

				moveButtonTimer.Enabled	=	!moveButtonTimer.Enabled;

}

Run	the	program	and	have	fun!	Experiment	with	different	values	for	the
Timer's	Interval	property	such	as	2000	and	10.

NOTE

Please	select	the	videos	for	Lesson	2	online	at
www.wrox.com/go/csharp24hourtrainer2evideos.

http://www.wrox.com/go/csharp24hourtrainer2evideos

Lesson	3

Making	Controls	Arrange	Themselves
Lesson	2	explained	how	to	add	controls	to	a	form	and	arrange	them	nicely.	Using
those	techniques,	you	can	create	forms	like	the	one	shown	in	Figure	3.1.	(Although
we	haven't	covered	the	code	behind	that	program's	form	yet.)

Figure	3.1

That	form	looks	okay	in	Figure	3.1,	but	what	if	the	user	enlarges	the	form	as
shown	in	Figure	3.2?	Pretty	lame,	huh?	Although	the	form	is	bigger,	the	areas	that
contain	data	are	not.

Figure	3.2

The	URL	for	the	book	selected	in	Figure	3.2	is	too	long	to	fit	within	the	GroupBox,
so	it	is	truncated	even	though	the	form	has	extra	wasted	space	on	the	right.	The
ListBox	isn't	big	enough	to	display	all	of	its	items	even	though	there's	wasted
space	at	the	bottom.	It	would	be	nice	if	the	controls	rearranged	themselves	to	use
the	available	space	and	display	the	entire	URL	and	more	list	items.

Figure	3.3	shows	another	problem	with	this	form.	If	the	user	shrinks	the	form,	the
TextBoxes	and	URL	LinkLabel	are	chopped	off,	the	Year	Label	and	TextBox	are
chopped	in	half	vertically,	the	ListBox	doesn't	fit,	and	the	cover	picture	is
completely	missing.

Figure	3.3

The	program	would	look	nicer	if	the	controls	were	shrunk	so	you	could	at	least	see
their	edges.	Some	of	the	values	still	wouldn't	fit,	but	at	least	the	form	wouldn't
look	so	amateurish.	You	could	even	make	the	form	refuse	to	shrink	so	it's	too	short
to	display	the	Year	controls.

This	lesson	explains	some	simple	ways	you	can	make	controls	rearrange
themselves	to	take	advantage	of	whatever	space	is	available,	and	how	to	give	the
form	minimum	and	maximum	sizes	so	the	user	can't	resize	it	until	it's	completely
useless.

Restricting	Form	Size
Forms	(and	in	fact	all	controls)	have	MinimumSize	and	MaximumSize	properties	that
you	can	use	to	restrict	the	form's	size.	Simply	set	these	properties	to	a	width	and
height	(or	set	their	Width	and	Height	sub-properties)	and	the	form	does	the	rest.

For	example,	to	prevent	the	user	from	making	the	form	shown	in	Figure	3.3	too
small,	you	can	set	the	form's	MinimumSize	property	to	663,	233.

Using	Anchor	Properties
The	MinimumSize	property	prevents	the	user	from	making	a	form	too	small	but	it
doesn't	solve	the	problem	shown	in	Figure	3.2.	When	the	user	resizes	a	form,	it
would	be	nice	if	the	controls	changed	their	sizes	to	match.

The	Anchor	property	lets	a	Windows	Forms	control	resize	itself	when	its	container
resizes.	This	property	can	take	one	or	more	of	the	values	Top,	Bottom,	Left,	and
Right,	in	any	combination.	These	values	indicate	that	the	control's	edge	should
remain	the	same	distance	from	the	corresponding	edge	of	its	container.

For	example,	initially	a	control's	Anchor	property	is	set	to	Top,	Left	so	it	remains
the	same	distance	from	its	container's	top	and	left	edges.	If	you	resize	the	form,
the	control	doesn't	move.

For	a	more	interesting	example,	suppose	you	place	a	TextBox	on	a	form,	set	its
Multiline	property	to	True,	arrange	it	so	its	edges	are	12	pixels	from	the	edges	of
the	form,	and	set	its	Anchor	property	to	Top,	Bottom,	Left,	Right.	Then	when	you
resize	the	form,	the	TextBox	resizes	itself	so	all	of	its	edges	remain	12	pixels	from
the	form's	corresponding	edges.

NOTE

If	an	Anchor's	values	don't	include	either	Left/Right	or	Top/Bottom,	the	control
moves	to	keep	itself	the	same	distance	from	the	middle	of	the	form.	For
example,	if	a	Button's	Anchor	property	is	Bottom,	it	moves	so	it	remains	the
same	distance	from	the	horizontal	middle	of	the	form.

This	fact	lets	you	keep	one	or	more	controls	centered.	For	example,	place
several	Buttons	near	the	bottom	of	a	form	and	choose	Format	 	Center	in
Form	 	Horizontally	to	center	them	horizontally.	Now	if	you	set	their	Anchor
properties	to	Bottom,	the	group	of	Buttons	remains	centered	when	the	form
resizes.

NOTE

The	Anchor	property	cannot	resize	a	control	such	as	a	Label	or	LinkLabel	if	that
control	has	AutoSize	set	to	True.	In	that	case,	the	control	has	its	own	ideas
about	how	big	it	should	be.

To	set	the	Anchor	property	at	design	time,	you	can	type	a	value	like	Top,	Left,
Right	into	the	Properties	window	or	you	can	use	the	Properties	window's	Anchor
editor.

To	use	the	editor,	click	the	Anchor	property	in	the	Properties	window.	Then	click
the	dropdown	arrow	to	the	right	to	make	the	editor	shown	in	Figure	3.4	appear.
Click	the	skinny	rectangles	to	select	or	deselect	the	anchors	that	you	want	to	use.
(In	Figure	3.4	the	top,	bottom,	and	right	anchors	are	selected.)	When	you're
finished,	press	Enter	to	accept	your	changes	or	Esc	to	cancel	them.

Figure	3.4

Using	the	Anchor	property,	you	can	solve	the	problem	shown	in	Figure	3.2.	Table
3.1	gives	the	Anchor	property	values	used	by	the	controls	to	let	them	take
advantage	of	the	form's	available	space.

Table	3.1

Control Anchor	Property
booksListBox Top,	Bottom,	Left

detailsGroupBox Top,	Bottom,	Left,	Right

titleTextBox Top,	Left,	Right

authorTextBox Top,	Left,	Right

isbnTextBox Top,	Left,	Right

urlLinkLabel Top,	Left,	Right

coverPictureBox Top,	Bottom,	Right

Now	when	the	form	resizes:

The	ListBox	stretches	vertically	to	match	the	form's	height.

The	GroupBox	stretches	vertically	and	horizontally	to	use	as	much	of	the	form's
width	and	height	as	possible.

The	TextBoxes	and	LinkLabel	stretch	horizontally	to	be	as	wide	as	possible
while	still	fitting	inside	the	GroupBox.

The	PictureBox	moves	with	the	GroupBox's	right	edge	so	it	leaves	as	much	room
as	possible	to	the	left	for	the	TextBoxes	and	LinkLabel.	It	also	stretches
vertically	as	much	as	possible	while	fitting	inside	the	GroupBox.

Figure	3.5	shows	the	result.	Now	the	ListBox	is	big	enough	to	show	all	of	its	items
and	the	LinkLabel	is	big	enough	to	show	the	entire	URL.

Figure	3.5

Note	that	the	TextBoxes	and	LinkLabel	do	not	stretch	horizontally	when	the	form
resizes;	they	stretch	when	the	GroupBox	that	contains	them	resizes.	In	this
example,	when	the	form	stretches,	the	GroupBox	stretches,	and	when	the	GroupBox
stretches,	the	TextBoxes	and	LinkLabel	stretch,	so	the	result	is	the	same.

Using	Dock	Properties
The	Anchor	property	can	handle	most	of	your	arranging	needs,	but	some
combinations	of	Anchor	values	are	so	common	that	C#	provides	another	property
to	let	you	handle	these	situations	more	easily:	Dock.	The	Dock	property	lets	you	tell
a	control	to	attach	itself	to	one	of	the	edges	of	its	container.

For	example,	a	menu	typically	stretches	across	the	top	of	a	form.	You	could
provide	that	behavior	by	setting	the	menu's	Anchor	property	to	Top,	Left,	Right,
but	setting	Dock	to	Top	is	even	easier.

The	Dock	property	can	take	one	of	six	values.	Left,	Right,	Top,	and	Bottom	attach
the	control	to	the	corresponding	edge	of	its	container.	Fill	makes	the	control	take
up	any	space	left	over	after	any	other	controls'	Dock	properties	have	had	their	way.
None	detaches	the	control	so	its	Anchor	property	can	take	over.

NOTE

The	Dock	property	cannot	resize	a	control	such	as	a	Label	or	LinkLabel	if	that
control	has	AutoSize	set	to	True.

The	Dock	property	processes	positioning	requests	in	a	first-come-first-served	order
based	on	the	controls'	stacking	order	on	the	form.	In	other	words,	it	positions	the
first	control	that	it	draws	first.	The	second	control	positions	itself	in	whatever
space	is	left	over.	Then	the	third	control	positions	itself	in	the	remaining	space,
and	so	on.

Normally	the	stacking	order	is	determined	by	the	order	in	which	you	add	controls
to	the	form,	but	you	can	change	the	order	by	right-clicking	a	control	and	selecting
Bring	to	Front	or	Send	to	Back.	However,	if	you're	working	with	a	complicated	set
of	Dock	properties	and	the	stacking	order	gets	messed	up,	it's	often	easier	to	delete
all	of	the	controls	and	start	over	from	scratch.

Figure	3.6	shows	a	form	holding	five	docked	Labels	(with	AutoSize	=	False).	The
numbers	in	the	controls'	Text	properties	give	the	order	in	which	they	were	created,
which	is	also	their	stacking	order.

Figure	3.6

The	following	list	explains	how	the	form's	space	was	divvied	up	among	the	Labels:

1.	 The	first	Label	has	Dock	=	Top,	so	it	took	the	full	width	of	the	top	part	of	the
form.

2.	 The	second	Label	has	Dock	=	Left,	so	it	took	the	left	edge	of	the	remaining	area
(after	the	first	Label	was	positioned).

3.	 The	third	Label	has	Dock	=	Right,	so	it	took	the	right	edge	of	the	remaining
area.

4.	 The	fourth	Label	has	Dock	=	Bottom,	so	it	took	the	bottom	edge	of	the
remaining	area.

5.	 The	final	Label	has	Dock	=	Fill,	so	it	filled	all	of	the	remaining	area.

Docked	Menus

In	one	typical	docking	scenario,	a	form	contains	a	MenuStrip	with	Dock	=	Top
and	a	container	such	as	a	Panel	with	Dock	=	Fill	so	it	takes	up	the	rest	of	the
form.	All	of	the	other	controls	are	placed	inside	the	Panel.

You	can	also	add	ToolStrips,	ToolStripContainers,	and	StatusBars	with	the
appropriate	Dock	properties	to	put	those	controls	in	their	correct	places.
Figure	3.7	shows	a	form	holding	a	MenuStrip	(Dock	=	Top),	a
ToolStripContainer	(Dock	=	Top)	containing	two	ToolStrips,	a	StatusStrip
(Dock	=	Bottom),	and	a	Panel	(Dock	=	Fill).	I	made	the	Panel	slightly	darker	so
it's	easy	to	see	where	it	is.

Figure	3.7

Layout	Containers
Visual	Studio	provides	several	controls	that	arrange	the	child	controls	that	they
contain	in	different	ways.	For	example,	the	WPF	Grid	control	can	arrange	controls
in	rows	and	columns.

The	following	sections	summarize	layout	containers	for	Windows	Forms	and	WPF
applications.

Windows	Forms	Controls
Windows	Forms	applications	use	only	a	few	layout	controls.	Often	most	of	a
form's	controls	are	placed	directly	on	the	form.

The	following	list	summarizes	the	most	useful	Windows	Forms	layout	controls.

Form—The	form	itself	is	a	layout	container	that	lets	you	arrange	controls	by
setting	their	Top,	Left,	Width,	Height,	Anchor,	and	Dock	properties.

FlowLayoutPanel—Arranges	controls	left	to	right,	right	to	left,	top	to	bottom,	or
bottom	to	top,	wrapping	to	new	rows	or	columns	if	necessary.

Panel—Lets	you	arrange	controls	much	as	a	form	does	by	setting	their	Top,
Left,	Width,	Height,	Anchor,	and	Dock	properties.

TableLayoutPanel—Lets	you	arrange	controls	in	rows	and	columns.	Set	a
control's	RowSpan	and	ColumnSpan	properties	to	let	it	span	multiple	rows	or
columns.

Those	few	controls	let	you	arrange	controls	very	flexibly.

WPF	Controls

NOTE

If	you're	focusing	on	Windows	Forms	applications	for	now,	skip	this	section
and	come	back	to	it	later.

WPF	applications	use	a	different	control	arrangement	philosophy	than	the	one
used	by	Windows	Forms	applications.	In	a	Windows	Forms	application,	a
control's	Anchor	and	Dock	properties	arrange	that	control	as	needed.	In	contrast,	a
WPF	application	typically	uses	containers	to	arrange	controls.

For	example,	in	a	Windows	Forms	application,	you	might	make	a	collection	of
Labels	and	TextBoxes	and	line	them	up	neatly	in	two	columns	and	five	rows.	In
contrast,	in	a	WPF	application	you	might	create	a	Grid	control	with	two	columns
and	five	rows.	You	would	then	place	Labels	and	TextBoxes	inside	the	Grid's	rows
and	columns.	When	the	Grid's	rows	and	columns	resize,	the	controls	they	contain
resize.

The	following	list	summarizes	some	of	the	most	useful	WPF	container	controls:

Canvas—A	simple	control	that	lets	you	specify	a	control's	X	and	Y	positions.

DockPanel—Lets	you	dock	child	controls	to	the	left,	right,	top,	and	bottom
edges.	If	the	LastChildFill	property	is	True,	the	last	child	fills	the	remaining
area.

Grid—Lets	you	arrange	controls	in	rows	and	columns.

StackPanel—Arranges	child	controls	vertically	in	a	column	or	horizontally	in	a
row.

WrapPanel—Arranges	child	controls	vertically	or	horizontally	much	as	a
StackPanel	does	except	it	wraps	to	a	new	column	or	row	if	necessary.

For	example,	to	make	a	layout	similar	to	the	one	shown	in	Figure	3.5,	you	might
use	a	Grid	that	defines	two	columns.	The	left	column	could	hold	a	vertical
StackPanel	containing	a	Label	and	the	ListBox.	The	right	column	could	hold	a
GroupBox	containing	a	second	Grid	that	uses	rows	and	columns	to	arrange	the
Labels,	TextBoxes,	and	Image.

NOTE

You	can	click	a	Grid's	borders	to	define	rows	and	columns,	but	it's	sometimes
easier	to	edit	them	in	the	XAML	Code	Editor.	For	example,	that	lets	you
easily	make	rows	have	exactly	the	same	size.

Set	a	row	or	column's	size	to	*	to	make	it	use	any	space	not	claimed	by	other
rows	or	columns.	If	multiple	rows/columns	have	*	sizes,	they	split	the
available	space.	For	example,	if	one	row	has	a	height	of	*	and	another	has	a
height	of	2*,	then	the	first	gets	a	third	of	the	available	space	and	the	second
gets	two	thirds	of	the	available	space.

After	you	define	the	StackPanels,	Grids,	and	other	containers,	you	can	add	Labels,
TextBoxes,	and	other	content	controls	to	them.

Set	a	control's	Margin	property	to	make	it	resize	with	its	container.	For	example,
Margin="10,7,10,0"	keeps	a	control's	left,	top,	right,	and	bottom	distances	10,	7,
10,	and	0	pixels	from	its	container's	corresponding	edges.

Set	a	control's	Width	and	Height	properties	to	give	it	a	fixed	size.

When	you	resize	controls	in	the	Window	editor,	you	can	click	the	symbols	by	the
edges	of	a	control's	container	to	lock	the	sides	of	the	control	to	the	container's
sides.

Arranging	controls	in	this	way	can	take	a	lot	of	work.	Sometimes	it's	easier	to	just
type	XAML	code	in	the	Code	Editor	instead	of	using	the	interactive	Window
editor.	However,	the	result	is	usually	quite	flexible	and	allows	the	controls	to
resize	when	the	window	resizes.

Try	It
In	this	Try	It,	you	get	to	practice	using	the	Anchor	and	Dock	properties	by	building
the	application	shown	in	Figure	3.8.

Figure	3.8

When	the	window	resizes,	the	TextBoxes	and	LinkLabel	stretch	horizontally,	and
the	PictureBox	stretches	vertically.	Notice	in	Figure	3.8	that	the	cover	image	is
rather	tall	and	thin.	When	the	PictureBox	grows	taller,	it	can	display	a	larger
version	of	the	cover	image.	The	control	displays	the	image	as	large	as	possible
without	distorting	it.

Note	that	the	program	you	build	won't	actually	do	anything	except	sit	there
looking	pretty	and	resizing	controls	when	the	form	resizes.	The	techniques	you
need	to	make	it	respond	to	list	selections	are	covered	in	later	lessons.

Lesson	Requirements
In	this	lesson,	you:

Create	the	program's	three	main	controls:	a	MenuStrip,	a	StatusStrip,	and	a
Panel.	Use	Dock	properties	to	make	these	three	controls	stay	in	their	proper
positions.

Add	controls	to	the	Panel.

Use	the	Anchor	property	to	make	the	ListBox	stretch	vertically	when	the	form
resizes.

Use	Anchor	properties	to	make	the	TextBoxes	and	LinkLabel	stretch	horizontally
when	the	form	resizes.

Use	Anchor	properties	to	make	the	PictureBox	resize	vertically	when	the	form
resizes.

NOTE

You	can	download	the	code	and	resources	for	this	lesson	from	the	website	at
www.wrox.com/go/csharp24hourtrainer2e.

Hints
Remember	that	the	TextBoxes	and	LinkLabel	stretch	with	the	GroupBox	that
contains	them,	not	with	the	form	itself.	If	you	don't	make	the	GroupBox	stretch,
the	controls	it	contains	won't	either.

To	make	the	File	menu,	add	a	MenuStrip	to	the	form,	select	it,	click	the	Type
Here	box	that	appears,	and	type	&File.	(The	ampersand	makes	the	“F”
underlined.)	Making	the	menu	do	something	useful	is	covered	in	Lesson	5,	so
don't	worry	about	that	right	now.

To	make	the	status	strip	label,	add	a	StatusStrip	to	the	form	and	select	it.	Click
the	little	dropdown	arrow	on	the	StatusStrip	and	select	StatusLabel.	Click	the
new	StatusLabel	and	use	the	Properties	window	to	set	its	Text	to	This	is	a
StatusStrip.

Add	some	items	to	the	ListBox,	add	a	picture	to	the	PictureBox,	and	add	text	to
the	other	controls,	but	don't	worry	about	making	the	program	take	any	actions.

Step-by-Step
Create	the	program's	three	main	controls:	a	MenuStrip,	a	StatusStrip,	and	a
Panel.	Use	Dock	properties	to	make	these	three	controls	stay	in	their	proper
positions.

1.	 Start	a	new	project	named	Better	Book	List.	Set	the	form's	Size	and
MinimumSize	properties	to	726,	286.

2.	 Add	a	MenuStrip	to	the	form.	(Notice	that	by	default	the	MenuStrip	has	Dock
=	Top.)	Use	the	MenuStrip	hint	from	the	“Hints”	section	of	this	lesson	to
create	the	empty	File	menu.

3.	 Add	a	StatusStrip	to	the	form.	(Notice	that	by	default	the	StatusStrip	has
Dock	=	Bottom.)	Use	the	StatusStrip	hint	from	the	“Hints”	section	of	this
lesson	to	create	the	This	is	a	StatusStrip	label.

4.	 Add	a	Panel	to	the	form.	Set	its	Dock	property	to	Fill.	Set	its	BackColor
property	to	light	green.

Add	controls	to	the	Panel.

1.	 Add	controls	to	the	form	in	roughly	the	positions	shown	in	Figure	3.8.

2.	 Set	the	LinkLabel's	AutoSize	property	to	False	and	make	it	the	same	size	as

http://www.wrox.com/go/csharp24hourtrainer2e

the	TextBoxes.

3.	 Enter	some	Text	values	in	the	TextBoxes	and	LinkLabel	so	you	have
something	to	look	at.	Enter	enough	items	in	the	ListBox	so	they	won't	all	fit
when	the	form	has	its	initial	size.

4.	 Set	the	PictureBox's	SizeMode	property	to	Zoom.	Place	a	relatively	tall,	thin
image	in	its	Image	property.

Use	the	Anchor	property	to	make	the	ListBox	stretch	vertically	when	the	form
resizes.

1.	 Set	the	ListBox's	Anchor	property	to	Top,	Bottom,	Left.

Use	Anchor	properties	to	make	the	TextBoxes	and	LinkLabel	stretch	horizontally
when	the	form	resizes.

1.	 Set	the	GroupBox's	Anchor	property	to	Top,	Bottom,	Left,	Right.

2.	 Set	the	TextBoxes'	and	the	LinkLabel's	Anchor	properties	to	Top,	Left,
Right.

Use	Anchor	properties	to	make	the	PictureBox	resize	vertically	when	the	form
resizes.

1.	 Set	the	PictureBox's	Anchor	property	to	Top,	Bottom,	Left.

Run	the	program	and	see	what	happens	when	you	resize	the	form.

Exercises
1.	 [WPF]	Repeat	the	Try	It	with	a	WPF	application.

2.	 Make	a	New	Customer	dialog	similar	to	the	one	shown	in	Figure	3.9.	Make	the
First	Name,	Last	Name,	Street,	City,	and	Email	TextBoxes	resize	horizontally
when	the	form	resizes.	Use	the	OK	and	Cancel	buttons	as	the	form's	accept	and
cancel	buttons,	and	attach	them	to	the	form's	lower-right	corner.

Figure	3.9

3.	 [WPF,	Hard]	Repeat	Exercise	2	with	a	WPF	application.	Hints:

Replace	the	window's	initial	Grid	with	a	DockPanel.	Add	a	Menu	(docked	to
the	top),	a	StatusBar	(docked	to	the	bottom),	and	a	Grid	(filling	the	rest	of
the	DockPanel).

Use	the	XAML	editor	to	add	a	StatusBarItem	inside	the	StatusBar.	Inside
the	StatusBarItem	add	a	Label.

Give	the	Grid	two	columns.	In	the	left	column,	place	a	Label	and	a	ListBox.
Set	the	ListBox's	Height	=	Auto	and	use	its	Items	property	editor	to	add
several	ListBoxItems.	Then	use	the	XAML	editor	to	add	Labels	to	the
ListBoxItems.	For	example,	one	of	the	ListBoxItems	might	look	like	this:

<ListBoxItem>

				<Label	Content="Beginning	Database	Design	Solutions"/>

</ListBoxItem>

Add	a	GroupBox	to	the	Grid's	right	column.	A	GroupBox	can	have	only	a	single
child	control.	Make	it	a	Grid	and	give	it	the	rows	and	columns	you	need	to
display	the	Image,	Labels,	and	TextBoxes.

A	final	tip:	often	it's	easier	to	make	one	control	just	the	way	you	want	it	and
then	copy	and	paste	it	in	the	XAML	Code	Editor.	Don't	forget	to	change	the
new	control's	name	so	you	don't	have	two	controls	with	the	same	name.

4.	 [SimpleEdit]	Create	a	new	project	named	SimpleEdit.	Give	it	a	MenuStrip	and
StatusStrip	with	appropriate	(default)	Dock	values.	Add	a	RichTextBox	control
and	set	its	Dock	property	to	Fill.	(That's	all	for	now.	In	later	lessons	you'll	add
features	to	this	program.)

5.	 [WPF,	SimpleEdit]	Repeat	Exercise	4	with	a	WPF	application.

6.	 The	SplitContainer	control	displays	two	areas	separated	by	a	splitter.	The	user
can	drag	the	splitter	to	divide	the	available	space	between	the	two	areas.	Make
a	program	similar	to	the	one	shown	in	Figure	3.10.	Feel	free	to	use	a	different
picture	and	information.	Make	the	PictureBox	display	its	image	as	large	as
possible	without	distortion.	Set	the	bottom	TextBox's	MultiLine	property	to
True	and	make	it	stretch	vertically	and	horizontally	as	the	form	resizes.	Make
the	other	TextBoxes	stretch	horizontally.	Set	the	SplitContainer's
Panel1MinSize	and	Panel2MinSize	properties	to	100.

Figure	3.10

7.	 [WPF]	Repeat	Exercise	6	with	a	WPF	application.	Hints:	To	make	a	splitter	in
WPF,	create	a	Grid	control.	Then	add	a	GridSplitter	to	one	of	its	rows	or
columns.	The	user	can	drag	the	GridSplitter	to	resize	the	rows	or	columns	on
either	side	of	it.

For	this	program,	make	a	Grid	with	three	columns	that	have	widths	1*,	5,	and
2*.	Place	an	Image	in	the	left	column,	a	GridSplitter	in	the	middle	column,	and
another	Grid	in	the	right	column.

Then	make	the	GridSplitter's	XAML	code	look	like	this:

<GridSplitter	Grid.Column="1"	Margin="0,0,0,0"

				HorizontalAlignment="Stretch"	VerticalAlignment="Stretch"/>

Place	the	appropriate	Labels	and	TextBoxes	in	the	Grid	on	the	right.	Use	the
“Interesting	Facts”	Label's	Margin	and	VerticalContentAlignment	properties	to
make	its	text	stay	centered	in	its	area	when	you	resize	the	form.

8.	 Make	a	form	similar	to	the	one	shown	in	Figure	3.11.	When	the	form	resizes,
the	three	ListBoxes	should	be	as	large	as	possible	and	the	three	columns
should	divide	the	form	evenly.	(Hint:	Use	a	TableLayoutPanel.)

Figure	3.11

9.	 [WPF]	Repeat	Exercise	8	with	a	WPF	application.

10.	 [WPF]	One	of	the	cooler	new	controls	in	WPF	is	the	Expander.	It	displays	a
header	and	an	expander	arrow.	When	the	user	clicks	the	arrow,	the	Expander
expands	to	display	a	child	control,	which	is	normally	a	Grid.

Make	a	WPF	program	similar	to	the	one	shown	in	Figure	3.12.	In	that	figure,
the	Expander	for	Jupiter	is	expanded	and	the	Expanders	for	the	other	planets	are
collapsed.	(Hints:	The	Window	in	Figure	3.12	contains	a	StackPanel	that
contains	Expanders	holding	Grids.	First	create	the	StackPanel.	Next	make	the
Expander	and	child	controls	for	Mercury.	Then	copy	and	paste	that	Expander	in
the	XAML	editor	to	make	the	Expanders	for	the	other	planets.)

Figure	3.12

NOTE

Please	select	the	videos	for	Lesson	3	online	at
www.wrox.com/go/csharp24hourtrainer2evideos.

http://www.wrox.com/go/csharp24hourtrainer2evideos

Lesson	4

Handling	Events
An	event	is	something	that	a	control	raises	to	tell	the	program	that	something
significant	has	happened.	Events	are	extremely	important	because	they	are	the
main	way	the	user	controls	the	program.	When	the	user	clicks	buttons,	drags
sliders,	and	selects	menu	items,	events	tell	the	program	that	something	has
happened	so	it	can	take	action.

An	event	handler	is	a	piece	of	code	that	catches	the	event	and	executes	when	an
event	occurs.	The	event	handler	might	display	a	message,	perform	a	calculation,
or	download	the	latest	Dilbert	comic	from	the	web.

Lesson	2	briefly	explained	how	you	can	catch	a	Button's	Click	event,	but	that	event
is	only	one	of	hundreds	(if	not	thousands)	of	events	that	your	programs	can	catch.

This	lesson	explains	how	you	can	catch	events	other	than	Click.	It	describes	some
of	the	most	useful	events	provided	by	common	controls	and,	as	a	bonus,	explains
how	you	can	display	messages	to	the	user	when	events	occur.

Making	Event	Handlers
The	easiest	way	to	build	an	event	handler	is	to	double-click	a	control	in	the	Form
Designer.	This	creates	an	empty	event	handler	for	the	control's	default	event	and
opens	the	event	handler	in	the	Code	Editor.	You	can	then	type	C#	code	to	take
whatever	action	is	appropriate.

The	following	code	shows	the	empty	Click	event	handler	created	for	a	Button:

private	void	crashSystemButton_Click(object	sender,	EventArgs	e)

{

}

Probably	the	most	commonly	used	events	are	the	Click	events	raised	by	Buttons,
ToolStripMenuItems	(which	represent	menu	items),	and	ToolStripButtons	(which
represent	toolbar	buttons).	For	these	controls	and	many	others,	you	almost	always
want	to	use	the	default	event	handler,	so	double-clicking	them	is	the	easiest	way	to
go.

NOTE

If	you're	not	ready	to	write	the	real	event	handler	code,	you	can	write	a
placeholder	event	handler.	One	easy	way	to	do	that	is	to	use	MessageBox.Show
to	display	a	message.	For	example,	the	following	code	displays	a	placeholder
message	for	the	File	menu's	Save	command:

private	void	fileSaveMenuItem_Click(object	sender,	EventArgs	e)

{

				MessageBox.Show("File	>	Save	not	yet	implemented");

}

Lesson	8	describes	message	boxes	in	greater	detail.

Most	controls	provide	dozens	of	other	events	that	you	can	catch.	To	create	an
event	handler	for	one	of	these	non-default	events,	select	the	control	in	the	Form
Designer.	Then	click	the	lightning	bolt	icon	near	the	top	of	the	Properties	window
to	make	the	window	list	the	control's	events.	Figure	4.1	shows	the	Properties
window	displaying	some	of	the	events	that	a	Button	can	raise.

Figure	4.1

To	create	an	empty	event	handler	for	an	event,	simply	double-click	the	event's
name	in	the	Properties	window's	event	list.

You	can	also	type	the	name	that	you	want	to	give	the	event	handler.	When	you
press	Enter,	Visual	Studio	creates	the	event	handler	and	opens	it	in	the	Code
Editor.

If	your	code	already	contains	event	handlers	that	could	handle	the	event,	you	can
click	the	event	and	then	click	the	dropdown	arrow	to	the	right	to	select	one	of

those	event	handlers.

Using	Event	Parameters
All	event	handlers	include	parameters	that	give	additional	information	about	the
event.	Later	lessons	say	more	about	parameters	and	how	you	can	use	them,	but	for
now	you	should	know	that	sometimes	they	can	tell	you	more	about	the	event.

For	example,	the	following	code	shows	a	Button's	Click	event	handler.	The
parameters	sender	and	e	give	extra	information	about	the	event.

private	void	crashSystemButton_Click(object	sender,	EventArgs	e)

{

}

In	all	event	handlers,	the	sender	parameter	tells	you	what	control	raised	the	event.
In	this	example,	that's	the	Button	control	that	the	user	clicked.

The	e	parameter	has	the	EventArgs	data	type,	which	doesn't	give	you	a	lot	of
additional	information.	Fortunately,	you	usually	don't	need	any	additional
information	for	a	Button.	Just	knowing	it	was	clicked	is	enough.

Some	event	handlers,	however,	provide	really	useful	information	in	their	e
parameter.	For	example,	the	e	parameter	provided	by	the	mouse	events
MouseClick,	MouseMove,	MouseDown,	and	MouseUp	include	the	X	and	Y	coordinates	of
the	mouse	over	the	control	raising	the	event.	Those	values	are	crucial	if	you're
trying	to	build	a	drawing	application	or	need	to	track	the	mouse's	position	for
some	other	reason.

The	FollowMouse	example	program	shown	in	Figure	4.2	uses	a	MouseMove	event
handler	to	make	two	scrollbars	follow	the	mouse's	position.	When	you	click	the
area	in	the	center	of	the	form,	the	program	moves	the	picture	of	the	mouse	to	that
position.

Figure	4.2

The	program's	form	contains	a	green	Panel	control	that	holds	a	PictureBox	holding
the	mouse	image.	The	form	also	contains	VScrollBar	and	HScrollBar	controls.	The
program	uses	event	handlers	to	do	three	things:	set	scrollbar	properties,	track

mouse	movement,	and	move	the	mouse	picture.

Setting	Scrollbar	Properties
When	you	create	a	new	scrollbar,	it	has	Minimum	=	0	and	Maximum	=	100	so	it	can
take	values	between	0	and	100.	However,	this	program	sets	its	scrollbars	to
locations	on	the	Panel	control.	For	example,	if	the	Panel	is	200	pixels	wide,	the
program	might	need	to	give	the	horizontal	scrollbar	a	value	between	0	and	199.
Unfortunately	if	the	scroll's	Maximum	property	is	100	and	the	program	sets	its	value
to	199,	the	program	will	crash.

To	prevent	that,	the	program	sets	the	scrollbars'	Maximum	properties	to	the	width
and	height	of	the	Panel.	The	Panel	might	resize	at	two	different	times,	so	the
program	needs	to	set	the	Maximum	properties	in	two	places.

First,	when	the	program's	form	is	initially	displayed,	the	program	needs	to	set	the
scrollbar	Maximum	properties.	To	detect	when	the	form	is	displayed,	you	can	catch
the	form's	Load	event.

NOTE

Load	is	the	default	event	for	a	form,	so	you	can	double-click	the	form	to	create
a	Load	event	handler.

The	following	code	shows	the	program's	Load	event	handler:

//	Set	the	scrollbar	maximums	to	fit	the	Panel.

private	void	Form1_Load(object	sender,	EventArgs	e)

{

				mouseHScrollBar.Maximum	=	fieldPanel.Width;

				mouseVScrollBar.Maximum	=	fieldPanel.Height;

}

This	code	sets	the	mouseHScrollBar	control's	Maximum	property	to	the	width	of	the
Panel.	It	then	sets	the	mouseVScrollBar	control's	Maximum	property	to	the	height	of
the	Panel.

Now	the	program	won't	crash	when	you	move	the	mouse	around	over	the	Panel
control,	unless	you	resize	the	form.	The	Panel	control's	Anchor	property	makes	it
resize	with	the	form,	so	if	you	make	the	form	bigger,	the	Panel	gets	bigger,	too.	In
that	case,	the	program	needs	to	reset	the	scrollbars'	Maximum	properties	to	match.

You	can	do	that	in	the	form's	Resize	event.	This	isn't	the	default	event	for	a	form
(Load	is),	so	you	can't	just	double-click	the	form	to	create	a	Resize	event	handler.
Instead	you	need	to	select	the	form,	go	to	the	Properties	window,	click	the	Events
button	(the	little	lightning	bolt),	and	double-click	the	Resize	event.

The	following	code	shows	this	program's	Resize	event	handler:

private	void	Form1_Resize(object	sender,	EventArgs	e)

{

				mouseHScrollBar.Maximum	=	fieldPanel.Width;

				mouseVScrollBar.Maximum	=	fieldPanel.Height;

}

This	code	does	the	same	thing	as	the	form's	Load	event	handler.

Now	even	if	you	resize	the	form,	the	scrollbars	can	hold	the	coordinates	of	any
point	inside	the	Panel.

Tracking	Mouse	Movement
When	you	move	the	mouse	over	the	Panel,	the	Panel	control	raises	a	MouseMoved
event.	For	this	program,	I	used	the	Properties	window	to	create	the	following
MouseMove	event	handler:

//	Move	the	scrollbars	to	track	the	mouse.

private	void	fieldPanel_MouseMove(object	sender,	MouseEventArgs	e)

{

				mouseHScrollBar.Value	=	e.X;

				mouseVScrollBar.Value	=	e.Y;

}

This	code	sets	the	horizontal	scrollbar's	value	equal	to	the	mouse's	X	position	as
reported	by	the	event	handler's	e.X	parameter.	It	then	sets	the	vertical	scrollbar's
value	equal	to	the	mouse's	Y	position	as	reported	by	the	event	handler's	e.Y
parameter.

NOTE

In	C#,	coordinates	are	measured	with	(0,	0)	in	the	upper-left	corner,	X
increasing	to	the	right,	and	Y	increasing	downward.

WARNING

As	the	program	is	currently	written,	if	you	click	and	drag	the	mouse	off	of
the	Panel,	the	Panel	receives	MouseMove	events	with	coordinates	that	are
outside	of	the	values	allowed	by	the	ScrollBars	so	the	program	crashes.	For
now,	don't	do	that.	In	Lesson	18	you'll	learn	how	to	use	tests	to	protect	the
program	from	that	problem.

The	form's	Load	and	Resize	event	handlers	guarantee	that	the	scrollbars'	Maximum
properties	are	big	enough	to	hold	any	coordinates	on	the	Panel.

Moving	the	Mouse	Picture
When	you	click	the	Panel,	the	Panel	raises	a	MouseClick	event.	For	this	program,	I
used	the	Properties	window	to	create	the	following	MouseClick	event	handler:

//	Move	the	mouse	PictureBox	to	the	point	clicked.

private	void	fieldPanel_MouseClick(object	sender,	MouseEventArgs	e)

{

				mousePictureBox.Left	=	e.X;

				mousePictureBox.Top	=	e.Y;

}

This	code	simply	sets	the	mouse	PictureBox's	Left	and	Top	properties	to	the
coordinates	of	the	point	that	was	clicked.

That's	all	there	is	to	the	program.	If	you	like,	you	can	download	it	and	experiment
with	it.

Removing	Event	Handlers
Getting	rid	of	an	event	handler	isn't	as	simple	as	you	might	like.	If	you	just	delete
the	event	handler's	code,	the	program	still	includes	automatically	generated	code
that	attaches	the	event	handler	to	the	control	that	raises	it.	When	you	try	to	move
to	the	Form	Designer,	you'll	get	an	error	similar	to:

The	designer	cannot	process	unknown	name	‘fieldPanel_MouseClick’	at	line
51.	The	code	within	the	method	‘InitializeComponent’	is	generated	by	the
designer	and	should	not	be	manually	modified.	Please	remove	any	changes	and
try	opening	the	designer	again.

All	this	really	means	is	that	C#	is	confused.

The	Properties	window	gives	you	an	easy	way	to	safely	remove	event	handlers.
Before	you	delete	the	event	handler's	code,	find	the	event	handler	in	the
Properties	window.	Right-click	the	event	handler's	name	and	select	Reset	to	break
the	link	between	the	event	handler	and	the	control.	Now	you	can	safely	remove	the
event	handler's	code.

Alternatively,	you	can	double-click	the	error	in	the	Error	window	to	see	the
automatically	generated	code	that's	making	C#	throw	its	temper	tantrum.	The	line
should	look	something	like	this:

this.fieldPanel.MouseClick	+=

				new	System.Windows.Forms.MouseEventHandler(this.fieldPanel_MouseClick);

Delete	that	line	and	you	should	be	ready	to	run	again.

WARNING

Don't	fool	around	inside	the	automatically	generated	code!	If	you
accidentally	mess	up	that	code,	you	may	remove	controls	from	the	form,
change	properties,	or	even	make	the	form	unloadable	so	you	have	to	throw	it
away.	Get	in,	delete	that	single	line,	and	get	out	before	you	do	any	serious
damage.

WPF	programs	attach	event	handlers	a	bit	differently.	In	a	WPF	application,	the
XAML	code	includes	a	property	that	defines	the	name	of	the	event	handler	in	C#
code.	For	example,	the	following	XAML	code	defines	a	button	with	a	Click	event
handler:

<Button	x:Name="clickMeButton"	Content="Click	Me"

				Width="75"	Height="20"	Click="clickMeButton_Click"/>

If	you	remove	the	event	handler's	C#	code,	you	should	also	remove
Click="clickMeButton_Click"	from	the	XAML	code.

Adding	and	Removing	Event	Handlers	in	Code
At	design	time,	you	can	use	the	Properties	window	to	attach	and	detach	event
handlers.	Occasionally	you	may	want	to	add	or	remove	an	event	handler	by	using
code	at	run	time.

The	following	code	shows	a	simple	Button	Click	event	handler.	When	this	event
handler	executes,	it	displays	a	message	to	the	user:

//	Display	a	message	box.

private	void	clickMeButton_Click(object	sender,	EventArgs	e)

{

				MessageBox.Show("You	clicked	me!");

}

Suppose	you	have	written	this	event	handler	but	have	not	attached	it	to	any
control	at	design	time.	The	following	code	attaches	the	event	handler	to	the
clickMeButton	control's	Click	event:

clickMeButton.Click	+=	clickMeButton_Click;

The	+=	operator	means	“add	to,”	so	this	code	adds	the	event	handler	to	the
clickMeButton.Click	event.

After	running	this	code,	if	the	user	clicks	the	clickMeButton,	the	event	handler
executes.

The	following	code	removes	the	event	handler	from	the	button's	Click	event:

clickMeButton.Click	-=	clickMeButton_Click;

The	-=	operator	means	“subtract	from,”	so	this	code	removes	the	event	handler
from	the	clickMeButton.Click	event.

The	DynamicEvents	example	program	shown	in	Figure	4.3	lets	you	add	and
remove	event	handlers	at	run	time.	Initially	the	Click	Me	button	does	nothing.
Click	the	Attach	button	to	attach	an	event	handler	to	the	Click	Me	button.	Click
the	Detach	button	to	remove	the	event	handler.

Figure	4.3

Useful	Events
Table	4.1	lists	some	of	the	more	useful	events	raised	by	various	controls.

Table	4.1

Event Meaning

CheckedChanged A	CheckBox's	or	RadioButton's	checked	state	has	changed.

Click The	user	has	clicked	the	control.

FormClosing The	form	is	about	to	close.	Set	the	e.Cancel	parameter	to
true	to	cancel	the	closing	and	force	the	form	to	remain
open.

KeyDown The	user	pressed	a	key	down	while	this	control	had	focus.

KeyPress The	user	pressed	and	released	a	key	while	this	control	had
focus.

KeyUp The	user	released	a	key	while	this	control	had	focus.

Load The	form	is	loaded	but	not	yet	visible.	This	is	the	last	place
you	can	change	the	form's	appearance	before	the	user	sees
it.

MouseClick The	user	pressed	and	released	a	mouse	button	over	the
control.	Unlike	the	Click	event,	this	event	has	parameters
that	give	the	click's	location.

MouseDown The	user	pressed	a	mouse	button	down	over	the	control.

MouseEnter The	mouse	entered	the	control.

MouseHover The	mouse	hovered	over	the	control.

MouseLeave The	mouse	left	the	control.

MouseMove The	mouse	moved	while	over	the	control.

MouseUp The	user	released	a	mouse	button	over	the	control.

Move The	control	has	moved.

Paint The	control	needs	to	be	redrawn.	(This	is	useful	for
drawing	graphics.)

Resize The	control	has	resized.

Scroll The	slider	on	a	TrackBar	or	scrollbar	was	moved	by	the
user.

SelectedIndexChanged A	ComboBox's	or	ListBox's	selection	has	changed.

TextChanged The	control's	Text	property	has	changed.	(This	is
particularly	useful	for	TextBoxes.)

Tick A	Timer	control's	Interval	has	elapsed.

ValueChanged The	value	of	a	TrackBar	or	scrollbar	has	changed	(whether
by	the	user	or	by	code).

Try	It
In	this	Try	It,	you	use	event	handlers	to	display	color	samples	as	the	user	adjusts
red,	green,	and	blue	scrollbars.

Figure	4.4	shows	the	finished	program	in	action.	When	you	change	a	scrollbar's
value,	the	label	to	the	right	shows	the	color	component's	new	numeric	value,	and
the	large	label	on	the	far	right	shows	a	sample	of	the	color	with	the	selected	red,
green,	and	blue	color	components.

Figure	4.4

Lesson	Requirements
In	this	lesson,	you:

Create	the	form	shown	in	Figure	4.4.	Arrange	the	controls	and	set	their	Anchor
properties.

Make	an	event	handler	for	the	red	scrollbar	that	displays	all	three	color	values
and	the	color	sample.

Attach	the	event	handler	to	the	green	and	blue	scrollbars,	as	well	as	the	red
one.

NOTE

You	can	download	the	code	and	resources	for	this	lesson	from	the	website	at
www.wrox.com/go/csharp24hourtrainer2e.

Hints
This	Try	It	requires	a	few	techniques	that	haven't	been	covered	yet,	but	it's	not	too
hard	to	build	with	a	couple	of	hints.

A	scrollbar's	Value	property	is	an	integer.	To	convert	it	into	a	string	so	you	can
display	it	in	a	label,	call	its	ToString	method.	For	example,	the	following	code
makes	the	redLabel	control	display	the	redHScrollBar's	Value	property:

redLabel.Text	=	redHScrollBar.Value.ToString();

The	Color	class's	FromArgb	method	returns	a	color	with	given	red,	green,	and
blue	color	components	between	0	and	255.	For	example,	Color.FromArgb(255,
128,	0)	returns	the	color	orange	(red	=	255,	green	=	128,	and	blue	=	0).	Pass
this	method	the	values	selected	by	the	scrollbars	(returned	by	their	Value
properties)	and	assign	the	result	to	the	sample	label's	BackColor	property.

Step-by-Step
Create	the	form	shown	in	Figure	4.4.	Arrange	the	controls	and	set	their	Anchor
properties.

1.	 Create	the	controls	as	shown	in	Figure	4.4.	For	the	scrollbars,	set	Minimum	=
0,	Maximum	=	264,	SmallChange	=	1,	LargeChange	=	10,	and	Anchor	=	Top,
Left,	Right.

http://www.wrox.com/go/csharp24hourtrainer2e

NOTE

For	some	bizarre	reason,	the	largest	value	that	a	user	can	select	with	a
scrollbar	is	Maximum	-	LargeChange	+	1.	If	Maximum	=	264	and
LargeChange	=	10,	the	largest	selectable	value	is	264	–	10	+	1	=	255,	so
these	properties	let	the	user	select	values	between	0	and	255.

Make	an	event	handler	for	the	red	scrollbar	that	displays	all	three	color	values
and	the	color	sample.

1.	 Double-click	the	red	scrollbar	to	create	an	empty	event	handler	for	the
control's	Scroll	event.	Type	the	bold	lines	in	the	following	code	so	the	event
handler	looks	like	this:

//	Display	a	color	sample.

private	void	redHScrollBar_Scroll(object	sender,	ScrollEventArgs	e)

{

				redLabel.Text	=	redHScrollBar.Value.ToString();

				greenLabel.Text	=	greenHScrollBar.Value.ToString();

				blueLabel.Text	=	blueHScrollBar.Value.ToString();

				sampleLabel.BackColor	=	Color.FromArgb(

								redHScrollBar.Value,

								greenHScrollBar.Value,

								blueHScrollBar.Value);

}

The	first	three	lines	of	code	make	the	Labels	display	the	corresponding
scrollbar	values.	The	final	statement,	which	is	split	across	four	lines	of	code,
sets	the	sample	Label's	BackColor	property	to	a	color	defined	by	the	scrollbars'
values.

Attach	the	event	handler	to	the	green	and	blue	scrollbars,	as	well	as	the	red
one.

1.	 In	the	Form	Designer,	click	the	green	scrollbar.	In	the	Properties	window,
click	the	event	button	(the	lightning	bolt).	Then	click	the	control's	Scroll
event,	click	the	dropdown	arrow	to	the	right,	and	select	the	event	handler
you	already	created.

2.	 Repeat	the	previous	steps	for	the	blue	scrollbar.

Run	the	program	and	experiment	with	it.	Note	how	the	largest	value	you	can
select	in	the	scrollbars	is	255.

Exercises
1.	 Build	the	FollowMouse	example	program	shown	in	Figure	4.2.

2.	 [WPF,	Hard]	Repeat	Exercise	1	with	a	WPF	application.	WPF	does	several
things	differently	(such	as	finding	the	mouse's	position),	so	this	exercise	is
kind	of	hard.	Here	are	some	hints:

Use	two	ScrollBar	controls,	one	with	Orientation	=	Horizontal.

Use	a	Canvas	instead	of	a	Panel	and	an	Image	instead	of	a	PictureBox.

Instead	of	catching	the	form's	Load	and	Resize	events,	catch	the	Canvas
control's	SizeChanged	event	and	give	it	the	following	event	handler:

//	Set	the	scrollbar	maximums	to	fit	the	Canvas.

private	void	fieldCanvas_SizeChanged(object	sender,	

SizeChangedEventArgs	e)

{

				mouseHScrollBar.Maximum	=	e.NewSize.Width;

				mouseVScrollBar.Maximum	=	e.NewSize.Height;

}

Use	the	following	code	for	the	Canvas's	MouseMove	event	handler:

//	Move	the	scrollbars	to	track	the	mouse.

private	void	Canvas_MouseMove(object	sender,	MouseEventArgs	e)

{

				Point	location	=	Mouse.GetPosition(fieldCanvas);

				mouseHScrollBar.Value	=	location.X;

				mouseVScrollBar.Value	=	location.Y;

}

Initially	position	the	Image	control	in	the	Canvas	control's	upper-left	corner.
Then	use	the	following	MouseDown	event	handler:

//	Move	the	mouse	Image	to	the	point	clicked.

private	void	fieldCanvas_MouseDown(object	sender,	

MouseButtonEventArgs	e)

{

				Point	location	=	Mouse.GetPosition(fieldCanvas);

				mouseImage.Margin	=	new	Thickness(location.X,	location.Y,	0,	0);

}

3.	 Build	the	DynamicEvents	example	program	shown	in	Figure	4.3.	What
happens	if	you	click	Attach	twice?	Three	times?	What	happens	if	you	then	click
Detach	once?	Five	times?

4.	 [WPF]	Repeat	Exercise	3	with	a	WPF	application.

5.	 Create	a	form	with	one	Button	labeled	“Stop”	and	two	Timers	named	leftTimer
and	rightTimer.	Set	the	Timers'	Interval	properties	to	1000.	At	design	time,	set
leftTimer's	Enabled	property	to	True.

In	each	Timer's	Tick	event	handler,	disable	that	Timer	and	enable	the	other

one.

Make	one	Timer's	Tick	event	handler	also	move	the	Button	to	(10,	10)	by
setting	its	Left	and	Top	properties.

Make	the	other	Timer's	Tick	event	handler	move	the	Button	to	(200,	200).

In	the	Button's	Click	event	handler,	set	Enabled	=	false	for	both	Timers.

Run	the	program.	Experiment	with	different	values	for	the	Timers'	Interval
properties.	What	happens	if	Interval	=	10?

6.	 Copy	the	FollowMouse	program	you	built	for	Exercise	1.	Modify	the	copy	so
the	user	can	adjust	the	scrollbars	to	move	the	PictureBox.

7.	 [WPF]	Copy	the	program	you	build	for	Exercise	2.	Modify	the	copy	so	the	user
can	adjust	the	scrollbars	to	move	the	Image.	(Hints:	To	save	code,	use	the	same
event	handler	for	both	scrollbars.	To	prevent	the	mouse	image	from	appearing
on	top	of	the	scrollbars	and	in	the	small	area	on	the	window's	lower-right
corner,	set	the	Canvas	control's	ClipToBounds	property	to	True.)

8.	 Make	a	program	similar	to	the	one	shown	in	Figure	4.5.	When	the	user
unchecks	the	Breakfast,	Lunch,	or	Dinner	checkbox,	the	program	should
disable	the	corresponding	GroupBox.

Figure	4.5

Hints:

Make	the	OK	button	be	the	form's	accept	button.	Make	the	Cancel	button
be	the	form's	cancel	button.

Blank	the	GroupBoxes'	Text	properties.	Then	place	the	CheckBoxes	over	the
GroupBoxes	where	their	text	would	go.	(Be	sure	not	to	place	the	CheckBoxes
inside	the	GroupBoxes.	Try	it	to	see	why	it	won't	work.	You	may	need	to
position	the	CheckBoxes	first	and	then	move	the	GroupBoxes	into	position.)

To	enable	or	disable	a	GroupBox,	set	its	Enabled	property	equal	to	the
corresponding	CheckBox's	Enabled	property	as	in	the	following	code:

//	Enable	or	disable	the	corresponding	GroupBox.

private	void	breakfastCheckBox_CheckedChanged(object	sender,	

EventArgs	e)

{

				breakfastGroupBox.Enabled	=	breakfastCheckBox.Checked;

}

9.	 [WPF]	Repeat	Exercise	8	with	a	WPF	application.	Hints:

A	WPF	CheckBox	doesn't	display	a	background	so	the	checkboxes	in	this
program	won't	cover	the	GroupBox	borders	below	them.	To	work	around
that	problem,	place	each	CheckBox	inside	a	Canvas	and	make	the	Canvas	use
a	white	background.

A	GroupBox	can	have	only	a	single	child.	Give	each	GroupBox	a	StackPanel
holding	RadioButtons.	Use	the	RadioButtons'	Margin	properties	to	add	some
spacing	between	the	choices.

The	WPF	CheckBox	control	doesn't	have	a	CheckChanged	event.	Use	the	Click
event	instead.

To	enable	or	disable	a	GroupBox,	set	its	IsEnabled	property	equal	to	the
corresponding	CheckBox's	IsChecked.Value	property	as	in	the	following
code:

//	Enable	or	disable	the	appropriate	GroupBox.

private	void	breakfastCheckBox_Click(object	sender,	RoutedEventArgs	

e)

{

				breakfastGroupBox.IsEnabled	=	breakfastCheckBox.IsChecked.Value;

}

To	set	a	WPF	window's	accept	button,	set	the	Button's	IsDefault	property
to	True.

To	set	a	WPF	window's	cancel	button,	set	the	Button's	IsCancel	property	to
True.

10.	 Make	a	program	similar	to	the	one	shown	in	Figure	4.6.

Figure	4.6

Create	a	PictureBox	and	load	an	image	into	it.	Set	its	size	to	match	the
picture's	size	and	set	its	ScaleMode	property	to	StretchImage.	(Also	see	what
happens	if	you	set	this	to	Normal.)

Position	the	scrollbars	next	to	the	PictureBox.	Set	their	Maximum	properties
so	the	user	can	select	values	between	0	and	the	picture's	width/height.

Initially	set	the	scrollbars'	Value	properties	equal	to	the	image's
width/height.

Make	the	scrollbars'	Scroll	event	handlers	set	the	PictureBox's
width/height	equal	to	the	scrollbars'	values.

11.	 [WPF]	Repeat	Exercise	10	with	a	WPF	application.	Hints:

Set	the	Image	control's	Stretch	property	to	Fill.	(Also	see	what	happens	if
you	set	this	to	None.)

In	a	WPF	program,	the	user	can	set	a	ScrollBar	to	its	Maximum	value.

12.	 [WPF,	Games,	Hard]	One	thing	that's	hard	to	do	in	a	Windows	Forms
application	that's	easy	in	a	WPF	application	(at	least	if	you	set	it	up	properly)	is
transforming	objects.	For	example,	it's	relatively	easy	to	scale,	rotate,	and	skew
controls.	For	this	exercise,	make	a	program	similar	to	the	one	shown	in	Figure
4.7.	When	the	user	adjusts	the	scrollbar	at	the	bottom,	the	program	should
rotate	the	image	and	display	the	angle	of	rotation	in	the	Label	in	the	lower
right.

Figure	4.7

Hints:

Lay	out	the	window	and	its	controls.	Put	a	picture	in	the	Image	control.
Name	the	label	control	degreesLabel.

Use	the	Properties	window's	Transform	section	to	rotate	the	Image	by	360
degrees.

Edit	the	XAML	code	to	give	the	rotateTransform	a	property	called	x:Name
with	value	rotateTransform.	The	Image	control's	code	should	look
something	like	this:

<Image	x:Name="image"	HorizontalAlignment="Left"

				VerticalAlignment="Top"	Source="ScienceGirl.png"

				Stretch="None"	Grid.ColumnSpan="2"

				Margin="10,10,0,0"	RenderTransformOrigin="0.5,0.5">

				<Image.RenderTransform>

								<TransformGroup>

												<ScaleTransform/>

												<SkewTransform/>

												<RotateTransform	x:Name="rotateTransform"	Angle="360"/>

												<TranslateTransform/>

								</TransformGroup>

				</Image.RenderTransform>

</Image>

Make	the	ScrollBar's	ValueChanged	event	handler	look	like	this:

//	Rotate	the	Image.

private	void	degreesScrollBar_ValueChanged(object	sender,

				RoutedPropertyChangedEventArgs<double>	e)

{

				rotateTransform.Angle	=	degreesScrollBar.Value;

				degreesLabel.Content	=	degreesScrollBar.Value.ToString("0");

}

13.	 [WPF]	Build	a	WPF	application	with	a	Grid	that	contains	an	Image.	Give	the
Grid	a	MouseMove	event	handler	that	moves	the	Image	to	the	mouse's	location.
(Hint:	By	default,	the	window's	main	Grid	has	a	transparent	background	so	it
won't	receive	mouse	events	correctly.	To	fix	that,	set	its	Background	brush.	You
can	use	any	brush	as	long	as	it's	not	transparent.)

14.	 Build	a	Windows	Forms	program	that	displays	a	TrackBar	and	an	HScrollBar.
Set	their	Maximum	properties	to	10,	and	set	the	scrollbar's	LargeChange	property
to	1.	When	the	controls'	values	change	at	run	time,	display	the	new	values	in
Labels.

15.	 [WPF]	Make	a	WPF	application	that	displays	two	Sliders	and	a	ScrollBar	all
with	Maximum	set	to	10.	Set	IsSnapToTickEnabled	to	True	for	one	of	the	Sliders.
When	the	controls'	values	change	at	run	time,	display	the	new	values	in	Labels.

16.	 Make	a	bar	chart	similar	to	the	one	shown	in	Figure	4.8.	When	you	click	the
button,	it	should	assign	random	values	to	the	bars.

Figure	4.8

Hints:

For	the	bars,	use	Labels	inside	a	multi-column	TableLayoutPanel.

To	make	the	Labels	appear	at	the	bottom	of	the	TableLayoutPanel,	set	their
Anchor	properties	to	Bottom,	Left,	Right.

To	make	the	Labels	touch,	set	their	Margin	properties	to	0,	0,	0,	0.

Use	code	similar	to	the	following	to	give	random	heights	to	the	Labels.	Note
that	the	statements	in	bold	are	outside	of	the	event	handler.

//	Make	a	random	number	generator.

private	Random	Rand	=	new	Random();

//	Pick	random	values	for	the	Labels.

private	void	pickValuesButton_Click(object	sender,	EventArgs	e)

{

				label1.Height	=	Rand.Next(10,	150);

				label2.Height	=	Rand.Next(10,	150);

				label3.Height	=	Rand.Next(10,	150);

				label4.Height	=	Rand.Next(10,	150);

				label5.Height	=	Rand.Next(10,	150);

				label6.Height	=	Rand.Next(10,	150);

}

17.	 [WPF]	Repeat	Exercise	16	with	a	WPF	application.

18.	 Modify	the	program	you	wrote	for	Exercise	16	so	it	uses	a	Timer	to	pick	random

Label	heights	instead	of	using	a	Button.	Set	the	Timer's	properties	Enabled	=
True	and	Interval	=	500.

NOTE

Please	select	the	videos	for	Lesson	4	online	at
www.wrox.com/go/csharp24hourtrainer2evideos.

http://www.wrox.com/go/csharp24hourtrainer2evideos

Lesson	5

Making	Menus
In	addition	to	buttons,	labels,	and	textboxes,	menus	are	one	of	the	most	common
user	interface	elements	in	interactive	programs.	This	lesson	explains	how	to	add
menus	and	context	menus	to	forms.	It	also	explains	how	to	catch	their	events	so
your	program	can	take	action	when	the	user	selects	menu	items.

Creating	Menus
To	create	a	menu,	simply	drop	a	MenuStrip	control	on	a	form.	By	default,	the
MenuStrip	is	docked	to	the	top	of	the	form	so	you	don't	really	need	to	position	it
carefully.	Just	double-click	the	Toolbox's	MenuStrip	tool	and	you're	set.

Unlike	most	controls,	the	MenuStrip	appears	in	the	Component	Tray	below	the
form	in	addition	to	appearing	on	the	form	itself.	Figure	5.1	shows	the	SimpleEdit
program	in	the	Form	Designer.	Below	the	form	you	can	see	the	Component	Tray
containing	a	MenuStrip	and	a	StatusStrip.

Figure	5.1

When	you	select	a	MenuStrip	in	the	Form	Designer,	either	on	the	form's	surface	or
in	the	Component	Tray,	the	menu	bar	at	the	top	of	the	form	displays	a	Type	Here
box.	Click	that	box	and	type	the	menu's	caption	to	create	a	main	menu.

If	you	create	a	main	menu	entry	and	then	click	it	to	select	it,	the	Form	Designer
displays	a	new	Type	Here	box	to	let	you	create	menu	items.	Figure	5.2	shows	the
top	of	the	Form	Designer	after	I	created	the	top-level	File	menu.

Figure	5.2

You	can	continue	clicking	menu	items	to	add	submenus	as	deeply	as	you	like.
Continue	entering	text	in	the	Type	Here	boxes	to	build	the	whole	menu	structure.

Figure	5.3	shows	the	Edit	menu	for	a	new	version	of	the	SimpleEdit	program.
Notice	that	the	menu	contains	several	cascading	submenus.	The	Offset	submenu	is
expanded	in	Figure	5.3.

Figure	5.3

You	can	use	the	Type	Here	boxes	to	create	submenus	to	any	depth,	although	in
practice	three	levels	(as	in	Edit	 	Offset	 	Subscript)	are	about	all	the	user	can
stomach.

In	addition	to	menu	items,	you	can	place	Separators,	TextBoxes,	and	ComboBoxes	in
menus.	TextBoxes	and	ComboBoxes	are	unusual	in	menus,	so	I	won't	cover	them
here.	Separators,	however,	are	quite	useful	for	grouping	related	menu	items.

To	create	a	Separator,	right-click	an	item,	open	the	Insert	submenu,	and	select
Separator.	Alternatively,	you	can	create	a	normal	menu	item	and	set	its	Text	to	a
single	dash	(-).

Setting	Menu	Properties
The	items	in	a	menu	are	ToolStripMenuItems,	and	like	other	controls,	they	have
properties	that	determine	their	appearance	and	behavior.	Table	5.1	summarizes
the	most	useful	ToolStripMenuItem	properties.

Table	5.1

Property Purpose

Checked Determines	whether	the	item	is	checked.	In	Figure	5.3,	the	Normal
item	is	checked.	(See	also	CheckOnClick.)

CheckOnClick If	you	set	this	to	True,	the	item	automatically	toggles	its	checked
state	when	the	user	selects	it.

Enabled Indicates	whether	the	item	is	enabled.

Name The	ToolStripMenuItem's	name.	Normally	you	should	give	a	good
name	to	any	menu	item	that	makes	the	program	do	something	at
run	time	so	your	code	can	refer	to	it.

ShortcutKeys Indicates	the	item's	shortcut	key	combination	(if	any).	Either	type	a
value	such	as	Ctrl+N	or	click	the	dropdown	arrow	to	the	right	to
display	the	shortcut	editor	shown	in	Figure	5.4.

Text The	text	that	the	item	displays.	Place	an	ampersand	before	the
character	that	you	want	to	use	as	the	item's	accelerator	(if	any).	For
example,	if	you	set	an	item's	Text	to	&Open,	the	item	appears	as
Open	in	its	menu	and	the	user	can	activate	it	by	pressing	Alt+O
while	the	menu	is	open.

Figure	5.4

Essential	Ellipses

By	convention,	if	a	menu	item	opens	a	dialog	or	requires	some	other	input
from	the	user	before	proceeding,	its	Text	should	end	with	an	ellipsis	(…).	If	the
menu	item	starts	an	action	immediately,	it	should	not	include	an	ellipsis.

For	example,	the	Open	…menu	item	displays	a	file	open	dialog,	so	its	caption
ends	with	an	ellipsis.	In	contrast,	the	Edit	menu's	Copy	item	immediately
copies	the	selected	text	so	it	doesn't	need	an	ellipsis.

Accelerators	allow	the	user	to	navigate	menus	with	the	keyboard	instead	of	the
mouse.	When	the	user	presses	Alt,	the	menu's	items	display	underlines	below
their	accelerator	keys.	For	example,	if	the	File	menu	appears	as	File,	the	user	can
press	Alt+F	to	open	that	menu	and	then	use	other	accelerators	to	select	the
menu's	items.

NOTE

Recent	versions	of	the	Windows	operating	system	typically	don't	underline
menu	accelerators	until	you	press	the	Alt	key.

You	should	give	accelerators	to	most	if	not	all	of	your	program's	menus,
submenus,	and	menu	items.	Experienced	users	can	often	navigate	a	menu	system
faster	by	using	accelerators	than	they	can	by	using	the	mouse.

WARNING

Be	sure	not	to	give	the	same	accelerator	character	to	two	items	in	the	same
menu.	For	example,	in	the	File	menu,	don't	have	Save	and	Save	As	menu
items.

Shortcuts	allow	the	user	to	instantly	activate	a	menu	item.	For	example,	in	many
programs	Ctrl+O	opens	a	file	and	Ctrl+S	saves	the	current	file.	(You	can
remember	the	difference	between	accelerators	and	shortcuts	by	realizing	that
“accelerator”	and	the	Alt	key	both	begin	with	the	letter	“a.”)

WARNING

Be	extra	sure	not	to	give	two	menu	items	the	same	shortcut!

TIP

Use	standard	accelerators	and	shortcuts	to	help	users	learn	how	to	use	your
application	more	quickly	and	with	fewer	mistakes.	The	web	pages
support.microsoft.com/kb/126449	and	windows.microsoft.com/en-
us/windows/keyboard-shortcuts	list	some	shortcuts	that	Microsoft	uses.	I
haven't	seen	a	good	list	of	standard	accelerators,	but	you	can	try	to	make
yours	match	those	used	by	other	common	applications	such	as	Visual	Studio
and	Word.

http://support.microsoft.com/kb/126449
http://windows.microsoft.com/en-us/windows/keyboard-shortcuts

Handling	Menu	Events
When	the	user	clicks	a	menu	item,	its	control	raises	a	Click	event	exactly	as	a
clicked	Button	does,	and	you	can	handle	it	in	the	same	way.	You	can	even	create
default	event	handlers	in	the	same	way:	by	double-clicking	the	control.

Creating	Context	Menus
A	context	menu	appears	when	you	right-click	a	particular	control.	In	a	Windows
Forms	application,	using	a	context	menu	is	almost	as	easy	as	using	a	main	menu.
Figure	5.5	shows	an	application	displaying	a	context	menu.

Figure	5.5

Start	by	dropping	a	ContextMenuStrip	on	the	form.	Like	a	MenuStrip,	a
ContextMenuStrip	appears	below	the	form	in	the	Component	Tray	so	you	can	just
double-click	the	Toolbox's	ContextMenuStrip	tool	and	not	worry	about	positioning
it.

Unlike	a	MenuStrip,	a	ContextMenuStrip	does	not	appear	at	the	top	of	the	form.	In
the	Form	Designer,	you	can	click	a	MenuStrip	either	on	the	form	or	in	the
Component	Tray	to	select	it.	To	select	a	ContextMenuStrip,	you	must	click	it	in	the
Component	Tray.

After	you	select	the	ContextMenuStrip,	you	can	edit	it	much	as	you	can	a	MenuStrip.
The	big	difference	is	that	a	ContextMenuStrip	does	not	have	top-level	menus,	just
submenu	items.

Figure	5.6	shows	the	Form	Designer	with	a	ContextMenuStrip	selected.	By	now	the
menu	editor	should	look	familiar.

Figure	5.6

After	you	create	a	ContextMenuStrip,	you	need	to	associate	it	with	the	control	that
should	display	it.	To	do	that,	simply	set	the	control's	ContextMenuStrip	property	to
the	ContextMenuStrip.	To	do	that,	select	the	control's	ContextMenuStrip	property	in
the	Properties	window,	click	the	dropdown	arrow	on	the	right,	and	select	the
ContextMenuStrip.	The	rest	is	automatic.	When	the	user	right-clicks	the	control,	it
automatically	displays	the	ContextMenuStrip.

WPF	Menus
To	create	a	menu	in	a	WPF	application,	add	a	Menu	control	to	the	window	and	use
your	preferred	method	to	make	it	attach	itself	to	the	top.	For	example,	if	the
window	contains	a	Grid,	you	can	make	the	Menu	fill	the	Grid's	top	row.
Alternatively,	if	the	window	contains	a	DockPanel,	you	can	dock	the	Menu	to	the	top.

After	you	create	the	Menu,	you	can	add	items	to	it	in	two	ways.	First,	you	can	use
the	Properties	window's	menu	editor.	Select	the	Menu,	find	the	Menu's	Items
property	in	the	Properties	window,	and	click	the	ellipsis	to	the	right	to	open	the
editor	shown	in	Figure	5.7.

Figure	5.7

Use	the	editor	to	add	and	modify	the	items	in	the	menu.	Set	a	menu	item's	Header
property	to	the	text	that	you	want	it	to	display.	Place	an	underscore	in	front	of	the
character	that	you	want	the	item	to	use	as	an	accelerator	key.	For	example,	the
menu	item	in	Figure	5.5	has	Header	set	to	_Edit	so	when	you	press	Alt	at	run	time,
it	will	appear	as	Edit.

To	make	a	submenu,	click	the	ellipsis	to	the	right	of	the	Items	property	in	the
menu	item	editor	(in	the	bottom	right	in	Figure	5.5).

NOTE

You	can	put	practically	anything	inside	a	WPF	menu.	A	menu	could	hold
CheckBoxes,	RadioButtons,	ComboBoxes,	Sliders,	even	a	Grid	containing	a	whole
slew	of	other	controls.

However,	that's	not	what	users	expect	to	see	in	a	menu,	so	adding	too	many
unusual	items	can	make	a	menu	confusing.	Normally	menus	should	contain
only	MenuItems	and	Separators.

The	second	way	you	can	create	a	menu	hierarchy	is	to	edit	the	XAML	code
manually.	That	may	seem	intimidating,	but	it's	actually	not	too	hard,	particularly
if	you	make	a	few	menu	items	and	then	copy	and	paste	their	code.

The	following	code	shows	the	XAML	code	for	a	menu	structure	that	contains	File
and	Format	menus.	Notice	that	the	Format	menu	has	two	submenus,	Align	and
Offset:

<Menu	x:Name="menu"	VerticalAlignment="Top"	DockPanel.Dock="Top">

				<MenuItem	Header="_File">

								<MenuItem	Header="_New"/>

								<MenuItem	Header="_Open…"/>

								<MenuItem	Header="_Save"/>

				</MenuItem>

				<MenuItem	Header="_Format">

								<MenuItem	Header="_Align">

												<MenuItem	Header="_Left"	IsChecked="True"/>

												<MenuItem	Header="_Right"/>

												<MenuItem	Header="_Center"/>

								</MenuItem>

								<MenuItem	Header="_Offset">

												<MenuItem	Header="_Normal"	IsChecked="True"/>

												<MenuItem	Header="Su_perscript"/>

												<MenuItem	Header="Su_bscript"/>

								</MenuItem>

				</MenuItem>

</Menu>

If	you	click	a	menu	item	in	the	XAML	editor,	the	Window	Designer	opens	to	show
that	item.	You	can	then	double-click	the	item	to	give	it	a	Click	event	handler.

WPF	Context	Menus
Like	Windows	Forms	applications,	WPF	applications	let	you	associate	a	context
menu	with	a	control.	When	the	user	right-clicks	the	control	at	run	time,	the
context	menu	appears.

To	add	a	context	menu	to	a	control,	first	select	the	control.	Then	in	the	Properties
window,	find	the	ContextMenu	property	(in	the	Miscellaneous	section),	and	click
the	New	button	to	its	right.

After	you	create	a	ContextMenu,	you	can	edit	it	much	as	you	can	edit	a	main	menu.
The	items	inside	a	ContextMenu	are	MenuItems	just	as	they	are	inside	a	Menu.	In	the
Properties	window,	you	can	click	the	ellipsis	next	to	its	Items	property	to	open	the
menu	item	editor.	Alternatively,	you	can	edit	the	ContextMenu's	XAML	code.

WPF	Commanding
WPF	has	a	whole	system	for	handling	standard	commands	such	as	Open,	New,
and	Copy.	You	can	even	define	your	own	commands.

The	idea	is	that	you	might	want	to	allow	several	different	methods	for	invoking	the
same	command.	For	example,	you	might	allow	the	user	to	click	a	Button,	select	a
MenuItem,	or	check	a	CheckBox	to	invoke	the	Save	command.	The	commands
provide	a	central	location	for	invoking	the	appropriate	behaviors.

You	can	define	code	to	execute	when	a	command	is	invoked.	Then	you	can	assign
a	MenuItem	(or	Button	or	CheckBox	or	whatever)	to	a	command	so	when	the	user
clicks	the	control,	it	invokes	the	command.	You	can	even	assign	gestures	to	a
command.	For	example,	you	could	make	the	Ctrl+L	gesture	invoke	a	custom
LeftAlign	command.

Gestures	are	quite	powerful,	but	they're	also	fairly	complicated	so	I'm	not	going	to
cover	them	in	this	book.	You	can	learn	more	about	them	in	the	article
“Commanding	Overview”	at	msdn.microsoft.com/en-us/library/ms752308.

Meanwhile,	you	can	just	create	Click	event	handlers	for	menu	items.

http://msdn.microsoft.com/en-us/library/ms752308

Try	It
In	this	Try	It,	you	create	a	main	menu	and	a	context	menu.	The	main	menu
includes	an	Exit	command	that	closes	the	form.	Both	menus	contain	commands
that	let	you	change	the	appearance	of	a	TextBox	on	the	form.	Figure	5.8	shows	the
finished	program	displaying	its	context	menu.

Figure	5.8

Lesson	Requirements
In	this	lesson,	you:

Create	the	form	shown	in	Figure	5.8.

Create	the	following	main	menu	structure	(note	the	accelerator	keys	and
shortcuts):

File

Exit

Format

Color

Red								Ctrl+R

Green				Ctrl+G

Blue							Ctrl+B

Background	Color

Pink

Light	Green

Light	Blue

Font

Small											Ctrl+S

Normal							Ctrl+N

Large											Ctrl+L

Add	code	behind	the	main	menu	items.

Make	the	context	menu	duplicate	the	main	menu's	Format	submenu.

Attach	the	context	menu	items	to	the	same	event	handlers	used	by	the	main
menu.

Attach	the	context	menu	to	the	TextBox.

NOTE

You	can	download	the	code	and	resources	for	this	lesson	from	the	website	at
www.wrox.com/go/csharp24hourtrainer2e.

Hints
The	Exit	menu	item	can	close	the	program's	form	by	calling	this.Close().

Creating	a	font	isn't	trivial	(and	I	haven't	covered	that	yet).	It's	much	easier	to
keep	a	sample	of	a	font	in	a	control	somewhere	on	the	form	and	then	set	the
TextBox's	Font	property	equal	to	that	control's	Font	property.	And	what	better
control	to	store	the	font	than	the	menu	item	itself?

Step-by-Step
Create	the	form	shown	in	Figure	5.8.

1.	 Create	the	main	menu	by	double-clicking	the	Toolbox's	MenuStrip	tool.

2.	 Add	a	TextBox	to	the	form.	Type	some	text	into	its	Text	property	and	set	its
properties:	Name	=	contentsTextBox,	MultiLine	=	True,	Dock	=	Fill,
ScrollBars	=	Both.

3.	 Create	the	context	menu	by	double-clicking	the	Toolbox's	ContextMenuStrip
tool.

Create	the	main	menu	structure.

1.	 Select	the	MenuStrip.	Click	the	Type	Here	box	and	type	&File.

2.	 In	the	Type	Here	box	below	the	File	menu,	type	E&xit.

http://www.wrox.com/go/csharp24hourtrainer2e

NOTE

By	convention,	the	Exit	command	uses	X	as	its	accelerator.	It	never
has	a	shortcut	because	it	would	be	too	easy	to	accidentally	close	the
program	while	banging	your	head	on	the	keyboard	(or	if	you	fat-
finger	the	keys,	the	keyboard	is	hit	by	a	flying	tennis	ball,	or	your	cat
walks	across	the	keyboard).

3.	 Click	the	File	item	again.	In	the	Type	Here	box	to	the	right,	type	F&ormat.
(You	can't	use	the	F	character	as	this	menu's	accelerator	because	it's
already	used	by	the	File	menu.)

4.	 Use	the	Type	Here	boxes	below	the	Format	menu	to	create	the	format
menu	items	and	their	submenus.

5.	 Use	the	Properties	window	to	set	the	font	sizes	for	the	Font	menu's	Small,
Normal,	and	Large	items	to	6,	9,	and	20,	respectively.

6.	 Give	the	Color	and	Font	submenu	items	appropriate	shortcuts.

7.	 Give	the	menu	items	that	take	action	appropriate	names.	For	example,
name	the	Font	menu's	Small	item	formatFontSmallMenuItem.

Add	code	behind	the	main	menu	items.

1.	 Double-click	the	Exit	menu	item	and	type	the	bold	line	in	the	following
code	so	the	event	handler	looks	like	this:

private	void	fileExitMenuItem_Click(object	sender,	EventArgs	e)

{

				this.Close();

}

The	keyword	this	means	“the	object	currently	executing	this	code,”	which
in	this	case	means	the	current	form,	so	this	line	of	code	tells	the	current
form	to	close	itself.

2.	 Double-click	the	Format	 	Color	 	Red	menu	item	and	type	the	bold	line
in	the	following	code	so	the	event	handler	looks	like	this:

private	void	formatColorRedMenuItem_Click(object	sender,	EventArgs	e)

{

				contentsTextBox.ForeColor	=	Color.Red;

}

3.	 Repeat	step	2	for	the	Green	and	Blue	menu	items.

4.	 Repeat	step	2	for	the	Format	 	Background	Color	menu	items.

5.	 Double-click	the	Format	 	Font	 	Small	menu	item	and	type	the	bold	line
in	the	following	code	so	the	event	handler	looks	like	this:

private	void	formatFontSmallMenuItem_Click(object	sender,	EventArgs	

e)

{

				contentsTextBox.Font	=	formatFontSmallMenuItem.Font;

}

6.	 Repeat	step	5	for	the	Normal	and	Large	menu	items.

Make	the	context	menu	duplicate	the	main	menu's	Format	submenu.

Do	either	1	or	2:

1.	 Build	the	structure	from	scratch.	(This	is	straightforward	but	slow.)

a.	 Click	the	ContextMenuStrip	in	the	Component	Tray	to	open	it	for	editing.

b.	 Use	steps	similar	to	the	ones	you	used	to	build	the	main	menu's
structure	to	build	the	context	menu's	structure.	End	context	menu	item
names	with	ContextMenuItem,	as	in	colorRedContextMenuItem.

2.	 Copy	the	Format	menu's	structure.	(This	is	sneakier	and	faster,	and
therefore	much	cooler!)

a.	 Click	the	MenuStrip	in	the	Component	Tray	to	open	it	for	editing.
Expand	the	Format	menu.	Click	the	Color	item	and	then	shift-click	the
Font	item	to	select	all	of	the	menu's	items.	Press	Ctrl+C	to	copy	the
menu	items	into	the	clipboard.

b.	 Click	the	ContextMenuStrip	in	the	Component	Tray	to	open	it	for	editing.
Press	Ctrl+V	to	paste	the	menu	items	into	the	context	menu.

c.	 Give	appropriate	names	to	the	new	menu	items.

Attach	the	context	menu	items	to	the	event	handlers	used	by	the	main	menu.

1.	 Open	the	ContextMenuStrip	for	editing.	Expand	the	Color	submenu	and
click	the	Red	item.	In	the	events	page	of	the	Properties	window,	select	the
Click	event.	Open	the	dropdown	on	the	right	and	select
formatColorRedMenuItem_Click.

2.	 Repeat	step	1	for	the	ContextMenuStrip's	other	items,	attaching	them	to	the
correct	event	handlers.

Attach	the	context	menu	to	the	TextBox.

1.	 Click	the	TextBox.	In	the	Properties	window,	set	its	ContextMenuStrip
property	to	formatContextMenu.

Exercises
1.	 [WPF]	Repeat	the	Try	It	with	a	WPF	application	Hints:.

You	might	save	time	by	building	some	menus	and	then	copying	and	pasting
them	in	the	XAML	Code	Editor.

Set	the	TextBox's	colors	as	in	contentsTextBox.Foreground	=	Brushes.Red.

Set	the	TextBox's	font	size	as	in	contentsTextBox.FontSize	=
formatFontSmallMenuItem.FontSize.

2.	 [SimpleEdit]	Copy	the	SimpleEdit	program	you	started	in	Lesson	3,	Exercise	4
(or	download	Lesson	3's	version	from	the	book's	website	at	www.wrox.com)	and
add	the	following	menu	structure.	Set	the	Checked	property	of	the	bold	items	to
True.

File

New	Ctrl+N

Open…	Ctrl+O

Save	Ctrl+S

Save	As…

-

Print	Preview…

Print…	Ctrl+P

-

Exit

Edit

Undo	Ctrl+Z

Redo	Ctrl+Y

-

Copy	Ctrl+C

Cut	Ctrl+X

Paste	Ctrl+V

Delete	Del

-

Select	All	Ctrl+A

Format

http://www.wrox.com

Align

Left

Right

Center

Text	Color…

Background	Color…

Bullet

Offset

Normal

Subscript

Superscript

Font…

Indent

None

Hanging

Left

Right

Both

Add	the	code	behind	the	Exit	item,	but	don't	worry	about	the	other	items	yet.

Eventually	the	user	will	be	able	to	use	the	Bullet	menu	item	to	toggle	whether	a
piece	of	text	is	bulleted.	To	allow	C#	to	toggle	this	item	for	you,	set	the	menu
item's	CheckOnClick	property	to	True.

Add	a	ContextMenuStrip	that	duplicates	the	Format	menu	and	use	it	for	the
TextBox's	ContextMenuStrip	property.

3.	 [WPF,	SimpleEdit]	Repeat	Exercise	2	with	a	WPF	application.	Hint:	To	check	a
menu	item,	set	its	IsChecked	property	to	True.

4.	 [SimpleEdit]	Copy	the	SimpleEdit	program	you	built	for	Exercise	1	and	add
images	to	its	menu	and	context	menu	items.	(You	can	find	suitable	image	files
in	the	PngFiles	directory	of	the	Lesson	4	downloads	available	on	the	book's
website.)	Figure	5.9	shows	what	the	menus	should	look	like	when	you're
finished.

Figure	5.9

5.	 [WPF,	SimpleEdit]	Repeat	Exercise	4	with	the	WPF	application	you	built	for
Exercise	3.	The	Properties	window	in	the	version	of	Visual	Studio	I'm	using
doesn't	seem	to	allow	you	to	set	a	menu	item's	Icon	property,	but	this	isn't	too
hard	to	do	in	the	XAML	editor.	First	use	the	Project	menu's	Add	Existing	Item
command	to	add	the	image	files	to	the	project.	Then	use	XAML	code	similar	to
the	following	to	add	icons	to	the	appropriate	menu	items:

<MenuItem	Header="_New"	Name="fileNewMenuItem">

				<MenuItem.Icon>

								<Image	Source="New.png"	/>

				</MenuItem.Icon>

</MenuItem>

6.	 [SimpleEdit]	Copy	the	SimpleEdit	program	you	built	for	Exercise	4	and	add
placeholder	routines	for	the	menu	items'	event	handlers.	The	routines	should
display	simple	message	boxes	indicating	what	they	should	really	do.	For
example,	the	following	code	shows	the	File	menu's	Save	event	handler:

private	void	fileSaveMenuItem_Click(object	sender,	EventArgs	e)

{

				MessageBox.Show("Save");

}

Add	placeholders	for	all	menu	items	(except	separators)	that	do	not	contain

items.	For	example,	add	a	placeholder	for	the	Format	 	Align	 	Left	item	but
not	for	Format	 	Align	because	it	contains	items.

Attach	the	context	menu's	items	to	the	same	event	handlers	except	give	the
context	menu's	Bullet	item	its	own	event	handler.	(If	you	make	these	two	share
the	same	event	handler,	they	will	interfere	with	each	other	because	of	their
toggling	behavior.)

7.	 [WPF,	SimpleEdit]	Repeat	Exercise	6	with	the	WPF	application	you	built	for
Exercise	5.	Hints:

If	you	click	a	menu	item's	XAML	code	to	select	it,	then	you	can	double-click
it	in	the	Window	Designer	to	create	an	event	handler	for	it.

You	may	need	to	edit	the	XAML	code	directly	to	define	its	event	handler,	as
in	Click="alignLeftContextMenuItem_Click".	Then	you	can	right-click	the
event	handler's	name	and	select	Go	To	Definition	to	create	the	event
handler.

8.	 [SimpleEdit]	Copy	the	SimpleEdit	program	you	built	for	Exercise	7	and	add
code	to	manage	exclusive	selections	in	the	Format	menu's	Align,	Offset,	and
Indent	submenus.	For	example,	the	user	can	select	only	one	of	the	Align
submenu's	choices	at	a	time.

Modify	the	items'	placeholder	code	so	when	the	user	selects	a	choice,	the	code:

a.	 Checks	the	selected	submenu	item

b.	 Unchecks	the	other	submenu	items

c.	 Checks	the	corresponding	context	menu	item

d.	 Unchecks	the	other	context	menu	items

For	example,	the	following	code	executes	when	the	user	selects	the	Align
submenu's	Left	choice:

private	void	formatIndentLeftMenuItem_Click(object	sender,	EventArgs	e)

{

				formatIndentNoneMenuItem.Checked	=	false;

				formatIndentHangingMenuItem.Checked	=	false;

				formatIndentLeftMenuItem.Checked	=	true;

				formatIndentRightMenuItem.Checked	=	false;

				formatIndentBothMenuItem.Checked	=	false;

				indentNoneContextMenuItem.Checked	=	false;

				indentHangingContextMenuItem.Checked	=	false;

				indentLeftContextMenuItem.Checked	=	true;

				indentRightContextMenuItem.Checked	=	false;

				indentBothContextMenuItem.Checked	=	false;

				MessageBox.Show("Indent	Left");

}

9.	 [WPF,	SimpleEdit]	Repeat	Exercise	8	with	the	WPF	application	you	built	for
Exercise	7.	(Hint:	In	WPF	you	need	to	set	the	IsChecked	property	instead	of	the

Checked	property.)

10.	 [SimpleEdit]	Copy	the	SimpleEdit	program	you	built	for	Exercise	8	and	add
code	to	make	the	Format	 	Bullet	menu	item	and	the	bullet	context	menu	item
check	and	uncheck	each	other.	(Hint:	Set	one	item's	Checked	property	equal	to
the	other	item's	Checked	property.)

11.	 [WPF,	SimpleEdit]	Unlike	Windows	Forms,	WPF's	MenuItem	control	doesn't
have	a	CheckOnClick	property,	so	the	Bullet	menu	items	won't	check	and
uncheck	themselves	when	the	user	clicks	them.

Add	code	to	make	those	menu	items	check	and	uncheck	themselves	by	setting
each	control's	IsChecked	property	equal	to	the	negation	of	its	current	value.
The	!	character	takes	the	logical	negation	of	a	value.	In	other	words,	!true	is
false	and	!false	is	true.	For	example,	the	following	code	toggles	whether	the
Format	menu's	Bullet	item	is	checked:

formatBulletMenuItem.IsChecked	=	!formatBulletMenuItem.IsChecked;

12.	 [WPF,	SimpleEdit]	Repeat	Exercise	10	with	the	WPF	application	you	built	for
Exercise	11.	(Hint:	In	WPF	you	need	to	set	the	IsChecked	property	instead	of
the	Checked	property.)

13.	 [WPF]	In	WPF,	a	menu	can	contain	just	about	anything.	Build	an	application
similar	to	the	one	shown	in	Figure	5.10.	(Although	I'm	not	saying	this	is	a	good
idea	in	an	actual	program.)

Figure	5.10

The	program's	File	menu	should	contain:

A	ComboBox	with	three	choices.

A	ListBox	with	three	choices.

Three	RadioButtons.

An	Image.

A	StackPanel	holding	a	Label	and	a	TextBox.

A	Grid	containing	a	3	×	3	arrangement	of	RadioButtons.

14.	 Make	a	Windows	Forms	program	with	five	levels	of	nested	menus.	In	other
words,	make	a	menu	File	 	Level	1	 	Level	2	 	Level	3	 	Level	4	 	Level	5.
Make	the	bottommost	menu	item	display	a	message	box.	(Again,	I'm	not
saying	this	is	a	good	idea	in	an	actual	program.)

15.	 [WPF]	Repeat	Exercise	14	with	a	WPF	application.

16.	 A	useful	user	interface	technique	is	to	not	allow	the	user	to	do	things	that	are
inappropriate	at	the	time.	In	a	drawing	application,	for	example,	if	the	user
isn't	editing	a	drawing,	you	should	disable	the	drawing	tools.

Write	a	program	that	has	three	menus:	File,	Customers,	and	Employees.	Give
them	each	one	menu	item:	Exit	(and	give	it	code),	New	Customer,	and	New
Employee.

Give	the	program's	form	three	RadioButtons	labeled	General,	Manage
Customers,	and	Manage	Employees.	When	the	user	clicks	a	RadioButton,
enable	and	disable	the	appropriate	menus.	(Some	applications	hide
inappropriate	menus,	but	that	can	be	confusing	to	users	who	know	a	menu
should	exist	but	can't	find	it.)

For	example,	when	the	user	clicks	the	Manage	Customers	button,	enable	the
Customers	menu	and	disable	the	Employees	menu.	Disable	both	menus	when
the	user	clicks	the	General	button.	(Hint:	Make	sure	the	program	starts	with
the	correct	menus	enabled.)

17.	 [WPF]	Repeat	Exercise	16	with	a	WPF	application.

18.	 Generally	it's	better	to	use	as	little	code	as	possible	so	you	have	less	to
program,	debug,	and	maintain	over	time.	Copy	the	application	you	wrote	for
Exercise	5-16	and	change	it	so	all	three	RadioButtons	share	a	single	event
handler.

19.	 [WPF]	Repeat	Exercise	18	with	the	WPF	application	you	wrote	for	Exercise	17.
(Hint:	IsChecked.Value	tells	whether	a	RadioButton	is	checked.)

NOTE

Please	select	the	videos	for	Lesson	5	online	at
www.wrox.com/go/csharp24hourtrainer2evideos.

http://www.wrox.com/go/csharp24hourtrainer2evideos

Lesson	6

Making	Tool	Strips	and	Status	Strips
Not	every	program	needs	a	tool	strip	or	status	strip,	but	they	can	make	the	user's
life	easier,	particularly	for	complicated	programs.	This	lesson	explains	how	to	add
tool	strips	and	status	strips	to	your	applications.

Using	Tool	Strips
Usually	a	tool	strip	sits	below	a	form's	menu	bar	and	displays	a	series	of	small
buttons	that	let	the	user	easily	perform	frequently	executed	tasks.	Usually	the
buttons	duplicate	functions	that	are	also	available	in	menus,	but	placing	them	on
the	tool	strip	makes	it	easier	for	the	user	to	find	and	use	them.

Place	only	the	most	frequently	used	commands	in	the	tool	strip	so	it	doesn't
become	cluttered.

Recall	from	Lesson	5	that	you	should	also	give	most	if	not	all	of	your	menu	items
accelerators,	and	you	can	give	the	most	important	commands	shortcuts.	That
means	the	user	can	access	the	most	important	and	useful	commands	in	at	least
four	ways:	mouse	menu	navigation,	accelerators,	shortcuts,	and	tool	strip	buttons.

To	create	a	single	tool	strip,	simply	double-click	the	Toolbox's	ToolStrip	tool.	By
default,	the	ToolStrip	docks	to	the	top	of	the	form	so	you	don't	need	to	position	it
manually.

NOTE

Recall	from	Lesson	3	that	docked	controls	are	drawn	in	their	stacking	order,
which	by	default	is	the	same	as	their	creation	order.	To	avoid	confusion,	if	a
form	should	contain	a	main	menu	and	a	tool	strip,	create	the	menu	first	so
the	tool	strip	appears	below	it	and	not	above	it.

When	you	select	a	ToolStrip,	the	Form	Designer	displays	a	little	icon	with	a
dropdown	arrow.	Click	the	arrow	to	display	a	list	of	items	that	you	might	want	to
add	to	the	ToolStrip,	as	shown	in	Figure	6.1.

Figure	6.1

As	you	can	see	from	Figure	6.1,	you	can	add	the	following	types	of	objects	to	a
ToolStrip:

Button

Label

SplitButton

DropDownButton

Separator

ComboBox

TextBox

ProgressBar

The	SplitButton	and	DropDownButton	are	new	controls	that	you	haven't	seen	before
in	the	Toolbox	so	they	deserve	a	little	explanation.

The	SplitButton	normally	displays	a	button	holding	an	icon	and	a	dropdown
arrow.	(You	can	change	its	DisplayStyle	property	to	make	it	display	text	instead	of

an	image,	both,	or	neither.)	If	the	user	clicks	the	button,	its	Click	event	fires.	If	the
user	clicks	the	dropdown	arrow,	a	menu	appears.	As	is	the	case	with	all	menus,	if
the	user	selects	an	item,	that	item's	Click	event	fires.

One	way	you	might	use	a	SplitButton	would	be	to	have	the	menu	items	perform
some	action	and	then	change	the	button's	icon	to	match	the	action.	Clicking	the
button	would	perform	the	action	again.

Another	way	to	think	of	this	would	be	that	the	button	represents	a	tool	and
clicking	it	activates	the	current	tool.	Selecting	an	item	from	the	dropdown	menu
selects	a	new	tool	and	activates	it.

Like	the	SplitButton,	the	DropDownButton	normally	displays	an	icon	with	a
dropdown	arrow.	(And	as	is	the	case	with	the	SplitButton,	you	can	use	the
DropDownButton's	DisplayStyle	property	to	make	it	display	an	image,	text,	both,	or
neither.)	If	the	user	clicks	the	dropdown	arrow,	a	menu	appears.	This	control	is
similar	to	the	SplitButton	except	it	doesn't	provide	a	button	that	the	user	can	click
to	repeat	the	previous	command.

Although	they	can	contain	many	different	kinds	of	controls,	ToolStrips	look	best
when	they	are	not	too	cluttered	and	confusing.	For	example,	a	ToolStrip	that
contains	only	Buttons	and	Separators	is	easy	to	understand	and	use.
DropDownButtons	and	SplitButtons	are	the	next	easiest	controls	to	understand	in	a
ToolStrip,	and	they	don't	clutter	things	up	too	much	so	you	can	add	them	if
necessary.

Avoid	using	Labels	in	a	ToolStrip	to	provide	status	information.	Instead,	place
status	information	in	a	StatusStrip.

Using	Tool	Strip	Containers
A	ToolStripContainer	displays	areas	on	a	form's	top,	left,	bottom,	and	right	edges
that	can	hold	ToolStrips.	At	run	time,	the	user	can	drag	ToolStrips	back	and	forth
within	and	among	these	areas.

The	center	of	the	ToolStripContainer	is	a	content	panel	that	can	hold	one	or	more
other	controls.

In	a	typical	configuration	for	these	controls,	a	form	optionally	contains	a
MenuStrip	and	StatusStrip	docked	to	the	form's	top	and	bottom,	respectively.	A
ToolStripContainer	is	docked	to	fill	the	rest	of	the	form,	and	its	content	panel
contains	the	rest	of	the	program's	controls.

Figure	6.2	shows	a	form	that	contains	a	MenuStrip	at	the	top,	a	StatusStrip	at	the
bottom,	and	a	ToolStripContainer	filling	the	rest	of	the	form.	The
ToolStripContainer	contains	three	ToolStrips	and	a	RichTextBox	docked	to	fill	its
content	panel.

Figure	6.2

Figure	6.3	shows	this	program	at	run	time.	Here	I	have	dragged	two	of	the
ToolStrips	to	the	ToolStripContainer's	left	and	right	edges.

Figure	6.3

Two	things	in	Figure	6.2	are	of	particular	note.	First,	notice	the	thin	rectangles
holding	arrows	on	the	middle	of	the	content	panel's	sides.	If	you	click	one	of	these,
the	control	adds	room	on	that	edge	so	you	can	insert	another	ToolStrip.

The	second	thing	of	note	in	Figure	6.2	is	the	smart	tag	shown	as	a	little	square
holding	an	arrow	in	the	control's	upper-right	corner.	If	you	click	the	smart	tag,	the
smart	tag	panel	shown	in	Figure	6.4	appears.

Figure	6.4

In	general,	smart	tags	provide	quick	ways	to	perform	common	tasks	for	a	control.
In	this	example,	the	smart	tag	panel	lets	you	decide	which	panels	the	control
should	allow.	If	you	uncheck	one	of	the	panels,	the	user	cannot	drag	ToolStrips	to
that	edge	of	the	ToolStripContainer	at	run	time.

NOTE

You	can	also	determine	which	panels	are	available	by	setting	the	control's
LeftToolStripPanelVisible,	RightToolStripPanelVisible,
TopToolStripPanelVisible,	and	BottomToolStripPanelVisible	properties	in
the	Properties	window,	but	using	the	smart	tag	is	easier.

After	you	build	the	ToolStripContainer,	simply	place	ToolStrips	on	it	and	build
their	items	as	usual.

Using	Status	Strips
A	status	strip	is	normally	docked	to	a	form's	bottom	and	displays	labels,	status
bars,	and	other	controls	to	give	the	user	a	quick	summary	of	the	application's
status.	This	area	should	be	reserved	for	status	information	and	should	generally
not	include	buttons	and	other	controls	that	make	the	application	perform	an
action.	Those	commands	belong	in	menus	and	tool	strips.

NOTE

Although	the	current	time	is	sort	of	a	piece	of	status	information,	don't	add	a
clock	to	the	status	bar.	A	user	who	wants	a	clock	can	display	one	in	the
system's	taskbar.	The	taskbar	clock	is	more	convenient	because	it	provides
options	(such	as	display	format)	that	you	probably	don't	want	to	reproduce
in	your	program,	and	it	also	can't	be	hidden	by	other	programs.	If	the
system	provides	a	convenient	tool,	there's	no	need	for	you	to	reproduce	it	in
your	program.

To	create	a	status	strip,	simply	double-click	the	Toolbox's	StatusStrip	tool.	By
default,	the	StatusStrip	docks	to	the	bottom	of	the	form	so	you	don't	need	to
position	it	manually.

When	you	select	a	StatusStrip,	the	Form	Designer	displays	a	little	icon	with	a
dropdown	arrow	similar	to	the	one	it	displays	for	a	ToolStrip.	Click	the	arrow	to
display	a	list	of	items	that	you	might	want	to	add	to	the	StatusStrip,	as	shown	in
Figure	6.5.

Figure	6.5

As	you	can	see	from	Figure	6.5,	you	can	add	the	following	types	of	objects	to	a
ToolStrip:

StatusLabel

ProgressBar

DropDownButton

SplitButton

The	only	new	control,	StatusLabel,	behaves	like	a	normal	Label.

Try	It
In	this	Try	It,	you	create	a	MenuStrip	(covered	in	Lesson	5)	and	a	ToolStrip,	both
containing	commands	to	change	a	RichTextBox	control's	ForeColor	and	BackColor
properties.	You	also	create	a	StatusStrip	to	show	the	currently	selected	colors.
(Yes,	I	know	this	is	redundant	because	the	values	are	shown	in	the	ToolStrip	and
in	the	text	itself.)	Figure	6.6	shows	the	program	in	action.

Figure	6.6

Lesson	Requirements
In	this	lesson,	you:

Create	the	form	shown	in	Figure	6.6.

Create	the	MenuStrip.	The	menu's	hierarchy	should	be:

File

Exit

Format

Text	Color

Black

Red

Green

Blue

Background	Color

White

Pink

Light	Green

Light	Blue

Initially	check	the	Text	Color	menu's	Black	choice	and	the	Background	Color
menu's	White	choice.

Give	the	Background	Color	menu	items	Images	that	display	samples	of	the
colors.

Create	the	ToolStrip	with	buttons	that	duplicate	the	menu	hierarchy.	The
ToolStrip	should	hold	two	ToolStripDropDownButtons.

Name	the	first	tool	foreColorButton	and	make	it	display	the	text	“A.”	Give	it
the	items	Black,	Red,	Green,	and	Blue.	Each	item	should	have	the	ForeColor
property	set	to	its	color.

Name	the	second	tool	backColorButton	and	make	it	initially	display	a	white
color	sample.	Give	it	the	items	White,	Pink,	Light	Green,	and	Light	Blue.
Make	each	of	these	display	an	Image	showing	a	sample	of	the	color.

Give	the	StatusStrip	a	ToolStripStatusLabel	named	colorLabel	with	Text	=
Text	Colors.

Add	event	handlers.

Make	the	File	menu's	Exit	item	close	the	form.

Make	event	handlers	for	each	of	the	Text	Color	menu	items.

Make	event	handlers	for	each	of	the	Background	Color	menu	items.

Make	the	tool	strip	Buttons	use	the	corresponding	menu	items'	event	handlers.

Duplicate	Code

As	you	will	probably	notice,	this	lesson's	Try	It	includes	event	handlers	that
duplicate	the	same	code	with	minor	differences.	In	general,	if	large	pieces	of
code	do	almost	the	same	things	with	minor	changes,	then	there's	probably
something	wrong	with	the	program's	design.

In	cases	such	as	this,	you	should	extract	the	common	code	into	a	method.	You
can	use	if,	switch,	and	other	C#	statements	to	let	the	code	take	different
actions	for	different	situations,	allowing	one	method	to	handle	multiple
situations.

Unfortunately,	you	don't	know	how	to	do	any	of	that	yet,	but	you	will	learn.
Lesson	18	describes	statements	such	as	if	and	switch,	and	Lesson	20	explains
how	to	write	methods.	Until	then,	you're	stuck	with	some	duplicate	code.

After	you	read	Lessons	18	and	20,	you	can	revisit	this	code	to	remove	the
redundant	code	if	you	like,	making	it	easier	to	maintain	in	the	future.	(The
process	of	restructuring	existing	code	to	make	it	more	reliable,	easier	to	read,
easier	to	maintain,	or	otherwise	better	without	changing	its	functionality	is
called	refactoring.)

NOTE

You	can	download	the	code	and	resources	for	this	lesson	from	the	website	at
www.wrox.com/go/csharp24hourtrainer2e.

Hints
Recall	that	the	Exit	menu	item	can	close	the	program's	form	by	calling	Close().

Place	the	RichTextBox	inside	the	ToolStripContainer's	content	panel.

You	may	be	able	to	save	a	lot	of	typing	by	making	one	event	handler	and	then
copying	and	pasting	it.

Step-by-Step
Create	the	form	shown	in	Figure	6.6.

1.	 Start	a	new	project.

2.	 Add	a	MenuStrip	to	the	form.

3.	 Add	a	StatusStrip	to	the	form.

4.	 Add	a	ToolStripContainer	to	the	form.

5.	 Add	a	RichTextBox	named	contentRichTextBox	inside	the
ToolStripContainer's	content	panel.

Create	the	MenuStrip.

1.	 Add	the	indicated	menu	items	to	the	MenuStrip.	Remember	to	give	them
good	names	and	appropriate	accelerator	keys.

Initially	check	the	Text	Color	menu's	Black	choice	and	the	Background	Color
menu's	White	choice.

1.	 Set	the	Text	Color	 	Black	menu	item's	Checked	property	to	True.

2.	 Set	the	Background	Color	 	White	menu	item's	Checked	property	to	True.

Give	the	Background	Color	menu	items	Images	that	display	samples	of	the
color.

1.	 Set	the	Image	properties	of	these	menu	items	to	samples	of	their	colors.
(Use	Microsoft	Paint	or	some	other	graphical	editor	to	make	small	colored
images.)

Create	the	ToolStrip	with	buttons	that	duplicate	the	menu	hierarchy.	The
ToolStrip	should	hold	two	ToolStripDropDownButtons.

Name	the	first	tool	foreColorButton	and	make	it	display	the	text	“A.”	Give	it
the	items	Black,	Red,	Green,	and	Blue.	Each	item	should	have	ForeColor

http://www.wrox.com/go/csharp24hourtrainer2e

property	set	to	its	color.

1.	 Create	the	ToolStripDropDownButton.

2.	 Below	that	item,	add	the	items	Black,	Red,	Green,	and	Blue.

3.	 Set	the	ForeColor	property	for	each	of	these	items	to	show	its	color.	(For
example,	set	the	Black	item's	ForeColor	property	to	black.)

Name	the	second	tool	backColorButton	and	make	it	initially	display	a	white
color	sample.	Give	it	the	items	White,	Pink,	Light	Green,	and	Light	Blue.
Make	each	of	these	display	an	Image	showing	a	sample	of	the	color.

1.	 Create	the	ToolStripDropDownButton.

2.	 Below	that	item,	add	the	items	White,	Pink,	Light	Green,	and	Light
Blue.

3.	 Set	the	Image	property	for	each	of	these	items	to	show	samples	of	their
colors.

Give	the	StatusStrip	a	ToolStripStatusLabel	named	colorLabel	with	Text	=
Text	Colors.

1.	 Create	the	ToolStripStatusLabel.	Set	its	Name	and	Text	properties.

Add	event	handlers.

Make	the	File	menu's	Exit	item	close	the	form.

1.	 Type	the	bold	line	of	code	so	the	event	handler	looks	like	this:

private	void	fileExitMenuItem_Click(object	sender,	EventArgs	e)

{

				Close();

}

Make	event	handlers	for	each	of	the	Text	Color	menu	items.

1.	 For	the	Text	Color	 	Black	menu	item,	type	the	bold	code	so	the	event
handler	looks	like	this:

private	void	blackForeColorMenuItem_Click(object	sender,	EventArgs	

e)

{

				contentRichTextBox.ForeColor	=	blackForeColorButton.ForeColor;

				foreColorMenuItem.ForeColor	=	blackForeColorButton.ForeColor;

				foreColorButton.ForeColor	=	blackForeColorButton.ForeColor;

				colorLabel.ForeColor	=	blackForeColorButton.ForeColor;

				blackForeColorMenuItem.Checked	=	true;

				redForeColorMenuItem.Checked	=	false;

				greenForeColorMenuItem.Checked	=	false;

				blueForeColorMenuItem.Checked	=	false;

				blackForeColorButton.Checked	=	true;

				redForeColorButton.Checked	=	false;

				greenForeColorButton.Checked	=	false;

				blueForeColorButton.Checked	=	false;

}

2.	 Enter	similar	code	for	the	other	Text	Color	menu	items.

Make	event	handlers	for	each	of	the	Background	Color	menu	items.

1.	 For	the	Background	Color	 	White	menu	item,	type	the	bold	code	so	the
event	handler	looks	like	this:

private	void	whiteBackColorMenuItem_Click(object	sender,	EventArgs	

e)

{

				contentRichTextBox.BackColor	=	Color.White;

				backColorMenuItem.Image	=	whiteBackColorMenuItem.Image;

				backColorButton.Image	=	whiteBackColorMenuItem.Image;

				colorLabel.BackColor	=	Color.White;

				whiteBackColorMenuItem.Checked	=	true;

				pinkBackColorMenuItem.Checked	=	false;

				lightGreenBackColorMenuItem.Checked	=	false;

				lightBlueBackColorMenuItem.Checked	=	false;

				whiteBackColorButton.Checked	=	true;

				pinkBackColorButton.Checked	=	false;

				lightGreenBackColorButton.Checked	=	false;

				lightBlueBackColorButton.Checked	=	false;

}

2.	 Enter	similar	code	for	the	other	Background	Color	menu	items.

Make	event	handlers	for	each	of	the	Background	Color	menu	items.

1.	 Repeat	the	steps	you	used	for	the	Text	Color	menu	items	except	use
BackColor	instead	of	ForeColor.

Make	the	tool	strip	Buttons	use	the	corresponding	menu	items'	event	handlers.

1.	 Click	the	Properties	window's	Events	button.

2.	 For	each	tool	strip	button:

a.	 Click	the	button	in	the	Form	Editor.

b.	 On	the	Properties	window,	select	the	Click	event.	Then	click	the
dropdown	arrow	to	the	right.

c.	 Select	the	appropriate	menu	event	handler.	For	example,	for	the
blackFore-ColorButton	tool	strip	button,	select	the
blackForeColorMenuItem_Click	event	handler.

Exercises
1.	 [SimpleEdit]	Copy	the	SimpleEdit	program	you	built	in	Lesson	5,	Exercise	10
(or	download	Lesson	5's	version	from	the	book's	website)	and	add	the	tool
strips,	buttons,	and	separators	shown	in	Figure	6.7.	Hints:

Figure	6.7

Delete	the	RichTextBox	control,	add	a	ToolStripContainer,	and	then	re-add
the	RichTextBox	inside	the	ToolStripContainer's	content	panel.	Then	add
the	ToolStrips.

The	black	button	(fourth	from	the	left	on	the	third	tool	strip	row)	is	a
ToolStripSplitButton	that	lets	the	user	pick	a	text	color.	It	contains	the
choices	Black,	White,	Red,	Green,	and	Blue.

The	white	button	next	to	the	text	color	button	is	another
ToolStripSplitButton	that	lets	the	user	pick	a	background	color.	It	contains
the	choices	Black,	White,	Pink,	Light	Green,	Light	Blue,	and	Yellow.

The	button	that	says	“AB”	is	a	ToolStripDropDownButton	that	provides	the
same	options	as	the	Format	menu's	Offset	submenu:	Normal,	Superscript,
and	Subscript.

2.	 [WPF,	SimpleEdit]	Copy	the	program	you	built	in	Lesson	5,	Exercise	12	(or
download	Lesson	5's	version	from	the	book's	website)	and	repeat	Exercise	1.
Hints:

Dock	a	ToolBarTray	to	the	top	of	the	DockPanel	control	below	the	menus.

Add	ToolBars	to	the	ToolBarTray.	Set	a	ToolBar's	Band	property	to	indicate
its	row	in	the	ToolBarTray.	Set	its	BandIndex	property	to	indicate	its
ordering	within	the	band.

Add	Buttons	and	Separators	to	the	ToolBars.

For	the	split	buttons,	use	ComboBoxes	containing	ComboBoxItems	that	hold
Images.	Set	one	ComboBoxItem's	IsSelected	property	to	True	to	set	a

ComboBox's	initial	selection.

Dock	a	StatusBar	at	the	bottom	of	the	DockPanel.	Give	it	a	StatusBarItem
containing	a	Label.

3.	 [SimpleEdit]	Copy	the	SimpleEdit	program	you	built	for	Exercise	1	and	add
menu	item	code	to	manage	the	new	tool	strip	buttons.	Add	code	to	synchronize
corresponding	menu,	context	menu,	and	tool	strip	button	items.	For	example,
the	following	shows	the	new	code	for	the	Align	Left	menu	item:

private	void	formatAlignLeftMenuItem_Click(object	sender,	EventArgs	e)

{

				formatAlignLeftMenuItem.Checked	=	true;

				formatAlignRightMenuItem.Checked	=	false;

				formatAlignCenterMenuItem.Checked	=	false;

				alignLeftContextMenuItem.Checked	=	true;

				alignRightContextMenuItem.Checked	=	false;

				alignCenterContextMenuItem.Checked	=	false;

				alignLeftButton.Checked	=	true;

				alignRightButton.Checked	=	false;

				alignCenterButton.Checked	=	false;

				MessageBox.Show("Align	Left");

}

4.	 [WPF,	SimpleEdit]	Repeat	Exercise	3	with	the	WPF	application	you	built	for
Exercise	2.	Hints:

In	WPF	Buttons	don't	have	Checked	or	IsChecked	properties,	so	you	can't
check	and	uncheck	the	alignment	toolbar	buttons.	Instead,	make	separate
images	to	represent	the	checked	state.	Place	checked	and	unchecked	images
in	Image	controls	with	the	Visibility	properties	set	to	Collapsed.	Then	use
code	similar	to	the	following	to	set	a	Button's	image	at	run	time:

alignLeftImage.Source	=	alignLeftUncheckedImage.Source;

Use	a	similar	trick	for	the	bullet	button.	Use	code	similar	to	the	following	to
set	the	button's	Image	property.	(Sorry	but	I	couldn't	think	of	a	way	to
handle	this	easily	without	using	if-else	statements,	which	you	learn	about
in	Lesson	18.)

if	(formatBulletMenuItem.IsChecked)

				bulletImage.Source	=	bulletCheckedImage.Source;

else

				bulletImage.Source	=	bulletUncheckedImage.Source;

To	handle	the	offset	toolbar	items,	give	names	to	the	offset	ComboBoxItems.
Then	set	the	selected	item	as	in	the	following	code.	(You	don't	need	to	set
this	to	false	for	the	items	that	are	not	selected.)

superscriptOffsetComboBoxItem.IsSelected	=	true;

Handle	the	indent	toolbar	ComboBox	the	same	way	you	handle	the	offset
ComboBox.

5.	 [SimpleEdit]	Copy	the	SimpleEdit	program	you	built	for	Exercise	3	and	attach
the	tool	strip	controls	to	the	corresponding	event	handlers.	(Don't	worry	about
the	color	controls	just	yet.)

6.	 [WPF,	SimpleEdit]	Repeat	Exercise	5	with	the	WPF	application	you	built	for
Exercise	4.	Hints:

Handle	the	Selected	events	for	the	offset	and	indentation	ComboBoxItems.

When	the	window	loads,	it	raises	the	Selected	events	for	the	initially
selected	ComboBoxItems.	Unfortunately	the	window	hasn't	finished	loading
all	of	its	controls	yet,	and	the	program	crashes	if	it	tries	to	set	values	for
controls	that	aren't	yet	loaded.	To	prevent	that,	begin	the	event	handlers	for
the	initially	selected	ComboBoxItems	with	the	following	statement.	(The
statement	basically	means,	“If	the	window	isn't	loaded	yet,	exit	the	event
handler.”)

if	(!IsLoaded)	return;

You	may	notice	that	the	ComboBoxItem	event	handlers	execute	twice	if	you
select	one	of	the	corresponding	menu	or	context	menu	items.	That's	a	bit
inefficient,	but	don't	worry	about	it	for	now.	We'll	fix	it	later.

7.	 [SimpleEdit]	Copy	the	SimpleEdit	program	you	built	for	Exercise	5	and	add
code	to	display	the	appropriate	image	in	the	Text	Color	and	Background	tool
strip	buttons.	For	example,	use	code	similar	to	the	following	for	the	green	text
color	choice:

private	void	fgGreenButton_Click(object	sender,	EventArgs	e)

{

				fgButton.Image	=	fgGreenButton.Image;

				MessageBox.Show("Text	Color	Green");

}

8.	 [WPF,	SimpleEdit]	Copy	the	SimpleEdit	program	you	built	for	Exercise	6	and
add	placeholder	code	to	display	message	boxes	when	the	user	selects	a	Text
Color	or	Background	tool	strip	button.	For	example,	use	code	similar	to	the
following	for	the	green	text	color	choice:

private	void	greenForeColorComboBoxItem_Selected(object	sender,

				RoutedEventArgs	e)

{

				MessageBox.Show("Text	Color	Green");

}

9.	 [SimpleEdit]	Menu	items	and	normal	buttons	can	display	text	explaining	what
they	do,	but	toolbar	buttons	usually	display	images	that	may	not	be	intuitively
obvious.	To	help	the	user	understand	what	toolbar	buttons	do,	you	should	give
them	tooltips.	Copy	the	SimpleEdit	program	you	built	for	Exercise	7.	Set	each
toolbar	item's	Text	property	to	a	meaningful	name.	For	example,	set	the	new

button's	Text	to	“New.”	That	should	automatically	set	each	button's	tooltip	to
the	same	value.

10.	 [WPF,	SimpleEdit]	Repeat	Exercise	9	with	the	WPF	application	you	built	for
Exercise	8.	(Hint:	Set	the	ToolTip	properties	for	the	Button,	ComboBox,	and
ComboBoxItem	controls.)

11.	 [Games]	Copy	the	tic-tac-toe	(or	naughts-and-crosses)	program	you	built	for
Exercise	2-3	(or	download	Lesson	2's	version	from	the	book's	website).	Make
these	modifications:

Add	a	StatusStrip	with	a	ToolStripStatusLabel	named	turnLabel.	Set	its
initial	Text	to	Xs	Turn.

When	the	user	takes	a	square	for	X,	hide	the	little	X	and	O	buttons	for	that
square	and	make	the	status	label	say	Os	Turn.

When	the	user	takes	a	square	for	O,	hide	the	little	X	and	O	buttons	for	that
square	and	make	the	status	label	say	Xs	Turn.

Add	a	File	menu	with	two	new	commands:

New	resets	all	of	the	program's	controls	to	start	a	new	game.

Exit	closes	the	program.

12.	 [WPF,	Games]	Repeat	Exercise	11	with	the	program	you	wrote	for	Exercise	2-4.
Hints:

To	hide	a	control	in	WPF,	set	its	Visibility	property	to	Visibility.Hidden.

To	change	the	status	label's	text,	set	its	Content	property.

13.	 [Games]	Copy	the	program	you	built	for	Exercise	11	and	make	the	following
modifications:

Initially	disable	the	little	O	buttons.

When	the	user	clicks	an	X	button,	disable	all	of	the	X	buttons	and	enable	all
of	the	O	buttons.	(Hint:	Write	the	code	for	one	of	the	X	buttons,	make	sure
it's	correct,	and	then	copy	and	paste	that	code	for	the	other	X	buttons.
Copying	and	pasting	code	like	this	isn't	good	programming	practice,	but
we'll	fix	it	in	Lesson	20.)

When	the	user	clicks	an	O	button,	disable	all	of	the	O	buttons	and	enable	all
of	the	X	buttons.	(Hint:	Use	the	technique	you	used	for	the	X	buttons.)

14.	 [WPF,	Games]	Repeat	Exercise	13	with	the	program	you	wrote	for	Exercise	12.

15.	 [Drawing]	Build	the	Scribbler	program	shown	in	Figure	6.8.	Give	it	a
ToolStripContainer	and	two	ToolStrips.

Figure	6.8

Give	the	first	ToolStrip	buttons	representing	arrow,	line,	rectangle,	ellipse,
curve,	and	star	tools.	Make	these	tools	exclusive	choices	so	if	the	user
selects	one,	the	others	deselect.

Give	the	second	ToolStrip	two	ToolStripDropDownButtons	to	represent
foreground	and	background	colors.	Make	the	entries	in	each	dropdown
exclusive	choices	and	make	the	choices	display	their	images	on	their
ToolStripDropDownButtons.

16.	 [WPF,	Drawing]	Repeat	Exercise	15	with	a	WPF	application.

17.	 [Drawing]	Copy	the	program	you	built	for	Exercise	15	and	add	tooltips	to	the
toolbar	tools.

18.	 [WPF,	Drawing]	Repeat	Exercise	17	with	the	program	you	built	for	Exercise	17.

NOTE

Please	select	the	videos	for	Lesson	6	online	at
www.wrox.com/go/csharp24hourtrainer2evideos.

http://www.wrox.com/go/csharp24hourtrainer2evideos

Lesson	7

Using	RichTextBoxes
The	TextBox	control	lets	the	user	enter	text	and	that's	about	it.	It	can	display	its
text	in	different	colors	and	fonts,	but	it	cannot	give	different	pieces	of	text
different	properties.	The	TextBox	is	intended	to	let	the	user	enter	a	simple	string,
like	a	name	or	street	address,	and	very	little	more.

The	RichTextBox	is	a	much	more	powerful	control.	It	can	display	different	pieces	of
text	with	different	colors,	fonts,	and	styles.	It	can	adjust	paragraph	indentation
and	make	bulleted	lists.	It	can	even	include	pictures.	It's	not	as	powerful	as	a	full-
featured	word	processor,	such	as	Microsoft	Word	or	OpenOffice's	Writer,	but	it
can	produce	a	much	more	sophisticated	result	than	the	TextBox.

In	this	lesson	you	learn	about	the	RichTextBox	control	and	how	to	use	it.	You	have
a	chance	to	experiment	with	the	control,	and	you	use	it	to	add	enough
functionality	to	the	SimpleEdit	program	to	finally	make	the	program	useful.

Using	RichTextBox	Properties
To	change	the	appearance	of	the	text	inside	a	RichTextBox,	you	first	select	the	text
that	you	want	to	change,	and	then	you	set	one	of	the	control's	properties.

To	select	the	text,	you	use	the	control's	SelectionStart	and	SelectionLength
properties	to	indicate	where	the	text	begins	and	how	many	letters	it	includes.	Note
that	the	letters	are	numbered	starting	with	0.	(In	fact,	almost	all	numbering	starts
with	0	in	C#.)	For	example,	setting	SelectionStart	=	0	and	SelectionLength	=	1
selects	the	control's	first	letter.

After	you	select	the	text,	you	set	one	of	the	RichTextBox's	properties	to	the	value
that	you	want	the	selected	text	to	have.

For	example,	the	following	code	makes	the	RichTextBox	named
contentRichTextBox	display	some	text	and	colors	the	word	“red”:

contentRichTextBox.Text	=	"Some	red	text";

contentRichTextBox.SelectionStart	=	5;

contentRichTextBox.SelectionLength	=	3;

contentRichTextBox.SelectionColor	=	Color.Red;

Table	7.1	lists	properties	that	you	can	use	to	change	the	text's	appearance.

Table	7.1

Property Purpose

SelectionAlignment Aligns	the	selection's	paragraph	on	the	left,	center,	or
right.

SelectionBackColor Sets	the	selection's	background	color.

SelectionBullet Determines	whether	the	selection's	paragraph	is
bulleted.

SelectionCharOffset Determines	whether	the	selection	is	superscript	(offset	>
0),	subscript	(offset	<	0),	or	normal	(offset	=	0).

SelectionColor Sets	the	selection's	color.

SelectionFont Sets	the	selection's	font.

SelectionHangingIndent The	first	line	in	the	selection's	paragraph	is	indented
normally	and	then	subsequent	lines	in	the	paragraph	are
indented	by	this	amount.

SelectionIndent All	lines	are	indented	by	this	amount.

SelectionProtected Marks	the	selected	text	as	protected	so	the	user	cannot
modify	it.

SelectionRightIndent All	lines	are	indented	on	the	right	by	this	amount.

The	FontFeatures	example	program	shown	in	Figure	7.1	demonstrates	properties
that	change	the	appearance	of	text	within	a	paragraph.	These	include	the

SelectionBackColor,	SelectionCharOffset,	SelectionColor,	and	SelectionFont.

Figure	7.1

For	example,	the	following	code	shows	how	the	FontFeatures	program	sets	the
background	color	behind	the	word	“BackColor”:

contentRichTextBox.SelectionStart	=	41;

contentRichTextBox.SelectionLength	=	9;

contentRichTextBox.SelectionBackColor	=	Color.Yellow;

The	ParagraphFeatures	program	shown	in	Figure	7.2	demonstrates	properties
that	change	the	way	paragraphs	are	displayed.	These	include	SelectionIndent,
SelectionHangingIndent,	SelectionRightIndent,	SelectionBullet,	and
SelectionAlignment.

Figure	7.2

For	example,	the	following	code	shows	how	the	ParagraphFeatures	program	gives
the	second	paragraph	a	20	pixel	hanging	indent:

contentRichTextBox.SelectionStart	=	82;

contentRichTextBox.SelectionLength	=	1;

contentRichTextBox.SelectionHangingIndent	=	20;

Table	7.2	summarizes	four	additional	properties	that	change	the	text	displayed	by
the	control	that	deserve	special	mention.

Table	7.2

Property Purpose

Text Gets	or	sets	the	control's	text	without	any	formatting.

Rtf Gets	or	sets	the	control's	Rich	Text	Format	(RTF)	contents.	This
includes	the	text	plus	RTF	formatting	codes	that	define	how	the
text	should	be	displayed.

SelectedText Gets	or	sets	the	selection's	text.

SelectedRtf Gets	or	sets	the	selection's	text	and	RTF	codes.

Giving	the	User	Control
Allowing	the	user	to	change	text	settings	is	easy.	When	the	user	selects	text	in	the
control,	the	RichTextBox	sets	its	SelectionStart	and	SelectionLength	properties
accordingly.	All	you	need	to	do	is	set	the	appropriate	property	(for	example,
SelectionColor)	and	the	selected	text	is	updated.

The	SetTextProperties	example	program	shown	in	Figure	7.3	uses	this	technique
to	let	the	user	control	text	color,	character	offset,	and	paragraph	alignment.	Select
some	text	and	then	click	the	tool	strip	buttons	to	change	the	text's	properties.

Figure	7.3

For	example,	the	following	code	shows	how	the	SetTextProperties	program
changes	the	currently	selected	text	to	have	a	black	background	and	white
foreground:

private	void	reverseColorsButton_Click(object	sender,	EventArgs	e)

{

				contentRichTextBox.SelectionBackColor	=	Color.Black;

				contentRichTextBox.SelectionColor	=	Color.White;

}

The	program's	other	buttons	work	similarly.

Using	RichTextBox	Methods
Lesson	2	briefly	described	properties,	methods,	and	events.	Other	lessons	have
also	worked	with	many	properties	and	events.	In	fact,	most	of	the	event	handlers
I've	discussed	in	the	lessons	so	far	catch	an	event	and	change	a	property	in
response.

Although	you've	worked	with	many	properties	and	events,	the	only	method	you've
seen	is	the	form's	Close	method,	which	makes	the	form	go	away.	For	example,	the
following	code	closes	the	form	that	executes	it:

Close();

The	RichTextBox	provides	many	new	methods	that	are	quite	helpful	for	building	a
text	editing	program.	Table	7.3	summarizes	some	of	the	most	useful	of	those
methods.

Table	7.3

Method Purpose

Clear Clears	all	text	from	the	control.

Copy Copies	the	current	selection	into	the	clipboard.

Cut Cuts	the	current	selection	into	the	clipboard.

DeselectAll Deselects	all	text	by	setting	SelectionLength	=	0.

LoadFile Loads	the	control's	text	from	a	file	with	one	of	various	formats	such
as	RTF	or	plaintext.

Paste Pastes	whatever	is	in	the	clipboard	into	the	current	selection.	This
can	be	anything	that	the	RichTextBox	understands	such	as	text,	RTF
formatted	text,	or	an	image.

Redo Redoes	the	previously	undone	command.

SaveFile Saves	the	control's	text	into	a	file	in	one	of	various	formats	such	as
RTF	or	plaintext.

SelectAll Selects	all	of	the	control's	text	by	setting	SelectionStart	=	0	and
SelectionLength	equal	to	the	text's	length.

Undo Undoes	the	most	recent	change.

The	following	code	shows	how	a	program	can	use	the	LoadFile	method:

contentRichTextBox.LoadFile("Test.rtf",	RichTextBoxStreamType.RichText);

The	first	parameter	passed	into	LoadFile	gives	the	name	of	the	file,	which	can	be
relative	to	the	program's	current	directory	or	a	full	path.

The	second	parameter	gives	the	type	of	file.	The	RichTextBoxStreamType
enumeration	lists	file	types	that	you	can	use.	The	choices	you	can	use	to	load	files

are	PlainText,	RichText,	and	UnicodePlainText.

Typing	Tips

When	you	type	contentRichTextBox.LoadFile(,	IntelliSense)	and	displays	the
popup	shown	in	Figure	7.4	to	show	the	parameters	that	the	LoadFile	method
expects.	(Visual	Studio	adds	red	squiggly	underlines	because	the	statement
isn't	finished	yet.	Until	I	finish	typing	the	statement,	Visual	Studio	flags	it	as
an	error.)

Figure	7.4

You	can	choose	from	three	different	overloaded	versions	of	the	method,	each
taking	different	parameters.	Overloaded	versions	of	a	method	have	the	same
name	but	take	different	parameters.	You	can	use	the	up	and	down	arrow	keys
to	scroll	through	the	method's	available	versions.

As	you	enter	parameters,	IntelliSense	updates	to	describe	the	next	parameter
that	it	expects.	Figure	7.5	shows	the	LoadFile	method	after	I	entered	a
filename	for	the	first	parameter.	IntelliSense	shows	that	the	next	parameter
should	be	a	value	of	type	RichTextBoxStreamType	named	fileType.	IntelliSense
even	shows	a	short	description	of	what	the	value	means	at	the	bottom
(although	it's	not	super	informative).

Figure	7.5

You	could	type	in	RichTextBoxStreamType	followed	by	a	dot	to	see	a	list	of
available	choices,	but	there's	an	even	easier	(in	other	words,	better)	way	to	do
this:	press	Ctrl+Space.	That	makes	IntelliSense	display	a	list	of	things	that	you
might	be	trying	to	type.	At	this	point,	IntelliSense	is	smart	enough	to	guess
that	you	want	to	type	RichTextBoxStreamType	so	it	initially	selects	that	type	and
even	displays	more	information	about	it,	as	shown	in	Figure	7.6.

Figure	7.6

Now	you	can	press	Tab	to	make	IntelliSense	fill	in	the	highlighted	value
RichTextBoxStreamType	for	you.

Next,	press	the	“.”	key	to	see	the	list	of	choices	shown	in	Figure	7.7,	pick	one,
and	press	Tab	to	add	it	to	the	code.	Finally,	add	a	semicolon	at	the	end	of	the
line	and	you're	done.

Figure	7.7

I	know	this	sounds	like	a	big	mess,	but	with	a	little	practice	it	becomes
surprisingly	quick	and	easy.	Typing	everything	by	hand,	I	can	enter	the
previous	LoadFile	statement	in	about	30	seconds.	With	IntelliSense's	help,	I
can	type	the	same	line	in	under	10	seconds.

The	following	code	shows	how	a	program	can	use	the	SaveFile	method.	As	with
LoadFile,	the	first	parameter	gives	the	file's	name	and	the	second	gives	its	type:

contentRichTextBox.SaveFile("Test.rtf",	RichTextBoxStreamType.RichText);

Using	WPF	Commands
A	program	can	use	commands	to	manipulate	the	contents	of	a	RichTextBox.	That
control	also	provides	commands	that	the	user	can	invoke	interactively.	For
example,	the	user	can	press	Ctrl+E	to	center	paragraphs.

Table	7.4	summarizes	the	most	useful	commands.	The	commands	for	the
Windows	Forms	and	WPF	versions	of	the	control	differ	slightly.

Table	7.4

Action Windows	Forms WPF

Align	centered Ctrl+E Ctrl+E

Align	justified Ctrl+J

Align	left Ctrl+L Ctrl+L

Align	right Ctrl+R Ctrl+R

Bullet 1 Ctrl+Shift+L

Copy Ctrl+C Ctrl+C

Cut Ctrl+X Ctrl+X

Decrease	font	size Ctrl+[

Delete Delete Delete

Delete	next	word Ctrl+Delete Ctrl+Delete

Delete	previous	word Ctrl+Backspace Ctrl+Backspace

Increase	font	size Ctrl+]

Numbering 1 Ctrl+Shift+N

Paste Ctrl+V Ctrl+V

Subscript	2 Ctrl++ Ctrl++

Superscript	2 Ctrl+Shift++ Ctrl+Shift++

Toggle	bold Ctrl+B

Toggle	insert Insert Insert

Toggle	italic Ctrl+I

Toggle	underline Ctrl+U Ctrl+U

*	In	Windows	Forms,	Ctrl+Shift+L	iterates	through	the	available	bullet	and	numbering	styles.

**	The	subscript	and	superscript	sequences	are	a	bit	confusing.	For	subscript,	hold	the	Ctrl	key	and	press	+.
For	superscript,	hold	the	Ctrl	and	Shift	keys	and	press	+.	In	WPF,	those	commands	work	only	for	OpenType
fonts	that	come	with	subscript	and	superscript	variants.	Try	the	Palatino	Linotype	font.	For	more	information
on	OpenType	fonts,	see	msdn.microsoft.com/library/ms745109.aspx.

Both	controls	provide	additional	navigation	commands.	For	example,	Ctrl+Right
Arrow	moves	one	word	to	the	right	and	Ctrl+Down	Arrow	moves	one	paragraph

downward.

The	WPF	control	also	provides	a	context	menu	that	contains	the	Copy,	Cut,	and
Paste	commands.

For	more	information	on	the	WPF	control's	commands,	including	the	navigation
commands,	see
msdn.microsoft.com/library/system.windows.documents.editingcommands.aspx.

http://msdn.microsoft.com/library/system.windows.documents.editingcommands.aspx

Try	It
In	this	Try	It,	you	add	functionality	to	some	of	the	SimpleEdit	program's	menu
items	and	tool	strip	buttons.	You	use	the	RichTextBox	properties	and	methods	to
implement	the	commands	in	the	Edit	menu:	Undo,	Redo,	Copy,	Cut,	Paste,	Delete,
and	Select	All.	(This	also	makes	the	corresponding	buttons	work	at	no	extra
charge.)

Lesson	Requirements
In	this	lesson,	you:

Copy	the	SimpleEdit	program	you	built	in	Lesson	6,	Exercise	9.

Replace	the	program's	TextBox	with	a	RichTextBox	named	contentRichTextBox.

Add	code	to	handle	the	Edit	menu's	commands.

Add	Undo	code.

Add	Redo	code.

Add	Copy	code.

Add	Cut	code.

Add	Paste	code.

Add	Delete	code.

Add	Select	All	code.

NOTE

You	can	download	the	code	and	resources	for	this	lesson	from	the	website	at
www.wrox.com/go/csharp24hourtrainer2e.

Hints
For	the	Delete	menu	item,	simply	set	the	control's	SelectedText	property	to	an
empty	string:	"".

Step-by-Step
Copy	the	SimpleEdit	program	you	built	in	Lesson	6,	Exercise	9	(or	download
Lesson	6's	version	from	the	book's	website).

Replace	the	program's	TextBox	with	a	RichTextBox	named	contentRichTextBox.

Add	code	to	handle	the	Edit	menu's	commands.

1.	 Open	the	program's	form	in	the	Form	Designer.	Click	the	MenuStrip,
expand	the	Edit	menu,	and	double-click	the	Undo	menu	item.

2.	 Replace	the	placeholder	call	to	MessageBox.Show	with	the	following	line	of
code	so	the	event	handler	looks	like	this:

private	void	editUndoMenuItem_Click(object	sender,	EventArgs	e)

{

				contentRichTextBox.Undo();

}

3.	 Repeat	the	previous	two	steps	for	the	other	Edit	menu	items.	The	following
code	shows	the	new	event	handlers:

private	void	editUndoMenuItem_Click(object	sender,	EventArgs	e)

{

				contentRichTextBox.Undo();

}

private	void	editRedoMenuItem_Click(object	sender,	EventArgs	e)

{

				contentRichTextBox.Redo();

}

private	void	editCopyMenuItem_Click(object	sender,	EventArgs	e)

{

				contentRichTextBox.Copy();

}

private	void	editCutMenuItem_Click(object	sender,	EventArgs	e)

{

				contentRichTextBox.Cut();

}

private	void	editPasteMenuItem_Click(object	sender,	EventArgs	e)

{

				contentRichTextBox.Paste();

http://www.wrox.com/go/csharp24hourtrainer2e

}

private	void	editDeleteMenuItem_Click(object	sender,	EventArgs	e)

{

				contentRichTextBox.SelectedText	=	"";

}

private	void	editSelectAllMenuItem_Click(object	sender,	EventArgs	e)

{

				contentRichTextBox.SelectAll();

}

When	you	finish,	test	the	program's	new	features.	One	of	the	RichTextBox's	more
remarkable	features	is	its	ability	to	paste	different	kinds	of	items	from	the
clipboard.	For	example,	copy	a	picture	to	the	clipboard	and	then	use	the	program
to	paste	it	into	the	RichTextBox.

Exercises
1.	 [WPF,	SimpleEdit]	Repeat	the	Try	It	using	the	WPF	program	you	built	for
Lesson	6's	Exercise	10.	Hint:	To	delete	the	current	selection,	use	the	statement
contentRichTextBox.Selection.Text	=	"".

2.	 [SimpleEdit]	Copy	the	program	you	built	for	the	Try	It	and	add	simple	code	to
handle	the	File	menu's	New,	Open,	Save,	and	Exit	commands.	For	the	New
command,	simply	clear	the	RichTextBox.	(Hint:	Use	the	Clear	method.)

For	the	Open	and	Save	commands,	just	load	and	save	the	file	Test.rtf.	(The
program	will	create	the	file	the	first	time	you	save.	If	you	try	to	open	the	file
before	it	exists,	the	program	will	crash	so	don't	use	Open	before	you	use	Save.)
Lesson	8	explains	how	to	use	file	open	and	save	dialogs	to	let	the	user	pick	the
file	that	should	be	opened	or	saved.

3.	 [WPF,	SimpleEdit]	Repeat	Exercise	2	using	the	program	you	built	for	Exercise
1.	Hints:

One	way	to	clear	the	control's	contents	is	to	use	the	following	code:

contentRichTextBox.SelectAll();

contentRichTextBox.Selection.Text	=	"";

The	preceding	code	works	but	is	rather	slow	if	the	control	contains	a	lot	of
text.	The	following	code	is	more	complicated	but	more	efficient:

TextRange	range	=	new	TextRange(

				contentRichTextBox.Document.ContentStart,

				contentRichTextBox.Document.ContentEnd);

range.Text	=	"";

To	load	the	saved	file,	use	the	following	code	(sorry,	but	WPF's	version	of
the	RichTextBox	is	a	bit	more	complicated):

TextRange	range	=	new	TextRange(

				contentRichTextBox.Document.ContentStart,

				contentRichTextBox.Document.ContentEnd);

using	(System.IO.Stream	stream	=

				new	System.IO.FileStream("Test.rtf",	System.IO.FileMode.Open))

{

				range.Load(stream,	DataFormats.Rtf);

}

To	save	text	into	a	file,	use	the	following	code:

TextRange	range	=	new	TextRange(

				contentRichTextBox.Document.ContentStart,

				contentRichTextBox.Document.ContentEnd);

using	(System.IO.Stream	stream	=

				new	System.IO.FileStream("Test.rtf",	System.IO.FileMode.Create))

{

				range.Save(stream,	DataFormats.Rtf);

}

4.	 [SimpleEdit]	Copy	the	SimpleEdit	program	you	built	for	Exercise	2	and	add
code	to	handle	the	Format	menu's	commands	(except	for	the	Font	command
and	color	commands,	which	are	covered	in	Lesson	8).

Hints:

To	turn	bullets	on	and	off,	use	the	statement
contentRichTextBox.SelectionBullet	=	formatBulletMenuItem.Checked.

Make	the	indentation	commands	(None,	Hanging,	Left,	Right,	and	Both)
reset	any	other	indentations.	For	example,	the	Hanging	command	should
set	the	SelectionIndent	and	SelectionRightIndent	properties	to	0	as	in	the
following	code:

contentRichTextBox.SelectionIndent	=	0;

contentRichTextBox.SelectionRightIndent	=	0;

contentRichTextBox.SelectionHangingIndent	=	20;

5.	 [WPF,	SimpleEdit]	Copy	the	WPF	SimpleEdit	program	you	built	for	Exercise	3
and	add	code	to	handle	the	Format	menu's	alignment	and	bullet	commands.
Hints:

To	turn	bullets	on	and	off,	use	the	statement
EditingCommands.ToggleBullets.Execute(null,	contentRichTextBox).

Use	similar	EditingCommands	methods	for	the	alignment	commands.

6.	 6	[SimpleEdit]	Copy	the	SimpleEdit	program	you	built	for	Exercise	4	and	add
code	to	handle	the	toolbar's	color	commands.

7.	 The	SimpleEdit	program	allows	only	the	indentation	styles	None,	Hanging,
Left,	Right,	and	Both.	It	doesn't	allow	other	combinations	such	as	Hanging
plus	Right.	Build	a	program	that	uses	tool	strip	buttons	to	let	the	user	select
each	of	the	indentation	properties	(hanging,	left,	and	right)	individually.
Provide	a	fourth	button	to	clear	all	of	the	indentation	properties.

8.	 Make	a	program	with	two	menus	and	a	RichTextBox.	The	File	menu	should
contain	the	usual	Exit	command.	The	Font	menu	should	contain	the	items
Small,	Medium,	and	Large	and	should	use	small,	medium,	and	large	fonts,
respectively.	When	the	user	selects	one	of	those	items,	the	program	should	set
the	RichTextBox's	selected	text	to	use	that	item's	font.

9.	 [Hard]	Make	a	program	with	a	RichTextBox	and	a	toolbar	containing	Undo	and
Redo	buttons.	Initially	disable	the	buttons.	Whenever	the	user	changes	the
RichTextBox's	text	(catch	the	TextChanged	event)	or	clicks	one	of	the	buttons,
use	the	RichTextBox	control's	CanUndo	and	CanRedo	properties	to	enable	or
disable	the	buttons.	Verify	that	this	works	as	expected	when	you	click	the
buttons	or	press	Ctrl+Z	or	Ctrl+Y.	Also	make	sure	it	works	if	you	press	Ctrl+V
to	paste	into	the	RichTextBox.

NOTE

Please	select	the	videos	for	Lesson	7	online	at
www.wrox.com/go/csharp24hourtrainer2evideos.

http://www.wrox.com/go/csharp24hourtrainer2evideos

Lesson	8

Using	Standard	Dialogs
Many	applications	need	to	display	dialogs	to	let	the	user	select	certain	standard
pieces	of	information.	Probably	the	most	common	dialogs	let	the	user	select	a	file
to	open	and	select	a	file	to	save	into.	Other	dialogs	let	the	user	select	colors,
filesystem	folders,	fonts,	and	printers	for	printing.

Closely	related	to	the	print	dialog	are	the	print	preview	dialog	(which	lets	the	user
see	a	preview	of	a	printout	before	sending	it	to	the	printer,	possibly	saving	paper	if
the	user	then	cancels	the	printout)	and	the	page	setup	dialog	(which	lets	the	user
select	things	like	margins	before	printing).

You	could	build	all	of	these	dialogs	yourself	(or	you	will	be	able	to	once	you've
finished	reading	this	book),	but	why	should	you?	If	so	many	programs	need	the
exact	same	features,	why	shouldn't	someone	build	standard	dialogs	that	everyone
can	use?

Happily	that's	exactly	what	Microsoft	did.

C#	comes	with	the	following	standard	dialogs	that	handle	these	common	tasks:

ColorDialog

FolderBrowserDialog

FontDialog

OpenFileDialog

PageSetupDialog

PrintDialog

PrintPreviewDialog

SaveFileDialog

NOTE

You	might	remember	that	in	Lesson	1,	I	said,	“Normally	you	don't	need	to
worry	about	whether	a	feature	is	provided	by	Visual	Studio,	the	C#
language,	or	the	.NET	Framework.”	That's	true	here	as	well,	but	it's
informative	to	note	that	these	dialogs	are	actually	provided	by	the	.NET
Framework,	not	C#.	That	doesn't	change	the	way	you	use	them,	but	it	means
they're	the	same	dialogs	used	by	all	.NET	languages	such	as	Visual	Basic,
Visual	C++,	or	JScript.

By	building	these	standard	dialogs	into	the	.NET	Framework,	Microsoft	lets
programmers	using	many	languages	share	the	same	common	features.

These	dialogs	provide	some	fairly	sophisticated	features	for	you	automatically
with	no	additional	code.	For	example,	the	OpenFileDialog	class	lets	the	user
browse	through	the	filesystem	to	select	a	file	to	open.	The	dialog	can	automatically
verify	that	the	file	actually	exists	so	the	user	cannot	type	in	the	name	of	a	non-
existent	file	and	click	Open.

Similarly,	the	SaveFileDialog	class	automatically	prompts	the	user	if	the	selected
file	does	exist.	For	example,	if	the	user	selects	the	existing	file	Test.txt,	the	dialog
displays	the	message	“Test.txt	already	exists.	Do	you	want	to	replace	it?”	If	the
user	doesn't	click	Yes,	the	dialog	doesn't	close.	By	the	time	the	dialog	closes,	the
user	must	have	picked	a	file	that	doesn't	yet	exist	or	signed	off	on	destroying	the
original	file.

In	this	lesson	you	learn	how	to	display	these	standard	dialogs.	You	learn	how	to
initialize	them	to	show	the	user	the	program's	current	settings,	how	to	tell	which
button	the	user	clicked,	and	how	to	use	the	selections	the	user	made.

NOTE

This	lesson	actually	cheats	a	bit	on	the	printing	dialogs.	Although	it	explains
how	to	display	these	dialogs,	you	can't	do	anything	really	useful	with	them
until	you	know	how	to	print,	which	is	a	much	more	complicated	topic.	Lesson
30	gets	into	the	details	of	how	to	print.

Using	Dialogs	in	General
You	can	use	all	of	the	standard	dialogs	in	more	or	less	the	same	way.	The	only
differences	are	in	how	you	initialize	the	dialogs	so	they	show	colors,	fonts,	files,	or
whatever	and	in	how	you	handle	the	results.

You	can	use	a	standard	dialog	in	Windows	Forms	applications	by	following	these
four	steps:

1.	 Add	the	dialog	to	the	form.

2.	 Initialize	the	dialog	to	show	current	settings.

3.	 Display	the	dialog	and	check	the	return	result.

4.	 Process	the	results.

Adding	the	Dialog	to	the	Form
You	can	add	a	dialog	to	a	form	just	as	you	add	any	other	component,	such	as	a
Timer.	Like	other	components,	the	dialog	appears	below	the	form	in	the
Component	Tray.

The	control	Toolbox	has	a	Dialogs	tab	that	contains	most	of	the	standard	dialogs
so	they	are	easy	to	find.	The	printing-related	dialogs	are	contained	in	the	Printing
tab	so	they're	also	easy	to	find	(if	you	know	to	look	there).	Figure	8.1	shows	the
Toolbox's	Printing	and	Dialogs	tabs.

Figure	8.1

Initializing	the	Dialog
Most	of	the	standard	dialogs	start	with	some	initial	selection.	The	FontDialog
starts	with	a	font	selected,	the	ColorDialog	starts	with	a	color	selected,	and	so
forth.	Normally	you	should	initialize	the	dialog	so	it	shows	the	user	your

program's	current	settings.	For	example,	a	FontDialog	should	show	the	program's
current	font.

Usually	making	these	initial	selections	is	easy.	Simply	set	the	dialog's	key	property
(Font,	Color,	Filename)	to	the	value	you	want	to	display.

For	example,	the	following	code	sets	a	ColorDialog's	Color	property	to	the	form's
current	BackColor	value.	(Recall	that	this	means	the	form	or	other	object	that	is
currently	executing	the	code.)

backgroundColorDialog.Color	=	this.BackColor;

The	only	real	trick	here	is	in	knowing	what	properties	to	set.	Table	8.1	lists	the	key
properties	for	the	different	kinds	of	dialogs.

Table	8.1

Dialog Key	Property
ColorDialog Color

FolderBrowserDialog SelectedPath

FontDialog Font

OpenFileDialog FileName

SaveFileDialog FileName

The	PageSetupDialog,	PrintDialog,	and	PrintPreviewDialog	are	a	bit	different	from
the	others	so	I	won't	say	anything	more	about	them	here.	Printing	is	covered	in
more	detail	in	Lesson	30.

I	just	said	that	you	should	initialize	the	dialogs	to	show	current	values,	but	the	file
open	and	save	dialogs	have	a	special	feature	that	might	make	you	decide	to	skip
this	step.	When	you	use	them,	they	remember	the	directories	they	displayed	last.
That	means	if	the	user	opens	one	of	these	dialogs	again,	it	starts	in	the	same
directory	it	was	in	last	time.	In	fact,	if	the	user	closes	and	restarts	the	program,	the
dialogs	still	remember	where	they	were	last.

NOTE

If	you	have	several	different	OpenFileDialogs	(or	SaveFileDialogs)	in	the
same	program,	they	all	share	the	same	idea	of	where	they	were	last.

The	only	reason	you	might	want	to	initialize	these	dialogs	is	if	you	want	the
program	to	separately	track	more	than	one	file.	For	example,	you	might	want
different	places	to	save	text	files,	bitmaps,	and	RTF	files.

Also	note	that	the	OpenFileDialog	and	SaveFileDialog	remember	the	same
directory,	so	if	you	want	to	be	able	to	load	from	one	directory	and	save	into
another,	you	might	want	to	initialize	the	dialogs.

Displaying	the	Dialog	and	Checking	the	Return	Result
You	display	all	of	the	standard	dialogs	by	calling	their	ShowDialog	methods.
ShowDialog	displays	the	dialog	modally	and	then	returns	a	value	to	tell	the
program	whether	the	user	clicked	OK,	Cancel,	or	some	other	button.

NOTE

A	modal	dialog	prevents	the	user	from	interacting	with	the	program	until	it
is	closed.	It	forces	the	user	to	make	a	choice.	In	contrast,	a	modeless	dialog
would	let	the	user	move	to	the	program's	other	forms	without	closing	the
dialog.

NOTE

Note	that	the	OK	buttons	on	some	of	the	dialogs	don't	actually	say	“OK.”	The
OpenFileDialog's	OK	button	says	“Open,”	the	SaveFileDialog's	OK	button	says
“Save,”	and	the	PrintDialog's	OK	button	says	“Print.”	As	far	as	the	program
is	concerned,	however,	they're	all	OK	buttons,	and	you	test	for	them	all	in	the
same	way.

Your	code	should	test	the	returned	result	and,	if	the	user	clicked	OK,	it	should	do
something	with	the	user's	selection.

Unfortunately	to	make	that	test,	you	need	to	use	an	if	statement,	and	if
statements	aren't	covered	until	Lesson	18.	Luckily	this	particular	use	of	if
statements	is	quite	simple,	so	I	feel	only	a	little	guilty	about	showing	it	to	you	now.

The	following	code	shows	how	a	program	can	display	a	ColorDialog	named
backgroundColorDialog:

if	(backgroundColorDialog.ShowDialog()	==	DialogResult.OK)

{

				...

}

The	code	calls	the	dialog's	ShowDialog	method.	It	then	uses	the	if	statement	to
compare	the	value	that	ShowDialog	returns	to	the	value	DialogResult.OK.	If	the
values	are	equal	(that's	what	==	means	in	C#),	the	program	does	whatever	is	inside
the	braces	(which	I've	omitted	here).

If	the	user	clicks	the	Cancel	button,	ShowDialog	returns	the	value
DialogResult.Cancel,	so	the	if	test	fails	and	the	program	skips	the	code	inside	the
braces.

NOTE

If	the	user	closes	the	dialog	in	any	way	other	than	clicking	the	OK	button,	the
ShowDialog	method	returns	DialogResult.Cancel.	For	example,	if	the	user
presses	Alt+F4	or	clicks	the	X	button	on	the	dialog's	upper-right	corner,	the
dialog	considers	itself	canceled.

Processing	the	Results
Finally,	if	the	user	clicked	OK,	the	program	should	do	something	with	whatever
the	user	selected	in	the	dialog.	Often	this	means	doing	the	opposite	of	the	step
where	you	initialized	the	dialog.	For	example,	suppose	a	program	uses	the
following	code	to	initialize	its	ColorDialog:

backgroundColorDialog.Color	=	this.BackColor;

Then	it	would	use	the	following	code	to	set	the	form's	BackColor	property	to	the
color	that	the	user	selected:

this.BackColor	=	backgroundColorDialog.Color;

Putting	It	All	Together
The	following	code	shows	the	whole	sequence	for	a	ColorDialog.	The	program
initializes	the	dialog,	displays	it	and	checks	the	return	value,	and	processes	the
result:

backgroundColorDialog.Color	=	this.BackColor;

if	(backgroundColorDialog.ShowDialog()	==	DialogResult.OK)

{

				this.BackColor	=	backgroundColorDialog.Color;

}

This	looks	a	bit	more	complicated	than	code	examples	in	previous	lessons,	but	it's
not	too	bad.	The	only	new	part	is	the	if	test.	The	other	statements	simply	set	the
dialog's	Color	property	equal	to	the	form's	BackColor	property	and	vice	versa,	and
you've	been	setting	properties	for	quite	a	while	now.

Using	Dialog	Properties
Table	8.1	earlier	in	this	lesson	listed	the	dialogs'	key	properties,	but	some	of	the
dialogs	have	other	useful	properties,	too.

For	example,	the	ColorDialog	has	an	AllowFullOpen	property	that	determines
whether	the	user	can	click	the	dialog's	Define	Custom	Colors	button	to	show	an
area	on	the	right	where	the	user	can	create	new	colors.	Figure	8.2	shows	a
ColorDialog	displaying	this	area.

Figure	8.2

You	can	learn	more	about	these	extra	properties	by	reading	the	online	help.	For
example,	Microsoft's	help	page	for	the	ColorDialog	is
msdn.microsoft.com/library/system.windows.forms.colordialog.aspx.	You	can
replace	colordialog	in	this	URL	with	the	name	of	another	dialog	to	find	its	web
page.

Table	8.2	summarizes	the	ColorDialog's	most	useful	properties.

Table	8.2

Property Purpose

AllowFullOpen Determines	whether	the	user	can	create	custom	colors.

Color The	selected	color.

FullOpen Determines	whether	the	custom	color	area	is	open	when	the	dialog
appears.

Table	8.3	summarizes	the	FolderBrowserDialog's	most	useful	properties.

http://msdn.microsoft.com/library/system.windows.forms.colordialog.aspx

Table	8.3

Property Purpose

RootFolder The	root	folder	where	the	dialog	starts	browsing.	The	Properties
window	lets	you	pick	from	values	such	as	Desktop,	Favorites,
History,	and	MyComputer.

SelectedPath The	selected	folder.

Table	8.4	summarizes	the	FontDialog's	most	useful	properties.

Table	8.4

Property Purpose

FixedPitchOnly Determines	if	the	dialog	allows	the	user	to	select	only	fixed-width
fonts.	This	is	useful,	for	example,	if	you	are	going	to	use	the	font
to	build	a	report	and	you	need	the	characters	to	all	have	the	same
width	so	columns	line	up	properly.

Font The	selected	font.

FontMustExist Determines	whether	the	dialog	raises	an	error	if	the	selected	font
doesn't	exist	(for	example,	if	the	user	types	“ExtraBold”	for	the
font	style	and	that	style	isn't	available	for	the	selected	font).

MaxSize The	largest	allowed	size	for	the	font.

ShowColor Determines	whether	the	dialog	lets	the	user	select	a	font	color.	If
you	set	this	to	True,	use	the	dialog's	Color	property	to	see	which
color	was	selected.

ShowEffects Determines	whether	the	dialog	lets	the	user	select	underline,
strikeout,	and	font	color.	(To	select	font	color,	ShowColor	and
ShowEffects	must	both	be	True.)

Table	8.5	summarizes	the	OpenFileDialog's	most	useful	properties.

Table	8.5

Property Purpose

AddExtension If	this	is	True	and	the	user	selects	a	filename	without	an
extension,	the	dialog	adds	the	default	extension	to	the	name.

CheckFileExists If	this	is	True,	the	dialog	won't	let	the	user	pick	a	file	that
doesn't	exist.

CheckPathExists If	this	is	True,	the	dialog	won't	let	the	user	pick	a	file	path	that
doesn't	exist.

DefaultExt The	default	file	extension.

FileName The	selected	file's	name.

Filter The	file	selection	filter.	(See	the	section	“Using	File	Filters”
later	in	this	lesson	for	details.)

FilterIndex The	index	of	the	currently	selected	filter.	(See	the	section
“Using	File	Filters”	later	in	this	lesson	for	details.)

InitialDirectory The	directory	where	the	dialog	initially	starts.

ReadOnlyChecked Indicates	whether	the	user	checked	the	dialog's	Read	Only	box.

ShowReadOnly Determines	whether	the	dialog	displays	its	Read	Only	box.

Title The	text	displayed	in	the	dialog's	title	bar.

The	SaveFileDialog	has	many	of	the	same	properties	as	the	OpenFileDialog.	See
Table	8.5	for	descriptions	of	the	properties	AddExtension,	CheckFileExists,
CheckPathExists,	DefaultExt,	FileName,	Filter,	FilterIndex,	InitialDirectory,
and	Title.

Table	8.6	summarizes	SaveFileDialog	properties	that	are	not	shared	with	the
OpenFileDialog.

Table	8.6

Property Purpose

CreatePrompt If	this	is	True,	and	the	user	selects	a	file	that	doesn't	exist,	the
dialog	asks	if	the	user	wants	to	create	the	file.

OverwritePrompt If	this	is	True	and	the	user	selects	a	file	that	already	exists,	the
dialog	asks	if	the	user	wants	to	overwrite	it.

ValidateNames Determines	whether	the	dialog	verifies	that	the	filename	doesn't
contain	any	invalid	characters.

Table	8.7	summarizes	the	PrintDialog's	most	useful	property.

Table	8.7

Property Purpose

Document You	set	this	property	to	tell	the	dialog	what	document	object	to	print.
Lesson	30	has	more	to	say	about	this.

Table	8.8	summarizes	the	PrintPreviewDialog's	most	useful	property.

Table	8.8

Property Purpose

Document You	set	this	property	to	tell	the	dialog	what	document	object	to
preview.	Lesson	30	has	more	to	say	about	this.

Using	File	Filters
Most	of	the	dialogs'	properties	are	fairly	easy	to	understand.	Two	properties	that
are	particularly	confusing	and	important,	however,	are	the	Filter	and	FilterIndex
properties	provided	by	the	OpenFileDialog	and	SaveFileDialog.

The	Filter	property	is	a	list	of	text	prompts	and	file-matching	patterns	separated
by	the	|	character.	The	items	alternate	between	text	prompts	and	the
corresponding	filter.	The	dialog	provides	a	dropdown	list	where	the	user	can	select
one	of	the	text	prompts.	When	the	user	selects	a	prompt,	the	dialog	uses	the
corresponding	filter	to	decide	which	files	to	display.

For	example,	consider	the	following	value:

Bitmap	Files|*.bmp|Graphic	Files|*.bmp;*.gif;*.png;*.jpg|All	Files|*.*

This	value	represents	three	categories	of	files:

The	text	prompt	“Bitmap	Files”	with	filter	*.bmp.

The	text	prompt	“Graphic	Files”	with	filter	*.bmp;*.gif;*.png;*.jpg.	That
filter	matches	files	ending	with	.bmp,	.gif,	.png,	or	.jpg.

The	text	prompt	“All	Files”	with	filter	*.*.

Figure	8.3	shows	an	OpenFileDialog.	The	filter	dropdown	(just	above	the	Open
and	Cancel	buttons)	has	the	text	prompt	“Graphics	Files”	selected.	(The	dialog
automatically	added	the	filter	in	parentheses	just	to	confuse	the	user.)	The	dialog
is	listing	the	files	in	this	directory	that	match	the	filter.	In	this	case,	the	directory
contains	seven	.png	files.

Figure	8.3

Once	you	understand	the	Filter	property,	the	FilterIndex	property	is	simple.
FilterIndex	is	simply	the	index	of	the	selected	filter,	where	1	means	the	first	filter,
2	means	the	second,	and	so	forth.	(Remember	in	Lesson	7	when	I	said,	“almost	all
numbering	starts	with	0	in	C#”?	This	is	one	of	the	rare	exceptions.)	You	can	use
FilterIndex	to	initially	select	the	filter	that	you	think	will	be	most	useful	to	the
user.

The	OpenFileDialog	and	SaveFileDialog	both	use	the	same	type	of	Filter	and
FilterIndex	properties.	In	fact,	usually	if	a	program	displays	both	of	these	dialogs,
they	should	use	the	same	Filter	value.	If	a	program	can	load	.txt	and	.rtf	files,	it
should	probably	be	able	to	save	.txt	and	.rtf	files.

NOTE

To	carry	this	idea	one	step	further,	you	could	set	the	SaveFileDialog's
FilterIndex	property	to	the	value	selected	by	the	user	in	the	OpenFileDialog
under	the	assumption	that	a	user	who	loads	a	.txt	file	is	later	likely	to	want
to	save	it	as	a	.txt	file.

Using	Dialogs	in	WPF
Unfortunately,	WPF	provides	only	a	PrintDialog	and	doesn't	include	the	other
standard	dialogs.

If	you've	been	paying	attention,	you're	probably	saying,	“Wait.	Earlier	in	this
lesson	you	said	that	the	standard	dialogs	were	provided	by	the	.NET	Framework.
Doesn't	that	mean	WPF	programs	can	use	them,	too?”	(If	you	said	this	and	are
reading	this	book	as	part	of	a	programming	course,	tell	your	instructor	that	you
deserve	5	extra	points	on	the	next	quiz.)

That's	true—WPF	programs	can	use	the	standard	dialogs,	but	not	in	the	same	way
a	Windows	Forms	application	does.

WPF	normally	doesn't	display	the	common	dialogs	in	the	Toolbox,	so	you	can't
add	them	to	a	window	and	you	can't	set	their	properties	in	the	Properties	window
at	design	time.	Instead,	you	need	to	create,	initialize,	and	display	the	dialogs	with
code.

Before	you	write	any	code,	you	need	to	tell	Visual	Studio	about	the	part	of	the
.NET	Framework	that	contains	the	dialogs.	To	do	that,	open	the	Project	menu	and
select	Add	Reference	to	open	the	Reference	Manager	shown	in	Figure	8.4.

Figure	8.4

On	this	dialog,	check	the	boxes	next	to	System.Windows.Forms	and
System.Drawing,	and	click	OK.	(The	first	reference	tells	where	the	dialogs	are
defined.	The	second	lets	the	program	understand	Color	and	Font	objects,	so	you
need	it	if	you're	working	with	those	two	dialogs.)

Now	you	can	use	code	similar	to	the	following	to	make	a	WPF	program	display	an
OpenFileDialog:

//	Create	the	OpenFileDialog.

System.Windows.Forms.OpenFileDialog	fileDialog	=

				new	System.Windows.Forms.OpenFileDialog();

//	Set	the	Filter.

fileDialog.Filter	=	"Text	Files|*.txt|RTF	Files|*.rtf|All	Files|*.*";

//	Display	the	dialog	and	check	the	result.

if	(fileDialog.ShowDialog()	==	System.Windows.Forms.DialogResult.OK)

{

				//	Process	the	selected	file.

				MessageBox.Show(fileDialog.FileName);

}

The	first	statement	(which	spans	two	lines	because	it's	so	long)	creates	a
System.Windows.Forms.OpenFileDialog	object.	That	statement	really	just	creates	an
OpenFileDialog	object.	The	rest	of	the	declaration	tells	Visual	Studio	that	this	kind
of	object	is	located	in	the	System.Windows.Forms	part	of	the	.NET	Framework.

Next	the	code	initializes	the	dialog.	This	example	just	sets	the	dialog's	Filter
property,	but	you	could	set	other	properties,	too,	such	as	FilterIndex,
CheckFileExists,	and	ShowReadOnly.

The	code	then	displays	the	dialog	by	calling	its	ShowDialog	method	as	before	and
compares	the	returned	result	with	System.Windows.Forms.DialogResult.OK.	If	the
user	clicked	the	OK	button,	the	program	processes	the	result.	This	example	simply
displays	the	selected	file's	name	in	a	message	box,	but	a	real	application	would	do
something	like	open	the	file.

Unfortunately,	the	results	returned	by	some	of	the	dialogs	aren't	directly	usable	by
a	WPF	program.	For	example,	the	ColorDialog	lets	the	user	select	a	Color	but	WPF
programs	use	Brushes	instead	of	Colors.	Similarly,	the	FontDialog	lets	the	user	pick
a	Font	but	WPF	programs	don't	use	Font	objects	directly.	Some	of	this	lesson's
exercises	show	how	you	can	work	around	some	of	those	issues.

Try	It
In	this	Try	It,	you	get	to	try	out	all	of	the	standard	dialogs	except	the
PageSetupDialog	(which	is	hard	to	use	until	you're	doing	actual	printing).	You
initialize,	display,	and	process	the	results	of	the	dialogs	(if	the	user	clicks	the	OK
button).

Lesson	Requirements
In	this	lesson,	you:

Use	Labels,	TextBoxes,	and	Buttons	to	make	a	form	similar	to	the	one	shown	in
Figure	8.5.

Add	ColorDialog,	FontDialog,	FolderBrowserDialog,	OpenFileDialog,
SaveFileDialog,	PrintDialog,	and	PrintPreviewDialog	components	to	the	form.

When	the	user	clicks	the	BackColor	button,	display	the	ColorDialog	but	don't
allow	the	user	to	define	custom	colors.	If	the	user	clicks	OK,	set	the	form's
BackColor	property	to	the	dialog's	Color	value.

When	the	user	clicks	the	Font	button,	display	the	FontDialog,	allowing	the	user
to	select	the	font's	color.	If	the	user	clicks	OK,	set	the	form's	Font	property	to
the	dialog's	Font	value	and	its	ForeColor	property	to	the	dialog's	Color
property.

When	the	user	clicks	the	Folder	button,	display	the	FolderBrowserDialog.	Make
the	dialog	start	browsing	at	MyComputer.	If	the	user	clicks	OK,	make	the
Folder	TextBox	display	the	dialog's	SelectedPath	property.

When	the	user	clicks	the	Open	File	button,	display	the	OpenFileDialog.	Use	a
filter	that	lets	the	user	select	text	files,	RTF	files,	or	all	files.	If	the	user	clicks
Open,	make	the	Open	File	TextBox	display	the	dialog's	FileName	property	and
set	the	SaveFileDialog's	FilterIndex	equal	to	the	OpenFileDialog's	FilterIndex.

When	the	user	clicks	the	Save	File	button,	display	the	SaveFileDialog.	Use	the
same	filter	used	by	the	OpenFileDialog.	If	the	user	clicks	Save,	make	the	Save
File	TextBox	display	the	dialog's	FileName	property	and	set	the	OpenFileDialog's
FilterIndex	equal	to	the	SaveFileDialog's	FilterIndex.

When	the	user	clicks	the	Print	button,	display	the	PrintDialog	and	ignore	the
return	result.

When	the	user	clicks	the	Print	Preview	button,	display	the	PrintPreviewDialog
and	ignore	the	return	result.

Figure	8.5

NOTE

You	can	download	the	code	and	resources	for	this	lesson	from	the	website	at
www.wrox.com/go/csharp24hourtrainer2e.

Hints
Be	sure	to	initialize	each	of	the	dialogs	before	displaying	them.

Step-by-Step
Use	Labels,	TextBoxes,	and	Buttons	to	make	a	form	similar	to	the	one	shown	in
Figure	8.5.

1.	 Add	and	arrange	the	controls	in	whatever	manner	you	find	easiest.

2.	 Set	the	Buttons'	Anchor	properties	to	Top,	Right.	Set	the	TextBoxes'	Anchor
properties	to	Top,	Left,	Right.

Add	ColorDialog,	FontDialog,	FolderBrowserDialog,	OpenFileDialog,
SaveFileDialog,	PrintDialog,	and	PrintPreviewDialog	components	to	the	form.

1.	 Add	the	dialogs.	They	appear	in	the	Component	Tray,	not	on	the	form.

2.	 Give	the	dialogs	good	names.

When	the	user	clicks	the	BackColor	button,	display	the	ColorDialog	but	don't
allow	the	user	to	define	custom	colors.	If	the	user	clicks	OK,	set	the	form's
BackColor	property	to	the	dialog's	Color	value.

1.	 To	prevent	the	user	from	defining	custom	colors,	set	the	ColorDialog's
AllowFullOpen	property	to	False.

2.	 Use	code	similar	to	the	following:

private	void	backColorButton_Click(object	sender,	EventArgs	e)

{

				backgroundColorDialog.Color	=	BackColor;

				if	(backgroundColorDialog.ShowDialog()	==	DialogResult.OK)

				{

								BackColor	=	backgroundColorDialog.Color;

				}

}

When	the	user	clicks	the	Font	button,	display	the	FontDialog,	allowing	the	user
to	select	the	font's	color.	If	the	user	clicks	OK,	set	the	form's	Font	property	to
the	dialog's	Font	value	and	its	ForeColor	property	to	the	dialog's	Color
property.

1.	 To	allow	the	user	to	select	the	font's	color,	set	the	dialog's	ShowColor
property	to	True.

http://www.wrox.com/go/csharp24hourtrainer2e

2.	 Use	code	similar	to	the	following:

private	void	fontButton_Click(object	sender,	EventArgs	e)

{

				formFontDialog.Font	=	Font;

				formFontDialog.Color	=	ForeColor;

				if	(formFontDialog.ShowDialog()	==	DialogResult.OK)

				{

								Font	=	formFontDialog.Font;

								fontTextBox.Text	=	formFontDialog.Font.ToString();

								ForeColor	=	formFontDialog.Color;

				}

}

When	the	user	clicks	the	Folder	button,	display	the	FolderBrowserDialog.	Make
the	dialog	start	browsing	at	MyComputer.	If	the	user	clicks	OK,	make	the
Folder	TextBox	display	the	dialog's	SelectedPath	property.

1.	 To	start	browsing	at	MyComputer,	use	the	Properties	window	to	set	the
dialog's	RootFolder	property	to	MyComputer.

2.	 Use	code	similar	to	the	following:

private	void	folderButton_Click(object	sender,	EventArgs	e)

{

				if	(testFolderBrowserDialog.ShowDialog()	==	DialogResult.OK)

				{

								folderTextBox.Text	=	testFolderBrowserDialog.SelectedPath;

				}

}

When	the	user	clicks	the	Open	File	button,	display	the	OpenFileDialog.	Use	a
filter	that	lets	the	user	select	text	files,	RTF	files,	or	all	files.	If	the	user	clicks
Open,	make	the	Open	File	TextBox	display	the	dialog's	FileName	property	and
set	the	SaveFileDialog's	FilterIndex	equal	to	the	OpenFileDialog's	FilterIndex.

1.	 Use	the	filter:

Text	Files|*.txt|RTF	Files|*.rtf|All	Files|*.*

2.	 Use	code	similar	to	the	following:

private	void	openFileButton_Click(object	sender,	EventArgs	e)

{

				if	(testOpenFileDialog.ShowDialog()	==	DialogResult.OK)

				{

								openFileTextBox.Text	=	testOpenFileDialog.FileName;

								testSaveFileDialog.FilterIndex	=

												testOpenFileDialog.FilterIndex;

				}

}

When	the	user	clicks	the	Save	File	button,	display	the	SaveFileDialog.	Use	the
same	filter	used	by	the	OpenFileDialog.	If	the	user	clicks	Save,	make	the	Save

File	TextBox	display	the	dialog's	FileName	property	and	set	the	OpenFileDialog's
FilterIndex	equal	to	the	SaveFileDialog's	FilterIndex.

1.	 Use	the	filter:

Text	Files|*.txt|RTF	Files|*.rtf|All	Files|*.*

2.	 Use	code	similar	to	the	following:

private	void	saveFileButton_Click(object	sender,	EventArgs	e)

{

				if	(testSaveFileDialog.ShowDialog()	==	DialogResult.OK)

				{

								saveFileTextBox.Text	=	testSaveFileDialog.FileName;

								testOpenFileDialog.FilterIndex	=

												testSaveFileDialog.FilterIndex;

				}

}

When	the	user	clicks	the	Print	button,	display	the	PrintDialog.	Ignore	the
return	result.

1.	 Use	code	similar	to	the	following:

private	void	printButton_Click(object	sender,	EventArgs	e)

{

				testPrintDialog.ShowDialog();

}

When	the	user	clicks	the	Print	Preview	button,	display	the	PrintPreviewDialog.
Ignore	the	return	result.

1.	 Use	code	similar	to	the	following:

private	void	printPreviewButton_Click(object	sender,	EventArgs	e)

{

				testPrintPreviewDialog.ShowDialog();

}

Exercises
1.	 [WPF]	Repeat	the	Try	It	with	a	WPF	program.	Because	a	WPF	program	can't
directly	use	the	values	selected	by	the	ColorDialog	or	FontDialog,	just	display
the	user's	selections	in	TextBoxes.	For	the	ColorDialog,	display	the	dialog's
Color.ToString()	value.	For	the	FontDialog,	display	the	dialog's
Font.ToString()	value.	(Hint:	Don't	worry	about	setting	the	dialogs'
FilterIndex	properties.)

2.	 [WPF]	Copy	the	program	you	wrote	for	Exercise	1	and	use	the	color
information.	Use	code	similar	to	the	following	to	set	the	window's	background
color:

Color	backColor	=	new	Color()

{

				A	=	255,

				R	=	colorDialog.Color.R,

				G	=	colorDialog.Color.G,

				B	=	colorDialog.Color.B

};

Background	=	new	SolidColorBrush(backColor);

For	the	font	color,	use	a	similar	technique	to	set	the	foreground	color	of	the
font	TextBox.	(Setting	the	foreground	color	for	the	entire	window	is	harder.)

3.	 [WPF]	Make	a	program	similar	to	the	one	shown	in	Figure	8.6.

Figure	8.6

Hints:

If	any	of	the	event	handlers	make	the	program	crash	when	it	starts,	add	the
following	statement	at	the	beginning	of	the	event	handler	to	prevent	the
program	from	trying	to	use	controls	before	they	are	created.

if	(!IsLoaded)	return;

For	the	font	RadioButtons'	Checked	events,	use	code	similar	to	the	following:

sampleLabel.FontFamily	=	new	FontFamily("Arial");

For	the	Slider's	ValueChanged	event,	use	code	similar	to	the	following:

if	(!IsLoaded)	return;

sizeGroupBox.Header	=	"Size:	"	+	sizeSlider.Value.ToString();

sampleLabel.FontSize	=	sizeSlider.Value;

Give	Checked	and	Unchecked	event	handlers	to	the	Bold	CheckBox.	Make
them	set	sampleLabel.FontWeight	to	FontWeights.Bold	or
FontWeights.Normal.

Give	Checked	event	handlers	to	the	Normal,	Italic,	and	Oblique
RadioButtons.	Make	them	set	sampleLabel.FontStyle	to	FontStyles.Normal,
FontStyles.Italic,	and	FontStyles.Oblique,	respectively.

4.	 [SimpleEdit]	Copy	the	SimpleEdit	program	you	built	in	Lesson	7,	Exercise	6
(or	download	Lesson	7's	version	from	the	book's	website)	and	add	the	file	open
and	save	dialogs	for	the	File	menu's	Open	and	Save	As	commands.	Use	Filter
properties	that	let	the	user	select	RTF	files,	text	files,	or	all	files.	Continue
using	the	RichTextBox's	LoadFile	and	SaveFile	methods	even	though	they	don't
work	properly	for	non-RTF	files.

5.	 [SimpleEdit]	Copy	the	SimpleEdit	program	you	built	for	Exercise	4	and	add	a
font	selection	dialog	for	the	Format	menu's	Font	item,	and	the	font	tool	strip
button.	If	the	user	selects	a	font	and	clicks	OK,	make	the	RichTextBox's	selected
text	use	the	selected	font.

6.	 [SimpleEdit]	Copy	the	SimpleEdit	program	you	built	for	Exercise	5	and	modify
it	so	it	allows	the	user	to	select	a	color	on	the	font	dialog.

7.	 [SimpleEdit]	Copy	the	SimpleEdit	program	you	built	for	Exercise	6	and	add
color	selection	dialogs	for	the	Format	and	context	menus'	Text	Color	and
Background	Color	items.	(Allow	custom	colors.)

NOTE

Please	select	the	videos	for	Lesson	8	online	at
www.wrox.com/go/csharp24hourtrainer2evideos.

http://www.wrox.com/go/csharp24hourtrainer2evideos

Lesson	9

Creating	and	Displaying	New	Forms
Most	of	this	book	so	far	has	dealt	with	building	forms.	Previous	lessons	explained
how	to	add,	arrange,	and	handle	the	events	of	controls	on	a	form.	They	explained
how	to	work	with	specific	kinds	of	controls	such	as	Buttons,	MenuStrips,
ContextMenuStrips,	and	ToolStrips.	Using	these	techniques,	you	can	build	some
pretty	nice	forms	that	use	simple	code	to	manipulate	properties.	So	far,	however,
you've	only	learned	how	to	use	a	single	form.

In	this	lesson	you	learn	how	to	display	multiple	forms	in	a	single	program.	You	see
how	to	add	new	forms	to	the	project	and	how	to	display	one	or	more	instances	of
those	forms.	Once	you've	mastered	these	techniques,	you	can	make	programs	that
display	any	number	of	forms	for	all	kinds	of	different	purposes.

Adding	New	Forms
To	add	a	new	form	to	a	project,	open	the	Project	menu	and	select	Add	Windows
Form	to	see	the	dialog	shown	in	Figure	9.1.

Figure	9.1

Leave	the	Windows	Form	template	selected,	enter	a	good	name	for	the	new	type	of
form,	and	click	Add.	After	you	click	Add,	Visual	Studio	adds	the	new	form	type	to
the	project.	Figure	9.2	shows	the	new	form	in	Solution	Explorer.

Figure	9.2

Now	you	can	add	Labels,	TextBoxes,	Buttons,	MenuStrips,	and	any	other	controls
you	like	to	the	new	form.

NOTE

Remember,	to	open	a	form	in	the	Form	Designer,	double-click	it	in	Solution
Explorer.

Understanding	Classes	and	Instances
When	you	add	a	new	form	to	the	project,	you're	really	adding	a	new	type	of	form,
not	a	new	instance	of	that	type.	If	you	add	the	MakeUserForm	type	to	a	project	and
then	run	the	program,	you	still	only	see	the	original	startup	form	(with	the	catchy
name	Form1)	and	MakeUserForm	is	nowhere	to	be	seen.

Form	types	such	as	Form1	and	MakeUserForm	are	classes.	They're	like	blueprints	for
making	copies	of	the	class,	which	are	called	instances.	These	are	important	and
sometimes	confusing	topics	so	I'm	going	to	explain	them	briefly	now	and	explain
them	again	in	greater	detail	later	in	the	book	in	the	lessons	in	Section	IV.

A	class	defines	the	characteristics	of	any	objects	from	that	class.	Your	code	can	use
the	new	keyword	to	create	objects	of	the	class.	Once	you	define	the	class	you	can
make	as	many	copies	(instances)	as	you	like,	and	every	copy	is	identical	in
structure	to	all	of	the	others.	Different	instances	may	have	different	property
values	but	their	overall	features	are	the	same.

NOTE

You've	actually	been	working	with	classes	and	instances	for	quite	a	while.
Form1	is	a	class.	When	you	create	a	new	project,	Visual	Studio	adds	code	to
create	and	display	an	instance	of	the	Form1	class.

Controls	are	also	classes.	For	example,	the	Label	class	defines	the	behaviors
of	labels.	When	you	add	Labels	to	a	form,	you're	adding	instances	of	the
Label	class	to	the	form.	Those	instances	can	have	different	property	values
such	as	BackColor,	Enabled,	Anchor,	and	Text,	but	they	all	follow	the	rules
defined	by	the	Label	class.

For	a	form	example,	suppose	you	define	a	MakeUserForm	that	has	First	Name,	Last
Name,	Street,	City,	State,	and	ZIP	Labels	and	TextBoxes.	Now	suppose	your
program	displays	two	instances	of	this	form	class.	Both	of	the	forms	will	have	the
same	Labels	and	TextBoxes,	so	they	have	basically	the	same	structure.	However,
the	user	can	type	different	values	into	the	two	forms.

Your	code	can	also	change	different	instances	in	various	ways.	For	example,	menu
items,	buttons,	and	other	controls	could	invoke	event	handlers	that	modify	the
form:	change	its	colors,	move	controls	around,	resize	the	form,	or	whatever.
Here's	one	of	the	more	potentially	confusing	features	of	classes:	the	code	in	the
event	handlers	modify	the	form	that	is	currently	running	the	code.

For	example,	suppose	you	build	a	form	that	has	three	Buttons	that	change	the
form's	BackColor	property	to	red,	green,	and	blue,	respectively,	and	then	you
display	three	instances	of	the	form.	When	the	user	clicks	the	first	form's	Red
button,	the	event	handler	makes	the	first	form	red	but	the	other	forms	are
unchanged.	The	code	in	the	event	handler	is	running	in	the	first	form's	instance	so
that's	the	form	it	affects.

If	you	then	click	the	Green	button	on	the	second	form,	the	event	handler	changes
that	form's	background	color	to	green.	The	first	form	still	has	its	red	background
and	the	third	form	still	has	its	original	background	color.

Hopefully	by	now	you	think	I've	beaten	this	topic	into	the	ground	and	you
understand	the	difference	between	the	class	(MakeUserForm)	and	the	instance	(a
copy	of	MakeUserForm	visible	on	the	screen).	If	so,	you're	ready	to	learn	how	to
actually	display	forms.

Displaying	Forms
The	new	keyword	creates	a	new	instance	of	a	form.	If	you	want	to	do	anything
useful	with	the	form,	your	code	needs	a	way	to	refer	to	the	instance	it	just	created.
It	can	do	that	with	a	variable.	I'm	jumping	the	gun	a	bit	by	discussing	variables
(they're	covered	in	detail	in	Lesson	11)	but,	as	was	the	case	when	I	introduced	the
if	statement	in	Lesson	8,	this	particular	use	of	the	concept	is	very	useful	and	not
too	confusing,	so	I	feel	only	a	little	guilty	about	discussing	it	now.

In	short,	a	variable	is	a	named	chunk	of	memory	that	can	hold	a	piece	of	data.	To
declare	a	variable	to	refer	to	a	form	instance,	you	enter	the	form's	type	followed	by
whatever	name	you	want	to	give	the	variable.	For	example,	the	following	code
declares	a	variable	named	newUserForm	of	type	MakeUserForm:

MakeUserForm	newUserForm;

At	this	point,	the	program	has	a	variable	that	could	refer	to	a	MakeUserForm	object
but	right	now	it	doesn't	refer	to	anything.	It's	like	an	empty	envelope	that	could
hold	a	MakeUserForm	instance.	At	this	point	the	variable	contains	the	special	value
null,	which	basically	means	it	doesn't	refer	to	anything.

You	can	use	the	new	keyword	to	create	a	new	instance	of	the	form	class.	You	can
then	set	the	variable	equal	to	the	new	form	instance.	For	example,	the	following
code	creates	a	new	MakeNewUser	form	and	makes	the	newUserForm	variable	point	to
it:

newUserForm	=	new	MakeUserForm();

Now	the	variable	refers	to	the	new	form.	The	final	step	is	to	display	the	new	form.
You	can	do	that	by	calling	the	new	form's	ShowDialog	or	Show	method.

NOTE

Technically	the	variable	doesn't	hold	or	contain	the	form.	Instead,	it	contains
a	reference	to	the	form.	The	reference	is	like	an	address	that	points	to	where
the	form	really	is	in	memory.	When	your	code	says	something	like
newUserForm.Show(),	the	program	hunts	down	the	actual	form	instance	and
invokes	its	Show	method.

For	now	the	distinction	is	small	and	you	don't	need	to	worry	too	much	about
it,	but	later	it	will	be	useful	to	know	that	some	variables	are	value	types	that
actually	hold	their	values	(things	like	int,	long,	double)	and	some	are
reference	types	that	hold	references	to	their	values	(things	like	controls,
forms,	and,	interestingly,	string).

Lesson	17	says	more	about	this	when	it	discusses	structures.

The	ShowDialog	method	displays	the	form	modally.	That	means	the	form	appears
on	top	of	the	program's	other	forms	and	the	user	cannot	interact	with	the	other
forms	until	this	form	closes.

This	is	the	way	dialogs	normally	work.	For	example,	when	you	open	the	Project
menu	and	select	Add	Windows	Form,	the	Add	New	Item	dialog	displays	modally
so	you	cannot	interact	with	other	parts	of	the	IDE	(such	as	the	Properties	window,
Solution	Explorer,	or	menus)	until	you	close	the	dialog	by	clicking	Add	or	Cancel.

The	following	code	displays	the	form	referred	to	by	the	variable	newUserForm
modally:

newUserForm.ShowDialog();

The	Show	method	displays	the	form	non-modally.	That	means	the	form	appears
and	the	user	can	interact	with	it	or	with	the	program's	other	forms.

The	following	code	displays	the	form	referred	to	by	the	variable	newUserForm	non-
modally:

newUserForm.Show();

The	UserForms	example	program	shown	in	Figure	9.3	displays	a	main	form	with	a
New	User	button.	Each	time	you	click	the	button,	the	program	displays	a	new
MakeUserForm	non-modally.	Figure	9.3	shows	the	main	form	and	two
MakeUserForms.

Figure	9.3

The	following	code	shows	how	the	UserForms	program	displays	a	new
MakeUserForm	when	you	click	its	button:

private	void	newUserButton_Click(object	sender,	EventArgs	e)

{

				MakeUserForm	newUserForm;

				newUserForm	=	new	MakeUserForm();

				newUserForm.Show();

}

The	code	declares	a	variable	to	refer	to	the	form,	creates	the	new	form	instance,
and	displays	the	instance	non-modally.

Each	time	you	click	the	button,	the	event	handler	executes	again.	Each	time	it
runs,	the	event	handler	creates	a	new	version	of	the	variable	named	newUserForm,
makes	a	new	instance	of	the	MakeUserForm,	and	displays	that	instance,	so	each	time
you	click	the	button,	you	get	a	new	form.

Flood	of	Forms

In	Windows	Forms	applications,	the	startup	form's	type	Form1	is	just	like	any
other	form	type,	so	a	program	can	make	new	instances	of	it.	That	means	you
can	create	more	forms	that	look	just	like	the	startup	form	if	you	want.

Although	all	forms	look	about	the	same	to	the	user,	the	startup	form	has	a
special	position	in	the	application.	The	program	keeps	running	only	as	long	as
the	startup	form	exists.	If	you	close	that	form,	all	of	the	others	close,	too.

To	avoid	confusion,	you	should	generally	make	the	startup	form	look	different
from	other	forms	so	the	user	knows	that	it's	special.

By	default,	the	windows	in	WPF	applications	run	independently	so	if	you	close
the	main	window,	the	others	keep	running.	If	you	want	all	of	the	windows	to
close	when	the	main	window	does,	execute	the	following	statement	when	the
program	starts,	for	example,	in	the	main	window's	Loaded	event	handler:

Application.Current.ShutdownMode	=	ShutdownMode.OnMainWindowClose;

Controlling	Remote	Forms
When	you	create	a	new	form	and	make	a	variable	to	refer	to	it,	you	can	later	use
that	variable	to	manipulate	the	form.	There's	just	one	catch:	the	techniques
described	so	far	don't	keep	the	new	form	variable	around	long	enough	to	be	useful.

For	example,	the	following	code	defines	the	newUserForm	variable,	makes	it	point	to
a	new	form,	and	displays	the	form:

private	void	newUserButton_Click(object	sender,	EventArgs	e)

{

				MakeUserForm	newUserForm;

				newUserForm	=	new	MakeUserForm();

				newUserForm.Show();

}

When	the	program	finishes	executing	the	event	handler,	the	event	handler	stops
running.	If	the	user	clicks	the	button	again,	the	event	handler	springs	back	into
action.

Unfortunately,	when	the	event	handler	stops	running,	it	loses	its	grip	on	the
newUserForm	variable.	The	next	time	the	event	handler	runs,	it	creates	a	new
variable	named	newUserForm	and	works	with	that	one.

This	is	bad	for	a	program	that	wants	to	manipulate	the	new	form	later.	Because
the	variable	is	gone,	it	can't	refer	to	it	so	it	can't	manipulate	the	form.

The	good	news	is	that	this	is	fairly	easy	to	fix.	If	you	move	the	variable's
declaration	out	of	the	event	handler,	the	variable	exists	throughout	the	program's
lifetime.	The	event	handler	can	make	the	variable	point	to	a	new	form,	and	it	can
then	use	the	variable	later	to	manipulate	that	form.

The	RemoteForm	example	program	shown	in	Figure	9.4	uses	the	following	main
form	code	to	manage	a	secondary	ColorForm:

//	The	remote	form	we	will	manipulate.

ColorForm	remoteColorForm;

//	Create	and	display	the	remote	form.

private	void	Form1_Load(object	sender,		EventArgs	e)

{

				remoteColorForm	=	new	ColorForm();

				remoteColorForm.Show();

}

//	Make	the	color	form	red.

private	void	redButton_Click(object	sender,	EventArgs	e)

{

				remoteColorForm.BackColor	=	Color.Red;

				remoteColorForm.ForeColor	=	Color.Pink;

}

Figure	9.4

The	code	starts	by	declaring	the	variable	remoteColorForm	outside	of	any	event
handler.

When	the	program	displays	the	main	form,	its	Load	event	handler	creates	and
displays	a	new	ColorForm.

When	the	user	clicks	the	main	form's	Red	button,	its	event	handler	changes	the
remote	form's	BackColor	and	ForeColor	properties	to	red	and	pink,	respectively.
The	startup	form	also	contains	green	and	blue	buttons	that	have	similar	event
handlers.

The	remoteColorForm	variable	is	declared	outside	of	the	event	handlers,	so	the
event	handlers	have	access	to	it.	The	form's	Load	event	handler	initializes	the
variable	and	displays	the	remote	form.	The	redButton_Click	event	handler	uses	it.
Because	the	variable	is	declared	outside	of	the	event	handlers,	they	can	all	use	it.
(Lesson	13	has	more	to	say	about	when	and	where	variables	are	available	to	the
code.)

In	addition	to	modifying	a	remote	form's	properties,	you	can	change	the
properties	of	the	controls	on	that	form.	You	refer	to	a	control	by	using	the	form
variable,	followed	by	a	dot,	followed	by	the	control's	name.

For	example,	the	bold	line	in	the	following	code	accesses	the	form	referred	to	by
the	remoteColorForm	variable.	It	locates	that	form's	messageLabel	control	and
changes	its	Text	property	to	“I'm	red!”:

private	void	btnRed_Click(object	sender,	EventArgs	e)

{

				color_form.BackColor	=	Color.Red;

				color_form.ForeColor	=	Color.Pink;

				color_form.lblMessage.Text	=	"I'm	red!";

}

There's	one	small	catch	to	this	technique:	by	default	the	controls	on	a	form	are
private	so	the	code	in	other	forms	can't	manipulate	at	them.	You	can	easily	fix	this
by	setting	a	control's	Modifiers	property	to	Public,	either	in	the	Form	Designer	or
in	code.	Now	other	forms	can	see	the	control	and	change	its	properties.

NOTE

Controls	on	a	form	are	private	to	prevent	other	pieces	of	code	from
accidentally	messing	them	up.	By	making	a	variable	public,	you	remove	this
safeguard.	In	technical	terms,	you	have	weakened	the	form's	encapsulation
—its	ability	to	hide	its	internal	details	from	the	outside	world.

In	this	case,	you	want	to	allow	access	to	this	label's	Text	property	so	marking
the	label	as	public	is	reasonable.	However,	by	making	the	label	public	you
make	all	of	its	properties,	methods,	and	events	public,	not	just	its	Text
property.

A	more	restrictive	approach	would	be	to	add	a	public	SetCaption	method	to
the	ColorForm.	Then	other	code	would	call	that	method	instead	of	setting	the
label's	text	directly.	You	learn	how	to	build	those	kinds	of	methods	in	Lesson
20.

Try	It
In	this	Try	It,	you	create	an	application	similar	to	the	one	shown	in	Figure	9.5.
When	the	user	clicks	the	main	form's	buttons,	the	program	displays	the	other
forms	non-modally.

Figure	9.5

Lesson	Requirements
In	this	lesson,	you:

Create	the	forms	shown	in	Figure	9.5.

Declare	the	form	variables	outside	of	any	event	handler.

In	the	main	form's	Load	event	handler,	add	code	to	create	the	form	instances
but	don't	display	the	forms.

Add	code	to	the	main	form's	Button	event	handlers	to	display	the
corresponding	secondary	forms	non-modally.

NOTE

You	can	download	the	code	and	resources	for	this	lesson	from	the	website	at
www.wrox.com/go/csharp24hourtrainer2e.

Hints
Normally	every	form	appears	in	the	taskbar.	To	avoid	cluttering	the	taskbar
with	all	of	the	secondary	forms,	set	their	ShowInTaskbar	properties	to	False.

Step-by-Step
Create	the	forms	shown	in	Figure	9.5.

1.	 Create	the	main	form.

a.	 Start	a	new	project.	In	the	Properties	window,	expand	the	main	form's
Font	property	and	set	its	Size	subproperty	to	12.

b.	 Add	the	Buttons.	Center	them	as	a	group	and	set	their	Anchor	properties
to	None.

2.	 Create	the	GettingThereForm.

a.	 Open	the	Project	menu	and	select	Add	Windows	Form.	Enter	the	form
type	name	GettingThereForm	and	click	Add.

b.	 Set	the	form's	ShowInTaskbar	property	to	False.

c.	 Add	the	Label,	ListBox,	and	Buttons.	Set	the	ListBox's	Anchor	property	to
Top,	Bottom,	Left.	Set	the	Buttons'	Anchor	properties	to	Bottom,	Right.

3.	 Create	the	GettingAroundForm.

a.	 Repeat	step	2	for	the	GettingAroundForm.

4.	 Create	the	LodgingForm.

a.	 Repeat	step	2	for	the	LodgingForm.

5.	 Create	the	FunStuffForm.

a.	 Repeat	step	2	for	the	FunStuffForm.	Leave	the	CheckBoxes'	Anchor
properties	with	their	default	values	Top,	Left.

Declare	the	form	variables	outside	of	any	event	handler.

1.	 Add	the	following	to	the	main	form's	code	module	outside	of	any	event
handlers:

//	The	remote	forms.

GettingThereForm	gettingThereForm;

GettingAroundForm	gettingAroundForm;

LodgingForm	lodgingForm;

http://www.wrox.com/go/csharp24hourtrainer2e

FunStuffForm	funStuffForm;

In	the	main	form's	Load	event	handler,	add	code	to	create	the	form	instances
but	don't	display	the	forms.

1.	 Use	code	similar	to	the	following:

//	Initialize	the	forms	but	don't	display	them.

private	void	Form1_Load(object	sender,	EventArgs	e)

{

				gettingThereForm	=	new	GettingThereForm();

				gettingAroundForm	=	new	GettingAroundForm();

				lodgingForm	=	new	LodgingForm();

				funStuffForm	=	new	FunStuffForm();

}

Add	code	to	the	main	form's	Button	event	handlers	to	display	the
corresponding	secondary	forms	non-modally.

1.	 Create	the	Button	Click	event	handlers	and	make	each	call	the
corresponding	form	variable's	Show	method:

//	Display	the	getting	there	form.

private	void	gettingThereButton_Click(object	sender,	EventArgs	e)

{

				gettingThereForm.Show();

}

//	Display	the	getting	around	form.

private	void	gettingAroundButton_Click(object	sender,	EventArgs	e)

{

				gettingAroundForm.Show();

}

//	Display	the	lodging	form.

private	void	lodgingButton_Click(object	sender,	EventArgs	e)

{

				lodgingForm.Show();

}

//	Display	the	fun	stuff	form.

private	void	funStuffButton_Click(object	sender,	EventArgs	e)

{

				funStuffForm.Show();

}

Exercises
1.	 Build	the	UserForms	application	shown	in	Figure	9.3.

2.	 [WPF]	Repeat	Exercise	1	with	a	WPF	application.	(Hint:	Don't	forget	to	make
all	of	the	forms	close	when	you	close	the	main	window.)

3.	 Build	the	RemoteForm	application	shown	in	Figure	9.4.

4.	 [WPF]	Repeat	Exercise	3	with	a	WPF	application.	Hints:

In	WPF,	set	colors	equal	to	brushes	as	in	Brushes.Red.

To	set	the	remote	window's	background	color,	set	its	Background	property.

To	set	the	remote	form's	text	color,	set	the	Label's	Foreground	property.

You	don't	need	to	set	the	Modifiers	property	in	WPF.	(WPF	controls	don't
have	that	property.)

5.	 Modify	the	program	you	wrote	for	Exercise	3	so	the	buttons	also	change	the
label	on	the	color	form.	For	example,	the	Red	button	should	make	the	label
say,	“I'm	red!”	(Hint:	Don't	forget	to	set	the	Label's	Modifiers	property	to
Public.)

6.	 [WPF]	Repeat	Exercise	5	with	the	WPF	application	you	built	for	Exercise	4.

7.	 [WPF]	Repeat	the	Try	It	with	a	WPF	application.	(Hint:	Don't	forget	to	set	the
ShowInTaskbar	property.)

8.	 Unfortunately	the	Try	It	has	a	major	problem.	If	you	close	one	of	the	secondary
forms	and	then	click	the	main	form's	button	to	redisplay	that	form,	the
program	crashes.

When	you	close	the	form,	it	is	destroyed.	When	you	click	the	button	again,	the
program	tries	to	display	the	destroyed	form	and	that	won't	work.

To	fix	the	program,	give	each	of	the	secondary	forms	a	FormClosing	event
handler	similar	to	the	following:

private	void	LodgingForm_FormClosing(object	sender,

				FormClosingEventArgs	e)

{

				e.Cancel	=	true;

				Hide();

}

The	first	statement	cancels	the	close	so	the	form	stays	open.	The	second
statement	makes	the	form	invisible	but	keeps	it	alive.

9.	 [WPF]	Repeat	Exercise	8	for	the	WPF	program	you	built	in	Exercise	7.	(Hint:
In	WPF	you	need	to	use	the	Closing	event.)

10.	 Make	a	program	that	displays	a	Button	that	says	“New	Form.”	When	the	user
clicks	the	Button,	display	a	new	non-modal	instance	of	the	same	kind	of	form.

(What	happens	when	you	click	the	new	form's	button?	What	happens	if	you
close	the	new	form?	What	happens	if	you	make	several	forms	and	then	close
the	original	one?)

11.	 [WPF]	Repeat	Exercise	10	with	a	WPF	application.	After	you	experiment	a	bit,
set	Application.Current.ShutdownMode	=	ShutdownMode.OnMainWindowClose	and
test	the	program	again.

12.	 Copy	the	program	you	made	for	Exercise	10	and	add	a	TextBox	named
valueTextBox	to	the	form.	Before	you	display	the	new	form,	copy	the	main
form's	TextBox	value	into	the	new	form's	TextBox.	(Hint:	You	don't	need	to	set
the	TextBox's	Modifiers	property	to	Public	because	the	new	form	is	the	same
kind	as	the	old	one.	You	need	to	do	this	only	if	a	form	of	one	type	wants	to	peek
at	the	controls	on	a	form	of	a	different	type.)

13.	 [WPF]	Repeat	Exercise	12	with	the	WPF	program	you	made	for	Exercise	11.

14.	 Make	a	program	that	displays	a	TextBox	and	a	“New	Form”	Button.	When	the
user	clicks	the	Button,	display	a	new	form	of	type	MessageForm	modally.

The	MessageForm	holds	two	Labels.	The	first	Label	says	“You	entered.”	The
second	is	blank.	When	it	displays	the	MessageForm,	the	main	program	should
copy	whatever	is	in	its	TextBox	into	the	MessageForm's	second	label.	(Hint:	Now
you	need	to	set	the	label's	Modifiers	property	to	Public.)

15.	 [WPF]	Repeat	Exercise	14	with	a	WPF	application.

16.	 Build	the	Pick	A	Picture	program	shown	in	Figure	9.6.	When	the	user	clicks
one	of	the	thumbnail	images	on	the	main	form,	the	program	displays	a
PictureForm	showing	the	image	at	full	scale.	Use	whatever	images	you	like.

Figure	9.6

Hints:

Display	the	thumbnail	images	in	PictureBoxes	with	ScaleMode	set	to	Zoom.

Place	a	PictureBox	with	Location	=	(0,	0)	on	the	PictureForm.	Set	its
SizeMode	property	to	AutoSize.

Just	before	you	display	the	PictureForm,	use	the	following	code	to	make	it
fit	the	PictureBox	it	contains:

newPictureForm.ClientSize	=	newPictureForm.imagePictureBox.Size

17.	 [WPF]	Repeat	Exercise	16	with	a	WPF	application.	Hints:

On	the	PictureWindow,	set	the	size	of	the	Image	control	to	match	the	size	of
the	pictures.

To	make	the	PictureWindow	fit	the	Image	control,	set	the	window's
SizeToContent	property	to	WidthAndHeight.

18.	 [Bonus]	As	I've	mentioned	before,	redundant	code	is	usually	a	sign	that	the
program's	structure	can	be	improved.	The	Pick	A	Picture	program	from
Exercise	16	uses	four	practically	identical	event	handlers.	The	only	difference	is
the	image	that	they	assign	to	the	PictureForm's	background.

You	can	improve	this	program	by	making	all	four	PictureBoxes	use	the	same
event	handler	and	making	the	event	handler	figure	out	which	image	to	use.

The	event	handler's	sender	parameter	is	the	control	that	raised	the	event,	in
this	case,	the	PictureBox	that	the	user	clicked.	The	data	type	of	that	parameter
is	object,	but	it	actually	holds	a	PictureBox.	You	can	get	a	variable	that	refers
to	that	PictureBox	by	using	the	as	keyword.

The	as	keyword	tells	the	program	to	treat	some	value	(in	this	case	the	sender
parameter)	as	if	it	were	some	other	type	(in	this	case	a	PictureBox).	The
following	code	shows	how	you	can	get	a	variable	that	treats	the	sender
parameter	as	a	PictureBox:

PictureBox	selectedPictureBox;

selectedPictureBox	=	sender	as	PictureBox;

Copy	the	program	you	built	for	Exercise	16.	Modify	the	first	event	handler	so	it
uses	the	as	keyword	to	get	a	reference	to	the	PictureBox	that	the	user	clicked
and	then	uses	that	reference	to	display	the	correct	picture.	Then	make	all	of	the
PictureBoxes	share	that	event	handler.

19.	 [Bonus,	WPF]	Repeat	Exercise	18	for	the	WPF	application	you	build	in
Exercise	17.

NOTE

Please	select	the	videos	for	Lesson	9	online	at
www.wrox.com/go/csharp24hourtrainer2evideos.

http://www.wrox.com/go/csharp24hourtrainer2evideos

Lesson	10

Building	Custom	Dialogs
The	standard	dialogs	described	in	Lesson	8	make	it	easy	to	perform	typical	chores
such	as	picking	files,	folders,	colors,	and	fonts.	Those	dialogs	can	get	you	pretty
far,	but	sometimes	you	may	want	a	dialog	that	is	customized	for	your	application.

For	example,	you	might	want	to	display	a	dialog	where	the	user	can	enter	a	new
customer’s	contact	information	(name,	address,	phone	number,	and	hat	size).	It’s
unlikely	that	any	predefined	standard	dialog	could	ever	handle	that	situation.

Fortunately,	it’s	easy	to	build	custom	dialogs.	All	you	need	to	do	is	build	a	new
form	as	described	in	Lesson	9,	add	a	few	buttons,	and	set	a	few	properties.

In	this	lesson	you	learn	how	to	build	custom	dialogs	and	make	them	as	easy	to	use
as	the	standard	dialogs	that	come	with	C#.

Making	Custom	Dialogs
Building	a	custom	dialog	is	pretty	easy.	Simply	add	a	new	form	to	your	project	as
described	in	Lesson	9	and	give	it	whatever	controls	you	need.

To	allow	the	user	to	finish	using	the	dialog,	add	one	or	more	buttons.	Some
dialogs	have	a	single	OK	button.	Others	have	OK	and	Cancel	buttons	or	some
other	combination	of	buttons.	Because	you’re	creating	the	dialog,	you	can	give	it
whatever	buttons	you	like.

By	convention,	the	buttons	should	go	in	the	dialog’s	lower-right	corner.	Figure
10.1	shows	a	very	simple	dialog	that	contains	a	single	textbox	where	the	user	can
enter	a	name.

Figure	10.1

To	make	using	the	dialog	easier,	you	can	set	the	form’s	AcceptButton	and
CancelButton	properties.	These	determine	which	button	is	triggered	if	the	user
presses	Enter	and	Esc,	respectively.	Typically	the	AcceptButton	triggers	the
dialog’s	OK	or	Yes	button	and	the	CancelButton	triggers	the	Cancel	or	No	button.

NOTE

Often	dialogs	set	other	properties	to	make	them	behave	more	like	standard
dialogs.	Some	of	these	include:

Setting	FormBorderStyle	to	FixedDialog	so	the	user	cannot	resize	the
dialog.

Setting	MinimumSize	and	MaxiumSize	to	keep	the	dialog	a	reasonable	size.
(If	you	give	the	dialog	a	resizable	border.)

Setting	MinimizeBox	and	MaximizeBox	to	False	so	the	user	cannot	minimize
or	maximize	the	dialog.

Setting	ShowInTaskbar	to	False	so	the	dialog	doesn’t	clutter	up	the	taskbar.

NOTE

You	can	make	the	dialog	even	easier	to	use	if	you	set	the	tab	order	so	the
focus	starts	at	the	top	of	the	form	and	works	its	way	down.	For	example,	if
the	dialog	contains	Name,	Street,	City,	State,	and	ZIP	textboxes,	the	focus
should	move	through	them	in	that	order.

The	user	can	press	Tab	to	move	between	fields	and	can	press	Enter	or	Esc
when	all	of	the	values	are	filled	in.	An	experienced	user	can	fill	in	this	kind	of
dialog	very	quickly.

Setting	the	Dialog	Result
A	program	uses	the	ShowDialog	method	to	display	a	dialog.	This	method	returns	a
value	that	indicates	which	button	the	user	clicked.	As	explained	in	Lesson	8,	the
program	can	check	that	return	value	to	see	what	it	should	do	with	the	dialog’s
results.	The	examples	in	Lesson	8	checked	that	ShowDialog	returned	the	value
DialogResult.OK	before	processing	the	user’s	selections.

The	dialog	form’s	DialogResult	property	determines	what	value	the	call	to
ShowDialog	returns.	For	example,	you	could	use	the	following	code	to	make	the
dialog’s	OK	Button	set	the	form’s	DialogResult	property	to	DialogResult.OK	to	tell
the	calling	program	that	the	user	clicked	the	OK	button:

//	Return	OK	to	ShowDialog.

private	void	okButton_Click(object	sender,	EventArgs	e)

{

				DialogResult	=	DialogResult.OK;

}

Setting	the	form’s	DialogResult	property	not	only	determines	the	return	result	but
also	closes	the	dialog	so	the	call	to	ShowDialog	returns	and	the	calling	code	can
continue.

That	means	you	can	set	the	dialog’s	return	result	and	close	the	dialog	in	a	single
line	of	code.	Typing	one	line	of	code	should	be	no	real	hardship,	but	believe	it	or
not,	there’s	an	even	easier	way	to	close	the	dialog.

If	you	set	a	Button’s	DialogResult	property,	the	Button	automatically	sets	the
form’s	DialogResult	property	when	it	is	clicked.	For	example,	suppose	you	set	the
cancelButton’s	DialogResult	property	to	DialogResult.Cancel.	When	the	user
clicks	the	Button,	it	automatically	sets	the	form’s	DialogResult	property	to
DialogResult.Cancel	so	the	form	automatically	closes.	That	lets	you	set	the	return
value	and	close	the	form	without	typing	any	code	at	all.

If	you	think	setting	one	Button	property	is	still	too	much	work,	you	can	even	avoid
that,	at	least	for	the	Cancel	button.	When	you	set	a	form’s	CancelButton	property,
C#	automatically	sets	that	Button’s	DialogResult	property	to	DialogResult.Cancel.

Note	that	when	you	set	the	form’s	AcceptButton	property,	C#	does	not
automatically	set	the	Button’s	DialogResult	property.	The	assumption	is	that	the
OK	Button	might	need	to	validate	the	data	the	user	entered	on	the	form	before	it
decides	whether	to	close	the	dialog.	For	example,	if	the	user	doesn’t	fill	in	all
required	fields,	the	OK	Button	might	display	a	message	asking	the	user	to	fill	in	the
remaining	fields	instead	of	closing	the	dialog.

NOTE

Actually	these	methods	hide	the	dialog	so	control	returns	to	the	calling	code,
but	they	don’t	call	its	Close	method.	That	means	the	dialog	isn’t	destroyed	so
the	calling	code	can	look	at	values	entered	on	the	dialog	by	the	user.

If	you	don’t	want	to	perform	any	validation,	you	can	simply	set	the	OK	Button’s
DialogResult	property	to	DialogResult.OK.

Using	Custom	Dialogs
A	program	uses	a	custom	dialog	in	exactly	the	same	way	that	it	uses	a	standard
dialog.	It	creates,	initializes,	and	displays	the	dialog.	It	checks	the	return	result
and	takes	whatever	action	is	appropriate.

There’s	a	slight	difference	in	how	the	program	creates	the	dialog	because	you	can
add	standard	dialogs	to	a	form	at	run	time	and	you	can’t	do	that	with	custom
dialogs.	To	use	a	custom	dialog,	the	code	needs	to	create	a	new	instance	of	the
dialog’s	form	as	described	in	Lesson	9.

The	following	code	shows	how	a	program	might	display	a	new	customer	dialog:

//	Let	the	user	create	a	new	customer.

private	void	newCustomerButton_Click(object	sender,	EventArgs	e)

{

				//	Create	and	display	a	NewCustomerDialog.

				NewCustomerDialog	newCustomerDialog;

				newCustomerDialog	=	new	NewCustomerDialog();

				if	(newCustomerDialog.ShowDialog()	==	DialogResult.OK)

				{

								//	…	Create	the	new	customer	here	…

				}

}

The	code	declares	a	variable	to	refer	to	the	dialog	and	makes	a	new	instance	of	the
dialog.	It	displays	the	dialog	by	using	its	ShowDialog	method	and	checks	the	return
result.	If	the	user	clicks	OK,	the	program	takes	whatever	steps	are	needed	to	create
the	new	customer,	such	as	adding	a	record	to	a	database.

Try	It
In	this	Try	It,	you	build	and	use	the	simple	custom	dialog	shown	in	Figure	10.2.
The	dialog	lets	you	enter	a	name.	If	you	enter	a	non-blank	value	and	click	OK,	the
main	form	adds	the	name	you	entered	to	a	ListBox.

Figure	10.2

This	Try	It	also	gives	you	a	little	practice	using	the	ListBox	control,	showing	how
to	add	and	remove	items.

Lesson	Requirements
In	this	lesson,	you:

Create	the	main	form	shown	in	the	upper	left	in	Figure	10.2.	Make	the	New
Comedian	Button	be	the	form’s	AcceptButton	and	the	Delete	Comedian	Button
be	the	form’s	CancelButton.

Create	the	dialog	shown	in	the	lower	right	in	Figure	10.2.	Set	the	AcceptButton
and	CancelButton	properties	in	the	obvious	way.

Make	the	New	Comedian	Button	display	the	dialog.	If	the	dialog	returns
DialogResult.OK,	add	the	new	comedian’s	name	to	the	ListBox.

Make	the	Delete	Comedian	Button	remove	the	currently	selected	comedian
from	the	ListBox.

When	the	user	clicks	the	dialog’s	Cancel	Button,	hide	the	dialog	and	return
DialogResult.Cancel.

When	the	user	clicks	the	dialog’s	OK	Button,	check	the	entered	name’s	length.
If	the	length	is	0,	display	a	message	asking	the	user	to	enter	a	name.	If	the
length	is	greater	than	0,	hide	the	dialog	and	return	DialogResult.OK.

NOTE

You	can	download	the	code	and	resources	for	this	lesson	from	the	website	at
www.wrox.com/go/csharp24hourtrainer2e.

Hints
Use	the	ListBox’s	Items.Add	method	to	add	a	new	item	to	the	ListBox.

Use	the	ListBox’s	Items.Remove	method	to	remove	the	selected	item	(which	is
identified	by	the	SelectedItem	property).

Check	nameTextBox.Text.Length	==	0	to	see	whether	the	name	entered	on	the
dialog	is	blank.	You	can	use	code	similar	to	the	following	to	take	one	action	if
the	length	is	0	and	another	if	it	is	not.	Notice	the	new	else	part	of	the	if
statement.	If	the	condition	is	true,	the	statements	after	the	if	clause	are
executed.	If	the	condition	is	false,	the	statements	after	the	else	clause	are
executed.	(Lesson	18	covers	if	and	else	in	more	detail.)

if	(nameTextBox.Text.Length	==	0)

{

				…	Display	a	message	here	…

}

else

{

				…	Return	DialogResult.OK	here	…

}

Don’t	forget	to	set	the	nameTextBox	control’s	Modifiers	property	to	Public	so
the	main	form’s	code	can	use	it.

Step-by-Step
Create	the	main	form	shown	in	the	upper	left	in	Figure	10.2.	Make	the	New
Comedian	Button	be	the	form’s	AcceptButton	and	the	Delete	Comedian	Button
be	the	form’s	CancelButton.

1.	 Start	a	new	project	and	add	a	Label,	ListBox,	and	two	Buttons	roughly	as
shown	in	Figure	10.2.

2.	 Set	the	ListBox’s	Anchor	property	to	Top,	Bottom,	Left,	Right.	Set	the
Buttons’	Anchor	properties	to	Top,	Right.

3.	 Set	the	form’s	AcceptButton	property	to	the	New	Comedian	Button.	Set	its
CancelButton	property	to	the	Delete	Comedian	Button.

Create	the	dialog	shown	in	the	lower	right	in	Figure	10.2.	Set	the	AcceptButton
and	CancelButton	properties	in	the	obvious	way.

1.	 Open	the	Project	menu	and	select	Add	Windows	Form.	Enter	the	name

http://www.wrox.com/go/csharp24hourtrainer2e

NewComedianDialog	and	click	Add.

2.	 Add	a	Label,	TextBox,	PictureBox,	and	two	Buttons	roughly	as	shown	in
Figure	10.2.

3.	 Set	the	TextBox’s	Anchor	property	to	Top,	Left,	Right.	Set	the	Buttons’
Anchor	properties	to	Bottom,	Right.

4.	 Place	an	image	of	your	choosing	in	the	PictureBox	and	set	its	Anchor
property	to	Top,	Bottom,	Left.	Set	its	SizeMode	property	to	Zoom.

5.	 Set	the	dialog’s	AcceptButton	property	to	the	OK	Button.	Set	its
CancelButton	property	to	the	Cancel	Button.

6.	 Set	the	dialog’s	FormBorderStyle	property	to	FixedDialog,	set	its	ControlBox
property	to	False,	and	set	its	ShowInTaskbar	property	to	False.

NOTE

Setting	the	controls’	Anchor	properties	makes	it	easier	to	size	the	form	so
you	like	it.	Once	you	have	everything	arranged,	setting	FormBorderStyle
equal	to	FixedDialog	prevents	the	user	from	resizing	the	form,	so	the
Anchor	properties	don’t	really	do	anything	at	run	time.

Make	the	New	Comedian	Button	display	the	dialog.	If	the	dialog	returns
DialogResult.OK,	add	the	new	comedian’s	name	to	the	ListBox.

1.	 Create	an	event	handler	for	the	New	Comedian	Button.	Use	code	similar	to
the	following:

//	Create	a	new	comedian	entry.

private	void	newComedianButton_Click(object	sender,	EventArgs	e)

{

				NewComedianDialog	newComedianDialog;

				newComedianDialog	=	new	NewComedianDialog();

				if	(newComedianDialog.ShowDialog()	==	DialogResult.OK)

				{

								//	Add	the	new	comedian.

								comedianListBox.Items.Add(

												newComedianDialog.nameTextBox.Text);

				}

}

Make	the	Delete	Comedian	Button	remove	the	currently	selected	comedian
from	the	ListBox.

Create	an	event	handler	for	the	Delete	Comedian	Button.	Use	code
similar	to	the	following:

//	Remove	the	currently	selected	comedian.

private	void	deleteComedianButton_Click(object	sender,	EventArgs	

e)

{

				comedianListBox.Items.Remove(comedianListBox.SelectedItem);

}

This	makes	the	ListBox	remove	the	currently	selected	item.
Fortunately	if	there	is	no	selected	item,	the	ListBox	does	nothing
instead	of	crashes.

When	the	user	clicks	the	dialog’s	Cancel	Button,	hide	the	dialog	and	return
DialogResult.Cancel.

1.	 You	don’t	need	to	do	anything	else	to	make	this	work.	When	you	set	the
dialog’s	CancelButton	property	to	this	Button,	C#	sets	the	Button’s
DialogResult	property	to	DialogResult.Cancel	so	the	button	automatically
sets	the	return	result	and	closes	the	dialog.

When	the	user	clicks	the	dialog’s	OK	Button,	check	the	entered	name’s	length.
If	the	length	is	0,	display	a	message	asking	the	user	to	enter	a	name.	If	the
length	is	greater	than	0,	hide	the	dialog	and	return	DialogResult.OK.

1.	 Create	an	event	handler	for	the	dialog’s	OK	Button.	Use	code	similar	to	the
following:

//	Make	sure	the	comedian's	name	isn't	blank.

private	void	okButton_Click(object	sender,	EventArgs	e)

{

				if	(nameTextBox.Text.Length	==	0)

				{

								MessageBox.Show("Please	enter	a	comedian's	name");

				}

				else

				{

								DialogResult	=	DialogResult.OK;

				}

}

Exercises
1.	 [WPF]	Repeat	the	Try	It	with	a	WPF	application.	Hints:

To	see	if	the	user	clicked	OK	on	the	dialog,	see	if	the	ShowDialog	method
returns	True	as	in	this	code:

if	(newComedianDialog.ShowDialog().Value)

{

				…

}

2.	 To	define	the	Accept	Button,	set	the	Button’s	IsDefault	property	to	True.

3.	 To	define	the	Cancel	Button,	set	the	Button’s	IsCancel	property	to	True.

4.	 To	close	the	dialog,	the	OK	Button’s	code	should	set	DialogResult	=	true.

5.	 To	prevent	the	user	from	resizing	the	dialog,	set	ResizeMode	to	NoResize.

6.	 To	prevent	the	dialog	from	appearing	in	the	taskbar,	set	ShowInTaskbar	to
False.

7.	 It’s	usually	better	to	prevent	the	user	from	performing	invalid	actions	than	to
allow	the	user	to	perform	the	action	and	then	complain.	In	the	Try	It,	the	user
can	click	the	Delete	Comedian	Button	even	if	no	comedian	is	selected.	To	fix
that,	copy	the	program	you	built	for	the	Try	It	and	add	the	following	event
handler	to	enable	or	disable	the	button	when	the	ListBox’s	selection	changes:

//	Enable	the	Delete	Comedian	button	if	an	entry	is	selected.

private	void	comedianListBox_SelectedIndexChanged(

				object	sender,	EventArgs	e)

{

				deleteComedianButton.Enabled	=

								(comedianListBox.SelectedIndex	>=	0);

}

Hint:	Don’t	forget	to	disable	the	Button	initially.

8.	 [WPF]	Repeat	Exercise	2	with	the	WPF	program	you	built	for	Exercise	1.
(Hint:	In	WPF	a	Button	has	an	IsEnabled	property	instead	of	an	Enabled
property.)

9.	 Copy	the	program	you	built	for	Exercise	2.	To	further	help	the	user	avoid
making	mistakes,	modify	the	dialog	so	the	OK	Button	is	enabled	when	the	text
in	the	TextBox	is	non-blank.	Hints:

Use	the	TextBox’s	TextChanged	event	handler.

Because	the	user	can’t	click	the	OK	Button	when	the	text	is	blank,	the	OK
Button	doesn’t	need	a	Clicked	event	handler.	Just	set	its	DialogResult
property	to	OK.

10.	 [WPF]	Repeat	Exercise	4	with	the	WPF	program	you	built	for	Exercise	3.

(Hint:	In	WPF	Buttons	don’t	have	a	DialogResult	property.	The	OK	Button	still
needs	a	Click	event	handler,	but	all	it	needs	to	do	is	set	the	form’s
DialogResult	property.)

11.	 Make	a	program	that	has	First	Name,	Last	Name,	Street,	City,	State,	and	ZIP
Labels	as	shown	on	the	Contact	Information	form	in	Figure	10.3.	When	the
user	clicks	the	Edit	Button,	the	program	should	display	the	Edit	Contact	dialog
shown	in	Figure	10.3	to	let	the	user	change	the	values.	If	the	user	clicks	OK,	the
copy	the	new	values	back	into	the	main	form’s	Labels.

Figure	10.3

12.	 [WPF]	Repeat	Exercise	6	with	a	WPF	application.

13.	 Sometimes	the	standard	message	box	given	by	MessageBox.Show	is	almost
perfect	but	you’d	like	to	change	the	Buttons’	text.	Create	a	program	that	defines
the	message	dialog	shown	in	Figure	10.4.

Figure	10.4

The	main	program	should	set	the	Label’s	text,	the	dialog’s	title,	and	the
Buttons’	text.	Make	the	Accept	Button	return	DialogResult.OK	and	make	the
Decline	Button	return	DialogResult.Cancel.	Make	the	main	form	display
different	messages	depending	on	whether	the	user	clicked	Accept	or	Decline.

Hints:

The	question	mark	icon	is	displayed	in	a	PictureBox.

Set	the	dialog’s	properties:	FormBorderStyle	=FixedDialog,	ControlBox
=False,	and	ShowInTaskbar	=	False.

14.	 [WPF]	Repeat	Exercise	8	with	a	WPF	program.	Hints:

To	set	the	dialog’s	title,	set	its	Title	property.

The	WPF	Label	control	doesn’t	support	word	wrapping.	To	let	the	dialog
wrap	text,	use	a	TextBlock	with	TextWrapping	set	to	Wrap.

15.	 Create	a	color	selection	dialog	like	the	one	shown	in	Figure	10.5.	The	main
program’s	Buttons	should	display	the	same	dialog	to	let	the	user	select
foreground	and	background	colors.	Only	update	the	main	form’s	colors	if	the
user	clicks	OK.	Don’t	worry	about	initializing	the	dialog	to	show	the	current
values	before	displaying	it.	(Hint:	You	built	a	program	that	lets	the	user	select
colors	with	scrollbars	for	Lesson	4’s	Try	It.)

Figure	10.5

16.	 [WPF]	Repeat	Exercise	10	with	a	WPF	program.	Hints:

Display	the	color	sample	in	a	Border	control.

Make	the	ScrollBars	share	the	following	event	handler:

//	Display	the	color	sample.

private	void	redScrollBar_Scroll(object	sender,

				System.Windows.Controls.Primitives.ScrollEventArgs	e)

{

				redLabel.Content	=	redScrollBar.Value.ToString("0");

				greenLabel.Content	=	greenScrollBar.Value.ToString("0");

				blueLabel.Content	=	blueScrollBar.Value.ToString("0");

				Color	color	=	Color.FromRgb(

								(byte)redScrollBar.Value,

								(byte)greenScrollBar.Value,

								(byte)blueScrollBar.Value);

				sampleBorder.Background	=	new	SolidColorBrush(color);

}

17.	 Make	a	background	selection	dialog	like	the	one	shown	in	Figure	10.6.	When
the	user	clicks	the	main	form’s	Select	Background	Button,	the	form	displays	the
dialog.	When	the	user	clicks	one	of	the	thumbnail	images,	the	dialog	displays	a
border	around	that	image’s	PictureBox.	If	the	user	clicks	OK,	the	dialog	closes
and	the	main	form	displays	the	selected	image	at	full	scale.

Figure	10.6

Hints:

When	the	user	clicks	an	image,	set	the	BorderStyle	property	to	Fixed3D	for
that	PictureBox	and	None	for	the	others.

To	remember	which	image	was	selected,	place	a	hidden	PictureBox	on	the
dialog	and	set	its	Image	property	equal	to	that	of	the	clicked	PictureBox.

Use	the	techniques	described	for	Lesson	9,	Exercise	18	to	use	a	single	event
handler	for	all	four	PictureBoxes.

Only	allow	the	user	to	click	the	dialog’s	OK	Button	if	a	picture	has	been
selected.

If	the	user	clicks	OK,	resize	the	main	form	to	fit	its	new	background	image.

Set	the	Cancel	Button’s	TabStop	property	to	False.	(To	see	why,	set	it	equal
to	True,	run	the	program,	select	a	picture,	and	press	Enter.)

18.	 Repeat	Exercise	12	with	a	WPF	application.	Hints:

Place	an	Image	control	on	the	main	window	and	display	the	selected	picture
in	it.

Don’t	worry	about	sizing	the	main	window	to	fit	the	selected	picture.

In	WPF	Image	controls	don’t	have	a	BorderStyle	property.	Indicate	the
selected	Image	control	by	setting	its	Opacity	property	to	1.	Set	the	other
Image	controls’	Opacity	properties	to	0.5.

NOTE

Please	select	the	videos	for	Lesson	10	online	at
www.wrox.com/go/csharp24hourtrainer2evideos.

http://www.wrox.com/go/csharp24hourtrainer2evideos

Section	II

Variables	and	Calculations
You	may	have	noticed	that	the	lessons	up	to	this	point	haven't	done	much	with
numbers,	dates,	text	(other	than	to	just	display	it),	or	any	other	pieces	of	data.
They've	mostly	dealt	with	controls	and	their	properties,	methods,	and	events.

Although	you	can	do	some	fairly	impressive	things	with	controls	alone,	most
programs	also	need	to	manipulate	data.	They	need	to	do	things	like	add
purchasing	costs,	calculate	sales	tax,	sort	appointments	by	time,	and	search	text
for	keywords.

The	lessons	in	this	section	explain	how	to	perform	these	kinds	of	tasks.	They
explain	the	variables	that	a	program	uses	to	represent	data	in	code,	and	they	show
how	to	manipulate	variables	to	calculate	new	results.

Lesson	11:	Using	Variables	and	Performing	Calculations

Lesson	12:	Debugging	Code

Lesson	13:	Understanding	Scope

Lesson	14:	Working	with	Strings

Lesson	15:	Working	with	Dates	and	Times

Lesson	16:	Using	Arrays	and	Collections

Lesson	17:	Using	Enumerations	and	Structures

Lesson	11

Using	Variables	and	Performing	Calculations
A	variable	holds	a	value	in	memory	so	a	program	can	manipulate	it.	Different
kinds	of	variables	hold	different	types	of	data:	numbers,	text,	LOL	cat	pictures,
Halo	scores,	even	complex	groups	of	data	such	as	employee	records.

In	this	lesson	you	learn	what	variables	are	and	how	to	use	them.	You	learn	how	to
define	variables,	put	data	in	them,	and	use	them	to	perform	simple	calculations.

What	Are	Variables?
Technically	speaking	a	variable	is	a	named	piece	of	memory	that	can	hold	some
data	of	a	specific	type.	For	example,	a	program	might	allocate	4	bytes	of	memory
to	store	an	integer.	You	might	name	those	bytes	“payoffs”	so	you	can	easily	refer	to
them	in	the	program’s	code.

Less	technically,	you	can	think	of	a	variable	as	a	named	place	to	put	a	piece	of
data.	The	program’s	code	can	use	the	variables	to	store	values	and	perform
calculations.	For	example,	a	program	might	store	two	values	in	variables,	add	the
values	together,	and	store	the	result	in	a	third	variable.

Data	Types
Every	variable	has	a	particular	data	type	that	determines	the	kind	of	data	that	it
can	hold.	In	general,	you	cannot	place	data	of	one	type	in	a	variable	of	another.
For	example,	if	price	is	a	variable	that	can	hold	a	number	in	dollars	and	cents,	you
cannot	put	the	string	“Hello”	in	it.

If	you	like,	you	can	think	of	a	variable	as	an	envelope	(with	a	name	written	on	the
outside)	that	can	hold	some	data,	but	each	type	of	data	requires	a	different	shaped
envelope.	Integers	need	relatively	small	envelopes,	floats	(which	hold	numbers
with	decimal	points)	need	envelopes	that	are	long	and	thin,	and	strings	need	big
fat	envelopes.

Bits	and	Bytes

A	bit	is	a	single	binary	digit	of	memory	that	can	have	the	value	0	or	1.	(The
name	“bit”	comes	from	“BInary	digiT.”	Or	is	it	“Binary	digIT?”)	Generally,
bits	are	grouped	into	bytes	and	a	program	doesn’t	work	with	bits	directly.

A	byte	is	a	chunk	of	memory	holding	8	bits.	If	you	view	the	bits	as	digits	in	a
binary	number,	then	a	byte	can	hold	values	between	0	(00000000	in	binary)
and	255	(11111111	in	binary).	Groups	of	bytes	make	up	larger	data	types	such
as	integers	and	strings.

A	nibble	is	half	a	byte.	Way	back	in	the	old	days	when	memory	was	expensive
and	computers	filled	warehouses	instead	of	laps,	some	programs	needed	to
split	bytes	and	consider	the	nibbles	separately	to	save	space.	Now	that
memory	is	as	cheap	as	day-old	lottery	tickets,	the	nibble	is	a	historical
curiosity	mostly	useful	for	impressing	your	friends	at	parties.

Bigger	units	of	memory	include	kilobyte	(KB)	=	1,024	bytes,	megabyte	(MB)	=
1,024KB,	gigabyte	(GB)	=	1,024MB,	and	terabyte	(TB)	=	1,024GB.	These	are
often	used	to	measure	the	size	of	files,	computer	memory,	flash	drives,	and
disk	drives.	(Although	in	some	contexts	people	use	powers	of	1,000	instead	of
1,024.	For	example,	most	disk	drive	manufacturers	define	a	gigabyte	as
1,000,000,000	bytes,	which	in	a	sense	shortchanges	you	out	of	70MB.)

Sometimes	the	line	between	two	data	types	is	a	bit	fuzzy.	For	example,	if	a	variable
should	hold	a	number,	you	cannot	put	in	the	string	“ten.”	The	fact	that	“ten”	is	a
number	is	obvious	to	a	human	but	not	to	a	C#	program.

You	can’t	even	place	a	string	containing	the	characters	“10”	in	a	variable	that	holds
a	number.	Though	it	should	be	obvious	to	just	about	anyone	that	“10”	is	a	number,
C#	just	knows	it’s	a	string	containing	two	characters	“1”	and	“0”	and	doesn’t	try	to
determine	that	the	characters	in	the	string	represent	a	number.

Programs	often	need	to	convert	a	value	from	one	data	type	to	another	(particularly
switching	between	strings	and	numbers),	so	C#	provides	an	assortment	of	data-
conversion	functions	to	do	just	that.	The	section	“Type	Conversions”	later	in	this
lesson	describes	those	functions.

Table	11.1	summarizes	C#’s	built-in	data	types.	The	signed	types	can	store	values
that	are	positive	or	negative,	and	the	unsigned	types	can	hold	only	positive	values.

Table	11.1

Data
Type

Meaning Range

byte Byte 0	to	255

sbyte Signed	byte –128	to	127

short Small	signed
integer

–32,768	to	32,767

ushort Unsigned	short
integer

0	to	65,535

int Integer –2,147,483,648	to	2,147,483,647

uint Unsigned	integer 0	to	4,294,967,295

long Long	integer –9,223,372,036,854,775,808	to
9,223,372,036,854,775,807

ulong Unsigned	long
integer

0	to	18,446,744,073,709,551,615

float Floating	point Roughly	–3.4e38	to	3.4e38

double Double-precision
floating	point

Roughly	–1.8e308	to	1.8e308

decimal Higher	precision
and	smaller	range
than	floating-
point	types

See	the	following	section,	“Float,	Double,	and
Decimal	Data	Types.”

char Character A	single	Unicode	character.	(Unicode	characters	use
16	bits	to	hold	data	for	text	in	scripts	such	as	Arabic,
Cyrillic,	Greek,	and	Thai,	in	addition	to	the	Roman
alphabet.)

string Text A	string	of	Unicode	characters.

bool Boolean Can	be	true	or	false.

object An	object Can	point	to	almost	anything.

Some	of	these	data	types	are	a	bit	confusing	but	the	most	common	data	types	(int,
long,	float,	double,	and	string)	are	fairly	straightforward,	and	they	are	the	focus
of	most	of	this	lesson.	Before	moving	on	to	further	details,	however,	it’s	worth
spending	a	little	time	comparing	the	float,	double,	and	decimal	data	types.

Float,	Double,	and	Decimal	Data	Types
The	computer	represents	values	of	every	type	in	binary	using	bits	and	bytes,	so
some	values	don’t	fit	perfectly	in	a	particular	data	type.	In	particular,	real
numbers	such	as	1/7	don’t	have	exact	binary	representations,	so	the	float,	double,

and	decimal	data	types	often	introduce	slight	rounding	errors.

For	example,	a	float	represents	1/7	as	approximately	0.142857149.	Usually	the
fact	that	this	is	not	exactly	1/7	isn’t	a	problem,	but	once	in	a	while	if	you	compare
two	float	values	to	see	if	they	are	exactly	equal,	roundoff	errors	make	them	appear
different	even	though	they	should	be	the	same.

The	decimal	data	type	helps	reduce	this	problem	for	decimal	values	such	as	1.5
(but	not	non-decimal	real	values	such	as	1/7)	by	storing	an	exact	representation	of
a	decimal	value.	Instead	of	storing	a	value	as	a	binary	number	the	way	float	and
double	do,	decimal	stores	the	number’s	digits	and	its	exponent	separately	as
integral	data	types	with	no	rounding.	That	lets	it	hold	28	or	29	significant	digits
(depending	on	the	exact	value)	for	numbers	between	roughly	–7.9e28	and	7.9e28.

NOTE

The	notation	7.9e28	means	7.9	×	1028.

Note	that	rounding	errors	can	still	occur	when	you	combine	decimal	values.	For
example,	if	you	add	1e28	plus	1e–28,	the	result	would	have	more	than	the	28	or	29
significant	digits	that	a	decimal	can	provide	so	it	rounds	off	to	1e28.

The	moral	of	the	story	is	that	you	should	always	use	the	decimal	data	type	for
values	where	you	need	great	accuracy	and	the	values	won’t	get	truly	enormous.	In
particular,	you	should	always	use	decimal	for	currency	values.	Unless	you’re	Bill
Gates’s	much	richer	uncle,	you’ll	never	get	close	to	the	largest	value	a	decimal	can
represent,	and	the	extra	precision	can	prevent	rounding	errors	during	some	fairly
complex	calculations.

NOTE

Another	interesting	feature	of	the	decimal	type	is	that,	because	of	the	way	it
stores	its	significant	digits,	it	remembers	zeros	on	the	right.	For	example,	if
you	add	the	values	1.35	and	1.65	as	floats,	you	get	the	value	3.	In	contrast,	if
you	add	the	same	values	as	decimals,	you	get	3.00.	The	decimal	result
remembers	that	you	were	working	with	two	digits	to	the	right	of	the	decimal
point	so	it	stores	the	result	that	way,	too.

Declaring	Variables
To	declare	a	variable	in	C#	code,	give	the	data	type	that	you	want	to	use	followed
by	the	name	that	you	want	to	give	the	variable.	For	example,	the	following	code
creates	a	variable	named	numMistakes.	The	variable’s	data	type	is	int	so	it	can	hold
an	integer	between	–2,147,483,648	and	2,147,483,647	(which	should	be	enough
for	most	projects	that	don’t	involve	the	government):

int	numMistakes;

You	can	use	the	equals	symbol	to	assign	a	value	to	a	variable.	For	example,	the
following	code	sets	numMistakes	to	1337:

numMistakes	=	1337;

As	an	added	convenience,	you	can	declare	a	variable	and	give	it	a	value	at	the
same	time,	as	in:

int	numMistakes	=	1337;

You	can	declare	several	variables	of	the	same	type	all	at	once	by	separating	them
with	commas.	You	can	even	initialize	them	if	you	like.	The	following	code	declares
three	float	variables	named	x,	y,	and	z	and	gives	them	initial	values	of	1,	2,	and	–
40,	respectively:

float	x	=	1,	y	=	2,	z	=	-40;

NOTE

The	program	must	assign	a	value	to	a	variable	before	it	tries	to	read	its
value.	For	example,	C#	flags	the	following	code	as	an	error	because	the
second	line	tries	to	use	x	on	the	right-hand	side	of	the	equals	sign	to	calculate
y	before	x	has	been	assigned	a	value:

int	x,	y;

y	=	x	+	1;

Literal	Values
A	literal	value	is	a	piece	of	data	stuck	right	in	the	code.	For	example,	in	the
following	statement,	numMistakes	is	a	variable	and	1337	is	a	literal	integer	value:

int	numMistakes	=	1337;

Usually	C#	is	pretty	smart	about	using	the	correct	data	types	for	literal	values.	For
example,	in	the	preceding	statement	C#	knows	that	numMistakes	is	an	integer	and
1337	is	an	integer,	so	it	can	safely	put	the	integer	value	in	the	integer	variable.

Sometimes,	however,	C#	gets	confused	and	assumes	a	literal	value	has	a	data	type
other	than	the	one	you	intend.	For	example,	the	following	code	declares	a	float
variable	named	napHours	and	tries	to	assign	it	the	value	6.5.	Unfortunately,	C#
thinks	6.5	is	a	double	and	a	double	won’t	fit	inside	a	float	variable,	so	it	flags	this
as	an	error:

float	napHours	=	6.5;

In	cases	such	as	this	one,	you	can	help	C#	understand	what	data	type	a	literal	has
by	adding	a	suffix	character.	For	example,	the	F	character	in	the	following	code
tells	C#	that	it	should	treat	6.5	as	a	float,	not	a	double:

float	napHours	=	6.5F;

Table	11.2	lists	C#’s	data	type	suffix	characters.	You	can	use	the	suffixes	in	either
lower-	or	uppercase.

Table	11.2

Data	Type Suffix
Uint U

Long L

Ulong UL	orLU
Float F

double D

decimal M

The	int	data	type	doesn’t	have	a	literal	suffix	character.	C#	assumes	a	literal	that
looks	like	an	integer	is	an	int,	unless	it’s	too	big,	in	which	case	it	assumes	the
value	is	a	long.	For	example,	it	assumes	that	2000000000	is	an	int	because	that
value	will	fit	in	an	int.	It	assumes	that	3000000000	is	a	long	because	it’s	too	big
to	fit	in	an	int.

The	byte,	sbyte,	short,	and	ushort	data	types	also	have	no	literal	suffix	characters.
Fortunately,	you	can	assign	an	integer	value	to	these	types	and	C#	will	use	the
value	correctly,	as	long	as	it	fits.

You	can	use	double	quotes	to	surround	strings	and	single	quotes	to	surround

chars	as	in	the	following	code:

string	firstName	=	"William";

string	lastName	=	"Gates";

char	middleInitial	=	'H';

Sometimes	you	might	like	to	include	a	special	character	such	as	a	carriage	return
or	tab	character	in	a	string	literal.	Unfortunately,	you	can’t	simply	type	a	carriage
return	into	a	string	because	it	would	start	a	new	line	of	code,	and	that	would
confuse	Visual	Studio.

To	work	around	this	dilemma,	C#	provides	escape	sequences	that	represent
special	characters.	An	escape	sequence	is	a	sequence	of	characters	that	represent	a
special	character	such	as	a	carriage	return	or	tab.

Table	11.3	lists	C#’s	escape	sequences.

Table	11.3

Sequence Meaning

\a Bell

\b Backspace

\f Formfeed

\n Newline

\r Carriage	return

\t Horizontal	tab

\v Vertical	tab

\' Single	quotation	mark

\" Double	quotation	mark

\\ Backslash

\? Question	mark

\OOO ASCII	character	in	octal	(OOO	represents	the	octal	code)

\xhh ASCII	character	in	hexadecimal	(hh	represents	the	hexadecimal	code)

\xhhhh Unicode	character	in	hexadecimal	(hhhh	represents	the	hexadecimal
code)

For	example,	the	following	code	makes	a	variable	that	refers	to	a	string	that
contains	quotes	and	a	newline	character:

string	txt	=	"Unknown	value	\"ten.\"\nPlease	enter	a	number.";

When	you	display	this	string	in	a	MessageBox,	the	user	sees	text	similar	to	the
following:

Unknown	value	"ten."

Please	enter	a	number.

NOTE

When	you	display	text	in	a	Label	(or	MessageBox),	you	can	start	a	new	line	by
using	the	newline	escape	(\n).	When	you	display	text	in	a	TextBox,	however,
you	must	start	a	new	line	by	using	the	carriage	return	and	newline	escapes
together	(\r\n).	(The	\r\n	sequence	also	works	for	Labels	and	MessageBoxes.)

C#	also	provides	a	special	verbatim	string	literal	that	makes	using	some	special
characters	easier.	This	kind	of	value	begins	with	@"	and	ends	with	a	corresponding
closing	quote	(").	Between	the	quotes,	the	literal	doesn’t	know	anything	about
escape	sequences	and	treats	every	character	literally.

A	verbatim	string	literal	cannot	contain	a	double	quote	because	that	would	end	the
string.	It	can’t	even	use	an	escaped	double	quote	because	verbatim	string	literals
don’t	understand	escape	sequences.

Verbatim	string	literals	are	very	useful	if	you	need	a	string	that	contains	a	lot	of
backslashes	such	as	a	Windows	directory	path
(C:\Tools\Binary\Source\C#\PrintInvoices)	or	that	needs	to	describe	escape
sequences	themselves	("Use	\r\n	to	start	a	new	line").

You	can	even	type	new	lines	and	tab	characters	inside	a	string	literal,	although
those	may	make	your	code	harder	to	read.

Type	Conversions
C#	performs	implicit	data	type	conversions	where	it	knows	the	conversion	is	safe.
For	example,	the	following	code	declares	a	long	variable	and	sets	it	equal	to	the
int	value	6.	Because	an	int	can	always	fit	in	a	long,	C#	knows	this	is	safe	and
doesn’t	complain:

long	numBananas	=	6;

The	converse	is	not	always	true,	however.	A	long	value	cannot	always	fit	in	an	int
variable.	Because	it	cannot	know	for	certain	that	any	given	long	will	fit	in	an	int,
C#	won’t	quietly	sit	by	while	your	code	assigns	a	long	value	to	an	int.

For	example,	the	following	code	assigns	a	value	to	a	long	variable.	It	then	tries	to
save	that	long	value	into	an	int	variable.	At	this	point,	C#	panics	and	flags	the	line
as	an	error:

long	numBananas	=	6;

int	numFruits	=	numBananas;

In	cases	such	as	this,	you	can	use	three	methods	to	coerce	C#	into	converting	data
from	one	type	to	another:	casting,	converting,	and	parsing.

Casting
To	cast	a	value	from	one	data	type	to	another,	you	put	the	target	data	type	inside
parentheses	in	front	of	the	value.	For	example,	the	following	code	explicitly
converts	the	variable	numBananas	into	an	int:

long	numBananas	=	6;

int	numFruits	=	(int)numBananas;

Casting	works	only	between	compatible	data	types.	For	example,	because	double
and	int	are	both	numbers,	you	can	try	to	cast	between	them.	(When	you	cast	from
a	double	to	an	int,	the	cast	simply	discards	any	fractional	part	of	the	value	with	no
rounding.)	In	contrast,	the	string	and	bool	data	types	are	not	compatible	with	the
numeric	data	types	or	each	other,	so	you	cannot	cast	between	them.	(What	would
the	statement	(int)"platypus"	even	mean?)

Normally	a	cast	doesn’t	check	whether	it	can	succeed.	If	you	try	to	convert	a	long
into	an	int	and	the	long	won’t	fit,	C#	sweeps	its	mistake	under	the	rug	like	a
politician	in	an	election	year,	and	the	program	keeps	running.	The	value	that	gets
shoved	into	the	int	may	be	gibberish,	but	the	program	doesn’t	crash.

If	the	int	now	contains	garbage,	any	calculations	you	perform	with	it	will	also	be
garbage	so,	in	many	cases,	it’s	better	to	let	your	program	throw	a	tantrum	and
crash.	(Lesson	21	explains	how	to	catch	errors	such	as	this	so	you	can	do
something	more	constructive	than	merely	crash.)

To	make	C#	flag	casting	errors,	surround	the	cast	in	parentheses	and	add	the	word

checked	in	front	as	in	the	following	code:

long	worldPopulation	=	7309000000;

int	peopleInWorld	=	checked((int)worldPopulation);

Now	when	the	code	executes	at	run	time,	the	program	will	fail	on	the	second
statement	because	the	value	is	too	big	to	fit	in	an	int.

NOTE

If	you	have	several	statements	that	you	want	to	check,	you	can	make	a
checked	block.	In	the	following	code,	both	of	the	statements	between	the
braces	are	checked:

long	worldPopulation	=	7309000000;

long	asiaPopulation	=	4428000000;

checked

{

				int	peopleInWorld	=	(int)worldPopulation;

				int	peopleInAsia	=	(int)asiaPopulation;

}

The	checked	keyword	also	checks	integer	calculations	for	overflow.	For
example,	if	you	multiply	two	huge	int	variables	together,	the	result	won’t	fit
in	an	int.	Normally	the	program	keeps	running	without	complaint	even
though	the	result	overflowed,	so	it	isn’t	what	you	expect.

If	you	are	working	with	values	that	might	overflow	and	you	want	to	be	sure
the	results	make	sense,	protect	the	calculations	with	checked.

Converting
Casting	only	works	between	compatible	types.	The	Convert	utility	class	(which	is
provided	by	the	.NET	Framework)	gives	you	methods	that	you	can	use	to	try	to
convert	values	even	if	the	data	types	are	incompatible.	These	are	shared	methods
provided	by	the	Convert	class	itself,	so	you	don’t	need	to	create	an	instance	of	the
class	to	use	them.

For	example,	the	bool	and	int	data	types	are	not	compatible,	so	C#	doesn’t	let	you
cast	from	one	to	the	other.	Occasionally,	however,	you	might	want	to	convert	an
int	into	a	bool	or	vice	versa.	In	that	case	you	can	use	the	Convert	class’s	ToBoolean
and	ToInt32	methods.	(You	use	ToInt32	because	ints	are	32-bit	integers.)

The	following	code	declares	two	int	variables	and	assigns	them	values.	It	uses
Convert	to	change	them	into	bools	and	then	changes	one	of	them	back	into	an	int:

int	trueInt	=	-1;

int	falseInt	=	0;

bool	trueBool	=	Convert.ToBoolean(trueInt);

bool	falseBool	=	Convert.ToBoolean(falseInt);

int	anotherTrueInt	=	Convert.ToInt32(trueBool);

NOTE

When	you	treat	integer	values	as	booleans,	the	value	0	is	false	and	all	other
values	are	true.	If	you	convert	the	bool	literal	value	true	into	an	integer
value,	you	get	–1.

In	a	particularly	common	scenario,	a	program	must	convert	text	entered	by	the
user	into	some	other	data	type	such	as	an	int	or	decimal.	The	following	uses	the
Convert.ToInt32	method	to	convert	whatever	the	user	entered	in	the	ageTextBox
into	an	int:

int	age	=	Convert.ToInt32(ageTextBox.Text);

This	conversion	works	only	if	the	user	enters	a	value	that	can	be	reasonably
converted	into	an	int.	If	the	user	enters	13,914	or	–1,	the	conversion	works.	If	the
user	enters	“seven,”	the	conversion	fails.

Converting	text	into	another	data	type	is	more	properly	an	example	of	parsing
than	of	data	type	conversion,	however.	So	although	the	Convert	methods	work,
your	code	will	be	easier	to	read	and	understand	if	you	use	the	parsing	methods
described	in	the	next	section.

Parsing
Trying	to	find	structure	and	meaning	in	text	is	called	parsing.	All	of	the	simple
data	types	(int,	double,	decimal)	provide	a	method	that	converts	text	into	that	data
type.	For	example,	the	int	data	type’s	Parse	method	takes	a	string	as	a	parameter
and	returns	an	int.	At	least	it	does	if	the	string	contains	an	integer	value.

The	following	code	declares	a	decimal	variable	named	salary,	uses	the	decimal
class’s	Parse	method	to	convert	the	value	in	the	salaryTextBox	into	a	decimal,	and
saves	the	result	in	the	variable:

decimal	salary	=	decimal.Parse(salaryTextBox.Text);

As	is	the	case	with	the	Convert	methods,	this	works	only	if	the	text	can	reasonably
be	converted	into	a	decimal.	If	the	user	types	“12,345.67,”	the	parsing	works.	If	the
user	types	“ten”	or	“1.2.3,”	the	parsing	fails.

NOTE

Unfortunately,	C#’s	conversion	and	parsing	methods	get	confused	by	some
formats	that	you	might	expect	them	to	understand.	For	example,	they	can’t
handle	currency	characters,	so	they	fail	on	strings	like	“$12.34”	and
“€54.32.”

You	can	tell	the	decimal	class’s	Parse	method	to	allow	currency	values	by
passing	it	a	second	parameter,	as	shown	in	the	following	code:

decimal	salary	=	decimal.Parse(salaryTextBox.Text,

				System.Globalization.NumberStyles.Any);

Performing	Calculations
You’ve	already	seen	several	pieces	of	code	that	assign	a	value	to	a	variable.	For
example,	the	following	code	converts	the	text	in	the	salaryTextBox	into	a	decimal
and	saves	it	in	the	variable	salary:

decimal	salary	=	decimal.Parse(salaryTextBox.Text);

You	can	also	save	a	value	that	is	the	result	of	a	more	complex	calculation	into	a
variable	on	the	left	side	of	an	equals	sign.	Fortunately,	the	syntax	for	these	kinds
of	calculations	is	usually	easy	to	understand.	The	following	code	calculates	the
value	2736	+	7281	/	3	and	saves	the	result	in	the	variable	result:

double	result	=	2736	+	7281	/	3;

The	operands	(the	values	used	in	the	expression	on	the	right)	can	be	literal	values,
values	stored	in	variables,	or	the	results	of	methods.	For	example,	the	following
code	calculates	the	sales	tax	on	a	purchase’s	subtotal.	It	multiplies	the	tax	rate
stored	in	the	taxRate	variable	by	the	decimal	value	stored	in	the	subtotalTextBox
and	saves	the	result	in	the	variable	salesTax:

decimal	salesTax	=	taxRate	*	decimal.Parse(subtotalTextBox.Text);

Note	that	a	variable	can	appear	on	both	sides	of	the	equals	sign.	In	that	case,	the
value	on	the	right	is	the	variable’s	current	value	and,	after	the	calculation,	the	new
result	is	saved	back	into	the	same	variable.

For	example,	the	following	code	takes	x’s	current	value,	doubles	it,	adds	10,	and
saves	the	result	back	in	variable	x.	If	x	started	with	the	value	3,	then	when	this
statement	finishes	x	holds	the	value	16:

x	=	2	*	x	+	10;

A	variable	may	appear	more	than	once	on	the	right	side	of	the	equals	sign	but	it
can	appear	only	once	on	the	left.

The	following	sections	provide	some	additional	details	about	performing
calculations.

Operands	and	Operators
One	issue	that	confuses	some	people	is	the	fact	that	C#	uses	the	data	types	of	an
expression’s	operands	to	determine	the	way	the	operators	work.	If	an	expression
contains	two	ints,	the	operators	use	integer	arithmetic.	If	an	expression	contains
two	floats,	the	operators	use	floating-point	arithmetic.

Sometimes	this	can	lead	to	confusing	results.	For	example,	the	following	code	tries
to	save	the	value	1/7	in	the	float	variable	ratio.	The	values	1	and	7	are	integers	so
this	calculation	uses	integer	division,	which	discards	any	remainder.	Because	1	/	7
=	0	with	a	remainder	of	1,	ratio	is	assigned	the	value	0,	which	is	probably	not

what	you	intended:

float	ratio	=	1	/	7;

To	force	C#	to	using	floating-point	division,	you	can	convert	the	numbers	into	the
float	data	type.	The	following	code	uses	the	F	suffix	character	to	indicate	that	1
and	7	should	have	the	float	data	type	instead	of	int.	Now	the	program	performs
floating-point	division,	so	it	assigns	ratio	the	value	0.142857149	(approximately):

float	ratio	=	1F	/	7F;

Instead	of	using	data	type	suffixes,	you	can	also	use	casting	to	make	the	program
treat	the	values	as	floats	as	in	the	following	code:

float	ratio	=	(float)1	/	(float)7;

Promotion
If	an	expression	uses	two	different	data	types,	C#	promotes	the	one	with	the	more
restrictive	type.	For	example,	if	you	try	to	divide	an	int	by	a	float,	C#	promotes
the	int	to	a	float	before	it	performs	the	division.

The	following	code	divides	a	float	by	an	int.	Before	performing	the	calculation,
C#	promotes	the	value	7	to	a	float.	This	is	sometimes	called	implicit	casting.	The
code	then	performs	the	division	and	saves	the	result	0.142857149	in	the	variable
ratio:

float	ratio	=	1F	/	7;

Operator	Summary
C#	has	many	operators	for	manipulating	variables	of	different	data	types.	The
following	sections	describe	the	most	commonly	used	operators	grouped	by
operand	type	(arithmetic,	string,	logical,	and	so	forth).

Remember	that	some	operators	behave	differently	depending	on	the	data	types	of
their	operands.

Arithmetic	Operators
The	arithmetic	operators	perform	calculations	on	numbers.	Table	11.4
summarizes	the	arithmetic	operators.	The	Example	column	shows	sample	results.
For	the	final	examples,	assume	that	x	is	an	int	that	initially	has	value	10.

Table	11.4

Operator Meaning Example

+ Addition 3	+	2	is	5

- Negation -3	is	negative	3

- Subtraction 3	-	2	is	1

* Multiplication 3	*	2	is	6

/ Division
(integer)

3	/	2	is	1

/ Division
(floating	point)

3F	/	2F	is	1.5

% Modulus 3	%	2	is	1

++ Pre-increment ++x:	x	is	incremented	to	11	and	then	the	statement
uses	the	new	value	11

++ Post-increment x++:	the	statement	uses	the	current	value	of	x,	10,	and
then	x	is	incremented	to	11

-	- Pre-decrement --x:	x	is	decremented	to	9	and	then	the	statement
uses	the	new	value	9

-	- Post-
decrement

x--:	the	statement	uses	the	current	value	of	x,	10,	and
then	x	is	decremented	to	9

Integer	division	discards	any	remainder	and	returns	the	integer	quotient.	The
modulus	operator,	which	applies	only	to	integer	data	types,	does	the	opposite:	it
discards	the	quotient	and	returns	the	remainder.	For	example,	17	%	5	returns	2
because	17	divided	by	5	is	3	with	a	remainder	of	2.

The	pre-	and	post-increment	and	decrement	operators	return	a	value	either	before
or	after	it	is	incremented	or	decremented.	For	example,	the	following	code	sets	x
equal	to	10	+	y	=	20	and	then	adds	1	toy.	When	the	code	finishes,	x	=	20	and	y	=
11:

int	x,	y	=	10;

x	=	10	+	y++;

In	contrast,	the	following	code	increments	y	first	and	then	uses	the	new	value	to
calculate	x.	When	this	code	finishes,	x	=	21	and	y	=	11:

int	x,	y	=	10;

x	=	10	+	++y;

The	decrement	operators	work	similarly	except	they	subtract	1	instead	of	add	1.

The	increment	and	decrement	operators	can	be	very	confusing,	particularly	when
they’re	in	the	middle	of	a	complex	expression.	If	you	have	trouble	with	them,
simply	don’t	use	them.	For	example,	the	following	code	gives	you	the	same	result

as	the	previous	code	but	without	the	pre-increment	operator:

int	x,	y	=	10;

y	=	y	+	1;

x	=	10	+	y;

Logical	Operators
The	logical	operators	perform	calculations	on	boolean	(true	or	false)	values.	They
let	you	combine	logical	statements	to	form	new	ones.

Lesson	18	explains	how	to	use	these	values	to	perform	tests	that	let	a	program	take
action	only	under	certain	circumstances.	For	example,	a	program	might	pay	an
employee	overtime	if	the	employee	is	hourly	and	worked	more	than	40	hours	in
the	last	week.

Table	11.5	summarizes	the	boolean	operators.

Table	11.5

Operator Meaning

& AND

| OR

^ XOR

! NOT

&& Conditional	AND

|| Conditional	OR

The	&	operator	returns	true	if	and	only	if	both	of	its	operands	are	true.	For
example,	you	must	buy	lunch	if	it’s	lunchtime	and	you	forgot	to	bring	a	lunch
today:

mustBuyLunch	=	isLunchTime	&	forgotToBringLunch;

The	|	operator	returns	true	if	either	of	its	operands	is	true.	For	example,	you	can
afford	lunch	if	either	you	brought	enough	money	or	you	have	a	credit	card	(or
both):

canAffordLunch	=	haveEnoughMoney	|	haveCreditCard;

The	^	operator	(the	exclusive	OR	operator)	is	the	most	confusing.	It	returns	true	if
one	of	its	operands	is	true	and	the	other	is	false.	For	example,	you	and	Ann	will
get	a	single	lunch	check	and	pay	each	other	back	later	if	either	Ann	forgot	her
money	and	you	brought	yours	or	Ann	remembered	her	money	and	you	forgot
yours.	If	neither	of	you	forgot	your	money,	you	can	get	separate	checks.	If	you
both	forgot	your	money,	you’re	both	going	hungry	today:

singleCheck	=	annForgotMoney	^	youForgotMoney;

The	!	operator	returns	true	if	its	single	operand	is	false.	For	example,	if	the
cafeteria	is	not	closed,	you	can	have	lunch	there:

canHaveLunch	=	!cafeteriaIsClosed;

The	conditional	operators,	which	are	also	called	short-circuit	operators,	work	just
like	the	regular	ones	except	they	don’t	evaluate	their	second	operand	unless	they
must.	For	example,	consider	the	following	AND	statement:

mustBuyLunch	=	isLunchTime	&&	forgotToBringLunch;

Suppose	it’s	only	9:00	a.m.	so	isLunchTime	is	false.	When	the	program	sees	this
expression,	it	evaluates	isLunchTime	and	then	encounters	the	&&	operator.	Because
isLunchTime	is	false,	the	program	already	knows	that	mustBuyLunch	must	also	be
false	no	matter	what	value	follows	the	&&	(in	this	case	forgotToBringLunch).	In
that	case,	the	program	doesn’t	bother	to	evaluate	forgotToBringLunch	and	that
saves	a	tiny	amount	of	time.

Similarly,	consider	the	following	OR	statement:

canAffordLunch	=	haveEnoughMoney	||	haveCreditCard;

If	you	have	enough	money,	haveEnoughMoney	is	true,	so	the	program	doesn’t	need
to	evaluate	haveCreditCard	to	know	that	the	result	canAffordLunch	is	also	true.

Because	the	conditional	&&	and	||	operators	are	slightly	faster,	most	developers
use	them	whenever	they	can	instead	of	using	&	and	|.

NOTE

There	is	one	case	where	the	conditional	operators	may	cause	problems.	If	the
second	operand	is	not	a	simple	value	but	the	result	returned	from	some	sort
of	method	call,	then	if	you	use	a	conditional	operator,	you	cannot	always
know	whether	the	method	was	called.	This	might	matter	if	the	method	has
side	effects:	consequences	that	last	after	the	method	has	finished,	like
opening	a	database	or	creating	a	file.	In	that	case,	you	cannot	know	later
whether	the	database	is	open	or	the	file	is	created.

This	is	seldom	a	problem	and	you	can	avoid	it	completely	by	avoiding	side
effects.

String	Operators
The	only	string	operator	C#	provides	is	+.	This	operator	concatenates	(joins)	two
strings	together.	For	example,	suppose	the	variable	username	contains	the	user’s
name.	Then	the	following	code	concatenates	the	text	“Hello	”	(note	the	trailing
space)	with	the	user’s	name	and	displays	the	result	in	a	message	box:

MessageBox.Show("Hello	"	+	username);

Lesson	14	explains	methods	that	you	can	use	to	manipulate	strings:	find
substrings,	replace	text,	check	length,	and	so	forth.

NOTE

One	very	non-obvious	fact	about	string	operations	is	that	a	string
calculation	does	not	really	save	the	results	in	the	same	memory	used	by	the
variable	on	the	left	of	an	assignment	statement.	Instead	it	creates	a	new
string	holding	the	result	of	the	calculation	and	makes	the	variable	refer	to
that.

For	example,	consider	the	following	code:

string	greeting	=	usernameTextBox.Text;

greeting	=	"Hello	"	+	greeting;

This	code	looks	like	it	saves	a	user’s	name	in	the	variable	greeting	and	then
tacks	“Hello”	onto	the	front.	Actually,	the	second	statement	creates	a	whole
new	string	that	holds	“Hello”	plus	the	user’s	name	and	then	makes	greeting
refer	to	the	new	string.

For	many	practical	applications,	the	difference	is	small,	and	you	can	ignore
it.	However,	if	you’re	performing	a	huge	number	of	concatenations	(perhaps
in	one	of	the	loops	described	in	Lesson	19),	your	program	might	have
performance	issues.	The	StringBuilder	class	can	help	address	this	issue,	but
it’s	a	bit	more	advanced	so	I’m	not	going	to	cover	it	here.	See
msdn.microsoft.com/library/2839d5h5.aspx	for	more	information.

Comparison	Operators
The	comparison	operators	compare	two	values	and	return	true	or	false
depending	on	the	values’	relationship.	For	example,	x	<	y	returns	true	if	x	is	less
than	y.

Table	11.6	summarizes	the	comparison	operators.

Table	11.6

Operator Meaning Example

== Equals 2	==	3	is	false

!= Not	equals 2	!=	3	is	true

< Less	than 2	<	3	is	true

<= Less	than	or	equal	to 2	<=	3	is	true

> Greater	than 2	>	3	is	false

>= Greater	than	or	equal	to 2	>=	3	is	false

Bitwise	Operators
The	bitwise	operators	enable	you	to	manipulate	the	individual	bits	in	integer

http://msdn.microsoft.com/library/2839d5h5.aspx

values.	For	example,	the	bitwise	|	operator	combines	the	bits	in	two	values	so	the
result	has	a	bit	equal	to	1	wherever	either	of	the	two	operands	has	a	bit	equal	to
one.

For	example,	suppose	x	and	y	are	the	byte	values	with	bits	10000000	and	00000001.
Then	x	|	y	has	bits	10000001.

This	may	be	easier	to	understand	if	you	write	y	below	x	as	in	the	following:

x:						10000000

y:						00000001

Result:	10000001

Now	it’s	easy	to	see	that	the	result	has	a	1	where	either	x	or	y	had	a	1.

The	bitwise	operators	are	fairly	advanced	so	I’m	not	going	to	do	much	with	them,
but	Table	11.7	summarizes	them.	The	shift	operators	are	not	“bitwise”	because
they	don’t	compare	two	operands	one	bit	at	a	time,	but	they	are	bit-manipulation
operators	so	they’re	included	here.

Table	11.7

Operator Meaning Example

& Bitwise	AND 				11110000
&	00111100

=	00110000

| Bitwise	OR 				11110000
|	00111100

=	11111100

^ Bitwise	XOR 				11110000
^	00111100

=	11001100

~ Bitwise	complement 				~11110000
=	00001111

<< Left	shift 				11100111	<<	2
=	10011100

>> Right	shift	(for	signed	types) 				11100111	>>	2	
=	11111001

>> Right	shift	(for	unsigned	types) 				11100111	>>	2
=	00111001

If	the	operand	has	a	signed	type	(such	as	sbyte,	int,	or	long),	then	>>	makes	new
bits	on	the	left	be	copies	of	the	value’s	sign	bit	(its	leftmost	bit).	If	the	operand	has
an	unsigned	type	(byte,	uint,	ulong),	then	>>	makes	the	new	bits	0.

All	of	these	except	~	also	have	corresponding	compound	assignments	operators,
for	example,	&=	and	<<=.	Compound	assignment	operators	are	described	in	the
next	section.

Assignment	Operators
The	assignment	operators	set	a	variable	(or	property	or	whatever)	equal	to
something	else.	The	simplest	of	these	is	the	=	operator,	which	you	have	seen
several	times	before.	This	operator	simply	assigns	whatever	value	is	on	the	right	to
the	variable	on	the	left.

The	other	assignment	operators,	which	are	known	as	compound	assignment
operators,	combine	the	variable’s	current	value	with	whatever	is	on	the	right	in
some	way.	For	example,	the	following	code	adds	3	to	whatever	value	x	currently
holds:

x	+=	3;

This	has	the	same	effect	as	the	following	statement	that	doesn’t	use	the	+=
operator:

x	=	x	+	3;

Table	11.8	summarizes	the	assignment	operators.	For	the	examples,	assume	i	is	an
int,	x	is	a	float,	and	a	and	b	are	bools.

Table	11.8

Operator Meaning Example Means

= Assign x	=	10; x	=	10;

+= Add	and	assign x	+=	10; x	=	x	+	10;

-= Subtract	and	assign x	-=	10; x	=	x	-	10;

*= Multiply	and	assign x	*=	10; x	=	x	*	10;

/= Divide	and	assign x	/=	10; x	=	x	/	10;

%= Modulus	and	assign x	%=	10; x	=	x	%	10;

&= Logical	AND	and	assign a	&=	b; a	=	a	&	b;

|= Logical	OR	and	assign a	|=	b; a	=	a	|	b;

^= Logical	XOR	and	assign a	^=	b; a	=	a	^	b;

<<= Left	shift	and	assign i	<<=	3; i	=	i	<<	3;

>>= Right	shift	and	assign i	>>=	5; i	=	i	>>	5;

Precedence
Sometimes	the	order	in	which	you	evaluate	the	operators	in	an	expression	changes
the	result.	For	example,	consider	the	expression	2	+	3	*	5.	If	you	evaluate	the	+
first,	you	get	5	*	5,	which	is	25,	but	if	you	evaluate	the	*	first,	you	get	2	+	15,
which	is	17.

To	prevent	any	ambiguity,	C#	defines	operator	precedence	to	determine	which
comes	first.

Table	11.9	lists	the	major	operators	in	order	of	decreasing	precedence.	In	other
words,	the	operators	listed	near	the	beginning	of	the	table	are	applied	before	those
listed	later.	Operators	listed	at	the	same	level	have	the	same	precedence	and	are
applied	in	left-to-right	order.

Table	11.9

Category Operators

Primary x++,x-	-

Unary +,	-,!,	++x,	-	-x

Multiplicative *,/,%

Additive +,-

Relational <,<=,>,>=

Equality ==,!=

Logical	AND &

Logical	XOR ^

Logical	OR |

Conditional	AND &&

Conditional	OR ||

The	compound	assignment	operators	(+=,	*=,	^=,	and	so	forth)	always	have	lowest
precedence.	The	program	evaluates	the	expression	on	the	right,	combines	it	with
the	original	value	of	the	variable	on	the	left,	and	then	saves	the	result	in	that
variable.

By	carefully	using	the	precedence	rules,	you	can	always	figure	out	how	a	program
will	evaluate	an	expression,	but	sometimes	the	expression	can	be	confusing
enough	to	make	figuring	out	the	result	difficult.	Trying	to	figure	out	precedence	in
confusing	expressions	can	be	a	great	party	game	(a	programmer’s	version	of
“Pictionary”),	but	it	can	make	understanding	and	debugging	programs	hard.

Fortunately	you	can	always	use	parentheses	to	change	the	order	of	evaluation	or	to
make	the	default	order	obvious.	For	example,	consider	the	following	three
statements:

x	=	2	+	3	*	5;

y	=	2	+	(3	*	5);

z	=	(2	+	3)	*	5;

The	first	statement	uses	no	parentheses	so	you	need	to	use	the	precedence	table	to
figure	out	which	operator	is	applied	first.	The	table	shows	that	*	has	higher
precedence	than	+,	so	*	is	applied	first	and	the	result	is	2	+	15,	which	is	17.

The	second	statement	uses	parentheses	to	emphasize	the	fact	that	the	*	operator	is
evaluated	first.	The	result	is	unchanged,	but	the	code	is	easier	to	read.

The	third	statement	uses	parentheses	to	change	the	order	of	evaluation.	In	this
case	the	+	operator	is	evaluated	first,	so	the	result	is	5	*	5,	which	is	25.

NOTE

Parentheses	are	a	useful	tool	for	making	your	code	easier	to	understand	and
debug.	Unless	an	expression	is	so	simple	that	it’s	obvious	how	it	is	evaluated,
add	parentheses	to	make	the	result	clear.

Constants
A	constant	is	a	lot	like	a	variable	except	you	must	assign	it	a	value	when	you
declare	it	and	you	cannot	change	the	value	later.

Syntactically	a	constant’s	declaration	is	similar	to	a	variable	except	it	uses	the
keyword	const.

For	example,	the	bold	line	in	the	following	code	declares	a	decimal	constant
named	taxRate	and	assigns	it	the	value	0.09M.	The	code	then	uses	the	constant	in	a
calculation:

const	decimal	taxRate	=	0.09M;

decimal	subtotal	=	decimal.Parse(subtotalTextBox.Text);

decimal	salesTax	=	taxRate	*	subTotal;

decimal	grandTotal	=	subTotal	+	salesTax;

Constants	work	just	like	literal	values,	so	you	could	replace	the	constant	taxRate
with	the	literal	value	0.09M	in	the	preceding	calculation.	Using	a	constant	makes
the	code	easier	to	read,	however.	When	you	see	the	value	0.09M,	you	need	to
remember	or	guess	that	this	is	a	tax	rate.

Not	only	can	it	be	hard	to	remember	what	this	kind	of	“magic	number”	means,	but
it	can	also	make	changing	the	value	difficult	if	it	appears	in	many	places
throughout	the	program.	Suppose	the	code	uses	the	value	0.09M	in	several	places.
If	the	sales	tax	rate	went	up	to	0.10M,	you	would	have	to	hunt	down	all	of	the
occurrences	of	that	number	and	change	them.	If	you	miss	some	of	them,	you	could
get	very	confusing	results.	Things	could	be	even	more	confusing	if	the	program
also	used	0.09M	in	some	places	to	represent	other	values.	If	you	changed	them	to
0.10M,	you	would	break	the	code	that	uses	those	values.

Note	that	constants	can	contain	calculated	values	as	long	as	C#	can	perform	the
calculation	before	the	program	actually	runs.	For	example,	the	following	code
declares	a	constant	that	defines	the	number	of	centimeters	per	inch.	It	then	uses
that	value	to	define	the	number	of	centimeters	per	foot:

const	double	cmPerInch	=	2.54;

const	double	cmPerFoot	=	cmPerInch	*	12;

Try	It
In	this	Try	It	you	make	some	simple	calculations.	You	take	values	entered	by	the
user,	convert	them	into	numbers,	do	some	multiplication	and	addition,	and
display	the	results.

Lesson	Requirements
In	this	lesson,	you:

Create	the	form	shown	in	Figure	11.1.

Figure	11.1

When	the	user	clicks	the	Calculate	Button,	make	the	program:

Multiply	each	item’s	Quantity	value	by	its	Price	Each	value	and	display	the
result	in	the	corresponding	Item	Total	TextBox.

Add	up	the	Item	Total	values	and	display	the	result	in	the	Subtotal	TextBox.

Multiply	the	Subtotal	value	by	the	entered	Tax	Rate	and	display	the	result
in	the	Sales	Tax	TextBox.

Add	the	Subtotal,	Sales	Tax,	and	Shipping	values,	and	display	the	result	in
the	Grand	Total	TextBox.

NOTE

You	can	download	the	code	and	resources	for	this	lesson	from	the	website	at
www.wrox.com/go/csharp24hourtrainer2e.

Hints
It	is	often	helpful	to	perform	this	kind	of	calculation	in	three	separate	phases:

1.	 Gather	input	values	from	the	user	and	store	them	in	variables.

2.	 Perform	calculations.

3.	 Display	results.

Use	the	decimal	data	type	for	the	variables	that	represent	currency	values.

Lesson	14	has	more	to	say	about	manipulating	and	formatting	strings,	but	for
this	Try	It	it’s	helpful	to	know	that	all	data	types	provide	a	ToString	method
that	converts	a	value	into	a	string.	An	optional	parameter	string	indicates	the
format	to	use.	For	this	Try	It,	use	the	format	"C"	(including	the	quotes)	to
indicate	a	currency	format,	as	in:

grandTotalTextBox.Text	=	grandTotal.ToString("C");

If	the	program	tries	to	perform	the	calculations	and	some	of	the	values	it	needs
are	missing	(for	example,	if	one	of	the	Price	Each	TextBoxes	is	empty),	the
program	will	crash.	Don’t	worry	about	it	for	now.

Step-by-Step
Create	the	form	shown	in	Figure	11.1.

1.	 Create	the	controls	needed	for	the	program	shown	in	Figure	11.1.

a.	 The	Quantity	values	are	NumericUpDown	controls.

b.	 All	of	the	other	box-like	controls	are	TextBoxes.

c.	 The	output	controls	(for	the	Item	Total	values,	Subtotal,	Sales	Tax,	and
Grand	Total)	are	TextBoxes	with	ReadOnly	set	to	True.

d.	 Set	the	form’s	AcceptButton	property	to	the	Calculate	Button.

2.	 Give	names	to	the	controls	that	the	program	needs	to	manipulate.	That
includes	the	NumericUpDown	controls,	all	of	the	TextBoxes,	and	the	Button.

When	the	user	clicks	the	Calculate	Button,	make	the	program:

Multiply	each	item’s	Quantity	value	by	its	Price	Each	value	and	display	the
result	in	the	corresponding	Item	Total	TextBox.

Add	up	the	Item	Total	values	and	display	the	result	in	the	Subtotal	TextBox.

http://www.wrox.com/go/csharp24hourtrainer2e

Multiply	the	Subtotal	value	by	the	entered	Tax	Rate	and	display	the	result
in	the	Sales	Tax	TextBox.

Add	the	Subtotal,	Sales	Tax,	and	Shipping	values,	and	display	the	result	in
the	Grand	Total	TextBox.

This	is	easy	to	do	in	three	steps:

1.	 Gather	input	values	from	the	user	and	store	them	in	variables.	Because	they
are	already	numeric,	the	code	doesn’t	need	to	parse	the	values	that	come
from	the	NumericUpDown	control’s	Value	properties.	The	program	does	need
to	parse	the	values	in	TextBoxes	to	convert	them	into	decimal	values:

//	Get	input	values.

decimal	quantity1	=	qty1NumericUpDown.Value;

decimal	quantity2	=	qty2NumericUpDown.Value;

decimal	quantity3	=	qty3NumericUpDown.Value;

decimal	quantity4	=	qty4NumericUpDown.Value;

decimal	priceEach1	=	decimal.Parse(priceEach1TextBox.Text);

decimal	priceEach2	=	decimal.Parse(priceEach2TextBox.Text);

decimal	priceEach3	=	decimal.Parse(priceEach3TextBox.Text);

decimal	priceEach4	=	decimal.Parse(priceEach4TextBox.Text);

decimal	taxRate	=	decimal.Parse(taxRateTextBox.Text);

decimal	shipping	=	decimal.Parse(shippingTextBox.Text);

2.	 Perform	calculations.	In	this	Try	It,	the	calculations	are	pretty	simple.	To
keep	the	code	simple,	the	program	uses	a	separate	variable	for	each	result
instead	of	tries	to	add	them	all	up	at	once:

//	Calculate	results.

decimal	total1	=	quantity1	*	priceEach1;

decimal	total2	=	quantity2	*	priceEach2;

decimal	total3	=	quantity3	*	priceEach3;

decimal	total4	=	quantity4	*	priceEach4;

decimal	subtotal	=	total1	+	total2	+	total3	+	total4;

decimal	salesTax	=	subtotal	*	taxRate;

decimal	grandTotal	=	subtotal	+	salesTax	+	shipping;

3.	 Display	results.	The	program	uses	ToString("C")	to	display	values	in	a
currency	format:

//	Display	results.

total1TextBox.Text	=	total1.ToString("C");

total2TextBox.Text	=	total2.ToString("C");

total3TextBox.Text	=	total3.ToString("C");

total4TextBox.Text	=	total4.ToString("C");

subtotalTextBox.Text	=	subtotal.ToString("C");

salesTaxTextBox.Text	=	salesTax.ToString("C");

grandTotalTextBox.Text	=	grandTotal.ToString("C");

Exercises
1.	 [WPF]	Repeat	the	Try	It	with	a	WPF	program.

2.	 When	the	user	changes	a	value	used	in	a	calculation,	it	can	be	confusing	if	the
program	displays	old	calculated	values.	Copy	the	program	you	built	for	the	Try
It	and	make	these	modifications:

Disable	the	Calculate	Button.

When	the	user	modifies	any	value	used	in	the	calculations,	blank	the
calculated	TextBoxes	and	enable	the	Calculate	Button.

After	it	displays	the	calculated	values,	make	the	Button’s	code	disable	the
Button	again.

3.	 [WPF]	Repeat	Exercise	2	with	the	program	you	built	for	Exercise	1.	Hint:
When	the	program	first	starts,	the	TextBoxes	will	fire	their	TextChanged	events,
but	not	all	of	the	TextBoxes	will	have	been	built	yet,	so	the	program	can’t	clear
their	text.	To	avoid	crashing,	make	the	event	handlers	use	the	following
statement	to	see	if	the	window	has	finished	loading	before	it	starts	clearing
TextBoxes:

if	(!IsLoaded)	return;

4.	 Copy	the	program	you	built	for	Exercise	2.	As	it	stands,	the	program	crashes	if
any	of	the	input	values	it	needs	are	missing.	Modify	the	program	to	prevent
that	by	enabling	the	Calculate	Button	only	if	all	of	the	needed	values	are
present.	Hints:

In	the	event	handlers,	disable	the	Calculate	Button.	Then	use	code	similar
to	the	following	for	each	of	the	required	values	before	you	re-enable	the
Button:

if	(priceEach1TextBox.Text.Length	==	0)	return;

The	program	will	still	crash	if	the	user	enters	a	non-numeric	value	such	as
“ten.”	Don’t	worry	about	that	for	now.	You’ll	learn	how	to	fix	that	in	Lesson
21.

5.	 [WPF]	Repeat	Exercise	4	with	the	program	you	built	for	Exercise	3.

6.	 The	program	you	built	for	Exercise	4	doesn’t	understand	currency	values.	For
example,	if	you	enter	$6.00	in	a	Price	Each	TextBox	and	click	Calculate,	the
program	crashes.	Fix	that.	Hints:

Use	code	similar	to	the	following	to	allow	currency	values,	thousands
separators,	parentheses,	leading	and	trailing	signs,	and	other	numeric
formats:

decimal	priceEach1	=	decimal.Parse(priceEach1TextBox.Text,

				System.Globalization.NumberStyles.Any);

Don’t	make	that	change	for	the	quantity	values	or	the	tax	rate	because
they’re	not	currency	values.

7.	 [WPF]	Repeat	Exercise	6	with	the	program	you	built	for	Exercise	5.

8.	 Make	a	program	similar	to	the	one	shown	in	Figure	11.2.	When	the	user	checks
or	unchecks	either	of	the	A	or	B	CheckBoxes,	the	program	should	check	or
uncheck	the	result	CheckBoxes	appropriately.	For	example,	if	A	and	B	are	both
checked,	the	A	&&	B	CheckBox	should	also	be	checked.

Figure	11.2

Hints:

Set	a	result	CheckBox’s	Checked	property	equal	to	a	boolean	expression.	For
example:

aAndBCheckBox.Checked	=	aCheckBox.Checked	&&	bCheckBox.Checked;

To	make	a	CheckBox’s	caption	display	an	ampersand,	place	two	in	its	Text
property.	To	display	two	ampersands,	use	four	in	the	Text	property	as	in	“A
&&&&	B.”

The	last	CheckBox	is	checked	at	the	same	time	as	one	of	the	others.	Which
one?	Does	that	make	sense?

9.	 A	program	can	get	information	about	the	operating	system	in	many	ways.
Three	useful	values	include:

Environment.UserName—The	current	user’s	name.

DateTime.Now.ToShortTimeString()—The	current	time	in	short	format.

DateTime.Now.ToShortDateString()—The	current	date	in	short	format.

Make	a	program	that	greets	the	user	when	it	starts	by	displaying	a	message
box	similar	to	the	one	shown	in	Figure	11.3.	(Hint:	You’ll	need	to
concatenate	several	strings.)

Figure	11.3

10.	 Copy	the	program	you	wrote	for	Exercise	9	and	make	it	display	its	greeting	in	a
Label	instead	of	a	message	box.

11.	 Make	a	program	to	determine	whether	12345	*	54321	>	22222	*	33333.	In
three	Labels,	display	the	result	of	12345	*	54321,	the	result	of	22222	*	33333,
and	the	boolean	value	12345	*	54321	>	22222	*	33333.	The	final	value	should
be	true	or	false.	(Hint:	Use	ToString	to	convert	the	boolean	result	into	a	string.)

12.	 Make	a	program	that	converts	degrees	Celsius	to	degrees	Fahrenheit.	It	should
have	two	TextBoxes	with	associated	Buttons.	When	the	user	enters	a	value	in
the	Celsius	TextBox	and	clicks	its	Button,	the	program	converts	the	value	into
degrees	Fahrenheit	and	displays	the	result	in	the	other	TextBox.	Make	the	other
Button	convert	from	Fahrenheit	to	Celsius.	Hints:

°F	=	°C	*	9	/	5	+	32	and	°C	=	(°F	–	32)	*	5	/	9.

What’s	special	about	the	temperature	–40°	Celsius?

13.	 Make	a	currency	converter	that	converts	between	U.S.	dollars,	British	pounds,
Euros,	Japanese	yen,	Indian	rupees,	and	Swiss	francs.	Make	constants	for	the
following	conversion	factors	(or	go	online	and	look	up	the	current	exchange
rates):

//	Exchange	rates	in	USD.

const	decimal	eurPerUsd	=	0.68M;

const	decimal	gbpPerUsd	=	0.63M;

const	decimal	jpyPerUsd	=	89.16M;

const	decimal	inrPerUsd	=	47.24M;

const	decimal	chfPerUsd	=	1.03M;

To	make	the	constants	usable	by	every	event	handler	in	the	program,	place
these	declarations	outside	of	any	event	handler.	(Right	after	the	end	of	the
Form1	method	would	work.)

Make	a	TextBox	and	Button	for	each	currency.	When	the	user	clicks	the	Button,
the	program	should:

Get	the	value	in	the	corresponding	TextBox.

Convert	that	value	into	U.S.	dollars.

Use	the	converted	value	in	U.S.	dollars	to	calculate	the	other	currency
values.

Display	the	results.

14.	 Make	a	program	similar	to	the	one	you	made	for	Exercise	13	but	make	this	one
convert	between	inches,	feet,	yards,	miles,	centimeters,	meters,	and
kilometers.

15.	 [Games]	Make	a	program	that	contains	a	PictureBox	(holding	a	picture	of
something	that	flies)	and	a	Timer	(with	Interval	=	50).

Inside	the	code	but	outside	of	any	event	handler,	declare	two	double	variables
named	Theta	and	Dtheta	initialized	to	0	and	Math.PI	/	30,	respectively.
(System.Math	contains	several	useful	mathematical	values	and	methods
including	Sin	and	Cos,	which	you’ll	use	in	a	moment.)

When	the	user	clicks	the	PictureBox,	enable	or	disable	the	Timer.

In	the	Timer's	Tick	event	handler,	move	the	PictureBox	to	the	point:	(100	+
100	*	Math.Cos(Theta),	100	+	75	*	Math.Sin(Theta))	Then	add	Dtheta	to
Theta.	(Convert	data	types	if	necessary.)

16.	 [Games]	Copy	the	program	you	built	for	Exercise	15	and	add	an	HScrollBar
with	Minimum	=	1,	Maximum	=	10,	and	LargeChange	=	1.	In	its	Scroll	event
handler,	display	the	new	value	in	a	read-only	TextBox	and	set	the	Timer’s
Interval	property	to:110	-	10	*	speedScrollBar.Value.

17.	 [Games,	Advanced]	One	way	to	handle	projectile	motion	is	to	use	variables	Vx
and	Vy	to	represent	an	object’s	velocities	in	the	X	and	Y	directions,	respectively.
At	every	tick	of	a	Timer,	you	add	Vx	and	Vy	to	the	object’s	current	X	and	Y
coordinates,	respectively.	For	projectile	motion,	you	then	add	a	downward
acceleration	due	to	gravity	to	Vy.

For	this	exercise,	build	a	program	similar	to	the	one	shown	in	Figure	11.4	to
simulate	projectile	motion.	To	keep	the	program	simple	for	the	user,	the	angle
is	in	degrees,	the	speed	is	in	feet	per	second,	and	the	scale	is	1	pixel	=	1	foot.

Figure	11.4

Hints:

Build	the	form	as	shown	in	Figure	11.4.	The	cannonball	is	an	image
displayed	in	a	PictureBox.	Also	add	a	Timer	named	moveTimer	and	set	its
Interval	property	to	50.

Outside	of	any	event	handler,	create	six	float	variables	named
TicksPerSecond,	X,	Y,	Vx,	Vy,	and	Ay.

When	the	user	clicks	the	Fire	Button:

Use	the	form’s	ClientSize	and	the	PictureBox’s	Size	to	move	the
PictureBox	to	the	form’s	lower-left	corner.

Parse	the	angle	and	speed	entered	by	the	user.

Convert	the	angle	from	degrees	to	radians	by	using	the	formula:radians
=degrees	*	Math.PI	/	180.

Calculate	the	number	of	Timer	ticks	per	second	by	using	the	formula:
TicksPerSecond	=	1000	/	moveTimer.Interval.

Use	the	following	equations	(converting	data	types	as	necessary)	to
calculate	the	ball’s	initial	velocities	Vx	and	Vy	in	feet	per	tick:

Vx	=	speed	*	Math.Cos(radians)	/	TicksPerSecond

Vy	=	speed	*	Math.Sin(radians)	/	TicksPerSecond

Use	the	following	equation	to	calculate	the	ball’s	acceleration	due	to
gravity	in	feet	per	tick	per	tick:

Ay	=	32	/	TicksPerSecond	/	TicksPerSecond

Enable	the	Timer.

Disable	the	Fire	Button.

Enable	the	Stop	Button.

When	the	user	clicks	the	Stop	Button:

Disable	the	Timer.

Enable	the	Fire	Button.

Disable	the	Stop	Button.

When	the	Timer’s	Tick	event	fires:

Move	the	cannonball	by	adding	Vx	to	the	PictureBox’s	Left	property	and
subtracting	Vy	from	the	PictureBox’s	Top	property.	(You	subtract	Vy
because	Y	coordinates	on	the	form	decrease	upward.)

Add	the	downward	acceleration	due	to	gravity	to	Vy	by	subtracting	Ay

If	all	goes	well,	then	for	a	60°	angle	and	a	speed	of	120	feet	per	second,	the
cannonball	should	take	around	8.5	seconds	to	drop	off	the	bottom	of	the

form.	(It	may	seem	like	a	long	time,	but	the	ball	travels	more	than	400	feet
horizontally	during	that	time.)

NOTE

Please	select	the	videos	for	Lesson	11	online	at
www.wrox.com/go/csharp24hourtrainer2evideos.

http://www.wrox.com/go/csharp24hourtrainer2evideos

Lesson	12

Debugging	Code
A	bug	is	a	programming	error	that	makes	a	program	fail	to	produce	the	correct
result.	The	program	might	crash,	display	incorrect	data,	or	do	something
completely	unexpected	such	as	delete	the	wrong	file.

In	this	lesson	you	learn	how	to	use	the	excellent	debugging	tools	provided	by
Visual	Studio's	IDE	to	find	bugs	in	C#.	You	learn	about	different	kinds	of	bugs	and
you	get	to	practice	debugging	techniques	on	some	buggy	examples	that	you	can
download	from	the	book's	website.

Deferred	Techniques
Unfortunately,	at	this	point	in	the	book	you	don't	know	enough	about	writing	code
to	be	able	to	understand	and	fix	certain	kinds	of	bugs.	For	example,	a	program
crashes	if	it	tries	to	access	an	array	entry	that	is	outside	of	the	array,	but	you	won't
learn	about	arrays	until	Lesson	16.

So	why	does	this	lesson	cover	debugging	when	you	don't	even	know	all	of	the
techniques	you	need	to	cause	and	fix	certain	kinds	of	bugs?	It	makes	sense	for	two
reasons.

First,	the	previous	lesson	was	the	first	part	of	the	book	where	you	were	likely	to
encounter	bugs.	Whenever	I	teach	beginning	programming,	students	start	seeing
bugs	as	soon	as	they	write	code	that	performs	calculations	like	those	covered	in
Lesson	11.	These	kinds	of	bugs	are	easy	to	fix	if	you	know	just	a	little	bit	about
debugging,	but	they	can	be	extremely	frustrating	if	you	don't.

Second,	it	turns	out	that	you	don't	need	to	know	more	advanced	techniques	to
learn	simple	debugging.	Once	you	learn	how	to	track	down	simple	bugs,	you	can
use	the	same	techniques	to	find	more	advanced	bugs.	(If	you	learn	to	swim	in	3
feet	of	water,	you	can	later	use	the	same	techniques	to	swim	in	10	feet	or	100	feet
of	water.)

Later,	when	you	know	more	about	C#	programming	and	can	create	more
advanced	bugs,	that	same	knowledge	will	help	you	fix	those	bugs.	When	you	know
enough	to	have	array	indexing	errors,	you'll	also	know	enough	to	fix	them.

Debugging	Then	and	Now
Back	in	the	bad	old	days,	programmers	often	fixed	bugs	by	staring	hard	at	the
code,	making	a	few	test	changes,	and	then	running	the	program	again	to	see	what
happened.	This	trial-and-error	approach	could	be	extremely	slow	because	the
programmer	didn't	really	know	exactly	what	was	going	on	inside	the	code.	If	the
programmer	didn't	have	a	good	understanding	of	what	was	really	happening,	the
test	changes	often	didn't	help	and	may	have	even	made	the	problem	worse.

Visual	Studio's	IDE	provides	excellent	tools	for	debugging	code.	In	particular,	it
lets	you	stop	a	program	while	it's	running	and	see	what	it's	doing.	It	lets	you	follow
the	program	as	it	executes	its	code	one	line	at	a	time,	look	at	variable	values,	and
even	change	those	values	while	the	program	is	still	running.

The	following	sections	describe	some	of	Visual	Studio's	most	useful	debugging
tools.

Setting	Breakpoints
A	breakpoint	stops	code	execution	at	a	particular	statement.	To	set	a	breakpoint,
open	the	Code	Editor	and	click	the	gray	margin	to	the	left	of	the	line	of	code	where
you	want	to	stop.	Alternatively,	you	can	place	the	cursor	on	the	line	and	press	F9.

The	IDE	indicates	the	breakpoint	by	displaying	a	red	circle	in	the	left	margin	and
highlighting	the	line	of	code	in	red.	Figure	12.1	shows	a	breakpoint	set	on	the
following	line	of	code:

decimal	grandTotal	=	subtotal	+	salesTax	+	shipping;

Figure	12.1

If	you	run	the	program	now,	execution	stops	when	it	reaches	that	line.	You	can
then	study	the	code	to	see	what	it's	doing.

The	debugger	provides	an	edit-and-continue	feature	that	lets	you	modify	a
stopped	program's	code.	You	can	add	new	statements,	remove	existing
statements,	declare	new	variables,	and	so	forth.	Unfortunately,	the	debugger	gets
confused	if	you	make	certain	changes,	and	you'll	have	to	restart	your	program.	But
sometimes	you	can	make	small	changes	without	restarting.

To	remove	a	breakpoint,	click	the	red	breakpoint	circle	or	click	the	line	and	press
F9	again.

Spontaneous	Stop

If	you	need	to	stop	a	program	while	it	is	running	and	you	haven't	set	any
breakpoints,	you	can	select	the	Debug	menu's	Break	All	command	or	press
Ctrl+Alt+Break.	The	debugger	will	halt	the	program	in	the	middle	of	whatever
it	is	doing	and	enter	break	mode.

If	the	Break	All	command	isn't	in	the	Debug	menu	(it	may	not	be	for	some
versions	of	Visual	Studio),	you	can	still	use	the	shortcut	Ctrl+Alt+Break.

This	technique	is	particularly	useful	for	interrupting	long	tasks	or	infinite
loops.

Reading	Variables
It's	easy	to	read	a	variable's	value	while	execution	is	stopped.	Simply	hover	the
mouse	over	a	variable	and	its	value	appears	in	a	popup	window.

For	example,	consider	the	order	summary	program	shown	in	Figure	12.2.	The
program	is	supposed	to	add	a	subtotal,	9%	sales	tax,	and	shipping	costs	to	get	a
grand	total.	You	don't	have	to	be	Neil	deGrasse	Tyson	to	realize	that	something's
wrong	in	Figure	12.2.	If	you're	really	paying	a	total	of	$204.50	for	a	$19.95
purchase,	you	need	to	find	a	new	place	to	shop.

Figure	12.2

To	debug	this	program,	you	could	place	a	breakpoint	on	a	line	of	code	near	where
you	know	the	bug	occurs.	For	example,	the	line	of	code	containing	the	breakpoint
in	Figure	12.1	calculates	the	grand	total.	Because	the	total	displayed	in	Figure	12.2
is	wrong,	this	seems	like	a	good	place	to	begin	the	bug	hunt.	(You	can	download
the	Sales	Tax	Calculator	program	from	the	book's	website	and	follow	along	if	you
like.)

When	the	code	is	stopped,	you	can	hover	the	mouse	over	a	variable	to	learn	its
value.	If	you	hover	the	mouse	over	the	variables	in	that	line	of	code,	you'll	find
that	subTotal	is	19.95	(correct),	shipping	is	5	(correct),	and	salesTax	is	179.55
(very	much	incorrect).	Figure	12.3	shows	the	mouse	hovering	over	the	salesTax
variable	to	display	its	value.

Figure	12.3

Now	that	you	know	the	bug	is	lurking	in	the	variable	salesTax,	you	can	hover	the
mouse	over	other	variables	to	see	how	that	value	was	calculated.	If	you	hover	the
mouse	over	the	variables	in	the	previous	line	of	code,	you'll	find	that	subTotal	is
19.95	(still	correct)	and	taxRate	is	9.

You	may	need	to	think	about	that	for	a	bit	to	realize	what's	going	wrong.	To	apply
a	tax	rate	such	as	9%,	you	divide	by	100	and	then	multiply.	In	this	case,	taxRate
should	be	0.09,	not	9.

Having	figured	out	the	problem,	you	can	stop	the	program	by	opening	the	Debug
menu	and	selecting	the	Stop	Debugging	command,	by	clicking	the	Stop	Debugging
button	on	the	toolbar,	or	by	pressing	Shift+F5.

Now	you	can	fix	the	code	and	run	the	program	again	to	see	if	it	works.	The
following	line	shows	the	incorrect	line	of	code	(I	scrolled	it	out	of	view	in	Figure
12.3	so	it	wouldn't	be	a	complete	giveaway):

const	decimal	taxRate	=	9M;

When	you	run	the	program	again,	you	should	get	the	correct	sales	tax	($1.80)	and
grand	total	($26.75).	In	a	more	complicated	program,	you	would	need	to	perform
a	lot	more	tests	to	make	sure	the	program	behaved	properly	for	different	inputs,
including	weird	ones	such	as	when	the	user	enters	“ten	dollars”	for	the	subtotal	or
leaves	the	shipping	cost	blank.	This	example	isn't	robust	enough	to	handle	those
problems.

Stepping	Through	Code
Once	you've	stopped	the	code	at	a	breakpoint,	you	can	step	through	the	execution
one	statement	at	a	time	to	see	what	happens.	The	Debug	menu	provides	four
commands	that	control	execution:

Continue	(F5)—Makes	the	program	continue	running	until	it	finishes	or	it
reaches	another	breakpoint.	Use	this	to	run	the	program	normally	after	you're
done	looking	at	the	code.

Step	Into	(F11)—Makes	the	program	execute	the	current	statement.	If	that
statement	calls	a	method,	execution	stops	inside	that	method	so	you	can	see
how	it	works.

Step	Over	(F10)—Makes	the	program	execute	the	current	statement.	If	that
statement	calls	another	piece	of	executable	code,	the	program	runs	that	code
and	returns	without	stopping	inside	that	code	(unless	there's	a	breakpoint
somewhere	inside	that	code).

Step	Out	(Shift+F11)—Makes	the	program	run	the	current	routine	until	it
finishes	and	returns	to	the	calling	routine	(unless	it	hits	another	breakpoint
first).

NOTE

When	it	is	stopped,	the	debugger	highlights	the	next	line	of	code	that	it	will
execute	in	yellow.

In	addition	to	using	the	Debug	menu	or	shortcut	keys,	you	can	invoke	these
commands	from	the	toolbar.

Normally	the	program	steps	through	its	statements	in	order,	but	there	is	a	way	to
change	the	order	if	you	feel	the	need.	Right-click	the	line	that	you	want	the	code	to
execute	next	and	select	Set	Next	Statement	from	the	context	menu.	Alternatively,
you	can	place	the	cursor	on	the	line	and	press	Ctrl+Shift+F10.	When	you	let	the
program	continue,	it	starts	executing	from	this	line.

Setting	the	next	statement	to	execute	is	useful	for	replaying	history	to	see	where
an	error	occurred,	re-executing	a	line	after	you	change	a	variable's	value
(described	in	the	“Using	the	Immediate	Window”	section	later	in	this	lesson),	or	to
jump	forward	to	skip	some	code.

Note	that	you	can	jump	to	only	certain	lines	of	code.	For	example,	you	can't	jump
to	a	comment	or	other	line	of	code	that	doesn't	actually	do	anything	(you	can't	set
a	breakpoint	there	either),	you	can't	jump	to	a	different	method,	you	can't	jump	at
all	if	an	error	has	just	occurred,	you	can't	jump	to	a	variable	declaration	unless	it
also	initializes	the	variable,	and	so	forth.	C#	does	its	best,	but	it	has	its	limits.

Using	Watches
Sometimes	you	may	want	to	check	a	variable's	value	frequently	as	you	step
through	the	code	one	line	at	a	time.	In	that	case,	pausing	between	steps	to	hover
over	a	variable	could	slow	you	down,	particularly	if	you	have	a	lot	of	code	to	step
through.

To	make	monitoring	a	variable	easier,	the	debugger	provides	watches.	A	watch
displays	a	variable's	value	whenever	the	program	stops.

To	create	a	watch,	break	execution,	right-click	a	variable,	and	select	Add	Watch
from	the	context	menu.	The	bottom	of	Figure	12.4	shows	a	watch	set	on	the
variable	subtotal.	Each	time	the	program	executes	a	line	of	code	and	stops,	the
watch	updates	to	display	the	variable's	current	value.

Figure	12.4

The	Watch	window	also	highlights	variables	that	have	just	changed	in	red.	If
you're	tracking	a	lot	of	watches,	this	makes	it	easy	to	find	the	values	that	have	just
changed.

NOTE

The	Locals	window	is	similar	to	the	Watch	window	except	it	shows	the
values	of	all	of	the	local	variables	(and	constants).	This	window	is	handy	if
you	want	to	view	many	of	those	variables	all	at	once.	It	also	highlights
recently	changed	values	in	red	so	you	can	see	what's	changing.

Using	the	Immediate	Window
While	the	program	is	stopped,	the	Immediate	window	lets	you	execute	simple
commands.	The	four	most	useful	commands	that	this	window	supports	let	you
view	variable	values,	evaluate	expressions,	set	variable	values,	and	call	methods.

NOTE

If	you	can't	find	the	Immediate	window,	open	the	Debug	menu,	expand	the
Windows	submenu,	and	select	Immediate.

To	view	a	variable's	value,	simply	type	the	variable's	name	and	press	Enter.
(Optionally,	you	can	type	a	question	mark	in	front	if	it	makes	you	feel	more	like
you're	asking	a	question.)

The	following	text	shows	the	Immediate	window	after	I	typed	in	the	name	of	the
variable	subtotal	and	pressed	Enter:

subtotal

19.95

To	evaluate	an	expression,	simply	type	in	the	expression	and	press	Enter.	You	can
include	literal	values,	variables,	properties,	constants,	and	just	about	anything	else
that	you	can	normally	include	inside	an	expression	in	the	code.

The	following	text	shows	the	Immediate	window	after	I	typed	an	expression	and
pressed	Enter:

taxRate	*	subtotal

179.55

To	set	a	variable's	value,	simply	type	the	variable's	name,	an	equals	sign,	and	the
value	that	you	want	to	give	it.	The	new	value	can	be	a	literal	value	or	it	can	be	the
result	of	an	expression.	After	you	press	Enter,	the	Immediate	window	evaluates
whatever	is	on	the	right	of	the	equals	sign,	saves	it	in	the	variable,	and	then
displays	the	variable's	new	value.

NOTE

The	same	technique	lets	you	set	new	values	for	properties.	For	example,	you
can	change	a	control's	Location,	Text,	Visible,	BackColor,	and	other
properties	on	the	fly.

The	following	text	shows	the	Immediate	window	after	I	typed	a	statement	to	give
the	grandTotal	variable	a	new	value	and	pressed	Enter:

grandTotal	=	subtotal	+	salesTax

199.50

Finally,	to	call	a	method,	simply	type	the	method	call	into	the	Immediate	window
and	press	Enter.	Don't	forget	to	add	parentheses	to	the	method	call	even	if	the
method	takes	no	parameters.	The	Immediate	window	calls	the	method	and
displays	any	returned	result.	If	the	method	has	no	return	value,	the	Immediate
window	displays	“Expression	has	been	evaluated	and	has	no	value.”

The	following	text	shows	the	Immediate	window	after	I	executed	the
grandTotalTextBox's	Clear	method:

grandTotalTextBox.Clear()

Expression	has	been	evaluated	and	has	no	value

NOTE

You	must	type	commands	in	the	Immediate	window	just	as	you	would	in	the
Code	Editor.	In	particular,	you	must	use	the	correct	capitalization	or	the
window	will	complain.

Try	It
If	you	look	closely	at	Figure	12.5,	you'll	see	that	this	program	has	a	serious
problem.	One	tofu	dinner	at	$13.95	each	probably	shouldn't	add	up	to	$142.65.	If
you	look	a	little	more	closely,	you'll	also	see	that	the	grand	total	doesn't	add	up
properly.

Figure	12.5

In	this	Try	It,	you	debug	this	program.	You	set	breakpoints	and	use	the	debugger
to	evaluate	variable	values	to	figure	out	where	the	code	is	going	wrong.

NOTE

The	downloads	for	this	chapter,	which	are	available	at
www.wrox.com/go/csharp24hourtrainer2e,	include	buggy	and	debugged
versions	of	the	Try	It	and	exercises.	For	example,	the	initial	flawed	version	of
the	Try	It	is	called	“Try	It	12”	and	the	fixed	version	is	called	“Try	It	12	Fixed.”

Lesson	Requirements
In	this	lesson,	you:

Use	the	debugger	to	fix	this	program.	To	follow	along	in	the	debugger,
download	this	lesson's	material	from	the	book's	website	and	open	the	“Try	It
12”	solution.

Run	the	program	and	experiment	with	it	for	a	bit	to	see	what	seems	to	work
and	what	seems	to	be	broken.	This	should	give	you	an	idea	of	where	the
problem	may	lie.

Set	a	breakpoint	in	the	code	near	where	you	think	there	might	be	a	problem.	In
this	case,	the	tofu	dinner	cost	calculation	is	wrong	so	you	might	set	a
breakpoint	on	this	line:

decimal	priceTofu	=	tofuCost	*	numTofu;

Run	the	program	so	it	stops	at	that	breakpoint.	Hover	the	mouse	over	different
variables	to	see	whether	their	values	make	sense.

Step	through	the	code,	watching	each	line	closely	to	see	what's	wrong.

Fix	the	error.

Run	the	program	again	and	test	it	to	make	sure	the	change	you	made	works.
Try	setting	two	of	the	quantities	to	0	and	the	third	to	1	to	see	if	the	program
can	correctly	calculate	the	nonzero	value.

Repeat	these	steps	until	you	can't	find	any	more	problems.

http://www.wrox.com/go/csharp24hourtrainer2e

NOTE

You	can	download	the	code	and	resources	for	this	lesson	from	the	website	at
www.wrox.com/go/csharp24hourtrainer2e.

Step-by-Step
The	first	two	lesson	requirements	for	this	Try	It	are	fairly	straightforward	so	they
aren't	repeated	here.	The	following	paragraphs	discuss	the	solution	to	the
mysterious	problem,	so	if	you	want	to	try	to	debug	the	program	yourself,	do	so
before	you	read	any	further.

Ready?	Let's	go.

The	following	code	shows	how	the	program	works.	The	bold	line	is	where	I	set	my
breakpoint.	If	you	stare	at	the	code	long	enough,	you'll	probably	find	the	bug,	so
don't	look	too	closely	or	you'll	spoil	the	surprise.	Remember,	the	point	is	to
practice	using	the	debugger	(which	will	be	your	only	hope	in	more	complicated
programs),	not	to	simply	fix	the	program.

//	Calculate	the	prices	for	each	entree	and	the	total	price.

private	void	calculateButton_Click(object	sender,	EventArgs	e)

{

				const	decimal	chickenCost	=	15.85M;

				const	decimal	steakCost	=	18.95M;

				const	decimal	tofuCost	=	13.95M;

				//	Get	inputs.

				int	numChicken	=	int.Parse(chickenQuantityTextBox.Text);

				int	numSteak	=	int.Parse(steakQuantityTextBox.Text);

				int	numTofu	=	int.Parse(tofuQuantityTextBox.Text);

				//	Calculate	results.

				decimal	total	=	0;

				decimal	priceChicken	=	chickenCost	*	numChicken;

				total	+=	priceChicken;

				decimal	priceSteak	=	steakCost	*	numSteak;

				total	+=	priceSteak;

				decimal	priceTofu	=	tofuCost	*	numTofu;

				total	+=	priceTofu;

				//	Display	results.

				chickenPriceTextBox.Text	=	priceChicken.ToString("C");

				steakPriceTextBox.Text	=	priceSteak.ToString("C");

				tofuPriceTextBox.Text	=	priceChicken.ToString("C");

				totalTextBox.Text	=	total.ToString("C");

}

Run	the	program	so	it	stops	at	that	breakpoint.	Hover	the	mouse	over	different
variables	to	see	whether	they	look	like	they	make	sense.

1.	 If	you	run	to	the	breakpoint	and	hover	the	mouse	over	the	variables,	you'll
find	that	most	of	them	make	sense;	the	values	numChicken	=	9,

http://www.wrox.com/go/csharp24hourtrainer2e

priceChicken	=	142.65,	and	so	forth.

Step	through	the	code,	watching	each	line	closely	to	see	what's	wrong.

While	the	program	is	stopped	on	the	breakpoint,	the	variable	priceTofu
has	value	0	because	the	code	hasn't	yet	executed	the	line	that	sets	its
value.	Press	F10	to	step	over	that	line	and	you'll	see	that	priceTofu	is
13.95	as	it	should	be.	So	far,	you	haven't	found	the	bug.

If	you	continue	stepping	through	the	code,	watching	each	line
carefully,	you'll	eventually	see	the	problem	in	this	line:

tofuPriceTextBox.Text	=	priceChicken.ToString("C");

Here	the	code	is	making	the	tofu	price	TextBox	display	the	value
priceChicken!

NOTE

This	is	a	fairly	typical	copy-and-paste	error.	The	programmer	wrote	one
line	of	code,	copied	and	pasted	it	several	times	to	perform	similar	tasks
(displaying	the	values	in	the	TextBoxes),	but	then	didn't	update	each
pasted	line	correctly.

Fix	the	error.

1.	 This	bug	is	easy	to	fix.	Simply	change	the	offending	line	to	this:

tofuPriceTextBox.Text	=	priceTofu.ToString("C");

Run	the	program	again	and	test	it	to	make	sure	the	change	you	made	works.
Try	setting	two	of	the	quantities	to	0	and	the	third	to	1	to	see	if	the	program
can	correctly	calculate	the	nonzero	value.

1.	 If	you	run	the	program	again,	all	should	initially	look	fine.	If	you	reproduce
some	calculations	by	hand,	however,	you	may	find	a	small	discrepancy	in
the	chicken	prices.

2.	 You	can	see	the	problem	more	easily	if	you	set	the	quantities	of	steak	and
tofu	to	0	and	the	quantity	of	chicken	to	1.	Then	the	program	calculates	that
the	price	of	one	chicken	dinner	(at	$15.95	each)	is	$15.85.

If	the	program	still	has	problems,	run	through	these	steps	again.

Having	found	another	bug,	run	through	the	debugging	process	again.
Set	a	breakpoint	on	the	line	that	calculates	priceChicken	and	hover
over	the	variables	to	see	if	their	values	make	sense.

If	you're	paying	attention,	you'll	see	that	the	value	of	the	constant
costChicken	is	15.85,	not	15.95	as	it	should	be.

2.	 Fix	the	constant	declaration	and	test	the	program	again.

NOTE

It's	extremely	common	for	a	program	to	contain	more	than	one	bug.	In	fact,
it's	an	axiom	of	software	development	that	any	nontrivial	program	contains
at	least	one	bug.

A	consequence	of	that	axiom	is	that,	even	after	you	fix	the	program's	“last”
bug,	it	still	contains	another	bug.	Sometimes	fixing	the	bug	introduces	a	new
bug.	(That's	not	as	uncommon	as	you	might	think	in	a	complex	program.)
Other	times	more	bugs	are	hiding;	you	just	haven't	found	them	yet.

In	complex	projects,	the	goal	is	still	to	eradicate	every	single	bug,	but	the
reality	is	that	often	the	best	you	can	do	is	fix	as	many	as	you	can	find	until
the	odds	of	the	user	finding	one	in	everyday	use	are	extremely	small.

Exercises
Putting	debugging	exercises	in	a	book	can	be	a	bit	strange.	If	the	book	includes	the
code,	you	can	stare	at	it	until	you	see	the	bugs	without	using	the	debugger,	and
that	would	defeat	the	purpose.

For	that	reason,	this	section	only	describes	the	programs	containing	the	bugs	and
you'll	have	to	download	the	buggy	programs	from	the	book's	website	at
www.wrox.com/go/csharp24hourtrainer.	The	corrected	versions	are	named	after
their	exercises,	for	example,	“Exercise	12-1	Fixed.”	Modified	lines	are	marked	with
comments.

1.	 Debug	the	Temperature	Converter	program	shown	in	Figure	12.6.	(Hint:	0°
Celsius	=	32°	Fahrenheit	and	100°	Celsius	=	212°	Fahrenheit.)

Figure	12.6

2.	 Debug	the	Distance	Converter	program	shown	in	Figure	12.7.	(After	you	fix
this	one,	notice	that	using	constants	instead	of	magic	numbers	would	make
fixing	these	bugs	easier	and	might	have	avoided	them	from	the	start.	Also	note
again	that	duplicated	code	is	a	bad	thing.	You	learn	how	to	fix	that	in	Lesson
20.)

Figure	12.7

3.	 The	Picture	Resizer	program	is	supposed	to	zoom	in	on	a	picture	when	you
adjust	its	TrackBar.	Unfortunately,	when	you	move	the	TrackBar,	the	picture
seems	to	shrink	and	move	to	a	new	location.	Debug	the	program.

4.	 Debug	the	Tax	Form	program,	which	performs	a	fictitious	tax	calculation
based	on	a	real	one.	It's	an	ugly	little	program,	but	it's	probably	the	most
realistic	one	in	this	lesson.	(Hint:	For	the	program's	initial	inputs,	the	tax	due
should	be	$290.00.)

http://www.wrox.com/go/csharp24hourtrainer

5.	 The	Play	Tone	program	is	supposed	to	let	the	user	play	tones	between	1000	Hz
and	10,000	Hz	for	durations	between	0.1	and	2.0	seconds.	Unfortunately,	for
durations	of	1.0	seconds	or	longer,	the	program	plays	a	short	click,	and	for
durations	under	1.0	seconds	the	program	crashes.	Download	and	debug	the
program.

6.	 [Games]	When	you	scroll	the	Orbit	program's	scrollbar	from	0	to	359	degrees,
the	program	moves	an	image	of	the	Earth	around	an	image	of	the	sun.
Unfortunately,	the	Earth	jumps	all	over	the	place	and	it	sometimes	falls	off	the
bottom	and	right	edges	of	the	form.	Download	and	debug	the	program.

7.	 [Games]	The	Satellite	program	uses	a	Timer	to	make	a	picture	of	a	satellite
orbit	the	Earth.	Unfortunately,	the	satellite	sometimes	moves	off	the	bottom	of
the	form.	Download	and	debug	the	program.

8.	 [Games,	WPF]	The	Rotate	Image	program	lets	the	user	load	and	rotate	an
image.	(The	code	shows	how	to	load	an	image	at	run	time	and	prevent	WPF
from	resizing	it,	so	it's	worth	looking	at	for	that	alone.)	Unfortunately,	when
the	user	changes	the	slider's	value	from	0	to	359	degrees,	the	image	rotates
only	a	tiny	amount.	Download	and	debug	the	program.

9.	 [Graphics]	The	Draw	Star	program	is	supposed	to	draw	a	five-pointed	star.
(This	book	doesn't	have	enough	room	to	say	a	lot	about	drawing	graphics,	but
this	example	can	help	you	get	started.)	Unfortunately,	the	program	draws	an
upside-down	pentagon.	Download	and	debug	the	program.

10.	 The	Equal	Shares	program	takes	as	inputs	a	money	amount	and	a	number	of
people.	It	then	calculates	the	amount	of	money	you	should	give	each	person	to
divide	the	money	evenly.	Unfortunately,	the	program	crashes.	Download	and
debug	the	program	so	it	doesn't	crash	and	so	it	displays	the	shares	as	a
currency	value.

11.	 The	Interest	Calculator	program	uses	the	formula	F	=	P	*	(1	+	R)N	to	calculate
the	future	value	of	a	savings	account	where	F	is	the	future	value,	P	is	the	initial
principle,	R	is	the	annual	interest	rate,	and	N	is	the	number	of	years.
Unfortunately,	the	program	has	two	problems.	First,	it	won't	compile	because
of	some	data	type	errors.	Second,	once	you	get	it	to	compile,	it	indicates	that	a
$1,000	investment	at	5%	interest	for	10	years	ends	with	a	total	value	of	more
than	$60	billion.	(If	you	know	of	an	investment	that	can	turn	my	$1,000	into
$60	billion	in	10	years,	please	let	me	know!)	Download	and	debug	the
program.

12.	 In	finance,	the	Rule	of	72	lets	you	approximate	the	number	of	years	it	takes	to
double	an	investment	at	a	particular	interest	rate.	If	the	annual	interest	rate	is
R,	then	the	rule	says	it	will	take	approximately	T	=	72	/	R	years	to	double	an
investment.	(The	Rule	of	70	and	the	Rule	of	69.3	are	similar	except	they	use
values	other	than	72.	Different	versions	are	closest	for	different	interest	rates.)

The	exact	formula	for	calculating	doubling	time	is	T	=	Ln(2)	/	Ln(1	+	R).	The

advantage	of	the	Rules	is	that	you	can	approximate	them	in	your	head.	(I
would	have	a	harder	time	dividing	into	69.3	than	70	or	72,	but	at	least	you	can
divide	into	69.3	with	a	simple	accounting	calculator	that	doesn't	do
logarithms.)

The	Doubling	Time	program	takes	as	input	an	interest	rate	and	calculates	the
results	of	the	Rules	of	72,	70,	and	69.3,	plus	the	exact	formula.	The	results	for	a
6%	interest	rate	are	12.00,	11.67,	115.50,	and	0.36	years,	respectively.
Download	and	debug	the	program.

NOTE

Please	select	the	videos	for	Lesson	12	online	at
www.wrox.com/go/csharp24hourtrainer2evideos.

http://www.wrox.com/go/csharp24hourtrainer2evideos

Lesson	13

Understanding	Scope
A	variable's	scope	is	the	code	that	can	“see”	or	access	that	variable.	It	determines
whether	a	piece	of	code	can	read	the	variable's	value	and	give	it	a	new	value.

In	this	lesson	you	learn	what	scope	is.	You	learn	why	restricting	scope	is	a	good
thing	and	how	to	determine	a	variable's	scope.

Scope	within	a	Class
A	C#	class	(and	note	that	Form	types	are	classes,	too)	contains	three	main	kinds	of
scope:	class	scope,	method	scope,	and	block	scope.	(If	you	have	trouble
remembering	what	a	class	is,	review	Lesson	9's	section	“Understanding	Classes
and	Instances.”)

Variables	with	class	scope	are	declared	inside	the	class	but	outside	of	any	of	its
methods.	These	variables	are	visible	to	all	of	the	code	throughout	the	instance	of
the	class	and	are	known	as	fields.

Variables	with	method	scope	are	declared	within	a	method.	They	are	usable	by	all
of	the	code	that	follows	the	declaration	within	that	method.

Variables	with	block	scope	are	declared	inside	a	block	defined	by	curly	braces	{}
nested	inside	a	method.	The	section	“Block	Scope”	later	in	this	lesson	says	more
about	this.

For	example,	consider	the	following	code	that	defines	the	form's	constructor
(Form1),	a	field,	and	some	variables	inside	event	handlers:

namespace	VariableScope

{

				public	partial	class	Form1	:	Form

				{

								public	Form1()

								{

												InitializeComponent();

								}

								//	A	field.

								int	a	=	1;

								private	void	clickMeButton_Click(object	sender,	EventArgs	e)

								{

												//	A	method	variable.

												int	b	=	2;

												MessageBox.Show("a	=	"	+	a.ToString()	+

																"\nb	=	"	+	b.ToString());

								}

								private	void	clickMeTooButton_Click(object	sender,	EventArgs	e)

								{

												//	A	method	variable.

												int	c	=	3;

												MessageBox.Show("a	=	"	+	a.ToString()	+

																"\nc	=	"	+	c.ToString());

								}

				}

}

The	field	a	is	declared	outside	of	the	three	methods	(Form1,	clickMeButton_Click,
and	clickMeTooButton_Click)	so	it	has	class	scope.	That	means	the	code	in	any	of
the	methods	can	see	and	use	this	variable.	In	this	example,	the	two	Click	event
handlers	can	each	display	the	value.

The	variable	b	is	declared	within	clickMeButton_Click	so	it	has	method	scope.
Only	the	code	within	this	method	that	comes	after	the	declaration	can	use	this
variable.	In	particular,	the	code	in	the	other	methods	cannot	see	it.

Similarly,	the	code	in	the	clickMeTooButton_Click	event	handler	that	comes	after
the	c	declaration	can	see	that	variable.

Two	variables	with	the	same	name	cannot	have	the	same	scope.	For	example,	you
cannot	create	two	variables	named	a	at	the	class	level	nor	can	you	create	two
variables	named	b	inside	the	same	method.

Same	Named	Variables
Although	you	cannot	give	two	variables	the	same	name	within	the	same	scope,	you
can	give	them	the	same	name	if	they	are	in	different	methods	or	one	is	a	field	and
the	other	is	declared	inside	a	method.	For	example,	the	following	code	defines
three	variables	all	named	count:

//	A	field.

int	count	=	0;

private	void	clickMeButton_Click(object	sender,	EventArgs	e)

{

				//	A	method	variable.

				int	count	=	1;

				MessageBox.Show(count.ToString());

}

private	void	clickMeTooButton_Click(object	sender,	EventArgs	e)

{

				//	A	method	variable.

				int	count	=	2;

				MessageBox.Show(count.ToString());

}

In	this	example,	the	method-level	variable	hides	the	class-level	variable	with	the
same	name.	For	example,	within	the	clickMeButton_Click	event	handler,	its	local
version	of	count	is	visible	and	has	the	value	1.	The	class-level	field	with	value	0	is
hidden.

NOTE

You	can	still	get	the	class-level	value	if	you	prefix	the	variable	with	the
executing	object.	Recall	that	the	special	keyword	this	means	“the	object	that
is	currently	executing	this	code.”	That	means	you	could	access	the	class-level
field	while	inside	the	clickMeButton_Click	event	handler	like	this:

private	void	clickMeButton_Click(object	sender,	EventArgs	e)

{

				//	A	method	variable.

				int	count	=	1;

				MessageBox.Show(count.ToString());

				MessageBox.Show(this.count.ToString());

}

Usually	it's	better	to	avoid	potential	confusion	by	giving	the	variables
different	names	in	the	first	place.

Method	Variable	Lifetime
A	variable	with	method	scope	is	created	when	its	method	is	executed.	Each	time
the	method	is	called,	a	new	version	of	the	variable	is	created.	When	the	method
exits,	the	variable	is	destroyed.	If	its	value	is	referenced	by	some	other	variable,	it
might	still	exist,	but	this	variable	is	no	longer	available	to	manipulate	it.

One	consequence	of	this	is	that	the	variable's	value	resets	each	time	the	method
executes.	For	example,	consider	the	following	code:

private	void	clickMeButton_Click(object	sender,	EventArgs	e)

{

				//	A	method	variable.

				int	count	=	0;

				count++;

				MessageBox.Show(count.ToString());

}

Each	time	this	code	executes,	it	creates	a	variable	named	count,	adds	1	to	it,	and
displays	its	value.	The	intent	may	be	to	have	the	message	box	display	an
incrementing	counter	but	the	result	is	actually	the	value	1	each	time	the	user	clicks
the	button.

To	save	a	value	between	method	calls,	you	can	change	the	variable	into	a	field
declared	outside	of	any	method.	The	following	version	of	the	preceding	code
displays	the	values	1,	2,	3,	and	so	on	when	the	user	clicks	the	button	multiple
times:

//	A	field.

int	count	=	0;

private	void	clickMeButton_Click(object	sender,	EventArgs	e)

{

				count++;

				MessageBox.Show(count.ToString());

}

Note	that	a	parameter	declared	in	a	method's	declaration	counts	as	having	method
scope.	For	example,	the	preceding	event	handler	has	two	parameters	named
sender	and	e.	That	means	you	cannot	declare	new	variables	within	the	method
with	those	names.

Block	Scope
A	method	can	also	contain	nested	blocks	of	code	that	define	other	variables	that
have	scope	limited	to	the	nested	code.	This	kind	of	variable	cannot	have	the	same
name	as	a	variable	declared	at	a	higher	level	of	nesting	within	the	same	method.

Later	lessons	explain	some	kinds	of	nesting	used	to	make	decisions	(Lesson	18),
loops	(Lesson	19),	and	error	handlers	(Lesson	21).

One	type	of	nested	block	simply	uses	braces	to	enclose	code.	The	scope	of	a
variable	declared	within	this	kind	of	block	includes	only	the	block,	and	the
variable	is	usable	only	later	in	the	block.

For	example,	consider	the	following	code:

private	void	clickMeTooButton_Click(object	sender,	EventArgs	e)

{

				//	A	method	variable.

				int	count	=	1;

				MessageBox.Show(count.ToString());

				//	A	nested	block	of	code.

				{

								int	i	=	2;

								MessageBox.Show(i.ToString());

				}

				//	A	second	nested	block	of	code.

				{

								int	i	=	3;

								MessageBox.Show(i.ToString());

				}

}

This	method	declares	the	variable	count	at	the	method	level	and	displays	its	value.

The	code	then	makes	a	block	of	code	surrounded	by	braces.	It	declares	the
variable	i	and	displays	its	value.	Note	that	the	code	could	not	create	a	second
variable	named	count	inside	this	block	because	the	higher-level	method	code
contains	a	variable	with	that	name.

After	the	first	block	ends,	the	code	creates	a	second	block.	It	makes	a	new	variable
i	within	that	block	and	displays	its	value.	Because	the	two	inner	blocks	are	not
nested	(neither	contains	the	other),	it's	okay	for	both	blocks	to	define	variables
named	i.

Accessibility
A	field's	scope	determines	what	parts	of	the	code	can	see	the	variable.	So	far	I've
focused	on	the	fact	that	all	of	the	code	in	a	class	can	see	a	field	declared	at	the	class
level,	outside	of	any	methods.	In	fact,	a	field	may	also	be	visible	to	code	running	in
other	classes	depending	on	its	accessibility.

A	field's	accessibility	determines	which	code	is	allowed	to	access	the	field.	For
example,	a	class	might	contain	a	public	field	that	is	visible	to	the	code	in	any	other
class.	It	may	also	define	a	private	field	that	is	visible	only	to	code	within	the	class
that	defines	it.

Accessibility	is	not	the	same	as	scope,	but	the	two	work	closely	together	to
determine	what	code	can	access	a	field.

Table	13.1	summarizes	the	field	accessibility	values.	Later	when	you	learn	how	to
build	properties	and	methods,	you'll	be	able	to	use	the	same	accessibility	values	to
determine	what	code	can	access	them.

Table	13.1

Accessibility
Value

Meaning

public Any	code	can	see	the	variable.

private Only	code	in	the	same	class	can	see	the	variable.

protected Only	code	in	the	same	class	or	a	derived	class	can	see	the	variable.
For	example,	if	the	Manager	class	is	derived	from	the	Person	class,
a	Manager	object	can	see	a	Person	object's	protected	variables.
(You	learn	more	about	deriving	one	class	from	another	in	Lesson
23.)

internal Only	code	in	the	same	assembly	can	see	the	variable.	For
example,	if	the	variable's	class	is	contained	in	a	library	(which	is
its	own	assembly),	a	main	program	that	uses	the	library	cannot
see	the	variable.

protected

internal

The	variable	is	visible	to	any	code	in	the	same	assembly	or	any
derived	class	in	another	assembly.

If	you	omit	the	accessibility	value	for	a	field,	it	defaults	to	private.	You	can	still
include	the	private	keyword,	however,	to	make	the	field's	accessibility	obvious.

NOTE

You	may	remember	from	earlier	lessons	that	you	needed	to	set	a	control's
Modifiers	property	to	public	to	allow	a	program's	main	form	to	get	and	set
the	values	of	that	control's	properties.	For	example,	suppose	you	build	a
custom	dialog	with	a	TextBox	where	the	user	can	enter	a	name.	Now	you
know	why	you	need	to	set	the	TextBox's	Modifiers	property	to	public.	If	you
don't,	the	main	form	can't	see	the	TextBox's	Text	property.

There's	one	aspect	of	private	accessibility	that	sometimes	confuses	people.	A
private	field	is	visible	to	any	code	in	any	instance	of	the	same	class,	not	just	to	the
same	instance	of	the	class.

For	example,	suppose	you	build	a	Person	class	with	a	private	field	named	Salary.
Not	only	can	all	of	the	code	in	an	instance	see	its	own	Salary	value,	but	any	Person
object	can	see	any	other	Person	object's	Salary	value.

NOTE

Note	that	public	fields	are	considered	to	be	bad	programming	style.	It's
better	to	make	a	public	property	instead.	Lesson	23	explains	why	and	tells
how	to	make	properties.	Public	fields	do	work,	however,	and	are	good
enough	for	this	discussion	on	accessibility.

Restricting	Scope	and	Accessibility
It's	a	good	programming	practice	to	restrict	scope	and	accessibility	as	much	as
possible	to	limit	the	code	that	can	access	it.	For	example,	if	a	piece	of	code	has	no
business	using	a	particular	field,	there's	no	reason	to	give	it	the	opportunity.	This
not	only	reduces	the	chances	that	you	will	use	the	variable	incorrectly	but	also
removes	the	variable	from	IntelliSense	so	it's	not	there	to	clutter	up	your	choices
and	confuse	things.

If	you	can	use	a	variable	declared	locally	inside	an	event	handler	or	other	method,
do	so.	In	fact,	if	you	can	declare	a	variable	within	a	block	of	code	inside	a	method,
such	as	in	a	loop,	do	so.	That	gives	the	variable	very	limited	scope	so	it	won't	get	in
the	way	when	you're	working	with	unrelated	code.

If	you	need	multiple	methods	to	share	the	same	value	or	you	need	to	keep	track	of
a	value	between	method	calls,	store	the	value	in	a	private	field.	Only	make	a
variable	public	if	code	in	another	form	(or	other	class)	needs	to	use	it.

Try	It
In	this	Try	It,	you	build	the	program	shown	in	Figure	13.1.	You	use	fields	to	allow
two	forms	to	communicate	and	to	perform	simple	calculations.	You	also	get	to	try
out	a	new	control:	ListView.

Figure	13.1

Lesson	Requirements
In	this	lesson,	you:

Create	the	NewItemForm	shown	on	the	right	in	Figure	13.1.

Provide	public	fields	to	let	the	main	form	get	the	data	entered	by	the	user.

When	the	user	clicks	the	OK	button,	copy	the	item	name,	price	each,	and
quantity	values	into	the	public	fields.

Create	the	main	form	shown	on	the	left	in	Figure	13.1.

When	the	user	clicks	the	main	form's	Add	Item	button,	make	the	program
display	the	NewItemForm.	If	the	user	enters	data	and	clicks	the	OK	button,
display	the	entered	values	in	the	main	form's	ListView	control	and	update	the
grand	total.

NOTE

You	can	download	the	code	and	resources	for	this	lesson	from	the	website	at
www.wrox.com/go/csharp24hourtrainer2e.

Hints
Remember	to	set	the	NewItemForm's	AcceptButton,	CancelButton,
FormBorderStyle,	and	ControlBox	properties	appropriately.

Because	the	main	form's	grand	total	must	retain	its	value	as	the	user	adds
items,	it	must	be	a	field.

To	allow	the	main	form	to	see	the	values	entered	by	the	user	on	the
NewItemForm,	use	public	fields.

Step-by-Step
Create	the	NewItemForm	shown	on	the	right	in	Figure	13.1.

1.	 Arrange	the	controls	as	shown	in	Figure	13.1.

2.	 Set	the	form's	AcceptButton	property	to	the	OK	button	and	its	CancelButton
property	to	the	Cancel	button.	The	OK	button	will	always	close	the	form	so
set	its	DialogResult	property	to	OK.

3.	 Set	the	form's	FormBorderStyle	property	to	FixedDialog.	Set	its	ControlBox
property	to	False.

Provide	public	fields	to	let	the	main	form	get	the	data	entered	by	the
user.

a.	 Declare	public	fields	for	the	program	to	use	in	its	calculations.	Use
code	similar	to	the	following	placed	outside	of	any	methods:

//	Public	fields.	(They	should	really	be	properties.)

public	string	ItemName;

public	decimal	PriceEach,	Quantity;

When	the	user	clicks	the	OK	button,	copy	the	item	name,	price	each,
and	quantity	values	into	the	public	fields.

a.	 Copy	the	values	entered	by	the	user	into	the	fields	you	created	in	the
preceding	step.

Create	the	main	form	shown	on	the	left	in	Figure	13.1.

1.	 Create	the	ListView,	Button,	Label,	and	TextBox.	Set	their	Anchor	properties
and	make	the	TextBox	read-only.

2.	 To	make	the	ListView	display	its	items	in	a	list	as	shown:

http://www.wrox.com/go/csharp24hourtrainer2e

a.	 Set	its	View	property	to	Details.

b.	 Select	its	Columns	property	and	click	the	ellipsis	to	the	right	to	open	the
ColumnHeader	Collection	Editor	shown	in	Figure	13.2.	Click	the	Add
button	four	times	to	make	the	four	columns.	Use	the	property	editor	on
the	right	to	set	each	column's	Name	and	Text	properties	and	to	set
TextAlign	to	Right	for	the	numeric	columns.

Figure	13.2

When	the	user	clicks	the	main	form's	Add	Item	button,	make	the	program
display	a	NewItemForm.	If	the	user	enters	data	and	clicks	OK,	display	the	entered
values	in	the	main	form's	ListView	control	and	update	the	grand	total.

1.	 The	button's	Click	event	handler	should	use	code	similar	to	the	following:

//	A	private	field	to	keep	track	of	grand	total

//	across	multiple	calls	to	the	event	handler.

private	decimal	GrandTotal	=	0;

//	Let	the	user	add	a	new	item	to	the	list.

private	void	addItemButton_Click(object	sender,	EventArgs	e)

{

				NewItemForm	frm	=	new	NewItemForm();

				if	(frm.ShowDialog()	==	DialogResult.OK)

				{

								//	Get	the	new	values.

								decimal	priceEach	=	frm.PriceEach;

								decimal	quantity	=	frm.Quantity;

								decimal	totalPrice	=	priceEach	*	quantity;

								//	Add	the	values	to	the	ListView.

								ListViewItem	lvi	=	itemsListView.Items.Add(frm.ItemName);

								lvi.SubItems.Add(priceEach.ToString("C"));

								lvi.SubItems.Add(quantity.ToString());

								lvi.SubItems.Add(totalPrice.ToString("C"));

								//	Add	to	the	grand	total	and	display	the	new	result.

								GrandTotal	+=	totalPrice;

								grandTotalTextBox.Text	=	GrandTotal.ToString("C");

				}

}

NOTE

If	one	form's	code	tries	to	directly	access	a	field	in	another	form	and	do
something	with	the	value	in	the	same	statement,	you	may	get	a	design	time
error.	For	example,	suppose	the	Try	It's	main	form	uses	the	following	code:

MessageBox.Show(frm.Quantity.ToString());

Here	frm	is	the	variable	referring	to	an	instance	of	the	NewItemForm	dialog
and	Quantity	is	a	field	in	the	dialog.	In	that	case	Visual	Studio	issues	the
following	warning	at	design	time:

Accessing	a	member	on	‘NewItemForm.Quantity’	may	cause	a	runtime
exception	because	it	is	a	field	of	a	marshal-by-reference	class

The	problem	here	is	obscure	and	happens	only	if	the	program	is	using	the
dialog	across	process	or	machine	boundaries,	for	example,	if	your	program
tries	to	display	a	dialog	defined	on	another	programming	thread.

This	warning	may	not	be	as	important	as	a	low	oil	pressure	warning	in	your
car,	but	it's	generally	not	good	to	ignore	warnings.	Fortunately	it's	easy	to
make	this	warning	go	away.	Simply	copy	the	returned	result	into	a	local
variable	and	then	manipulate	that	variable	instead	of	work	with	the	dialog's
field	directly.	For	example,	you	could	use	the	following	code:

decimal	quantity	=	frm.Quantity;

MessageBox.Show(quantity.ToString());

Exercises
1.	 Copy	the	program	you	built	for	the	Try	It	and	modify	the	New	Item	form	so	its
OK	button	is	enabled	only	if	its	three	TextBoxes	contain	non-blank	text.

2.	 [Hard]	Copy	the	program	you	built	for	Exercise	1	and	add	a	new	Delete	Item
button	to	the	main	form	that	deletes	the	currently	selected	item.	Hints:

Set	the	ListView	control's	MultiSelect	property	to	False	and	set	its
FullRowSelect	property	to	True.

Enable	the	button	Only	when	an	item	is	selected	in	the	ListView	control.

The	ListView	control's	SelectedIndices	property	is	a	collection	of	the	items
that	are	currently	selected.	Use	the	collection's	Count	property	to	determine
whether	any	items	are	selected.

Use	the	following	code	to	remove	the	selected	item	from	the	ListView
control:

//	Delete	the	selected	item.

private	void	deleteItemButton_Click(object	sender,	EventArgs	e)

{

				//	Get	the	selected	item.

				ListViewItem	item	=	itemsListView.SelectedItems[0];

				//	Get	the	item's	Total	Price.

				decimal	totalPrice	=

								decimal.Parse(item.SubItems[2].Text,	NumberStyles.Any);

				//	Subtract	from	the	grand	total	and	display	the	new	result.

				GrandTotal	-=	totalPrice;

				grandTotalTextBox.Text	=	GrandTotal.ToString("C");

				//	Remove	the	item	from	the	ListView.

				itemsListView.Items.Remove(item);

}

3.	 If	you	typed	the	code	shown	for	Exercise	2	correctly,	then	your	program
contains	a	bug.	(To	see	it,	add	an	item	and	then	delete	it.)	Use	the	debugger	to
fix	the	program.

4.	 Use	a	design	similar	to	the	one	used	in	Exercise	3	to	let	the	user	fill	out	an
appointment	calendar.	The	main	form	should	contain	a	ListView	with	columns
labeled	Subject,	Date,	Time,	and	Notes.	The	NewAppointmentForm	should
provide	TextBoxes	for	the	user	to	enter	these	values	and	should	have	public
fields	AppointmentSubject,	AppointmentDate,	AppointmentTime,	and
AppointmentNotes	to	let	the	main	form	get	the	entered	values.	Instead	of	a
grand	total,	the	main	form	should	display	the	number	of	appointments.	Enable
the	New	Appointment	form's	OK	button	Only	if	the	Subject,	Date,	and	Time
are	non-blank.

5.	 Build	a	form	that	contains	a	ListBox,	TextBox,	and	Button.	When	the	user	clicks
the	Button,	display	a	dialog	that	lets	the	user	enter	a	number.	Give	the	dialog	a
public	field	to	return	the	value	to	the	main	form.

If	the	user	enters	a	value	and	clicks	OK,	the	main	form	should	add	the	number
to	its	ListBox.	It	should	then	display	the	average	of	its	numbers.	To	do	that,	use
a	private	field	containing	the	numbers'	total.	Add	the	new	number	to	the	total
and	divide	by	the	number	of	values.

6.	 [WPF]	Repeat	Exercise	5	with	a	WPF	program.

7.	 Copy	the	program	you	wrote	for	Exercise	5	and	add	a	Delete	Item	Button	to	the
main	form.	Enable	the	button	Only	when	an	item	is	selected	in	the	list.	When
the	user	clicks	the	button,	remove	the	selected	item	from	the	list	and	display
the	new	average.

8.	 [WPF]	Repeat	Exercise	7	with	the	program	you	built	for	Exercise	6.

9.	 [Hard]	Build	the	conference	schedule	designer	shown	in	Figure	13.3.

Figure	13.3

Give	the	main	form	(on	the	left	in	Figure	13.3)	the	following	features:

Create	private	fields	named	SessionIndex1,	SessionIndex2,	and	so	forth	to
hold	the	indexes	of	the	user's	choices.

When	the	user	clicks	an	ellipsis	button,	display	the	session	selection	dialog
shown	on	the	right	in	Figure	13.3.

After	creating	the	dialog	but	before	displaying	it,	set	its	Text	property	to
indicate	the	session	time	as	shown	in	the	figure.

Also	before	displaying	the	dialog,	use	code	similar	to	the	following	to	tell
the	dialog	about	the	user's	previous	selection	for	this	session.	(The
SessionIndex	and	SessionTitle	variables	are	public	fields	defined	by	the
dialog	and	discussed	shortly.)

frm.SessionIndex	=	SessionIndex1;

If	the	user	clicks	OK,	use	code	similar	to	the	following	to	save	the	index	of
the	user's	choice	and	to	display	the	session's	title:

//	Save	the	new	selection.

SessionIndex1	=	frm.SessionIndex;

choice1TextBox.Text	=	frm.SessionTitle;

Give	the	dialog	the	following	features:

Set	the	ListView's	FullRowSelect	property	to	True	and	set	its	MultiSelect
property	to	False.

Use	the	Properties	window	to	define	the	ListView's	column	headers.	Select
the	ListView,	click	its	Columns	property,	click	the	ellipsis	to	the	right,	and
use	the	editor	to	define	the	headers.

Use	the	Properties	window's	editors	to	define	the	ListView's	items.	Select
the	ListView,	click	its	Items	property,	click	the	ellipsis	to	the	right,	and	use
the	editor	to	define	the	items.	Set	the	Text	property	to	determine	an	item's
text.	Click	the	SubItems	property	and	then	click	the	ellipsis	to	the	right	to
define	the	sub-items	(Room	and	Speaker).

Use	the	following	code	to	create	public	fields	to	communicate	with	the	main
form:

//	Public	fields	to	communicate	with	the	main	form.

public	int	SessionIndex;

public	string	SessionTitle;

Create	a	Load	event	handler	that	uses	the	following	code	to	initialize	the
dialog.	This	code	selects	the	proper	session	in	the	ListView	control	and	then
makes	the	control	scroll	if	necessary	so	that	session	is	visible:

//	Initialize	the	selection.

private	void	PickSessionForm_Load(object	sender,	EventArgs	e)

{

				sessionsListView.SelectedIndices.Add(SessionIndex);

				//	Ensure	that	the	selection	is	visible.

				sessionsListView.SelectedItems[0].EnsureVisible();

}

In	the	OK	button's	Click	event	handler,	use	the	following	code	to	save	the
selected	item's	index	and	title	for	the	main	form	to	use:

//	Save	the	user's	selection.

private	void	okButton_Click(object	sender,	EventArgs	e)

{

				SessionIndex	=	sessionsListView.SelectedIndices[0];

				SessionTitle	=	sessionsListView.SelectedItems[0].Text;

}

10.	 [WPF,	Hard]	Repeat	Exercise	9	with	a	WPF	application.	It's	harder	to	use	a
ListView	in	WPF	than	it	is	in	Windows	Forms,	so	for	this	exercise	use	a	ListBox
instead.

NOTE

Please	select	the	videos	for	Lesson	13	online	at
www.wrox.com/go/csharp24hourtrainer2evideos.

http://www.wrox.com/go/csharp24hourtrainer2evideos

Lesson	14

Working	with	Strings
Previous	lessons	provided	a	sneak	peek	at	some	of	the	things	that	a	C#	program
can	do	with	strings.	Lesson	11	explained	how	you	can	use	a	data	type’s	Parse
method	to	convert	a	string	into	a	number	and	how	to	use	the	+	operator	to
concatenate	two	strings.	Several	lessons	show	how	to	use	the	ToString	method	to
convert	numeric	values	into	strings	that	you	can	then	display	to	the	user.

In	this	lesson,	you	learn	a	lot	more	about	strings.	You	learn	about	string	class
methods	that	let	you	search	strings,	replace	parts	of	strings,	and	extract	pieces	of
strings.	You	also	learn	new	ways	to	format	numeric	and	other	kinds	of	data	to
produce	strings.

String	Methods
The	string	class	provides	a	lot	of	useful	methods	for	manipulating	strings.	For
example,	the	EndsWith	method	returns	true	if	a	string	ends	with	a	particular
substring.	The	following	code	determines	whether	a	string	ends	with	the	substring
dog:

string	str	=	"The	quick	brown	fox	jumps	over	the	lazy	dog";

MessageBox.Show("Ends	with	\"dog.\":	"	+	str.EndsWith("dog"));

Table	14.1	summarizes	the	string	class’s	most	useful	methods.

Table	14.1

Method Purpose

Contains Returns	true	if	the	string	contains	a	target	string.

EndsWith Returns	true	if	the	string	ends	with	a	target	string.

IndexOf Returns	the	index	of	a	target	character	or	string	within	the	string.

IndexOfAn	y Returns	the	index	of	the	first	occurrence	of	any	of	a	set	of
characters	in	the	string.

Insert Inserts	text	in	the	middle	of	the	string.

LastIndexOf Returns	the	index	of	the	last	occurrence	of	a	target	character	or
string	within	the	string.

LastIndexOfAny Returns	the	index	of	the	last	occurrence	of	any	of	a	set	of
characters	in	the	string.

PadLeft Pads	the	string	to	a	given	length	by	adding	characters	on	the	left
if	necessary.

PadRight Pads	the	string	to	a	given	length	by	adding	characters	on	the
right	if	necessary.

Remove Removes	a	piece	of	the	string.

Replace Replaces	occurrences	of	a	string	or	character	with	new	values
within	the	string.

Split Splits	the	string	apart	at	a	delimiter	(for	example,	commas)	and
returns	an	array	containing	the	pieces.

StartsWith Returns	true	if	the	string	starts	with	a	target	string.

Substring Returns	a	substring.

ToLower Returns	the	string	converted	to	lowercase.

ToUpper Returns	the	string	converted	to	uppercase.

Trim Removes	leading	and	trailing	characters	from	the	string.	The
version	that	takes	no	parameters	removes	whitespace	characters
(space,	tab,	newline,	and	so	on).

TrimEnd Removes	trailing	characters	from	the	string.

TrimStart Removes	leading	characters	from	the	string.

NOTE

Remember	that	string	indexing	starts	with	0	so	the	first	letter	has	index	0,
the	second	has	index	1,	and	so	forth.

In	addition	to	all	of	these	methods,	the	string	class	provides	a	very	useful	Length
property.	As	you	can	probably	guess,	Length	returns	the	number	of	characters	in
the	string.	(Previous	lessons	have	used	Length	to	determine	whether	a	string	is
empty.)

The	string	class	also	provides	the	useful	static	(shared)	methods	Format	and	Join.
A	static	method	is	one	that	is	provided	by	the	class	itself	rather	than	by	an
instance	of	the	class.	You	invoke	a	static	method	using	the	class’s	name	instead	of
a	variable’s	name.

The	Format	method	formats	a	series	of	parameters	according	to	a	format	string
and	returns	a	new	string.	For	example,	the	following	code	uses	the	string	class’s
Format	method	to	display	the	values	in	the	variables	x	and	y	surrounded	by
parentheses	and	separated	by	a	comma:

int	x	=	10,	y	=	20;

string	txt	=	string.Format("({0},	{1})",	x,	y);

The	following	text	shows	the	result:

(10,	20)

The	next	section	says	more	about	the	Format	method.

The	Join	method	does	the	opposite	of	the	Split	method:	it	joins	a	series	of	strings,
separating	them	with	a	delimiter.	Lesson	16	says	more	about	arrays	and	provides
some	examples	that	use	Split	and	Join.

Format	and	ToString
The	string	class’s	Format	method	builds	a	formatted	string.	Its	first	parameter	is	a
format	string	that	tells	how	the	method	should	display	its	other	parameters.	The
format	string	can	contain	literal	characters	that	are	displayed	as	they	appear.	It
can	also	contain	formatting	fields.

Each	formatting	field	has	the	following	syntax:

{index[,alignment][:formatString]}

The	curly	braces	are	required.	The	square	brackets	indicate	optional	pieces.

The	key	pieces	of	the	field	are:

index—The	zero-based	index	of	the	Format	method’s	parameters	that	should	be
displayed	by	this	field.

alignment—The	minimum	number	of	characters	that	the	field	should	use.	If
this	is	negative,	the	field	is	left-justified.

formatString—The	format	string	that	indicates	how	the	field’s	value	should	be
formatted.	The	following	format	sections	describe	some	of	the	many	values
that	you	can	use	here	in	addition	to	literal	characters.

For	example,	the	following	code	defines	a	string	and	two	decimal	values.	It	then
uses	Console.WriteLine	to	display	a	string	built	by	string.Format	in	the	Output
window:

string	itemName	=	"Fiendishly	Difficult	Puzzles";

decimal	quantity	=	2M;

decimal	price_each	=	9.99M;

Console.WriteLine(

				string.Format("You	just	bought	{1}	{0}	at	{2:C}	each.",

				itemName,	quantity,	price_each));

The	format	string	is	"You	just	bought	{1}	{0}	at	{2:C}	each."

The	first	field	is	{1}.	This	displays	parameter	number	1	(the	second	parameter—
remember	they’re	zero-based).

The	second	field	is	{0}.	This	displays	the	first	parameter.

The	third	field	is	{2:C}.	This	displays	the	third	parameter	with	the	format	string	C,
which	formats	the	value	as	currency.

The	result	is:

You	just	bought	2	Fiendishly	Difficult	Puzzles	at	$9.99	each.

The	following	code	shows	an	example	that	uses	field	widths	to	make	values	line	up
in	columns.	Before	the	code	executes,	assume	that	itemName1,	quantity1,	and	the
other	variables	have	already	been	initialized:

Console.WriteLine(

				string.Format("{0,-20}{1,5}{2,10}{3,10}",

				"Item",	"Qty",	"Each",	"Total")

);

Console.WriteLine(

				string.Format("{0,-20}{1,5}{2,10:C}{3,10:C}",

				itemName1,	quantity1,	priceEach1,	quantity1	*	priceEach1)

);

Console.WriteLine(

				string.Format("{0,-20}{1,5}{2,10:C}{3,10:C}",

				itemName2,	quantity2,	priceEach2,	quantity2	*	priceEach2)

);

Console.WriteLine(

				string.Format("{0,-20}{1,5}{2,10:C}{3,10:C}",

				itemName3,	quantity3,	priceEach3,	quantity3	*	priceEach3)

);

Notice	that	the	code	begins	with	a	line	that	defines	the	column	headers.	Its
formatting	string	uses	the	same	indexes	and	alignment	values	as	the	other
formatting	strings	so	the	headers	line	up	with	the	values	below.

The	following	text	shows	the	result:

Item																		Qty						Each					Total

Pretzels	(dozen)								4					$5.95				$23.80

Blue	laser	pointer						1			$149.99			$149.99

Titanium	spork										2					$8.99				$17.98

NOTE

Because	the	format	string	is	just	a	string,	you	could	define	it	in	a	constant	or
variable	and	then	use	that	variable	as	the	first	argument	to	the	Format
method.	That	way	you	are	certain	that	all	of	the	Format	statements	use	the
same	string.	This	also	makes	it	easier	to	change	the	format	later	if	necessary.

Every	object	provides	a	ToString	method	that	converts	the	object	into	a	string.	For
simple	data	types	such	as	numbers	and	dates,	the	result	is	the	value	in	an	easy-to-
read	string.

The	ToString	method	for	some	objects	can	take	a	format	parameter	that	tells	how
you	want	the	item	formatted.	For	example,	the	following	statement	displays	the
variable	cost	formatted	as	a	currency	value	in	the	Output	window:

Console.WriteLine(cost.ToString("C"));

The	following	sections	describe	standard	and	custom	format	strings	for	numbers,
dates,	and	times.	You	can	use	these	as	arguments	to	the	ToString	method	or	as	the
formatString	part	of	the	string.Format	method’s	format	strings.

Standard	Numeric	Formats
Formatting	characters	tell	string.Format	and	ToString	how	to	format	a	value.	For
the	characters	discussed	in	this	section,	you	can	use	either	an	uppercase	or	a
lowercase	letter.	For	example,	you	can	use	C	or	c	for	the	currency	format.

Table	14.2	summarizes	the	standard	numeric	formatting	characters.

Table	14.2

CHARACTER MEANING EXAMPLE

C Currency	with	a	currency	symbol,	thousands
separators,	and	a	decimal	point.

$12,345.67

D Decimal.	Integer	types	only. 12345

E Scientific	notation. 1.234567E+004

F Fixed-point. 12345.670

G General.	Either	fixed-point	or	scientific
notation,	whichever	is	shorter.

12345.67

N Similar	to	currency	except	without	the	currency
symbol.

12,345.67

P Percent.	The	number	is	multiplied	by	100	and	a
percent	sign	is	added	appropriately	for	the
computer’s	locale.	Includes	thousands
separators	and	a	decimal	point.

123.45	%

R Round	trip.	The	number	(double	or	float	only)
is	formatted	in	a	way	that	guarantees	it	can	be
parsed	back	into	its	original	value.

1234.567

X Hexadecimal. 3A7

NOTE

In	programming,	a	computer’s	locale	defines	the	computer’s	country,
language,	and	formats	such	as	how	numbers	and	currency	values	should	be
formatted.	For	example,	the	value	$1,234.56	in	the	United	States	would	be
written	as	1	234,56	€	in	France	and	as	1.234,56	€	in	Germany.

Locale	codes	consist	of	a	language	code	with	an	optional	country	code.	For
example,	en	represents	English	and	en-GB	represents	English	as	spoken	in
Great	Britain.	The	capitalization	doesn’t	matter	but	people	often	write	the
country	code	in	all	caps.	For	a	list	of	locale	codes,	see
msdn.microsoft.com/library/ee825488(v=cs.20).aspx.

You	can	follow	several	of	these	characters	with	a	precision	specifier	that	affects
how	the	value	is	formatted.	How	this	value	works	depends	on	the	format	character
that	it	follows.

For	the	D	and	X	formats,	the	result	is	padded	on	the	left	with	zeros	to	have	the
length	given	by	the	precision	specifier.	For	example,	the	statement
123.ToString("D10")	produces	the	result	0000000123.	(Yes,	C#	is	smart	enough	to
let	you	call	the	ToString	method	for	the	integer	123.)

For	the	C,	E,	F,	N,	and	P	formats,	the	precision	specifier	indicates	the	number	of
digits	after	the	decimal	point.	For	example,	the	statement	1.23.ToString("N5")
produces	the	result	1.23000.	(Yes,	C#	can	handle	this	one,	too.)

http://msdn.microsoft.com/library/ee825488(v=cs.20).aspx

NOTE

In	general,	you	should	use	the	standard	format	specifiers	whenever	possible
so	the	result	makes	sense	for	the	computer’s	locale.	For	example,	suppose	you
use	the	following	code	to	display	a	monetary	amount:

decimal	garageSaleProceeds	=	1234.56m;

MessageBox.Show(string.Format("${0:N}",	garageSaleProceeds));

If	the	user’s	computer	is	localized	for	the	United	States,	then	the	program
displays	$1,234.56,	which	is	correct.	Unfortunately	if	the	user’s	computer	is
German,	the	program	displays	$1.234,56,	which	isn’t	right	in	either	the
United	States	or	Germany.

The	following	statement	uses	the	standard	currency	formatting	specifier:

MessageBox.Show(string.Format("{0:C}",	garageSaleProceeds));

In	the	United	States,	the	computer	produces	$1,234.56	as	before.	In
Germany,	it	produces	1.234,56	€,	which	is	what	the	user	expects.

If	you	use	standard	format	specifiers	as	much	as	possible,	the	computer	will
use	its	localization	settings	to	display	numbers,	dates,	and	times	in	the
appropriate	formats.

Custom	Numeric	Formats
If	the	standard	numeric	formatting	characters	don’t	do	what	you	want,	you	can
use	a	custom	numeric	format.	Table	14.3	summarizes	the	custom	numeric
formatting	characters.

Table	14.3

CHARACTER MEANING

0 Digit	or	zero.	A	digit	is	displayed	here	or	a	zero	if	there	is	no
corresponding	digit	in	the	value	being	formatted.

# Digit	or	nothing.	A	digit	is	displayed	here	or	nothing	if	there	is
no	corresponding	digit	in	the	value	being	formatted.

. Decimal	separator.	The	decimal	separator	goes	here.	Note	that
the	actual	separator	character	may	not	be	a	period	depending	on
the	computer’s	locale,	although	you	still	use	the	period	in	the
format	string.

, Thousands	separator.	The	thousands	separator	goes	here.	The
actual	separator	character	may	not	be	a	comma	depending	on
the	computer’s	locale,	although	you	still	use	the	comma	in	the
format	string.

% Percent.	The	number	is	multiplied	by	100	and	the	percent	sign	is
added	at	this	point.	For	example,	%0	puts	the	percent	sign
before	the	number	and	0%	puts	it	after.

E+0 Scientific	notation.	The	number	of	0s	indicates	the	number	of
digits	in	the	exponent.	If	+	is	included,	the	exponent	always
includes	a	+	or	–	sign.	If	+	is	omitted,	the	exponent	only	includes
a	sign	if	the	exponent	is	negative.	For	example,	the	statement
1234.56.ToString("#.##E+000")	produces	the	result	1.23E+003.

\ Escape	character.	Whatever	follows	the	\	is	displayed	without
any	conversion.	For	example,	the	format	0.00\%	would	add	a
percent	sign	to	a	number	without	scaling	it	by	100	as	the	format
0.00%	does.	Note	that	you	must	escape	the	escape	character	itself
in	a	normal	(non-verbatim)	string.	For	example,	a	format	string
might	look	like	{0:0.00\\%}	in	the	code.

'ABC' Literal	string.	Characters	enclosed	in	single	or	double	quotes	are
displayed	without	any	conversion.

; Section	separator.	See	the	following	text.

You	can	use	a	section	separator	to	divide	a	formatting	string	into	two	or	three
sections.	If	you	use	two	sections,	the	first	applies	to	values	greater	than	or	equal	to
zero,	and	the	second	section	applies	to	values	less	than	zero.	If	you	use	three
sections,	they	apply	to	values	that	are	greater	than,	less	than,	and	equal	to	zero.

For	example,	Table	14.4	shows	the	result	produced	by	the	three-section	custom
formatting	string	"{0:$#,##0.00;($#,##0.00);—	zero	—}"	for	different	values.

Table	14.4

VALUE FORMATTED	RESULT
12345.678 $12,345.68

-12345.678 ($12,345.68)

0.000 —	zero	—

Standard	Date	and	Time	Formats
Just	as	numeric	values	have	standard	and	custom	formatting	strings,	so	too	do
dates	and	times.

Table	14.5	summarizes	the	standard	date	and	time	formatting	patterns.	The
examples	are	those	produced	for	1:23:45.678	PM	April	5,	2063	on	my	computer
set	up	for	US	English.	Your	results	will	depend	on	your	computer’s	locale.	Note
that	for	many	of	the	characters	in	this	table,	the	uppercase	and	lowercase	versions
have	different	meanings.

Table	14.5

CHARACTER MEANING EXAMPLE

d Short	date 4/5/2063

D Long	date Thursday,	April	5,	2063

f Full	date,	short	time Thursday,	April	5,	2063	1:23	PM

F Full	date,	long	time Thursday,	April	5,	2063	1:23:45
PM

g General	date/time,	short	time 4/5/2063	1:23	PM

G General	date/time,	long	time 4/5/2063	1:23:45	PM

M	or	m Month	day April	5

O Round	trip 2063-04-05T13:23:45.6780000

R	or	r RFC1123 Thu,	05	Apr	2063	13:23:45	GMT

s Sortable	date/time 2063-04-05T13:23:45

t Short	time 1:23	PM

T Long	time 1:23:45	PM

u Universal	sortable	short
date/time

2063-04-05	13:23:45Z

U Universal	sortable	full
date/time

Thursday,	April	5,	2063	7:23:45
PM

Y	or	y Year	month April,	2063

NOTE

The	result	given	by	the	U	format	may	seem	a	bit	surprising	because	it	gives
the	time	as	7:23:45	PM	instead	of	1:23:45	PM.	The	reason	is	the	U	specifier
automatically	converts	a	local	time	into	Coordinated	Universal	Time	(UTC)
before	formatting.	(UTC	is	the	time	at	0°	longitude.	It’s	basically	the	same	as
Greenwich	Mean	Time	or	GMT.)	On	April	5,	2063,	the	time	1:23	PM	in	my
time	zone	will	be	7:23	PM	in	Greenwich.

The	DateTime	class	also	provides	several	methods	that	return	the	date’s	value	as	a
string	formatted	in	the	most	common	date	and	time	formats.	Table	14.6
summarizes	the	most	useful	of	these	methods	and	shows	the	results	on	my
computer	set	up	for	US	English.	Your	results	will	depend	on	how	your	computer	is
configured.

Table	14.6

METHOD FORMAT EXAMPLE

ToLongDateString Long	date	(D) Thursday,	April	5,	2063

ToLongTimeString Long	time	(T) 1:23:45	PM

ToShortDateString Short	date	(d) 4/5/2063

ToShortTimeString Short	time	(t) 1:23	PM

ToString General	date	and	time	(G) 4/5/2063	1:23:45	PM

NOTE

As	is	the	case	with	number	formats,	you	should	use	the	standard	specifiers	or
the	standard	methods	(such	as	ToLongDateString)whenever	possible	so	your
computer	can	display	dates	and	times	in	the	formats	used	by	the	computer’s
locale.

Custom	Date	and	Time	Formats
If	the	standard	date	and	time	formatting	characters	don’t	do	the	trick,	you	can	use
a	custom	format.	Table	14.7	summarizes	the	custom	date	and	time	formatting
strings.	Note	that	for	many	of	the	characters	in	this	table,	the	uppercase	and
lowercase	versions	have	different	meanings.

Table	14.7

CHARACTER MEANING

d Day	of	month	between	1	and	31.

dd Day	of	month	between	01	and	31.

ddd Abbreviated	day	of	week	(Mon,	Tue,	and	so	on).

dddd Full	day	of	week	(Monday,	Tuesday,	and	so	on).

f Digits	after	the	decimal	for	seconds.	For	example,	ffff	means	use
four	digits.

F Similar	to	f	but	trailing	zeros	are	not	displayed.

g Era	specifier.	For	example,	A.D.

h Hours	between	1	and	12.

hh Hours	between	01	and	12.

H Hours	between	0	and	23.

HH Hours	between	00	and	23.

m Minutes	between	1	and	59.

mm Minutes	between	01	and	59.

M Month	between	1	and	12.

MM Month	between	01	and	12.

MMM Month	abbreviation	(Jan,	Feb,	and	so	on).

MMMM Month	name	(January,	February,	and	so	on).

s Seconds	between	1	and	59.

ss Seconds	between	01	and	59.

t First	character	of	AM/PM	designator.

tt AM/PM	designator.

y One-	or	two-digit	year.	If	the	year	has	fewer	than	two	digits,	is	it
not	zero	padded.

yy Two-digit	year,	zero	padded	if	necessary.

yyy Three-digit	year,	zero	padded	if	necessary.

yyyy Four-digit	year,	zero	padded	if	necessary.

yyyyy Five-digit	year,	zero	padded	if	necessary.

z Signed	time	zone	offset	from	UTC.

zz Signed	time	zone	offset	from	UTC	in	two	digits.

zzz Signed	time	zone	offset	from	UTC	in	hours	and	minutes.

: Hours,	minutes,	and	seconds	separator.

/ Date	separator.

'ABC' Literal	string.	Characters	enclosed	in	single	or	double	quotes	are
displayed	without	any	conversion.

NOTE

The	time	zone	offset	values	depend	on	whether	daylight	savings	is	in	effect.
For	example,	for	Pacific	Standard	Time	the	zzz	specifier	returns	either	–
08:00	or	–07:00	depending	on	whether	daylight	savings	is	in	effect	on	that
date.

NOTE

The	date	and	time	formatting	methods	assume	that	a	single	character	is	a
standard	format.	For	example,	the	date.ToString("d")	would	give	you	a
short	date	format,	not	the	day	of	the	month.

When	a	single	character	specifier	is	inside	a	longer	string,	the	formatting
methods	treat	it	like	a	custom	specifier.	For	example,	date.ToString("M/d")
gets	you	the	month	and	day	numbers.

If	you	need	to	use	a	customer	specifier	alone,	place	a	%	symbol	in	front	of	it.
For	example,	date.ToString("%d")	returns	the	day	number	by	itself.

Table	14.8	shows	some	example	formats	and	their	results.	The	date	used	was
1:23:45.678	PM	April	5,	2063	on	my	computer	set	up	for	US	English.	Your	results
will	depend	on	how	your	computer	is	configured.

Table	14.8

FORMAT RESULT

M/d/yy 4/5/63

d	MMM	yy 5	Apr	63

HH:mm	'hours' 13:23	hours

h:mm:ss.ff,	M/d/y 1:23:45.67,	4/5/63

dddd	'at'	h:mmt Thursday	at	1:23P

ddd	'at'	h:mmtt Thu	at	1:23PM

Try	It
In	this	Try	It,	you	build	a	program	that	displays	the	current	date	and	time	in	a
Label	when	it	starts	as	shown	in	Figure	14.1.

Figure	14.1

Lesson	Requirements
In	this	lesson,	you:

Start	a	new	project	and	add	a	Label	to	its	form.

Give	the	form	a	Load	event	handler	that	sets	the	Label’s	text	as	shown	in	Figure
14.1.

NOTE

You	can	download	the	code	and	resources	for	this	lesson	from	the	website	at
www.wrox.com/go/csharp24hourtrainer2e.

Hints
The	DateTime.Now	property	returns	the	current	date	and	time.

Either	use	string.Format	or	the	value’s	ToString	method	to	format	the	result.

Step-by-Step
Start	a	new	project	and	add	a	Label	to	its	form.

1.	 Create	the	new	project	and	its	Label.

2.	 Set	the	Label’s	AutoSize	property	to	False	and	set	its	font	size	to	12.	Then
position	and	anchor	or	dock	it	on	the	form.

3.	 Set	the	Label’s	TextAlign	property	to	MiddleCenter.

Give	the	form	a	Load	event	handler	that	sets	the	Label’s	text	as	shown	in	Figure
14.1.

1.	 Use	code	similar	to	the	following:

//	Display	the	current	date	and	time.

private	void	Form1_Load(object	sender,	EventArgs	e)

{

				greetingLabel.Text	=	DateTime.Now.ToString(

								"'It	is'	h:mmtt	'on'	ddd,	MMM	dd	yyyy");

}

http://www.wrox.com/go/csharp24hourtrainer2e

Exercises
1.	 Exercise	13-3	reads	and	displays	currency	values,	but	it	displays	quantities
without	thousands	separators.	If	you	ordered	1,200	pencils,	the	program
would	display	1200.

Copy	the	corrected	version	of	that	program	(or	download	it	from	the	book’s
website)	and	modify	it	so	quantities	are	displayed	with	thousands	separators.

2.	 Make	a	program	that	displays	the	time	every	second.	Hint:	Use	a	Timer	control
with	Enabled	set	to	True,	and	Interval	set	to	1000.	Update	a	Label’s	Text
property	in	the	Timer’s	Tick	event.

3.	 Write	a	program	that	lets	the	user	enter	an	integer	value.	When	the	user	clicks
the	Format	button,	parse	the	value	and	use	a	standard	format	specifier	to
redisplay	it	with	thousands	separators	but	no	digits	after	the	decimal	point.

4.	 Write	a	program	that	lets	the	user	enter	text	in	the	following	format:

1200/Gummy	slugs/.02/24

Use	string	methods	to	split	the	string	apart,	parse	the	numeric	values,	and
then	display	a	result	similar	to	the	following:

1,200	Gummy	slugs	@	$0.02	each	=	$24.00

Remember	to	allow	the	input	to	contain	formatted	values	such	as	$24.00.
Hint:	Use	string.Split,	which	returns	an	array	of	values.	We’ll	talk	more
about	arrays	in	Lesson	16.	For	now,	just	use	brackets	and	an	index	to	get	one	of
the	values.	For	example,	the	following	statement	saves	the	first	field	in	a	string:

string	quantityString	=	text.Split('/')[0];

5.	 [Hard]	Write	a	program	that	lets	the	user	enter	text	in	the	following	format:

1,200	Gummy	slugs	@	$0.02	each	=	$24.00

Use	the	string	methods	IndexOf,	LastIndexOf,	Substring,	and	Trim	to	parse	the
string	into	item	name,	quantity,	price	each,	and	total	price	pieces.	Convert	the
numbers	into	numeric	data	types	and	display	the	results	in	TextBoxes.	Hints:

Use	IndexOf	to	find	the	position	of	the	first	space	(which	comes	after	the
quantity).

Use	LastIndexOf	to	find	the	delimiters	“@,”	“each,”	and	“=”	in	case	the
item’s	name	contains	those	strings.

Calculate	the	length	of	the	pieces	of	text	between	the	delimiters.	For
example,	the	length	of	the	name	is	[@	location]	–	[first	space	location]	–	1.

Use	Substring	to	get	the	pieces.	Trim	the	name	and	parse	the	numeric
values.

6.	 [Hard]	Copy	the	program	that	you	built	for	Exercise	1	and	modify	it	so	the
main	form	displays	items	in	a	ListBox	instead	of	a	ListView.	Make	the	program
use	string.Format	to	add	items	to	the	ListBox	in	a	format	similar	to	the
following:

1,200	Gummy	slugs	at	$0.02	each	=	$24.00

Hint:	When	you	remove	an	item	from	the	list,	you	need	to	subtract	its	total
cost	from	the	grand	total.	Use	the	item’s	ToString	method	to	convert	it	into	a
string.	Then	use	the	methods	you	used	for	Exercise	5	to	parse	the	string	and
find	the	item’s	total	cost.

7.	 Make	a	program	that	replaces	all	occurrences	of	the	letter	E	(uppercase	and
lowercase)	in	a	string	entered	by	the	user	with	the	character	-.

8.	 Make	a	program	that	lets	the	user	enter	an	input	string,	a	string	to	replace,	and
a	replacement	string.	When	the	user	clicks	the	Replace	button,	make	the
replacement	and	display	the	result	in	the	same	TextBox	as	the	original	string	so
the	user	can	make	several	replacements	easily.	To	make	using	the	program
even	easier,	also	make	the	button	clear	the	string	to	replace	and	the
replacement	string	and	set	focus	to	the	string	to	replace.

9.	 Write	a	program	that	lets	the	user	enter	a	string	such	as,	“The	6th	sheik’s	6th
sheep’s	sick.”	When	the	user	clicks	the	Replace	button,	replace	numerals	with
their	spelled	out	equivalents	as	in,	“The	sixth	sheik’s	sixth	sheep’s	sick.”	Don’t
worry	about	punctuation	(like	capitalizing	if	the	sentence	begins	with	a
numeral),	numbers	bigger	than	9	(so	“10”	will	become	“onezero”),	or	special
cases	(like	converting	3rd	into	third).	(Then	try	to	say	“The	sixth	sheik’s	sixth
sheep’s	sick”	as	quickly	as	you	can.)

10.	 Write	a	program	that	lets	the	user	enter	a	number.	When	the	user	clicks	the
Format	button,	use	a	customer	format	specifier	with	three	sections	to	format
the	number.	If	the	number	is	positive,	display	it	as	in	+1,234.56	(two	digits
after	the	decimal	point).	If	the	number	is	negative,	display	it	as	in	–1,234.56
(again	two	digits	after	the	decimal	point).	If	the	number	is	zero,	display	ZERO.

NOTE

Please	select	the	videos	for	Lesson	14	online	at
www.wrox.com/go/csharp24hourtrainer2evideos.

http://www.wrox.com/go/csharp24hourtrainer2evideos

Lesson	15

Working	with	Dates	and	Times
One	of	C#'s	more	confusing	data	types	is	DateTime.	A	DateTime	represents	a	date,	a
time,	or	both.	For	example,	a	DateTime	variable	might	represent	Thursday	April	1,
2020	at	9:15	AM.

In	this	lesson,	you	learn	how	to	work	with	dates	and	times.	You	learn	how	to
create	DateTime	variables,	find	the	current	date	and	time,	and	calculate	elapsed
time.

Creating	DateTime	Variables
C#	doesn't	have	DateTime	literal	values	so	you	can't	simply	set	a	DateTime	variable
equal	to	a	value	as	you	can	with	some	other	data	types.	Instead	you	can	use	the	new
keyword	to	initialize	a	new	DateTime	variable,	supplying	arguments	to	define	the
date	and	time.

For	example,	the	following	code	creates	a	DateTime	variable	named	aprilFools	and
initializes	it	to	the	date	April	1,	2020.	It	then	displays	the	date	using	the	short	date
format	described	in	Lesson	14	and	by	calling	the	variable's	ToShortDateString
method:

DateTime	aprilFools	=	new	DateTime(2020,	4,	1);

MessageBox.Show(aprilFools.ToString("d"));

MessageBox.Show(aprilFools.ToShortDateString());

The	preceding	code	uses	a	year,	month,	and	day	to	initialize	its	DateTime	variable,
but	the	DateTime	type	lets	you	use	many	different	kinds	of	values.	The	three	most
useful	combinations	of	arguments	specify	(all	as	integers):

Year,	month,	day

Year,	month,	day,	hour,	minute,	second

Year,	month,	day,	hour,	minute,	second,	milliseconds

You	can	also	add	a	kind	parameter	to	the	end	of	the	second	and	third	of	these
combinations	to	indicate	whether	the	value	represents	local	time	or	UTC	time.
(Local	and	UTC	times	are	explained	in	the	next	section.)	For	example,	the
following	code	creates	a	DateTime	representing	12	noon	on	March	15,	2020	in	the
local	time	zone:

DateTime	idesOfMarch	=

				new	DateTime(2020,	3,	15,	12,	0,	0,	DateTimeKind.Local);

Local	and	UTC	Time
Windows	has	several	different	notions	of	dates	and	times.	Two	of	the	most
important	of	these	are	local	time	and	Coordinated	Universal	Time	(UTC).

Local	time	is	the	time	on	your	computer	as	it	is	configured	for	a	particular	locale.
It's	what	you	and	a	program's	user	typically	think	of	as	time.

UTC	time	is	basically	the	same	as	Greenwich	Mean	Time	(GMT),	the	time	at	the
Royal	Academy	in	Greenwich,	London.

For	most	everyday	tasks,	local	time	is	fine.	If	you	need	to	compare	data	on
computers	running	in	different	time	zones,	however,	UTC	time	can	make
coordination	easier.	For	example,	if	you	want	to	know	whether	a	customer	in	New
York	created	an	order	before	another	customer	created	an	order	in	San	Salvador,
UTC	lets	you	compare	the	times	without	worrying	about	the	customers'	time
zones.

A	DateTime	object	has	a	Kind	property	that	indicates	whether	the	object	represents
local	time,	UTC	time,	or	an	unspecified	time.	When	you	create	a	DateTime,	you	can
indicate	whether	you	are	creating	a	local	or	UTC	time.	If	you	do	not	specify	the
kind	of	time,	C#	assumes	you	are	making	an	unspecified	time.

After	you	create	a	DateTime,	its	ToLocalTime	and	ToUniversalTime	methods	convert
between	local	and	UTC	times.

NOTE

The	ToLocalTime	and	ToUniversalTime	methods	don't	affect	a	DateTime	if	it	is
already	in	the	desired	format.	For	example,	if	you	call	ToLocalTime	on	a
variable	that	already	uses	local	time,	the	result	is	the	same	as	the	original
variable.

DateTime	Properties	and	Methods
The	DateTime	type	provides	many	useful	properties	and	methods	for	manipulating
dates	and	times.	Table	15.1	summarizes	some	of	DateTime's	most	useful	methods.
Static	methods	are	indicated	with	an	asterisk.	You	invoke	static	methods	by	using
the	type	name	rather	than	a	variable	name,	as	in	DateTime.IsLeapYear(2020).

Table	15.1

Method Purpose

Add Adds	a	TimeSpan	to	the	DateTime.	The	following	section
describes	TimeSpan.

AddDays Adds	a	specified	number	of	days	to	the	DateTime.

AddHours Adds	a	specified	number	of	hours	to	the	DateTime.

AddMinutes Adds	a	specified	number	of	minutes	to	the	DateTime.

AddMonths Adds	a	specified	number	of	months	to	the	DateTime.

AddSeconds Adds	a	specified	number	of	seconds	to	the	DateTime.

AddYears Adds	a	specified	number	of	years	to	the	DateTime.

IsDaylightSavingsTime Returns	true	if	the	date	and	time	is	within	the	Daylight
Savings	Time	period	for	the	local	time	zone.

IsLeapYear* Returns	true	if	the	indicated	year	is	a	leap	year.

Parse* Parses	a	string	and	returns	the	corresponding	DateTime.

Subtract Subtracts	another	DateTime	from	this	one	and	returns	a
TimeSpan.	The	following	section	says	more	about
TimeSpan.

ToLocalTime Converts	the	DateTime	to	a	local	value.

ToLongDateString Returns	the	DateTime	in	long	date	format.

ToLongTimeString Returns	the	DateTime	in	long	time	format.

ToShortDateString Returns	the	DateTime	in	short	date	format.

ToShortTimeString Returns	the	DateTime	in	short	time	format.

ToString Returns	the	DateTime	in	general	format.

ToUniversalTime Converts	the	DateTime	to	a	UTC	value.

Table	15.2	summarizes	the	DateTime's	most	useful	properties.

Table	15.2

Property Purpose

Date Gets	the	DateTime's	date	without	the	time.

Day Gets	the	DateTime's	day	of	the	month	between	1	and	31.

DayOfWeek Gets	the	DateTime's	day	of	the	week,	as	in	Monday.

DayOfYear Gets	the	DateTime's	day	of	the	year	between	1	and	366.	(Leap	years
have	366	days.)

Hour Gets	the	DateTime's	hour	between	0	and	23.

Kind Returns	the	DateTime's	kind:	Local,	Utc,	or	Unspecified.

Millisecond Gets	the	DateTime's	time's	millisecond.

Minute Gets	the	DateTime's	minute	between	0	and	59.

Month Gets	the	DateTime's	month	between	1	and	12.

Now* Gets	the	current	date	and	time.

Second Gets	the	DateTime's	second	between	0	and	59.

TimeOfDay Gets	the	DateTime's	time	without	the	date.

Today* Gets	the	current	date	without	a	time.

UtcNow* Gets	the	current	UTC	date	and	time.

Year Gets	the	DateTime's	year.

TimeSpans
A	DateTime	represents	a	point	in	time	(July	20,	1969	at	20:17:40).	A	TimeSpan
represents	an	elapsed	period	of	time	(1	day,	17	hours,	27	minutes,	and	12	seconds).

One	of	the	more	useful	ways	to	make	a	TimeSpan	is	to	subtract	one	DateTime	from
another	to	find	the	amount	of	time	between	them.	For	example,	the	following	code
calculates	the	time	that	elapsed	between	the	first	and	last	manned	moon	landings:

DateTime	firstLanding	=	new	DateTime(1969,	7,	20,	20,	17,	40);

DateTime	lastLanding	=	new	DateTime(1972,	12,	11,	19,	54,	57);

TimeSpan	elapsed	=	lastLanding	-	firstLanding;

Console.WriteLine(elapsed.ToString());

The	code	creates	DateTime	values	to	represent	the	times	of	the	two	landings.	It
then	subtracts	the	last	date	from	the	first	to	get	the	elapsed	time	and	uses	the
resulting	TimeSpan's	ToString	method	to	display	the	duration.	The	following	text
shows	the	result	in	the	format	days.hours:minutes:seconds:

1239.23:37:17

Table	15.3	summarizes	the	TimeSpan's	most	useful	properties	and	methods.

Table	15.3

Property Meaning

Days The	number	of	days.

Hours The	number	of	hours.

Milliseconds The	number	of	milliseconds.

Minutes The	number	of	minutes.

Seconds The	number	of	seconds.

ToString Converts	the	TimeSpan	into	a	string	in	the	format
days.hours:minutes:seconds.fractionalSeconds.

TotalDays The	entire	TimeSpan	represented	as	days.	For	a	36-hour
duration,	this	would	be	1.5.

TotalHours The	entire	TimeSpan	represented	as	hours.	For	a	45-minute
duration,	this	would	be	0.75.

TotalMilliseconds The	entire	TimeSpan	represented	as	milliseconds.	For	a	1-
second	duration,	this	would	be	1,000.

TotalMinutes The	entire	TimeSpan	represented	as	minutes.	For	a	1-hour
duration,	this	would	be	60.

TotalSeconds The	entire	TimeSpan	represented	as	seconds.	For	a	1-minute
TimeSpan,	this	would	be	60.

Note	that	you	can	use	the	+	and	–	operators	to	add	and	subtract	TimeSpans,	getting

a	new	TimeSpan	as	a	result.	This	works	in	a	fairly	obvious	way.	For	example,	a	90-
minute	TimeSpan	minus	a	30-minute	TimeSpan	gives	a	60-minute	TimeSpan.

Try	It
In	this	Try	It,	you	use	DateTime	and	TimeSpan	variables	to	build	the	stopwatch
application	shown	in	Figure	15.1.	When	the	user	clicks	the	Start	Button,	the
program	starts	its	counter.	When	the	user	clicks	the	Stop	Button,	the	program
stops	the	counter.

Figure	15.1

Normally	the	TimeSpan's	ToString	method	displays	a	value	in	the	format
d.hh:mm:ss.fffffff.	In	this	example,	you	use	string.Format	to	display	the	elapsed
time	in	the	format	hh:mm:ss.ff.

Lesson	Requirements
In	this	lesson,	you:

Create	the	form	shown	in	Figure	15.1.	In	addition	to	the	controls	that	are
visible,	give	the	form	a	Timer	with	Interval	=	10.	Initially	disable	the	Stop
button.

When	the	user	clicks	the	Start	button,	start	the	Timer,	disable	the	Start	button,
and	enable	the	Stop	button.

When	the	user	clicks	the	Stop	button,	stop	the	Timer,	enable	the	Start	button,
and	disable	the	Stop	button.

When	the	Timer's	Tick	event	fires,	display	the	elapsed	time	in	the	format
hh:mm:ss.ff.

NOTE

You	can	download	the	code	and	resources	for	this	lesson	from	the	website	at
www.wrox.com/go/csharp24hourtrainer2e.

Hints
TimeSpan	doesn't	use	the	same	formatting	characters	as	a	DateTime,	so,	for
example,	you	can't	simply	use	a	format	string	such	as	hh:mm:ss.ff.	Instead	use
the	TimeSpan	properties	to	get	the	elapsed	hours,	minutes,	seconds,	and
milliseconds	and	then	format	those	values.

Step-by-Step
Create	the	form	shown	in	Figure	15.1.	In	addition	to	the	controls	that	are
visible,	give	the	form	a	Timer	with	Interval	=	10.	Initially	disable	the	Stop
button.

1.	 Add	the	Start	and	Stop	buttons	and	a	Label	to	the	form	as	shown	in	Figure
15.1.	Set	the	Stop	button's	Enabled	property	to	False.

2.	 Add	a	Timer	and	set	its	Interval	property	to	10	milliseconds.

When	the	user	clicks	the	Start	button,	start	the	Timer,	disable	the	Start	button,
and	enable	the	Stop	button.

1.	 To	remember	the	time	when	the	user	clicked	the	Start	button,	create	a
DateTime	field	named	StartTime:

//	The	time	when	the	user	clicked	Start.

private	DateTime	StartTime;

2.	 Add	the	following	code	to	the	Start	button's	Click	event	handler:

//	Start	the	Timer.

private	void	startButton_Click(object	sender,	EventArgs	e)

{

				StartTime	=	DateTime.Now;

				startButton.Enabled	=	false;

				stopButton.Enabled	=	true;

				updateLabelTimer.Enabled	=	true;

}

When	the	user	clicks	the	Stop	button,	stop	the	Timer,	enable	the	Start	button,
and	disable	the	Stop	button.

1.	 Add	the	following	code	to	the	Stop	button's	Click	event	handler:

//	Stop	the	Timer.

private	void	stopButton_Click(object	sender,	EventArgs	e)

{

http://www.wrox.com/go/csharp24hourtrainer2e

				startButton.Enabled	=	true;

				stopButton.Enabled	=	false;

				updateLabelTimer.Enabled	=	false;

}

When	the	Timer's	Tick	event	fires,	display	the	elapsed	time	in	the	format
hh:mm:ss.ff.

1.	 Use	code	similar	to	the	following.	Notice	that	the	code	divides	the	number
of	milliseconds	by	10	to	convert	it	into	hundredths	of	seconds:

//	Display	the	elapsed	time.

private	void	updateLabelTimer_Tick(object	sender,	EventArgs	e)

{

				//	Subtract	the	start	time	from	the	current	time

				//	to	get	elapsed	time.

				TimeSpan	elapsed	=	DateTime.Now	-	StartTime;

				//	Display	the	result.

				elapsedTimeLabel.Text	=	string.Format(

								"{0:00}:{1:00}:{2:00}.{3:00}",

								elapsed.Hours,

								elapsed.Minutes,

								elapsed.Seconds,

								elapsed.Milliseconds	/	10);

}

Exercises
1.	 The	System.Diagnostics.Stopwatch	class	acts	like	a	stopwatch.	It	provides
methods	to	start,	reset,	and	stop	timing.	Copy	the	program	you	built	for	the
Try	It	and	modify	it	so	it	uses	the	Stopwatch	class	instead	of	a	DateTime.	Hints:

Use	the	Stopwatch's	Elapsed	property	to	see	how	long	it's	been	since	the
watch	was	started.

Make	the	Start	button	call	the	watch's	Start	method.

Make	the	Stop	button	call	the	watch's	Reset	method	to	stop	timing	and
reset	the	watch's	elapsed	time	to	0.

2.	 [Hard]	Copy	the	program	you	built	for	Exercise	1	and	add	a	Reset	button.	The
Start	button	should	start	the	stopwatch,	the	Stop	button	should	pause	it,	and
the	Reset	button	should	reset	the	stopwatch	to	0.	Because	the	purpose	of	the
Stop	button	has	changed,	you	should	change	its	text	to	Pause.	Change	the
name	of	the	button	and	its	event	handler	to	match.	Only	enable	the	Reset
button	when	the	stopwatch	is	stopped	and	has	non-zero	elapsed	time.	(There's
no	need	to	reset	it	if	the	elapsed	time	is	already	0.)

3.	 Make	a	program	with	a	Birth	Date	TextBox	and	a	Calculate	Button.	When	the
user	enters	a	birth	date	and	clicks	the	Button,	calculate	the	person's	current	age
and	add	items	to	a	ListBox	that	display	the	age	converted	into	each	of	days,
hours,	minutes,	and	seconds.	Format	all	of	the	values	with	thousands
separators	and	two	digits	after	the	decimal	place.

4.	 Copy	the	program	you	wrote	for	Exercise	3	and	modify	it	to	also	display	the
user's	age	in	years	and	months.	Hint:	The	DateTime	class	doesn't	have
TotalYears	or	TotalMonths	properties	(probably	because	Microsoft	didn't	want
to	figure	out	how	to	handle	leap	years).	Calculate	the	number	of	years	by
dividing	the	number	of	days	by	365.2425.	Calculate	the	number	of	months	by
multiplying	the	number	of	years	by	12.

5.	 Make	a	program	that	lets	the	user	enter	a	birth	date,	heart	rate,	and	respiration
rate.	When	the	user	clicks	the	Calculate	button,	display	the	number	of
heartbeats	and	breaths	since	birth.	(Typical	adult	rates	range	from	12	to	20
breaths	per	minute	and	60	to	100	heartbeats	per	minute.)	Display	the	results
in	millions	as	in	“988	million.”

6.	 Make	a	program	that	lets	you	enter	a	birth	date	and	then	displays	the	date
including	the	weekday	for	that	date	and	the	next	nine	birthdays.

7.	 Make	a	program	with	two	TextBoxes	for	dates	and	a	Button.	When	the	user
clicks	the	Button,	the	program	should	display	the	time	between	the	dates.

8.	 Modify	the	program	you	built	for	Exercise	7	to	use	DateTimePicker	controls
instead	of	TextBoxes.	To	keep	things	simple,	just	display	the	total	number	of
days	between	the	dates	using	the	N0	format	specifier.	Use	the	controls'	Value

properties	to	get	the	selected	dates.	(This	control	prevents	users	from	entering
invalid	dates	such	as	April	45.)

9.	 Write	a	program	that	takes	the	user's	birth	date	as	an	input	and	displays	the
user's	age	in	years	on	the	different	planets	in	our	solar	system.	Hint:	The
orbital	periods	for	the	planets	in	Earth	years	are	Mercury	=	0.24,	Venus	=
0.62,	Earth	=	1.00,	Mars	=	1.88,	Jupiter	=	11.86,	Saturn	=	29.46,	Uranus	=
84.01,	Neptune	=	164.8,	and	(if	you	want	to	consider	Pluto	a	planet)	Pluto	=
247.7.

10.	 Make	a	countdown	timer.	When	the	program	starts,	it	should	display	a	custom
dialog	where	the	user	can	enter	a	date	and	time.	Then	the	main	program
should	display	the	number	of	days,	hours,	minutes,	and	seconds	until	that
time,	updated	every	second.

NOTE

Please	select	the	videos	for	Lesson	15	online	at
www.wrox.com/go/csharp24hourtrainer2evideos.

http://www.wrox.com/go/csharp24hourtrainer2evideos

Lesson	16

Using	Arrays	and	Collections
Each	of	the	data	types	described	in	previous	lessons	holds	a	single	piece	of	data.	A
variable	might	hold	an	integer,	string,	or	point	in	time.

Sometimes	it's	convenient	to	work	with	a	group	of	related	values	all	at	once.	For
example,	suppose	you're	the	CEO	of	a	huge	company	that	just	posted	huge	gains.
In	that	case,	you	might	want	to	give	each	hourly	employee	a	certificate	of
appreciation	and	give	each	executive	a	15	percent	bonus.

In	cases	like	this,	it	would	be	handy	to	be	able	to	store	all	of	the	hourly	employees'
data	in	one	variable	so	you	could	easily	work	with	it.	Similarly	you	might	like	to
store	the	executives'	data	in	a	second	variable	so	it's	easy	to	manage.

In	this	lesson,	you	learn	how	to	make	variables	that	can	hold	more	than	one	piece
of	data.	You	learn	how	to	make	arrays	and	different	kinds	of	collections	such	as	a
List,	Dictionary,	Stack,	and	Queue.

This	lesson	explains	how	to	build	these	objects	and	add	and	remove	items	from
them.	Lesson	19	explains	how	to	get	the	full	benefit	of	them	by	looping	through
them	to	perform	some	action	on	each	of	the	items	they	contain.

Arrays
An	array	is	a	group	of	values	that	all	have	the	same	data	type	and	that	all	share
the	same	name.	To	pick	a	particular	item	in	the	array,	the	program	uses	an	index,
which	is	an	integer	greater	than	or	equal	to	0.

An	array	is	similar	to	the	mailboxes	in	an	apartment	building.	The	building	has	a
single	bank	of	mailboxes	that	all	have	the	same	street	address	(the	array's	name).
You	use	the	apartment	numbers	to	pick	a	particular	cubbyhole	in	the	bank	of
mailboxes.

Figure	16.1	shows	an	array	graphically.	This	array	is	named	values.	It	contains
eight	entries	with	indexes	0	through	7.

Figure	16.1

NOTE

An	array's	smallest	and	largest	indexes	are	called	its	lower	bound	and	upper
bound,	respectively.	In	C#,	the	lower	bound	is	always	0,	and	the	upper
bound	is	always	one	less	than	the	length	of	the	array.

Creating	Arrays
The	following	code	shows	how	you	can	declare	an	array	of	integers.	The	square
brackets	indicate	an	array	so	the	first	part	of	the	statement	int[]	means	the
variable's	data	type	is	an	array	of	integers:

int[]	values;

After	you	declare	an	array	variable,	you	can	assign	it	to	a	new	uninitialized	array.
The	following	code	initializes	the	variable	values	to	a	new	integer	array	that	can
hold	eight	elements:

values	=	new	int[8];

Remember	that	an	array's	lower	bound	is	always	0	in	C#	so	this	array	has	indexes
0	through	7.

As	is	the	case	with	other	variables,	you	can	declare	and	initialize	an	array	in	a
single	step.	The	following	code	declares	and	creates	the	values	array	in	a	single
statement:

int[]	values	=	new	int[8];

After	you	have	created	an	array,	you	can	access	its	members	by	using	the	array's
name	followed	by	an	index	inside	square	brackets.	For	example,	the	following
code	initializes	the	values	array	by	setting	the	Nth	entry	equal	to	N2:

values[0]	=	0	*	0;

values[1]	=	1	*	1;

values[2]	=	2	*	2;

values[3]	=	3	*	3;

values[4]	=	4	*	4;

values[5]	=	5	*	5;

values[6]	=	6	*	6;

values[7]	=	7	*	7;

NOTE

Most	programmers	pronounce	values[5]	as	“values	of	5,”	“values	sub	5,”	or
“the	5th	element	of	values.”

After	you	have	placed	values	in	an	array,	you	can	read	the	values	using	the	same
square	bracket	syntax.	The	following	code	displays	a	message	box	that	uses	one	of
the	array's	values:

MessageBox.Show("7	*	7	is	"	+	values[7].ToString());

To	make	initializing	arrays	easier,	C#	provides	an	abbreviated	syntax	that	lets	you
declare	an	array	and	set	its	values	all	in	one	statement.	Simply	set	the	variable
equal	to	the	values	you	want	separated	by	commas	and	surrounded	by	braces	as
shown	in	the	following	code:

int[]	values	=	{	0,	1,	1,	2,	3,	5,	8,	13,	21,	34	};

When	you	use	this	syntax,	C#	uses	the	number	of	values	you	supply	to	define	the
array's	size.	In	the	preceding	code,	C#	would	give	the	values	array	10	entries
because	that's	how	many	values	the	code	supplies.

A	Fibonacci	Example
Here's	a	slightly	more	interesting	example	that	uses	an	array.	The	Fibonacci
sequence	is	defined	by	the	following	three	rules:

Fibonacci[0]	=	0

Fibonacci[1]	=	1

Fibonacci[n]	=	Fibonacci[n	-	1]	+	Fibonacci[n	-	2]

NOTE

The	Fibonacci	sequence,	which	was	described	by	the	Italian	mathematician
Fibonacci,	is	the	infinite	sequence	the	numbers	0,	1,	1,	2,	3,	5,	8,	13,	21,	…
Each	value	in	the	sequence	after	the	first	two	is	the	sum	of	the	two	previous
values.	For	example,	3	+	5	=	8.

The	Fibonacci	sequence	pops	up	in	several	strange	and	interesting
mathematical	and	natural	systems.	For	example,	they	appear	in	flower	petal
arrangements	and	the	number	of	seeds	in	a	sunflower.	You	can	even	use
them	to	convert	between	miles	and	kilometers	(although	that's	basically	a
coincidence).	For	more	information,	see
www.mathsisfun.com/numbers/fibonacci-sequence.html,
math.stackexchange.com/questions/381/applications-of-the-fibonacci-

sequence	or	mathworld.wolfram.com/FibonacciNumber.html.

The	Fibonacci	program	shown	in	Figure	16.2	(and	available	as	part	of	this	lesson's
code	download)	uses	an	array	to	display	Fibonacci	numbers.	Use	the
NumericUpDown	control	to	select	a	number	and	click	Calculate	to	see	the
corresponding	Fibonacci	number.

Figure	16.2

When	the	user	clicks	Calculate,	the	program	executes	the	following	code:

//	Calculate	and	display	the	desired	Fibonacci	number.

private	void	calculateButton_Click(object	sender,	EventArgs	e)

{

				int[]	values	=	new	int[21];

				values[0]	=	0;

				values[1]	=	1;

				values[2]	=	values[0]	+	values[1];

				values[3]	=	values[1]	+	values[2];

				values[4]	=	values[2]	+	values[3];

				...

				values[20]	=	values[18]	+	values[19];

				int	index	=	(int)numberNumericUpDown.Value;

				resultsTextBox.Text	=	values[index].ToString();

}

The	code	starts	by	initializing	the	values	array	to	hold	the	first	21	Fibonacci

http://www.mathsisfun.com/numbers/fibonacci-sequence.html
http://math.stackexchange.com/questions/381/applications-of-the-fibonacci-sequence
http://mathworld.wolfram.com/FibonacciNumber.html

numbers.

After	initializing	the	array,	the	program	gets	the	value	selected	by	the
NumericUpDown	control	and	converts	it	from	a	decimal	to	an	int.	It	then	uses	that
value	as	an	index	into	the	values	array	and	displays	the	result	in	resultTextBox.

Multi-Dimensional	Arrays
The	arrays	described	in	the	previous	section	hold	a	single	row	of	items,	but	C#
also	lets	you	define	multi-dimensional	arrays.	You	can	think	of	these	as	higher-
dimensional	sequences	of	apartment	mailboxes.

Figure	16.3	shows	a	graphic	representation	of	a	two-dimensional	array	with	four
rows	and	eight	columns.

Figure	16.3

The	following	code	shows	how	you	could	declare,	allocate,	and	initialize	this	array
to	hold	a	multiplication	table	with	values	up	to	4	times	7:

int[,]	values	=	new	int[5,	7];

values[0,	0]	=	0	*	0;

values[0,	1]	=	0	*	1;

values[0,	2]	=	0	*	2;

...

values[1,	1]	=	1	*	1;

values[1,	2]	=	1	*	2;

...

values[4,	7]	=	4	*	7;

The	following	code	shows	the	C#	syntax	for	quickly	defining	and	initializing	a	two-
dimensional	array:

int[,]	cell	=

{

				{0,	1,	2},

				{3,	4,	5},

				{6,	7,	8},

};

This	syntax	basically	assigns	the	array	variable	equal	to	an	array	containing	one-
dimensional	arrays	of	values.

NOTE

Notice	that	the	definition	of	the	array's	final	row	of	data	ends	with	a	comma.
You	don't	need	this	comma	because	nothing	follows	this	last	row,	but	C#
allows	you	to	include	it	to	give	the	rows	a	more	uniform	format.	The	commas
after	the	other	rows	are	required	because	more	rows	follow	them.

You	can	use	similar	syntax	to	make	and	initialize	higher-dimensional	arrays,
although	they're	harder	to	visualize	graphically.	For	example,	the	following	code
makes	a	four-dimensional	array	of	strings:

string[,	,	,]	employeeData	=	new	string[10,	20,	30,	40];

Array	Properties	and	Methods
All	arrays	have	a	Length	property	that	your	code	can	use	to	determine	the	number
of	items	in	the	array.	Arrays	all	have	lower	bound	0,	so	for	one-dimensional
arrays,	Length	–	1	gives	an	array's	upper	bound.

Arrays	also	have	GetLowerBound	and	GetUpperBound	methods	that	return	the	lower
and	upper	bounds	for	a	particular	dimension	in	an	array.

For	example,	the	following	code	creates	a	5-by-10	two-dimensional	array.	It	then
displays	the	lower	and	upper	bounds	for	the	first	dimension.	(Like	an	array's
indexes,	the	dimension	numbers	start	at	0.)

int[,]	x	=	new	int[5,	10];

MessageBox.Show("The	first	dimension	runs	from	"	+

				x.GetLowerBound(0)	+	"	to	"	+	x.GetUpperBound(0));

The	Array	class	also	provides	several	useful	static	methods	that	you	can	use	to
manipulate	arrays.	For	example,	the	following	code	sorts	the	array	named
salaries:

Array.Sort(salaries);

NOTE

To	sort	an	array,	the	array	must	contain	things	that	can	be	compared	in	a
meaningful	way.	For	example,	int	and	string	data	have	a	natural	order,	so
it's	easy	to	say	that	the	string	“Jackson”	should	come	before	the	string
“Utah.”

If	an	array	holds	Employee	objects,	however,	it's	unclear	how	you	would	want
to	compare	two	items.	In	fact,	it's	likely	that	you	couldn't	define	an	order
that	would	always	work	because	sometimes	you	might	want	to	sort
employees	by	name	and	other	times	you	might	want	to	sort	them	by
employee	ID	or	salary.

You	can	solve	this	problem	in	a	couple	of	ways	including	the	IComparer
interface	(mentioned	briefly	in	Lesson	27's	Exercise	2)	and	making	the
Employee	class	implement	IComparable	(mentioned	in	Lesson	28).	These	are
slightly	more	advanced	topics,	so	they	aren't	covered	in	great	depth	here.

The	Sort	method	has	many	overloaded	versions	that	perform	different	kinds	of
sorting.	For	example,	instead	of	passing	it	a	single	array	you	can	pass	it	an	array	of
keys	and	an	array	of	items.	In	that	case	the	method	sorts	the	keys,	moving	the
items	so	they	remain	matched	up	with	their	corresponding	keys.

The	Table	16.1	summarizes	the	most	useful	methods	provided	by	the	Array	class.

Table	16.1

Method Purpose

BinarySearch Uses	binary	search	to	find	an	item	in	a	sorted	array.

Clear Resets	a	range	of	items	in	the	array	to	the	default	value	for	the
array's	data	type	(0,	false,	or	null).

Copy Copies	a	range	of	items	from	one	array	to	another.

IndexOf Returns	the	index	of	the	first	occurrence	of	a	particular	item	in	the
array.

LastIndexOf Returns	the	index	of	the	last	occurrence	of	a	particular	item	in	the
array.

Resize Resizes	the	array,	preserving	any	items	that	fit	in	the	new	size.

Reverse Reverses	the	order	of	the	items	in	the	array.

Sort Sorts	the	array's	items.

Collection	Classes
An	array	holds	a	group	of	items	and	lets	you	refer	to	them	by	index.	The	.NET
Framework	used	by	C#	also	provides	an	assortment	of	collection	classes	that	you
can	use	to	store	and	manipulate	items	in	other	ways.	For	example,	a	Dictionary
stores	items	with	keys	and	lets	you	very	quickly	locate	an	item	from	its	key.

For	example,	you	could	use	a	Dictionary	to	make	an	employee	phone	book.	It
could	store	phone	numbers	using	names	as	the	keys.	Then	given	someone's	name,
you	could	use	the	dictionary	to	very	quickly	look	up	that	person's	phone	number.

Generic	Classes
The	following	sections	describe	some	particular	kinds	of	classes	that	come	pre-
built	by	the	.NET	Framework.	These	are	generic	classes,	so	before	you	learn	about
them	you	should	know	a	little	about	what	a	generic	class	is.

A	generic	class	is	one	that	is	not	tied	to	a	particular	data	type.	For	example,
suppose	you	build	a	StringList	class	that	can	store	a	list	of	strings.	Now	suppose
you	decide	you	wanted	an	IntegerList	class	to	store	lists	of	integers.	The	two
classes	would	be	practically	identical;	they	would	just	work	with	different	data
types.

I've	mentioned	several	times	that	duplicated	code	is	a	bad	thing.	Having	two
nearly	identical	classes	means	debugging	and	maintaining	two	different	sets	of
code	that	are	practically	the	same.

One	solution	to	this	situation	is	to	make	a	more	general	AnythingList	class	that
uses	the	general	object	data	type	to	store	items.	An	object	can	hold	any	kind	of
data,	so	this	class	could	hold	lists	of	integers,	strings,	or	Customer	objects.
Unfortunately	that	has	two	big	problems.

First,	you	would	need	to	do	a	lot	of	work	converting	the	items	with	the	general
object	data	type	stored	in	the	list	into	the	int,	string,	or	Customer	type	of	the
items	that	you	put	in	there.	This	is	annoying	because	it	gives	you	more	work	to	do
and	makes	your	code	more	complicated	and	harder	to	read.

A	bigger	problem	is	that	a	list	that	can	hold	anything	can	hold	anything.	If	you
make	a	list	to	hold	customer	data,	it	could	still	hold	ints,	strings,	and
PurchaseOrder	objects.	Your	code	would	need	to	do	a	lot	of	work	to	prevent	you
from	accidentally	adding	the	wrong	kind	of	item	to	the	list.

A	much	better	approach	is	to	use	generic	classes.	These	classes	take	data	type
parameters	in	their	declarations	so	they	know	what	kind	of	data	they	will
manipulate.	That	lets	them	automatically	store	and	retrieve	items	using	the
correct	data	type.	It	also	lets	them	perform	type	checking	so	you	can't	accidentally
add	a	Bicycle	object	to	a	list	of	Employees.

Using	this	kind	of	class,	you	can	build	a	list	of	integers,	strings,	or	what	have	you.

List	is	one	of	the	generic	collection	classes	defined	by	the	.NET	Framework.	The
following	code	declares	and	initializes	a	List:

List<string>	names	=	new	List<string>();

The	<string>	part	of	the	declaration	indicates	that	the	class	will	work	with	strings.
You	can	put	strings	into	the	list	and	take	strings	out	of	it.	You	cannot	add	an
integer	to	the	list,	just	as	you	can't	set	a	string	variable	equal	to	an	integer.	Visual
Studio	knows	that	the	list	works	with	strings	and	won't	let	you	use	anything	else.

Note	that	IntelliSense	knows	about	generic	classes	and	provides	help.	If	you	begin
a	declaration	with	List,	IntelliSense	displays	List<>	to	let	you	know	that	it	is	a
generic	class.

Now	if	you	type	the	opening	pointy	bracket,	IntelliSense	displays	a	list	of	the
class's	type	parameters	and	even	describes	them	as	you	type.	(The	List	class	has
only	one	type	parameter	but	some,	such	as	Dictionary,	have	more.)	After	you
finish	the	declaration,	the	class	knows	what	data	types	it	will	manipulate,	and	it
can	behave	as	if	it	were	designed	with	that	data	type	in	mind.

Now,	with	some	understanding	of	generic	classes,	you're	ready	to	look	at	some
generic	collection	classes.

Lists
A	List	is	a	simple	ordered	list	of	items.	You	can	declare	and	initialize	a	List	as	in
the	following	code:

List<string>	names	=	new	List<string>();

The	List	class	provides	several	methods	for	manipulating	the	items	it	contains.
The	three	most	important	are	Add,	Remove,	and	RemoveAt:

The	Add	method	adds	a	new	item	to	the	end	of	the	list,	automatically	resizing
the	List	if	necessary.	This	is	easier	than	adding	an	item	to	an	array,	which
requires	you	to	resize	the	array	first.

The	Remove	method	removes	a	particular	item	from	the	list.	Note	that	you	pass
the	target	item	to	Remove,	not	the	index	of	the	item	that	you	want	to	remove.	If
you	know	that	the	string	Zaphod	is	in	the	list	names,	the	following	code	removes
the	first	instance	of	that	name	from	the	list:

names.Remove("Zaphod");

NOTE

The	Remove	method	removes	only	the	first	occurrence	of	an	item	from	the
List.

The	RemoveAt	method	removes	an	item	from	a	particular	position	in	the	list.	It
then	compacts	the	list	to	remove	the	hole	where	the	item	was.	This	is	much
easier	than	removing	an	item	from	an	array,	which	requires	you	to	shuffle
items	from	one	part	of	the	array	to	another	and	then	resize	the	array	to	reduce
its	size.

In	addition	to	these	methods,	you	can	use	square	brackets	to	get	and	set	a	List's
entries	much	as	you	can	with	an	array.	For	example,	the	following	code	sets	and
then	displays	the	value	of	the	first	entry	in	a	list:

names[0]	=	"Mickey";

MessageBox.Show("The	first	name	is	"	+	names[0]);

Note	that	this	works	only	if	the	index	you	use	exists	in	the	list.	If	the	list	holds	10
names	and	you	try	to	set	the	14th,	the	program	crashes.

SortedLists
A	SortedList	stores	a	list	of	key/value	pairs,	keeping	the	list	sorted	by	the	keys.
The	types	of	the	keys	and	values	are	generic	parameters,	so,	for	example,	you
could	make	a	list	that	uses	numbers	(such	as	employee	IDs)	for	keys	and	strings
(such	as	names)	for	values.

Note	that	the	list	will	not	allow	you	to	add	two	items	with	the	same	key.	Multiple
items	can	have	the	same	value,	but	if	you	try	to	add	two	with	the	same	key,	the
program	crashes.

Table	16.2	summarizes	useful	methods	provided	by	the	SortedList	class.

Table	16.2

Method Purpose

Add Adds	a	key	and	value	to	the	list.

Clear Empties	the	list.

Contains Returns	true	if	the	list	contains	a	given	value.

ContainsKey Returns	true	if	the	list	contains	a	given	key.

ContainsValue Returns	true	if	the	list	contains	a	given	value.

GetKeyList Returns	a	list	holding	the	keys.

GetValueList Returns	a	list	holding	the	values.

Remove Removes	the	item	with	a	specific	key	from	the	list.

In	addition	to	these	methods,	you	can	use	square	brackets	to	index	into	the	list,
using	the	items'	keys	as	indexes.

The	following	code	demonstrates	a	SortedList:

SortedList<string,	string>	addresses	=

				new	SortedList<string,	string>();

addresses.Add("Dan",	"4	Deer	Dr,	Bugville	VT,	01929");

addresses.Add("Bob",	"8273	Birch	Blvd,	Bugville	VT,	01928");

addresses["Cindy"]	=	"32878	Carpet	Ct,	Bugville	VT,	01929";

addresses["Alice"]	=	"162	Ash	Ave,	Bugville	VT,	01928";

addresses["Bob"]	=	"8273	Bash	Blvd,	Bugville	VT,	01928";

MessageBox.Show("Bob's	address	is	"	+	addresses["Bob"]);

The	code	starts	by	declaring	and	initializing	a	list	to	use	keys	and	values	that	are
both	strings.	It	uses	the	Add	method	to	add	some	entries	and	then	uses	square
brackets	to	add	some	more.

Next	the	code	uses	the	square	bracket	syntax	to	update	Bob's	address.	Finally	the
code	displays	Bob's	new	address.

You	can't	see	it	from	this	example,	but	unlike	the	List	class,	SortedList	actually
stores	its	items	ordered	by	key.	For	example,	you	could	use	the	GetKeyList	and
GetValueList	methods	to	get	the	list's	keys	and	values	in	that	order.

Dictionaries
The	Dictionary	and	SortedDictionary	classes	provide	features	similar	to	the
SortedList	class,	manipulating	key/value	pairs.	The	difference	is	in	the	data
structures	the	three	classes	use	to	store	their	items.

Without	getting	into	technical	details,	the	results	are	that	the	three	classes	use
different	amounts	of	memory	and	work	at	different	speeds.	In	general,	SortedList
is	the	slowest	but	takes	the	least	memory.	Dictionary	is	the	fastest	but	takes	the
most	memory.

For	small	programs,	the	difference	is	insignificant.	For	big	programs	that	work
with	thousands	of	entries,	you	might	need	to	be	more	careful	about	picking	a	class.
(Personally	I	like	Dictionary	for	most	purposes	because	speed	is	nice,	memory	is
relatively	cheap,	and	the	name	is	suggestive	of	the	way	you	use	the	class:	to	look
up	something	by	key.)

Queues
A	Queue	is	a	collection	that	lets	you	add	items	at	one	end	and	remove	them	from
the	other.	It's	like	the	line	at	a	bank	where	you	stand	at	the	back	of	the	line	and	the
teller	helps	the	person	at	the	front	of	the	line	until	eventually	it's	your	turn.

NOTE

Because	a	queue	retrieves	items	in	first-in-first-out	order,	queues	are
sometimes	called	FIFO	lists	or	FIFOs.	(“FIFO”	is	pronounced	fife-o.)

Table	16.3	summarizes	the	Queue's	most	important	methods.

Table	16.3

Method Purpose

Clear Removes	all	items	from	the	Queue.

Dequeue Returns	the	item	at	the	front	of	the	Queue	and	removes	it.

Enqueue Adds	an	item	to	the	back	of	the	Queue.

Peek Returns	the	item	at	the	front	of	the	Queue	without	removing	it.

Stacks
A	Stack	is	a	collection	that	lets	you	add	items	at	one	end	and	remove	them	from
the	same	end.	It's	like	a	stack	of	books	on	the	floor:	you	can	add	a	book	to	the	top
of	the	stack	and	remove	a	book	from	the	top,	but	you	can't	pull	one	out	of	the
middle	or	bottom	without	risking	a	collapse.

NOTE

Because	a	stack	retrieves	items	in	last-in-first-out	order,	stacks	are
sometimes	called	LIFO	lists	or	LIFOs.	(“LIFO”	is	pronounced	life-o.)

The	top	of	a	stack	is	also	sometimes	called	its	head.	The	bottom	is	sometimes
called	its	tail.

Table	16.4	summarizes	the	Stack's	most	important	methods.

Table	16.4

Method Purpose

Clear Removes	all	items	from	the	Stack.

Peek Returns	the	item	at	the	top	of	the	Stack	without	removing	it.

Pop Returns	the	item	at	the	top	of	the	Stack	and	removes	it.

Push Adds	an	item	to	the	top	of	the	Stack.

Try	It
In	this	Try	It,	you	use	a	Dictionary	to	build	the	order	lookup	program	shown	in
Figure	16.4.	When	the	user	clicks	the	Add	button,	the	program	adds	a	new	item
with	the	given	order	ID	and	items.	If	the	user	enters	an	order	ID	and	clicks	Find,
the	program	retrieves	the	corresponding	items.	If	the	user	enters	an	order	ID	and
some	items	and	then	clicks	Update,	the	program	updates	the	order's	items.

Figure	16.4

Lesson	Requirements
In	this	lesson,	you:

Create	the	form	shown	in	Figure	16.4.

Add	code	that	creates	a	Dictionary	field	named	Orders.	Set	its	generic	type
parameters	to	int	(for	order	ID)	and	string	(for	items).

Add	code	to	the	Add	button	that	creates	the	new	entry	in	the	dictionary.

Add	code	to	the	Find	button	that	retrieves	the	appropriate	entry	from	the
dictionary.

Add	code	to	the	Update	button	to	update	the	indicated	entry.

WARNING	16.9

This	program	will	be	fairly	fragile	and	will	crash	if	you	don't	enter	an	order
ID,	enter	an	ID	that	is	not	an	integer,	try	to	enter	the	same	ID	twice,	try	to
find	a	nonexistent	ID,	and	so	on.	Don't	worry	about	these	problems.	You
learn	how	to	handle	them	later,	notably	in	Lessons	18	and	21.

NOTE

You	can	download	the	code	and	resources	for	this	lesson	from	the	website	at
www.wrox.com/go/csharp24hourtrainer2e.

Step-by-Step
Create	the	form	shown	in	Figure	16.4.

1.	 This	is	relatively	straightforward.	The	only	tricks	are	to	set	the	Items
TextBox's	MultiLine	and	AcceptsReturn	properties	to	true.

Add	code	that	creates	a	Dictionary	named	Orders.	Set	its	generic	type
parameters	to	int	(for	order	ID)	and	string	(for	items).

1.	 Use	code	similar	to	the	following	to	make	the	Orders	field:

//	The	dictionary	to	hold	orders.

private	Dictionary<int,	string>	Orders	=

				new	Dictionary<int,	string>();

Add	code	to	the	Add	button	that	creates	the	new	entry	in	the	dictionary.

This	code	should	call	the	Dictionary's	Add	method	passing	it	the	order
ID	and	items	entered	by	the	user.	The	Dictionary's	order	ID	must	be	an
integer	so	use	int.Parse	to	convert	the	value	entered	by	the	user	into
an	int.

Optionally	you	can	add	code	to	clear	the	TextBoxes	to	get	ready	for
the	next	entry.

The	code	could	be	similar	to	the	following:

//	Add	an	order.

private	void	addButton_Click(object	sender,	EventArgs	e)

{

				//	Add	the	order	data.

				Orders.Add(int.Parse(orderIdTextBox.Text),	

itemsTextBox.Text);

				//	Get	ready	for	the	next	one.

				orderIdTextBox.Clear();

				itemsTextBox.Clear();

				orderIdTextBox.Focus();

}

Add	code	to	the	Find	button	that	retrieves	the	appropriate	entry	from	the
dictionary.

1.	 Use	code	similar	to	the	following:

//	Look	up	an	order.

private	void	findButton_Click(object	sender,	EventArgs	e)

http://www.wrox.com/go/csharp24hourtrainer2e

{

				itemsTextBox.Text	=	Orders[int.Parse(orderIdTextBox.Text)];

}

Add	code	to	the	Update	button	to	update	the	indicated	entry.

1.	 Use	code	similar	to	the	following:

//	Update	an	order.

private	void	updateButton_Click(object	sender,	EventArgs	e)

{

				Orders[int.Parse(orderIdTextBox.Text)]	=	itemsTextBox.Text;

}

Exercises
1.	 Make	a	program	similar	to	the	Fibonacci	program	that	looks	up	factorials	in	an
array.	When	the	program	starts,	make	it	create	the	array	to	hold	the	first	20
factorials.	Use	the	following	definition	for	the	factorial	(where	N!	means	the
factorial	of	N):

0!	=	1

N!	=	N	*	(N	-	1)!

Hint:	For	testing	purposes,	make	sure	the	program	can	calculate	0!	and	20!
without	crashing.

2.	 Make	a	program	that	demonstrates	a	Stack	of	Strings.	The	program	should
display	a	TextBox	and	two	Buttons	labeled	Push	and	Pop.	When	the	user	clicks
Push,	add	the	current	text	to	the	stack.	When	the	user	clicks	Pop,	remove	the
next	item	from	the	stack	and	display	it	in	the	TextBox.

3.	 Copy	the	program	you	wrote	for	Exercise	2	and	modify	it	so	the	Pop	button	is
disabled	when	the	Stack	is	empty.	Hint:	Use	the	Stack's	Count	property.

4.	 Copy	the	program	you	wrote	for	Exercise	3	and	modify	it	so	it	displays	the
Stack's	contents	in	a	ListBox	with	the	most	recently	added	item	at	the	top	of
the	ListBox.	Hint:	Use	the	ListBox's	Insert	and	RemoveAt	methods	to	update	its
contents	as	you	add	and	remove	items	from	the	Stack.

5.	 Make	a	program	similar	to	the	one	you	built	for	Exercise	4	except
demonstrating	a	Queue	instead	of	a	Stack.	Give	the	Buttons	the	captions
Enqueue	and	Dequeue	instead	of	Push	and	Pop.	Make	the	ListBox	display	the
items	with	the	most	recently	added	item	at	the	bottom.

6.	 Make	a	program	similar	to	the	one	you	built	for	this	lesson's	Try	It	except
make	it	store	appointment	information.	The	Dictionary	should	use	the
DateTime	type	for	keys	and	the	string	type	for	values.	Let	the	user	pick	dates
from	a	DateTimePicker.

Hint:	When	the	DateTimePicker	first	starts,	it	defaults	to	the	current	time,
which	may	include	fractional	seconds.	After	the	user	changes	the	control's
selection,	however,	the	value	no	longer	includes	fractional	seconds.	That
makes	it	hard	to	search	for	the	exact	same	date	and	time	later,	at	least	if	the
user	enters	a	value	before	changing	the	control's	initial	value.

To	avoid	this	problem,	when	the	form	loads,	initialize	the	DateTimePicker	to	a
value	that	doesn't	include	fractional	seconds.	Use	the	properties	provided	by
DateTime.Now	to	create	a	new	DateTime	and	set	the	DateTimePicker's	Value
property	to	that.

7.	 Make	a	day	planner	application.	The	code	should	make	an	array	of	31	strings	to
hold	each	day's	plan.	Initialize	the	array	to	show	fake	plans	such	as	“Day	1.”

Use	a	ComboBox	to	let	the	user	select	a	day	of	the	month.	When	the	ComboBox's

value	changes,	display	the	corresponding	day's	plan	in	a	large	TextBox	on	the
form.

Hint:	Use	the	ComboBox's	SelectedIndex	property	as	an	index	into	the	array.
Note	that	this	program	doesn't	let	the	user	enter	or	modify	the	plan,	it	just
displays	hardcoded	values.	To	let	the	user	modify	the	plan,	you	would	need
Find	and	Update	buttons	similar	to	those	used	in	other	exercises.

8.	 [Games]	Copy	the	program	you	wrote	for	Exercise	6-13	(or	download	the
version	available	on	the	book's	website)	and	add	a	two-dimensional	array	of
characters	to	track	the	board's	position.	Initially	set	the	entries	to	a	space
character.

To	test	the	code,	set	a	breakpoint	at	the	beginning	of	the	code	that	handles	the
File	menu's	New	command.	Run	the	program	and	select	all	of	the	squares.
Then	invoke	the	New	menu	item	and	use	the	debugger	to	view	the	array.

Hint:	Use	code	similar	to	the	following	to	reset	the	array	when	the	user	starts	a
new	game:

Board	=	new	char[,]

{

				{'	',	'	',	'	'	},

				{'	',	'	',	'	'	},

				{'	',	'	',	'	'	},

};

9.	 [Games,	WPF]	Repeat	Exercise	7	with	the	program	you	wrote	for	Exercise	6-14
(or	the	version	downloaded	from	the	book's	website).

10.	 Use	a	Dictionary	to	make	a	simple	phone	book	that	lets	the	user	add	and	look
up	name	and	phone	number	pairs.

11.	 [Hard]	Make	an	image	lookup	program	similar	to	the	one	shown	in	Figure
16.5.	When	the	user	clicks	the	PictureBox,	let	the	user	select	an	image	file	from
an	OpenFileDialog.	Use	code	similar	to	the	following	to	display	the	selected
image:

imagePictureBox.Image	=	new	Bitmap(imageOpenFileDialog.FileName);

Figure	16.5

Enable	the	Add	Button	when	the	TextBox	and	PictureBox	are	non-blank.	When
the	user	clicks	Add,	add	the	PictureBox's	image	to	a	Dictionary	with	the	name
as	its	key,	add	the	name	to	the	ListBox,	and	blank	the	TextBox	and	PictureBox.
(Blank	the	PictureBox	by	setting	its	Image	property	to	null.)

Finally,	when	the	user	clicks	a	name	in	the	ListBox,	display	the	corresponding
name	and	picture.

12.	 [Hard]	Make	a	simple	bank	account	register	like	the	one	shown	in	Figure	16.6.

Figure	16.6

The	program	should	have	these	features:

Make	a	Dictionary	to	hold	account	balances	with	integer	account	numbers
as	keys.

Enable	the	Buttons	when	both	TextBoxes	contain	non-blank	text.

When	the	user	clicks	Create,	add	the	account	number	and	amount	to	the
dictionary	and	display	the	new	data	in	the	ListBox.

When	the	user	clicks	Credit:

Parse	the	account	number	and	use	the	Dictionary	to	get	the	account's
current	balance.

Use	the	account	number	and	balance	to	find	the	index	of	the	account's
entry	in	the	ListBox.

Add	the	new	amount	to	the	account's	balance	in	the	Dictionary.

Remove	the	account's	entry	in	the	ListBox.

Insert	a	new	entry	for	the	account's	new	balance	in	the	ListBox	at	the
same	position	as	the	old	entry.

When	the	user	clicks	a	ListBox	entry,	display	the	account	number	and
balance	in	the	TextBoxes.

13.	 Write	a	program	that	lets	the	user	enter	text	in	the	following	format:

1,200	Gummy	slugs	@	$0.02	=	$24.00

When	the	user	clicks	Parse,	the	program	should	use	the	string	class's	Split
method	to	get	the	item's	name,	price	each,	and	total	price.	It	should	then	add
the	values	to	a	ListBox.

Hint:	The	Split	method	can	take	as	a	parameter	an	array	of	delimiters.	(That
makes	parsing	a	lot	easier.)

14.	 [Hard]	Write	a	palindrome	checker.	Whenever	the	user	modifies	the	text	in	a
TextBox,	the	program	should	display	a	Label	that	indicates	whether	the	text	is	a
palindrome.	Hints:

Use	two	Labels,	one	that	says	“A	Palindrome”	and	one	that	says	“Not	A
Palindrome.”	Use	a	boolean	expression	to	set	their	Visible	properties
appropriately.

To	see	if	the	string	is	a	palindrome:

Remove	commas,	periods,	and	spaces.

Then	convert	the	text	into	lowercase.	(I'll	call	this	the	processed	string.)

Use	the	string's	ToCharArray	method	to	get	an	array	containing	the
string's	characters.

Use	Array.Reverse	to	reverse	the	array.

Use	code	similar	to	the	following	to	convert	the	reversed	characters	into
a	string:

string	reversed	=	new	string(chars);

Compare	the	processed	string	and	the	reversed	string.

Test	the	program	on	the	two	palindromes,	“Able	was	I	ere	I	saw	Elba,”	and
“A	man,	a	plan,	a	canal,	Panama.”

NOTE

Please	select	the	videos	for	Lesson	16	online	at
www.wrox.com/go/csharp24hourtrainer2evideos.

http://www.wrox.com/go/csharp24hourtrainer2evideos

Lesson	17

Using	Enumerations	and	Structures
The	data	types	you've	learned	about	so	far	hold	strings,	integers,	dates,	and	other
predefined	kinds	of	information,	but	sometimes	it	would	be	nice	to	define	your
own	data	types.

An	enumeration	(or	enumerated	type)	lets	you	define	a	new	data	type	that	can
take	only	one	of	an	allowed	list	of	values.	For	example,	a	menu	program	might
define	a	MealType	data	type	that	can	hold	the	values	Breakfast,	Lunch,	and	Dinner.

The	data	types	described	in	previous	lessons	also	can	hold	only	a	single	piece	of
data:	a	name,	street	address,	city,	or	whatever.	Sometimes	it	would	be	nice	to	keep
related	pieces	of	data	together.	Instead	of	storing	a	name,	address,	and	city	in
separate	strings,	you	might	like	to	store	them	as	a	single	unit.

A	structure	(sometimes	called	a	struct)	lets	you	define	a	group	of	related	pieces	of
data	that	should	be	kept	together.

In	this	lesson,	you	learn	how	to	define	and	use	enumerations	and	structures	to
make	your	code	easier	to	write,	understand,	and	debug.

Enumerations
Defining	an	enumeration	is	easy.	The	following	code	defines	a	ContactMethod
enumeration	that	can	hold	the	values	None,	Email,	Phone,	or	SnailMail:

//	Define	possible	contact	methods.

enum	ContactMethod

{

				None	=	0,

				Email,

				Phone,

				SnailMail,

}

NOTE

The	final	comma	in	this	example	is	optional.	You	don't	need	it	because	there
is	no	value	after	SnailMail,	but	C#	allows	you	to	use	it	if	you	want	to	make
the	lines	of	code	more	consistent.

Internally	an	enumeration	is	stored	as	an	integral	data	type,	by	default	an	int.	An
optional	number	after	a	value	tells	C#	explicitly	which	integer	to	assign	to	that
value.	In	the	preceding	code,	None	is	explicitly	assigned	the	value	0.

If	you	don't	specify	a	value	for	an	enumeration's	item	(and	often	you	don't	care
what	these	values	are),	its	value	is	one	greater	than	the	previous	item's	value	(the
first	item	gets	value	0).	In	this	example,	None	is	0,	Email	is	1,	Phone	is	2,	and
SnailMail	is	3.

You	create	an	instance	of	an	enumerated	type	just	as	you	make	an	instance	of	a
primitive	type	such	as	int,	decimal,	or	string.	The	following	code	declares	a
variable	of	type	ContactMethod,	assigns	it	the	value	ContactMethod.Email,	and	then
displays	its	value	in	the	Output	window:

ContactMethod	contactMethod	=	ContactMethod.Email;

Console.WriteLine(contactMethod.ToString());

An	enumeration's	ToString	method	returns	the	value's	name,	in	this	case	“Email.”

Structures
Defining	a	structure	is	just	as	easy	as	defining	an	enumeration.	The	following	code
defines	a	simple	structure	named	Address	that	holds	name	and	address
information:

//	Define	a	structure	to	hold	addresses.

struct	Address

{

				public	string	Name;

				public	string	Street;

				public	string	City;

				public	string	State;

				public	string	Zip;

				public	string	Email;

				public	string	Phone;

				public	ContactMethod	PreferredMethod;

}

Inside	the	braces,	the	structure	defines	the	bits	of	data	that	it	holds	together.	The
public	keywords	in	this	example	mean	that	the	fields	inside	the	structure	(Name,
Street,	and	so	on)	are	visible	to	any	code	that	can	see	an	Address.

Notice	that	the	structure	can	use	an	enumeration.	In	this	example,	the	Address
structure's	PreferredMethod	field	has	type	ContactMethod.

In	many	ways	structures	behave	like	simple	built-in	types	such	as	int	and	float.
In	particular,	when	you	declare	a	variable	with	a	structure	type,	the	code	not	only
declares	it	but	also	creates	it.	That	means	you	don't	need	to	use	the	new	keyword	to
create	an	instance	of	a	structure.

After	defining	the	variable,	you	can	access	its	fields	using	syntax	similar	to	the	way
you	access	a	control's	properties.	Start	with	the	variable's	name,	follow	it	with	a
dot,	and	then	add	the	field's	name.

The	following	code	creates	and	initializes	a	new	Address	structure	named
homeAddress:

Address	homeAddress;

homeAddress.Name	=	nameTextBox.Text;

homeAddress.Street	=	streetTextBox.Text;

homeAddress.City	=	cityTextBox.Text;

homeAddress.State	=	stateTextBox.Text;

homeAddress.Zip	=	zipTextBox.Text;

homeAddress.Email	=	emailTextBox.Text;

homeAddress.Phone	=	phoneTextBox.Text;

homeAddress.PreferredMethod	=

				(ContactMethod)preferredMethodComboBox.SelectedIndex;

This	code	fills	in	the	text	fields	using	values	entered	by	the	user	in	TextBoxes.

The	final	field	is	a	ContactMethod	enumeration.	The	user	selects	a	value	for	this
field	from	the	preferredMethodComboBox.	The	code	takes	the	index	of	the	ComboBox's

selected	item,	converts	it	from	an	integer	into	a	ContactMethod,	and	saves	the
result	in	the	structure's	PreferredMethod	field.

NOTE

To	correctly	convert	a	ComboBox	selection	into	an	enumeration	value,	the
ComboBox	must	display	the	choices	in	the	same	order	in	which	they	are
defined	by	the	enumeration.	In	this	example,	the	ComboBox	must	contain	the
items	None,	Email,	Phone,	and	SnailMail	in	that	order	to	match	up	with	the
enumeration's	items.

Structures	Versus	Classes
In	many	ways	structures	are	very	similar	to	classes.	Lesson	23	says	a	lot	more
about	classes	and	the	sorts	of	things	you	can	do	with	them,	and	many	of	the	same
techniques	apply	to	structures.

For	example,	both	can	contain	properties,	methods,	and	events.	Both	can	also
have	constructors,	special	methods	that	are	executed	when	you	use	new	to	create	a
new	instance.	These	are	described	in	greater	detail	in	Lesson	23.

While	structures	and	classes	have	many	things	in	common,	they	also	have	some
significant	differences.	A	lot	of	these	differences	are	outside	the	scope	of	this	book,
so	I	won't	cover	them	here,	but	one	very	important	difference	that	you	should
understand	is	that	structures	are	value	types	while	classes	are	reference	types.

Reference	Types
A	reference	type	doesn't	actually	hold	the	data	for	a	class	instance.	Instead	it	holds
a	reference	to	an	instance.	The	reference	is	like	an	address	that	points	to	where
the	data	is	actually	stored.

For	example,	the	following	code	creates	a	NewUserForm	and	displays	it:

NewUserForm	userForm;

userForm	=	new	NewUserForm();

userForm.ShowDialog();

The	first	statement	declares	a	variable	of	type	NewUserForm.	Initially	that	variable
doesn't	refer	to	anything	so	if	you	tried	to	display	the	form	at	this	point,	the
program	would	crash.

The	second	statement	creates	a	new	instance	of	the	NewUserForm	type	and	saves	a
reference	to	the	new	form	in	the	userForm	variable.

Now	the	variable	refers	to	an	instance	of	the	NewUserForm	type,	so	the	third
statement	can	safely	display	that	form.

Value	Types
In	contrast	to	reference	types,	a	value	type	actually	contains	its	data	instead	of
refers	to	it.	Many	of	the	primitive	data	types	such	as	int,	double,	and	decimal	are
value	types.

The	following	code	creates	and	uses	a	variable	with	the	Address	structure	type
described	earlier:

Address	homeAddress;

homeAddress.Name	=	"Benjamin";

When	the	code	executes	the	first	statement,	the	program	creates	the	Address
structure	so	it's	all	ready	to	go,	although	its	fields	all	contain	null	values.	The

second	statement	can	immediately	set	the	variable's	Name	value	without	needing	to
use	the	new	keyword	to	create	a	new	instance	of	the	structure.

Other	Differences
Another	important	difference	between	value	and	reference	types	involves	the	way
the	program	assigns	values	to	them.

If	a	program	sets	one	reference	variable	equal	to	another,	then	they	both	point	to
the	same	object.	For	example,	suppose	ann	and	ben	are	two	variables	that	hold
references	to	Student	objects.	Then	the	statement	ben	=	ann	makes	the	variable
ben	refer	to	the	same	object	to	which	ann	refers.

Figure	17.1	shows	this	operation	graphically.	Initially	(the	picture	on	the	left)
variable	ann	contains	a	reference	to	a	Student	object	and	variable	ben	contains	the
special	value	null	(represented	by	the	box	with	an	X	in	it)	that	means	it	doesn't
refer	to	anything.	After	executing	the	statement	ben	=	ann,	both	variables	contain
references	to	the	same	Student	object	(the	picture	on	the	right).

Figure	17.1

Because	the	two	reference	variables	refer	to	the	same	object,	if	you	use	one
variable	to	change	the	object,	the	other	variable	also	sees	the	change.	For	example,
if	you	execute	the	statement	ben.FirstName	=	"Ben",	then	the	value	ann.FirstName
will	also	contain	the	value	Ben.

In	contrast,	if	you	set	a	variable	with	a	value	type	equal	to	another,	the	first
variable	receives	a	copy	of	the	second	variable's	value.	For	example,	suppose	cindy
and	dan	are	two	variables	of	the	structure	type	Person.	The	Person	type	might	be
very	similar	to	the	Student	type,	except	it's	a	structure	(value	type)	instead	of	a
class	(reference	type).	In	that	case,	the	statement	dan	=	cindy	makes	the	variable
dan	hold	a	copy	of	the	values	in	the	structure	cindy.

Figure	17.2	shows	this	operation	graphically.	Initially	(the	picture	on	the	left)
variables	cindy	and	dan	each	contain	Person	data.	This	time	the	variables	include
all	of	the	data	inside	the	rectangles;	they're	not	just	references	pointing	to	values
stored	someplace	else.	After	executing	the	statement	dan	=	cindy,	both	variables
contain	separate	copies	of	the	same	data.

Figure	17.2

Because	the	two	value	variables	refer	to	different	copies	of	the	same	data,
changing	one	doesn't	change	the	other.	For	example,	if	you	execute	the	statement
dan.Name	=	"Dan",	then	the	value	cindy.Name	will	still	be	Cindy.

The	Structure	Versus	Class	example	program,	which	is	available	in	this	lesson's
downloads,	demonstrates	this	difference.	This	issue	is	quite	important,	so	it	will
be	worth	your	time	to	download	the	example	and	study	it	until	you're	sure	you
understand	it.

So	which	should	you	use,	a	structure	or	a	class?	In	many	programs	the	difference
doesn't	matter	much.	As	long	as	you	are	aware	of	the	relevant	differences,	you	can
often	use	either.

Microsoft's	“Classes	and	Structs	(C#	Programming	Guide)”	web	page	at
msdn.microsoft.com/library/ms173109.aspx	gives	this	advice:

In	general,	classes	are	used	to	model	more	complex	behavior,	or	data	that	is
intended	to	be	modified	after	a	class	object	is	created.	Structs	are	best	suited
for	small	data	structures	that	contain	primarily	data	that	is	not	intended	to	be
modified	after	the	struct	is	created.

If	you	follow	that	advice,	then	a	more	complex	piece	of	data	such	as	a	Person	or
Student	should	probably	be	implemented	as	a	class.	You	may	need	to	update
Person	or	Student	information	over	time,	so	that	also	indicates	that	these	should
probably	be	classes.

In	contrast,	suppose	you're	writing	an	oven	control	program	and	you	want	a	data
type	to	store	temperature	data.	In	that	case,	you	might	store	data	in	a	Temperature
structure.

On	some	level,	it	doesn't	make	sense	for	a	particular	temperature	value	to	change,
although	it	might	make	sense	for	an	oven's	temperature	to	change.	For	example,
the	oven's	temperature	might	start	at	75°	and	warm	up	to	375°.	The	temperature
75°	hasn't	changed;	it's	the	oven's	temperature	that	has	changed.	Instead	of
updating	the	temperature	variable,	the	program	would	set	the	variable	equal	to
the	new	temperature	value.

To	see	the	difference,	think	back	to	the	Student	example.	If	Ann	moves,	you'll	need

http://msdn.microsoft.com/library/ms173109.aspx

to	change	her	address	(assuming	the	Student	class	contains	name,	address,	phone
number,	and	other	relevant	data).	Ann	herself	hasn't	changed,	so	it	doesn't	really
make	sense	to	set	the	ann	variable	equal	to	a	whole	new	Student	object.	Instead
you	can	just	update	the	ann.Address	value.

If	you	think	I'm	just	being	nit-picky	and	splitting	hairs	here,	you're	right.	The
difference	is	there,	but	for	practical	purposes	it	often	doesn't	make	a	huge
difference	whether	you	use	a	class	or	a	structure.	A	lot	of	C#	programmers	use
classes	instead	of	structures	basically	all	of	the	time.	(Partly	I	suspect	so	they	don't
have	to	remember	the	differences	between	value	and	reference	types.)	If	you're
using	classes	and	structures	defined	by	Microsoft	or	some	other	programmer,	then
the	differences	matter,	but	when	you're	writing	your	own	code,	you	can	pick
whichever	makes	the	most	sense	to	you.

Where	to	Put	Structures
You	can	define	structures	in	a	couple	places.

First,	you	can	define	a	structure	inside	a	class	but	outside	of	any	of	its	methods.
For	example,	you	can	define	a	structure	inside	a	form	class.	Then	the	structure	is
visible	only	inside	the	class	that	contains	it.	If	code	outside	of	the	class	doesn't
need	to	use	the	structure,	this	restricts	the	structure's	visibility	so	it	prevents
possible	confusion	in	the	outside	code.

Second,	you	can	define	a	structure	in	the	file	that	defines	a	class	but	outside	of	the
class's	code.	For	example,	you	can	put	it	at	the	bottom	of	the	class	just	before	the
final	closing	brace	that	ends	the	namespace	statement	started	at	the	top	of	the	file.
In	that	case,	the	structure	is	visible	to	all	of	the	code	in	the	project	(assuming	you
give	it	enough	visibility,	for	example,	public).

The	second	method	can	be	a	bit	confusing	because	the	same	file	defines	a	class
and	a	structure.	A	third	place	you	can	define	a	structure	for	use	by	the	whole
program	is	in	its	own	module.	The	easiest	way	to	do	that	is	to	use	the	Project
menu's	Add	Class	command.	Give	the	class	the	name	you	want	to	give	the
structure	and	click	Add.	After	Visual	Studio	creates	the	class,	change	the	class
keyword	to	struct.

You	can	define	enumerations	in	the	same	locations.

Try	It
In	this	Try	It,	you	use	an	enumeration	and	a	structure	to	make	the	address	book
shown	in	Figure	17.3.	When	the	user	clicks	the	Add	button,	the	program	saves	the
entered	address	values.	If	the	user	enters	a	name	and	clicks	Find,	the	program
retrieves	the	corresponding	address	data.

Figure	17.3

Lesson	Requirements
In	this	lesson,	you:

Create	the	form	shown	in	Figure	17.3.

Define	the	ContactMethod	enumeration	with	values	None,	Email,	Phone,	and
SnailMail.

Define	an	Address	structure	to	hold	the	entered	address	information.

Create	a	Dictionary<string,	Address>	field	to	hold	the	address	data.

Add	code	to	initially	select	the	ComboBox's	None	entry	when	the	form	loads	(just
so	something	is	selected).

Add	code	to	the	Add	button	that	creates	the	new	entry	in	the	Dictionary.

Add	code	to	the	Find	button	that	retrieves	the	appropriate	entry	from	the
Dictionary	and	displays	it.

NOTE

You	can	download	the	code	and	resources	for	this	lesson	from	the	website
at	www.wrox.com/go/csharp24hourtrainer2e.

Step-by-Step
Create	the	form	shown	in	Figure	17.3.

1.	 I'm	sure	you	can	do	this	on	your	own	by	now.

Define	the	ContactMethod	enumeration	with	values	None,	Email,	Phone,	and
SnailMail.

1.	 Use	code	similar	to	the	following	at	the	form's	class	level	(not	inside	any
event	handler):

//	Define	contact	methods.

private	enum	ContactMethod

{

				None,

				Email,

				Phone,

				SnailMail,

}

Define	an	Address	structure	to	hold	the	entered	address	information.

1.	 Use	code	similar	to	the	following	at	the	form's	class	level	(not	inside	any
event	handler):

//	Define	the	address	structure.

private	struct	Address

{

				public	string	Name;

				public	string	Street;

				public	string	City;

				public	string	State;

				public	string	Zip;

				public	string	Email;

				public	string	Phone;

				public	ContactMethod	PreferredMethod;

}

Create	a	Dictionary<string,	Address>	field	to	hold	the	address	data.

1.	 Use	code	similar	to	the	following	at	the	form's	class	level	(not	inside	any
event	handler):

//	Make	a	Dictionary	to	hold	addresses.

private	Dictionary<string,	Address>	Addresses	=

				new	Dictionary<string,	Address>();

http://www.wrox.com/go/csharp24hourtrainer2e

Add	code	to	initially	select	the	ComboBox's	None	entry	when	the	form	loads.

1.	 Use	code	similar	to	the	following:

//	Make	sure	the	ComboBox	starts	with	an	item	selected.

private	void	Form1_Load(object	sender,	EventArgs	e)

{

				preferredMethodComboBox.SelectedIndex	=	0;

}

Add	code	to	the	Add	button	that	creates	the	new	entry	in	the	Dictionary.

1.	 Use	code	similar	to	the	following.	(Using	the	indexed	syntax	instead	of	the
Dictionary's	Add	method	lets	the	Add	button	add	or	update	a	record.)
Optionally	you	can	clear	the	TextBoxes	to	get	ready	for	the	next	address.

//	Add	a	new	address.

private	void	addButton_Click(object	sender,	EventArgs	e)

{

				//	Fill	in	a	new	Address	structure.

				Address	newAddress;

				newAddress.Name	=	nameTextBox.Text;

				newAddress.Street	=	streetTextBox.Text;

				newAddress.City	=	cityTextBox.Text;

				newAddress.State	=	stateTextBox.Text;

				newAddress.Zip	=	zipTextBox.Text;

				newAddress.Email	=	emailTextBox.Text;

				newAddress.Phone	=	phoneTextBox.Text;

				newAddress.PreferredMethod	=

								(ContactMethod)preferredMethodComboBox.SelectedIndex;

				//	Add	the	name	and	address	to	the	dictionary.

				Addresses[nameTextBox.Text]	=	newAddress;

				//	Get	ready	for	the	next	one.

				nameTextBox.Clear();

				streetTextBox.Clear();

				cityTextBox.Clear();

				stateTextBox.Clear();

				zipTextBox.Clear();

				emailTextBox.Clear();

				phoneTextBox.Clear();

				preferredMethodComboBox.SelectedIndex	=	0;

				nameTextBox.Focus();

}

Add	code	to	the	Find	button	that	retrieves	the	appropriate	entry	from	the
Dictionary	and	displays	it.

1.	 Use	code	similar	to	the	following:

//	Look	up	an	address.

private	void	findButton_Click(object	sender,	EventArgs	e)

{

				//	Get	the	Address.

				Address	selectedAddress	=	Addresses[nameTextBox.Text];

				//	Display	the	Address's	values.

				nameTextBox.Text	=	selectedAddress.Name;

				streetTextBox.Text	=	selectedAddress.Street;

				cityTextBox.Text	=	selectedAddress.City;

				stateTextBox.Text	=	selectedAddress.State;

				zipTextBox.Text	=	selectedAddress.Zip;

				emailTextBox.Text	=	selectedAddress.Email;

				phoneTextBox.Text	=	selectedAddress.Phone;

				preferredMethodComboBox.SelectedIndex	=

								(int)selectedAddress.PreferredMethod;

}

Exercises
1.	 Copy	the	program	you	built	for	this	lesson's	Try	It.	Add	a	Delete	button	that
removes	an	item	by	calling	the	Dictionary's	Remove	method.

2.	 In	addition	to	simple	fields,	structures	can	contain	arrays.	Copy	the	program
you	built	for	Exercise	1	and	modify	the	Address	structure	so	it	contains	an	array
holding	three	phone	numbers:	home,	work,	and	cell.	(Hint:	Before	you	can
store	values	in	the	array,	you	need	to	allocate	it	as	in	theAddress.Phones	=	new
string[3].)

3.	 Exercise	2	uses	a	structure	that	contains	an	array.	You	can	also	make	an	array
that	contains	structures.

Make	a	program	that	creates	an	array	holding	five	Address	structures	of	the
kind	used	by	the	program	you	wrote	for	Exercise	2.	When	the	program	starts,
initialize	the	array	to	literal	values	hardcoded	into	the	program.	Place	the
structures'	names	in	a	ComboBox.	When	the	user	selects	an	entry	from	the
ComboBox,	display	the	corresponding	data.

4.	 [Games]	Make	a	program	that	defines	an	enumeration	to	represent	the	pieces
on	a	chess	board.	Then	display	each	enumeration	value	as	both	a	string	and	an
int	in	a	TextBox.

5.	 [Games]	Make	a	program	that	uses	the	enumeration	you	defined	for	Exercise	4
to	create	an	array	that	represents	a	complete	board	position.	When	the
program	loads,	initialize	the	array	to	represent	a	new	game.

6.	 [Games]	Make	a	program	that	defines	a	structure	to	represent	a	chess	move.
(Hint:	Don't	record	information	that	you	can	deduce	from	the	current	board
position.	For	example,	if	a	move	represents	a	capture,	you	don't	need	to	record
that	fact	because	you	can	figure	it	out.)

7.	 If	you	like,	you	can	give	multiple	enumeration	names	the	same	numeric	value
by	setting	them	equal	to	that	value.	You	can	even	use	an	enumeration	name	to
calculate	the	value	of	a	later	name.

Suppose	you're	opening	a	coffee	shop	and	you	want	to	have	the	sizes	Grande,
Enorme,	and	Demente.	Because	some	customers	will	be	too	grouchy	to	use	the
fancy	names	(because	they	haven't	had	their	coffee	yet),	those	names	should	be
equivalent	to	the	more	pedestrian	names	Big,	Huge,	and	Ginormous.	Make	a
program	that	creates	an	enumeration	that	defines	all	of	those	values.	Then
display	each	value	as	both	a	string	and	an	int	in	a	TextBox.

8.	 [Games]	Suppose	you're	building	a	steampunk	Wild	West	fantasy	role-playing
game.	Make	a	program	that	defines	a	structure	to	represent	weapons.	It	should
record	the	weapon's	name,	range	in	feet,	and	attack	value;	the	number	of	dice
to	roll	when	attacking;	and	the	number	of	sides	on	the	dice.

9.	 [Games]	To	continue	building	your	steampunk	Wild	West	game,	make	a

program	that	defines	a	structure	to	represent	a	character.	It	should	record	the
character's	name,	profession	(which	can	be	GunSlinger,	Scientist,	ConArtist,	or
Cyborg),	primary	weapon,	and	secondary	weapon.

10.	 [Hard]	Suppose	you're	writing	a	genealogy	program.	Make	a	program	that
defines	a	structure	that	can	store	a	person's	name	and	that	person's	parents
(represented	by	the	same	structure).	When	the	program	starts,	initialize	a	data
structure	to	represent	the	ancestor	tree	shown	in	Figure	17.4.

Figure	17.4

(Hint:	Because	a	structure	cannot	contain	direct	instances	of	itself,	you'll	need
to	figure	out	a	way	to	store	the	parents	in	a	reference	type.)

11.	 [Hard]	Make	a	program	that	defines	a	structure	that	can	store	a	person's	name
and	that	person's	children	(represented	by	the	same	structure).	When	the
program	starts,	initialize	a	data	structure	to	represent	the	descendant	tree
shown	in	Figure	17.5.

Figure	17.5

NOTE

Please	select	the	videos	for	Lesson	17	online	at
www.wrox.com/go/csharp24hourtrainer2evideos.

http://www.wrox.com/go/csharp24hourtrainer2evideos

Section	III

Program	Statements
The	lessons	in	Section	II	focused	on	working	with	variables.	They	explained	how
to	declare	variables,	set	their	values,	and	perform	calculations.

Those	techniques	let	you	do	some	fairly	complex	things,	but	they're	still	relatively
straightforward	things	that	you	could	do	yourself	by	hand	if	you	really	had	to.	For
example,	you	could	easily	calculate	line	item	totals,	sales	tax,	shipping,	and	a
grand	total	for	a	purchase	order.

With	what	you	know	so	far,	you	really	can't	write	a	program	that	takes	full
advantage	of	the	computer's	power.	You	can't	make	the	program	add	up	an
unknown	number	of	values	stored	in	a	ListBox,	perform	the	same	task	(such	as
calculating	an	account	balance)	for	thousands	of	customers,	or	take	different
actions	depending	on	the	user's	inputs.	You	can't	even	write	a	program	that	can
tell	if	the	user	entered	an	invalid	value	such	as	“seventy-eight”	in	a	TextBox	that
should	contain	a	number.

The	lessons	in	this	section	explain	how	to	perform	these	kinds	of	tasks.	They
explain	ways	you	can	make	a	program	take	different	courses	of	action	depending
on	circumstances,	repeat	a	set	of	actions	many	times,	break	code	into	manageable
pieces	to	make	it	easier	to	write	and	debug,	and	handle	unexpected	errors.	After
you	finish	reading	these	lessons,	you'll	be	able	to	write	applications	that	are	much
more	powerful	than	those	you	can	write	now.

Lesson	18:	Making	Choices

Lesson	19:	Repeating	Program	Steps

Lesson	20:	Reusing	Code	with	Methods

Lesson	21:	Handling	Errors

Lesson	22:	Preventing	Bugs

Lesson	18

Making	Choices
All	of	the	code	used	in	the	lessons	so	far	has	been	completely	linear.	The	program
follows	a	series	of	steps	in	order	with	no	deviation.

For	example,	a	sales	program	could	multiply	a	unit	price	by	quantity	desired,	add
several	items’	values,	multiply	to	get	sales	tax	and	shipping	costs,	and	calculate	a
grand	total.

So	far	there’s	been	no	way	to	perform	different	steps	under	different
circumstances.	For	example,	the	sales	program	couldn’t	charge	different	prices	for
different	quantities	purchased	or	waive	shipping	charges	for	orders	over	$100.	It
couldn’t	even	check	quantities	to	see	if	they	make	sense.	So	far	a	clever	customer
could	order	–1,000	items	to	get	a	huge	credit!

In	this	lesson	you	learn	how	a	program	can	make	decisions.	You	learn	how	the
program	can	take	different	actions	based	on	user	inputs	and	other	circumstances.

Decision	Statements
Programs	often	need	to	decide	between	two	or	more	courses	of	action.	For
example:

If	it’s	before	4:00	p.m.,	ship	today.	Otherwise	ship	tomorrow.

If	the	order	quantity	is	less	than	zero,	make	the	user	fix	it.

If	a	word	processor	has	unsaved	changes,	refuse	to	exit.

Calculate	shipping	based	on	order	total:	$5	if	total	<	$20,	$7.50	if	total	<	$50,
$10	if	total	<	$75,	and	free	if	total	≥	$75.

The	basic	idea	is	the	same	in	all	of	these	cases.	The	program	examines	a	value	and
takes	one	of	several	different	actions	depending	on	the	value.

The	following	sections	describe	the	different	statements	that	C#	provides	for
making	these	kinds	of	decisions.

if	Statements
The	if	statement	examines	a	condition	and	takes	action	only	if	the	condition	is
true.	The	basic	syntax	for	the	if	statement	is:

if	(condition)	statement;

Here	condition	is	some	boolean	expression	that	evaluates	to	either	true	or	false,
and	statement	is	a	statement	that	should	be	executed	if	condition	is	true.

For	example,	suppose	you’re	writing	an	order	entry	program	and	shipping	should
be	$5	for	orders	under	$100	and	free	for	orders	of	at	least	$100.	Suppose	also	that
the	program	has	already	calculated	the	value	total.	The	following	code	shows	how
the	program	might	handle	this:

decimal	shipping	=	5.00M;									//	Default	shipping	cost.

if	(total	>=	100)	shipping	=	0;			//	Shipping	is	free	if	total	>=	100.

The	code	starts	by	setting	the	variable	shipping	to	$5.	Then	if	the	previously
calculated	value	total	is	at	least	$100,	the	program	sets	shipping	to	$0.

If	total	is	less	than	$100,	the	statement	following	the	if	statement	is	not	executed
and	shipping	keeps	its	original	value	of	$5.

If	you	want	to	execute	more	than	one	statement	when	condition	is	true,	place	the
statements	inside	braces	as	in	the	following	code:

decimal	shipping	=	5.00M;				//	Default	shipping	cost.

if	(total	>=	100)

{

				shipping	=	0;												//	Shipping	is	free	if	total	>=	100.

				giveFreeGift	=	true;					//	Give	a	free	gift	if	total	>=	100.

}

You	can	place	as	many	statements	as	you	like	inside	the	braces,	and	they	are	all
executed	if	condition	is	true.

NOTE

To	make	the	code	more	consistent	and	easier	to	read,	some	programmers
always	use	braces	even	if	the	program	should	execute	only	one	statement.
The	following	code	shows	an	example:

if	(total	>=	100)

{

				shipping	=	0;

}

Other	programmers	think	that’s	unnecessarily	verbose.	You	should	use	the
style	you	find	easiest	to	read.

if-else	Statements
The	previous	example	set	shipping	to	a	default	value	and	then	changed	it	if	total
was	at	least	$100.	Another	way	to	think	about	this	problem	is	to	imagine	taking
one	of	two	actions	depending	on	total’s	value.	If	total	is	less	than	$100,	the
program	should	set	shipping	to	$5.	Otherwise	the	program	should	set	shipping	to
$0.

The	if-else	construct	lets	a	program	follow	this	approach,	taking	one	of	two
actions	depending	on	some	condition.

The	syntax	for	if-else	is:

if	(condition)

				statementsIfTrue;

else

				statementsIfFalse;

If	condition	is	true,	the	first	block	statementsIfTrue	executes.	Otherwise	(if
condition	is	false)	the	second	block	statementsIfFalse	executes.

Using	the	else	keyword,	the	preceding	code	could	be	rewritten	like	this:

decimal	shipping;

if	(total	<	100)

				shipping	=	5M;					//	Shipping	is	$5	if	total	<	100.

else

				shipping	=	0M;					//	Shipping	is	free	if	total	>=	100.

You	can	use	braces	to	make	either	the	if	or	else	part	of	the	if-else	statement
execute	more	than	one	command.

Cascading	if	Statements
The	if-else	construct	performs	one	of	two	actions	depending	on	whether	the
condition	is	true	or	false.	Sometimes	a	program	needs	to	check	several	conditions
to	decide	what	to	do.

For	example,	suppose	an	order	entry	program	calculates	shipping	charges
depending	on	the	total	purchase	amount	according	to	this	schedule:

If	total	<	$20,	shipping	is	$5.00.

Otherwise,	if	total	<	$50,	shipping	is	$7.50.

Otherwise,	if	total	<	$75,	shipping	is	$10.00.

Otherwise,	shipping	is	free.

You	can	make	a	program	perform	each	of	these	tests	one	after	another	by	making
a	second	if	statement	be	the	else	part	of	a	first	if	statement.	The	following	code
shows	how	you	can	calculate	shipping	according	to	the	preceding	schedule:

decimal	shipping;

if	(total	<	20)

{

				shipping	=	5M;

}

else	if	(total	<	50)

{

				shipping	=	7.5M;

}

else	if	(total	<	75)

{

				shipping	=	10M;

}

else

{

				shipping	=	0M;

}

When	the	program	encounters	a	cascading	series	of	if	statements,	it	executes	each
in	turn	until	it	finds	one	with	a	true	condition.	It	then	skips	the	rest	because	they
are	all	part	of	the	current	if	statement’s	else	block.

For	example,	consider	the	previous	code	and	suppose	total	is	$60.	The	code
evaluates	the	first	condition	and	decides	that	(total	<	20)	is	false,	so	it	does	not
execute	the	first	code	block.

The	program	skips	to	the	else	statement	and	executes	the	next	if	test.	The
program	decides	that	(total	<	50)	is	also	not	true,	so	it	skips	to	this	if
statement’s	else	block.

The	program	executes	the	third	if	test	and	finds	that	(total	<	75)	is	true	so	it
executes	the	statement	shipping	=	10M.

Because	the	program	found	an	if	statement	with	a	true	condition,	it	skips	the
following	else	statement,	so	it	passes	over	any	if	statements	that	follow	without
evaluating	their	conditions.

Nested	if	Statements
Another	common	arrangement	of	if	statements	nests	one	within	another.	The
inner	if	statement	is	executed	only	if	the	first	statement’s	condition	allows	the
program	to	reach	it.

For	example,	suppose	you	charge	customers	5	percent	state	sales	tax.	If	a
customer	lives	within	your	county,	you	also	charge	a	county	transportation	tax.
Finally,	if	the	customer	also	lives	within	city	limits,	you	charge	a	city	sales	tax.
(Taxes	where	I	live	are	at	least	this	confusing.)

The	following	code	performs	these	checks,	where	the	variables	inCounty	and
inCity	indicate	whether	the	customer	lives	within	the	county	and	city:

if	(inCounty)

{

				if	(inCity)

				{

								salesTaxRate	=	0.09M;

				}

				else

				{

								salesTaxRate	=	0.07M;

				}

}

else

{

				salesTaxRate	=	0.05M;

}

You	can	nest	if	statements	as	deeply	as	you	like,	although	at	some	point	the	code
gets	hard	to	read.

NOTE

There	are	always	ways	to	rearrange	code	by	using	the	&&	(logical	AND)	and
||	(logical	OR)	operators	to	remove	nested	if	statements.	For	example,	the
following	code	does	the	same	thing	as	the	previous	version	without	nesting:

if	(inCounty	&&	inCity)

{

				salesTaxRate	=	0.09M;

}

else	if	(inCounty)

{

				salesTaxRate	=	0.07M;

}

else

{

				salesTaxRate	=	0.05M;

}

In	fact,	if	you	know	that	the	city	lies	completely	within	the	county,	you	could
rewrite	the	first	test	as	if	(inCity).

Switch	Statements
The	switch	statement	provides	an	easy-to-read	equivalent	to	a	series	of	cascading
if	statements	that	compares	one	value	to	a	series	of	other	values.

The	syntax	of	the	switch	statement	is:

switch	(testValue)

{

				case	(value1):

								statements1;

								break;

				case	(value2):

								statements2;

								break;

				…

				default:

								statementsDefault;

								break;

}

Here	testValue	is	the	value	that	you	are	testing.	The	values	value1,	value2,	and	so
on	are	the	values	to	which	you	are	comparing	testValue.	The	statements1,
statements2,	and	so	on	are	the	blocks	of	statements	that	you	want	to	execute	for
each	case.	The	other	pieces	(switch,	case,	break,	and	default)	are	keywords	that
you	must	type	as	they	appear	here.

If	you	include	the	optional	default	section,	its	statements	execute	if	no	other	case
applies.	Actually	the	case	statements	are	optional,	too,	although	it	would	be
strange	to	not	use	any.

Note	that	a	case’s	code	block	doesn’t	need	to	include	any	statements	other	than
break.	You	can	use	that	to	make	the	code	take	no	action	when	a	particular	case
occurs.

For	example,	suppose	you	build	a	form	where	the	user	selects	a	hotel	from	a
ComboBox.	The	program	uses	that	selection	to	initialize	an	enumerated	variable
named	hotelChoice.	The	following	code	sets	the	lodgingPrice	variable	depending
on	which	hotel	the	user	selected:

decimal	lodgingPrice;

switch	(hotelChoice)

{

				case	HotelChoice.LuxuryLodge:

								lodgingPrice	=	45;

								break;

				case	HotelChoice.HamiltonArms:

								lodgingPrice	=	80;

								break;

				case	HotelChoice.InvernessInn:

								lodgingPrice	=	165;

								break;

				default:

								MessageBox.Show("Please	select	a	hotel");

								lodgingPrice	=	0;

								break;

}

The	case	statements	check	for	the	three	expected	choices	and	sets	lodgingPrice	to
the	appropriate	value.	If	the	user	doesn’t	select	any	hotel,	the	default	section’s
code	displays	a	message	box	and	sets	lodgingPrice	to	0	to	indicate	a	problem.

A	switch	statement	is	most	robust	(less	prone	to	bugs	and	crashes)	if	its	cases	can
handle	every	possible	comparison	value.	That	makes	them	work	very	well	with
enumerated	types	because	you	can	list	every	possible	value.	In	contrast,	you	can’t
include	a	case	statement	for	every	possible	integer	value	(unless	you	include
several	billion	lines	of	code),	so	case	statements	can’t	check	every	possible	integer
value.

Even	if	the	case	statements	check	every	possible	value	in	an	enumeration,	it’s	a
good	practice	to	include	a	default	section	just	in	case	another	value	sneaks	into
the	code.	For	example,	a	bug	in	the	code	could	convert	an	integer	into	an
enumeration	value	that	doesn’t	exist,	or	you	could	later	add	a	new	value	to	the
enumeration	and	forget	to	add	a	corresponding	case	statement.	In	those	cases,	the
default	statement	can	catch	the	bug,	take	some	default	action,	and	possibly	warn
you	that	something	is	wrong.

When	you	use	a	switch	statement	with	other	data	types,	be	sure	to	consider
unexpected	values,	particularly	if	the	user	typed	in	the	value.	For	example,	don’t
assume	the	user	will	always	enter	a	valid	string.	Allowing	the	user	to	select	a	string
from	a	ComboBox	is	safer,	but	you	should	still	include	a	default	statement.

Try	It
In	this	Try	It,	you	build	the	Order	Form	program	shown	in	Figure	18.1.	The
program	uses	a	cascading	series	of	if	statements	to	calculate	shipping	cost	based
on	the	subtotal.

Figure	18.1

Lesson	Requirements
In	this	lesson,	you:

Build	the	form	shown	in	Figure	18.1.

Write	the	code	for	the	Calculate	button	so	it	calculates	the	subtotal,	sales	tax,
shipping,	and	grand	total.	The	sales	tax	should	be	7	percent	of	the	subtotal.
Shipping	should	be	$5	if	subtotal	<	$20,	$7.50	if	subtotal	<	$50,	$10	if
subtotal	<	$75,	and	free	if	subtotal	≥	$75.

NOTE

You	can	download	the	code	and	resources	for	this	lesson	from	the	website	at
www.wrox.com/go/csharp24hourtrainer2e.

Hints
Make	the	sales	tax	rate	a	constant,	giving	it	the	most	limited	scope	you	can.

Step-by-Step
Build	the	form	shown	in	Figure	18.1.

1.	 This	is	relatively	straightforward.

Write	the	code	for	the	Calculate	button	so	it	calculates	the	subtotal,	sales	tax,
shipping,	and	grand	total.	The	sales	tax	should	be	7	percent	of	the	subtotal.
Shipping	should	be	$5	if	subtotal	<	$20,	$7.50	if	subtotal	<	$50,	$10	if
subtotal	<	$75,	and	free	if	subtotal	≥	$75.

1.	 Calculate	the	total	costs	for	each	of	the	four	items.	Add	them	together	to	get
the	subtotal.

2.	 Calculate	sales	tax	by	multiplying	the	tax	rate	by	the	subtotal.

3.	 Use	a	series	of	cascading	if-else	statements	to	calculate	the	shipping	cost
based	on	the	subtotal	as	in	the	following	code:

//	Calculate	shipping	cost.

decimal	shipping;

if	(subtotal	<	20)

{

				shipping	=	5;

}

else	if	(subtotal	<	50)

{

				shipping	=	7.5m;

}

else	if	(subtotal	<	75)

{

				shipping	=	10;

}

else

{

				shipping	=	0;

}

4.	 Add	the	subtotal,	tax,	and	shipping	cost	to	get	the	grand	total.

5.	 Display	the	results.

http://www.wrox.com/go/csharp24hourtrainer2e

Exercises
1.	 1	Build	the	Conference	Coster	program	shown	in	Figure	18.2.

Figure	18.2

When	the	user	clicks	the	Calculate	button,	first	check	each	ListBox’s
SelectedIndex	property.	If	any	SelectedIndex	is	less	than	zero	(indicating	the
user	didn’t	make	a	choice),	display	an	error	message	and	use	the	return
keyword	to	stop	calculating.

If	the	user	made	a	choice	in	all	of	the	ListBoxes,	create	a	variable	total	to	hold
the	total	cost.	Use	three	switch	statements	to	add	the	appropriate	amounts	to
total	and	display	the	result.	(Hint:	Add	a	default	statement	to	each	switch
statement	to	catch	unexpected	selections,	even	though	none	should	occur	in
this	program.	Then	add	a	new	hotel	to	the	ListBox	and	see	what	happens	if	you
select	it.)

2.	 [SimpleEdit,	Hard]	Copy	the	SimpleEdit	program	that	you	built	way	back	in
Exercise	8-7	(or	download	the	version	on	the	book’s	website)	and	add	code	to
protect	the	user	from	losing	unsaved	changes.

The	basic	idea	is	to	check	whether	the	document	has	been	modified	before
doing	anything	that	will	lose	the	changes,	such	as	starting	a	new	document,
opening	another	file,	or	exiting	the	program.

a.	 In	the	File	menu’s	New,	Open,	and	Exit	commands,	check	the	RichTextBox’s
Modified	property	to	see	if	the	document	has	unsaved	changes.

b.	 If	there	are	unsaved	changes,	ask	if	the	user	wants	to	save	them.	Display	a
message	box	with	the	buttons	Yes,	No,	and	Cancel.

c.	 If	the	user	clicks	Yes,	save	the	changes	and	continue	the	operation.

d.	 If	the	user	clicks	No,	don’t	save	the	changes	(do	nothing	special)	and	let	the
operation	continue.

e.	 If	the	user	clicks	Cancel,	don’t	perform	the	operation.	For	example,	don’t
open	a	new	file.

f.	 After	starting	a	new	document	or	saving	an	old	one,	set	the	RichTextBox

control’s	Modified	property	to	false	to	indicate	that	there	are	no	unsaved
changes	at	that	time.

Hint:	Use	a	local	variable	named	shouldContinue	to	decide	whether	the
operation	should	continue.

3.	 [SimpleEdit]	Copy	the	SimpleEdit	program	you	built	for	Exercise	2.	That
program	protects	against	lost	changes	if	the	user	opens	the	File	menu	and
selects	Exit,	but	the	user	can	close	the	program	several	other	ways	such	as
pressing	Alt+F4,	clicking	the	“X”	button	in	the	program’s	title	bar,	and	opening
the	system	menu	in	the	form’s	upper-left	corner	and	selecting	Close.	Currently
the	program	doesn’t	protect	unsaved	changes	for	any	of	those.

To	fix	this,	give	the	form	a	FormClosing	event	handler.	When	the	form	is	about
to	close,	it	raises	this	event.	If	you	set	the	event’s	e.Cancel	parameter	to	true,
the	form	cancels	the	close	and	remains	open.	Add	code	to	this	event	handler	to
protect	unsaved	changes.

Now	that	the	FormClosing	event	handler	is	protecting	against	lost	changes,	you
don’t	need	to	perform	the	same	checks	in	the	Exit	menu	item’s	event	handler.
Make	that	event	handler	simply	call	the	Close	method	and	let	the	FormClosing
event	handler	do	the	rest.

4.	 [Games,	Hard]	Copy	the	tic-tac-toe	program	that	you	built	way	back	in
Exercise	16-8	(or	download	the	version	on	the	book’s	website).	That	version	of
the	program	uses	three	Labels	for	each	square:	two	to	let	the	user	select	the
square	for	X	or	O,	and	one	to	show	which	player	has	taken	the	square.

Modify	the	program	to	make	the	following	changes	(which	should	make	the
program	much	smaller):

Remove	the	X	and	O	Labels	so	there’s	only	one	Label	per	square.

Set	each	Label’s	Tag	property	to	indicate	its	row	and	column.	For	example,
set	the	Tag	property	for	the	upper-left	Label	to	“0,	0.”

Make	a	class-level	variable	to	keep	track	of	which	player’s	turn	it	is.

Use	the	same	Click	event	handler	for	all	of	the	Labels.

When	the	user	clicks	a	square,	convert	the	event	handler’s	sender
parameter	into	the	Label	that	raised	the	Click	event.

If	the	square	has	already	been	taken,	ignore	the	click.

Otherwise,	take	the	square	for	the	player	whose	turn	it	is.

Parse	the	clicked	Label’s	Tag	property	to	see	which	entry	in	the	Board	array
to	set.	(Hint:	Use	ToString	to	convert	the	Tag	property	into	a	string.)

5.	 [Games]	Copy	the	program	you	made	for	Exercise	4	and	modify	it	so	that	when
the	last	square	is	taken,	the	program	says	“All	squares	are	taken”	in	the	turn
Label	(instead	of	saying	“O’s	turn”).

6.	 [Games,	Hard]	Copy	the	program	you	made	for	Exercise	5	and	modify	it	so	it
checks	for	a	winner	after	each	square	is	taken.	When	the	game	ends,	display
the	winner	(or	the	fact	that	it’s	a	tie)	in	the	turn	Label.	After	the	game	is	over,
ignore	any	click	events	until	the	user	starts	a	new	game.

7.	 [Games,	Hard]	Make	a	program	that	displays	a	bouncing	ball	(shown	in	a
PictureBox).	When	the	program	starts,	give	the	PictureBox	a	random	position
on	the	form	and	random	X	and	Y	velocities.	When	a	Timer	ticks,	use	the
velocities	to	calculate	the	PictureBox’s	new	position.	If	the	position	makes	the
PictureBox	move	beyond	one	of	the	form’s	edges,	move	it	back	onto	the	form
and	reverse	the	corresponding	velocity.

8.	 [Games,	Hard]	Copy	the	program	you	made	for	Exercise	7	and	add	a	sound
effect	by	following	these	steps:

In	the	Solution	Explorer,	double-click	the	Properties	item.	Select	the
References	tab,	open	the	Add	Resource	dropdown,	and	select	Add	Existing
File.	Select	the	sound	effect’s	source	file	and	click	Open.

Use	class-level	code	similar	to	the	following	to	create	a	sound	player
associated	with	the	sound	resource.	(Here	“boing”	is	the	name	of	the
resource	I	used.)

//	The	SoundPlayer.

private	System.Media.SoundPlayer	BoingSound	=

				new	System.Media.SoundPlayer(Properties.Resources.boing);

Use	the	statement	BoingSound.Play()	to	play	the	sound	when	necessary.

9.	 [Games,	Hard]	Copy	the	program	you	made	for	Exercise	11-17	(or	download
the	version	on	the	book’s	website)	and	make	the	following	changes:

Remove	the	Stop	button.

When	the	user	clicks	Fire,	play	a	sound	file	that	sounds	like	a	cannon	firing.

Place	a	new	PictureBox	displaying	a	picture	of	a	castle	or	some	other	target
on	the	form.

If	the	cannonball	hits	the	target,	stop	moving	it,	play	an	explosion	sound
file,	hide	the	cannonball,	and	make	the	target	PictureBox	display	an	image
of	an	explosion.

If	the	cannonball	moves	off	of	the	form,	stop	moving	it	and	play	a	failure
sound	effect.

10.	 [Games,	Hard]	Make	a	UFO	shooting	gallery	game	similar	to	the	one	shown	in
Figure	18.3.

Figure	18.3

Make	the	image	of	a	UFO	move	left-to-right	across	the	top	of	the	form.
When	the	UFO	leaves	the	right	side	of	the	form,	make	it	reappear	on	the
left	side.

When	the	user	presses	Space,	fire	the	red	laser	bolt	(a	PictureBox)	from	the
laser	cannon	(an	image	in	another	PictureBox).	(Hint:	To	know	when	the
user	presses	Space,	catch	the	form’s	KeyDown	event	and	see	if	e.KeyCode	==
Keys.Space.)

Don’t	allow	the	user	to	fire	a	bolt	if	one	is	already	on	the	form.

Use	variables	UfoX,	UfoY,	UfoVx,	and	UfoVy	to	track	the	UFO’s	position	and
velocity.	Use	similar	variables	for	the	laser	bolt.

When	a	Timer	fires,	update	the	positions	of	the	UFO	and	the	bolt.

Use	a	variable	to	keep	track	of	hit	count.

If	the	bolt	hits	the	UFO,	hide	the	bolt,	increment	the	hit	count,	and	display
the	hit	count	in	the	score	Label	at	the	top	of	the	form.

If	the	bolt	leaves	the	form,	hide	it.

Play	cool	sounds	when	the	laser	cannon	fires	and	when	a	bolt	hits	the	UFO.

11.	 [Games]	The	program	you	wrote	for	Exercise	10	isn’t	very	hard.	After	a	minute
or	two,	you	can	easily	get	the	timing	down	and	hit	the	UFO	almost	every	time.

Copy	that	program	and	make	it	more	challenging	by	making	these	changes.

When	you	start	the	UFO	at	the	left	edge	of	the	form,	give	it	a	random	size,
speed,	and	Y	coordinate.

When	the	user	hits	the	UFO,	award	points	that	take	into	account	the
current	size	and	speed.

12.	 [Games,	Hard]	The	program	you	wrote	for	Exercise	11	is	still	fairly	easy
because	the	user	has	an	unlimited	amount	of	ammunition.

Copy	the	program	and	modify	it	so	the	user	has	only	10	laser	bolts.	Represent
each	with	a	PictureBox	visible	on	the	form	and	keep	track	of	the	number	of
bolts	remaining.	When	the	user	fires	a	bolt,	use	a	switch	statement	to	hide	the
next	bolt	PictureBox.

When	all	of	the	bolts	are	used,	display	a	label	on	top	of	the	game	that	shows
the	user’s	final	score	and	play	a	triumphant	fanfare.

13.	 [Games]	Copy	the	program	you	wrote	for	Exercise	12	and	add	a	File	menu	with
New	Game	and	Exit	menu	items.

14.	 [Games,	Hard]	Copy	the	program	you	wrote	for	Exercise	13	and	add	high
scores	to	it.

Use	arrays	to	keep	track	of	the	five	highest	scores	and	the	names	of	the
players	who	got	those	high	scores.

Give	the	File	menu	a	new	High	Scores	command	that	displays	the	five
names	and	scores	in	a	dialog.

When	a	game	ends,	compare	the	player’s	score	to	the	first	item	in	the	high
scores	array.	If	the	new	score	is	higher:

Display	a	form	that	lets	the	user	enter	a	name.

Replace	the	first	array	entries	with	the	new	score	and	name.

Use	Array.Sort	to	sort	the	arrays.

Display	the	high	scores	form.

NOTE

Please	select	the	videos	for	Lesson	18	online	at
www.wrox.com/go/csharp24hourtrainer2evideos.

http://www.wrox.com/go/csharp24hourtrainer2evideos

Lesson	19

Repeating	Program	Steps
One	of	the	computer's	greatest	strengths	is	its	ability	to	perform	the	exact	same
calculation	again	and	again	without	getting	bored	or	making	careless	mistakes.	It
can	calculate	the	average	test	scores	for	a	dozen	students,	print	a	hundred
advertisements,	or	compute	the	monthly	bills	for	a	million	customers	with	no
trouble	or	complaining.

The	lessons	you've	read	so	far,	however,	don't	tell	you	how	to	do	these	things.	So
far	every	step	the	computer	takes	requires	a	separate	line	of	code.	To	calculate
bills	for	a	million	customers,	you	would	need	to	write	at	least	a	million	lines	of
code!

In	this	lesson	you	learn	how	to	make	the	computer	execute	the	same	lines	of	code
many	times.	You	learn	how	to	loop	through	arrays	and	collections	of	items	to	take
action	or	perform	calculations	on	them.

The	following	sections	describe	the	kinds	of	loops	provided	by	C#.	The	final
section	describes	two	statements	you	can	use	to	change	the	way	a	loop	works:
break	and	continue.

for	Loops
A	for	loop	uses	a	variable	to	control	the	number	of	times	it	executes	a	series	of
statements.	The	for	loop's	syntax	is	as	follows:

for	(initialization;	doneTest;	next)

{

				statements…

}

Where:

initialization	gets	the	loop	ready	to	start.	Usually	this	part	declares	and
initializes	the	looping	variable.

doneTest	is	a	boolean	expression	that	determines	when	the	loop	stops.	The
loop	continues	running	as	long	as	this	expression	is	true.

next	prepares	the	loop	for	its	next	iteration.	Usually	this	increments	the
looping	variable	declared	in	the	initialization.

statements	are	the	statements	that	you	want	the	loop	to	execute.

Note	that	none	of	the	initialization,	doneTest,	or	next	statements	are	required,
although	they	are	all	used	by	the	simplest	kinds	of	for	loops.

For	example,	the	following	code	displays	the	numbers	0	through	9	followed	by
their	squares	in	the	Console	window:

for	(int	i	=	0;	i	<	10;	i++)

{

				int	iSquared	=	i	*	i;

				Console.WriteLine(string.Format("{0}:	{1}",	i,	iSquared));

}

In	this	code	the	initialization	statement	declares	the	variable	i	and	sets	it	to	0,
the	next	statement	adds	1	to	i,	and	the	doneTest	keeps	the	loop	running	as	long	as
i	<	10.

Here's	a	slightly	more	complicated	example	that	calculates	factorials.	The	program
converts	the	value	selected	in	the	NumericUpDown	control	named
numberNumericUpDown	into	a	long	integer	and	saves	it	in	variable	n.	It	initializes	the
variable	factorial	to	1	and	then	uses	a	loop	to	multiply	factorial	by	each	of	the
numbers	between	2	and	n.	The	result	is	1	*	2	*	3	*	…	*	n,	which	is	n!:

//	Get	the	input	value	N.

long	n	=	(long)numberNumericUpDown.Value;

//	Calculate	N!.

long	factorial	=	1;

for	(int	i	=	2;	i	<=	n;	i++)

{

				checked

				{

								factorial	*=	i;

				}

}

//	Display	the	result.

resultTextBox.Text	=	factorial.ToString();

You	may	recall	that	Lesson	16	used	code	to	calculate	Fibonacci	numbers,	and	in
that	lesson's	Exercise	1	you	calculated	factorials.	Those	programs	used	20	lines	of
code	to	calculate	and	store	20	values	that	the	program	then	used	as	a	kind	of
lookup	table.

The	factorial	code	shown	here	uses	a	lot	less	code.	It	doesn't	require	a	large	array
to	hold	values.	It	also	doesn't	require	that	you	know	ahead	of	time	how	many
values	you	might	need	to	calculate	(20	for	the	earlier	programs),	although	the
factorial	function	grows	so	quickly	that	this	program	can	only	calculate	values	up
to	20!	before	the	result	won't	fit	in	a	long.

NOTE

The	for	loop	is	often	the	best	choice	if	you	know	exactly	how	many	times	you
need	the	loop	to	execute.

Foreach	Loops
A	foreach	loop	executes	a	block	of	code	once	for	each	item	in	an	array	or	list.	The
syntax	of	the	foreach	loop	is	as	follows:

foreach	(variableDeclaration	in	items)

{

				statements…

}

Where:

variableDeclaration	declares	the	looping	variable.	Its	type	must	be	the	same
as	the	items	in	the	array	or	list.

items	is	the	array	or	list	of	items	over	which	you	want	to	loop.

statements	are	the	statements	that	you	want	the	loop	to	execute.

For	example,	the	following	code	calculates	the	average	of	the	test	scores	stored	in
the	ListBox	named	scoresListBox.	Note	that	the	ListBox	must	contain	integers	or
something	the	program	can	implicitly	convert	into	an	integer	or	else	the	program
will	crash:

//	Add	up	the	values.

int	total	=	0;

foreach	(int	value	in	valuesListBox.Items)

{

				total	+=	value;

}

//	Calculate	the	average.

float	average	=	(float)total	/	valuesListBox.Items.Count;

The	code	creates	a	variable	named	total	and	sets	it	equal	to	0.	It	then	loops
through	the	items	in	the	ListBox,	adding	each	value	to	total.

WARNING

This	code	loops	over	the	items	in	a	ListBox,	treating	those	items	as	integers.
If	the	ListBox	contains	something	other	than	integers,	the	program	will
crash.

The	code	finishes	by	dividing	the	total	by	the	number	of	items	in	the	ListBox.

NOTE

If	you	need	to	perform	some	operation	on	all	of	the	items	in	an	array	or	list,
a	foreach	loop	is	often	your	best	choice.

while	Loops
A	while	loop	executes	as	long	as	some	condition	is	true.	The	syntax	for	a	while
loop	is	as	follows:

while	(condition)

{

				statements…

}

Where:

condition	is	a	boolean	expression.	The	loop	executes	as	long	as	this	expression
is	true.

statements	are	the	statements	that	you	want	the	loop	to	execute.

For	example,	the	following	code	calculates	a	number's	prime	factors:

//	Find	the	number's	prime	factors.

private	void	factorButton_Click(object	sender,	EventArgs	e)

{

				//	Get	the	input	number.

				long	number	=	long.Parse(numberTextBox.Text);

				//	Find	the	factors.

				string	result	=	"1";

				//	Consider	factors	between	2	and	the	number.

				for	(long	factor	=	2;	factor	<=	number;	factor++)

				{

								//	Pull	out	as	many	copies	of	this	factor	as	possible.

								while	(number	%	factor	==	0)

								{

												result	+=	"	x	"	+	factor.ToString();

												number	=	number	/	factor;

								}

				}

				//	Display	the	result.

				resultTextBox.Text	=	result;

}

The	code	starts	by	getting	the	user's	input	number.	It	builds	a	result	string	and
initializes	it	to	“1.”

Next	the	code	uses	a	for	loop	to	consider	the	numbers	between	2	and	the	user's
number	as	possible	factors.

For	each	of	the	possible	factors,	it	uses	a	while	loop	to	remove	that	factor	from	the
number.	As	long	as	the	factor	divides	evenly	into	the	remaining	number,	the
program	adds	the	factor	to	the	result	and	divides	the	user's	number	by	the	factor.

The	code	finishes	by	displaying	its	result.

NOTE

Loops	that	use	incrementing	integers	to	decide	when	to	stop	are	often	easier
to	write	using	for	loops	instead	of	while	loops.	A	while	loop	is	particularly
useful	when	the	stopping	condition	occurs	at	a	less	predictable	time,	as	in	the
factoring	example.

do	Loops
A	do	loop	is	similar	to	a	while	loop	except	it	checks	its	stopping	condition	at	the
end	of	the	loop	instead	of	at	the	beginning.	The	syntax	of	a	do	loop	is	as	follows:

do

{

				statements…

}	while	(condition);

Where:

statements	are	the	statements	that	you	want	the	loop	to	execute.

condition	is	a	boolean	expression.	The	loop	continues	to	execute	as	long	as	this
expression	is	true.

The	following	code	uses	a	do	loop	to	calculate	the	greatest	common	divisor	(GCD)
of	two	numbers,	the	largest	number	that	divides	them	both	evenly:

//	Calculate	GCD(A,	B).

private	void	calculateButton_Click(object	sender,	EventArgs	e)

{

				//	Get	the	input	values.

				long	a	=	long.Parse(aTextBox.Text);

				long	b	=	long.Parse(bTextBox.Text);

				//	Calculate	the	GCD.

				long	remainder;

				do

				{

								remainder	=	a	%	b;

								if	(remainder	!=	0)

								{

												a	=	b;

												b	=	remainder;

								}

				}	while	(remainder	>	0);

				resultTextBox.Text	=	b.ToString();

}

NOTE

Notice	that	the	variable	remainder	used	to	end	the	loop	is	declared	outside	of
the	loop	even	though	it	doesn't	really	do	anything	outside	of	the	loop.
Normally	to	restrict	scope	as	much	as	possible,	you	would	want	to	declare
this	variable	inside	the	loop	if	you	could.

However,	the	end	test	executes	in	a	scope	that	lies	outside	of	the	loop,	so	any
variables	declared	inside	the	loop	are	hidden	from	it.

It's	important	that	any	loop	eventually	ends,	and	in	this	code	it's	not	completely
obvious	why	that	happens.	It	turns	out	that	each	time	through	the	loop	(with	the
possible	exception	of	the	first	time),	a	and	b	get	smaller.	If	you	step	through	a	few
examples,	you'll	be	able	to	convince	yourself.

If	the	loop	runs	long	enough,	b	eventually	reaches	1.	At	that	point	b	must	evenly
divide	a	no	matter	what	a	is	so	the	loop	ends.	If	b	does	reach	1,	then	1	is	the
greatest	common	divisor	of	the	user's	original	numbers	and	those	numbers	are
called	relatively	prime.

Euclid's	Algorithm

This	algorithm	was	described	by	the	Greek	mathematician	Euclid	(circa	300
BC),	so	it's	called	the	Euclidean	algorithm	or	Euclid's	algorithm.	I	don't	want
to	explain	why	the	algorithm	works	because	it's	complicated	and	irrelevant	to
this	discussion	of	loops	(you	can	find	a	good	discussion	at
primes.utm.edu/glossary/xpage/EuclideanAlgorithm.html),	but	I	do	want	to
explain	what	the	code	does.

The	code	starts	by	storing	the	user's	input	numbers	in	variables	a	and	b.	It
then	declares	variable	remainder	and	enters	a	do	loop.

Inside	the	loop,	the	program	calculates	the	remainder	when	you	divide	a	by	b.
If	that	value	is	not	0	(that	is,	b	does	not	divide	a	evenly),	then	the	program	sets
a	=	b	and	b	=	remainder.

Now	the	code	reaches	the	end	of	the	loop.	The	while	statement	makes	the	loop
end	if	remainder	is	0.	When	that	happens,	b	holds	the	greatest	common
divisor.

You	may	want	to	step	through	the	code	in	the	debugger	to	see	how	the	values
change.

http://primes.utm.edu/glossary/xpage/EuclideanAlgorithm.html

NOTE

A	do	loop	always	executes	its	code	at	least	once	because	it	doesn't	check	its
condition	until	the	end.	Often	that	feature	is	why	you	pick	a	do	loop	over	a
while	loop.	If	you	might	not	want	the	loop	to	execute	even	once,	use	a	while
loop.	If	you	need	to	run	the	loop	once	before	you	can	tell	whether	to	stop,	use
a	do	loop.

break	and	continue
The	break	and	continue	statements	change	the	way	a	loop	works.

The	break	statement	makes	the	code	exit	the	loop	immediately	without	executing
any	more	statements	inside	the	loop.

For	example,	the	following	code	searches	the	selected	items	in	a	ListBox	for	the
value	Carter.	If	it	finds	that	value,	it	sets	the	boolean	variable	carterSelected	to
true	and	breaks	out	of	the	loop.	If	the	ListBox	has	many	selected	items,	breaking
out	of	the	loop	early	may	let	the	program	skip	many	loop	iterations	and	save	some
time:

//	See	if	Carter	is	one	of	the	selected	names.

bool	carterSelected	=	false;

foreach	(string	name	in	namesListBox.SelectedItems)

{

				if	(name	==	"Carter")

				{

								carterSelected	=	true;

								break;

				}

}

MessageBox.Show(carterSelected.ToString());

The	continue	statement	makes	a	loop	jump	to	its	looping	statement	early,	skipping
any	remaining	statements	inside	the	loop	after	the	continue	statement.

For	example,	the	following	code	uses	a	foreach	loop	to	display	the	square	roots	of
the	numbers	in	an	array.	The	Math.Sqrt	function	cannot	calculate	the	square	root
of	a	negative	number	so,	to	avoid	trouble,	the	code	checks	each	value.	If	it	finds	a
value	less	than	zero,	it	uses	the	continue	statement	to	skip	the	rest	of	that	trip
through	the	loop	so	it	doesn't	try	to	take	the	number's	square	root.	It	then
continues	with	the	next	number	in	the	array:

//	Display	square	roots.

float[]	values	=	{	4,	16,	-1,	60,	100	};

foreach	(float	value	in	values)

{

				if	(value	<	0)	continue;

				Console.WriteLine(string.Format("The	square	root	of	{0}	is	{1:0.00}",

								value,	Math.Sqrt(value)));

}

The	following	text	shows	this	program's	results:

The	square	root	of	4	is	2.00

The	square	root	of	16	is	4.00

The	square	root	of	60	is	7.75

The	square	root	of	100	is	10.00

NOTE

The	break	and	continue	statements	make	loops	work	in	nonstandard	ways
and	sometimes	that	can	make	the	code	harder	to	read,	debug,	and	maintain.
Use	them	if	it	makes	the	code	easier	to	read,	but	ask	yourself	whether	there's
another	simple	way	to	write	the	loop	that	avoids	these	statements.	For
example,	the	following	code	does	the	same	things	as	the	previous	square	root
code	but	without	a	continue	statement:

//	Display	square	roots.

float[]	values	=	{	4,	16,	-1,	60,	100	};

foreach	(float	value	in	values)

{

				if	(value	>=	0)

				{

								Console.WriteLine(string.Format("The	square	root	of	{0}	is

												{1:0.00}",

												value,	Math.Sqrt(value)));

				}

}

Try	It
In	this	Try	It,	you	make	the	simple	login	form	shown	in	Figure	19.1.	When	the
program's	startup	form	loads,	it	enters	a	loop	that	makes	it	display	this	form	until
the	user	enters	the	correct	username	and	password	or	clicks	Cancel.

Figure	19.1

Lesson	Requirements
In	this	lesson,	you:

Build	a	main	form	that	displays	a	success	message.

Build	the	login	dialog	shown	in	Figure	19.1.

In	the	main	form's	Load	event	handler,	create	an	instance	of	the	login	dialog.
Then	enter	a	while	loop	that	displays	the	dialog	and	doesn't	stop	until	the	user
enters	a	username	and	password	that	match	values	in	the	code.	If	the	user
clicks	Cancel,	close	the	main	form.

NOTE

You	can	download	the	code	and	resources	for	this	lesson	from	the	website	at
www.wrox.com/go/csharp24hourtrainer2e.

Hints
Use	a	boolean	variable	named	tryingToLogin	to	control	the	loop.	Initialize	it	to
true	before	the	loop	and	set	it	to	false	when	the	user	either	cancels	or	enters
the	right	username	and	password.

To	decide	whether	the	user	entered	a	valid	username	and	password,	compare
them	to	the	strings	“User”	and	“Secret.”	(A	real	application	would	validate
these	values	with	an	encrypted	database	or	by	using	some	other	authentication
method.)

Step-by-Step
Build	a	main	form	that	displays	a	success	message.

1.	 Place	labels	on	the	form	to	display	the	message.

Build	the	login	dialog	shown	in	Figure	19.1.

1.	 Create	the	controls	shown	in	Figure	19.1.

2.	 Set	the	password	TextBox's	PasswordChar	property	to	X.

In	the	main	form's	Load	event	handler,	create	an	instance	of	the	login	dialog.
Then	enter	a	while	loop	that	displays	the	dialog	and	doesn't	stop	until	the	user
enters	a	username	and	password	that	match	values	in	the	code.	If	the	user
clicks	Cancel,	close	the	main	form	and	break	out	of	the	loop.

1.	 The	following	code	shows	one	possible	solution:

//	Make	the	user	log	in.

private	void	Form1_Load(object	sender,	EventArgs	e)

{

				//	Create	a	LoginForm.

				LoginForm	frm	=	new	LoginForm();

				//	Repeat	until	the	user	successfully	logs	in.

				bool	tryingToLogin	=	true;

				while	(tryingToLogin)

				{

								//	Display	the	login	dialog	and	check	the	result.

								if	(frm.ShowDialog()	==	DialogResult.Cancel)

								{

												//	The	user	gives	up.	Close	and	exit	the	loop.

												this.Close();

												tryingToLogin	=	false;

								}

								else

http://www.wrox.com/go/csharp24hourtrainer2e

								{

												//	See	if	the	user	entered	valid	values.

												if	((frm.usernameTextBox.Text	==	"User")	&&

																(frm.passwordTextBox.Text	==	"Secret"))

												{

																//	Login	succeeded.	Stop	trying	to	log	in.

																tryingToLogin	=	false;

												}

												else

												{

																//	Login	failed.	Display	a	message	and

																//	let	the	loop	continue.

																MessageBox.Show("Invalid	username	and	password.");

												}

								}

				}

				//	If	we	get	here,	we're	done	trying	to	log	in.

}

Exercises
1.	 Make	a	program	that	calculates	the	sum	1	+	2	+	3	+	…	+	N	for	a	number	N
entered	by	the	user.

2.	 [Hard]	Make	a	program	that	calculates	the	Nth	Fibonacci	number	for	a
number	N	entered	by	the	user.	The	Fibonacci	sequence	is	defined	by:

Fibonacci(0)	=	0

Fibonacci(1)	=	1

Fibonacci(N)	=	Fibonacci(N	-	1)	+	Fibonacci(N	-	2)

Hint:	Use	a	loop.	Define	variables	fibo1,	fibo2,	and	fiboN	outside	the	loop.
Inside	the	loop,	make	the	variables	hold	Fibonacci(N	-	1),	Fibonacci(N	-	2),
and	Fibonacci(N).	(To	test	your	code,	Fibonacci(10)	=	55	and	Fibonacci(20)	=
6,765.)

3.	 Make	a	program	that	lets	the	user	enter	test	scores	into	a	ListBox.	After	adding
each	score,	display	the	minimum,	maximum,	and	average	values.	(Hint:	Before
you	start	the	loop,	initialize	minimum	and	maximum	variables	to	the	value	of	the
first	score.	Then	loop	through	the	list	revising	the	variables	as	needed.)

4.	 Copy	the	program	you	wrote	for	Exercise	14-1	(or	download	the	version	on	the
book's	website)	and	add	a	List	Items	button.	When	the	user	clicks	the	button,
use	the	Console	class	to	display	the	items	and	their	values	in	the	Output
window	as	a	semicolon-separated	list	similar	to	the	following:

Pencil;$0.10;12;$1.20;

Pen;$0.25;12;$3.00;

Notebook;$1.19;3;$3.57;

Hint:	The	ListView	control's	Items	property	is	a	collection	of	ListViewItem
objects.	Loop	through	that	collection	to	get	information	about	each	row.

Hint:	Each	ListViewItem	has	a	SubItems	property	that	is	a	collection	of
ListViewItem.ListViewSubItem	objects.	For	each	row,	loop	through	the	item's
subitem	collection	to	get	the	values	for	that	row.	Use	Console.Write	to	add	data
to	the	Console	window	without	adding	a	carriage	return.

5.	 Make	a	program	similar	to	the	one	shown	in	Figure	19.2	that	generates	all
possible	four-letter	words	using	the	letters	A,	B,	C,	and	D.	(Hint:	Make	an
array	containing	the	letters	A,	B,	C,	and	D.	Use	a	foreach	loop	to	loop	through
the	letters.	Inside	that	loop,	use	another	loop	to	loop	through	the	letters	again.
After	four	depths	of	nested	loops,	concatenate	the	looping	variables	to	get	the
word.)

Figure	19.2

6.	 [Games]	Copy	the	program	you	built	for	Exercise	18-8	(or	download	the
version	on	the	book's	website)	and	modify	it	so	it	displays	four	bouncing	balls.
Hints:

Use	four	PictureBox	controls	to	hold	the	ball	images.

When	the	program	starts:

Create	class-level	arrays	Vx	and	Vy	to	hold	the	balls'	velocities.

Create	and	initialize	an	array	named	Balls	to	hold	references	to	the
balls'	PictureBoxes.

Loop	through	the	Balls	array	and	give	the	balls	random	initial	locations
and	velocities.

In	the	Timer's	Tick	event	handler,	loop	through	the	Balls	array	and	update
the	balls'	locations	and	velocities.

Because	balls	will	hit	the	sides	of	the	form	more	often	than	they	did	in
Exercise	18-8,	you	may	want	to	change	the	boing	sound	effect	to	something
shorter	like	a	click.

7.	 [Graphics,	Games]	If	you	look	closely	at	the	program	you	wrote	for	Exercise	6,
you	can	see	the	corners	of	the	balls'	PictureBoxes	when	they	overlap	each
other.	Copy	that	program	and	fix	it	by	following	these	steps:

Remove	the	ball	PictureBoxes.

Define	class-level	constants	NumBalls	=	4,	BallWidth	=	40,	and	BallHeight
=	40.

Create	X	and	Y	arrays	to	hold	the	balls'	locations.	When	the	form	loads,
initialize	those	arrays	with	random	positions.

When	the	Timer's	Tick	event	fires,	update	the	balls'	locations	and	velocities
as	before	(except	using	the	X	and	Y	arrays	instead	of	the	PictureBox

controls'	Left	and	Top	properties).

After	you	update	all	of	the	balls'	locations,	call	the	form's	Refresh	method	to
make	it	redraw	itself.

Give	the	form	the	following	Paint	event	handler	to	draw	the	balls:

//	Draw	the	balls.

private	void	Form1_Paint(object	sender,	PaintEventArgs	e)

{

				e.Graphics.SmoothingMode	=

								System.Drawing.Drawing2D.SmoothingMode.AntiAlias;

				for	(int	ball	=	0;	ball	<	NumBalls;	ball++)

				{

								e.Graphics.FillEllipse(Brushes.Red,

												X[ball],	Y[ball],	BallWidth,	BallHeight);

								e.Graphics.DrawEllipse(Pens.Black,

												X[ball],	Y[ball],	BallWidth,	BallHeight);

				}

}

If	you	experiment	with	the	program	for	a	while,	you'll	notice	some
flickering.	To	fix	that,	set	the	form's	DoubleBuffered	property	to	True.

8.	 [Graphics,	Games]	Copy	the	program	you	wrote	for	Exercise	7	and	modify	it	to
give	the	balls	random	sizes	and	colors.	Hints:

Make	an	array	named	BallBrushes	to	hold	Brush	objects.

In	the	form's	Load	event	handler:

Make	an	array	named	brushes	to	hold	Brush	objects.	Initialize	it	to	a
selection	of	standard	brushes	such	as	Brushes.Pink	and
Brushes.LightGreen.

Use	code	similar	to	the	following	to	give	each	ball	a	brush	selected
randomly	from	the	brushes	array:

BallBrushes[ball]	=	brushes[rand.Next(0,	brushes.Length)];

9.	 [Games,	Hard]	Copy	the	program	you	built	for	Exercise	18-14	(or	download	the
version	on	the	book's	website)	and	modify	it	so	it	displays	three	UFOs.	Hints:

Use	techniques	similar	to	those	you	used	in	Exercise	6	to	manage	the	UFOs'
positions	and	velocities.

Loop	through	the	UFOs	to	see	if	the	laser	bolt	has	hit	any	of	them.	If	it	has,
remove	the	bolt	so	it	doesn't	pass	through	a	UFO,	possibly	hitting	one
higher	up	on	the	form.

10.	 [Graphics,	Games]	Make	a	worm	program	similar	to	the	one	shown	in	Figure
19.3.	The	program	should	draw	a	chain	of	circles	that	bounces	around	the
form.

Figure	19.3

Hints:

Use	a	List<Point>	to	keep	track	of	the	positions	of	the	circles.

When	the	Timer	ticks:

Use	velocity	components	to	calculate	a	new	position	for	the	first
position	in	the	list.

Use	the	list's	Insert	method	to	insert	a	new	Point	at	the	beginning	of	the
list	for	the	new	position.

Use	the	list's	RemoveAt	method	to	remove	the	last	position	from	the	list.

Call	the	form's	Refresh	method	to	make	it	redraw	itself.

Make	the	form's	Paint	event	handler	loop	through	the	list	and	draw	the
worm's	circles.

11.	 [Graphics,	Games,	Hard]	Copy	the	program	you	wrote	for	Exercise	10	and
modify	it	so	it	displays	three	worms	with	different	colors.	Hints:

Store	the	worms'	brushes	in	an	array	of	Brush	objects.

Store	the	lists	of	worm	positions	in	an	array	of	lists	of	Point	objects
(List<Point>[]).

Before	you	use	the	List<Point>[],	you	need	to	initialize	it	with	the	new
keyword.

Before	you	use	a	list	inside	the	List<Point>[],	you	need	to	initialize	it	with
the	new	keyword.

12.	 [Games]	Copy	the	program	you	built	for	Exercise	9.	The	program	uses	the
following	code	to	display	the	high	scores	on	the	HighScoreForm:

//	Display	the	high	scores.

HighScoresForm	highScoresForm	=	new	HighScoresForm();

highScoresForm.nameLabel0.Text	=	HighScoreNames[0];

highScoresForm.nameLabel1.Text	=	HighScoreNames[1];

highScoresForm.nameLabel2.Text	=	HighScoreNames[2];

highScoresForm.nameLabel3.Text	=	HighScoreNames[3];

highScoresForm.nameLabel4.Text	=	HighScoreNames[4];

highScoresForm.scoreLabel0.Text	=	HighScores[0].ToString();

highScoresForm.scoreLabel1.Text	=	HighScores[1].ToString();

highScoresForm.scoreLabel2.Text	=	HighScores[2].ToString();

highScoresForm.scoreLabel3.Text	=	HighScores[3].ToString();

highScoresForm.scoreLabel4.Text	=	HighScores[4].ToString();

Modify	the	program	so	it	uses	two	for	loops	instead.	(Hints:	Use	two	arrays
holding	the	form's	controls.	You'll	have	to	make	the	change	in	two	places.)

NOTE

Please	select	the	videos	for	Lesson	19	online	at
www.wrox.com/go/csharp24hourtrainer2evideos.

http://www.wrox.com/go/csharp24hourtrainer2evideos

Lesson	20

Reusing	Code	with	Methods
Sometimes	a	program	needs	to	perform	the	same	action	in	several	places.	For
example,	consider	the	UFO	shooting	gallery	game	you	wrote	for	Exercise	19-12
and	shown	in	Figure	20.1.

Figure	20.1

When	a	laser	bolt	hits	a	UFO,	the	program	takes	these	steps:

1.	 Plays	the	“hit	a	UFO”	sound	effect.

2.	 Increases	the	player's	score	and	shows	it	in	the	score	Label.

3.	 Hides	the	laser	bolt	PictureBox.

4.	 Sets	BoltIsAway	=	false	to	remember	that	no	laser	bolt	is	currently	on	the
form.

5.	 If	that	was	the	player's	last	laser	bolt:

a.	 Plays	the	“game	over”	sound	effect.

b.	 Displays	the	“game	over”	label	showing	the	player's	final	score.

c.	 Disables	the	Timer.

d.	 If	the	player's	score	is	greater	than	the	smallest	high	score:

i.	 Creates	a	NewHighScoreForm.

ii.	 Places	the	player's	score	on	the	NewHighScoreForm.

iii.	 Displays	the	NewHighScoreForm.

iv.	 If	the	user	enters	a	name	and	clicks	OK:

1.	 Replaces	the	lowest	high	score	with	the	player's	current	score.

2.	 Sorts	the	high	scores.

3.	 Creates	a	new	HighScoreForm.

4.	 Places	the	high	scores	on	the	HighScoreForm.

5.	 Displays	the	HighScoreForm.

Now	suppose	a	laser	bolt	moves	off	the	top	edge	of	the	form	without	hitting	a
UFO.	In	that	case	the	program	must	perform	the	same	steps	3	through	5.	The	way
I	wrote	my	program,	those	steps	take	33	lines	of	code	(not	counting	blank	lines
and	comments).	That's	a	lot	of	repeated	code	to	write,	debug,	and	maintain.

In	fact,	the	program	contains	even	more	repetition.	If	the	user	opens	the	File
menu	and	selects	High	Scores,	the	program	repeats	the	last	three	steps	to	display
a	HighScoresForm.

Instead	of	repeating	code	wherever	it	was	needed,	it	would	be	nice	if	you	could
centralize	the	code	in	a	single	location	and	then	invoke	that	code	when	you	need
it.	In	fact,	you	can	do	exactly	that	by	using	methods.

A	method	is	a	group	of	programming	statements	wrapped	in	a	neat	package	so	you
can	invoke	it	as	needed.	A	method	can	take	parameters	that	the	calling	code	can
use	to	give	it	extra	information.	The	method	can	perform	some	actions	and	then
optionally	return	a	single	value	to	pass	information	back	to	the	calling	code.

NOTE

In	programming	languages	other	than	C#,	methods	are	sometimes	known
as	routines,	subroutines,	procedures,	subprocedures,	subs,	or	functions
(particularly	when	the	method	returns	a	value).

In	this	lesson,	you	learn	how	to	use	methods.	You	learn	why	they	are	useful,	how
to	write	them,	and	how	to	call	them	from	other	pieces	of	code.

Method	Advantages
The	shooting	gallery	scenario	described	in	the	previous	section	illustrates	one	of
the	key	advantages	to	methods:	code	reuse.	By	placing	commonly	needed	code	in
a	single	method,	you	can	reuse	that	code	in	many	places.	Clearly	that	saves	you	the
effort	of	writing	the	code	several	times.

Much	more	important,	it	also	saves	you	the	trouble	of	debugging	the	code	several
times.	Often	debugging	a	piece	of	complex	code	takes	much	longer	than	typing	in
the	code	in	the	first	place,	so	being	able	to	debug	the	code	in	only	one	place	can
save	you	a	lot	of	time	and	trouble.

Reusing	code	also	greatly	simplifies	maintenance.	If	you	later	find	a	bug	in	the
code,	you	only	need	to	fix	it	in	one	place.	If	you	had	several	copies	of	the	code
scattered	around,	you'd	need	to	fix	each	one	individually	and	make	sure	all	of	the
fixes	were	the	same.	That	may	sound	easy	enough,	but	making	synchronized
changes	is	actually	pretty	hard,	particularly	in	big	projects.	It's	just	too	easy	to
miss	one	change	or	to	make	slightly	different	changes	that	later	cause	big
problems.

Methods	can	also	sometimes	make	finding	and	fixing	bugs	much	easier.	For
example,	suppose	you're	working	on	an	inventory	program	that	can	remove	items
from	inventory	for	one	of	many	reasons:	external	sales,	internal	sales,	ownership
transfer,	spoilage,	and	so	forth.	Unfortunately	the	program	occasionally	“removes”
items	that	don't	exist,	leaving	you	with	negative	inventory.	If	the	program	has
code	in	many	places	that	can	remove	items	from	inventory,	figuring	out	which
place	is	causing	the	problem	can	be	tricky.	If	all	of	the	code	uses	the	same	method
to	remove	items,	you	can	set	breakpoints	inside	that	single	method	to	see	what's
going	wrong.	When	you	see	the	problem	occurring,	you	can	trace	the	program's
flow	to	see	where	the	problem	originated.

A	final	advantage	to	using	methods	is	that	it	makes	the	pieces	of	the	program
easier	to	understand	and	use.	Breaking	a	complex	calculation	into	a	series	of
simpler	method	calls	can	make	the	code	easier	to	understand.	No	one	can	keep	all
of	the	details	of	a	large	program	in	mind	all	at	once.	Breaking	the	program	into
methods	makes	it	possible	to	understand	the	pieces	separately.

A	well-designed	method	also	encapsulates	an	activity	at	an	abstract	level	so	other
developers	don't	need	to	know	the	details.	For	example,	you	could	write	a
FindItemForPurchase	method	that	searches	through	a	database	of	vendors	to	find
the	best	possible	deal	on	a	particular	item.	Now	developers	writing	other	parts	of
the	program	can	call	that	method	without	needing	to	understand	exactly	how	the
search	works.	The	method	might	perform	an	amazingly	complex	search	to
minimize	price	with	sales	tax,	shipping	charges,	and	long-term	expected
maintenance	costs,	but	the	programmer	calling	the	method	doesn't	need	to	know
or	care	how	it	works.

In	summary,	some	of	the	key	benefits	to	using	methods	are:

Code	reuse—You	write	the	code	once	and	use	it	many	times.

Centralized	debugging—You	only	need	to	debug	the	shared	code	once.

Centralized	maintenance—If	you	need	to	fix	the	code,	you	only	need	to	do
so	in	the	method,	not	everywhere	it	is	used.

Problem	decomposition—Methods	can	break	complex	problems	into
simpler	pieces.

Encapsulation—The	method	can	hide	complex	details	from	developers.

Method	Syntax
In	C#,	all	methods	must	be	part	of	some	class.	In	many	simple	programs,	the	main
form	contains	all	of	the	program's	code,	including	all	of	its	methods.

The	syntax	for	defining	a	method	is:

accessibility	returnType	methodName(parameters)

{

				...statements…

				[return	[returnValue];]

}

Where:

accessibility	is	an	accessibility	keyword	such	as	public	or	private.	This
keyword	determines	what	other	code	in	the	project	can	invoke	the	method.

returnType	is	the	data	type	that	the	method	returns.	It	can	take	normal	values
such	as	int,	bool,	or	string.	It	can	also	take	the	special	value	void	to	indicate
that	the	method	won't	return	a	result	to	the	calling	code.

methodName	is	the	name	that	you	want	to	give	the	method.	You	can	give	the
method	any	valid	name.	Valid	names	must	start	with	a	letter	or	underscore
and	include	letters,	underscores,	and	numbers.	A	valid	name	also	cannot	be	a
keyword	such	as	if,	for,	or	while.

parameters	is	an	optional	parameter	list	that	you	can	pass	into	the	method.	I'll
say	more	about	this	shortly.

statements	are	the	statements	that	the	method	should	execute.

returnValue	is	the	value	returned	to	the	calling	code.	You	can	use	return
without	a	parameter	to	return	from	a	void	method.	The	method	also	returns	if
the	program	executes	its	last	line	of	code	and	reaches	the	closing	curly	bracket
(}).

NOTE

You	can	use	the	return	statement	as	many	times	as	you	like	in	a	method.
For	example,	some	of	the	branches	in	an	if-else	sequence	could	lead	to
return	statements.

If	the	method	has	a	non-void	return	type,	the	C#	compiler	tries	to
guarantee	that	all	paths	through	the	code	end	at	a	return	statement	and
will	warn	you	if	the	code	might	not	return	a	value.

The	method's	parameters	allow	the	calling	code	to	pass	information	into	the
method.	The	parameters	in	the	method's	declaration	give	names	to	the	parameters
while	they	are	in	use	inside	the	method.

For	example,	recall	the	definition	of	the	factorial	function.	The	factorial	of	a
number	N	is	written	N!	and	pronounced	N	factorial.	The	definition	of	N!	is	1	*	2	*
3	*	…	*	N.

The	following	C#	code	defines	a	Factorial	method:

//	Return	value!

private	long	Factorial(long	value)

{

				long	result	=	1;

				for	(long	i	=	2;	i	<=	value;	i++)

				{

								result	*=	i;

				}

				return	result;

}

The	method	is	declared	private	so	only	code	within	this	class	can	use	it.	For
simple	programs,	that's	all	of	the	code	anyway	so	this	isn't	an	issue.

The	method's	data	type	is	long	so	it	must	return	a	value	of	type	long.

The	method's	name	is	Factorial.	You	should	try	to	give	each	method	a	name	that
is	simple	and	that	conveys	the	method's	purpose	so	it's	easy	to	remember	what	it
does.

The	method	takes	a	single	parameter	of	type	long	named	value.	Parameters	have
method	scope	so	value	is	only	defined	inside	the	method.	In	that	sense	parameters
are	similar	to	variables	declared	inside	the	method.

The	method	creates	a	variable	result	and	multiplies	it	by	the	values	2,	3,	…	,	value.

The	method	finishes	by	executing	the	return	statement,	passing	it	the	final	value
of	result.

The	following	code	shows	how	a	program	might	call	the	Factorial	method:

long	number	=	long.Parse(numberTextBox.Text);

long	answer	=	Factorial(number);

resultTextBox.Text	=	answer.ToString();

This	code	starts	by	creating	a	long	variable	named	number	and	initializing	it	to
whatever	value	is	in	numberTextBox.

The	code	then	calls	the	Factorial	method,	passing	it	the	value	number	and	saving
the	returned	result	in	the	new	long	variable	named	answer.

Notice	that	the	names	of	the	variables	in	the	calling	code	(number	and	answer)	have
no	relation	to	the	names	of	the	parameters	and	variables	used	inside	the	method
(value	and	result).	The	method's	parameter	declaration	determines	the	names
the	parameters	have	while	inside	the	method.

The	code	finishes	by	displaying	the	result.

A	method's	parameter	list	can	include	zero,	one,	or	more	parameters	separated	by
commas.	For	example,	the	following	code	defines	the	method	Gcd,	which	returns
the	greatest	common	divisor	(GCD)	of	two	integers.	(The	GCD	of	two	integers	is
the	largest	integer	that	evenly	divides	them	both.)

//	Calculate	GCD(a,	b).

private	long	Gcd(long	a,	long	b)

{

				long	remainder;

				do

				{

								remainder	=	a	%	b;

								if	(remainder	!=	0)

								{

												a	=	b;

												b	=	remainder;

								}

				}	while	(remainder	>	0);

				return	b;

}

The	following	code	shows	how	you	might	call	the	Gcd	method:

//	Get	the	input	values.

long	a	=	long.Parse(aTextBox.Text);

long	b	=	long.Parse(bTextBox.Text);

//	Calculate	the	GCD.

long	result	=	Gcd(a,	b);

//	Display	the	result.

resultTextBox.Text	=	b.ToString();

The	code	initializes	two	integers,	passes	them	to	the	Gcd	method,	and	saves	the
result.	It	then	displays	the	two	integers	and	their	GCD.

Using	ref	Parameters
Parameter	lists	have	one	more	feature	that's	confusing	enough	to	deserve	its	own
section.	Parameters	can	be	passed	to	a	method	by	value	or	by	reference.

When	you	pass	a	parameter	by	value,	C#	makes	a	copy	of	the	value	and	passes	the
copy	to	the	method.	The	method	can	then	mess	up	its	copy	without	damaging	the
value	used	by	the	calling	code.

In	contrast,	when	you	pass	a	value	by	reference,	C#	passes	the	location	of	the
value's	memory	into	the	method.	If	the	method	modifies	the	parameter,	the	value
is	changed	in	the	calling	code	as	well.

Normally	values	are	passed	by	value.	That's	less	confusing	because	changes	that
are	hidden	inside	the	method	cannot	mess	up	the	calling	code.

Sometimes,	however,	you	may	want	to	pass	a	parameter	by	reference.	To	do	that,
add	the	keyword	ref	before	the	parameter's	declaration.

To	tell	C#	that	you	understand	that	a	parameter	is	being	passed	by	reference	and
that	it's	not	just	a	terrible	mistake,	you	must	also	add	the	keyword	ref	before	the
value	you	are	passing	into	the	method.

For	example,	suppose	you	want	to	write	a	method	named	GetMatchup	that	selects
two	chess	players	to	play	against	each	other.	The	method	should	return	true	if	it
can	find	a	match	and	false	if	no	other	matches	are	possible	(because	you've
played	them	all).	The	method	can	only	return	one	value	(true	or	false)	so	it	must
find	some	other	way	to	return	the	two	matched	players.

The	following	code	shows	how	the	method	might	be	structured:

private	bool	GetMatchup(ref	string	player1,	ref	string	player2)

{

				//	Do	complicated	stuff	to	pick	an	even	match.

				…

				//	Somewhere	in	here	the	code	should	set	player1	and	player2.

				…

				//	We	found	a	match.

				return	true;

}

The	method	takes	two	parameters,	player1	and	player2,	that	are	strings	passed
by	reference.	The	method	performs	some	complex	calculations	not	shown	here	to
assign	values	to	the	variables	player1	and	player2.	It	then	returns	true	to	indicate
that	it	found	a	match.

The	following	code	shows	how	a	program	might	call	this	method:

string	playerA	=	null,	playerB	=	null;

if	(GetMatchup(ref	playerA,	ref	playerB))

{

				MessageBox.Show(playerA	+	"	versus	"	+	player);

}

else

{

				MessageBox.Show("No	match	is	possible");

}

This	code	declares	variables	playerA	and	playerB	to	hold	the	selected	players'
names.	It	calls	the	method,	passing	it	the	two	player	name	variables	preceded	with
the	ref	keyword.	Depending	on	whether	the	method	returns	true	or	false,	the
program	announces	the	match	or	says	that	no	match	is	possible.

Using	out	Parameters
The	out	keyword	works	similarly	to	the	ref	keyword	except	it	doesn't	require	that
the	input	variables	be	initialized.	For	example,	in	the	preceding	example	if	you
don't	initialize	playerA	and	playerB	to	some	value,	Visual	Studio	will	warn	you	that
the	variables	are	not	initialized	and	won't	let	you	run	the	program.	The	idea	is	that
the	method	might	need	to	use	the	input	values	of	those	variables	to	do	its	work.

In	contrast,	if	you	use	the	out	keyword	instead	of	ref,	the	values	are	assumed	to	be
output-only	parameters	from	the	method,	and	you	are	not	required	to	initialize
them.

If	you	use	the	out	keyword	for	a	parameter,	be	sure	that	the	method	does	not	try	to
use	the	value	passed	in	for	that	parameter	because	it	may	not	be	initialized.	In
fact,	if	the	method	does	try	to	use	the	parameter's	incoming	value,	Visual	Studio
will	warn	you	that	it	may	not	be	initialized.

NOTE

In	general	it's	considered	good	practice	to	avoid	returning	results	through
parameters	passed	by	reference	because	it	can	be	confusing.	It's	better	to	use
output	parameters	if	possible.

An	even	better	approach	is	to	pass	the	method	inputs	through	parameters
and	make	the	method	return	all	of	its	return	values	with	the	return
statement.	For	instance,	the	chess	matchup	example	could	return	a	structure
or	instance	of	a	class	that	contains	the	names	of	the	two	players.

Try	It
In	this	Try	It,	you	make	a	method	that	calculates	the	minimum,	maximum,	and
average	values	for	an	array	of	doubles.	You	build	the	program	shown	in	Figure
20.2	to	test	the	method.

Figure	20.2

Lesson	Requirements
In	this	lesson,	you:

1.	 Build	the	program	shown	in	Figure	20.2.

2.	 Build	a	method	that	takes	four	parameters:	an	array	of	doubles,	and	three	more
return	doubles.	It	should	loop	through	the	array	to	find	the	minimum	and
maximum	and	to	calculate	the	average.

3.	 Write	code	to	test	the	method.

NOTE

You	can	download	the	code	and	resources	for	this	lesson	from	the	website
at	www.wrox.com/go/csharp24hourtrainer2e.

Hints
Think	about	how	the	method	needs	to	use	the	return	parameters.	Should	they
be	declared	ref	or	out?

Step-by-Step
Build	the	program	shown	in	Figure	20.2.

1.	 This	is	reasonably	straightforward.

Build	a	method	that	takes	four	parameters:	an	array	of	doubles,	and	three	more
return	doubles.	It	should	loop	through	the	array	to	find	the	minimum	and
maximum	and	to	calculate	the	average.

1.	 This	method	calculates	its	results	purely	by	examining	the	values	in	the
input	array	so	it	doesn't	need	to	use	whatever	values	are	passed	in	through
its	other	parameters.	That	means	the	minimum,	maximum,	and	average
parameters	should	use	the	out	keyword	instead	of	the	ref	keyword.

2.	 Initialize	the	minimum	and	maximum	variables	to	the	first	entry	in	the
array.

3.	 Initialize	a	total	variable	to	the	first	entry	in	the	array.

4.	 Loop	through	the	rest	of	the	array	(skipping	the	first	entry	because	it	has
already	been	considered),	updating	the	minimum	and	maximum	variables
as	needed	and	adding	the	values	in	the	array	to	the	total.

5.	 After	finishing	the	loop,	divide	the	total	by	the	number	of	values	to	get	the
average.

The	following	code	shows	how	you	might	build	this	method:

//	Calculate	the	minimum,	maximum,	and	average	values	for	the	array.

private	void	FindMinimumMaximumAverage(double[]	values,

				out	double	minimum,	out	double	maximum,	out	double	average)

{

				//	Initialize	the	minimum,	maxiumum,	and	total	values.

				minimum	=	values[0];

				maximum	=	values[0];

				double	total	=	values[0];

				//	Loop	through	the	rest	of	the	array.

				for	(int	i	=	1;	i	<	values.Length;	i++)

				{

								if	(values[i]	<	minimum)	minimum	=	values[i];

http://www.wrox.com/go/csharp24hourtrainer2e

								if	(values[i]	>	maximum)	maximum	=	values[i];

								total	+=	values[i];

				}

				//	Calculate	the	average.

				average	=	total	/	values.Length;

}

Write	code	to	test	the	method.

1.	 When	the	user	clicks	the	button,	take	the	TextBox's	text	and	use	its	Split
method	to	break	the	user's	values	into	an	array	of	strings.

2.	 Make	a	double	array	and	use	a	for	loop	to	parse	the	text	values	into	it.

3.	 Call	the	method	to	calculate	the	necessary	results.

4.	 Display	the	results.

The	following	code	shows	how	you	might	build	the	button's	event	handler:

//	Find	and	display	the	minimum,	maximum,	and	average	of	the	values.

private	void	calculateButton_Click(object	sender,	EventArgs	e)

{

				//	Get	the	values.

				string[]	textValues	=	valuesTextBox.Text.Split();

				double[]	values	=	new	double[textValues.Length];

				for	(int	i	=	0;	i	<	textValues.Length;	i++)

				{

								values[i]	=	double.Parse(textValues[i]);

				}

				//	Calculate.

				double	smallest,	largest,	average;

				FindMinimumMaximumAverage(values,

								out	smallest,	out	largest,	out	average);

				//	Display	the	results.

				minimumTextBox.Text	=	smallest.ToString();

				maximumTextBox.Text	=	largest.ToString();

				averageTextBox.Text	=	average.ToString("0.00");

}

NOTE

This	lesson	mentions	that	returning	values	through	parameters
passed	by	reference	isn't	a	good	practice.	So	how	could	you	modify
this	example	to	avoid	that?

You	could	break	the	FindMinimumMaximumAverage	method	into	three
separate	methods:	FindMinimum,	FindMaximum,	and	FindAverage.	Then
each	method	could	return	its	result	via	a	return	statement.	In	addition
to	avoiding	parameters	passed	by	reference,	that	makes	each	routine
perform	a	single	well-focused	task	so	it	makes	them	easier	to
understand	and	use.	It	also	makes	them	easier	to	use	separately	in
case	you	only	wanted	to	find	the	array's	minimum	and	not	the
maximum	or	average.

(Also	note	that	arrays	provide	methods	that	can	find	these	values	for
you,	so	you	really	don't	need	to	write	these	functions	anyway.	They're
here	purely	to	demonstrate	parameters	passed	by	reference.)

Exercises
1.	 Make	a	program	that	calculates	the	least	common	multiple	(LCM)	of	two
integers.	(The	LCM	of	two	integers	is	the	smallest	integer	that	the	two	numbers
divide	into	evenly.)	Hints:	LCM(a,	b)	=	a	*	b	/	GCD(a,	b).	Also	don't	write	the
LCM	method	from	scratch.	Instead,	make	it	call	the	GCD	method	described
earlier	in	this	lesson.

2.	 A	recursive	method	is	one	that	calls	itself.	Write	a	recursive	factorial	method
by	using	the	definition:

0!	=	1

N!	=	N	*	(N-1)!

Hint:	Be	sure	to	check	the	stopping	condition	N	=	0	so	the	method	doesn't	call
itself	forever.	(Also	note	that	recursive	methods	can	be	very	confusing	to
understand	and	debug	so	often	it's	better	to	write	the	method	without
recursion	if	possible.	Some	problems	have	natural	recursive	definitions,	but
usually	a	non-recursive	method	is	better.)

3.	 Write	a	program	that	recursively	calculates	the	Nth	Fibonacci	number	using
the	definition:

Fibonacci(0)	=	0

Fibonacci(1)	=	1

Fibonacci(N)	=	Fibonacci(N	-	1)	+	Fibonacci(N	-	2)

Compare	the	performance	of	the	recursive	factorial	and	Fibonacci	methods
when	N	is	around	30	or	40.

4.	 [SimpleEdit]	Copy	the	SimpleEdit	program	you	built	for	Exercise	18-3	(or
download	the	version	on	the	book's	website)	and	move	the	code	that	checks	for
unsaved	changes	into	a	method	named	IsDataSafe.	The	IsDataSafe	method
should	perform	the	same	checks	as	before	and	return	true	if	it	is	safe	to
continue	with	whatever	operation	the	user	is	about	to	perform	(new	file,	open
file,	or	exit).

Other	code	that	needs	to	decide	whether	to	continue	should	call	IsDataSafe.
For	example,	the	fileNewMenuItem_Click	event	handler	can	now	look	like	this:

private	void	fileNewMenuItem_Click(object	sender,	EventArgs	e)

{

				//	See	if	it's	safe	to	continue.

				if	(IsDataSafe())

				{

								//	Make	the	new	document.

								contentRichTextBox.Clear();

								//	There	are	no	unsaved	changes	now.

								contentRichTextBox.Modified	=	false;

				}

}

5.	 [Games]	Copy	the	program	you	wrote	for	Exercise	19-12	(or	download	the
version	on	the	book's	website)	and	extract	the	code	that	moves	a	UFO	into	a
new	method.	To	do	that:

Select	the	code	that	moves	a	UFO.

Right-click	the	code	and	select	Quick	Actions.

Click	Extract	Method.

Change	the	new	method's	name	to	MoveUfo.

6.	 [Games]	Copy	the	program	you	wrote	for	Exercise	5	and	extract	the	code	that
moves	the	laser	bolt	into	a	new	method	named	MoveLaserBolt.

7.	 [Games]	Copy	the	program	you	wrote	for	Exercise	6	and	write	a	BoltHitUfo
method	that	returns	true	if	the	laser	bolt	hits	the	UFO	with	a	particular	index
(passed	into	the	method	as	a	parameter).	Use	that	method	in	the
MoveLaserBolt	method.

8.	 [Games]	Copy	the	program	you	wrote	for	Exercise	7.	Find	the	code	that
removes	a	laser	bolt,	determines	whether	the	game	is	over,	and	updates	the
high	scores	if	necessary.	Extract	that	code	into	a	new	RemoveLaserBolt	method.
Modify	the	program	to	call	RemoveLaserBolt	in	two	places:	if	the	laser	bolt	hits
a	UFO	and	if	the	laser	bolt	moves	off	the	top	of	the	form.

9.	 [Games]	Copy	the	program	you	wrote	for	Exercise	8.	Find	the	code	that
executes	when	the	game	is	over.	(It	plays	the	“game	over”	sound	effect	and
updates	and	displays	the	high	scores	if	necessary.)	Extract	that	code	into	a	new
GameOver	method.

10.	 [Games]	Copy	the	program	you	wrote	for	Exercise	9	and	extract	the	code	that
displays	the	high	score	form	into	a	new	ShowHighScores	method.	The	program
should	call	this	method	in	two	places:	once	in	the	GameOver	method	if	the	user
has	a	new	high	score	and	once	if	the	user	selects	the	File	menu's	High	Scores
command.

11.	 [Games]	Copy	the	program	you	wrote	for	Exercise	10.	Find	the	code	that
determines	whether	the	user	got	a	new	high	score	and,	if	so,	updates	and
displays	the	high	scores.	Extract	that	code	into	a	new	UpdateHighScores
method.

12.	 [Games]	Copy	the	program	you	wrote	for	Exercise	11	and	extract	the	code	that
randomizes	a	UFO	into	a	new	RandomizeUfo	method.

Usually	it's	better	to	start	with	a	solid	design	in	mind	and	write	methods	as	you
need	them	rather	than	refactor	an	older	program	as	was	done	in	the	last	several
exercises,	but	at	this	point	the	UFO	shooting	gallery	should	have	no	big	chunks	of
duplicated	code	and	no	methods	that	are	so	long	they	are	hard	to	understand.	It
should	be	much	easier	to	maintain	and	improve	in	the	future.

Many	of	the	other	examples	and	exercises	shown	in	earlier	lessons	also	contain

duplicated	code.	For	further	practice,	rewrite	some	of	them	to	move	the	duplicated
code	into	methods.

NOTE

Please	select	the	videos	for	Lesson	20	online	at
www.wrox.com/go/csharp24hourtrainer2evideos.

http://www.wrox.com/go/csharp24hourtrainer2evideos

Lesson	21

Handling	Errors
The	best	way	to	avoid	user	errors	is	to	not	give	the	user	the	ability	to	make	them	in
the	first	place.	For	example,	suppose	a	program	can	take	purchase	orders	for
between	1	and	100	reams	of	paper.	If	the	program	lets	you	specify	the	quantity	by
using	a	NumericUpDown	control	with	Minimum	=	1	and	Maximum	=	100,	you	cannot
accidentally	enter	invalid	values	like	–5	or	10,000.

Sometimes,	however,	it's	hard	to	build	an	interface	that	protects	against	all
possible	errors.	For	example,	if	the	user	needs	to	type	in	a	numeric	value,	you
need	to	worry	about	invalid	inputs	such	as	1.2.3	and	ten.	If	you	write	a	program
that	works	with	files,	you	can't	always	be	sure	the	file	will	be	available	when	you
need	it.	For	example,	it	might	be	on	a	CD	that	has	been	removed,	or	it	might	be
locked	by	another	program.

In	this	lesson,	you	learn	how	to	deal	with	these	kinds	of	unexpected	errors.	You
learn	how	to	protect	against	invalid	values,	unavailable	files,	and	other	problems
that	are	difficult	or	impossible	to	predict	and	prevent.

Errors	and	Exceptions
An	error	is	a	mistake.	It	occurs	when	the	program	does	something	incorrect.
Sometimes	an	error	is	a	bug,	for	example,	if	the	code	just	doesn't	do	the	right
thing.

Sometimes	an	error	is	caused	by	circumstances	outside	of	the	program's	control.
If	the	program	expects	the	user	to	enter	a	numeric	value	in	a	textbox	but	the	user
types	“seven,”	the	program	won't	be	able	to	continue	its	work	until	the	user	fixes
the	problem.

Sometimes	you	can	predict	when	an	error	may	occur.	For	example,	if	a	program
needs	to	open	a	file,	there's	a	chance	that	the	file	won't	exist.	In	predictable	cases
such	as	this	one,	the	program	should	try	to	anticipate	the	error	and	protect	itself.
It	should	check	to	see	if	the	file	exists	before	it	tries	to	open	it.	It	can	then	display	a
message	to	the	user	and	ask	for	help.

Other	errors	are	hard	or	impossible	to	predict.	Even	if	the	file	exists,	it	may	be
locked	by	another	program.	The	user	entering	invalid	data	is	another	example.	In
those	cases,	the	program	may	need	to	just	try	to	do	its	job.	If	the	program	tries	to
do	something	seriously	invalid,	it	will	receive	an	exception.

An	exception	tells	the	program	that	something	generally	very	bad	occurred	such	as
trying	to	divide	by	zero,	trying	to	access	an	entry	in	an	array	that	doesn't	exist	(for
example,	setting	values[100]	=	100	when	values	only	holds	10	items),	or	trying	to
convert	the	text	“pickle”	into	an	integer.

In	cases	like	these,	the	program	must	catch	the	exception	and	deal	with	it.
Sometimes	it	can	figure	out	what	went	wrong	and	fix	the	problem.	Other	times	it
might	only	be	able	to	tell	the	user	about	the	problem	and	hope	the	user	can	fix	it.

NOTE

In	C#	terms,	the	code	that	has	the	problem	throws	the	exception.	Code	higher
up	in	the	chain	can	catch	the	exception	and	try	to	handle	it.

To	catch	an	exception,	a	program	uses	a	try-catch	block.

try-catch	Blocks
In	C#,	you	can	use	a	try-catch	block	to	catch	exceptions.	One	common	form	of
this	statement	has	the	following	syntax:

try

{

				...codeToProtect…

}

catch	(ExceptionType1	ex)

{

				...exceptionCode1…

}

catch	(ExceptionType2	ex)

{

				...exceptionCode2…

}

finally

{

				...finallyCode…

}

Where:

codeToProtect	is	the	code	that	might	throw	the	exception.

ExceptionType1,	ExceptionType2	are	exception	types	such	as	FormatException
or	DivideByZeroException.	If	this	particular	exception	type	occurs	in	the
codeToProtect,	the	corresponding	catch	block	executes.

ex	is	a	variable	that	has	the	same	type	as	the	exception.	You	pick	the	name	for
this	variable	just	as	you	do	when	you	declare	any	other	variable.	If	an	error
occurs,	you	can	use	this	variable	to	learn	more	about	what	happened.

exceptionCode	is	the	code	that	the	program	should	execute	if	the	corresponding
exception	occurs.

finallyCode	is	code	that	always	executes	whether	or	not	an	error	occurs.

A	try-catch	block	can	include	any	number	of	catch	blocks	with	different	exception
types.	If	an	error	occurs,	the	program	looks	through	the	catch	blocks	in	order	until
it	finds	one	that	matches	the	error.	It	then	executes	that	block's	code	and	jumps	to
the	finally	statement	if	there	is	one.

If	you	use	a	catch	statement	without	an	exception	type	and	variable,	that	block
catches	all	exceptions.

NOTE

If	you	omit	the	catch	statement's	exception	type	and	variable,	the	code
cannot	learn	anything	about	the	exception	that	occurred.	Sometimes	that's
okay	if	you	don't	really	care	what	went	wrong	as	long	as	you	know	that
something	went	wrong.

An	alternative	strategy	is	to	catch	a	generic	Exception	object,	which	matches
any	kind	of	exception	and	provides	more	information.	Then	you	can	at	least
display	an	error	message	as	shown	in	the	following	code,	which	tries	to
calculate	a	student's	test	score	average	assuming	the	variables	totalScore
and	numTests	are	already	initialized.	If	the	code	throws	an	exception,	the
catch	block	displays	the	exception's	default	description.

try

{

				//	Calculate	the	average.

				int	averageScore	=	totalScore	/	numTests;

				//	Display	the	student's	average	score.

				MessageBox.Show("Average	Score:	"	+

								averageScore.ToString("0.00"));

}

catch	(Exception	ex)

{

				//	Display	a	message	describing	the	exception.

				MessageBox.Show("Error	calculating	average.\n"	+	ex.Message);

}

In	this	example	the	error	that	this	code	is	most	likely	to	encounter	is	a
DivideByZeroException	thrown	if	numTests	is	0.	Because	that	kind	of	error	is
predictable,	the	code	should	probably	specifically	look	for
DivideByZeroException.	The	best	strategy	is	to	catch	the	most	specific	type	of
exception	possible	to	get	the	most	information.	Then	catch	more	generic
exceptions	just	in	case.	Better	still,	it	should	check	numTests	and	not	perform
the	calculation	if	numTests	is	0.	Then	it	can	avoid	the	exception	completely.

A	try-catch	block	must	include	at	least	one	catch	block	or	the	finally	block,
although	none	of	them	needs	to	contain	any	code.	For	example,	the	following	code
catches	and	ignores	all	exceptions:

try

{

				...codeToProtect…

}

catch

{

}

The	code	in	the	finally	block	executes	whether	or	not	an	exception	occurs.	If	an

error	occurs,	the	program	executes	a	catch	block	(if	one	matches	the	exception)
and	then	executes	the	finally	block.	If	no	error	occurs,	the	program	executes	the
finally	block	after	it	finishes	the	codeToProtect	code.

In	fact,	if	the	code	inside	the	try	or	catch	section	executes	a	return	statement,	the
finally	block	still	executes	before	the	program	actually	leaves	the	method!	The
finally	block	executes	no	matter	how	the	code	leaves	the	try-catch	block.

TryParse
One	place	where	problems	are	likely	to	occur	is	when	a	program	parses	text
entered	by	the	user.	Even	if	users	don't	enter	obviously	ridiculous	values	such	a
“twelve,”	they	might	enter	values	in	a	format	that	you	don't	expect.	For	example,
you	might	expect	the	user	to	enter	an	integer	dollar	amount	such	as	1200	but	the
user	enters	$1,200.00.	If	you	use	the	decimal	data	type's	Parse	method	and	don't
allow	the	currency	symbol,	thousands	separator,	and	decimal	point,	the	Parse
method	will	throw	an	exception.

You	can	use	a	try-catch	block	to	handle	the	exception,	but	it's	more	efficient	to
detect	the	invalid	format	instead.	To	do	that,	you	can	use	the	decimal	data	type's
TryParse	method.

A	data	type's	TryParse	method	attempts	to	parse	some	text	and	save	the	result	in	a
parameter	passed	with	the	out	keyword.	The	TryParse	method	returns	true	if	it
successfully	parsed	the	text	and	false	if	it	could	not.

For	example,	the	following	code	tries	to	parse	a	value	entered	by	the	user:

decimal	amount;

if	(!decimal.TryParse(amountTextBox.Text,	out	amount))

{

				MessageBox.Show("Invalid	format	for	amount:	"	+

								amountTextBox.Text	+

								"\r\nThe	amount	should	be	an	integer	such	as	12.");

				return;

}

The	code	uses	decimal.TryParse	to	try	to	parse	the	value	in	amountTextBox.	If
TryParse	returns	false,	the	code	displays	an	error	message	and	then	uses	a	return
statement	to	stop	processing	the	value.

The	TryParse	methods	can	take	a	NumberStyles	parameter	just	as	the	Parse
methods	can.	For	example,	you	can	pass	decimal.TryParse	the	parameter
NumberStyles.Any	to	allow	the	user	to	enter	values	that	include	currency	symbols
and	thousands	separators.

To	make	things	a	bit	more	confusing,	the	version	of	TryParse	that	takes	a
NumberStyles	parameter	also	takes	a	format	provider	that	gives	the	method
information	about	the	culture	it	should	use	when	parsing	the	text.	If	you	set	that
parameter	to	null,	the	method	uses	the	program's	current	culture	information.
For	example,	the	following	code	is	similar	to	the	previous	code	except	it	allows
thousands	separators.	The	new	code	is	highlighted	in	bold:

decimal	amount;

if	(!decimal.TryParse(amountTextBox.Text,

				NumberStyles.AllowThousands,	null,	out	amount))

{

				MessageBox.Show("Invalid	format	for	amount:	"	+

								amountTextBox.Text	+

								"\r\nThe	amount	should	be	an	integer	such	as	12.");

				return;

}

It's	generally	considered	good	programming	practice	to	look	for	the	most
predictable	errors	first	and	only	use	try-catch	blocks	as	a	last	resort.	That	usually
allows	you	to	give	the	user	the	most	meaningful	error	messages.

Throwing	Exceptions
Occasionally	it's	useful	to	be	able	to	throw	your	own	exceptions.	For	example,
consider	the	factorial	method	you	wrote	in	Lesson	20	and	suppose	the	program
invokes	the	method	passing	it	the	value	–10	for	its	parameter.	The	value	–10!	is
not	defined,	so	what	should	the	method	do?	It	could	just	declare	that	–10!	is	1	and
return	that,	but	that	approach	could	hide	a	bug	in	the	rest	of	the	program.

A	better	solution	is	to	throw	an	exception	telling	the	program	what's	wrong.	The
calling	code	can	then	use	a	try-catch	block	to	catch	the	error	and	tell	the	user
what's	wrong.

The	following	code	shows	an	improved	version	of	the	factorial	method	described
in	Lesson	20.	Before	calculating	the	factorial,	the	code	checks	its	parameter	and,	if
the	parameter	is	less	than	zero,	it	throws	a	new	ArgumentOutOfRangeException.	The
exception's	constructor	has	several	overloaded	versions.	The	one	used	here	takes
as	parameters	the	name	of	the	parameter	that	caused	the	problem	and	a
description	of	the	error:

//	Return	value!

private	long	Factorial(long	value)

{

				//	Check	the	parameter.

				if	(value	<	0)

				{

								//	This	is	invalid.	Throw	an	exception.

								throw	new	ArgumentOutOfRangeException(

												"value",

												"value	must	be	at	least	0.");

				}

				//	Calculate	the	factorial.

				long	result	=	1;

				for	(long	i	=	2;	i	<=	value;	i++)

				{

								result	*=	i;

				}

				return	result;

}

The	following	code	shows	how	the	program	might	invoke	the	new	version	of	the
Factorial	method.	It	uses	a	try-catch	block	to	protect	itself	in	case	the	Factorial
method	throws	an	exception.	The	block	also	protects	against	other	errors	such	as
the	user	entering	garbage	in	the	TextBox.

//	Calculate	the	factorial.

private	void	calculateButton_Click(object	sender,	EventArgs	e)

{

				try

				{

								//	Get	the	input	value.

								long	number	=	long.Parse(numberTextBox.Text);

								//	Calculate	the	factorial.

								long	answer	=	Factorial(number);

								//	Display	the	factorial.

								resultTextBox.Text	=	answer.ToString();

				}

				catch	(Exception	ex)

				{

								//	Display	an	error	message.

								MessageBox.Show(ex.Message);

								resultTextBox.Clear();

				}

}

TIP

Exceptions	take	additional	overhead	and	disrupt	the	natural	flow	of	the
code,	making	it	harder	to	read,	so	only	throw	exceptions	to	signal
exceptional	conditions.

If	a	method	needs	to	tell	the	calling	code	whether	it	succeeded	or	failed,	that
isn't	an	exceptional	condition	so	use	a	return	value.	If	a	method	has	an
invalid	input	parameter	(such	as	a	0	in	a	parameter	that	cannot	be	0),	that's
an	error,	so	throw	an	exception.

Try	It
In	this	Try	It,	you	add	validation	and	error	handling	code	to	the	program	you	built
for	Exercise	19-4.	When	the	user	clicks	the	NewItemForm's	Calculate	and	OK
buttons,	the	program	should	verify	that	the	values	make	sense	and	protect	itself
against	garbage	such	as	the	user	entering	the	quantity	“one,”	as	shown	in	Figure
21.1.

Figure	21.1

Lesson	Requirements
In	this	lesson,	you:

Copy	the	program	you	built	for	Exercise	19-4	(or	download	the	version	on	the
book's	website).

Write	a	ValuesAreOk	method	to	validate	the	values	entered	by	the	user.	It
should:

Verify	that	Item,	Price	Each,	and	Quantity	aren't	blank.

Use	TryParse	methods	to	get	the	Price	Each	and	Quantity	values.

Verify	that	Price	Each	and	Quantity	are	greater	than	zero.

Calculate	the	product	of	Price	Each	and	Quantity	to	see	if	the	result	is	too
large	to	fit	in	a	decimal	value.

If	ValuesAreOk	finds	a	problem,	it	should:

Tell	the	user.

Set	focus	to	the	textbox	that	caused	the	problem.

Return	false.

If	ValuesAreOk	finds	that	all	of	the	values	are	okay,	it	should	return	true.

NOTE

You	can	download	the	code	and	resources	for	this	lesson	from	the	website	at
www.wrox.com/go/csharp24hourtrainer2e.

Hints
If	the	user	clicks	the	OK	button,	the	form	should	close	only	if	the	user's	inputs
are	valid.	Be	sure	the	OK	button's	DialogResult	property	doesn't	automatically
close	the	form.

Step-by-Step
Copy	the	program	you	built	for	Exercise	19-4	(or	download	the	version	on	the
book's	website).

1.	 This	is	straightforward.

Write	a	ValuesAreOk	method	to	validate	the	values	entered	by	the	user.	It
should:

Verify	that	Item,	Price	Each,	and	Quantity	aren't	blank.

Use	TryParse	methods	to	get	the	Price	Each	and	Quantity	values.

Verify	that	Price	Each	and	Quantity	are	greater	than	zero.

Calculate	the	product	of	Price	Each	and	Quantity	to	see	if	the	result	is	too
large	to	fit	in	a	decimal	value.

If	ValuesAreOk	finds	a	problem,	it	should:

	Tell	the	user.

	Set	focus	to	the	textbox	that	caused	the	problem.

	Return	false.

1.	 	The	current	program	only	enables	the	OK	button	when	the	Item,	Price
Each,	and	Quantity	are	all	non-blank,	so	you	don't	need	to	add	any	code	to
verify	that	they	aren't	blank.	The	user	can't	click	the	OK	button	unless
they're	non-blank.

2.	 	The	following	code	shows	how	you	might	try	to	parse	Price	Each:

//	Try	to	parse	PriceEach.

if	(!decimal.TryParse(priceEachTextBox.Text,

				NumberStyles.Any,	null,	out	PriceEach))

{

				MessageBox.Show("Price	Each	must	be	a	currency	value.");

				priceEachTextBox.Focus();

				return	false;

}

http://www.wrox.com/go/csharp24hourtrainer2e

When	you	parse	quantity,	you	could	use	NumberStyles.Integer	to	require	a
plain	integer,	or	you	could	use	NumberStyles.AllowThousands	to	allow
thousands	separators.

3.	 	The	following	code	shows	how	you	might	verify	that	PriceEach	is	greater
than	zero:

//	Verify	that	PriceEach	is	greater	than	zero.

if	(PriceEach	<=	0)

{

				MessageBox.Show("Price	each	must	be	greater	than	0.");

				priceEachTextBox.Focus();

				return	false;

}

4.	 The	following	code	shows	how	you	might	verify	that	the	product	of	Price
Each	and	Quantity	fits	in	the	decimal	data	type:

//	See	if	Quantity	*	PriceEach	is	too	big.

try

{

				decimal	total	=	Quantity	*	PriceEach;

}

catch	(Exception	ex)

{

				MessageBox.Show(ex.Message);

				return	false;

}

You	can	test	that	part	of	the	code	by	setting	Price	Each	to	1e28	and
Quantity	to	1000.

If	ValuesAreOk	finds	that	all	of	the	values	are	okay,	it	should	return	true.

1.	 If	the	method	makes	it	past	all	of	the	previous	tests,	it	should	use	the
statement	ItemName	=	itemTextBox.Text	to	save	the	item	name	for	the	main
program	to	read.

2.	 The	method	should	then	end	with	the	statement	return	true.

Exercises
1.	 Copy	the	program	you	wrote	for	the	Try	It.	That	program	still	has	one	more
problem	(at	least).	If	the	sum	of	the	values	of	the	items	is	too	big	to	fit	in	a
decimal,	the	main	program	will	crash.	You	can	test	this	by	entering	two	items
with	Price	Each	1e28	and	Quantity	7.

Use	a	try-catch	block	to	protect	the	main	program	from	this	problem.	Enclose
the	code	that	displays	the	NewItemForm	in	a	loop	that	executes	as	long	as	the
new	item's	values	cause	problems.

(Did	you	anticipate	this	problem?	How	about	the	problem	of	a	new	item
having	a	price	of	$1e28	and	quantity	1000?	Anticipating	and	protecting	against
these	kinds	of	problems	is	part	of	what	makes	programming	challenging.)

2.	 The	limits	used	by	the	program	you	wrote	for	Exercise	1	are	ludicrous.	You
could	use	the	program	to	order	1	million	pencils	or	a	notepad	that	cost	$1e28.
That's	more	money	than	there	is	in	the	entire	world.	(Probably	more	money
than	exists	in	the	entire	universe,	depending	on	the	currency	exchange	rate
with	the	Andromeda	galaxy.)

Copy	the	program	you	wrote	for	Exercise	1	and	add	sanity	checks.	Modify	the
ValuesAreOk	method	so	it	allows	up	to	100	items	and	Price	Each	up	to	$100.

3.	 Even	if	it's	unusual	for	an	item	to	have	a	price	of	more	than	$100	or	for
someone	to	order	more	than	100	of	a	particular	item,	it	still	may	be	possible.
Copy	the	program	you	wrote	for	Exercise	2	and	modify	the	sanity	checks.	If	a
value	exceeds	the	normal	limits,	ask	the	user	if	the	value	is	correct	and
continue	if	the	user	says	Yes.

4.	 Copy	the	LCM	program	you	built	for	Exercise	20-1	(or	download	the	version	on
the	book's	website)	and	add	error	handling	to	it.	If	a	value	causes	an	error,
display	a	message	and	set	focus	to	its	textbox.	Hints:	Validate	both	the	GCD
and	LCM	methods	so	they	only	allow	inputs	greater	than	0.	That	way	they're
both	covered	if	a	different	program	uses	GCD	directly.	Also	use	a	try-catch
block	in	the	Calculate	button's	Click	event	handler	to	protect	against	format
errors.

5.	 Copy	the	Fibonacci	program	you	built	for	Exercise	19-2	(or	download	the
version	on	the	book's	website)	and	add	error	handling	and	validation	to	it.
Protect	the	program	against	format	errors.	Also	move	the	calculation	itself	into
a	new	method	and	make	it	throw	an	exception	if	its	input	is	less	than	0.	(Hint:
Test	the	program	with	the	input	200	and	make	sure	the	result	makes	sense.)

6.	 [SimpleEdit]	Copy	the	SimpleEdit	program	you	built	for	Exercise	20-4	(or
download	the	version	on	the	book's	website)	and	add	error	handling	to	the
places	where	the	program	opens	and	saves	files.

To	test	the	program,	run	it,	type	some	text,	and	then	close	the	program.	Then:

Use	Microsoft	Word	to	open	the	file	Test.rtf	in	the	program's	executable
directory.	Then	try	to	use	SimpleEdit	to	open	the	file.

Close	Word,	open	the	file	in	SimpleEdit,	and	then	open	the	file	again	in
Word.	Now	make	a	change	in	SimpleEdit	and	try	to	save	the	file.

With	the	file	still	open	in	Word,	start	a	new	file	in	SimpleEdit,	type	some
text,	and	use	the	File	menu's	Save	As	command	to	try	to	save	the	new	file	as
Test.rtf.

In	all	three	tests,	Word	should	have	the	Test.rtf	file	locked	so	SimpleEdit
should	display	an	error	message.

7.	 The	quadratic	equation	finds	solutions	to	equations	with	the	form	ax2	+	bx	+	c
=	0	where	a,	b,	and	c	are	constants.	The	solutions	to	this	equation	(the	values
of	x	that	make	it	true)	are	given	by	the	quadratic	formula:

Build	a	program	similar	to	the	one	shown	in	Figure	21.2	that	calculates
solutions	to	quadratic	equations.	Hints:

Figure	21.2

Use	TryParse	to	protect	against	format	errors.

Use	Math.Sqrt	to	take	square	roots.

The	equation	has	zero,	one,	or	two	real	solutions	depending	on	whether	the
discriminant	b2	–	4ac	is	less	than,	equal	to,	or	greater	than	zero.	Use	if
statements	to	avoid	trying	to	take	the	square	root	of	a	negative	number.

If	a	is	0,	then	this	is	a	linear	equation	not	a	quadratic,	and	the	quadratic
formula	tries	to	divide	by	zero.	Unfortunately	C#	doesn't	consider	that	an
error	and	just	sets	the	result	equal	to	the	special	value	NaN	(which	stands	for
“not	a	number”).	After	performing	the	calculation,	use	double.IsNaN	to	see
if	the	result	is	NaN	and	display	“Not	a	quadratic”	if	it	is.

8.	 Several	of	the	programs	you've	built	or	described	in	this	book	so	far	enable	a
Button	only	when	a	TextBox	contains	non-blank	text.	If	the	user	should	enter	a
number,	you	can	improve	the	program	by	only	enabling	the	Button	if	the	text
has	a	valid	format.	Try	this	out	by	writing	a	program	that	calculates	the	area	of
a	circle.	Hints:

Use	TryParse	to	make	the	TextBox's	TextChanged	event	handler	enable	the
Calculate	Button	when	the	user	has	entered	a	valid	double	and	that	value	is
at	least	zero.

Use	the	formula	area	=	π	×	radius2.

If	the	user	enters	a	value	that	is	too	large	(such	as	1e200),	display	the
message,	“The	radius	is	too	big.”

9.	 Make	a	program	that	contains	a	TextBox	for	each	of	the	basic	data	types	byte,
sbyte,	ushort,	short,	uint,	int,	ulong,	long,	float,	double,	decimal,	bool,	and
char.	Use	event	handlers	to	set	each	TextBox's	background	color	to	white	if	the
TextBox	contains	a	valid	value	of	the	corresponding	data	type	and	pink	if	it
does	not.

NOTE

Please	select	the	videos	for	Lesson	21	online	at
www.wrox.com/go/csharp24hourtrainer2evideos.

http://www.wrox.com/go/csharp24hourtrainer2evideos

Lesson	22

Preventing	Bugs
Many	programmers	believe	that	the	way	to	make	a	program	robust	is	to	make	it
able	to	continue	running	even	if	it	encounters	errors.	For	example,	consider	the
following	version	of	the	Factorial	method:

//	Recursively	calculate	n!

private	long	Factorial(long	n)

{

				if	(n	<=	1)	return	1;

				return	n	*	Factorial(n	-	1);

}

This	method	is	robust	in	the	sense	that	it	can	handle	nonsensical	inputs	such	as	–
10.	The	function	cannot	calculate	–10!,	but	at	least	it	doesn't	crash	so	you	might
think	this	is	a	safe	method.

Unfortunately,	although	the	function	doesn't	crash	on	this	input,	it	also	doesn't
return	a	correct	result	because	–10!	is	not	defined.	That	makes	the	program
continue	running	even	though	it	has	produced	an	incorrect	result.

The	method	also	has	a	problem	if	its	input	is	greater	than	20.	In	that	case,	the
result	is	too	big	to	fit	in	the	long	data	type	so	the	calculations	cause	an	integer
overflow.	By	default,	the	program	silently	ignores	the	error,	and	the	result	you	get
uses	whatever	bits	are	left	after	the	overflow.	In	this	case,	the	result	looks	like	a
large	negative	number.	Again	the	method	doesn't	crash	but	it	doesn't	return	a
useful	result,	either.

In	general,	bugs	that	cause	a	program	to	crash	are	a	lot	easier	to	find	and	fix	than
bugs	like	this	one	that	produce	incorrect	results	but	that	continue	running.

In	this	lesson,	you	learn	techniques	for	detecting	and	correcting	bugs.	You	learn
how	to	make	bugs	jump	out	so	they're	easy	to	fix	instead	of	remain	hidden.

Input	Assertions
In	C#	programming,	an	assertion	is	a	statement	that	the	code	claims	is	true.	If	the
statement	is	false,	the	program	stops	running	so	you	can	decide	whether	a	bug
occurred.

One	way	to	make	an	assertion	is	to	evaluate	the	statement	and,	if	it	is	false,	throw
an	exception.	That	guarantees	that	the	program	cannot	continue	running	if	the
assertion	is	false.

The	following	code	shows	a	Factorial	method	with	assertions.	If	the	method's
parameter	is	less	than	0	or	greater	than	20,	the	code	throws	an	exception:

//	Recursively	calculate	n!

private	long	Factorial(long	n)

{

				//	Validate	the	input.

				if	((n	<	0)	||	(n	>	20))

								throw	new	ArgumentOutOfRangeException(

												"n",	"Factorial	parameter	must	be	between	0	and	20.");

				if	(n	<=	1)	return	1;

				return	n	*	Factorial(n	-	1);

}

To	make	this	kind	of	assertion	easier,	the	.NET	Framework	provides	a	Debug	class.
The	Debug	class's	static	Assert	method	takes	as	a	parameter	a	boolean	value.	If	the
value	is	false,	Assert	displays	an	error	message	showing	the	program's	stack
dump	at	the	time	so	you	can	figure	out	where	the	error	occurred.

The	following	code	shows	a	new	version	of	the	factorial	method	that	uses
Debug.Assert.	The	optional	second	parameter	to	Debug.Assert	gives	a	message	that
should	be	displayed	if	the	assertion	fails:

//	Recursively	calculate	n!

private	long	Factorial(long	n)

{

				//	Validate	the	input.

				Debug.Assert((n	>=	0)	&&	(n	<=	20),

								"Factorial	parameter	must	be	between	0	and	20.");

				if	(n	<=	1)	return	1;

				return	n	*	Factorial(n	-	1);

}

NOTE

The	Debug	class	is	in	the	System.Diagnostics	namespace.	If	you	want	to	use	it
without	including	the	namespace,	as	in	the	preceding	code,	you	should
include	the	following	using	directive	at	the	top	of	the	file:

using	System.Diagnostics;

Normally	when	you	develop	a	program	you	make	debug	builds.	These	include
extra	debugging	symbols	so	you	can	step	through	the	code	in	the	debugger.	If	you
switch	to	a	release	build,	those	symbols	are	omitted,	making	the	compiled
program	a	bit	smaller.	The	Debug.Assert	method	also	has	no	effect	in	release
builds.

The	idea	is	that	you	can	use	Debug.Assert	to	test	the	program	but	then	skip	the
assertions	after	the	program	is	debugged	and	ready	for	release	to	end	users.	Of
course	this	works	only	if	the	code	is	robust	enough	to	behave	correctly	even	if	a
bug	does	slip	past	the	testing	process	and	appears	in	the	release	build.	In	the	case
of	the	Factorial	method,	this	code	must	always	protect	itself	against	input	errors
so	it	should	throw	an	exception	rather	than	use	Debug.Assert.

To	switch	from	a	debug	to	a	release	build	or	vice	versa,	open	the	Build	menu	and
select	the	Configuration	Manager	command	to	display	the	dialog	shown	in	Figure
22.1.	Select	Debug	or	Release	from	the	dropdown	and	click	Close.

Figure	22.1

When	you	build	the	program,	Visual	Studio	places	the	compiled	executable	in	the
project's	bin\Debug	or	bin\Release	subdirectory.	Be	sure	you	use	the	correct
version	or	you	may	find	Debug.Assert	statements	displaying	errors	in	what	you
thought	was	a	release	build.

NOTE

The	Debug	class	provides	some	other	handy	methods	in	addition	to	Assert.
The	WriteLine	method	displays	a	message	in	the	Output	window.	You	can	use
it	to	display	messages	showing	you	what	methods	are	executing,	to	display
parameter	values,	and	to	give	you	other	information	that	you	might
otherwise	need	to	learn	by	stepping	through	the	code	in	the	debugger.

The	Debug	class's	Indent	method	lets	you	change	the	indentation	of	output
produced	by	Debug.WriteLine	so,	for	example,	you	can	indicate	nesting	of
method	calls.

Like	the	other	Debug	methods,	these	do	nothing	in	release	builds	so	the	end
user	never	sees	these	messages.

Other	Assertions
In	addition	to	input	assertions,	a	method	can	make	other	assertions	as	it	performs
calculations.	A	method	can	use	assertions	to	check	intermediate	results	and	to
validate	final	results	before	returning	them.	A	method	can	even	use	assertions	to
validate	the	value	it	receives	from	another	method.

Often	these	assertions	cannot	be	as	exact	as	those	you	can	perform	on	inputs,	but
you	may	still	be	able	to	catch	some	really	ludicrous	values.

For	example,	suppose	an	order-processing	form	lets	the	user	enter	items	for
purchase	and	then	calculates	the	total	cost.	You	could	use	assertions	to	verify	that
the	total	cost	is	between	$0.01	and	$1	million.	This	is	a	pretty	wide	range	so	you
are	unlikely	to	catch	any	but	the	most	egregious	errors,	but	you	may	catch	a	few.

Note	that	you	should	not	validate	user	inputs	with	assertions.	An	assertion
interrupts	the	program	so	you	can	try	to	find	a	bug.	Your	code	should	check	for
user	input	errors	and	handle	them	without	interrupting	the	program.	Instead	of
using	assertions,	you	should	use	TryParse,	try-catch	blocks,	and	if	statements	to
determine	whether	the	user's	input	makes	sense.	Remember,	when	you	make	a
release	build,	Debug.Assert	calls	go	away	so	you	cannot	rely	on	them	to	validate
the	user's	values.

One	drawback	to	assertions	is	that	it's	hard	to	make	programmers	use	them.
When	you're	writing	code,	it's	hard	to	convince	yourself	that	the	code	could	be
wrong.	After	all,	if	you	knew	there	was	a	bug	in	the	code,	you'd	fix	it.

Assertions	are	like	seat	belts,	airbags,	and	bicycle	helmets.	You	don't	use	them
because	you	expect	to	need	them	today;	you	use	them	just	on	the	off	chance	that
you'll	need	them	someday.	Usually	your	assertions	will	just	sit	there	doing
nothing,	but	if	a	bug	does	rear	its	ugly	head,	a	good	set	of	assertions	can	make	the
difference	between	finding	the	bug	in	seconds,	hours,	or	days.

To	summarize,	you	can	use	assertions	to	protect	a	method	against	invalid	inputs
and	to	validate	its	outputs.	If	you	want	an	assertion	to	only	occur	in	debug	builds,
use	Debug.Assert.	If	you	want	a	test	to	be	included	in	release	builds,	use	your	own
if	statement	to	check	the	condition	and	throw	an	exception	if	the	condition	fails.
In	particular,	use	Debug.Assert	to	catch	unusual	but	valid	values	so	you	can	decide
whether	they	are	bugs	during	testing.

Try	It
In	this	Try	It,	you	write	a	method	to	calculate	the	average	of	a	set	of	salaries.
Calculating	the	average	is	easy.	The	interesting	part	is	adding	assertions	to	make
sure	the	method	is	being	used	correctly.

To	test	the	method,	you	build	the	program	shown	in	Figure	22.2.

Figure	22.2

The	focus	of	this	Try	It	is	on	the	method	that	calculates	the	average,	not	on	the
user	interface.	The	assumption	is	that	some	other	part	of	a	larger	program	would
call	this	method,	so	the	user	interface	shown	in	Figure	22.2	is	purely	for	testing
purposes.	A	real	program	would	not	allow	the	user	to	enter	invalid	values.	Instead
it	might	take	the	values	from	a	database.	In	that	case,	the	method's	assertions
protect	it	from	invalid	data	in	the	database.

Lesson	Requirements
In	this	lesson,	you:

Build	a	program	similar	to	the	one	shown	in	Figure	22.2.

When	the	user	clicks	Calculate,	make	the	program	split	the	values	entered	in
the	TextBox	apart,	copy	them	into	an	array	of	decimals,	pass	them	to	the
AverageSalary	method,	and	display	the	result.

Make	the	AverageSalary	method	validate	its	inputs	by	asserting	that	the	array
has	a	reasonable	number	of	elements	and	that	the	salaries	are	reasonable.
(Assume	you're	not	working	on	Wall	Street	so	salaries	are	at	least	$10,000	and
less	than	$1	million.)	Also	validate	the	average.

NOTE

You	can	download	the	code	and	resources	for	this	lesson	from	the	website	at
www.wrox.com/go/csharp24hourtrainer2e.

Hints
Think	about	how	the	program	should	react	in	a	final	release	build	for	each	of
the	input	conditions.

For	example,	if	the	values	array	contains	a	salary	of	$1,600,	what	should	the
method	do?	In	this	case,	that	value	is	unusual	but	it	could	be	valid	(perhaps
the	company	hired	an	intern	for	a	week)	so	the	method	can	calculate	a
meaningful	(although	unusual)	result.	The	method	should	check	this
condition	with	Debug.Assert	so	it	can	calculate	a	result	in	the	release	version.

For	another	example,	suppose	the	values	array	is	empty.	In	this	case	the
method	cannot	calculate	a	meaningful	value	so	it	should	throw	an	exception
to	make	the	calling	code	deal	with	the	problem.

Step-by-Step
Build	a	program	similar	to	the	one	shown	in	Figure	22.2.

1.	 This	is	reasonably	straightforward.

When	the	user	clicks	Calculate,	make	the	program	split	the	values	entered	in
the	TextBox	apart,	copy	them	into	an	array	of	decimals,	pass	them	to	the
AverageSalary	method,	and	display	the	result.

1.	You	can	use	code	similar	to	the	following:

//	Calculate	and	display	the	average	salary.

private	void	calculateButton_Click(object	sender,	EventArgs	e)

{

				try

				{

								//	Copy	the	salaries	into	an	array.

								string[]	string_salaries	=	salariesTextBox.Text.Split();

								decimal[]	salaries	=	new	decimal[string_salaries.Length];

								for	(int	i	=	0;	i	<	string_salaries.Length;	i++)

								{

												salaries[i]	=

																decimal.Parse(string_salaries[i],	NumberStyles.Any);

								}

								//	Calculate	the	average.

								decimal	averageSalary	=	AverageSalary(salaries);

								//	Display	the	result.

								averageTextBox.Text	=	averageSalary.ToString("C");

				}

				catch	(Exception	ex)

http://www.wrox.com/go/csharp24hourtrainer2e

				{

								averageTextBox.Clear();

								MessageBox.Show(ex.Message);

				}

}

Make	the	AverageSalary	method	validate	its	inputs	by	asserting	that	the	array
has	a	reasonable	number	of	elements	and	that	the	salaries	are	reasonable.
(Assume	you're	not	working	on	Wall	Street	so	salaries	are	at	least	$10,000	and
less	than	$1	million.)	Also	validate	the	average.

2.		You	can	use	code	similar	to	the	following:

//	Calculate	the	average	of	this	array	of	salaries.

private	decimal	AverageSalary(decimal[]	salaries)

{

				//	Sanity	checks.

				if	(salaries.Length	<	1)

				{

								throw	new	ArgumentOutOfRangeException("salaries",

												"AverageSalary	method	cannot	calculate	average	"	+

												"salary	for	an	empty	array.");

				}

				Debug.Assert(salaries.Length	<	100,	"Too	many	salaries.");

				for	(int	i	=	0;	i	<	salaries.Length;	i++)

				{

								Debug.Assert(salaries[i]	>=	10000,	"Salary	is	too	small.");

								Debug.Assert(salaries[i]	<	1000000,	"Salary	is	too	big.");

				}

				//	Calculate	the	result.

				decimal	total	=	0;

				for	(int	i	=	0;	i	<	salaries.Length;	i++)

				{

								total	+=	salaries[i];

				}

				decimal	result	=	total	/	salaries.Length;

				//	Validate	the	result.

				Debug.Assert(result	>=	10000,	"Average	salary	is	too	small.");

				Debug.Assert(result	<	1000000,	"Average	salary	is	too	big.");

				return	result;

}

Exercises
1.	 Suppose	you're	writing	a	method	to	sort	orders	based	on	priority.	Use	the
following	definition	for	an	Order	structure:

private	struct	Order

{

				public	int	OrderId;

				public	int	Priority;

}

Write	the	SortOrders	method,	which	takes	as	a	parameter	an	array	of	Orders
and	sorts	them.	Don't	actually	write	the	code	that	sorts	the	orders,	just	write
assertions	to	validate	the	inputs	and	outputs.

2.	 Build	the	program	shown	in	Figure	22.3	to	convert	temperatures	between	the
Fahrenheit,	Celsius,	and	Kelvin	scales.

Figure	22.3

Write	the	methods	FahrenheitToCelsius,	KelvinToCelsius,
CelsiusToFahrenheit,	and	CelsiusToKelvin	to	perform	the	conversions	using
the	following	formulas:

Make	the	conversion	methods	use	assertions	to	ensure	that	Fahrenheit	values
are	between	–130	and	140,	Celsius	values	are	between	–90	and	60,	and	Kelvin
values	are	between	183	and	333.

3.	 Make	a	program	that	lets	the	user	input	miles	and	gallons	of	fuel	and
calculates	miles	per	gallon	using	a	MilesPerGallon	method.	Make	the	method
protect	itself	against	miles	and	gallons	values	that	are	too	big	or	too	small.
Make	it	also	validate	its	result	so	it	doesn't	return	values	that	are	too	large	or
small.

4.	 Copy	the	Fibonacci	program	you	wrote	for	Exercise	20-3	(or	download	the
version	on	the	book's	website).	Because	of	the	recursive	way	the	program
calculates	Fibonacci	numbers,	it	takes	a	noticeable	amount	of	time	to	calculate
values	larger	than	around	the	35th	Fibonacci	number.	It	can	still	calculate

larger	values,	however.	Add	appropriate	input	validation	to	the	Fibonacci
method.

5.	 Exercise	12-11	asks	you	to	debug	a	program	that	calculates	interest.	Copy	the
fixed	program	(or	download	the	version	on	the	book's	website)	and	add
appropriate	input	validation.

6.	 Exercise	12-12	asks	you	to	debug	a	program	that	uses	several	methods	to
calculate	the	amount	of	time	needed	to	double	an	investment	at	various
interest	rates.	Copy	the	fixed	program	(or	download	the	version	on	the	book's
website)	and	add	appropriate	input	validation.

7.	 [Graphics,	Hard]	Make	a	program	similar	to	the	one	shown	in	Figure	22.4	to
display	a	histogram	showing	student	test	scores.

Figure	22.4

Hints:

Make	a	class-level	Scores	array	and	initialize	it	to	random	values	in	the
form's	Load	event	handler.	(Hint:	For	each	score,	I	used	the	sum	of	three
random	values	in	the	ranges	10–25,	10–25,	and	10–50	to	get	a	somewhat
curved	distribution.)

Place	a	PictureBox	on	the	form.	Make	its	Resize	event	handler	refresh	the
PictureBox.	Make	its	Paint	event	handler	call	a	DrawGraph	method.

Make	the	DrawGraph	method	do	the	following:

Take	as	parameters	the	available	size	in	which	to	draw	the	bar	chart,	the
Graphics	object	on	which	to	draw,	and	the	test	scores.

Make	10	bins	to	count	scores	in	the	ranges	0–19,	20–29,	30–39,	…	,
90–100.	(Hint:	Make	the	number	of	bins	a	constant	so	you	can	change
it	easily.)

Loop	through	the	scores	and	increment	the	corresponding	bins.	(Hint:
Be	sure	to	place	scores	of	100	in	the	last	bin.)

Loop	through	the	bins	and	find	the	largest	count.	Use	that	value	to
calculate	a	scale	factor	that	makes	the	largest	count	fill	the	available
height.	(Hint:	scale	=	available	height	/	largest	count.)

Calculate	the	bar	width.	(Hint:	width	=	available	width	/	number	of
bars.)

Loop	through	the	bins	and	draw	their	bars.	(Hint:	Remember	that
drawing	coordinates	start	with	(0,	0)	in	the	upper-left	corner	and
increase	down	and	to	the	right.)

8.	 [Graphics]	Copy	the	program	you	wrote	for	Exercise	7.	(Or	download	the
version	on	the	book's	website	if	you	didn't	do	it.	I	warned	you	that	it	was	hard.)
Add	validation	code	to	the	DrawGraph	method	to	make	sure	the	available	size
and	test	scores	are	reasonable.

NOTE

Please	select	the	videos	for	Lesson	22	online	at
www.wrox.com/go/csharp24hourtrainer2evideos.

http://www.wrox.com/go/csharp24hourtrainer2evideos

Section	IV

Classes
The	lessons	in	Section	III	focus	on	C#	programming	statements.	They	explain	how
to	make	decisions	with	if	and	switch	statements,	repeat	program	steps	with	loops,
reuse	code	with	methods,	and	catch	exceptions.

Methods	are	particularly	useful	for	programming	at	a	higher	level	because	they	let
you	encapsulate	complex	behaviors	in	a	tightly	wrapped	package.	For	example,
you	might	write	a	CalculateGrade	method	that	determines	a	student's	grades.	This
method	can	hide	all	of	the	details	of	how	grades	are	calculated.	(Are	tests	graded
on	a	curve?	Is	the	grade	a	weighted	average	of	tests	and	homework	assignments?
How	much	is	attendance	worth?)	The	main	program	only	needs	to	know	how	to
call	the	method,	not	how	it	works.

Classes	provide	another	even	more	powerful	method	for	abstracting	complex
entities	into	manageable	packages.	For	example,	a	Student	class	might	embody	the
idea	of	a	student	and	include	basic	information	(name,	address,	phone),	the
courses	that	the	student	is	taking,	grades	(test	scores,	homework	grades),	and
even	attendance.	It	could	also	include	methods	such	as	CalculateGrade	for
manipulating	the	Student	data.

The	lessons	in	this	section	explain	classes.	They	explain	how	you	can	build	classes,
make	one	class	inherit	the	capabilities	of	another,	and	make	a	class	override	the
features	of	its	parent	class.

Lesson	23:	Defining	Classes

Lesson	24:	Initializing	Objects

Lesson	25:	Fine-Tuning	Classes

Lesson	26:	Overloading	Operators

Lesson	27:	Using	Interfaces

Lesson	28:	Making	Generic	Classes

Lesson	23

Defining	Classes
This	book	hasn't	emphasized	the	fact,	but	you've	been	working	with	classes	since
the	very	beginning.	The	very	first	program	you	created	in	Lesson	1	included
several	classes	such	as	the	program's	main	form	and	some	behind-the-scenes
classes	that	help	get	the	program	running.	Since	then,	you've	used	all	kinds	of
control	classes,	the	MessageBox	class,	the	Array	class,	collection	classes,	and	more.
You	can	even	treat	primitive	data	types	such	as	int	and	string	as	classes	under
some	circumstances.

In	this	lesson	you	learn	how	to	create	your	own	classes.	You	learn	how	to	define	a
class	and	give	it	properties,	methods,	and	events	to	make	it	useful.

What	Is	a	Class?
A	class	defines	a	type	of	object.	It	defines	the	properties,	methods,	and	events
provided	by	its	type	of	object.	After	you	define	a	class,	you	can	make	as	many
instances	of	that	class	as	you	like.

For	example,	the	Button	class	defines	the	properties	and	behaviors	of	a	button.
You	can	create	any	number	of	instances	of	Buttons	and	place	them	on	your	forms.

You	can	think	of	a	class	as	a	blueprint	for	making	objects.	When	you	create	an
instance	of	the	class,	you	use	the	blueprint	to	make	an	object	that	has	the
properties	and	behaviors	defined	by	the	class.

You	can	also	think	of	a	class	as	a	cookie	cutter.	Once	you've	created	the	cookie
cutter,	you	can	make	any	number	of	cookies	that	all	have	the	same	shape.

Classes	are	very	similar	to	the	structures	described	in	Lesson	17,	and	many	of	the
techniques	you	learned	there	apply	here	as	well.	For	example,	you	can	give	a	class
fields	that	an	instance	of	the	class	can	use	to	perform	calculations.

Several	important	differences	exist	between	structures	and	classes,	but	one	of	the
most	important	is	that	structures	are	value	types	while	classes	are	reference	types.
Perhaps	the	most	confusing	consequence	of	this	is	that	when	you	assign	structure
variable	A	equal	to	structure	variable	B,	A	becomes	a	copy	of	B.	In	contrast,	if	you
assign	class	variable	C	equal	to	class	variable	D,	then	variable	C	now	points	to	the
same	object	that	variable	D	does.

For	a	more	detailed	discussion	of	some	of	these	differences,	see	the	section
“Structures	Versus	Classes”	in	Lesson	17.

The	rest	of	this	lesson	focuses	on	classes	and	doesn't	talk	specifically	about
structures.

NOTE

Note	that	the	same	techniques	apply	to	structures	and	classes.	For	example,
structures	have	the	same	benefits	as	classes	described	in	the	following
section.	Just	because	I'm	describing	them	here	doesn't	mean	I'm	trying	to
imply	that	classes	are	better	because	they	have	these	advantages	and
structures	don't.

Class	Benefits
The	biggest	benefit	of	classes	is	encapsulation.	A	well-designed	class	hides	its
internal	workings	from	the	rest	of	the	program	so	the	program	can	use	the	class
without	knowing	how	the	class	works.

For	example,	suppose	you	build	a	Turtle	class	to	represent	a	turtle	crawling	across
the	screen	drawing	lines	as	it	moves.	The	class	would	need	properties	such	as	X,	Y,
and	Direction	to	define	the	Turtle's	location	and	direction.	It	might	also	provide
methods	such	as	Turn	to	make	it	change	direction	and	Move	to	make	it	move.

The	Turtle	class	needs	to	know	how	to	draw	the	Turtle's	path	as	it	moves,	but	the
main	program	doesn't	need	to	know	how	it	works.	It	doesn't	need	to	know	about
Graphics	objects,	Pens,	or	the	trigonometric	functions	the	Turtle	uses	to	figure	out
where	to	go.	The	main	program	only	needs	to	know	how	to	set	the	Turtle's
properties	and	call	its	methods.

Some	other	benefits	of	classes	(and	structures)	include:

Grouping	data	and	code—The	code	that	makes	a	Turtle	move	is	right	in	the
same	object	as	the	data	that	determines	the	Turtle's	position	and	direction.

Code	reuse—You	only	need	to	write	the	code	for	the	Turtle	class	once	and
then	all	instances	of	the	class	get	to	use	it.	You	get	even	more	code	reuse
through	inheritance,	which	is	described	in	the	section	“Inheritance”	later	in
this	lesson.

Polymorphism—Polymorphism	means	you	can	treat	an	object	as	if	it	were
from	another	class	as	long	as	it	inherits	from	that	class.	For	example,	a	Student
is	a	type	of	Person	so	you	should	be	able	to	treat	a	Student	object	as	if	it	were
either	a	Student	or	a	Person.	The	section	“Polymorphism”	later	in	this	lesson
describes	this	further.

Making	a	Class
Now	that	you	know	a	bit	about	what	classes	are	good	for,	it's	time	to	learn	how	to
build	one.

Making	a	class	in	C#	is	simple.	Open	the	Project	menu	and	select	Add	Class.	Give
the	class	a	good	name	and	click	Add.

Initially	the	class	looks	something	like	the	following:

using	System;

using	System.Collections.Generic;

using	System.Linq;

using	System.Text;

using	System.Threading.Tasks;

namespace	MyProgram

{

				class	Employee

				{

				}

}

Here	MyProgram	is	your	program's	default	namespace,	which	is	normally	the	same
as	the	program's	name.	It	is	used	as	the	namespace	for	all	of	the	forms	and	other
classes	that	you	add	to	the	program.

Employee	is	the	name	that	I	gave	the	class	in	this	example.

At	this	point,	the	class	doesn't	contain	any	data	or	methods	so	it	can't	do	anything.
You	can	write	code	to	create	an	instance	of	the	class,	but	it	will	just	sit	there.	To
make	the	class	useful,	you	need	to	add	properties,	methods,	and	events:

Properties	are	values	associated	with	a	class.	For	example,	an	Employee	class
might	define	FirstName,	LastName,	and	EmployeeId	properties.

Methods	are	actions	that	an	object	can	perform.	For	example,	an	Employee	class
might	provide	a	CalculateBonus	method	that	calculates	the	employee's	end-of-
year	bonus	based	on	performance	during	the	year.

Events	are	raised	by	the	class	to	tell	the	rest	of	the	program	that	something
interesting	happened,	sort	of	like	raising	a	flag	to	draw	attention	to	something.
For	example,	the	Employee	class	might	raise	a	TooManyHours	event	if	the
program	tried	to	assign	an	employee	more	than	40	hours	of	work	in	a	week.

Properties,	methods,	and	events	allow	a	program	to	control	and	interact	with
objects.	The	following	sections	explain	how	you	can	add	properties,	methods,	and
events	to	your	classes.

Properties
If	you	give	a	class	a	public	variable,	other	pieces	of	code	can	get	and	set	that
variable	values.	This	kind	of	variable	is	called	a	field.	A	field	is	similar	to	a

property	but	it	has	one	big	disadvantage:	it	provides	unrestricted	access	to	its
value.	That	means	other	parts	of	the	program	could	dump	any	garbage	into	the
field	without	the	class	being	able	to	stop	them.

In	contrast,	a	class	implements	a	property	by	using	accessor	methods	that	can
include	code	to	protect	the	class	from	garbage	values.	You	learn	more	about	this	as
you	see	how	to	build	properties.

The	following	sections	describe	the	two	most	common	approaches	for
implementing	properties:	auto-implemented	properties	and	backing	fields.

Auto-Implemented	Properties
The	easiest	way	to	make	a	property	is	to	use	an	auto-implemented	property.	The
syntax	for	an	auto-implemented	property	is:

accessibility	dataType	Name	{	get;	set;	}

Here	accessibility	determines	what	code	can	use	the	property.	It	can	be	public,
private,	and	so	on.	The	dataType	determines	the	property's	data	type	and	Name
determines	its	name.	The	get	and	set	keywords	indicate	that	other	code	should	be
able	to	get	and	set	the	property's	value.

NOTE

You	can	omit	the	set	clause	to	create	a	read-only	property.

The	following	code	creates	a	simple	property	named	FirstName	of	type	string:

public	string	FirstName	{	get;	set;	}

Backing	Fields
When	you	make	an	auto-implemented	property,	C#	automatically	generates
accessors	that	let	you	get	and	set	the	property's	value.	You	can	use	those	accessors
without	needing	to	know	the	details	of	how	they	work.

When	you	make	a	property	that	is	not	auto-implemented,	you	need	to	write	the
accessors	yourself.

The	following	shows	the	basic	syntax	used	to	define	a	property	that	is	not	auto-
implemented:

accessibility	dataType	Name

{

				get

				{

								...getCode…

				}

				set

				{

								...setCode…

				}

}

Here	accessibility,	dataType,	and	Name	are	the	same	as	before.	The	getCode	and
setCode	are	the	pieces	of	code	that	get	and	set	the	property's	value	somehow.

One	common	way	to	implement	this	kind	of	property	is	with	a	backing	field.	A
backing	field	is	a	field	that	stores	data	to	represent	the	property.	The	getCode	and
setCode	use	the	backing	field	to	get	and	set	the	property's	value.

The	following	C#	code	shows	a	version	of	the	Direction	property	stored	in	the
backing	field	named	direction:

//	The	Turtle's	direction	in	degrees.

private	int	direction	=	0;						//	Backing	field.

public	int	Direction

{

				get	{	return	direction;	}

				set	{	direction	=	value;	}

}

The	code	starts	by	defining	the	field	direction	to	hold	the	property's	value.	The
field	is	private	so	only	the	code	inside	the	class	can	see	it.

The	property's	get	accessor	simply	returns	the	value	of	direction.

The	property's	set	accessor	saves	a	new	value	in	the	backing	field	direction.	The
new	value	that	the	calling	code	is	trying	to	assign	to	the	property	is	stored	in	a
parameter	named	value.	This	parameter	is	a	bit	odd	because	it	isn't	declared
anywhere.	The	set	accessor	implicitly	defines	value	and	can	use	it.

The	preceding	code	simply	copies	values	in	and	out	of	the	backing	field,	so	why
didn't	you	just	make	the	backing	field	public	and	not	bother	with	a	property?
There	are	several	reasons.

First,	a	property	hides	its	details	from	the	outside	world,	increasing	the	class's
encapsulation.	As	far	as	the	outside	world	is	concerned,	a	description	of	the
Direction	property	tells	you	what	is	stored	(the	direction	in	degrees)	but	not	how
it	is	stored	(as	an	integer	value	in	degrees).

This	example	stores	the	direction	in	degrees,	but	suppose	you	decided	that	the
class	would	work	better	if	you	stored	the	direction	in	radians.	If	Direction	is	a
field,	then	any	code	that	uses	it	would	now	break	because	it	is	using	degrees.	If	you
use	accessors,	they	can	translate	between	degrees	and	radians	as	needed	so	the
code	outside	the	class	doesn't	need	to	know	that	anything	has	changed.

The	following	code	shows	a	new	version	of	the	Direction	property	that	stores	the
value	in	radians.	As	far	as	the	code	outside	the	class	is	concerned,	nothing	has
changed	and	that	code	can	still	work	in	degrees.

//	The	Turtle's	direction	in	radians.

private	double	direction	=	0;						//	Backing	field.

public	int	Direction

{

				get	{	return	(int)(direction	*	180	/	Math.PI);	}

				set	{	direction	=	value	*	Math.PI	/	180;	}

}

You	can	also	add	validation	code	to	property	accessors.	For	example,	suppose	the
Direction	property	represents	an	angle	in	degrees	and	you	only	want	to	allow
values	between	0	and	359.	The	following	code	asserts	that	the	new	value	is
between	0	and	359	degrees.	The	program	can	continue	correctly	if	the	value	is
outside	of	this	range	so	the	code	uses	Debug.Assert	instead	of	throwing	an
exception:

//	The	Turtle's	direction	in	degrees.

private	int	direction	=	0;						//	Backing	field.

public	int	Direction

{

				get	{	return	direction;	}

				//set	{	direction	=	value;	}

				set

				{

								Debug.Assert((value	>=	0)	&&	(value	<=	359),

												"Direction	should	be	between	0	and	359	degrees");

								direction	=	value;

				}

}

Property	accessors	also	give	you	a	place	to	set	breakpoints	if	something	goes
wrong.	For	example,	if	you	know	that	some	part	of	your	program	is	setting	a
Turtle's	Direction	to	45	when	it	should	be	setting	it	to	60	but	you	don't	know
where,	you	could	set	a	breakpoint	in	the	set	accessor	to	see	where	the	change	is
taking	place.

Try	It
Because	classes	are	important	and	somewhat	confusing,	this	lesson	includes	three
Try	Its.	In	this	first	Try	It,	you	create	a	simple	Person	class	with	FirstName,
LastName,	City,	Street,	and	Zip	properties	that	have	some	simple	validations.	You
also	build	a	simple	test	application	shown	in	Figure	23.1.

Figure	23.1

Lesson	Requirements
In	this	lesson,	you:

Build	the	program	shown	in	Figure	23.1.

Create	a	Person	class.

Make	auto-implemented	properties	for	Street,	City,	State,	and	Zip.

Make	FirstName	and	LastName	properties	that	use	backing	fields.	Add	validation
code	to	their	set	accessors	to	prevent	you	from	setting	FirstName	or	LastName	to
a	null	or	blank	value.

Step-by-Step
Build	the	program	shown	in	Figure	23.1.

1.	 This	is	reasonably	straightforward.

Create	a	Person	class.

1.	 Use	the	Project	menu's	Add	Class	item.	Name	the	class	Person.

Make	auto-implemented	properties	for	Street,	City,	State,	and	Zip.

1.	 You	can	use	code	similar	to	the	following:

//	Auto-implemented	properties.

public	string	Street	{	get;	set;	}

public	string	City	{	get;	set;	}

public	string	State	{	get;	set;	}

public	string	Zip	{	get;	set;	}

Make	FirstName	and	LastName	properties	that	use	backing	fields.	Add	validation
code	to	their	set	accessors	to	prevent	you	from	setting	FirstName	or	LastName	to
a	null	or	blank	value.

1.	 The	following	code	shows	how	you	might	implement	the	FirstName
property.	The	code	for	the	LastName	property	is	similar.

//	FirstName	property.

private	string	firstName	=	"";//	Backing	field.

public	string	FirstName

{

				get

				{

								return	firstName;

				}

				set

				{

								if	(value	==	null)

												throw	new	ArgumentOutOfRangeException("FirstName",

																"Person.FirstName	cannot	be	null.");

								if	(value.Length	<	1)

												throw	new	ArgumentOutOfRangeException("FirstName",

																"Person.FirstName	cannot	be	blank.");

				}

}

Methods
A	method	is	simply	a	piece	of	code	in	the	class	that	other	parts	of	the	program	can
execute.	The	following	method	shows	how	the	Turtle	class	might	implement	its
Move	method:

//	Make	the	Turtle	move	the	indicated	distance

//	in	its	current	direction.

public	void	Move(int	distance)

{

				//	Calculate	the	new	position.

				double	radians	=	Direction	*	Math.PI	/	180;

				int	newX	=	(int)(X	+	Math.Cos(radians)	*	distance);

				int	newY	=	(int)(Y	+	Math.Sin(radians)	*	distance);

				//	Draw	to	the	new	position.

				using	(Graphics	gr	=	Graphics.FromImage(Canvas))

				{

								gr.DrawLine(Pens.Blue,	X,	Y,	newX,	newY);

				}

				//	Save	the	new	position.

				X	=	newX;

				Y	=	newY;

}

The	method	takes	as	a	parameter	the	distance	it	should	move.	It	uses	the	Turtle's
current	position	and	direction	to	figure	out	where	this	move	will	finish.	It	uses
some	graphics	code	to	draw	a	line	from	the	current	position	to	the	new	one	(don't
worry	about	the	details)	and	finishes	by	saving	the	new	position.

Events
Events	let	the	class	tell	the	rest	of	the	program	that	something	interesting	is
happening.	For	example,	if	a	BankAccount	object's	balance	falls	below	0,	it	could
raise	an	AccountOverdrawn	event	to	notify	the	main	program.

Declaring	an	event	in	C#	is	a	bit	tricky	because	you	first	need	to	understand
delegates.

Delegates
A	delegate	is	a	data	type	that	can	hold	a	specific	kind	of	method.	For	example,	you
could	make	a	delegate	type	that	represents	methods	that	take	no	parameters	and
return	a	double.	You	could	then	declare	a	variable	of	that	type	and	save	a	method
in	it.

Confusing?	You	bet!

The	key	to	understanding	delegates	is	to	remember	that	a	delegate	type	is	a	new
data	type	just	like	a	string	or	int.	The	difference	is	that	a	variable	with	a	delegate
type	holds	a	method,	not	a	simple	value	like	“Hello”	or	27.

The	Delegates	example	program,	which	is	part	of	this	lesson's	download	on	the
book's	website,	provides	a	simple	example.	The	program	uses	four	steps	to
demonstrate	delegates:	declare	the	delegate	type,	create	variables	of	that	type,
initialize	the	variables,	and	use	the	variables'	values.

First	the	program	defines	a	delegate	type:

//	Define	a	delegate	type	that	takes	no	parameters	and	returns	nothing.

private	delegate	void	DoSomethingMethod();

The	declaration	begins	with	the	accessibility	keyword	private	and	then	the
keyword	delegate	to	tell	C#	that	it	is	defining	a	delegate	type.	The	rest	of	the
declaration	gives	the	delegate	type's	name	DoSomethingMethod.	It	also	indicates	that
instances	of	this	type	must	refer	to	methods	that	take	no	parameters	and	return
nothing	(void).

Now	that	it	has	defined	the	delegate	type,	the	code	declares	three	variables	of	that
type.	Each	of	the	variables	can	hold	a	reference	to	a	method	that	takes	no
parameters	and	returns	nothing:

//	Declare	three	DoSomethingMethod	variables.

private	DoSomethingMethod	method1,	method2,	method3;

Next	the	program	defines	two	methods	that	match	the	delegate's	definition:

//	Define	some	methods	that	have	the	delegate's	type.

private	void	SayHi()

{

				MessageBox.Show("Hi");

}

private	void	SayClicked()

{

				MessageBox.Show("Clicked");

}

When	the	program	starts,	the	following	Load	event	handler	sets	the	variables
method1,	method2,	and	method3	so	they	point	to	these	two	methods.	Notice	that	the
code	makes	method1	and	method3	point	to	the	same	method,	SayHi:

//	Initialize	the	delegate	variables.

private	void	Form1_Load(object	sender,	EventArgs	e)

{

				method1	=	SayHi;

				method2	=	SayClicked;

				method3	=	SayHi;

}

At	this	point,	the	program	has	defined	the	delegate	type,	created	three	variables	of
that	type,	and	initialized	those	variables	so	they	refer	to	the	SayHi	and	SayClicked
methods.	Now	the	program	is	ready	to	use	the	variables.

The	program	displays	three	buttons.	When	you	click	them,	the	following	event
handlers	execute.	Each	button	simply	invokes	the	method	referred	to	by	one	of	the
delegate	variables.

//	Invoke	the	method	stored	in	the	delegates.

private	void	method1Button_Click(object	sender,	EventArgs	e)

{

				method1();

}

private	void	method2Button_Click(object	sender,	EventArgs	e)

{

				method2();

}

private	void	method3Button_Click(object	sender,	EventArgs	e)

{

				method3();

}

When	it	executes,	a	Button's	event	handler	doesn't	“know”	what	method	is	stored
in	its	variable.	For	example,	the	last	Button	invokes	method3	without	knowing
which	“real”	method	will	execute.

This	isn't	an	extremely	practical	program,	and	it's	hard	to	imagine	a	situation
where	you	would	just	want	buttons	to	invoke	the	methods	stored	in	different
delegates.	However,	this	example	is	much	simpler	than	many	programs	that	use
delegates	so	it's	worth	studying	before	you	look	at	more	realistic	examples.

Event	Handler	Delegates
Now	that	you	know	a	bit	about	delegates,	you	can	learn	how	to	use	them	to	make
an	event.

First,	in	the	class	that	will	raise	the	event,	declare	a	delegate	type	to	define	the
event	handler.	Usually	developers	end	the	delegate's	name	with	EventHandler	to
make	it	obvious	what	the	delegate	represents.

By	convention,	event	handlers	usually	take	two	parameters	named	sender	and	e.
The	sender	parameter	is	an	object	that	contains	a	reference	to	whatever	object	is
raising	the	event.	The	e	parameter	contains	data	specific	to	the	event.	Often	you
will	define	a	class	to	provide	that	information	and	the	parameter	e	will	be	of	that
class.

For	example,	suppose	you	want	the	Turtle	class	to	raise	an	OutOfBounds	event	to
tell	the	program	that	it	is	trying	to	move	the	Turtle	off	the	drawing	area.	You	want
the	parameter	e	to	tell	the	program	the	X	and	Y	coordinates	where	the	Turtle	was
trying	to	move.

In	that	case,	you	could	use	the	following	TurtleOutOfBoundsEventArgs	class	to	store
the	X	and	Y	coordinates:

//	The	TurtleOutOfBoundsEventArgs	data	type.

public	class	TurtleOutOfBoundsEventArgs

{

				//	Where	the	Turtle	would	stop	if

				//	this	were	not	out	of	bounds.

				public	int	X	{	get;	set;	}

				public	int	Y	{	get;	set;	}

};

The	following	code	shows	how	the	Turtle	class	could	declare	its
OutOfBoundsEventHandler	delegate:

//	Declare	the	OutOfBound	event's	delegate.

public	delegate	void	OutOfBoundsEventHandler(

				object	sender,	TurtleOutOfBoundsEventArgs	e);

Next	the	class	must	declare	the	actual	event	to	tell	C#	that	the	class	will	provide
this	event.	The	declaration	should	begin	with	an	accessibility	keyword	(public,
private,	and	so	on)	followed	by	the	keyword	event.	Next	it	should	give	the	event
handler's	delegate	type.	It	finishes	with	the	event's	name.

The	following	code	declares	the	OutOfBounds	event,	which	is	handled	by	event
handlers	of	type	OutOfBoundsEventHandler:

//	Declare	the	OutOfBounds	event.

public	event	OutOfBoundsEventHandler	OutOfBounds;

The	final	piece	of	code	that	you	need	to	add	to	the	class	is	the	code	that	raises	the
event.	This	code	simply	invokes	the	event	handler,	passing	it	any	parameters	that
it	should	receive.

Before	it	raises	the	event,	however,	the	code	should	verify	that	some	other	piece	of
code	has	registered	to	receive	the	event.	The	code	does	that	by	checking	whether
the	event	is	null.	(This	syntax	seems	a	bit	strange	to	me.	The	code	looks	like	it	is

checking	that	an	event	is	null	when	really	it's	asking	whether	another	piece	of
code	has	asked	to	receive	the	event.	This	is	just	the	syntax	used	by	C#.)

The	following	code	raises	the	Turtle	class's	OutOfBounds	event:

if	(OutOfBounds	!=	null)

{

				TurtleOutOfBoundsEventArgs	args	=	new	TurtleOutOfBoundsEventArgs();

				args.X	=	newX;

				args.Y	=	newY;

				OutOfBounds(this,	args);

}

If	OutOfBounds	is	not	null	(in	other	words,	some	other	code	wants	to	receive	the
event),	the	code	creates	a	new	TurtleOutOfBoundsEventArgs	object,	initializes	it	to
indicate	the	point	the	Turtle	was	trying	to	move	to,	and	then	calls	OutOfBounds,
passing	it	the	object	raising	the	event	and	the	TurtleOutOfBoundsEventArgs	object.

A	class	uses	code	to	decide	when	to	raise	the	event.	The	following	code	shows	how
the	Turtle	class	raises	its	event	when	the	Move	method	tries	to	move	beyond	the
edge	of	the	Turtle's	Bitmap.	The	bold	code	determines	whether	the	Turtle	is
moving	out	of	bounds	and	raises	the	event	if	necessary.

//	Make	the	Turtle	move	the	indicated	distance

//	in	its	current	direction.

public	void	Move(int	distance)

{

				//	Calculate	the	new	position.

				double	radians	=	Direction	*	Math.PI	/	180;

				int	newX	=	(int)(X	+	Math.Cos(radians)	*	distance);

				int	newY	=	(int)(Y	+	Math.Sin(radians)	*	distance);

				//	See	if	the	new	position	is	off	the	Bitmap.

				if	((newX	<	0)	||	(newY	<	0)	||

								(newX	>=	Canvas.Width)	||	(newY	>=	Canvas.Height))

				{

								//	Raise	the	OutOfBounds	event,	passing

								//	the	event	handler	the	new	coordinates.

								if	(OutOfBounds	!=	null)

								{

												TurtleOutOfBoundsEventArgs	args	=

																new	TurtleOutOfBoundsEventArgs();

												args.X	=	newX;

												args.Y	=	newY;

												OutOfBounds(this,	args);

								}

								return;

				}

				//	Draw	to	the	new	position.

				using	(Graphics	gr	=	Graphics.FromImage(Canvas))

				{

								gr.DrawLine(Pens.Blue,	X,	Y,	newX,	newY);

				}

				//	Save	the	new	position.

				X	=	newX;

				Y	=	newY;

}

There's	still	one	piece	missing	to	all	of	this.	The	main	program	must	register	to
receive	the	OutOfBound	event	or	it	won't	know	when	the	Turtle	has	raised	it.

When	the	Turtle	program	starts,	its	Form_Load	event	handler	executes	the
following	code.	This	adds	the	Turtle_OutOfBounds	method	as	an	event	handler	for
the	MyTurtle	object's	OutOfBounds	event.	Now	if	the	MyTurtle	object	raises	its	event,
the	program's	Turtle_OutOfBounds	event	handler	executes.

//	Register	to	receive	the	OutOfBounds	event.

MyTurtle.OutOfBounds	+=	Turtle_OutOfBounds;

NOTE

You	can	remove	an	event	handler	by	using	code	like	this:

MyTurtle.OutOfBounds	-=	Turtle_OutOfBounds;

The	following	code	shows	the	Turtle	program's	Turtle_OutOfBounds	event	handler:

//	Handle	the	OutOfBounds	event.

private	void	Turtle_OutOfBounds(object	sender,	

Turtle.TurtleOutOfBoundsEventArgs	e)

{

				MessageBox.Show(string.Format("Oops!	({0},	{1})	is	out	of	bounds.",

								e.X,	e.Y));

}

Try	It
In	this	second	Try	It	in	the	lesson,	you	create	a	BankAccount	class.	You	give	it	a
Balance	property	and	two	methods,	Credit	and	Debit.	The	Debit	method	raises	an
Overdrawn	event	if	a	withdrawal	would	give	the	account	a	negative	balance.

You	also	build	the	test	application	shown	in	Figure	23.2.

Figure	23.2

Lesson	Requirements
In	this	lesson,	you:

Build	the	program	shown	in	Figure	23.2.

Create	a	BankAccount	class.	Give	it	a	Balance	property.

Add	Debit	and	Credit	methods	to	add	and	remove	money	from	the	account.

Define	the	AccountOverdrawnArgs	class	to	pass	to	event	handlers.

Define	the	OverdrawnEventHandler	delegate	type.

Declare	the	Overdrawn	event	itself.

Make	the	Debit	method	raise	the	event	when	necessary.

In	the	main	program,	register	to	receive	the	Overdrawn	event	so	it	can	display	a
message	box.

In	the	main	program,	make	the	Credit	and	Debit	buttons	add	and	remove
money	from	the	bank	account,	respectively.

NOTE

You	can	download	the	code	and	resources	for	this	lesson	from	the	website	at
www.wrox.com/go/csharp24hourtrainer2e.

Hints
This	example	doesn't	do	anything	special	with	the	Balance	property	so	you	can
make	it	auto-implemented.

Make	the	main	form	create	an	instance	of	the	BankAccount	class	to	manipulate.

Step-by-Step
Build	the	program	shown	in	Figure	23.2.

1.	 This	is	reasonably	straightforward.

Create	a	BankAccount	class.	Give	it	a	Balance	property.

1.	 Use	code	similar	to	the	following:

//	The	account	balance.

public	decimal	Balance	{	get;	set;	}

Add	Debit	and	Credit	methods	to	add	and	remove	money	from	the	account.

1.	 Start	with	code	similar	to	the	following.	You'll	modify	the	Debit	method
later	to	raise	the	Overdrawn	event.

//	Add	money	to	the	account.

public	void	Credit(decimal	amount)

{

				Balance	+=	amount;

}

//	Remove	money	from	the	account.

public	void	Debit(decimal	amount)

{

				Balance	-=	amount;

}

Define	the	AccountOverdrawnArgs	class	to	pass	to	event	handlers.

1.	 Use	code	similar	to	the	following:

//	Define	the	OverdrawnEventArgs	type.

public	class	OverdrawnEventArgs

{

				public	decimal	currentBalance,	invalidBalance;

}

Define	the	OverdrawnEventHandler	delegate	type.

http://www.wrox.com/go/csharp24hourtrainer2e

1.	 Use	code	similar	to	the	following:

//	Define	the	OverdrawnEventHandler	delegate	type.

public	delegate	void	OverdrawnEventHandler(

				object	sender,	OverdrawnEventArgs	args);

Declare	the	Overdrawn	event	itself.

1.	 Use	code	similar	to	the	following:

//	Declare	the	Overdrawn	event.

public	event	OverdrawnEventHandler	Overdrawn;

Make	the	Debit	method	raise	the	event	when	necessary.

1.	 Modify	the	initial	version	of	the	method	so	it	raises	the	event	when
necessary.	Use	code	similar	to	the	following:

//	Remove	money	from	the	account.

public	void	Debit(decimal	amount)

{

				//	See	if	there	is	enough	money.

				if	(Balance	<	amount)

				{

								//	Not	enough	money.	Raise	the	Overdrawn	event.

								if	(Overdrawn	!=	null)

								{

												OverdrawnEventArgs	args	=	new	OverdrawnEventArgs();

												args.currentBalance	=	Balance;

												args.invalidBalance	=	Balance	-	amount;

												Overdrawn(this,	args);

								}

				}

				else

				{

								//	There's	enough	money.

								Balance	-=	amount;

				}

}

In	the	main	program,	make	the	Credit	and	Debit	buttons	add	and	remove
money	from	the	bank	account,	respectively.

1.	 Use	code	similar	to	the	following:

//	Add	money	to	the	account.

private	void	creditButton_Click(object	sender,	EventArgs	e)

{

				//	Add	the	money.

				decimal	amount	=	decimal.Parse(amountTextBox.Text);

				MyAccount.Credit(amount);

				//	Display	the	current	balance.

				balanceTextBox.Text	=	MyAccount.Balance.ToString("C");

}

//	Remove	money	from	the	account.

private	void	debitButton_Click(object	sender,	EventArgs	e)

{

				//	Remove	the	money.

				decimal	amount	=	decimal.Parse(amountTextBox.Text);

				MyAccount.Debit(amount);

				//	Display	the	current	balance.

				balanceTextBox.Text	=	MyAccount.Balance.ToString("C");

}

Inheritance
Often	when	you	build	one	class,	you	end	up	building	a	bunch	of	other	closely
related	classes.	For	example,	suppose	you're	building	a	program	that	models	your
company's	organization.	You	might	build	an	Employee	class	to	represent
employees.	After	a	while,	you	may	realize	that	there	are	different	kinds	of
employees:	managers,	supervisors,	project	leaders,	and	so	forth.

You	could	build	each	of	those	classes	individually	but	you'd	find	that	these	classes
have	a	lot	in	common.	They	all	probably	have	FirstName,	LastName,	Address,
EmployeeId,	and	other	properties.	Depending	on	the	kinds	of	operations	you	need
the	objects	to	perform,	you	might	also	find	that	they	share	a	lot	of	methods:
ScheduleVacation,	PrintTimesheet,	RecordHours,	and	so	forth.	Although	you	could
build	each	of	these	classes	individually,	you	would	end	up	duplicating	a	lot	of	code
in	each	class	to	handle	these	common	features.

Fortunately,	C#	allows	you	to	make	one	class	inherit	from	another	and	that	lets
them	share	common	code.	When	you	make	one	class	inherit	from	another	one,
you	derive	the	new	class	from	the	existing	class.	In	that	case,	the	new	class	is
called	the	child	class	and	the	class	from	which	it	inherits	is	called	the	parent	class.

In	this	example,	you	could	build	a	Person	class	with	properties	that	all	people
have:	FirstName,	LastName,	Street,	City,	State,	Zip,	Email,	and	Phone.	You	could
then	derive	the	Employee	class	from	Person	and	add	the	new	property	EmployeeId.

Next	you	could	derive	the	Manager	class	from	Employee	(because	all	Managers	are
also	Employees)	and	add	new	manager-related	properties	such	as	DepartmentName
and	DirectReports.

Syntactically,	to	make	a	class	that	inherits	from	another	you	add	a	colon	and	the
parent	class's	name	after	the	child	class's	declaration.	For	example,	the	following
code	defines	the	Manager	class,	which	inherits	from	Employee.	In	addition	to
whatever	features	the	Employee	class	provides,	Manager	adds	new	DepartmentName
and	DirectReports	properties:

class	Manager	:	Employee

{

				public	string	DepartmentName	{	get;	set;	}

				public	List<Employee>	DirectReports	=	new	List<Employee>();

}

NOTE

Note	that	C#	only	supports	single	inheritance.	That	means	a	class	can	inherit
from	at	most	one	parent	class.	For	example,	if	you	define	a	House	class	and	a
Boat	class,	you	cannot	make	a	HouseBoat	class	that	inherits	from	both.

Polymorphism
Polymorphism	is	a	rather	confusing	concept	that	basically	means	a	program	can
treat	an	object	as	if	it	were	any	class	that	it	inherits.	Another	way	to	think	of	this	is
that	polymorphism	lets	you	treat	an	object	as	if	it	were	any	of	the	classes	that	it	is.
For	example,	an	Employee	is	a	kind	of	Person	so	you	should	be	able	to	treat	an
Employee	as	a	Person.

Note	that	the	reverse	is	not	true.	A	Person	is	not	necessarily	an	Employee	(it	could
be	a	Customer	or	some	other	unrelated	person),	so	you	can't	necessarily	treat	a
Person	as	an	Employee.

For	a	more	detailed	example,	suppose	you	make	the	Person,	Employee,	and	Manager
classes	and	they	inherit	from	each	other	in	the	natural	progression:	Employee
inherits	from	Person	and	Manager	inherits	from	Employee.

Now	suppose	you	write	a	SendEmail	method	that	takes	a	Person	as	a	parameter	and
sends	a	message	to	the	e-mail	address	stored	in	the	Person's	Email	property.
Employee	inherits	from	Person	so	you	should	be	able	to	pass	an	Employee	into	this
method	and	the	method	should	be	able	to	treat	it	as	a	Person.	This	makes	intuitive
sense	because	an	Employee	is	a	Person,	just	a	particular	kind	of	Person.

Similarly,	Manager	inherits	from	Employee	so	a	Manager	is	a	kind	of	Employee.	If	an
Employee	is	a	kind	of	Person	and	a	Manager	is	a	kind	of	Employee,	then	a	Manager
must	also	be	a	kind	of	Person,	so	the	same	method	should	be	able	to	take	a	Manager
as	its	parameter.

Try	It
In	the	final	Try	It	of	this	lesson,	you	get	to	experiment	with	classes,	inheritance,
and	polymorphism.	You	build	Person,	Employee,	and	Manager	classes.	To	test	the
classes,	you	build	a	simple	program	that	creates	instances	of	each	class	and	passes
them	to	a	method	that	takes	a	Person	as	a	parameter.

Lesson	Requirements
In	this	lesson,	you:

Create	a	Person	class	with	properties	FirstName,	LastName,	Street,	City,	State,
Zip,	Email,	and	Phone.	Give	the	Person	class	a	GetAddress	method	that	returns
the	Person's	name	and	address	properties	as	a	string	in	the	format:

Alice	Archer

100	Ash	Ave

Bugsville	CO	82010

Derive	an	Employee	class	from	Person.	Add	the	properties	EmployeeId	and
MailStop.

Derive	a	Manager	class	from	Employee.	Add	a	DepartmentName	property	and	a
DirectReports	property	of	type	List<Employee>.	Make	a	GetDirectReportsList
method	that	returns	the	names	of	the	Manager's	Employees	separated	by
newlines.

Make	the	main	program	create	two	Employees	named	Alice	and	Bob,	a	Manager
named	Cindy	who	has	Alice	and	Bob	in	her	department,	and	a	Person	named
Dan.

Make	a	ShowAddress	method	that	takes	a	Person	as	a	parameter	and	displays
the	Person's	address.

On	the	main	form,	make	buttons	that	call	ShowAddress	for	each	of	the	people,
passing	the	method	the	appropriate	object.

Make	a	final	button	that	displays	Cindy's	list	of	direct	reports.

NOTE

You	can	download	the	code	and	resources	for	this	lesson	from	the	website	at
www.wrox.com/go/csharp24hourtrainer2e.

Hints
This	example	doesn't	do	anything	fancy	with	the	class's	properties	so	you	can
use	auto-implemented	properties.

The	ShowAddress	method	should	take	a	Person	parameter	even	though	some	of
the	objects	it	will	be	passed	are	Employees	or	Managers.

Step-by-Step
Create	a	Person	class	with	properties	FirstName,	LastName,	Street,	City,	State,
Zip,	Email,	and	Phone.	Give	the	Person	class	a	GetAddress	method	that	returns
the	Person's	name	and	address	properties	as	a	string	in	the	format:

Alice	Archer

100	Ash	Ave

Bugsville	CO	82010

1.	 Make	a	new	Person	class	with	code	similar	to	the	following:

class	Person

{

				public	string	FirstName	{	get;	set;	}

				public	string	LastName	{	get;	set;	}

				public	string	Street	{	get;	set;	}

				public	string	City	{	get;	set;	}

				public	string	State	{	get;	set;	}

				public	string	Zip	{	get;	set;	}

				//	Display	the	person's	address.

				//	A	real	application	might	print	this	on	an	envelope.

				public	string	GetAddress()

				{

								return	FirstName	+	"	"	+	LastName	+

												"\n"	+	Street	+	"\n"	+	City	+

												"				"	+	State	+	"				"	+	Zip;

				}

}

Derive	an	Employee	class	from	Person.	Add	the	properties	EmployeeId	and
MailStop.

1.	 Make	the	Employee	class	similar	to	the	following:

class	Employee	:	Person

{

http://www.wrox.com/go/csharp24hourtrainer2e

				public	int	EmployeeId	{	get;	set;	}

				public	string	MailStop	{	get;	set;	}

}

Derive	a	Manager	class	from	Employee.	Add	a	DepartmentName	property	and	a
DirectReports	property	of	type	List<Employee>.	Make	a	GetDirectReportsList
method	that	returns	the	names	of	the	Manager's	Employees	separated	by
newlines.

1.	 Make	the	Manager	class	similar	to	the	following:

class	Manager	:	Employee

{

				public	string	DepartmentName	{	get;	set;	}

				public	List<Employee>	DirectReports	=	new	List<Employee>();

				//	Return	a	list	of	this	manager's	direct	reports.

				public	string	GetDirectReportsList()

				{

								string	result	=	"";

								foreach	(Employee	emp	in	DirectReports)

								{

												result	+=	emp.FirstName	+	"	"	+	emp.LastName	+	"\n";

								}

								return	result;

				}

}

Make	the	main	program	create	two	Employees	named	Alice	and	Bob,	a	Manager
named	Cindy	who	has	Alice	and	Bob	in	her	department,	and	a	Person	named
Dan.

1.	 Because	the	program's	buttons	need	to	access	the	objects,	these
objects	should	be	stored	in	class-level	fields	as	in	the	following

code:

//	Define	some	people	of	various	types.

private	Person	Dan;

private	Employee	Alice,	Bob;

private	Manager	Cindy;

2.	 Add	code	to	the	main	form's	Load	event	handler	to	initialize	the
objects.	The	following	code	shows	how	the	program	might	create

Alice's	Employee	object:

//	Make	an	Employee	named	Alice.

Alice	=	new	Employee();

Alice.FirstName	=	"Alice";

Alice.LastName	=	"Archer";

Alice.Street	=	"100	Ash	Ave";

Alice.City	=	"Bugsville";

Alice.State	=	"CO";

Alice.Zip	=	"82010";

Alice.EmployeeId	=	1001;

Alice.MailStop	=	"A-1";

3.	 Creating	and	initializing	the	other	objects	is	similar.	The	only	odd
case	is	adding	Alice	and	Bob	as	Cindy's	employees	as	in	the	following

code:

Cindy.DirectReports.Add(Alice);

Cindy.DirectReports.Add(Bob);

Make	a	ShowAddress	method	that	takes	a	Person	as	a	parameter	and	displays
the	Person's	address.

1.	 Use	code	similar	to	the	following:

//	Display	this	Person's	address.

private	void	ShowAddress(Person	person)

{

				MessageBox.Show(person.GetAddress());

}

On	the	main	form,	make	buttons	that	call	ShowAddress	for	each	of	the	people,
passing	the	method	the	appropriate	object.

1.	 Create	the	buttons'	Click	event	handlers.	The	following	code	shows
the	event	handler	that	displays	Cindy's	address:

private	void	cindyAddressButton_Click(object	sender,	EventArgs	e)

{

				ShowAddress(Cindy);

}

Note	that	the	variable	Cindy	is	a	Manager	but	the	ShowAddress	method	treats
it	as	a	Person.	That's	okay	because	Manager	inherits	indirectly	from	Person.

Make	a	final	button	that	displays	Cindy's	list	of	direct	reports.

1.	 This	method	simply	calls	the	Cindy	object's	GetDirectReportsList
method	and	displays	the	result:

//	Display	Cindy's	direct	reports.

private	void	cindyReportsButton_Click(object	sender,	EventArgs	e)

{

				MessageBox.Show(Cindy.GetDirectReportsList());

}

Exercises
1.	 Write	a	program	similar	to	the	one	shown	in	Figure	23.3	to	manipulate
complex	numbers.	When	you	enter	the	complex	numbers'	real	and	imaginary
parts	in	the	textboxes	and	click	Calculate,	the	program	should	display	the	sum,
difference,	and	product	of	the	two	complex	numbers.

Figure	23.3

Make	a	ComplexNumber	class	with	properties	Real	and	Imaginary	to	hold	a
number's	real	and	imaginary	parts,	respectively.	Give	the	class	AddTo,
MultiplyBy,	and	SubtractFrom	methods	that	combine	the	current	ComplexNumber
with	another	taken	as	a	parameter	and	return	the	result	as	a	new
ComplexNumber.

Hints:	Recall	from	school	these	equations	for	calculating	with	complex
numbers:

(A	+	Bi)	+	(C	+	Di)	=	(A	+	C)	+	(B	+	D)i

(A	+	Bi)	−	(C	+	Di)	=	(A	−	C)	+	(B	−	D)i

(A	+	Bi)	×	(C	+	Di)	=	(A	×	C	−	B	×	D)	+	(A	×	D	+	B	×	C)i

For	more	review	of	complex	numbers,	see
en.wikipedia.org/wiki/Complex_numbers	or
mathworld.wolfram.com/ComplexNumber.html.

2.	 [Games]	Suppose	you're	writing	a	role-playing	game	and	design	classes	to
represent	the	player's	class	choices:	fighter,	magic-user,	and	rogue.

Hints:

Give	each	class	a	few	representative	properties,	but	you	don't	need	to
include	everything	you	would	need	to	actually	build	the	game.

Use	auto-implemented	properties.

Give	each	class	a	few	methods	that	might	make	sense	for	the	class	but	don't
give	them	any	code.	(You	may	need	to	add	a	return	statement	if	a	method
returns	a	value.)

http://en.wikipedia.org/wiki/Complex_numbers
http://mathworld.wolfram.com/ComplexNumber.html

Make	most	properties	strings	instead	of	objects.	For	example,	you	can
represent	a	weapon	as	a	string	holding	the	weapon's	name	(as	in	“sword”);
you	don't	need	to	use	some	sort	of	Weapon	or	Sword	class.

Think	about	what	the	classes	have	in	common	and	how	you	can	avoid
duplicating	code.

3.	 Build	Person	and	Student	classes.	Give	the	Student	class	(directly	or	via
inheritance)	typical	name	and	address	properties,	plus	a	list	to	hold	the
courses	(strings)	that	the	Student	is	enrolled	in.	Also	give	the	class	an	Enroll
method	that	adds	a	course	to	the	list.

Next	make	a	user	interface	that	lets	the	user	add	courses	to	a	Student.	After
adding	a	new	course,	display	the	Student's	courses	in	a	ListBox.	(Hint:	The
word	class	is	a	keyword	used	by	C#	so	it's	easier	to	use	the	word	“course”
instead	when	you're	talking	about	enrollment.)

4.	 Copy	the	program	you	wrote	for	Exercise	3	and	modify	the	Enroll	method	so	it
throws	an	ArgumentException	if	the	program	tries	to	enroll	the	student	in	the
same	course	twice	or	if	the	student	is	already	enrolled	in	six	courses.

5.	 Copy	the	program	you	wrote	for	Exercise	4	and	modify	the	Enroll	method	so	it
raises	an	Overenrolled	event	instead	of	throwing	an	exception	if	the	student
tries	to	enroll	in	more	than	six	courses.

6.	 Sometimes	you	can	use	an	event	handler	to	tell	the	program	about	unusual
circumstances	and	let	the	program	decide	whether	to	allow	some	action.	For
example,	a	form's	FormClosing	event	handler	can	use	its	e.Cancel	parameter	to
cancel	the	close	and	force	the	form	to	remain	open.

Consider	the	program	you	wrote	for	Exercise	3.	Under	some	circumstances,
you	may	want	to	allow	a	student	to	enroll	in	more	than	six	courses.	(For
example,	students	such	as	Hermione	Granger	who	have	time	turners.)	Copy
that	program	and	add	an	Allow	field	to	the	OverenrolledEventArgs	class.	Make
the	Student	class	initialize	Allow	to	false	and	then	invoke	the	event	handlers.

Make	the	main	program	catch	the	event,	display	a	message	box	asking	the	user
whether	it	should	allow	the	student	to	overenroll,	and	set	Allow	accordingly.

After	the	event	handlers	return,	make	the	Student	class	allow	the	student	to
overenroll	if	Allow	is	true.

7.	 [Games,	Hard]	Most	games	that	involve	moving	objects	use	sprites	to
represent	those	objects.	A	sprite	is	simply	an	instance	of	a	class	that	represents
the	game	object's	position,	velocity,	colors,	and	other	attributes.	The	goal	is	to
move	as	much	information	about	the	objects	as	possible	into	the	sprite	class	so
the	main	program	doesn't	need	to	know	about	it.

Copy	the	bouncing	ball	program	you	built	for	Exercise	19-8	(or	download	the
version	available	on	the	book's	website)	and	modify	it	so	it	uses	a	Ball	class	to
track	balls.	Hints:

Add	the	directive	using	System.Drawing	to	the	file	that	defines	the	Ball
class.

Give	the	Ball	class	the	fields	(or	properties)	X,	Y,	Vx,	Vy,	Width,	Height,	and
Brush.	Also	give	it	a	new	ClientSize	property	of	type	Size.

Give	the	Ball	class	an	Initialize	method	that	randomizes	the	Ball's
properties.	Hints:

Pass	the	main	form's	ClientSize	into	the	Initialize	method.	Make	the
method	save	it	in	the	Ball's	ClientSize	field.

Make	a	private	static	array	called	brushes	that	lists	the	brushes	from
which	to	pick	randomly.	(Making	the	array	private	means	code	outside
of	the	Ball	class	cannot	see	it.	Making	it	static	means	all	instances	of
the	Ball	class	share	the	same	array,	so	they	don't	waste	space	by
creating	a	new	array	for	each	Ball	object.)

Make	a	private	static	Random	object	for	the	Ball	instances	to	share.
(This	solves	a	tricky	problem.	When	a	program	makes	a	Random	object,	it
uses	the	system	time	to	initialize	itself	by	default.	This	program	makes
all	of	the	Balls	at	the	same	time.	That	means	if	each	Ball	made	its	own
Random	object,	they	would	all	be	initialized	at	almost	exactly	the	same
time	so	the	Random	objects	would	all	produce	the	same	sequence	of
“random”	values.	The	result	would	be	a	bunch	of	Balls	with	the	same
positions,	velocities,	and	colors.	Using	the	static	keyword	makes	all	of
the	Balls	share	the	same	Random	object	so	they	get	different	“random”
values.	To	see	the	problem,	just	remove	the	static	keyword	from	the
Random	object's	declaration.)

Give	the	Ball	class	a	Move	method	that	updates	the	Ball's	position.	If	the
Ball	hits	a	wall,	raise	a	HitWall	event.

Give	the	Ball	class	a	Draw	method	that	takes	a	Graphics	object	as	a
parameter	and	draws	the	ball	on	it.

Make	the	form's	code	use	the	Ball	methods	to	initialize,	move,	and	draw
the	balls.	(This	should	make	the	form's	code	much	simpler.)

Make	the	form's	code	catch	the	Balls'	HitWall	events	and	play	the
appropriate	sound.

NOTE

Please	select	the	videos	for	Lesson	23	online	at
www.wrox.com/go/csharp24hourtrainer2evideos.

http://www.wrox.com/go/csharp24hourtrainer2evideos

Lesson	24

Initializing	Objects
Most	of	the	time	when	you	create	an	object,	you	need	to	initialize	its	properties.
You	generally	wouldn't	create	an	Employee	object	without	at	least	setting	its
FirstName	and	LastName	properties.	The	following	code	shows	how	you	might
initialize	an	Employee	object:

//	Make	an	Employee	named	Alice.

Employee	alice	=	new	Employee();

alice.FirstName	=	"Alice";

alice.LastName	=	"Archer";

alice.Street	=	"100	Ash	Ave";

alice.City	=	"Bugsville";

alice.State	=	"CO";

alice.Zip	=	"82010";

alice.EmployeeId	=	1001;

alice.MailStop	=	"A-1";

Though	this	is	relatively	straightforward,	it	is	fairly	tedious.	Creating	and
initializing	a	bunch	of	Employees	would	take	a	lot	of	repetitive	code.	Fortunately	C#
provides	alternatives	that	make	this	task	a	little	easier.

In	this	lesson	you	learn	how	to	initialize	an	object's	properties	as	you	create	it.	You
also	learn	how	to	define	constructors	that	make	initializing	objects	easier	and	how
to	make	destructors	that	clean	up	after	an	object.

Initializing	Objects
C#	provides	a	simple	syntax	for	initializing	an	object's	properties	as	you	create	it.
Create	the	object	as	usual	but	follow	the	new	keyword	and	the	class's	name	with
braces.	Inside	the	braces,	place	comma-separated	statements	that	initialize	the
object's	properties.

For	example,	the	following	code	creates	and	initializes	an	Employee	object	named
alice	similar	to	the	one	created	in	the	previous	code.	The	statements	inside	the
braces	initialize	the	object's	properties.

//	Make	an	Employee	named	Alice.

Employee	alice	=	new	Employee()

{

				FirstName	=	"Alice",

				LastName	=	"Archer",

				Street	=	"100	Ash	Ave",

				City	=	"Bugsville",

				State	=	"CO",

				Zip	=	"82010",

				EmployeeId	=	1001,

				MailStop	=	"A-1",

};

NOTE

Note	that	an	initializer	can	only	initialize	properties	that	the	code	can	access.
For	example,	if	a	property	is	private,	the	initializer	cannot	set	its	value.

This	may	not	seem	like	much	of	an	improvement	because	it	has	just	as	many	lines
of	code	as	the	previous	version.	(Two	more	lines	if	you	count	the	braces.)	It	is
easier	to	type,	however,	partly	because	you	don't	need	to	repeatedly	type	the	name
of	the	object.

IntelliSense	also	helps.	When	you	open	the	braces	and	type	F,	IntelliSense	can
figure	out	that	you're	trying	to	initialize	the	FirstName	property.	At	that	point,	you
can	press	Tab	to	fill	in	the	rest	of	the	property's	name	without	typing	it.

IntelliSense	also	knows	what	values	you've	entered	previously	and	won't	show
them	to	you	again.	For	example,	if	you	initialize	the	Street	property	and	then	later
type	S,	IntelliSense	knows	that	you	must	be	initializing	the	State	property.

Constructors
Initializers	are	handy	and	easy	to	use	but	sometimes	you	might	like	some	extra
control	over	how	an	object	is	created.	Constructors	give	you	that	extra	control.

A	constructor	is	a	method	that	is	executed	when	an	object	is	created.	The
constructor	executes	before	the	code	that	creates	the	object	gets	hold	of	it.	The
constructor	can	perform	any	setup	tasks	that	are	necessary	to	prepare	the	object
for	use.	It	can	look	up	data	in	databases,	prepare	data	structures,	and	initialize
properties.

To	create	a	constructor,	you	make	a	method	that	has	no	return	type	and	that	is
named	after	the	class.	Alternatively,	you	can	think	of	it	as	a	method	that	returns
the	class's	type	and	that	has	no	name.	You'll	see	examples	shortly.

The	next	two	sections	describe	two	kinds	of	constructors:	parameterless
constructors	and	parameterized	constructors.	A	later	section	explains	how	one
constructor	can	invoke	another	to	avoid	duplicated	code.

Parameterless	Constructors
A	constructor	can	take	parameters	just	like	any	other	method	to	help	it	in	its	setup
tasks.	A	parameterless	constructor	(sometimes	called	an	empty	constructor)
takes	no	parameters,	so	it's	somewhat	limited	in	what	it	can	do.

For	example,	suppose	the	Manager	class	has	a	DirectReports	property,	which	is	a
list	of	Employees	that	report	to	a	given	manager.	A	parameterless	constructor
cannot	build	that	list	because	it	doesn't	know	what	employees	to	put	in	it.	It	can,
however,	initialize	the	DirectReports	property	to	an	empty	list,	as	shown	in	the
following	code:

class	Manager	:	Employee

{

				public	List<Employee>	DirectReports;

				//	Initialize	the	Manager.

				public	Manager()

				{

								DirectReports	=	new	List<Employee>();

				}

}

You	implicitly	invoke	a	parameterless	constructor	any	time	you	create	an	object
without	using	any	parameters.	For	example,	the	following	code	creates	a	new
Person	object.	When	this	code	executes,	control	jumps	briefly	to	the	parameterless
constructor	so	it	can	prepare	the	object	for	use.

Manager	fred	=	new	Manager();

Note	that	C#	creates	a	default	public	parameterless	constructor	for	you	if	you
don't	define	any	constructors	explicitly.	If	you	give	the	class	any	constructors,
however,	C#	doesn't	create	the	default	constructor.	In	that	case,	if	you	want	a

parameterless	constructor,	you	must	make	it	yourself.

Parameterized	Constructors
Parameterless	constructors	are	useful	but	fairly	limited	because	they	don't	have
much	information	to	go	by.	To	give	a	constructor	more	information,	you	can	make
it	take	parameters	just	like	you	can	with	any	other	method.

One	simple	type	of	parameterized	constructor	uses	its	parameters	to	initialize
properties.	For	example,	you	could	make	a	constructor	for	the	Person	class	that
takes	the	person's	first	and	last	names	as	parameters.	The	constructor	could	then
set	the	object's	FirstName	and	LastName	properties.

Why	would	you	bother	doing	this	when	you	could	use	an	initializer?	First,	the
syntax	for	using	a	constructor	is	slightly	more	concise	than	initializer	syntax.	The
following	code	uses	a	constructor	that	takes	eight	parameters	to	initialize	an
Employee's	properties:

Employee	alice	=	new	Employee("Alice",	"Archer",	"100	Ash	Ave",

				"Bugsville",	"CO",	"82010",	1001,	"A-1");

Compare	this	code	to	the	earlier	snippet	that	used	initializers.	This	version	is	more
concise,	although	it's	less	self-documenting	because	it	doesn't	explicitly	list	the
property	names.

The	second	reason	you	might	prefer	to	use	a	parameterized	constructor	instead	of
an	initializer	is	that	a	constructor	can	perform	all	sorts	of	checks	that	an	initializer
cannot.	For	example,	a	constructor	can	validate	its	parameters	against	each	other
or	against	a	database.	An	Employee	class's	constructor	could	take	an	employee	ID
as	a	parameter	and	use	a	database	to	verify	that	the	employee	really	exists.

A	constructor	can	also	require	that	certain	parameters	be	provided.	For	example,	a
Person	constructor	could	require	that	the	first	and	last	name	parameters	be
provided.	If	you	rely	on	initializers,	the	program	could	create	a	Person	that	has	no
first	or	last	name.

To	make	a	constructor	that	takes	parameters,	simply	add	the	parameters	as	you
would	for	any	other	method.	The	following	code	shows	a	constructor	for	the
Person	class	that	uses	its	parameters	to	initialize	the	new	Person	object's
properties:

//	Initialize	all	values.

public	Person(string	firstName,	string	lastName,	string	street,

				string	city,	string	state,	string	zip)

{

				FirstName	=	firstName;

				LastName	=	lastName;

				Street	=	street;

				City	=	city;

				State	=	state;

				Zip	=	zip;

}

Destructors
Constructors	execute	when	a	new	object	is	created	to	perform	initialization	chores.
Destructors	execute	when	an	object	is	being	destroyed	to	perform	cleanup	chores.
For	example,	a	destructor	might	disconnect	from	databases,	close	files,	free
memory,	and	do	whatever	else	is	necessary	before	the	object	gets	carted	off	to	the
electronic	recycle	center.

Destructors	are	simpler	than	constructors	because:

A	class	can	have	only	one	destructor.

You	cannot	call	a	destructor	directly;	they	are	only	called	automatically.

A	destructor	cannot	invoke	another	destructor.

Destructors	cannot	take	parameters.

Destructors	automatically	call	base	class	destructors	when	they	are	finished.

To	make	a	destructor,	you	create	a	method	named	after	the	class	with	a	tilde
character	(˜)	in	front	of	its	name.	You	cannot	include	an	access	specifier	(such	as
private	or	public),	return	type,	or	parameters.	For	example,	the	following	code
shows	a	simple	destructor	for	the	Person	class:

˜Person()

{

				//	Perform	cleanup	chores	here…

}

Destructors	are	a	fairly	specialized	topic	and	you	are	unlikely	to	need	to	build	one
until	you	have	more	programming	experience,	but	I	wanted	to	describe	them	for
an	important	reason:	so	you	know	when	destructors	execute	and	you	can	help
them	perform	well.

You	might	think	that	so	far	destructors	are	fairly	simple	and	that	would	be	the	end
of	the	story	except	for	one	remaining	question:	“When	are	destructors	called?”
This	turns	out	to	be	a	trickier	question	than	you	might	imagine.	To	understand
when	a	destructor	runs,	you	need	to	understand	the	garbage	collector.

Normally	a	C#	program	runs	merrily	along,	creating	variables	and	objects	as
needed.	Sometimes	all	of	the	references	to	an	object	disappear	so	the	program	no
longer	has	access	to	the	object.	In	that	case,	the	memory	(and	any	other	resources)
used	by	that	object	are	lost	to	the	program.	If	the	program	makes	a	lot	of	objects
and	then	discards	them	in	this	way,	the	program	will	eventually	use	up	a	lot	of
memory.

Eventually	the	program	may	start	to	run	out	of	available	memory.	At	that	point,
the	garbage	collector	springs	into	action.	The	garbage	collector	runs	when	it
thinks	the	program	may	have	used	a	lot	of	inaccessible	memory	such	as	old,
discarded	Employee	objects.	When	the	garbage	collector	runs,	it	reclaims	the
memory	lost	by	objects	that	are	inaccessible	and	makes	that	memory	available	for

future	objects.

It	is	only	when	the	garbage	collector	reclaims	an	object's	memory	that	the	object's
destructor	executes.	So	the	answer	to	the	question	“When	are	destructors	called?”
is:	“Whenever	the	garbage	collector	runs.”	So	when	does	the	garbage	collector
run?	The	answer	to	this	new	question	is:	“Whenever	it	feels	like	it.”

The	end	result	is	that	you	cannot	really	know	when	a	destructor	will	run.	The
fancy	name	for	this	is	non-deterministic	finalization.	Many	programs	never	run
low	on	memory	so	the	garbage	collector	doesn't	run	until	the	program	ends.

The	moral	of	the	story	is	that	you	can	use	destructors	to	clean	up	after	an	object
but	you	shouldn't	rely	on	them	to	handle	tasks	that	must	be	done	in	a	timely
fashion.	For	example,	if	a	destructor	closes	a	file	so	other	programs	can	use	it,	the
file	may	not	actually	be	closed	until	the	program	ends.

If	you	want	to	perform	actions	such	as	this	in	a	timely	fashion,	give	the	class	a
Dispose	method	that	the	program	can	call	explicitly	to	clean	up	after	the	object.

NOTE

The	IDisposable	interface	formalizes	the	notion	of	providing	a	Dispose
method	that	cleans	up	after	an	object.	It's	a	fairly	advanced	topic,	however,
so	it	isn't	covered	here.	For	more	information,	see
msdn.microsoft.com/library/b1yfkh5e.aspx	and
msdn.microsoft.com/library/system.idisposable.aspx.

If	an	object	(whether	or	not	you	created	its	class)	provides	a	Dispose	method,	you
should	use	it	when	you	are	done	with	the	object	so	you	can	free	its	resources.

For	example,	you	can	use	a	Graphics	object	to	draw	on	a	bitmap.	A	Graphics	object
uses	limited	system	resources,	so	it's	a	good	practice	to	call	its	Dispose	method
when	you're	done	using	it.

Unfortunately,	it's	easy	to	forget	to	call	Dispose.	To	help	you	remember,	C#
provides	the	using	statement.	The	using	statement	is	followed	by	the	object	that	it
manages	and,	when	the	using	block	ends,	the	program	automatically	calls	the
object's	Dispose	method.

The	usual	syntax	for	a	using	block	is:

using	(variableInitialization)

{

				...	Statements	...

}

In	this	syntax,	the	variableInitialization	declares	and	initializes	the	variable
that	the	block	controls.	(You	can	declare	the	object	outside	of	the	using	block,	but
putting	it	inside	the	block	usually	makes	it	easier	to	read	and	restricts	its	scope	to
the	block.)

For	example,	the	following	code	creates	a	Graphics	object	named	gr	associated
with	the	bitmap	bigBitmap.	The	using	block	ensures	that	the	program	executes	the
gr	object's	Dispose	method	when	it	finishes	the	block.

using	(Graphics	gr	=	Graphics.FromImage(bigBitmap))

{

				//	Draw	stuff…

}

Note	that	the	object's	Dispose	method	is	called	even	if	the	program	exits	from	the
block	because	of	an	exception,	a	return	statement,	or	some	other	method.

http://msdn.microsoft.com/library/b1yfkh5e.aspx
http://msdn.microsoft.com/library/system.idisposable.aspx

Invoking	Other	Constructors
You	can	give	a	class	many	different	constructors	as	long	as	they	have	different
parameter	lists	(so	C#	can	tell	them	apart).	For	example,	you	might	give	the
Person	class	a	parameterless	constructor,	a	second	constructor	that	takes	first
name	and	last	name	as	parameters,	and	a	third	constructor	that	takes	first	and	last
name,	street,	city,	state,	and	ZIP	code	as	parameters.

Often	when	you	give	a	class	multiple	constructors,	some	of	them	perform	the	same
actions.	In	the	Person	example,	the	constructor	that	initializes	first	name,	last
name,	street,	city,	state,	and	ZIP	code	probably	does	the	same	things	that	the
second	constructor	does	to	initialize	just	first	and	last	name.

You	can	also	find	overlapping	constructor	functionality	when	one	class	inherits
from	another.	For	example,	suppose	the	Person	class	has	FirstName	and	LastName
properties.	The	Employee	class	inherits	from	Person	and	adds	some	other
properties	such	as	EmployeeId	and	MailStop.	The	Person	class's	constructor
initializes	the	FirstName	and	LastName	properties,	something	that	the	Employee
class's	constructors	should	also	do.

Having	several	methods	perform	the	same	tasks	makes	debugging	and
maintaining	code	harder.	Fortunately,	C#	provides	a	way	you	can	make	one
constructor	invoke	another.

To	make	one	constructor	invoke	another	in	the	same	class,	follow	the
constructor's	parameter	declarations	with	a	colon	and	the	keyword	this,	passing
this	any	parameters	that	the	other	constructor	should	receive.	For	example,	the
following	code	shows	three	constructors	for	the	Person	class	that	invoke	each
other.	The	code	that	invokes	other	constructors	is	shown	in	bold:

//	Parameterless	constructor.

public	Person()

{

				//	General	initialization	if	needed	…

}

//	Initialize	first	and	last	name.

public	Person(string	firstName,	string	lastName)

				:	this()

{

				FirstName	=	firstName;

				LastName	=	lastName;

}

//	Initialize	all	values.

public	Person(string	firstName,	string	lastName,	string	street,

				string	city,	string	state,	string	zip)

				:	this(firstName,	lastName)

{

				Street	=	street;

				City	=	city;

				State	=	state;

				Zip	=	zip;

}

The	first	constructor	is	a	parameterless	constructor.	In	this	example	it	doesn't	do
anything.

The	second	constructor	takes	first	and	last	names	as	parameters.	The	:	this()	at
the	end	of	the	declaration	means	the	constructor	should	invoke	the	parameterless
constructor	when	it	starts.

The	third	constructor	takes	name	and	address	parameters.	Its	declaration	ends
with:	this(firstName,	lastName)	to	indicate	that	the	constructor	should	begin	by
calling	the	second	constructor,	passing	it	the	firstName	and	lastName	parameters.
(That	constructor	in	turn	invokes	the	parameterless	constructor.)

Notice	that	the	third	constructor	doesn't	save	the	firstName	and	lastName	values.
That's	handled	by	the	second	constructor.

You	can	use	a	similar	syntax	to	invoke	a	parent	class	constructor	by	simply
replacing	the	keyword	this	with	the	keyword	base.

For	example,	the	Employee	class	inherits	from	the	Person	class.	The	following	code
shows	two	of	the	class's	constructors.	The	code	that	invokes	the	Person	class
constructors	is	shown	in	bold:

//	Parameterless	constructor.

public	Employee()

				:	base()

{

}

//	Initialize	first	and	last	name.

public	Employee(string	firstName,	string	lastName)

				:	base(firstName,	lastName)

{

}

The	first	constructor	is	parameterless.	It	invokes	its	parent	class's	parameterless
constructor	by	using	:	base().

The	second	constructor	takes	first	and	last	name	parameters	and	invokes	the
Person	class's	constructor	that	takes	two	strings	as	parameters.

NOTE

Notice	how	the	constructors	invoke	other	constructors	by	using	the	keyword
this	or	base	followed	by	a	parameter	list.	C#	uses	the	parameter	list	to
decide	which	constructor	to	invoke.	That's	why	you	cannot	have	more	than
one	constructor	with	the	same	kinds	of	parameters.	For	example,	if	two
constructors	each	took	a	single	string	as	a	parameter,	how	would	C#	know
which	one	to	use?

Try	It
In	this	Try	It,	you	enhance	the	Person,	Employee,	and	Manager	classes	you	built	for
the	third	Try	It	in	Lesson	23.	You	add	constructors	to	make	initializing	objects
easier	and	you	add	destructors	so	you	can	trace	object	destruction	when	the
program	ends.	You	also	build	the	user	interface	shown	in	Figure	24.1	to	test	the
classes'	constructors	and	destructors.

Figure	24.1

Lesson	Requirements
In	this	lesson,	you:

Copy	the	Person,	Employee,	and	Manager	classes	you	built	for	the	third	Try	It	in
Lesson	23	(or	download	the	version	that's	available	on	the	book's	website).

Give	the	Person	class	a	parameterless	constructor.	Make	it	print	a	message	to
the	Console	window	indicating	that	a	new	Person	is	being	created.

Give	the	Person	class	a	constructor	that	initializes	all	of	the	class's	properties.
Make	it	invoke	the	parameterless	constructor	and	also	display	its	own
message.

Give	the	Person	class	a	destructor	that	displays	a	message	in	the	Console
window.

Make	similar	constructors	and	destructors	for	the	Employee	and	Manager
classes.

Build	the	user	interface	shown	in	Figure	24.1.	Add	code	behind	the	Buttons	to
create	Person,	Employee,	and	Manager	objects.

Run	the	program,	make	some	objects,	and	close	the	program.	Study	the
Console	window	messages	to	see	if	they	make	sense.

NOTE

You	can	download	the	code	and	resources	for	this	lesson	from	the	website	at
www.wrox.com/go/csharp24hourtrainer2e.

Hints
Make	the	constructors	and	destructors	invoke	each	other	where	possible	to
avoid	duplicate	work.

When	you	use	parameterless	constructors,	use	object	initialization	to	set	the
objects'	properties.

Step-by-Step
Copy	the	Person,	Employee,	and	Manager	classes	you	built	for	the	third	Try	It	in
Lesson	23	(or	download	the	version	that's	available	on	the	book's	website).

1.	 This	is	relatively	straightforward.

Give	the	Person	class	a	parameterless	constructor.	Make	it	print	a	message	to
the	Console	window	indicating	that	a	new	Person	is	being	created.

1.	 The	Person	class's	parameterless	constructor	should	look	something	like
this:

public	Person()

{

				Console.WriteLine("Person()");

}

Give	the	Person	class	a	constructor	that	initializes	all	of	the	class's	properties.
Make	it	invoke	the	parameterless	constructor	and	also	display	its	own
message.

1.	 This	constructor	should	look	something	like	this:

public	Person(string	firstName,	string	lastName,

				string	street,	string	city,	string	state,	string	zip)

				:	this()

{

				FirstName	=	firstName;

				LastName	=	lastName;

				Street	=	street;

				City	=	city;

				State	=	state;

				Zip	=	zip;

				Console.WriteLine("Person(parameters)");

}

Give	the	Person	class	a	destructor	that	displays	a	message	in	the	Console

http://www.wrox.com/go/csharp24hourtrainer2e

window.

1.	 This	destructor	should	look	something	like	this:

˜Person()

{

				Console.WriteLine("˜Person");

}

Make	similar	constructors	and	destructors	for	the	Employee	and	Manager
classes.

1.	 The	following	code	shows	the	Employee	class's	constructors	and	destructor:

public	Employee()

				:	base()

{

				Console.WriteLine("Employee()");

}

public	Employee(int	employeeId,	string	mailStop,

				string	firstName,	string	lastName,	string	street,

				string	city,	string	state,	string	zip)

				:	base(firstName,	lastName,	street,	city,	state,	zip)

{

				EmployeeId	=	employeeId;

				MailStop	=	mailStop;

				Console.WriteLine("Employee(parameters)");

}

˜Employee()

{

				Console.WriteLine("˜Employee");

}

2.	 The	following	code	shows	the	Manager	class's	constructors	and	destructor:

public	Manager()

				:	base()

{

				DirectReports	=	new	List<Employee>();

				Console.WriteLine("Manager()");

}

public	Manager(string	departmentName,	int	employeeId,

				string	mailStop,	string	firstName,	string	lastName,

				string	street,	string	city,	string	state,	string	zip)

				:	base(employeeId,	mailStop,	firstName,	lastName,	street,

				city,	state,	zip)

{

				DepartmentName	=	departmentName;

				Console.WriteLine("Manager(parameters)");

}

˜Manager()

{

				Console.WriteLine("˜Manager");

}

Build	the	user	interface	shown	in	Figure	24.1.	Add	code	behind	the	Buttons	to

create	Person,	Employee,	and	Manager	objects.

1.	 This	is	relatively	straightforward.

Run	the	program,	make	some	objects,	and	close	the	program.	Study	the
Console	window	messages	to	see	if	they	make	sense.

1.	 The	following	text	shows	the	program's	output	if	you	create	a	Manager	with
parameters	and	then	close	the	program.	I've	removed	some	messages
generated	by	the	program	itself	showing	when	various	threads	exited.

Creating	a	Manager	with	parameters

Person()

Person(parameters)

Employee(parameters)

Manager(parameters)

˜Manager

˜Employee

˜Person

2.	 When	I	clicked	the	Manager	w/Parameters	Button,	the	program	performed
the	following	actions:

a.	 The	Button's	Click	event	handler	displayed	the	message	“Creating	a
Manager	with	parameters.”	It	then	called	the	Manager	class's
parameterized	constructor.

b.	 That	constructor	invoked	the	parameterized	Employee	constructor.

c.	 That	constructor	invoked	the	parameterized	Person	constructor.

d.	 That	constructor	invoked	the	parameterless	Person	constructor.

e.	 That	constructor	displayed	the	message	“Person()”	and	returned	control
to	the	parameterized	Person	constructor	that	called	it.

f.	 The	parameterized	Person	constructor	displayed	the	message
“Person(parameters)”	and	returned	control	to	the	parameterized
Employee	constructor	that	called	it.

g.	 The	parameterized	Employee	constructor	displayed	the	message
“Employee(parameters)”	and	returned	control	to	the	parameterized
Manager	constructor	that	called	it.

h.	 The	parameterized	Manager	constructor	displayed	the	message
“Manager(parameters)”	and	returned	control	to	the	Button's	Click	event
handler.

3.	 When	the	Button's	Click	event	handler	ended,	the	Manager	object	it	created
went	out	of	scope	so	it	was	lost	to	the	program.	It	wasn't	destroyed,
however,	because	the	garbage	collector	didn't	think	it	needed	to	run.	(The
program	undoubtedly	had	plenty	of	memory	left	over.)	It	only	ran	when	I
closed	the	program.	At	that	point,	the	program	performed	the	following

actions:

a.	 The	program	was	ending,	so	the	garbage	collector	ran.	It	called	the
Manager	object's	destructor.

b.	 That	destructor	displayed	a	message	and	then	automatically	called	its
base	class	destructor	in	the	Employee	class.

c.	 That	destructor	displayed	a	message	and	then	automatically	called	its
base	class	destructor	in	the	Person	class.

d.	 That	destructor	displayed	a	message.

Exercises
1.	 Copy	the	program	you	built	for	Exercise	23-1	(or	download	the	version	that's
available	on	the	book's	website)	and	change	the	main	program	so	it	uses
initializers	to	prepare	its	ComplexNumber	objects.	Be	sure	to	update	new
instances	created	inside	the	ComplexNumber	class.

2.	 Copy	the	program	you	built	for	Exercise	1	and	give	the	ComplexNumber	class	a
constructor	that	initializes	the	new	number's	real	and	imaginary	parts.	Modify
the	program	to	use	this	constructor.

3.	 Copy	the	program	you	built	for	Lesson	23's	second	Try	It	(or	download	the
TryIt23b	program	from	the	book's	website)	and	give	the	BankAccount	class	a
constructor	that	guarantees	that	you	cannot	create	an	instance	with	an	initial
balance	under	$10.	Change	the	main	program	so	it	uses	this	constructor.

4.	 Make	a	MemoryWaster	class	that	has	two	fields:	an	integer	named	Megabytes	and
an	array	of	bytes	named	Bytes.	Give	the	class	a	constructor	that	takes	a
number	of	megabytes	as	a	parameter,	saves	that	value	in	the	Megabytes	field,
allocates	the	array	to	hold	that	amount	of	memory,	and	writes	a	message	in	the
Console	window	saying	how	many	megabytes	it	is	allocating.	(Don't	forget	to
multiply	by	1,024	×	1,024	to	convert	megabytes	to	bytes.)

Also	give	the	class	a	destructor	that	writes	a	message	in	the	Console	window
saying	how	many	megabytes	it	is	freeing.

Finally,	make	a	user	interface	that	lets	the	user	enter	a	number	of	megabytes
and	click	a	Button	to	create	a	MemoryWaster.	Use	the	program	to	allocate
memory	until	the	garbage	collector	runs.	For	example,	on	my	system	I	can
allocate	a	500	MB	MemoryWaster,	but	when	I	try	to	allocate	a	second,	the
garbage	collector	reclaims	the	first	one.	(Hint:	You	may	want	to	protect	the
Button's	event	handler	with	a	try-catch	block.	For	example,	try	making	a
10,000	MB	MemoryWaster.)

5.	 [Graphics]	Create	a	Shape	class	that	has	three	properties:	a	Pen,	a	Brush,	and	a
Rectangle.	(Hint:	Include	the	statement	using	System.Drawing	in	the	class's
file.)

Give	the	class	two	initializing	constructors.	The	first	should	have	the	following
signature:

public	Shape(Pen	pen,	Brush	brush,	int	x,	int	y,	int	width,	int	height)

Make	the	constructor	use	its	parameters	to	initialize	its	properties.

The	second	constructor	should	have	the	following	signature:

public	Shape(Pen	pen,	Brush	brush,	Point	location,	Size	size)

Make	this	constructor	invoke	the	first	one.

Also	give	the	class	a	Draw	method	that	takes	a	Graphics	object	as	a	parameter
and	uses	it	to	draw	the	shape's	bounding	rectangle	with	the	Shape's	pen	and
brush.	Make	the	main	program	create	several	Shape	objects	and	draw	them	in	a
PictureBox's	Paint	event	handler.

6.	 [Graphics]	Copy	the	program	you	wrote	for	Exercise	24.5	and	add	an	Ellipse
class	that	inherits	from	Shape.	Give	it	two	constructors	that	invoke	the
corresponding	base	class	constructors.	Make	the	main	program	create	a	few
instances	of	the	new	class.	(The	Ellipse	class	inherits	the	Shape	class's	Draw
method	so	the	Ellipses	will	be	drawn	as	rectangles	on	the	PictureBox.	Don't
worry	about	that.	We'll	fix	that	in	the	next	lesson's	exercises.)

7.	 [Graphics,	Hard]	Copy	the	program	you	wrote	for	Exercise	24.6	and	add	a
Circle	class	that	inherits	from	Ellipse.	Give	the	new	class	a	constructor	with
the	following	signature:

public	Circle(Pen	pen,	Brush	brush,	Point	center,	int	radius)

Make	this	constructor	initialize	the	object	by	invoking	a	parent	class
constructor.

8.	 [Graphics]	Copy	the	program	you	wrote	for	Exercise	24.7	and	modify	it	so	the
Shape	class	stores	two	Color	properties	named	Foreground	and	Background
instead	of	a	Pen	and	a	Brush.	Also	add	a	new	integer	Thickness	property	and
corresponding	parameters	to	the	class's	constructors.	(You'll	need	to	make
similar	changes	to	the	classes	that	inherit	from	Shape.)

Modify	the	Draw	method	so	it	fills	and	draws	the	Shape	with	the	appropriate
colors	and	line	thickness.	To	fill	the	Shape,	create	a	new	SolidBrush	object.	To
outline	the	Shape,	create	a	new	Pen	object.	Include	using	statements	to
automatically	dispose	of	the	brush	and	pen.

Finally,	update	the	main	program	to	use	the	new	constructors	and	make	some
sample	shapes	with	different	colors	and	line	thicknesses.

9.	 [Graphics]	Copy	the	program	you	wrote	for	Exercise	24.8	and	modify	the	Draw
method	so	it	uses	dashed	lines.	To	do	that,	set	the	Pen	object's	DashStyle
property	to	System.Drawing.Drawing2D.DashStyle.Dash.	(This	is	the	only	way
you	can	make	dashed	pens.	The	stock	Pen	objects	such	as	Pens.Blue	and
Pens.Chartreuse	are	solid	and	one	pixel	wide.)

NOTE

Please	select	the	videos	for	Lesson	24	online	at
www.wrox.com/go/csharp24hourtrainer2evideos.

http://www.wrox.com/go/csharp24hourtrainer2evideos

Lesson	25

Fine-Tuning	Classes
In	Lesson	24	you	learned	how	to	build	constructors	and	destructors,	special
methods	that	execute	when	an	object	is	created	or	destroyed.	In	this	lesson	you
learn	about	other	special	methods	you	can	give	a	class.	You	learn	how	to	overload
and	override	class	methods.

Overloading	Methods
Lesson	24	mentioned	that	you	can	give	a	class	any	number	of	constructors	as	long
as	they	have	different	parameter	lists.	For	example,	it's	common	to	give	a	class	a
parameterless	constructor	that	takes	no	parameters	and	one	or	more	other
constructors	that	take	parameters.

Making	multiple	methods	with	the	same	name	but	different	parameter	lists	is
called	overloading.	C#	uses	the	parameter	list	to	decide	which	version	to	use
when	you	invoke	the	method.

For	example,	suppose	you're	building	a	course	assignment	application	and	you
have	built	Student,	Course,	and	Instructor	classes.	You	could	give	the	Student
class	two	versions	of	the	Enroll	method,	one	that	takes	as	a	parameter	the	name	of
a	class	the	student	is	taking	and	a	second	that	takes	a	Course	object	as	a
parameter.

You	could	give	the	Instructor	class	similar	versions	of	the	Teach	method	to	make
the	instructor	teach	a	class	by	name	or	Course	object.

Finally,	you	could	give	the	Course	class	different	Report	methods	that:

Display	a	report	in	a	dialog	if	there	are	no	parameters.

Append	a	report	to	the	end	of	a	file	if	the	method	receives	a	FileStream	as	a
parameter.

Save	the	report	into	a	new	file	if	the	method	receives	a	string	(the	filename)	as
a	parameter.

Making	overloaded	methods	is	so	easy	that	there's	little	else	to	say.	The	only	catch
(and	it's	a	tiny	one)	is	that	you	need	to	be	sure	the	parameter	lists	must	differ	in
number,	type,	or	arrangement.	For	example,	consider	the	following	two	method
declarations:

public	void	MakeReport(string	fileToCreate)

{

				...

}

public	void	MakeReport(string	fileToAppend)

{

				...

}

You	might	intend	the	first	version	to	create	a	report	in	a	file	and	the	second	to
append	a	report	to	the	end	of	a	file.	As	far	as	C#	is	concerned,	however,	they	both
take	a	single	string	as	a	parameter.	Even	though	the	parameters	have	different
names,	C#	wouldn't	be	able	to	tell	which	one	to	use	under	different	circumstances.
For	example,	which	version	should	the	statement	MakeReport("MyReport.txt")
use?

Overriding	Methods
When	one	class	inherits	from	another,	you	can	add	new	properties,	methods,	and
events	to	the	new	class	to	give	it	features	that	were	not	provided	by	the	parent
class.

Once	in	a	while	it's	also	useful	to	replace	a	method	provided	by	the	parent	class
with	a	new	version.	This	is	called	overriding	the	parent's	method.

Before	you	can	override	a	method,	you	should	mark	the	method	in	the	parent	class
with	the	virtual	keyword	so	it	allows	itself	to	be	overridden.	Next,	add	the
keyword	override	to	the	derived	class's	version	of	the	method	to	indicate	that	it
overrides	the	parent	class's	version.

For	example,	suppose	the	Person	class	defines	the	usual	assortment	of	properties:
FirstName,	LastName,	Street,	City,	and	so	on.	Suppose	it	also	provides	the
following	GetAddress	method	that	returns	the	Person's	name	and	address
formatted	for	printing	on	an	envelope:

//	Return	the	Person's	address.

public	virtual	string	GetAddress()

{

				return	FirstName	+	"	"	+	LastName	+	"\n"	+

								Street	+	"\n"	+	City	+	"				"	+	State	+	"				"	+	Zip;

}

Now	suppose	you	derive	the	Employee	class	from	Person.	An	Employee's	address
looks	just	like	a	Person's	except	it	also	includes	MailStop.	The	MailStop	property
was	added	by	the	Employee	class	to	indicate	where	to	deliver	mail	within	the
company.

The	following	code	shows	how	the	Employee	class	can	override	the	GetAddress
method	to	return	an	Employee-style	address:

//	Return	the	Employee's	address.

public	override	string	GetAddress()

{

				return	base.GetAddress()	+	"\n"	+	MailStop;

}

Notice	how	the	method	calls	the	base	class's	version	of	GetAddress	to	reuse	that
version	of	the	method	and	avoid	duplicated	code.

NOTE

IntelliSense	can	help	you	build	overridden	methods.	For	example,	when	you
type	public	override	and	a	space	in	the	Employee	class,	IntelliSense	lists	the
virtual	methods	that	you	might	be	trying	to	override.	If	you	select	one,
IntelliSense	fills	in	a	default	implementation	for	the	new	method.	The
following	text	shows	the	code	IntelliSense	generated	for	the	GetAddress
method:

public	override	string	GetAddress()

{

				return	base.GetAddress();

}

The	most	miraculous	thing	about	overriding	a	virtual	method	is	that	the	object
uses	the	method	even	if	you	invoke	it	from	the	base	class.	For	example,	suppose
you	have	a	Person	variable	pointing	to	an	Employee	object.	Remember	that	an
Employee	is	a	kind	of	Person,	so	a	Person	variable	can	refer	to	an	Employee	as	in	the
following	code:

Employee	bob	=	new	Employee();

Person	bobAsAPerson	=	bob;

Now	if	the	code	calls	bobAsAPerson.GetAddress(),	the	result	is	the	Employee	version
of	GetAddress.

NOTE

You	can	think	of	the	virtual	keyword	as	making	a	slot	in	the	base	class	for
the	method.	When	you	override	the	method,	the	derived	class	fills	this	slot
with	a	new	version	of	the	method.	Now	even	if	you	call	the	method	from	the
base	class,	it	uses	whatever	is	in	the	slot.

Overriding	ToString
Overriding	a	class's	ToString	method	is	particularly	useful.	All	classes	inherit	a
ToString	method	from	System.Object	(the	ultimate	ancestor	of	all	other	classes),
but	the	default	implementation	of	ToString	isn't	always	useful.	For	classes	that
you	define,	such	as	Person	and	Employee,	the	default	version	of	ToString	simply
returns	the	class's	name.	For	example,	in	a	program	named	ListPeople,	the
Employee	class's	ToString	method	would	return	“ListPeople.Employee.”

Although	this	correctly	reports	the	object's	class,	it	would	be	more	useful	if	it
returned	something	that	contained	information	about	the	object's	properties.	In
this	example,	it	might	be	nice	if	it	returned	the	Employee	object's	first	and	last
names.

Fortunately	the	ToString	method	is	virtual,	so	you	can	override	it.	The	following
code	shows	how	you	can	override	the	ToString	method	to	return	an	Employee's	first
and	last	name:

//	Return	first	and	last	name.

public	override	string	ToString()

{

				return	FirstName	+	"	"	+	LastName;

}

This	makes	a	lot	more	sense.	Now	your	program	can	use	an	Employee	object's
ToString	method	to	learn	about	the	object.

Overriding	ToString	also	has	a	nice	side	benefit	for	Windows	Forms	development.
Certain	controls	and	parts	of	Visual	Studio	use	an	object's	ToString	method	to
decide	what	to	display.	For	example,	the	ListBox	and	ComboBox	controls	display
lists	of	items.	If	those	items	are	not	simple	strings,	the	controls	use	the	items'
ToString	methods	to	generate	output.

If	the	list	is	full	of	Employee	objects	and	you've	overridden	the	Employee	class's
ToString	method,	a	ListBox	or	ComboBox	can	display	the	employees'	names.

The	ListPeople	example	program	shown	in	Figure	25.1	(and	available	as	part	of
this	lesson's	code	download)	demonstrates	method	overriding.

Figure	25.1

When	it	starts,	the	ListPeople	program	uses	the	following	code	to	fill	its	ListBox
with	two	Student	objects	and	two	Employee	objects.	Both	of	these	classes	inherit
from	Person.

private	void	Form1_Load(object	sender,	EventArgs	e)

{

				//	Make	some	people.

				peopleListBox.Items.Add(new	Student("Ann",	"Archer",	"101	Ash	Ave",

								"Debugger",	"NV",	"72837"));

				peopleListBox.Items.Add(new	Student("Bob",	"Best",	"222	Beach	Blvd",

								"Debugger",	"NV",	"72837"));

				peopleListBox.Items.Add(new	Employee("Cat",	"Carter",	"300	Cedar	Ct",

								"Debugger",	"NV",	"72837",	"MS-1"));

				peopleListBox.Items.Add(new	Employee("Dan",	"Dental",	"404	Date	Dr",

								"Debugger",	"NV",	"72837",	"MS-2"));

}

The	Employee	class	overrides	its	ToString	method	so	you	can	see	the	Employees'
names	in	Figure	25.1	instead	of	their	class	names.	The	Student	class	does	not
override	its	ToString	method	so	Figure	25.1	shows	class	names	for	the	Student
objects.

If	you	select	a	person	in	this	program	and	click	the	Show	Address	button,	the
program	executes	the	following	code:

//	Display	the	selected	Person's	address.

private	void	showAddressButton_Click(object	sender,	EventArgs	e)

{

				Person	person	=	peopleListBox.SelectedItem	as	Person;

				MessageBox.Show(person.GetAddress());

}

This	code	converts	the	ListBox's	selected	item	into	a	Person	object.	The	item	is
actually	either	a	Student	or	an	Employee,	but	both	of	those	inherit	from	Person
(they	are	kinds	of	Person)	so	the	program	can	treat	them	as	Persons.

The	program	calls	the	Person's	GetAddress	method	and	displays	the	result.	If	the
object	was	actually	a	Student,	the	result	is	a	basic	name	and	address.	If	the	object
was	actually	an	Employee,	the	result	is	a	name	and	address	plus	mailstop.

In	addition	to	ListBoxes	and	ComboBoxes,	some	parts	of	Visual	Studio	use	an
object's	ToString	method,	too.	For	example,	if	you	stop	an	executing	program	and
hover	the	mouse	over	an	object	in	the	debugger,	a	tooltip	appears	that	displays	the
result	of	the	object's	ToString	method.	Similarly,	if	you	type	an	object's	name	in
the	Immediate	window	and	press	Enter,	the	result	is	whatever	is	returned	by	the
object's	ToString	method.

Try	It
In	this	Try	It,	you	improve	the	shape	drawing	program	you	built	for	Exercise	24-9
by	overriding	the	Shape	class's	Draw	method	so	Ellipse	and	Circle	objects	can
draw	themselves	appropriately.

Lesson	Requirements
In	this	lesson,	you:

Copy	the	program	you	wrote	for	Exercise	24-9	(or	download	the	version	that's
available	on	the	book's	website).

Add	the	virtual	keyword	to	the	Shape	class's	Draw	method.

Override	the	Draw	method	in	the	Ellipse	class	so	it	draws	an	ellipse	instead	of	a
rectangle.

Modify	the	form's	Paint	event	handler	to	draw	smooth	shapes.

NOTE

You	can	download	the	code	and	resources	for	this	lesson	from	the	website	at
www.wrox.com/go/csharp24hourtrainer2e.

Hints
If	gr	is	the	Graphics	object,	you	can	use	these	techniques:

gr.SmoothingMode	=	SmoothingMode.AntiAlias—Makes	the	object	draw	shapes
smoothly.	(SmoothingMode	is	defined	in	the	System.Drawing.Drawing2D
namespace.)

gr.FillEllipse(brush,	rect)—Fills	an	ellipse	defined	by	the	Rectangle	rect
with	brush.

gr.DrawEllipse(pen,	rect)—Outlines	an	ellipse	defined	by	the	Rectangle	rect
with	pen.

Step-by-Step
Copy	the	program	you	wrote	for	Exercise	24-9	(or	download	the	version	that's
available	on	the	book's	website).

1.	 This	is	straightforward.

Add	the	virtual	keyword	to	the	Shape	class's	Draw	method.

1.	 Change	the	Shape	class's	Draw	method	so	its	declaration	looks	like	this.	(The
virtual	keyword	is	highlighted	in	bold.)

public	virtual	void	Draw(Graphics	gr)

Override	the	Draw	method	in	the	Ellipse	class	so	it	draws	an	ellipse	instead	of	a
rectangle.

1.	 Use	code	similar	to	the	following:

//	Draw	the	ellipse.

public	override	void	Draw(Graphics	gr)

{

				using	(Brush	brush	=	new	SolidBrush(Background))

				{

								gr.FillEllipse(brush,	Bounds);

				}

				using	(Pen	pen	=	new	Pen(Foreground,	Thickness))

				{

								gr.DrawEllipse(pen,	Bounds);

				}

}

2.	 Note	that	you	don't	need	to	override	the	Circle	class's	Draw	method.	The

http://www.wrox.com/go/csharp24hourtrainer2e

Circle	class	inherits	from	Ellipse,	so	it	will	inherit	the	version	shown	here
that's	defined	by	the	Ellipse	class.	The	Circle	class's	constructors	ensure
that	the	Circle's	width	and	height	are	the	same,	and	that	makes	the	ellipse-
drawing	code	produce	a	circle.

Modify	the	form's	Paint	event	handler	to	draw	smooth	shapes.

1.	 Add	the	following	using	directive	at	the	top	of	the	form's	code	file:

using	System.Drawing.Drawing2D;

2.	 Add	the	following	statement	at	the	beginning	of	the	form's	Paint	event
handler:

e.Graphics.SmoothingMode	=	SmoothingMode	.AntiAlias;

Figure	25.2	shows	the	result	for	the	objects	I	created.

Figure	25.2

Exercises
1.	 [Graphics]	Copy	the	program	you	built	for	the	Try	It	and	override	the	Shape
class's	Draw	method	to	create	a	new	version	that	takes	a	Pen	and	Brush	as
parameters	and	uses	them	to	draw.	Then	make	similar	changes	to	the	Ellipse
and	Circle	classes.	Test	the	new	methods	by	modifying	the	form's	code	so	it
passes	Pens.Red	and	Brushes.Pink	into	the	objects'	Draw	methods.

2.	 [Graphics]	Copy	the	program	you	built	for	Exercise	1	and	add	Rect	and	Square
classes.	(I'm	calling	the	first	of	those	classes	Rect	instead	of	Rectangle	because
.NET	already	has	a	Rectangle	class	so	that	name	could	cause	confusion.)
Modify	the	form's	code	to	create	a	random	Shape,	Ellipse,	Circle,	Rect,	and
Square.

Hints:

Make	the	Rect	class	analogous	to	the	Ellipse	class.

Make	the	Square	class	somewhat	analogous	to	the	Circle	class	but	give	its
constructor	X	and	Y	coordinates	and	a	width	instead	of	a	center	point	and
radius.

Make	a	GetRandomParameters	method	to	generate	random	thickness,	width,
height,	and	position	for	a	new	shape.

Remove	the	code	that	makes	all	of	the	shapes	pink	so	you	can	see	the
shapes'	colors.

3.	 [Graphics,	Advanced]	The	abstract	keyword	is	somewhat	similar	to	the
virtual	keyword.	When	you	mark	a	method	as	abstract,	you	allow	it	to	be
overridden	in	derived	classes.	In	fact,	an	abstract	method	has	no	code	so	you
must	override	it	before	you	can	make	an	instance	of	the	class.

Because	you	cannot	make	an	instance	of	a	class	that	contains	an	abstract
method,	you	must	also	mark	the	class	as	abstract.

Why	would	you	do	this?	Think	about	the	program	you	wrote	for	the	Try	It.	You
probably	don't	really	intend	the	program	to	make	instances	of	the	Shape	class.
It's	really	just	there	to	be	a	base	class	so	you	can	treat	other	objects	such	as
Ellipses	and	Circles	as	Shapes.

Copy	the	program	you	wrote	for	Exercise	2	and	make	the	Shape	class's	Draw
methods	abstract.	Then	modify	the	form's	code	so	it	doesn't	try	to	make	a
Shape	object.	Hints:

An	abstract	method	cannot	include	any	code.	Just	end	it	with	a	semicolon
after	the	method's	parameter	list.

Place	the	abstract	keyword	before	the	class	keyword.

An	abstract	class	can	contain	non-abstract	properties	and	methods	and
they	are	inherited	as	usual.	In	this	example,	the	Shape	class	can	still	define

drawing	parameters	(Bounds,	Foreground,	Background,	and	Thickness)	and
constructors.

4.	 [Graphics,	Hard]	Create	a	new	program	that	displays	a	PictureBox	with	Cursor
property	set	to	Cross.	Copy	the	shape	classes	you	build	for	Exercise	25.3	into	it.
To	copy	a	class	from	one	project	to	another,	you	can	create	a	class	with	the
same	name	in	the	new	project	and	then	copy	and	paste	its	code	into	it.
Alternatively	you	can:

Copy	the	class's	file	into	the	new	project's	directory.

Use	the	Project	menu's	Add	Existing	Item	command	to	add	the	class	to	the
project.

Edit	the	class's	code	and	change	its	namespace	statement	so	it	uses	the	same
namespace	as	the	rest	of	the	project.	(You	can	look	at	the	top	of	the	main
form's	code	to	see	what	the	statement	should	look	like.)

Next	create	a	class-level	List<Shape>	named	Shapes.

Write	code	to	allow	the	user	to	select	a	rectangle	on	the	PictureBox.

Create	two	class-level	Point	variables	named	StartPoint	and	EndPoint.	Also
create	a	class-level	bool	variable	named	Drawing	and	initialize	it	to	false.

In	the	PictureBox's	MouseDown	event	handler,	save	the	mouse's	location	in
StartPoint	and	EndPoint	and	set	Drawing	=	true.

In	the	PictureBox's	MouseMove	event	handler,	if	Drawing	is	false,	return.
Otherwise,	save	the	mouse's	current	position	in	EndPoint	and	refresh	the
PictureBox.

In	the	PictureBox's	MouseUp	event	handler,	if	Drawing	is	false,	return.
Otherwise,	if	StartPoint	and	EndPoint	have	different	X	and	Y	coordinates,
use	them	to	create	a	new	Rect	and	add	it	to	the	Shapes	list.

In	the	PictureBox's	Paint	event	handler,	loop	through	the	Shapes	list	and
make	the	objects	it	contains	draw	themselves.	Then	if	Drawing	is	true,	draw
a	red	dashed	rectangle	with	corners	at	StartPoint	and	EndPoint.	(Hints:
The	DrawRectangle	method	can't	draw	rectangles	with	negative	widths	or
heights	so	you'll	need	to	figure	out	where	the	upper-left	corner	of	the	newly
selected	rectangle	is.	The	Math.Min	and	Math.Abs	methods	may	help.)

5.	 [Graphics,	Hard]	Copy	the	program	you	built	for	Exercise	25.4	and	add	the
toolbar	holding	four	dropdown	buttons	shown	in	Figure	25.3.

Figure	25.3

The	dropdown	buttons	represent	the	user's	selected	shape,	line	thickness,
foreground	color,	and	background	color.	When	the	user	finishes	selecting	an
area	on	the	PictureBox,	add	the	appropriate	shape	to	the	Shapes	list.	Hints:

Use	the	properties	of	the	menu	items	to	store	the	selected	values.

Use	the	menu	items'	Tag	properties	to	store	the	line	thickness	values.
(You'll	need	to	parse	those	values	when	you	need	them.)

Use	the	menu	items'	ForeColor	properties	to	store	colors.

Use	the	menu	items'	Text	properties	to	store	shape	names.

Use	code	similar	to	the	following	when	the	user	selects	an	item	from	the
shapes	dropdown	button:

//	Save	this	shape	selection.

private	void	shapeMenuItem_Click(object	sender,	EventArgs	e)

{

				ToolStripMenuItem	item	=	sender	as	ToolStripMenuItem;

				shapeDropdownItem.Image	=	item.Image;

				shapeDropdownItem.Tag	=	item.Text.Replace("&",	"").ToLower();

}

This	code	is	shared	by	all	of	the	shape	menu	items.	It	converts	the	sender
parameter	into	the	ToolStripMenuItem	that	the	user	selected.	It	then	copies
that	item's	Image	and	Text	(converted	to	lowercase	and	with	any
ampersands	removed)	into	the	dropdown	button.

Use	similar	code	for	the	other	dropdown	buttons'	items.	Copy	the	selected
item's	Image	property	and	the	appropriate	value	(Tag	or	ForeColor)	into	the
dropdown	button.

6.	 Copy	the	complex	number	program	you	built	for	Exercise	24-2	(or	download
the	version	that's	available	on	the	book's	website).	Override	the	class's
ToString	method	so	it	returns	the	number	in	a	form	similar	to	“2	+	3i.”
Overload	the	ComplexNumber	class's	AddTo,	MultiplyBy,	and	SubtractFrom

methods	so	you	can	pass	them	a	single	double	parameter	representing	a	real
number	with	no	imaginary	part.	Modify	the	form	so	you	can	test	the	new
methods.

7.	 Copy	the	bank	account	program	you	built	for	Exercise	24-3	(or	download	the
version	that's	available	on	the	book's	website).	Derive	a	new	OverdraftAccount
class	from	the	Account	class.	Give	it	a	constructor	that	simply	invokes	the	base
class's	constructor.	Override	the	Debit	method	to	allow	the	account	to	have	a
negative	balance	and	charge	a	$50	fee	if	any	debit	leaves	the	account	with	a
negative	balance.	Change	the	main	program	so	the	Account	variable	is	still
declared	to	be	of	type	Account	but	initialize	it	as	an	OverdraftAccount.	(Hint:
Don't	forget	to	make	the	Account	class's	version	of	Debit	virtual.)

8.	 Copy	Lesson	23's	Turtle	program.	The	Turtle	class	has	a	Move	method	that
moves	the	turtle	a	specified	distance	in	the	object's	current	direction.	Overload
this	method	by	making	a	second	version	that	takes	as	parameters	the	X	and	Y
coordinates	where	the	turtle	should	move.	Raise	the	OutOfBounds	event	if	the
point	is	not	on	the	canvas.	(Hint:	Can	you	reuse	code	somehow	between	the
two	Move	methods?)

NOTE

Please	select	the	videos	for	Lesson	25	online	at
www.wrox.com/go/csharp24hourtrainer2evideos.

http://www.wrox.com/go/csharp24hourtrainer2evideos

Lesson	26

Overloading	Operators
In	Lesson	25	you	learned	how	to	overload	a	class's	methods.	C#	also	lets	you
overload	operators	such	as	+	and	*	to	give	them	new	meanings	when	working	with
the	structures	and	classes	that	you	create.	For	example,	you	could	overload	the	+
operator	so	the	program	would	know	how	to	add	a	Student	object	and	a	Course
object.	Sometimes	that	allows	you	to	use	a	more	natural	syntax	when	you're
working	with	objects.

In	this	lesson,	you	learn	how	to	overload	operators	so	you	can	use	them	to
manipulate	objects.

WARNING

Before	you	jump	into	operator	overloading,	be	warned	that	just	because	you
can	overload	an	operator	doesn't	mean	you	should.	You	should	only
overload	operators	in	intuitive	ways.

For	example,	it	makes	sense	to	overload	the	+	operator	so	you	can	add	two
ComplexNumber	objects.	It	might	also	make	sense	to	overload	+	so	you	can	add
an	item	to	a	purchase	order.

It	probably	doesn't	make	sense	to	define	+	between	two	Employee	objects	to
return	a	list	of	projects	that	included	both	employees.	You	could	do	that,	but
you	probably	shouldn't	because	it	would	be	confusing.

Overloadable	Operators
In	C#,	you	can	overload	the	unary,	binary,	and	comparison	operators	listed	in
Table	26.1.

Table	26.1

Type Operators

Unary +,	–,	!,	˜,	++,	--

Binary +,	–,	*,	/,	%,	&,	|,	^,	≪,	≫

Comparison ==,	!=,	<,	>,	<=,	>=

The	comparison	operators	come	in	pairs.	For	example,	if	you	overload	the	<
operator,	you	must	also	overload	the	>	operator.

The	compound	assignment	operators	(+=,	-=,	*=,	/=,	%=,	&=,	|=,	^=,	≪=,	and	≫=)	are
automatically	overloaded	when	you	overload	the	corresponding	binary	operator.
For	example,	if	you	overload	*,	C#	automatically	overloads	*=	for	you.

The	syntax	for	overloading	operators	is	easiest	to	understand	by	looking	at
examples.	The	following	sections	explain	how	to	overload	the	different	types	of
operators.

Unary	Operators
The	following	code	shows	how	you	can	overload	the	unary	-	operator	for	the
ComplexNumber	class:

public	static	ComplexNumber	operator	-(ComplexNumber	me)

{

				return	new	ComplexNumber(-me.Real,	-me.Imaginary);

}

The	method	begins	with	public	static	followed	by	the	operator's	return	type.	In
this	case	the	operator	returns	a	ComplexNumber	because	the	negation	of	a	complex
number	is	another	complex	number.

Next	comes	the	keyword	operator	and	the	operator's	symbol,	in	this	case	-.

The	parameter	list	tells	on	which	class	the	operator	should	be	defined.	Because
this	code	is	defining	an	operator	for	the	ComplexNumber	class,	that's	the	parameter's
data	type.	I	often	name	this	parameter	me	to	help	me	remember	that	this	is	the
object	to	which	the	operator	is	being	applied.

Note	that	the	overload	must	be	declared	inside	the	class	used	by	the	parameter.	In
this	case,	the	parameter	is	a	ComplexNumber	so	this	code	must	be	in	the
ComplexNumber	class.

The	code	inside	this	method	simply	negates	the	ComplexNumber's	real	and
imaginary	parts	and	returns	a	new	ComplexNumber.

The	following	code	shows	how	a	program	might	use	this	operator:

ComplexNumber	a	=	new	ComplexNumber(1,	2);						//		1	+	2i

ComplexNumber	minusA	=	-a;																						//	-1	-	2i

Binary	Operators
Overloading	binary	operators	is	similar	to	overloading	unary	operators	except	the
operator	takes	a	second	parameter.	The	first	parameter	is	still	the	object	to	which
the	operator	is	being	applied.

For	example,	the	following	code	overloads	the	binary	-	operator	to	subtract	two
ComplexNumbers:

public	static	ComplexNumber	operator	-(ComplexNumber	me,	ComplexNumber	

other)

{

				return	new	ComplexNumber(me.Real	-	other.Real,

								me.Imaginary	-	other.Imaginary);

}

The	first	parameter	gives	the	object	on	the	left	of	the	–	sign	and	the	second
parameter	gives	the	object	on	the	right.	To	help	keep	them	straight,	I	often	name
the	parameters	me	and	other.

Note	that	the	overload	must	be	declared	inside	a	class	or	structure	used	by	one	of
the	parameters.	In	this	case,	both	parameters	are	ComplexNumbers	so	this	code
must	be	in	the	ComplexNumber	class.

Although	this	example	subtracts	two	ComplexNumbers,	in	general	the	parameters	do
not	need	to	have	the	same	data	types.	The	following	code	defines	the	binary	–
operator	for	subtracting	a	double	from	a	ComplexNumber:

public	static	ComplexNumber	operator	-(ComplexNumber	me,	double	x)

{

				return	new	ComplexNumber(me.Real	-	x,	me.Imaginary);

}

Note	that	this	is	not	the	same	as	subtracting	a	ComplexNumber	from	a	double.	If	you
want	to	handle	that	situation	as	well,	you	need	the	following	separate	overload:

public	static	ComplexNumber	operator	-(double	me,	ComplexNumber	other)

{

				return	new	ComplexNumber(me	-	other.Real,	other.Imaginary);

}

With	these	overloads,	a	program	could	execute	the	following	code:

ComplexNumber	a	=	new	ComplexNumber(2,	3);

ComplexNumber	b	=	new	ComplexNumber(4,	5);

ComplexNumber	c	=	a	-	b;																//	ComplexNumber	-	ComplexNumber

ComplexNumber	d	=	a	-	10;															//	ComplexNumber	-	double

ComplexNumber	e	=	10	-	a;															//	double	-	ComplexNumber

NOTE

The	shift	operators	≪	and	≫	are	a	little	different	from	the	other	binary
operators	because	the	second	parameter	must	always	be	an	integer.

Comparison	Operators
The	comparison	operators	are	simply	binary	operators	that	return	a	boolean
result.	The	only	oddity	to	these	is	that	they	come	in	pairs.	For	example,	if	you
define	==,	then	you	must	also	define	!=.	The	pairs	are	==	and	!=,	<	and	>,	and	<=
and	>=.

The	following	code	shows	how	you	could	overload	the	<	and	>	operators	for	the
ComplexNumber	class:

//	Return	the	number's	magnitude.

public	double	Magnitude

{

				get	{	return	Math.Sqrt(Real	*	Real	+	Imaginary	*	Imaginary);	}

}

public	static	bool	operator	<(ComplexNumber	me,	ComplexNumber	other)

{

				return	(me.Magnitude()	<	other.Magnitude());

}

public	static	bool	operator	>(ComplexNumber	me,	ComplexNumber	other)

{

				return	(me.Magnitude()	>	other.Magnitude());

}

WARNING	26.3

The	Object	class	provides	Equals	and	GetHashCode	methods	that	are	tied
closely	to	an	object's	notion	of	equality,	because	Equals	should	return	true	if
two	objects	are	equal	and	GetHashCode	should	return	the	same	value	for	two
objects	that	are	considered	equal.	To	avoid	confusion,	you	should	not
overload	==	and	!=	unless	you	also	override	Equals	and	GetHashCode.	In	fact,
Visual	Studio	flags	an	error	if	you	overload	==	or	!=	but	not	these	two
methods.

Conversion	Operators
C#	provides	one	more	kind	of	operator	you	can	overload:	conversion	operators.
These	let	a	C#	program	convert	one	data	type	to	another,	either	implicitly	or
explicitly.	For	example,	consider	the	following	code:

int	i	=	10;

double	d	=	i;							//	Implicitly	convert	i	into	a	double.

int	j	=	(int)d;					//	Explicitly	convert	d	into	an	int.

The	first	statement	declares	and	initializes	the	integer	i.	The	next	statement	sets
the	double	variable	d	equal	to	the	variable	i.	Because	any	int	value	can	fit	in	a
double	variable,	this	conversion	is	safe	so	C#	allows	you	to	make	it	implicitly.

The	third	statement	sets	integer	variable	j	equal	to	the	value	in	the	double
variable.	Not	all	double	values	can	fit	in	an	int,	so	C#	won't	let	you	make	that
assignment	implicitly.	The	cast	operator	(int)	explicitly	tells	C#	to	make	the
conversion	anyway	and	you're	willing	to	take	the	risk	that	the	value	may	not	fit.

You	can	overload	conversion	operators	to	allow	your	program	to	convert	between
types	that	you	define.	For	example,	consider	the	following	code	in	the
ComplexNumber	class:

//	Convert	double	to	ComplexNumber.

public	static	implicit	operator	ComplexNumber(double	x)

{

				return	new	ComplexNumber(x,	0);

}

//	Convert	ComplexNumber	to	double.

public	static	explicit	operator	double	(ComplexNumber	me)

{

				return	me.Magnitude;

}

The	first	method	defines	a	conversion	operator	that	converts	a	double	into	a
ComplexNumber.	You	can	easily	convert	any	double	into	a	ComplexNumber	by	simply
setting	its	imaginary	part	to	0.	This	conversion	never	causes	a	loss	of	data	so	it	can
be	made	implicitly.

The	second	method	defines	a	conversion	operator	that	converts	a	ComplexNumber
into	a	double	by	returning	the	number's	magnitude.	This	does	cause	a	loss	of	data
(unless	the	number's	imaginary	part	happens	to	be	0)	so	the	conversion	is
declared	explicit.	It	allows	your	code	to	convert	from	a	ComplexNumber	to	a	double,
but	you	need	to	explicitly	use	a	cast	to	make	it	happen.

Try	It
In	this	Try	It,	you	extend	the	ComplexNumber	class	you	built	in	Exercise	25-6.	That
version	of	the	class	included	methods	such	as	AddTo	and	SubtractFrom	to	perform
simple	operations.	Now	you'll	replace	those	cumbersome	methods	with
overloaded	+,	-,	*,	and	unary	-	operators.

Lesson	Requirements
In	this	lesson,	you:

Copy	the	complex	number	program	you	built	for	Exercise	25-6	(or	download
the	version	that's	available	on	the	book's	website).	Remove	the	ComplexNumber
class's	AddTo,	MultiplyBy,	and	SubtractFrom	methods.

Give	the	class	new	overloaded	operators	to	handle	these	cases:

ComplexNumber	+	ComplexNumber

ComplexNumber	+	double

double	+	ComplexNumber

ComplexNumber	*	ComplexNumber

ComplexNumber	*	double

double	*	ComplexNumber

-ComplexNumber

ComplexNumber	-	ComplexNumber

ComplexNumber	-	double

double	-	ComplexNumber

Revise	the	main	form's	code	to	use	the	new	operators.

NOTE

You	can	download	the	code	and	resources	for	this	lesson	from	the	website	at
www.wrox.com/go/csharp24hourtrainer2e.

Hints
You	can	use	operators	to	define	other	operators.	For	example,	if	you	define	the
unary	-	operator,	the	following	two	operations	have	the	same	result:

ComplexNumber	-	ComplexNumber

ComplexNumber	+	-ComplexNumber

Step-by-Step
Copy	the	complex	number	program	you	built	for	Exercise	25-6	(or	download
the	version	that's	available	on	the	book's	website).	Remove	the	ComplexNumber
class's	AddTo,	MultiplyBy,	and	SubtractFrom	methods.

1.	 This	is	reasonably	straightforward.

Give	the	class	new	overloaded	operators	to	handle	these	cases:

ComplexNumber	+	ComplexNumber

ComplexNumber	+	double

double	+	ComplexNumber

ComplexNumber	*	ComplexNumber

ComplexNumber	*	double

double	*	ComplexNumber

-ComplexNumber

ComplexNumber	-	ComplexNumber

ComplexNumber	-	double

double	-	ComplexNumber

1.	 You	can	use	code	similar	to	the	following:

//	ComplexNumber	+	ComplexNumber.

public	static	ComplexNumber	operator	+(ComplexNumber	me,	

ComplexNumber	other)

{

				return	new	ComplexNumber(

								me.Real	+	other.Real,

								me.Imaginary	+	other.Imaginary);

}

//	ComplexNumber	+	double.

http://www.wrox.com/go/csharp24hourtrainer2e

public	static	ComplexNumber	operator	+(ComplexNumber	me,	double	x)

{

				return	new	ComplexNumber(me.Real	+	x,	me.Imaginary);

}

//	double	+	ComplexNumber.

public	static	ComplexNumber	operator	+(double	x,	ComplexNumber	other)

{

				return	other	+	x;

}

//	ComplexNumber	*	ComplexNumber.

public	static	ComplexNumber	operator	*(ComplexNumber	me,	

ComplexNumber	other)

{

				return	new	ComplexNumber(

								me.Real	*	other.Real	-	me.Imaginary	*	other.Imaginary,

								me.Real	*	other.Imaginary	+	me.Imaginary	*	other.Real);

}

//	ComplexNumber	*	double.

public	static	ComplexNumber	operator	*(ComplexNumber	me,	double	x)

{

				return	new	ComplexNumber(me.Real	*	x,	me.Imaginary	*	x);

}

//	double	*	ComplexNumber.

public	static	ComplexNumber	operator	*(double	x,	ComplexNumber	other)

{

				return	other	*	x;

}

//	Unary	-.

public	static	ComplexNumber	operator	-(ComplexNumber	me)

{

				return	new	ComplexNumber(-me.Real,	-me.Imaginary);

}

//	ComplexNumber	-	ComplexNumber.

public	static	ComplexNumber	operator	-(ComplexNumber	me,	

ComplexNumber	other)

{

				return	me	+	-other;

}

//	ComplexNumber	-	double.

public	static	ComplexNumber	operator	-(ComplexNumber	me,	double	x)

{

				return	new	ComplexNumber(me.Real	-	x,	me.Imaginary);

}

//	double	-	ComplexNumber.

public	static	ComplexNumber	operator	-(double	x,	ComplexNumber	other)

{

				return	-other	+	x;

}

Revise	the	main	form's	code	to	use	the	new	operators.

1.	 You	can	use	code	similar	to	the	following:

//	Perform	the	calculations	between	two	ComplexNumbers.

private	void	calculateButton_Click(object	sender,	EventArgs	e)

{

				ComplexNumber	a	=	new	ComplexNumber(

								double.Parse(real1TextBox.Text),

								double.Parse(imaginary1TextBox.Text));

				ComplexNumber	b	=	new	ComplexNumber(

								double.Parse(real2TextBox.Text),

								double.Parse(imaginary2TextBox.Text));

				ComplexNumber	aPlusB	=	a	+	b;

				aPlusBTextBox.Text	=	aPlusB.ToString();

				ComplexNumber	aMinusB	=	a	-	b;

				aMinusBTextBox.Text	=	aMinusB.ToString();

				ComplexNumber	aTimesB	=	a	*	b;

				aTimesBTextBox.Text	=	aTimesB.ToString();

}

//	Perform	the	calculations	with	a	real	number.

private	void	calculateRealOnlyButton_Click(

				object	sender,	EventArgs	e)

{

				double	x	=	double.Parse(realOnlyTextBox.Text);

				ComplexNumber	b	=	new	ComplexNumber(

								double.Parse(real2TextBox.Text),

								double.Parse(imaginary2TextBox.Text));

				ComplexNumber	xPlusB	=	x	+	b;

				aPlusBTextBox.Text	=	xPlusB.ToString();

				ComplexNumber	xMinusB	=	x	-	b;

				aMinusBTextBox.Text	=	xMinusB.ToString();

				ComplexNumber	xTimesB	=	x	*	b;

				aTimesBTextBox.Text	=	xTimesB.ToString();

}

Exercises
1.	 Providing	methods	that	combine	ComplexNumbers	and	doubles	requires	a	lot	of
similar	code.	For	example,	to	perform	addition	with	ComplexNumbers,	you	need
to	overload	the	+	operator	three	times	to	handle	ComplexNumber	+
ComplexNumber,	ComplexNumber	+	double,	and	double	+	ComplexNumber.

Fortunately,	there's	a	better	approach.	Just	provide	an	implicit	conversion
operator	to	convert	a	double	into	a	ComplexNumber.	Now	if	the	program	needs	to
perform	the	operation	ComplexNumber	+	double,	it	automatically	converts	the
double	into	a	ComplexNumber	and	can	then	perform	the	addition.

Copy	the	program	you	built	in	this	lesson's	Try	It	and	remove	the	code	that
combines	ComplexNumbers	with	doubles.	Then	add	an	implicit	conversion
operator	to	convert	doubles	into	ComplexNumbers.	Verify	that	the	program	still
works.

2.	 Copy	the	program	you	built	for	Exercise	1	and	overload	the	ComplexNumber
class's	/	operator	to	perform	division	using	this	equation:

Use	this	operator	to	define	operators	for	ComplexNumber	/	double	and	double	/
ComplexNumber.	(Hint:	Don't	perform	all	of	the	calculations	for	these.	Convert
the	double	into	a	ComplexNumber	and	then	use	the	previous	definition	of	/.)

Change	the	main	program	to	calculate	A	/	B.	Verify	these	calculations:

(10+11i)	/	(3+2i)	=	4	+	1i

(15+24i)	/	3	=	5	+	8i

4	/	(1+1i)	=	2	−	2i

3.	 Build	an	application	with	an	OrderItem	class	that	has	the	properties
Description,	Quantity,	and	PriceEach.	Also	make	an	Order	class	that	has	the
properties	CustomerName	and	Items,	which	is	a	List<OrderItem>.	Then	overload
the	Order	class's	+	operator	so	you	can	use	it	to	add	OrderItems	to	an	Order.
Build	a	simple	user	interface	to	test	the	classes.

Hints:

Give	the	form	a	class-level	Order	object	and	then	add	items	to	it.

Make	the	+	operator	return	the	Order	to	which	it	is	adding	an	item.

Override	the	OrderItem	class's	ToString	method	so	you	can	easily	display
items	in	a	ListBox.

4.	 [Advanced]	By	default,	a	class's	Equals	method	tests	reference	equality.	That
means	it	considers	two	variables	equal	if	they	refer	to	the	same	instance	of	the
class.	For	example,	it	would	consider	two	Employee	variables	different	if	they

refer	to	separate	instances	of	the	class	even	if	they	have	the	same	FirstName
and	LastName	property	values.	Sometimes	that	makes	sense,	but	other	times	it's
inconvenient.

Make	a	program	that	defines	an	Employee	class	with	FirstName	and	LastName
properties.	Override	the	ToString	method	to	return	the	concatenated	names.

Use	the	following	code	to	override	the	class's	Equals	method	so	it	returns	true
if	two	Employees	have	the	same	FirstName	and	LastName	values:

//	Return	true	if	the	object	is	an	Employee	with

//	the	same	first	and	last	names	as	this	object.

public	override	bool	Equals(object	obj)

{

				if	(obj	==	null)	return	false;

				if	(!(obj	is	Employee))	return	false;

				Employee	other	=	obj	as	Employee;

				return	(

								(FirstName	==	other.FirstName)	&&

								(LastName	==	other.LastName));

}

The	first	line	checks	that	the	other	object	is	not	null.	(You	already	know	that
the	current	“this”	object	isn't	null	or	else	it	couldn't	be	executing	this	code.)

The	is	keyword	returns	true	if	an	object	can	be	converted	into	a	specific	type,
so	the	second	line	makes	sure	that	obj	inherits	from	the	Employee	type.

The	method	then	converts	obj	into	an	Employee	and	compares	its	FirstName
and	LastName	values	to	the	current	object's	values.

If	you	override	Equals,	you	should	also	override	GetHashCode.	This	method
converts	an	object	into	an	int	that	acts	as	a	sort	of	shorthand	representation
for	it.	The	hash	code	for	two	equal	objects	must	be	the	same.	(That's	why	you
need	to	override	GetHashCode	if	you	override	Equals.)	Ideally,	two	different
objects	should	also	be	unlikely	to	have	the	same	hash	value.

For	this	exercise,	give	the	Employee	class	the	following	GetHashCode	method:

//	Return	a	hash	code	for	the	object.

public	override	int	GetHashCode()

{

				return	FirstName.GetHashCode()	^	LastName.GetHashCode();

}

Now	that	you've	defined	the	Employee	class,	create	a	Department	class	that	has
the	properties	Name	and	Employees,	which	is	a	List<Employee>.	Overload	its	+
operator	to	add	an	Employee	to	the	Employees	list.

Give	the	form	a	class-level	Department	object	and	initialize	it.	Then	build	the
user	interface	shown	in	Figure	26.1.

Figure	26.1

When	the	user	clicks	Add,	create	an	Employee	object	with	the	entered	names,
and	use	the	Department	object's	+	operator	to	add	the	Employee	to	the
Department.

When	the	user	clicks	Remove,	create	an	Employee	object	with	the	entered
names.	Use	the	Contains	method	of	the	Department	object's	Employees	list	to	see
if	the	Employee	is	in	the	list.	If	the	Employee	is	present,	use	the	list's	Remove
method	to	remove	it.	(The	Contains	and	Remove	methods	wouldn't	work	if	you
hadn't	overridden	the	Equals	method.	Comment	out	Equals	and	GetHashCode	to
see	what	happens.)

5.	 Make	a	new	program	and	give	it	a	copy	of	the	Employee	class	you	built	for
Exercise	26.4.	Use	the	Equals	method	to	overload	the	==	and	!=	operators.
Then	use	an	interface	similar	to	the	one	shown	in	Figure	26.2	to	test	the
operators.

Figure	26.2

When	the	user	clicks	Compare,	the	program	should	create	two	Employee
objects,	use	==	and	!=	to	compare	them,	and	display	the	results,	as	shown	in
the	figure.

NOTE

Please	select	the	videos	for	Lesson	26	online	at
www.wrox.com/go/csharp24hourtrainer2evideos.

http://www.wrox.com/go/csharp24hourtrainer2evideos

Lesson	27

Using	Interfaces
In	.NET	programming,	an	interface	is	like	a	contract.	It	defines	the	public
properties,	methods,	and	events	that	a	class	must	provide	to	satisfy	the	contract.	It
doesn't	indicate	how	the	class	must	provide	these	features,	however.	That's	left	up
to	the	class's	code.	It	only	defines	an	interface	that	the	class	must	show	to	the	rest
of	the	world.

In	this	lesson,	you	learn	how	to	implement	interfaces	that	are	predefined	by	the
.NET	Framework.	You	also	learn	how	to	define	your	own	interfaces	to	make	your
code	safer	and	more	efficient.

Interface	Advantages
The	following	sections	discuss	two	of	the	most	important	advantages	provided	by
interfaces:	multiple	inheritance	and	code	generalization.

Multiple	Inheritance
Suppose	you	define	a	Vehicle	class	with	properties	such	as	NumberOfPassengers,
MilesPerGallon,	and	NumberOfCupHolders.	From	this	class	you	can	derive	other
classes	such	as	Car,	PickupTruck,	and	Unicycle.

Suppose	you	also	define	a	Domicile	class	that	has	properties	such	as	SquareFeet,
NumberOfBedrooms,	and	HasAnnoyingNeighbor.	From	this	class	you	can	derive
Apartment,	Condo,	and	VacationHome.

Next	you	might	like	to	derive	the	MotorHome	class	from	both	Vehicle	and	Domicile
so	it	has	the	properties	and	methods	of	both	parent	classes.	Unfortunately	you
can't	do	that	in	C#.	In	C#,	a	class	can	inherit	from	only	a	single	parent	class.

Although	a	class	can	have	only	one	parent,	it	can	implement	any	number	of
interfaces.	For	example,	if	you	turn	the	Domicile	class	into	the	IDomicile	interface,
the	MotorHome	class	can	inherit	from	Vehicle	and	implement	IDomicile.	The
interface	doesn't	provide	the	code	needed	to	implement	such	features	as	the
HasAnnoyingNeighbor	property,	but	at	least	it	defines	that	property	so	code	that
uses	a	MotorHome	object	knows	the	property	is	available.

NOTE

To	make	recognizing	interface	names	easy,	you	should	begin	interface
names	with	I	as	in	IDomicile,	IComparable,	and	IWhatever.

Defining	a	property	such	as	SquareFeet	but	not	implementing	it	may	not	seem
very	useful,	but	it	lets	your	code	treat	all	IDomicile	objects	in	a	uniform	way.
Instead	of	writing	separate	methods	to	work	with	Duplex,	RusticCabin,	and
HouseBoat	objects,	you	can	write	a	single	method	that	manipulates	objects	that
implement	IDomicile.

That	brings	us	to	the	second	big	advantage	provided	by	interfaces:	code
generalization.

Code	Generalization
Interfaces	can	make	your	code	more	general	while	still	providing	type	checking.
They	let	you	treat	objects	that	have	common	features	as	if	they	were	of	the
interface	type	rather	than	their	true	individual	types.

For	example,	suppose	you	write	the	following	method	that	displays	an	array	of
strings	in	a	ListBox:

private	void	DisplayValues(string[]	items,	ListBox	listbox)

{

				listbox.Items.Clear();

				foreach	(string	value	in	items)

								listbox.Items.Add(value);

}

This	method	works	reasonably	well,	but	suppose	you	later	decide	that	you	need	to
display	the	items	that	are	in	a	List<string>	instead	of	an	array.	You	could	write	a
new	version	of	the	method	that	was	nearly	identical	to	this	one	but	that	works
with	a	list	instead	of	an	array,	as	in	the	following	code:

private	void	DisplayValues(List<string>	items,	ListBox	listbox)

{

				listbox.Items.Clear();

				foreach	(string	value	in	items)

								listbox.Items.Add(value);

}

If	you	compare	these	two	methods,	you'll	see	that	they	are	practically	identical,	so
you	must	write,	debug,	and	maintain	two	pieces	of	code	that	do	almost	exactly	the
same	thing.

This	is	where	interfaces	can	help.

Look	again	at	the	two	methods.	They	differ	only	in	their	parameter	definitions	and
the	rest	of	their	code	is	the	same.	The	reason	is	that	the	methods	don't	really	care

that	the	parameters	are	arrays	or	lists.	All	they	really	care	about	is	that	you	can	use
a	foreach	loop	to	iterate	through	them.

The	IEnumerable<>	interface	requires	that	a	class	provide	an	enumerator	that	a
program	can	use	to	loop	through	the	items	in	the	object.	In	particular,	the
enumerator	supports	foreach	loops.

This	is	a	generic	interface	so	you	must	provide	a	type	parameter	for	it	to	indicate
the	type	of	the	items	over	which	the	interface	can	loop.

Both	string[]	and	List<string>	implement	IEnumerable<string>,	so	you	can
combine	and	generalize	the	methods	by	making	the	items	parameter	have	the	type
IEnumerable<string>	instead	of	string[]	or	List<string>.	The	following	code
shows	the	new	version	of	the	method:

private	void	DisplayValues(IEnumerable<string>	items,	ListBox	listbox)

{

				listbox.Items.Clear();

				foreach	(string	value	in	items)

								listbox.Items.Add(value);

}

This	version	can	display	the	items	in	a	string[],	List<string>,	or	any	other	object
that	implements	IEnumerable<string>	such	as	LinkedList<string>,	Stack<string>,
or	SortedSet<string>.

Implementing	Interfaces
To	make	a	class	that	implements	an	interface,	add	the	interface	name	in	the	class's
declaration	as	if	the	class	were	inheriting	from	the	interface.	For	example,	the
following	code	shows	the	declaration	for	a	Person	class	that	implements
IComparable:

class	Person	:	IComparable

{

				...

}

You	can	include	a	class	and	multiple	interfaces	in	the	inheritance	list.	For
example,	the	Manager	class	could	inherit	from	Person	and	implement	the	interfaces
IComparable	and	IDisposable.

The	only	other	thing	you	need	to	do	is	implement	the	properties,	methods,	and
events	defined	by	the	interface.	For	example,	the	IComparable	interface	defines	a
CompareTo	method	that	takes	an	object	as	a	parameter	and	returns	an	integer	that
is	less	than,	equal	to,	or	greater	than	zero	to	indicate	whether	the	object	should	be
considered	less	than,	equal	to,	or	greater	than	the	parameter.

Many	interfaces	come	in	generic	versions.	For	example,	the	IComparable<Person>
interface	requires	a	class	to	define	a	CompareTo<Person>	method.

For	a	concrete	example,	suppose	the	Person	class	defines	FirstName	and	LastName
properties.	The	following	code	implements	a	version	of	CompareTo<Person>	that
orders	Person	objects	according	to	their	last	names	first:

class	Person	:	IComparable<Person>

{

				...

				//	Compare	this	Person	to	another	Person.

				public	int	CompareTo(Person	other)

				{

								//	If	other	is	null,	it	comes	first.

								if	(other	==	null)	return	1;

								//	If	our	last	name	comes	first,	we	come	first.

								if	(LastName.CompareTo(other.LastName)	<	0)	return	-1;

								//	If	our	last	name	comes	second,	we	come	second.

								if	(LastName.CompareTo(other.LastName)	>	0)	return	1;

								//	If	our	last	names	are	the	same,	compare	first	names.

								return	FirstName.CompareTo(other.FirstName);

				}

				...

}

First,	if	the	other	Person	object	is	null,	the	method	returns	1	to	indicate	that	the
current	Person	should	come	after	it.	(By	convention,	null	values	come	before	non-
null	values.)

Next,	the	method	compares	the	two	objects'	LastName	values.	If	the	values	are	not

the	same,	the	code	returns	–1	or	1	to	indicate	that	the	current	Person	comes	before
or	after	the	other.

Finally,	if	the	two	LastName	values	are	the	same,	the	code	uses	the	CompareTo
method	provided	by	the	string	class	to	compare	the	two	FirstName	values	and
returns	the	result.

You	can	write	the	code	to	implement	an	interface	yourself,	but	it's	easier	to	let
Visual	Studio	build	a	default	implementation	for	you.	Write	the	class	declaration
including	the	interface.	Then	hover	the	mouse	over	the	interface's	name	in	the
class	declaration	and	look	for	the	change	suggestion	lightbulb	to	appear.	You	can
see	it	under	the	word	“class”	in	Figure	27.1.

Figure	27.1

Click	the	lightbulb	and	select	the	Implement	Interface	command	from	the
dropdown	list,	as	shown	in	Figure	27.2.

Figure	27.2

When	you	select	that	command,	Visual	Studio	adds	placeholder	code	to	satisfy	the
interface.	The	following	code	shows	the	placeholder	method	for	the
ICompare<Person>	interface:

public	int	CompareTo(Person	other)

{

				throw	new	NotImplementedException();

}

Now	you	can	fill	in	the	code	you	want	to	use.

You	can	learn	more	about	what	an	interface	is	for	and	what	it	does	in	several	ways.
You	can	always	search	the	online	help.	You	can	also	right-click	the	interface's
name	and	select	Go	To	Definition	to	see	information,	as	shown	in	Figure	27.3.
Click	the	plus	signs	on	the	left	to	view	detailed	comments	describing	the	purposes
of	the	pieces	of	code.

Figure	27.3

Finally,	you	can	open	the	Object	Browser	(use	the	View	menu's	Object	Browser
command)	and	search	for	the	interface's	name	(without	the	generic	parameters).
Select	the	interface	in	the	browser's	left	panel.	Click	an	item	in	the	upper-right
panel	for	more	details,	as	shown	in	Figure	27.4.

Figure	27.4

Defining	Interfaces
The	preceding	sections	give	examples	that	implement	predefined	interfaces.	This
section	explains	how	you	can	define	your	own.

Defining	an	interface	is	a	lot	like	defining	a	class,	with	two	main	differences:

First,	you	use	the	keyword	interface	instead	of	class	in	the	declaration.	(You
can	use	the	Project	menu's	Add	Class	command	and	then	change	the	keyword
class	to	interface.)

Second,	you	don't	provide	any	code	for	the	properties,	methods,	and	events
that	you	declare	in	the	interface.

The	following	code	shows	a	simple	IDrawable	interface.	The	code	includes	a	using
System.Graphics	directive	at	the	top	of	the	file	to	make	working	with	Brush,	Pen,
and	Graphics	objects	easier.

interface	IDrawable

{

				int	X	{	get;	set;	}

				int	Y	{	get;	set;	}

				Brush	Background	{	get;	set;	}

				Pen	Foreground	{	get;	set;	}

				void	Draw(Graphics	gr);

}

A	class	that	implements	IDrawable	must	provide	X,	Y,	Background,	and	Foreground
properties	and	a	Draw	method.

You	cannot	provide	an	accessibility	modifier	such	as	private	to	the	items	defined
by	an	interface	because	they	are	always	assumed	to	be	public.	That	means	a	class
that	implements	the	interface	must	declare	these	items	as	public.

The	declarations	for	the	properties	look	like	they	are	providing	a	default
implementation,	but	they	actually	only	indicate	which	accessors	are	required.	For
example,	you	could	omit	the	set	accessor	to	require	a	read-only	property.

A	class	that	implements	IDrawable	must	still	provide	its	own	implementations,
although	you	can	use	auto-implemented	properties	if	you	like.	For	example,	the
following	code	shows	how	the	DrawableCircle	class	might	implement	its	X
property:

public	int	X	{	get;	set;	}

NOTE

This	example	might	work	better	with	true	inheritance	instead	of	an	interface.
If	you	make	a	Drawable	class	that	implements	the	X,	Y,	Background,	and
Foreground	properties,	other	classes	such	as	DrawableCircle	could	inherit
them.	In	this	example	an	interface	makes	sense	only	if	the	classes	already
inherit	from	some	other	class	so	they	cannot	also	inherit	from	Drawable.

Try	It
In	this	Try	It,	you	build	the	Vehicle	class	and	the	IDomicile	interface	described
earlier	in	this	lesson.	You	then	make	a	MotorHome	class	that	inherits	from	the	first
and	implements	the	second.	Finally,	you	create	an	instance	of	the	derived	class.

Lesson	Requirements
In	this	lesson,	you:

Start	a	new	project.	Create	a	Vehicle	class	with	the	properties
NumberOfPassengers,	MilesPerGallon,	and	NumberOfCupHolders.	Give	it	an
initializing	constructor	and	override	its	ToString	method	so	it	returns	the
object's	property	values	separated	by	the	escape	sequence	\r\n.

Make	an	IDomicile	interface	that	defines	the	properties	SquareFeet,
NumberOfBedrooms,	and	NumberOfBathrooms.	Also	make	it	define	a	ToString
method	that	returns	a	string	as	usual.

Derive	the	MotorHome	class	from	Vehicle,	making	it	implement	IDomicile.	Give
it	an	initializing	constructor	and	override	its	ToString	method	so	it	returns	all
of	the	object's	property	values	separated	by	the	escape	sequence	\r\n.

Create	an	instance	of	the	MotorHome	class.	Then	use	its	ToString	method	to
display	its	properties	in	a	textbox.

NOTE

You	can	download	the	code	and	resources	for	this	lesson	from	the	website	at
www.wrox.com/go/csharp24hourtrainer2e.

Hints
Don't	forget	to	make	the	MotorHome	class's	constructor	invoke	the	base	class's
constructor.	If	you	don't	remember	how,	see	the	section	“Invoking	Other
Constructors”	in	Lesson	24.

You	can	save	a	little	work	by	making	the	MotorHome	class's	ToString	method	call
the	Vehicle	class's	version.

Step-by-Step
Start	a	new	project.	Create	a	Vehicle	class	with	the	properties
NumberOfPassengers,	MilesPerGallon,	and	NumberOfCupHolders.	Give	it	a
constructor	to	make	it	easy	to	initialize	a	new	object's	properties.	Override	its
ToString	method	so	it	returns	the	object's	property	values	separated	by	the
escape	sequence	\r\n.

1.	 Use	code	similar	to	the	following:

class	Vehicle

{

				//	Properties.

				public	int	NumberOfPassengers	{	get;	set;	}

				public	double	MilesPerGallon	{	get;	set;	}

				public	int	NumberOfCupHolders	{	get;	set;	}

				//	Initializing	constructor.

				public	Vehicle(int	numberOfPassengers,	double	milesPerGallon,

								int	numberOfCupHolders)

				{

								NumberOfPassengers	=	numberOfPassengers;

								MilesPerGallon	=	milesPerGallon;

								NumberOfCupHolders	=	numberOfCupHolders;

				}

				//	Return	the	object's	properties.

				public	override	string	ToString()

				{

								return

												"NumberOfPassengers:	"	+	NumberOfPassengers	+

												"\r\nMilesPerGallon	:	"	+	MilesPerGallon	+

												"\r\nNumberOfCupHolders:	"	+	NumberOfCupHolders;

				}

}

Make	an	IDomicile	interface	that	defines	the	properties	SquareFeet,
NumberOfBedrooms,	and	NumberOfBathrooms.	Also	make	it	define	a	ToString

http://www.wrox.com/go/csharp24hourtrainer2e

method	that	returns	a	string	as	usual.

1.	 Use	code	similar	to	the	following:

interface	IDomicile

{

				int	SquareFeet	{	get;	set;	}

				int	NumberOfBedrooms	{	get;	set;	}

				double	NumberOfBathrooms	{	get;	set;	}

				string	ToString();

}

Derive	the	MotorHome	class	from	Vehicle,	making	it	implement	IDomicile.	Give
it	a	constructor	to	make	it	easy	to	initialize	a	new	object's	properties.	Override
its	ToString	method	so	it	returns	the	object's	property	values	separated	by	the
escape	sequence	\r\n.

1.	 Use	code	similar	to	the	following:

class	MotorHome	:	Vehicle,	IDomicile

{

				//	IDomicile	methods.

				public	int	SquareFeet	{	get;	set;	}

				public	int	NumberOfBedrooms	{	get;	set;	}

				public	double	NumberOfBathrooms	{	get;	set;	}

				//	Initializing	constructor.

				public	MotorHome(int	numberOfPassengers,	double	milesPerGallon,

								int	numberOfCupHolders,	int	squareFeet,

								int	numberOfBedrooms,	double	numberOfBathrooms)

								:	base(numberOfPassengers,	milesPerGallon,

								numberOfCupHolders)

				{

								SquareFeet	=	squareFeet;

								NumberOfBedrooms	=	numberOfBedrooms;

								NumberOfBathrooms	=	numberOfBathrooms;

				}

				//	Return	the	object's	properties.

				public	override	string	ToString()

				{

								return	base.ToString()	+

												"\r\nSquareFeet:	"	+	SquareFeet	+

												"\r\nNumberOfBedrooms:	"	+	NumberOfBedrooms	+

												"\r\nNumberOfBathrooms:	"	+	NumberOfBathrooms;

				}

}

Create	an	instance	of	the	MotorHome	class.	Then	use	its	ToString	method	to
display	its	properties	in	a	textbox.

1.	 The	following	code	creates	an	instance	of	the	MotorHome	class	and	displays
its	properties	in	resultTextBox:

private	void	Form1_Load(object	sender,	EventArgs	e)

{

				//	Make	a	MotorHome.

				MotorHome	motorHome	=	new	MotorHome(6,	8.25,	32,	150,	3,	0.5);

				//	Display	its	properties.

				resultTextBox.Text	=	motorHome.ToString();

}

Exercises
1.	 Build	a	program	that	defines	the	IDrawable	interface	described	earlier	in	this
lesson.	Make	the	DrawableCircle	and	DrawableRectangle	classes	implement	the
interface.

Hints:	Give	DrawableCircle	an	additional	Radius	property	and	give
DrawableRectangle	additional	Width	and	Height	properties.	Use	code	similar	to
the	following	to	draw	the	circle	centered	at	the	point	(X,	Y):

//	Draw	the	circle	centered	at	(X,	Y).

public	void	Draw(Graphics	gr)

{

				gr.FillEllipse(Background,	X	-	Radius,	Y	-	Radius,

								2	*	Radius,	2	*	Radius);

				gr.DrawEllipse(Foreground,	X	-	Radius,	Y	-	Radius,

								2	*	Radius,	2	*	Radius);

}

Use	code	similar	to	the	following	to	draw	the	rectangle	with	upper-left	corner
(X,	Y):

//	Draw	the	rectangle.

public	void	Draw(Graphics	gr)

{

				gr.FillRectangle(Background,	X,	Y,	Width,	Height);

				gr.DrawRectangle(Foreground,	X,	Y,	Width,	Height);

}

(For	bonus	points,	make	a	DrawableStar	class	that	has	a	NumberOfPoints
property	and	draws	a	star	with	that	number	of	points.)

2.	 [Hard]	An	array's	Sort	method	can	take	as	a	parameter	an	object	that
implements	the	generic	IComparer	interface.	Because	this	interface	is	generic,
you	can	tell	it	what	kinds	of	objects	the	class	can	compare.	For	example,
IComparer<Car>	means	the	class	can	compare	Car	objects.

Build	a	Car	class	with	the	properties	Name,	MaxSpeed,	Horsepower,	and	Price.
Override	the	ToString	method	to	display	the	object's	properties	formatted	with
fixed	column	widths	so	the	values	for	different	Cars	in	a	ListBox	will	line	up
nicely,	as	shown	in	Figure	27.5.	(The	ListBox	uses	the	fixed-width	font	Courier
New	so	all	of	the	letters	have	the	same	width.)

Figure	27.5

Build	a	CarComparer	class	that	implements	IComparer<Car>.	Give	it	the	following
SortType	enumeration:

//	Different	kinds	of	sorts.

public	enum	SortType

{

				ByName,

				ByMaxSpeed,

				ByHorsepower,

				ByPrice,

}

Next	give	CarComparer	a	Sort	property	that	has	type	SortType.

Finally,	give	the	CarComparer	a	Compare	method	to	satisfy	the	IComparer<Car>
interface.	Use	a	switch	statement	to	make	the	method	return	a	value	that
depends	on	the	Sort	value.	For	example,	if	Sort	is	ByPrice,	then	compare	the
two	Cars'	prices.	Make	the	method	sort	the	MaxSpeed,	Horsepower,	and	Price
values	in	decreasing	order.

Now	create	and	initialize	a	class-level	list	of	Car	objects.	When	the	user	clicks	a
RadioButton,	follow	these	steps:

Set	the	ListBox	control's	DataSource	property	to	null.

Create	a	CarComparer	with	the	appropriate	SortType.

Call	the	Car	list's	Sort	method,	passing	it	the	comparer.

Set	the	ListBox	control's	DataSource	property	to	the	Car	list.

NOTE

Note	that	you	have	many	ways	to	do	this	sort	of	thing.	For	example,
Lesson	36	explains	how	you	can	use	LINQ	to	sort	items.	As	with	all	of	the
examples	and	exercises	in	this	book,	these	examples	are	primarily
designed	to	demonstrate	particular	topics,	in	this	case	interfaces,	rather
than	to	provide	the	perfect	solution.

3.	 [Hard]	If	you	set	a	ListView	control's	ListViewItemSorter	property	equal	to	an
object	that	implements	the	System.Collections.IComparer	interface,	then	the
ListView	uses	that	object	to	sort	its	rows.	To	sort	the	rows,	the	control	calls	the
object's	Compare	method,	passing	it	two	ListViewItem	objects.	(Unfortunately
the	ListView	control's	ListViewItemSorter	property	is	a	non-generic	IComparer,
so	it	works	with	non-specific	objects	instead	of	something	more	concrete	like
ListViewItems.)

For	this	exercise,	make	a	program	with	a	ListView	control	similar	to	the	one
shown	in	Figure	27.6.	At	design	time,	edit	the	ListView's	Columns	collection	to
define	the	columns.	Edit	its	Items	collection	to	define	the	data	and	set	the
control's	View	property	to	Details.

Figure	27.6

Next,	make	a	ListViewComparer	class	that	implements
System.Collections.IComparer.	Give	it	a	ColumnNumber	property	that	indicates
the	number	of	the	column	in	the	ListView	that	the	object	should	use	when
sorting.

Finally,	give	the	ListView	a	ColumnClick	event	handler.	The	event	handler
should	create	a	new	ListViewComparer	object	to	sort	on	the	clicked	column	and
then	set	the	ListView	control's	ListViewItemSorter	property	to	that	object.

4.	 The	IEquatable	interface	requires	a	class	to	provide	an	Equals	method	that
returns	true	if	two	objects	should	be	regarded	as	equal.	Some	classes,	such	as

List,	can	use	that	interface.	For	example,	if	you	fill	a	List	with	objects	that
implement	IEquatable,	then	the	list's	Contains	method	can	tell	if	the	list
contains	an	object	that	is	equivalent	to	another	object.

Make	a	Person	class	that	has	the	properties	FirstName	and	LastName	and	that
implements	IEquatable<Person>.	Then	build	a	program	similar	to	the	one
shown	in	Figure	27.7	to	let	the	user	add	and	remove	Person	objects	in	a	list.	If
the	user	tries	to	add	a	duplicate	Person	or	tries	to	remove	a	Person	that	isn't	in
the	list,	display	an	error	message.

Figure	27.7

Hints

Store	the	Person	objects	in	a	List<Person>	named	People.	(Unfortunately,
the	ListBox	control's	Items	collection	doesn't	assume	its	contents
implement	IEquatable	so	you	can't	just	store	the	Person	objects	there.)

After	modifying	the	list,	make	the	ListBox	display	the	list	of	people	by
setting	the	ListBox's	DataSource	property	to	null	and	then	setting	it	equal	to
People.

5.	 It's	always	better	to	prevent	the	user	from	making	a	mistake	than	it	is	to
display	an	error	message.	Copy	the	program	you	wrote	for	Exercise	27.4	and
make	the	following	changes:

Remove	the	previous	error	messages.

Enable	the	Add	button	only	if	both	TextBoxes	have	non-blank	text	and	the
list	doesn't	already	contain	a	person	with	those	first	and	last	names.

Enable	the	Remove	button	only	if	both	TextBoxes	have	non-blank	text	and
the	list	contains	a	person	with	those	first	and	last	names.

6.	 Make	a	program	that	defines	the	following	classes	and	interfaces:

An	IWolf	interface	with	PackName	and	Rank	properties,	and	a	WolfInfo
method	that	returns	a	string.	(In	classes	that	implement	IWolf,	make	this
method	return	the	person's	name	and	pack	name.)

A	Person	class	with	FirstName	and	LastName	properties	and	an	overridden
ToString	method.

An	Employee	class	that	inherits	from	Person,	adds	a	new	EmployeeId
property,	and	makes	ToString	include	EmployeeId.

A	Werewolf	class	derived	from	Person	and	IWolf.

A	WereEmployee	class	derived	from	Employee	and	IWolf.

Create	instances	of	the	Person,	Employee,	Werewolf,	and	WereEmployee	classes.
Place	them	all	in	a	List<Person>	and	place	those	that	you	can	in	a	List<IWolf>.
Loop	through	the	lists	and	display	the	objects'	information	in	two	ListBoxes.

7.	 Copy	the	program	you	built	for	Exercise	27.6	and	modify	it	so	WereEmployee
inherits	from	Werewolf.	What	are	the	advantages	and	disadvantages	to	this
approach?	Which	approach	seems	better?	(Look	at	the	comments	in	the
WereEmployee	class	in	the	download	to	see	my	thoughts.)

NOTE

Please	select	the	videos	for	Lesson	27	online	at
www.wrox.com/go/csharp24hourtrainer2evideos.

http://www.wrox.com/go/csharp24hourtrainer2evideos

Lesson	28

Making	Generic	Classes
The	section	“Generic	Classes”	in	Lesson	16	explained	how	to	use	generic	collection
classes.	For	example,	the	following	code	defines	a	list	that	holds	Employee	objects:

public	List<Employee>	Employees	=	new	List<Employee>();

This	list	can	only	hold	Employee	objects,	and	when	you	get	an	object	out	of	the	list,
it	has	the	Employee	type	instead	of	the	less-specific	object	type.

Lesson	16	also	described	the	main	advantages	of	generic	classes:	code	reuse	and
specific	type	checking.	You	can	use	the	same	generic	List<>	class	to	hold	a	list	of
strings,	doubles,	or	Person	objects.	By	requiring	a	specific	data	type,	the	class
prevents	you	from	accidentally	adding	an	Employee	object	to	a	list	of	Order	objects,
and	when	you	get	an	object	from	the	list	you	know	it	is	an	Order.

In	this	lesson,	you	learn	how	to	build	your	own	generic	classes	so	you	can	raise
code	reuse	to	a	whole	new	level.

NOTE

Many	other	things	can	be	generic.	You	can	probably	guess	that	you	can	build
generic	structures	because	structures	are	so	similar	to	classes.	You	can	also
create	generic	methods	(in	either	generic	or	non-generic	classes),	generic
interfaces,	generic	delegate	types,	and	so	on.	This	lesson	focuses	on	generic
classes.

Defining	Generic	Classes
A	generic	class	declaration	looks	a	lot	like	a	normal	class	declaration	with	one	or
more	generic	type	variables	added	in	angled	brackets.	For	example,	the	following
code	shows	the	basic	declaration	for	a	generic	TreeNode	class:

class	TreeNode<T>

{

				...

}

The	<T>	means	the	class	takes	one	type	parameter,	T.	Within	the	class's	code,	the
type	T	means	whatever	type	the	program	used	when	creating	the	instance	of	the
class.	For	example,	the	following	code	declares	a	variable	named	rootNode	that	is	a
TreeNode	that	handles	strings:

TreeNode<string>	rootNode	=	new	TreeNode<string>();

If	you	want	the	class	to	use	multiple	type	parameters,	separate	them	with	commas.
For	example,	suppose	you	want	to	make	a	Matcher	class	that	takes	two	kinds	of
objects	and	matches	objects	in	the	two	kinds.	It	might	match	Employee	objects	with
Job	objects	to	assign	employees	to	jobs.	The	following	code	shows	how	you	might
declare	the	Matcher	class:

public	class	Matcher<T1,	T2>

{

				...

}

The	following	code	shows	how	you	might	create	an	instance	of	the	class	to	match
Employees	with	Jobs:

Matcher<Employee,	Job>	jobAssigner	=	new	Matcher<Employee,	Job>();

NOTE

Many	developers	use	T	for	the	name	of	the	type	in	generic	classes	that	take
only	one	type.

If	the	class	takes	more	than	one	type,	you	should	use	more	descriptive	names
so	it's	easy	to	tell	the	types	apart.	For	example,	the	generic	Dictionary	class
has	two	type	variables	named	TKey	and	TValue	that	represent	the	types	of	the
keys	and	values	that	the	Dictionary	will	hold.

Inside	the	class's	code,	you	can	use	the	types	freely.	For	example,	the	following
code	shows	more	of	the	TreeNode	class's	code.	A	TreeNode	object	represents	a	node
in	a	tree,	with	an	associated	piece	of	data	attached	to	it.	The	places	where	the	class
uses	the	data	type	T	are	highlighted	in	bold.

class	TreeNode<T>

{

				//	This	node's	data.

				public	T	Data	{	get;	set;	}

				//	This	node's	children.

				private	List<TreeNode<T>>	children	=	new	List<TreeNode<T≫();

				//	Constructor.

				public	TreeNode(T	data)

				{

								Data	=	data;

				}

				//	Override	ToString	to	display	the	data.

				public	override	string	ToString()

				{

								if	(Data	==	null)	return	"";

								return	Data.ToString();

				}

				...

}

Notice	how	the	class	uses	the	type	T	throughout	its	code.	The	class	starts	by
defining	a	Data	field	of	type	T.	This	is	the	data	(of	whatever	data	type)	associated
with	the	node.

Each	node	also	has	a	list	of	child	nodes.	To	hold	the	right	kind	of	TreeNode	objects,
the	children	variable	is	a	generic	List<TreeNode<T≫,	meaning	it	can	hold	only
TreeNode<T>	objects.

The	class's	constructor	takes	a	parameter	of	type	T	and	saves	it	in	the	object's	Data
property.

To	make	displaying	a	TreeNode	easier,	the	class	overrides	its	ToString	method	so	it
calls	the	ToString	method	provided	by	the	Data	object.	For	example,	if	the	object	is
a	TreeNode<string>,	this	simply	returns	the	string's	value.

Using	Generic	Constraints
The	previous	example	overrides	the	TreeNode	class's	ToString	method	to	make	it
call	the	Data	object's	ToString	method.	Fortunately,	all	objects	have	a	ToString
method	so	you	know	this	is	possible,	but	what	if	you	want	to	call	some	other
method	provided	by	the	object?

For	example,	suppose	you	want	to	create	a	new	instance	of	type	T.	How	do	you
know	that	type	T	provides	a	constructor	that	takes	no	parameters?	What	if	you
want	to	compare	two	objects	of	type	T	to	see	which	is	greater?	Or	what	if	you	want
to	compare	two	type	T	objects	to	see	if	they	are	the	same	(an	important	test	for	the
Dictionary	class)?	How	do	you	know	whether	two	type	T	objects	are	comparable?

You	can	use	generic	constraints	to	require	that	the	types	used	by	the	program
meet	certain	criteria	such	as	comparability	or	providing	a	parameterless
constructor.

To	use	a	generic	constraint,	follow	the	normal	class	declaration	with	the	keyword
where,	the	name	of	the	type	parameter	that	you	want	to	constrain,	a	colon,	and	the
constraint.	Some	typical	constraints	include:

A	class	from	which	the	type	must	inherit

An	interface	(or	interfaces)	that	the	type	must	implement

new()	to	indicate	that	the	type	must	provide	a	parameterless	constructor

struct	to	indicate	that	the	type	must	be	a	value	type	such	as	the	built-in	value
types	(int,	bool)	or	a	structure

class	to	indicate	that	the	type	must	be	a	reference	type

Separate	multiple	constraints	for	the	same	type	parameter	with	commas.	If	you
want	to	constrain	more	than	one	type	parameter,	use	a	new	where	clause.

For	example,	the	following	code	defines	the	generic	Matcher	class,	which	takes	two
generic	type	parameters	T1	and	T2.	(Note	that	this	code	skips	important	error
handling	such	as	checking	for	null	values	to	keep	things	simple.)

public	class	Matcher<T1,	T2>

				where	T1	:	IComparable<T2>,	new()

				where	T2	:	new()

{

				private	void	test()

				{

								T1	t1	=	new	T1();

								T2	t2	=	new	T2();

								...

								if	(t1.CompareTo(t2)	<	0)

								{

												//	t1	is	"less	than"	t2.

												...

								}

				}

				...

}

The	first	constraint	requires	that	type	parameter	T1	implement	the	IComparable
interface	for	the	type	T2	so	the	code	can	compare	T1	objects	to	T2	objects.	The	next
constraint	requires	that	the	T1	type	also	provide	a	parameterless	constructor.	You
can	see	that	the	code	creates	a	new	T1	object	and	uses	its	CompareTo	method	(which
is	defined	by	IComparable).

The	second	where	clause	requires	that	the	type	T2	also	provide	a	parameterless
constructor.	The	code	needs	that	because	it	also	creates	a	new	T2	instance.

In	general,	you	should	use	as	few	constraints	as	possible	because	that	makes	your
generic	code	usable	in	as	many	circumstances	as	possible.	If	your	code	won't	need
to	create	new	instances	of	a	data	type,	don't	use	the	new	constraint.	If	your	code
won't	need	to	compare	objects,	don't	use	the	IComparable	constraint.

Making	Generic	Methods
In	addition	to	building	generic	classes,	you	can	also	build	generic	methods	inside
either	a	generic	class	or	a	regular	non-generic	class.

For	example,	suppose	you	want	to	rearrange	the	items	in	a	list	so	the	new	order
alternately	picks	items	from	each	end	of	the	list.	If	the	list	originally	contains	the
numbers	1,	2,	3,	4,	5,	6,	then	the	alternated	list	contains	1,	6,	2,	5,	3,	4.

The	following	code	shows	how	a	program	could	declare	an	Alternate	method	to
return	an	alternated	list.	The	part	of	the	code	that	defines	the	generic	parameter	T
is	shown	in	bold.

public	List<T>	Alternate<T>(List<T>	list)

{

				//	Make	a	new	list	to	hold	the	results.

				List<T>	newList	=	new	List<T>();

				...

				return	newList;

}

The	Alternate	method	takes	a	generic	type	parameter	T.	It	takes	as	a	regular
parameter	a	List	that	holds	items	of	type	T	and	it	returns	a	new	List	containing
items	of	type	T.

The	code	creates	a	new	List<T>	to	hold	the	results.	(Note	that	it	does	not	need	to
require	the	type	T	to	have	a	default	constructor	because	the	code	is	creating	a	new
List,	not	a	new	T.)	The	code	then	builds	the	new	list	(not	shown	here)	and	returns
it.

The	following	code	shows	how	a	program	might	use	this	method:

List<string>	strings	=	new	List<string>(stringsTextBox.Text.Split('	'));

List<string>	alternatedStrings	=	Alternate<string>(strings);

alternatedStringsTextBox.Text	=	string.Join("	",	alternatedStrings);

The	first	statement	defines	a	List<string>	and	initializes	it	with	the	space-
separated	values	in	the	TextBox	named	stringsTextBox.

The	second	statement	calls	Alternate<string>	to	create	an	alternated
List<string>.	Notice	how	the	code	uses	<string>	to	indicate	the	data	type	that
Alternate	will	manipulate.	(This	is	actually	optional	and	the	program	will	figure
out	which	version	of	Alternate	to	use	if	you	omit	it.	However,	this	makes	the	code
more	explicit	and	may	catch	a	bug	if	you	try	to	alternate	a	list	containing
something	unexpected	such	as	Person	objects.)

The	third	statement	joins	the	values	in	the	new	list,	separating	them	with	spaces,
and	displays	the	result.

Generic	methods	can	be	quite	useful	for	the	same	reasons	that	generic	classes	are.
They	allow	code	reuse	without	the	extra	hassle	of	converting	values	to	and	from
the	non-specific	object	class.	They	also	perform	type	checking,	so	in	this	example,

the	program	cannot	try	to	alternate	a	List<int>	by	calling	Alternate<string>.

Try	It
In	this	Try	It,	you	build	a	generic	Randomize	method	that	randomizes	an	array	of
objects	of	any	type.	To	make	it	easy	to	add	the	method	to	any	project,	you	add	the
method	to	an	ArrayMethods	class.	To	make	the	method	easy	to	use,	you	make	it
static,	so	the	main	program	doesn't	need	to	instantiate	the	class	to	use	it.

Lesson	Requirements
In	this	lesson,	you:

Start	a	new	project	and	give	it	an	ArrayMethods	class.

Create	a	generic	Randomize	method	with	one	generic	type	parameter	T.	The
method	should	take	as	a	parameter	an	array	of	T	and	randomize	the	items	it
contains.

Make	the	main	program	test	the	method.

NOTE

You	can	download	the	code	and	resources	for	this	lesson	from	the	website	at
www.wrox.com/go/csharp24hourtrainer2e.

Hints
Try	to	figure	out	the	Randomize	method's	declaration	yourself	before	you	read
the	step-by-step	instructions	that	follow.

Step-by-Step
Start	a	new	project	and	give	it	an	ArrayMethods	class.

1.	 This	is	reasonably	straightforward.	You	don't	need	to	make	the
ArrayMethods	class	generic.

Create	a	generic	Randomize	method	with	one	generic	type	parameter	T.	The
method	should	take	as	a	parameter	an	array	of	T	and	randomize	the	items	it
contains.

1.	 The	following	code	shows	how	you	can	implement	this	method:

class	ArrayMethods

{

				//	Make	a	Random	object	to	use	to	pick	random	items.

				private	static	Random	Rand	=	new	Random();

				//	Randomize	the	items	in	an	array.

				public	static	void	Randomize<T>(T[]	items)

				{

								//	For	each	spot	in	the	array,	pick

								//	a	random	item	to	swap	into	that	spot.

								for	(int	i	=	0;	i	<	items.Length	-	1;	i++)

								{

												//	Pick	a	random	item	j	between	i	and	the	last	item.

												int	j	=	Rand.Next(i,	items.Length);

												//	Swap	item	j	into	position	i.

												T	temp	=	items[i];

												items[i]	=	items[j];

												items[j]	=	temp;

								}

				}

}

Make	the	main	program	test	the	method.

1.	 The	program	I	wrote	uses	two	TextBoxes,	one	to	hold	the	original	items	and
one	to	display	the	randomized	items.	When	you	click	the	Randomize
button,	the	following	code	executes:

//	Randomize	the	items	and	display	the	results.

private	void	randomizeButton_Click(object	sender,	EventArgs	e)

http://www.wrox.com/go/csharp24hourtrainer2e

{

				//	Get	the	items	as	an	array	of	strings.

				string[]	items	=	itemsTextBox.Lines;

				//	Randomize	the	array.

				ArrayMethods.Randomize<string>(items);

				//	Display	the	result.

				randomizedTextBox.Lines	=	items;

}

Notice	that	the	code	uses	the	TextBox's	Lines	property	to	get	the	entered
values.	That	property	returns	the	lines	in	a	multi-line	TextBox	as	an	array
of	strings.

Also	notice	that	the	code	doesn't	need	to	make	an	instance	of	the
ArrayMethods	class.	That's	the	advantage	of	making	the	Randomize	method
static.

Exercises
1.	 [Hard]	The	Randomize	method	in	the	Try	It	doesn't	actually	need	to	work	with
an	array.	What	it	really	needs	is	to	access	items	by	index.	The	IList	interface
requires	that	a	class	provide	a	Count	property	and	indexes.

Write	a	new	version	of	the	generic	Randomize	method	that	takes	as	a	parameter
an	IList.	(Hint:	You'll	also	need	a	type	parameter	for	the	items	inside	the	list.)
Update	the	program	to	test	both	versions	of	the	method.	Note	that	C#	cannot
infer	which	version	to	use	if	you	don't	include	type	parameters	when	the	main
program	invokes	the	method.

2.	 Finish	building	the	generic	Alternate	method	described	earlier	in	this	lesson.
Add	the	code	needed	to	make	the	alternating	version	of	the	list.	To	make	using
the	method	easy,	make	it	static	in	the	ArrayMethods	class.	Make	the	main
program	test	the	method	with	lists	containing	odd	and	even	numbers	of	items.

3.	 [Hard]	The	solution	to	Exercise	1	rearranges	the	items	in	an	IList	randomly.
The	same	approach	would	be	tricky	for	the	Alternate	method	in	Exercise	28.2
because	it's	not	obvious	how	you	would	shuffle	the	items	around	in	the	same
array	without	losing	track	of	where	they	all	belong.	(At	least	I	couldn't	think	of
a	good	way	to	do	it.)

However,	you	can	use	a	slightly	different	approach.	Add	an	Alternate	method
to	the	ArrayMethods	class	that	uses	an	intermediate	array	to	arrange	the	items
in	an	IList.

4.	 [Hard]	Make	the	TreeNode	class	to	represent	a	tree	node	associated	with	a	piece
of	data	of	some	generic	type.	In	addition	to	the	code	shown	earlier	in	this
lesson,	give	the	class:

An	AddChild	method	that	adds	a	new	child	node	to	the	node	for	which	the
method	is	invoked.	Have	the	method	take	a	piece	of	data	of	the	class's
generic	type	as	a	parameter	and	return	a	new	TreeNode	representing	that
piece	of	data.

A	private	AddToListPreorder	method	that	adds	a	node's	subtree	to	a	list	in
preorder	format.	The	preorder	format	lists	the	node's	data	first	and	then
recursively	calls	the	method	to	add	the	data	for	the	node's	children.	You	can
use	code	similar	to	the	following:

//	Recursively	add	our	subtree	to	an	existing	list	in	preorder.

private	void	AddToListPreorder(List<TreeNode<T>>	list)

{

				//	Add	this	node.

				list.Add(this);

				//	Add	the	children.

				foreach	(TreeNode<T>	child	in	Children)

								child.AddToListPreorder(list);

}

A	public	Preorder	method	that	returns	the	node's	subtree	items	in	a	list	in
preorder	format.	The	method	should	call	AddToListPreorder	to	do	all	of	the
work.	You	can	use	code	similar	to	the	following:

//	Return	a	list	containing	our	subtree	in	preorder.

public	List<TreeNode<T>>	Preorder()

{

				List<TreeNode<T≫	list	=	new	List<TreeNode<T≫();

				AddToListPreorder(list);

				return	list;

}

For	extra	credit,	add	similar	methods	to	build	lists	in	postorder	and
inorder.	In	postorder,	a	node	recursively	adds	its	children	to	the	list	and
then	adds	its	own	data.	In	inorder,	a	node	recursively	adds	the	first	half	of
its	children	to	the	list,	then	itself,	and	then	the	rest	of	its	children.

Make	the	main	program	build	the	tree	shown	in	Figure	28.1,	although	it
doesn't	need	to	display	it	graphically	as	in	the	figure.	Make	the	program
display	the	tree's	preorder,	postorder,	and	inorder	representations,	as	shown
in	Figure	28.2.

Figure	28.1

Figure	28.2

5.	 Make	a	generic	PriorityQueue	class.	The	class	is	basically	a	list	holding	generic
items	where	each	item	has	an	associated	priority.	Give	the	class	a	nested
ItemData	structure	similar	to	the	following	to	hold	an	item:

//	A	structure	to	hold	items.

private	struct	ItemData

{

				public	int	Priority	{	get;	set;	}

				public	T	Data	{	get;	set;	}

}

This	structure	is	defined	inside	the	PriorityQueue	class	and	won't	be	used
outside	of	the	class,	so	it	can	be	private.	Note	that	this	structure	uses	the
class's	generic	type	parameter	T	for	the	data	it	holds.

The	class	should	store	its	ItemData	objects	in	a	generic	List.

Give	the	PriorityQueue	class	a	public	Count	property	that	returns	the	number
of	items	in	the	list.

Give	the	class	an	AddItem	method	that	takes	as	parameters	a	piece	of	data	and	a
priority.	It	should	make	a	new	ItemData	object	to	hold	these	values	and	add	it
to	the	list.

Finally,	give	the	class	a	GetItem	method	that	searches	the	list	for	the	item	with
the	smallest	priority	number	(priority	1	means	top	priority),	removes	that	item
from	the	list,	and	returns	the	item	and	its	priority	via	parameters	passed	for
output.	(If	there's	a	tie	for	lowest	priority	number,	return	the	first	item	you
find	with	that	priority.)

6.	 Make	a	generic	Sack	class	that	holds	items	with	weights.	Give	the	class	the
following	features:

A	constructor	that	takes	as	a	parameter	the	Sack's	total	capacity.

An	Add	method	that	takes	as	parameters	a	data	item	and	a	weight.	If	the
total	weight	in	the	Sack	exceeds	the	Sack's	capacity,	the	method	should
throw	an	ArgumentException.

An	Items	method	that	returns	a	List	holding	the	items	in	the	Sack.

A	Weights	method	that	returns	a	List	holding	the	weights	of	the	items	in
the	Sack.

Build	a	user	interface	that	lets	the	user	add	items	with	weights	to	a	Sack	with	a
capacity	of	100.	Use	two	ListBoxes	to	display	the	items	in	the	Sack	and	their
weights	after	each	addition.

7.	 Make	a	program	similar	to	the	one	you	built	for	Exercise	28.6	except	using	a
Box	class.	A	Box	should	be	similar	to	a	Sack	class	except	it	should	have	a
maximum	total	volume	in	addition	to	a	maximum	total	weight.

8.	 Make	a	generic	method	that	swaps	its	two	parameters'	values.

9.	 [Advanced]	The	Math.Min	and	Math.Max	methods	are	very	useful,	but	they	have
two	big	drawbacks.	First,	they	take	only	two	parameters.	That	means	if	you
want	to	find	the	largest	and	smallest	of	more	than	two	values,	you	need	to	use
them	repeatedly.	(Other	available	methods,	notably	LINQ,	are	described	in
Lesson	36.)

The	second	drawback	is	that	they	only	work	with	double	parameters.	If	you
pass	ints	or	floats	into	the	methods,	the	values	are	promoted	to	the	double
data	type	so	the	methods	still	work,	but	their	results	are	doubles	so	you'll	need
to	convert	them	if	you	want	the	results	to	have	the	original	data	types.

For	this	exercise,	write	generic	Min	and	Max	methods	that	can	take	any	number
of	parameters	and	that	return	a	value	in	the	parameters'	data	type.	Hints:

To	allow	a	method	to	take	any	number	of	parameters,	you	can	use	a
parameter	array.	A	parameter	array	should	begin	with	the	params
keyword,	should	be	an	array,	and	must	come	last	in	the	method's
parameter	list.	For	example,	DoSomething(params	string[]	values).

Obviously	you'll	need	to	be	able	to	compare	the	parameters	to	each	other.

NOTE

Please	select	the	videos	for	Lesson	28	online	at
www.wrox.com/go/csharp24hourtrainer2evideos.

http://www.wrox.com/go/csharp24hourtrainer2evideos

Section	V

System	Interactions
The	lessons	up	to	this	point	have	explained	how	you	can	do	some	pretty
remarkable	things.	Using	their	techniques	you	can	read	inputs	entered	by	the
user,	perform	intricate	calculations,	repeat	a	sequence	of	commands	a	huge
number	of	times,	and	even	build	your	own	classes	to	model	complex	situations.

All	of	the	programs	that	you've	written	so	far,	however,	are	self-contained.	They
get	input	from	the	user,	but	otherwise	they	don't	interact	with	the	computer.

The	lessons	in	this	section	explain	some	of	the	ways	a	program	can	interact	with
the	system.	They	explain	how	to	read	and	write	files,	explore	the	filesystem,	and
print.

Lesson	29:	Using	Files

Lesson	30:	Printing

NOTE

A	program	can	interact	with	the	computer	in	lots	of	other	ways.	It	can	interact
with	hardware	through	serial	ports	and	special	devices	and	connect	to
websites	or	other	programs	over	a	network.	It	can	use	copy-and-paste	and	the
clipboard	to	interact	with	other	programs.	It	even	has	many	different	ways	to
interact	with	the	same	part	of	the	system.	For	example,	a	program	has	many
ways	to	manipulate	files,	read	and	modify	the	Windows	registry,	and	save	and
restore	program	parameters.	The	lessons	in	this	part	of	the	book	describe
some	of	the	ways	a	program	can	interact	with	the	wider	system,	but	these	are
by	no	means	the	only	ways.

Lesson	29

Using	Files
Files	play	an	extremely	important	role	on	a	computer.	They	hold	text,	pictures,
Microsoft	Word	documents,	spreadsheets,	and	all	sorts	of	other	data.	They	also
hold	executable	programs	including	programs	that	you	write,	programs	provided
by	Microsoft	and	other	software	vendors,	and	even	the	programs	that	make	up	the
operating	system	itself.

In	this	lesson	you	learn	how	to	explore	the	filesystem.	You	also	learn	some	basic
techniques	for	reading	and	writing	files.	Using	some	fairly	simple	techniques,	you
can	use	text	files	to	store	and	retrieve	data	used	by	a	program.

NOTE

This	is	one	of	those	topics	where	there	are	many	ways	to	perform	the	same
tasks.	There	are	lots	of	approaches	to	searching	the	filesystem	and
manipulating	files.	This	lesson	describes	only	a	few.

Filesystem	Classes
Before	you	can	manipulate	a	file,	you	need	to	be	able	to	find	it.	This	section
describes	.NET	Framework	classes	that	let	you	search	the	computer's	filesystem.

NOTE

These	classes	are	in	the	System.IO	namespace	so	you	can	make	using	them
easier	by	including	the	directive:

using	System.IO;

DriveInfo
The	DriveInfo	class	provides	information	about	the	system's	drives.	Its	static
GetDrives	function	returns	an	array	of	DriveInfo	objects	describing	all	of	the
system's	drives.	Table	29.1	summarizes	the	DriveInfo	class's	most	useful
properties.

Table	29.1

Property Purpose

AvailableFreeSpace The	total	number	of	bytes	available.

DriveFormat The	drive	format,	as	in	NTFS	or	FAT32.

DriveType The	drive	type,	as	in	Fixed	or	CDRom.

IsReady Returns	true	if	the	drive	is	ready.	A	drive	must	be	ready
before	you	can	use	the	AvailableFreeSpace,	DriveFormat,
TotalSize,	or	VolumeLabel	properties.

Name The	drive's	name,	as	in	C:\.

RootDirectory A	DirectoryInfo	object	representing	the	drive's	root
directory.

TotalFreeSpace The	number	of	bytes	available,	taking	quotas	into	account.

TotalSize The	drive's	total	size	in	bytes.

VolumeLabel The	drive's	label.

The	List	Drives	example	program,	which	is	in	this	lesson's	code	download	and
shown	in	Figure	29.1,	uses	DriveInfo	properties	and	methods	to	show	information
about	the	computer's	drives.	For	details	about	how	the	program	works,	download
it	from	the	book's	website

Figure	29.1

DirectoryInfo
The	DirectoryInfo	class	provides	information	about	directories.	Table	29.2
summarizes	useful	DirectoryInfo	methods	for	manipulating	directories.

Table	29.2

Method Purpose

Create Creates	a	new	directory.	To	use	this,	make	a	DirectoryInfo
object,	passing	its	constructor	the	name	of	the	directory	to
create.	Then	call	the	Create	method.

CreateSubdirectory Creates	a	subdirectory	inside	this	directory.

Delete Deletes	the	directory.	If	you	pass	no	parameters	to	this
method,	it	deletes	the	directory	only	if	it's	empty.	You	can
also	pass	it	a	boolean	parameter	indicating	whether	you	want
to	delete	all	of	the	directory's	files	and	subdirectories.

GetDirectories Returns	the	directory's	immediate	subdirectories.	Optionally
you	can	include	a	search	string	to	select	particular
subdirectories.

GetFiles Returns	the	directory's	files.	Optionally	you	can	include	a
search	string	to	select	particular	files.

MoveTo Moves	the	directory	to	a	new	path.

The	DirectoryInfo	class	also	provides	a	few	useful	properties,	which	are
summarized	in	Table	29.3.

Table	29.3

Property Purpose

Attributes The	directory's	attributes,	such	as	Compressed,	Hidden,	or	System.

CreationTime The	time	at	which	the	directory	was	created.

Exists Returns	true	if	the	directory	actually	exists.

FullName Gives	the	directory's	fully	qualified	path.

LastAccessTime The	time	at	which	the	directory	was	last	accessed.

LastWriteTime The	time	at	which	the	directory	was	last	written.

Name The	directory's	name	without	the	path.

Parent A	DirectoryInfo	object	representing	this	directory's	parent
directory.

Root The	directory's	filesystem	root.

Example	program	Use	DirectoryInfo	(found	in	this	lesson's	code	download)	uses	a
DirectoryInfo	object	to	display	information	about	directories.

Directory
The	Directory	class	provides	static	methods	for	manipulating	directories.	Table
29.4	lists	the	most	used	methods.	For	simple	tasks	these	are	sometimes	easier	to
use	than	the	comparable	DirectoryInfo	class	methods	because	you	don't	need	to
create	a	DirectoryInfo	object	to	use	them.

Table	29.4

Method Purpose

CreateDirectory Creates	the	directory	and	any	missing	directories	in	its	path
up	to	the	root.

Delete Deletes	a	directory.

Exists Returns	true	if	the	directory	exists.

GetCreationTime Returns	the	time	at	which	the	directory	was	created.

GetDirectories Returns	a	directory's	subdirectories.

GetDirectoryRoot Returns	the	directory's	root.

GetFiles Returns	a	directory's	files,	optionally	looking	for	files
matching	a	pattern.

GetLastAccessTime Returns	the	time	at	which	a	directory	was	last	accessed.

GetLastWriteTime Returns	the	time	at	which	a	directory	was	last	written.

GetParent Returns	a	DirectoryInfo	object	representing	a	directory's
parent	directory.

Move Moves	a	file	or	directory	to	a	new	location.

SetCreationTime Sets	the	directory's	creation	time.

SetLastAccessTime Sets	the	directory's	last	access	time.

SetLastWriteTime Sets	the	directory's	last	write	time.

FileInfo
The	FileInfo	class,	as	you	can	probably	guess	at	this	point,	provides	information
about	files.	Table	29.5	summarizes	useful	FileInfo	methods	for	manipulating
files.

Table	29.5

Method Purpose

CopyTo Copies	the	file	to	a	new	location.

Decrypt Decrypts	a	file	that	was	encrypted	by	the	Encrypt	method.

Delete Deletes	the	file.

Encrypt Encrypts	the	file	so	it	can	only	be	read	by	the	account	used	to	encrypt	it.

MoveTo Moves	the	file	to	a	new	location.

The	FileInfo	class	also	provides	some	useful	properties,	summarized	in	Table
29.6.

Table	29.6

Property Purpose

Attributes The	file's	attributes,	such	as	Compressed,	Hidden,	or	System.

CreationTime The	time	at	which	the	file	was	created.

Directory A	DirectoryInfo	object	for	the	directory	containing	the	file.

Exists Returns	true	if	the	file	exists.

Extension Returns	the	file's	extension.

FullName Gives	the	file's	fully	qualified	path.

IsReadOnly Returns	true	if	the	file	is	marked	read-only.

LastAccessTime The	time	at	which	the	file	was	last	accessed.

LastWriteTime The	time	at	which	the	file	was	last	written.

Length The	file's	size	in	bytes.

Name The	file's	name	without	the	path.

Example	program	Use	FileInfo	(which	is	in	this	lesson's	code	download)	uses	a
FileInfo	object	to	display	information	about	files.

File
The	File	class	provides	static	methods	for	manipulating	files	(see	Table	29.7).	For
simple	tasks	these	are	sometimes	easier	to	use	than	the	comparable	FileInfo	class
methods	because	you	don't	need	to	create	a	FileInfo	object	to	use	them.

Table	29.7

Method Purpose

AppendAllText Appends	a	string	to	the	end	of	a	file.

Copy Copies	a	file	to	a	new	file.

Create Creates	a	file.

Decrypt Decrypts	a	file	that	was	encrypted	by	the	Encrypt	method.

Delete Deletes	a	file.

Encrypt Encrypts	the	file	so	it	can	only	be	read	by	the	account	used	to
encrypt	it.

Exists Returns	true	if	a	file	exists.

GetAttributes Returns	a	file's	attributes,	such	as	ReadOnly,	System,	or	Hidden.

GetCreationTime Returns	the	time	at	which	the	file	was	created.

GetLastAccessTime Returns	the	time	at	which	a	file	was	last	accessed.

GetLastWriteTime Returns	the	time	at	which	a	file	was	last	written.

Move Moves	a	file	to	a	new	location.

ReadAllBytes Returns	a	file's	contents	in	an	array	of	bytes.

ReadAllLines Returns	the	lines	in	a	text	file	as	an	array	of	strings.

ReadAllText Returns	a	text	file's	contents	in	a	string.

SetAttributes Sets	a	file's	attributes.

SetCreationTime Sets	a	file's	creation	time.

SetLastAccessTime Sets	a	file's	last	access	time.

SetLastWriteTime Sets	a	file's	last	write	time.

WriteAllBytes Writes	a	file's	contents	from	an	array	of	bytes.

WriteAllLines Writes	a	text	file's	contents	from	an	array	of	strings.

WriteAllText Writes	a	text	file's	contents	from	a	string.

The	AppendAllText,	ReadAllLines,	ReadAllText,	WriteAllLines,	and	WriteAllText
methods	are	particularly	useful	for	reading	and	writing	text	files	all	at	once,
although	you	may	still	want	to	use	the	StreamReader	and	StreamWriter	classes
described	later	in	this	lesson	if	you	need	to	manipulate	files	one	line	at	a	time.

Path
The	Path	class	provides	static	methods	that	perform	string	operations	on	file
paths.	For	example,	you	can	use	the	ChangeExtension	method	to	change	the
extension	part	of	a	file's	name.	Table	29.8	summarizes	the	Path	class's	most	useful
methods.

Table	29.8

Method Purpose

ChangeExtension Changes	a	filename's	extension.

Combine Combines	two	path	strings,	adding	a	backslash
between	them	if	needed.

GetDirectoryName Returns	the	directory	name	part	of	a	path.

GetExtension Returns	the	extension	part	of	a	filename.

GetFileName Returns	the	filename	part	of	a	file's	path.

GetFileNameWithoutExtension Returns	the	filename	part	of	a	file's	path	without
the	extension.

GetTempFileName Returns	a	name	for	a	temporary	file.

GetTempPath Returns	the	path	to	the	system's	temporary	folder.

Streams
A	computer	can	contain	many	kinds	of	files:	web	pages,	video,	audio,	executable,
and	lots	of	others.	At	some	level,	however,	files	are	all	the	same.	They're	just	a
series	of	bytes	stored	on	a	filesystem	somewhere.

Thinking	about	files	at	this	very	low	level	lets	you	treat	them	uniformly.	It	lets	you
define	common	classes	and	methods	that	you	can	use	to	manipulate	any	kind	of
file.

Many	programming	languages,	including	C#,	make	working	with	files	at	a	low
level	easier	by	defining	the	concept	of	a	stream.	A	stream	is	simply	an	ordered
series	of	bytes.

NOTE

Streams	can	also	represent	things	other	than	files.	For	example,	a	stream
could	represent	data	being	sent	from	one	program	to	another,	a	series	of
bytes	being	downloaded	from	a	website,	or	the	flow	of	data	as	it	moves
through	some	complex	process	such	as	encryption	or	compression.	This
section	focuses	on	file	streams.

Stream	objects	provide	methods	for	manipulating	data	at	a	low	level.	For	example,
the	Stream	class	provides	Read	and	Write	methods	that	move	bytes	of	data	between
the	stream	and	an	array	of	bytes	in	your	program.

Working	with	streams	at	this	low	level	is	convenient	for	some	programs,	but	it
makes	day-to-day	file	handling	difficult.	You	probably	don't	want	to	read	the	bytes
from	a	text	file	and	then	reassemble	them	into	characters.

The	StreamReader	and	StreamWriter	classes	make	reading	and	writing	text	streams
much	easier.	As	you	can	probably	guess	from	their	names,	StreamReader	lets	you
read	text	from	a	stream	and	StreamWriter	lets	you	write	text	into	a	stream.	If	that
stream	happens	to	represent	a	file,	then	you're	reading	and	writing	files.

NOTE

The	StreamReader	and	StreamWriter	classes	are	in	the	System.IO	namespace.
To	make	it	easier	to	use	these	classes,	you	can	add	the	following	using
directive	to	your	code:

using	System.IO;

Writing	Files
The	StreamWriter	class	provides	several	constructors	to	build	a	StreamWriter
associated	with	different	kinds	of	streams.	One	of	the	simplest	constructors	takes
a	filename	as	a	parameter.	It	opens	the	file	for	writing	and	associates	the	new
StreamWriter	with	it.

NOTE

Note	that	StreamWriter	implements	IDisposable,	so	you	should	use	it	inside	a
using	block	to	call	its	Dispose	method	automatically.

The	following	code	shows	how	a	program	can	open	the	file	Memo.txt	for	writing.	If
the	file	already	exists,	it	is	overwritten.

//	Write	into	the	file,	overwriting	it	if	it	exists.

using	(StreamWriter	memoWriter	=	new	StreamWriter("Memo.txt"))

{

				//	Write	into	the	file.

				...

}

NOTE

If	you	pass	the	constructor	a	filename	without	a	path	such	as	Memo.txt,	the
program	creates	the	file	in	its	current	directory.	You	can	use	a	fully	qualified
filename	such	as	C:\Temp\Memo.txt	to	create	the	file	in	a	particular	directory.

Another	version	of	the	class's	constructor	takes	a	second	bool	parameter	that
indicates	whether	you	want	to	open	the	file	for	appending.	If	you	set	this
parameter	to	true,	the	StreamWriter	opens	the	existing	file	and	prepares	to	add
text	to	the	end.	If	the	file	doesn't	exit,	the	object	silently	creates	a	new	file	and	gets
ready	to	append.

The	StreamWriter	class	provides	a	Write	method	to	add	text	to	the	file.	The
WriteLine	method	adds	text	followed	by	a	new	line.	Both	Write	and	WriteLine	have
overloaded	versions	that	write	various	data	types	into	the	file:	bool,	char,	string,
int,	decimal,	and	so	on.	They	also	provide	versions	that	take	a	format	string	and
parameters	much	as	the	string.Format	method	does.

The	StreamWriter	provides	one	other	very	important	method	that	I	want	to	cover
here:	Close.	The	Close	method	closes	the	StreamWriter	and	its	associated	file.
When	you	use	the	Write	and	WriteLine	methods,	the	StreamWriter	may	actually
buffer	its	output	in	memory	and	only	write	to	the	file	when	it	has	enough	data
stored	up.	The	Close	method	forces	the	StreamWriter	to	flush	its	buffer	into	the
file,	and	until	you	call	Close	the	data	may	not	actually	be	in	the	file.	If	your
program	crashes	or	ends	without	calling	Close,	there's	a	very	good	chance	that
some	or	all	of	your	text	will	be	lost.

The	following	code	shows	how	a	program	could	save	the	contents	of	a	TextBox	in	a
file:

//	Write	the	file,	overwriting	it	if	it	exists.

using	(StreamWriter	memoWriter	=	new	StreamWriter("Memo.txt"))

{

				//	Write	the	file.

				memoWriter.Write(memoTextBox.Text);

				memoWriter.Close();

}

Reading	Files
The	StreamReader	class	lets	you	easily	read	text	from	a	file.	Like	the	StreamWriter
class,	StreamReader	provides	a	constructor	that	takes	a	parameter	giving	the	name
of	the	file	to	open.

The	StreamReader	constructor	throws	an	exception	if	the	file	doesn't	exist,	so	your
program	should	verify	that	the	file	is	there	before	you	try	to	open	it.	For	example,
you	can	use	the	File	class's	static	Exists	method	to	see	if	the	file	exists.

http://Memo.txt

The	StreamReader	class	provides	a	Read	method	that	lets	you	read	from	the	file	one
or	more	bytes	at	a	time,	but	usually	you'll	want	to	use	its	ReadLine	and	ReadToEnd
methods.

As	you	may	be	able	to	guess,	ReadLine	reads	the	next	line	from	the	file	and	returns
it	as	a	string.	ReadToEnd	reads	the	rest	of	the	file	from	the	current	position	onward
and	returns	it	as	a	string.

The	following	code	reads	the	file	Memo.txt	and	displays	its	contents	in	a	TextBox:

//	Read	the	file.

using	(StreamReader	memoReader	=	new	StreamReader("Memo.txt"))

{

				memoTextBox.Text	=	memoReader.ReadToEnd();

				memoReader.Close();

}

The	StreamReader's	EndOfStream	property	returns	true	if	the	reader	is	at	the	end	of
the	stream.	This	is	particularly	useful	when	you're	reading	a	stream	of	unknown
length.	For	example,	the	program	can	enter	a	while	loop	that	uses	ReadLine	to	read
lines	and	continue	as	long	as	EndOfStream	is	false.

Try	It
In	this	Try	It,	you	build	the	program	shown	in	Figure	29.2	to	let	the	user	search
for	files	that	match	a	pattern	and	that	contain	a	target	string.	Enter	a	directory	at
which	to	start	the	search,	select	or	enter	a	file	pattern	in	the	Pattern	combo	box,
and	enter	a	target	string	in	the	Search	For	textbox.	When	you	click	Search,	the
program	searches	for	files	matching	the	pattern	and	containing	the	target	string.

Figure	29.2

Lesson	Requirements
In	this	lesson,	you:

Start	a	new	project	and	arrange	its	form,	as	shown	in	Figure	29.2.	Give	the
combo	box	the	choices	*.cs,	*.txt,	*.*,	and	any	other	patterns	that	you	think
would	be	useful.

Give	the	form	a	Load	event	handler	that	places	the	application's	startup	path	in
the	Directory	textbox	(just	to	have	somewhere	to	start).

Give	the	Search	button	a	Click	event	handler	that	searches	for	the	desired	files.

NOTE

You	can	download	the	code	and	resources	for	this	lesson	from	the	website	at
www.wrox.com/go/csharp24hourtrainer2e.

Hints
Use	the	DirectoryInfo	class's	GetFiles	method	to	search	for	files	matching	the
pattern.

Use	the	FileInfo	class's	ReadAllText	method	to	get	the	file's	contents.	Then	use
string	methods	to	see	if	the	text	contains	the	target	string.

To	ignore	case,	convert	the	target	string	and	the	files'	contents	to	lowercase.

Step-by-Step
Start	a	new	project	and	arrange	its	form,	as	shown	in	Figure	29.2.	Give	the
combo	box	the	choices	*.cs,	*.txt,	*.*,	and	any	other	patterns	that	you	think
would	be	useful.

1.	 This	is	reasonably	straightforward.

Give	the	form	a	Load	event	handler	that	places	the	application's	startup	path	in
the	Directory	textbox	(just	to	have	somewhere	to	start).

1.	 Use	code	similar	to	the	following:

//	Start	at	the	startup	directory.

private	void	Form1_Load(object	sender,	EventArgs	e)

{

				directoryTextBox.Text	=	Application.StartupPath;

}

Give	the	Search	button	a	Click	event	handler	that	searches	for	the	desired	files.

1.	 Use	code	similar	to	the	following:

//	Search	for	files	matching	the	pattern

//	and	containing	the	target	string.

private	void	searchButton_Click(object	sender,	EventArgs	e)

{

				//	Get	the	file	pattern	and	target	string.

				string	pattern	=	patternComboBox.Text;

				string	target	=	targetTextBox.Text.ToLower();

				//	Clear	the	result	list.

				fileListBox.Items.Clear();

				//	Search	for	files.

				DirectoryInfo	dirinfo	=

								new	DirectoryInfo(directoryTextBox.Text);

				foreach	(FileInfo	fileinfo	in

								dirinfo.GetFiles(pattern,	SearchOption.AllDirectories))

http://www.wrox.com/go/csharp24hourtrainer2e

				{

								//	See	if	we	need	to	look	for	target	text.

								if	(target.Length	>	0)

								{

												//	If	this	file	contains	the	target	string,

												//	add	it	to	the	list.

												string	content	=

																File.ReadAllText(fileinfo.FullName).ToLower();

												if	(content.Contains(target))

																fileListBox.Items.Add(fileinfo);

								}

								else

								{

												//	Just	add	this	file	to	the	list.

												fileListBox.Items.Add(fileinfo);

								}

				}

}

Exercises
1.	 Write	a	program	that	sorts	a	text	file.	(Hint:	Load	the	file's	lines	of	text	into	an
array	and	use	Array.Sort	to	do	the	actual	sorting.)	Test	the	program	on	the	file
Names.txt	included	in	this	lesson's	download.

2.	 Write	a	program	that	removes	duplicate	entries	from	a	text	file.	(Hint:	Copy
the	program	you	built	for	Exercise	2.	After	you	sort	the	array,	run	through	the
entries,	copying	them	into	a	new	list.	If	you	see	a	duplicate	entry,	skip	it	and
write	it	to	the	Console	window.)	Test	the	program	on	the	file	Names.txt
included	in	this	lesson's	download.

3.	 Make	a	program	that	has	Labels	and	TextBoxes	for	first	name,	last	name,	street,
city,	state,	and	ZIP	code.	When	the	form	closes,	save	the	values	in	the
TextBoxes	in	a	text	file.	When	the	program	loads,	reload	the	values.	(Hint:
Write	each	TextBox's	value	on	a	separate	line	in	the	text	file.)

4.	 Build	a	Memo	program	that	saves	and	loads	a	single	memo	saved	in	the	file	in
a	multi-line	TextBox.	(This	is	so	easy	I	wouldn't	even	bother	using	it	as	an
exercise	except	it's	actually	useful.	You	can	use	it	to	record	notes	during	the
day	and	easily	read	them	the	next	day.)

5.	 Make	a	program	that	lets	the	user	select	a	number	from	a	NumericUpDown
control	and	then	generates	a	text	file	containing	a	multiplication	table	that
goes	up	to	that	number	times	itself.	Use	formatting	to	make	the	numbers	line
up	in	columns.

6.	 Build	a	program	with	a	TextBox,	a	ListBox,	an	Add	button,	and	a	Save	button.
When	the	user	enters	a	value	in	the	TextBox	and	clicks	Add,	add	the	value	to
the	ListBox.	When	the	user	clicks	Save,	write	the	values	from	the	ListBox	into	a
file	and	then	clear	the	ListBox.	When	the	form	loads,	make	it	read	the	values
back	into	the	ListBox.

7.	 Build	a	simple	text	editor.	Give	it	a	TextBox	and	a	File	menu	with	Open,	New,
and	Save	As	commands.	Use	an	OpenFileDialog	and	a	SaveFileDialog	to	let	the
user	select	the	file	to	open	and	save.	(Don't	worry	about	any	of	the	other	things
a	real	editor	would	need	to	handle,	such	as	locked	files	and	ensuring	that	the
user	doesn't	close	the	program	with	unsaved	changes.)

NOTE

Please	select	the	videos	for	Lesson	29	online	at
www.wrox.com/go/csharp24hourtrainer2evideos.

http://www.wrox.com/go/csharp24hourtrainer2evideos

Lesson	30

Printing
Most	of	the	programs	described	in	earlier	lessons	display	output	on	the
computer's	screen.	Lesson	29	explained	how	to	save	output	in	files.

This	lesson	explains	a	third	method	for	producing	output:	printing.	Using	the
techniques	described	in	this	lesson,	you	can	print	text,	shapes,	images—just	about
anything	you	want.

WARNING

Before	you	start	a	printing	project,	however,	be	warned	that	printing	in	C#
isn't	trivial.	It's	easy	enough	to	display	some	text	or	a	few	lines	in	a	printout,
but	producing	a	complex	formatted	document	can	be	a	lot	of	work.

If	you	need	to	produce	a	nicely	formatted	résumé,	graph,	or	grid	of	values,
you	should	ask	yourself	whether	there's	an	easier	way.	For	example,
Microsoft	Word	and	Google	Docs	are	great	at	producing	nicely	formatted
text	documents.	Similarly,	Microsoft	Excel	does	a	wonderful	job	of	making
charts	and	graphs.	You	can	certainly	generate	these	sorts	of	printouts	using
C#,	but	it	may	be	a	lot	faster	and	easier	if	you	use	another	tool.

Windows	Forms	Printing
Windows	Forms	and	WPF	applications	handle	printing	in	very	different	ways.	A
Windows	Forms	application	responds	to	events	and	makes	method	calls	to	draw
text,	shapes,	and	images	on	the	printed	page.	In	contrast,	a	WPF	application	uses
objects	such	as	the	Label	and	TextBox	controls	to	represent	text,	shapes,	and
images	that	you	can	print.

The	following	sections	explain	how	a	Windows	Forms	application	prints.	The
sections	after	those	explain	how	a	WPF	application	prints.

Getting	Started
The	PrintDocument	component	sits	at	the	center	of	the	Windows	Forms	printing
process.	To	print,	a	program	creates	an	instance	of	this	class	either	at	design	time
or	at	run	time.	It	adds	event	handlers	to	catch	the	object's	events	and	then	lets	the
object	do	its	thing.	As	the	object	generates	pieces	of	the	printout,	it	raises	events	to
let	the	program	supply	graphics	for	it	to	print.

The	PrintDocument	object	raises	four	key	events:

BeginPrint—Raised	when	the	object	is	about	to	start	printing	to	let	the
program	do	whatever	it	must	to	get	ready	to	print.

QueryPageSettings—Raised	when	the	object	is	about	to	start	printing	a	page	to
let	the	program	modify	the	upcoming	page's	settings.	For	example,	it	might
adjust	the	margins	so	odd	pages	have	bigger	margins	on	the	left	and	even
pages	have	bigger	margins	on	the	right	to	allow	room	for	a	staple	in	a	double-
sided	document.

PrintPage—Raised	when	the	object	needs	to	generate	contents	for	a	page.	This
is	where	the	program	does	its	drawing.	The	event	handler	should	set	the	its
e.HasMorePages	value	to	false	after	it	draws	its	last	page.

EndPrint—Raised	after	the	object	has	finished	printing	to	let	the	program	clean
up	if	necessary.

The	BeginPrint,	QueryPageSettings,	and	EndPrint	event	handlers	are	optional.	For
simple	printouts,	you	often	only	need	the	PrintPage	event	handler.

The	PrintPage	event	handler	gives	you	a	parameter	named	e	of	type
PrintPageEventArgs.	This	object	contains:

The	HasMorePages	parameter	that	you	use	to	tell	the	PrintDocument	whether	this
is	the	last	page

A	PageBounds	property	that	tells	you	how	big	the	page	is

A	MarginBounds	property	that	tells	you	where	the	page's	margins	are

A	Graphics	object	that	you	use	to	draw	the	page's	contents

The	following	section	explains	how	a	program	starts	the	printing	process.	The
sections	after	that	give	simple	examples	that	show	how	to	draw	shapes	and	text.

Starting	a	Printout
The	easiest	way	to	generate	a	printout	using	the	PrintDocument	object	is	to	place
the	object	on	a	form	at	design	time	and	give	the	object	a	PrintPage	event	handler
to	generate	the	pages.	When	you're	ready	to	print,	simply	call	the	PrintDocument
object's	Print	method.	The	object	raises	its	PrintPage	event,	the	event	handler
generates	graphics,	and	the	object	sends	the	results	to	the	default	printer.

TIP

The	Form	Designer's	Toolbox	has	a	Printing	section	that	makes	it	easy	to
find	the	printing-related	components.

Once	you've	built	a	PrintPage	event	handler,	it's	practically	trivial	to	add	a	print
preview	capability	to	the	program.	Add	a	PrintPreviewDialog	object	to	the	form
and	set	its	Document	property	to	the	PrintDocument	object	that	you	already	created.
To	display	a	print	preview,	simply	call	the	dialog's	ShowDialog	method.	When	you
do,	the	dialog	uses	the	associated	PrintDocument	object	to	generate	the	necessary
preview	and	displays	the	result.

TIP

The	PrintPreviewDialog	contains	a	print	button,	so	for	simple	programs	you
may	not	really	need	a	print	command.	The	program	can	display	a	preview
and	the	user	can	click	the	button	to	print.

Drawing	Shapes
You've	seen	in	previous	lessons	how	to	use	a	Graphics	object's	methods	to	draw.
To	draw	shapes	on	a	printout,	you	use	the	same	methods	with	the	PrintPage	event
handler's	e.Graphics	parameter.

Figure	30.1	shows	the	Print	Shapes	example	program	displaying	a	preview	that
contains	a	rectangle	and	an	ellipse.

Figure	30.1

The	following	code	shows	the	program's	PrintPage	event	handler:

//	Draw	some	shapes.

private	void	shapesPrintDocument_PrintPage(object	sender,

				System.Drawing.Printing.PrintPageEventArgs	e)

{

				e.Graphics.SmoothingMode	=	SmoothingMode.AntiAlias;

				//	Draw	a	rectangle	around	the	page	margin.

				e.Graphics.DrawRectangle(Pens.Red,	e.MarginBounds);

				//	Draw	an	ellipse	inside	the	page	margin.

				e.Graphics.DrawEllipse(Pens.Blue,	e.MarginBounds);

				//	There	are	no	more	pages.

				e.HasMorePages	=	false;

}

This	code	sets	the	Graphics	object's	SmoothingMode	property.	It	then	draws	a
rectangle	and	an	ellipse	around	the	page's	margins.	It	finishes	by	setting
HasMorePages	to	false	to	tell	the	PrintDocument	object	to	not	raise	its	PrintPage
event	again.

The	following	code	shows	how	the	program	displays	print	previews	and	generates
printouts:

//	Print	immediately.

private	void	printButton_Click(object	sender,	EventArgs	e)

{

				shapesPrintDocument.Print();

}

//	Display	a	print	preview.

private	void	previewButton_Click(object	sender,	EventArgs	e)

{

				shapesPrintPreviewDialog.ShowDialog();

}

NOTE

Unfortunately,	there	isn't	room	in	this	lesson	to	really	get	into	the	drawing
routines	that	you	use	to	generate	fancier	printouts.	For	a	more	complete
introduction	to	graphics	programming	in	C#,	see	my	PDF-format	Wrox	Blox
C#	Graphics	Programming	available	at
www.wrox.com/WileyCDA/WroxTitle/productCd-0470343494.html.

Drawing	Text
To	draw	shapes,	the	Print	Shapes	program	described	in	the	preceding	section	calls
the	e.Graphics	object's	DrawRectangle	and	DrawEllipse	methods.	Printing	text	is
similar	except	you	use	the	DrawString	method.

Example	program	Print	Text	uses	the	following	code	to	print	the	page	number
centered	on	four	pages:

//	Print	immediately.

private	void	printButton_Click(object	sender,	EventArgs	e)

{

				PageNumber	=	1;

				shapesPrintDocument.Print();

}

//	Display	a	print	preview.

private	void	previewButton_Click(object	sender,	EventArgs	e)

{

				PageNumber	=	1;

				shapesPrintPreviewDialog.ShowDialog();

}

//	The	page	number.

private	int	PageNumber;

//	Draw	some	shapes.

private	void	shapesPrintDocument_PrintPage(object	sender,

				System.Drawing.Printing.PrintPageEventArgs	e)

{

				e.Graphics.SmoothingMode	=	SmoothingMode.AntiAlias;

				//	Draw	the	page	number	centered	on	the	form.

				using	(Font	font	=	new	Font("Helvitca",	400))

				{

								using	(StringFormat	format	=	new	StringFormat())

								{

												format.Alignment	=	StringAlignment.Center;

												format.LineAlignment	=	StringAlignment.Center;

												int	x	=	e.MarginBounds.Left	+	e.MarginBounds.Width	/	2;

												int	y	=	e.MarginBounds.Top	+	e.MarginBounds.Height	/	2;

												e.Graphics.DrawString(PageNumber.ToString(),

																font,	Brushes.Blue,	x,	y,	format);

								}

				}

				//	If	this	is	page	4,	we're	done.

				e.HasMorePages	=	(++PageNumber	<=	4);

http://www.wrox.com/WileyCDA/WroxTitle/productCd-0470343494.html

}

The	Print	and	Print	Preview	buttons'	event	handlers	first	set	the	class-level
variable	PageNumber	to	1	to	indicate	that	the	next	page	to	print	is	page	1.	The	button
event	handlers	then	start	the	printing	or	preview	process.

The	PrintPage	event	handler	sets	the	Graphics	object's	SmoothingMode	property	and
creates	a	really	big	font.	It	then	creates	a	StringFormat	object,	which	it	can	use	to
arrange	text.	In	this	example,	it	sets	the	object's	Alignment	and	LineAlignment
properties	to	center	the	text	vertically	and	horizontally.

The	code	then	finds	the	center	of	the	printed	page	and	calls	DrawString	to	draw	the
page	number.	The	code	finishes	by	incrementing	PageNumber	and	setting
HasMorePages	to	true	if	the	new	value	of	PageNumber	is	less	than	or	equal	to	4.
Figure	30.2	shows	the	program's	preview	displaying	four	pages	at	a	time.

Figure	30.2

WPF	Printing
To	print	in	a	Windows	Forms	application,	a	program	catches	a	PrintDocument
object's	PrintPage	event	handler	and	uses	its	e.Graphics	parameter	to	generate
graphics	for	each	page	of	the	printout.	WPF	uses	a	different	printing	model	that
many	programmers	find	more	intuitive.	Instead	of	responding	to	PrintPage
events,	a	WPF	program's	code	can	directly	print	visual	objects	that	it	draws	using
WPF	controls	such	as	Label	and	TextBox.	You	create	some	sort	of	container;	place
Label,	TextBox,	and	other	controls	on	it;	and	then	print	the	container.

In	addition	to	being	easier	to	understand,	this	approach	has	a	couple	of	other
benefits.	For	example,	it	lets	the	program	use	the	same	kind	of	code	to	display	and
print	data.	In	Windows	Forms,	a	program	uses	controls	such	as	TextBox	and	Label
to	display	text	on	the	screen	but	it	uses	a	Graphics	object's	DrawString	method	to
draw	text	on	a	printout.	WPF	uses	the	same	kinds	of	TextBox	and	Label	objects	for
both	display	and	printing.

WPF	also	allows	you	to	zoom	in	as	much	as	you	like	without	creating	a	pixelated
result.	That	means,	for	example,	you	can	enlarge	a	window	as	much	as	you	like	for
a	printout	and	you'll	still	see	a	smooth	result.

The	following	sections	give	more	details	explaining	how	to	print	in	WPF
applications.

Printing	Visuals
In	WPF,	a	PrintDialog	object	starts	the	printing	process.	This	object	can	display	a
printer	selection	dialog	and	provides	a	PrintVisual	method	that	prints	visual
objects.

Although	your	code	can	simply	call	PrintVisual	to	send	output	to	the	default
printer	immediately,	most	programs	first	display	the	dialog	so	the	user	can	select	a
printer.	To	do	that,	the	program	creates	a	PrintDialog	object	and	calls	its
ShowDialog	method.	If	the	user	selects	a	printer	and	clicks	Print,	ShowDialog
returns	true	and	the	program	can	then	call	the	dialog's	PrintVisual	method,
passing	it	the	visual	object	to	print.

For	example,	the	Print	Window	program	shown	in	Figure	30.3	uses	the	following
code	to	print	an	image	of	its	main	window:

//	Print	the	window.

private	void	printButton_Click(object	sender,	RoutedEventArgs	e)

{

				//	Display	the	print	dialog	and

				check	the	result.

				PrintDialog	printDialog	=

							new	PrintDialog();

				if	(printDialog.ShowDialog()	==	true)

				{

								//	Print.

								printDialog.PrintVisual(this,	"Print	Window	Image");

				}

}

Figure	30.3

The	code	creates	a	PrintDialog	object	and	calls	its	ShowDialog	method.	If
ShowDialog	returns	true	(indicating	that	the	user	clicked	the	dialog's	Print	button),
the	code	calls	the	dialog's	PrintVisual	method,	passing	it	the	parameter	this
(indicating	that	it	should	print	the	current	window).	It	also	passes	PrintVisual	a
descriptive	title	for	the	printer	to	display	in	its	user	interface.

This	code	is	simple	and	produces	a	high-resolution	result,	but	it	has	a	big
drawback:	the	result	appears	in	the	page's	upper-left	corner.	It	might	be	nice	to
center	the	image	and	possibly	scale	it	to	use	more	of	the	paper.

The	simplicity	of	the	previous	code	may	make	it	seem	like	fixing	these	problems
would	be	hard.	Where	in	that	code	is	there	room	for	these	sorts	of	changes?

Fortunately,	WPF	provides	two	features	that	make	this	problem	much	easier	to
solve	than	you	might	think:

First,	it	provides	transformations	that	let	you	scale,	rotate,	and	translate
images	easily.

Second,	it	lets	you	easily	place	most	graphical	objects	inside	other	graphical
objects.

Instead	of	trying	to	modify	the	window's	image,	you	can	place	the	image	inside
other	controls	such	as	a	Grid	or	Viewbox.	Then	you	can	transform	those	controls	to
fit	properly	on	the	printed	page.

Example	program	Print	Window	Centered	uses	the	following	code	to	print	an
image	of	the	window	centered	on	the	page.	Admittedly	this	code	is	a	lot	longer
than	the	previous	version,	but	it's	not	as	complicated	as	it	seems	at	first	glance.

//	Print	an	image	of	the	window	centered.

private	void	printButton_Click(object	sender,	RoutedEventArgs	e)

{

				PrintDialog	printDialog	=	new	PrintDialog();

				if	(printDialog.ShowDialog()	==	true)

				{

								PrintWindowCentered(printDialog,	this,	"New	Customer",	null);

				}

}

//	Print	a	Window	centered	on	the	printer.

private	void	PrintWindowCentered(PrintDialog	printDialog,	Window	win,

				String	title,	Thickness?	margin)

{

				//	Make	a	Grid	to	hold	the	contents.

				Grid	drawingGrid	=	new	Grid();

				drawingGrid.Width	=	printDialog.PrintableAreaWidth;

				drawingGrid.Height	=	printDialog.PrintableAreaHeight;

				//	Make	a	Viewbox	to	stretch	the	result	if	necessary.

				Viewbox	viewbox	=	new	Viewbox();

				drawingGrid.Children.Add(viewbox);

				viewbox.HorizontalAlignment	=	HorizontalAlignment.Center;

				viewbox.VerticalAlignment	=	VerticalAlignment.Center;

				if	(margin	==	null)

				{

								//	Center	without	resizing.

								viewbox.Stretch	=	Stretch.None;

				}

				else

				{

								//	Resize	to	fit	the	margin.

								viewbox.Margin	=	margin.Value;

								viewbox.Stretch	=	Stretch.Uniform;

				}

				//	Make	a	VisualBrush	holding	an	image	of	the	Window's	contents.

				VisualBrush	br	=	new	VisualBrush(win);

				//	Make	a	Rectangle	the	size	of	the	Window.

				Rectangle	windowRect	=	new	Rectangle();

				viewbox.Child	=	windowRect;

				windowRect.Width	=	win.Width;

				windowRect.Height	=	win.Height;

				windowRect.Fill	=	br;

				windowRect.Stroke	=	Brushes.Black;

				windowRect.Effect	=	new	DropShadowEffect();

				//	Arrange	to	produce	output.

				Rect	rect	=	new	Rect(0,	0,

								printDialog.PrintableAreaWidth,	printDialog.PrintableAreaHeight);

				drawingGrid.Arrange(rect);

				//	Print	it.

				printDialog.PrintVisual(drawingGrid,	title);

}

NOTE

This	code	adds	a	DropShadowEffect	behind	the	grid.	That	class	is	defined	in
the	System.Windows.Media.Effects	namespace,	so	to	make	using	it	easier,	the
program	includes	the	following	using	directive:

using	System.Windows.Media.Effects;

When	you	click	the	Print	button,	the	program	displays	a	PrintDialog	as	before.	If
you	select	a	printer	and	click	Print,	the	program	calls	the	PrintWindowCentered
method,	passing	it	the	PrintDialog	object	and	the	Window	to	print.	It	also	passes
the	method	a	title	to	use	for	the	printout	and	a	margin	(which	can	be	null).

The	PrintWindowCentered	method	makes	a	Grid	that	fills	the	printer's	printable
area.	Inside	the	Grid	it	places	a	Viewbox	named	viewbox.	A	Viewbox	displays	a	single
object	that	it	can	optionally	stretch	in	various	ways.

If	the	method	receives	a	margin	parameter,	the	program	sets	the	Viewbox's	margin
appropriately	and	makes	the	control	stretch	its	contents	so	they	are	as	large	as
possible	without	changing	shape.	If	the	margin	parameter	is	null,	the	code	makes
the	Viewbox	not	stretch	its	contents.

Next	the	code	makes	a	VisualBrush	from	the	Window.	A	VisualBrush	fills	an	area
with	the	image	of	some	visual	object	such	as	a	control	or,	in	this	case,	the
program's	main	Window.	The	code	creates	a	Rectangle,	places	it	inside	the	Viewbox,
and	fills	it	with	the	brush.

At	this	point,	all	of	the	objects	needed	to	display	the	Window	appropriately	sized
and	centered	on	the	printed	page	are	in	place.	The	code	only	needs	to	perform	two
more	steps.

First,	it	calls	the	Grid's	Arrange	method	to	make	its	children	arrange	themselves.
Second,	the	code	calls	the	PrintDialog's	PrintVisual	method	to	print	the	Grid.

Figure	shows	a	preview	of	the	result.	To	make	this	figure,	I	printed	the	Window	into
an	XML	Paper	Specification	(XPS)	file	by	selecting	the	Microsoft	XPS	Document
Writer	from	the	PrintDialog.	I	then	double-clicked	the	XPS	file	to	display	it	in	the
XPS	Viewer	shown	in	Figure	30.4.	You	can	see	in	the	figure	that	the	Window's
image	is	centered.

Figure	30.4

In	Figure	30.4	the	image	of	the	window	looks	a	bit	grainy	and	pixelated,	but	that's
caused	by	the	way	the	XPS	Viewer	displays	the	document.	The	document	itself
was	generated	at	a	very	high	resolution.	In	Figure	30.5	the	viewer	has	enlarged	the
document	by	265	percent,	so	you	can	see	that	the	result	is	actually	very	smooth
and	the	final	printout	can	take	advantage	of	the	printer's	relatively	high
resolution.

Figure	30.5

The	Print	Window	Enlarged	example	program	is	similar	to	the	Print	Window
Centered	program	except	it	uses	the	following	code	to	pass	a	Thickness	object	to
the	PrintWindowCentered	method	to	use	as	a	margin.	That	makes	the	method
stretch	the	Window's	image	to	fill	the	printable	area	minus	a	50-pixel	margin.

//	Print	an	image	of	the	window	centered	and	stretched	to	fill	the	page.

private	void	printButton_Click(object	sender,	RoutedEventArgs	e)

{

				PrintDialog	printDialog	=	new	PrintDialog();

				if	(printDialog.ShowDialog()	==	true)

				{

								PrintWindowCentered(printDialog,	this,	"New	Customer",

												new	Thickness(50));

				}

}

Figure	30.6	shows	the	result.	Notice	that	the	Window's	image	is	centered	and
enlarged	to	fill	most	of	the	printable	area.

Figure	30.6

In	addition	to	the	PrintVisual	method,	the	PrintDialog	class	provides	a
PrintDocument	method	that	prints	multipage	output	or	document	objects	such	as
FlowDocuments	or	FixedDocuments.	Unfortunately	these	topics	are	fairly	complex,	so
they're	not	described	here.	If	you	need	those	capabilities,	you	can	find	more
information	online	at:

PrintDocument

—msdn.microsoft.com/library/system.windows.controls.printdialog.printdocument.aspx

FixedDocument

—msdn.microsoft.com/library/system.windows.documents.fixeddocument.aspx

FlowDocument

—msdn.microsoft.com/library/system.windows.documents.flowdocument.aspx

http://msdn.microsoft.com/library/system.windows.controls.printdialog.printdocument.aspx
http://msdn.microsoft.com/library/system.windows.documents.fixeddocument.aspx
http://msdn.microsoft.com/library/system.windows.documents.flowdocument.aspx

Try	It
In	this	Try	It,	you	build	a	program	that	prints	and	displays	a	preview	of	the	table
shown	in	Figure	30.7.	You	build	an	array	of	Student	objects	and	then	loop	through
them,	displaying	their	values	as	shown	in	the	figure.

Figure	30.7

Lesson	Requirements
In	this	lesson,	you:

Start	a	new	Windows	Forms	project	and	create	the	program's	main	form.	Add
PrintDocument	and	PrintPreviewDialog	components	to	do	the	printing	and
previewing.

Add	Print	and	Preview	buttons	with	appropriate	event	handlers.

Add	a	Student	class	with	FirstName	and	LastName	properties.	Also	give	it	a
TestScores	property	that	is	an	array	of	integers.

Create	the	PrintPage	event	handler.

Create	an	array	of	Student	objects.	Initialize	them	using	array	and	object
initializers.

Loop	through	the	Student	objects,	printing	them.

Draw	a	rectangle	around	the	table.

NOTE

You	can	download	the	code	and	resources	for	this	lesson	from	the	website	at
www.wrox.com/go/csharp24hourtrainer2e.

Hints
Don't	forget	to	set	the	PrintPreviewDialog's	Document	property,	to	the
PrintDocument	component.

This	example	doesn't	do	anything	fancy	with	Student	properties,	so	they	can	be
auto-implemented.

It	might	help	to	define	variables	x0,	x1,	and	so	on	to	keep	track	of	where	each
column	should	begin.

Step-by-Step
Start	a	new	Windows	Forms	project	and	create	the	program's	main	form.	Add
PrintDocument	and	PrintPreviewDialog	components	to	do	the	printing	and
previewing.

1.	 This	is	reasonably	straightforward.

Add	Print	and	Preview	buttons	with	appropriate	event	handlers.

1.	 Use	code	similar	to	the	following:

//	Display	a	print	preview.

private	void	previewButton_Click(object	sender,	EventArgs	e)

{

				textPrintPreviewDialog.ShowDialog();

}

//	Print.

private	void	printButton_Click(object	sender,	EventArgs	e)

{

				textPrintDocument.Print();

}

Add	a	Student	class	with	FirstName	and	LastName	properties.	Also	give	it	a
TestScores	property	that	is	an	array	of	integers.

1.	 Use	code	similar	to	the	following:

class	Student

{

				public	string	FirstName	{	get;	set;	}

				public	string	LastName	{	get;	set;	}

				public	int[]TestScores	{	get;	set;	}

}

Create	the	PrintPage	event	handler.

http://www.wrox.com/go/csharp24hourtrainer2e

Create	an	array	of	Student	objects.	Initialize	them	using	array	and	object
initializers.

Loop	through	the	Student	objects,	printing	them.

Draw	a	rectangle	around	the	table.

1.	 Use	code	similar	to	the	following:

//	Print	the	table.

private	void	textPrintDocument_PrintPage(object	sender,

				System.Drawing.Printing.PrintPageEventArgs	e)

{

				//	Make	some	data.

				Student[]	students	=

				{

								new	Student()	{FirstName="Ann",	LastName="Archer",

												TestScores=new	int[]	{91,	92,	93,	94}},

									new	Student()	{FirstName="Bob",	LastName="Blarth",

											TestScores=new	int[]	{81,	82,	83,	84}},

								new	Student()	{FirstName="Cyd",	LastName="Carter",

											TestScores=new	int[]	{71,	72,	73,	74}},

								new	Student()	{FirstName="Dan",	LastName="Deever",

											TestScores=new	int[]	{61,	62,	63,	64}},

				};

				//	Set	the	coordinates	for	the	first	row	and	the	columns.

				int	y	=	e.MarginBounds.Top;

				int	x0	=	e.MarginBounds.Left;

				int	x1	=	x0	+	200;

				int	x2	=	x1	+	100;

				int	x3	=	x2	+	100;

				int	x4	=	x3	+	100;

				//	Make	a	font	to	use.

				using	(Font	font	=	new	Font("Times	New	Roman",	20))

				{

								//	Draw	column	headers.

								e.Graphics.DrawString("Name",	font,	Brushes.Black,	x0,	y);

								e.Graphics.DrawString("Test	1",	font,	Brushes.Black,	x1,	y);

								e.Graphics.DrawString("Test	2",	font,	Brushes.Black,	x2,	y);

								e.Graphics.DrawString("Test	3",	font,	Brushes.Black,	x3,	y);

								e.Graphics.DrawString("Test	4",	font,	Brushes.Black,	x4,	y);

								//	Move	Y	down	for	the	first	row.

								y	+=	30;

								//	Loop	through	the	Students	displaying	their	data.

								foreach	(Student	student	in	students)

								{

												//	Display	the	Student's	values.

												e.Graphics.DrawString(student.FirstName	+	"	"	+

																student.LastName,	font,	Brushes.Black,	x0,	y);

												e.Graphics.DrawString(student.TestScores[0].ToString(),

																font,	Brushes.Black,	x1,	y);

												e.Graphics.DrawString(student.TestScores[1].ToString(),

																font,	Brushes.Black,	x2,	y);

												e.Graphics.DrawString(student.TestScores[2].ToString(),

																font,	Brushes.Black,	x3,	y);

												e.Graphics.DrawString(student.TestScores[3].ToString(),

																font,	Brushes.Black,	x4,	y);

												//	Move	Y	down	for	the	next	row.

												y	+=	30;

								}

				}

				//	Draw	a	box	around	it	all.

				e.Graphics.DrawRectangle(Pens.Black,

								x0,	e.MarginBounds.Top,

								x4	-	x0	+	100,

								y	-	e.MarginBounds.Top);

				//	We're	only	printing	one	page.

				e.HasMorePages	=	false;

}

Exercises
1.	 Copy	the	program	you	built	in	this	lesson's	Try	It	and	add	lines	between	the
rows	and	columns.

2.	 Make	a	program	that	prints	a	bar	chart	similar	to	the	one	shown	in	Figure
30.8.	(Hint:	Pick	some	“random”	values	for	the	bars.)

Figure	30.8

3.	 Copy	the	program	you	built	for	Exercise	2	and	modify	it	so	the	textual	values
are	centered	over	their	bars.	(Hint:	Use	a	StringFormat	object.)

4.	 Build	a	program	that	contains	a	DataGridView	control	with	the	columns	Item,
Quantity,	Unit	price,	and	Total.	Make	Print	and	Preview	menu	items	that
display	the	data	in	the	grid.

Add	PrintDocument	and	PrintPreviewDialog	controls	as	usual.	The	PrintPage
event	handler	should:

a.	 Call	the	grid's	EndEdit	method	to	commit	the	current	edit	(if	there	is	one).

b.	 Loop	through	the	grid's	Columns	collection,	displaying	the	column	headers.
Add	each	column's	Width	value	to	the	X	coordinate	for	the	next	column.

c.	 Loop	through	the	grid's	Rows	collection.	For	each	row,	loop	through	the
row's	Cells	collection,	displaying	the	cells'	FormattedValue	property.

5.	 Copy	the	program	you	built	for	Exercise	4,	add	lines	between	the	rows	and
columns,	and	draw	a	box	around	the	table.

6.	 Copy	the	Print	Window	Enlarged	program	described	in	this	lesson	(and
available	in	this	lesson's	downloads).	Modify	it	so	it	prints	the	Window	sideways
to	fill	more	of	the	printed	page.

Hints:	This	is	a	lot	easier	than	it	sounds.	Modify	the	PrintWindowCentered
method	so	it	uses	the	page's	printable	width	and	height	for	the	drawing	grid's

height	and	width,	respectively.	Then	set	the	grid's	LayoutTransform	property	to
a	RotateTransform	object	that	rotates	it	by	90°.	The	code	that	creates	the	grid
should	look	like	this:

Grid	drawingGrid	=	new	Grid();

drawingGrid.Width	=	printDialog.PrintableAreaHeight;

drawingGrid.Height	=	printDialog.PrintableAreaWidth;

drawingGrid.LayoutTransform	=	new	RotateTransform(90);

7.	 [WPF]	The	WPF	examples	described	in	this	lesson	print	images	of	a	Window,
but	similar	techniques	work	with	any	visual	object	such	as	a	Grid,	StackPanel,
or	TextBox.

For	this	exercise,	build	a	WPF	program	that	contains	a	TabControl.	Give	that
control	three	TabItem	children.	Set	each	TabItem's	Header	property	and	place	a
Grid	inside	it.	Place	some	Labels,	TextBoxes,	and	other	controls	inside	the
Grids.	Finally,	give	each	tab	a	Print	button.	(If	you	don't	want	to	build	the
controls	yourself,	download	the	Exercise	30-7a	program	available	in	this
lesson's	downloads	as	a	starting	point.	That	project	defines	the	user	interface
but	none	of	the	code.)

To	print,	use	the	PrintWindowCentered	method	used	by	the	earlier	example
programs	with	a	few	changes:

Change	the	method's	name	to	PrintGridCentered.

Make	the	method	take	a	Grid	as	a	parameter	instead	of	a	Window.

The	Grid	control	doesn't	have	a	set	width	or	height,	so	its	Width	and	Height
properties	don't	return	meaningful	values.	Use	the	ActualWidth	and
ActualHeight	properties	instead.

To	avoid	repeating	code,	write	a	PrintGrid	method	that	takes	as	parameters
a	Grid,	title	string,	and	Thickness.	It	should	display	a	PrintDialog	and,	if	the
user	clicks	Print,	it	should	call	PrintGridCentered	to	do	the	actual	printing.

8.	 Make	a	Windows	Forms	program	that	previews	and	prints	four	pages
containing	the	following	shapes	outlined	in	10-pixel	wide	lines:

Red	rectangle

Green	ellipse

Blue	triangle

Purple	diamond

Make	the	shapes	as	large	as	possible	inside	the	page's	margins	and	outline	the
page's	margins	with	a	dashed	black	line.

Hints:	To	draw	the	triangle	and	diamond,	use	the	DrawPolygon	method	with	an
array	of	Point.	You	can	use	a	single	Pen	for	all	of	the	drawing	by	changing	its
Color	and	DashStyle	properties	as	needed.

9.	 [Hard]	Suppose	you're	making	a	booklet	and	you	want	to	indent	odd
numbered	pages	on	the	left	and	even	pages	on	the	right	to	make	room	for	the
stapled	binding.	(That	extra	alternating	indentation	is	called	a	“gutter.”)	Make
a	Windows	Forms	program	that	prints	or	previews	10	pages	with	a	100-unit
gutter.	Draw	boxes	around	the	pages'	margins	and	display	the	page	number
just	inside	the	margins	in	the	upper	corner	on	the	side	opposite	the	gutter.

Hints:

Use	the	PrintDocument's	QueryPageSettings	event	to	set	the	margins.	It
should	handle	three	cases:

For	the	first	page,	add	100	to	e.PageSettings.Margins.Left.

For	subsequent	odd	pages,	add	100	to	the	left	margin	and	subtract	100
from	the	right	margin.

For	even	pages,	subtract	100	from	the	left	margin	and	add	100	to	the
right	margin.

Use	a	StringFormat	object's	Alignment	and	LineAlignment	properties	to
position	the	page	numbers.

Keep	in	mind	that	QueryPageSettings	works	with	margins,	not	bounds.	For
example,	adding	100	to	the	right	margin	moves	the	right	edge	of	the	margin
bounds	100	units	farther	from	the	edge	of	the	page.	(Yes,	this	can	be	confusing.)

NOTE

Please	select	the	videos	for	Lesson	30	online	at
www.wrox.com/go/csharp24hourtrainer2evideos.

http://www.wrox.com/go/csharp24hourtrainer2evideos

Section	VI

Windows	Apps
The	lessons	in	the	first	part	of	this	book	focused	on	Windows	desktop	applications
because	they're	easy	to	get	up	and	running.	You	don't	need	to	take	any	special
steps	to	register	a	desktop	application,	upload	it	to	the	Windows	Store,	or	have	it
tested	for	safe	use	on	a	phone.	By	working	with	Windows	Forms	applications,	you
used	those	lessons	to	focus	on	using	controls	and	writing	C#	code.

The	lessons	in	this	part	of	the	book	explain	how	you	can	use	what	you've	learned
to	build	Windows	Store	apps	and	Windows	Phone	apps.	You	build	those	kinds	of
applications	using	WPF	windows	and	controls	similar	to	those	that	you	learned
about	in	the	first	part	of	the	book.	You	can	edit	them	using	the	Window	Designer
and	modify	their	XAML	code.	You	can	even	place	C#	behind	the	controls	much	as
you	do	in	a	WPF	desktop	application.

It	would	be	nice	if	that	were	all	there	was	to	building	these	kinds	of	applications,
but	you	have	several	other	to	handle	overcome	before	you	can	publish	the	next
paradigm-shifting	mobile	app.	These	lessons	focus	on	those	hurdles	so	you	can	get
to	the	point	where	you	can	use	the	knowledge	you	already	have	about	controls	and
C#	code.

These	are	relatively	new	technologies	so,	unlike	most	of	C#,	they	do	change
occasionally	as	Microsoft	tweaks	things	such	as	Visual	Studio,	the	Windows	Store,
the	Windows	Phone	operating	system,	and	the	Windows	operating	system.	That
means	some	of	the	techniques	described	in	these	lessons	may	not	work	with	every
combination	of	those	tools.

For	example,	you	can't	build	Windows	Phone	8	apps	on	Windows	7.	For	this	book,
I	used	Windows	8.1	and	Visual	Studio	2015.	Other	combinations	may	work	but
there	may	be	some	differences.	(Fortunately	most	of	the	rest	of	the	book	doesn't
depend	on	your	version	of	Windows	or	Visual	Studio.	Most	of	the	examples	should
work	in	Visual	Studio	2008	if	you	type	in	the	code.)

Building	Windows	Store	and	Phone	apps	is	also	a	fairly	involved	topic	so	the	few
lessons	included	here	can't	cover	every	possible	scenario.	Taking	full	advantage	of
the	special	data,	filesystem,	and	device	capabilities	provided	by	tablets	and	phones
is	fairly	complicated	so	it's	not	covered	here.	These	lessons	do,	however,	provide
enough	information	to	get	you	started.	They	also	explain	where	you	can	go	online
to	find	further	information.

Lesson	31:	Windows	Store	Apps

Lesson	32:	Windows	Phone	Apps

Lesson	31

Windows	Store	Apps
This	lesson	explains	how	you	can	build	Windows	Store–style	applications.	Note
that	you	don't	actually	need	to	upload	these	applications	to	the	Windows	Store.
You	can	build	and	run	them	locally	on	your	computer	if	you	like.	Here	“Windows
Store	apps”	simply	means	they	have	a	style	similar	to	those	available	in	the
Windows	Store.

Navigation	Style
Windows	Store	and	Phone	apps	differ	from	desktop	applications	in	several	ways.
One	big	difference	is	the	way	they	handle	device	real	estate.	Desktop	applications
typically	share	the	desktop	with	other	applications	that	you	can	minimize,
maximize,	resize,	rearrange,	and	close.	Store	and	Phone	apps	typically	cover	the
entire	device.	You	can	switch	between	different	apps,	but	you	can't	resize	and
rearrange	the	apps	to	view	more	than	one	on	the	screen	at	the	same	time.

Because	Store	and	Phone	apps	don't	display	multiple	windows	at	the	same	time,
they	typically	use	a	different	navigation	model	than	the	one	used	by	desktop
applications.	A	desktop	application	might	display	several	dialogs	and	other
windows	that	you	can	navigate	between	as	needed.

In	contrast,	Store	and	Phone	apps	display	a	single	window.	To	display	other
information,	the	app	replaces	that	window	with	a	new	one.	Often	you	can	tap	a
back	button	to	move	to	the	previous	window,	much	as	a	web	browser	lets	you
navigate	back	through	your	browsing	history.

NOTE

Windows	Store	and	Phone	apps	are	targeted	at	tablets	and	phones.	Those
devices	have	touch-sensitive	screens,	so	the	user	taps	the	screen	instead	of
clicking	a	mouse.	The	code	handles	taps	with	Click	and	Tapped	events	that
are	similar	to	the	Click	events	you've	seen	before.

Those	devices	also	support	more	complicated	gestures	such	as	flick,	pan,
pinch,	and	stretch.	Those	are	outside	the	scope	of	this	book	so	they're	not
covered	here.

Many	of	these	apps	also	don't	provide	buttons	or	menu	items	that	let	the	user
close	them.	Instead	the	user	simply	opens	or	navigates	to	another	app	and	leaves
yours	sitting	the	background.	Later	the	device	closes	your	app	if	it	needs	to	free	up
memory.

NOTE

Although	many	apps	don't	provide	a	way	to	close	them,	you	can	close	an	app
by	making	the	code	call	Application.Current.Exit().

Because	these	apps	cover	the	entire	device,	you	must	arrange	the	controls	to	take
best	advantage	of	whatever	space	is	available.	You	don't	have	control	over	how
large	the	user's	screen	is,	so	you	should	use	container	controls	such	as	Grid	and
StackPanel	to	get	the	most	out	of	the	space	you	have.

App	Styles
Visual	Studio	includes	templates	for	building	several	different	styles	of	Windows
Store	apps.	The	following	list	summarizes	the	most	common	kinds	of	Windows
Store	templates:

Blank—This	kind	of	app	displays	a	single	window	with	no	navigation	to	other
windows.	It's	similar	to	a	one-window	desktop	application	without	dialogs.

Hub—This	kind	of	app	uses	a	Hub	control.	The	main	Hub	control	displays	a
horizontally	scrolling	window	divided	into	sections	holding	different	kinds	of
information.	You	can	tap	a	section	heading	to	open	a	new	page	that	provides
details	about	that	section.

Grid—This	kind	of	app	displays	sections	in	a	grid.	You	can	tap	a	section	to
open	a	list	of	items	in	that	section.	If	you	then	tap	an	item	in	the	list,	the	app
opens	a	full	page	about	that	item.

Split—This	kind	of	app	displays	a	list	and	a	detail	area.	You	can	tap	an	item	in
the	list	to	see	its	details.

Pivot—This	kind	of	app	displays	a	collection	of	list	categories.	When	a
category	is	selected,	you	see	its	list	of	items	below	it.	You	can	scroll
horizontally	through	the	different	categories.	This	template	is	useful	for
displaying	different	views	of	data.	For	example,	my	phone	displays	Outlook
mail	in	a	pivot	view	with	categories	All,	Unread,	and	Urgent.

If	you	use	one	of	these	templates	to	create	a	new	project,	the	app	comes	pre-
loaded	with	sample	data	so	you	can	see	what	the	finished	app	will	look	like.	(In
fact,	you'll	probably	get	a	better	sense	of	how	the	different	templates	work	if	you
just	create	some	sample	projects	and	run	them	rather	than	staring	at	the	previous
descriptions.)

App	Images
Windows	and	the	Windows	Store	can	represent	your	app	in	many	ways	using
images	with	different	sizes.	For	example,	the	Windows	Start	screen	can	displays
your	app's	tile	in	Small,	Medium,	Wide,	and	Large	sizes.

The	kinds	of	images	are	grouped	into	categories,	each	of	which	includes	several
versions	at	different	sizes.	If	you	include	one	image	in	a	category	and	omit	the
others,	that	image	is	scaled	if	necessary	to	use	when	the	others	are	needed.

For	example,	suppose	for	the	Square	150×150	logo	category	you	provide	an	image
that's	150	pixels	wide	and	150	pixels	tall.	Then	Windows	automatically	scales	that
image	if	it	needs	images	with	sizes	270×270,	210×210,	or	120×120	pixels.

Automatic	scaling	is	better	than	nothing,	but	sometimes	it	can	produce	poor
results.	For	example,	if	you	provide	a	relatively	large	image	that	contains	text,
when	it's	scaled	down	to	a	small	size	the	text	may	turn	into	a	fuzzy	blur.	Enlarged
images	also	tend	to	have	fuzzy	edges.	To	provide	the	best	results,	you	should
create	separate	images	at	several	different	scales.

The	images	you	include	in	a	project	must	match	the	required	dimensions	exactly.
For	example,	you	can't	use	a	100×100	pixel	image	in	place	of	a	120×120	pixel
image.

Table	31.1	lists	the	kinds	of	images	you	can	include	in	a	Windows	Store	app.	The
bold	entries	in	the	Sizes	column	indicate	required	images.

Table	31.1

Category Purpose Sizes

Store
Logo

Used	by	the	Windows	Store's	details	section	in	app
listings.

50×50
70×70
90×90

Square
30×30
Logo

Used	by	Windows	in	several	places	such	as	when	the	user
lists	all	installed	apps.	(Tap	the	down	arrow	button	on	the
Start	screen	to	see	the	list.)

24×24
30×30
42×42
54×54

Square
70×70
Logo

Used	for	the	Small	tile	on	the	Windows	Start	screen. 56×56
70×70
98×98
126×126

Square
150×150
Logo

Used	for	the	Medium	tile	on	the	Windows	Start	screen. 120×120
150×150
210×210
270×270

Wide
310×150
Logo

Used	for	the	Wide	tile	on	the	Windows	Start	screen. 248×120
310×150
434×210
558×270

Square
310×310
Logo

Used	for	the	Large	tile	on	the	Windows	Start	screen. 248×248
310×310
434×434
558×558

Splash
Screen
Logo

This	image	is	displayed	briefly	when	the	app	loads.	You
also	specify	a	background	color	to	display	behind	the
splash	screen.

620×300
868×420
1116×540

The	purposes	of	the	images	depend	on	the	category	that	contains`	them,	not	on
their	sizes.	For	example,	the	Square	70×70	Logo	and	Store	Logo	categories	both
contain	70×70	images	but	they	are	not	interchangeable.	If	you	specify	a	70×70
image	in	one	category	and	not	in	the	other,	Windows	won't	use	the	one	you	specify
for	both	purposes.

If	you	don't	specify	images	for	the	Wide	310×150	Logo	or	Square	310×310	Logo
categories,	the	user	cannot	use	the	Wide	or	Large	tiles.	To	allow	the	user	to
arrange	tiles	flexibly,	I	highly	recommend	that	you	include	these	images.

If	you	don't	specify	an	image	in	the	Square	70×70	Logo	category,	Windows
provides	a	small	tile	by	scaling	an	image	from	the	Square	150×150	Logo	category.
(For	best	results,	include	at	least	one	image	in	each	category.)

NOTE

To	change	an	app's	tile	size	in	Windows	with	a	mouse,	go	to	the	Start	screen,
right-click	the	tile,	select	the	Resize	context	menu	item,	and	pick	Small,
Medium,	Wide,	or	Large.

On	a	touchscreen,	go	to	the	Start	screen	and	press	and	hold	on	the	tile	to
make	a	taskbar	appear	at	the	bottom	of	the	screen.	Click	the	Resize	tool	and
then	pick	the	Large,	Wide,	Medium,	or	Small	option.

When	you	create	your	images,	give	them	suggestive	names	such	as
MyApp56x56.png	so	you	can	tell	what	they	are	for.

After	you've	created	the	images,	you	need	to	attach	them	to	the	project.	To	do	that,
open	Solution	Explorer	and	double-click	Package.appxmanifest	to	open	the
Manifest	Editor	shown	in	Figure	31.1.	Click	the	Visual	Assets	tab	to	set	the	app's
various	images	and	image-related	options.

Figure	31.1

The	following	list	describes	the	items	shown	in	Figure	31.1:

Short	name—This	is	a	name	that	may	be	displayed	directly	on	top	of	the
app's	tile.

Show	name—Check	the	boxes	next	to	the	tile	sizes	that	should	display	the
short	name.	For	example,	you	could	have	the	short	name	appear	on	top	of	the
Wide	and	Large	tiles.

Default	size—Select	the	size	that	the	app's	tile	should	be	by	default.	This	can
be	Square	150×150	logo,	Wide	310×150	logo,	or	(not	set).

Foreground	text—Select	Light	or	Dark	to	indicate	whether	the	name
displayed	on	top	of	the	tile	should	be	dark	or	light.	For	example,	if	the	tile	has	a
light	background,	use	dark	text	so	it's	visible.

Background	color—This	is	the	tile's	background	color.	Parts	of	a	tile	image
that	are	transparent	appear	in	this	color.	Some	displays	also	outline	tiles	with
this	color.	If	you	don't	want	the	outline	to	be	visible,	make	this	color	match	the
colors	on	the	edges	of	the	tiles.

Splash	screen	background	color—This	is	the	background	color	shown
behind	the	splash	screen	image.

In	the	category	list	on	the	left,	you	can	click	All	Image	Assets	to	see	a	list	of
everything,	or	you	can	click	a	category	to	see	only	the	images	in	that	category.	For
example,	Figure	31.2	shows	an	app's	Square	150×150	Logo	category.

Figure	31.2

Use	the	ellipses	below	the	image	types	to	select	an	image	for	that	type.

Deployment
You	can	deploy	Windows	Store	apps	in	two	main	ways.	First,	you	can	deploy	the
app	on	a	local	or	remote	computer	so	you	can	test	it.	Second,	you	can	submit	the
app	to	the	Windows	Store	so	others	can	download	and	install	it.	These	approaches
are	described	in	the	following	sections.

Deploying	Locally
When	you	build	an	app	in	Visual	Studio,	it	is	automatically	deployed	on	your
computer.	If	you	use	the	system's	Search	tool,	you	can	find	the	app.	You	can	then
click	the	app	to	run	it.	You	can	also	right-click	it	and	select	Pin	to	Start,	Pin	to
Taskbar,	or	Uninstall.

You	can	also	manually	deploy	an	app	locally	or	on	a	remote	computer.	To	do	that,
open	the	target	dropdown	on	the	Standard	toolbar	shown	in	Figure	31.3	and	select
Simulator,	Local	Machine,	or	Remote	Machine.	If	you	select	Remote	Machine,	a
dialog	appears	that	lets	you	select	the	machine	where	you	want	to	deploy	the	app.

Figure	31.3

NOTE

To	deploy	to	a	remote	machine,	that	machine	must	have	a	developer's
license,	have	Visual	Studio	Remote	Tools	installed,	and	have	Remote
Debugging	Monitor	running.

After	you	select	the	deployment	target,	open	the	Build	menu	and	select	Deploy.

If	you	deployed	to	the	Simulator	target,	you	can	use	the	Debug	menu's	Start
Debugging	command	to	run	the	application	in	the	simulator.	If	you	deployed	to	a
local	or	remote	machine,	you	should	be	able	to	find	and	run	the	app	there.

Deploying	to	the	Windows	Store
After	you	have	tested	your	app	and	want	to	make	it	available	to	others,	you	can
submit	it	to	the	Windows	Store.

Before	you	can	submit	apps	to	the	Windows	Store	(or	the	Windows	Phone	Store),
you	need	to	register	for	a	couple	of	accounts.

First	register	for	a	Microsoft	account	at	signup.live.com/signup.aspx?lic=1.

Next,	register	for	a	Windows	Dev	Center	developer	account	at
dev.windows.com/join.	Unfortunately	this	registration	isn't	free.	It	currently	costs
roughly	$19	for	individuals	and	$99	for	companies	(depending	on	your	location
and	taxes).

Microsoft	charges	the	fee	to	cover	the	cost	of	inspecting	the	apps	that	are
submitted	to	the	store.	When	you	submit	an	app,	Microsoft	verifies	that	it	meets
some	standard	criteria	to	make	apps	more	uniform.	For	example,	you	must
include	a	description,	an	app	tile	icon,	and	a	screen	shot.	Microsoft	also	inspects
the	app	to	ensure	that	it	doesn't	contain	a	virus	or	other	malware.

After	you	have	the	Microsoft	and	Dev	Center	accounts,	you	can	build	and	test	your
app.	When	you're	finished,	you	use	the	unified	Windows	Dev	Center	dashboard	to
submit	the	app.

If	your	app	fails	certification,	you	can	fix	it	and	try	again	until	everything	is
perfect.	Then	you	can	publish	the	app	for	the	world	to	use.

Rather	than	including	a	lot	of	extra	details	(which	would	probably	change	before
you	read	this	anyway),	this	section	ends	with	a	list	of	links	you	can	use	to	get	more
information:

Sign	up	for	a	Microsoft	account	at	signup.live.com/signup.aspx?lic=1.

Register	for	a	Windows	Dev	Center	developer	account	at
dev.windows.com/join.

Learn	about	the	unified	Windows	Dev	Center	dashboard	at

http://signup.live.com/signup.aspx?lic=1
http://dev.windows.com/join
http://signup.live.com/signup.aspx?lic=1
http://dev.windows.com/join

msdn.microsoft.com/library/windows/apps/mt169843.aspx.

Learn	more	about	the	submission	process	at
msdn.microsoft.com/library/windows/apps/hh694062.aspx.

Learn	more	about	the	app	certification	process	at
msdn.microsoft.com/library/windows/apps/mt148554.aspx.

Read	introductory	articles	at	dev.windows.com/windows-apps.

Find	a	list	of	How-To	articles	for	C#	and	XAML	programming	at
msdn.microsoft.com/library/windows/apps/xaml/br229566.aspx.

Visite	the	Windows	Store	at	www.microsoft.com/windows.

Visit	the	Apps	and	Games	section	of	the	Windows	Store	at
www.microsoft.com/en-us/windows/apps-and-games.

Read	Microsoft's	article	“App	features,	start	to	finish	(XAML)”	at
msdn.microsoft.com/library/windows/apps/xaml/dn632431.aspx.

Read	Microsoft's	article	“Create	your	first	Windows	Store	app	using	C#	or
Visual	Basic”	at	msdn.microsoft.com/library/windows/apps/dn631757.aspx.

http://msdn.microsoft.com/library/windows/apps/mt169843.aspx
http://msdn.microsoft.com/library/windows/apps/hh694062.aspx
http://msdn.microsoft.com/library/windows/apps/mt148554.aspx
http://dev.windows.com/windows-apps
http://msdn.microsoft.com/library/windows/apps/xaml/br229566.aspx
http://www.microsoft.com/windows
http://www.microsoft.com/en-us/windows/apps-and-games
http://msdn.microsoft.com/library/windows/apps/xaml/dn632431.aspx
http://msdn.microsoft.com/library/windows/apps/dn631757.aspx

NOTE

Windows	Store	and	Windows	Phone	development	are	relatively	new	so	the
details	change	occasionally.	That	means	I	can't	guarantee	that	Microsoft
won't	change	the	fees,	URLs,	and	other	details	shown	here.	Hopefully	the
basic	processes	won't	change	too	much	and	you	can	figure	out	the	details	by
searching	online.

A	good	place	to	look	for	basic	information	and	to	use	as	a	starting	point	for
searches	is	dev.windows.com/getstarted.

http://dev.windows.com/getstarted

WPF	Techniques
Before	you	get	to	the	Try	It,	I	want	to	briefly	describe	two	more	useful	WPF
techniques	that	you'll	use	in	the	Try	It	and	the	Exercises.	Those	techniques	are
using	styles	and	setting	dependency	properties.

NOTE

In	addition	to	Windows	Store	apps,	styles	and	dependency	properties	are
available	to	WPF	desktop	applications.	I	just	didn't	have	room	to	cover	them
in	earlier	lessons.

Using	Styles
Imagine	you	have	an	app	that	uses	several	dozen	TextBlocks.	Now	suppose	you
decide	that	you	want	to	change	the	font	size,	color,	or	some	other	property	for	all
of	those	TextBlocks.	Editing	the	XAML	code	to	make	the	change	would	be
straightforward	but	time-consuming.

XAML	makes	this	easier	by	allowing	you	to	define	styles.	A	style	defines	some	of
the	properties	for	a	particular	type	of	control	in	some	part	of	the	window's
hierarchy.	You	define	styles	inside	a	resource	dictionary	attached	to	some	XAML
object.

For	example,	you	could	give	a	resource	dictionary	to	the	main	Grid	control	that
contains	the	other	controls	on	the	window.	Next	you	could	create	a	style	for	the
TextBlock	class	inside	that	resource	dictionary.	After	you	create	the	style,	any
TextBlock	inside	that	Grid	will	use	the	style.

The	following	code	shows	how	you	might	create	a	style	to	set	the	font	size	for
TextBlock	controls:

<Grid>

				<Grid.Resources>

								<Style	TargetType="TextBlock">

												<Setter	Property="FontSize"	Value="20"/>

								</Style>

				</Grid.Resources>

				...

				<TextBlock	Text="First	Name:"/>

				<TextBlock	Text="Last	Name:"/>

				...

</Grid>

The	Grid	contains	a	Resources	section	that	defines	the	resource	dictionary.	That
section	contains	a	Style	object.	The	TargetType	property	(in	this	case	set	to
TextBlock)	indicates	the	type	of	object	to	which	the	style	can	apply.

Inside	the	style,	a	Setter	object	defines	a	property	that	it	can	set	for	the	target
type.	In	this	example,	the	Setter	sets	the	object's	FontSize	property	to	the	value
20.

Now	any	TextBlock	objects	that	come	later	in	the	Grid	automatically	use	this	style.
If	you	later	decide	to	change	the	size	for	the	TextBlocks,	you	only	need	to	change	it
in	the	style.

NOTE

If	a	TextBlock	explicitly	sets	its	FontSize,	that	value	overrides	the	value	set	by
the	style.

There's	one	other	way	you	can	use	styles.	If	you	give	a	style	a	name,	then	other
controls	can	explicitly	use	that	style.	For	example,	the	following	code	defines	a
named	style:

<Grid>

				<Grid.Resources>

								<Style	x:Key="BigStyle"	TargetType="TextBlock">

												<Setter	Property="FontSize"	Value="50"/>

								</Style>

				</Grid.Resources>

				...

				<TextBlock	Text="First	Name:"	Style="{StaticResource	BigStyle}"/>

				<TextBlock	Text="Last	Name:"/>

				...

</Grid>

This	Grid's	resource	dictionary	defines	a	style	named	BigStyle.	Later	a	TextBlock
uses	that	style	by	explicitly	setting	its	Style	property	to	{StaticResource
BigStyle}.	(The	keyword	StaticResource	tells	the	program	to	look	in	the	resource
dictionary	for	a	resource	that	doesn't	change	after	it	is	defined.)

Any	other	TextBlocks	that	don't	explicitly	set	their	Style	properties	use	default
styles	or	an	unnamed	style	if	one	is	defined.

Setting	Dependency	Properties
A	dependency	property	is	a	property	that	is	defined	for	one	object	by	a	different
object.	For	example,	if	you	place	a	TextBox	inside	a	Grid	control,	then	you	can	set
the	TextBox's	Grid.Row	and	Grid.Column	properties.	Those	properties	are	defined
by	the	Grid	class	for	any	controls	that	are	contained	inside	a	Grid.

In	XAML	code	at	design	time,	you	can	simply	set	dependency	properties	to	a
value.	For	example,	the	following	statement	sets	the	TextBox's	Grid.Row	and
Grid.Column	properties:

<TextBox	Grid.Row="2"	Grid.Column="5"	Name="annualRateTextBox"/>

However,	Row	and	Column	are	not	truly	properties	of	the	TextBox	class,	so	you	can't
set	them	directly	in	C#	code.	Instead	you	can	use	static	methods	provided	by	the
Grid	class,	passing	those	methods	the	object	for	which	you	want	to	set	the
property	(in	this	example	the	TextBox)	and	the	value	you	want	to	set.	For	example,
the	following	code	sets	the	Grid.Row	and	Grid.Column	properties	for	the	TextBox
named	annualRateTextBox:

				Grid.SetRow(annualRateTextBox,	2);

				Grid.SetColumn(annualRateTextBox,	5);

If	you	need	to	retrieve	the	value	of	a	dependency	property,	use	the	corresponding
Get	method	as	in	int	row	=	Grid.GetRow(annualRateTextBox).

Try	It
In	this	Try	It,	you	build	a	program	that	makes	colorful	balls	bounce	across	the
screen	and	make	clicking	noises	when	they	hit	the	screen's	edges.

Lesson	Requirements
In	this	lesson,	you:

Start	a	new	Windows	project	by	selecting	the	Blank	App.	Replace	the	main
window's	Grid	control	with	a	Canvas	control	named	mainCanvas.

Add	a	MediaElement	to	the	main	window's	XAML	code	to	play	the	click	sound.

Create	a	Ball	sprite	class	to	manage	balls.	Give	it	properties	and	methods	to
create	a	random	ball,	track	the	ball's	position	and	velocity,	and	move	the	ball.

When	the	window	loads,	create	a	DispatcherTimer	and	give	it	an	event	handler
that	moves	the	balls.

Test	the	program	with	both	dark	and	light	themes.

NOTE

You	can	download	the	code	and	resources	for	this	lesson	from	the	website	at
www.wrox.com/go/csharp24hourtrainer2e.

Hints
Make	the	Ball	class	use	an	Ellipse	object	to	display	itself.

Give	the	Ball	class	the	following	using	directives:

using	Windows.UI.Xaml.Shapes;

using	Windows.UI.Xaml.Controls;

using	Windows.UI.Xaml.Media;

Give	the	Ball	class	a	randomizing	constructor,	a	RandomBrush	method,	and	a
Move	method.

Step-by-Step
Start	a	new	Windows	project	by	selecting	the	Blank	App.	Replace	the	main
window's	Grid	control	with	a	Canvas	control	named	mainCanvas.

1.	 In	Visual	Studio	2015's	New	Project	dialog,	you	can	find	this	template
under	Templates	>	Visual	C#	>	Windows	>	Windows	8	>	Windows.

2.	 Give	the	Canvas	the	same	Background	property	that	the	initial	Grid	had.	It
should	look	like	this:

Background="{ThemeResource	ApplicationPageBackgroundThemeBrush}"

This	makes	the	Canvas	determine	its	background	color	at	run	time	by	looking
at	the	theme.	(In	case	the	user	sets	the	theme	to	light	or	dark.)

Add	a	MediaElement	to	the	main	window's	XAML	code	to	play	the	click	sound.

1.	 Use	the	Project	menu's	Add	Existing	Item	command	to	add	a	click	sound
file	to	the	project.

2.	 Add	a	MediaElement	to	the	main	window's	XAML	code.	Set	its	x:Name
property	to	clickSound	and	set	its	Source	property	to	the	sound	effect	file
you	added.

Create	a	Ball	sprite	class	to	manage	balls.	Give	it	properties	and	methods	to
create	a	random	ball,	track	the	ball's	position	and	velocity,	and	move	the	ball.

1.	 Use	code	similar	to	the	following.

class	Ball

{

				//	Used	to	generate	random	values.

				static	private	Random	Rand	=	new	Random();

http://www.wrox.com/go/csharp24hourtrainer2e

				//	All	balls	have	black	outlines.

				static	private	Brush	BlackBrush	=

								new	SolidColorBrush(Windows.UI.Colors.Black);

				public	Ellipse	MyEllipse;

				public	Canvas	Parent;

				public	double	X,	Y,	Diameter,	Vx,	Vy;

				//	Initialize	a	random	Ball.

				public	Ball(Canvas	parent)

				{

								//	Save	the	parent.

								Parent	=	parent;

								//	Create	the	Ball's	geometry.

								const	int	maxSpeed	=	15;

								Vx	=	Rand.Next(-maxSpeed,	maxSpeed	+	1);

								Vy	=	Rand.Next(-maxSpeed,	maxSpeed	+	1);

								Diameter	=	Rand.Next(50,	200);

								X	=	Rand.Next(0,	(int)(Parent.ActualWidth	-	Diameter));

								Y	=	Rand.Next(0,	(int)(Parent.ActualHeight	-	Diameter));

								//	Create	the	Ellipse.

								MyEllipse	=	new	Ellipse();

								MyEllipse.Width	=	Diameter;

								MyEllipse.Height	=	Diameter;

								MyEllipse.Fill	=	RandomBrush();

								MyEllipse.Stroke	=	BlackBrush;

								Canvas.SetLeft(MyEllipse,	X);

								Canvas.SetTop(MyEllipse,	Y);

								//	Add	the	new	ball	to	the	parent.

								Parent.Children.Add(MyEllipse);

				}

				//	Return	a	random	brush.

				static	private	Brush	RandomBrush()

				{

								Brush[]	brushes	=

								{

												new	SolidColorBrush(Windows.UI.Colors.Red),

												new	SolidColorBrush(Windows.UI.Colors.Orange),

												new	SolidColorBrush(Windows.UI.Colors.Yellow),

												new	SolidColorBrush(Windows.UI.Colors.Lime),

												new	SolidColorBrush(Windows.UI.Colors.Blue),

												new	SolidColorBrush(Windows.UI.Colors.Indigo),

												new	SolidColorBrush(Windows.UI.Colors.Violet),

								};

								return	brushes[Rand.Next(0,	brushes.Length)];

				}

				//	Move	the	Ball.	Return	true	if	the	Ball	bounces.

				public	bool	Move()

				{

								//	Remember	if	the	ball	bounces.

								bool	bounced	=	false;

								//	Update	the	ball's	position.

								X	+=	Vx;

								if	(X	<	0)

								{

												//	Hit	the	left	edge.

												X	=	-X;

												Vx	=	-Vx;

												bounced	=	true;

								}

								else	if	(X	+	Diameter	>	Parent.ActualWidth)

								{

												//	Hit	the	right	edge.

												double	overshoot	=	(X	+	Diameter)	-	Parent.ActualWidth;

												X	=	Parent.ActualWidth	-	overshoot	-	Diameter;

												Vx	=	-Vx;

												bounced	=	true;

								}

								Y	+=	Vy;

								if	(Y	<	0)

								{

												//	Hit	the	left	edge.

												Y	=	-Y;

												Vy	=	-Vy;

												bounced	=	true;

								}

								else	if	(Y	+	Diameter	>	Parent.ActualHeight)

								{

												//	Hit	the	right	edge.

												double	overshoot	=	(Y	+	Diameter)	-	Parent.ActualHeight;

												Y	=	Parent.ActualHeight	-	overshoot	-	Diameter;

												Vy	=	-Vy;

												bounced	=	true;

								}

								//	Update	the	Ellipse's	position.

								Canvas.SetLeft(MyEllipse,	X);

								Canvas.SetTop(MyEllipse,	Y);

								return	bounced;

				}

}

When	the	window	loads,	create	a	DispatcherTimer	and	give	it	an	event	handler
that	moves	the	balls.

1.	 Add	the	XAML	code	Loaded="Page_Loaded"	to	the	main	window's	definition.

2.	 Use	the	following	code	to	prepare	the	program	when	the	window	is	loaded:

//	The	movement	timer.

private	DispatcherTimer	MoveTimer;

//	Balls.

private	const	int	NumBalls	=	10;

private	Ball[]	Balls	=	new	Ball[NumBalls];

//	Used	to	generate	random	numbers.

private	Random	Rand	=	new	Random();

//	Create	balls	and	start	them	moving.

private	void	Page_Loaded(object	sender,	RoutedEventArgs	e)

{

				//	Create	the	balls.

				for	(int	i	=	0;	i	<	NumBalls;	i++)

								Balls[i]	=	new	Ball(mainCanvas);

				//	Create	the	timer.

				MoveTimer	=	new	DispatcherTimer();

				MoveTimer.Interval	=	new	TimeSpan(0,	0,	0,	0,	20);

				MoveTimer.Tick	+=	MoveTimer_Tick;

				MoveTimer.Start();

}

3.	 Use	the	following	code	to	move	the	balls	when	the	timer's	Tick	event	fires:

//	Move	the	balls.

private	void	MoveTimer_Tick(object	sender,	object	e)

{

				//	Remember	if	a	ball	bounces.

				bool	bounced	=	false;

				foreach	(Ball	ball	in	Balls)	if	(ball.Move())	bounced	=	true;

				if	(bounced)	clickSound.Play();

}

Test	the	program	with	both	dark	and	light	themes.

1.	 Open	the	App.xaml	file	and	add	the	code	RequestedTheme="Light"	to	the
Application	object's	definition.	Test	the	program.

2.	 Change	the	RequestedTheme	to	"Dark"	and	test	the	program	again.

3.	 After	testing,	remove	the	RequestedTheme	property	so	the	app	uses	the
theme	selected	on	the	user's	device.

Exercises
1.	 Make	an	interest	calculator	similar	to	the	one	shown	in	Figure	31.4	(shown	in
the	Light	theme).	When	the	user	enters	values	and	clicks	Calculate,	the
program	should	enter	a	loop	that	runs	over	a	sequence	of	months.	Each	month
it	should	calculate	the	payment	and	the	amount	of	interest	for	that	month	and
update	the	user's	balance.	The	loop	should	run	until	the	balance	is	zero.	(Hint:
Give	any	Grid	rows	and	columns	relative	sizes	such	as	*	or	1.5*	so	they	will
resize	if	you	change	the	top-level	Grid's	size.)

Figure	31.4

2.	 Copy	the	program	you	wrote	for	Exercise	1	and	use	Style	objects	to	set	the
FontSize	values	to	20	for	the	app's	TextBlock,	TextBox,	and	Button	controls.
(Resize	the	app's	top-level	Grid	if	necessary.)

3.	 [Hard]	There's	probably	a	bug	in	the	program	you	wrote	for	Exercise	2.	If	you
enter	a	payment	percentage	of	0%	and	a	minimum	payment	of	$15,	then	the
monthly	interest	will	be	greater	than	the	monthly	payments	so	the	balance	will
increase	over	time.	That	means	the	program's	loop	will	never	end.

To	fix	that,	copy	the	program	you	wrote	for	Exercise	2.	Inside	the	loop,
compare	the	payment	and	the	interest.	If	the	interest	is	greater,	display	an
error	message	and	break	out	of	the	loop.

Unfortunately	Windows	Store	apps	can't	use	MessageBox.Show.	Instead	you	can
use	the	Windows.UI.Popups.MessageDialog	class.	Create	a	dialog,	passing	its
constructor	an	error	message	and	a	title	string.	Use	the	object's	Show	method	to
display	the	dialog.

The	dialog's	Show	method	is	asynchronous,	which	means	it	returns	immediately
to	the	calling	code	and	then	continues	running	in	the	background.	That	doesn't
really	hurt	the	application,	but	it	does	make	Visual	Studio	issue	a	warning.	To
get	rid	of	the	warning,	place	the	await	keyword	before	the	call	to	Show.	That
makes	the	code	pause	and	wait	for	the	call	to	Show	to	complete	before
continuing.	You	can	only	use	await	in	a	method	that	is	also	asynchronous,	so
you	also	need	to	mark	the	event	handler	with	the	async	keyword.

4.	 [Hard]	Copy	the	program	you	wrote	for	Exercise	3	and	modify	it	so	it	displays
its	own	message	instead	of	using	the	MessageDialog	class.	To	do	that,	add	a
Grid	(or	some	other	container)	holding	the	message	and	an	“X”	Button.	Set	the
Grid's	Visibility	property	to	Collapsed.

Make	a	ShowMessage	method	that	displays	the	message	by	doing	the	following:

Disable	the	window's	TextBoxes	and	the	Calculate	Button.

Set	the	main	Grid	control's	Opacity	property	to	0.5.

Set	the	message	Grid's	Visibility	property	to	Visible.

Make	a	HideMessage	method	that	reverses	the	actions	performed	by
ShowMessage.

(Bonus:	To	make	the	message	stand	out,	make	the	message	Grid	use	the
background	color	given	by	ApplicationForegroundThemeBrush	and	make	the
controls	it	contains	use	the	foreground	color	given	by
ApplicationPageBackgroundThemeBrush.	Be	sure	to	test	in	the	Dark	and	Light
themes.)

5.	 When	you	create	a	Windows	Store	app,	Visual	Studio	creates	blank	PNG	files
for	the	required	images.	Copy	the	program	you	wrote	for	Exercise	4.	Make	the
program	use	your	images	and	remove	the	default	images.	Pin	the	program	to
the	Windows	Start	screen	and	experiment	with	resizing	the	app's	tile.	Notice
that	the	app	displays	the	splash	screen	image	when	it	starts.

6.	 Copy	the	program	you	wrote	for	Exercise	5	and	add	the	Wide	310×150	and
Square	310×310	images.	Verify	that	you	can	now	change	the	app's	tile	to	be
wide	or	large	on	the	Windows	Start	screen.

7.	 Copy	the	program	you	built	for	the	Try	It	and	add	the	required	Wide	310×150,
and	Square	310×310	images	to	it.

NOTE

Please	select	the	videos	for	Lesson	31	online	at
www.wrox.com/go/csharp24hourtrainer2evideos.

http://www.wrox.com/go/csharp24hourtrainer2evideos

Lesson	32

Windows	Phone	Apps
This	lesson	explains	how	you	can	build	Windows	Phone	applications.	Note	that
you	don't	actually	need	to	upload	these	applications	to	the	Windows	Store.	You
can	build	and	run	them	locally	on	your	phone	if	you	like.

Building	Apps
Windows	Phone	apps	are	similar	to	Windows	Store	apps	in	several	ways.	Both	use
XAML	to	define	their	user	interfaces.	Both	can	use	C#	code	behind	the	user
interface	to	do	whatever	it	is	that	makes	the	app	useful.	Both	also	require	that	you
define	images	of	various	sizes	to	represent	the	app.	(More	on	that	later.)

In	addition	to	installing	Visual	Studio,	you	need	to	take	a	few	other	steps	before
you	can	start	building	phone	apps.	First	download	the	Windows	Software
Development	Kit	(SDK)	for	your	version	of	Windows.	The	Windows	8.1	version	is
available	at	msdn.microsoft.com/windows/desktop/bg162891.aspx.	The	Windows	10
version	is	at	dev.windows.com/downloads/windows-10-sdk.

This	SDK	contains	tools	you	can	use	to	build	phone	and	Windows	Store	apps.	It's
a	big	download,	ranging	in	size	from	around	10MB	to	1GB	depending	on	your
configuration,	so	be	sure	you	have	a	high-speed	Internet	connection.

As	is	the	case	with	Windows	Store	development,	you'll	need	a	Microsoft	account
(signup.live.com/signup.aspx)	and	a	Windows	Dev	Center	developer	account
(dev.windows.com/join).

After	you	install	the	SDK	and	sign	up	for	Microsoft	and	Dev	Center	accounts,	you
can	create	new	phone	apps	by	opening	Visual	Studio's	File	menu,	selecting	New	
Project,	and	using	the	New	Project	dialog	shown	in	Figure	32.1.	Select	the
Windows	Phone	Apps	category	on	the	left	to	see	the	phone	templates.

Figure	32.1

At	this	point	you	can	build	an	app.	At	some	point	you'll	want	to	test	your	app	on

http://msdn.microsoft.com/windows/desktop/bg162891.aspx
http://dev.windows.com/downloads/windows-10-sdk
http://signup.live.com/signup.aspx
http://dev.windows.com/join

your	phone,	so	you	may	as	well	set	up	your	phone	so	you	can	use	it	for	testing	now
while	you're	preparing	your	development	environment.

Normally	you	install	apps	from	the	Windows	Store.	An	app	in	the	store	has	been
examined	by	Microsoft	so	it	shouldn't	contain	viruses	and	other	malware.	To
prevent	people	from	easily	installing	viruses	on	other	people's	phones,	you	cannot
simply	download	an	app	directly	to	a	phone.	First	you	need	to	unlock	the	phone
for	development.

To	do	that,	connect	your	phone	to	your	development	computer	with	the	USB	cable
that	came	with	your	phone.	Turn	the	phone	on	and	unlock	its	screen	(if	you	have
password	protection	on	the	phone).

Next	use	your	computer's	search	tool	to	find	the	app	called	Windows	Phone
Developer	Registration.	(From	the	desktop,	move	the	mouse	to	the	lower-right
corner,	move	the	mouse	up,	and	click	the	Search	tool.)

In	the	dialog	that	appears,	click	the	Register	button.	The	dialog	will	ask	you	to	log
in	to	your	Microsoft	account	and	verify	that	it's	associated	with	your	developer
account.	When	you're	finished,	you	should	be	able	to	download	apps	to	your
phone.	(For	more	details	about	registering	your	phone,	including	troubleshooting
information,	see	msdn.microsoft.com/library/windows/apps/ff769508.)

At	this	point	you	can	add	XAML	code	and	C#	code	behind	it	as	usual.	Writing	a
Windows	Phone	app	is	very	similar	to	writing	a	Windows	Store	app,	although	a
phone	can	do	things	that	a	computer	can't	so	some	differences	exist.	For	example,
phones	may	have	cameras,	orientation	sensors,	multi-touch	capable	screens,
location	services,	near-field	communication	(NFC),	Bluetooth,	and	more.	Using
those	capabilities	is	a	fairly	advanced	topic	so	I	won't	say	any	more	about	them	in
this	book.

After	you	create	your	app,	you	have	two	options	for	testing	it:	running	in	an
emulator	and	running	on	your	phone.	To	select	an	option,	open	the	Run
dropdown	in	the	Standard	toolbar	shown	in	Figure	32.2.	Select	one	of	the
emulators	or	select	Device	to	run	on	a	phone.

Figure	32.2

To	run	in	an	emulator,	select	an	emulator	from	the	dropdown	shown	in	Figure

http://msdn.microsoft.com/library/windows/apps/ff769508

32.2	and	press	F5	to	run	the	program	as	usual.	For	the	emulator	to	work,	your
computer	needs	to	be	running	Hyper-V,	a	tool	that	allows	your	computer	to	run
virtual	machines.

Unfortunately	Hyper-V	requires	you	to	have	Windows	Professional	installed.	If
you	don't	have	Windows	Professional	installed,	you	can	still	run	your	app	on	your
phone.	Select	Device	from	the	dropdown,	use	a	USB	cable	to	plug	your	phone	into
the	computer,	turn	the	phone	on	and	unlock	its	screen,	and	press	F5	to	run	the
app.	Visual	Studio	will	download	the	app	to	your	phone	and	run	it.

When	you're	done	testing,	use	the	Debug	menu's	Stop	Debugging	command	or
click	the	Stop	Debugging	button	on	the	Debug	toolbar.

After	you	run	an	app	on	your	phone,	it	will	remain	installed	on	the	phone	so	you
can	use	it	later	even	if	the	phone	is	disconnected	from	the	computer.	You	can	find
the	app	in	the	phone's	list	of	installed	apps.	Press	and	hold	the	app	to	pin	it	to	the
Start	screen	or	to	uninstall	it.

If	you	pin	the	app	to	the	Start	screen,	you	can	press	and	hold	its	tile	to	change	the
tile	size	or	unpin	it.

Here's	a	summary	of	the	steps	you	use	to	build	and	test	an	app:

(Optional)	Install	Hyper-V	if	you	are	using	Windows	Professional	or
Enterprise	edition	and	you	want	to	run	Windows	Phone	apps	in	the	device
emulator.	For	instructions,	search	the	Internet	or	see
www.howtogeek.com/196158/how-to-create-and-run-virtual-machines-with-

hyper-v/.

Install	the	Windows	Software	Development	Kit	(SDK)	for	Windows	8.1.

Register	for	a	Microsoft	account.

Register	for	a	Dev	Center	account.

Unlock	your	phone	for	development.

Write	the	app.

To	test	in	an	emulator,	select	an	emulator	from	the	dropdown	and	run	the	app.

To	test	on	a	phone,	connect	the	phone,	turn	the	phone	on,	unlock	the	phone's
screen,	and	run	the	app.

The	following	sections	provide	some	more	details	about	the	kinds	of	apps	you	can
build	and	the	images	you	need	to	set	to	make	them	appear	properly.

http://www.howtogeek.com/196158/how-to-create-and-run-virtual-machines-with-hyper-v/

Navigation	Style
Like	Windows	Store	apps,	Windows	Phone	apps	cover	the	entire	device.	You	can
switch	between	different	apps,	but	you	can't	resize	and	rearrange	the	apps	to	view
more	than	one	on	the	screen	at	the	same	time.

Because	they	display	a	single	window	at	a	time,	phone	apps	typically	use	a	simpler
navigational	model	than	desktop	applications.	Some	apps	allow	you	to	use	a	back
button	to	move	to	an	earlier	screen,	but	they	don't	allow	you	to	easily	jump	from
screen	to	screen.

Phone	apps	also	typically	don't	provide	buttons	or	menu	items	that	let	the	user
close	them.	Instead	the	user	opens	or	navigates	to	another	app	and	leaves	yours
sitting	in	the	background.	Later	the	device	closes	your	app	if	it	needs	to	free	up
memory.

NOTE

Although	many	apps	don't	provide	a	way	to	close	them,	you	can	close	an	app
by	making	the	code	call	Application.Current.Exit().

Because	these	apps	cover	the	entire	device,	you	must	arrange	the	controls	to	take
best	advantage	of	whatever	space	is	available.	You	don't	have	control	over	how
large	the	user's	screen	is,	so	you	should	use	container	controls	such	as	Grid	and
StackPanel	to	get	the	most	out	of	the	space	you	have.

App	Styles
Visual	Studio	includes	templates	for	building	several	different	styles	of	Windows
Phone	apps.	The	following	list	summarizes	the	most	common	kinds	of	templates:

Blank—This	kind	of	app	displays	a	single	window	with	no	navigation	to	other
windows.	It's	similar	to	a	one-window	desktop	application	without	dialogs.

Hub—This	kind	of	app	uses	a	Hub	control.	The	main	Hub	control	displays	a
horizontally	scrolling	window	divided	into	sections	holding	different	kinds	of
information.	You	can	tap	a	section	heading	to	open	a	new	page	that	provides
details	about	that	section.

Pivot—This	kind	of	app	displays	a	collection	of	list	categories.	When	a
category	is	selected,	you	see	its	list	of	items	below	it.	You	can	scroll
horizontally	through	the	different	categories.	This	template	is	useful	for
displaying	different	views	of	data.	For	example,	my	phone	displays	Outlook
mail	in	a	pivot	view	with	categories	All,	Unread,	and	Urgent.

WebView—This	kind	of	app	uses	the	WebView	control.	That	control	lets	an	app
display	a	piece	of	web	content,	although	Microsoft	makes	it	clear	that	this	is
not	a	full-featured	web	browser.	For	example,	you	can	use	a	WebView	control	to
display	frequently	updated	information	rather	than	make	new	builds	to	update
the	app's	data.

If	you	use	one	of	these	templates	to	create	a	new	project,	the	app	comes	pre-
loaded	with	sample	data	so	you	can	see	what	the	finished	app	will	look	like.	(In
fact,	you'll	probably	get	a	better	sense	of	how	the	different	templates	work	if	you
just	create	some	sample	projects	and	run	them	rather	than	staring	at	the	previous
descriptions.)

App	Images
Like	Windows	Store	apps,	Windows	Phone	apps	may	be	represented	by	images	in
many	different	sizes.	For	example,	the	phone's	Start	screen	can	display	your	app's
tile	in	Small,	Wide,	and	Large	sizes.

The	kinds	of	images	are	grouped	into	categories,	each	of	which	includes	several
versions	at	different	sizes.	If	you	include	one	image	in	a	category	and	omit	the
others,	then	that	image	is	scaled	if	necessary	to	provide	the	others.

As	is	the	case	with	Windows	Phone	apps,	automatic	scaling	is	better	than	nothing,
but	sometimes	it	can	produce	poor	results.	For	example,	if	you	provide	a	relatively
large	image	that	contains	text,	when	it's	scaled	down	to	a	small	size	the	text	may
turn	into	a	fuzzy	blur.	To	provide	the	best	results,	you	should	create	separate
images	at	several	different	scales.

The	images	you	include	in	a	project	must	match	the	required	dimensions	exactly.
For	example,	you	can't	use	a	100×100	pixel	image	in	place	of	a	99×99	pixel	image.

Table	32.1	lists	the	kinds	of	images	you	can	include	in	a	Windows	Phone	app.	The
bold	entries	in	the	Sizes	column	indicate	required	images.

Table	32.1

Category Sizes

Square	44×44	Logo 106	×	106
62	×	62
44	×	44

Square	71×71	Logo 170	×	170
99	×	99
71	×	71

Square	150×150	Logo 360	×	360
210	×	210
150	×	150

Wide	310×150	Logo 744	×	360
434	×	210
310	×	150

Store	Logo 120	×	120
70	×	70
50	×	50

Splash	Screen 1152	×	1920
672	×	1120
480	×	800

When	you	create	your	images,	give	them	suggestive	names	such	as
MyApp106×106.png	so	you	can	tell	what	they	are	for.

NOTE

To	change	an	app's	tile	size	on	your	phone,	press	and	hold	the	tile.	Tap	the
arrows	that	appear	to	cycle	between	the	Small,	Wide,	and	Large	tile	sizes.
When	you've	selected	the	desired	size,	tap	the	tile	to	get	out	of	resizing	mode.

After	you've	created	the	images,	you	need	to	attach	them	to	the	project.	To	do	that,
open	Solution	Explorer	and	double	click	Package.appxmanifest	to	open	the
Manifest	Editor	shown	in	Figure	32.3.	This	editor	lets	you	select	the	orientations
that	your	app	allows.	For	example,	if	you	only	want	your	app	to	be	available	when
the	user	is	holding	the	phone	in	the	portrait	orientation,	check	the	Portrait	box.

Figure	32.3

To	set	the	app's	images,	click	the	Visual	Assets	tab	to	see	the	display	shown	in
Figure	32.4.	In	the	category	list	on	the	left,	you	can	click	All	Image	Assets	to	see	a
list	of	everything,	or	you	can	click	a	category	to	see	only	the	images	in	that
category.	For	example,	Figure	32.4	shows	an	app's	Square	71×71	Logo	category.

Figure	32.4

Use	the	ellipses	below	the	image	types	to	select	an	image	for	that	type.

Options	above	the	images	let	you	decide	whether	the	phone	should	display	the
app's	name	on	top	of	the	large	or	wide	tile.

A	third	option	lets	you	set	the	tile's	background	color.	If	you	set	this	color	to
transparent	and	the	image	you	use	for	the	tile	has	a	transparent	background,	then
the	phone's	Start	screen	image	will	display	behind	the	tile.

Try	It
In	this	Try	It,	you	build	a	Windows	Phone	interest	calculator	similar	to	the	app
you	built	for	Exercise	31-3.

Lesson	Requirements
In	this	lesson,	you:

Start	a	new	blank	Windows	Phone	app.

Open	the	Package.appxmanifest	file	and	allow	the	program	to	run	only	in	the
Landscape	and	Landscape-flipped	orientations.

In	the	Window	Designer,	open	the	Design	menu	and	select	Device	Window.	In
the	Device	Window	tab,	set	the	designer's	orientation	to	Landscape.

Copy	the	XAML	and	C#	code	you	wrote	for	Exercise	31-3	into	the	new	project
and	fix	it	up	so	it	fits	nicely	in	the	designer.	You	will	probably	need	to	make	the
fonts	smaller	to	make	everything	fit.

Test	the	app	in	an	emulator	or	on	a	phone.

http://Package.appxmanifest

NOTE

You	can	download	the	code	and	resources	for	this	lesson	from	the	website	at
www.wrox.com/go/csharp24hourtrainer2e.

Step-by-Step
Start	a	new	blank	Windows	Phone	app.

1.	 This	is	straightforward.

Open	the	Package.appxmanifest	file	and	allow	the	program	to	run	only	in	the
Landscape	and	Landscape-flipped	orientations.

1.	 This	is	also	straightforward.

In	the	Window	Designer,	open	the	Design	menu	and	select	Device	Window.	In
the	Device	Window	tab,	set	the	designer's	orientation	to	Landscape.

1.	 This	is	straightforward	assuming	you	can	find	the	Device	Window	tab.	It
normally	appears	as	a	tab	with	the	Toolbox.

Copy	the	XAML	and	C#	code	you	wrote	for	Exercise	31-3	into	the	new	project
and	fix	it	up	so	it	fits	nicely	in	the	designer.	You	will	probably	need	to	make	the
fonts	smaller	to	make	everything	fit.

1.	 Copying	the	XAML	and	C#	is	straightforward.

2.	 You	should	experiment	with	the	font	sizes	and	rearrange	controls	slightly	if
necessary	to	make	everything	fit	on	the	designer.	I	set	the	TextBlock,
TextBox,	and	Button	FontSize	properties	to	12.	(This	is	a	situation	where
XAML	Style	objects	come	in	handy.)

Test	the	app	in	an	emulator	or	on	a	phone.

1.	 This	is	straightforward.

http://www.wrox.com/go/csharp24hourtrainer2e
http://Package.appxmanifest

Exercises
1.	 Apps	that	look	good	on	a	tablet	or	desktop	system	don't	always	look	good	on	a
phone.	On	my	phone,	the	text	displayed	by	the	Try	It	is	so	small	I	can	barely
read	it.

Copy	the	app	you	wrote	for	the	Try	It	and	modify	it	to	make	it	easier	to	read.
Move	the	TextBlocks	(used	as	labels)	so	they	sit	above	their	corresponding
TextBoxes.	Then	make	the	TextBox	and	ListBox	fonts	bigger	so	they	are	easier
to	read.	(Hint:	You	can	give	the	results	StackPanel	a	Resources	section	that
defines	a	Style	to	set	the	FontSize	property	for	the	result	TextBlocks.)

2.	 [Hard]	Copy	the	app	you	wrote	for	Exercise	1	and	modify	it	so	it	displays	its
warning	message	in	a	separate	Grid	control	as	described	in	Exercise	31-4.

3.	 Copy	the	app	you	wrote	for	Exercise	2,	add	appropriate	images	to	it,	and	make
it	display	its	name	on	its	wide	and	large	tiles.

4.	 Make	a	bouncing	ball	app	similar	to	the	Windows	Store	app	you	built	for	the
Try	It	in	Lesson	31.

5.	 Run	the	app	you	wrote	for	Exercise	4	and	see	what	happens	if	you	change	the
phone's	orientation	while	it's	running.	The	result	is	distracting	and	doesn't
make	the	app	more	useful	(not	that	it's	particularly	useful	to	begin	with),	so
copy	the	project	and	modify	it	so	it	only	allows	the	Portrait	orientation.

6.	 [Games]	Copy	the	app	you	wrote	for	Exercise	5	and	modify	it	so	when	the	user
taps	a	ball,	that	ball	disappears	with	a	popping	sound.	When	the	user	taps	the
last	ball,	make	the	app	close.	Hints:

Catch	the	main	Canvas's	Tapped	event	and	use	e.GetPosition	to	get	the	tap's
position.	Then	loop	through	the	balls	and	determine	whether	the	user
tapped	one.

To	make	removing	balls	easy,	store	them	in	a	List<Ball>.

Check	the	balls	in	top-to-bottom	order	so	the	app	removes	the	topmost	ball
that	was	clicked.

Feel	free	to	add	other	sounds	if	you	like	such	as	a	“tap	misses”	sound	and	a
“game	over”	sound.

7.	 [Hard]	Make	a	tip	calculator	similar	to	the	one	shown	in	Figure	32.5.	(This	is	a
screen	shot	of	the	designer	not	the	app	running	in	the	emulator	because	my
system	doesn't	have	Windows	Professional	installed	and	therefore	can't	run
Hyper-V.)

Figure	32.5

When	the	user	taps	a	button	or	adjusts	the	percentage	Slider,	the	app	should
display	the	corresponding	tip	amount	in	the	TextBlock	above	the	Slider.
(Normally	I	would	place	the	output	TextBlock	below	all	of	the	other	controls,
but	during	testing	I	found	that	my	finger	obscured	the	result	when	I	adjusted
the	percentage	so	this	layout	worked	much	better.)	Hints:

Only	allow	the	Portrait	orientation.

Use	a	TotalCost	variable	to	track	the	value	entered	by	the	user.

When	the	user	taps	a	digit	button,	multiply	TotalCost	by	10	and	add	the
new	digit's	value	divided	by	100.	Then	display	TotalCost	and	the	calculated
tip	amount.

When	the	user	clicks	the	X	button,	reset	TotalCost	to	0.

When	the	user	adjusts	the	percentage	Slider,	recalculate	and	display	the
new	tip	amount.

Protect	the	app	from	the	user	entering	very	large	values	such	as	$1	billion.
(I	don't	think	people	tip	when	they	buy	soccer	stadiums	or	nuclear
submarines	anyway.)

8.	 Copy	the	app	you	built	for	Exercise	7,	add	appropriate	images	to	it,	and	make	it
display	its	name	on	its	wide	and	large	tiles.

9.	 Make	a	simple	score-keeping	application	like	the	one	shown	in	Figure	32.6.
The	user	should	be	able	to	enter	team	names	in	the	TextBoxes	at	the	top	and
use	the	arrow	buttons	to	increase	or	decrease	the	scores.	If	the	user	taps	the	0-

0	button,	reset	both	scores	to	0.	(Hint:	Only	allow	the	Landscape	and
Landscape-flipped	orientations.)

Figure	32.6

10.	 Copy	the	app	you	built	for	Exercise	9,	add	appropriate	images	to	it,	and	make	it
display	its	name	on	its	wide	and	large	tiles.	Use	images	of	volleyballs,	flaming
soccer	balls,	racing	ducks,	or	whatever	else	is	appropriate	for	your	favorite
sport.

NOTE

Please	select	the	videos	for	Lesson	32	online	at
www.wrox.com/go/csharp24hourtrainer2evideos.

http://www.wrox.com/go/csharp24hourtrainer2evideos

Section	VII

Specialized	Topics
Most	of	the	lessons	so	far	have	dealt	with	general	programming	topics.	For
example,	every	desktop	application	needs	to	use	controls	and	most	also	need	to
use	variables,	classes,	and	files.

The	lessons	in	this	section	explain	more	specialized	topics.	They	describe	ideas
and	techniques	that	you	won't	need	for	every	program	you	write,	although	you	will
still	find	them	useful	under	many	circumstances.

Lesson	33:	Localizing	Programs

Lesson	34:	Programming	Databases,	Part	1

Lesson	35:	Programming	Databases,	Part	2

Lesson	36:	LINQ	to	Objects

Lesson	37:	LINQ	to	SQL

Lesson	33

Localizing	Programs
Many	programmers	write	applications	that	are	used	only	in	their	countries.	It's
easy	enough	to	find	plenty	of	customers	for	a	small	application	without	looking	for
customers	long	distance.

However,	the	world	has	grown	smaller	in	the	past	few	decades,	and	it's	not	too
hard	to	provide	programs	for	people	all	over	the	world.	Customers	can	download
your	software	over	the	Internet	and	pay	for	it	using	online	payment	systems	in	a
matter	of	minutes.	Web	applications	that	run	in	a	browser	are	even	more	likely	to
be	used	by	people	all	over	the	world.

With	such	a	potentially	enormous	market,	it	makes	sense	in	some	cases	to	make
programs	accessible	to	people	in	different	countries,	particularly	since	C#	and
Visual	Studio	make	it	relatively	easy.

In	this	lesson,	you	learn	how	to	make	a	program	accessible	to	customers	in	other
countries	with	different	cultures.	You	learn	how	to	make	multiple	interfaces	for	a
program	so	users	can	work	in	their	own	languages.	You	also	learn	how	to	work
with	values	such	as	currencies	and	dates	that	have	different	formats	in	different
locales.

WARNING

Localization	is	a	huge	topic	so	there	isn't	room	to	cover	everything	there	is	to
know	about	it	here.	In	particular,	you	should	always	get	a	native	of	a
particular	locale	to	help	in	localizing	your	application	whenever	possible.
Unless	you	are	extremely	well	versed	in	a	locale's	language,	customs,	and
idioms,	it's	very	easy	to	make	sometimes	embarrassing	mistakes.	(For
examples,	search	the	Internet	for	“funny	translation	mistakes”	to	see
hundreds	if	not	thousands	of	cases	where	someone	thought	they	didn't	need
help	from	a	native	speaker.	One	of	my	favorites	is,	“Do	not	disturb.	Tiny
grass	is	dreaming.”)

Note	that	I	am	not	fluent	in	all	of	the	locales	that	this	lesson	uses.	I	used	the
Babel	Fish	automatic	translation	tool	at	www.babelfish.com	to	make	the
simple	translations	shown	here.	You	can	use	Babel	Fish	or	a	similar	tool	for
practice	and	for	this	lesson's	exercises,	but	you	should	get	human	help	before
releasing	a	program	to	users.

http://www.babelfish.com

Understanding	Localization
A	computer's	locale	is	a	setting	that	defines	the	user's	language,	country,	and
cultural	settings	that	determine	such	things	as	how	dates	and	monetary	values	are
formatted.	For	example,	the	Format	Values	example	program	shown	in	Figure
33.1	(and	available	in	this	lesson's	downloads)	displays	the	same	values	in
American,	British,	German,	and	French	locales.

Figure	33.1

If	you	look	closely	at	Figure	33.1,	you	can	see	that	the	same	values	produce	very
different	results	in	the	different	locales.	For	example,	the	value	1234.56	displayed
as	currency	appears	variously	as:

$1,234.56

£1,234.56

1.234,56	€

1	234,56	€

Not	only	do	these	results	use	different	currency	symbols,	but	they	even	use
different	decimal	and	thousands	separators.

NOTE

Globalization	is	the	process	of	building	an	application	that	can	be	used	by
users	from	different	cultures.

Localization	is	the	process	of	customizing	a	globalized	application	for	a
specific	culture.

Localizing	an	application	involves	two	main	steps:	building	a	localized	user
interface	and	processing	locale-specific	values.

Building	Localized	Interfaces
At	first	this	may	seem	like	a	daunting	task.	How	do	you	build	completely	separate
interfaces	for	multiple	locales?	Fortunately	this	is	one	thing	that	C#	and	Visual
Studio	do	really	well	(at	least	for	Windows	Forms	applications).

To	build	a	globalized	program,	start	by	creating	the	form	as	usual.	Add	controls
and	set	their	properties	as	you	want	them	to	appear	by	default.

After	you've	defined	the	program's	default	appearance,	you	can	localize	it	for	other
locales.	To	do	that,	set	the	form's	Localizable	property	to	true.	Then	select	a	new
locale	from	the	dropdown	list	provided	by	the	form's	Language	property.	Now
modify	the	form	to	handle	the	new	locale.	You	can	change	control	properties	such
as	the	text	they	display.	You	can	also	move	controls	around	and	change	their	sizes,
which	is	particularly	important	because	the	same	text	may	take	up	a	different
amount	of	room	in	different	languages.

At	run	time,	the	program	automatically	checks	the	computer's	locale	settings	and
picks	the	program's	localization	that	gives	the	closest	match.

Note	that	many	languages	have	several	sub-locales.	For	example,	English	comes	in
the	varieties	used	in	India,	Ireland,	New	Zealand,	and	more	than	a	dozen	other
locales.

There's	also	locale	listed	simply	as	“English.”	If	the	user's	computer	is	set	up	for
one	of	the	English	locales	that	the	program	doesn't	support,	the	program	falls
back	to	the	generic	English	locale.	If	the	program	can't	support	that	locale	either,
it	uses	the	default	locale	that	you	used	when	you	initially	created	the	form.

The	Localized	Weekdays	example	program	(available	in	this	lesson's	code
download)	is	localized	for	English	(the	form's	default)	and	German.	Figure	33.2
shows	the	form's	English	interface	and	Figure	33.3	shows	its	German	interface.

Figure	33.2

Figure	33.3

Testing	Localizations
Having	the	program	check	the	computer's	locale	automatically	at	run	time	is
convenient	for	the	user	but	it	makes	testing	different	locales	tricky.

One	way	to	force	the	program	to	pick	a	particular	locale	so	you	can	test	it	is	to
select	the	locale	in	code.	You	must	do	this	before	the	form	is	initialized	because
after	that	point	the	form's	text	and	other	properties	are	already	filled	in	and
setting	the	locale	won't	reload	the	form.

When	you	create	a	form,	Visual	Studio	automatically	creates	a	constructor	for	it
that	calls	the	InitializeComponent	function.	Place	your	code	before	the	call	to
InitializeComponent.

The	following	code	shows	how	the	Localized	Weekdays	program	explicitly	selects
either	the	English	or	the	German	locale:

using	System.Threading;

using	System.Globalization;

...

public	Form1()

{

				//	English.

				//Thread.CurrentThread.CurrentCulture	=

				//				new	CultureInfo("en-US",	false);

				//Thread.CurrentThread.CurrentUICulture	=

				//				new	CultureInfo("en-US",	false);

				//	German.

				Thread.CurrentThread.CurrentCulture	=

								new	CultureInfo("de-DE",	false);

				Thread.CurrentThread.CurrentUICulture	=

								new	CultureInfo("de-DE",	false);

				InitializeComponent();

}

This	code	contains	statements	that	set	the	locale	to	English	or	German.	Simply
comment	out	the	one	that	you	don't	want	to	use	for	a	given	test.

NOTE

For	a	list	of	more	than	100	culture	values	that	you	can	use	in	code,	such	as
en-US	and	de-DE,	see	msdn.microsoft.com/library/ee825488.aspx.

Setting	the	CurrentCulture	makes	the	program	use	locale-specific	methods	when
processing	dates,	currency,	numbers,	and	other	values	in	the	code.	Setting	the
CurrentUICulture	makes	the	program	load	the	appropriate	user	interface	elements
for	the	form.

http://msdn.microsoft.com/library/ee825488.aspx

NOTE

After	you	finish	testing	a	form's	localized	version,	be	sure	to	remove	the	code
that	selects	the	culture	so	the	program	can	use	the	system's	settings.
Otherwise	you	may	end	up	with	some	very	confused	users.

Processing	Locale-Specific	Values
Inside	C#	code,	variables	are	stored	in	American	English	formats.	To	avoid
confusion,	Microsoft	decided	to	pick	one	locale	for	code	values	and	stick	with	it.

When	you	move	data	in	and	out	of	the	program,	however,	you	need	to	be	aware	of
the	computer's	locale.	For	example,	suppose	the	program	uses	the	following	code
to	display	an	order's	due	date:

dueDateTextBox.Text	=	dueDate.ToString("MM/dd/yy")

If	the	date	is	November	20,	2010,	this	produces	the	result	“11/20/10,”	which
makes	sense	in	the	United	States	but	should	be	“20/11/10”	in	France	and
“20.11.10”	in	Germany.

The	problem	is	that	the	program	uses	a	custom	date	format	that	is	hard-coded	to
use	an	American-style	date	format.	To	produce	a	format	appropriate	for	the	user's
system,	you	should	use	standard	date,	time,	and	other	formats	whenever	possible.
The	following	code	uses	the	standard	short	date	format:

dueDateTextBox.Text	=	dueDate.ToString("d")

This	produces	“11/20/2010”	on	an	American	system	and	“20/11/2010”	on	a
French	system.

You	can	run	into	the	same	problem	if	you	assume	the	user	will	enter	values	in	a
particular	format.	For	example,	suppose	you	want	to	get	the	whole	number	part	of
the	value	1,234.56	entered	by	the	user.	If	you	assume	the	decimal	separator	is	a
period	and	just	use	whatever	comes	before	it	as	the	integer	part,	then	you'll	get	the
answer	1	when	a	German	user	enters	“1.234,56”	and	the	program	will	crash	when
a	French	user	enters	the	value	“1	234.56.”

To	avoid	this	problem,	use	locale-aware	functions	such	as	the	numeric	classes'
Parse	methods	to	read	values	entered	by	the	user.	In	this	example,	a	good	solution
is	to	use	float.Parse	to	read	the	value	and	then	truncate	it	as	shown	in	the
following	code:

value	=	(int)float.Parse(valueTextBox.Text);

For	a	list	of	standard	numeric	formats,	see
msdn.microsoft.com/library/dwhawy9k.aspx.

For	a	list	of	standard	date	and	time	formats,	see
msdn.microsoft.com/library/az4se3k1.aspx.

For	more	information	on	parsing	strings,	see
msdn.microsoft.com/library/b4w53z0y.aspx.

http://msdn.microsoft.com/library/dwhawy9k.aspx
http://msdn.microsoft.com/library/az4se3k1.aspx
http://msdn.microsoft.com/library/b4w53z0y.aspx

NOTE

Previous	lessons	have	shown	how	to	use	Parse	methods	to	parse	currency
values.	For	example,	the	following	statement	parses	a	currency	value
entered	by	the	user:

value	=	decimal.Parse(valueLabel.Text,	NumberStyles.Any);

This	isn't	completely	foolproof.	If	the	user	has	a	German	system	but	types	a
value	in	a	French	format,	the	program	will	crash,	but	it	seems	reasonable	to
ask	a	German	user	to	enter	German	values.

The	Localized	Parsing	example	program	shown	in	Figure	33.4	(and
available	in	this	lesson's	code	download)	parses	currency	values	displayed	in
labels	in	different	languages,	doubles	the	parsed	decimal	values,	and
displays	the	results.	For	each	language,	it	selects	the	appropriate	culture	so
it	can	parse	and	display	the	correct	formats.

Figure	33.4

Try	It
In	this	Try	It,	you	write	the	program	shown	in	Figures	33.5	and	33.6,	which	lets
you	select	foreground	and	background	colors	in	American	English	and	Mexican
Spanish.

Figure	33.5

Figure	33.6

Lesson	Requirements
In	this	lesson,	you:

Build	the	default	interface.

Add	code	to	handle	the	RadioButtons'	Click	events.

Localize	the	application	for	Mexican	Spanish.

Add	code	to	let	you	test	the	form	for	either	locale.

NOTE

You	can	download	the	code	and	resources	for	this	lesson	from	the	website	at
www.wrox.com/go/csharp24hourtrainer2e.

Hints
There's	no	need	to	build	a	separate	event	handler	for	each	RadioButton.	Use
one	event	handler	for	all	of	the	foreground	buttons	and	one	for	all	of	the
background	buttons.

These	event	handlers	must	figure	out	which	button	was	clicked,	but	they
cannot	use	the	buttons'	text	because	that	will	change	depending	on	which
locale	is	selected.	They	could	use	the	buttons'	names	because	they	don't
change,	but	it's	even	easier	to	store	the	corresponding	colors'	names	in	their
Tag	properties	and	then	use	the	Color	class's	FromName	method	to	get	the
appropriate	Color.

Step-by-Step
Build	the	default	interface.

1.	 Build	a	form	that	looks	like	the	one	shown	in	Figure	33.5.

2.	 Store	the	color	names	(red,	green,	blue,	and	so	forth)	in	the	RadioButtons'
Tag	properties.

Add	code	to	handle	the	RadioButtons'	Click	events.

1.	 Write	an	event	handler	similar	to	the	following:

//	Set	the	foreground	color.

private	void	Foreground_Click(object	sender,	EventArgs	e)

{

				//	Get	the	sender	as	a	RadioButton.

				RadioButton	rad	=	sender	as	RadioButton;

				//	Use	the	color.

				Color	clr	=	Color.FromName(rad.Tag.ToString());

				this.ForeColor	=	clr;

				fgGroupBox.ForeColor	=	clr;

				bgGroupBox.ForeColor	=	clr;

}

This	code	converts	the	sender	object	into	a	RadioButton	and	uses	its	Tag
property	to	get	the	corresponding	color.	It	then	applies	that	color	to	the
form	and	the	two	GroupBoxes.

2.	 Connect	the	foreground	RadioButtons	to	this	event	handler.

3.	 Repeat	these	steps	for	the	background	RadioButtons.

http://www.wrox.com/go/csharp24hourtrainer2e

Localize	the	application	for	Mexican	Spanish.

1.	 Set	the	form's	Localizable	property	to	true.	Click	the	Language	property,
click	the	dropdown	arrow	to	the	right,	and	select	“Spanish	(Mexico).”

2.	 Change	the	controls'	Text	properties	so	they	have	the	values	shown	in
Figure	33.6.

Add	code	to	let	you	test	the	form	for	either	locale.

1.	 Use	code	similar	to	the	following	in	the	form's	constructor:

//	Select	a	locale	for	testing.

public	Form1()

{

				//	English.

				//Thread.CurrentThread.CurrentCulture	=

				//				new	CultureInfo("en-US",	false);

				//Thread.CurrentThread.CurrentUICulture	=

				//				new	CultureInfo("en-US",	false);

				//	Spanish.

				Thread.CurrentThread.CurrentCulture	=

								new	CultureInfo("es-MX",	false);

				Thread.CurrentThread.CurrentUICulture	=

								new	CultureInfo("es-MX",	false);

				InitializeComponent();

}

Exercises
1.	 Copy	this	lesson's	Try	It	and	add	support	for	Italian	(it-IT)	as	shown	in	Figure
33.7.	Don't	forget	to	add	code	to	let	you	test	it.

Figure	33.7

2.	 When	a	program	reads	data	from	a	file,	it	must	use	the	correct	locale.
Download	the	files	Dutch.txt,	German.txt,	and	English.txt	from	the	book's
website	and	make	a	program	that	can	read	them.	The	program	should	let	the
user	select	a	file,	check	the	filename	to	see	which	locale	it	should	use,	and
select	the	correct	locale.	It	should	read	and	parse	the	values	into	appropriate
data	types	and	then	display	the	values	in	a	DataGridView	control.	Hints:

Use	locale	names	en-US	for	English,	de-DE	for	German,	and	nl-NL	for
Dutch.	Use	code	similar	to	the	following	to	select	the	proper	locale	before
you	parse	the	values:

Thread.CurrentThread.CurrentCulture	=

				new	CultureInfo("en-US",	false);

The	values	within	a	line	in	the	file	are	separated	by	tabs,	so	use
File.ReadAllLines	to	get	the	lines	and	Split	to	break	each	line	into	fields.

The	following	text	shows	the	values	in	the	file	Dutch.txt:

Potlood				?	0,10							12				?	1,20

Blocnote			?	1,10							10				?	11,00

Laptop					?	1.239,99				1				?	1.239,99

3.	 [Hard]	Actually	you	can	change	a	form's	localization	after	it	is	loaded:	it's	just
somewhat	complicated.	The	following	method	sets	the	locale	for	a	form	and
makes	its	controls	reload	their	localizable	properties:

//	Set	the	form's	culture.

private	void	SetFormCulture(Form	form,	string	culture)

{

				//	Make	the	CultureInfo.

				CultureInfo	cultureInfo	=	new	CultureInfo(culture);

				//	Make	a	ComponentResourceManager.

				ComponentResourceManager	resourceManager	=

								new	ComponentResourceManager(form.GetType());

				//	Apply	resources	to	the	form.

				resourceManager.ApplyResources(form,	"$this",	cultureInfo);

				//	Apply	resources	to	the	form	and	its	controls.

				SetControlCulture(form,	cultureInfo,	resourceManager);

}

The	SetFormCulture	method	creates	a	CultureInfo	object	to	represent	the
desired	culture.	It	then	creates	a	ComponentResourceManager	for	the	form	and
uses	it	to	load	the	form's	localized	resources.	Resources	for	use	by	the	form	are
identified	by	the	special	name	$this.

The	method	then	calls	the	following	SetControlCulture	method	for	the	form:

//	Set	the	control's	culture	using	the	indicated

//	CultureInfo	and	ComponentResourceManager.

private	void	SetControlCulture(Control	control,

				CultureInfo	cultureInfo,

				ComponentResourceManager	resourceManager)

{

				//	Apply	resources	to	the	control.

				resourceManager.ApplyResources(

								control,	control.Name,	cultureInfo);

				//	Apply	resources	to	the	control's	children.

				foreach	(Control	child	in	control.Controls)

								SetControlCulture(child,	cultureInfo,	resourceManager);

}

The	SetControlCulture	method	uses	the	resource	manager	to	load	culture-
specific	resources	for	the	control.	The	method	uses	the	control's	name	to
identify	the	resource	values	to	use.	(When	SetFormCulture	calls	this	method,	it
first	sets	properties	for	the	form.	However,	the	form's	resources	are	stored	with
the	special	name	$this,	so	that	first	call	to	ApplyResources	doesn't	do
anything.)

After	making	the	control	reload	its	resources,	the	code	loops	through	the
control's	children	and	calls	SetControlCulture	to	reload	their	resources.	This	is
necessary	to	handle	controls	inside	containers	such	as	GroupBoxes	or
TabControls.

Copy	the	program	you	wrote	for	Exercise	1,	remove	the	testing	code	that	selects
a	locale,	and	add	English,	Español,	and	Italiano	RadioButtons	to	the	top	of	the
form.	When	the	user	selects	one	of	them,	use	the	SetFormCulture	and
SetControlCulture	methods	to	make	the	form	use	the	appropriate	localization.
(Hint:	Store	the	locale	name	in	the	RadioButtons'	Tag	properties.)

4.	 Unfortunately	some	properties	are	not	localizable.	For	example,	you	can't
localize	a	PictureBox's	Image	property.	(I	asked	people	at	Microsoft	about	this
and	they	said,	“Gee,	we	never	thought	anyone	would	want	to	localize	that.”)

Copy	the	program	you	wrote	for	Exercise	3	and	add	a	PictureBox	to	display	an
image	of	the	selected	country's	flag.	Add	code	to	the	RadioButtons'	Clicked
event	handler	to	display	the	correct	flag.	(Hint:	Add	the	flag	images	to	the

project's	resources	by	selecting	Project	 	Properties,	clicking	the	Resources
tab,	opening	the	Add	Resource	dropdown,	and	selecting	Add	Existing	File.
Then	make	the	code	set	the	PictureBox's	Image	property	to	a	value	such	as
Properties.Resources.MexicanFlag.)

5.	 [WPF,	Hard]	To	localize	a	WPF	application,	follow	these	steps:

a.	 Create	a	new	application.	In	Solution	Explorer,	expand	the	Properties	entry
and	double-click	Resources.resx.

b.	 In	the	resources	editor	shown	in	Figure	33.8,	create	the	resources	that	you
want	to	localize.	For	example	in	Figure	33.8,	I	created	a	string	resource
named	LeftHeader	and	set	its	value	to	“Foreground	Color.”

Figure	33.8

c.	 Set	the	resource	file's	Access	Modifier	(in	the	upper-right	corner	in	Figure
33.8)	to	Public.

d.	 Build	the	program's	XAML	code	as	usual,	but	use	the	resources	for	the
values	that	you	want	to	localize.	To	make	that	easier:

i.	 Add	the	following	statement	with	the	other	namespace	statements	at
the	top	of	the	XAML	code:

xmlns:res=”clr-namespace:WPF_Select_Colors.Properties”

This	statement	lets	you	use	the	name	res	to	represent	the	application's
properties.	(In	this	example,	the	application's	root	namespace	is
WPF_Select_Colors.)

ii.	 Use	code	similar	to	the	following	to	use	a	resource.	The	code	in	bold
makes	this	GroupBox	use	the	value	of	the	LeftHeader	resource:

<GroupBox	Grid.Row=”0”	Grid.Column=”0”

				Header="{x:Static	res:Resources.LeftHeader}">

To	make	a	resource	file	for	another	locale,	follow	these	steps:

i.	 In	Solution	Explorer,	use	Ctrl+C	and	Ctrl+V	to	copy	and	paste	the
Resources.resx	file.	Rename	it	to	include	the	locale	identifier	as	in
Resources.es-MX.resx.

ii.	 Place	the	localized	values	in	the	new	resource	file.

When	the	program	runs,	it	will	select	the	appropriate	resource	file.	You	can
test	the	program	by	setting	its	CurrentCulture	and	CurrentUICulture	in	the
main	window's	constructor	just	as	you	would	for	a	Windows	Forms
application.

For	this	exercise,	create	a	WPF	program	similar	to	the	program	you	built	for
Exercise	1.

Hints:

Use	code	similar	to	the	following	to	convert	a	color	name	into	a	brush:

Color	clr	=	(Color)ColorConverter.ConvertFromString("Red");

Brush	brush	=	new	SolidColorBrush(clr);

To	set	the	foreground	color,	you	only	need	to	set	the	window's	Background
property.

To	set	the	background	color,	set	the	GroupBoxes'	Background	properties.
Then	loop	through	Children	collections	of	the	controls	(probably
StackPanels)	that	hold	the	RadioButtons	and	set	the	children's	Background
properties.

6.	 [WPF,	Hard]	I	have	not	found	a	good	way	to	reload	a	WPF	project's	resources
at	run	time,	but	there	is	a	straightforward	albeit	verbose	way.	Simply	set	the
application's	CurrentCulture	and	CurrentUICulture	as	usual.	Then	use	code
similar	to	the	following	to	reload	all	of	the	localized	properties:

fgGroupBox.Header	=	Properties.Resources.LeftHeader;

redFgButton.Content	=	Properties.Resources.Red;

greenFgButton.Content	=	Properties.Resources.Green;

...

You	can	place	all	of	those	statements	in	a	method	to	make	them	easier	to	call.

Copy	the	program	you	wrote	for	Exercise	5	and	modify	it	so	it	allows	the	user
to	change	locales	at	run	time	(much	as	you	did	for	Exercise	3).

7.	 [WPF]	Loading	images	from	resources	into	WPF	controls	at	run	time	is
relatively	difficult,	but	there's	an	easy	way	to	localize	images.	Create	multiple
Image	controls	holding	the	pictures	you	want	to	display	and	then	change	their
Visibility	properties	at	run	time.	Copy	the	program	you	wrote	for	Exercise	6
and	modify	it	so	it	displays	appropriate	flag	images	when	the	user	changes
locales	(much	as	you	did	for	Exercise	4).

NOTE

Please	select	the	videos	for	Lesson	33	online	at
www.wrox.com/go/csharp24hourtrainer2evideos.

http://www.wrox.com/go/csharp24hourtrainer2evideos

Lesson	34

Programming	Databases,	Part	1
Database	programming	is	another	truly	enormous	topic,	so	there	isn't	room	to
cover	it	all	here.	However,	Visual	Studio	provides	tools	that	make	some	simple
kinds	of	database	programs	so	easy	to	write	that	your	education	won't	be	complete
until	you've	written	a	few.

In	this	lesson,	you	learn	how	to	make	a	simple	database	application.	You	learn
how	to	connect	to	a	database,	load	data,	let	the	user	navigate	through	records,	and
save	any	changes.

Connecting	to	a	Database
The	first	step	in	building	a	database	program	is	giving	it	a	connection	to	the	data.
You	can	easily	do	this	interactively	at	design	time,	although	it	requires	quite	a	few
steps:

NOTE

If	you	want	to	following	along	with	these	instructions,	you	may	want	to
download	the	database	file	Contacts.mdb,	which	is	available	in	this	lesson's
downloads.

1.	 First	open	the	Project	menu	and	select	Add	New	Data	Source	to	display	the
dialog	shown	in	Figure	34.1.	As	you	can	see	in	the	figure,	you	might	want	the
program	to	get	data	from	several	different	places.	The	data	source	used	in	this
example	is	a	database,	so	select	Database	and	click	Next.

2.	 The	dialog's	next	screen	lets	you	decide	whether	you	want	to	use	a	data	set	or
an	entity	data	model	for	your	data.	(The	entity	data	model	option	won't	be
there	if	you	don't	have	the	entity	framework	tools	installed.	You	won't	be	using
an	entity	data	model	in	this	lesson,	so	if	that	option	doesn't	appear,	don't	worry
about	it.)	For	this	example,	pick	Dataset	and	click	Next	to	make	the	dialog
display	the	screen	shown	in	Figure	34.2.

Figure	34.1

Figure	34.2

NOTE

A	data	set	is	an	in-memory	representation	of	a	data	source.	A	data	set
can	include	multiple	tables	that	are	related	with	complex	database
relationships,	although	this	example's	database	contains	only	a	single
table.

3.	 If	you	have	previously	built	data	connections,	you	can	pick	one	from	the
dropdown	list.	Otherwise,	click	the	New	Connection	button	to	display	the
dialog	shown	in	Figure	34.3.

Figure	34.3

For	this	example,	select	Microsoft	Access	Database	File	and	click	Continue	to
see	the	dialog	shown	in	Figure	34.4.

Figure	34.4

Enter	the	name	of	the	database	in	the	textbox	or	click	the	Browse	button	and
select	it.	When	you're	finished,	if	you	like,	you	can	click	Test	Connection	to	see
if	Visual	Studio	can	connect	to	the	database.

Click	OK	to	create	the	new	connection	and	return	to	the	dialog	shown	in
Figure	34.2.

TIP

If	you	click	the	plus	sign	at	the	bottom	of	the	dialog	shown	in	Figure	34.2,
you	can	see	the	connection	string	Visual	Studio	built	to	connect	to	the
database.	You	won't	need	that	string	now,	but	you	may	want	it	later	if
you	use	code	to	connect	to	a	database.

Picking	a	Database

Picking	the	right	database	product	is	a	tough	decision.	Microsoft	Access
databases	have	the	advantage	that	a	C#	program	can	read	and	manipulate
one	even	if	Access	isn't	installed	on	the	computer.	That	means	you	can
build	a	database	on	one	computer	that	has	Access	installed	and	then	copy
it	to	another	computer	that	doesn't	have	Access	and	use	it	there.

SQL	Server,	Oracle,	MySQL,	and	similar	database	products	tend	to	provide
more	database	features	than	Access.	For	example,	they	support	bigger
databases,	triggers,	views,	and	other	features	that	Access	doesn't	provide.

A	common	choice	is	to	start	development	with	SQL	Server	Express
Edition,	a	free	version	of	SQL	Server	that	has	some	size	restrictions.	Later
if	you	decide	you	need	the	extra	space	provided	by	the	full	version	of	SQL
Server,	you	can	upgrade	relatively	easily.	You	can	learn	more	about	SQL
Server	Express	and	download	it	at	www.microsoft.com/express/Database.

Unfortunately	a	C#	program	cannot	use	these	more	powerful	databases
unless	you	have	them	installed,	an	assumption	I	don't	want	to	make,	so
this	lesson	works	with	Access	databases.	You	can	get	the	necessary
databases	from	the	lesson's	code	download	and	use	them	even	if	you	don't
have	Access	installed.

If	you're	planning	to	do	more	database	programming,	I	encourage	you	to
install	one	of	the	more	powerful	database	products,	particularly	since	SQL
Server	Express	and	MySQL	are	free.

4.	 When	you	click	Next,	Visual	Studio	asks	whether	you	want	to	include	the
database	in	the	project.	Click	Yes	to	copy	the	database	file	into	the	project	so	it
can	easily	be	distributed	with	the	program.

5.	 The	dialog's	next	page	asks	whether	you	want	to	include	the	database
connection	string	in	the	program's	configuration	file	so	the	program	can	use
that	string	to	connect	to	the	database	at	run	time.	This	is	often	convenient
because	it	lets	you	change	the	connection	string	without	rebuilding	the
application.	Note,	however,	that	you	shouldn't	store	database	passwords	in	the
configuration	file,	so	if	the	database	requires	a	password,	you	may	want	to
leave	the	connection	string	out	of	the	configuration	file.

When	you	click	Next	again,	you	see	the	page	shown	in	Figure	34.5.

http://www.microsoft.com/express/Database

Figure	34.5

6.	 Expand	the	database	object	treeview	and	select	the	tables	and	fields	that	you
want	the	program	to	use.	In	this	example,	the	database	contains	only	one	table.
In	Figure	34.5	I	selected	the	Tables	entry	and	that	selected	the	database's
single	table	and	all	of	its	fields.

7.	 When	you	click	Finish,	Visual	Studio	defines	a	data	set	that	can	hold	the	data
in	the	database.	It	also	adds	some	code	to	make	working	with	the	data	set
easier.

Now	that	you've	added	a	data	source	to	the	project,	Visual	Studio	provides	easy
ways	to	make	two	simple	kinds	of	database	programs:	one	that	displays	data	in	a
grid	and	one	that	displays	data	one	record	at	a	time.

Displaying	Data	in	a	Grid
To	display	data	in	a	grid,	first	open	the	Data	Sources	window.	If	you	can't	find	it,
use	the	View	 	Other	Windows	 	Data	Sources	command	to	find	it.	Figure	34.6
shows	the	Data	Sources	window	after	I	connected	to	a	Microsoft	Access	database
named	Contacts.mdb.

Figure	34.6

TIP

Often	developers	make	the	Data	Sources	window	a	tab	in	the	same	window
as	the	Toolbox.

To	display	data	in	a	grid,	click	a	table	in	the	Data	Sources	window	and	drag	it	onto
the	form.	When	you	drop	the	table,	Visual	Studio	adds	several	objects	to	the	form
to	help	manage	the	table's	data.	A	few	of	these	objects	appear	on	the	form	itself,
but	most	of	them	appear	in	the	Component	Tray	below	the	form.	When	you	drop
the	table	on	the	form,	Visual	Studio	adds:

A	DataGridView—This	control	displays	the	data.

A	data	set—This	data	set	can	hold	the	table's	data	at	run	time.

A	BindingSource—This	object	encapsulates	the	data	source.	It	provides	a
link	between	the	form's	controls	and	the	data	source.

A	data	adapter—This	object	provides	methods	to	move	data	between	the
database	and	the	data	set.

A	table	adapter	manager—This	object	helps	coordinate	movement	of	data
by	the	data	adapter.

Binding	navigator—This	object	provides	navigation	services	for	the	controls
on	the	form.	For	example,	buttons	that	move	to	the	next	or	previous	record	use
these	navigation	services.

This	seems	like	a	confusing	assortment	of	objects.	Fortunately	you	don't	need	to
do	much	with	them	for	the	simple	database	applications	described	in	this	lesson.

Figure	34.7	shows	the	program	created	by	Visual	Studio	at	run	time.	The	only
changes	I	made	were	to	resize	the	form	and	dock	the	DataGridView	control	to	make
it	fill	the	form.

Figure	34.7

The	DataGridView	and	the	BindingNavigator	(which	provides	the	buttons	at	the
top)	automatically	let	the	user	perform	a	lot	of	simple	database	tasks,	including:

Clicking	a	cell	and	typing	to	change	its	value

Selecting	a	row	and	pressing	Delete	to	delete	the	corresponding	record

Clicking	and	dragging	on	the	left	of	the	data	to	select	multiple	rows,	which	the
user	can	then	delete	all	at	once

Using	the	navigation	buttons	to	move	through	the	records

Entering	values	in	the	last	row	to	create	a	new	record

Resizing	rows	and	columns

Clicking	the	floppy	disk	button	to	save	changes	to	the	data

Clicking	a	column	header	to	sort	the	records	using	that	column

NOTE

In	this	kind	of	program,	changes	are	made	locally	to	the	data	set	and	are	not
copied	to	the	database	until	the	user	clicks	the	Save	button.

NOTE

If	you	build	a	program	as	described	so	far,	make	a	change,	and	click	the
BindingNavigator's	Save	button,	you	may	be	surprised	to	find	that	the
changes	don't	seem	to	be	saved.	They	actually	are	saved,	but	by	default	the
project	copies	the	database	into	the	executable	directory	every	time	it	runs,
and	the	new	copy	of	the	database	overwrites	the	saved	data	so	it	looks	like
the	changes	weren't	saved.

One	way	to	fix	this	is	to	not	include	the	database	in	the	project	or	to	use
Solution	Explorer	to	set	its	Copy	to	Output	Directory	property	to	Do	not	copy
or	Copy	if	newer.

You	should	add	a	few	things	that	this	automatically	generated	program	doesn't	do
to	this	simple	example.	The	most	important	of	these	is	to	check	for	unsaved
changes	before	allowing	the	form	to	close.

The	following	FormClosing	event	handler	prevents	the	user	from	accidentally
closing	the	form	with	unsaved	changes:

//	Check	for	unsaved	changes.

private	void	Form1_FormClosing(object	sender,	FormClosingEventArgs	e)

{

				//	See	if	there	are	unsaved	changes.

				if	(this.contactsDataSet.HasChanges())

				{

								//	Make	the	user	confirm.

								DialogResult	result	=	MessageBox.Show(

												"Do	you	want	to	save	changes	before	closing?",

												"Save	Changes?",

												MessageBoxButtons.YesNoCancel,

												MessageBoxIcon.Question);

								if	(result	==	DialogResult.Cancel)

								{

												//	Cancel	the	close.

												e.Cancel	=	true;

								}

								else	if	(result	==	DialogResult.Yes)

								{

												//	Save	the	changes.

												contactsTableAdapter.Update(contactsDataSet);

												//	Make	sure	the	save	worked.

												//	If	we	still	have	unsaved	changes,	cancel.

												e.Cancel	=	(this.contactsDataSet.HasChanges());

								}

								//	Else	the	user	doesn't	want	to	save

								//	the	changes	so	just	keep	going.

				}

}

If	the	data	set	has	unsaved	changes,	the	code	asks	the	user	whether	it	should	save

the	changes.	If	the	user	clicks	Cancel,	the	code	sets	e.Cancel	to	true	so	the
program	doesn't	close	the	form.

If	the	user	clicks	Yes,	the	code	calls	the	table	adapter's	Update	method	to	save	the
data	set's	changes	back	to	the	database.

If	the	user	clicks	No,	the	code	just	continues	and	lets	the	form	close	without	saving
the	changes.

Displaying	Data	One	Record	at	a	Time
Instead	of	displaying	a	table's	records	in	a	grid,	you	can	display	the	data	one
record	at	a	time,	as	shown	in	Figure	34.8.

Figure	34.8

With	this	kind	of	interface,	you	can	click	the	navigation	buttons	on	the
BindingNavigator	to	move	through	the	records.	You	can	use	the	display	controls
(TextBoxes	in	Figure	34.8)	to	change	a	record's	values.

To	build	this	interface,	first	create	a	data	source	as	before.	Then,	instead	of
dragging	a	table	from	the	Data	Sources	window	onto	the	form,	drag	individual
fields	onto	the	form.	For	each	field,	Visual	Studio	adds	a	Label	and	an	appropriate
display	control	(such	as	a	TextBox)	to	the	form.

This	version	of	the	interface	does	most	of	the	things	the	grid-based	version	does
but	in	different	ways.	For	example,	to	create	a	new	record	you	can't	simply	type
values	into	a	new	row	in	a	grid.	Instead	you	need	to	click	the	BindingNavigator's
Add	New	button	(which	appropriately	looks	like	a	plus	sign).

As	in	the	grid-style	example,	the	code	created	by	Visual	Studio	doesn't	check	for
unsaved	changes	before	the	form	closes.	You	can	solve	this	problem	by	adding	a
FormClosing	event	handler	to	check	for	unsaved	changes	as	before.

This	version	of	the	program	works	a	little	differently	than	the	previous	grid-style
version,	however.	The	DataGridView	control	used	by	the	previous	program
automatically	marks	the	data	as	modified	when	the	user	starts	changing	a	value.
In	contrast,	the	new	program	marks	the	data	as	modified	only	when	the	user
changes	a	value	and	then	moves	to	a	new	record.	That	means	if	the	user	changes	a
value	and	then	tries	to	close	the	form	without	moving	to	a	new	record,	the
program	doesn't	know	there	is	an	unsaved	change	and	closes.

To	prevent	that,	you	can	add	the	following	two	lines	to	the	beginning	of	the
FormClosing	event	handler:

this.Validate();

this.contactsBindingSource.EndEdit();

These	lines	make	the	program	officially	finish	editing	any	fields	that	the	user	is

modifying	so	the	data	set	knows	that	it	has	a	pending	change.	After	that,	the
FormClosing	event	handler	works	exactly	as	before.

Try	It
In	this	Try	It,	you	have	a	chance	to	practice	the	techniques	described	in	this
lesson.	You	create	an	application	that	displays	contact	information	in	a	grid.

Lesson	Requirements
In	this	lesson,	you:

Start	a	new	project.	Download	the	Contacts.mdb	database	from	the	book's
website	and	place	it	in	the	project	directory.

Add	a	new	data	source	for	this	database.

Open	the	Data	Sources	window	and	drag	the	Contacts	table	onto	the	form.

Add	code	to	the	FormClosing	event	handler	to	check	for	unsaved	changes.

NOTE

You	can	download	the	code	and	resources	for	this	lesson	from	the	website	at
www.wrox.com/go/csharp24hourtrainer2e.

Hints
Dock	the	DataGridView	control	so	it	fills	the	form.

Resize	the	form	so	all	fields	are	visible.	Add	a	little	extra	width	for	a	vertical
scrollbar	on	the	right.

Don't	forget	to	set	the	database	file's	Copy	to	Output	Directory	property	to
Copy	if	newer.

Step-by-Step
Start	a	new	project.	Download	the	Contacts.mdb	database	from	the	book's
website	and	place	it	in	the	project	directory.

1.	 This	is	straightforward.

Add	a	new	data	source	for	this	database.

1.	 Follow	the	steps	described	earlier	in	this	lesson.

Open	the	Data	Sources	window	and	drag	the	Contacts	table	onto	the	form.

1.	 This	is	straightforward.

Add	code	to	the	FormClosing	event	handler	to	check	for	unsaved	changes.

1.	 Use	the	code	shown	earlier	in	this	lesson.

http://www.wrox.com/go/csharp24hourtrainer2e

Exercises
1.	 Make	a	program	similar	to	the	one	you	built	for	the	Try	It	except	make	it
display	one	record	at	a	time	instead	of	use	a	grid.	Anchor	the	TextBoxes	so	they
widen	if	the	form	widens.	Don't	forget	to	add	the	FormClosing	event	handler.

2.	 Copy	the	program	you	built	for	this	lesson's	Try	It.	That	program's	grid	lets	the
user	navigate	through	the	records,	add	records,	and	delete	records,	so	you
don't	really	need	all	of	those	buttons	on	the	BindingNavigator.	Select	the
BindingNavigator.	In	the	Properties	window,	click	the	Items	property	and	click
the	ellipsis	to	the	right.	Set	the	Visible	property	to	false	for	every	item	except
the	Position,	Count,	and	Save	items.

3.	 Copy	the	program	you	built	for	Exercise	1.	Add	a	MenuStrip	with	a	Data	menu
that	has	items	First,	Previous,	Next,	Last,	Add	New,	Delete,	and	Save.	Set	the
Visible	property	on	the	corresponding	BindingNavigator	buttons	to	false.

To	make	the	menu	items	work,	use	the	BindingSource's	CurrencyManager.	That
object's	properties	and	methods	let	you	manipulate	the	current	record	(hence
the	name	CurrencyManager).	For	example,	the	following	code	sets	the	current
position	to	the	first	record:

this.contactsBindingSource.CurrencyManager.Position	=	0;

Add	or	subtract	one	from	Position	to	move	to	the	next	or	previous	record.	Set
Position	to	the	CurrencyManager's	List.Count	-	1	value	to	move	to	the	end	of
the	list.

Use	the	RemoveAt	method	to	delete	the	current	record.

Finally,	enter	the	necessary	code	for	the	Save	menu	item.

4.	 [WPF]	You	can	use	the	techniques	described	in	this	lesson	to	make	simple
database	applications	in	WPF,	too.	The	results	are	similar,	but	some
differences	exist.	In	particular	Visual	Studio	doesn't	place	a	BindingNavigator
on	the	WPF	Window.	The	program	also	includes	data	set	and	table	adapter
objects,	but	they're	hidden	inside	the	code.

For	this	exercise,	repeat	the	Try	It	with	a	WPF	application.	After	you	create	the
database	connection,	run	the	program	to	let	it	build	some	data	structures	that
it	needs.	Then	drag	the	Contacts	table	onto	the	Window	and	arrange	it	as	before.

Because	Visual	Studio	doesn't	create	a	BindingNavigator,	add	a	File	menu	with
a	Save	item	that	uses	the	following	code	to	save	changes	to	the	data:

private	void	saveMenuItem_Click(object	sender,	RoutedEventArgs	e)

{

				//	Save	the	changes.

				ContactsDataSet	contactsDataSet	=

								(ContactsDataSet)this.FindResource("contactsDataSet");

				ContactsDataSetTableAdapters.ContactsTableAdapter

								contactsDataSetContactsTableAdapter	=

								new	ContactsDataSetTableAdapters.ContactsTableAdapter();

				contactsDataSetContactsTableAdapter.Update(contactsDataSet);

}

Use	the	following	Window	Closing	event	handler	to	protect	the	user	from	losing
changes	when	the	program	closes:

private	void	Window_Closing(object	sender,

				System.ComponentModel.CancelEventArgs	e)

{

				ContactsDataSet	contactsDataSet	=

								(ContactsDataSet)this.FindResource("contactsDataSet");

				//	See	if	there	are	unsaved	changes.

				if	(contactsDataSet.HasChanges())

				{

								//	Make	the	user	confirm.

								MessageBoxResult	result	=	MessageBox.Show(

												"Do	you	want	to	save	changes	before	closing?",

												"Save	Changes?",	MessageBoxButton.YesNoCancel,

												MessageBoxImage.Question);

								if	(result	==	MessageBoxResult.Cancel)

								{

												//	Cancel	the	close.

												e.Cancel	=	true;

								}

								else	if	(result	==	MessageBoxResult.Yes)

								{

												//	Save	the	changes.

												ContactsDataSetTableAdapters.ContactsTableAdapter

																contactsDataSetContactsTableAdapter	=

																new	ContactsDataSetTableAdapters.ContactsTableAdapter();

												contactsDataSetContactsTableAdapter.Update(contactsDataSet);

												//	Make	sure	the	save	worked.

												//	If	we	still	have	unsaved	changes,	cancel.

												e.Cancel	=	(contactsDataSet.HasChanges());

								}

								//	Else	the	user	doesn't	want	to	save

								//	the	changes	so	just	keep	going.

				}

}

This	code	is	similar	to	the	version	used	by	the	Windows	Forms	application
except	it's	more	work	getting	the	data	set	and	table	adapter.

5.	 [WPF]	Repeat	Exercise	1	for	a	WPF	application.	As	in	Exercise	4,	after	you
create	the	database	connection,	run	the	program	to	let	it	build	some	data
structures	that	it	needs.	Then	drag	the	Contacts	table	fields	onto	the	Window
and	align	the	Labels	and	TextBoxes.

Add	the	Window's	Closing	event	handler	as	in	Exercise	4	but	don't	worry	about
adding	Previous,	Next,	Save,	and	other	commands.	You'll	do	that	in	later
exercises.

Run	the	program	and	verify	that	you	can	see	the	first	record	in	the	data	set	and

that	you	can	save	changes	to	it.	(Hint:	Don't	forget	to	set	the	database's	Copy	to
Output	Directory	property.)

6.	 [WPF,	Hard]	In	Exercise	5,	Visual	Studio	put	the	Label	and	TextBox	for	each
database	field	inside	a	separate	Grid	control.	Those	Grids	sit	inside	the	main
Grid	control.	That	works,	but	it	makes	it	hard	to	rearrange	the	controls.	For
example,	each	TextBox's	width	is	explicitly	set	to	120.

To	make	the	program	more	flexible,	copy	the	program	you	built	for	Exercise	5
and	give	the	main	Grid	control	nine	rows	with	heights	Auto	and	two	columns
with	widths	Auto	and	*.	Add	the	following	property	to	the	Grid:

DataContext="{StaticResource	contactsViewSource}"

The	DataContext	property	tells	the	controls	inside	the	Grid	where	they	should
look	for	data.

Next	give	the	main	Grid	a	resource	dictionary	containing	two	Styles	that	set
the	properties	for	Labels	and	TextBoxes.	Make	the	Styles	set	all	of	the	property
values	shared	by	the	automatically	created	controls	except	set	the	TextBox
HorizontalAlignment	property	to	Stretch	and	omit	the	TextBox	Width	property.

Now	when	you	run	the	program,	the	TextBoxes	should	resize	to	use	the
available	width.

7.	 [WPF,	Hard]	Copy	the	program	you	wrote	for	Exercise	6	and	add	navigation
buttons.	To	do	that,	make	the	Window's	main	control	be	a	DockPanel.	Dock	a
ToolBar	to	the	top	and	dock	the	previous	Grid	control	below	that.

Give	the	ToolBar	the	buttons	First,	Previous,	Next,	Last,	Add,	Delete,	and	Save.

To	make	managing	the	data	easier,	use	the	following	code	to	make	class-level
variables	to	hold	the	data	set,	the	table	adapter,	and	the	view	source:

private	ContactsDataSet	DataSet;

private	ContactsDataSetTableAdapters.ContactsTableAdapter	TableAdapter;

private	CollectionViewSource	ViewSource;

Modify	the	Window_Loaded	event	handler	so	it	initializes	and	uses	the	class-level
variables.	Also	modify	the	Window_Closing	event	handler	so	it	uses	the
variables.

Next	give	the	buttons	the	following	code:

private	void	firstButton_Click(object	sender,	RoutedEventArgs	e)

{

				ViewSource.View.MoveCurrentToFirst();

}

private	void	previousButton_Click(object	sender,	RoutedEventArgs	e)

{

				ViewSource.View.MoveCurrentToPrevious();

}

private	void	nextButton_Click(object	sender,	RoutedEventArgs	e)

{

				ViewSource.View.MoveCurrentToNext();

}

private	void	lastButton_Click(object	sender,	RoutedEventArgs	e)

{

				ViewSource.View.MoveCurrentToLast();

}

private	void	addButton_Click(object	sender,	RoutedEventArgs	e)

{

				ContactsDataSet.ContactsRow	row	=

								DataSet.Contacts.NewContactsRow();

				row.FirstName	=	"<missing>";

				row.LastName	=	"<missing>";

				DataSet.Contacts.AddContactsRow(row);

				ViewSource.View.MoveCurrentToLast();

}

private	void	deleteButton_Click(object	sender,	RoutedEventArgs	e)

{

				int	rownum	=	ViewSource.View.CurrentPosition;

				DataSet.Contacts.Rows[rownum].Delete();

}

private	void	saveButton_Click(object	sender,	RoutedEventArgs	e)

{

				TableAdapter.Update(DataSet);

}

8.	 [WPF]	Copy	the	program	you	wrote	for	Exercise	7	and	add	a	Label	at	the
bottom	of	the	form	that	displays	the	current	record's	number	as	in	“Record	7	of
12.”	Update	the	position	when	the	program	starts	and	when	the
ViewSource.View	object	receives	a	CurrentChanged	event.

9.	 [WPF]	The	MoveCurrentToPrevious	and	MoveCurrentToNext	methods	can	move
the	current	record	beyond	the	beginning	or	end	of	the	data	set.	In	that	case,	the
bound	TextBoxes	are	blank	and	the	user	is	probably	confused.	Fortunately
those	methods	return	true	if	they	successfully	move	to	a	new	record	and	false
if	they	fall	off	the	data	set.

Copy	the	program	you	wrote	for	Exercise	8	and	modify	the	code	to	check	the
values	returned	by	MoveCurrentToPrevious	and	MoveCurrentToNext.	If	they
return	false,	move	to	the	first	or	last	record.

10.	 [WPF]	Copy	the	program	you	wrote	for	Exercise	9	and	make	the	ToolBar
Buttons	display	appropriate	images.

11.	 [WPF]	Copy	the	program	you	wrote	for	Exercise	10	and	enable	and	disable	the
ToolBar	Buttons	when	appropriate.	Hints:

To	enable	a	Button,	set	IsEnabled	=	true	and	Opacity	=	1.

To	disable	a	Button,	set	IsEnabled	=	false	and	Opacity	=	0.5.

Make	the	existing	CurrentChanged	event	handler	enable	and	disable	the
movement	Buttons	as	appropriate.

Catch	the	DataSet.Contacts.RowChanged	event	and	enable	the	Save	Button
when	a	record	is	modified	by	the	user.

NOTE

Please	select	the	videos	for	Lesson	34	online	at
www.wrox.com/go/csharp24hourtrainer2evideos.

http://www.wrox.com/go/csharp24hourtrainer2evideos

Lesson	35

Programming	Databases,	Part	2
The	simple	programs	described	in	the	previous	lesson	are	hardly	commercial-
caliber	database	applications,	but	they	do	let	you	perform	basic	database
operations	with	amazingly	little	code.

In	this	lesson,	you	learn	how	to	add	a	few	new	features	to	the	programs	described
in	Lesson	34.	You	learn	how	to	add	searching,	filtering,	and	sorting	to	the
programs	to	make	finding	data	easier.

Searching
In	a	large	database,	it	can	be	hard	to	locate	a	particular	value.	A	program	can
make	finding	records	easier	by	using	the	BindingContext's	Find	method.	This
method	takes	as	parameters	the	name	of	a	field	to	search	and	the	value	that	it
should	find.	It	returns	the	index	of	the	first	record	that	has	the	desired	value.

For	example,	the	following	code	searches	the	data	in	the	BindingSource	named
contactsBindingSource	for	a	record	with	FirstName	value	equal	to	Kim:

int	recordNumber	=	contactsBindingSource.Find("FirstName",	"Kim");

Having	found	the	index	of	the	target	record,	you	can	then	highlight	it	in	some	way
for	the	user	to	see.	For	example,	recall	that	a	BindingSource's	CurrencyManager
controls	the	current	position	within	the	data.	The	following	code	makes	the
current	record	be	the	record	found	by	Find	so	any	controls	displaying	the	data	will
show	this	record:

contactsBindingSource.CurrencyManager.Position	=	recordNumber;

WARNING

Find	returns	–1	if	it	cannot	find	the	target	string.	Be	careful	not	to	try	to	do
anything	explicitly	with	record	number	–1	or	your	program	may	crash.	That
means	the	previous	line	of	code	should	really	be

if	(recordNumber	!=	-1)

				contactsBindingSource.CurrencyManager.Position	=	recordNumber;

If	the	program	is	displaying	data	in	a	grid,	focus	moves	to	the	found	record's	row.
If	the	program	is	displaying	data	in	field	controls,	those	controls	now	show	the
found	record's	data.

Filtering
The	Find	method	is	somewhat	restrictive.	It	only	searches	for	exact	matches	in	a
single	field	and	only	returns	the	index	of	the	first	record	that	matches.	Often	you
might	prefer	more	flexibility	such	as	searches	that	can	check	conditions	(Age	>	=
21),	look	for	partial	matches	(LastName	begins	with	S),	and	combine	multiple	tests
(State	is	VA	or	DC).	It	might	also	be	nice	to	see	all	of	the	records	that	meet	a
condition	instead	of	just	the	first	record.

Filters	let	you	perform	these	kinds	of	searches.	A	filter	tests	each	record	in	a
BindingSource's	data	and	selects	those	that	satisfy	the	test.	Any	display	controls
attached	to	the	BindingSource	show	only	the	selected	records.

To	use	a	filter,	set	the	BindingSource's	Filter	property	to	a	string	describing	the
records	that	you	want	to	select.	The	filter	compares	each	record's	fields	to	values
and	selects	the	records	that	match.	For	example,	the	clause	State='FL'	selects
records	where	the	State	field	has	the	value	FL.

String	values	should	be	delimited	with	single	or	double	quotes.	(Single	quotes	are
generally	easier	to	type	into	a	string	that	is	itself	delimited	by	double	quotes.)
Numeric	values	should	not	have	delimiters.

Table	35.1	lists	the	operators	that	you	can	use	to	compare	fields	to	values.

Table	35.1

Operator Purpose

= Equal	to

<> Not	equal	to

< Less	than

> Greater	than

<= Less	than	or	equal	to

>= Greater	than	or	equal	to

LIKE Matches	a	pattern

IN Is	in	a	list	of	values

The	LIKE	operator	performs	pattern	matching.	Use	*	or	%	as	a	wildcard	that
matches	zero	or	more	characters.

You	can	use	the	AND,	OR,	and	NOT	logical	operators	to	combine	the	results	of
multiple	comparisons.	Use	parentheses	to	determine	the	evaluation	order	if
necessary.

Table	35.2	lists	some	example	filters.

Table	35.2

Filter Selects

LastName	=	'Johnson' Records	where	LastName	is	Johnson

FirstName	=	'Ann'	OR

FirstName	=	'Anne'

Records	where	FirstName	is	Ann	or	Anne

FirstName	LIKE	'Pam%' Records	where	FirstName	begins	with	Pam

State

IN('NY','NC','NJ')

Records	where	State	is	NY,	NC,	or	NJ

(Balance	<	-50)	OR

((Balance	<	0)	AND

(DaysOverdue	>	30))

Records	where	the	account	is	overdrawn	by	more	than
$50	or	where	the	account	has	been	overdrawn	by	any
amount	for	more	than	30	days

You	can	use	the	BindingSource's	RemoveFilter	method	to	remove	the	filter	and
display	all	of	the	records	again.

Sorting
If	you	display	data	in	a	DataGridView,	you	can	click	a	column's	header	to	sort	the
records	based	on	the	values	in	that	column.	Clicking	again	reverses	the	sort	order.
Sorting	doesn't	get	much	easier	than	that.

If	you're	displaying	the	data	in	fields	rather	than	a	grid,	however,	you	don't	get
automatic	sorting.	Fortunately,	you	can	make	a	BindingSource	sort	simply	by
setting	its	Sort	property	to	the	name	of	the	field	on	which	you	want	to	sort.	Use	its
RemoveSort	method	to	cancel	the	sort	and	display	the	records	in	their	original
order.

Try	It
In	this	Try	It,	you	add	filtering	to	a	program	that	displays	records	in	a	grid.	You	let
the	user	enter	a	filter	and	you	make	the	program	display	only	records	that	match
the	filter.

Lesson	Requirements
In	this	lesson,	you:

Copy	the	program	you	built	for	the	Try	It	in	Lesson	34	(or	download	Lesson
34's	version	from	the	book's	website).

Add	a	ToolStrip	containing	a	TextBox	and	a	Button.

When	the	user	clicks	the	Button,	apply	the	filter	entered	in	the	TextBox.

NOTE

You	can	download	the	code	and	resources	for	this	lesson	from	the	website	at
www.wrox.com/go/csharp24hourtrainer2e.

Hints
Be	sure	to	protect	the	program	in	case	the	user	enters	an	invalid	filter.

Step-by-Step
Copy	the	program	you	built	for	the	Try	It	in	Lesson	34	(or	download	Lesson
34's	version	from	the	book's	website).

1.	 This	is	straightforward.

Add	a	ToolStrip	containing	a	TextBox	and	a	Button.

1.	 This	is	straightforward.

When	the	user	clicks	the	Button,	apply	the	filter	entered	in	the	TextBox.

1.	 Use	code	similar	to	the	following:

//	Apply	the	filter.

private	void	filterButton_Click(object	sender,	EventArgs	e)

{

				string	filter	=	filterTextBox.Text.Trim();

				if	(filter.Length	==	0)

				{

								//	No	filter.

								contactsBindingSource.RemoveFilter();

				}

				else

				{

								//	Add	the	filter.

								try

								{

												contactsBindingSource.Filter	=	filter;

								}

								catch	(Exception	ex)

								{

												MessageBox.Show(ex.Message);

								}

				}

}

http://www.wrox.com/go/csharp24hourtrainer2e

Exercises
1.	 Copy	the	program	you	built	for	the	Try	It	and	replace	the	ToolBar's	TextBox	and

Button	with	a	“State:”	Label	and	a	ComboBox.	Make	the	ComboBox	list	the	state
abbreviations	present	in	the	database	(just	hard-code	them)	plus	a	blank
choice.	When	the	user	selects	a	value,	use	the	selected	state	to	filter	the	data.

2.	 Copy	the	program	you	built	for	Exercise	34-1	and	add	RadioButtons	to	the	right
of	the	TextBoxes,	as	shown	in	Figure	35.1.	When	the	user	clicks	a	RadioButton,
make	the	program	sort	its	data	using	the	corresponding	field.

Figure	35.1

(Hint:	Set	each	RadioButton's	Tag	property	to	the	name	of	the	field	it
represents.)

3.	 Copy	the	program	you	built	for	Exercise	1.	Add	a	“First	Name:”	Label	and	a
TextBox	to	the	ToolBar.	When	the	user	enters	a	name,	find	and	highlight	the
first	record	with	that	FirstName	value.

(Hint:	If	the	user	selects	a	new	State	filter,	the	program	must	find	the	name
again.)

4.	 [Hard]	Copy	the	program	you	built	for	Exercise	3	and	make	the	program	load
the	States	ComboBox's	items	from	the	database	when	it	starts.	Hints:

Set	the	ComboBox's	Sorted	property	to	true.

Create	a	class-level	variable	List<string>	named	States	to	keep	track	of	the
states	in	the	database.

Use	the	following	code	to	initialize	the	list	and	make	the	ComboBox	use	it:

//	See	what	State	values	are	in	the	data.

States	=	new	List<string>();

States.Add("");

foreach	(DataRow	row	in	contactsDataSet.Contacts.Rows)

{

				string	state	=	row.Field<string>("State");

				if	(!States.Contains(state))	States.Add(state);

}

//	Load	the	stateComboBox's	items.

stateComboBox.ComboBox.DataSource	=	States;

5.	 Copy	the	program	you	built	for	Exercise	2	and	add	a	Filter	feature	similar	to
the	one	you	added	for	this	lesson's	Try	It.

6.	 Copy	the	program	you	built	for	Exercise	2	and	add	a	Filter	by	State	feature
similar	to	the	one	you	added	for	Exercise	1.

7.	 [WPF,	Hard]	Naturally	filtering	records	is	more	difficult	in	WPF	than	it	is	in
Windows	Forms.	Copy	the	program	you	wrote	for	Exercise	4	and	add	a
ToolBar,	“State:”	Label,	and	ComboBox	much	as	you	did	for	Exercise	1.	(You	may
want	to	rearrange	the	program's	controls	to	use	a	DockPanel.)	Use	the	following
code	to	filter	the	data:

//	Filter	with	the	selected	state.

private	void	stateComboBox_SelectionChanged(object	sender,

				SelectionChangedEventArgs	e)

{

				//	Get	the	dataset.

				ContactsDataSet	contactsDataSet	=

								(ContactsDataSet)this.FindResource("contactsDataSet");

				//	Get	the	selected	state.

				ComboBoxItem	item	=	stateComboBox.SelectedItem	as	ComboBoxItem;

				string	state	=	item.Content.ToString();

				Console.WriteLine("Filtering	by	state	"	+	state);

				//	Set	the	filter.

				CollectionViewSource	contactsViewSource	=

								(CollectionViewSource)FindResource("contactsViewSource");

				BindingListCollectionView	view	=

								(BindingListCollectionView)contactsViewSource.View;

				if	(state.Length	==	0)	view.CustomFilter	=	"";

				else	view.CustomFilter	=	"State	=	'"	+	state	+	"'";

}

8.	 [WPF,	Hard]	Copy	the	program	you	built	for	Exercise	34-11	and	add	a	“State:”
Label	and	a	ComboBox	as	you	did	in	Exercise	7.	You'll	also	need	to	make	two
additional	changes.

First,	after	you	change	the	filter,	you	need	to	update	the	position	label.

Second,	you	need	to	change	the	way	you	display	the	current	record's	position
so	it	uses	the	selected	records	and	not	the	entire	data	table.	Modify	the
ShowPosition	method	so	it	uses	the	following	code	to	determine	the	number	of
records	selected:

//	Get	the	number	of	records	selected.

CollectionViewSource	contactsViewSource	=

				(CollectionViewSource)FindResource("contactsViewSource");

BindingListCollectionView	view	=

				(BindingListCollectionView)contactsViewSource.View;

int	numselected	=	view.Count;

NOTE

Please	select	the	videos	for	Lesson	35	online	at
www.wrox.com/go/csharp24hourtrainer2evideos.

http://www.wrox.com/go/csharp24hourtrainer2evideos

Lesson	36

LINQ	to	Objects
Lessons	34	and	35	explain	how	you	can	use	Visual	Studio's	wizards	to	build	simple
database	programs.	They	show	one	of	many	ways	to	connect	a	program	to	a	data
source.

Language-Integrated	Query	(LINQ)	provides	another	method	for	bridging	the
gap	between	a	program	and	data.	Instead	of	simply	providing	another	way	to
access	data	in	a	database,	however,	LINQ	can	help	a	program	access	data	stored	in
many	places.	LINQ	lets	a	program	use	the	same	techniques	to	access	data	stored
in	databases,	arrays,	collections,	or	files.

LINQ	provides	four	basic	technologies	that	give	you	access	to	data	stored	in
various	places:

LINQ	to	SQL—Data	stored	in	SQL	Server	databases

LINQ	to	Dataset—Data	stored	in	other	databases

LINQ	to	XML—Data	stored	in	XML	(eXtensible	Markup	Language)	files

LINQ	to	Objects—Data	stored	in	collections,	lists,	arrays,	strings,	files,	and
so	forth

In	this	lesson	you	learn	how	to	use	LINQ	to	Objects.	You	learn	how	to	extract	data
from	lists,	collections,	and	arrays	and	how	to	process	the	results.

LINQ	Basics
Using	LINQ	to	process	data	takes	three	steps:

1.	 Create	a	data	source.

2.	 Build	a	LINQ	query	to	select	data	from	the	data	source.

3.	 Execute	the	query	and	process	the	result.

You	might	expect	the	third	step	to	be	two	separate	steps,	“Execute	the	query”	and
“Process	the	result.”	In	practice,	however,	LINQ	doesn't	actually	execute	the	query
until	it	must—when	the	program	tries	to	access	the	results.	This	is	called	deferred
execution.

For	example,	the	following	code	displays	the	even	numbers	between	0	and	99:

//	Display	the	even	numbers	between	0	and	99.

private	void	Form1_Load(object	sender,	EventArgs	e)

{

				//	1.	Create	the	data	source.

				int[]	numbers	=	new	int[100];

				for	(int	i	=	0;	i	<	100;	i++)	numbers[i]	=	i;

				//	2.	Build	a	query	to	select	data	from	the	data	source.

				var	evenQuery	=

								from	int	num	in	numbers

								where	(num	%	2	==	0)

								select	num;

				//	3.	Execute	the	query	and	process	the	result.

				foreach	(int	num	in	evenQuery)	Console.WriteLine(num.ToString());

}

The	program	starts	by	creating	the	data	source:	an	array	containing	the	numbers
0	through	99.	In	this	example	the	data	source	is	quite	simple,	but	in	other
programs	it	could	be	much	more	complex.	Instead	of	an	array	of	numbers,	it	could
be	a	list	of	Customer	objects	or	an	array	of	Order	objects	that	contain	lists	of
OrderItem	objects.

Next	the	program	builds	a	query	to	select	the	even	numbers	from	the	list.	I	explain
queries	in	more	detail	later,	but	the	following	list	describes	the	key	pieces	of	this
query:

var—This	is	the	data	type	of	whatever	is	returned	by	the	query.	In	this	example
the	result	will	be	an	IEnumerable<int>	but	in	general	the	results	of	LINQ
queries	can	have	some	very	strange	data	types.	Rather	than	trying	to	figure	out
what	a	query	will	return,	most	developers	use	the	implicit	data	type	var.	The
var	keyword	tells	the	C#	compiler	to	figure	out	what	the	data	type	is	and	use
that	so	you	don't	need	to	use	a	specific	data	type.

evenQuery—This	is	the	name	the	code	is	giving	to	the	query.	You	can	think	of	it
as	a	variable	that	represents	the	result	that	LINQ	will	later	produce.

from	int	num	in	numbers—This	means	the	query	will	select	data	from	the

numbers	array.	It	will	use	the	int	variable	num	to	range	over	the	values	in	the
array.	Because	num	ranges	over	the	values,	it	is	called	the	query's	range
variable.	(If	you	omit	the	int	data	type,	the	compiler	will	implicitly	figure	out
its	data	type.)

where	(num	%	2	==	0)—This	is	the	query's	where	clause.	It	determines	which
items	are	selected	from	the	array.	This	example	selects	the	even	numbers
(where	num	mod	2	is	0).

select	num—This	tells	the	query	what	to	return.	In	this	case	the	query	returns
whatever	is	in	the	range	variable	num	for	the	values	that	are	selected.	Often	you
will	want	to	return	the	value	of	the	range	variable	but	you	could	return
something	else	such	as	2	*	num	or	a	new	object	created	with	a	constructor	that
takes	num	as	a	parameter.

NOTE

I	don't	recommend	using	var	for	variables	in	general	if	you	can	figure	out	a
more	specific	data	type.	When	you	use	var,	you	can't	be	sure	what	data	type
the	compiler	will	use.	That	can	lead	to	confusion	if	the	compiler	picks
different	data	types	for	variables	that	must	later	work	together.

For	example,	in	the	following	code	the	third	statement	is	allowed	because
you	can	store	an	int	value	in	a	double	but	the	fourth	statement	is	not	allowed
because	a	double	may	not	fit	in	an	int:

var	x	=	1.2;				//	double.

var	y	=	1;						//	int.

x	=	y;										//	Allowed.

y	=	x;										//	Not	allowed.

If	you	do	know	the	data	type,	just	use	that	instead	of	var.

In	the	final	step	to	performing	the	query,	the	code	loops	through	the	result
produced	by	LINQ.	The	code	displays	each	int	value	in	the	Console	window.	It's
only	when	the	program	tries	to	iterate	over	the	results	of	the	query	that	the	query
is	actually	executed.

The	following	sections	provide	more	detailed	descriptions	of	some	of	the	key
pieces	of	a	LINQ	query:	where	clauses,	order	by	clauses,	and	select	clauses.

where	Clauses
Probably	the	most	common	reason	to	use	LINQ	is	to	filter	the	data	with	a	where
clause.	The	where	clause	can	include	normal	boolean	expressions	that	use	&&,	||,	>,
and	other	boolean	operators.	It	can	use	the	range	variable	and	any	properties	or
methods	that	it	provides	(if	it's	an	object).	It	can	even	perform	calculations	and
invoke	functions.

NOTE

The	where	clause	is	optional.	If	you	omit	it,	the	query	selects	all	of	the	items	in
its	range.

For	example,	the	following	query	is	similar	to	the	earlier	one	that	selects	even
numbers,	except	this	one's	where	clause	uses	the	IsPrime	method	to	select	only
prime	numbers.	(How	the	IsPrime	function	works	isn't	important	to	this
discussion,	so	it	isn't	shown	here.	You	can	see	it	in	the	Find	Primes	program	in
this	lesson's	download.)

var	primeQuery	=

				from	int	num	in	numbers

				where	(IsPrime(num))

				select	num;

The	Find	Customers	example	program	shown	in	Figure	36.1	(and	available	in	this
lesson's	code	download	on	the	website)	demonstrates	several	where	clauses.

Figure	36.1

The	following	code	shows	the	Customer	class	used	by	the	Find	Customers	program.
It	includes	some	auto-implemented	properties	and	an	overridden	ToString
method	that	displays	the	Customer's	values:

class	Customer

{

				public	string	FirstName	{	get;	set;	}

				public	string	LastName	{	get;	set;	}

				public	decimal	Balance	{	get;	set;	}

				public	DateTime	DueDate	{	get;	set;	}

				public	override	string	ToString()

				{

								return	FirstName	+	"	"	+	LastName	+	"\t"	+

												Balance.ToString("C")	+	"\t"	+	DueDate.ToString("d");

				}

}

The	following	code	shows	how	the	Find	Customers	program	displays	the	same
customer	data	selected	with	different	where	clauses:

//	Display	customers	selected	in	various	ways.

private	void	Form1_Load(object	sender,	EventArgs	e)

{

				DateTime	today	=	new	DateTime(2020,	4,	1);

				//DateTime	today	=	DateTime.Today;

				this.Text	=	"Find	Customers	("	+	today.ToString("d")	+	")";

				//	Make	the	customers.

				Customer[]	customers	=

				{

								new	Customer()	{	FirstName="Ann",	LastName="Ashler",

												Balance	=	100,	DueDate	=	new	DateTime(2020,	3,	10)},

								new	Customer()	{	FirstName="Bob",	LastName="Boggart",

												Balance	=	150,	DueDate	=	new	DateTime(2020,	2,	5)},

								//	…	Other	Customers	omitted	…

				};

				//	Display	all	customers.

				allListBox.DataSource	=	customers;

				//	Display	customers	with	negative	balances.

				var	negativeQuery	=

								from	Customer	cust	in	customers

								where	cust.Balance	<	0

								select	cust;

				negativeListBox.DataSource	=	negativeQuery.ToArray();

				//	Display	customers	who	owe	at	least	$50.

				var	owes50Query	=

								from	Customer	cust	in	customers

								where	cust.Balance	<=	-50

								select	cust;

				owes50listBox.DataSource	=	owes50Query.ToArray();

				//	Display	customers	who	owe	at	least	$50

				//	and	are	overdue	at	least	30	days.

				var	overdueQuery	=

								from	Customer	cust	in	customers

								where	(cust.Balance	<=	-50)	&&

														(DateTime.Now.Subtract(cust.DueDate).TotalDays	>	30)

								select	cust;

				overdueListBox.DataSource	=	overdueQuery.ToArray();

}

The	program	starts	by	creating	a	DateTime	named	today	and	setting	it	equal	to
April	1,	2020.	In	a	real	application	you	would	probably	use	the	current	date
(commented	out),	but	this	program	uses	that	specific	date	so	it	works	well	with
the	sample	data.	The	program	then	displays	the	date	in	its	title	bar	(so	you	can
compare	it	to	the	Customers'	due	dates)	and	creates	an	array	of	Customer	objects.

Next	the	code	sets	the	allListBox	control's	DataSource	property	to	the	array	so
that	ListBox	displays	all	of	the	Customer	objects.	The	Customer	class's	overridden
ToString	method	makes	it	display	each	Customer's	name,	balance,	and	due	date.

The	program	then	executes	the	following	LINQ	query:

//	Display	customers	with	negative	balances.

var	negativeQuery	=

				from	Customer	cust	in	customers

				where	cust.Balance	<	0

				select	cust;

negativeListBox.DataSource	=	negativeQuery.ToArray();

This	query's	where	clause	selects	Customers	with	Balance	properties	less	than	0.
The	query	returns	an	IEnumerable,	but	a	ListBox's	DataSource	property	requires	an
IList	or	IListSource	and	IEnumerable	doesn't	satisfy	either	of	those	interfaces.	To
handle	that	problem,	the	program	calls	the	result's	ToArray	method	to	convert	it
into	an	array	that	the	DataSource	property	can	handle.

After	displaying	this	result,	the	program	executes	two	other	LINQ	queries	and
displays	their	results	similarly.	The	first	query	selects	Customers	who	owe	at	least
$50.	The	final	query	selects	Customers	who	owe	at	least	$50	and	who	have	a
DueDate	more	than	30	days	in	the	past.

Order	By	Clauses
Often	the	result	of	a	query	is	easier	to	read	if	you	sort	the	selected	values.	You	can
do	this	by	inserting	an	order	by	clause	between	the	where	clause	and	the	select
clause.

The	order	by	clause	begins	with	the	keyword	orderby	followed	by	one	or	more
values	separated	by	commas	that	determine	how	the	results	are	ordered.

Optionally	you	can	follow	a	value	by	the	keyword	ascending	(the	default)	or
descending	to	determine	whether	the	results	are	ordered	in	ascending	(1-2-3	or	A-
B-C)	or	descending	(3-2-1	or	C-B-A)	order.

For	example,	the	following	query	selects	Customers	with	negative	balances	and
orders	them	so	those	with	the	smallest	(most	negative)	values	come	first:

var	negativeQuery	=

				from	Customer	cust	in	customers

				where	cust.Balance	<	0

				orderby	cust.Balance	ascending

				select	cust;

The	following	version	orders	the	results	first	by	balance	and	then,	if	two	customers
have	the	same	balance,	by	last	name:

var	negativeQuery	=

				from	Customer	cust	in	customers

				where	cust.Balance	<	0

				orderby	cust.Balance,	cust.LastName

				select	cust;

Select	Clauses
The	select	clause	determines	what	data	is	pulled	from	the	data	source	and	stored
in	the	result.	All	of	the	previous	examples	select	the	data	over	which	they	are
ranging.	For	example,	the	Find	Customers	example	program	ranges	over	an	array
of	Customer	objects	and	selects	certain	Customer	objects.

Instead	of	selecting	the	objects	in	the	query's	range,	a	program	can	select	only
some	properties	of	those	objects,	a	result	calculated	from	those	properties,	or	even
completely	new	objects.	Selecting	a	new	kind	of	data	from	the	existing	data	is
called	transforming	or	projecting	the	data.

The	Find	Students	example	program	shown	in	Figure	36.2	(and	available	in	this
lesson's	code	download	on	the	website)	uses	the	following	simple	Student	class:

class	Student

{

				public	string	FirstName	{	get;	set;	}

				public	string	LastName	{	get;	set;	}

				public	List<int>	TestScores	{	get;	set;	}

}

Figure	36.2

The	program	uses	the	following	query	to	select	all	of	the	students'	names	and	test
averages	ordered	by	name:

//	Select	all	students	and	their	test	averages	ordered	by	name.

var	allStudents	=

				from	Student	student	in	students

				orderby	student.LastName,	student.FirstName

				select	String.Format("{0}	{1}\t{2:0.00}",

								student.FirstName,	student.LastName,

								student.TestScores.Average());

allListBox.DataSource	=	allStudents.ToArray();

This	query's	select	clause	does	not	select	the	range	variable	student.	Instead	it

selects	a	string	that	holds	the	student's	first	and	last	names	and	the	student's	test
score	average.	(Notice	how	the	code	calls	the	TestScore	list's	Average	method	to	get
the	average	of	the	test	scores.)	The	result	of	the	query	is	a	List<string>	instead	of
a	List<Student>.

The	program	next	uses	the	following	code	to	list	the	students	who	have	averages	of
at	least	60,	giving	them	passing	grades:

//	Select	passing	students	ordered	by	name.

var	passingStudents	=

				from	Student	student	in	students

				orderby	student.LastName,	student.FirstName

				where	student.TestScores.Average()	>=	60

				select	student.FirstName	+	"	"	+	student.LastName;

passingListBox.DataSource	=	passingStudents.ToArray();

This	code	again	selects	a	string	instead	of	a	Customer	object.	The	code	that	selects
failing	students	is	similar,	so	it	isn't	shown	here.

The	program	uses	the	following	code	to	select	students	with	averages	below	the
class	average:

//	Select	all	scores	and	compute	a	class	average.

var	allAverages	=

				from	Student	student	in	students

				select	student.TestScores.Average();

double	classAverage	=	allAverages.Average();

//	Display	the	average.

this.Text	=	"FindStudents:	Class	Average	=	"	+

				classAverage.ToString("0.00");

//	Select	students	with	average	below	the	class	average	ordered	by	average.

var	belowAverageStudents	=

				from	Student	student	in	students

				orderby	student.TestScores.Average()

				where	student.TestScores.Average()	<	classAverage

				select	new	{Name	=	student.FirstName	+	"	"	+	student.LastName,

								Average	=	student.TestScores.Average()};

foreach	(var	info	in	belowAverageStudents)

				belowAverageListBox.Items.Add(info.Name	+	"\t"	+	info.Average);

This	snippet	starts	by	selecting	all	of	the	students'	test	score	averages.	This	returns
a	List<double>.	The	program	calls	that	list's	Average	function	to	get	the	class
average.

Next	the	code	queries	the	student	data	again,	this	time	selecting	students	with
averages	below	the	class	average.

This	query	demonstrates	a	new	kind	of	select	clause	that	creates	a	list	of	objects.
The	new	objects	have	two	properties,	Name	and	Average,	that	are	given	values	by
the	select	clause.	The	data	type	of	these	new	objects	is	created	automatically	and
isn't	given	an	explicit	name	so	this	is	known	as	an	anonymous	type.

After	creating	the	query,	the	code	loops	through	its	results,	using	each	object's

Name	and	Average	property	to	display	the	below	average	students	in	a	ListBox.
Notice	that	the	code	gives	the	looping	variable	info	the	implicit	data	type	var	so	it
doesn't	need	to	figure	out	what	data	type	it	really	has.

NOTE

Objects	with	anonymous	data	types	actually	have	a	true	data	type,	just	not
one	that	you	want	to	have	to	figure	out.	For	example,	you	can	add	the
following	statement	inside	the	previous	code's	foreach	loop	to	see	what	data
type	the	objects	actually	have:

Console.WriteLine(info.GetType().ToString());

If	you	look	in	the	Output	window,	you'll	see	that	these	objects	have	the
ungainly	data	type:

<>f__AnonymousType0`2[System.String,System.Double]

Although	you	can	sort	of	see	what's	going	on	here	(the	object	contains	a
string	and	a	double),	you	probably	wouldn't	want	to	type	this	mess	into	your
code	even	if	you	could.	In	this	case,	the	var	type	is	a	lot	easier	to	read.

LINQ	provides	plenty	of	other	features	that	won't	fit	in	this	lesson.	It	lets	you:

Group	results	to	produce	lists	that	contain	other	lists

Take	only	a	certain	number	of	results	or	take	results	while	a	certain	condition
is	true

Skip	a	certain	number	of	results	or	skip	results	while	a	certain	condition	is	true

Join	results	selected	from	multiple	data	sources

Use	aggregate	functions	such	as	Average	(which	you've	already	seen),	Count,
Min,	Max,	and	Sum

Microsoft's	“Language-Integrated	Query	(LINQ)”	page	at
msdn.microsoft.com/library/bb397926.aspx	provides	a	good	starting	point	for
learning	more	about	LINQ.

http://msdn.microsoft.com/library/bb397926.aspx

Try	It
In	Lesson	29's	Try	It,	you	built	a	program	that	used	the	DirectoryInfo	class's
GetFiles	method	to	search	for	files	matching	a	pattern	and	containing	a	target
string.	For	example,	the	program	could	search	the	directory	hierarchy	starting	at
C:\C#Projects	to	find	files	with	the	.cs	extension	and	containing	the	string
“DirectoryInfo.”

In	this	Try	It,	you	modify	that	program	to	perform	the	same	search	with	LINQ.
Instead	of	writing	code	to	loop	through	the	files	returned	by	GetFiles	and
examining	each,	you	make	LINQ	examine	the	files	for	you.

Lesson	Requirements
In	this	lesson,	you:

Copy	the	program	you	built	for	Lesson	29's	Try	It	(or	download	Lesson	29's
version	from	the	book's	website)	and	modify	the	code	to	use	LINQ	to	search	for
files.

NOTE

You	can	download	the	code	and	resources	for	this	lesson	from	the	website
at	www.wrox.com/go/csharp24hourtrainer2e.

Hints
Use	the	DirectoryInfo	object's	GetFiles	method	in	the	query's	from	clause.

In	the	query's	where	clause,	use	the	File	class's	ReadAllText	method	to	get	the
file's	contents.	Convert	it	to	lowercase	and	use	Contains	to	see	if	the	file	holds
the	target	string.

Step-by-Step
Copy	the	program	you	built	for	Lesson	29's	Try	It	(or	download	Lesson	29's
version	from	the	book's	website)	and	modify	the	code	to	use	LINQ	to	search	for
files.

1.	 Copying	the	program	is	reasonably	straightforward.

2.	 To	use	LINQ	to	search	for	files,	modify	the	Search	button's	Click	event
handler	so	it	looks	like	the	following.	The	lines	in	bold	show	the	modified
code:

//	Search	for	files	matching	the	pattern

//	and	containing	the	target	string.

private	void	searchButton_Click(object	sender,	EventArgs	e)

{

				//	Get	the	file	pattern	and	target	string.

				string	pattern	=	patternComboBox.Text;

				string	target	=	targetTextBox.Text.ToLower();

				//	Search	for	the	files.

				DirectoryInfo	dirinfo	=

								new	DirectoryInfo(directoryTextBox.Text);

				var	fileQuery	=

								from	FileInfo	fileinfo

												in	dirinfo.GetFiles(pattern,

																SearchOption.AllDirectories)

								where

File.ReadAllText(fileinfo.FullName).ToLower().Contains(target)

								select	fileinfo.FullName;

				//	Display	the	result.

				fileListBox.DataSource	=	fileQuery.ToArray();

}

If	you	compare	this	code	to	the	version	used	by	the	Try	It	in	Lesson	29,
you'll	see	that	this	version	is	much	shorter.

http://www.wrox.com/go/csharp24hourtrainer2e

Exercises
1.	 Build	a	program	that	lists	the	names	of	the	files	in	a	directory	together	with
their	sizes,	ordered	with	the	biggest	files	first.

2.	 Copy	the	program	you	built	for	Exercise	1	and	modify	it	so	it	searches	for	files
in	the	directory	hierarchy	starting	at	the	specified	directory.

3.	 Make	a	program	that	lists	the	perfect	squares	between	0	and	999.	(Hint:	Use
the	Enumerable	class's	Range	method	to	initialize	the	source	data.)

For	Exercises	4	through	8	download	the	Customer	Orders	program.	This
program	defines	the	following	classes:

class	Person

{

				public	string	Name	{	get;	set;	}

}

class	OrderItem

{

				public	string	Description	{	get;	set;	}

				public	int	Quantity	{	get;	set;	}

				public	decimal	UnitPrice	{	get;	set;	}

}

class	Order

{

				public	int	OrderId	{	get;	set;	}

				public	Person	Customer	{	get;	set;	}

				public	List<OrderItem>	OrderItems	{	get;	set;	}

}

The	program's	Form_Load	event	handler	creates	an	array	of	Order	objects.	The
program's	buttons,	which	are	shown	in	Figure	36.3,	let	the	user	display	the
data	in	various	ways	although	initially	they	don't	contain	any	code.	In
Exercises	4	through	8,	you	add	that	code	to	give	the	program	its	features.

Figure	36.3

4.	 The	Customer	Orders	program	creates	several	Order	objects,	but	it	doesn't	fill
in	those	objects'	TotalCost	properties.	Use	LINQ	to	do	that.	(Hints:	Use	a
foreach	loop	to	loop	through	the	objects.	For	each	object,	use	a	LINQ	query	to
go	through	the	order's	OrderItems	list	and	select	each	OrderItem's	UnitPrice
times	its	Quantity.	After	you	define	the	query,	call	its	Sum	function	to	get	the
total	cost	for	the	order.)

5.	 Copy	the	program	you	built	for	Exercise	4	and	add	code	behind	the	All	Orders
button.	That	code	should	use	a	LINQ	query	to	select	the	orders'	ID,	customer
name,	and	total	costs.	Display	the	results	in	the	resultListBox	by	setting	that
control's	DataSource	property	to	the	query.

6.	 Copy	the	program	you	built	for	Exercise	5	and	add	code	behind	the	Order	By
Cost	button.	That	code	should	use	a	query	similar	to	the	one	used	by	Exercise
5,	but	it	should	order	the	results	by	cost	so	the	orders	with	the	largest	costs	are
listed	first.

7.	 Copy	the	program	you	built	for	Exercise	6	and	add	code	behind	the	Customer
button.	That	code	should	use	a	LINQ	query	to	list	orders	placed	by	the
customer	selected	in	the	ComboBox.	(If	no	name	is	selected,	don't	do	anything.)

8.	 Copy	the	program	you	built	for	Exercise	7	and	add	code	behind	the	Greater
Than	button.	That	code	should	use	a	LINQ	query	to	list	orders	with	total	costs
greater	than	the	value	entered	in	the	TextBox.

NOTE

Please	select	the	videos	for	Lesson	36	online	at
www.wrox.com/go/csharp24hourtrainer2evideos.

http://www.wrox.com/go/csharp24hourtrainer2evideos

Lesson	37

LINQ	to	SQL
Lesson	36	provided	an	introduction	to	LINQ	to	Objects.	This	lesson	gives	a	brief
introduction	to	another	of	the	LINQ	family	of	technologies:	LINQ	to	SQL.

LINQ	to	SQL	lets	you	use	queries	similar	to	those	provided	by	LINQ	to	Objects	to
manipulate	SQL	Server	databases.	It	uses	a	set	of	classes	to	represent	database
objects	such	as	tables	and	records.	The	classes	provide	intuitive	methods	for
adding,	modifying,	deleting,	and	otherwise	manipulating	the	records.

In	this	lesson	you	learn	the	basics	of	LINQ	to	SQL.	You	learn	how	to	make	LINQ
objects	representing	a	SQL	Server	database	and	how	to	add	records	to	the
database.	You	also	learn	how	to	perform	queries	similar	to	those	described	in
Lesson	36	to	filter	and	sort	data	taken	from	the	database.

Note	that	the	programs	and	techniques	described	in	this	lesson	demonstrate	only
very	simple	uses	of	LINQ	to	SQL.	For	more	information,	search	the	web.
Microsoft's	“LINQ	to	SQL”	page	at	msdn.microsoft.com/library/bb386976.aspx
provides	a	good	starting	point	for	learning	more	about	LINQ	to	SQL.

http://msdn.microsoft.com/library/bb386976.aspx

Connecting	to	the	Database
The	first	step	in	creating	a	LINQ	to	SQL	program	is	connecting	to	the	database.
Create	a	Windows	Forms	application	as	usual.	Then	open	the	Server	Explorer
shown	in	Figure	37.1.	(Use	the	View	menu's	Server	Explorer	command	if	you	can't
find	it.)

Figure	37.1

NOTE

To	run	most	of	the	programs	described	in	this	lesson,	you	need	to	have	SQL
Server	installed	on	your	computer.	The	Visual	Studio	installation	software
comes	with	SQL	Server	(at	least	the	versions	I've	seen)	or	you	can	download
the	free	SQL	Server	Express	edition	at	www.microsoft.com/express/Database.
It's	a	fairly	busy	page	so	the	download	link	can	be	difficult	to	see.	You	can
find	it	by	searching	for	“Express.”

http://www.microsoft.com/express/Database

NOTE

Unfortunately	there	isn't	room	in	this	book	to	say	too	much	about	SQL
Server	and	how	to	use	it.	You'll	have	to	rely	on	the	web	or	get	a	book	about
SQL	Server	to	do	much	with	it.

To	make	using	the	examples	described	in	this	lesson	a	bit	easier,	this	lesson's
download	includes	a	program	named	Build	Customer	Database.	This
program	connects	to	your	SQL	Server	instance,	deletes	the	database	named
CustomerDatabase	if	it	exists,	and	creates	a	new	CustomerDatabase	containing
a	few	records	for	the	examples	described	in	this	lesson	to	use.

Obviously	don't	run	this	program	if	you	already	have	a	database	named
CustomerDatabase	that	you	want	to	preserve	because	that	database	will	be
destroyed!

Click	the	Connect	to	Database	button	(third	from	the	left	at	the	top	in	Figure	37.1)
to	display	the	Add	Connection	dialog	shown	in	Figure	37.2.

Figure	37.2

Initially	the	Add	Connection	dialog	may	have	some	type	of	database	other	than
SQL	Server	selected.	The	dialog	shown	in	Figure	37.2	is	ready	to	connect	to	a
Microsoft	Access	database.	To	switch	to	SQL	Server,	click	the	Change	button	to
display	the	dialog	shown	in	Figure	37.3.

Figure	37.3

Select	the	Microsoft	SQL	Server	entry	and	click	OK.	When	you	return	to	the	Add
Connection	dialog,	it	should	look	like	Figure	37.4.

Figure	37.6

Enter	your	server	name	in	the	indicated	textbox.	If	you're	running	SQL	Server
Express	Edition,	follow	the	server's	name	with	\SQLEXPRESS,	as	shown	in	the
figure.	For	example,	my	computer	is	named	Quarkbeast	and	I'm	running	SQL
Server	Express	Edition	so	I	entered	QUARKBEAST\SQLEXPRESS	in	Figure	37.4.

Enter	the	name	of	the	database	on	the	server	(I	entered	CustomerDatabase	in
Figure	37.4)	and	click	OK.

NOTE

In	the	dialog	shown	in	Figure	37.4,	if	you	enter	the	name	of	a	database	that
doesn't	exist	on	the	server,	Visual	Studio	tells	you	that	the	database	doesn't
exist	and	asks	if	you	want	to	create	it.	If	you	click	Yes,	you	can	use	the	Server
Explorer	to	build	the	database.	The	Server	Explorer	doesn't	provide	as	many
features	as	a	database	management	tool	such	as	SQL	Server	Management
Studio,	but	it's	handy	if	you	don't	have	easy	access	to	those	tools.

If	you	go	back	to	Figure	37.1,	you	can	see	the	Server	Explorer	with	the
quarkbeast\sqlexpress	server's	CustomerDatabase	expanded	to	show	its	single
table,	Customers,	and	its	columns.

NOTE

You	can	use	similar	steps	to	connect	to	other	kinds	of	databases	such	as
Oracle,	MySQL,	or	Microsoft	Access	databases.	Only	the	details	needed	to
connect	to	the	database	in	the	Add	Connection	dialog	are	different.	For
example,	Figure	37.2	shows	the	details	needed	for	a	Microsoft	Access
database,	and	Figure	37.4	shows	the	details	needed	for	a	SQL	Server
database.

Note	that	LINQ	to	SQL	is	intended	to	work	with	SQL	Server	and	making	it
work	with	other	types	of	databases	takes	some	extra	work.	The	section
“Using	LINQ	to	SQL	with	Access”	later	in	this	lesson	explains	how	to	use
LINQ	to	SQL	classes	with	Access	databases,	but	there's	no	guarantee	that	the
same	techniques	will	work	with	every	kind	of	database	or	that	those
techniques	will	keep	working	in	later	versions	of	Visual	Studio.

Making	LINQ	to	SQL	Classes
After	you	make	a	database	connection,	you're	ready	to	build	LINQ	to	SQL	classes
that	you	can	use	to	manipulate	the	database.

Open	the	Project	menu	and	select	Add	New	Item.	In	the	Add	New	Item	dialog,
select	the	LINQ	to	SQL	Classes	template.	If	you	have	trouble	finding	it,	you	can
narrow	your	search	by	looking	in	the	Data	template	category	on	the	left.	Enter	a
descriptive	name	for	the	new	file	such	as	CustomerClasses	and	click	Add.

At	this	point	Visual	Studio	creates	a	.dbml	file	to	manage	the	new	LINQ	to	SQL
classes.	It	opens	that	file	in	the	Object	Relational	Designer	shown	in	Figure	37.5,
although	initially	the	designer	is	blank.

Figure	37.5

In	Server	Explorer,	expand	your	database	until	you	find	its	tables	and	drag	the
tables	that	you	want	to	manage	onto	the	designer	surface.	In	Figure	37.5,	I
dragged	the	Customers	table	onto	the	surface	so	the	designer	created	a	class	to
represent	the	table.	Each	instance	of	the	class	will	represent	a	row	in	the	table.

The	designer	represents	the	table's	fields	as	properties.	If	you	look	closely	at
Figure	37.5,	you	can	see	that	the	table's	primary	key	fields	FirstName	and	LastName
have	little	key	symbols	on	the	left.

If	you	click	a	field	in	the	designer,	the	Properties	window	shows	the	field's
properties.	Figure	37.6	shows	the	properties	for	the	table's	FirstName	field.

Figure	37.6

A	few	important	properties	include:

Name—The	name	of	the	field	in	the	class

Nullable—Indicates	whether	the	field	can	hold	null	values

Server	Data	Type—The	data	type	of	the	field	in	the	database

Source—The	name	of	the	field	in	the	database

If	you	make	changes	and	save	them,	Visual	Studio	automatically	generates	a
CustomerClassesDataContext	class	to	represent	the	database.	(CustomerClasses	is
the	name	I	gave	the	new	LINQ	to	SQL	file.)	This	object	has	a	Customers	property
that	represents	the	database's	Customers	table.

Visual	Studio	also	creates	a	Customer	class	to	represent	the	records	in	the	table.

You	can	look	at	these	classes	(although	don't	modify	them)	in	the	file
CustomerClasses.designer.cs	by	double-clicking	the	CustomerClassesDataContext
entry	in	Solution	Explorer.

NOTE

Note	that	this	is	an	extremely	simple	example.	Most	real	databases	contain
multiple	tables.	In	that	case,	you	can	use	the	entity-relationship	designer	to
model	the	relationships	between	the	tables.

To	add	a	relationship,	right-click	the	designer's	surface,	open	the	Add	menu,
and	select	Association.	Select	the	parent	and	child	classes	from	the	dropdown
lists	and	then	select	the	fields	that	match	up	in	the	two	classes.

For	example,	an	Orders	table	might	hold	an	OrderId	field	that	you	can	use	to
find	corresponding	OrderItems	records	that	make	up	the	order.	In	that	case,
the	parent	class	would	be	Orders,	the	child	class	would	be	OrderItems,	and	the
fields	that	match	up	would	be	the	OrderId	fields	in	both	classes.

After	you	build	the	association,	the	designer	displays	an	arrow	to	represent
the	one-to-many	relationship	between	the	two	classes	(one	Order	may	hold
many	OrderItems).

Writing	Code
Now	that	you've	built	the	LINQ	to	SQL	classes,	you	can	use	them	to	manipulate
the	database.	For	example,	the	Make	Customer	Data	example	program	shown	in
Figure	37.7	(and	available	as	part	of	this	lesson's	code	download)	uses	LINQ	to
SQL	classes	to	add	new	records	to	a	database.

Figure	37.7

The	following	code	shows	how	the	Make	Customer	Data	example	program	adds	a
new	record	to	the	database:

//	Add	a	new	Customers	record.

private	void	addButton_Click(object	sender,	EventArgs	e)

{

				//	Get	the	database.

				using	(CustomerClassesDataContext	db	=

								new	CustomerClassesDataContext())

				{

								//	Make	a	new	Customer	object.

								Customer	cust	=	new	Customer();

								cust.FirstName	=	firstNameTextBox.Text;

								cust.LastName	=	lastNameTextBox.Text;

								cust.Balance	=	decimal.Parse(balanceTextBox.Text);

								cust.DueDate	=	DateTime.Parse(dueDateTextBox.Text);

								//	Add	it	to	the	table.

								db.Customers.InsertOnSubmit(cust);

								//	Submit	the	changes.

								db.SubmitChanges();

				}

				//	Prepare	to	add	the	next	customer.

				firstNameTextBox.Clear();

				lastNameTextBox.Clear();

				balanceTextBox.Clear();

				dueDateTextBox.Clear();

				firstNameTextBox.Focus();

}

The	code	starts	with	what	is	probably	its	least	obvious	step:	creating	a	new
instance	of	the	CustomerClassesDataContext.	This	object	represents	the	database
and	provides	access	to	its	tables.	It	provides	a	Dispose	method	so	the	program
creates	it	in	a	using	block	to	call	Dispose	automatically.

Next	the	code	creates	a	new	Customer	object	to	represent	a	new	row	in	the

Customers	table.	The	code	initializes	this	object's	properties.

The	program	then	calls	the	Customers	table's	InsertOnSubmit	method,	passing	it
the	new	Customer	object.	The	following	statement	calls	the	database	object's
SubmitChanges	method	to	send	any	pending	changes	(in	this	case,	the	new
Customer)	to	the	database.

The	code	finishes	by	clearing	its	TextBoxes	so	the	form	is	ready	for	you	to	enter
another	customer's	data.

Using	LINQ	Queries
The	Make	Customer	Data	program	described	in	the	previous	section	uses	LINQ	to
SQL	classes	to	manage	the	database	but	it	doesn't	actually	use	LINQ	queries.

You	can	use	LINQ	queries	with	these	classes	much	as	you	can	use	them	with	lists,
arrays,	and	classes	that	you	build	yourself	in	code.	For	example,	you	can	use	a
query	to	select	particular	records	from	a	table.

The	following	code	shows	how	the	Find	Customers	program	described	in	Lesson
36	displayed	customers	with	negative	account	balances:

//	Display	customers	with	negative	balances.

var	negativeQuery	=

				from	Customer	cust	in	customers

				where	cust.Balance	<	0

				//orderby	cust.Balance	ascending,	cust.FirstName

				select	cust;

negativeListBox.DataSource	=	negativeQuery.ToArray();

The	following	code	shows	how	the	Find	Customers	program	available	in	this
lesson	displays	the	same	customers	from	the	Customers	table:

//	Display	customers	with	negative	balances.

var	negativeQuery	=

				from	Customer	cust	in	db.Customers

				where	cust.Balance	<	0

				//orderby	cust.Balance	ascending,	cust.FirstName

				select	String.Format("{0}	{1}\t{2:C}\t{3:d}",

								cust.FirstName,	cust.LastName,

								cust.Balance,	cust.DueDate);

negativeListBox.DataSource	=	negativeQuery.ToArray();

These	two	queries	differ	in	two	ways.	First,	the	second	query	ranges	over	items	in
the	db.Customers	LINQ	to	SQL	object	instead	of	a	customers	array	created	by	the
program's	code.

The	second	difference	is	that	the	new	version's	select	clause	doesn't	select
Customer	objects.	Instead	it	concatenates	certain	fields	taken	from	those	objects.	I
made	this	change	because	the	Customer	class	generated	by	LINQ	to	SQL	doesn't
override	its	ToString	method	to	display	a	nice	representation	of	the	object	as	the
earlier	version	of	the	class	did	in	Lesson	36.	The	new	version	builds	strings	that
the	ListBox	can	display	directly.

Understanding	Nullable	Fields
Although	LINQ	to	Objects	and	LINQ	to	SQL	queries	work	mostly	in	the	same	way,
some	important	differences	exist	behind	the	scenes.

One	difference	that	you	are	likely	to	run	into	immediately	is	that	values	provided
by	LINQ	to	SQL	classes	are	often	nullable.	A	nullable	type	is	a	data	type	that	can
hold	the	special	value	null	in	addition	to	whatever	other	values	it	normally	holds.
The	value	null	represents	“no	value.”

For	example,	a	nullable	int	can	hold	an	integer	or	it	can	hold	the	special	value
null,	which	means	it	doesn't	contain	any	real	integer	value.

NOTE

Only	value	types	(such	as	structures,	enumerated	types,	ints,	and	doubles)
can	be	nullable	because	reference	types	can	already	hold	the	value	null.	The
only	surprising	case	is	string,	which	looks	a	lot	like	a	value	type	but	is	really
a	reference	type.

NOTE

You	can	declare	your	own	nullable	variables	by	following	their	data	types	with
a	question	mark.	For	example,	the	following	code	declares	a	nullable	integer
variable	named	numCourses	and	assigns	it	the	initial	value	null:

int?	numCourses	=	null;

Databases	often	have	fields	that	are	allowed	to	have	no	value	and	the	LINQ	to	SQL
classes	represent	them	as	nullable	properties.	In	the	database's	Customers	table,
the	Balance	and	DueDate	fields	are	not	required	so	the	Customer	LINQ	to	SQL	class
makes	its	Balance	and	DueDate	fields	nullable.	That	means	when	the	program's	C#
code	looks	at	those	fields,	they	may	not	contain	any	value.

To	decide	whether	a	field	contains	a	value,	you	can	compare	it	to	null	or	use	its
HasValue	property.	Once	you	know	that	the	value	exists,	you	can	use	its	Value
property	to	get	the	value.

For	example,	the	following	code	checks	whether	a	Customer's	Balance	field	is	null
and,	if	the	value	exists,	displays	it:

if	(cust.Balance	!=	null)

{

				//	There	is	a	Balance.	Display	it.

				MessageBox.Show("Balance:	"	+	cust.Balance.Value.ToString());

}

Understanding	Query	Execution
Although	LINQ	to	SQL	looks	a	lot	like	LINQ	to	Objects	in	your	C#	code,	behind
the	scenes	there	is	a	huge	difference	in	the	way	the	two	kinds	of	queries	are
executed.

The	C#	compiler	converts	a	LINQ	to	Objects	query	into	a	series	of	method	calls	to
do	all	of	the	work.	The	code	does	nothing	that	you	couldn't	do	yourself	in	C#	code,
so	it	works	more	or	less	the	way	you	would	expect	C#	code	to	work.

In	contrast,	the	compiler	converts	a	LINQ	to	SQL	query	into	code	that	can	execute
within	the	database.	Instead	of	executing	code	within	your	program,	it	sends
commands	to	the	database	to	make	it	do	all	of	the	work.	With	a	bit	of	effort,	you
could	come	up	with	similar	database	commands	yourself	and	make	your	program
execute	them	on	the	database,	but	LINQ	to	SQL	does	that	for	you.

Why	should	LINQ	to	SQL	handle	this	differently?

Suppose	you	want	to	find	a	customer	with	a	particular	name	in	a	customers	array
that	holds	100,000	objects.	LINQ	to	Objects	can	zip	through	the	array	fairly
quickly	and	find	the	right	customer	with	little	problem.

Now	suppose	you	want	to	find	the	same	customer	in	a	database	containing
100,000	records.	To	perform	that	search	in	C#	code,	the	program	would	need	to
fetch	100,000	records	from	the	database.	Moving	that	much	data	from	the
database	into	the	program	would	take	quite	a	bit	of	time	and	memory.	In	contrast,
the	database	itself	has	great	tools	for	finding	specific	records,	particularly	if	the
table	uses	the	Name	field	as	an	index.	In	that	case,	the	database	may	need	to
perform	only	a	few	disk	accesses	to	search	through	its	index	structure	for	the	right
customer,	a	much	more	efficient	operation	than	moving	100,000	records	into	the
program	and	then	searching	them	sequentially.

For	many	reasonably	simple	queries,	the	translation	from	LINQ	query	syntax	into
something	the	database	can	understand	works	and	there's	no	problem.
Sometimes,	however,	your	query	code	doesn't	translate	easily	into	database-speak
and	the	database	can't	execute	it.

For	example,	the	following	code	shows	how	the	Find	Customer	program	described
in	Lesson	36	displayed	customers	who	owe	more	than	$50	and	who	are	more	than
30	days	overdue.	(In	this	code	the	variable	today	holds	the	current	date	and	is
used	to	simplify	the	code.)

//	Display	customers	who	owe	at	least	$50

//	and	are	overdue	at	least	30	days.

var	overdueQuery	=

				from	Customer	cust	in	customers

				where	(cust.Balance	<=	-50)	&&

										(today.Subtract(cust.DueDate).TotalDays	>	30)

				select	cust;

overdueListBox.DataSource	=	overdueQuery.ToList<Customer>();

Unfortunately,	SQL	Server	doesn't	have	a	function	that	subtracts	one	date	from
another,	so	this	query	doesn't	translate	perfectly	into	database	commands	and	at
run	time	the	program	throws	the	following	exception:

Method	'System.TimeSpan	Subtract(System.DateTime)'	has	no	supported

translation	to	SQL.

One	solution	is	to	rewrite	the	query	in	terms	that	the	database	can	understand.
The	following	code	shows	a	query	that	LINQ	to	SQL	can	translate	successfully:

//	Display	customers	who	owe	at	least	$50

//	and	are	overdue	at	least	30	days.

var	overdueQuery	=

				from	Customer	cust	in	db.Customers

				where	(cust.Balance	==	null	||	cust.Balance.Value	<	-50)	&&

										(cust.DueDate	==	null	||	today	>	cust.DueDate.Value.AddDays(30))

				//orderby	cust.Balance	ascending,	cust.FirstName

				select	String.Format("{0}	{1}\t{2:C}\t{3:d}",

								cust.FirstName,	cust.LastName,

								cust.Balance,	cust.DueDate);

overdueListBox.DataSource	=	overdueQuery.ToArray();

Although	the	translation	to	database	code	doesn't	know	how	to	subtract	dates,	it
does	know	how	to	add	days	to	a	date	so	this	query	uses	that	capability.	It	selects
records	where	the	customer:

Has	no	balance	or	has	a	balance	less	than	$50,	and

Has	no	due	date	or	today's	date	is	greater	than	the	due	date	plus	30	days

Using	LINQ	to	SQL	with	Access
LINQ	to	SQL	is	intended	to	let	you	use	objects	to	manage	SQL	Server	databases,
but	with	a	little	extra	work	you	can	also	use	it	to	manage	other	kinds	of	databases.

NOTE

Why	would	you	want	to	use	LINQ	to	SQL	to	manage	other	kinds	of
databases?	One	reason	is	that	the	LINQ	to	SQL	classes	are	convenient.	They
allow	you	to	use	fairly	intuitive	objects	to	manipulate	the	data.

Another	reason	for	using	LINQ	to	SQL	classes	with	other	databases	is	that	it
lets	me	give	you	examples	in	Microsoft	Access	databases.	Though	SQL	Server
is	generally	more	powerful,	you	cannot	use	it	without	installing	SQL	Server
(at	least	the	Express	Edition).	The	.NET	Framework	includes	all	of	the
classes	you	need	to	interact	with	an	Access	database	so	you	can	connect	to
one	and	use	it	without	installing	anything	else.

To	get	started,	create	a	normal	Windows	Forms	project,	open	the	Project	menu,
and	select	Add	New	Item.	Select	the	LINQ	to	SQL	Classes	template	as	before,	give
the	file	a	good	name,	and	click	Add.

If	you	were	working	with	SQL	Server,	you	would	then	drag	tables	from	the	Server
Explorer	onto	the	design	surface	to	define	the	classes.	Visual	Studio	won't	let	you
drag	tables	from	other	kinds	of	databases	onto	the	entity-relationship	designer,
but	you	can	build	the	classes	manually.

Click	the	Toolbox	link	on	the	Object	Relational	Designer	to	open	the	Toolbox
shown	in	Figure	37.8	and	use	the	tools	it	holds	to	build	the	classes.

Figure	37.8

To	get	the	model	to	work,	you	need	to	set	a	few	properties	correctly.	For	a	table
class,	set	the	Source	property	to	the	name	of	the	table	in	the	database.	For
example,	if	you	want	to	represent	the	Customers	table's	records	with	Customer
objects,	then	create	a	Customer	class	and	set	its	Source	property	to	Customers.

After	you	create	a	class,	right-click	it	and	select	Add Property	to	give	the	class
properties.	For	each	property,	set:

Primary	Key—True	if	the	field	is	part	of	the	table's	primary	key

Nullable—True	if	the	database	field	allows	nulls

Server	Data	Type—The	field's	data	type	in	the	database	(for	example,
VARCHAR(50)	NOT	NULL)

Source—The	name	of	the	field	in	the	database	(probably	the	same	as	the
property's	name	in	the	class)

Type—The	property's	type	in	the	class	(for	example,	string)

After	you	build	the	model,	Visual	Studio	generates	the	classes	you	need.	Now	you
just	need	to	add	code	to	use	them.

If	you	are	using	a	Microsoft	Access	database,	start	by	adding	the	following	using
directive	at	the	top	of	the	file:

using	System.Data.OleDb;

The	connection	object	that	you	need	to	open	the	database	is	defined	in	this
namespace.	(For	other	kinds	of	databases,	you	may	need	to	use	different	database
objects	in	other	namespaces.)

Next	build	a	database	connection.	The	Linq	To	Access	example	program	that	is
available	in	this	lesson's	download	uses	the	following	code	to	build	its	connection:

//	Get	the	database's	location.

string	filename	=	Path.GetFullPath(

				Application.StartupPath	+	@"\..\..\CustomerData.mdb");

//	Connect	to	the	database.

using	(OleDbConnection	conn	=	new	OleDbConnection(

				"Provider=Microsoft.Jet.OLEDB.4.0;"	+

				"Data	Source="	+	filename))

{

This	program	assumes	the	CustomerData.mdb	database	is	located	two	directory
levels	above	where	the	program	is	executing.	This	is	true	if	the	program	is	running
from	its	bin\Debug	directory	and	the	database	is	stored	with	the	code.

The	program	gets	the	location	of	the	database	file.	It	creates	a	new
OleDbConnection	object,	passing	its	constructor	a	connect	string	that	includes	the
location	of	the	database	file.	(Connect	strings	for	different	kinds	of	databases	hold
different	fields.	If	you're	using	some	other	kind	of	database,	you'll	need	to	build	an
appropriate	connect	string.)

Having	connected	to	the	database,	the	program	should	create	an	instance	of	the
LINQ	to	SQL	database	class,	passing	its	constructor	the	database	connection.	The
Linq	To	Access	example	program	uses	the	following	code:

//	Get	the	database.

using	(CustomerClassesDataContext	db	=

				new	CustomerClassesDataContext(conn))

{

From	this	point	on,	the	code	is	the	same	as	it	is	for	working	with	SQL	Server.	The
only	complication	is	that	not	all	databases	are	created	equal.	Different	databases
may	provide	different	features	and	the	automatically	generated	database	code	may
not	work	properly	for	all	databases.

The	Linq	To	Access	example	program	executes	the	same	queries	as	the	Find
Customers	example	and	has	no	trouble	until	the	final	query,	which	adds	30	days
to	the	customer's	due	date.	Access	cannot	understand	the	automatically	generated
code	for	that	query	and	throws	an	exception.

In	this	case,	you	can	fix	the	query	by	subtracting	30	days	from	the	current	date
and	seeing	if	the	result	is	after	the	customer's	due	date,	as	shown	in	the	following
code:

DateTime	todayMinus30	=	today.Subtract(new	TimeSpan(30,	0,	0,	0));

var	overdueQuery	=

				from	Customer	cust	in	db.Customers

				where	(cust.Balance	==	null	||	cust.Balance.Value	<	-50)	&&

										(cust.DueDate	==	null	||	todayMinus30	>	cust.DueDate.Value)

				//orderby	cust.Balance	ascending,	cust.FirstName

				select	String.Format("{0}	{1}\t{2:C}\t{3:d}",

								cust.FirstName,	cust.LastName,

								cust.Balance,	cust.DueDate);

overdueListBox.DataSource	=	overdueQuery.ToArray();

Try	It
In	this	Try	It,	you	extend	the	Find	Customers	program	to	find	customers	that	are
missing	data.	You	add	a	new	ListBox	to	display	customers	that	are	missing	first
name,	last	name,	balance,	or	due	date	values.

Lesson	Requirements
In	this	lesson,	you:

Copy	the	Find	Customers	program	available	in	this	lesson's	download.	Add	a
new	ListBox	to	hold	customers	with	missing	data.

Use	a	LINQ	to	SQL	query	to	display	customers	that	have	missing	values.

NOTE

You	can	download	the	code	and	resources	for	this	lesson	from	the	website	at
www.wrox.com/go/csharp24hourtrainer2e.

Hints
Remember	that	a	blank	string	(a	string	with	no	characters)	is	not	the	same	as	a
null	value.	You	don't	need	to	check	the	FirstName	and	LastName	fields	for	null
values,	but	you	should	check	them	for	blank	values.

Step-by-Step
Copy	the	Find	Customers	program	available	in	this	lesson's	download.	Add	a
new	ListBox	to	hold	customers	with	missing	data.

1.	 This	is	straightforward.

Use	a	LINQ	to	SQL	query	to	display	customers	that	have	missing	values.

1.	 You	can	use	code	similar	to	the	following:

//	List	customers	with	missing	data.

var	missingDataQuery	=

				from	Customer	cust	in	db.Customers

				where	(cust.FirstName	==	""	||

											cust.LastName	==	""	||

											cust.Balance	==	null	||

											cust.DueDate	==	null)

				select	String.Format("{0}	{1}\t{2:C}\t{3:d}",

								cust.FirstName,	cust.LastName,

								cust.Balance,	cust.DueDate);

missingDataListBox.DataSource	=	missingDataQuery.ToArray();

http://www.wrox.com/go/csharp24hourtrainer2e

Exercises
For	these	exercises,	use	the	customer	database	built	by	the	Build	Customer
Database	program.	(If	you	don't	want	to	install	SQL	Server,	you	can	use	the	Access
database	CustomerData.mdb	included	in	the	Linq	To	Access	example	program	in
this	lesson's	download.)

1.	 Build	the	user	interface	shown	in	Figure	37.9.	Make	the	First	and	Last	Name
TextBoxes	read-only.	(Don't	worry	about	the	data	yet.	Just	build	the	user
interface.)

Figure	37.9

2.	 Copy	the	program	you	built	for	Exercise	1	and	make	it	display	the	list	of
customers.	To	do	that:

a.	 Add	LINQ	to	SQL	classes	to	the	program.

b.	 Override	the	Customer	class's	ToString	method	so	it	displays	the	customer's
name.	Instead	of	modifying	the	automatically	generated	Customer	class,
however,	add	a	new	class	named	Customer.	Modify	the	class	definition	as
follows:

//	Add	a	ToString	override	to	Customer.

public	partial	class	Customer

{

				public	override	string	ToString()

				{

								return	FirstName	+	"	"	+	LastName;

				}

}

The	partial	keyword	indicates	that	this	class	is	part	of	a	class	that	may
have	pieces	elsewhere.	In	this	case,	it	means	the	ToString	method	should	be
added	to	the	Customer	class	built	by	LINQ	to	SQL	so	you	don't	need	to
modify	the	automatically	generated	code.

c.	 Declare	a	field	named	Db	with	your	DataContext	class's	type.

d.	 Write	a	LoadData	method	that	queries	the	database	and	sets	the	ListBox's
DataSource	property	to	the	result.

http://CustomerData.mdb

e.	 In	the	form's	Load	event	handler,	initialize	the	Db	variable	and	call	LoadData.

3.	 Copy	the	program	you	built	for	Exercise	2	and	make	it	display	the	currently
selected	customer's	properties.	To	do	that:

a.	 Write	a	ShowSelectedCustomer	method.	It	should	get	the	ListBox's
SelectedItem	property	as	a	Customer	object.	It	should	then	display	the
object's	properties	in	the	TextBoxes.

b.	 In	the	ListBox's	SelectedIndexChanged	event	handler,	call
ShowSelectedCustomer.

4.	 Copy	the	program	you	built	for	Exercise	3	and	make	it	update	the	Customer
objects	when	the	user	modifies	the	balance	or	due	date.	To	do	that,	give	the
TextBoxes	TextChanged	event	handlers.	They	should	get	the	current	Customer
object,	parse	the	value	in	the	TextBox,	and	save	the	value	in	the	Customer	object.
Use	a	try	catch	statement	to	protect	against	invalid	data	and,	if	a	value	is
invalid,	store	null	in	the	object.

5.	 Copy	the	program	you	built	for	Exercise	4	and	finish	it	by	making	the	Save	and
Cancel	buttons	work.	To	do	that:

a.	 Make	the	Save	button	call	Db.SubmitChanges.	That	saves	any	changes
pending	in	the	DataContext	back	to	the	SQL	Server	database.

b.	 Make	the	Cancel	button	execute	the	following	statement	to	cancel	any
changes	pending	in	the	DataContext:

Db.Refresh(System.Data.Linq.RefreshMode.OverwriteCurrentValues,

				customerListBox.Items);

Then	make	the	button's	event	handler	call	ShowSelectedCustomer	to	redisplay	the
currently	selected	customer.

NOTE

Please	select	the	videos	for	Lesson	37	online	at
www.wrox.com/go/csharp24hourtrainer2evideos.

http://www.wrox.com/go/csharp24hourtrainer2evideos

Afterword

What's	Next?
This	book	provides	an	introduction	to	C#	but	it's	far	from	all-inclusive.	This	book
is	intended	for	beginners	and	many	topics	are	too	advanced	to	fit	in	here	because
they	are	hard	to	understand	(so	would	take	too	long	to	explain),	require
knowledge	of	matters	outside	the	scope	of	this	book	(such	as	how	the	operating
system	works),	or	are	just	too	specialized	to	be	interesting	to	everyone	(or	in	some
cases,	anyone).

Hopefully	you	followed	along	through	all	of	the	lessons,	worked	through	the	Try
Its	and	exercises,	and	feel	comfortable	with	the	material	presented	in	this	book.	In
that	case,	you're	ready	to	move	on	to	more	advanced	general	C#	texts	such	as:

Professional	C#	5.0	and	.NET	4.5.1	(Christian	Nagel	and	Jay	Glynn,	Wrox,
2014)

C#	5.0	Programmer's	Reference	(Rod	Stephens,	Wrox,	2014)

MCSD	Certification	Toolkit	(Exam	70-483):	Programming	in	C#	(Tiberiu
Covaci	et	al.,	Wrox,	2013)

You're	also	ready	to	branch	out	into	new	uses	for	C#.	Most	of	this	book	focuses	on
the	C#	language	itself	and	uses	Windows	Forms	programs	but	some	other
important	uses	of	C#	include:

WPF—Many	of	the	lessons	introduced	you	to	XAML	and	WPF	programming,
but	there's	a	lot	more	to	learn.	Many	books	(including	my	book	WPF
Programmer's	Reference,	Stephens,	Wrox,	2010)	provide	much	more
thorough	coverage	of	WPF.

ASP.NET—ASP.NET	is	a	web	programming	framework	that	lets	you	build
pages,	sites,	and	applications	that	run	on	the	web.	C#	(or	Visual	Basic)	code
can	sit	behind	the	interface	presented	in	the	browser	much	as	code-behind	sits
behind	Windows	Forms	and	WPF	user	interfaces.	For	more	information,	see
an	ASP.NET	book	such	as	Beginning	ASP.NET	4.5.1	in	C#	and	VB	(Imar
Spaanjaars,	Wrox,	2014)	or	Professional	ASP.NET	4.5	in	C#	and	VB	(Jason	N.
Gaylord	and	Christian	Wenz,	Wrox,	2013).

Finally,	you're	ready	to	look	at	more	specialized	uses	for	C#:

Console	applications—These	programs	do	not	have	window-based	user
interfaces.	Instead	they	display	textual	output	in	a	console	window.	See
msdn.microsoft.com/0wc2kk78.aspx.

Class	libraries—A	class	library	holds	compiled	classes	that	you	can	use	in
other	applications.	If	several	applications	need	to	use	the	same	kinds	of	classes
(Customer,	Employee,	Order),	then	it	makes	sense	to	let	them	share	a	common
library.

Control	libraries—A	control	library	is	a	class	library	that	holds	new	controls.
You	can	build	your	own	controls	that	are	composed	of	existing	controls,	that

http://msdn.microsoft.com/0wc2kk78.aspx

are	derived	from	existing	controls,	or	that	you	build	completely	from	scratch.

Office	applications—You	can	build	C#	programs	that	interact	with
Microsoft	Office	applications	such	as	Word	or	Excel.

Cryptography—The	.NET	Framework	includes	an	extensive	set	of
cryptographic	tools	for	encrypting,	decrypting,	and	signing	documents.	See
msdn.microsoft.com/92f9ye3s.aspx.

Parallel	programming—The	.NET	Framework	also	includes	classes	that	let
you	take	advantage	of	the	multiple	cores	that	are	available	on	many	new
computers.	See	msdn.microsoft.com/dd460717%28VS.100%29.aspx.

Game	programming—Microsoft's	game	development	tools	let	you	build
games	that	run	on	the	desktop,	in	the	browser,	on	mobile	devices,	and	even	on
the	Xbox	game	console.	See	msdn.microsoft.com/games-development-msdn.

Database	programming—A	large	majority	of	commercial	applications	have
a	significant	database	component.	For	information	on	general	database
programming,	see	a	book	such	as	Practical	Database	Programming	with
Visual	C#.NET	(Ying	Bai,	Wiley,	2010).	For	information	on	designing
databases,	see	a	book	such	as	Beginning	Database	Design	Solutions	(Rod
Stephens,	Wrox,	2008).

Now	that	you've	finished	this	book,	you're	ready	to	move	on	to	more	complicated
and	interesting	topics.	As	you	learn	more	about	C#	development,	you'll	discover
more	and	more	fields	of	programming	that	you	never	knew	existed.

http://msdn.microsoft.com/92f9ye3s.aspx
http://msdn.microsoft.com/dd460717%28VS.100%29.aspx
http://msdn.microsoft.com/games-development-msdn

C#	24-Hour	Trainer

Second	Edition
Rod	Stephens

	

	

C#	24-Hour	Trainer,	Second	Edition

Published	by

John	Wiley	&	Sons,	Inc.

10475	Crosspoint	Boulevard

Indianapolis,	IN	46256
www.wiley.com

Copyright	©	2016	by	John	Wiley	&	Sons,	Inc.,	Indianapolis,	Indiana

Published	simultaneously	in	Canada

ISBN:	978-1-119-06566-1

ISBN:	978-1-119-06564-4	(ebk)

ISBN:	978-1-119-06569-2	(ebk)

No	part	of	this	publication	may	be	reproduced,	stored	in	a	retrieval	system	or	transmitted	in	any	form	or	by
any	means,	electronic,	mechanical,	photocopying,	recording,	scanning	or	otherwise,	except	as	permitted
under	Sections	107	or	108	of	the	1976	United	States	Copyright	Act,	without	either	the	prior	written
permission	of	the	Publisher,	or	authorization	through	payment	of	the	appropriate	per-copy	fee	to	the
Copyright	Clearance	Center,	222	Rosewood	Drive,	Danvers,	MA	01923,	(978)	750-8400,	fax	(978)	646-8600.
Requests	to	the	Publisher	for	permission	should	be	addressed	to	the	Permissions	Department,	John	Wiley	&
Sons,	Inc.,	111	River	Street,	Hoboken,	NJ	07030,	(201)	748-6011,	fax	(201)	748-6008,	or	online	at
http://www.wiley.com/go/permissions.

Limit	of	Liability/Disclaimer	of	Warranty:	The	publisher	and	the	author	make	no	representations	or
warranties	with	respect	to	the	accuracy	or	completeness	of	the	contents	of	this	work	and	specifi	cally	disclaim
all	warranties,	including	without	limitation	warranties	of	fi	tness	for	a	particular	purpose.	No	warranty	may
be	created	or	extended	by	sales	or	promotional	materials.	The	advice	and	strategies	contained	herein	may	not
be	suitable	for	every	situation.	This	work	is	sold	with	the	understanding	that	the	publisher	is	not	engaged	in
rendering	legal,	accounting,	or	other	professional	services.	If	professional	assistance	is	required,	the	services
of	a	competent	professional	person	should	be	sought.	Neither	the	publisher	nor	the	author	shall	be	liable	for
damages	arising	herefrom.	The	fact	that	an	organization	or	Web	site	is	referred	to	in	this	work	as	a	citation
and/or	a	potential	source	of	further	information	does	not	mean	that	the	author	or	the	publisher	endorses	the
information	the	organization	or	Web	site	may	provide	or	recommendations	it	may	make.	Further,	readers
should	be	aware	that	Internet	Web	sites	listed	in	this	work	may	have	changed	or	disappeared	between	when
this	work	was	written	and	when	it	is	read.

For	general	information	on	our	other	products	and	services	please	contact	our	Customer	Care	Department
within	the	United	States	at	(877)	762-2974,	outside	the	United	States	at	(317)	572-3993	or	fax	(317)	572-4002.

Wiley	publishes	in	a	variety	of	print	and	electronic	formats	and	by	print-on-demand.	Some	material	included
with	standard	print	versions	of	this	book	may	not	be	included	in	e-books	or	in	print-on-demand.	If	this	book
refers	to	media	such	as	a	CD	or	DVD	that	is	not	included	in	the	version	you	purchased,	you	may	download	this
material	at	http://booksupport.wiley.com.	For	more	information	about	Wiley	products,	visit	www.wiley.com.

Library	of	Congress	Control	Number:	2015953613

Trademarks:	Wiley,	the	Wiley	logo,	Wrox,	the	Wrox	logo,	Programmer	to	Programmer,	and	related	trade
dress	are	trademarks	or	registered	trademarks	of	John	Wiley	&	Sons,	Inc.	and/or	its	affi	liates,	in	the	United
States	and	other	countries,	and	may	not	be	used	without	written	permission.	All	other	trademarks	are	the
property	of	their	respective	owners.	John	Wiley	&	Sons,	Inc.,	is	not	associated	with	any	product	or	vendor
mentioned	in	this	book.

http://www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://www.wiley.com

About	the	Author
ROD	STEPHENS	started	out	as	a	mathematician,	but	while	studying	at	MIT,	he
discovered	the	joys	of	programming	and	has	been	programming	professionally
ever	since.	During	his	career,	he	has	worked	on	an	eclectic	assortment	of
applications	in	such	fields	as	telephone	switching,	billing,	repair	dispatching,	tax
processing,	wastewater	treatment,	concert	ticket	sales,	cartography,	optometry,
and	training	for	professional	football	players.

Rod	has	been	a	Microsoft	Visual	Basic	Most	Valuable	Professional	(MVP)	for	more
than	10	years.	He	has	written	30	books	that	have	been	translated	into	languages
from	all	over	the	world	and	more	than	250	magazine	articles	covering	C#,	Visual
Basic,	Visual	Basic	for	Applications,	Delphi,	and	Java	he	has	helped	create.	He's
even	published	a	couple	of	video	training	courses	in	addition	to	the	videos	that	go
along	with	this	book.

Rod's	popular	C#	Helper	website	www.csharphelper.com	contains	thousands	of
example	programs	that	demonstrate	tips,	tricks,	and	useful	techniques	for	C#
programmers.	His	VB	Helper	website	www.vb-helper.com	provides	similar	material
for	Visual	Basic	developers.

http://www.csharphelper.com
http://www.vb-helper.com

About	the	Technical	Editor
JOHN	MUELLER	is	a	freelance	author	and	technical	editor.	He	has	writing	in
his	blood,	having	produced	98	books	and	more	than	600	articles	to	date.	The
topics	range	from	networking	to	home	security	and	from	database	management	to
heads-down	programming.	Some	of	his	current	books	include	a	book	on	Python
for	beginners,	Python	for	data	scientists,	and	MATLAB.	He	has	also	written	a
variety	of	books	on	both	C#	and	C++.	His	technical	editing	skills	have	helped
more	than	65	authors	refine	the	content	of	their	manuscripts.	John	has	provided
technical	editing	services	to	both	Data	Based	Advisor	and	Coast	Compute
magazines.	Be	sure	to	read	John's	blog	at	http://blog.johnmuellerbooks.com/.

http://blog.johnmuellerbooks.com

Credits
PROJECT	EDITOR

Adaobi	Obi	Tulton

TECHNICAL	EDITOR

John	Mueller

PRODUCTION	EDITOR

Joel	Jones

COPY	EDITOR

Kimberly	A.	Cofer

MANAGER	OF	CONTENT	DEVELOPMENT	&	ASSEMBLY

Mary	Beth	Wakefield

PRODUCTION	MANAGER

Kathleen	Wisor

MARKETING	DIRECTOR

David	Mayhew

MARKETING	MANAGER

Carrie	Sherrill

PROFESSIONAL	TECHNOLOGY	&	STRATEGY	DIRECTOR

Barry	Pruett

BUSINESS	MANAGER

Amy	Knies

ASSOCIATE	PUBLISHER

Jim	Minatel

PROJECT	COORDINATOR,	COVER

Brent	Savage

PROOFREADER

Nicole	Hirschman

INDEXER

Nancy	Guenther

COVER	DESIGNER

Wiley

COVER	IMAGE

©	Antonio	Guillem/Shutterstock

Acknowledgments
THANKS	TO	KENYON	BROWN,	Bob	Elliott,	Adaobi	Obi	Tulton,	Kim	Cofer,
Joel	Jones,	and	all	of	the	others	who	worked	so	hard	to	make	this	book	possible.

Thanks	also	to	John	Mueller	for	giving	me	the	benefit	of	his	advice	and	extensive
technical	expertise.

WILEY	END	USER	LICENSE	AGREEMENT
Go	to	www.wiley.com/go/eula	to	access	Wiley's	ebook	EULA.

http://www.wiley.com/go/eula

	Introduction
	What's New in the Second Edition
	Who This Book Is For
	What This Book Covers (And What It Doesn't)
	The Wrox 24-Hour Trainer Approach
	How This Book Is Structured
	What You Need to Use This Book
	Conventions
	Source Code
	Errata
	p2p.wrox.com

	Section I: The Visual Studio IDE and Controls
	Lesson 1: Getting Started with the Visual Studio IDE
	Installing C#
	Configuring the IDE
	Building Your First Program
	Copying Projects
	Exploring the IDE
	Try It
	Exercises

	Lesson 2: Creating Controls
	Understanding Controls
	Creating Controls
	Setting Control Properties
	Arranging Controls
	WPF Controls
	Try It
	Exercises

	Lesson 3: Making Controls Arrange Themselves
	Restricting Form Size
	Using Anchor Properties
	Using Dock Properties
	Layout Containers
	Try It
	Exercises

	Lesson 4: Handling Events
	Making Event Handlers
	Using Event Parameters
	Removing Event Handlers
	Adding and Removing Event Handlers in Code
	Useful Events
	Try It
	Exercises

	Lesson 5: Making Menus
	Creating Menus
	Setting Menu Properties
	Handling Menu Events
	Creating Context Menus
	WPF Menus
	WPF Context Menus
	WPF Commanding
	Try It
	Exercises

	Lesson 6: Making Tool Strips and Status Strips
	Using Tool Strips
	Using Tool Strip Containers
	Using Status Strips
	Try It
	Exercises

	Lesson 7: Using RichTextBoxes
	Using RichTextBox Properties
	Giving the User Control
	Using RichTextBox Methods
	Using WPF Commands
	Try It
	Exercises

	Lesson 8: Using Standard Dialogs
	Using Dialogs in General
	Using Dialog Properties
	Using File Filters
	Using Dialogs in WPF
	Try It
	Exercises

	Lesson 9: Creating and Displaying New Forms
	Adding New Forms
	Understanding Classes and Instances
	Displaying Forms
	Controlling Remote Forms
	Try It
	Exercises

	Lesson 10: Building Custom Dialogs
	Making Custom Dialogs
	Setting the Dialog Result
	Using Custom Dialogs
	Try It
	Exercises

	Section II: Variables and Calculations
	Lesson 11: Using Variables and Performing Calculations
	What Are Variables?
	Data Types
	Declaring Variables
	Literal Values
	Type Conversions
	Performing Calculations
	Constants
	Try It
	Exercises

	Lesson 12: Debugging Code
	Deferred Techniques
	Debugging Then and Now
	Setting Breakpoints
	Reading Variables
	Stepping Through Code
	Using Watches
	Using the Immediate Window
	Try It
	Exercises

	Lesson 13: Understanding Scope
	Scope within a Class
	Accessibility
	Restricting Scope and Accessibility
	Try It
	Exercises

	Lesson 14: Working with Strings
	String Methods
	Format and ToString
	Try It
	Exercises

	Lesson 15: Working with Dates and Times
	Creating DateTime Variables
	Local and UTC Time
	DateTime Properties and Methods
	TimeSpans
	Try It
	Exercises

	Lesson 16: Using Arrays and Collections
	Arrays
	Collection Classes
	Try It
	Exercises

	Lesson 17: Using Enumerations and Structures
	Enumerations
	Structures
	Structures Versus Classes
	Where to Put Structures
	Try It
	Exercises

	Section III: Program Statements
	Lesson 18: Making Choices
	Decision Statements
	if Statements
	if-else Statements
	Cascading if Statements
	Nested if Statements
	Switch Statements
	Try It
	Exercises

	Lesson 19: Repeating Program Steps
	for Loops
	Foreach Loops
	while Loops
	do Loops
	break and continue
	Try It
	Exercises

	Lesson 20: Reusing Code with Methods
	Method Advantages
	Method Syntax
	Using ref Parameters
	Using out Parameters
	Try It
	Exercises

	Lesson 21: Handling Errors
	Errors and Exceptions
	try-catch Blocks
	TryParse
	Throwing Exceptions
	Try It
	Exercises

	Lesson 22: Preventing Bugs
	Input Assertions
	Other Assertions
	Try It
	Exercises

	Section IV: Classes
	Lesson 23: Defining Classes
	What Is a Class?
	Class Benefits
	Making a Class
	Try It
	Methods
	Events
	Try It
	Inheritance
	Polymorphism
	Try It
	Exercises

	Lesson 24: Initializing Objects
	Initializing Objects
	Constructors
	Destructors
	Invoking Other Constructors
	Try It
	Exercises

	Lesson 25: Fine-Tuning Classes
	Overloading Methods
	Overriding Methods
	Overriding ToString
	Try It
	Exercises

	Lesson 26: Overloading Operators
	Overloadable Operators
	Unary Operators
	Binary Operators
	Comparison Operators
	Conversion Operators
	Try It
	Exercises

	Lesson 27: Using Interfaces
	Interface Advantages
	Implementing Interfaces
	Defining Interfaces
	Try It
	Exercises

	Lesson 28: Making Generic Classes
	Defining Generic Classes
	Using Generic Constraints
	Making Generic Methods
	Try It
	Exercises

	Section V: System Interactions
	Lesson 29: Using Files
	Filesystem Classes
	Path
	Streams
	Try It
	Exercises

	Lesson 30: Printing
	Windows Forms Printing
	WPF Printing
	Printing Visuals
	Try It
	Exercises

	Section VI: Windows Apps
	Lesson 31: Windows Store Apps
	Navigation Style
	App Styles
	App Images
	Deployment
	WPF Techniques
	Try It
	Exercises

	Lesson 32: Windows Phone Apps
	Building Apps
	Navigation Style
	App Styles
	App Images
	Try It
	Exercises

	Section VII: Specialized Topics
	Lesson 33: Localizing Programs
	Understanding Localization
	Building Localized Interfaces
	Testing Localizations
	Processing Locale-Specific Values
	Try It
	Exercises

	Lesson 34: Programming Databases, Part 1
	Connecting to a Database
	Displaying Data in a Grid
	Displaying Data One Record at a Time
	Try It
	Exercises

	Lesson 35: Programming Databases, Part 2
	Searching
	Filtering
	Sorting
	Try It
	Exercises

	Lesson 36: LINQ to Objects
	LINQ Basics
	where Clauses
	Order By Clauses
	Select Clauses
	Try It
	Exercises

	Lesson 37: LINQ to SQL
	Connecting to the Database
	Making LINQ to SQL Classes
	Writing Code
	Using LINQ Queries
	Understanding Nullable Fields
	Understanding Query Execution
	Using LINQ to SQL with Access
	Try It
	Exercises

	Afterword: What's Next?
	End User License Agreement

