OREILLY"

in a Nutshell

THE DEFINITIVE REFERENCE

Peter Prinz & Tony Crawford

in a Nutshell
Second Edition

Peter Prinz and Tony Crawford

C in a Nutshell, Second Edition

by Peter Prinz and Tony Crawford

Copyright © 2016 Peter Prinz and Tony Crawford. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA

95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For more
information, contact our corporate/institutional sales department: 800-998-9938 or

corporate@oreilly.com.

Editors: Rachel Roumeliotis and
Katie Schooling

Production Editor: Kristen Brown
Copyeditor: Gillian McGarvey
Proofreader: Jasmine Kwityn
Indexer: Angela Howard

Interior Designer: David Futato
Cover Designer: Karen Montgomery
[lustrator: Rebecca Demarest
December 2005: First Edition

December 2015: Second Edition

http://safaribooksonline.com

Revision History for the Second Edition
m 2015-12-07: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491904756 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. C in a Nutshell,
Second Edition, the cover image of a cow, and related trade dress are trademarks of
O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and the
authors disclaim all responsibility for errors or omissions, including without limitation
responsibility for damages resulting from the use of or reliance on this work. Use of the
information and instructions contained in this work is at your own risk. If any code
samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that
your use thereof complies with such licenses and/or rights.

978-1-491-90475-6
[M]

http://oreilly.com/catalog/errata.csp?isbn=9781491904756

Preface

This book is a complete reference to the C programming language and the C runtime
library. As an “In a Nutshell” book, its purpose is to serve as a convenient, reliable
companion for C programmers in their day-to-day work. It describes all the elements of
the language and illustrates their use with numerous examples.

The present description of the C language is based on the 2011 international C standard,
ISO/TEC 9899:2011, widely known as C11. This standard supersedes the C99 standard,
ISO/IEC 9899:1999, and its Technical Corrigenda, TC1 of 2001, TC2 of 2004, and TC3 of
2007. The first international C standard, ISO/IEC 9899:1990, was published in 1990 and
supplemented in 1995 by Normative Addendum 1 (ISO/IEC 9899/AMD1:1995). The
1990 ISO/IEC standard corresponds to the ANSI standard X3.159, which was ratified in
late 1989 and is commonly called ANSI C or C89.

The new features of the 2011 C standard are not yet fully supported by all compilers and
standard library implementations. In this book, we have therefore labeled 2011 features —
such as multithreading, type-generic macros, and new standard library functions — with
the abbreviation C11. Extensions that were introduced by the C99 standard are labeled
with the abbreviation C99.

This book is not an introduction to programming in C. Although it covers the
fundamentals of the language, it is not organized or written as a tutorial. If you are new to
C, we assume that you have read at least one of the many introductory books, or that you
are familiar with a related language, such as Java or C++.

How This Book Is Organized

This book is divided into three parts. The first part describes the C language in the strict
sense of the term; the second part describes the standard library; and the third part
describes the process of compiling and testing programs with the popular tools in the
GNU software collection.

Part1

Part I, which deals with the C language, includes Chapters 1 through 15. After Chapter 1,
which describes the general concepts and elements of the language, each chapter is
devoted to a specific topic, such as types, statements, or pointers. Although the topics are
ordered so that the fundamental concepts for each new topic have been presented in an
earlier chapter — types, for example, are described before expressions and operators,
which come before statements, and so on — you may sometimes need to follow references
to later chapters to fill in related details. For example, some discussion of pointers and
arrays is necessary in Chapter 5 (which covers expressions and operators), even though
pointers and arrays are not described in full detail until Chapters 8 and 9.

Chapter 1, “Language Basics”

Describes the characteristics of the language and how C programs are structured and
compiled. This chapter introduces basic concepts such as the translation unit,
character sets, and identifiers.

Chapter 2, “Types”

Provides an overview of types in C and describes the basic types, the type void, and
enumerated types.

Chapter 3, “Literals”

Describes numeric constants, character constants, and string literals, including escape
sequences.

Chapter 4, “Type Conversions”

Describes implicit and explicit type conversions, including integer promotion and the
usual arithmetic conversions.

Chapter 5, “Expressions and Operators”

Describes the evaluation of expressions, all the operators, and their compatible
operands.

Chapter 6, “Statements”
Describes C statements such as blocks, loops, and jumps.
Chapter 7, “Functions”

Describes function definitions and function calls, including recursive and inline
functions.

Chapter 8, “Arrays”

Describes fixed-length and variable-length arrays, including strings, array
initialization, and multidimensional arrays.

Chapter 9, “Pointers”

Describes the definition and use of pointers to objects and functions.

Chapter 10, “Structures, Unions, and Bit-Fields”
Describes the organization of data in these user-defined derived types.
Chapter 11, “Declarations”

Describes the general syntax of a declaration, identifier linkage, and the storage
duration of objects.

Chapter 12, “Dynamic Memory Management”

Describes the standard library’s dynamic memory management functions, illustrating
their use in a sample implementation of a generalized binary tree.

Chapter 13, “Input and Output”

Describes the C concept of input and output, with an overview of the use of the
standard I/O library.

Chapter 14, “Multithreading”

Describes the use of the C11 multithreading features, including atomic operations,
communication between threads, and thread-specific storage.

Chapter 15, “Preprocessing Directives”

Describes the definition and use of macros, conditional compiling, and all the other
preprocessor directives and operators.

Part I1

Part II, consisting of Chapters 16, 17, and 18, is devoted to the C standard library. It
provides an overview of standard headers and also contains a detailed function reference.

Chapter 16, “The Standard Headers”

Describes contents of the headers and their use. The headers contain all of the
standard library’s macros and type definitions.

Chapter 17, “Functions at a Glance”

Provides an overview of the standard library functions, organized by areas of
application (e.g., mathematical functions, date and time functions, etc.).

Chapter 18, “Standard Library Functions”

Describes each standard library function in detail, in alphabetical order, and contains
examples to illustrate the use of each function.

Part I1I

The third part of this book, which includes Chapters 19 through 20, provides the necessary
knowledge of the C programmer’s basic tools: the compiler, the make utility, and the
debugger. The tools described here are those in the GNU software collection. Finally, the
use of these tools in an integrated development environment (IDE) for C is described
using the Eclipse IDE as an example.

Chapter 19, “Compiling with GCC”

Describes the principal capabilities that the widely used compiler offers for C
programmers.

Chapter 20, “Using make to Build C Programs”

Describes how to use the make program to automate the compiling process for large
programs.

Chapter 21, “Debugging C Programs with GDB”

Describes how to run a program under the control of the GNU debugger and how to
analyze programs’ runtime behavior to find logical errors.

Chapter 22, “Using an IDE with C”

Describes the use of an integrated development environment (IDE) for unified,
convienient access to all the tools for developing C programes.

Further Reading

In addition to works mentioned at appropriate points in the text, there are a number of
resources for readers who want more technical detail than even this book can provide. The
international working group on C standardization has an official home page at
http://www.open-std.org/jtc1/sc22/wg14, with links to the latest version of the C standard
and current projects of the working group.

For readers who are interested in not only the what and how of C, but also the why, the
WG14 site also offers links to some of its drafts and rationales. These documents describe
some of the motivations and constraints involved in the standardization process.
Furthermore, for those who may wonder how C “got to be that way” in the first place, the
originator of C, the late Dennis Ritchie, wrote an article titled “The Development of the C
Language”. This and other historical documents are still available on his Bell Labs
website, https://www.bell-labs.com/usr/dmr/www/index.html.

Readers who want details on floating-point math beyond the scope of C may wish to start
with David Goldberg’s thorough introduction, “What Every Computer Scientist Should
Know About Floating-Point Arithmetic,” currently available online at
http://docs.sun.com/source/806-3568/ncg_goldberg.html.

http://www.open-std.org/jtc1/sc22/wg14
https://www.bell-labs.com/usr/dmr/www/chist.html
https://www.bell-labs.com/usr/dmr/www/index.html
http://docs.sun.com/source/806-3568/ncg_goldberg.html

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic

Highlights new terms; indicates filenames, file extensions, URLs, directories, and
Unix utilities.

Constant width

Indicates all elements of C source code: keywords, operators, variables, functions,
macros, types, parameters, and literals. Also used for console commands and options,
and the output from such commands.

Constant width bold

Highlights the function or statement under discussion in code examples. In compiler,
make, and debugger sessions, this font indicates command input to be typed literally
by the user.

Constant width italic

Indicates parameters in function prototypes, or placeholders to be replaced with your
own values.

Plain text

Indicates keys such as Return, Tab, and Citrl.

TIP
This element signifies a tip or suggestion.
NOTE
This element signifies a general note.
WARNING

This element indicates a warning or caution.

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/oreillymedia/c-in-a-nutshell-2E.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not need to
contact us for permission unless you’re reproducing a significant portion of the code. For
example, writing a program that uses several chunks of code from this book does not
require permission. Selling or distributing a CD-ROM of examples from O’Reilly books
does require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “C in a Nutshell, 2nd Edition by Peter Prinz
and Tony Crawford (O’Reilly). Copyright 2016 Peter Prinz, Tony Crawford, 978-1-491-
90475-6.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

https://github.com/oreillymedia/c-in-a-nutshell-2E
mailto:permissions@oreilly.com

Safari® Books Online
NOTE

Safari Books Online is an on-demand digital library that delivers expert content in both
book and video form from the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and creative
professionals use Safari Books Online as their primary resource for research, problem
solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan
Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com

How to Contact Us

Please address comments and questions concerning this book to the publisher:

= O’Reilly Media, Inc.

= 1005 Gravenstein Highway North

m Sebastopol, CA 95472

= 800-998-9938 (in the United States or Canada)

m 707-829-0515 (international or local)

= 707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional

information. You can access this page at http://bit.ly/C_Nutshell_Z2e.

To comment or ask technical questions about this book, send email to
bookquestions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website at
http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

http://bit.ly/C_Nutshell_2e
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Acknowledgments

Both of us want to thank everyone at O’Reilly for their fantastic work on our book, and
especially our editors, Rachel Roumeliotis and Katie Schooling, for all their guidance
along the way. We also thank our technical reviewers, Matt Crawford, David Kitabjian,
Chris LaPre, John C. Craig, and Loic Pefferkorn, for their valuable criticism of our
manuscript, and we’re grateful to our production editor, Kristen Brown, and our
copyeditor, Gillian McGarvey, for all their attention to making our book look good and
bringing our style up to date. Finally, thanks to Jonathan Gennick for setting the whole
project in motion all those years ago.

Peter

I would like to thank Tony, first of all, for the excellent collaboration. My heartfelt thanks
also go to all my friends for the understanding they showed again and again when I had so
little time for them. Last but not least, I dedicate this book to my daughters, Vivian and
Jeanette — both of them now PhDs in computer science — who strengthened my
ambition to carry out this book project.

Tony

I thank Peter for letting me take all the space I could fill in this project.

Part 1. Language

Chapter 1. Language Basics

This chapter describes the basic characteristics and elements of the C programming
language.

Characteristics of C

C is a general-purpose, procedural programming language. Dennis Ritchie first devised C
in the 1970s at AT&T Bell Laboratories in Murray Hill, New Jersey, for the purpose of
implementing the Unix operating system and utilities with the greatest possible degree of
independence from specific hardware platforms. The key characteristics of the C language
are the qualities that made it suitable for that purpose:

m Source code portability
m The ability to operate “close to the machine”
m Efficiency

As a result, the developers of Unix were able to write most of the operating system in C,
leaving only a minimum of system-specific hardware manipulation to be coded in
assembler.

C’s ancestors are the typeless programming languages BCPL (the Basic Combined
Programming Language), developed by Martin Richards; and B, a descendant of BCPL,
developed by Ken Thompson. A new feature of C was its variety of data types: characters,
numeric types, arrays, structures, and so on. Brian Kernighan and Dennis Ritchie
published an official description of the C programming language in 1978. As the first de
facto standard, their description is commonly referred to simply as K&R.! C owes its high
degree of portability to a compact core language that contains few hardware-dependent
elements. For example, the C language proper has no file access or dynamic memory
management statements. In fact, there aren’t even any statements for console input and
output. Instead, the extensive C standard library provides the functions for all of these
purposes.

This language design makes the C compiler relatively compact and easy to port to new
systems. Furthermore, once the compiler is running on a new system, you can compile
most of the functions in the standard library with no further modification, because they are
in turn written in portable C. As a result, C compilers are available for practically every
computer system.

Because C was expressly designed for system programming, it is hardly surprising that
one of its major uses today is in programming embedded systems. At the same time,
however, many developers use C as a portable, structured high-level language to write
programs such as powerful word processor, database, and graphics applications.

The Structure of C Programs

The procedural building blocks of a C program are functions, which can invoke one
another. Every function in a well-designed program serves a specific purpose. The
functions contain statements for the program to execute sequentially, and statements can
also be grouped to form block statements, or blocks. As the programmer, you can use the
ready-made functions in the standard library, or write your own when no standard function
fulfills your intended purpose. In addition to the C standard library, there are many
specialized libraries available, such as libraries of graphics functions. However, by using
such nonstandard libraries, you limit the portability of your program to those systems to
which the libraries themselves have been ported.

Every C program must define at least one function of its own, with the special name
main(), which is the first function invoked when the program starts. The main() function

is the program’s top level of control, and can call other functions as subroutines.

Example 1-1 shows the structure of a simple, complete C program. We will discuss the
details of declarations, function calls, output streams, and more elsewhere in this book.
For now, we are simply concerned with the general structure of the C source code. The
program in Example 1-1 defines two functions, main() and circularArea(). The main()
function calls circularArea() to obtain the area of a circle with a given radius, and then
calls the standard library function printf () to output the results in formatted strings on
the console.

Example 1-1. A simple C program

// circle.c: Calculate and print the areas of circles
#include <stdio.h> // Preprocessor directive

double circularArea(double r); // Function declaration (prototype form)

int main() // Definition of main() begins
{
double radius = 1.0, area = 0.0;
printf(" Areas of Circles\n\n");
printf(" Radius Area\n"
L L \nll) ;

area = circularArea(radius);
printf("%10.1f %10.2f\n", radius, area);

radius = 5.0;
area = circularArea(radius);
printf("%10.1f %10.2f\n", radius, area);

return 0,

}

// The function circularArea() calculates the area of a circle
// Parameter: The radius of the circle
// Return value: The area of the circle

double circularArea(double r) // Definition of circularArea() begins

{
const double pi = 3.1415926536; // Pi 1is a constant

return pi *r * r;

}

Output:

Areas of Circles

Radius Area
1.0 3.14
5.0 78.54

Note that the compiler requires a prior declaration of each function called. The prototype
of circularArea() in the third line of Example 1-1 provides the information needed to

compile a statement that calls this function. The prototypes of standard library functions
are found in standard header files. Because the header file stdio.h contains the prototype of
the printf() function, the preprocessor directive #include <stdio.h> declares the
function indirectly by directing the compiler’s preprocessor to insert the contents of that
file. (See also “How the C Compiler Works”.)

You may arrange the functions defined in a program in any order. In Example 1-1, we
could just as well have placed the function circularArea() before the function main(). If
we had, then the prototype declaration of circularArea() would be superfluous, because
the definition of the function is also a declaration.

Function definitions cannot be nested inside one another: you can define a local variable
within a function block, but not a local function.

Source Files

The function definitions, global declarations, and preprocessing directives make up the
source code of a C program. For small programs, the source code is written in a single
source file. Larger C programs consist of several source files. Because the function
definitions generally depend on preprocessor directives and global declarations, source
files usually have the following internal structure:

1. Preprocessor directives
2. Global declarations
3. Function definitions

C supports modular programming by allowing you to organize a program in as many
source and header files as desired, and to edit and compile them separately. Each source
file generally contains functions that are logically related, such as the program’s user
interface functions. It is customary to label C source files with the filename suffix .c.

Examples 1-2 and 1-3 show the same program as Example 1-1, but divided into two
source files.

Example 1-2. The first source file, containing the main() function

// circle.c: Prints the areas of circles.
// Uses circulararea.c for the math

#include <stdio.h>
double circularArea(double r);

int main()

{

/* ... As 1in Example 1-1.. */
}

Example 1-3. The second source file, containing the circularArea() function

// circulararea.c: Calculates the areas of circles.
// Called by main() in circle.c

double circularArea(double r)

{

/* ... As 1in Example 1-1.. */

}

When a program consists of several source files, you need to declare the same functions
and global variables, and define the same macros and constants, in many of the files.
These declarations and definitions thus form a sort of file header that is more or less
constant throughout a program. For the sake of simplicity and consistency, you can write
this information just once in a separate header file, and then reference the header file using
an #include directive in each source code file. Header files are customarily identified by
the filename suffix .h. A header file explicitly included in a C source file may in turn
include other files.

Each C source file, together with all the header files included in it, makes up a translation
unit. The compiler processes the contents of the translation unit sequentially, parsing the

source code into tokens, its smallest semantic units, such as variable names and operators.
See “Tokens” for more detail.

Any number of whitespace characters can occur between two successive tokens, allowing
you a great deal of freedom in formatting the source code. There are no rules for line
breaks or indenting, and you may use spaces, tabs, and blank lines liberally to create
“human-readable” source code. The preprocessor directives are slightly less flexible: a
preprocessor directive must always appear on a line by itself, and no characters except
spaces or tabs may precede the hash mark (#) that begins the line.

There are many different conventions and “house styles” for source code formatting. Most
of them include the following common rules:

m Start a new line for each new declaration and statement.

m Use indentation to reflect the nested structure of block statements.

Comments

You should use comments generously in the source code to document your C programs.
There are two ways to insert a comment in C: block comments begin with /* and end with

*/, and line comments begin with // and end with the next newline character.

You can use the /* and */ delimiters to begin and end comments within a line, and to

enclose comments of several lines. For example, in the following function prototype, the
ellipsis (...) signifies that the open() function has a third, optional parameter. The comment
explains the usage of the optional parameter:

int open(const char *name, int mode, ... /* int permissions */);

You can use // to insert comments that fill an entire line, or to write source code in a two-
column format, with program code on the left and comments on the right:

const double pi = 3.1415926536; // pi 1is constant

These line comments were officially added to the C language by the C99 standard, but
most compilers already supported them even before C99. They are sometimes called
“C++-style” comments, although they originated in C’s forerunner, BCPL.

Inside the quotation marks that delimit a character constant or a string literal, the
characters /* and // do not start a comment. For example, the following statement
contains no comments:

printf("Comments in C begin with /* or //.\n");

The only thing that the preprocessor looks for in examining the characters in a comment is
the end of the comment; thus it is not possible to nest block comments. However, you can
insert /* and */ to comment out part of a program that contains line comments:

/* Temporarily removing two lines:
const double pi = 3.1415926536; // pi 1s constant
area = pi *r *r // Calculate the area
Temporarily removed up to here */

If you want to comment out part of a program that contains block comments, you can use
a conditional preprocessor directive (described in Chapter 15):

#if 0
const double pi = 3.1415926536; /* pi 1is constant */
area = pi *r *r /* Calculate the area */
#endif

The preprocessor replaces each comment with a space. The character sequence
min/*max*/Value thus becomes the two tokens min value.

Character Sets

C makes a distinction between the environment in which the compiler translates the source
files of a program (the translation environment) and the environment in which the
compiled program is executed (the execution environment). Accordingly, C defines two
character sets: the source character set is the set of characters that may be used in C
source code, and the execution character set is the set of characters that can be interpreted
by the running program. In many C implementations, the two character sets are identical.
If they are not, then the compiler converts the characters in character constants and string
literals in the source code into the corresponding elements of the execution character set.

Each of the two character sets includes both a basic character set and extended
characters. The C language does not specify the extended characters, which are usually
dependent on the local language. The extended characters together with the basic character
set make up the extended character set.

The basic source and execution character sets both contain the following types of
characters:

The letters of the Latin alphabet
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopgqrstuvwxyz

The decimal digits
01234567829

The following 29 graphic characters
rtHew&t () +, -/ < =>2 [N] A~_{ |}~
The five whitespace characters

Space, horizontal tab, vertical tab, newline, and form feed

The basic execution character set also includes four nonprintable characters: the null
character (which acts as the termination mark in a character string), alert, backspace, and
carriage return. To represent these characters in character and string literals, type the
corresponding escape sequences beginning with a backslash: \o for the null character, \a

for alert, \b for backspace, and \r for carriage return. See Chapter 3 for more details.

The actual numeric values of characters — the character codes — may vary from one C
implementation to another. The language itself imposes only these conditions:

m Each character in the basic character set must be representable in one byte.
» The null character is a byte in which all bits are 0.

m The value of each decimal digit after O is greater by one than that of the preceding
digit.

Wide Characters and Multibyte Characters

C was originally developed in an English-speaking environment where the dominant
character set was the 7-bit ASCII code. Since then, the 8-bit byte has become the most
common unit of character encoding, but software for international use generally has to be
able to represent more different characters than can be coded in one byte. Furthermore, a
variety of multibyte character encoding schemes have long been in use internationally to
represent non-Latin alphabets and the nonalphabetic Chinese, Japanese, and Korean
writing systems. In 1994, with the adoption of “Normative Addendum 1,” ISO C
standardized two ways of representing larger character sets:

m Wide characters, in which the same bit width is used for every character in a character
set

m Multibyte characters, in which a given character can be represented by one or several
bytes, and the character value of a given byte sequence can depend on its context in a
string or stream

TIP

Although C now provides abstract mechanisms to manipulate and convert the different kinds of encoding
schemes, the language itself doesn’t define or specify any encoding scheme, or any character set except the
basic source and execution character sets described in the previous section. In other words, it is left up to
individual implementations to specify how to encode wide characters, and what multibyte encoding
schemes to support.

Wide characters

Since the 1994 addendum, C has provided not only the type char but also wchar_t, the

wide character type. This type, defined in the header file stddef.h, is large enough to
represent any element of the given implementation’s extended character sets.

Although the C standard does not require support for Unicode character sets, many
implementations use the Unicode transformation formats UTF-16 and UTF-32 (see
http://www.unicode.org/) for wide characters. The Unicode standard is largely identical
with the ISO/IEC 10646 standard, and is a superset of many previously existing character
sets, including the 7-bit ASCII code. When the Unicode standard is implemented, the type
wchar_t is at least 16 or 32 bits wide, and a value of type wchar_t represents one Unicode

character. For example, the following definition initializes the variable wc with the Greek
letter a:

wchar_t wc = '"\x3b1';

The escape sequence beginning with \x indicates a character code in hexadecimal notation
to be stored in the variable — in this case, the code for a lowercase alpha.

For better Unicode support, C11 introduced the additional wide-character types char16_t
and char32_t, which are defined as unsigned integer types in the header file uchar.h.

http://www.unicode.org/

Characters of the type char16_t are encoded in UTF-16 in C implementations that define
the macro _ STDC_UTF_16__. Similarly, in implementations that define the macro
__STDC_UTF_32__, characters of the type char32_t are encoded in UTF-32.

Multibyte characters

In multibyte character sets, each character is coded as a sequence of one or more bytes.
Both the source and execution character sets may contain multibyte characters. If they do,
then each character in the basic character set occupies only one byte, and no multibyte
character except the null character may contain any byte in which all bits are 0. Multibyte
characters can be used in character constants, string literals, identifiers, comments, and
header filenames. Many multibyte character sets are designed to support a certain
language, such as the Japanese Industrial Standard character set (JIS). The multibyte UTF-
8 character set, defined by the Unicode Consortium, is capable of representing all Unicode
characters. UTF-8 uses from one to four bytes to represent a character.

The key difference between multibyte characters and wide characters (that is, characters of
the type wchar_t, char16_t, or char32_t) is that wide characters are all the same size, and
multibyte characters are represented by varying numbers of bytes. This representation
makes multibyte strings more complicated to process than strings of wide characters. For
example, even though the character A can be represented in a single byte, finding it in a
multibyte string requires more than a simple byte-by-byte comparison, because the same
byte value in certain locations could be part of a different character. Multibyte characters
are well suited for saving text in files, however (see Chapter 13). Furthermore, the
encoding of multibyte characters is independent of the system architecture, while
encoding of wide characters is dependent on the given system’s byte order: that is, the
bytes of a wide character may be in big-endian or little-endian order, depending on the
system.

Conversion

C provides standard functions to obtain the wchar_t value of any multibyte character, and
to convert any wide character to its multibyte representation. For example, if the C
compiler uses the Unicode standards UTF-16 and UTF-8, then the following call to the
function wctomb () (read: “wide character to multibyte”) obtains the multibyte
representation of the character a:

wchar_t wc = L'\x3B1'; // Greek lowercase alpha, a

char mbStr[10] = "";

int nBytes = 0;

nBytes = wctomb(mbStr, wc);

if(nBytes < 0)
puts("Not a valid multibyte character in your locale.");

After a successful function call, the array mbStr contains the multibyte character, which in
this example is the sequence "\xCE\xB1". The wctomb () function’s return value, assigned
here to the variable nBytes, is the number of bytes required to represent the multibyte

character — namely, 2.

The standard library also provides conversion functions for char16_t and char32_t, the
new wide-character types introduced in C11, such as the function c16rtomb(), which
returns the multibyte character that corresponds to a given wide character of the type
char16_t (see “Multibyte Characters”).

Universal Character Names

C also supports universal character names as a way to use the extended character set
regardless of the implementation’s encoding. You can specify any extended character by
its universal character name, which is its Unicode value in the form:

\UXXXX

or:

AUXXXXXXXX

where xxxx or xxxxxxxx is a Unicode code point in hexadecimal notation. Use the
lowercase u prefix followed by four hexadecimal digits, or the uppercase U followed by
exactly eight hex digits. If the first four hexadecimal digits are zero, then the same
universal character name can be written either as \uxxxx or as\UG@OOXXXX.

Universal character names are permissible in identifiers, character constants, and string
literals. However, they must not be used to represent characters in the basic character set.

When you specify a character by its universal character name, the compiler stores it in the
character set used by the implementation. For example, if the execution character set in a
localized program is ISO 8859-7 (8-bit Greek), then the following definition initializes the
variable alpha with the code\xE1:

char alpha = '\u@3B1';

However, if the execution character set is UTF-16, then you need to define the variable as
a wide character:

wchar_t alpha = '\u03B1'; // or «charli6 t alpha = u'\uG3B1';
In this case, the character code value assigned to alpha is hexadecimal 3B1, the same as
the universal character name.

TIP

Not all compilers support universal character names.

Digraphs and Trigraphs

C provides alternative representations for a number of punctuation marks that are not
available on all keyboards. Six of these are the digraphs, or two-character tokens, which
represent the characters shown in Table 1-1.

Table 1-1.
Digraphs

Digraph Equivalent

<: [
>]
<% {
%> }
%: #
%:%: ##

These sequences are not interpreted as digraphs if they occur within character constants or
string literals. In all other positions, they behave exactly like the single-character tokens
they represent. For example, the following code fragments are perfectly equivalent, and
produce the same output. With digraphs:

int arr<::> = <% 10, 20, 30 %>;
printf("The second array element is <%d>.\n", arr<:1:>);

Without digraphs:

int arr[] = { 10, 20, 30 };
printf("The second array element is <%d>.\n", arr[1]);

Output:

The second array element is <20>,

C also provides trigraphs, three-character representations, all of them beginning with two
question marks. The third character determines which punctuation mark a trigraph
represents, as shown in Table 1-2.

Table 1-2.
Trigraphs

Trigraph Equivalent

272([

??)]

?7< {

27> }
?27= #
??/ \
2?1 |

22! A

Trigraphs allow you to write any C program using only the characters defined in ISO/IEC
646, the 1991 standard corresponding to 7-bit ASCII. The compiler’s preprocessor
replaces the trigraphs with their single-character equivalents in the first phase of
compilation. This means that the trigraphs, unlike digraphs, are translated into their single-
character equivalents no matter where they occur, even in character constants, string
literals, comments, and preprocessing directives. For example, the preprocessor interprets
the following statement’s second and third question marks as the beginning of a trigraph:

printf("Cancel???(y/n) ");

Thus, the line produces the following unintended preprocessor output:

printf("Cancel?[y/n) ");

If you need to use one of these three-character sequences and do not want it to be
interpreted as a trigraph, you can write the question marks as escape sequences:

printf("cancel\?\?\?(y/n) ");

If the character following any two question marks is not one of those shown in Table 1-2,
then the sequence is not a trigraph, and remains unchanged.

TIP

As another substitute for punctuation characters in addition to the digraphs and trigraphs, the header file
is0646.h contains macros that define alternative representations of C’s logical operators and bitwise
operators, such as and for && and xor for 2. For details, see Chapter 16.

Identifiers

The term identifier refers to the names of variables, functions, macros, structures, and
other objects defined in a C program. Identifiers can contain the following characters:

m The letters in the basic character set, a—z and A-z (identifiers are case-sensitive)

m The underscore character, _

m The decimal digits 0—9, although the first character of an identifier must not be a digit
m Universal character names that represent the letters and digits of other languages

The permissible universal characters are defined in Annex D of the C standard, and
correspond to the characters defined in the ISO/IEC TR 10176 standard, minus the basic
character set.

Multibyte characters may also be permissible in identifiers. However, it is up to the given
C implementation to determine exactly which multibyte characters are permitted and what
universal character names they correspond to.

The following 44 keywords are reserved in C, each having a specific meaning to the
compiler, and must not be used as identifiers:

auto extern short while
break float signed _Alignas
case for sizeof _Alignof
char goto static _Atomic
const if struct _Bool
continue inline switch _Complex
default int typedef _Generic
do long union _Imaginary

double register unsigned _Noreturn
else restrict void _Static_assert

enum return volatile _Thread_local

The following examples are valid identifiers:

X dollar Break error_handler scale64

The following are not valid identifiers:

1st_rank switch y/n x-ray

If the compiler supports universal character names, then a is also an example of a valid
identifier, and you can define a variable by that name:

double a = 0.5;

Your source code editor might save the character o in the source file as the universal
character \ue3B1.

When choosing identifiers in your programs, remember that many identifiers are already
used by the C standard library. These include the names of standard library functions,
which you cannot use for functions you define or for global variables. See Chapter 16 for
details.

The C compiler provides the predefined identifier __func__ (note that there are four
underscore characters), which you can use in any function to access a string constant
containing the name of the function. This is useful for logging or for debugging output; for
example:

#include <stdio.h>
int test_func(char *s)

{
if(s == NULL) {
fprintf(stderr,
"%s: received null pointer argument\n", _ func__);
return -1;

b
SE S
3

In this example, passing a null pointer to the function test_func() generates the
following error message:

test_func: received null pointer argument

There is no limit on the length of identifiers. However, most compilers consider only a
limited number of characters in identifiers to be significant. In other words, a compiler
might fail to distinguish between two identifiers that start with a long identical sequence
of characters. To conform to the C standard, a compiler must treat at least the first 31
characters as significant in the names of functions and global variables (that is, identifiers
with external linkage), and at least the first 63 characters in all other identifiers.

Identifier Name Spaces

All identifiers fall into exactly one of the following four categories, which constitute
separate name spaces:

m Label names
m Tags, which identify structure, union, and enumeration types

= Names of structure or union members (each structure or union constitutes a separate
name space for its members)

m All other identifiers, which are called ordinary identifiers

Identifiers that belong to different name spaces may be the same without causing conflicts.
In other words, you can use the same name to refer to different objects, if they are of
different kinds. For example, the compiler is capable of distinguishing between a variable
and a label with the same name. Similarly, you can give the same name to a structure type,
an element in the structure, and a variable, as the following example shows:

struct pin { char pin[16];, /* ... */ };
_Bool check_pin(struct pin *pin)

{
int len = strlen(pin->pin);
VA4

}

The first line of the example defines a structure type identified by the tag pin, containing a
character array named pin as one of its members. In the second line, the function
parameter pin is a pointer to a structure of the type just defined. The expression pin->pin

in the fourth line designates the member of the structure that the function’s parameter
points to. The context in which an identifier appears always determines its name space
with no ambiguity. Nonetheless, it is generally a good idea to make all identifiers in a
program distinct, in order to spare human readers unnecessary confusion.

Identifier Scope

The scope of an identifier refers to that part of the translation unit in which the identifier is
meaningful. Or to put it another way, the identifier’s scope is that part of the program that
can “see” that identifier. The type of scope is always determined by the location at which
you declare the identifier (except for labels, which always have function scope). Four
kinds of scope are possible:

File scope

If you declare an identifier outside all blocks and parameter lists, then it has file
scope. You can then use the identifier anywhere after the declaration and up to the
end of the translation unit.

Block scope

Except for labels, identifiers declared within a block have block scope. You can use
such an identifier only from its declaration to the end of the smallest block containing
that declaration. The smallest containing block is often, but not necessarily, the body
of a function definition. Starting with C99, declarations do not have to be placed
before all statements in a function block. The parameter names in the head of a
function definition also have block scope, and are valid within the corresponding
function block.

Function prototype scope

The parameter names in a function prototype have function prototype scope. Because
these parameter names are not significant outside the prototype itself, they are
meaningful only as comments, and can also be omitted. See Chapter 7 for further
information.

Function scope

The scope of a label is always the function block in which the label occurs, even if it
is placed within nested blocks. In other words, you can use a goto statement to jump
to a label from any point within the same function that contains the label. (Jumping
into nested blocks is not a good idea, though; see Chapter 6 for details.)

The scope of an identifier generally begins after its declaration. However, the type names
— or tags — of structure, union, and enumeration types and the names of enumeration
constants are an exception to this rule: their scope begins immediately after their
appearance in the declaration so that they can be referenced again in the declaration itself.
(Structures and unions are discussed in detail in Chapter 10; enumeration types are
described in Chapter 2.) For example, in the following declaration of a structure type, the
last member of the structure, next, is a pointer to the very structure type that is being

declared:
struct Node { /* ... */

struct Node *next; }; // Define a structure type
void printNode(const struct Node *ptrNode); // Declare a function

int printList(const struct Node *first) // Begin a function
{ // definition
struct Node *ptr = first;

while(ptr !'= NULL) {
printNode(ptr);
ptr = ptr->next;
3
3

In this code snippet, the identifiers Node, next, printNode, and printList all have file
scope. The parameter ptrNode has function prototype scope, and the variables first and
ptr have block scope.

It is possible to use an identifier again in a new declaration nested within its existing
scope, even if the new identifier does not have a different name space. If you do so, then
the new declaration must have block or function prototype scope, and the block or
function prototype must be a true subset of the outer scope. In such cases, the new
declaration of the same identifier hides the outer declaration so that the variable or
function declared in the outer block is not visible in the inner scope. For example, the
following declarations are permissible:

double x; // Declare a variable x with file scope
long calc(double x); // Declare a new x with function prototype
// scope

int main()

{

long x = calc(2.5), // Declare a long variable x with block scope

if(x < 0) // Here, x refers to the long variable
{ float x = 0.0F; // Declare a new variable x with block scope
VA4
}
X *= 2; // Here, x refers to the long variable again
VA4
}

In this example, the long variable x delcared in the main() function hides the global
variable x with type double. Thus, there is no direct way to access the double variable x
from within main (). Furthermore, in the conditional block that depends on the if
statement, x refers to the newly declared float variable, which in turn hides the long
variable x.

How the C Compiler Works

Once you have written a source file using a text editor, you can invoke a C compiler to
translate it into machine code. The compiler operates on a translation unit consisting of a
source file and all the header files referenced by #include directives. If the compiler finds
no errors in the translation unit, it generates an object file containing the corresponding
machine code. Object files are usually identified by the filename suffix .o or .obj. In
addition, the compiler may also generate an assembler listing (see Chapter 19).

Object files are also called modules. A library, such as the C standard library, contains
compiled, rapidly accessible modules of the standard functions.

The compiler translates each translation unit of a C program — that is, each source file
with any header files it includes — into a separate object file. The compiler then invokes
the linker, which combines the object files and any library functions used in an executable
file. Figure 1-1 illustrates the process of compiling and linking a program from several
source files and libraries. The executable file also contains any information that the target
operating system needs in order to load and start it.

Compiler Linker

Figure 1-1. From source code to executable file

The C Compiler’s Translation Phases

The compiling process takes place in eight logical steps. A given compiler may combine
several of these steps as long as the results are not affected. The steps are:

1. Characters are read from the source file and converted, if necessary, into the
characters of the source character set. The end-of-line indicators in the source file, if
different from the newline character, are replaced. Likewise, any trigraph sequences
are replaced with the single characters they represent. (Digraphs, however, are left
alone; they are not converted into their single-character equivalents.)

2. Wherever a backslash is followed immediately by a newline character, the
preprocessor deletes both. Because a line-end character ends a preprocessor
directive, this processing step lets you place a backslash at the end of a line in order
to continue a directive, such as a macro definition, on the next line.

TIP

Every source file, if not completely empty, must end with a newline character.

3. The source file is broken down into preprocessor tokens (see “Tokens™) and
sequences of whitespace characters. Each comment is treated as one space.

4. The preprocessor directives are carried out and macro calls are expanded.

TIP

Steps 1 through 4 are also applied to any files inserted by #include directives. Once the compiler

has carried out the preprocessor directives, it removes them from its working copy of the source
code.

5. The characters and escape sequences in character constants and string literals are
converted into the corresponding characters in the execution character set.

6. Adjacent string literals are concatenated into a single string.

7. The actual compiling takes place: the compiler analyzes the sequence of tokens and
generates the corresponding machine code.

8. The linker resolves references to external objects and functions, and generates the
executable file. If a module refers to external objects or functions that are not
defined in any of the translation units, the linker takes them from the standard library
or another specified library. External objects and functions must not be defined more
than once in a program.

For most compilers, either the preprocessor is a separate program, or the compiler
provides options to perform only the preprocessing (steps 1 through 4 in the preceding
list). This setup allows you to verify that your preprocessor directives have the intended
effects. For a more practically oriented look at the compiling process, see Chapter 19.

Tokens

A token is either a keyword, an identifier, a constant, a string literal, or a symbol. Symbols
in C consist of one or more punctuation characters, and function as operators or digraphs,
or have syntactic importance, like the semicolon that terminates a simple statement or the
braces { } that enclose a block statement. For example, the following C statement consists
of five tokens:

printf("Hello, world.\n");

The individual tokens are:

printf

(
"Hello, world.\n"

)

4

The tokens interpreted by the preprocessor are parsed in the third translation phase. These
are only slightly different from the tokens that the compiler interprets in the seventh phase
of translation:

= Within an #include directive, the preprocessor recognizes the additional tokens
<filename> and "filename".

= During the preprocessing phase, character constants and string literals have not yet
been converted from the source character set to the execution character set.

= Unlike the compiler proper, the preprocessor makes no distinction between integer
constants and floating-point constants.

In parsing the source file into tokens, the compiler (or preprocessor) always applies the
following principle: each successive non-whitespace character must be appended to the
token being read, unless appending it would make a valid token invalid. This rule resolves
any ambiguity in the following expression, for example:

a+++b

Because the first + cannot be part of an identifier or keyword starting with a, it begins a
new token. The second + appended to the first forms a valid token — the increment
operator — but a third + does not. Hence the expression must be parsed as:

a++ + b

See Chapter 19 for more information on compiling C programs.

1 The second edition, revised to reflect the first ANSI C standard, is available as The C
Programming Language, 2nd ed., by Brian W. Kernighan and Dennis M. Ritchie

(Englewood Cliffs, NJ: Prentice Hall, 1988).

Chapter 2. Types

Programs have to store and process different kinds of data, such as integers and floating-
point numbers, in different ways. To this end, the compiler needs to know what kind of
data a given value represents.

In C, the term object refers to a location in memory whose contents can represent values.
Objects that have names are also called variables. An object’s type determines how much
space the object occupies in memory, and how its possible values are encoded. For
example, the same pattern of bits can represent completely different integers depending on
whether the data object is interpreted as signed (that is, either positive or negative) or
unsigned (and hence unable to represent negative values).

Typology

The types in C can be classified as follows:

= Basic types
Standard and extended integer types

Real and complex floating-point types
» Enumerated types
m The type void

= Derived types
Pointer types

Array types
Structure types
m Union types
» Function types

The basic types and the enumerated types together make up the arithmetic types. The
arithmetic types and the pointer types together are called the scalar types. Finally, array
types and structure types are referred to collectively as the aggregate types. (Union types
are not considered aggregate because only one of their members can store a value at any
given time.)

A function type describes the interface to a function; that is, it specifies the type of the
function’s return value, and may also specify the types of all the parameters that are
passed to the function when it is called.

All other types describe objects. This description may or may not include the object’s
storage size. If it does, the type is properly called an object type; if not, it is an incomplete
type. An example of an incomplete type might be an externally defined array variable:

extern float fArr[]; // External declaration

This line declares fArr as an array whose elements have type float. However, because
the array’s size is not specified here, fArr’s type is incomplete. As long as the global array
fArr is defined with a specified size at another location in the program — in another

source file, for example — this declaration is sufficient to let you use the array in its
present scope. (For more details on external declarations, see Chapter 11.)

TIP

This chapter describes the basic types, enumerations, and the type void. The derived types are described in
Chapters 7 through 10.

Some types are designated by a sequence of more than one keyword, such as unsigned
short. In such cases, the keywords can be written in any order. However, there is a
conventional keyword order, which we use in this book.

Integer Types
There are five signed integer types. Most of these types can be designated by several
synonyms, which are listed in Table 2-1.

Table 2-1. Standard signed integer types

Type Synonyms

signed char

int signed, signed int
short short int, signed short, signed short int
long long int, signed long, signed long int

long long (C99) long long int, signed long long, signed long long int

For each of the five signed integer types in Table 2-1, there is also a corresponding
unsigned type that occupies the same amount of memory, with the same alignment. In
other words, if the compiler aligns signed int objects on even-numbered byte addresses,

then unsigned int objects are also aligned on even addresses. These unsigned types are
listed in Table 2-2.

Table 2-2. Unsigned standard integer

types
Type Synonyms

_Bool bool (defined in stdbool.h)
unsigned char

unsigned int unsigned

unsigned short unsigned short int
unsigned long unsigned long int

unsigned long long unsigned long long int

C99 introduced the unsigned integer type _Bool to represent Boolean truth values. The

Boolean value true is coded as 1, and false is coded as 0. If you include the header file
stdbool.h in a program, you can also use the identifiers bool, true, and false, which are

familiar to C++ programmers. The macro bool is a synonym for the type _Bool, and true

and false are symbolic constants equal to 1 and O.

The type char is also one of the standard integer types. However, the one-word type name
char is synonymous either with signed char or with unsigned char, depending on the
compiler. Because this choice is left up to the implementation, char, signed char, and
unsigned char are formally three different types.

TIP

If your program relies on char being able to hold values less than zero or greater than 127, you should be
using either signed char or unsigned char instead.

You can do arithmetic with character variables. It’s up to you to decide whether your
program interprets the number in a char variable as a character code or as something else.
For example, the following short program treats the char value in ch as both an integer
and a character, but at different times:

char ch = 'A"; // A variable with type char

printf("The character %c has the character code %d.\n", ch, ch);

for (; ch <= 'Z"; ++ch)
printf("%2c", ch);

In the printf () statement, ch is first treated as a character that gets displayed, and then as
numeric code value of the character. Likewise, the for loop treats ch as an integer in the
instruction ++ch, and as a character in the printf() function call. On systems that use the
7-bit ASCII code or an extension of it, the code produces the following output:

The character A has the character code 65.
ABCDEFGHIJKLMNOPQRSTUVWXYZ

A value of type char always occupies one byte — in other words, sizeof(char) always

yields 1 — and a byte is at least eight bits wide. Every character in the basic character set
can be represented in a char object as a positive value.

C defines only the minimum storage sizes of the other standard types: the size of type
short is at least two bytes, long is at least four bytes, and long long is at least eight

bytes. Furthermore, although the integer types may be larger than their minimum sizes, the
sizes implemented must be in the order:

sizeof(short) < sizeof(int) < sizeof(long) < sizeof(long long)

The type int is the integer type best adapted to the target system’s architecture, with the
size and bit format of a CPU register.

The internal representation of integer types is binary. Signed types may be represented in
binary as sign and magnitude, as a one’s complement, or as a two’s complement. The most
common representation is the two’s complement. The non-negative values of a signed type
are within the value range of the corresponding unsigned type, and the binary

representation of a non-negative value is the same in both the signed and unsigned types.
Table 2-3 shows the different interpretations of bit patterns as signed and unsigned integer

types.

Table 2-3. Binary representations of signed and unsigned 16-bit integers

Binary Decimal value as Decimal value as signed int, one’s Decimal value as signed int, two’s
unsigned int complement complement

00000000 0 0 0

00000000

00000000 1 1 1

00000001

00000000 2 2 2

00000010

01111111 32,767 32,767 32,767

11111111

10000000 32,768 -32,767 -32,768

00000000

10000000 32,769 -32,766 -32,767

00000001

11111111 65,534 -1 -2

11111110

11111111 65,535 -0 -1

11111111

Table 2-4 lists the sizes and value ranges of the standard integer types.

Table 2-4. Common storage sizes and value ranges of standard integer types

Type Storage size Minimum value Maximum value

char (Same as either signed char or unsigned char)

unsigned char One byte 0 255

signed char One byte -128 127

int Two bytes or four bytes -32,768 or -2,147,483,648 32,767 or 2,147,483,647
unsigned int Two bytes or four bytes 0 65,535 or 4,294,967,295

short Two bytes -32,768 32,767

unsigned short Two bytes 0 65,535

long Four bytes -2,147,483,648 2,147,483,647

unsigned long Four bytes 0 4,294,967,295

long long (C99) Eight bytes -9,223,372,036, 854,775,808 9,223,372,036, 854,775,807
unsigned long long (C99) Eight bytes 0 18,446,744,073, 709,551,615

In the following example, each of the int variables iIndex and iLimit occupies four
bytes on a 32-bit computer:

int iIndex, // Define two int variables and
ilimit = 1000; // initialize the second one.

To obtain the exact size of a type or variable, use the sizeof operator. The expression

sizeof (type)

yields the size of the type named, and

sizeof expression

yields the size of the given expression’s type, as a number of bytes with the type size_t.
The type size_t is defined in stddef.h, stdio.h, and other header files as an unsigned
integer type (such as unsigned long, for example). If the operand is an expression, the
size is that of the expression’s type. In the previous example, the value of sizeof (int)
would be the same as sizeof (iIndex) — namely, 4. The parentheses around the
expression iIndex can be omitted because iIndex is an expression, not a type.

You can find the value ranges of the integer types for your C compiler in the header file
limits.h, which defines macros such as INT_MIN, INT_MAX, UINT_MAX, and so on (see

Chapter 16). The program in Example 2-1 uses these macros to display the minimum and
maximum values for the types char and int.

Example 2-1. Value ranges of the types char and int

// limits.c: Display the value ranges of char and int.

#include <stdio.h>
#include <limits.h> // Contains the macros CHAR_MIN, INT_MIN, etc.

int main()

{
printf("Storage sizes and value ranges of the types char and int\n\n");
printf("The type char is %s.\n\n", CHAR_MIN < 0 ? "signed" :"unsigned");

printf(" Type Size (in bytes) Minimum Maximum\n"

o o o e o o o o e o e o e \nll);
printf(" char %8zu %20d %15d\n", sizeof(char), CHAR_MIN, CHAR_MAX);
printf(" int %8zu %20d %15d\n", sizeof(int), INT_MIN, INT_MAX);
return 0,

}

In arithmetic operations with integers, overflows can occur. An overflow happens when
the result of an operation is no longer within the range of values that the type being used

can represent. In arithmetic with unsigned integer types, overflows are ignored. In
mathematical terms, that means that the effective result of an unsigned integer operation is
equal to the remainder of a division by UTYPE_MAX + 1, where UTYPE_MAX is the unsigned
type’s maximum representable value. For example, the following addition causes the
variable to overflow:

unsigned int ui = UINT_MAX;
ui += 2; // Result: 1

C specifies this behavior only for the unsigned integer types. For all other types, the result
of an overflow is undefined. For example, the overflow may be ignored, or it may raise a
signal that aborts the program if it is not caught.

Integer Types Defined in Standard Headers

The headers of the standard library define numerous integer types for specific uses, such
as the type wchar_t to represent wide characters. These types are typedef names — that

is, synonyms for standard integer types (see “typedef Declarations”).

The types ptrdiff_t, size_t, and wchar_t are defined in the header stddef.h (and in other
headers); the types char16_t and char32_t are defined in the header uchar.h. For special
requirements, integer types with specifed bit widths, in signed and unsigned variants, are
defined in the header stdint.h. These are described in the following subsection.

Furthermore, the header stdint.h also defines macros that supply the maximum and
minimum representable values of all the integer types defined in the standard library. For
example, SIZE_MAX equals the largest value you can store in a variable of the type size_t.

For all details on the types listed here, and the corresponding macros, see Chapter 16.

Integer types with exact width (C99)

The width of an integer type is defined as the number of bits used to represent a value,
including the sign bit. Typical widths are 8, 16, 32, and 64 bits. For example, the type int
is at least 16 bits wide.

In C99, the header file stdint.h defines integer types to fulfill the need for known widths.
These types are listed in Table 2-5. Those types whose names begin with u are unsigned.

C99 implementations are not required to provide the types marked as “optional” in the
table.

Table 2-5. Integer types with defined width

Type Meaning Implementation

intN_t An integer type whose width is exactly n bits Optional

uintn_t

int_leastN_t An integer type whose width is at least v bits Required for ~ = 8, 16, 32, 64

uint_leastN_t

int_fastn_t The fastest type to process whose width is at least v bits Required for ~ = 8, 16, 32, 64
uint_fastn_t

intmax_t The widest integer type implemented Required
uintmax_t
intptr_t An integer type wide enough to store the value of a pointer Optional
uintptr_t

For example, int_least64_t and uint_least64 _t are integer types with a width of at
least 64 bits. If an optional signed type (without the prefix u) is defined, then the

corresponding unsigned type (with the initial u) is required, and vice versa. The following
example defines and initializes an array whose elements have the type int_fast32_t:

#define ARR_SIZE 100
int_fast32_t arr[ARR_SIZE]; // Define an array arr
// with elements of type int_fast32_t
for (int i = 0; i < ARR_SIZE; ++i)
arr[i] = (int_fast32_t)i; // Initialize each element

The types listed in Table 2-5 are usually defined as synonyms for existing standard types.
For example, the stdint.h file supplied with one C compiler contains the line:

typedef signed char int_fast8_t;

This declaration simply defines the new type int_fast8_t (the fastest 8-bit signed integer
type) as being equivalent with signed char.

Furthermore, an implementation may also define extended integer types such as int24_t
or uint_least128_t.

The signed intN_t types have a special feature: they must use the two’s complement

binary representation. As a result, their minimum value is —2""%, and their maximum value
is 2V1 - 1.

The value ranges of the types defined in stdint.h are also easy to obtain: macros for the
greatest and least representable values are defined in the same header file. The names of
the macros are the uppercased type names, with the suffix _t (for type) replaced by _MAX

or _MIN (see Chapter 16). For example, the following definition initializes the variable i64
with its smallest possible value:

int_least64_t i64 = INT_LEAST64_MIN;

The header file inttypes.h includes the header file stdint.h, and provides other features
such as extended integer type specifiers for use in printf() and scanf () function calls

(see Chapter 16).

Floating-Point Types

C also includes special numeric types that can represent nonintegers with a decimal point
in any position. The standard floating-point types for calculations with real numbers are as
follows:

float

For variables with single precision
double

For variables with double precision

long double
For variables with extended precision

A floating-point value can be stored only with a limited precision, which is determined by
the binary format used to represent it and the amount of memory used to store it. The
precision is expressed as a number of significant digits. For example, a “precision of six
decimal digits” or “six-digit precision” means that the type’s binary representation is
precise enough to store a real number of six decimal digits, so that its conversion back into
a six-digit decimal number yields the original six digits. The position of the decimal point
does not matter, and leading and trailing zeros are not counted in the six digits. The
numbers 123,456,000 and 0.00123456 can both be stored in a type with six-digit
precision.

In C, arithmetic operations with floating-point numbers are usually performed with double
or greater precision. The floating-point precision used internally by the given
implementation is indicated by the value of the macro FLT_EVAL_METHOD, defined in the
header float.h. For example, if the macro FLT_EVAL_METHOD has the value 1, the following
product is calculated using the double type:

float height = 1.2345, width = 2.3456; // Float variables have
// single precision.
double area = height * width; // The actual calculation
// 1s performed with
// double precision.

If you assign the result to a float variable, the value is rounded as necessary. For more
details on floating-point math, see “math.h”.

C defines only minimal requirements for the storage size and binary format of the
floating-point types. However, the format commonly used is the one defined by the
International Electrotechnical Commission (IEC) in the 1989 standard for binary floating-
point arithmetic, [EC 60559. This standard is based in turn on the Institute of Electrical
and Electronics Engineers’ 1985 standard, [EEE 754. Compilers can indicate that they
support the IEC floating-point standard by defining the macro __ STDC_IEC 559_ .

Table 2-6 shows the value ranges and the precision of the real floating-point types in
accordance with IEC 60559, using decimal notation.

Table 2-6. Real floating-point types

Type Storage size Value range Smallest positive value Precision
float 4 bytes +3.4E+38 1.2E-38 6 digits
double 8 bytes +1.7E+308 2.3E-308 15 digits
long double 10 bytes +1.1E+4932 3.4E-4932 19 digits

The header file float.h defines macros that allow you to use these values and other details
about the binary representation of real numbers in your programs. The macros FLT_MIN,

FLT_MAX, and FLT_DIG indicate the value range and the precision of the float type. The
corresponding macros for double and long double begin with the prefixes DBL_ and
LDBL_. These macros, and the binary representation of floating-point numbers, are
described in “float.h”.

The program in Example 2-2 starts by printing the typical values for the type float, and
then illustrates the rounding error that results from storing a floating-point number in a
float variable.

Example 2-2. Illustrating the precision of type float

#include <stdio.h>
#include <float.h>

int main()

{
puts("\nCharacteristics of the type float\n");

printf("Storage size: %d bytes\n"
"Smallest positive value: %E\n"
"Greatest positive value: %E\n"
"Precision: %d decimal digits\n",
sizeof(float), FLT_MIN, FLT_MAX, FLT_DIG);

puts("\nAn example of float precision:\n");
double d_var = 12345.6; // A variable of type double.
float f_var = (float)d_var; // Initializes the float
// variable with the value of d_var.

printf("The floating-point number "

"%18.10f\n", d_var);
printf("has been stored in a variable\n"

"of type float as the value "

"%18.10f\n", f_var);
printf("The rounding error 1is "

"%18.10f\n", d_var - f_var);

return 0,

}
The last part of this program typically generates the following output:

The floating-point number 12345.6000000000
has been stored in a variable

of type float as the value 12345.5996093750
The rounding error is 0.0003906250

In this example, the nearest representable value to the decimal 12,345.6 is

12,345.5996093750. This may not look like a round number in decimal notation, but in
the internal binary representation of the floating-point type, it is exactly representable,
while 12,345.60 is not.

Complex Floating-Point Types

C99 supports mathematical calculations with complex numbers. The 1999 standard
introduced complex floating-point types and extended the mathematical library to include
complex arithmetic functions. These functions are declared in the header file complex.h,
and include the trigonometric functions csin(), ctan(), and so on (see Chapter 16).

In the C11 standard, support for complex numbers is optional. The
macro__STDC_NO_COMPLEX__ can be defined to indicate that the implementation does not

include the header file complex.h.

A complex number z can be represented in Cartesian coordinates as z = x + y X i, where x
and y are real numbers, and i is the imaginary unit, defined by the equation i> = -1. The
number x is called the real part, and y the imaginary part, of z.

In C, a complex number is represented by a pair of floating-point values for the real and
imaginary parts. Both parts have the same type, whether float, double, or long double.
Accordingly, these are the three complex floating-point types:

m float _Complex
® double _Complex
® long double _Complex

Each of these types has the same size and alignment as an array of two float, double, or
long double elements.

The header file complex.h defines the macros complex and I. The macro complex is a
synonym for the keyword _Complex. The macro I represents the imaginary unit i, and has
the type const float _Complex:

#include <complex.h>

V/a
double complex z = 1.0 + 2.0 * I,
z *= I; // Rotate z through 90° counterclockwise around the origin

To compose a complex number from its real and imaginary parts, C11 also provides the
macros CMPLX, CMPLXF, and CMPLXL. For example, the complex number CMPLX(1.0, 2.0)

is equal to the number z defined in the preceding example, and has the type double
complex. Similarly, the macros CMPLXF and CMPLXL yield a complex number of the type
float complex and long double complex. An implementation may also include the
following types to represent pure imaginary numbers: float imaginary, double

imaginary, and long double imaginary.

Enumerated Types

Enumerations are integer types that you define in a program. The definition of an
enumeration begins with the keyword enum, possibly followed by an identifier for the
enumeration, and contains a list of the type’s possible values, with a name for each value:

enum [identifier] { enumerator-list };

The following example defines the enumerated type enum color:

enum color { black, red, green, yellow, blue, white=7, gray };

The identifier color is the tag of this enumeration. The identifiers in the list — black,
red, and so on — are the enumeration constants, and have the type int. You can use these
constants anywhere within their scope — as case constants in a switch statement, for
example.

Each enumeration constant of a given enumerated type represents a certain value, which is
determined either implicitly by its position in the list, or explicitly by initialization with a
constant expression. A constant without an initialization has the value 0 if it is the first
constant in the list, or the value of the preceding constant plus one. Thus, in the previous
example, the constants listed have the values 0, 1, 2, 3, 4, 7, 8.

Within an enumerated type’s scope, you can use the type in declarations:

enum color bgColor = blue, // Define two variables
fgColor = yellow; // of type enum color.
void setFgColor(enum color fgc); // Declare a function with a
// parameter of type enum color.

An enumerated type always corresponds to one of the standard integer types. Thus, your C
programs may perform ordinary arithmetic operations with variables of enumerated types.
The compiler may select the appropriate integer type depending on the defined values of
the enumeration constants. In the previous example, the type char would be sufficient to

represent all the values of the enumerated type enum color.

Different constants in an enumeration may have the same value:

enum { OFF, ON, STOP = 0, GO = 1, CLOSED = @, OPEN = 1 };

As the preceding example also illustrates, the definition of an enumerated type does not
necessarily have to include a tag. Omitting the tag makes sense if you only want to define
constants and not declare any variables of the given type. Defining integer constants in
this way is generally preferable to using a long list of #define directives, as the
enumeration provides the compiler with the names of the constants as well as their
numeric values. These names are a great advantage in a debugger’s display, for example.

The Type void

The type specifier void indicates that no value is available. Consequently, you cannot
declare variables or constants with this type. You can use the type void for the purposes
described in the following sections.

void in Function Declarations
A function with no return value has the type void. For example, the standard function

perror () is declared by the prototype:

void perror(const char *);

The keyword void in the parameter list of a function prototype indicates that the function
has no parameters:

FILE *tmpfile(void);

As a result, the compiler issues an error message if you try to use a function call such as
tmpfile("name.tmp"). If the function were declared without void in the parameter list,
the C compiler would have no information about the function’s parameters, and hence
would be unable to determine whether the function call is correct.

Expressions of Type void

A void expression is one that has no value. For example, a call to a function with no return
value is an expression of type void:

char filename[] = "memo.txt";
if (fopen(filename, "r'") == NULL)
perror(filename); // A void expression

The cast operation (void)expression explicitly discards the value of an expression, such
as the return value of a function:

(void)printf("I don't need this function's return value!\n");

Pointers to void

A pointer of type void * represents the address of an object, but not its type. You can use

such quasi-typeless pointers mainly to declare functions that can operate on various types
of pointer arguments, or that return a “multipurpose” pointer. The standard memory
management functions are a simple example:

void *malloc(size_t size);
void *realloc(void *ptr, size_t size);
void free(void *ptr);

As Example 2-3 illustrates, you can assign a void pointer value to another object pointer
type, or vice versa, without explicit type conversion.

Example 2-3. Using the type void

// usingvoid.c: Demonstrates uses of the type void

#include <stdio.h>
#include <time.h>
#include <stdlib.h> // Provides the following function prototypes:
// void srand(unsigned int seed);
// int rand(void),
// void *malloc(size t size);
// void free(void *ptr),
// void exit(int status),

enum { ARR_LEN = 100 };
int main()
{
int i, // Obtain some storage space.
*pNumbers = malloc(ARR_LEN * sizeof(int));
if (pNumbers == NULL)
fprintf(stderr, "Insufficient memory.\n");
exit(1);

}

srand((unsigned)time(NULL)); // Initialize the
// random number generator.

for (i=0; i < ARR_LEN; ++i)
pNumbers[i] = rand() % 10000; // Store some random numbers.

printf("\n%d random numbers between 0 and 9999:\n", ARR_LEN);

for (i=0; i < ARR_LEN; ++i) // Output loop:
{
printf("%6d", pNumbers[i]); // Print one number per loop
if (1 % 10 == 9) putchar('\n'"); // iteration and a newline
} // after every 10 numbers.
free(pNumbers); // Release the storage space.
return 0,

The Alignment of Objects in Memory

Every complete object type imposes a certain alignment on objects of that type. In other
words, the type specifies the kind of memory addresses at which objects of that type can
be stored: all addresses, only even addresses, only addresses divisible by four, and so on.
The alignment of a type is expressed as a number of bytes equal to the minimum distance
between two objects of that type in storage. The specific values of the types’ alignments
can vary from one implementation to another, but they are always positive integer powers
of 2: that is, 1, 2, 4, 8, and so on. An alignment with a greater value than another type’s
alignment is said to be stricter than the other.

C11 provides the operator _Alignof to determine a type’s alignment, and the specifier
_Alignas to specify the alignment in an object definition.

The _Alignof operator, like the sizeof operator, yields a constant value with the type
size_t, an unsigned integer type defined in stddef.h and other header files. For example,
the following expression yields the alignment of the type int, which is typically 4:

_Alignof(int)

An alignment value less than or equal to _Alignof(max_align_t) is called a fundamental
alignment. All the fundamental types — that is, the basic types and pointer types — have
a fundamental alignment. The type max_align_t is defined in the header stddef.h, and its
alignment is supported in every context, including dynamic memory allocation, for
example. In addition, the implementation may also support alignments greater than
_Alignof(max_align_t), which are known as extended alignments.

When an object is defined with the specifier _Alignas, it can have a stricter alignment
than its type requires. The argument of _Alignas can be a constant integer expression
whose value is a valid alignment, or a type, as in the following examples:
_Alignas(4) short var; // Defines var with the type short
// and four-byte alignment.

_Alignas(double) float x; // Defines x with the type float
// and the alignment of double.

The form _Alignas(type) is synonymous with _Alignas (_Alignof(type)). The header
file stdalign.h defines alignof and alignas as synonyms for _Alignof and _Alignas.
Thus, if your program includes stdalign.h, you can write alignas(int) instead of
_Alignas(int).

Chapter 3. Literals

In C source code, a literal is a token that denotes a fixed value, which may be an integer, a
floating-point number, a character, or a string. A literal’s type is determined by its value
and its notation.

The literals discussed here are different from compound literals, which were introduced in
the C99 standard. Compound literals are ordinary modifiable objects, similar to variables.
For a full description of compound literals and the special operator used to create them,
see Chapter 5.

Integer Constants

An integer constant can be expressed as an ordinary decimal numeral, or as a numeral in
octal or hexadecimal notation. You must specify the intended notation by a prefix.

A decimal constant begins with a nonzero digit. For example, 255 is the decimal constant
for the base-10 value 255.

A number that begins with a leading zero is interpreted as an octal constant. Octal (or base
eight) notation uses only the digits from 0 to 7. For example, 047 is a valid octal constant

representing 4 x 8 + 7, and is equivalent with the decimal constant 39. The decimal
constant 255 is equal to the octal constant 0377.

A hexadecimal constant begins with the prefix ex or ox. The hexadecimal digits A to F can
be upper- or lowercase. For example, oxff, oXff, 0xFF, and 6XFF represent the same
hexadecimal constant, which is equivalent to the decimal constant 255.

Because the integer constants you define will eventually be used in expressions and
declarations, their type is important. The type of a constant is determined at the same time
as its value is defined. Integer constants such as the examples just mentioned usually have
the type int. However, if the value of an integer constant is outside the range of the type

int, then it must have a bigger type. In this case, the compiler assigns it the first type in a
hierarchy that is large enough to represent the value. For decimal constants, the type
hierarchy is:

int, long, long long

For octal and hexadecimal constants, the type hierarchy is:

int, unsigned int, long, unsigned long, long long, unsigned long long

For example, on a 16-bit system, the decimal constant 50000 has the type long, as the
greatest possible int value is 32,767, or 21> - 1.

You can also influence the types of constants in your programs explicitly by using
suffixes. A constant with the suffix 1 or L has the type long (or a larger type if necessary,

in accordance with the hierarchies just mentioned). Similarly, a constant with the suffix 11
or LL has at least the type long long. The suffix u or U can be used to ensure that the
constant has an unsigned type. The long and unsigned suffixes can be combined. Table 3-
1 gives a few examples.

Table 3-1. Examples of
constants with suffixes

Integer constant Type

0x200 int

512U

oL

oxfefuL

O777LL

OXAAAllu

unsigned int

long

unsigned long

long long

unsigned long long

Floating-Point Constants

Floating-point constants can be written either in decimal or in hexadecimal notation.
These notations are described in the next two sections.

Decimal Floating-Point Constants

An ordinary floating-point constant consists of a sequence of decimal digits containing a
decimal point. You may also multiply the value by a power of 10, as in scientific notation:
the power of 10 is represented simply by an exponent, introduced by the letter e or E. A
floating-point constant that contains an exponent does not need to have a decimal point.
Table 3-2 gives a few examples of decimal floating-point constants.

Table 3-2. Examples of decimal
floating-point constants

Floating-point constant Value

10.0 10
2.34E5 2.34 x 10°
67e-12 67.0 x 10712

The decimal point can also be the first or last character. Thus, 16. and .234E6 are
permissible numerals. However, the numeral 10 with no decimal point would be an integer
constant, not a floating-point constant.

The default type of a floating-point constant is double. You can also append the suffix F or
f to assign a constant the type float, or the suffix L or 1 to give a constant the type long
double, as this example shows:

float f_var = 123.456F; // Initialize a float variable.

long double 1ld_var = f_var * 987E7L; // Initialize a long double
// variable with the product of
// a multiplication performed
// with long double precision.

Hexadecimal Floating-Point Constants

The C99 standard introduced hexadecimal floating-point constants, which have a key
advantage over decimal floating-point numerals: if you specify a constant value in
hexadecimal notation, it can be stored in the computer’s binary floating-point format
exactly, with no rounding error, whereas values that are “round numbers” in decimal
notation — like 0.1 — may be repeating fractions in binary, and have to be rounded for
representation in the internal format. (For an example of rounding with floating-point
numbers, see Example 2-2.)

A hexadecimal floating-point constant consists of the prefix ox or 0X, a sequence of
hexadecimal digits with an optional decimal point (which perhaps we ought to call a
“hexadecimal point” in this case), and an exponent to base two. The exponent is a decimal
numeral introduced by the letter p or P. For example, the constant 6xa.fP-10 is equal to
the number (10 + 15/16) x 2710 (not 2716) in decimal notation. Equivalent ways of writing
the same constant value are OxA.Fp-10, 0x5.78p-9, 0xAFp-14, and 0x.02BCp0O. Each

difference of 1 in the exponent multiplies or divides the hexadecimal fraction by a factor
of 2, and each shift of the hexadecimal point by one place corresponds to a factor (or
divisor) of 16, or 24.

In hexadecimal floating-point constants, you must include the exponent, even if its value
is zero. This step is necessary in order to distinguish the type suffix F (after the exponent)
from the hexadecimal digit F (to the left of the exponent). For example, if the exponent
were not required, the constant 0x1.0F could represent either the number 1.0 with type
float, or the number 1 + 15/256 with the default type double.

Like decimal floating-point constants, hexadecimal floating-point constants also have the
default type double. Append the suffix F or f to assign a constant the type float, or the

suffix L or 1 to give it the type long double.

Character Constants

A character constant consists of one or more characters enclosed in single quotation
marks. Here are some examples:

lal IXYI lol Tk

All the characters of the source character set are permissible in character constants, except
the single quotation mark ', the backslash \, and the newline character. To represent these
characters, you must use escape sequences:

l\ll I\\l l\nl

In the fifth translation phase (see “How the C Compiler Works™), characters and escape
sequences in character constants are converted into the corresponding characters of the
execution character set. All the escape sequences that are permitted in character constants
are described in “Escape Sequences”.

Wide-character constants are character constants defined with one of the prefixes L, u, or
U. They have a different type and value range from character constants defined without a
prefix.

Types and Values of Character Constants

Character constants that are not wide characters have the type int. If a character constant

contains one character which can be represented in a single byte in the execution character
set, then its value is the character code of that character. For example, the constant 'a' in

ASCII or ISO 8859-1 encoding has the decimal value 97. In all other cases, and in
particular if a character constant contains more than one character, the value of a character
constant can vary from one compiler to another.

The following code fragment tests whether the character read is a digit between 1 and 5,
inclusive:

#include <stdio.h>

int ¢ = 0;

VA4

c = getchar(); // Read a character.

if (¢ != EOF & c > '0' & c < '6') // Compare input to character

// constants.

/* This block is executed if the user entered a digit from 1 to 5. */

}

If the type char is signed, then the value of a character constant can also be negative,

because the constant’s value is the result of a type conversion of the character code from
char to int. For example, ISO 8859-1 is a commonly used 8-bit character set, also known

as the ISO Latin 1 or ANSI character set. In this character set, the currency symbol for
pounds sterling, £, is coded as hexadecimal A3:

int ¢ = '"\xA3'; // Symbol for pounds sterling
printf("Character: %c Code: %d\n", c, c);

If the execution character set is ISO 8859-1, and the type char is signed, then the printf
statement in the preceding example generates the following output:

Character: £ Code: -93

In a program that uses characters that are not representable in a single byte, you can use
wide-character constants. A wide-character constant is written with one of the prefixes L,

u, or U. The prefix determines the type of the character constant, as shown in Table 3-3.
Table 3-3. The types of character
constants
Prefix Examples Type

none 'a' int
I\t 1

L L'a' wchar_t (defined in stddef.h)

L'\u0100'

u u'a' chari16_t (defined in uchar.h)
u'\x3b3'

u u'a' char32_t (defined in uchar.h)
U'\u27FA'

The value of a wide-character constant that contains a single multibyte character which is
representable in the execution character set is the code of the corresponding wide
character. That is the value that would be returned for that multibyte character by the
standard function mbtowc () (“multibyte to wide character”), or by mbrtoc16() or

mbrtoc32(), depending on the type of the wide-character constant.

The Unicode types char16_t and char32_t, and the corresponding conversion functions,
were introduced in the C11 standard. Characters of the type char16_t are encoded in
UTF-16 if the macro __STDC_UTF_16__ is defined in the given implementation. Similarly,
characters of the type char32_t are encoded in UTF-32 if the implementation defines the
macro __STDC_UTF_32__.

TIP

The value of a character constant containing several characters, such as L'xy"', is not specified. To ensure
portability, make sure your programs do not depend on such a character constant having a specific value.

Escape Sequences

An escape sequence begins with a backslash \, and represents a single character. Escape

sequences allow you to represent any character in character constants and string literals,
including nonprintable characters and characters that otherwise have a special meaning,
such as ' and ". Table 3-4 lists the escape sequences recognized in C.

Table 3-4. Escape sequences

Escape sequence Character value Action on output device

\! A single quotation mark () Prints the character

\" A double quotation mark (")

\? A question mark (?)

\\ A backslash character (\)

\a Alert Generates an audible or visible signal

\b Backspace Moves the active position back one character
\f Form feed Moves the active position to the beginning of

the next page

\n Newline Moves the active position to the beginning of
the next line

\r Carriage return Moves the active position to the beginning of
the current line

\t Horizontal tab Moves the active position to the next horizontal
tab stop

\v Vertical tab Moves the active position to the next vertical
tab stop

\o, \oo, or \ooo The character with the given octal code Prints the character

(where o is an octal

digit)

\xh[h..] The character with the given hexadecimal

(where his a code

hexadecimal digit)

\uhhhh The character with the given universal
\Uhhhhhhhh character name

In the table, the active position refers to the position at which the output device prints the
next output character, such as the position of the cursor on a console display. The behavior
of the output device is not defined in the following cases: if the escape sequence \b

(backspace) occurs at the beginning of a line; if \t (tab) occurs at the end of a line; or if \v
(vertical tab) occurs at the end of a page.

As Table 3-4 shows, universal character names are also considered escape sequences.
Universal character names allow you to specify any character in the extended character
set, regardless of the encoding used. See “Universal Character Names” for more
information.

You can also specify any character code in the value range of the type unsigned char —
or any wide-character code in the value range of wchar_t — using the octal and
hexadecimal escape sequences, as shown in Table 3-5.

Table 3-5. Examples of octal and hexadecimal escape sequences

Octal Hexadecimal Description

"\o' "\x0' The null character

'\033' '\x1B' The control character ESC (“escape™)

'\33'

'\376' '\xfe' The character with the decimal code 254

"\417' '\x10f' Illegal, as the numeric value is beyond the range of the type unsigned char
L'\417"' L'\x1ef' That’s better! It’s now a wide-character constant; the type is wchar_t

- L'\xF82' Another wide-character constant

- U'\x222B' A wide-character constant with the type char32_t

There is no equivalent octal notation for the last two constants in the table because octal
escape sequences cannot have more than three octal digits. For the same reason, the wide-
character constant L'\3702"' consists of two characters: L'\370' and L'2".

String Literals

A string literal consists of a sequence of characters (and/or escape sequences) enclosed in
double quotation marks. For example:

"Hello world!\n"

The individual characters of a string literal are governed by the same rules described for
the values of characters in character constants. String literals may contain all the multibyte
characters of the source character set. The only exceptions are the double quotation mark
", the backslash \, and the newline character, which must be represented by escape
sequences. For example, each backslash character in Windows directory paths must be
written as \\. The following printf statement first produces an alert tone, and then
indicates a documentation directory in quotation marks, substituting the string literal
addressed by the pointer argument doc_path for the conversion specification %s:

char doc_path[128] = ".\\share\\doc"; // That is, ".\share\doc"
printf("\aSee the documentation in the directory \"%s\"\n'", doc_path);

A string literal is a static array of char that contains character codes followed by a string
terminator, the null character \o (see also Chapter 8). The empty string "" occupies

exactly one byte in memory, which holds the terminating null character. Characters that
cannot be represented in one byte are stored as multibyte characters.

As illustrated in the previous example, you can use a string literal to initialize a char array.
A string literal can also be used to initialize a pointer to char:

char *pStr = "Hello, world!"; // pStr points to the first
// character, 'H'

In such an initializer, the string literal represents the address of its first element, just as an
array name would.

In Example 3-1, the array error_msg contains three pointers to char, each of which is
assigned the address of the first character of a string literal.

Example 3-1. Sample function error_exit()

#include <stdlib.h>
#include <stdio.h>
void error_exit(unsigned int error_n) // Print a last error message
{ // and exit the program.
char * error_msg[] = { "Unknown error code.\n",
"Insufficient memory.\n",
"Illegal memory access.\n" };
unsigned int arr_len = sizeof(error_msg)/sizeof(char *);

if (error_n >= arr_len)

error_n = 0;
fputs(error_msg[error_n], stderr);
exit(1);

}
The C11 standard provides a new prefix, u8, which allows you to define a UTF-8 string

literal. The multibyte characters in the char array defined by a UTF-8 string literal are
encoded in UTF-8. A string literal of the form ug".." is thus no different from a string

literal without a prefix if the implementation’s default encoding for multibyte characters is
UTF-8.

Like wide-character constants, you can also specify string literals as strings of wide
characters by using one of the prefixes L, u, or U. In this way, you define what is called a
wide-string literal, which yields an array of wide characters ending with a character with
the value 0. The prefix determines the array elements’ type.

A wide-string literal is defined using the prefix L:

L"Here's a wide-string literal."

This expression defines a static null-terminated array of elements of the type wchar_t. The
array is initialized by converting the multibyte characters in the string literal to wide
characters in the same way as the standard function mbstowcs () (“multibyte string to
wide-character string”) would do.

The prefixes u and u, introduced in C11, yield a static array of wide characters of the type
char16_t or char32_t. The multibyte characters in these wide-string literals are implicitly
converted to wide characters by successive calls to the function mbrtoc16() or
mbrtoc32().

If a multibyte character or an escape sequence in a string literal is not representable in the
execution character set, the value of the string literal is not specified — that is, it depends
on the compiler.

In the following example, \ue3b1 is the universal name for the character o, and wprintf()
is the wide-character version of the printf function, which formats and prints a string of
wide characters:

double angle_alpha = 90.0/3;
wprintf(L"Angle \u03bl measures %1f degrees.\n", angle_alpha);

The compiler’s preprocessor concatenates any adjacent string literals — that is, those that
are separated only by whitespace — into a single string. As the following example
illustrates, this concatenation also makes it simple to break up a string into several lines
for readability:

#define PRG_NAME "EasyLine"
char msg[] = "The installation of " PRG_NAME
" is now complete.";

If any of the string literals involved has a prefix, then the resulting string is treated as a
string literal with that prefix. Whether string literals with different prefixes can be
concatenated depends on the compiler.

Another way to break a string literal into several lines is to end a line with a backslash, as
in this example:

char info[] =

"This is a string literal broken up into\
several source code lines.\nNow one more line:\n\
that's enough, the string ends here.";

The string continues at the beginning of the next line: any spaces at the left margin, such
as the space before several in the preceding example, are part of the string literal.
Furthermore, the string literal defined here contains exactly two newline characters: one
immediately before Now, and one immediately before that's; in other words, only the two
that are explicitly written as \n.

The compiler interprets escape sequences before concatenating adjacent strings (see “The
C Compiler’s Translation Phases”). As a result, the following two string literals form one
wide-character string that begins with the two characters '\xA7' and '2"':

L"\xA7" L"2 et cetera"

However, if the string is written in one piece as L"\xA72 et cetera", then the first
character in the string is the wide character '\xA72".

Although C does not strictly prohibit modifying string literals, you should not attempt to
do so. In the following example, the second statement is an attempt to replace the first
character of a string:

char *p = "house"; // Initialize a pointer to char.
*p = 'm'; // This is *not* a good idea!

This statement is not portable, and causes a runtime error on some systems. For one thing,
the compiler, treating the string literal as a constant, may place it in read-only memory, in
which case the attempted write operation causes a fault. For another, if two or more
identical string literals are used in the program, the compiler may store them at the same
location, so that modifying one causes unexpected results when you access another.

However, if you use a string literal to initialize an array variable, you can then modify the
contents of the array:

char s[] = "house"; // Initialize an array of char.
s[0] = 'm'; // Now the array contains the string "mouse".

In the same way, arrays whose elements have the type wchar_t, char16_t, or char32_t
can be initialized using an appropriate wide-string literal.

Chapter 4. Type Conversions

In C, operands of different types can be combined in one operation. For example, the
following expressions are permissible:

double dvar = 2.5; // Define dVar as a variable of type double.

dvar *= 3; // Multiply dvar by an integer constant.
if (dvar < 10L) // Compare dVar with a long-integer constant.
{7 ... */}

When the operands have different types, the compiler tries to convert them to a uniform
type before performing the operation. In certain cases, furthermore, you must insert type
conversion instructions in your program. A type conversion yields the value of an
expression in a new type, which can be either the type void (meaning that the value of the
expression is discarded; see “Expressions of Type void”), or a scalar type — that is, an
arithmetic type or a pointer. For example, a pointer to a structure can be converted into a
different pointer type. However, an actual structure value cannot be converted into a
different structure type.

The compiler provides implicit type conversions when operands have mismatched types,
or when you call a function using an argument whose type does not match the function’s
corresponding parameter. Programs also perform implicit type conversion as necessary
when initializing variables or otherwise assigning values to them. If the necessary
conversion is not possible, the compiler issues an error message.

You can also convert values from one type to another explicitly using the cast operator
(see Chapter 5):

(type_name) expression

In the following example, the cast operator causes the division of one integer variable by
another to be performed as a floating-point operation:

int sum = 22, count = 5;
double mean = (double)sum / count;

Because the cast operator has precedence over division, the value of sum in this example is
first converted to type double. The compiler must then implicitly convert the divisor, the
value of count, to the same type before performing the division.

You should always use the cast operator whenever there is a possibility of losing

information, as in a conversion from int to unsigned int, for example. Explicit casts
avoid compiler warnings, and also signpost your program’s type conversions for other
programmers. For example, using an explicit cast to void when you discard the return

value of a function serves as a reminder that you may be disregarding the function’s error
indications.

To illustrate the implicit type conversions that the compiler provides, however, the
examples in this chapter use the cast operator only when strictly necessary.

Conversion of Arithmetic Types

Type conversions are always possible between any two arithmetic types, and the compiler
performs them implicitly wherever necessary. The conversion preserves the value of an
expression if the new type is capable of representing it. This is not always the case. For
example, when you convert a negative value to an unsigned type, or convert a floating-
point fraction from type double to the type int, the new type simply cannot represent the

original value. In such cases, the compiler generally issues a warning.

Hierarchy of Types

When arithmetic operands have different types, the implicit type conversion is governed
by the types’ conversion rank. The types are ranked according to the following rules:

Any two unsigned integer types have different conversion ranks. If one is wider than
the other, then it has a higher rank.

Each signed integer type has the same rank as the corresponding unsigned type. The
type char has the same rank as signed char and unsigned char.

The standard integer types are ranked in the order:

_Bool < char < short < int < long < long long

Any standard integer type has a higher rank than an extended integer type of the same
width (extended integer types are described in “Integer types with exact width (C99)”).

Every enumerated type has the same rank as its corresponding integer type (see
“Enumerated Types”).

The floating-point types are ranked in the following order:
float < double < long double
The lowest-ranked floating-point type, float, has a higher rank than any integer type.

Every complex floating-point type has the same rank as the type of its real and
imaginary parts.

Integer Promotion

In any expression, you can always use a value whose type ranks lower than int in place of
an operand of type int or unsigned int. You can also use a bit-field as an integer
operand (bit-fields are discussed in Chapter 10). In these cases, the compiler applies
integer promotion: any operand whose type ranks lower than int is automatically
converted to the type int, provided int is capable of representing all values of the
operand’s original type. If int is not sufficient, the operand is converted to unsigned int.

Integer promotion always preserves the value of the operand. Here are some examples:
char ¢ = '?';
unsigned short var = 100;
if (¢ < 'A") // The character constant 'A' has type int:
// the value of c¢ is implicitly promoted

// to int for the comparison.

var = var + 1; // Before the addition, the value of var
// 1s promoted to int or unsigned int.

In the last of these statements, the compiler promotes the first addend, the value of var, to
the type int or unsigned int before performing the addition. If int and short have the
same width, which is likely on a 16-bit computer, then the signed type int is not wide
enough to represent all possible values of the unsigned short variable var. In this case,
the value of var is promoted to unsigned int. After the addition, the result is converted
to unsigned short for assignment to var.

Usual Arithmetic Conversions

The usual arithmetic conversions are the implicit conversions that are automatically
applied to operands of different arithmetic types for most operators. The purpose of the
usual arithmetic conversions is to find a common real type for all of the operands and the
result of the operation.

The usual arithmetic conversions are performed implicitly for the following operators:
Arithmetic operators with two operands
* /, %, +,and -
Relational and equality operators
<, <=,> >= == and !=
The bitwise operators
& |, and A
The ternary operator
?: (for the second and third operands)

With the exception of the relational and equality operators, the common real type obtained
by the usual arithmetic conversions is generally the type of the result. However, if one or
more of the operands has a complex floating-point type, then the result also has a complex
floating-point type.

The usual arithmetic conversions are applied as follows:

1. If either operand has a floating-point type, then the operand with the lower
conversion rank is converted to a type with the same rank as the other operand. Real
types are converted only to real types, however, and complex types only to complex.
In other words, if either operand has a complex floating-point type, the usual
arithmetic conversion matches only the real type on which the actual type of the
operand is based. Here are some examples:

#include <complex.h>

/o

short n = -10;

double x = 0.5, y = 0.0;

float _Complex f_z = 2.0F + 3.0F * I;
double _Complex d_z = 0.0;

y =n* x; // The value of n is converted to type double.
dz="Ff_z+ x; // Only the value of f_z 1is converted to

// double _Complex.

// The result of the operation also has

// type double _Complex.

3; // The constant value 3 is converted to float.
f_z; // The value of f_z 1is converted to
// the type double _Complex.

2. If both operands are integers, integer promotion is first performed on both operands.
If after integer promotion the operands still have different types, conversion

continues as follows:

m If one operand has an unsigned type T whose conversion rank is at least as high as
that of the other operand’s type, then the other operand is converted to type 7.

m Otherwise, one operand has a signed type T whose conversion rank is higher than
that of the other operand’s type. The other operand is converted to type T only if
type T is capable of representing all values of its previous type. If not, then both
operands are converted to the unsigned type that corresponds to the signed type T.

The following lines of code contain some examples:

int i = -1;

unsigned int limit = 200U;

long n = 30L;

if (i< limit)

x = limit * n;

In this example, to evaluate the comparison in the if condition, the value of i, —1, must
first be converted to the type unsigned int. The result is a large positive number. On a
32-bit system, that number is 232 — 1, and on any system it is greater than 1imit. Hence,
the if condition is false.

In the last line of the example, the value of 1imit is converted to n’s type, long, if the
value range of long contains the whole value range of unsigned int. If not — for
example, if both int and long are 32 bits wide — then both multiplicands are converted to

unsigned long.

The usual arithmetic conversions preserve the operand’s value, except in the following
cases:

= When an integer of great magnitude is converted to a floating-point type, the target
type’s precision may not be sufficient to represent the number exactly.

m Negative values are outside the value range of unsigned types.

In these two cases, values that exceed the range or precision of the target type are
converted as described in “The Results of Arithmetic Type Conversions”.

Other Implicit Type Conversions
The compiler also automatically converts arithmetic values in the following cases:

m In assignments and initializations, the value of the right operand is always converted to
the type of the left operand.

= In function calls, the arguments are converted to the types of the corresponding
parameters. If the parameters have not been declared, then the default argument
promotions are applied: integer promotion is performed on integer arguments, and
arguments of type float are promoted to double.

» In return statements, the value of the return expression is converted to the function’s
return type.

In a compound assignment, such as x += 2.5, the values of both operands are first subject
to the usual arithmetic conversions, then the result of the arithmetic operation is converted,
as for a simple assignment, to the type of the left operand. Most compilers issue a warning
if the left operand’s type may be unable to represent the right operand’s value. Here are
some examples:

#include <math.h> // Declares the function double sqrt(double).

int i
float x 0.5; // The constant value is converted from double to float.
i=x; // The value of x is converted from float to int.

X += 2.5; // Before the addition, the value of x is converted to
// double. Afterward, the sum is converted to float for
// assignment to Xx.

x
1
n
Qo
=
+
~
=
~
R
N

Calculate the square root of 1i:

// The argument is converted from int to double;
// the return value is converted from double to
// float for assignment to x.

long my_func()
{
VA4

return 0; // The constant 0 is converted to long, the function's
// return type.

The Results of Arithmetic Type Conversions

Because the different types have different purposes, representational characteristics, and
limitations, converting a value from one type to another often involves the application of
special rules to deal with such peculiarities. In general, the exact result of a type
conversion depends primarily on the characteristics of the target type.

Conversions to _Bool

Any value of any scalar type can be converted to _Bool. The result is 0 — i.e., false — if
the scalar value is equal to 0; and 1, or true, if it is nonzero. Because a null pointer
compares equal to zero, its value becomes false on conversion to _Bool.

Conversions to unsigned integer types other than _Bool

Integer values are always preserved if they are within the range of the new unsigned type
— in other words, if they are between 0 and Utype_MAX, where Utype_MAX is the greatest
value that can be represented by unsigned type.

For values outside the new unsigned type’s range, the value after conversion is the value
obtained by adding or subtracting (Utype_MAX + 1) as many times as necessary until the
result is within the range of the new type. The following example illustrates the
assignment of a negative value to an unsigned integer type:
#include <limits.h> // Defines the macros USHRT_MAX,
// UINT_MAX, etc.
unsigned short n = 1000; // The value 1000 is within the

// range of unsigned short;
n=-1; // the value -1 must be converted.

To adjust a signed value of —1 to the variable’s unsigned type, the program implicitly adds
USHRT_MAX + 1 to it until a result within the type’s range is obtained. Because —1 +

(USHRT_MAX + 1) = USHRT_MAX, the final statement in the previous example is equivalent to
n = USHRT_MAX;.

For positive integer values, subtracting (Utype_MAX + 1) as often as necessary to bring the
value into the new type’s range is the same as the remainder of a division by (Utype_MAX +
1), as the following example illustrates:

#include <limits.h> // Defines the macros USHRT_MAX, UINT_MAX, etc.
unsigned short n = 0;
n = OXFEDCBA; // The value is beyond the range of

// unsigned short.

If unsigned short is 16 bits wide, then its maximum value, USHRT_MAX, is hexadecimal
FFFF. When the value FEDCBA is converted to unsigned short, the result is the same as
the remainder of a division by hexadecimal 10000 (that’s USHRT_MAX + 1), which is always
FFFF or less. In this case, the value assigned to n is hexadecimal DCBA.

To convert a real floating-point number to an unsigned or signed integer type, the compiler
discards the fractional part. If the remaining integer portion is outside the range of the new
type, the result of the conversion is undefined. For example:

double x = 2.9;

unsigned long n X; // The fractional part of x 1is

// simply lost.

unsigned long m round(x); // If x 1is non-negative, this has the

// same effect as m = x + 0.5;

In the initialization of n in this example, the value of x is converted from double to
unsigned long by discarding its fractional part, 0.9. The integer part, 2, is the value
assigned to n. In the initialization of m, the C99 function round() rounds the value of x to
the nearest integer value (whether higher or lower), and returns a value of type double.
The fractional part of the resulting double value — 3.0 in this case — is thus equal to zero
before being discarded through type conversion for the assignment to m.

When a complex number is converted to an unsigned integer type, the imaginary part is
first discarded. Then the resulting floating-point value is converted as described
previously. For example:

#include <limits.h> // Defines macros such as UINT_MAX.
#include <complex.h> // Defines macros such as the imaginary
// constant I.

unsigned int n

:O;
float _Complex z =

-1.7 + 2.0 * I,
n=2z; // In this case, the effect is

// the same as n = -1;
// The resulting value of n is UINT_MAX.

The imaginary part of z is discarded, leaving the real floating-point value —1.7. Then the

fractional part of the floating-point number is also discarded. The remaining integer value,
—1, is converted to unsigned int by adding UINT_MAX + 1, so that the value ultimately
assigned to n is equal to UINT_MAX.

Conversions to signed integer types

The problem of exceeding the target type’s value range can also occur when a value is
converted from an integer type, whether signed or unsigned, to a different, signed integer
type; for example, when a value is converted from the type long or unsigned int to the

type int. The result of such an overflow on conversion to a signed integer type, unlike
conversions to unsigned integer types, is left up to the implementation.

Most compilers discard the highest bits of the original value’s binary representation and
interpret the lowest bits according to the new type. As the following example illustrates,
under this conversion strategy the existing bit pattern of an unsigned int is interpreted as
a signed int value:

#include <limits.h> // Defines macros such as UINT_MAX
int i = UINT_MAX; // Result: i = -1 (in two's complement
// representation)

However, depending on the compiler, such a conversion attempt may also result in a signal
being raised to inform the program of the value range overflow.

When a real or complex floating-point number is converted to a signed integer type, the
same rules apply as for conversion to an unsigned integer type, as described in the
previous section.

Conversions to real floating-point types

Not all integer values can be exactly represented in floating-point types. For example,
although the value range of the type float includes the range of the types long and long

long, float is precise to only six decimal digits. Thus, some long values cannot be stored
exactly in a float object. The result of such a conversion is the next lower or next higher
representable value, as the following example illustrates:

long 1 _var
float f_var

123456789L,
1 var; // Implicitly converts long value
// to float.

printf("The rounding error (f_var - 1l var) is %f\n",
(double)f_var - 1 var);

Note that the subtraction in this example is performed with at least double precision.
Typical output produced by this code is:

The rounding error (f_var - 1 _var;) is 3.000000

Any value in a floating-point type can be represented exactly in another floating-point
type of greater precision. Thus, when a double value is converted to long double, or
when a float value is converted to double or long double, the value is exactly
preserved. In conversions from a more precise to a less precise type, however, the value
being converted may be beyond the range of the new type. If the value exceeds the target
type’s range, the result of the conversion is undefined. If the value is within the target
type’s range, but not exactly representable in the target type’s precision, then the result is
the next smaller or next greater representable value. The program in Example 2-2
illustrates the rounding error produced by such a conversion to a less-precise floating-
point type.

When a complex number is converted to a real floating-point type, the imaginary part is
simply discarded, and the result is the complex number’s real part, which may have to be
further converted to the target type as described in this section.

Conversions to complex floating-point types

When an integer or a real floating-point number is converted to a complex type, the real

part of the result is obtained by converting the value to the corresponding real floating-
point type as described in the previous section. The imaginary part is zero.

When a complex number is converted to a different complex type, the real and imaginary
parts are converted separately according to the rules for real floating-point types:
#include <complex.h> // Defines macros such as the imaginary
// constant I

double _Complex dz = 2;
float _Complex fz = dz + I;

In the first of these two initializations, the integer constant 2 is implicitly converted to
double _Complex for assignment to dz. The resulting value of dz is 2.0 + 0.0 x I.

In the initialization of fz, the two parts of the double _Complex value of dz are converted
(after the addition) to float, so that the real part of fz is equal to 2.0F, and the imaginary
part 1.0F.

Conversion of Nonarithmetic Types

Pointers and the names of arrays and functions are also subject to certain implicit and
explicit type conversions. Structures and unions cannot be converted, although pointers to
them can be converted to and from other pointer types.

Array and Function Designators

An array or function designator is any expression that has an array or function type. In
most cases, the compiler implicitly converts an expression with an array type, such as the
name of an array, into a pointer to the array’s first element. The array expression is not
converted into a pointer only in the following cases:

m When the array is the operand of the sizeof operator
m When the array is the operand of the address operator &

m When a string literal is used to initialize an array of char, wchar_t, char16_t, or
char32_t

The following examples demonstrate the implicit conversion of array designators into
pointers, using the conversion specification %p to print pointer values:

#include <stdio.h>

int *iPtr = 0; // A pointer to int, initialized with 0.
int iArray[] = { 0, 10, 20 }; // An array of int, initialized.

int array_length = sizeof(iArray) / sizeof(int); // The number of
// elements:
// in this case, 3.
printf("The array starts at the address %p.\n", iArray);
*iArray = 5; // Equivalent to iArray[0] = 5;
iPtr = iArray + array_length - 1; // Point to the last element of
// iArray: equivalent to

// 1Ptr = &iArray[array_length-1];

printf("The last element of the array is %d.\n", *iPtr);

In the initialization of array_length in this example, the expression sizeof (iArray)

yields the size of the whole array, not the size of a pointer. However, the same identifier
iArray is implicitly converted to a pointer in the other three statements in which it
appears:

m As an argument in the first printf() call
m As the operand of the dereferencing operator *

= In the pointer arithmetic operations and assignment to iPtr (see also “Modifying and
Comparing Pointers”)

The names of character arrays are used as pointers in string operations, as in this example:

#include <stdio.h>
#include <string.h> // Declares size_t strlen(const char *s)

char msg[80] = "I'm a string literal."; // Initialize an array of char.
printf("The string is %d characters long.\n", strlen(msg));

// Answer: 21.
printf("The array named msg is %d bytes long.\n", sizeof(msg));

// Answer: 80.

In the function call strlen(msg) in this example, the array identifier msg is implicitly
converted to a pointer to the array’s first element with the function parameter’s type,
const char *. Internally, strlen() merely counts the characters beginning at that address

until the first null character, the string terminator.

Similarly, any expression that designates a function, such as a function name, can also be
implicitly converted into a pointer to the function. Again, this conversion does not apply
when the expression is the operand of the address operator &. The sizeof operator cannot
be used with an operand of function type. The following example illustrates the implicit
conversion of function names to pointers (the program initializes an array of pointers to
functions, then calls the functions in a loop):

#include <stdio.h>

void funco() { puts("This is the function funco(). "); }

void funcli() { puts("This is the function funci(). "); }

VA4

void (*funcTable[2])(void) = { funco®, funcl }; // Array of two pointers
// to functions
// returning void.

for (int 1 = 0; 1 < 2; ++1i) // Use the loop counter as the array

funcTable[i](); // index.

Explicit Pointer Conversions

To convert a pointer from one pointer type to another, you must usually use an explicit
cast. In some cases, the compiler provides an implicit conversion, as described in “Implicit
Pointer Conversions”. Pointers can also be explicitly converted into integers, and vice
versa.

Object pointers

You can explicitly convert an object pointer — that is, a pointer to a complete or
incomplete object type — to any other object pointer type. In your program, you must
ensure that your use of the converted pointer makes sense. Here is an example:

float f_var = 1.5F;

long *1 _ptr = (long *)&f_var; // Initialize a pointer to long with
// the address of f_var.

double *d_ptr = (double *)1_ptr; // Initialize a pointer to double
// with the same address.

// 0On a system where sizeof(float) equals sizeof(long):

printf("The %zu bytes that represent %f, in hexadecimal: 0x%1X\n",
sizeof(f_var), f_var, *1 _ptr);

// Using a converted pointer in an assignment can cause trouble:

/* *d_ptr = 2.5, */ // Don't try this! f_var's location doesn't
// have space for a double value!
*(float *)d_ptr = 2.5; // OK: stores a float value in that location.

If the object pointer after conversion does not have the alignment required by the new
type, the results of using the pointer are undefined. In all other cases, converting the
pointer value back into the original pointer type is guaranteed to yield an equivalent to the
original pointer.

If you convert any type of object pointer into a pointer to any char type (char, signed
char, or unsigned char), the result is a pointer to the first byte of the object. The first

byte is considered here to be the byte with the lowest address, regardless of the system’s
byte order structure. The following example uses this feature to print a hexadecimal dump
of a structure variable:

#include <stdio.h>
struct Data {
short id;
double val;

i

struct Data myData = { 0x123, 77.7 }; // Initialize a
// structure.

unsigned char *cp = (unsigned char *)&myData; // Pointer to the
// first byte of
// the structure.

printf("%p: ", cp); // Print the starting
// address.
for (int 1 = 0; i < sizeof(myData); ++i) // Print each byte
printf("%02X ", *(cp + i)); // of the structure,

putchar('\n'); // 1n hexadecimal.

This example produces output like the following:

Oxbffffd70: 23 01 G0 GO GO GO GO 6O CD CC CC CC CC 6C 53 40

The output of the first two bytes, 23 01, shows that the code was executed on a little-
endian system: the byte with the lowest address in the structure mybata was the least
significant byte of the short member id.

Function pointers

The type of a function always includes its return type, and may also include its parameter
types. You can explicitly convert a pointer to a given function into a pointer to a function
of a different type. In the following example, the typedef statement defines a name for the
type “function that has one double parameter and returns a double value”:

#include <math.h> // Declares sqrt() and pow().
typedef double (func_t)(double); // Define a type named func_t.
func_t *pFunc = sqrt; // A pointer to func_t, initialized

// with the address of sqrt().

double y = pFunc(2.0); // A correct function call by pointer.

printf("The square root of 2 is %f.\n", y);

pFunc = (func_t *)pow; // Change the pointer's value to
// the address of pow().

/* 'y = pFunc(2.0); */ // Don't try this: pow() takes two

// arguments.

In this example, the function pointer pFunc is assigned the addresses of functions that have

different types. However, if the program uses the pointer to call a function with a
definition that does not match the exact function pointer type, the program’s behavior is
undefined.

Implicit Pointer Conversions

The compiler converts certain types of pointers implicitly. Assignments, conditional
expressions using the equality operators == and !=, and function calls involve implicit
pointer conversion in three kinds of cases, which are described individually in the sections
that follow. The three kinds of implicit pointer conversion are:

= Any object pointer type can be implicitly converted to a pointer to void, and vice versa.

= Any pointer to a given type can be implicitly converted into a pointer to a more
qualified version of that type — that is, a type with one or more additional type
qualifiers.

= A null pointer constant can be implicitly converted into any pointer type.

Pointers to void

Pointers to void — that is, pointers of the type void * — are used as “multipurpose”
pointers to represent the address of any object, without regard for its type. For example,
the malloc() function returns a pointer to void (see Example 2-3). Before you can access
the memory block, the void pointer must always be converted into a pointer to an object.

Example 4-1 demonstrates more uses of pointers to void. The program sorts an array
using the standard function gsort (), which is declared in the header file stdlib.h with the
following prototype:

void qgsort(void *array, size t n, size_t element_size,
int (*compare)(const void *, const void *));

The gsort () function sorts the array in ascending order, beginning at the address array,
using the quick-sort algorithm. The array is assumed to have n elements whose size is

element_size.

The fourth parameter, compare, is a pointer to a function that gsort () calls to compare
any two array elements. The addresses of the two elements to be compared are passed to
this function in its pointer parameters. Usually this comparison function must be defined
by the programmer. It must return a value that is less than, equal to, or greater than O to
indicate whether the first element is less than, equal to, or greater than the second.

Example 4-1. A comparison function for gsort()

#include <stdlib.h>
#define ARR_LEN 20

A function to compare any two float elements,
for use as a call-back function by qsort().
Arguments are passed by pointer.

Returns: -1 if the first is less than the second,
0 if the elements are equal;
1 if the first is greater than the second.

int floatcmp(const void* pl, const void* p2)

{

float x = *(float *)p1,
y = *(float *)p2;
return (x <y) ? -1 : ((x ==vy) ?2 0 : 1);
b
/*
* The main() function sorts an array of float.
*/
int main()
{

/* Allocate space for the array dynamically: */
float *pNumbers = malloc(ARR_LEN * sizeof(float));

/* ... Handle errors, initialize array elements.. */

/* Sort the array: */
gsort(pNumbers, ARR_LEN, sizeof(float), floatcmp);

/* ... Work with the sorted array.. */

return 0O,

}

In Example 4-1, the malloc() function returns a void *, which is implicitly converted to
float * inthe assignment to pNumbers. In the call to gsort(), the first argument
pNumbers is implicitly converted from float * tovoid *, and the function name
floatcmp is implicitly interpreted as a function pointer. Finally, when the floatcmp()
function is called by gsort (), it receives arguments of the type void *, the “universal”
pointer type, and must convert them explicitly to float * before dereferencing them to
initialize its float variables.

Pointers to qualified object types

The type qualifiers in C are const, volatile, and restrict (see Chapter 11 for details on
these qualifiers). For example, the compiler implicitly converts any pointer to int into a
pointer to const int where necessary. If you want to remove a qualification rather than

adding one, however, you must use an explicit type conversion, as the following example
illustrates:

int n = 77;
const int *ciPtr = 0; // A pointer to const int.
// The pointer itself is not constant!

ciPtr = &n; // Implicitly converts the address to the type

// const int *.
n = *ciPtr + 3; // OK: this has the same effect as n = n + 3;
*ciPtr *= 2; // Error: you can't change an object referenced by

// a pointer to const int.

*(int *)ciPtr *= 2; // OK: Explicitly converts the pointer into a
// pointer to a nonconstant int.

The second to last statement in this example illustrates why pointers to const-qualified
types are sometimes called read-only pointers: although you can modify the pointers’
values, you can’t use them to modify objects they point to.

Null pointer constants

A null pointer constant is an integer constant with the value 0, or a constant integer value
of O cast as a pointer to void. The macro NULL is defined in the header files stdlib.h,
stdio.h, and others as a null pointer constant. The following example illustrates the use of
the macro NULL as a pointer constant to initialize pointers rather than an integer zero or a
null character:

#include <stdlib.h>
long *1Ptr = NULL; // Initialize to NULL: pointer 1is not ready
// for use.

/* ... operations here may assign 1Ptr an object address.. */
if (1Ptr != NULL)
{

/* ... use 1Ptr only if it has been changed from NULL.. */

}

When you convert a null pointer constant to another pointer type, the result is called a null
pointer. The bit pattern of a null pointer is not necessarily zero. However, when you
compare a null pointer to zero, to NULL, or to another null pointer, the result is always
true. Conversely, comparing a null pointer to any valid pointer to an object or function
always yields false.

Conversions Between Pointer and Integer Types

You can explicitly convert a pointer to an integer type, and vice versa. The result of such
conversions depends on the compiler, and should be consistent with the addressing
structure of the system on which the compiled executable runs. Conversions between
pointer and integer types can be useful in system programming, and necessary when
programs need to access specific physical addresses, such as ROM or memory-mapped
I/O registers.

When you convert a pointer to an integer type whose range is not large enough to
represent the pointer’s value, the result is undefined. Conversely, converting an integer
into a pointer type does not necessarily yield a valid pointer. The header file stdint.h may
optionally define the integer types intptr_t (signed) and uintptr_t (unsigned). Any
valid pointer can be converted to either of these types, and a subsequent conversion back
into a pointer is guaranteed to yield the original pointer. You should therefore use one of
these types, if stdint.h defines them, any time you need to perform conversions between
pointers and integers.

Here are a few examples:

float x = 1.5F, *fPtr = &x; // A float, and a pointer to 1it.

// Save the pointer's value as an integer:
unsigned long long adr_val = (unsigned long long)fPtr;

// 0r, if stdint.h has been included and uintptr_t is defined:
uintptr_t adr_val = (uintptr_t)fPtr;

/*
* 0n an Intel x86 PC in DOS, the BIOS data block begins at the
* address 0x0040:0000. The first two-byte word at that address
* contains the I/0 address of the serial port COM1.
* (Compile using DOS's "large'" memory model.)
*/
unsigned short *biosPtr = (unsigned short *)0x400000L;
unsigned short coml_io = *biosPtr; // The first word contains the
// I/0 address of COM1.
printf("COM1 has the I/0 base address %Xh.\n", coml_io);

The last three statements obtain information about the hardware configuration from the
system data table, assuming the operating environment allows the program to access that
memory area. In a DOS program compiled with the large memory model, pointers are 32
bits wide and consist of a segment address in the higher 16 bits and an offset in the lower
16 bits (often written in the form segment:offset). Thus, the pointer biosPtr in the prior
example can be initialized with a long integer constant.

Chapter 5. Expressions and Operators

An expression consists of a sequence of constants, identifiers, and operators that the
program evaluates by performing the operations indicated. The expression’s purpose in the
program may be to obtain the resulting value, or to produce side effects of the evaluation,
or both (see “Side Effects and Sequence Points”).

A single constant, string literal, or the identifier of an object or function is in itself an
expression. Such a simple expression, or a more complex expression enclosed in
parentheses, is called a primary expression. The C11 standard adds another kind of
primary expression, the generic selection, which is described in the next section.

Every expression has a type. An expression’s type is the type of the value that results
when the expression is evaluated. If the expression yields no value, it has the type void.

Some simple examples of expressions are listed in Table 5-1 (assume that a has been
declared as a variable of type int, and z as a variable of type float _Complex).

Table 5-1. Example expressions

Expression Type
"\n' int
a+1 int
a+1.0 double
a<77.7 int

"A string literal." char *

abort() void
sqrt(2.0) double
z / sqrt(2.0) double _Complex

As you can see from the last example in Table 5-1, compound expressions are formed by
using an operator with expressions as its operands. The operands can themselves be
primary or compound expressions. For example, you can use a function call as a factor in
a multiplication. Likewise, the arguments in a function call can be expressions involving
several operators, as in this example:

* sin(* fAngleDegrees/)

How Expressions Are Evaluated

Before we consider specific operators in detail, this section explains a few fundamental
principles that will help you understand how C expressions are evaluated. The precedence
and associativity of operators are obviously important in parsing compound expressions,
but generic selections, lvalues, and sequence points are no less essential to understanding
how a C program works.

Generic Selections (C11)

A generic selection is a primary expression that selects an expression from a list
depending on the type of another expression. The selection takes place during compiling.
This mechanism allows C developers to write type-generic macros like those provided for
mathematical functions by the header tgmath.h, introduced in the C99 version of the
standard. For example, tgmath.h provides six different square root functions, three for the
real types float, double, and long double and three for the corresponding complex
types. In a program that includes the header tgmath.h, the type-generic macro sqrt(x) can
be used to automatically call whichever function fits the type of x.

A generic selection begins with the new keyword _Generic, followed by parentheses that
enclose the controlling expression and a list of generic associations:

_Generic(expression, generic association 1
[, generic association 2, ...])

A generic association has the form

type name : expression

or

default : expression

The default association is optional and must not occur more than once in the list. The

type names must designate distinct, mutually incompatible types. Incomplete types and
types for variable-length arrays are not permitted.

The controlling expression expression is not evaluated, but its type is compared with the
type names in the list of associations. If the controlling expression’s type is compatible
with one of the type names, then the compiler selects the expression associated with it in
the list. If there is no compatible type name in the list, the expression from the default
association is selected. If the list contains neither a compatible type nor a default
association, the compiler issues an error message.

The type and value of a generic selection are those of the resulting expression, and only
the resulting expression is evaluated at runtime. Here is a simple example:

_Generic(1.0, int: "int", double: "double",
default: "neither int nor double")

The result of this selection is the string literal "double", because 1.0 has the type double.

Generic selections are used primarily to define type-generic macros, as in the following
example:

#define typeOf(x) _Generic((x), int: "int", double: "double", \
default: "neither int nor double")

After this definition, the macro call typeof('A") yields "int", because a character
constant in C has the type int. However, the value of typeof (var) is the string "neither
int nor double" if var has the type unsigned int or const double, as these types are
not compatible with either of the two listed in the generic selection, int and double.

Another, more useful example of a type-generic macro written with a generic selection is
shown in Chapter 15.

Lvalues

An Ivalue is an expression that designates an object. The simplest example is the name of
a variable. The initial “L” in the term originally meant “left”: because an lvalue designates
an object, it can appear on the left side of an assignment operator, as in Ieftexpression =
rightexpression.! Other expressions — those that represent a value without designating

an object — are called, by analogy, rvalues. An rvalue is an expression that can appear on
the right side of an assignment operator, but not the left. Examples include constants and
arithmetic expressions.

An lvalue can always be resolved to the corresponding object’s address, unless the object
is a bit-field or a variable declared with the register storage class (see “Storage Class
Specifiers”). The operators that yield an lvalue include the subscript operator [] and the

indirection operator *, as the examples in Table 5-2 illustrate (assume that array has been
declared as an array and ptr as a pointer variable).

Table 5-2. Pointer and array expressions may be lvalues
Expression Lvalue?

array[1] Yes; an array element is an object with a location

&array[1] No; the location of the object is not an object with a location

ptr Yes; the pointer variable is an object with a location

*ptr Yes; what the pointer points to is also an object with a location
ptr+i No; the addition yields a new address value, but not an object
*ptr+1 No; the addition yields a new arithmetic value, but not an object

An object may be declared as constant. If this is the case, you can’t use it on the left side
of an assignment, even though it is an Ivalue, as the following example illustrates:

int a = 1;

const int b = 2, *ptr = &a;

b = 20; // Error: b 1is declared as const int.

*ptr = 10; // Error: ptr is declared as a pointer to const int.

In this example, the expressions a, b, ptr, and *ptr are all Ivalues. However, b and *ptr
are constant lvalues. Because ptr is declared as a pointer to const int, you cannot use it
to modify the object it points to. For a full discussion of declarations, see Chapter 11.

The left operand of an assignment, as well as any operand of the increment and decrement
operators, ++ and - -, must be not only an lvalue but also a modifiable Ivalue. A modifiable

lvalue is an lvalue that is not declared as a const-qualified type (see “Type Qualifiers”),

and that does not have an array type. If a modifiable lvalue designates an object with a
structure or union type, none of its elements must be declared, directly or indirectly, as
having a const-qualified type.

Side Effects and Sequence Points

In addition to yielding a value, the evaluation of an expression can result in other changes
in the execution environment, called side effects. Examples of such changes include
modifications of a variable’s value, or of input or output streams.

During the execution of a program, there are determinate points at which all the side
effects of a given expression have been completed, and no effects of the next expression
have yet occurred. Such points in the program are called sequence points. Between two
consecutive sequence points, partial expressions may be evaluated in any order. As a
programmer, you must therefore remember not to modify any object more than once
between two consecutive sequence points. Here is an example:

int 1 = 1; // OK.
i = i++; // Wrong: two modifications of i, behavior is undefined.

Because the assignment and increment operations in the last statement may take place in
either order, the resulting value of i is undefined. Similarly, in the expression f()+g(),
where f() and g() are two functions, C does not specify which function call is performed

first. It is up to you, the programmer, to make sure that the results of such an expression
are not dependent on the order of evaluation. Here’s another example:

int i = 0, array[] = { 0, 10, 20 };

/7
array[i] = array[++i]; // Wrong: behavior undefined.
array[i] = array[i + 1]; ++i; // OK: modifications separated by a

// sequence point.

The most important sequence points occur at the following positions:
m After all the arguments in a function call have been evaluated, and before control
passes to the statements in the function.

= At the end of an expression which is not part of a larger expression. Such full
expressions include the expression in an expression statement (see “Expression
Statements”), each of the three controlling expressions in a for statement, the condition
of an if or while statement, the expression in a return statement, and initializers.

m After the evaluation of the first operand of each of the following operators:
&&
Logical AND

Logical OR

The conditional operator

The comma operator

Thus, the expression ++i < 100 ? f(i++) : (i = 0) is permissible, as there is a
sequence point between the first modification of i and whichever of the other two
modifications is performed.

Operator Precedence and Associativity

An expression may contain several operators. In this case, the precedence of the operators
determines which part of the expression is treated as the operand of each operator. For
example, in keeping with the customary rules of arithmetic, the operators *, /, and % have
higher precedence in an expression than the operators + and -. For example, the following
expression:

a-b*c

is equivalenttoa - (b * c). If you intend the operands to be grouped differently, you
must use parentheses:

(a-b) *c

If two operators in an expression have the same precedence, then their associativity
determines whether they are grouped with operands in order from left to right, or from
right to left. For example, arithmetic operators are associated with operands from left to
right, and assignment operators from right to left, as shown in Table 5-3. Table 5-4 lists
the precedence and associativity of all the C operators, in order of precedence.

Table 5-3. Operator grouping
Expression Associativity Effective grouping

a/b%c Lefttoright (a/ b) % c

a=Db=c Righttoleft a = (b = c)

Table 5-4. Operator precedence and

associativity
Precedence Operators Associativity
1. Postfix operators: Left to right

(10 . ->+--
(type name){list}

2. Unary operators: Right to left
++ --

L~ + - *g

sizeof _Alignof

3. The cast operator: (type name) Right to left

4. Multiplicative operators: * / % Left to right

5. Additive operators: + - Left to right

6. Shift operators: << >> Left to right

7. Relational operators: < <= > >= Left to right
8. Equality operators: == != Left to right
9. Bitwise AND: & Left to right
10. Bitwise exclusive OR: A Left to right
11. Bitwise OR: | Left to right
12. Logical AND: && Left to right
13. Logical OR: || Left to right
14. The conditional operator: ?: Right to left
15. _Assi_gnr_nen_t operators: Right to left
/= 3 2 -
|= <<= >>=
16. The comma operator: , Left to right

The last of the highest-precedence operators in Table 5-4, (type name){list}, was added
in C99. It is described in “Compound literals”.

A few of the operator tokens appear twice in the table. To start with, the increment and
decrement operators, ++ and - -, have a higher precedence when used as postfix operators

(as in the expression x++) than the same tokens when used as prefix operators (as in ++x).

Furthermore, the tokens +,-, *, and & represent both unary operators — that is, operators

that work on a single operand — and binary operators, or operators that connect two
operands. For example, * with one operand is the indirection operator, and with two

operands, it is the multiplication sign. In each of these cases, the unary operator has higher
precedence than the binary operator. For example, the expression *ptri * *ptr2is

equivalent to (*ptr1) * (*ptr2).

Operators in Detail

This section describes in detail the individual operators, and indicates what kinds of
operands are permissible. The descriptions are arranged according to the customary usage
of the operators, beginning with the usual arithmetic and assignment operators.

Arithmetic Operators

Table 5-5 lists the arithmetic operators.

Table 5-5. Arithmetic operators

Operator Meaning Example Result
* Multiplication X *y The product of x and y
/ Division x /'y The quotient of x by y
% The modulo operation x % y The remainder of x divided by y
+ Addition X +y The sum of x and y
Subtraction X -y The difference of x and y
+ (unary) Positive sign +X The value of x
- (unary) Negative sign -X The arithmetic negation of x

The operands of the arithmetic operators are subject to the following rules:

= Only the % operator requires integer operands.
m The operands of all other operators may have any arithmetic type.
Furthermore, addition and subtraction operations may also be performed on pointers in the

following cases:

= In an addition, one addend can be an object pointer while the other has an integer type.

» In a subtraction, either both operands can be pointers to objects of the same type
(without regard to type qualifiers), or the minuend (the left operand) can be an object
pointer, while the subtrahend (the right operand) has an integer type.

Standard arithmetic

The operands are subject to the usual arithmetic conversions (see “Conversion of
Arithmetic Types™). The result of division with two integer operands is also an integer! To
obtain the remainder of an integer division, use the modulo operation (the % operator).
Implicit type conversion takes place in the evaluation of the following expressions, as
shown in Table 5-6 (assume n is declared by short n = -5;).

Table 5-6. Implicit type conversions in arithmetic expressions

Expression Implicit type conversion The The
expression’s expression’s

type value

-n Integer promotion int 5

n* -2L Integer promotion: the value of n is promoted to long, because the long 10
constant -2L has the type long

8/n Integer promotion int -1
8%n Integer promotion int 3
8.0/n The value of n is converted to the type double, because 8.0 has the double -1.6

type double

8.0%n Error: the modulo operation (%) requires integer operands

If both operands in a multiplication or a division have the same sign, the result is positive;
otherwise, it is negative. However, the result of a modulo operation always has the same
sign as the left operand. For this reason, the expression 8%n in Table 5-6 yields the value 3.
If a program attempts to divide by zero, its behavior is undefined.

Pointer arithmetic

You can use the binary operators + and - to perform arithmetic operations on pointers. For
example, you can modify a pointer to refer to another object a certain number of object
sizes away from the object originally referenced. Such pointer arithmetic is generally
useful only to refer to the elements of an array.

Adding an integer to or subtracting an integer from a pointer yields a pointer value with
the same type as the pointer operand. The compiler automatically multiplies the integer by
the size of the object referred to by the pointer type, as Example 5-1 illustrates.

Example 5-1. Pointer arithmetic

double dArr[5] = { 0.0, 1.1, 2.2, 3.3, 4.4 }, // Initialize an array and

*dPtr = dArr; // a pointer to its first
// element.
int i = 0; // An index variable.
dPtr = dPtr + 1; // Advance dPtr to the second element.
dPtr = 2 + dPtr; // Addends can be in either order.
// dPtr now points to dArr[3].
printf("%.1f\n", *dPtr); // Print the element referenced by dPtr.

printf("%.1f\n", *(dPtr -1)); // Print the element before that, without
// modifying the pointer dPtr.

i = dPtr - dArr; // Result: the index of the
// array element that dPtr points to.

Figure 5-1 illustrates the effects of the two assignment expressions using the pointer dPtr.

dArr

0.0 1.1 2.2 3.3 44

+1 +2
— P

dPtr

Figure 5-1. Using a pointer to move through the elements in an array

The statement dPtr = dPtr + 1; adds the size of one array element to the pointer, so that
dPtr points to the next array element, dArr[1]. Because dPtr is declared as a pointer to
double, its value is increased by sizeof (double).

The statement dPtr = dPtr + 1; in Example 5-1 has the same effect as any of the
following statements (see “Assignment Operators” and “Increment and Decrement
Operators™):

dPtr += 1;
++dPtr;
dPtr++;

Subtracting one pointer from another yields an integer value with the type ptrdiff_t. The
value is the number of objects that fit between the two pointer values. In the last statement
in Example 5-1, the expression dPtr - dArr yields the value 3. This is also the index of

the element that dPtr points to, because dArr represents the address of the first array
element (with the index 0). The type ptrdiff_t is defined in the header file stddef.h,
usually as int.

For more information on pointer arithmetic, see Chapter 9.

Assignment Operators

In an assignment operation, the left operand must be a modifiable Ivalue; in other words, it
must be an expression that designates an object whose value can be changed. In a simple
assignment (that is, one performed using the operator =), the assignment operation stores
the value of the right operand in this object.

There are also compound assignments, which combine an arithmetic or a bitwise operation
in the same step with the assignment. Table 5-7 lists all the assignment operators.

Table 5-7. Assignment operators

Operator Meaning Example Result

= Simple assignment X =y Assign x the value of y

+= -= Compound assignment x *= y For each binary arithmetic or binary bitwise operator op,
= /= %= x op=y is equivalent to x = x op (y)

&= N= I:

<<= >>=

Simple assignment
The operands of a simple assignment must fulfill one of the following conditions:

= Both operands have arithmetic types.
m The left operand has the type _Bool and the right operand is a pointer.
= Both operands have the same structure or union type.

m Both operands are pointers to the same type, or the left operand is a pointer to a
qualified version of the common type — that is, the type pointed to by the left operand
is declared with one or more additional type qualifiers (see Chapter 11).

= One operand is an object pointer and the other is a pointer to void (here again, the type
pointed to by the left operand may have additional type qualifiers).

m The left operand is a pointer and the right is a null pointer constant.

If the two operands have different types, the value of the right operand is converted to the
type of the left operand (see “The Results of Arithmetic Type Conversions” and “Implicit
Pointer Conversions”).

The modification of the left operand is a side effect of an assignment expression. The
value of the entire assignment expression is the same as the value assigned to the left
operand, and the assignment expression has the type of the left operand. However, unlike
its left operand, the assignment expression itself is not an lvalue. If you use the value of an
assignment expression in a larger expression, pay careful attention to implicit type

conversions. Avoid errors such as that illustrated in the following example. This code is
supposed to read characters from the standard input stream until the end-of-file is reached
Or an error occurs:

#include <stdio.h>

char ¢ = 0;

/E oL/

while ((c = getchar()) != EOF)
{ /* ... Process the character stored in c.. */ }

In the controlling expression of the while statement in this example, getchar () returns a
value with type int, which is implicitly converted to char for assignment to c. Then the
value of the entire assignment expression ¢ = getchar (), which is the same char value,
is promoted to int for comparison with the constant EOF, which is usually defined as -1 in
the header file stdio.h. However, if the type char is equivalent to unsigned char, then the
conversion to int always yields a non-negative value. In this case, the loop condition is
always true.

As Table 5-4 shows, assignment operators have a low precedence, and are grouped with
their operators from right to left. As a result, no parentheses are needed around the
expression to the right of the assignment operator, and multiple assignments can be
combined in one expression, as in this example:

double x = 0.5, y1, y2; // Declarations
yl = y2 = 10.0 * x; // Equivalent to yl1 = (y2 = (10.0 * x)),;

This expression assigns the result of the multiplication to y1 and to y2.

Compound assignments

A compound assignment is performed by any of the following operators:

*= /= %= += -= (arithmetic operation and assignment)
<<= >>= &= A= |= (bitwise operation and assignment)

In evaluating a compound assignment expression, the program combines the two operands
with the specified operation and assigns the result to the left operand. Here are two
examples:

long var = 1234L ;
var *= 3; // Triple the value of var.

var <<= 2; // Shift the bit pattern in var two bit-positions
// to the left (i.e., multiply the value by four).

The only difference between a compound assignment x op= y and the corresponding
expression x = x op (y) is that in the compound assignment, the left operand x is

evaluated only once. In the following example, the left operand of the compound
assignment operator is an expression with a side effect, so that the two expressions are not

equivalent:

x[++1i] *= 2; // Increment i once, then double the indexed
// array element.
X[++1] = x[++i] * (2); // 0ops: you probably didn't want to

// increment 1 twice.

In the equivalent form x = x op (y), the parentheses around the right operand y are
significant, as the following example illustrates:

double varl = 2.5, var2 = 0.5;
varl /= var2 + 1; // Equivalent to varl = varl / (var2 + 1);

Without the parentheses, the expression var1 = varl / var2 + 1 would yield a different
result, because simple division, unlike the compound assignment, has higher precedence
than addition.

The operands of a compound assignment can have any types that are permissible for the
operands of the corresponding binary operator. The only additional restriction is that when
you add a pointer to an integer, the pointer must be the left operand, as the result of the
addition is a pointer. For example:

short *sPtr;

/.

sPtr += 2; // Equivalent to sPtr = sPtr + 2;
// or SPtr = 2 + SPtr;

Increment and Decrement Operators

Each of the tokens ++ and - - represents both a postfix and a prefix operator. Table 5-8
describes both forms of both operators.

Table 5-8. Increment and decrement operators
Operator Meaning Side effect Value of the expression

Postfix: Increment Increases the value of x by one (like x The value of x++ is the value that x had before it was

X++ =x+ 1) incremented
Prefix: The value of ++x is the value that x has after it has been
X incremented

Postfix: Decrement Decreases the value of x by one (like The value of x- - is the value that x had before it was

X-- x=x- 1) decremented
Prefix: The value of - -x is the value that x has after it has been
-X decremented

These operators require a modifiable lvalue as their operand. More specifically, the
operand must have a real arithmetic type (not a complex type), or an object pointer type.
The expressions ++x and - -x are equivalentto (x += 1) and (x -= 1).

The following examples demonstrate the use of the increment operators, along with the
subscript operator [] and the indirection operator *:

char a[10] = "Jim";

int 1 = 0;

printf("%c\n", a[i++]); // Output: J
printf("%c\n", a[++i]); // Output: m

The character argument in the first printf() call is the character J from the array element
a[0]. After the call, i has the value 1. Thus, in the next statement, the expression ++1i
yields the value 2, so that a[++1] is the character m.

The operator ++ can also be applied to the array element itself:

i=0;
printf("%c\n", a[i]++); // Output: J
printf("%c\n", ++a[i]); // Output: L

According to the operator precedences and associativity in Table 5-4, the expressions
a[i]++ and ++a[i] are equivalent to (a[i])++ and ++(a[i]). Thus, each of these
expressions increases the value of the array element a[0] by one, while leaving the index
variable i unchanged. After the statements in this example, the value of i is still 0, and the
character array contains the string "Lim", as the first element has been incremented twice.

The operators ++ and- - are often used in expressions with pointers that are dereferenced
by the * operator. For example, the following while loop copies a string from the array a
to a second char array, a2:

char a2[10], *p1 = a, *p2 = a2;

// Copy string to a2:
while ((*p2++ = *p1++) 1= "\@')

’

Because the postfix operator ++ has precedence over the indirection operator * (see

Table 5-4), the expression *pi1++ is equivalent to * (p1++). In other words, the value of the
expression *p1++ is the array element referenced by p1, and as a side effect, the value of
pl is one greater after the expression has been evaluated. When the end of the string is
reached, the assignment *p2++ = *pi1++ copies the terminator character '\e', and the loop
ends, because the assignment expression yields the value '\0"'.

By contrast, the expression (*p1)++ or ++(*p1) would increment the element referenced
by p1, leaving the pointer’s value unchanged. However, the parentheses in the expression
++(*p1) are unnecessary: this expression is equivalent to ++*p1 because the unary
operators are associated with operands from right to left (see Table 5-4). For the same
reason, the expression *++p1 is equivalent to * (++p1), and its value is the array element
that p1 points to after p1 has been incremented.

Comparative Operators

The comparative operators , also called the relational operators and the equality
operators, compare two operands and yield a value of type int. The value is 1 if the

specified relation holds, and 0 if it does not. C defines the comparative operators listed in
Table 5-9.

Table 5-9. Comparative operators

Operator Meaning Example Result (1 = true, 0 = false)

< Less than X <y 1 if x is less than y; otherwise, 0

= Less than or equal to x <=y 1if xis less than or equal to y; otherwise, 0

> Greater than X >y 1 if x is greater than y; otherwise, 0

>= Greater than or equal to x >= y 1 if x is greater than or equal to y; otherwise, 0
== Equal to x ==y 1if xis equal to y; otherwise, 0

I= Not equal to x !=y 1if xis not equal to y; otherwise, 0

For all comparative operators, the operands must meet one of the following conditions:

= Both operands have real arithmetic types.

= Both operands are pointers to objects of the same type, which may be declared with
different type qualifiers.

With the equality operators, == and !=, operands that meet any of the following conditions
are also permitted:

m The two operands have any arithmetic types, including complex types.
m Both operands are pointers to functions of the same type.

= One operand is an object pointer, while the other is a pointer to void. The two may be
declared with different type qualifiers (the operand that is not a pointer to void is
implicitly converted to the type void* for the comparison).

m One operand is a pointer and the other is a null pointer constant. The null pointer
constant is converted to the other operand’s type for the comparison.

The operands of all comparison operators are subject to the usual arithmetic conversions
(see “Conversion of Arithmetic Types”). Two complex numbers are considered equal if
their real parts are equal and their imaginary parts are equal.

When you compare two object pointers, the result depends on the relative positions of the
objects in memory. Elements of an array are objects with fixed relative positions: a pointer
that references an element with a greater index is greater than any pointer that references
an element with a lesser index. A pointer can also contain the address of the first memory
location after the last element of an array. In this case, that pointer’s value is greater than
that of any pointer to an element of the array.

The function in Example 5-2 illustrates some expressions with pointers as operands.

Example 5-2. Operations with pointers

/* The function average() calculates the arithmetic mean of the
* numbers passed to it in an array.
* Arguments: An array of float, and its length.
* Return value: The arithmetic mean of the array elements,
* with type double.
*/
double average(const float *array, int length)

{

double sum = 0.0;
const float *end = array + length; // Points one past the last element.

if (length <= 0) // The average of no elements is zero.
return 0.0;
// Accumulate the sum
for (const float *p = array; p < end; ++p) // by walking a pointer
sum += *p; // through the array.

return sum/length; // The average of the element values.

}

Two pointers are equal if they point to the same location in memory, or if they are both
null pointers. In particular, pointers to members of the same union are always equal
because all members of a union begin at the same address. The rule for members of the
same structure, however, is that a pointer to member2 is larger than a pointer to member1 if

and only if member2 is declared after member1 in the structure type’s definition.

The comparative operators have lower precedence than the arithmetic operators but higher
precedence than the logical operators. As a result, the following two expressions are
equivalent:

a<b & b< c+1
(a <b) & (b < (c+ 1))

Furthermore, the equality operators, == and !=, have lower precedence than the other
comparative operators. Thus, the following two expressions are also equivalent:

a<bhb != b<c
(a <b) !'=(b<c)

This expression is true (that is, it yields the value 1) if and only if one of the two operand
expressions, (a < b) and (b < c), is true and the other false.

Logical Operators

You can connect expressions using logical operators to form compound conditions, such
as those often used in jump and loop statements to control the program flow. C uses the
symbols described in Table 5-10 for the boolean operations AND, OR, and NOT.

Table 5-10. Logical operators
Operator Meaning Example Result (1 = true, 0 = false)

&& logical AND x && y 1 if each of the operands x and y is not equal to zero; otherwise, 0
[logical OR x || y 0if each of x and y is equal to zero; otherwise, 1

! logical NOT !x 1 if x is equal to zero; otherwise, 0

Like comparative expressions, logical expressions have the type int. The result has the
value 1 if the logical expression is true, and the value 0 if it is false.

The operands may have any scalar type desired — in other words, any arithmetic or
pointer type. Any operand with a value of 0 is interpreted as false; any value other than 0
is treated as true. Most often, the operands are comparative expressions, as in the
following example. Assuming the variable deviation has the type double, all three of the
expressions that follow are equivalent:
(deviation < -0.2
deviation < -0.2
I (deviation >= -0.2

)

|| (deviation > ©0.2)
|| deviation > 0.2
&& deviation <= 0.2)

Each of these logical expressions yields the value 1, or true, whenever the value of the
variable deviation is outside the interval [-0.2, 0.2]. The parentheses in the first

expression are unnecessary because comparative operators have a higher precedence than
the logical operators && and | |. However, the unary operator ! has a higher precedence.

Furthermore, as Table 5-4 shows, the operator && has a higher precedence than | |. As a
result, parentheses are necessary in the following expression:

(deviation < -0.2 || deviation > 0.2) && status == 1

Without the parentheses, that expression would be equivalent to this:

deviation < -0.2 || (deviation > 0.2 && status == 1)
These expressions yield different results if, for example, deviation is less than -0.2 and
status is not equal to 1.

The operators && and | | have an important peculiarity: their operands are evaluated in
order from left to right, and if the value of the left operand is sufficient to determine the

result of the operation, then the right operand is not evaluated at all. There is a sequence
point after the evaluation of the left operand. The operator && evaluates the right operand

only if the left operand yields a nonzero value; the operator| | evaluates the right operand
only if the left operand yields 0. The following example shows how programs can use
these conditional-evaluation characteristics of the && and | | operators:

double x;
_Bool get_x(double *x), check_x(double); // Function prototype
// declarations.
VAV
while (get_x(&x) && check_x(x)) // Read and test a number.
{/* ... Process x.. */ '}

In the controlling expression of the while loop, the function get_x(&x) is called first to
read a floating-point number into the variable x. Assuming that get_x() returns a true
value on success, the check_x() function is called only if there is a new value in x to be
tested. If check_x() also returns true, then the loop body is executed to process x.

Bitwise Operators

For more compact data, C programs can store information in individual bits or groups of
bits. File access permissions are a common example. The bitwise operators allow you to
manipulate individual bits in a byte or in a larger data unit: you can clear, set, or invert any
bit or group of bits. You can also shift the bit pattern of an integer to the left or right.

The bit pattern of an integer type consists of bit positions numbered from right to left,
beginning with position O for the least significant bit. For example, consider the char
value '*', which in ASCII encoding is equal to 42, or binary 101010:

Bitpattern 00101010

Bit positions 7 6 5 4 3 2 10

In this example, the value 101010 is shown in the context of an 8-bit byte; hence the two
leading zeros.
Boolean bitwise operators

The operators listed in Table 5-11 perform Boolean operations on each bit position of their
operands. The binary operators connect the bit in each position in one operand with the bit
in the same position in the other operand. A bit that is set, or 1, is interpreted as true, and
a bit that is cleared, or 0, is considered false.

In addition to the operators for boolean AND, OR, and NOT, there is also a bitwise

exclusive-OR operator. These are all described in Table 5-11.

Table 5-11. Boolean bitwise operators
Operator Meaning Example Result, for each bit position (1 = set, 0 = cleared)

& Bitwise AND X &Yy 1,if 1 in both x and y
0, if 0 in x or y, or both

Bitwise OR x |y 1,if 1 in x or y, or both
0, if 0 in both x and y

A Bitwise exclusive OR X Ay 1, if 1 either in x or in y, but not in both
0, if either value in both x and y

~ Bitwise NOT (one’s complement) ~x 1,if 0 in x

0,if 1in x

The operands of the bitwise operators must have integer types, and are subject to the usual
arithmetic conversions. The resulting common type of the operands is the type of the

result. Table 5-12 illustrates the effects of these operators.

Table 5-12. Effects of the bitwise
operators

Expression (or declaration) Bit pattern

int a = 6; 0..00O0110
int b = 11, 0.061011
aé&hb 0.00010
al|b 0.01111
a’b 0.01101
~a 1.11001

You can clear certain bits in an integer variable a by performing a bitwise AND with an
integer in which only the bits to be cleared contain zeros, and assigning the result to the
variable a. The bits that were set in the second operand — called a bit mask — have the

same value in the result as they had in the first operand. For example, an AND with the bit
mask OxFF clears all bits except the lowest eight:

a &= OxFF; // Equivalent notation: a = a & OxFF;

As this example illustrates, the compound assignment operator &= also performs the &
operation. The compound assignments with the other binary bitwise operators work
similarly.

The bitwise operators are also useful in making bit masks to use in further bit operations.
For example, in the bit pattern of 0x20, only bit 5 is set. The expression ~6x20 therefore
yields a bit mask in which all bits are set except bit 5:

a &= ~0x20; // Clear bit 5 in a.

The bit mask ~0x20 is preferable to @xFFFFFFDF because it is more portable: it gives the

desired result regardless of the machine’s word size. (It also makes the statement more
readable for humans.)

You can also use the operators | (OR) and 7 (exclusive OR) to set and clear certain bits.
Here is an example of each one:
int mask = 0xC;

a |= mask; // Set bits 2 and 3 in a.
a A= mask; // Invert bits 2 and 3 in a.

A second inversion using the same bit mask reverses the first inversion. In other words,
bArmask~mask yields the original value of b. This behavior can be used to swap the values

of two integers without using a third, temporary variable:

a A= b; // Equivalent to a = a " b;
b A= a; // Assign b the original value of a.
a = b; // Assign a the original value of b.

The first two expressions in this example are equivalentto b = bA(arb) orb = (arb)Ab.
The result is like b = a, with the side effect that a is also modified, and now equals arb.
At this point, the third expression has the effect of (using the original values of a and b) a
= (a"b)na,ora = h.

Shift operators

The shift operators transpose the bit pattern of the left operand by the number of bit
positions indicated by the right operand. They are listed in Table 5-13.

Table 5-13. Shift operators
Operator Meaning Example Result

<< Shift left x <<y Each bit value in x is moved y positions to the left

>> Shift right x >> y Each bit value in x is moved y positions to the right

The operands of the shift operators must be integers. Before the actual bit-shift, the integer
promotions are performed on both operands. The value of the right operand must not be
negative, and must be less than the width of the left operand after integer promotion. If it
does not meet these conditions, the program’s behavior is undefined.

The result has the type of the left operand after integer promotion. The shift expressions in
the following example have the type unsigned long.

unsigned long n = 0xB, // Bit pattern: 06.. 0 0 0 1 0 1 1
result = 0;

result = n << 2; // . 0101100

result = n > 2; // 0. O 00060106

In a left shift, the bit positions that are vacated on the right are always cleared. Bit values
shifted beyond the leftmost bit position are lost. A left shift through y bit positions is

equivalent to multiplying the left operand by 2”: if the left operand x has an unsigned type,
then the expression x << y yields the value of x x 2. Thus, in the previous example, the
expression n << 2 yields the value of n x 4, or 44.

On a right shift, the vacated bit positions on the left are cleared if the left operand has an
unsigned type, or if it has a signed type and a non-negative value. In this case, the

expression x >> y yields the same value as the integer division x/2¥. If the left operand has
a negative value, then the fill value depends on the compiler: it may be either zero or the
value of the sign bit.

The shift operators are useful in generating certain bit masks. For example, the expression
1 << 8yields a word with only bit 8 set, and the expression ~(3<<4) produces a bit
pattern in which all bits are set except bits 4 and 5. The function setBit () in Example 5-3
uses the bit operations to manipulate a bit mask.

Example 5-3. Using a shift operation to manipulate a bit mask

// Function setBit()

// Sets the bit at position p in the mask m.

// Uses CHAR_BIT, defined in limits.h, for the number of bits in a byte.
// Return value: The new mask with the bit set, or the original mask

/7 if p is not a valid bit position.
unsigned int setBit(unsigned int mask, unsigned int p)
{

if (p >= CHAR_BIT * sizeof(int))
return mask;
else
return mask | (1 << p);
}

The shift operators have lower precedence than the arithmetic operators but higher
precedence than the comparative operators and the other bitwise operators. The
parentheses in the expression mask | (1 << p) in Example 5-3 are thus actually

unnecessary, but they make the code more readable.

Memory Addressing Operators

The five operators listed in Table 5-14 are used in addressing array elements and members
of structures, and in using pointers to access objects and functions.

Table 5-14. Memory addressing operators

Operator Meaning Example Result

& Address of &x Pointer to x

& Indirection operator *p The object or function that p points to

[1 Subscripting x[y] The element with the index y in the array x (or the element with

the index x in the array y; the [] operator works either way)

Structure or union member x.y The member named y in the structure or union x
designator
-> Structure or union member p->y The member named y in the structure or union that p points to

designator by reference

The & and * operators

The address operator & yields the address of its operand. If the operand x has the type T,
then the expression &x has the type “pointer to 7.”

The operand of the address operator must have an addressable location in memory. In
other words, the operand must designate either a function or an object (i.e., an lvalue) that
is not a bit-field, and has not been declared with the storage class register (see “Storage
Class Specifiers™).

You need to obtain the addresses of objects and functions when you want to initialize
pointers to them:

float x, *ptr;
ptr &X; // OK: Make ptr point to x.
ptr &(x+1); // Error: (x+1) is not an lvalue.

Conversely, when you have a pointer and want to access the object it references, use the
indirection operator *, which is sometimes called the dereferencing operator (see “Using
Pointers to Read and Modify Objects” for more information). Its operand must have a
pointer type. If ptr is a pointer, then *ptr designates the object or function that ptr points
to. If ptr is an object pointer, then *ptr is an lvalue, and you can use it as the left operand
of an assignment operator:

float x, *ptr = &x;
*ptr = 1.7; // Assign the value 1.7 to the variable x
++(*ptr); // and add 1 to it.

In the final statement of this example, the value of ptr remains unchanged. The value of x
is now 2.7.

The behavior of the indirection operator * is undefined if the value of the pointer operand
is not the address of an object or a function.

Like the other unary operators, the operators & and * have the second highest precedence.
They are grouped with operands from right to left. The parentheses in the expression ++
(*ptr) are thus superfluous.

The operators & and * are complementary: if x is an expression that designates an object or
a function, then the expression *&x is equivalent to x. Conversely, in an expression of the
form &*ptr, the operators cancel each other out so that the type and value of the
expression are equivalent to ptr. However, &*ptr is never an lvalue, even if ptr is.

Elements of arrays

The subscript operator [] allows you to access individual elements of an array. It takes
two operands. In the simplest case, one operand is an array name and the other operand
designates an integer. In the following example, assume that myarray is the name of an
array, and i is a variable with an integer type. The expression myarray[i] then designates
element number i in the array, where the first element is element number zero (see
Chapter 8).

The left operand of [] need not be an array name. One operand must be an expression
whose type is “pointer to an object type” — an array name is a special case of such an
expression — while the other operand must have an integer type. An expression of the
form x[y] is always equivalent to (*((x)+(y))) (see also “Pointer arithmetic” earlier in
this chapter). Example 5-4 uses the subscript operator in initializing a dynamically
generated array.

Example 5-4. Initializing an array

#include <stdlib.h>
#define ARRAY_SIZE 100
VA4
double *pArray = NULL; int i = 0;
pArray = malloc(ARRAY_SIZE * sizeof(double)); // Generate the array
if (pArray != NULL) {
for (1 = 0; i < ARRAY_SIZE; ++1i) // and initialize 1it.
pArray[i] = (double)rand()/RAND_MAX;
VA4
}

In Example 5-4, the expression pArray[i] in the loop body is equivalent to * (pArray+i).
The notation i[pArray] is also correct, and yields the same array element.

Members of structures and unions

The binary operators . and ->, most often called the dot operator and the arrow operator,
allow you to select a member of a structure or a union.

As Example 5-5 illustrates, the left operand of the dot operator . must have a structure or
union type, and the right operand must be the name of a member of that type.

Example 5-5. The dot operator

struct Article { long number; // The part number of an article
char name[32]; // The article's name
long price; // The unit price in cents
VA4
};
struct Article sw = { 102030L, "Heroes", 5995L };
sw.price = 4995L; // Change the price to 49.95

The result of the dot operator has the value and type of the selected member. If the left
operand is an lvalue, then the operation also yields an Ivalue. If the left operand has a
qualified type (such as one declared with const), then the result is likewise qualified.

The left operand of the dot operator is not always an lvalue, as the following example
shows:

struct Article getArticle(); // Function prototype
printf("name: %s\n", getArticle().name);

The function getArticle() returns an object of type struct Article. As a result,
getArticle().name is a valid expression, but not an lvalue, as the return value of a
function is not an lvalue.

The operator -> also selects a member of a structure or union, but its left operand must be

a pointer to a structure or union type. The right operand is the name of a member of the
structure or union. Example 5-6 illustrates the use of the -> operator, again using the

Article structure defined in Example 5-5.

Example 5-6. The arrow operator

struct Article *pArticle = &sw, // A pointer to struct Article.
const *pcArticle = &sw; // A "read-only pointer" to struct
// Article.
++(pArticle->number); // Increment the part number.
if (pcArticle->number == 102031L) // Correct usage: read-only access.
pcArticle->price += 50; // Error: can't use a

// const-qualified pointer
// to modify the object.

The result of the arrow operator is always an lvalue. It has the type of the selected
member, as well as any type qualifications of the pointer operand. In Example 5-6,
pcArticle is a pointer to const struct Article. As aresult, the expression pcArticle-

>price is constant.

Any expression that contains the arrow operator can be rewritten using the dot operator by
dereferencing the pointer separately: an expression of the form p->m is equivalent to

(*p) .m. Conversely, the expression x.m is equivalent to (&x)->m, as long as x is an lvalue.

The operators . and ->, like [], have the highest precedence, and are grouped from left to
right. Thus, the expression ++p->m, for example, is equivalent to ++(p->m), and the
expression p->m++ is equivalent to (p->m)++. However, the parentheses in the expression

(*p) .m are necessary, as the dereferencing operator * has a lower precedence. The
expression *p.m would be equivalent to *(p.m), and thus makes sense only if the member
m is also a pointer.

To conclude this section, we can combine the subscript, dot, and arrow operators to work
with an array whose elements are structures:

struct Article arrArticle[10]; // An array with ten elements
// of type struct Article.
arrArticle[2].price = 990L; // Set the price of the
// array element arrArticle[2].
arrArticle->number = 10100L; // Set the part number in the

// array element arrArticle[0].

An array name, such as arrArticle in the example, is a constant pointer to the first array
element. Hence arrArticle->number designates the member number in the first array
element. To put it in more general terms: for any index i, the following three expressions
are equivalent:

arrArticle[i].number

(arrArticle+i)->number
(*(arrArticle+i)).number

All of them designate the member number in the array element with the index i.

Other Operators

There are seven other operators in C that do not fall into any of the categories described in
this chapter. Table 5-15 lists these operators in order of precedence.

Table 5-15. Other operators

Operator Meaning Example Result
0 Function call log(x) Passes control to the specified
function, with the specified
arguments
(type name) {list} Compound literal ~ (int [5]){ 1, 2 } Defines an unnamed object that has
the specified type and the values
listed
sizeof Storage size of an sizeof x The number of bytes occupied in
object or type, in memory by x
bytes
_Alignof Alignment of an _Alignof(int) The minimum distance between the
object type, in bytes locations of two such objects in
memory
(type name) Explicit type (short) x The value of x converted to the type
conversion, or specified
“Cast”
Pe Conditional X?y:z The value of vy, if x is true (i.e.,
evaluation nonzero); otherwise, the value of z
, Sequential X,y Evaluates first x, then y; the result of
evaluation the expression is the value of y

Function calls

A function call is an expression of the form 7n_ptr(argument_1list), where the operand
fn_ptr is an expression with the type “pointer to a function.” If the operand designates a

function (as a function name does, for example), then it is automatically converted into a

pointer to the function. A function call expression has the value and type of the function’s
return value. If the function has no return value, the function call has the type void.

Before you can call a function, you must make sure that it has been declared in the same
translation unit. Usually a source file includes a header file containing the function
declaration, as in this example:

#include <math.h> // Contains the prototype
// double pow(double, double);
double x = 0.7, y = 0.0;
VA4
y = pow(x+1, 3.0); // Type: double

The parentheses enclose the comma-separated list of arguments passed to the function,
which can also be an empty list. If the function declaration is in prototype form (as is
usually the case), the compiler ensures that each argument is converted to the type of the

corresponding parameter, as for an assignment. If this conversion fails, the compiler issues
an error message:

pow(X, 3); // The integer constant 3 is converted to type double.
pow(X); // Error: incorrect number of arguments.

The order in which the program evaluates the individual expressions that designate the
function and its arguments is not defined. As a result, the behavior of a printf statement

such as the following is undefined:

int i = 0;
printf("%d %d\n", i, ++i); // Behavior undefined

However, there is a sequence point after all of these expressions have been evaluated and
before control passes to the function.

Like the other postfix operators, a function call has the highest precedence, and is grouped
with operands from left to right. For example, suppose that fn_table is an array of
pointers to functions that take no arguments and return a structure that contains a member
named price. In this case, the following expression is a valid function call:

fn_table[i++]().price

The expression calls the function referenced by the pointer stored in fn_table[i]. The
return value is a structure, and the dot operator selects the member price in that structure.
The complete expression has the value of the member price in the return value of the
function fn_table[i](), and the side effect that i is incremented once.

Chapter 7 describes function calls in more detail, including recursive functions and
functions that take a variable number of arguments.

Compound literals

Compound literals are an extension introduced in the C99 standard. This extension allows
you to define literals with any object type desired. A compound literal consists of an
object type in parentheses, followed by an initialization list in braces:

(type name){ list of initializers }

The value of the expression is an unnamed object that has the specified type and the
values listed. If you place a compound literal outside of all function blocks, then the
initializers must be constant expressions, and the object has static storage duration.
Otherwise, it has automatic storage duration, determined by the containing block.

Typical compound literals generate objects with array or structure types. Here are a few
examples to illustrate their use:

float *fPtr = (float []){ -0.5, 0.0, +0.5 };

This declaration defines a pointer to a nameless array of three float elements:

#include "database.h" // Contains prototypes and type definitions,
// including the structure Pair:
// struct Pair { long key, char value[32]; };

insertPair(&db, &(struct Pair){ 1000L, "New York JFK Airport" });

This statement passes the address of a literal of type struct Pair to the function
insertPair (). You can also store the address in a local variable first:

struct Pair p1 = { 1000L, "New York JFK Airport" };
insertPair(&db, &pl);

To define a constant compound literal, use the type qualifier const:

(const char []){"A constant string."}

If the previous expression appears outside of all functions, it defines a static array of char,
like the following simple string literal:

"A constant string."

In fact, the compiler may store string literals and constant compound literals with the same
type and contents at the same location in memory.

Despite their similar appearance, compound literals are not the same as cast expressions.
The result of a cast expression has a scalar type or the type void, and is not an lvalue.
The sizeof operator

The sizeof operator yields the size of its operand in bytes. Programs need to know the

size of objects mainly in order to reserve memory for them dynamically, or to store binary
data in files.

The operand of the sizeof operator can be either an object type in parentheses or an
expression that has an object type and is not a bit-field. The result has the type size_t,
which is defined in stddef.h and other standard header files as an unsigned integer type.

For example, if i is an int variable and iPtr is a pointer to int, then each of the
following expressions yields the size of int — on a 32-bit system, the value would be 4:

sizeof(int) sizeof i sizeof(i) sizeof *iPtr sizeof(*iPtr)

Note the difference to the following expressions, each of which yields the size of a pointer
to int:

sizeof(int*) sizeof &i sizeof(&i) sizeof iPtr sizeof(iPtr)

Like *, &, and the other unary operators, sizeof has the second highest precedence, and is
grouped from right to left. For this reason, no parentheses are necessary in the expression
sizeof *iPtr.

For an operand with the type char, unsigned char, or signed char, the sizeof operator
yields the value 1, because these types have the size of a byte. If the operand has a
structure type, the result is the total size that the object occupies in memory, including any
gaps that may occur due to the alignment of the structure members. In other words, the
size of a structure is sometimes greater than the sum of its individual members’ sizes. For
example, if variables of the type short are aligned on even byte addresses, the following

structure has the size sizeof(short) + 2:

struct gap { char version; short value; };

In the following example, the standard function memset () sets every byte in the structure
to zero, including any gaps between members:

#include <string.h>

VA4

struct gap g;
memset(&g, 0, sizeof g);

If the operand of sizeof is an expression, it is not actually evaluated. The compiler
determines the size of the operand by its type, and replaces the sizeof expression with the

resulting constant. Variable-length arrays, introduced in the C99 standard, are an exception
(see Chapter 8). Their size is determined at runtime, as Example 5-7 illustrates.

Example 5-7. Sizing variable-length arrays
void func(float a[], int n)

{
float b[2*n]; // A variable-length array of float.
/* ... the value of n may change now.. */
int m = sizeof(b) / sizeof(*b); // Yields the number of elements
/o Y/ // 1in the array b.

}

Regardless of the current value of the variable n, the expression sizeof(b) yields the
value of 2 x ny X sizeof(float), where n, is the value that n had at the beginning of the
function block. The expression sizeof (*b) is equivalent to sizeof (b[0]), and in this
case has the value of sizeof (float).

TIP

The parameter a in the function func() in Example 5-7 is a pointer, not an array. The expression sizeof(a)
within the function would therefore yield the size of a pointer. See “Array and Function Designators”.

The _Alignof operator

The alignment of a type describes how objects of that type can be positioned in memory
(see “The Alignment of Objects in Memory”). Alignment is expressed as an integer value.

The operand of _Alignof is the name of a type in parentheses, and the resulting
expression yields the type’s alignment, as in the following example:

_Alignof(char*) // The alignment of a char pointer

Because the alignment of types is determined by the compiler, _Alignof expressions, like
sizeof expressions, are integer constants with the type size_t. If your program includes
the header file stdalign.h, you can also use the synonym alignof in place of the keyword
_Alignof. The _Alignof operator can only be applied to complete object types, not to
function types or incomplete object types. If the operand is an array type, _Alignof yields
the alignment of the array elements’ type.

The conditional operator

The conditional operator is sometimes called the ternary or trinary operator, because it is
the only one that has three operands:

condition ? expression 1 : expression 2

The operation first evaluates the condition. Then, depending on the result, it evaluates one
or the other of the two alternative expressions.

There is a sequence point after the condition has been evaluated. If the result is not equal
to O (in other words, if the condition is true), then only the second operand, expression
1, is evaluated, and the entire operation yields the value of expression 1. On the other
hand, if condition does yield O (i.e., false), then only the third operand, expression 2,
is evaluated, and the entire operation yields the value of expression 2. In this way, the

conditional operator represents a conditional jump in the program flow, and is therefore an
alternative to some if-else statements.

A common example is the following function, which finds the maximum of two numbers:
inline int iMax(int a, int b) { return a >= b ? b, 3}
The function iMax () can be rewritten using an if-else statement:

inline int iMax(int a, int b)
{if (a >= b) return a; else return b; }

The conditional operator has a very low precedence: only the assignment operators and the
comma operator are lower. Thus, the following statement requires no parentheses:

distance = x <y ? vy - X - Y;

The first operand of the conditional operator, condition, must have a scalar type — that
is, an arithmetic type or a pointer type. The second and third operands, expression 1 and

expression 2, must fulfill one of the following cases:

m Both of the alternative expressions have arithmetic types, in which case the result of
the complete operation has the type that results from performing the usual arithmetic
conversions on these operands.

m Both of the alternative operands have the same structure or union type, or the type
void. The result of the operation also has this type.

m Both of the alternative operands are pointers, and one of the following is true:

Both pointers have the same type. The result of the operation then has this type as well.

One operand is a null pointer constant. The result then has the type of the other
operand.

One operand is an object pointer and the other is a pointer to void. The result then has
the type void *.

The two pointers may point to differently qualified types. In this case, the result is a
pointer to a type that has all of the type qualifiers of the two alternative operands. For
example, suppose that the following pointers have been defined:

const int *cintPtr; // Declare pointers
volatile int *vintPtr;
void *voidPtr;

The expressions in the following table then have the type indicated, regardless of the truth
value of the variable flag:

Expression Type

flag ? cintPtr : vintPtr volatile const int*
flag ? cintPtr : NULL const int*

flag ? cintPtr : voidPtr const void*

The comma operator

The comma operator is a binary operator:

expression 1 , expression 2

The comma operator ensures sequential processing: first the left operand is evaluated, then
the right operand. The result of the complete expression has the type and value of the right
operand. The left operand is only evaluated for its side effects; its value is discarded.
There is a sequence point after the evaluation of the left operand. For example:

X = 2.7, sqrt(2*x)

In this expression, the assignment takes place first, before the sqrt () function is called.
The value of the complete expression is the function’s return value.

The comma operator has the lowest precedence of all operators. For this reason, the
assignment x = 2.7 in the previous example does not need to be placed in parentheses.

However, parentheses are necessary if you want to use the result of the comma operation
in another assignment:

y=(x=2.7, sqrt(2*x));

This statement assigns the square root of 5.4 to y.

A comma in a list of initializers or function arguments is a list separator, not a comma
operator. In such contexts, however, you can still use a comma operator by enclosing an
expression in parentheses:

y = sqrt((x=2.7, 2*x));

This statement is equivalent to the one in the previous example. The comma operator
allows you to group several expressions into one. This ability makes it useful for
initializing or incrementing multiple variables in the head of a for loop, as in the

following example:
int i; float fArray[10], val;

for (i=0, val=0.25; i < 10; ++i, val *= 2.0)
fArray[i] = val;

Constant Expressions

The compiler recognizes constant expressions in source code and replaces them with their
values. The resulting constant value must be representable in the expression’s type. You
may use a constant expression wherever a simple constant is permitted.

Operators in constant expressions are subject to the same rules as in other expressions.
Because constant expressions are evaluated at translation time, though, they cannot
contain function calls or operations that modify variables, such as assignments.

Integer Constant Expressions

An integer constant expression is a constant expression with any integer type. These are
the expressions you use to define the following items:

m The size of an array

m The value of an enumeration constant

m The size of a bit-field

m The alignment of an object in a definition using _Alignas (C11)
m The value of a case constant in a switch statement

For example, you may define an array as follows:

#define BLOCK_SIZE 512
char buffer[4*BLOCK_SIZE];

The following kinds of operands are permissible in an integer constant expression:

» Integer, character, and enumeration constants
m sizeof expressions and _Alignof expressions

However, the operand of sizeof in a constant expression must not be a variable-length
array. You can also use floating-point constants if you cast them as an integer type.

Other Constant Expressions

You can also use constant expressions to initialize static and external objects. In these
cases, the constant expressions can have any arithmetic or pointer type desired. You may
use floating-point constants as operands in an arithmetic constant expression.

A constant with a pointer type, called an address constant, is usually a null pointer, an
array or function name, or a value obtained by applying the address operator & to an object
with static storage duration. However, you can also construct an address constant by
casting an integer constant as a pointer type, or by pointer arithmetic. For example:

#define ARRAY_SIZE 200

static float fArray[ARRAY_SIZE];

static float *fPtr = fArray + ARRAY_SIZE - 1; // Pointer to the last
// array element

In composing an address constant, you can also use other operators, such as . and ->, as

long as you do not actually dereference a pointer to access the value of an object. For
example, the following declarations are permissible outside any function:

struct Person { char pin[32];
char name[64];
/E L0/
}s
struct Person boss;
const char *cPtr = &boss.name[0]; // or: ... = boss.name;

I The C standard acknowledges this etymology, but proposes that the L in Ivalue be
thought of as meaning “locator,” because an Ivalue always designates a location in
memory. The standard steers clear of the term rvalue, preferring the phrase “not an
lvalue.”

Chapter 6. Statements

A statement specifies one or more actions to be performed such as assigning a value to a
variable, passing control to a function, or jumping to another statement. The sum total of
all the statements in a program determines what the program does.

Jumps and loops are statements that control the flow of the program. Except when those
control statements result in jumps, statements are executed sequentially; that is, in the
order in which they appear in the program.

Expression Statements

An expression statement is an expression followed by a semicolon:

[expression] ;

In an expression statement, the expression — whether an assignment or another operation
— is evaluated for the sake of its side effects. Following are some typical expression
statements :

y = X; // An assignment

sum = a + b; // Calculation and assignment
++X;

printf("Hello, world\n"); // A function call

The type and value of the expression are irrelevant, and are discarded before the next
statement is executed. For this reason, statements such as the following are syntactically
correct, but not very useful:

100;
y < Xj

If a statement is a function call and the return value of the function is not needed, it can be
discarded explicitly by casting the function as void:

char name[32];

VA4

(void)strcpy(name, "Jim"); // Explicitly discard
// the return value.

A statement can also consist of a semicolon alone; this is called a null statement. Null
statements are necessary in cases where syntax requires a statement but the program
should not perform any action. In the following example, a null statement forms the body
of a for loop:

for (1 =0; s[i] != '\0"'; ++i) // Loop conditions
; // A null statement

This code sets the variable i to the index of the first null character in the array s, using
only the expressions in the head of the for loop.

Block Statements

A compound statement, called a block for short, groups a number of statements and
declarations together between braces to form a single statement:

{ [list of declarations and statements] }

Unlike simple statements, block statements are not terminated by a semicolon. A block is
used wherever the syntax calls for a single statement but the program’s purpose requires
several statements. For example, you can use a block statement in an if statement or when

more than one statement needs to be repeated in a loop:
{ double result = 0.0, x = 0.0; // Declarations

static long status = 0;
extern int limit;

++X; // Statements
if (status == 0)
{ // New block
int i = 0;
while (status == 0 && 1 < 1limit)
{ /7. */ 3} // Another block
}
else
{ 7 ... */ 3} // And yet another block

The declarations in a block are usually placed at the beginning, before any statements.
However, C99 allows declarations to be placed anywhere.

Names declared within a block have block scope; in other words, they are visible only
from their declaration to the end of the block. Within that scope, such a declaration can
also hide an object of the same name that was declared outside the block. The storage
duration of automatic variables is likewise limited to the block in which they occur. This
means that the storage space of a variable not declared as static or extern is
automatically freed at the end of its block statement. For a full discussion of scope and
storage duration, see Chapter 11.

Loops

Use a loop to execute a group of statements, called the loop body, more than once. In C,
you can introduce a loop using one of three iteration statements: while, do..while, and

for.

In each of these statements, the number of iterations through the loop body is controlled
by a condition, the controlling expression. This is an expression of a scalar type; that is, an
arithmetic expression or a pointer. The loop condition is true if the value of the controlling
expression is not equal to 0; otherwise, it is considered false.

The statements break and continue are used to jump out or back to the top of a loop
before the end of an iteration. They are described in “Unconditional Jumps”.

while Statements

A while statement executes a statement repeatedly as long as the controlling expression is
true:

while (expression) statement

The while statement is a top-driven loop: first, the loop condition (i.e., the controlling
expression) is evaluated. If it yields true, the loop body is executed, and then the
controlling expression is evaluated again. If the condition is false, program execution
continues with the statement that follows the loop body.

Syntactically, the loop body consists of one statement. If several statements are required,
they are grouped in a block. Example 6-1 shows a simple while loop that reads in
floating-point numbers from the console and accumulates a running total of them.

Example 6-1. A while loop

/* Read in numbers from the keyboard and
* print out their average.

#include <stdio.h>

int main()

{
double x = 0.0, sum = 0.0;
int count = 0;

printf("\t--- Calculate Averages ---\n");
printf("\nEnter some numbers:\n"
"(Type a letter to end your input)\n");

while (scanf("%1f", &) == 1)
{

sum += Xx;

++count;
}
if (count == 0)

printf("No input data!\n");
else

printf("The average of your numbers is %.2f\n", sum/count);
return 0,

}

In Example 6-1, the controlling expression:

scanf("%l1f", &) == 1

is true as long as the user enters a decimal number. As soon as the function scanf() is
unable to convert the string input into a floating-point number — when the user types the
letter g, for example — scanf () returns the value 0 (or -1 for EOF, if the end of the input
stream was reached or an error occurred). The condition is then false, and execution
continues at the if statement that follows the loop body.

for Statements
Like the while statement, the for statement is a top-driven loop, but with more loop logic

contained within the statement itself:

for ([expressionl]; [expression2]; [expression3])
statement

The three actions that need to be executed in a typical loop are specified together at the top
of the loop body:

expressioni (initialization)

Evaluated only once, before the first evaluation of the controlling expression, to
perform any necessary initialization.

expression2 (controlling expression)

Tested before each iteration. Loop execution ends when this expression evaluates to
false.

expression3 (adjustment)

An adjustment, such as the incrementation of a counter, performed after each loop
iteration and before expression2 is tested again.

Example 6-2 shows a for loop that initializes each element of an array.

Example 6-2. Using a for loop to initialize an array
#define ARR_LENGTH 1000

VA4
long arr[ARR_LENGTH];
int i;

for (1 = 0; i < ARR_LENGTH; ++i)
arr[i] = 2*i;

Any of the three expressions in the head of the for loop can be omitted. This means that
its shortest possible form is:

for (; ;)

A missing controlling expression is considered to be always true, and so defines an infinite
loop.

The following form, with no initializer and no adjustment expression, is equivalent to
while (expression):

for (;expression;)

In fact, every for statement can also be rewritten as a while statement, and vice versa. For
example, the complete for loop in Example 6-2 is equivalent to the following while loop:

i=0; // Initialize the counter
while (1 < ARR_LENGTH) // The loop condition

{
arr[i] = 2*i;
++1; // Increment the counter

for is generally preferable to while when the loop contains a counter or index variable
that needs to be initialized and then adjusted after each iteration.

In ANSI C99, a declaration can also be used in place of expressioni. In this case, the
scope of the variable declared is limited to the for loop. For example:

for (int i = 0; i < ARR_LENGTH; ++i)
arr[i] = 2*i,

The variable i declared in this for loop, unlike that in Example 6-2, no longer exists after
the end of the for loop.

The comma operator is often used in the head of a for loop in order to assign initial values
to more than one variable in expressioni, or to adjust several variables in expression3.
For example, the function strReverse() shown here uses two index variables to reverse
the order of the characters in a string:

void strReverse(char* str)

{

char ch;
for (size t i = 0, j = strlen(str)-1; i< 3j; ++i, --j)
ch = str[i], str[i] = str[j], str[j] = ch;
}

The comma operator can be used to evaluate additional expressions in places where only
one expression is permitted. See “Other Operators” for a detailed description of the
comma operator.

do...while Statements

The do..while statement is a bottom-driven loop:

do statement while (expression);

The loop body statement is executed once before the controlling expression is evaluated
for the first time. Unlike the while and for statements, do..while ensures that at least one
iteration of the loop body is performed. If the controlling expression yields true, then
another iteration follows. If false, the loop is finished.

In Example 6-3, the functions for reading and processing a command are called at least
once. When the user exits the menu system, the function getCommand() returns the value
of the constant END.

Example 6-3. do...while

// Read and carry out an incoming menu command.

int getCommand(void);

void performCommand(int cmd);

#define END 0

VA4

do

{
int command = getCommand(); // Poll the menu system.
performCommand(command); // Execute the command received.

} while (command != END);

Example 6-4 shows a version of the standard library function strcpy(), with just a simple

statement rather than a block in the loop body. Because the loop condition is tested after
the loop body, the copy operation includes the string terminator '\0"'.

Example 6-4. A strcpy() function using do...while

// Copy string s2 to string s1.

Y e
char *strcpy(char* restrict si1, const char* restrict s2)
{ - .
int i = 0;
do
s1[i] = s2[i]; // The loop body: copy each character
while (s2[i++] != '\0'); // End the loop if we just copied a '\0'.

return si,

Nested Loops

A loop body can be any simple or block statement, and may include other loop statements.
Note that a break or continue statement that occurs in a nested loop only jumps to the

end or the beginning of the loop that immediately contains it (see “Unconditional Jumps”).

Example 6-5 is an implementation of the bubble-sort algorithm using nested loops. The
inner loop in this algorithm inspects the entire array on each iteration, swapping
neighboring elements that are out of order. The outer loop is reiterated until the inner loop
finds no elements to swap. After each iteration of the inner loop, at least one element has
been moved to its correct position. Hence the remaining length of the array to be sorted,
len, can be reduced by one.

Example 6-5. Nested loops in the bubble-sort algorithm

// Sort an array of float in ascending order
// using the bubble-sort algorithm.

Y
void bubbleSort(float arr[], int len) // The array arr and
{ // its length len.
int isSorted = 0;
do
{
float temp; // Holder for values being swapped.
isSorted = 1;
--len;
for (int i = 0; 1i < len; ++i)
if (arr[i] > arr[i+1])
isSorted = 0; // Not finished yet.
temp = arr[i]; // Swap adjacent values.
arr[i] = arr[i+1];
arr[i+l] = temp;
}
} while (!isSorted);
}

Note that the automatic variables temp, declared in the do..while loop, and i, declared in
the head of the for loop, are created and destroyed again on each iteration of the outer
loop.

Selection Statements

A selection statement can direct the flow of program execution along different paths
depending on a given condition. There are two selection statements in C: if and switch.

if Statements

An if statement has the following form:

if (expression) statementl [else statement2]

The else clause is optional. The expression is evaluated first, to determine which of the
two statements is executed. This expression must have a scalar type. If its value is true —
that is, not equal to 0 — then statement1 is executed. Otherwise, statement2, if present,
is executed.

The following example uses if in a recursive function to test for the condition that ends its
recursion:

// The recursive function power() calculates
// integer powers of floating-point numbers.

double power(double base, unsigned int exp)
{

if (exp == 0) return 1.0;

else return base * power(base, exp-1);

}

If several if statements are nested, then an else clause always belongs to the last if (on
the same block nesting level) that does not yet have an else clause:
if (n>0)
if (n%2==0)
puts("n is positive and even");

else // This is the alternative
puts("n is positive and odd"); // to the *last* if

An else clause can be assigned to a different if by enclosing the last if statement that

should not have an else clause in a block:
if (n>0)
{
if (n% 2 ==20)

puts("n is positive and even");
}

else // This is the alternative
puts("n is negative or zero"); // to the *first* if

To select one of more than two alternative statements, if statements can be cascaded in an
else if chain. Each new if statement is simply nested in the else clause of the preceding
if statement:

// Test measurements for tolerance.

AR T
double spec = 10.0, measured = 10.3, diff;
/oL %/

diff = measured - spec;

if (diff >= 0.0 && diff < 0.5)
printf("Upward deviation: %.2f\n", diff);
else if (diff < 0.0 && diff > -0.5)

printf("Downward deviation: %.2f\n", diff);
else
printf("Deviation out of tolerance!\n");

The if conditions are evaluated one after another. As soon as one of these expression
yields true, the corresponding statement is executed. Because the rest of the else if
chain is cascaded under the corresponding else clause, it is alternative to the statement
executed and hence skipped over. If none of the if conditions is true, then the last if
statement’s else clause is executed, if present.

switch Statements

A switch statement causes the flow of program execution to jump to one of several
statements according to the value of an integer expression:

switch (expression) statement

expression has an integer type, and statement is the switch body, which contains case
labels and at most one default label. The expression is evaluated once and compared with
constant expressions in the case labels. If the value of the expression matches one of the
case constants, the program flow jumps to the statement following that case label. If none
of the case constants match, the program continues at the default label, if there is one.

Example 6-6 uses a switch statement to process the user’s selection from a menu.

Example 6-6. A switch statement

// Handle a command that the user selects from a menu.

// Declare other functions used:
int menu(void); // Prints the menu and returns
// a character that the user types.
void actioni(void),
action2(void);

/E L0/
switch (menu()) // Jump depending on the result of menu().
{
case 'a':
case 'A': actioni(); // Carry out action 1.
break; // Don't do any other "actions."
case 'b':
case 'B': action2(); // Carry out action 2.
break; // Don't do the default "action."
default: putchar('\a'); // If no recognized command,
} // output an alert.

The syntax of the case and default labels is as follows:

case constant: statement
default: statement

constant is a constant expression with an integer type. Each case constant in a given
switch statement must have a unique value. Any of the alternative statements may be
indicated by more than one case label, though.

The default label is optional, and can be placed at any position in the switch body. If
there is no default label, and the control expression of the switch statement does not
match any of the case constants, then none of the statements in the body of the switch
statement are executed. In this case, the program flow continues with the statement
following the switch body.

The switch body is usually a block statement that begins with a case label. A statement
placed before the first case label in the block would never be executed.

Labels in C merely identify potential destinations for jumps in the program flow. By
themselves, they have no effect on the program. Thus, after the jump from the switch to
the first matching case label, program execution continues sequentially, regardless of
other labels. If the statements following subsequent case labels are to be skipped over,
then the last statement to be executed must be followed by a break statement. The
program flow then jumps to the end of the switch body.

If variables are declared within a switch statement, they should be enclosed in a nested
block:

switch (x)
{
case : { int temp = 10; // Declare temp only for this '"case"
VA4
}
break;

case
/* */

Integer promotion is applied to the switch expression. The case constants are then
converted to match the resulting type of the switch expression.

You can always program a selection among alternative statements using an else if chain.
If the selection depends on the value of one integer expression, however, then you can use
a switch statement — and should, because it makes code more readable.

Unconditional Jumps

Jump statements interrupt the sequential execution of statements, so that execution
continues at a different point in the program. A jump destroys automatic variables if the
jump destination is outside their scope. There are four statements that cause unconditional
jumps in C: break, continue, goto, and return.

The break Statement

The break statement can occur only in the body of a loop or a switch statement, and
causes a jump to the first statement after the loop or switch statement in which it is
immediately contained:

break;

Thus, the break statement can be used to end the execution of a loop statement at any
position in the loop body. For example, the while loop in Example 6-7 may be ended

either at the user’s request (by entering a non-numeric string), or by a numeric value
outside the range that the programmer wants to accept.

Example 6-7. The break statement

// Read user input of scores from 0 to 100
// and store them in an array.
// Return value: the number of values stored.

AR LT L EEE
int getScores(short scores[], int len)
{

int i = 0;

puts("Please enter scores between 0 and 100.\n"
"Press <Q> and <Return> to quit.\n");
while (i < len)

{
printf("Score No. %2d: ", i+l);
if (scanf("%hd", &scores[i]) != 1)
break; // No number read: end the loop.
if (scores[i] < O || scores[i] > 100)
{
printf("%d: Value out of range.\n", scores[i]);
break; // Discard this value and end the loop.
} .
++1;
}
return i; // The number of values stored.

The continue Statement

The continue statement can be used only within the body of a loop, and causes the
program flow to skip over the rest of the current iteration of the loop:

continue;

In a while or do..while loop, the program jumps to the next evaluation of the loop’s
controlling expression. In a for loop, the program jumps to the next evaluation of the third
expression in the for statement, containing the operations that are performed after every
loop iteration.

In Example 6-7, the second break statement terminates the data input loop as soon as an

input value is outside the permissible range. To give the user another chance to enter a
correct value, replace the second break with continue. Then the program jumps to the

next iteration of the while loop, skipping over the statement that increments i:

// Read in scores.
Y
int getScores(short scores[], int len)
{
/* ... (as in Example 6-7) ... */
while (i < len)

/* ... (as in Example 6-7) ... */
if (scores[i] < O || scores[i] > 100)
{
printf("%d : Value out of range.\n", scores[i]);
continue; // Discard this value and read in another.
}
++1; // Increment the number of values stored.

}

return i; // The number of values stored.

The goto Statement

The goto statement causes an unconditional jump to another statement in the same
function. The destination of the jump is specified by the name of a label:

goto label name;

A label is a name followed by a colon:

label_name: statement

Labels have a name space of their own, which means they can have the same names as
variables or types without causing conflicts. Labels may be placed before any statement,
and a statement can have several labels. Labels serve only as destinations of goto
statements, and have no effect at all if the labeled statement is reached in the normal
course of sequential execution. The following function uses a label after a return
statement to mark the entry point to an error handling routine:

// Handle errors within the function.

#include <stdbool.h> // Defines bool, true
// and false (C99).
#define MAX_ARR_LENGTH 1000
bool calculate(double arr[], int len, double* result)

{
bool error = false;
if (len <1 || 1len > MAX_ARR_LENGTH)
goto error_exit;
for (int 1 = 0; 1 < len; ++i)
{
/* ... Some calculation that could result in
* the error flag being set..
*/
if (error)
goto error_exit;
/* ... Calculation continues,; result is
* assigned to the variable *result..
*/
}
return true; // Flow arrives here if no error
: // The error handler
*result = 0.0;
return false;
}

You should never use a goto statement to jump into a block from outside it if the jump
skips over declarations or statements that initialize variables. However, such a jump is
illegal only if it leads into the scope of an array with variable length, skipping over the
definition of the array (for more information about variable-length arrays, which were
introduced with C99, see Chapter 8):

static const int maxSize = 1000;
double func(int n)

double x = 0.0;
if (n>0 && n < maxSize)

{

double arr[n]; // A variable-length array

VAV

if (x == 0.0)
goto again; // OK: the jump is entirely
} // *within* the scope of arr.
if (x <0.0)
goto again; // Illegal: the jump leads
// *into* the scope of arr!
return x;

Because code that makes heavy use of goto statements is hard to read, you should use

them only when they offer a clear benefit, such as a quick exit from deeply nested loops.
Any C program that uses goto statements can also be written without them!

TIP

The goto statement permits only local jumps; that is, jumps within a function. C also provides a feature to
program non-local jumps to any point in the program, using the standard macro setjmp() and the standard
function longjmp(). The macro setjmp() marks a location in the program by storing the necessary process
information so that execution can be resumed at that point at another time by a call to the function
longjmp(). For more information on these functions, see Part II.

The return Statement

The return statement ends execution of the current function and jumps back to where the
function was called:

return [expression];

expression is evaluated and the result is given to the caller as the value of the function
call. This return value is converted to the function’s return type, if necessary.

A function can contain any number of return statements:

// Return the smaller of two integer arguments
int min(int a, int b)
{

if (a<b) return a;

else return b;

}

The contents of this function block can also be expressed by the following single
statement:

return (a<b? 1 b)),

The parentheses do not affect the behavior of the return statement. However, complex
return expressions are often enclosed in parentheses for the sake of readability.

A return statement with no expression can only be used in a function of type void. In
fact, such functions do not need to have a return statement at all. If no return statement

is encountered in a function, the program flow returns to the caller when the end of the
function block is reached. Function calls are described in more detail in Chapter 7.

Chapter 7. Functions

All the instructions of a C program are contained in functions. Each function performs a
certain task. A special function name is main() — the function with this name is the first
one to run when the program starts. All other functions are subroutines of the main()
function (or otherwise dependent procedures, such as call-back functions), and can have
any names you wish.

Every function is defined exactly once. A program can declare and call a function as many
times as necessary.

Function Definitions

The definition of a function consists of a function head (or the declarator), and a function
block. The function head specifies the name of the function, the type of its return value,
and the types and names of its parameters, if any. The statements in the function block
specify what the function does. The general form of a function definition is as follows:

type name(parameter declarations) Function head

{
}

In the function head, name is the function’s name, while type consists of at least one type

/* declarations, statements */ |Functionblock

specifier, which defines the type of the function’s return value. The return type may be
void or any object type except array types. Furthermore, type may include one of the
function specifiers inline or _Noreturn, and/or one of the storage class specifiers extern
or static.

A function cannot return a function or an array. However, you can define a function that
returns a pointer to a function or a pointer to an array.

The parameter declarations are contained in a comma-separated list of declarations of
the function’s parameters. If the function has no parameters, this list is either empty or
contains merely the word void.

The type of a function specifies not only its return type but also the types of all its
parameters. Example 7-1 is a simple function to calculate the volume of a cylinder.

Example 7-1. Function cylinderVolume()

// The cylinderVolume() function calculates the volume of a cylinder.
// Arguments: Radius of the base circle; height of the cylinder.
// Return value: Volume of the cylinder.

extern double cylinderVolume(double r, double h)

{
const double pi = 3.1415926536; // pi is constant

return pi *r * r * h;

3

This function has the name cylindervolume, and has two parameters, r and h, both with
type double. It returns a value with the type double.

Functions and Storage Class Specifiers

The function in Example 7-1 is declared with the storage class specifier extern. This is
not strictly necessary, as extern is the default storage class for functions. An ordinary
function definition that does not contain a static or inline specifier can be placed in any
source file of a program. Such a function can be called in all of the program’s source files
because its name is an external identifier (or in strict terms, an identifier with external
linkage; see “Linkage of Identifiers”). You merely have to declare the function before its
first use in a given translation unit (see “Function Declarations”). Furthermore, you can
arrange functions in any order you wish within a source file. The only restriction is that
you cannot define one function within another. C does not allow you to define “local
functions” in this way.

You can hide a function from other source files. If you declare a function as static, its
name identifies it only within the source file containing the function definition. Because
the name of a static function is not an external identifier, you cannot use it in other
source files. If you try to call such a function by its name in another source file, the linker
will issue an error message, or the function call might refer to a different function with the
same name elsewhere in the program.

The function printArray() in Example 7-2 might well be defined using static because it
is a special-purpose helper function, providing formatted output of an array of float
variables.

Example 7-2. Function printArray()

// The static function printArray() prints the elements of an array
// of float to standard output, using printf() to format them.

// Arguments: An array of float, and its length.

// Return value: None.

static void printArray(const float array[], int n)

{
for (int i=0; i < n; ++i)
{
printf("%12.2f", array[i]); // Field width: 12; decimal places: 2.
if (1% 5 == 4) putchar('\n'"); // New line after every 5 numbers.
}
if (n% 5 != 0) putchar('\n'"); // New line at the end of the output.
}

If your program contains a call to the printArray() function before its definition, you
must first declare it using the static keyword:

static void printArray(const float [], int);
int main()

float farray[123];

VAV
printArray(farray, 123);
VAV

}

K&R-Style Function Definitions

In the early Kernighan-Ritchie standard, the names of function parameters were separated
from their type declarations. Function declarators contained only the names of the
parameters, which were then declared by type between the function declarator and the
function block. For example, the cylindervolume() function from Example 7-1 would
have been written as follows:

double cylinderVolume(r, h)
double r, h; // Parameter declarations

{
const double pi = 3.1415926536; // pi 1s constant
return pi *r *r * h;

}

This notation, called a “K&R-style” or “old-style” function definition, is deprecated,
although compilers still support it. In new C source code, use only the prototype notation
for function definitions, as shown in Example 7-1.

Function Parameters

The parameters of a function are ordinary local variables. The program creates them and
initializes them with the values of the corresponding arguments when a function call
occurs. Their scope is the function block. A function can change the value of a parameter
without affecting the value of the argument in the context of the function call. In

Example 7-3, the factorial() function, which computes the factorial of a whole number,
modifies its parameter n in the process.

Example 7-3. Function factorial()

// factorial() calculates n!, the factorial of a non-negative number n.
// For n > 0, n! is the product of all integers from 1 to n inclusive.
// 0! equals 1.

// Argument: A whole number, with type unsigned int.

// Return value: The factorial of the argument, with type long double.

long double factorial(register unsigned int n)
{
long double f =
while (n > 1)
f *= n--;
return f;

}

1

Although the factorial of an integer is always an integer, the function uses the type long
double in order to accommodate very large results. As Example 7-3 illustrates, you can
use the storage class specifier register in declaring function parameters. The register
specifier is a request to the compiler to make a variable as quickly accessible as possible.

(The compiler may ignore it.) No other storage class specifiers are permitted on function
parameters.

Arrays as Function Parameters

If you need to pass an array as an argument to a function, you would generally declare the
corresponding parameter in the following form:

type name[]

Because array names are automatically converted to pointers when you use them as
function arguments, this statement is equivalent to the declaration:

type *name

When you use the array notation in declaring function parameters, any constant expression
between the brackets ([]) is ignored. In the function block, the parameter name is a
pointer variable, and can be modified. Thus, the function addArray() in Example 7-4
modifies its first two parameters as it adds pairs of elements in two arrays.

Example 7-4. Function addArray()

// addArray() adds each element of the second array to the corresponding
// element of the first (i.e., "arrayl += array2", so to speak).

// Arguments: Two arrays of float and their common length.

// Return value: None.

void addArray(register float al[], register const float a2[], int len)

{

register float *end = al + len;
for (; al < end; ++al, ++a2)
*al += *a2;
}

An equivalent definition of the addArray() function, using a different notation for the
array parameters, would be:

void addArray(register float *al, register const float *a2, int len)
{ /* Function body as earlier. */ '}

An advantage of declaring the parameters with brackets ([]) is that human readers
immediately recognize that the function treats the arguments as pointers to an array, and
not just to an individual float variable. But the array-style notation also has two
peculiarities in parameter declarations:

m [n a parameter declaration — and only there — C99 allows you to place any of the type
qualifiers const, volatile, and restrict inside the square brackets. This ability
allows you to declare the parameter as a qualified pointer type.

» Furthermore, in C99 you can also place the storage class specifier static, together
with a integer constant expression, inside the square brackets. This approach indicates
that the number of elements in the array at the time of the function call must be at least
equal to the value of the constant expression.

Here is an example that combines both of these possibilities:

int func(long array[const static 5])
{7 ... */}%

In the function defined here, the parameter array is a constant pointer to long, and so
cannot be modified. It points to the first of at least five array elements.

C99 also lets you declare array parameters as variable-length arrays (see Chapter 8). To
do so, place a nonconstant integer expression with a positive value between the square
brackets. In this case, the array parameter is still a pointer to the first array element. The
difference is that the array elements themselves can also have a variable length. In
Example 7-5, the maximum() function’s third parameter is a two-dimensional array of
variable dimensions.

Example 7-5. Function maximum()

// The function maximum() obtains the greatest value in a

// two-dimensional matrix of double values.

// Arguments: The number of rows, the number of columns, and the matrix.
// Return value: The value of the greatest element.

double maximum(int nrows, int ncols, double matrix[nrows][ncols])

double max = matrix[0][0];
for (int r = 0; r < nrows; ++r)
for (int ¢ = 0; ¢ < ncols; ++c)
if (max < matrix[r][c])
max = matrix[r][c];
return max;

}

The parameter matrix is a pointer to an array with ncols elements.

The main() Function
C makes a distinction between two possible execution environments:
Freestanding

A program in a freestanding environment runs without the support of an operating
system, and therefore only has minimal capabilities of the standard library available
to it (see Part II).

Hosted

In a hosted environment, a C program runs under the control, and with the support, of
an operating system. The full capabilities of the standard library are available.

In a freestanding environment, the name and type of the first function invoked when the
program starts is determined by the given implementation. Unless you program embedded
systems, your C programs generally run in a hosted environment. A program compiled for
a hosted environment must define a function with the name main, which is the first
function invoked on program start. You can define the main() function in one of the
following two forms:

int main(void) { /* .. */ }
A function with no parameters, returning int
int main(int argc, char *argv[]) { /* .. */ }
A function with two parameters whose types are int and char **, returning int

These two approaches conform to the C standard. In addition, many C implementations
support a third, nonstandard syntax as well:

int main(int argc, char *argv[], char *envp[]) { /* .. */ }

A function returning int, with three parameters, the first of which has the type int,
while the other two have the type char **

In all cases, the main() function returns its final status to the operating system as an
integer. A return value of 0 or EXIT_SUCCESS indicates that the program was successful;
any nonzero return value, and in particular the value of EXIT_FAILURE, indicates that the
program failed in some way. The constants EXIT_SUCCESS and EXIT_FAILURE are defined
in the header file stdlib.h. The function block of main() need not contain a return
statement. In the C99 and later standards, if the program flow reaches the closing brace }
of main()’s function block, the status value returned to the execution environment is 0.
Ending the main() function is equivalent to calling the standard library function exit (),
whose argument becomes the return value of main().

The parameters argc and argv (which you may give other names if you wish) represent
your program’s command-line arguments. This is how they work:

® argc (short for argument count) is either 0 or the number of string tokens in the

command line that started the program. The name of the program itself is included in
this count.

argv (short for arguments vector) is an array of pointers to char that point to the
individual string tokens received on the command line:

The number of elements in this array is one more than the value of argc; the last
element, argv[argc], is always a null pointer.

If argc is greater than 0, then the first string, argv[0], contains the name by which the
program was invoked. If the execution environment does not supply the program name,
the string is empty.

If argc is greater than 1, then the strings argv[1] through argv[argc - 1] contain the
program’s command-line arguments.

envp (short for environment pointer) in the nonstandard, three-parameter version of
main() is an array of pointers to the strings that make up the program’s environment.
Typically, these strings have the form name=value. In standard C, you can access the
environment variables using the getenv() function.

The sample program in Example 7-6, args.c, prints its own name and command-line
arguments as received from the operating system.

Example 7-6. The command line

#include <stdio.h>
int main(int argc, char *argv[])

if (argc == 0)
puts("No command line available.");
else
{ // Print the name of the program.
printf("The program now running: %s\n", argv[0]);
if (argc == 1)
puts("No arguments received on the command line.");

else
{
puts("The command-line arguments:");
for (int 1 =1; i <argc; ++i) // Print each argument on

// a separate line.
puts(argv[i]);
}
}

Suppose we run the program on a Unix system by entering the following command:

$./args one two "and three"

The output is then as follows:

The program now running: ./args
The command-line arguments:

one

two

and three

Function Declarations

By declaring a function before using it, you inform the compiler of its type: in other
words, a declaration describes a function’s interface. A declaration must indicate at least
the type of the function’s return value, as the following example illustrates:

int rename();

This line declares rename() as a function that returns a value with type int. Because

function names are external identifiers by default, that declaration is equivalent to this
one:

extern int rename();

As it stands, this declaration does not include any information about the number and the
types of the function’s parameters. As a result, the compiler cannot test whether a given
call to this function is correct. If you call the function with arguments that are different in
number or type from the parameters in its definition, the result will be a critical runtime
error. To prevent such errors, you should always declare a function’s parameters as well.
In other words, your declaration should be a function prototype. The prototype of the
standard library function rename(), for example, which changes the name of a file, is as
follows:

int rename(const char *oldname, const char *newname);

This function takes two arguments with type pointer to const char. In other words, the
function uses the pointers only to read char objects. The arguments may thus be string
literals.

The identifiers of the parameters in a prototype declaration are optional. If you include the
names, their scope ends with the prototype itself. Because they have no meaning to the
compiler, they are practically no more than comments telling programmers what each
parameter’s purpose is. In the prototype declaration of rename (), for example, the

parameter names oldname and newname indicate that the old filename goes first and the
new filename second in your rename () function calls. To the compiler, the prototype
declaration would have exactly the same meaning without the parameter names:

int rename(const char *, const char *);

The prototypes of the standard library functions are contained in the standard header files.
If you want to call the rename () function in your program, you can declare it by including
the file stdio.h in your source code. Usually you will place the prototypes of functions you
define yourself in a header file as well so that you can use them in any source file simply
by adding the appropriate include directive.

Declaring Optional Parameters

C allows you to define functions so that you can call them with a variable number of
arguments (for more information on writing such functions, see “Variable Numbers of
Arguments”). The best-known example of such a function is printf (), which has the
following prototype:

int printf(const char *format, ...);

As this example shows, the list of parameter types ends with an ellipsis (...) after the last
comma. The ellipsis represents optional arguments. The first argument in a printf
function call must be a pointer to char. This argument may be followed by others. The

prototype contains no information about what number or types of optional arguments the
function expects.

Declaring Variable-Length Array Parameters

When you declare a function parameter as a variable-length array elsewhere than in the
head of the function definition, you can use the asterisk character (*) to represent the
array-length specification. If you specify the array length using a nonconstant integer
expression, the compiler will treat it the same as an asterisk. For example, all of the
following declarations are permissible prototypes for the maximum() function defined in
Example 7-5:

double maximum(int nrows, int ncols, double matrix[nrows][ncols]);
double maximum(int nrows, int ncols, double matrix[][ncols]);
double maximum(int nrows, int ncols, double matrix[*][*]);

double maximum(int nrows, int ncols, double matrix[][*]);

How Functions Are Executed

The instruction to execute a function — the function call — consists of the function’s
name and the operator () (see “Other Operators”). For example, the following statement
calls the function maximum() to compute the maximum of the matrix mat, which has r
rows and c columns:

maximum(r, c, mat);

The program first allocates storage space for the parameters, and then copies the argument
values to the corresponding locations. Then the program jumps to the beginning of the
function, and execution of the function begins with first variable definition or statement in
the function block.

If the program reaches a return statement or the closing brace (}) of the function block,
execution of the function ends and the program jumps back to the calling function. If the
program “falls off the end” of the function by reaching the closing brace, the value
returned to the caller is undefined. For this reason, you must use a return statement to
stop any function that does not have the type void. The value of the return expression is
returned to the calling function (see “The return Statement”).

Pointers as Arguments and Return Values

C is inherently a call by value language, as the parameters of a function are local variables
initialized with the argument values. This type of language has the advantage that any
expression desired can be used as an argument as long as it has the appropriate type. On
the other hand, the drawback is that copying large data objects to begin a function call can
be expensive. Moreover, a function has no way to modify the originals — that is, the
caller’s variables — as it knows how to access only the local copy.

However, a function can directly access any variable visible to the caller if one of its
arguments is that variable’s address. In this way, C also provides call by reference
functions. A simple example is the standard function scanf (), which reads the standard
input stream and places the results in variables referenced by pointer arguments that the
caller provides:

int var;
scanf("%d", &var);

This function call reads a string as a decimal numeral, converts it to an integer, and stores
the value in the location of var.

In the following example, the initNode() function initializes a structure variable. The
caller passes the structure’s address as an argument.

#include <string.h> // Prototypes of memset() and strcpy()
struct Node { long key;

char name[32];

/* ... more structure members.. */

struct Node *next;

}i

void initNode(struct Node *pNode) // Initialize the structure *pNode

{
memset(pNode, 0, sizeof(*pNode));
strcpy(pNode->name, "XXXXX");

}

Even if a function needs only to read and not to modify a variable, it still may be more
efficient to pass the variable’s address rather than its value. That’s because passing by
address avoids the need to copy the data; only the variable’s address is pushed onto the
stack. If the function does not modify such a variable, then you should declare the
corresponding parameter as a read-only pointer, as in the following example:

void printNode(const struct Node *pNode);

{

printf("Key: %ld\n", pNode->key);
printf("Name: %s\n", pNode->name);
VAV

}

You are also performing a “call by reference” whenever you call a function using an array
name as an argument, because the array name is automatically converted into a pointer to

the array’s first element. The addArray() function defined in Example 7-4 has two such
pointer parameters.

Often functions need to return a pointer type as well, as the mkNode () function does in the
following example. This function dynamically creates a new Node object and gives its
address to the caller:

#include <stdlib.h>
struct Node *mkNode()

{
struct Node *pNode = malloc(sizeof(struct Node));
if (pNode != NULL)
initNode(pNode);
return pNode;

}

The mkNode () function returns a null pointer if it fails to allocate storage for a new Node
object. Functions that return a pointer usually use a null pointer to indicate a failure
condition. For example, a search function may return the address of the desired object, or
a null pointer if no such object is available.

Inline Functions

Ordinarily, calling a function causes the computer to save its current instruction address,
jump to the function called and execute it, and then make the return jump to the saved
address. With small functions that you need to call often, this can degrade the program’s
runtime behavior substantially. As a result, C99 has introduced the option of defining
inline functions. The keyword inline is a request to the compiler to insert the function’s
machine code wherever the function is called in the program. The result is that the
function is executed as efficiently as if you had inserted the statements from the function
body in place of the function call in the source code.

To define a function as an inline function, use the function specifier inline in its
definition. In Example 7-7, swapf () is defined as an inline function that exchanges the
values of two float variables, and the function selection_sortf() calls the inline
function swapf().

Example 7-7. Function swapf()

// The function swapf() exchanges the values of two float variables.
// Arguments: Two pointers to float.
// Return value: None.

inline void swapf(float *pl1, float *p2) // An inline function.
{

float tmp = *p1; *pl = *p2; *p2 = tmp;
}

// The function selection_sortf() uses the selection-sort
// algorithm to sort an array of float elements.

// Arguments: An array of float, and its length.

// Return value: None.

void selection_sortf(float a[], int n) // Sort an array a of length n.

{
register int i, j, mini; // Three index variables.
for (1 =0; i<n-1; ++i)
{
mini = i; // Search for the minimum starting at index 1.
for (j =1i+1; J <n; ++j)
if (a[j] < a[mini])
mini = j;
swapf(a+i, a+mini); // Swap the minimum with the element at index 1i.
}
}

It is generally not a good idea to define a function containing loops, such as
selection_sortf(), as inline. Example 7-7 uses inline instead to speed up the

instructions inside a for loop.

The inline specifier is not imperative: the compiler may ignore it. Recursive functions,

for example, are usually not compiled inline. It is up to the given compiler to determine
when a function defined with inline is actually inserted inline.

Unlike other functions, you must repeat the definitions of inline functions in each
translation unit in which you use them. The compiler must have the function definition at
hand in order to insert the inline code. For this reason, function definitions with inline

are customarily written in header files.

If all the declarations of a function in a given translation unit have the inline specifier but
not the extern specifier, then the function has an inline definition. An inline definition is
specific to the translation unit; it does not constitute an external definition, and therefore
another translation unit may contain an external definition of the function. If there is an
external definition in addition to the inline definition, then the compiler is free to choose
which of the two function definitions to use.

If you use the storage class specifier, extern, outside all other functions in a declaration of
a function that has been defined with inline, then the function’s definition is external. For
example, the following declaration, if placed in the same translation unit with the
definition of swapf () in Example 7-7, would produce an external definition:

extern void swapf(float *p1, float *p2);

Once the function swapf () has an external definition, other translation units only need to

contain an ordinary declaration of the function in order to call it. However, calls to the
function from other translation units will not be compiled inline.

Inline functions are ordinary functions except for the way they are called in machine code.
Like ordinary functions, an inline function has a unique address. If macros are used in the
statements of an inline function, the preprocessor expands them with their values as
defined at the point where the function definition occurs in the source code. However, you
should not define modifiable objects with static storage duration in an inline function that
is not likewise declared as static.

Non-Returning Functions

Not all functions return control to their caller. Examples of functions that do not return
include the standard functions abort (), exit(), _Exit(), quick_exit() and
thread_exit(); these functions do not return because their purpose is to end the
execution of a thread or of the whole program. Another example of a non-returning
function is the standard function longjmp (), which does not end the program, but
continues at the point defined by a prior call to the macro setjmp.

The function specifier _Noreturn is new in C11. It informs the compiler that the function
in question does not return, so that the compiler can further optimize the code: on a call to
a non-returning function, there is no need to push the return address or the contents of the
CPU registers onto the stack. The compiler can also issue an “unreachable code” warning
if there are other instructions in the same block after the non-returning function call.

The following example illustrates a user-defined function that does not return:

_Noreturn void myAbort()

{

/* ... Instructions to clean up and save data.. */
abort();
}

It is important that you only declare a function with _Noreturn if it absolutely cannot
return. If a function declared with _Noreturn does return, the program’s behavior is
undefined, and the standard requires that the compiler issue a diagnostic message.

If your program includes the header file stdnoreturn.h, you can also use the synonym
noreturn instead of the keyword _Noreturn.

Recursive Functions

A recursive function is one that calls itself, directly or indirectly. Indirect recursion means
that a function calls another function (which may call a third function, and so on), which
in turn calls the first function. Because a function cannot continue calling itself endlessly,
recursive functions must always have an exit condition.

In Example 7-8, the recursive function binarySearch() implements the binary search
algorithm to find a specified element in a sorted array. First, the function compares the
search criterion with the middle element in the array. If they are the same, the function
returns a pointer to the element found. If not, the function searches in whichever half of
the array could contain the specified element by calling itself recursively. If the length of
the array that remains to be searched reaches zero, then the specified element is not
present, and the recursion is aborted.

Example 7-8. Function binarySearch()

// The binarySearch() function searches a sorted array.

// Arguments: The value of the element to find;

// the array of long to search; the array length.

// Return value: A pointer to the element found,

// or NULL if the element is not present in the array.

long *binarySearch(long val, long array[], int n)

{
int m = n/2;
if (n<=0) return NULL;
if (val == array[m]) return array + m;
if (val < array[m]) return binarySearch(val, array, m);
else return binarySearch(val, array+m+1, n-m-1);

}

For an array of n elements, the binary search algorithm performs at most 1+log,(n)

comparisons. With a million elements, the maximum number of comparisons performed is
20, which means at most 20 recursions of the binarySearch() function.

Recursive functions depend on the fact that a function’s automatic variables are created
anew on each recursive call. These variables, and the caller’s address for the return jump,
are stored on the stack with each recursion of the function that begins. It is up to the
programmer to make sure that there is enough space available on the stack. The
binarySearch() function as defined in Example 7-8 does not place excessive demands on

the stack size, though.

Recursive functions are a logical way to implement algorithms that are recursive by
nature, such as the binary search technique or navigation in tree structures. However, even
when recursive functions offer an elegant and compact solution to a problem, simple
solutions using loops are often possible as well. For example, you could rewrite the binary
search in Example 7-8 with a loop statement instead of a recursive function call. In such
cases, the iterative solution is generally faster in execution than the recursive function.

Variable Numbers of Arguments

C allows you to define functions that you can call with a variable number of arguments.
These are sometimes called variadic functions. Such functions require a fixed number of
mandatory arguments, followed by a variable number of optional arguments. Each such
function must have at least one mandatory argument. The types of the optional arguments
can also vary. The number of optional arguments is either determined by the values of the
mandatory arguments or by a special value that terminates the list of optional arguments.

The best-known examples of variadic functions in C are the standard library functions
printf() and scanf (). Each of these two functions has one mandatory argument: the

format string. The conversion specifiers in the format string determine the number and the
types of the optional arguments.

For each mandatory argument, the function head shows an appropriate parameter, as in
ordinary function declarations. These are followed in the parameter list by a comma and
an ellipsis (...), which stands for the optional arguments.

Internally, variadic functions access any optional arguments through an object with the
type va_list, which contains the argument information. An object of this type — also
called an argument pointer — contains at least the position of one argument on the stack.
The argument pointer can be advanced from one optional argument to the next, allowing a
function to work through the list of optional arguments. The type va_1list is defined in the
header file stdarg.h.

When you write a function with a variable number of arguments, you must define an
argument pointer with the type va_list in order to read the optional arguments. In the

following description, the va_list object is named argptr. You can manipulate the
argument pointer using four macros, which are defined in the header file stdarg.h:

void va_start(va_list argptr, lastparam);

The macro va_start initializes the argument pointer argptr with the position of the
first optional argument. The macro’s second argument must be the name of the
function’s last named parameter. You must call this macro before your function can
use the optional arguments.

type va_arg(va_list argptr, type),;

The macro va_arg expands to yield the optional argument currently referenced by
argptr, and also advances argptr to reference the next argument in the list. The
second argument of the macro va_arg is the type of the argument being read.

void va_end(va_list argptr),

When you have finished using an argument pointer, you should call the macro
va_end. If you want to use one of the macros va_start or va_copy to reinitialize an
argument pointer that you have already used, then you must call va_end first.

void va_copy(va_list dest, va_list src),

The macro va_copy initializes the argument pointer dest with the current value of
src. You can then use the copy in dest to access the list of optional arguments again,
starting from the position referenced by src.

The function in Example 7-9 demonstrates the use of these macros.

Example 7-9. Function add()

// The add() function computes the sum of the optional arguments.

// Arguments: The mandatory first argument indicates the number of
// optional arguments. The optional arguments are

// of type double.

// Return value: The sum, with type double.

double add(int n, ...)

{

int i = 0;

double sum = 0.0;

va_list argptr;

va_start(argptr, n); // Initialize argptr, that 1is,

for (1 =0; 1i<n; ++1i) // for each optional argument,
sum += va_arg(argptr, double); // read an argument with type

// double and accumulate in sum.
va_end(argptr);
return sum;

Chapter 8. Arrays

An array contains objects of a given type, stored consecutively in a continuous memory
block. The individual objects are called the elements of an array. The elements’ type can
be any object type. No other types are permissible: array elements may not have a function
type or an incomplete type (see “Typology™).

An array is also an object itself, and its type is derived from its elements’ type. More
specifically, an array’s type is determined by the type and number of elements in the array.
If an array’s elements have type T, then the array is called an “array of 7.” If the elements
have type int, for example, then the array’s type is “array of int.” The type is an
incomplete type, however, unless it also specifies the number of elements. If an array of
int has 16 elements, then it has a complete object type, which is “array of 16 int
elements.”

Defining Arrays

The definition of an array determines its name, the type of its elements, and the number of
elements in the array. An array definition without any explicit initialization has the
following syntax:

type name[number_of_elements];

The number of elements, between square brackets ([]), must be an integer expression
whose value is greater than zero. Here is an example:

char buffer[4*512];

This line defines an array with the name buffer, which consists of 2,048 elements of type
char.

You can determine the size of the memory block that an array occupies using the sizeof
operator. The array’s size in memory is always equal to the size of one element times the
number of elements in the array. Thus, for the array buffer in our example, the expression
sizeof (buffer) yields the value of 2048 * sizeof(char); in other words, the array
buffer occupies 2,048 bytes of memory because sizeof (char) always equals one.

In an array definition, you can specify the number of elements as a constant expression or,
under certain conditions, as an expression involving variables. The resulting array is
accordingly called a fixed-length or a variable-length array.

Fixed-Length Arrays

Most array definitions specify the number of array elements as a constant expression. An
array so defined has a fixed length. Thus, the array buffer defined in the previous
example is a fixed-length array.

Fixed-length arrays can have any storage class: you can define them outside all functions
or within a block, and with or without the storage class specifier static. The only

restriction is that no function parameter can be an array. An array argument passed to a
function is always converted into a pointer to the first array element (see “Arrays as
Function Parameters™).

The four array definitions in the following example are all valid:

int a[10]; // a has external linkage.
static int b[10]; // b has static storage duration and file scope.

void func()

{
static int c[10]; // ¢ has static storage duration and block scope.
int d[10]; // d has automatic storage duration.
VAV

}

Variable-Length Arrays

C99 also allows you to define an array using a nonconstant expression for the number of
elements if the array has automatic storage duration — in other words, if the definition
occurs within a block and does not have the specifier static. Such an array is then called
a variable-length array.

Furthermore, the name of a variable-length array must be an ordinary identifier (see
“Identifier Name Spaces”). Members of structures or unions cannot be variable-length
arrays. In the following examples, only the definition of the array vla is a permissible
definition:

void func(int n)

{

int vla[2*n]; // OK: storage duration is automatic.

static int e[n]; // Illegal: a variable length array cannot
// have static storage duration.

struct S { int f[n]; };, // Illegal: f is not an ordinary identifier.

VA4

Like any other automatic variable, a variable-length array is created anew each time the
program flow enters the block containing its definition. As a result, the array can have a
different length at each such instantiation. Once created, however, even a variable-length
array cannot change its length during its storage duration.

Storage for automatic objects is allocated on the stack, and is released when the program
flow leaves the block. For this reason, variable-length array definitions are useful only for
small, temporary arrays. To create larger arrays dynamically, you should generally allocate
storage space explicitly using the standard functions, malloc() and calloc(). The storage
duration of such arrays then ends with the end of the program or when you release the
allocated memory by calling the function free() (see Chapter 12).

Accessing Array Elements

The subscript operator, [], provides an easy way to address the individual elements of an
array by index. If myArray is the name of an array and i is an integer, then the expression
myArray[i] designates the array element with the index i. Array elements are indexed
beginning with 0. Thus, if 1en is the number of elements in an array, the last element of
the array has the index len-1 (see “Memory Addressing Operators™).

The following code fragment defines the array myArray and assigns a value to each
element.

#define A_SIZE 4

long myArray[A_SIZE];

for (int i = 0, 1 < A_SIZE; ++i)
myArray[i] = 2 * i;

The diagram in Figure 8-1 illustrates the result of this assignment loop.

myArray

myArray|[0] myArray([1] myArray|2] myArray|3]
0 2 4 6

Figure 8-1. Values assigned to elements by index

An array index can be any integer expression desired. The subscript operator, [], does not
bring any range checking with it; C gives priority to execution speed in this regard. It is up
to you, the programmer, to ensure that an index does not exceed the range of permissible
values. The following incorrect example assigns a value to a memory location outside the
array:

long myArray[4];
myArray[4] = 8; // Error: subscript must not exceed 3.

Such “off-by-one” errors can easily cause a program to crash (or, worse still, can cause
silent data corruption), and are not always as easy to recognize as they are in this simple
example.

Another way to address array elements, as an alternative to the subscript operator, is to use
pointer arithmetic. After all, the name of an array is implicitly converted into a pointer to
the first array element in all expressions except sizeof operations. For example, the

expression myArray+i yields a pointer to the element with the index i, and the expression

*(myArray+i) is equivalent to myArray[i] (see “Pointer arithmetic”).

The following loop statement uses a pointer instead of an index to step through the array
myArray, and doubles the value of each element:

for (long *p = myArray; p < myArray + A_SIZE; ++p)
*p * = 2;

Initializing Arrays

If you do not explicitly initialize an array variable, the usual rules apply: if the array has
automatic storage duration, then its elements have undefined values. Otherwise, all
elements are initialized by default to the value 0. (If the elements are pointers, they are
initialized to NULL.) For more details, see “Initialization”.

Writing Initialization Lists

To initialize an array explicitly when you define it, you must use an initialization list: this
is a comma-separated list of initializers, or initial values for the individual array elements,
enclosed in braces. Here is an example:

int af[4] = { 1, 2, 4, 8 };

This definition gives the elements of the array a the following initial values:

a[0] =1, a[1] =2, a[2] =4, a[3] =8

When you initialize an array, observe the following rules:

® You cannot include an initialization in the definition of a variable-length array.

m [f the array has static storage duration, then the array initializers must be constant
expressions. If the array has automatic storage duration, then you can use variables in
its initializers.

= You may omit the length of the array in its definition if you supply an initialization list.
The array’s length is then determined by the index of the last array element for which
the list contains an initializer. For example, the definition of the array a in the previous
example is equivalent to this:

int afl 1] ={ 1, 2, 4, 8 }; // An array with four elements.

m If the definition of an array contains both a length specification and an initialization
list, then the length is that specified by the expression between the square brackets.
Any elements for which there is no initializer in the list are initialized to zero (or NULL,
for pointers). If the list contains more initializers than the array has elements, the
superfluous initializers are simply ignored.

m A superfluous comma after the last initializer is also ignored.

As a result of these rules, all of the following definitions are equivalent:

int af[4] = { 1, 2 };

int a[]’ = {1, 2, 0, 0 };
int a[] ={1, 2, 0, 0, };
int a[4] = {1, 2, 0, 0, 5 };

In the final definition, the initializer 5 is ignored. Most compilers generate a warning when
such a mismatch occurs.

Array initializers must have the same type as the array elements. If the array elements’
type is a union, structure, or array type, then each initializer is generally another
initialization list. Here is an example:

typedef struct { unsigned long pin;
char name[64];
VA4
} Person;
Person team[6] = { { 1000, "Mary"}, { 2000, "Harry"} },;

The other four elements of the array team are initialized to O, or in this case,to { ©, "" }.

You can also initialize arrays of char, wchar_t, char16_t or char32_t with string literals
(see “Strings”).

Initializing Specific Elements

C99 has introduced element designators to allow you to associate initializers with specific
elements. To specify a certain element to initialize, place its index in square brackets. In
other words, the general form of an element designator for array elements is:

[constant_expression]

The index must be an integer constant expression. In the following example, the element
designator is [A_SIZE/2]:

#define A_SIZE 20
int a[A_SIZE] = { 1, 2, [A_SIZE/2] =1, 2 };

This array definition initializes the elements a[0] and a[10] with the value 1, and the
elements a[1] and a[11] with the value 2. All other elements of the array will be given
the initial value 0. As this example illustrates, initializers without an element designator
are associated with the element following the last one initialized.

If you define an array without specifying its length, the index in an element designator can
have any non-negative integer value. As a result, the following definition creates an array
of 1,001 elements:

int a[] = { [1000] = -1 };

All of the array’s elements have the initial value of 0 except the last element, which is
initialized to the value -1.

Strings

A string is a continuous sequence of characters terminated by '\e', the null character. The

length of a string is considered to be the number of characters excluding the terminating
null character. There is no string type in C, and consequently there are no operators that
accept strings as operands.

Instead, strings are stored in arrays whose elements have the type char or a wide-character
type — that is, one of the types wchar_t, char16_t, or char32_t. Strings of wide
characters are also called wide strings. The C standard library provides numerous
functions to perform basic operations on strings such as comparing, copying, and
concatenating them. In addition to the traditional string functions, C11 has also introduced
“secure” versions, which ensure that string operations do not exceed the bounds of an
array (see “String Processing”).

You can initialize arrays of any character type using string literals. For example, the
following two array definitions are equivalent:

char stri1[30] = "Let's go"; // String length: 8, array length: 30.

char stri1[30]

{ IL|, Iell ltll l\ll’ ISI/I l’ Igll lol, I\OI };

An array holding a string must always be at least one element longer than the string length
to accommodate the terminating null character. The array stri can store strings up to a

maximum length of 29. It would be a mistake to define the array with a length of 8 rather
than 30 because then it wouldn’t contain the terminating null character.

If you define a character array without an explicit length and initialize it with a string
literal, the array created is one element longer than the string length. Here is an example:

char str2[] = " to London!"; // String length: 11 (note leading space);
// array length: 12.

The following statement uses the standard function strcat () to append the string in str2
to the string in stri (the array stri must be large enough to hold all the characters in the
concatenated string):

#include <string.h>

char stri1[30] = "Let's go";
char str2[] = " to London!";
VA4

strcat(stri, str2);
puts(strl);

The output printed by the puts() call is the new content of the array stri:

Let's go to London!

The names str1 and str2 are pointers to the first character of the string stored in each
array. Such a pointer is called a pointer to a string, or a string pointer for short. String
manipulation functions such as strcat() and puts() receive the beginning addresses of
strings as their arguments. Such functions generally process a string character by character
until they reach the terminator, '\0'. The function in Example 8-1 is one possible
implementation of the standard function strcat (). It uses pointers to step through the
strings referenced by its arguments.

Example 8-1. Function strcat()

// The function strcat() appends a copy of the second string
// to the end of the first string.

// Arguments: Pointers to the two strings.
// Return value: A pointer to the first string, now
// concatenated with the second string.

char *strcat(char * restrict s1, const char * restrict s2)

{
char *rtnPtr = si;
while (*s1 != '"\0') // Find the end of string si.
++s1;
while ((*sl++ = *s2++) I= '\0') // The first character from s2

// replaces the terminator of s1.

r

return rtnPtr;

}

The char array beginning at the address s1 must be at least as long as the sum of the two
strings’ lengths, plus one for the terminating null character. To test for this condition
before calling strcat (), you might use the standard function strlen(), which returns the
length of the string referenced by its argument:

if (sizeof(strl) >= (strlen(strl) + strlen(str2) + 1))
strcat(stri, str2);

A wide-string literal is identified by one of the prefixes L, u, or U (see “String Literals”).
Accordingly, the initialization of a wchar_t array looks like this:

#include <stddef.h> // Definition of the type wchar_t
AV
wchar_t dinner[] = L"chop suey"; // String length: 10,

// array length: 11;

// array size: 11 * sizeof(wchar_t)

Multidimensional Arrays

A multidimensional array in C is merely an array whose elements are themselves arrays.
The elements of an n-dimensional array are (n-1)-dimensional arrays. For example, each
element of a two-dimensional array is a one-dimensional array. The elements of a one-
dimensional array, of course, do not have an array type.

A multidimensional array declaration has a pair of brackets for each dimension:

char screen[10][40][80]; // A three-dimensional array

The array screen consists of the 10 elements screen[0] to screen[9]. Each of these
elements is a two-dimensional array consisting in turn of 40 one-dimensional arrays of 80
characters each. All in all, the array screen contains 32,000 elements of the type char.

To access a char element in the three-dimensional array screen, you must specify three
indices. For example, the following statement writes the character Z in the last char
element of the array:

screen[9][39][79] = 'Z';

Matrices

Two-dimensional arrays are also called matrices. Because they are so frequently used,
they merit a closer look. It is often helpful to think of the elements of a matrix as being
arranged in rows and columns. Thus, the matrix mat in the following definition has three
rows and five columns:

float mat[3][5];

The three elements mat[0], mat[1], and mat[2] are the rows of the matrix mat. Each of
these rows is an array of five float elements. Thus, the matrix contains a total of 3 X 5 =
15 float elements, as the following table illustrates:

[0l [1] 2] 31 [4]
mat[0] 0.0 0.1 0.2 0.3 0.4
mat[1] 1.0 1.1 1.2 1.3 1.4

mat[2] 2.0 2.1 22 23 24

The values specified in the diagram can be assigned to the individual elements by a nested
loop statement. The first index specifies a row, and the second index addresses a column
in the row:

for (int row = 0; row < 3; ++row)
for (int col = 0; col < 5; ++col)
mat[row][col] = row + (float)col/10;

In memory, the three rows are stored consecutively, as they are the elements of the array
mat. As a result, the float values in this matrix are all arranged consecutively in memory
in ascending order.

Declaring Multidimensional Arrays

In an array declaration that is not a definition, the array type can be incomplete; you can
declare an array without specifying its length. Such a declaration is a reference to an array
that you must define with a specified length elsewhere in the program. However, you must
always declare the complete type of an array’s elements. For a multidimensional array
declaration, only the first dimension can have an unspecified length. All other dimensions
must have a magnitude. In declaring a two-dimensional matrix, for example, you must
always specify the number of columns.

If the array mat in the previous example has external linkage, for example — that is, if its
definition is placed outside all functions — then it can be used in another source file after
the following declaration:

extern float mat[][5]; // External declaration

The external object so declared has an incomplete two-dimensional array type.

Initializing Multidimensional Arrays

You can initialize multidimensional arrays using an initialization list according to the rules
described in “Initializing Arrays”. There are some peculiarities, however: you do not have
to show all the braces for each dimension, and you may use multidimensional element
designators.

To illustrate the possibilities, we will consider the array defined and initialized as follows:

int asd[2][2][3] ={ { {1, 0, 0}, {4 0, 03} 1},
{{7 8 0} {06, 0, 0}}

I r r ’ }I

This initialization list includes three levels of list-enclosing braces, and initializes the
elements of the two-dimensional arrays a3d[0] and a3d[1] with the following values:

(01 1] [2]
a3d[o]jfo] 1 O O

a3d[o]j[1] 4 0 O

(01 11 [2]
a3d[1][o] 7 8 0

a3d[1][11 0 0 O

Because all elements that are not associated with an initializer are initialized by default to
0, the following definition has the same effect:

int a3d[J[2][3]1 ={{ {1} {433} {{7 831} 1}

This initialization list also shows three levels of braces. You do not need to specify that the
first dimension has a size of 2, as the outermost initialization list contains two initializers.

You can also omit some of the braces. If a given pair of braces contains more initializers
than the number of elements in the corresponding array dimension, then the excess
initializers are associated with the next array element in the storage sequence. Hence these
two definitions are equivalent:

int a3d[2][2]1[3]

{ {1, 0,0, 4%} {7,8%} 3}
int a3d[2][2][3] 0, 0, 4, 0

’
{4 : 0, 7, 8}

’ I ’

Finally, you can achieve the same initialization pattern using element designators as
follows:

int ag3d[2][2][3] = { 1, [e][1][e]=4, [1][o][0]=7, 8 };

Again, this definition is equivalent to the following:
int a3d[2][2][3] = { {1}, [e][1]={4}, [1]1[0]={7, 8} };

Using element designators is a good idea if only a few elements need to be initialized to a
value other than 0.

Arrays as Arguments of Functions

When the name of an array appears as a function argument, the compiler implicitly
converts it into a pointer to the array’s first element. Accordingly, the corresponding
parameter of the function is always a pointer to the same object type as the type of the
array elements.

You can declare the parameter either in array form or in pointer form: type name[] or
type *name. The strcat() function defined in Example 8-1 illustrates the pointer

notation. For more details and examples, see “Arrays as Function Parameters”. Here,
however, we’ll take a closer look at the case of multidimensional arrays.

When you pass a multidimensional array as a function argument, the function receives a
pointer to an array type. Because this array type is the type of the elements of the
outermost array dimension, it must be a complete type. For this reason, you must specify
all dimensions of the array elements in the corresponding function parameter declaration.

For example, the type of a matrix parameter is a pointer to a “row” array, and the length of
the rows (i.e., the number of “columns”) must be included in the declaration. More
specifically, if NCOLS is the number of columns, then the parameter for a matrix of float

elements can be declared as follows:
#define NCOLS 10 // The number of columns.

VAV
void somefunction(float (*pMat)[NCOLS]); // A pointer to a row array.

This declaration is equivalent to the following:

void somefunction(float pMat[]J[NCOLS]);

The parentheses in the parameter declaration float (*pMat)[NCOLS] are necessary in
order to declare a pointer to an array of float. Without them, float *pMat[NcOLS] would
declare the identifier pMat as an array whose elements have the type float*, or pointer to
float. See “Complex Declarators”.

In C99, parameter declarations can contain variable-length arrays. Thus, in a declaration
of a pointer to a matrix, the number of columns need not be constant but can be another
parameter of the function. For example, you can declare a function as follows:

void someVLAfunction(int ncols, float pMat[][ncols]);

Example 7-5 shows a function that uses a variable-length matrix as a parameter.

If you use multidimensional arrays in your programs, it is a good idea to define a type
name for the (n-1)-dimensional elements of an n-dimensional array. Such typedef names
can make your programs more readable and your arrays easier to handle. For example, the
following typedef statement defines a type for the row arrays of a matrix of float

elements (see also “typedef Declarations™):

typedef float ROW_t[NCOLS]; // A type for the "row" arrays.

Example 8-2 illustrates the use of an array type name such as Row_t. The function
printRow() provides formatted output of a row array. The function printMatrix() prints
all the rows in the matrix.

Example 8-2. Functions printRow() and printMatrix()

// Print one "row" array.
void printRow(const ROW_t pRow)

{
for (int ¢ = 0; ¢ < NCOLS; ++c)
printf("%6.2f", pRow[c]);
putchar('\n');

}

// Print the whole matrix.
void printMatrix(const ROW_t *pMat, int nRows)

{
for (int r = 0; r < nRows; ++r)
printRow(pMat[r]); // Print each row.
}

The parameters pRow and pMat are declared as pointers to const arrays because the
functions do not modify the matrix. Because the number of rows is variable, it is passed to
the function printMatrix() as a second argument.

The following code fragment defines and initializes an array of rows with type ROW_t, and
then calls the function printMatrix():

ROW_t mat[] = { { 0.0F, 0.1F },

{1.0F, 1.1F, 1.2F },

{ 2.0F, 2.1F, 2.2F, 2.3F } };
int nRows = sizeof(mat) / sizeof(ROW_t);
printMatrix(mat, nRows);

Chapter 9. Pointers

A pointer is a reference to a data object or a function. Pointers have many uses, such as
defining “call-by-reference” functions and implementing dynamic data structures such as
linked lists and trees, to name just two examples.

Very often the only efficient way to manage large volumes of data is to manipulate not the
data itself but pointers to the data. For example, if you need to sort a large number of large
records, it is often more efficient to sort a list of pointers to the records, rather than
moving the records themselves around in memory. Similarly, if you need to pass a large
record to a function, it’s more economical to pass a pointer to the record than to pass the
record contents, even if the function doesn’t modify the contents.

Declaring Pointers

A pointer represents both the address and the type of an object or function. If an object or
function has the type 7, then a pointer to it has the derived type pointer to T. For example,
if var is a float variable, then the expression &var — whose value is the address of the
float variable — has the type pointer to float, or in C notation, the type float *. A
pointer to any type T is also called a T pointer for short. Thus, the address operator in &var
yields a float pointer.

Because var doesn’t move around in memory, the expression &var is a constant pointer.

However, C also allows you to define variables with pointer types. A pointer variable
stores the address of another object or a function. We describe pointers to arrays and
functions a little further on. To start out, the declaration of a pointer to an object that is not
an array has the following syntax:

type * [type-qualifier-1list] name [= initializer];

In declarations, the asterisk (*) means “pointer to.” The identifier name is declared as an
object with the type type *, or pointer to type. The optional type qualifier list may contain
any combination of the type qualifiers const, volatile, and restrict. For details about
qualified pointer types, see “Pointers and Type Qualifiers™.

Here is a simple example:

int *iPtr; // Declare iPtr as a pointer to int.

The type int is the type of object that the pointer iPtr can point to. To make a pointer
refer to a certain object, assign it the address of the object. For example, if ivar is an int
variable, then the following assignment makes iPtr point to the variable ivar:

iPtr = &ivar; // Let iPtr point to the variable iVar.

The general form of a declaration consists of a comma-separated list of declarators, each
of which declares one identifier (see Chapter 11). In a pointer declaration, the asterisk (*)

is part of an individual declarator. We can thus define and initialize the variables ivar and
iPtr in one declaration, as follows:

int ivar = 77, *iPtr = &ivar,; // Define an int variable and
// a pointer to it.

The second of these two declarations initializes the pointeriPtr with the address of the
variable ivar, so that iPtr points to ivar.

Figure 9-1 illustrates one possible arrangement of the variables ivar and iPtr in memory.
The addresses shown are purely fictitious examples. As Figure 9-1 shows, the value stored

in the pointer iPtr is the address of the object ivar.

Variable: iVar 1Ptr
Value in memory: . 77 10000
Address: 10000 10004

Figure 9-1. A pointer and another object in memory

It is often useful to output addresses for verification and debugging purposes. The
printf() functions provide a format specifier for pointers: %p. The following statement

prints the address and value of the variable iPtr:

printf("value of iPtr (i.e. the address of ivar): %p\n"
"Address of iPtr: %p\n", iPtr, &iPtr);

The size of a pointer in memory — given by the expression sizeof (iPtr), for example —

is the same regardless of the type of object addressed. In other words, a char pointer takes

up just as much space in memory as a pointer to a large structure. On 32-bit computers,

pointers are usually four bytes long.

Null Pointers

A null pointer is what results when you convert a null pointer constant to a pointer type. A
null pointer constant is an integer constant expression with the value of 0, or such an
expression cast as the type void * (see “Null pointer constants™). The macro NULL is
defined in stdlib.h, stdio.h, and other header files as a null pointer constant.

A null pointer is always unequal to any valid pointer to an object or function. For this
reason, functions that return a pointer type usually use a null pointer to indicate a failure
condition. One example is the standard function fopen(), which returns a null pointer if it
fails to open a file in the specified mode:

#include <stdio.h>
VA4

FILE *fp = fopen("demo.txt", "r");
if (fp == NULL) // Also written as: if (!fp)
{

// Error: unable to open the file demo.txt for reading.
}

Null pointers are implicitly converted to other pointer types as necessary for assignment
operations or for comparisons using == or !=. Hence, no cast operator is necessary in the
previous example. (See also “Implicit Pointer Conversions”.)

void Pointers

A pointer to void, or void pointer for short, is a pointer with the type void *. As there are
no objects with the type void, the type void * is used as the all-purpose pointer type. In
other words, a void pointer can represent the address of any object — but not its type. To
access an object in memory, you must always convert a void pointer into an appropriate
object pointer.

To declare a function that can be called with different types of pointer arguments, you can
declare the appropriate parameters as pointers to void. When you call such a function, the

compiler implicitly converts an object pointer argument into a void pointer. A common
example is the standard function memset (), which is declared in the header file string.h
with the following prototype:

void *memset(void *s, int c, size t n);

The memset () function assigns the value of c to each of the n bytes of memory in the
block beginning at the address s. For example, the following function call assigns the
value 0 to each byte in the structure variable record:

struct Data { /* ... */ } record;
memset(&record, 0, sizeof(record));

The argument &record has the type struct Data *. In the function call, the argument is
converted to the parameter’s type, void *.

The compiler likewise converts void pointers into object pointers where necessary. For
example, in the following statement, the malloc() function returns a void pointer whose

value is the address of the allocated memory block. The assignment operation converts the
void pointer into a pointer to int:

int *iPtr = malloc(1000 * sizeof(int));

For a more thorough illustration, see Example 2-3.

Initializing Pointers

Pointer variables with automatic storage duration start with an undefined value, unless
their declaration contains an explicit initializer. All variables defined within any block
have automatic storage duration unless they are defined with the storage class specifier
static. All other pointers defined without an initializer have the initial value of a null

pointer.
You can initialize a pointer with the following kinds of initializers:

= A null pointer constant

= A pointer to the same type, or to a less qualified version of the same type (see “Pointers
and Type Qualifiers”)

m A void pointer, if the pointer being initialized is not a function pointer (here again, the
pointer being initialized can be a pointer to a more qualified type)

Pointers that do not have automatic storage duration must be initialized with a constant
expression such as the result of an address operation or the name of an array or function.

When you initialize a pointer, no implicit type conversion takes place except in the cases
just listed. However, you can explicitly convert a pointer value to another pointer type. For
example, to read any object byte by byte, you can convert its address into a char pointer to
the first byte of the object:

.5;

I
&X; // Error: type mismatch; no implicit conversion.
(char *)&x; // OK: cPtr points to the first byte of x.

double x =
char *cPtr
char *cPtr

[I

For more details and examples of pointer type conversions, see “Explicit Pointer
Conversions”.

Operations with Pointers

This section describes the operations that can be performed using pointers. The most
important of these operations is accessing the object or function that the pointer refers to.
You can also compare pointers, and use them to iterate through a memory block. For a
complete description of the individual operators in C with their precedence and
permissible operands, see Chapter 5.

Using Pointers to Read and Modify Objects

The indirection operator * yields the location in memory whose address is stored in a
pointer. If ptr is a pointer, then *ptr designates the object (or function) that ptr points to.
Using the indirection operator is sometimes called dereferencing a pointer. The type of the
pointer determines the type of object that is assumed to be at that location in memory. For
example, when you access a given location using an int pointer, you read or write an

object of type int.

Unlike the multiplication operator *, the indirection operator * is a unary operator; that is,
it has only one operand. In Example 9-1, ptr points to the variable x. Hence, the
expression *ptr is equivalent to the variable x itself.

Example 9-1. Dereferencing a pointer

double x, y, *ptr; // Two double variables and a pointer to double.
ptr = &x; // Let ptr point to X.

*ptr = 7.8; // Assign the value 7.8 to the variable x.

*ptr *= 2.5; // Multiply x by 2.5.

y = *ptr + 0.5; // Assign y the result of the addition x + 0.5.

Do not confuse the asterisk (*) in a pointer declaration with the indirection operator. The
syntax of the declaration can be seen as an illustration of how to use the pointer. Here is an
example:

double *ptr;
As declared here, ptr has the type double * (read: “pointer to double™). Hence the
expression *ptr would have the type double.

Of course, the indirection operator * must be used only with a pointer that contains a valid
address. This usage requires careful programming! Without the assignment ptr = &x in
Example 9-1, all of the statements containing *ptr would be senseless — dereferencing an
undefined pointer value — and might cause the program to crash.

A pointer variable is itself an object in memory, which means that a pointer can point to it.
To declare a pointer to a pointer, you must use two asterisks, as in the following example:

char ¢ = 'A', *cPtr = &c, **cPtrPtr = &cPtr;

The expression *cPtrPtr now yields the char pointer cPtr, and the value of **cPtrPtr is
the char variable c. Figure 9-2 illustrates these references.

cPtrPtr cPtr C
&cPtr &c A

Figure 9-2. A pointer to a pointer

Pointers to pointers are not restricted to the two-stage indirection illustrated here. You can
define pointers with as many levels of indirection as you need. However, you cannot
assign a pointer-to-a-pointer its value by mere repetitive application of the address
operator:

char ¢ = 'A', **cPtrPtr = &(&c); // Wrong!

The second initialization in this example is illegal: the expression (&c) cannot be the
operand of &, because it is not an lvalue. In other words, there is no pointer to char in this
example for cPtrPtr to point to.

If you pass a pointer to a function by reference so that the function can modify its value,
then the function’s parameter is a pointer to a pointer. The following simple example is a
function that dynamically creates a new record and stores its address in a pointer variable:

#include <stdlib.h>
// The record type:
typedef struct { long key; /* ... */ } Record;

_Bool newRecord(Record **ppRecord)

{
*ppRecord = malloc(sizeof(Record));
if (*ppRecord != NULL)

/* ... Initialize the new record's members.. */
return 1;

}

else
return 0;

The following statement is one possible way to call the newRecord() function:

Record *pRecord = NULL;
if (newRecord(&pRecord))

{

/* ... pRecord now points to a new Record object.. */

}

The expression *pRecord yields the new record, and (*pRecord) . key is the member key
in that record. The parentheses in the expression (*pRecord) . key are necessary because
the dot operator (.) has higher precedence than the indirection operator (*).

Instead of this combination of operators and parentheses, you can also use the arrow
operator -> to access structure or union members. If p is a pointer to a structure or union

with a member m, then the expression p->m is equivalent to (*p) .m. Thus, the following
statement assigns a value to the member key in the structure that precord points to:

pRecord->key = 123456L;

Modifying and Comparing Pointers

Besides using assignments to make a pointer refer to a given object or function, you can
also modify an object pointer using arithmetic operations. When you perform pointer
arithmetic, the compiler automatically adapts the operation to the size of the objects
referred to by the pointer type.

You can perform the following operations on pointers to objects:

» Adding an integer to, or subtracting an integer from, a pointer.
m Subtracting one pointer from another.
m Comparing two pointers.

When you subtract one pointer from another, the two pointers must have the same basic
type, although you can disregard any type qualifiers. Furthermore, you may compare any
pointer with a null pointer constant using the equality operators (== and !=), and you may
compare any object pointer with a pointer to void.

The three pointer operations described here are generally useful only for pointers that refer
to the elements of an array. To illustrate the effects of these operations, consider two
pointers p1 and p2, which point to elements of an array a:

m If p1 points to the array element a[i], and n is an integer, then the expression p2 = p1
+ n makes p2 point to the array element a[i+n] (assuming that i+n is an index within
the array a).

m The subtraction p2 - p1 yields the number of array elements between the two pointers,
with the type ptrdiff_t. The type ptrdiff_t is defined in the stddef.h header file,
usually as int. After the assignment p2 = p1 + n, the expression p2 - p1 yields the
value of n.

m The comparison p1 < p2 yields true if the element referenced by p2 has a greater
index than the element referenced by p1. Otherwise, the comparison yields false.

Because the name of an array is implicitly converted into a pointer to the first array
element wherever necessary, you can also substitute pointer arithmetic for array subscript
notation:

m The expression a + i is a pointer to a[i], and the value of *(a+1i) is the element a[i].
m The expression p1 - a yields the index i of the element referenced by p1.

In Example 9-2, the selection_sortf() function sorts an array of float elements using
the selection-sort algorithm. This is the pointer version of the selection_sortf()

function in Example 7-7; in other words, this function does the same job but uses pointers
instead of indices. The helper function swapf () remains unchanged.

Example 9-2. Pointer version of the selection_sortf() function

// The swapf() function exchanges the values of two float variables.
// Arguments: Two pointers to float.

inline void swapf(float *pl, float *p2)
{

¥

// The function selection_sortf() uses the selection-sort
// algorithm to sort an array of float elements.
// Arguments: An array of float, and its length.

float tmp = *p1; *pl = *p2; *p2 = tmp; // Swap *pl and *p2.

void selection_sortf(float a[], int n) // Sort an array a of
// n float elements.

{
if (n <=1) return; // Nothing to sort.
register float *last = a + n-1, // A pointer to the last element.
*p, // A pointer to a selected element.
*minPtr; // A pointer to the current minimum.
for (; a < last; ++a) // Walk pointer a through the array.
{
minPtr = a; // Find the smallest element
for (p = a+l; p <= last; ++p) // between a and the last element.
if (*p < *minPtr)
minPtr = p;
swapf(a, minPtr); // Swap the smallest element
} // with the element at a.
}

The pointer version of such a function is generally more efficient than the index version
because accessing the elements of the array a using an index i, as in the expression a[i]
or *(a+i), involves adding the address a to the value i*sizeof (element_type) to obtain
the address of the corresponding array element. The pointer version requires less
arithmetic because the pointer is incremented instead of the index, and points to the
required array element directly.

Pointers and Type Qualifiers

The declaration of a pointer may contain the type qualifiers const, volatile, and/or
restrict. The const and volatile type qualifiers may qualify either the pointer type
itself, or the type of object it points to. The difference is important. Those type qualifiers
that occur in the pointer’s declarator — that is, between the asterisk and the pointer’s
name — qualify the pointer itself. Here is an example:

short const volatile * restrict ptr;

In this declaration, the keyword restrict qualifies the pointer ptr. This pointer can refer
to objects of type short that may be qualified with const or volatile, or both.

An object whose type is qualified with const is constant: the program cannot modify it
after its definition. The type qualifier volatile is a hint to the compiler that the object so

qualified may be modified not only by the present program, but also by other processes or
events (see Chapter 11).

TIP

The most common use of qualifiers in pointer declarations is in pointers to constant objects, especially as
function parameters. For this reason, the following description refers to the type qualifier const. The same
rules govern the use of the volatile type qualifier with pointers.

Constant Pointers and Pointers to Constant Objects

When you define a constant pointer, you must also initialize it because you can’t modify it
later. As the following example illustrates, a constant pointer is not the same thing as a
pointer to a constant object:

int var; // An object with type int.

int *const c_ptr = &var; // A constant pointer to int.

*c_ptr = 123; // OK: we can modify the object referenced.
++c_ptr; // Error: we can't modify the pointer.

You can modify a pointer that points to an object that has a const-qualified type (also
called a pointer to const). However, you can only use such a pointer to read the
referenced object, not to modify it. For this reason, pointers to const are commonly called

read-only pointers. The referenced object itself may or may not be constant. Here is an
example:

int var; // An object with type int.

const int c_var = 100, // A constant int object.
*ptr_to_const; // A pointer to const int: the pointer

// itself is not constant!

ptr_to_const = &c_var; // OK: Let ptr_to_const point to c_var.

var = 2 * *ptr_to_const; // OK. Equivalent to: var = 2 * c_var;

ptr_to_const = &var; // OK: Let ptr_to_const point to var.

if (c_var < *ptr_to_const) // OK: '"read-only" access.

*ptr_to_const = 77; // Error: we can't modify var using

// ptr_to_const, even though var is
// not constant.

Type specifiers and type qualifiers can be written in any order. Thus, the following is
permissible:

int const c_var = 100, *ptr_to_const;

The assignment ptr_to_const = &var entails an implicit conversion: the int pointer
value &var is automatically converted to the left operand’s type, pointer to const int. For
any operator that requires operands with like types, the compiler implicitly converts a
pointer to a given type T into a more qualified version of the type T. If you want to convert
a pointer into a pointer to a less-qualified type, you must use an explicit type conversion.
The following code fragment uses the variables declared in the previous example:

int *ptr = &var; // An int pointer that points to var.

*ptr = 77; // OK: ptr is not a read-only pointer.

ptr_to_const = ptr; // OK: implicitly converts ptr from "pointer to
// int" into "pointer to const int".

*ptr_to_const = 77; // Error: can't modify a variable through a
// read-only pointer.

ptr = &c_var; // Error: can't implicitly convert "pointer to
// const int" into "pointer to int".

ptr = (int *)&c_var; // OK: Explicit pointer conversions are always
// possible.

*ptr = 200; // Attempt to modify c_var: possible runtime
// error.

The final statement causes a runtime error if the compiler has placed the constant object

c_var in a read-only section in memory.

You can also declare a constant pointer to const, as the parameter declaration in the
following function prototype illustrates:

void func(const int * const c_ptr_to_const);

The function’s parameter is a read-only pointer that is initialized when the function is
called and remains constant within the function.

Restricted Pointers

C99 introduced the type qualifier restrict, which is applicable only to object pointers. A
pointer qualified with restrict is called a restricted pointer. There is a special
relationship between a restrict-qualified pointer and the object it points to: during the

lifetime of the pointer, either the object is not modified or the object is not accessed except
through the restrict-qualified pointer. Here is an example:

typedef struct { long key; // Define a structure type.
/* ... other members.. */
} Data_t;
Data_t * restrict rPtr = malloc(sizeof(Data_t)); // Allocate a
// structure.

This example illustrates one way to respect the relationship between the restricted pointer
and its object: the return value of malloc() — the address of an anonymous Data_t object

— is assigned only to the pointer rPtr, so the program won’t access the object in any
other way.

It is up to you, the programmer, to make sure that an object referenced by a restrict-
qualified pointer is accessed only through that pointer. For example, if your program
modifies an object through a restricted pointer, it must not access the object by name or
through another pointer for as long as the restricted pointer exists.

The restrict type qualifier is a hint to the compiler that allows it to apply certain

optimization techniques that might otherwise introduce inconsistencies. However, the
restrict qualifier does not mandate any such optimization, and the compiler may ignore

it. The program’s outward behavior is the same in either case.

The restrict type qualifier is used in the prototypes of many standard library functions.
For example, the memcpy () function is declared in the string.h header file as follows:

void *memcpy(void * restrict dest, // Destination
const void * restrict src, // Source
size_ t n); // Number of bytes to copy

This function copies a memory block of n bytes, beginning at the address src, to the
location beginning at dest. Because the pointer parameters are both restricted, you must
make sure that the function will not use them to access the same objects; in other words,
make sure that the source and destination blocks do not overlap. The following example
contains one correct and one incorrect memcpy () call:

char a[200];

VA4

memcpy(a+100, a, 100); // OK: copy the first half of the array
// to the second half; no overlap.

memcpy(a+l, a, 199); // Error: move the whole array contents
// upward by one index; large overlap.

The second memcpy () call in this example violates the restrict condition, because the

function must modify 198 locations that it accesses using both pointers.

The standard function memmove (), unlike memcpy (), allows the source and destination
blocks to overlap. Accordingly, neither of its pointer parameters has the restrict
qualifier:

void *memmove(void *dest, const void *src, size t n);

Example 9-3 illustrates the second way to fulfill the restrict condition: the program may

access the object pointed to using other names or pointers if it doesn’t modify the object
for as long as the restricted pointer exists. This simple function calculates the scalar
product of two arrays.

Example 9-3. The function scalar_product()

// This function calculates the scalar product of two arrays.
// Arguments: Two arrays of double, and their length.
// The two arrays need not be distinct.

double scalar_product(const double * restrict p1,
const double * restrict p2,
int n)
{
double result = 0.0;
for (int i = 0; i < n; ++i)
result += p1[i] * p2[i];
return result;

}

Assuming an array named P with three double elements, you could call this function using
the expression scalar_products(P, P, 3). The function accesses objects through two
different restricted pointers, but as the const keyword in the first two parameter
declarations indicates, it doesn’t modify them.

Pointers to Arrays and Arrays of Pointers

Pointers occur in many C programs as references to arrays, and also as elements of arrays.
A pointer to an array type is called an array pointer for short, and an array whose elements
are pointers is called a pointer array.

Array Pointers

For the sake of example, the following description deals with an array of int. The same
principles apply for any other array type, including multidimensional arrays.

To declare a pointer to an array type, you must use parentheses, as the following example
illustrates:

int (* arrPtr)[10] = NULL; // A pointer to an array of
// ten elements with type int.

Without the parentheses, the declaration int * arrPtr[10]; would define arrPtr as an
array of 10 pointers to int. Arrays of pointers are described in the next section.

In the example, the pointer to an array of 10 int elements is initialized with NULL.
However, if we assign it the address of an appropriate array, then the expression *arrpPtr
yields the array, and (*arrPtr)[i] yields the array element with the index i. According to
the rules for the subscript operator, the expression (*arrPtr)[i] is equivalent to *
((*arrPtr)+1) (see “Memory Addressing Operators”). Hence, **arrPtr yields the first
element of the array, with the index O.

In order to demonstrate a few operations with the array pointer arrptr, the following

example uses it to address some elements of a two-dimensional array — that is, some
rows of a matrix (see “Matrices”):

int matrix[3][10]; // Array of three rows, each with 10 columns.
// The array name is a pointer to the first
// element; i.e., the first row.
arrPtr = matrix; // Let arrPtr point to the first row of
// the matrix.
(*arrPtr)[0] = 5; // Assign the value 5 to the first element of
// the first row.
//
6; // Assign the value 6 to the last element of
// the last row.
//
++arrPtr; // Advance the pointer to the next row.
(*arrPtr)[0] // Assign the value 7 to the first element
// of the second row.

arrPtr[2][9]

1
~
~-

After the initial assignment, arrPtr points to the first row of the matrix, just as the array
name matrix does. At this point, you can use arrPtr in the same way as matrix to access
the elements. For example, the assignment (*arrPtr)[0] = 5 is equivalent to arrPtr[0]
[0] = 50rmatrix[0][0] = 5.

However, unlike the array name matrix, the pointer name arrPtr does not represent a
constant address, as the operation ++arrPtr shows. The increment operation increases the

address stored in an array pointer by the size of one array — in this case, one row of the
matrix, or ten times the number of bytes in an int element.

If you want to pass a multidimensional array to a function, you must declare the
corresponding function parameter as a pointer to an array type. For a full description and

an example of this use of pointers, see “Arrays as Arguments of Functions”.

One more word of caution: if a is an array of ten int elements, then you cannot make the
pointer from the previous example, arrPtr, point to the array a by this assignment:

arrPtr = a; // Error: mismatched pointer types.

The reason is that an array name, such as a, is implicitly converted into a pointer to the
array’s first element, not a pointer to the whole array. The pointer to int is not implicitly
converted into a pointer to an array of int. The assignment in the example requires an
explicit type conversion, specifying the target type int (*)[10] in the cast operator:

arrPtr = (int (*)[10])a; // 0K

You can derive this notation for the array pointer type from the declaration of arrPtr by
removing the identifier (see “Type Names”). However, for more readable and more
flexible code, it is a good idea to define a simpler name for the type using typedef:

typedef int ARRAY_t[10]; // A type name for
// "array of ten int elements'.
ARRAY_t a, // An array of this type,
*arrPtr; // and a pointer to this array type.

arrPtr = (ARRAY_t *)a; // Let arrPtr point to a.

Pointer Arrays

Pointer arrays — that is, arrays whose elements have a pointer type — are often a handy
alternative to two-dimensional arrays. Usually the pointers in such an array point to
dynamically allocated memory blocks.

For example, if you need to process strings, you could store them in a two-dimensional
array whose row size is large enough to hold the longest string that can occur:

#define ARRAY_LEN 100

#define STRLEN_MAX 256

char myStrings[ARRAY_LEN][STRLEN_MAX] =

{ // Several corollaries of Murphy's law:
"If anything can go wrong, it will.",
"Nothing is foolproof, because fools are so ingenious.",
"Every solution breeds new problems."

H

However, this technique wastes memory, as only a small fraction of the 25,600 bytes
devoted to the array is actually used. For one thing, a short string leaves most of a row
empty; for another, memory is reserved for whole rows that may never be used. A simple
solution in such cases is to use an array of pointers that reference the objects — in this
case, the strings — and to allocate memory only for the pointer array and for objects that
actually exist (unused array elements are null pointers):

#define ARRAY_LEN 100
char *myStrPtr[ARRAY_LEN] = // Array of pointers to char
{ // Several corollaries of Murphy's law:
"If anything can go wrong, it will.",
"Nothing is foolproof, because fools are so ingenious.",
"Every solution breeds new problems."

3
The diagram in Figure 9-3 illustrates how the objects are stored in memory.
myStrPtr |0) = @—— “Ifanything can go wrong, it will.”

myStrPtr ®—— "Nothing is foolproof...”
myStrPtr ®—— "Every solution breeds new problems.”

myStrPtr [3] e—]

L B

myStrPtr [99] | e&—

Figure 9-3. Pointer array

The pointers not yet used can be made to point to other strings at runtime. The necessary

storage can be reserved dynamically in the usual way. The memory can also be released
when it is no longer needed.

The program in Example 9-4 is a simple version of the filter utility sort. It reads text from
the standard input stream, sorts the lines alphanumerically, and prints them to standard
output. This routine does not move any strings; it merely sorts an array of pointers.

Example 9-4. A simple program to sort lines of text

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

char *getLine(void); // Reads a line of text
int str_compare(const void *, const void *);

#define NLINES_MAX 1000 // Maximum number of text lines.
char *linePtr[NLINES_MAX]; // Array of pointers to char.
int main()
{

// Read lines:

int n = 0; // Number of lines read.

for (; n < NLINES_MAX && (linePtr[n] = getLine()) != NULL; ++n)

r

if (!feof(stdin)) // Handle errors.
{
if (n == NLINES_MAX)
fputs("sorttext: too many lines.\n", stderr);
else
fputs("sorttext: error reading from stdin.\n", stderr);

}
else // Sort and print.
{
gsort(linePtr, n, sizeof(char*), str_compare); // Sort.
for (char **p = linePtr; p < linePtr+n; ++p) // Print.
puts(*p);
return 0;

}

// Reads a line of text from stdin; drops the terminating

// newline character.

// Return value: A pointer to the string read, or

// NULL at end-of-file, or if an error occurred.

#define LEN_MAX 512 // Maximum length of a line.

char *getLine()

char buffer[LEN_MAX], *linePtr = NULL;
if (fgets(buffer, LEN_MAX, stdin) != NULL)

size t len = strlen(buffer);

if (buffer[len-1] == '\n') // Trim the newline character.
buffer[len-1] = '\0';

else
++len;

if ((linePtr = malloc(len)) != NULL) // Get memory for the line.
strcpy(linePtr, buffer); // Copy the line to the allocated block.

return linePtr;

}

// Comparison function for use by qsort().
// Arguments: Pointers to two elements in the array being sorted:

// here, two pointers to pointers to char (char **).
int str_compare(const void *pl, const void *p2)
{

return strcmp(*(char **)pi1, *(char **)p2);

}

The maximum number of lines that the program in Example 9-4 can sort is limited by the
constant NLINES_MAX. However, we could remove this limitation by creating the array of
pointers to text lines dynamically as well.

Pointers to Functions

There are a variety of uses for function pointers in C. For example, when you call a
function, you might want to pass it not only the data for it to process but also pointers to
subroutines that determine how it processes the data. We have just seen an example of this
use: the standard function gsort (), used in Example 9-4, takes a pointer to a comparison
function as one of its arguments in addition to the information about the array to be sorted.
gsort () uses the pointer to call the specified function whenever it has to compare two
array elements.

You can also store function pointers in arrays, and then call the functions using array index
notation. For example, a keyboard driver might use a table of function pointers whose
indices correspond to the key numbers. When the user presses a key, the program would
jump to the corresponding function.

Like declarations of pointers to array types, function pointer declarations require
parentheses. The examples that follow illustrate how to declare and use pointers to
functions. This declaration defines a pointer to a function type with two parameters of type
double and a return value of type double:

double (*funcPtr)(double, double);

The parentheses that enclose the asterisk and the identifier are important. Without them,
the declaration double *funcPtr(double, double); would be the prototype of a
function, not the definition of a pointer.

Wherever necessary, the name of a function is implicitly converted into a pointer to the
function. Thus, the following statements assign the address of the standard function pow()

to the pointer funcPtr, and then call the function using that pointer:

double result;

funcPtr = pow; // Let funcPtr point to the function pow().
// The expression *funcPtr now yields the
// function pow().

result = (*funcPtr)(1.5, 2.0); // Call the function referenced by
// funcPtr.
funcPtr(1.5, 2.0); // The same function call.

result

As the last line in this example shows, when you call a function using a pointer, you can
omit the indirection operator because the left operand of the function call operator (i.e., the
parentheses enclosing the argument list) has the type “pointer to function” (see “Function
calls”).

The simple program in Example 9-5 prompts the user to enter two numbers, and then
performs some simple calculations with them. The mathematical functions are called by
pointers that are stored in the array funcTable.

Example 9-5. Simple use of function pointers

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

double Add(double x, double y) { return x + vy; }
double Sub(double x, double y) { return x - y; }
double Mul(double x, double y) { return x * y; }
double Div(double x, double y) { return x / vy; }

// Array of 5 pointers to functions that take two double parameters
// and return a double:
double (*funcTable[5])(double, double)

= { Add, Sub, Mul, Div, pow }; // Initializer 1ist.

// An array of pointers to strings for output:
char *msgTable[5] = {"Sum", "Difference", "Product", "Quotient", "Power"};

int main()
{
int 1i; // An index variable.
double x = 0, y = 0;
printf("Enter two operands for some arithmetic:\n");
if (scanf("%1f %1f", &x, &y) != 2)
printf("Invalid input.\n");

for (1 =20, i<5; ++i)
printf("%10s: %6.2f\n", msgTable[i], funcTable[i](X, y));

return 0O,

}

The expression funcTable[i](x,y) calls the function whose address is stored in the
pointer funcTable[i]. The array name and subscript do not need to be enclosed in
parentheses because the function call operator () and the subscript operator [] both have
the highest precedence and left-to-right associativity (see Table 5-4).

Once again, complex types such as arrays of function pointers are easier to manage if you
define simpler type names using typedef. For example, you could define the array
funcTable as follows:

typedef double func_t(double, double); // The functions' type is
// now named func_t.
func_t *funcTable[5] = { Add, Sub, Mul, Div, pow };

This approach is certainly more readable than the array definition in Example 9-5.

Chapter 10. Structures, Unions, and Bit-
Fields

The pieces of information that describe the characteristics of objects, such as information
on companies or customers, are generally grouped together in records. Records make it
easy to organize, present, and store information about similar objects.

A record is composed of fields that contain the individual details, such as the name,
address, and legal form of a company. In C, you determine the names and types of the
fields in a record by defining a structure type. The fields are called the members of the
structure.

A union is defined in the same way as a structure. Unlike the members of a structure, all
the members of a union start at the same address. Hence you define a union type when you
want to use the same location in memory for different types of objects.

In addition to the basic and derived types, the members of structures and unions can also
include bit-fields. A bit-field is an integer variable composed of a specified number of bits.
By defining bit-fields, you can break down an addressable memory unit into groups of
individual bits that you can address by name.

Structures

A structure type is a type defined within the program that specifies the format of a record,
including the names and types of its members, and the order in which they are stored.
Once you have defined a structure type, you can use it like any other type in declaring
objects, pointers to those objects, and arrays of such structure elements.

Defining Structure Types

The definition of a structure type begins with the keyword struct, and contains a list of
declarations of the structure’s members, in braces:

struct [tag_name] { member_declaration_list };

A structure must contain at least one member. The following example defines the type
struct Date, which has three members of type short:

struct Date { short month, day, year; };

The identifier Date is this structure type’s tag. The identifiers year, month, and day are the
names of its members. The tags of structure types are a distinct name space: the compiler
distinguishes them from variables or functions whose names are the same as a structure
tag. Likewise, the names of structure members form a separate name space for each
structure type. In this book, we have generally capitalized the first letter in the names of
structure, union, and enumeration types: this is merely a common convention to help
programmers distinguish such names from those of variables.

The members of a structure may have any desired complete type, including previously
defined structure types. They must not be variable-length arrays, or pointers to such
arrays.

The following structure type, struct Song, has five members to store five pieces of
information about a music recording. The member published has the type struct Date,
defined in the previous example:

struct Song { char title[64];
char artist[32];
char composer[32];
short duration; // Playing time in seconds.
struct Date published; // Date of publication.
};

A structure type cannot contain itself as a member, as its definition is not complete until
the closing brace (}). However, structure types can and often do contain pointers to their
own type. Such self-referential structures are used in implementing linked lists and binary

trees, for example. The following example defines a type for the members of a singly
linked list:

struct Cell { struct Song song; // This record's data.
struct Cell *pNext; // A pointer to the next record.

+

If you use a structure type in several source files, you should place its definition in an
included header file. Typically, the same header file will contain the prototypes of the
functions that operate on structures of that type. Then you can use the structure type and

the corresponding functions in any source file that includes the given header file.

Structure Objects and typedef Names

Within the scope of a structure type definition, you can declare objects of that type:

struct Song songl, song2, *pSong = &songl;

This example defines song1 and song2 as objects of type struct Song, and pSong as a
pointer that points to the object song1. The keyword struct must be included whenever
you use the structure type. You can also use typedef to define a one-word name for a
structure type:
typedef struct Song Song_t; // Song_t is now a synonym for
// struct Song.

sSong_t songl, song2, *pSong = &songl; // Two struct Song objects and a
// struct Song pointer.

Objects with a structure type, such as song1 and song2 in our example, are called structure
objects (or structure variables) for short.

You can also define a structure type without a tag. This approach is practical only if you
define objects at the same time and don’t need the type for anything else, or if you define
the structure type in a typedef declaration so that it has a name after all. Here is an

example:

typedef struct { struct Cell *pFirst, *pLast; } SongList_t;

This typedef declaration defines SongList_t as a name for the structure type whose
members are two pointers to struct Cell named pFirst and pLast.

Incomplete Structure Types

You can define pointers to a structure type even when the structure type has not yet been
defined. Thus, the definition of SongList_t in the previous example would be permissible
and correct even if struct Cell had not yet been defined. In such a case, the definition of
SongList_t would implicitly declare the name Cell as a structure tag. However, the type
struct Cell would remain incomplete until explicitly defined. The pointers pFirst and
pLast, whose type is struct Cell *, cannot be used to access objects until the type
struct Cell is completely defined, with declarations of its structure members between
braces.

The ability to declare pointers to incomplete structure types allows you to define structure
types that refer to each other. Here is a simple example:

struct A { struct B *pB; /* ... other members of struct A. */ };
struct B { struct A *pA; /* ... other members of struct B.. */ };

These declarations are correct and behave as expected, except in the following case: if
they occur within a block, and the structure type struct B has already been defined in a

larger scope, then the declaration of the member pB in structure A declares a pointer to the
type already defined, and not to the type struct B defined after struct A. To preclude
this interference from the outer scope, you can insert an “empty” declaration of struct B
before the definition of struct A:

struct B;
struct A { struct B *pB; /* ... */ };
struct B { struct A *pA; /* ... */ };

This example declares B as a new structure tag that hides an existing structure tag from the
larger scope, if there is one.

Accessing Structure Members

Two operators allow you to access the members of a structure object: the dot operator (.)
and the arrow operator (->). Both of them are binary operators whose right operand is the
name of a member.

The left operand of the dot operator is an expression that yields a structure object. Here are
a few examples using the structure struct Song:

#include <string.h> // Prototypes of string functions.
Song_t songl, song2, // Two objects of type Song_t,
*pSong = &songl; // and a pointer to Song_t.

// Copy a string to the title of songl:
strcpy(songl.title, "Havana Club");

// Likewise for the composer member:
strcpy(songl.composer, "Ottmar Liebert");

songl.duration = 251; // Playing time.

// The member published is itself a structure:
songl.published.year = 1998; // Year of publication.

if ((*pSong).duration > 180)
printf("The song %s is more than 3 minutes long.\n", (*pSong).title);

Because the pointer pSong points to the object song1, the expression *pSong denotes the
object song1, and (*pSong) .duration denotes the member duration in song1. The

parentheses are necessary because the dot operator has a higher precedence than the
indirection operator (see Table 5-4).

If you have a pointer to a structure, you can use the arrow operator -> to access the
structure’s members instead of the indirection and dot operators (* and .). In other words,
an expression of the form p->m is equivalent to (*p) .m. Thus, we might rewrite the if
statement in the previous example using the arrow operator as follows:

if (pSong->duration > 180)
printf("The song %s is more than 3 minutes long.\n", pSong->title);

You can use an assignment to copy the entire contents of a structure object to another
object of the same type:

song2 = songl;

After this assignment, each member of song2 has the same value as the corresponding
member of song1. Similarly, if a function parameter has a structure type, then the contents

of the corresponding argument are copied to the parameter when you call the function.
This approach can be rather inefficient unless the structure is small, as in Example 10-1.

Example 10-1. The function dateAsString()

// The function dateAsString() converts a date from a structure of type
// struct Date into a string of the form mm/dd/yyyy.
// Argument: A date value of type struct Date.

// Return value: A pointer to a static buffer containing the date string.

const char *dateAsString(struct Date d)

{

static char strDate[12];
sprintf(strDate, "%02d/%02d/%04d", d.month, d.day, d.year);
return strDate;

}

Larger structures are generally passed by reference. In Example 10-2, the function call
copies only the address of a Song object, not the structure’s contents. Furthermore, as the

function does not modify the structure object, the parameter is a read-only pointer. Thus,
you can also pass this function a pointer to a constant object.

Example 10-2. The function printSong()

// The printSong() function prints out the contents of a structure
// of type Song_t in a tabular format.

// Argument: A pointer to the structure object to be printed.
// Return value: None.

void printSong(const Song_t *pSong)

{
int m = pSong->duration / 60, // Playing time in minutes
s = pSong->duration % 60; // and seconds.
praintf(M--m e \n"
"Title: %s\n"
"Artist: %s\n"
"Composer: %s\n"
"Playing time: %d:%02d\n"
"Date: %s\n",
pSong->title, pSong->artist, pSong->composer, m, s,
dateAsString(pSong->published));
}

The song’s playing time is printed in the format m: ss. The function dateAsString()
converts the publication date from a structure to string format.

Initializing Structures

When you define structure objects without explicitly initializing them, the usual
initialization rules apply: if the structure object has automatic storage class, then its
members have indeterminate initial values. If, on the other hand, the structure object has
static storage duration, then the initial value of its members is zero, or if they have pointer
types, a null pointer (see “Initialization”).

To initialize a structure object explicitly when you define it, you must use an initialization
list: this is a comma-separated list of initializers, or initial values for the individual
structure members, enclosed in braces. The initializers are associated with the members in
the order of their declarations: the first initializer is associated with the first member, the
second initializer goes with the second member, and so forth. Of course, each initializer
must have a type that matches (or can be implicitly converted into) the type of the
corresponding member. Here is an example:

song_t mySong = { "wWhat It Is",

"Aubrey Haynie; Mark Knopfler",
"Mark Knopfler",

297,

{9, 26, 2000 }

3

This list contains an initializer for each member. Because the member published has a
structure type, its initializer is another initialization list.

You may also specify fewer initializers than the number of members in the structure. In
this case, any remaining members are initialized to zero.

Song_t yourSong = { "E1 Macho" };

After this definition, all members of yourSong have the value zero, except for the first
member. The char arrays contain empty strings, and the member published contains the
invalid date { 0, 0, 0 }.

The initializers may be nonconstant expressions if the structure object has automatic
storage class. You can also initialize a new, automatic structure variable with a existing
object of the same type:

Song_t yourSong = mySong; // Valid initialization within a block

Initializing Specific Members

The C99 standard allows you to explicitly associate an initializer with a certain member.
To do so, you must prefix a member designator with an equal sign to the initializer. The
general form of a designator for the structure member member is:

.member // Member designator

The declaration in the following example initializes a Song_t object using the member
designators .title and .composer:

Song_t aSong = { .title = "I've Just Seen a Face",
.composer = "John Lennon; Paul McCartney",
127
};

The member designator . title is actually superfluous here because title is the first
member of the structure. An initializer with no designator is associated with the first
member, if it is the first initializer, or with the member that follows the last member
initialized. Thus, in the previous example, the value 127 initializes the member duration.

All other members of the structure have the initial value 0.

Structure Members in Memory

The members of a structure object are stored in memory in the order in which they are
declared in the structure type’s definition. The address of the first member is identical with
the address of the structure object itself. The address of each member declared after the
first one is greater than those of members declared earlier.

Sometimes it is useful to obtain the offset of a member from the beginning address of the
structure. This offset, as a number of bytes, is given by the macro offsetof, defined in the

header file stddef.h. The macro’s arguments are the structure type and the name of the
member:

offsetof(structure_type, member)

The result has the type size_t. As an example, if pSong is a pointer to a Song_t structure,
then we can initialize the pointer ptr with the address of the first character in the member

composer:

char *ptr = (char *)pSong + offsetof(Song_t, composer);

The compiler may align the members of a structure on certain kinds of addresses, such as
32-bit boundaries, to ensure fast access to the members. This step results in gaps, or
unused bytes between the members. The compiler may also add extra bytes, commonly
called padding, to the structure after the last member. As a result, the size of a structure
can be greater than the sum of its members’ sizes. You should always use the sizeof
operator to obtain a structure’s size, and the of fsetof macro to obtain the positions of its
members.

You can control the compiler’s alignment of structure members — to avoid gaps between
members, for example — by means of compiler options, such as the -fpack-struct flag

for GCC, or the /zp1 command-line option or the pragma pack(1) for Visual C/C++.

However, you should use these options only if your program places special requirements
on the alignment of structure elements (for conformance to hardware interfaces, for
example).

Programs need to determine the sizes of structures when allocating memory for objects, or
when writing the contents of structure objects to a binary file. In the following example,
fp is the FILE pointer to a file opened for writing binary data:

#include <stdio.h> // Prototype of fwrite().
VA4
if (fwrite(&aSong, sizeof(aSong), 1, fp) < 1)

fprintf(stderr, "Error writing \"%s\".\n", aSong.title);

If the function call is successful, fwrite() writes one data object of size sizeof (aSong),

beginning at the address &aSong, to the file opened with the FILE pointer fp.

Flexible Structure Members

C99 allows the last member of a structure with more than one member to have an
incomplete array type — that is, the last member may be declared as an array of
unspecified length. Such a structure member is called a flexible array member. In the
following example, array is the name of a flexible member:

typedef struct { int len; float array[]; } DynArray_t;

There are only two cases in which the compiler gives special treatment to a flexible
member:

m The size of a structure that ends in a flexible array member is equal to the offset of the
flexible member. In other words, the flexible member is not counted in calculating the
size of the structure (although any padding that precedes the flexible member is
counted). For example, the expressions sizeof (DynArray_t) and offsetof(
DynArray_t, array) yield the same value.

m When you access the flexible member using the dot or arrow operator (. or ->), you the
programmer must make sure that the object in memory is large enough to contain the
flexible member’s value. You can do this by allocating the necessary memory
dynamically. Here is an example:

DynArray_t *daPtr = malloc(sizeof(DynArray_t) + 10*sizeof(float));

This initialization reserves space for ten elements in the flexible array member. Now
you can perform the following operations:

daPtr->len = 10;
for (int 1 = 0; i < daPtr->len; ++i)
daPtr->array[i] = 1.0F/(i+1);

Because you have allocated space for only ten array elements in the flexible member,
the following assignment is not permitted:

daPtr->array[10] = 0.1F // Invalid array index.

Although some implementations of the C standard library are aimed at making
programs safer from such array index errors, you should avoid them by careful
programming. In all other operations, the flexible member of the structure is ignored,
as in this structure assignment, for example:

DynArray_t dai;
dal = *daPtr;

This assignment copies only the member len of the object addressed by daPtr, not the

elements of the object’s array member. In fact, the left operand, dai, doesn’t even have

storage space for the array. But even when the left operand of the assignment has
sufficient space available, the flexible member is still ignored.

C99 also doesn’t allow you to initialize a flexible structure member:

DynArray_t dal
da2

{ 100 }, // OK.
{3, {1.0F, 0.5F, 0.25F } %}, // Error.

Nonetheless, many compilers support language extensions that allow you to initialize a
flexible structure member and generate an object of sufficient size to contain those
elements that you initialize explicitly.

Pointers as Structure Members

To include data items that can vary in size in a structure, it is a good idea to use a pointer
rather than including the actual data object in the structure. The pointer then addresses the
data in a separate object for which you allocate the necessary storage space dynamically.
Moreover, this indirect approach allows a structure to have more than one variable-length
“member.”

Pointers as structure members are also very useful in implementing dynamic data
structures. The structure types SongList_t and Cell_t that we defined earlier in this

chapter for the head and items of a list are an example:

// Structures for a list head and list items:

typedef struct { struct Cell *pFirst, *pLast; } SongList_t;

typedef struct Cell { struct Song song; // The record data.
struct Cell *pNext; // A pointer to the next
// record.
} Cell_t;

Figure 10-1 illustrates the structure of a singly linked list made of these structures.

pFirst ‘ pLast

song ‘ pNext @—» song | pNext @&— ... @— song | pNext @—]

Figure 10-1. A singly linked list

Special attention is required when manipulating such structures. For example, it generally

makes little sense to copy structure objects with pointer members, or to save them in files.

Usually, the data referenced needs to be copied or saved, and the pointer to it does not. For
example, if you want to initialize a new list, named yourList, with the existing list

myList, you probably don’t want to do this:

SongList_t yourList = myList;

Such an initialization simply makes a copy of the pointers in myList without creating any
new objects for yourList. To copy the list itself, you have to duplicate each object in it.
The function cloneSongList(), defined in Example 10-3, does just that:

SongList_t yourList = cloneSongList(&myList);

The function cloneSongList () creates a new object for each item linked to myList,

copies the item’s contents to the new object, and links the new object to the new list.
cloneSongList () calls appendsong() to do the actual creating and linking. If an error

occurs, such as insufficient memory to duplicate all the list items, then cloneSongList()
releases the memory allocated up to that point and returns an empty list. The function
clearSonglList () destroys all the items in a list.

Example 10-3. The functions cloneSongList(), appendSong(), and clearSongList()

// The function cloneSongList() duplicates a linked 1ist.

// Argument: A pointer to the list head of the list to be cloned.

// Return value: The new list. If insufficient memory 1is available to

// duplicate the entire list, the new list is empty.

#include "songs.h" // Contains type definitions (Song_t, etc.) and
// function prototypes for song-1list operations.

SongList_t cloneSongList(const SongList_t *pList)

{
SongList_t newSL = { NULL, NULL }; // A new, empty 1list.

Cell t *pCell = pList->pFirst; // We start with the first list item.
while (pCell != NULL && appendSong(&newSL, &pCell->song))
pCell = pCell->pNext;

if (pCell != NULL) // If we didn't finish the last item,
clearSongList(&newSL); // discard any items cloned.
return newsSL; // In either case, return the list head.

}

// The function appendSong() dynamically allocates a new list item, copies
// the given song data to the new object, and appends it to the 1list.

// Arguments: A pointer to a Song_t object to be copied, and a pointer
// to a list to add the copy to.

// Return value: True if successful; otherwise, false.

bool appendSong(SonglList_t *pList, const Song_t *pSong)
{
Cell t *pCell = calloc(1, sizeof(Cell t)); // Create a new list item.

if (pCell == NULL)

return false; // Failure: no memory.
pCell->song = *pSong; // Copy data to the new item.
pCell->pNext = NULL;
if (pList->pFirst == NULL) // If the list is still empty,
pList->pFirst = pList->pLast = pCell; // link a first (and last) item.
else
{ // If not,
pList->pLast->pNext = pCell; // insert a new last item.
pList->pLast = pCell;
}
return true; // Success.

}

// The function clearSonglList() destroys all the items in a 1list.
// Argument: A pointer to the list head.

void clearSongList(SongList_t *pList)
{
Cell t *pCell, *pNextCell;
for (pCell = pList->pFirst; pCell != NULL; pCell = pNextCell)

{

pNextCell = pCell->pNext;

free(pCell); // Release the memory allocated for each item.
}
pList->pFirst = pList->pLast = NULL;

}

Before the function clearSongList () frees each item, it has to save the pointer to the item

that follows; you can’t read a structure object member after the object has been destroyed.
The header file songs.h included in Example 10-3 is the place to put all the type

definitions and function prototypes needed to implement and use the song list, including
declarations of the functions defined in the example itself. The header songs.h must also
include the header file stdbool.h because the appendSong() function uses the identifiers

bool, true, and false.

Unions

Unlike structure members, which all have distinct locations in the structure, the members
of a union all share the same location in memory; that is, all members of a union start at
the same address. Thus, you can define a union with many members, but only one member
can contain a value at any given time. Unions are an easy way for programmers to use a
location in memory in different ways.

Defining Union Types

The definition of a union is formally the same as that of a structure, except for the
keyword union in place of struct:

union [tag_name] { member_declaration_list };

The following example defines a union type named Data which has the three members i,
x, and str:

union Data { int i; double x; char str[16]; };

An object of this type can store an integer, a floating-point number, or a short string. This
declaration defines var as an object of type union Data, and myData as an array of 100
elements of type union Data (a union is at least as big as its largest member):

union Data var, myData[100];

To obtain the size of a union, use the sizeof operator. Using our example, sizeof (var)
yields the value 16, and sizeof (myData) yields 1,600.

As Figure 10-2 illustrates, all the members of a union begin at the same address in
memory.

- r- L R B E

str

Figure 10-2. An object of the type union Data in memory

To illustrate how unions are different from structures, consider an object of the type
struct Record with members i, x, and str, defined as follows:

struct Record { int i; double x; char str[16]; };

As Figure 10-3 shows, each member of a structure object has a separate location in
memory.

i X str

Figure 10-3. An object of the type struct Record in memory

You can access the members of a union in the same ways as structure members. The only
difference is that when you change the value of a union member, you modify all the
members of the union. Here are a few examples using the union objects var and myData:

var.x = 3.21;
var.x += 0.5;
strcpy(var.str, "Jim"); // Occupies the place of var.x.
myData[0].1 50;
for (int i 0; 1 < 50; ++1i)
myData[i].1i = 2 * 1i;

As for structures, the members of each union type form a name space unto themselves.
Hence, in the last of these statements, the index variable i and the union member i

identify two distinct objects.

You, the programmer, are responsible for making sure that the momentary contents of a
union object are interpreted correctly. The different types of the union’s members allow
you to interpret the same collection of byte values in different ways. For example, the
following loop uses a union to illustrate the storage of a double value in memory:

var.x = 1.25;

for (int i = sizeof(double) - 1; i >= 0; --1i)
printf("%02X ", (unsigned char)var.str[i]);

This loop begins with the highest byte of var.x, and generates the following output:

3F F4 00 00 00 00 00 00

Initializing Unions

Like structures, union objects are initialized by an initialization list. For a union, though,
the list can only contain one initializer. As for structures, C99 allows the use of a member
designator in the initializer to indicate which member of the union is being initialized.
Furthermore, if the initializer has no member designator, then it is associated with the first
member of the union. A union object with automatic storage class can also be initialized
with an existing object of the same type. Here are some examples:

union Data varl = { 77 },
var2 = { .str = "Mary" },
var3 = varl,

myData[100] = { {.x= 0.5}, { 1}, var2 };

The array elements of myData for which no initializer is specified are implicitly initialized
to the value 0.

Anonymous Structures and Unions

Anonymous structures and unions are a new feature of the C11 standard that permits still
greater flexibility in defining structure and union types. A structure or union is called
anonymous if it is defined as an unnamed member of a structure or union type and has no
tag name. In the following example, the second member of the union type WordByte is an
anonymous structure type:

union WordByte

{

short w;
struct { char bo, b1l }; // Anonymous structure

iE

The members of an anonymous structure or union are treated as members of the structure
or union type that contains the anonymous type.

union WordByte wb = { 256 };
char lowByte = wb.bo;

This rule is applied recursively if the containing structure or union is also anonymous. The
following example shows members in a nested anonymous type:

struct Demo

{
union // Anonymous union
{ struct { long a, b; }; // Anonymous structure
struct { float x, y; } fl; // Named member, not anonymous
}
} dobj;

After this definition, the assignment dobj.a = 100; would be correct. However, you
could not directly address x and y as members of dobj; they must be identified as
members of dobj.f1:

dobj.a = 100; // Right
dobj.y 1.0; // Wrong!
dobj.fl.y = 1.0; // Right

Bit-Fields

Members of structures or unions can also be bit-fields. A bit-field is an integer variable
that consists of a specified number of bits. If you declare several small bit-fields in
succession, the compiler packs them into a single machine word. This permits very
compact storage of small units of information. Of course, you can also manipulate
individual bits using the bitwise operators, but bit-fields offer the advantage of handling
bits by name, like any other structure or union member.

The declaration of a bit-field has the form:

type [member_name] : width ;

The parts of this syntax are as follows:
type
An integer type that determines how the bit-field’s value is interpreted. The type may

be _Bool, int, signed int, unsigned int, or another type defined by the given
implementation. The type may also include type qualifiers.

Bit-fields with type signed int are interpreted as signed; bit-fields whose type is
unsigned int are interpreted as unsigned. Bit-fields of type int may be signed or
unsigned, depending on the compiler.

member_name

The name of the bit-field, which is optional. If you declare a bit-field with no name,
though, there is no way to access it. Nameless bit-fields can serve only as padding to
align subsequent bit-fields to a certain position in a machine word.

width

The number of bits in the bit-field. The width must be a constant integer expression
whose value is non-negative, and must be less than or equal to the bit width of the
specified type.

Nameless bit-fields can have zero width. In this case, the next bit-field declared is aligned
at the beginning of a new addressable storage unit.

When you declare a bit-field in a structure or union, the compiler allocates an addressable
unit of memory that is large enough to accommodate it. Usually, the storage unit allocated
is a machine word whose size is that of the type int. If the following bit-field fits in the
rest of the same storage unit, then it is defined as being adjacent to the previous bit-field.
If the next bit-field does not fit in the remaining bits of the same unit, then the compiler
allocates another storage unit, and may place the next bit-field at the start of new unit, or
wrap it across the end of one storage unit and the beginning of the next.

The following example redefines the structure type struct Date so that the members
month and day occupy only as many bits as necessary. To demonstrate a bit-field of type
_Bool, we have also added a flag for daylight saving time. This code assumes that the

target machine uses words of at least 32 bits:

struct Date {

unsigned int 4, // 1 1s January; 12 is December.

unsigned int 55 // The day of the month (1 to 31).

signed int 1 22; // (-2097152 to +2097151)

_Bool 1, // True 1if daylight saving time 1is in effect.
}

A bit-field of n bits can have 2" distinct values. The structure member month now has a
value range from 0 to 15; the member day has the value range from 0 to 31; and the value
range of the member year is from -2097152 to +2097151. We can initialize an object of
type struct Date in the normal way, using an initialization list:

struct Date birthday = { 5, 17, 1982 };

The object birthday occupies the same amount of storage space as a 32-bit int object.

Unlike other structure members, bit-fields generally do not occupy an addressable location
in memory. You cannot apply the address operator (&) or the of fsetof macro to a bit-field.

In all other respects, however, you can treat bit-fields the same as other structure or union
members; use the dot and arrow operators to access them, and perform arithmetic with
them as with int or unsigned int variables. As a result, the new definition of the bate
structure using bit-fields does not necessitate any changes in the dateAsString()
function:

const char *dateAsString(struct Date d)

{

static char strDate[12];
sprintf(strDate, "%02d/%02d/%04d", d.month, d.day, d.year);
return strDate;

}

The following statement calls the dateAsString() function for the object birthday, and
prints the result using the standard function puts():

puts(dateAsString(birthday));

Chapter 11. Declarations

A declaration determines the significance and properties of one or more identifiers.
_Static_assert declarations, introduced in C11, are an exception: these static assertions
do not declare identifiers, but only instruct the compiler to test whether a constant
expression is nonzero. Static assertions are only classed as declarations because of their
syntax.

In other declarations, the identifiers you declare can be the names of objects, functions,
types, or other things, such as enumeration constants. Identifiers of objects and functions
can have various types and scopes. The compiler needs to know all of these characteristics
of an identifier before you can use it in an expression. For this reason, each translation unit
must contain a declaration of each identifier used in it.

Labels used as the destination of goto statements may be placed before any statement.
These identifiers are declared implicitly where they occur. All other identifiers require
explicit declaration before their first use, either outside of all functions or at the beginning
of a block. Beginning with C99, declarations may also appear after statements within a
block.

After you have declared an identifier, you can use it in expressions until the end of its
scope. The identifiers of objects and functions can have file or block scope (see “Identifier
Scope”).

There are several different kinds of declarations:

m Declarations that only declare a structure, union, or enumeration tag, or the members of
an enumeration (that is, the enumeration constants)

m Declarations that declare one or more object or function identifiers
m typedef declarations, which declare new names for existing types

m _Static_assert declarations, which instruct the compiler to test an assertion without
declaring an identifier (C11)

Declarations of enumerated, structure, and union types are described in Chapters 2 and 10.
This chapter deals mainly with object, function, and typedef declarations.

Object and Function Declarations

These declarations contain a declarator list with one or more declarators. Each declarator
declares an identifier for an object or a function. The general form of this kind of
declaration is:

[storage class specifier] type declarator [, declarator [, ...]];

The parts of this syntax are as follows:

storage_class_specifier

No more than one of the storage class specifiers extern, static, Thread_local,
auto, or register, or the specifier _Thread_local in conjunction with extern or
static. The exact meanings of the storage class specifiers, and restrictions on their
use, are described in “Storage Class Specifiers”.

type

At least a type specifier, possibly with type qualifiers. The type specifier may be any
of these:

= A basic type

m The type void

= An enumerated, structure, or union type

= A name defined by a previous typedef declaration

In a function declaration, type may also include one of the type specifiers inline or
_Noreturn.

In an object declaration, type may also contain one or more of the type qualifiers
const, volatile, and restrict. In C11 implementations that support atomic objects,
an object declaration may declare the object as atomic by using the type qualifier
_Atomic, or by using a type specifier of the form _Atomic(type_name). The various
type qualifiers are described with examples in “Type Qualifiers”.

The C11 keyword _Alignas allows you to influence the alignment of objects you
declare. For more on the alignment of objects, see “The Alignment of Objects in
Memory”.

declarator

The declarator list is a comma-separated list containing at least one declarator. A
declarator names the identifier that is being declared. If the declarator defines an
object, it may also include an initializer for the identifier. There are four different
kinds of declarators:

Function declarator

The identifier is declared as a function name if it is immediately followed by a
left parenthesis (().

Array declarator

The identifier is declared as an array name if it is immediately followed by a left
bracket ([).

Pointer declarator

The identifier is the name of a pointer if it is preceded by an asterisk (*) —
possibly with interposed type qualifiers — and if the declarator is neither a
function nor an array declarator.

Other
Otherwise, the identifier designates an object of the specified type.

A declarator in parentheses is equivalent to the same declarator without the
parentheses, and the rules listed here assume that declarations contain no unnecessary
parentheses. However, you can use parentheses intentionally in declarations to
control the associations between the syntax elements described. We will discuss this
in detail in “Complex Declarators”.

Examples

Let us examine some examples of object and function declarations. We discuss
declarations of typedef names in “typedef Declarations”.

In the following example, the declarator list in the first line contains two declarators, one
of which includes an initializer. The line declares two objects, ivari and ivar2, both with

type int. ivar2 begins its existence with the value 10:

int ivari, ivar2 = 10;
static char msg[] = "Hello, world!";

The second line in this example defines and initializes an array of char named msg with
static storage duration (we discuss storage duration in “Storage Class Specifiers”).

Next, you see the declaration of an external variable named status with the qualified type
volatile short:

extern volatile short status;

The next declaration defines an anonymous enumerated type with the enumeration
constants OFF and ON, as well as the variable toggle with this type. The declaration

initializes toggle with the value ON:

enum { OFF, ON } toggle = ON;

The following example defines the structure type struct CharColor, whose members are
the bit-fields fg, bg, and b1. It also defines the variable attribute with this type, and
initializes the members of attribute with the values 12, 1, and 0.

struct CharColor { unsigned 14, :3, :1; } attribute = {12, 1, 0};

The second line of the next example defines an array named clientArray with 100
elements of type struct Client, and a pointer to struct Client named clientPtr,
initialized with the address of the first element in clientArray:

struct Client { char name[64], pin[16]; /* ... */ };
struct Client clientArray[100], *clientPtr = clientArray;

Next you see a declaration of a float variable, x, and an array, f1PtrArray, whose 10
elements have the type pointer to float. The first of these pointers, f1PtrArray[0], is
initialized with &x; the remaining array elements are initialized as null pointers:

float x, *flPtrArray[10] = { &x };

The following line declares the function func1() with the return value type int. This

declaration offers no information about the number and types of the function’s parameters,
if any:

int funci();

We’ll move on to the declaration of a static function named func2(), whose only
parameter has the type pointer to double, and which also returns a pointer to double:

static double *func2(double *);

Last, we define the inline function printAmount (), with two parameters, returning int:

inline int printAmount(double amount, int width)
{ return printf("%*.21f", width, amount); }

Storage Class Specifiers

A storage class specifier in a declaration modifies the linkage of the identifier (or
identifiers) declared, and the storage duration of the corresponding objects. (The concepts
of linkage and storage duration are explained individually in later sections of this chapter.)

TIP

A frequent source of confusion in regard to C is the fact that linkage (which is a property of identifiers) and
storage duration (which is a property of objects) are both influenced in declarations by the same set of
keywords — the storage class specifiers. As we explain in the upcoming sections of this chapter, the storage
duration of an object can be automatic, static, or allocated, and the linkage of an identifer can be external,
internal, or none. Expressions such as “static linkage” or “external storage” in the context of C declarations
are meaningless except as warning signs of incipient confusion. Remember: objects have storage duration,
not linkage; and identifiers have linkage, not storage duration.

No more than one storage class specifier may appear in a declaration. Function identifiers
may be accompanied only by the storage class specifier extern or static. Function

parameters may take only the storage class specifier register. The five storage class
specifiers have the following meanings:

auto

Objects declared with the auto specifier have automatic storage duration. This
specifier is permissible only in object declarations within a function. In ANSI C,
objects declared within a function have automatic storage duration by default, and the
auto specifier is archaic.

register

You can use the specifier register when declaring objects with automatic storage
duration. The register keyword is a hint to the compiler that the object should be
made as quickly accessible as possible — ideally, by storing it in a CPU register.
However, the compiler may treat some or all objects declared with register the
same as ordinary objects with automatic storage duration. In any case, programs must
not use the address operator on objects declared with the register specifier.

static

A function identifier declared with the specifier static has internal linkage. In other
words, such an identifier cannot be used in another translation unit to access the
function.

An object identifier declared with static has either no linkage or internal linkage,
depending on whether the object’s definition is inside a function or outside all
functions. Objects declared with static always have static storage duration. Thus,
the specifier static allows you to define local objects — that is, objects with block
scope — that have static storage duration.

extern

Function and object identifiers declared with the extern specifier have external
linkage. You can use them anywhere in the entire program. External objects have
static storage duration.

_Thread_local

The specifier _Thread_local declares the given object as thread-local, which means
that each thread has its own separate instance of the object. Only objects can be
declared as thread-local, not functions. If you declare a thread-local object within a
function, the declaration must also have either the extern or the static specifier. In
expressions, the identifier of a thread-local object always refers to the local instance
of the object belonging to the thread in which the expression is being evaluated. For
an example, see “Using Thread-Local Objects”.

Type Qualifiers

You can modify types in a declaration by including the type qualifiers const, volatile,
restrict, and _Atomic. A declaration may contain any number of type qualifiers in any
order. A type qualifier list may even contain the same type qualifier several times, or the
same qualifier may be applied repeatedly through qualified typedef names. The compiler

ignores such repetitions of any qualifier, treating them as if the qualifier were present only
once.

The individual type qualifiers have the following meanings:

const

An object whose type is qualified with const is constant; the program cannot modify
it after its definition.

volatile

An object whose type is qualified with volatile may be modified by other processes
or events. The volatile keyword instructs the compiler to reread the object’s value
each time it is used, even if the program itself has not changed it since the previous
access. This is most commonly used in programming for hardware interfaces, where
a value can be changed by external events.

restrict

The restrict qualifier is applicable only to object pointer types. The type qualifier
restrict was introduced in C99, and is a hint to the compiler that the object
referenced by a given pointer, if it is modified at all, will not be accessed in any other
way except using that pointer, whether directly or indirectly. This feature allows the
compiler to apply certain optimization techniques that would not be possible without
such a restriction. The compiler may ignore the restrict qualifier without affecting
the result of the program.

_Atomic

An object declared with the type qualifier _Atomic is an atomic object. Arrays cannot
be atomic. Support for atomic objects is optional: C11 implementations may define
the macro __STDC_NO_ATOMICS__ to indicate that programs cannot declare atomic
objects. For more information about atomic objects, see “Atomic Objects”.

The compiler may store objects qualified as const but not volatile, in a read-only

segment of memory. It may also happen that the compiler allocates no storage for such an
object if the program does not use its address.

Objects qualified with both const and volatile, such as the object ticks in the following

example, cannot be modified by the program itself but may be modified by something
else, such as a clock chip’s interrupt handler:

extern const volatile int ticks;

Here are some more examples of declarations using qualified types:

const int limit = 10000; // A constant int object.
typedef struct { double x, y, r; } Circle; // A structure type.
const Circle unit_circle = { 0, 0, 1 }; // A constant Circle object.
const float v[] = { 1.0F, 0.5F, 0.25F }; // An array of constant

// float elements.
volatile short * restrict vsPtr; // A restricted pointer to

// volatile short.

With pointer types, the type qualifiers to the right of the asterisk qualify the pointer itself,
and those to the left of the asterisk qualify the type of object it points to. In the last
example, the pointer vsPtr is qualified with restrict, and the object it points to is
qualified with volatile. For more details, including more about restricted pointers, see
“Pointers and Type Qualifiers”.

Declarations and Definitions

You can declare an identifier as often as you want, but only one declaration within its
scope can be a definition. Placing the definitions of objects and functions with external
linkage in header files is a common way of introducing duplicate definitions and is
therefore not a good idea.

An identifier’s declaration is a definition in the following cases:

m A function declaration is a definition if it contains the function block. Here is an
example:

int iMax(int a, int b); // This is a declaration, not a

// definition.
int iMax(int a, int b) // This is the function's definition.
{ return (a>=b? b)), 3}

m An object declaration is a definition if it allocates storage for the object. Declarations
that include initializers are always definitions. Furthermore, all declarations within
function blocks are definitions unless they contain the storage class specifier extern.
Here are some examples:

int a = 10; // Definition of a.

extern double b[]; // Declaration of the array b, which is
// defined elsewhere in the program.

void func()

{
extern char c; // Declaration of c¢, not a definition.
static short d; // Definition of d.
float e; // Definition of e.
/o0
}

If you declare an object outside of all functions, without an initializer and without the
storage class specifier extern, the declaration is a tentative definition. Here are some
examples:

int i, v[]; // Tentative definitions of i, v and j.
static int j;

A tentative definition of an identifier remains a simple declaration if the translation unit

contains another definition for the same identifier. If not, then the compiler behaves as
if the tentative definition had included an initializer with the value zero, making it a

definition. Thus, the int variables i and j in the previous example, whose identifiers
are declared without initializers, are implicitly initialized with the value 0, and the int
array v has one element, with the initial value 0.

Complex Declarators

The symbols (), [1, and * in a declarator specify that the identifier has a function, array,
or pointer type. A complex declarator may contain multiple occurrences of any or all of
these symbols. This section explains how to interpret such declarators.

The basic symbols in a declarator have the following meanings:

()

A function whose return value has the type...

[]

An array whose elements have the type...

A pointer to the type...

In declarators, these symbols have the same priority and associativity as the corresponding
operators would have in an expression. Furthermore, as in expressions, you can use
additional parentheses to modify the order in which they are interpreted. Here is an
example:

int *abc[10]; // An array of 10 elements whose
// type 1is pointer to int.

int (*abc)[10]; // A pointer to a array of 10
// elements whose type 1is int.

In a declarator that involves a function type, the parentheses that indicate a function may
contain the parameter declarations. The following example declares a pointer to a function

type:

int (*fPtr)(double x); // fPtr is a pointer to a function that has
// one double parameter and returns int.

The declarator must include declarations of the function parameters if it is part of the
function definition.

When interpreting a complex declarator, always begin with the identifier. Starting from
there, repeat the following steps in order until you have interpreted all the symbols in the
declarator:

1. If a left parenthesis (() or bracket ([) appears immediately to the right, then interpret
the pair of parentheses or brackets.

2. Otherwise, if an asterisk (*) appears to the left, interpret the asterisk.

Here is an example:

extern char *(* fTab[])(void);

Table 11-1 interprets this example bit by bit. The third column is meant to be read from
the top row down, as a sentence.

Table 11-1. Interpretation of extern char *(* fIab[])(void);

Step Symbols interpreted Meaning (read this column from the
top down, as a sentence)

1. Start with the identifier. fTab fTab is...

2. Brackets to the right. fTab[] an array whose elements have the
type...

3. Asterisk to the left. (* fTab[]) pointer to...

4. Function parentheses (and parameter (* fTab[])(void) a function, with no parameters, whose

list) to the right. return value has the type...

5. Asterisk to the left. *(* fTab[])(void) pointer to...

6. No more asterisks, parentheses, or char *(* fTab[])(void) char.

brackets: read the type name.

fTab has an incomplete array type because the declaration does not specify the array
length. Before you can use the array, you must define it elsewhere in the program with a
specific length.

The parentheses around *fTab[] are necessary. Without them, fTab would be declared as
an array whose elements are functions — which is impossible.

The next example shows the declaration of a function identifier, followed by its
interpretation:

float (* func())[3][10];

The identifier func is..

a function whose return value has the type..
pointer to..

an array of three elements of type..

array of ten elements of type..

float.

In other words, the function func returns a pointer to a two-dimensional array of 3 rows
and 10 columns. Here again, the parentheses around * func() are necessary, as without
them the function would be declared as returning an array — which is impossible.

Type Names

To convert a value explicitly from one type to another using the cast operator, you must
specify the new type by name. For example, in the cast expression (char *)ptr, the type
name is char * (read: “char pointer” or “pointer to char”). When you use a type name as
the operand of sizeof, it appears the same way, in parentheses. Function prototype

declarations also designate a function’s parameters by their type names, even if the
parameters themselves have no names.

The syntax of a type name is like that of an object or function declaration, but with no
identifier (and no storage class specifier). Here are two simple examples to start with:

unsigned char

The type unsigned char

unsigned char *
The type “pointer to unsigned char”

In the examples that follow, the type names are more complex. Each type name contains at
least one asterisk (*) for “pointer to,” as well as parentheses or brackets. To interpret a

complex type name, start with the first pair of brackets or parentheses that you find to the
right of the last asterisk. (If you were parsing a declarator with an identifier rather than a
type name, the identifier would be immediately to the left of those brackets or
parentheses.) If the type name includes a function type, then the parameter declarations
must be interpreted separately:

float *[]

The type “array of pointers to float.” The number of elements in the array is
undetermined.

float (*)[10]

The type “pointer to an array of ten elements whose type is float.”
double *(double *)

The type “function whose only parameter has the type pointer to double, and which
also returns a pointer to double.”

double (*)()
The type “pointer to a function whose return value has the type double.” The number
and types of the function’s parameters are not specified.

int *(*(*)[10])(void)
The type “pointer to an array of ten elements whose type is pointer to a function with
no parameters which returns a pointer to int.”

typedef Declarations

The easy way to use types with complex names, such as those described in the previous
section, is to declare simple synonyms for them. You can do this using typedef

declarations.

A typedef declaration starts with the keyword typedef, followed by the normal syntax of
an object or function declaration, except that no storage class or _Alignas specifiers and
no initializers are permitted.

Each declarator in a typedef declaration defines an identifier as a synonym for the

specified type. The identifier is then called a typedef name for that type. Without the
keyword typedef, the same syntax would declare an object or function of the given type.
Here are some examples:

typedef unsigned int UINT, UINT_FUNC();
typedef struct Point { double x, y; } Point_t;
typedef float Matrix_t[3][10];

In the scope of these declarations, UINT is synonymous with unsigned int, and Point_t
is synonymous with the structure type struct Point. You can use the typedef names in
declarations, as the following examples show:

UINT ui = 10, *uiPtr = &ui;
The variable ui has the type unsigned int, and uiPtr is a pointer to unsigned int.

UINT_FUNC *funcPtr;

The pointer funcPtr can refer to a function whose return value has the type unsigned
int. The function’s parameters are not specified:

Matrix_t *func(float *);

The function func () has one parameter, whose type is pointer to float, and returns a
pointer to the type Matrix_t.

Example 11-1 uses the typedef name of one structure type, Point_t, in the typedef
definition of a second structure type.

Example 11-1. typedef declarations

typedef struct Point { double x, y; } Point_t;
typedef struct { Point_t top_left; Point_t bottom_right; } Rectangle_t;

Ordinarily, you would use a header file to hold the definitions of any typedef names that

you need to use in multiple source files. However, you must make an exception in the case
of typedef declarations for types that contain a variable-length array. Variable-length

arrays can only be declared within a block, and the actual length of the array is calculated

anew each time the flow of program execution reaches the typedef declaration. Here is an
example:

int func(int size)

{
typedef float VLA[size]; // A typedef name for the type "array of

// float whose length is the value of size."
size *= 2,
VLA temp; // An array of float whose length is the

// value that size had

// 1in the typedef declaration.
VAV

The length of the array temp in this example depends on the value that size had when the
typedef declaration was reached, not the value that size has when the array definition is
reached.

One advantage of typedef declarations is that they help to make programs more easily

portable. Types that are necessarily different on different system architectures, for
example, can be called by uniform typedef names. typedef names are also helpful in

writing human-readable code. As an example, consider the prototype of the standard
library function gsort():

void gsort(void *base, size t count, size t size,
int (*compare)(const void *, const void *));

We can make this prototype much more readable by using a typedef name for the
comparison function’s type:

typedef int CmpFn(const void *, const void *);
void qgsort(void *base, size t count, size t size, CmpFn *compare);

_Static_assert Declarations

The _static_assert declaration, introduced in C11, is a special case among declarations.
It is only an instruction to the compiler to test an assertion, and does not declare an
identifier at all. A static assertion has the following syntax:

_Static_assert(constant_expression , string literal);

The assertion to be tested, constant_expression, must be a constant expression with an
integer type (see “Integer Constants™). If the expression is true — that is, if its value is not
0 — the _static_assert declaration has no effect. If the evaluation of the expression

yields the value 0, however, the compiler generates a error message containing the
specified string literal. The string literal should contain only characters of the basic source
character set, as extended characters are not necessarily displayed. In the following
example, a static assertion ensures that objects of the type int are bigger than two bytes:

_Static_assert(sizeof(int) > 2 , "16-bit code not supported");

If the type int is only two bytes wide, the compiler’s error message may look like this:

demo.c(10): fatal error:
Static assertion failed: "16-bit code not supported".

If you include the header assert.h in your program, you can also use the synonym
static_assert in place of the keyword _Static_assert.

The new capability of testing an assertion at compile time is an addition to the two related
techniques:

m The macro assert, described in Chapter 18, which tests an assertion during the
program’s execution

m The preprocessor directive #error, described in Chapter 15, which makes the
preprocessor exit with an error message on a condition specified using an #if directive

Linkage of Identifiers

An identifier that is declared in several translation units, or several times in the same
translation unit, may refer to the same object or function in each instance. The extent of an
identifier’s identity in and among translation units is determined by the identifier’s
linkage. The term reflects the fact that identifiers in separate source files need to be linked
if they are to refer to a common object.

Identifiers in C have either external, internal, or no linkage. The linkage is determined by
the declaration’s position and storage class specifier, if any. Only object and function
identifiers can have external or internal linkage.

External Linkage

An identifier with external linkage represents the same function or object throughout the
program. The compiler presents such identifiers to the linker, which resolves them with
other occurrences in other translation units and libraries.

Function and object identifiers declared with the storage class specifier extern have

external linkage, with one exception: if an identifier has already been declared with
internal linkage, a second declaration within the scope of the first cannot change the
identifier’s linkage to external.

The compiler treats function declarations without a storage class specifier as if they
included the specifier extern. Similarly, any object identifiers that you declare outside all
functions and without a storage class specifier have external linkage.

Internal Linkage

An identifier with internal linkage represents the same object or function within a given
translation unit. The identifier is not presented to the linker. As a result, you cannot use the
identifier in another translation unit to refer to the same object or function.

A function or object identifier has internal linkage if it is declared outside all functions and
with the storage class specifier static.

Identifiers with internal linkage do not conflict with similar identifiers in other translation
units. If you declare an identifier with internal linkage in a given translation unit, you
cannot also declare and use an external identifier with the same spelling in that translation
unit.

No Linkage

All identifiers that have neither external nor internal linkage have no linkage. Each
declaration of such an identifier therefore introduces a new entity. Identifiers with no
linkage include the following:

m Jdentifiers that are not names of variables or functions, such as label names, structure
tags, and typedef names

» Function parameters

m Object identifiers that are declared within a function and without the storage class

specifier extern

Here are a few examples:

int funci(void);
int a;

extern int b = 1;
static int c;

static void func2(int d)

{

extern int a;
int b = 2;
extern int c;

static int e;
/E 00/

funci
a has
b has
c has

func2

has external linkage.
external linkage.
external linkage.
internal linkage.

has internal linkage; d has no

linkage.

This a is the same as that above, with
external linkage.

This b has no linkage, and hides the
external b declared above.

This ¢ is the same as that above, and
retains internal linkage.

e has

no linkage.

As this example illustrates, an identifier with external or internal linkage is not always
visible. The identifier b with no linkage, declared in the function func2(), hides the

identifier b with external linkage until the end of the function block (see “Identifier

Scope”).

Storage Duration of Objects

During the execution of the program, each object exists as a location in memory for a
certain period, called its lifetime. There is no way to access an object before or after its
lifetime. For example, the value of a pointer becomes invalid when the object that it
references reaches the end of its lifetime.

In C, the lifetime of an object is determined by its storage duration. Objects in C have one
of four kinds of storage duration: static, thread, automatic, or allocated. The C standard
does not specify how objects must be physically stored in any given system architecture,
but typically, objects with static or thread storage duration are located in a data segment of
the program, and objects with automatic storage duration are located on the stack.
Allocated storage is memory that the program obtains at runtime by calling the malloc(),
calloc(), and realloc() functions. Dynamic storage allocation is described in

Chapter 12.

Static Storage Duration

Objects that are defined outside all functions, or within a function and with the storage
class specifier static, have static storage duration. These include all objects whose

identifiers have internal or external linkage.

All objects with static storage duration are generated and initialized before execution of
the program begins. Their lifetime spans the program’s entire runtime.

Thread Storage Duration

Objects defined with the storage class specifier _Thread_local are called thread-local
objects and have thread storage duration. The storage duration of a thread-local object is
the entire runtime of the thread for which it is created. Each thread has its own separate
instance of a thread-local object, which is initialized when the thread starts.

Automatic Storage Duration

Objects defined within a function and with no storage class specifier (or with the
unnecessary specifier auto) have automatic storage duration. Function parameters also
have automatic storage duration. Objects with automatic storage duration are generally
called automatic variables for short.

The lifetime of an automatic object is delimited by the braces ({3}) that begin and end the
block in which the object is defined. Variable-length arrays are an exception: their lifetime
begins at the point of declaration, and ends with the identifier’s scope — that is, at the end
of the block containing the declaration, or when a jump occurs to a point before the
declaration.

Each time the flow of program execution enters a block, new instances of any automatic
objects defined in the block are generated (and initialized, if the declaration includes an
initializer). This fact is important in recursive functions, for example.

Initialization

You can explicitly specify an object’s initial value by including an initializer in its
definition. An object defined without an initializer either has an undetermined initial
value, or is implicitly initialized by the compiler.

Implicit Initialization

Objects with automatic storage duration have an undetermined initial value if their
definition does not include an initializer. Function parameters, which also have automatic
storage duration, are initialized with the argument values when the function call occurs.
All other objects have static storage duration, and are implicitly initialized with the default
value 0, unless their definition includes an explicit initializer. Or, to put it more exactly:

m Objects with an arithmetic type have the default initial value O.
m The default initial value of pointer objects is a null pointer (see “Initializing Pointers”).

The compiler applies these rules recursively in initializing array elements, structure
members, and the first members of unions.

Explicit Initialization
An initializer in an object definition specifies the object’s initial value explicitly. The
initializer is appended to the declarator for the object’s identifier with an equals sign (=).

The initializer can be either a single expression or a list of initializer expressions enclosed
in braces.

For objects with a scalar type, the initializer is a single expression:

#include <string.h> // Prototypes of string functions.
double var = 77, *dPtr = &var;
int (*funcPtr)(const char*, const char*) = strcmp;

The initializers here are 77 for the variable var, and &var for the pointer drPtr. The
function pointer funcPtr is initialized with the address of the standard library function
strcmp().

As in an assignment operation, the initializer must be an expression that can be implicitly
converted to the object’s type. In the previous example, the constant value 77, with type
int, is implicitly converted to the type double.

Objects with an array, structure, or union type are initialized with a comma-separated list
containing initializers for their individual elements or members:

short a[4] = { 1, 2, 2*2, 2*2*2 };
Rectangle t rect1 = { { -1, 1}, {1, -1} };

The type Rectangle_t used here is the typedef name of the structure we defined in
Example 11-1, whose members are structures with the type Point_t.

The initializers for objects with static storage duration must be constant expressions, as in
the previous examples. Automatic objects are not subject to this restriction. You can also
initialize an automatic structure or union object with an existing object of the same type:

#include <string.h> // Prototypes of string functions.
AV
void func(const char *str)
{
size t len = strlen(str); // Call a function to initialize len.
Rectangle_t rect2 = rectl; // Refers to rectl from the previous
// example.
AV
}

More details on initializing arrays, structures, and unions, including the initialization of
strings and the use of element designators, are presented in “Initializing Arrays”,
“Initializing Structures”, and “Initializing Unions”.

Objects declared with the type qualifier const ordinarily must have an initializer, as you

can’t assign them the desired value later. However, a declaration that is not a definition,
such as the declaration of an external identifier, must not include an initializer.

Furthermore, you cannot initialize a variable-length array.

void func(void)

{
extern int n; // Declaration of n, not a definition.
char buf[n]; // buf is a variable-length array.
VAV

}

The declarations of the objects n and buf cannot include initializers.

Chapter 12. Dynamic Memory
Management

When you’re writing a program, you often don’t know how much data it will have to
process, or you can anticipate that the amount of data to process will vary widely. In these
cases, efficient resource use demands that you allocate memory only as you actually need
it at runtime, and release it again as soon as possible. This is the principle of dynamic
memory management, which also has the advantage that a program doesn’t need to be
rewritten in order to process larger amounts of data on a system with more available
memory.

This chapter describes dynamic memory management in C, and demonstrates the most
important functions involved using a general-purpose binary tree implementation as an
example.

The standard library provides the following four functions for dynamic memory
management:

malloc(), calloc()

Allocate a new block of memory.
realloc()

Resize an allocated memory block.
free()

Release allocated memory.

All of these functions are declared in the header file stdlib.h. The size of an object in
memory is specified as a number of bytes. Various header files, including stdlib.h, define
the type size_t specifically to hold information of this kind. The sizeof operator, for

example, yields a number of bytes with the type size_t.

Allocating Memory Dynamically

The two functions for allocating memory, malloc() and calloc(), have slightly different
parameters:

void *malloc(size_t size);

The malloc() function reserves a contiguous memory block whose size in bytes is at
least size. When a program obtains a memory block through malloc(), its contents
are undetermined.

void *calloc(size_t count, size_t size),

The calloc() function reserves a block of memory whose size in bytes is at least
count % size. In other words, the block is large enough to hold an array of count
elements, each of which takes up size bytes. Furthermore, calloc() initializes every
byte of the memory with the value 0.

Both functions return a pointer to void, also called a typeless pointer. The pointer’s value
is the address of the first byte in the memory block allocated, or a null pointer if the
memory requested is not available.

When a program assigns the void pointer to a pointer variable of a different type, the
compiler implicitly performs the appropriate type conversion. Some programmers prefer
to use an explicit type conversion, however.! When you access locations in the allocated
memory block, the type of the pointer you use determines how the contents of the location
are interpreted.

Here are some examples:

#include <stdlib.h> // Provides function prototypes.
typedef struct { long key;
/* ... more members.. */
} Record; // A structure type.

float *myFunc(size_t n)
{
// Reserve storage for an object of type double.
double *dPtr = malloc(sizeof(double));
if (dPtr == NULL) // Insufficient memory.
{
/* ... Handle the error.. */
return NULL;

}

else // Got the memory: use it.
{

*dPtr = 0.07;

VAV
}

// Get storage for two objects of type Record.
Record *rPtr;
if ((rPtr = malloc(2 * sizeof(Record)) == NULL)
{
/* ... Handle the insufficient-memory error.. */
return NULL;
}
// Get storage for an array of n elements of type float.
float *fPtr = malloc(n * sizeof(float));
if (fPtr == NULL)
{

/* ... Handle the error.. */
return NULL;

}
/0
return fPtr;

It is often useful to initialize every byte of the allocated memory block to zero, which
ensures that not only the members of a structure object have the default value zero but also
any padding between the members. In such cases, the calloc() function is preferable to
malloc(), although it may be slower, depending on the implementation. The size of the
block to be allocated is expressed differently with the calloc() function. We can rewrite
the statements in the previous example as follows:

// Get storage for an object of type double.
double *dPtr = calloc(1, sizeof(double));

// Get storage for two objects of type Record.

Record *rPtr;

if ((rPtr = calloc(2, sizeof(Record)) == NULL)
{ /* ... Handle the insufficient-memory error.. */ }

// Get storage for an array of n elements of type float.
float *fPtr = calloc(n, sizeof(float));

Characteristics of Allocated Memory

A successful memory allocation call yields a pointer to the beginning of a memory block.
“The beginning” means that the pointer’s value is equal to the lowest byte address in the
block. The allocated block is aligned so that any type of object can be stored at that
address.

An allocated memory block stays reserved for your program until you explicitly release it
by calling free() or realloc(). In other words, the storage duration of the block extends
from its allocation to its release, or to end of the program.

The arrangement of memory blocks allocated by successive calls to malloc(), calloc(),
and/or realloc() is unspecified.

It is also unspecified whether a request for a block of size zero results in a null pointer or
an ordinary pointer value. In any case, however, there is no way to use a pointer to a block
of zero bytes, except perhaps as an argument to realloc() or free().

Resizing and Releasing Memory

When you no longer need a dynamically allocated memory block, you should give it back
to the operating system. You can do this by calling the function free(). Alternatively, you
can increase or decrease the size of an allocated memory block by calling the function
realloc(). The prototypes of these functions are as follows:

void free(void *ptr);

The free() function releases the dynamically allocated memory block that begins at
the address in ptr. A null pointer value for the ptr argument is permitted, and such a
call has no effect.

void *realloc(void *ptr, size_ t size),

The realloc() function releases the memory block addressed by ptr and allocates a
new block of size bytes, returning its address. The new block may start at the same
address as the old one.

realloc() also preserves the contents of the original memory block — up to the size
of whichever block is smaller. If the new block doesn’t begin where the original one
did, then realloc() copies the contents to the new memory block. If the new
memory block is larger than the original, then the values of the additional bytes are
unspecified.

It is permissible to pass a null pointer to realloc() as the argument ptr. If you do,
then realloc() behaves similarly to malloc(), and reserves a new memory block of
the specified size.

The realloc() function returns a null pointer if it is unable to allocate a memory
block of the size requested. In this case, it does not release the original memory block
or alter its contents.

The pointer argument that you pass to either of the functions free() and realloc() — if
it is not a null pointer — must be the starting address of a dynamically allocated memory
block that has not yet been freed. In other words, you may pass these functions only a null
pointer or a pointer value obtained from a prior call to malloc(), calloc(), or realloc().
If the pointer argument passed to free() or realloc() has any other value, or if you try to
free a memory block that has already been freed, the program’s behavior is undefined.

The memory management functions keep internal records of the size of each allocated
memory block. This is why the functions free() and realloc() require only the starting
address of the block to be released, and not its size. There is no way to test whether a call
to the free() function is successful, because it has no return value.

The function getLine() in Example 12-1 is another variant of the function defined with
the same name in Example 9-4. It reads a line of text from standard input and stores it in a
dynamically allocated buffer. The maximum length of the line to be stored is one of the
function’s parameters. The function releases any memory it doesn’t need. The return value

is a pointer to the line read.

Example 12-1. The getLine() function

// Read a line of text from stdin into a dynamically allocated buffer.
// Replace the newline character with a string terminator.

//

// Arguments: The maximum line length to read.

// Return value: A pointer to the string read, or

/7 NULL if end-of-file was read or if an error occurred.

char *getLine(unsigned int len_max)
{
char *linePtr = malloc(len_max+l); // Reserve storage for "worst case."
if (linePtr != NULL)
{
// Read a line of text and replace the newline characters with
// a string terminator:

int ¢ = EOF;

unsigned int i = 0;

while (i1 < len_max & & (c¢ = getchar()) != '\n' && c != EOF)
linePtr[i++] = (char)c;

linePtr[i] = '\0';

if (¢ == EOF && 1 == 0) // If end-of-file before any

{ // characters were read,
free(linePtr); // release the whole buffer.
linePtr = NULL;

}

else // Otherwise, release the unused portion.

linePtr = realloc(linePtr, i+l); // 1 1is the string length.

3

return linePtr;
}

The following code shows how you might call the getLine() function:

char *line;
if ((line = getLine(128)) != NULL) // If we can read a line,
{
A4 // process the line,
free(line); // then release the buffer.

}

An All-Purpose Binary Tree

Dynamic memory management is fundamental to the implementation of dynamic data
structures such as linked lists and trees. In Chapter 10, we presented a simple linked list
(see Figure 10-1). The advantage of linked lists over arrays is that new elements can be
inserted and existing members removed quickly. However, they also have the drawback
that you have to search through the list in sequential order to find a specific item.

A binary search tree (BST), on the other hand, makes linked data elements more quickly
accessible. The data items must have a key value that can be used to compare and sort
them. A binary search tree combines the flexibility of a linked list with the advantage of a
sorted array, in which you can find a desired data item using the binary search algorithm.

Characteristics

A binary tree consists of a number of nodes that contain the data to be stored (or pointers
to the data), and the following structural characteristics:

» Fach node has up to two direct child nodes.

m There is exactly one node, called the root of the tree, that has no parent node. All other
nodes have exactly one parent.

m Nodes in a binary tree are placed according to this rule: the value of a node is greater
than or equal to the values of any descendant in its left branch, and less than or equal to
the value of any descendant in its right branch.

Figure 12-1 illustrates the structure of a binary tree.

Figure 12-1. A binary tree

A leaf is a node that has no children. Each node of the tree is also considered as the root of
a subtree, which consists of the node and all its descendants.

An important property of a binary tree is its height. The height is the length of the longest
path from the root to any leaf. A path is a succession of linked nodes that form the
connection between a given pair of nodes. The length of a path is the number of nodes in
the path, not counting the first node. It follows from these definitions that a tree consisting
only of its root node has a height of 0, and the height of the tree in Figure 12-1 is 3.

Implementation

The example that follows is an implementation of the principal functions for a binary
search tree, and uses dynamic memory management. This tree is intended to be usable for
data of any kind. For this reason, the structure type of the nodes includes a flexible
member to store the data, and a member indicating the size of the data:

typedef struct Node { struct Node *left, // Pointers to the left and
*right; // right child nodes.

size t size; // Size of the data payload.
char data[]; // The data itself.
} Node_t;

The pointers left and right are null pointers if the node has no left or right child.

As the user of our implementation, you must provide two auxiliary functions. The first of
these is a function to obtain a key that corresponds to the data value passed to it, and the
second compares two keys. The first function has the following type:

typedef const void *GetKeyFunc_t(const void *dData);

The second function has a type like that of the comparison function used by the standard
function bsearch():

typedef int CmpFunc_t(const void *pKeyl, const void *pKey2);

The arguments passed on calling the comparison function are pointers to the two keys that
you want to compare. The function’s return value is less than zero, if the first key is less
than the second; or equal to zero, if the two keys are equal; or greater than zero, if the first
key is greater than the second. The key may be the same as the data itself. In this case, you
need to provide only a comparison function.

Next, we define a structure type to represent a tree. This structure has three members: a
pointer to the root of the tree; a pointer to the function to calculate a key, with the type
GetKeyFunc_t; and a pointer to the comparison function, with the type CmpFunc_t:

typedef struct { struct Node *pRoot; // Pointer to the root.
CmpFunc_t *cmp; // Compares two keys.
GetKeyFunc_t *getKey; // Converts data into a key
} BST_t; // value.

The pointer pRoot is a null pointer while the tree is empty.

The elementary operations for a binary search tree are performed by functions that insert,
find, and delete nodes, and functions to traverse the tree in various ways, performing a
programmer-specified operation on each element if desired.

The prototypes of these functions, and the typedef declarations of GetKeyFunc_t,
CmpFunc_t, and BST_t, are placed in the header file BSTree.h. To use this binary tree

implementation, you must include this header file in the program’s source code.

The function prototypes in BSTree.h are:
BST_t *newBST(CmpFunc_t *cmp, GetKeyFunc_t *getKey),

This function dynamically generates a new object with the type BST_t, and returns a
pointer to it.

_Bool BST_insert(BST_t *pBST, const void *pData, size_t size);

BST_insert() dynamically generates a new node, copies the data referenced by
pData to the node, and inserts the node in the specified tree.

const void *BST_search(BST_t *pBST, const void *pKey);

The BST_search() function searches the tree and returns a pointer to the data item
that matches the key referenced by the pkey argument.

_Bool BST_erase(BST_t *pBST, const void *pKey);

This function deletes the first node whose data contents match the key referenced by
pKey.
void BST_clear(BST_t *pBST);

BST_clear() deletes all nodes in the tree, leaving the tree empty.

int BST_inorder(BST_t *pBST, _Bool (*action)(void *pData));,

int BST_rev_inorder(BST_t *pBST, _Bool (*action)(void *pData)),

int BST_preorder(BST_t *pBST, _Bool (*action)(void *pData));

int BST_postorder(BST_t *pBST, _Bool (*action)(void *pData));
Each of these functions traverses the tree in a certain order, and calls the function
referenced by action to manipulate the data contents of each node. If the action
modifies the node’s data, then at least the key value must remain unchanged to
preserve the tree’s sorting order.

The function definitions, along with some recursive helper functions, are placed in the
source file BSTree.c. The helper functions are declared with the static specifier because
they are for internal use only, and not part of the search tree’s “public” interface. The file
BSTree.c also contains the definition of the nodes’ structure type. As the programmer, you
do not need to deal with the contents of this file, and may be content to use a binary object
file compiled for the given system, adding it to the command line when linking the
program.

Generating an Empty Tree

When you create a new binary search tree, you specify how a comparison between two
data items is performed. For this purpose, the newBST() function takes as its arguments a
pointer to a function that compares two keys, and a pointer to a function that calculates a
key from an actual data item. The second argument can be a null pointer if the data itself
serves as the key for comparison. The return value is a pointer to a new object with the
type BST_t:

const void *defaultGetKey(const void *pData) { return pData; }

BST_t *newBST(CmpFunc_t *cmp, GetKeyFunc_t *getKey)
{
BST_t *pBST = NULL;
if (cmp != NULL)
pBST = malloc(sizeof(BST_t));
if (pBST != NULL)
{
pBST->pRoot = NULL;
pBST->cmp = cmp;
pBST->getKey = (getKey != NULL) ? : defaultGetKey;
}

return pBST;

The pointer to BST_t returned by newBST() is the first argument to all the other binary-tree
functions. This argument specifies the tree on which you want to perform a given
operation.

Inserting New Data

To copy a data item to a new leaf node in the tree, pass the data to the BST_insert()
function. The function inserts the new leaf at a position that is consistent with the binary
tree’s sorting condition. The recursive algorithm involved is simple: if the current subtree
is empty — that is, if the pointer to its root node is a null pointer — then insert the new
node as the root by making the parent point to it. If the subtree is not empty, continue with
the left subtree if the new data is less than the current node’s data; otherwise, continue
with the right subtree. The recursive helper function insert () applies this algorithm.

The insert() function takes an additional argument, which is a pointer to a pointer to the
root node of a subtree. Because this argument is a pointer to a pointer, the function can
modify it in order to link a new node to its parent. BST_insert() returns true if it
succeeds in inserting the new data; otherwise, false.

static Bool insert(BST_t *pBST, Node_t **ppNode, const void *pData,
size_t size);

_Bool BST insert(BST_t *pBST, const void *pData, size t size)
{
if (pBST == NULL || pbata == NULL || size == 0)
return false;
return insert(pBST, &(pBST->pRoot), pData, size);

}

static Bool insert(BST_t *pBST, Node_t **ppNode, const void *pData,
size t size)
{

Node_t *pNode = *ppNode; // Pointer to the root node of the
// subtree to insert the new node in.
if (pNode == NULL)
{ // There's a place for a new leaf here.
pNode = malloc(sizeof(Node_t) + size);
if (pNode != NULL)
{
pNode->left = pNode->right = NULL; // Initialize the new node's
// members.
memcpy(pNode->data, pData, size);

*ppNode = pNode; // Insert the new node.
return true;
}
else
return false;
}
else // Continue looking for a place..
{
const void *keyl = pBST->getKey(pData),
*key2 = pBST->getKey(pNode->data);
if (pBST->cmp(keyl, key2) < 0) // ... 1in the left subtree,
return insert(pBST, &(pNode->left), pData, size);
else // or in the right subtree.
return insert(pBST, &(pNode->right), pData, size);
}

Finding Data in the Tree

The function BST_search() uses the binary search algorithm to find a data item that
matches a given key. If a given node’s data does not match the key, the search continues in
the node’s left subtree if the key is less than that of the node’s data, or in the right subtree
if the key is greater. The return value is a pointer to the data item from the first node that
matches the key, or a null pointer if no match was found.

The search operation uses the recursive helper function search(). Like insert(),

search() takes as its second parameter a pointer to the root node of the subtree to be
searched:

static const void *search(BST_t *pBST, const Node_t *pNode,
const void *pKey);

const void *BST_search(BST_t *pBST, const void *pKey)
{
if (pBST == NULL || pKey == NULL) return NULL;
return search(pBST, pBST->pRoot, pKey); // Start at the root
// of the tree.
}

static const void *search(BST_t *pBST, const Node_t *pNode,
const void *pKey)

{
if (pNode == NULL)
return NULL; // No subtree to search;
// no match found.
else
{ // Compare data:
int cmp_res = pBST->cmp(pKey, pBST->getKey(pNode->data));
if (cmp_res == 0) // Found a match.
return pNode->data;
else if (cmp_res < 0) // Continue the search
return search(pBST, pNode->left, pKey); // in the left subtree,
else
return search(pBST, pNode->right, pKey); // or in the right
// subtree.
}

Removing Data from the Tree

The BST_erase() function searches for a node that matches the specified key, and deletes
it if found. Deleting means removing the node from the tree structure and releasing the
memory it occupies. The function returns false if it fails to find a matching node to
delete, or true if successful.

The actual searching and deleting is performed by means of the recursive helper function
erase(). The node needs to be removed from the tree in such a way that the tree’s sorting

condition is not violated. A node that has no more than one child can be removed simply
by linking its child, if any, to its parent. If the node to be removed has two children,
though, the operation is more complicated: you have to replace the node you are removing
with the node from the right subtree that has the smallest data value. This is never a node
with two children. For example, to remove the root node from the tree in Figure 12-1, we
would replace it with the node that has the value 11. This removal algorithm is not the
only possible one, but it has the advantage of not increasing the tree’s height.

The recursive helper function detachMin() plucks the minimum node from a specified
subtree, and returns a pointer to the node:

static Node_t *detachMin(Node_t **ppNode)
{
Node_t *pNode = *ppNode; // A pointer to the current node.
if (pNode == NULL)
return NULL; // pNode is an empty subtree.
else if (pNode->left != NULL)
return detachMin(&(pNode->left)); // The minimum is in the left

// subtree.
else
{ // pNode points to the minimum node.
*ppNode = pNode->right; // Attach the right child to the parent.
return pNode;
}
}

Now we can use this function in the definition of erase() and BST_erase():

static _Bool erase(BST_t *pBST, Node_t **ppNode, const void *pKey);

_Bool BST erase(BST_t *pBST, const void *pKey)
{
if (pBST == NULL || pKey == NULL) return false;
return erase(pBST, &(pBST->pRoot), pKey); // Start at the root
// of the tree.

}

static _Bool erase(BST_t *pBST, Node_t **ppNode, const void *pKey)
{
Node_t *pNode = *ppNode; // Pointer to the current node.
if (pNode == NULL)
return false; // No match found.

// Compare data:
int cmp_res = pBST->cmp(pKey, pBST->getKey(pNode->data));

if (cmp_res < 0) // Continue the search
return erase(pBST, &(pNode->left), pKey); // in the left subtree,
else if (cmp_res > 0)
return erase(pBST, &(pNode->right), pKey); // or in the right
// subtree.

else
// Found the node to be deleted.
if (pNode->left == NULL) // If no more than one child,
*ppNode = pNode->right; // attach the child to the parent.
else if (pNode->right == NULL)
*ppNode = pNode->left;

else // Two children: replace the node with

{ // the minimum from the right subtree.
Node_t *pMin = detachMin(&(pNode->right));
*ppNode = pMin; // Graft it onto the deleted node's parent.
pMin->left = pNode->left; // Graft the deleted node's children.
pMin->right = pNode->right;

}

free(pNode); // Release the deleted node's storage.

return true;

}

A function in Example 12-2, BST_clear(), deletes all the nodes of a tree. The recursive
helper function clear () deletes first the descendants of the node referenced by its
argument and then the node itself.

Example 12-2. The BST_clear() and clear() functions

static void clear(Node_t *pNode);

void BST_clear(BST_t *pBST)

{
if (pBST != NULL)

{
clear(pBST->pRoot);
pBST->pRoot = NULL;

}

}
static void clear(Node_t *pNode)

if (pNode != NULL)

{
clear(pNode->left);
clear(pNode->right);
free(pNode);

Traversing a Tree

There are several recursive schemes for traversing a binary tree. They are often designated
by abbreviations in which L stands for a given node’s left subtree, R for its right subtree,
and N for the node itself:

In-order or LNR traversal

First traverse the node’s left subtree, then visit the node itself, then traverse the right
subtree.

Pre-order or NLR traversal
First visit the node itself, then traverse its left subtree, then its right subtree.
Post-order or LRN traversal

First traverse the node’s left subtree, then the right subtree, then visit the node itself.

An in-order traversal visits all the nodes in their sorting order, from least to greatest. If
you print each node’s data as you visit it, the output appears sorted.

It’s not always advantageous to process the data items in their sorting order, though. For
example, if you want to store the data items in a file and later insert them in a new tree as
you read them from the file, you might prefer to traverse the tree in pre-order. Then
reading each data item in the file and inserting it will reproduce the original tree structure.
And the clear() function in Example 12-2 uses a post-order traversal to avoid destroying

any node before its children.

Each of the traversal functions takes as its second argument a pointer to an “action”
function that it calls for each node visited. The action function takes as its argument a
pointer to the current node’s data, and returns true to indicate success and false on

failure. This functioning enables the tree-traversal functions to return the number of times
the action was performed successfully.

The following example contains the definition of the BST_inorder () function, and its
recursive helper function inorder () (the other traversal functions are similar):

static int inorder(Node_t *pNode, _Bool (*action)(void *pData));

int BST_inorder(BST_t *pBST, _Bool (*action)(void *pData))
{
if (pBST == NULL || action == NULL)
return 0,
else
return inorder(pBST->pRoot, action);

}

static int inorder(Node_t *pNode, _Bool (*action)(void *pData))

{
int count = 0;
if (pNode == NULL)

return 0,
count = inorder(pNode->left, action); // L: Traverse the left
// subtree.
if (action(pNode->data)) // N: Visit the current

++count; // node itself.

count += inorder(pNode-> right, action); // R: Traverse the right
// subtree.
return count;

}

A Sample Application

To illustrate one use of a binary search tree, the filter program in Example 12-3, sortlines,
presents a simple variant of the Unix utility sort. It reads text line by line from the
standard input stream, and prints the lines in sorted order to standard output. A typical
command line to invoke the program might be:

sortlines < demo.txt

This command prints the contents of the file demo.txt to the console.

Example 12-3. The sortlines program

// This program reads each line of text into a node of a binary tree,
// and then prints the text in sorted order.

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "BSTree.h" // Prototypes of the BST functions.

#define LEN_MAX 1000 // Maximum length of a line.
char buffer[LEN_MAX];

// Action to perform for each line:
_Bool printStr(void *str) { return printf("%s", str) >= 0; }

int main()

{
BST_t *pStrTree = newBST((CmpFunc_t*)strcmp, NULL);

int n;

while (fgets(buffer, LEN_MAX, stdin) != NULL) // Read each line.

{
size t len = strlen(buffer); // Length incl.
// newline character.
if (!BST_insert(pStrTree, buffer, len+l)) // Insert the line in
break; // the tree.

}
if (!feof(stdin))
{ // If unable to read
// the entire text:
fprintf(stderr, "sortlines: "
"Error reading or storing text input.\n");

exit(EXIT_FAILURE);
}
n = BST_inorder(pStrTree, printStr); // Print each line,

// 1n sorted order.

fprintf(stderr, "\nsortlines: Printed %d lines.\n", n);

BST_clear(pStrTree); // Discard all nodes.
return 0,

}

The loop that reads input lines breaks prematurely if a read error occurs, or if there is
insufficient memory to insert a new node in the tree. In such cases, the program exits with
an error message.

An in-order traversal visits every node of the tree in sorted order. The return value of
BST_inorder () is the number of lines successfully printed. sortlines prints the error and
success information to the standard error stream, so that it is separate from the actual data
output. Redirecting standard output to a file or a pipe affects the sorted text but not these
messages.

The BST_clear () function call is technically superfluous, as all of the program’s
dynamically allocated memory is automatically released when the program exits.

The binary search tree presented in this chapter can be used for any kind of data. Most
applications require the BST_search() and BST_erase() functions in addition to those
used in Example 12-3. Furthermore, more complex programs will no doubt require
functions not presented here, such as one to keep the tree’s left and right branches
balanced.

! Perhaps in part for historic reasons: in early C dialects, malloc() returned a pointer to
char.

Chapter 13. Input and Output

Programs must be able to write data to files or to physical output devices such as displays
or printers, and to read in data from files or input devices such as a keyboard. The C
standard library provides numerous functions for these purposes. This chapter presents a
survey of the part of the standard library that is devoted to input and output, which is often
referred to as the I/O library. Further details on the individual functions can be found in
Chapter 18. Apart from these library functions, the C language itself contains no input or
output support at all.

All of the basic functions, macros, and types for input and output are declared in the
header file stdio.h. The corresponding input and output function declarations for wide
characters of the type wchar_t are contained in the header file wchar.h.

TIP

As alternatives to the traditional standard I/0 functions, C11 introduces many new functions that permit
more secure programming, in particular by checking the bounds of arrays when copying data. These
alternative functions have names that end with the suffix _s (such as scanf_s(), for example).

Support for these “secure” functions is optional. The macro _ STDC_LIB EXT1__ is defined in
implementations that provide them (see “Functions with Bounds-Checking”).

Streams

From the point of view of a C program, all kinds of files and devices for input and output
are uniformly represented as logical data streams regardless of whether the program reads
or writes a character or byte at a time, or text lines, or data blocks of a given size. Streams
in C can be either text or binary streams, although on some systems even this difference is
nil. Opening a file by means of the function fopen() (or tmpfile()) creates a new stream,
which then exists until closed by the fclose() function. C leaves file management up to
the execution environment — in other words, the system on which the program runs.
Thus, a stream is a channel by which data can flow from the execution environment to the
program, or from the program to its environment. Devices, such as consoles, are addressed
in the same way as files.

Every stream has a lock that the I/O library’s functions use for synchronization when
several threads access the same stream. All stream I/O functions first obtain exclusive
access to a stream before performing read or write operations, or querying and moving the
stream’s file position indicator. Once the operation has been performed, the stream is
released again for access by other threads. Exclusive stream access prevents “data races”
and concurrent I/O operations. For more information about multithreaded programs, see
Chapter 14.

Text Streams

A text stream transports the characters of a text that is divided into lines. A line of text
consists of a sequence of characters ending in a newline character. A line of text can also
be empty, meaning that it consists of a newline character only. The last line transported
may or may not have to end with a newline character, depending on the implementation.

The internal representation of text in a C program is the same regardless of the system on
which the program is running. Text input and output on a given system may involve
removing, adding, or altering certain characters. For example, on systems that are not
Unix-based, end-of-line indicators ordinarily have to be converted into newline characters
when reading text files, as on Windows systems, for instance, where the end-of-line
indicator is a sequence of two control characters, \r (carriage return) and \n (newline).
Similarly, the control character Az (character code 26) in a text stream on Windows
indicates the end of the stream.

As the programmer, you generally do not have to worry about the necessary adaptations,
because they are performed automatically by the I/O functions in the standard library.
However, if you want to be sure that an input function call yields exactly the same text
that was written by a previous output function call, your text should contain only the
newline and horizontal tab control characters, in addition to printable characters.
Furthermore, the last line should end with a newline character, and no line should end with
a space immediately before the newline character.

Binary Streams

A binary stream is a sequence of bytes that are transmitted without modification. That is,
the I/O functions do not involve any interpretation of control characters when operating on
binary streams. Data written to a file through a binary stream can always be read back
unchanged on the same system. However, in certain implementations there may be extra
zero-valued bytes appended at the end of the stream.

Binary streams are normally used to write binary data — for example, database records —
without converting it to text. If a program reads the contents of a text file through a binary
stream, then the text appears in the program in its stored form, with all the control
characters used on the given system.

TIP

On common Unix systems, there is no difference between text streams and binary streams.

Files

A file represents a sequence of bytes. The fopen() function associates a file with a stream
and initializes an object of the type FILE, which contains all the information necessary to
control the stream. Such information includes a pointer to the buffer used; a file position
indicator, which specifies a position to access in the file; and flags to indicate error and
end-of-file conditions.

Each of the functions that open files — namely, fopen(), freopen(), and tmpfile() —
returns a pointer to a FILE object for the stream associated with the file being opened.

Once you have opened a file, you can call functions to transfer data and to manipulate the
stream. Such functions have a pointer to a FILE object — commonly called a FILE pointer

— as one of their arguments. The FILE pointer specifies the stream on which the operation
is carried out.

The 1/0 library also contains functions that operate on the file system, and take the name
of a file as one of their parameters. These functions do not require the file to be opened
first. They include the following:

m The remove () function deletes a file (or an empty directory). The string argument is the
file’s name. If the file has more than one name, then remove () only deletes the
specified name, not the file itself. The data may remain accessible in some other way,
but not under the deleted filename.

m The rename () function changes the name of a file (or directory). The function’s two
string arguments are the old and new names, in that order. The remove() and rename()
functions both have the return type int, and return zero on success, or a nonzero value
on failure. The following statement changes the name of the file songs.dat to
mysongs.dat:

if (rename("songs.dat", "mysongs.dat") != 0)
fprintf(stderr, "Error renaming \"songs.dat\".\n");

Conditions that can cause the rename () function to fail include the following: no file
exists with the old name; the program does not have the necessary access privileges; or
the file is open. The rules for forming permissible filenames depend on the
implementation.

File Position

Like the elements of a char array, each character in an ordinary file has a definite position
in the file. The file position indicator in the object representing the stream determines the
position of the next character to be read or written.

When you open a file for reading or writing, the file position indicator points to the
beginning of the file so that the next character accessed has the position 0. If you open the
file in “append” mode, the file position indicator may point to the end of the file. Each
read or write operation increases the indicator by the number of characters read from the
file or written to the file. This behavior makes it simple to process the contents of a file
sequentially. Random access within the file is achieved by using functions that change the
file position indicator, fseek(), fsetpos(), and rewind(), which are discussed in detail
in“Random File Access”.

Of course, not all files support changing access positions. Sequential I/O devices such as
terminals and printers do not, for example.

Buffers

In working with files, it is generally not efficient to read or write individual characters. For
this reason, a stream has a buffer in which it collects characters, which are transferred as a
block to or from the file. Sometimes you don’t want buffering, however. For example,
after an error has occurred, you might want to write data to a file as directly as possible.

Streams are buffered in one of three ways:
Fully buffered

The characters in the buffer are normally transferred only when the buffer is full.
Line-buffered

The characters in the buffer are normally transferred only when a newline character is
written to the buffer, or when the buffer is full. A stream’s buffer is also written to the
file when the program requests input through an unbuffered stream, or when an input
request on a line-buffered stream causes characters to be read from the host
environment.

Unbuffered

Characters are transferred as promptly as possible.

You can also explicitly transfer the characters in the stream’s output buffer to the
associated file by calling the fflush() function. The buffer is also flushed when you close

a stream, and normal program termination flushes the buffers of all the program’s streams.

When you open an ordinary file by calling fopen(), the new stream is fully buffered.
Opening interactive devices is different, however: such device files are associated on
opening with a line-buffered stream. After you have opened a file, and before you perform
the first input or output operation on it, you can change the buffering mode using the
setbuf() or setvbuf() function.

The Standard Streams

Three standard text streams are available to every C program on starting. These streams do
not have to be explicitly opened. Table 13-1 lists them by the names of their respective
FILE pointers.

Table 13-1. The standard streams

FILE pointer Common name Buffering mode
stdin Standard input Line-buffered
stdout Standard output Line-buffered
stderr Standard error output Unbuffered

stdin is usually associated with the keyboard, and stdout and stderr with the console
display. These associations can be modified by redirection. Redirection is performed either
by the program calling the freopen() function, or by the environment in which the
program is executed.

Opening and Closing Files

To write to a new file or modify the contents of an existing file, you must first open the
file. When you open a file, you must specify an access mode indicating whether you plan
to read, to write, or some combination of the two. When you have finished using a file,

close it to release resources.

Opening a File

The standard library provides the function fopen() to open a file (for special cases, the
freopen() and tmpfile() functions also open files):

FILE *fopen(const char * restrict filename,
const char * restrict mode);

This function opens the file whose name is specified by the string filename. The filename
may contain a directory part, and must not be longer than the maximum length specified
by the value of the macro FILENAME_MAX. The second argument, mode, is also a string, and

specifies the access mode. The possible access modes are described in the next section.
The fopen() function associates the file with a new stream:

FILE *freopen(const char * restrictfilename,
const char * restrict mode,
FILE * restrict stream);

This function redirects a stream. Like fopen(), freopen() opens the specified file in the
specified mode. However, rather than creating a new stream, freopen() associates the file
with the existing stream specified by the third argument. The file previously associated
with that stream is closed. The most common use of freopen() is to redirect the standard
streams, stdin, stdout, and stderr.

FILE *tmpfile(void);

The tmpfile() function creates a new temporary file whose name is distinct from all other

existing files, and opens the file for binary writing and reading (as if the mode string
"wh+" were used in an fopen() call). If the program is terminated normally, the file is

automatically deleted.

All three file-opening functions, fopen(), freopen() and tmpfile(), return a pointer to
the opened stream if successful, or a null pointer to indicate failure.

TIP

If a file is opened for writing, the program should have exclusive access to the file to prevent simultaneous
write operations by other programs. The traditional standard functions do not guarantee exclusive file
access, but three of the new “secure” functions introduced by C11, fopen_s(), freopen_s() and

tmpfile_s(), do provide exclusive access, if the operating system supports it.

Access Modes

The access mode specified by the second argument to fopen() or freopen() determines

what input and output operations the new stream permits. The permissible values of the
mode string are restricted. The first character in the mode string is always r for “read,” w

for “write,” or a for “append,” and in the simplest case, the string contains just that one
character. However, the mode string may also contain one or both of the characters + and b
(in either order: +b has the same effect as b+).

A plus sign (+) in the mode string means that both read and write operations are permitted.
However, a program must not alternate immediately between reading and writing. After a
write operation, you must call the fflush() function or a positioning function (fseek(),
fsetpos(), or rewind()) before performing a read operation. After a read operation, you
must call a positioning function before performing a write operation.

A b in the mode string causes the file to be opened in binary mode — that is, the new
stream associated with the file is a binary stream. If there is no b in the mode string, the
new stream is a text stream.

If the mode string begins with r, the file must already exist in the file system. If the mode
string begins with w, then the file will be created if it does not already exist. If it does exist,
its previous contents will be lost, because the fopen() function truncates it to zero length
in “write” mode.

C11 introduces the capability to open a file in exclusive write mode, if the operating
system supports it. To specify exclusive access, you can use the suffix x in a mode string
that begins with w, such as wx or w+bx. The file-opening function then fails — returning a
null pointer — if the file already exists or cannot be created. Otherwise, the file is created
and opened for exclusive access.

A mode string beginning with a (for append) also causes the file to be created if it does not

already exist. If the file does exist, however, its contents are preserved, because all write
operations are automatically performed at the end of the file. Here is a brief example:

#include <stdio.h>
#include <stdbool.h>
_Bool isReadWriteable(const char *filename)

{
FILE *fp = fopen(filename, "r+"); // Open a file to read and write.

if (fp !'= NULL) // Did fopen() succeed?
fclose(fp); // Yes: close the file; no error handling.
return true;

}

else // No.

return false;

This example also illustrates how to close a file using the fclose() function.

Closing a File

To close a file, use the fclose() function. The prototype of this function is:

int fclose(FILE *fp);

The function flushes any data still pending in the buffer to the file, closes the file, and
releases any memory used for the stream’s input and output buffers. The fclose()

function returns zero on success, or EOF if an error occurs.

When the program exits, all open files are closed automatically. Nonetheless, you should
always close any file that you have finished processing. Otherwise, you risk losing data in
the case of an abnormal program termination. Furthermore, there is a limit to the number
of files that a program may have open at one time; the number of open files allowed is
greater than or equal to the value of the constant FOPEN_MAX.

Reading and Writing

This section describes the functions that actually retrieve data from or send data to a
stream. First, there is another detail to consider: an open stream can be used either for byte
characters or for wide characters.

Byte-Oriented and Wide-Oriented Streams

In addition to the type char, C also provides a type for wide characters, named wchar_t.
This type is wide enough to represent any character in the extended character sets that the
implementation supports (see “Wide Characters and Multibyte Characters™). Accordingly,
there are two complete sets of functions for input and output of characters and strings: the
byte-character 1/0 functions and the wide-character I/O functions. Functions in the
second set operate on characters with the type wchar_t. Each stream has an orientation
that determines which set of functions is appropriate.

Immediately after you open a file, the orientation of the stream associated with it is
undetermined. If the first file access is performed by a byte-character I/O function, then
from that point on the stream is byte-oriented. If the first access is by a wide-character
function, then the stream is wide-oriented. The orientation of the standard streams, stdin,

stdout, and stderr, is likewise undetermined when the program starts.

You can call the function fwide() at any time to ascertain a stream’s orientation. Before
the first I/O operation, fwide () can also set a new stream’s orientation. To change a

stream’s orientation once it has been determined, you must first reopen the stream by
calling the freopen() function.

The wide characters written to a wide-oriented stream are stored as multibyte characters in
the file associated with the stream. The read and write functions implicitly perform the
necessary conversion between wide characters of type wchar_t and the multibyte
character encoding. This conversion may be stateful. In other words, the value of a given
byte in the multibyte encoding may depend on control characters that precede it, which
alter the shift state or conversion state of the character sequence. For this reason, each
wide-oriented stream has an associated object with the type mbstate_t, which stores the
current multibyte conversion state. The functions fgetpos() and fsetpos(), which get
and set the value of the file position indicator, also save and restore the conversion state
for the given file position.

Error Handling

The I/0 functions can use a number of mechanisms to indicate to the caller when they
incur errors, including return values, error and EOF flags in the FILE object, and the global
error variable errno. To read which mechanisms are used by a given function, see the

individual function descriptions in Chapter 18. This section describes the 1/O error-
handling mechanisms in general.

Return values and status flags

The I/0 functions generally indicate any errors that occur by their return value. In
addition, they also set an error flag in the FILE object that controls the stream if an error in

reading or writing occurs. To query this flag, you can call the ferror () function. Here is
an example:
(void)fputc('*', fp); // Write an asterisk to the stream fp.

if (ferror(fp))
fprintf(stderr, "Error writing.\n");

Furthermore, read functions set the stream’s EOF flag on reaching the end of the file. You
can query this flag by calling the feof () function. A number of read functions return the
value of the macro EOF if you attempt to read beyond the last character in the file. (Wide-
character functions return the value WeOF.) A return value of EOF or WEOF can also indicate
an error, however. To distinguish between the two cases, you must call ferror() or

feof (), as the following example illustrates:

int i, c;
char buffer[1024];
/* ... Open a file to read using the stream fp.. */
i=o0;
while (i1 < 1024 && // While there is space in the buffer
(c = fgetc(fp)) != EOF) // ... and the stream can deliver
buffer[i++] = (char)c; // characters.

if (1 < 1024 && ! feof(fp))
fprintf(stderr, "Error reading.\n");

The if statement in this example prints an error message if fgetc() returns EOF and the
EOF flag is not set.

The error variable errno

Several standard library functions support more specific error handling by setting the
global error variable errno to a value that indicates the kind of error that has occurred.

Stream handling functions that set the errno variable include ftell(), fgetpos(), and
fsetpos(). Depending on the implementation, other functions may also set the errno
variable. errno is declared in the header errno.h with the type int (see Chapter 16).
errno.h also defines macros for the possible values of errno.

The perror () function prints a system-specific error message for the current value of

errno to the stderr stream:

long pos = ftell(fp); // Get the current file position.
if (pos < OL) // ftell() returns -1L if an error occurs.
perror("ftell()");

The perror () function prints its string argument followed by a colon, the error message,
and a newline character. The error message is the same as the string that strerror()
would return if called with the given value of errno as its argument. In the previous
example, the perror() function as implemented in the GCC compiler prints the following
output to indicate an invalid FILE pointer argument:

ftell(): Bad file descriptor

The error variable errno is also set by functions that convert between wide characters and
multibyte characters in reading from or writing to a wide-oriented stream. Such
conversions are performed internally by calls to the wertomb () and mbrtowc () functions.
When these functions are unable to supply a valid conversion, they return the value of -1
cast to size_t, and set errno to the value of EILSEQ (for “illegal sequence™).

Unformatted I/0

The standard library provides functions to read and write unformatted data in the form of
individual characters, strings, or blocks of any given size. This section describes these
functions, listing the prototypes of both the byte-character and the wide-character
functions. The type wint_t is an integer type capable of representing at least all the values

in the range of wchar_t, and the additional value WweoF. The macro WEOF has the type
wint_t and a value that is distinct from all the character codes in the extended character
set.

TIP

Unlike EOF, the value of WEOF is not necessarily negative.

Reading characters

Use the following functions to read characters from a file:

int fgetc(FILE *fp);

int getc(FILE *fp);

int getchar(void);
wint_t fgetwc(FILE *fp);
wint_t getwc(FILE *fp);
wint_t getwchar(void);

The fgetc() function reads a character from the input stream referenced by fp. The return
value is the character read, or EOF if an error occurred. The macro getc() has the same
effect as the function fgetc(). The macro is commonly used because it is faster than a
function call. However, if the argument fp is an expression with side effects (see

Chapter 5), then you should use the function instead because a macro may evaluate its
argument more than once. The macro getchar () reads a character from standard input. It

is equivalent to getc(stdin).

fgetwc (), getwc(), and getwchar () are the corresponding functions and macros for wide-
oriented streams. These functions set the global variable errno to the value EILSEQ if an
error occurs in converting a multibyte character to a wide character.

Putting a character back
Use one of the following functions to push a character back into the stream from whence it
came:

int ungetc(intc, FILE *fp);
wint_t ungetwc(wint_t ¢, FILE *fp);

ungetc() and ungetwc () push the last character read, c, back onto the input stream
referenced by fp. Subsequent read operations then read the characters put back, in LIFO

(last in, first out) order — that is, the last character put back is the first one to be read. You
can always put back at least one character, but repeated attempts might or might not

succeed. The functions return EOF (or WEOF) on failure, or the character pushed onto the
stream on success.

Writing characters

The following functions allow you to write individual characters to a stream:

int fputc(intc, FILE *fp);

int putc(int ¢, FILE *fp);

int putchar(int c);

wint_t fputwc(wchar_t wc, FILE *fp);
wint_t putwc(wchar_t wc, FILE *fp);
wint_t putwchar(wchar_t wc);

The function fputc () writes the character value of the argument c to the output stream
referenced by fp. The return value is the character written, or EOF if an error occurred.
The macro putc () has the same effect as the function fputc(). If either of its arguments is

an expression with side effects (see Chapter 5), then you should use the function instead
because a macro might evaluate its arguments more than once. The macro putchar()

writes the specified character to the standard output stream.

fputwc (), putwc(), and putwchar () are the corresponding functions and macros for wide-
oriented streams. These functions set the global variable errno to the value EILSEQ if an
error occurs in converting the wide character to a multibyte character.

The following example copies the contents of a file opened for reading, referenced by
fpIn, to a file opened for writing, referenced by fpout (both streams are byte-oriented):

_Bool error = 0;

int c;

rewind(fpIn); // Set the file position indicator to the beginning
// of the file, and clear the error and EOF flags.

while ((¢ = getc(fpIn)) != EOF) // Read one character at a time.

if (putc(¢, fpOut) == EOF) // Write each character to the
// output stream.
error = 1, break; // A write error.
if (ferror(fpIn)) // A read error.
error = 1;

Reading strings

The following functions allow you to read a string from a stream:

char *fgets(char *buf, int n, FILE *fp);

wchar_t *fgetws(wchar_t *buf, int n, FILE *fp);

char *gets(char *buf); // Obsolete
char *gets_s(char *buf, size_t n); // C11

The functions fgets() and fgetws() read up to n — 1 characters from the input stream
referenced by fp into the buffer addressed by buf, appending a null character to terminate

the string. If the functions encounter a newline character or the end of the file before they
have read the maximum number of characters, then only the characters read up to that

point are read into the buffer. The newline character '\n' (or, in a wide-oriented stream,
L'\n") is also stored in the buffer if read.

gets() reads a line of text from standard input into the buffer addressed by buf. The
newline character that ends the line is replaced by the null character that terminates the
string in the buffer. fgets() is a preferable alternative to gets(), as gets() offers no way
to limit the number of characters read. The C11 standard retires the function gets() and
adds a further alternative to gets(), the new function gets_s(), in implementations that
support bounds-checking interfaces.

All four functions return the value of their argument buf, or a null pointer if an error
occurred, or if there were no more characters to be read before the end of the file.

Writing strings

Use the following functions to write a null-terminated string to a stream:

int fputs(const char *s, FILE *fp);
int puts(const char *s);
int fputws(const wchar_t *s, FILE *fp);

The three puts functions have some features in common as well as certain differences:

m fputs() and fputws() write the strings to the output stream referenced by fp. The null
character that terminates the string is not written to the output stream.

m puts() writes the string s to the standard output stream, followed by a newline
character. There is no wide-character function that corresponds to puts().

m All three functions return EOF (not WEOF) if an error occurred, or a non-negative value
to indicate success.

The function in the following example prints all the lines of a file that contain a specified
string.

// Write to stdout all the lines containing the specified search
// string in the file opened for reading as fpIn.

// Return value: The number of lines containing the search string,
// or -1 on error.

#include <stdio.h>
#include <string.h>
int searchFile(FILE*fpIn, const char *keyword)
{
#define MAX_LINE 256
char line[MAX_LINE] = "";
int count = 0;

if (fpIn == NULL || keyword == NULL)
return -1,

else
rewind(fpIn);

while (fgets(line, MAX_LINE, fpIn) !'= NULL)
if (strstr(line, keyword) != NULL)
{

++count;
fputs(line, stdout);
3
if (!feof(fpIn))
return -1;

else
return count;

Reading and writing blocks

The fread() function reads up to n objects whose size is size from the stream referenced
by fp, and stores them in the array addressed by buffer:

size t fread(void *buffer, size t size, size_t n, FILE *fp);

The function’s return value is the number of objects transferred. A return value less than
the argument n indicates that the end of the file was reached while reading, or that an error
occurred.

The fwrite() function sends n objects whose size is size from the array addressed by
buffer to the output stream referenced by fp:

size t fwrite(const void *buffer, size t size, size_t n, FILE *fp);

Again, the return value is the number of objects written. A return value less than the
argument n indicates that an error occurred.

Because the fread() and fwrite() functions do not deal with characters or strings as

such, there are no corresponding functions for wide-oriented streams. On systems that
distinguish between text and binary streams, the fread() and fwrite() functions should

be used only with binary streams.

The function in the following example assumes that records have been saved in the file
records.dat by means of the fwrite() function. A key value of 0 indicates that a record
has been marked as deleted. In copying records to a new file, the program skips over
records whose key is 0:

// Copy records to a new file, filtering out those with the key 0.

#include <stdio.h>
#include <stdlib.h>

#define ARRAY_LEN 100 // Maximum number of records in the buffer.
// A structure type for the records:
typedef struct { long key;

char name[32];

/* ... other fields in the record.. */ } Record_t;
char inFile[] = "records.dat", // Filenames.
outFile[] = "packed.dat";

// Terminate the program with an error message:
static inline void error_exit(int status, const char *error_msg)

{

fputs(error_msg, stderr);

}

exit(status);

int main()

{

FILE *fpIn, *fpOut;
Record_t record, *pArray;
unsigned int i;

if ((fpIn = fopen(inFile, "rb")) == NULL) // Open to read.
error_exit(1, "Error on opening input file.");

else if ((fpoOut = fopen(outFile, "wb")) == NULL) // Open to write.
error_exit(2, "Error on opening output file.");

else // Create the buffer.
if ((pArray = malloc(ARRAY_LEN * sizeof(Record_t))) == NULL)
error_exit(3, "Insufficient memory.");

i=0; // Read one record at a time:
while (fread(&record, sizeof(Record_t), 1, fpIn) == 1)
{
if (record.key != 0L) // If not marked as deleted..
{ // ... then copy the record:
pArray[i++] = record;
if (i == ARRAY_LEN) // Buffer full?
{ // Yes: write to file.
if (fwrite(pArray, sizeof(Record_t), i, fpOut) < i)
break;
i=0;
}
}
}
if (1 > 0 && !ferror(fpOut)) // Write the remaining records.

fwrite(pArray, sizeof(Record_t), i, fpoOut);

if (ferror(fpout)) // Handle errors.
error_exit(4, "Error on writing to output file.");

else if (ferror(fpIn))
error_exit(5, "Error on reading input file.");

return 0;

Formatted Output

C provides formatted data output by means of the printf() family of functions. This

section illustrates commonly used formatting options with appropriate examples. A
complete, tabular description of output formatting options is included in Part II; see the
discussion of the printf () function in Chapter 18.

The printf() function family

The printf() function and its various related functions all share the same capabilities of

formatting data output as specified by an argument called the format string. However, the
various functions have different output destinations and ways of receiving the data
intended for output. The printf() functions for byte-oriented streams are:

int printf(const char * restrict format, ...);
Writes to the standard output stream, stdout.
int fprintf(FILE * restrict fp, const char * restrict format, ...);

Writes to the output stream specified by fp. The printf () function can be considered
to be a special case of fprintf().

int sprintf(char * restrict buf,
const char * restrict format, ...);

Writes the formatted output to the char array addressed by buf, and appends a
terminating null character.

int snprintf(char * restrict buf, size_t n,
const char * restrict format, ...);

Like sprintf(), but never writes more than n bytes to the output buffer.

The ellipsis (. . .) in these function prototypes stands for more arguments, which are
optional. Another subset of the printf() functions takes a pointer to an argument list,

rather than accepting a variable number of arguments directly in the function call. The
names of these functions begin with a v for “variable argument list”:

int vprintf(const char * restrictformat, va_list argptr);

int vfprintf(FILE * restrict fp, const char * restrict format,
va_list argptr);

int vsprintf(char * restrict buf, const char * restrict format,
va_list argptr);

int vsnprintf(char * restrict buffer, size_t n,
const char * restrict format, va_list argptr);

To use the variable argument list functions, you must include stdarg.h in addition to
stdio.h.

There are counterparts to all of these functions for output to wide-oriented streams. The
wide-character printf() functions have names containing wprintf instead of printf, as

in vfwprintf() and swprintf (), for example. There is one exception: there is no

snwprintf(). Instead, swprintf () corresponds to the function snprintf(), with a
parameter for the maximum output length.

The C11 standard provides a new “secure” alternative to each of these functions. The
names of these new functions end in the suffix _s (for example, fprintf_s()). The new
functions test whether any pointer arguments they receive are null pointers.

The format string

One argument passed to every printf() function is a format string. This is a definition of
the data output format, and contains some combination of ordinary characters and
conversion specifications. Each conversion specification defines how the function should
convert and format one of the optional arguments for output. The printf() function
writes the format string to the output destination, replacing each conversion specification
in the process with the formatted value of the corresponding optional argument.

A conversion specification begins with a percent sign % and ends with a letter, called the
conversion specifier. (To include a percent sign in the output, there is a special conversion
specification: %%. printf () converts this sequence into a single percent sign.)

TIP

The syntax of a conversion specification ends with the conversion specifier. Throughout the rest of this
section, we use both these terms frequently in talking about the format strings used in printf() and
scanf() function calls.

The conversion specifier determines the type of conversion to be performed, and must
match the corresponding optional argument. Here is an example:

int score = 120;
char player[] = "Mary";
printf("%s has %d points.\n", player, score);

The format string in this printf() call contains two conversion specifications: %s and %d.

Accordingly, two optional arguments have been specified: a string, matching the
conversion specifier s (for “string”), and an int, matching the conversion specifier d (for

“decimal”). The function call in the example writes the following line to standard output:

Mary has 120 points.

All conversion specifications (with the exception of %%) have the following general
format:

%[flags][field _width][.precision][length_modifier]specifier

The parts of this syntax that are indicated in square brackets are all optional, but any of
them that you include must be placed in the order shown here. The permissible conversion
specifications for each argument type are described in the sections that follow. Any

conversion specification can include a field width. The precision does not apply to all
conversion types, however, and its significance is different depending on the specifier.

Field widths

The field width option is especially useful in formatting tabular output. If included, the
field width must be a positive decimal integer (or an asterisk, as described momentarily). It
specifies the minimum number of characters in the output of the corresponding data item.
The default behavior is to position the converted data right-justified in the field, padding it
with spaces to the left. If the flags include a minus sign (-), then the information is left-
justified, and the excess field width padded with space characters to the right.

The following example first prints a line numbering the character positions to illustrate the
effect of the field width option:

printf("1234567890123456\n"); // Character positions.
printf("%-10s %s\n", "Player", "Score"); // Table headers.
printf("%-10s %4d\n", "John", 120); // Field widths: 10, 4.

printf("%-10s %4d\n", "Mary", 77);

These statements produce a little table:

1234567890123456
Player Score
John 120
Mary 77

If the output conversion results in more characters than the specified width of the field,
then the field is expanded as necessary to print the complete data output.

If a field is right-justified, it can be padded with leading zeros instead of spaces. To do so,
include a o (that’s the digit zero) in the conversion specification’s flags. The following

example prints a date in the format mm-dd-yyyy:

int month = 5, day = 1, year = 1987;
printf("Date of birth: %02d-%02d-%04d\n", month, day, year);

This printf() call produces the following output:

Date of birth: 05-01-1987

You can also use a variable to specify the field width. To do so, insert an asterisk (*) as the

field width in the conversion specification, and include an additional optional argument in
the printf() call. This argument must have the type int, and must appear immediately

before the argument to be converted for output. Here is an example:
char str[] = "variable field width";

int width = 30;
printf("%-*s!\n", width, str);

The printf statement in this example prints the string str at the left end of a field whose
width is determined by the variable width. The results are as follows:

Variable field width !

Notice the trailing spaces preceding the bang (!) character in the output. Those spaces are
not present in the string used to initialize str[]. The spaces are generated by virtue of the
fact that the printf statement specifies a 30-character width for the string.

Printing characters and strings

The printf() conversion specifier for strings is s, as you have already seen in the
previous examples. The specifier for individual characters is c (for char). They are
summarized in Table 13-2.

Table 13-2. Conversion specifiers for printing characters and

strings
Specifier Argument types Representation
c int A single character
s Pointer to any char type The string addressed by the pointer argument

The following example prints a separator character between the elements in a list of team
members:

char *team[] = { "vivian", "Tim", "Frank", "Sally" },;

char separator = ';';
for (int 1 = 0; 1 < sizeof(team)/sizeof(char *); ++i)
printf("%10s%c ", team[i], separator);

putchar('\n');

The argument represented by the specification %c can also have a narrower type than int,
such as char. Integer promotion automatically converts such an argument to int. The
printf() function then converts the int arguments to unsigned char, and prints the
corresponding character.

For string output, you can also specify the maximum number of characters of the string
that may be printed. This is a special use of the precision option in the conversion
specification, which consists of a dot followed by a decimal integer. Here is an example:

char msg[] = "Every solution breeds new problems.";

printf("%.14s\n", msg); // Precision: 14.

printf("%20.14s\n", msg); // Field width is 20, precision is 14.
printf("%.8s\n", msg+6); // Print the string starting at the 7th

// character in msg, with precision 8.

These statements produce the following output:

Every solution
Every solution
solution

Printing integers

The printf() functions can convert integer values into decimal, octal, or hexadecimal
notation. The conversion specifiers listed in Table 13-3 are provided for this purpose.

Table 13-3. Conversion specifiers for printing integers

Specifier Argument types Representation

d, i int Decimal

u unsigned int Decimal

) unsigned int Octal

X unsigned int Hexadecimal with lowercase a, b, c, d, e, f

X unsigned int Hexadecimal with uppercase A, B, C, D, E, F

The following example illustrates different conversions of the same integer value:

printf("%4d %40 %4x %4X\n", 63, 63, 63, 63);

This printf() call produces the following output:

63 77 3f 3F

The specifiers u, o, x, and X interpret the corresponding argument as an unsigned integer.
If the argument’s type is int and its value negative, the converted output is the positive
number that corresponds to the argument’s bit pattern when interpreted as an unsigned
int:

printf("%d %u %X\n", -1, -1, -1);
If int is 32 bits wide, this statement yields the following output:

-1 4294967295 FFFFFFFF

Because the arguments are subject to integer promotion, the same conversion specifiers
can be used to format short and unsigned short arguments. For arguments with the type

long or unsigned long, you must prefix the length modifier 1 (a lowercase L) to the d, i,
u, o, x, and X specifiers. Similarly, the length modifier for arguments with the type long
long or unsigned long long is 11 (two lowercase Ls). Here is an example:

long bignumber = 100000L;
unsigned long long hugenumber = 100000ULL * 1000000ULL;
printf("%1ld %11X\n", bignumber, hugenumber);

These statements produce the following output:

100000 2540BE400

Printing floating-point numbers

Table 13-4 shows the printf () conversion specifiers to format floating-point numbers in
various ways.

Table 13-4. Conversion specifiers for printing floating-point
numbers

Specifier Argument types Representation

f double Decimal floating-point number

e, E double Exponential notation, decimal

g, G double Floating-point or exponential notation, whichever is shorter
a, A double Exponential notation, hexadecimal

The most commonly used specifiers are f and e (or E). The following example illustrates
how they work:

double x = 12.34;
printf("%f %e %E\n", X, X, X);

This printf() call generates following output line:

12.340000 1.234000e+01 1.234000E+01

The e that appears in the exponential notation in the output is lowercase or uppercase,
depending on whether you use e or E for the conversion specifier. Furthermore, as the

example illustrates, the default output shows precision to six decimal places. The precision
option in the conversion specification modifies this behavior:

double value = 8.765;
printf("Value: %.2f\n", value); // Precision is 2: output to
// two decimal places.
printf("Integer value:\n"
" Rounded: %5.0f\n" // Field width 5; precision 0.
" Truncated: %5d\n", value, (int)value);

These printf() calls produce the following output:

Value: 8.77
Integer value:
Rounded:
Truncated: 8

©

As this example illustrates, printf () rounds floating-point numbers up or down in
converting them for output. If you specify a precision of 0, the decimal point itself is
suppressed. If you simply want to truncate the fractional part of the value, you can cast the
floating-point number as an integer type.

The specifiers described can also be used with float arguments, because they are

automatically promoted to double. To print arguments of type long double, however, you

must insert the length modifier L before the conversion specifier, as in this example:
#include <math.h>

long double xx1 = expl(1000);
printf("e to the power of 1000 is %.2Le\n", xx1);

Formatted Input

To read in data from a formatted source, C provides the scanf () family of functions. Like
the printf() functions, the scanf () functions take as one of their arguments a format
string that controls the conversion between the I/O format and the program’s internal data.
This section highlights the differences between the uses of format strings and conversion
specifications in the scanf () and printf() functions.

The scanf() function family

The various scanf () functions all process the characters in the input source in the same
way. They differ in the kinds of data sources they read, however, and in the ways in which
they receive their arguments. The scanf () functions for byte-oriented streams are:

int scanf(const char * restrict format, ...);
Reads from the standard input stream, stdin.

int fscanf(FILE * restrict fp, const char * restrict format, ...);
Reads from the input stream referenced by fp.

int sscanf(const char * restrict src,
const char * restrict format, ...);

Reads from the char array addressed by src.

The ellipsis (...) stands for more arguments, which are optional. The optional arguments
are pointers to the variables in which the scanf () function stores the results of its
conversions.

Like the printf () functions, the scanf() family also includes variants that take a pointer

to an argument list, rather than accepting a variable number of arguments directly in the
function call. The names of these functions begin with the letter v for “variable argument

list”: vscanf (), vfscanf (), and vsscanf (). To use the variable argument list functions,
you must include stdarg.h in addition to stdio.h.

There are counterparts to all of these functions for reading wide-oriented streams. The
names of the wide-character functions contain the sequence wscanf in place of scanf, as

in wscanf () and vfwscanf (), for example.

The C11 standard provides a new “secure” alternative to each of the scanf () functions.
The names of these new functions end in the suffix _s, as in fscanf_s(), for example.
The new functions test whether the array bounds would be exceeded before reading a

string into an array.
The format string

The format string for the scanf () functions contains both ordinary characters and
conversion specifications that define how to interpret and convert the sequences of

characters read. Most of the conversion specifiers for the scanf () functions are similar to
those defined for the printf () functions. However, conversion specifications in the
scanf () functions have no flags and no precision options. The general syntax of
conversion specifications for the scanf () functions is as follows:

%[*][field _width][length_modifier]specifier

For each conversion specification in the format string, one or more characters are read
from the input source and converted in accordance with the conversion specifier. The
result is stored in the object addressed by the corresponding pointer argument. Here is an
example:

int age = 0;

char name[64] = "";

printf("Please enter your first name and your age:\n");
scanf("%s%d'", name, &age);

Suppose that the user enters the following line when prompted:

Bob 27\n

The scanf () call writes the string Bob into the char array name, and the value 27 in the
int variable age.

All conversion specifications, except those with the specifier c, skip over leading

whitespace characters. In the previous example, the user could type any number of space,
tab, or newline characters before the first word, Bob, or between Bob and 27, without

affecting the results.

The sequence of characters read for a given conversion specification ends when scanf ()

reads any whitespace character, or any character that cannot be interpreted under that
conversion specification. Such a character is pushed back onto the input stream so that
processing for the next conversion specification begins with that character. In the previous
example, suppose the user enters this line:

Bob 27years\n

Then on reaching the character y, which cannot be part of a decimal numeral, scanf ()
stops reading characters for the conversion specification %d. After the function call, the
characters years\n would remain in the input stream’s buffer.

If, after skipping over any whitespace, scanf () doesn’t find a character that matches the
current conversion specification, an error occurs and the scanf () function stops
processing the input. We’ll show you how to detect such errors in a moment.

Often the format string in a scanf () function call contains only conversion specifications.
If not, all other characters in the format string, except whitespace characters, must literally

match characters in corresponding positions in the input source. Otherwise, the scanf ()
function quits processing and pushes the mismatched character back on to the input
stream.

One or more consecutive whitespace characters in the format string matches any number
of consecutive whitespace characters in the input stream. In other words, for any
whitespace in the format string, scanf () reads past all whitespace characters in the data

source up to the first non-whitespace character. Knowing this, what’s the matter with the
following scanf () call?

scanf("%s%d\n", name, &age); // Problem?

Suppose that the user enters the following line:

Bob 27\n

In this case, scanf () doesn’t return after reading the newline character but instead
continues reading more input — until a non-whitespace character comes along.

Sometimes you will want to read past any sequence of characters that matches a certain
conversion specification without storing the result. You can achieve exactly this effect by
inserting an asterisk (*) immediately after the percent sign (%) in the conversion
specification. Do not include a pointer argument for a conversion specification with an
asterisk.

The return value of a scanf () function is the number of data items successfully converted

and stored. If everything goes well, the return value matches the number of conversion
specifications, not counting any that contain an asterisk. The scanf () functions return the

value of EOF if a read error occurs or they reach the end of the input source before
converting any data items. Here is an example:

if (scanf("%s%d", name, &age) < 2)
fprintf(stderr, "Bad input.\n");

else
{ /* ... Test the values stored.. */ }
Field widths

The field width is a positive decimal integer that specifies the maximum number of
characters that scanf () reads for the given conversion specification. For string input, this

item can be used to prevent buffer overflows:

char city[32];
printf("Your city: ");
if (scanf("%31s", city) < 1) // Never read in more than 31
// characters!
fprintf(stderr, "Error reading from standard input.\ n");
else
VA4

Unlike printf (), which exceeds the specified field width whenever the output is longer
than that number of characters, scanf () with the s conversion specifier never writes more
characters to a buffer than the number specified by the field width.

Reading characters and strings

The conversion specifications %c and %1c read the next character in the input stream, even
if it is a whitespace character. By specifying a field width, you can read that exact number
of characters, including whitespace characters, as long as the end of the input stream does
not intervene. When you read more than one character in this way, the corresponding

pointer argument must point to a char array that is large enough to hold all the characters

read. The scanf () function with the c conversion specifer does not append a terminating
null character. Here is an example:

scanf("%*5c");

This scanf () call reads and discards the next five characters in the input source.

The conversion specification %s always reads just one word, as a whitespace character
ends the sequence read. To read entire text lines, you can use the fgets() function.

The following example reads the contents of a text file word by word. Here we assume
that the file pointer fp is associated with a text file that has been opened for reading:

char word[128];
while (fscanf(fp, "%127s", word) == 1)
{

/* ... process the word read.. */

}

In addition to the conversion specifier s, you can also read strings using the “scanset™

specifier, which consists of an unordered set of characters between square brackets
([scanset]). The scanf () function then reads all characters, and saves them as a string

(with a terminating null character), until it reaches a character that does not match any of
those in the scanset. Here is an example:

char strNumber[32];
scanf("%[0123456789]", strNumber);

If the user enters 345X67, then scanf () stores the string 345\0 in the array strNumber. The
character X and all subsequent characters remain in the input buffer.

To invert the scanset — that is, to match all characters except those between the square
brackets — insert a caret (2) immediately after the opening bracket. The following

scanf () call reads all characters, including whitespace, up to a punctuation character that
terminates a sentence, and then reads the punctuation character itself:

char ch, sentence[512];

scanf("%511[A.!1?]%c", sentence, &ch);

The following scanf () call can be used to read and discard all characters up to the end of
the current line:

scanf("%*[AM\n]%*c");

Reading integers

Like the printf() functions, the scanf () functions offer the following conversion
specifiers for integers: d, i, u, o, x, and X. These allow you to read and convert decimal,
octal, and hexadecimal notation to int or unsigned int variables. Here is an example:

// Read a non-negative decimal integer:
unsigned int value = 0;
if (scanf("%u", &value) < 1)
fprintf(stderr, "Unable to read an integer.\n");
else
VA4

For the specifier i in the scanf () functions, the base of the numeral read is not

predefined. Instead, it is determined by the prefix of the numeric character sequence read,
in the same way as for integer constants in C source code (see “Integer Constants”). If the
character sequence does not begin with a zero, then it is interpreted as a decimal numeral.
If it does begin with a zero and the second character is not x or X, then the sequence is

interpreted as an octal numeral. A sequence that begins with 6x or oX is read as a
hexadecimal numeral.

To assign the integer read to a short, char, long, or long long variable (or to a variable

of a corresponding unsigned type), you must insert a length modifier before the
conversion specifier: h for short, hh for char, 1 for long, or 11 for long long. In the

following example, the FILE pointer fp refers to a file opened for reading:
unsigned long position = 0;

if (fscanf(fp, "%1X", &position) < 1) // Read a hexadecimal integer.
/* ... Handle error: unable to read a numeral.. */

Reading floating-point numbers

To process floating-point numerals, the scanf () functions use the same conversion
specifiers as printf(): f, e, E, g, and G. Furthermore, C99 has added the specifiers a and
A. All of these specifiers interpret the character sequence read in the same way. The

character sequences that can be interpreted as floating-point numerals are the same as the
valid floating-point constants in C; see “Floating-Point Constants”. scanf () can also

convert integer numerals and store them in floating-point variables.

All of these specifiers convert the numeral read into a floating-point value with the type
float. If you want to convert and store the value read as a variable of type, double or

long double, you must insert a length modifier: either 1 (a lowercase L) for double, or L
for long double. Here is an example:

float x = 0.0F;
double xx = 0.0;
// Read in two floating-point numbers; convert one to float and the
// other to double:
if (scanf("%f %1f", &x, &xx) < 2)

VAV

If this scanf () call receives the input sequence 12.3 7\n, then it stores the value 12.3 in
the float variable x, and the value 7.0 in the double variable xx.

Random File Access

Random file access refers to the ability to read or modify information directly at any given
position in a file. You do this by getting and setting a file position indicator, which
represents the current access position in the file associated with a given stream.

Obtaining the Current File Position

The following functions return the current file access position. Use one of these functions
when you need to note a position in the file to return to it later:

long ftell(FILE *fp),

ftell() returns the file position of the stream specified by fp. For a binary stream,
this is the same as the number of characters in the file before this given position —
that is, the offset of the current character from the beginning of the file. ftell()
returns -1 if an error occurs.

int fgetpos(FILE * restrict fp, fpos_t * restrict ppos);

fgetpos () writes the file position indicator for the stream designated by fp to an
object of type fpos_t, addressed by ppos. If fp is a wide-oriented stream, then the
indicator saved by fgetpos() also includes the stream’s current conversion state (see
“Byte-Oriented and Wide-Oriented Streams”). fgetpos() returns a nonzero value to
indicate that an error occurred. A return value of zero indicates success.

The following example records the positions of all lines in the text file messages.txt that
begin with the character #:

#define ARRAY_LEN 1000
long arrPos[ARRAY_LEN] = { oL };

FILE *fp = fopen("messages.txt", "r'");
if (fp != NULL)
{

int i =0, c1 = "'\n', c2;
while (i1 < ARRAY_LEN && (c2 = getc(fp)) !'= EOF)

{
if (c1 == '"\n' && c2 == '#')
arrPos[i++] = ftell(fp) - 1;
cl = c2;
}
VA4

}

Setting the File Access Position
The following functions modify the file position indicator:
int fsetpos(FILE *fp, const fpos_t *ppos);

Sets both the file position indicator and the conversion state to the values stored in
the object referenced by ppos. These values must have been obtained by a call to the
fgetpos() function. If successful, fsetpos() returns 0 and clears the stream’s EOF
flag. A nonzero return value indicates an error.

int fseek(FILE *fp, long offset, int origin),

Sets the file position indicator to a position specified by the value of offset and by a
reference point indicated by the origin argument. The offset argument indicates a
position relative to one of three possible reference points, which are identified by
macro values. Table 13-5 lists these macros, as well as the numeric values that were
used for origin before ANSI C defined them. The value of offset can be negative.
The resulting file position must be greater than or equal to zero, however.

Table 13-5. The origin parameter in fseek()

Macro name Traditional value of origin Offset is relative to

SEEK_SET 0 The beginning of the file
SEEK_CUR 1 The current file position
SEEK_END 2 The end of the file

When working with text streams — on systems that distinguish between text and binary
streams — you should always use a value obtained by calling the ftell() function for the

offset argument, and let origin have the value SEEK_SET. The function pairs ftell()-
fseek() and fgetpos()-fsetpos() are not mutually compatible, because the fpos_t
object used by fgetpos() and fsetpos() to indicate a file position may not have an
arithmetic type.

If successful, fseek() clears the stream’s EOF flag and returns zero. A nonzero return
value indicates an error. rewind() sets the file position indicator to the beginning of the
file and clears the stream’s EOF and error flags:

void rewind(FILE *fp);

Except for the error flag, the call rewind(fp) is equivalent to:

(void)fseek(fp, 0L, SEEK_SET)

If the file has been opened for reading and writing, you can perform either a read or a

write operation after a successful call to fseek(), fsetpos(), or rewind().

The following example uses an index table to store the positions of records in the file. This
approach permits direct access to a record that needs to be updated:

// setNewName(): Finds a keyword in an index table
// and updates the corresponding record in the file.
// The file containing the records must be opened in
// "update mode"; i.e., with the mode string "r+b".
// Arguments: - A FILE pointer to the open data file;

// - The key;

// - The new name.

// Return value: A pointer to the updated record,

// or NULL if no such record was found.

A e R R EEE LR R LT

#include <stdio.h>
#include <string.h>
#include "Record.h" // Defines the types Record_t, IndexEntry_t:
// typedef struct { long key, char name[32];
// /* ... */ } Record_t;
// typedef struct { long key, pos; } IndexEntry t;

extern IndexEntry_t indexTab[]; // The index table.
extern int indexLen; // The number of table entries.

Record_t *setNewName(FILE *fp, long key, const char *newname)

{

static Record_t record;
int 1i;
for (i =0; i < indexLen; ++i)

if (key == indexTab[i].key)

break; // Found the specified key.
}
if (i == indexLen)
return NULL; // No match found.

// Set the file position to the record:
if (fseek(fp, indexTab[i].pos, SEEK SET) != 0)
return NULL; // Positioning failed.
// Read the record:
if (fread(&record, sizeof(Record_t), 1, fp) != 1)

return NULL; // Error on reading.
if (key != record.key) // Test the key.
return NULL;
else
{ // Update the record:

size t size = sizeof(record.name);
strncpy(record.name, newname, size-1);
record.name[size-1] = '\0';

if (fseek(fp, indexTab[i].pos, SEEK _SET) !'= 0)

return NULL; // Error setting file position.
if (fwrite(&record, sizeof(Record_t), 1, fp) != 1)
return NULL; // Error writing to file.

return &record;

The second fseek() call before the write operation could also be replaced with the
following, moving the file pointer relative to its previous position:

if (fseek(fp, -(long)sizeof(Record_t), SEEK CUR) != 0)
return NULL; // Error setting file position.

Chapter 14. Multithreading

C programs often perform several tasks simultaneously. For example, a program may:

m Execute procedures that accomplish intermediate tasks in parallel and so improve
performance

m Process user input while carrying on time-consuming data communication or real-time
operations “in the background”

Different tasks are performed simultaneously by the concurrent execution of parts of the
program. Especially on modern multiprocessor systems — including multicore processors,
of course — it is increasingly important for programs to take advantage of concurrency to
use the system’s resources efficiently.

Until recently, C developers have had to depend on features of the operating system or
appropriate libraries to implement concurrent execution. Now, however, the new C11
standard makes concurrency in C programming portable. C11 supports multithreaded
execution, or multiple parallel paths of control flow within a process, and provides the
same degree of concurrency as all modern operating systems. To this end, C11 defines an
appropriate memory model and supports atomic operations. Support for multithreading
and atomic operations are optional under the C11 standard, however. An implementation
that conforms to C11 must simply define the macros _ STDC_NO_THREADS__ and

__STDC_NO_AToMICS_ if it does not provide the corresponding features.

You may have already worked with the POSIX threads extension to C (called pthreads for
short); that is, the library that implements multithreading in accordance with the Portable
Operating System Interface for UNIX (POSIX) standard, IEEE 1003.1c. If so, you will
find that the C11 threads programming interface is similar in most respects to the POSIX
standard.

Threads

When you start a program, the operating system creates a new process in which the
program is executed. A process consists of one or more threads. Each thread is a partial
process that executes a sequence of instructions independently of other parts of the
process. When the process begins, its main thread is active. From then on, any running
thread can launch other threads. All threads that have been started but not yet ended are
terminated when the process terminates — for example, by executing a return statement
in the main() function or by calling the exit () function.

The system’s scheduler allocates the available CPU time to all runnable threads equally.
Usually the scheduler is preemptive: that means it interrupts the thread being executed by
a central processing unit (CPU) at brief intervals and assigns the CPU a different thread
for a time. As a result, threads appear to the user to be executed in parallel, even on a
single-processor system. Truly simultaneous execution of several threads is only possible
on a multiprocessor system, however.

Every process has its own address space in memory, and has other exclusive resources,
such as open files. All the threads of a process inherit its resources. Most significantly,
several threads in one process share the same address space. That makes task-switching
within a process much simpler for the scheduler than switching to a different process.

However, each thread also has resources of its own that are necessary for task-switching
between threads: these include stack memory and CPU registers. These allow each thread
to process its own local data without interference between threads. In addition, a thread
may also have thread-specific permanent memory (see “Thread-Local Objects and
Thread-Specific Storage”).

Because the threads of a given process use the same address space, they share their global
and static data. That means, however, that two different threads can access the same
memory locations concurrently. This situation is called a data race in the C standard, or a
race condition in popular parlance. To prevent inconsistencies in shared data, the
programmer must explicitly synchronize different threads’ writing operations or reading
and writing operations if they use the same locations in memory.

Creating Threads

The macro definitions and the declarations of types and functions to support
multithreading are declared in the header threads.h. All of the identifiers that are directly
related to threads begin with the prefix thrd_. For example, thrd_t is the type of an
object that identifies a thread.

The function that creates and starts executing a new thread is called thrd_create(). One
of its arguments names the function to be executed in the new thread. The complete
prototype of thrd_create() is:

int thrd_create(thrd_t *thr, thrd_start_t func, void *arg);

The parameter func is a pointer to the function that the thread will execute, and the void
pointer arg is used to pass an argument to that function. In other words, the new thread
will perform the function call func(arg). The type of the func argument, thrd_start_t,
is defined as int (*)(void*) (that is, a pointer to a function that takes a void pointer as
its argument and returns an int), so the function that the thread carries out returns a value
of the type int. The program can subsequently obtain this return value — waiting for the
thread to finish if necessary — by calling the function thread_join().

If it succeeds in starting a thread, the function thread_create() writes the identification
of the new thread in the object pointed to by the argument thr, and returns the value of the
macro thread_success.

In most cases, other operations later in the program depend on the results of the thread’s
execution and can only be performed when it has finished. The function thread_join() is

used to ensure that a thread has finished. Its prototype is:

int thrd_join(thrd_t thr, int *result);

The thread that calls thread_join() blocks — that is, it stops at that point in the program
as long as necessary — until the thread identified by thr finishes. Then thread_join()
writes the return value of that thread’s function in the int variable that the pointer result
refers to (unless result is a null pointer). Finally, thread_join() releases any resources
that belong to the thread.

If the program’s logic does not require it to wait for a thread to end, it should call the
function:

int thrd_detach(thrd_t thr);

Then all of the thread’s resources will be released when the thread finishes. Once a thread
has been detached, there is no way for the program to wait for it to end, nor to obtain the
return value of the thread function. A program can call either thread_join() or

thread_detach() no more than once for each thread created.

The program in Example 14-1 illustrates a way of processing an array using parallel
operations. Separate threads first process parts of the array, and then their results are
joined together. The program merely calculates the sum of a sequence of numbers.

The function sum() first determines the maximum size of a block of array elements from

the number of threads to be created, and then calls the recursive helper function
parallel_sum().

The parallel_sum() function divides the array into two halves and gives one half to a

new thread to work on, and then calls itself to process the other half. As the example
illustrates, several arguments needed by a thread function are generally grouped in a
structure.

Example 14-1. Calculating the sum of array elements in several parallel threads

#include <stdbool.h>
#include <threads.h>

#define MAX_THREADS 8 // 1, 2, 4, 8.. Maximum number
// of threads to create.
#define MIN_BLOCK SIZE 100 // Minimum size of an array block.

typedef struct // Arguments for the parallel sum() function.
{
float *start; // Start and length of the
int len; // array block passed to parallel sum().
int block_size; // Size of the smallest blocks.
double sum; // The result.
} Sum_arg;
int parallel sum(void *arg); // Prototype of the thread function.
Y e T T

// Calculate the sum of array elements and write it to *sumPtr.

// sum() calls the function parallel sum() for parallel processing.
// Return value: true if no error occurs; otherwise, false.

bool sum(float arr[], int len, double* sumPtr)

{
int block_size = len / MAX_THREADS;
if (block_size < MIN_BLOCK_SIZE) block_size = len;
Sum_arg args = { arr, len, block_size, 0.0 };
if (parallel_sum(&args))
{ “*sumPtr = args.sum; return true; }
else
return false;
}
Y e T

// Recursive helper function to divide the work among several threads.
int parallel sum(void *arg)

{

Sum_arg *argp = (Sum_arg*)arg; // A pointer to the arguments.

if (argp->len <= argp->block_size) // If length <= block_size,
// add up the elements.
for (int i = 0; i < argp->len; ++i)
argp->sum += argp->start[i];

return 1;
}
else // If length > block_size,
{ // divide the array.

int mid = argp->len / 2;

Sum_arg arg2 = { argp->start+mid, argp->len-mid,
argp->block_size, 0}; // Specifies second half

argp->len = mid; // Length of first half

thrd_t th; // Process first half in a new thread.
int res = 0;
if (thrd_create(&th, parallel_sum, arg) != thrd_success)

return 0; // Couldn't spawn a thread

if (!parallel_sum(&arg2)) // Process second half by recursion
// in the current thread.

thrd_detach(th); return 0; // Recursive call failed
}
thrd_join(th, &res);
if (!res)

return 0; // Sibling thread reported failure

argp->sum += arg2.sum,;
return 1;

Other Thread Functions

In addition to the thread_create(), thread_join() and thread_detach() functions
described in the previous section, C11 provides five more functions for thread control:
thrd_t thrd_current(void),

This function returns the identification of the thread in which it is called.
int thrd_equal(thrd_t thro, thrd_t thrl),

Returns 0 if and only if the two thread identifiers refer to different threads.

int thrd_sleep(const struct timespec *duration,
Struct timespec *remaining),

Blocks the calling thread for the period specified by duration. The function returns
earlier only if it receives a signal that is not being ignored (see “Signals”). In that
case, the function saves the remaining countdown time in the object pointed to by
remaining, provided remaining is not a null pointer. The pointers duration and
remaining must not point to the same object.

The structure argument timespec has two members for storing seconds and

nanoseconds:
time_t tv_sec; // Seconds >= 0
long tv_nsec; // 0 <= nanoseconds <= 999999999

The order of the members in the structure is not specified. In the following example,
the calling thread waits for at least 100 milliseconds unless interrupted by a signal:

struct timespec duration = {0};
duration.tv_nsec = 100*1E6; // 1 millisecond

// = 1,000,000 nanoseconds
thrd_sleep(&duration,NULL); // Sleep for 100 milliseconds.

The function thrd_sleep() returns o if the countdown has expired, or -1 if it was
interrupted by a signal. Other negative return values indicate errors.

void thrd_yield(void),

This function advises the operating system’s scheduler to interrupt the calling thread
and give CPU time to another thread.

_Noreturn void thrd_exit(int result);

Ends the calling thread with the result result. Any function executed in the thread
may call thrd_exit (). This function call is equivalent to the statement return
result; in the thread function. Exiting the last remaining thread causes the program
to exit normally; that is, as if the exit () function were called with the argument
EXIT_SUCCESS.

Accessing Shared Data

If several threads access the same data and at least one of them modifies it, then all access
to the shared data must be synchronized in order to prevent data races. Otherwise, a thread
that reads shared data could interrupt another thread that is in the middle of modifying the
same data, and would then read inconsistent values. Moreover, because the system may
schedule the threads differently each time a program is executed, such errors only manifest
themselves intermittently in running programs and are difficult to reproduce in testing. As
the program in Example 14-2 illustrates, a data race can occur even in such a simple
operation as incrementing a counter.

Example 14-2. Concurrent memory access without synchronization

#include <stdio.h>
#include <threads.h>

#define COUNT 10000000L

long counter = 0;

void incFunc(void) { for (long i = 0; i < COUNT; ++i) ++counter; }

void decFunc(void) { for (long i ©; 1 < COUNT; ++i) --counter; }
int main(void)
{
clock t cl = clock();
thrd_t thil, th2;
if (thrd_create(&thl, (thrd_start t)incFunc, NULL) !'= thrd_success
|| thrd_create(&th2, (thrd_start_t)decFunc, NULL) != thrd_success)
{
fprintf(stderr, "Error creating thread\n"); return -1;
}
thrd_join(thi1, NULL);
thrd_join(th2, NULL);
printf("Counter: %1d \t", counter);
printf("CPU time: %1d ms\n", (clock()-cl)*1000L/CLOCKS_PER_SEC);
return 0,
}

The counter should be ® when the program ends. However, without synchronization, that

is not the case: the final counter value is different each time the program runs. Here is a
typical output sample:

Counter: -714573 CPU time: 59 ms

To permit synchronization, the C library provides mutex operations and atomic
operations.

Mutual Exclusion

The technique of mutual exclusion, or mutex for short, is used to prevent several threads
from accessing shared resources at the same time. The name mutex is given to an object
used to control exclusive access authorization. Together with condition variables, mutexes
permit extensive control of synchronized access. For example, they allow you to specify
the order in which data access operations must occur.

In C programs, a mutex is represented by an object of the type mtx_t that can be locked by
only one thread at a time, while other threads must wait until it is unlocked. All of the
declarations pertaining to operations on mutexes are contained in the header threads.h.
The most important mutex functions are:

int mtx_init(mtx_t *mtx, int mutextype),

Creates a mutex with the properties specified by mutextype. If it succeeds in creating
a new mutex, the function mtx_init () writes the ID of the new mutex in the object
pointed to by the argument mtx, and returns the value of the macro thrd_success.

The argument mutextype can have one of the following four values:

mtx_plain
mtx_timed
mtx_plain | mtx_recursive
mtx_timed | mtx_recursive

The value mtx_plain requests a simple mutex that supports neither timeouts nor
recursion; the other values specify timeout and/or recursion support.

void mtx_destroy(mtx_t *mtx);

Destroys the mutex pointed to by mtx, releasing all its resources.

int mtx_lock(mtx_t *mtx),

Blocks the calling thread until it obtains the mutex specified by mtx. The calling
thread must not already hold the mutex unless the mutex supports recursion. If the
call succeeds in obtaining the mutex, it returns the value of thrd_success.
Otherwise, it returns thrd_error.

int mtx_unlock(mtx_t *mtx),;

Releases the mutex referred to by mtx. The caller must hold the mutex before calling
mtx_unlock(). If the call succeeds in releasing the mutex, it returns the value of
thrd_success. Otherwise, it returns thrd_error.

The complementary functions mtx_lock() and mtx_unlock() are called at the beginning
and end of a critical section of code which only one thread at a time must execute. Two
alternatives to mtx_lock() are the functions mtx_trylock(), which obtains the mutex if it
happens to be free but doesn’t block if it is not, and mtx_timedlock(), which only blocks

until a specified time. All of these functions indicate by their return value whether the call
succeeded in obtaining the mutex.

The program in Example 14-3 is a modification of Example 14-2 and shows how to use a
mutex to eliminate the data race for the variable counter.

Example 14-3. Adding a mutex to the program in Example 14-2

#include <stdio.h>
#include <threads.h>

#define COUNT 10000000L

long counter = 0;
mtx_t mtx; // A mutex for access to counter

void incFunc(void)

{
for (long i = 0; i < COUNT; ++1i)
{ mtx_lock(&mtx); ++counter; mtx_unlock(&mtx); }

void decFunc(void)

{
for (long i = 0; i < COUNT; ++1i)
{ mtx_lock(&mtx); --counter; mtx_unlock(&mtx); }

int main(void)

if (mtx_init(&mtx, mtx_plain) != thrd_success)

{

fprintf(stderr, "Error initializing the mutex.\n");
return -1;

b
/7

// As in Example 14-2: start threads, wait for them to finish,
// print output

//

mtx_destroy(&mtx);

return 0;

}

The functions incFunc() and decFunc() can no longer access counter concurrently, as
only one of them can lock the mutex at a time. (Error checking has been omitted for the
sake of readability.) Now the counter has the correct value, 0, at the end of the program.
Here is a typical output sample:

Counter: O CPU time: 650 ms

Synchronization works, but at a price. The higher CPU time shows that the program now
takes about ten times as long to run. The reason is that synchronization by locking a mutex
is a much more complex operation than incrementing and decrementing a variable. Better
performance can be achieved using atomic objects in cases where they obviate the need
for a mutex lock.

Atomic Objects

An atomic object is an object that can be read or modified by means of atomic operations;
that is, by operations that cannot be interrupted by a concurrent thread. You can declare an
atomic object using the type qualifier _Atomic, introduced in C11 (unless the
implementation defines the macro _ STDC_No_ATOMICS_). For example, the counter
variable in the program in Example 14-2 can be made atomic by declaring it as follows:

_Atomic long counter = ATOMIC_VAR_INIT(OL);

This declaration defines the atomic long variable counter and initializes it with the value
0. The macro ATOMIC_VAR_INIT and all the other macros, types, and declarations for using

atomic objects are found in the header stdatomic.h. In particular, stdatomic.h defines
abbreviations for atomic types corresponding to all the integer types. For example, the
type atomic_uchar is equivalent to _Atomic unsigned char.

The syntax _Atomic(T) can also be used to specify the atomic type corresponding to a
given non-atomic type T. Array and function types cannot be atomic, however. An atomic
type may have a different size and alignment from those of the corresponding non-atomic
type.

Atomic Operations

Reading or writing an atomic object is an atomic operation; that is, an operation that
cannot be interrupted. That means that different threads can access an atomic object
concurrently without causing a race condition. For every atomic object, all modifications
of the object are performed in a definite global order, which is called its modification
order.

An atomic object with a structure or union type should only be read or written as a whole:
for safe access to individual members, the atomic structure or union should first be copied
to an equivalent non-atomic object.

Note that the initialization of an atomic object, whether using the macro ATOMIC_VAR_INIT
or by the generic function atomic_init (), is not an atomic operation.

Atomic operations are typically carried out as read-modify-write operations. For example,
the postfix increment and decrement operators ++ and - -, when applied to an atomic
object, are atomic read-modify-write operations. Likewise, the compound assignment
operators, such as +=, work atomically when their left operand is an atomic object. The
program in Example 14-2 can be made to deliver the correct final counter value 0, without
any other changes, by declaring the variable counter as atomic. The program’s
timekeeping shows that the version with an atomic counter variable is more than twice as
fast as the version using a mutex in Example 14-3.

In addition to the operators already mentioned, there are a number of functions to perform
atomic operations, including atomic_store(), atomic_exchange(), and

atomic_compare_exchange_strong(). You will find an overview of this group of
functions in Chapter 17, and a detailed description of each one in Chapter 18.

An atomic type has the lock-free property if atomic access to an object of this type can be
realized without using lock and unlock operations. Only the type atomic_flag, a structure

type that can represent the two states “set” and “cleared”, is guaranteed to have the lock-
free property. The macro ATOMIC_FLAG_INIT initializes an atomic_flag object in the

“cleared” state, as in the following declaration, for example:

atomic_flag done = ATOMIC_FLAG_INIT;

To perform the customary flag operations on an atomic_flag object, C11 provides the
functions atomic_flag_test_and_set() and atomic_flag_clear(). The integer atomic

types are usually also lock-free. To determine whether a given type is actually lock-free, a
program can check the value of a macro of the form ATOMIC_type_LOCK_FREE, where type

is a capitalized abbreviation for a specific integer type, such as BooL, INT, or LLONG. The
corresponding macro for pointer types is ATOMIC_POINTER_LOCK_FREE. All of these macros

yield values of 0, 1, or 2. The value 0 means that the type is never lock-free; 1 means it is
lock-free for certain objects; and 2 means it is always lock-free. Alternatively, you can

find out whether a given atomic object is lock-free by calling the generic function:

_Bool atomic_is_lock_free(const volatile A *obj);

The placeholder A in the function’s parameter declaration stands for any atomic type. The
argument obj is thus a pointer to any given atomic object.

Memory Ordering

In optimizing program code, compilers and processors are free to rearrange the order of
any instructions that are not interdependent. For example, the two assignment statements a

= 0; b = 1; can be executed in either order. In a multithreading environment, however,
such optimizations can lead to errors, because dependencies between memory operations
in different threads are ordinarily not visible to the compiler or processor.

Using atomic objects prevents such reordering by default. Preventing an optimization may
mean sacrificing speed, however. Experienced programmers can improve performance by
explicitly using atomic operations with lower memory-ordering requirements. For each
function that performs an atomic operation (such as atomic_store(), for example), there
is also a version that takes an additional argument of the type memory_order. These
functions have names that end in _explicit, such as atomic_store_explicit().

The memory_order type is an enumeration that defines the following constants to specify
the given memory ordering requirements:

memory_order_relaxed

The caller specifies that there are no memory order requirements, so that the compiler
is free to change the order of operations.

memory_order_release

Write access to an atomic object A performs a release operation. The effect of the
release operation is that all the preceding memory access operations in the given
thread are visible to another thread that performs an acquire operation on A.

memory_order_acquire

A read operation on an atomic object performs an acquire operation. That ensures
that subsequent memory access operations are not rearranged to occur before this
function call.

memory_order_consume

A consume operation is less restrictive than an acquire operation: it prevents the
reordering only of subsequent memory access operations that depend directly on the
atomic variable read.

memory_order_acq_rel

Performs both an acquire and a release operation.

memory_order_seq_cst

The request for sequential consistency includes the acquire and release operations of
memory_order_acq_rel. In addition, it also specifies that all operations that are so
qualified are performed in an absolute order that conforms to the modification order
of the atomic objects involved. Sequential consistency is the default memory order
requirement that is applied to all atomic operations if no lower requirement is
explicitly specified.

In the program in Example 14-2, modified to declare counter as atomic, the
incrementation and decrementation of the counter are performed independently of other
operations so that no memory order specifications are necessary. In other words, in place
of the statement

++counter; // Implies memory_order_seq_cst

the following statement is sufficient, and allows the compiler to perform more
optimization:

atomic_fetch_add_explicit(&counter, 1, memory_order_relaxed);

Release and acquire operations are an efficient way to establish a happens-before relation
between instructions. In other words, as the following example illustrates, the _explicit
functions ensure that a given operation B is only executed after another thread has
completed an operation A:

struct Data *dp = NULL, data;
atomic_intptr_t aptr = ATOMIC_VAR_INIT(O);

// Thread 1:
data = ...; // Operation A
atomic_store_explicit(&aptr, (intptr_t)&data,
memory_order_release);

// Thread 2:
dp = (struct Data*)atomic_load_explicit(&aptr,
memory_order_acquire);
if(dp != NULL)
// Process the data at *dp
// Operation B

else
// Data at *dp not available yet.

Synchronization using a mutex also implies an acquire operation when the mutex is
locked, and a release operation when it is unlocked. That means that if a thread T1 uses a
mutex to protect an operation A, and another thread T2 uses the same mutex to protect an
operation B, then operation A will be executed completely before operation B if T1 locks
the mutex first. Conversely, if T2 locks the mutex first, then all the modifications
performed by operation B will be visible to thread T1 when T1 executes operation A.

Fences

The memory order requirements for an atomic operation can also be specified separately
from an atomic operation. This technique is called establishing a fence or memory barrier.
To set a fence, C11 provides the function:

void atomic_thread_fence(memory_order order);

If the argument’s value is memory_order_release, the function establishes a release fence.
In this case, the atomic write operations must occur after the release fence.

The atomic_thread_fence() function establishes an acquire fence if its argument’s value
is memory_order_acquire or memory_order_consume. The atomic read operations must
occur before the acquire fence.

If the argument’s value is memory_order_relaxed, the function has no effect. The
argument values memory_order_acq_rel and memory_order_seq_cst specify a release
and acquire fence.

Fences permit a greater degree of memory-order optimization. In our previous example,
an acquire operation in the if branch is sufficient to synchronize the thread operations:

// Thread 2:
dp = (struct Data*)atomic_load_explicit(&aptr,
memory_order_relaxed);
if(dp !'= NULL)
{
atomic_thread_fence(memory_order_acquire);
// Operation B:
// Process the data at *dp.
}
else
// Data at *dp not available yet.

Communication Between Threads: Condition Variables

The C11 standard provides condition variables for communication between threads.
Threads can use condition variables to wait for a notification from another thread
indicating that a certain condition is fulfilled. Such a notification may mean that certain
data are ready for processing, for example.

A condition variable is represented by an object of the type cnd_t, and is used in
conjunction with a mutex. The general procedure is as follows: The thread obtains the
mutex and tests the condition. If the condition is not fulfilled, the thread waits on the
condition variable — releasing the mutex — until another thread wakes it up. Then the
thread obtains the mutex and tests the condition again. This procedure is repeated until the
condition is fulfilled.

The functions for working with condition variables, declared in the header threads.h, are
as follows:
int cnd_init(cnd_t *cond);
Initializes the condition variable pointed to by cond.
void cnd_destroy(cnd_t *cond);
Frees all the resources used by the specified condition variable.
int cnd_signal(cnd_t *cond);

Wakes up one of any number of threads that are waiting for the specified condition
variable.

int cnd_broadcast(cnd_t *cond),
Wakes up all the threads waiting for the specified condition variable.
int cnd_wait(cnd_t *cond, mtx_t *mtx);

Blocks the calling thread and releases the specified mutex. A thread must hold the
mutex before calling cnd_wait (). If another thread unblocks the caller by sending a
signal — that is, by specifying the same condition variable as the argument to a
cnd_signal() or cnd_broadcast() call — then the thread that has called
cnd_wait () obtains the mutex again before cnd_wait () returns.

int cnd_timedwait(cnd_t *restrict cond, mtx_t *restrict mtx,
const struct timespec *restrict ts),

Like cnd_wait(), cnd_timedwait () blocks the thread that calls it, but only until the
time specified by the argument ts. A struct timespec object representing the
current time can be obtained by calling the function timespec_get().

All of the condition variable functions except cnd_destroy() return the value of
thrd_error if they incur an error, and otherwise thrd_success. The function
cnd_timedwait () can also return the value of thrd_timedout if it returns when the time
limit has been reached.

The program in Examples 14-4 and 14-5 illustrates the use of condition variables in the
common “producer-consumer” model. The program starts a new thread for each producer
and for each consumer. A producer puts a new product — in our case, an int value — in a
ring buffer, provided the buffer is not full, and signals waiting consumers that a product is
available. Each consumer takes products from the buffer, if available, and signals the fact
to waiting producers.

Only one thread can modify the ring buffer at any given time. Thread synchronization
therefore takes place in the functions bufPut (), which inserts an element in the buffer, and
bufGet (), which removes an element from it. There are two condition variables: a
producer waits on one of them if the buffer is full, and a consumer waits on the other if the
buffer is empty. All the necessary elements of the buffer are contained in the structure
Buffer. The bufInit() function initializes a Buffer object with a specified size, and the
bufDestroy() function destroys it.

Example 14-4. A ring buffer for the producer-consumer model

/* buffer.h
* Declarations for a thread-safe buffer.
*/

#include <stdbool.h>

#include <threads.h>

typedef struct Buffer

{
int *data; // Pointer to the array of data.
size t size, count; // Maximum and current numbers of elements.
size t tip, tail; // tip = index of the next free spot.
mtx_t mtx; // A mutex and
cnd_t cndPut, cndGet; // two condition variables.
} Buffer;

bool bufInit(Buffer *bufPtr, size t size);
void bufDestroy(Buffer *bufPtr);

bool bufPut(Buffer *bufPtr, int data);
bool bufGet(Buffer *bufPtr, int *dataPtr, int sec);

2
* buffer.c
* Definitions of functions operating on Buffer.
*/

#include "buffer.h"

#include <stdlib.h> // For malloc() and free()

bool bufInit(Buffer *bufPtr, size t size)
{
if ((bufPtr->data = malloc(size * sizeof(int))) == NULL)
return false;
bufPtr->size = size;
bufPtr->count = 0;
bufPtr->tip = bufPtr->tail = 0;
return mtx_init(&bufPtr->mtx, mtx_plain) == thrd_success
&& cnd_init(&bufPtr->cndPut) == thrd_success
&& cnd_init(&bufPtr->cndGet) == thrd_success;

}

void bufDestroy(Buffer *bufPtr)

{
cnd_destroy(&bufPtr->cndGet);
cnd_destroy(&bufPtr->cndPut);
mtx_destroy(&bufPtr->mtx);
free(bufPtr->data);

}

// Insert a new element in the buffer:

bool bufPut(Buffer *bufPtr, int data)

{
mtx_lock(&bufPtr->mtx);
while (bufPtr->count == bufPtr->size)
if (cnd_wait(&bufPtr->cndPut, &bufPtr->mtx) != thrd_success)
return false;
bufPtr->data[bufPtr->tip] = data;
bufPtr->tip = (bufPtr->tip + 1) % bufPtr->size;
++bufPtr->count;
mtx_unlock(&bufPtr->mtx);
cnd_signal(&bufPtr->cndGet);
return true;
3

// Remove an element from the buffer. If the buffer is empty,
// wait no more than sec seconds.
bool bufGet(Buffer *bufPtr, int *dataPtr, int sec)

{
struct timespec ts;
timespec_get(&ts, TIME_UTC); // The current time
ts.tv_sec += sec; // + sec seconds delay.
mtx_lock(&bufPtr->mtx);
while (bufPtr->count == 0)
if (cnd_timedwait(&bufPtr->cndGet,
&bufPtr->mtx, &ts) != thrd_success)
return false;
*dataPtr = bufPtr->data[bufPtr->tail];
bufPtr->tail = (bufPtr->tail + 1) % bufPtr->size;
--bufPtr->count;
mtx_unlock(&bufPtr->mtx);
cnd_signal(&bufPtr->cndPut);
return true;
}

The corresponding main() function, shown in Example 14-5, creates a buffer and starts

several producer and consumer threads, giving each of them an identification number and
a pointer to the buffer. Each producer thread creates a certain number of “products” and
then quits with a return statement. A consumer thread returns if it is unable to get a

product to consume within a certain delay.

Example 14-5. Starting the producer and consumer threads

// producer_consumer.c
#include "buffer.h"
#include <stdio.h>
#include <stdlib.h>

#define NP 2 // Number of producers
#define NC 3 // Number of consumers
int producer(void *); // The thread functions.

int consumer(void *);

struct Arg { int id; Buffer *bufPtr; }; // Arguments for the
// thread functions.
_Noreturn void errorExit(const char* msg)

{
fprintf(stderr, "%s\n", msg); exit(oOxff);

int main(void)
{

printf("Producer-Consumer Demo\n\n");

Buffer buf; // Create a buffer for
bufInit(&buf, 5); // five products.

thrd_t prod[NP], cons[NC]; // The threads and
struct Arg prodArg[NP], consArg[NC]; // their arguments.
int 1 = 0, res = 0;

for (i =0; i < NP; ++1) // Start the producers.
{
prodArg[i].id = i+1, prodArg[i].bufPtr = &buf;
if (thrd_create(&prod[i], producer, &prodArg[i]) !'= thrd_success)
errorExit("Thread error.");

}
for (i =0; i <NC; ++1) // Start the consumers.
{
consArg[i].id = i+1, consArg[i].bufPtr = &buf;
if (thrd_create(&cons[i], consumer, &consArg[i]) != thrd_success)
errorexit("Thread error.");
}

for (1 =0, 1 < NP; ++i) // Wait for the threads to finish.
thrd_join(prod[i], &res),
printf("\nProducer %d ended with result %d.\n", prodArg[i].id, res);

for (1 =0, 1 < NC; ++i)
thrd_join(cons[i], &res),
printf("Consumer %d ended with result %d.\n", consArg[i].id, res);

bufDestroy(&buf);

return 0;
}
int producer(void *arg) // The producers' thread function.
{
struct Arg *argPtr = (struct Arg *)arg;
int id = argPtr->id;
Buffer *bufPtr = argPtr->bufPtr;
int count = 0;
for (int i = 0; i < 10; ++1i)
{
int data = 10*id + i;
if (bufPut(bufPtr, data))
printf("Producer %d produced %d\n", id, data), ++count;
else
{ fprintf(stderr,
"Producer %d: error storing %d\n", id, data);
return -id;
}
}
return count;
}
int consumer(void *arg) // The consumers' thread function.
{

struct Arg *argPtr = (struct Arg *)arg;
int id = argPtr->id;
Buffer *bufPtr = argPtr->bufPtr;

int count = 0;
int data = 0;
while (bufGet(bufPtr, &data, 2))
{
++count;
printf("Consumer %d consumed %d\n", id, data);

}

return count;

Thread-Local Objects and Thread-Specific Storage

Thread-local objects and thread-specific storage are two techniques by which each thread
can maintain separate data while using global identifiers for its variables. They allow
functions that are executed in a given thread to share data without incurring conflicts, even
when other threads are executing the same functions.

Using Thread-Local Objects

A global or static object whose declaration contains the new storage class specifier
_Thread_local is a thread-local object. That means that each thread possesses its own
instance of the object, which is created and initialized when the thread starts. The object’s
storage duration lasts as long as the thread runs. In expressions, the object’s name always
refers to the local instance of the object that belongs to the thread evaluating the
expression.

The specifier _Thread_local can be used together with one of the specifiers static or
extern. The header threads.h defines thread_local as a synonym for _Thread_local. In

Example 14-6, the main thread and the newly started thread each have an instance of the
thread-local variable var.

Example 14-6. Using a thread-local object

#include <stdio.h>
#include <threads.h>

thread_local int var = 10;

void print_var(void){ printf("var = %d\n", var); }
int func(void *); // Thread function

int main(int argc, char *argv[])

{
thrd_t thi;
if (thrd_create(&thl, func, NULL) != thrd_success){

fprintf(stderr, "Error creating thread.\n"); return Oxff;

}
print_var(); // Output: var = 10
thrd_join(thi, NULL);
return 0,

}

int func(void *arg) // Thread function

{
var += 10; // Thread-local variable
print_var(); // Output: var = 20
return 0,

Using Thread-Specific Storage

The technique of thread-specific storage is much more flexible than thread-local objects.
The individual threads can use different amounts of storage, for example. They can
dynamically allocate memory, and free it again by calling a destructor function. At the
same time, the individual threads’ distinct memory blocks can be accessed using the same
identifiers.

This flexibility is achieved by initially creating a global key that represents a pointer to
thread-specific storage. The individual threads can then load this pointer with the location
of their thread-specific storage. The key is an object of the type tss_t. The header

threads.h contains this type definition and the declarations of four functions for managing
thread-specific storage (abbreviated TSS):

int tss_create(tss_t *key, tss_dtor_t dtor);

Generates a new TSS pointer with the destructor dtor and sets the object pointed to
by key to a value that uniquely identifies the pointer. The type tss_dtor_t is a
function pointer, defined as void (*)(void*) (that is, a pointer to a function that
takes one void pointer argument and has no return value). The value of dtor may be
a null pointer.

void tss_delete(tss_t key);
Frees all the resources used by the TSS key key.
int tss_set(tss_t key, void *val);

Sets the TSS pointer identified by key, for the thread that calls tss_set (), to the
memory block addressed by val.

void *tss_get(tss_t key);

Returns a pointer to the memory block that the calling thread has set by calling
tss_set (). If an error occurs, tss_get () returns NULL.

The functions tss_create() and tss_set() return thrd_error if they incur an error;
otherwise, thrd_success.

The program in Example 14-7 stores the name of a thread in dynamically allocated thread-
specific memory.

Example 14-7. Using thread-specific storage

#include <threads.h>
#include <stdio.h>

#include <stdlib.h>
#include <string.h>

tss_t key; // Global key for a TSS pointer

int thFunc(void *arg); // Thread function
void destructor(void *data); // Destructor function

int main(void)
{
thrd_t thi, th2;
int resultl = 0, result2 = 0,

// Create the TSS key:
if (tss_create(&key, destructor) != thrd_success)
return -1;

// Create threads:
if (thrd_create(&thl, thFunc, "Thread_1") != thrd_success
|| thrd_create(&th2, thFunc, "Thread 2") != thrd_success)
return -2,

thrd_join(thl, &resultl); thrd_join(th2, &result2);
if (resultl != 0 || result2 != 0)

fputs("Thread error\n", stderr);
else

puts("Threads finished without error.");

tss_delete(key); // Free all resources of the TSS pointer.

return 0O,
}
void print(void) // Display thread-specific storage.
{
printf("print: %s\n", (char*)tss_get(key));
}
int thFunc(void *arg)
{
char *name = (char*)arg;
size_t size = strlen(name)+1;
// Set thread-specific storage:
if (tss_set(key, malloc(size)) != thrd_success)
return -1;
// Store data:
strcpy((char*)tss_get(key), name);
print();
return 0;
}
void destructor(void *data)
{

printf("Destructor for %s\n", (char*)data);
free(data); // Release memory.

}

Chapter 15. Preprocessing Directives

In “How the C Compiler Works”, we outlined the eight steps in translation from C source
to an executable program. In the first four of those steps, the C preprocessor prepares the
source code for the actual compiler. The result is a modified source in which comments
have been deleted and preprocessing directives have been replaced with the results of their
execution.

This chapter describes the C preprocessing directives. Among these are directives to insert
the contents of other source files; to identify sections of code to be compiled only under
certain conditions; and to define macros, which are identifiers that the preprocessor
replaces with another text.

Each preprocessor directive appears on a line by itself, beginning with the character #.
Only space and tab characters may precede the # character on a line. A directive ends with

the first newline character that follows its beginning. The shortest preprocessor directive is
the null directive. This directive consists of a line that contains nothing but the character #,

and possibly comments or whitespace characters. Null directives have no effect: the
preprocessor removes them from the source file.

If a directive doesn’t fit on one text line, you can end the line with a backslash (\) and
continue the directive on the next line. Here is an example:

#define MacroName A long, \
long macro replacement value

The backslash must be the last character before the newline character. The preprocessor
concatenates the lines by removing each backslash-and-newline pair that it encounters.
Because the preprocessor also replaces each comment with a space, the backslash no
longer has the same effect if you put a comment between the backslash and the newline
character.

Spaces and tab characters may appear between the # character that introduces a directive
and the directive name. (In the previous example, the directive name is define.)

You can verify the results of the C preprocessor, either by running the preprocessor as a
separate program or by using a compiler option to perform only the preprocessing steps.

Inserting the Contents of Header Files

An #include directive instructs the preprocessor to insert the contents of a specified file in
the place of the directive. There are two ways to specify the file to be inserted:

#include <filename>
#include "filename"

Use the first form, with angle brackets, when you include standard library header files or
additional header files provided by the implementation. Here is an example:

#include <math.h> // Prototypes of mathematical functions,
// with related types and macros.

Use the second form, with double quotation marks, to include source files specific to your
programs. Files inserted by #include directives typically have names ending in .h, and
contain function prototypes, macro definitions, and type definitions. These definitions can
then be used in any program source file after the corresponding #include directive. Here
is an example:

#include "myproject.h" // Function prototypes, type definitions
// and macros used in my project.

You may use macros in an #include directive. If you do use a macro, the macro’s
replacement must result in a correct #include directive. Example 15-1 demonstrates such
#include directives.

Example 15-1. Macros in #include directives

#ifdef _DEBUG_

#define MY_HEADER "myProject_dbg.h"
#else

#define MY_HEADER "myProject.h"
#endif
#include MY_HEADER

If the macro _DEBUG_ is defined when this segment is preprocessed, then the preprocessor
inserts the contents of myProject_dbg.h. If not, it inserts myProject.h. The #ifdef, #else,
and #endif directives are described in detail in “Conditional Compiling”.

How the Preprocessor Finds Header Files

It is up to the given C implementation to define where the preprocessor searches for files
specified in #include directives. Whether filenames are case-sensitive is also

implementation-dependent. For files specified between angle brackets (<filename>), the
preprocessor usually searches in certain system directories, such as /usr/local/include and
/usr/include on Unix systems, for example.

For files specified in quotation marks ("filename"), the preprocessor usually looks in the
current directory first, which is typically the directory containing the program’s other
source files. If such a file is not found in the current directory, the preprocessor searches
the system include directories as well. A filename may contain a directory path. If so, the

preprocessor looks for the file only in the specified directory.

You can always specify your own search path for #include directives, either by using an
appropriate command-line option in running the compiler, or by adding search paths to the
contents of an environment variable, often named INCLUDE. Consult your compiler’s
documentation.

Nested #include Directives

#include directives can be nested; that is, a source file inserted by an #include directive
may in turn contain #include directives. The preprocessor permits at least 15 levels of
nested includes.

Because header files sometimes include one another, it can easily happen that the same file
is included more than once. For example, suppose the file myProject.h contains the line:

#include <stdio.h>

Then a source file that contains the following #include directives would include the file
stdio.h twice, once directly and once indirectly:

#include <stdio.h>
#include "myProject.h"

However, you can easily guard the contents of a header file against multiple inclusions
using the directives for conditional compiling (explained in “Conditional Compiling”).
Example 15-2 demonstrates this usage.

Example 15-2. Preventing multiple inclusions

#ifndef INCFILE_H_
#define INCFILE_H_

/* ... The actual contents of the header file incfile.h are here.. */

#endif /* INCFILE H_ */

At the first occurrence of a directive to include the file incfile.h, the macro INCFILE_H_ is

not yet defined. The preprocessor therefore inserts the contents of the block between
#ifndef and #endif — including the definition of the macro INCFILE_H_. On subsequent

insertions of incfile.h, the #ifndef condition is false, and the preprocessor discards the
block up to #endif.

Defining and Using Macros

You can define macros in C using the preprocessor directive #define. This directive
allows you to give a name to any text you want, such as a constant or a statement.
Wherever the macro’s name appears in the source code after its definition, the
preprocessor replaces it with that text.

A common use of macros is to define a name for a numeric constant:

#define ARRAY_SIZE 100
double data[ARRAY_SIZE];

These two lines define the macro name ARRAY_SIZE for the number 100, and then use the
macro in a definition of the array data. Writing macro names in all capitals is a widely
used convention that helps to distinguish them from variable names. This simple example
also illustrates how macros can make a C program more flexible. It’s safe to assume that
the length of an array like data will be used in several places in the program — to control
for loops that iterate through the elements of the array, for example. In each instance, use
the macro name instead of a number. Then, if a program maintainer ever needs to modify
the size of the array, it needs to be changed in only one place: in the #define directive.

In the third translation step, the preprocessor parses the source file as a sequence of
preprocessor tokens and whitespace characters (see “The C Compiler’s Translation
Phases” in Chapter 1). If any token is a macro name, the preprocessor expands the macro;
that is, it replaces the macro name with the text it has been defined to represent. Macro
names that occur in string literals are not expanded, because a string literal is itself a single
preprocessor token.

Preprocessor directives cannot be created by macro expansion. Even if a macro expansion
results in a formally valid directive, the preprocessor doesn’t execute it.

You can define macros with or without parameters.

Macros Without Parameters

A macro definition with no parameters has the form:

#define macro_name replacement_text

Whitespace characters before and after replacement_text are not part of the replacement
text. The replacement_text can also be empty. Here are some examples:

#define TITLE "*** Examples of Macros Without Parameters ***"
#define BUFFER_SIZE (4 * 512)
#define RANDOM (-1.0 + 2.0*(double)rand() / RAND_MAX)

The standard function rand() returns a pseudorandom integer in the interval [0, RAND_MAX.
The prototype of rand() and the definition of the macro RAND_MAX are contained in the
standard header file stdlib.h.

The following statements illustrate one possible use of the preceding macros:

#include <stdio.h>
#include <stdlib.h>
VA4

// Display the title:
puts(TITLE);

// Set the stream fp to "fully buffered" mode, with a buffer of
// BUFFER_SIZE bytes.

// The macro _IOFBF is defined in stdio.h as 0.

static char myBuffer[BUFFER_SIZE];

setvbuf(fp, myBuffer, _IOFBF, BUFFER_SIZE);

// Fill the array data with ARRAY_SIZE random numbers in the range
// [-10.0, +10.0]:

for (int i = 0; i < ARRAY_SIZE; ++i)
data[i] = 10.0 * RANDOM;

Replacing each macro with its replacement text, the preprocessor produces the following
statements:

puts("*** Examples of Macros Without Parameters ***");

static char myBuffer[(4 * 512)];
setvbuf(fp, myBuffer, 0, (4 * 512));

00; ++1i)

for (int i = 0; i <1
= * (-1.0 + 2.0*(double)rand() / 2147483647);

data[i] 10.0

In this example, the implementation-dependent value of the macro RAND_MAX is
2,147,483,647. With a different compiler, the value of RAND_MAX may be different.

If you write a macro containing an expression with operators, you should always enclose
the expression in parentheses to avoid unexpected effects of operator precedence when
you use the macro. For example, the outer parentheses in the macro RANDOM ensure that the

expression 10.0 * RANDOM yields the desired result. Without them, macro replacement
would produce this expression instead:

10.0 * -1.0 + 2.0*(double)rand() / 2147483647

This expression yields a random number in the interval [-10.0, -8.0].

Macros with Parameters

You can also define macros with parameters. When the preprocessor expands such a
macro, it incorporates arguments you specify for each use of the macro in the replacement
text. Macros with parameters are often called function-like macros.

You can define a macro with parameters in either of the following ways:

#define macro_name([parameter_list]) replacement_text
#define macro_name([parameter_list ,] ...) replacement_text

The parameter_list is a comma-separated list of identifiers for the macro’s parameters.
When you use such a macro, the comma-separated argument list must contain as many
arguments as there are parameters in the macro definition. (However, C99 allows you to
use “empty arguments,” as we will explain in a moment.) The ellipsis (...) stands for one
or more additional arguments.

When defining a macro, you must make sure there are no whitespace characters between
the macro name and the left parenthesis ((). If there is any space after the name, then the
directive defines a macro without parameters whose replacement text begins with the left
parenthesis.

The standard library usually includes macros, defined in stdio.h, to implement the well-
known functions getchar() and putchar(). Their expansion values can vary from one

implementation to another, but in any case, their definitions are similar to the following:

#define getchar() getc(stdin)
#define putchar(x) putc(x, stdout)

When you “call” a function-like macro, the preprocessor replaces each occurrence of a
parameter in the replacement text with the corresponding argument. C99 allows you to
leave blank the place of any argument in a macro call. In this case, the corresponding
parameter is replaced with nothing; that is, it is deleted from the replacement text.
However, this use of “empty arguments” is not yet supported by all compilers.

If an argument contains macros, these are ordinarily expanded before the argument is
substituted into the replacement text. Arguments for parameters which are operands of the
or ## operators are treated specially. For details, see the subsequent subsections “The
stringify operator” and “The token-pasting operator”. Here are some examples of
function-like macros and their expansions:

#include <stdio.h> // Contains the definition of putchar().
#define DELIMITER ':'

#define SUB(a,b) (a-b)

putchar(DELIMITER);

putchar(str[i]);

int var = SUB(,10);

If putchar(x) is defined as putc(x, stdout), then the preprocessor expands the last three

lines as follows:

putc(':"', stdout);
putc(str[i], stdout);
int var = (-10);

As the following example illustrates, you should generally enclose the parameters in
parentheses wherever they occur in the replacement text. This ensures correct evaluation
in case any argument is an expression:

#define DISTANCE(x, y) ((x)>=(y) ? (x)-(y) : (y)-(x))
d = DISTANCE(a, b+0.5);

This macro call expands to the following:

d = ((a)>=(b+0.5) ? (a)-(b+0.5) : (b+0.5)-(a));

Without the parentheses around the parameters x and y, the expansion would contain the
expression a-b+0.5 instead of (a)-(b+0.5).

Variable numbers of arguments

The C99 standard lets you define macros with an ellipsis (...) at the end of the parameter
list to represent optional arguments. You can then invoke such a macro with a variable
number of arguments.

When you invoke a macro with optional arguments, the preprocessor groups all of the
optional arguments, including the commas that separate them, into one argument. In the
replacement text, the identifier _ VA_ARGS__ represents this group of optional arguments.

The identifier _ VA _ARGS__ can be used only in the replacement text of a macro definition.
__VA_ARGS__ behaves the same as any other macro parameter, except that it is replaced by

all the remaining arguments in the argument list, rather than just one argument. Here is an
example of a macro that takes a variable number of arguments:

// Assume we have opened a log file to write with file pointer fp_log.

//

#define printLog(...) fprintf(fp_log, _ VA_ARGS__)
// Using the printLog macro:

printLog("%s: intvar = %d\n", _ func__, intvar);

The preprocessor replaces the macro call in the last line of this example with the
following:

fprintf(fp_log, "%s: intvar = %d\n", __ func__, intvar);

The predefined identifier _ func__, used in any function, represents a string containing

the name of that function (see “Identifiers”). Thus, the macro call in this example writes
the current function name and the contents of the variable intvar to the log file.

The stringify operator

The unary operator # is commonly called the stringify operator (or sometimes the
stringizing operator) because it converts a macro argument into a string. The operand of #
must be a parameter in a macro replacement text. When a parameter name appears in the
replacement text with a prefixed # character, the preprocessor places the corresponding
argument in double quotation marks, forming a string literal. All characters in the
argument value itself remain unchanged, with the following exceptions:

= Any sequence of whitespace characters between tokens in the argument value is
replaced with a single space character.

m A backslash character (\) is prefixed to each double quotation mark character (") in the
argument.

m A backslash character is also prefixed to each existing backslash that occurs in a
character constant or string literal in the argument, unless the existing backslash
character introduces a universal character name (see “Universal Character Names” in
Chapter 1).

The following example illustrates how you might use the # operator to make a single

macro argument work both as a string and as an arithmetic expression in the replacement
text:

#define printDBL(exp) printf(#exp " = %f ", exp)
printDBL(4 * atan(1.0)); // atan() is declared in math.h.

The macro call in the last line expands to this statement:

printf("4 * atan(12.0)" " = %f ", 4 * atan(1.0));

Because the compiler merges adjacent string literals, this code is equivalent to the
following:

printf("4 * atan(1.0) = %f ", 4 * atan(1.0));

That statement would generate the following console output:

4 * atan(1.0) = 3.141593

The invocation of the showArgs macro in the following example illustrates how the #

operator modifies whitespace characters, double quotation marks, and backslashes in
macro arguments:

#define showArgs(...) puts(#__VA_ARGS_)
showArgs(one\n, "2\n", three);

The preprocessor replaces this macro with the following text:

puts("one\n, \"2\\n\", three");

This statement produces the following output:

one
, "2\n", three

The token-pasting operator

The operator ## is a binary operator, and can appear in the replacement text of any macro.
It joins its left and right operands together into a single token, and for this reason is
commonly called the token-pasting operator. If the resulting text also contains a macro
name, the preprocessor performs macro replacement on it. Whitespace characters that
occur before and after the ## operator are removed along with the operator itself.

Usually, at least one of the operands is a macro parameter. In this case, the argument value
is first substituted for the parameter, but the macro expansion itself is postponed until after
token-pasting. Here is an example:

#define TEXT_A "Hello, world!"
#define msg(x) puts(TEXT_ ## Xx)
msg(A);

Regardless of whether the identifier A has been defined as a macro name, the preprocessor
first substitutes the argument A for the parameter x, and then performs the token-pasting
operation. The result of these two steps is the following line:

puts(TEXT_A);

Now, because TEXT_A is a macro name, the subsequent macro replacement yields this
statement:

puts("Hello, world!");

If a macro parameter is an operand of the ## operator and a given macro invocation
contains no argument for that parameter, then the preprocessor uses a placeholder to
represent the empty string substituted for the parameter. The result of token pasting
between such a placeholder and any token is that token. Token-pasting between two
placeholders results in one placeholder. When all the token-pasting operations have been
carried out, the preprocessor removes any remaining placeholders. Here is an example of a
macro call with an empty argument:

msg();

This call expands to the following line:

puts(TEXT_);

If TEXT_ is not an identifier representing a string, the compiler will issue an error message.

The order of evaluation of the stringify and token-pasting operators # and ## is not
specified. If the order matters, you can influence it by breaking a macro up into several
macros.

Using Macros Within Macros

After argument substitution and execution of the # and ## operations, the preprocessor

examines the resulting replacement text and expands any macros it contains. No macro
can be expanded recursively, though; if the preprocessor encounters the name of any
macro in the replacement text of the same macro, or in the replacement text of any other

macro nested in it, that macro name is not expanded.

Similarly, even if expanding a macro yields a valid preprocessing directive, that directive
is not executed. However, the preprocessor does process any _Pragma operators that occur

in a completely expanded macro replacement (see “The _Pragma Operator™).

The following sample program prints a table of function values:

// fn_tbl.c: Display values of a function in tabular form.

// This program uses nested macros.

Y e e
#include <stdio.h>

#include <math.h> // Prototypes of the cos() and exp() functions.
#define PI 3.141593

#define STEP (P1I/8)

#define AMPLITUDE 1.0

#define ATTENUATION 0.1 // Attenuation in wave propagation.
#define DF(x) exp(-ATTENUATION* (x))

#define FUNC(X) (DF(x) * AMPLITUDE * cos(x)) // Attenuated

// oscillation.

// For the function display:
#define STR(s) #s

#define XSTR(s) STR(s) // Expand the macros in s, then stringify.

int main()

{

double x = 0.0;

printf("\nFUNC(x) = %s\n", XSTR(FUNC(x))); // Print the function.

printf("\n %10s %25s\n", "x", STR(y = FUNC(x))); // Table header.

printf("M------cii e \n");
for (; X < 2*PI + STEP/2; X += STEP)
printf("%15f %20f\n", X, FUNC(x));

return 0,

This example prints the following table:

FUNC(Xx) = (exp(-0.1*(x)) * 1.0 * cos(x))

X y = FUNC(x)
0.000000 1.000000
0.392699 0.888302..
5.890487 0.512619
6.283186 0.533488

Macro Scope and Redefinition

You cannot use a second #define directive to redefine an identifier that is currently

defined as a macro, unless the new replacement text is identical to the existing macro
definition. If the macro has parameters, the new parameter names must also be identical to
the old ones.

To change the meaning of a macro, you must first cancel its current definition using the
following directive:

#undef macro_name

After that point, the identifier macro_name is available for use in a new macro definition. If
the specified identifier is not the name of a macro, the preprocessor ignores the #undef
directive.

The names of several functions in the standard library are also defined as macros. For
these functions, you can use the #undef directive if you want to make sure your program

calls one of those functions and not the macro of the same name. You don’t need to
specify a parameter list with the #undef directive, even when the macro you are
undefining has parameters. Here is an example:

#include <ctype.h>

#undef isdigit // Remove any macro definition with this name.
AV

if (isdigit(c)) // Call the function isdigit().

/o0 Y/

The scope of a macro ends with the first #undef directive with its name, or if there is no
#undef directive for that macro, then with the end of the translation unit in which it is
defined.

Type-generic Macros

The C11 standard introduces the generic selection, which works somewhat like a switch
statement for data types. A generic selection is equivalent to an expression selected from a
list of possibilities depending on the type of another expression. (The exact mechanism is
described in “Generic Selections (C11)”.) This means that C programmers now have a
way to define their own type-generic macros like those provided by C99 for mathematical
functions in the header tgmath.h.

A generic selection begins with the new keyword _Generic. The following example

illustrates a possible implementation of the type-generic macro 1og10(x) from tgmath.h:

#define 1log10(X) _Generic((X), \
long double: logi10l, \

float: logief, \
default: log10 \
) (X)

The compiler selects one of the expressions 10g101, 1og10f, or 1og10 depending on the
type of the expression X. If the macro is called with an argument arg whose type is double

or an integer type, the result of the generic selection is the default expression, so that the
macro call ultimately results in the expression log10(arg).

Conditional Compiling

The conditional compiling directives instruct the preprocessor to retain or omit parts of the
source code depending on specified conditions. You can use conditional compiling to
adapt a program to different target systems, for example, without having to manage a
variety of source files.

A conditional section begins with one of the directives #if, #ifdef, or #ifndef, and ends
with the directive #endif. Any number of #elif directives, and at most one #else

directive, may occur within the conditional section. A conditional section that begins with
#if has the following form:

#if expressioni
[group1]
[#elif expression2
[groupz]]
[#elif expression(n)

[group(n) 1]
[#else

[group(n+1) 1]
#endif

The preprocessor evaluates the conditional expressions in sequence until it finds one
whose value is nonzero, or “true.” The preprocessor retains the text in the corresponding
group for further processing. If none of the expressions is true, and the conditional section
contains an #else directive, then the text in the #else directive’s group is retained.

The token groups groupi, group2, and so on consist of any C source code, and may
include more preprocessing directives, including nested conditional compiling directives.
Groups that the preprocessor does not retain for further processing are removed from the
program at the end of the preprocessor phase.

The #if and #elif Directives

The expression that forms the condition of an #if or #elif directive must be an integer

constant preprocessor expression. This is different from an ordinary integer constant
expression (see “Constant Expressions™) in these respects:

You may not use the cast operator in an #if or #elif expression.
You may use the preprocessor operator defined (see “The defined Operator™).

After the preprocessor has expanded all macros and evaluated all defined expressions,
it replaces all other identifiers or keywords in the expression with the character o.

All signed values in the expression have the type intmax_t, and all unsigned values
have the type uintmax_t. Character constants are subject to these rules as well. The
types intmax_t and uintmax_t are defined in the header file stdint.h.

The preprocessor converts characters and escape sequences in character constants and
string literals into the corresponding characters in the execution character set. Whether
character constants have the same value in a preprocessor expression as in later phases
of compiling is up to the given implementation, however.

The defined Operator
The unary operator defined can occur in the condition of an #if or #elif directive. Its
form is one of the following:

defined identifier
defined (identifier)

These preprocessor expressions yield the value 1 if the specified identifier is a macro
name — that is, if it has been defined in a #define directive and its definition hasn’t been
canceled by an #undef directive. For any other identifier, the defined operator yields the
value 0.

The advantage of the defined operation over the #ifdef and #ifndef directives is that
you can use its value in a larger preprocessor expression. Here is an example:

#if defined(_unix__) && defined(_GNUC__)

Most compilers provide predefined macros, like those used in this example, to identify the
target system and the compiler. Thus, on a Unix system, the macro __unix__ is usually
defined, and the macro __GNUC___is defined if the compiler being used is GCC. Similarly,
the Microsoft Visual C compiler on Windows automatically defines the macros _WIN32
and _MSC_VER.

The #ifdef and #ifndef Directives

You can also test whether a given macro is defined using the #ifdef and #ifndef
directives. Their syntax is:

#ifdef identifier
#ifndef identifier

These are equivalent to the following #if directives:

#if defined identifier
#if 'defined identifier

The conditional code following the #ifndef identifier is retained if identifier is not a
macro name. Examples 15-1 and 15-2 illustrate possible uses of these directives.

Defining Line Numbers

The compiler includes line numbers and source filenames in warnings, error messages,
and information provided to debugging tools. You can use the #1ine directive in the

source file itself to change the compiler’s filename and line numbering information. The
#line directive has the following syntax:

#line line_number ["filename"]

The next line after a #1ine directive has the number specified by 1ine_number. If the
directive also includes the optional string literal "filename", then the compiler uses the
contents of that string as the name of the current source file.

The 1ine_number must be a decimal constant greater than zero. Here is an example:

#line 1200 "primary.c"

The line containing the #1ine directive may also contain macros. If so, the preprocessor
expands them before executing the #1ine directive. The #1ine directive must then be
formally correct after macro expansion.

Programs can access the current line number and filename settings as values of the
standard predefined macros _ LINE_ _and _ FILE_ :

printf("This message was printed by line %d in the file %s.\n",
__LINE_ , __ FILE__);

The #1ine directive is typically used by programs that generate C source code as their
output. By placing the corresponding input file line numbers in #1ine directives, such

programs can make the C compiler’s error messages refer to the pertinent lines in the
original source.

Generating Error Messages

The #error directive makes the preprocessor issue an error message, regardless of any
actual formal error. Its syntax is:

#terror [text]

If the optional text is present, it is included in the preprocessor’s error message. The
compiler then stops processing the source file and exits as it would on encountering a fatal
error. The text can be any sequence of preprocessor tokens. Any macros contained in it
are not expanded. It is a good idea to use a string literal here to avoid problems with
punctuation characters, such as single quotation marks.

The following example tests whether the standard macro __STbc__ is defined, and
generates an error message if it is not:
#ifndef __STDC__

#error "This compiler does not conform to the ANSI C standard."
#endif

The #pragma Directive

The #pragma directive is a standard way to provide additional information to the compiler.
This directive has the following form:

#pragma [tokens]

If the first token after #pragma is STDC, then the directive is a standard pragma. If not, then
the effect of the #pragma directive is implementation-dependent. For the sake of
portability, you should use #pragma directives sparingly.

If the preprocessor recognizes the specified tokens, it performs whatever action they stand
for, or passes information on to the compiler. If the preprocessor doesn’t recognize the
tokens, it must ignore the #pragma directive.

Recent versions of the GNU C compiler and Microsoft’s Visual C compiler both recognize
the pragma pack(n), for example, which instructs the compiler to align structure members
on certain byte boundaries. The following example uses pack (1) to specify that each
structure member be aligned on a byte boundary:

#if defined(__GNUC__) || defined(_MSC_VER)
#pragma pack(1) // Byte-aligned: no padding.
#endif

Single-byte alignment ensures that there are no gaps between the members of a structure.
The argument n in a pack pragma is usually a small power of two. For example, pack(2)

aligns structure members on even-numbered byte addresses, and pack(4) on four-byte
boundaries. pack () with no arguments resets the alignment to the implementation’s
default value.

C99 introduced the following three standard pragmas:

#pragma STDC FP_CONTRACT on_off_switch
#pragma STDC FENV_ACCESS on_off_switch
#pragma STDC CX_LIMITED_RANGE on_off_switch

The value of the on_off_switch must be ON, OFF, or DEFAULT. The effects of these
pragmas are discussed in “Mathematical Functions”.

The _Pragma Operator

You cannot construct a #pragma directive (or any other preprocessor directive) by means

of a macro expansion. For cases where you would want to do that, C99 has also
introduced the preprocessor operator _Pragma, which you can use with macros. Its syntax

is as follows:

_Pragma (string_literal)

Here is how the _Pragma operator works. First, the string literal operand is “de-
stringized,” or converted into a sequence of preprocessor tokens, in this way: the quotation
marks enclosing the string are removed; each sequence of a backslash followed by a
double quotation mark (\") is replaced by a quotation mark alone ("); and each sequence
of two backslash characters (\\) is replaced with a single backslash (\). Then the
preprocessor interprets the resulting sequence of tokens as if it were the text of a #pragma
directive.

The following line defines a helper macro, STR, which you can use to rewrite any #pragma
directive using the _Pragma operator:

#define STR(s) #s // This # is the "stringify" operator.

With this definition, the following two lines are equivalent:

#pragma tokens
_Pragma (STR(tokens))

The following example uses the _Pragma operator in a macro:

#define ALIGNMENT(n) _Pragma(STR(pack(n)))
ALIGNMENT(2)

Macro replacement changes the ALIGNMENT (2) macro call to the following:
_Pragma("pack(2)")

The preprocessor then processes the line as it would the following directive:

#pragma pack(2)

Predefined Macros

Every compiler that conforms to the ISO C standard must define the following seven
macros. Each of these macro names begins and ends with two underscore characters:
__DATE__

The replacement text is a string literal containing the compilation date in the format
"Mmm dd yyyy" (example: "Mar 19 2006"). If the day of the month is less than 10,
the tens place contains an additional space character.

__FILE _

A string literal containing the name of the current source file.
__LINE _
An integer constant whose value is the number of the line in the current source file
that contains the _ LINE__ macro reference, counting from the beginning of the file.
__TIME _
A string literal that contains the time of compilation, in the format "hh:mm:ss"
(example: "08:00:59").
__STDC__
The integer constant 1, indicating that the compiler conforms to the ISO C standard.
__STDC_HOSTED__
The integer constant 1 if the current implementation is a hosted implementation;
otherwise, the constant 0.
__STDC_VERSION__

The long integer constant 199901L if the compiler supports the C99 standard of
January 1999, or 201112L if the compiler supports the C11 standard of December
2011.

The values of the _ FILE__and _ LINE__ macros can be influenced by the #1ine
directive. The values of all the other predefined macros remains constant throughout the
compilation process.

The value of the constant __STDC_VERSION__ will be adjusted with each future revision of
the international C standard.

Beginning with the C99 standard, C programs are executed either in a hosted or in a
freestanding environment. Most C programs are executed in a hosted environment, which
means that the C program runs under the control and with the support of an operating
system. In this case, the constant __ STDC_HOSTED__ has the value 1, and the full standard

library is available.

A program in a freestanding environment runs without the support of an operating system,
and therefore only minimal standard library resources are available to it (see “Execution

Environments”).

Conditionally Defined Macros

Unlike the macros listed previously, the following standard macros are predefined only
under certain conditions. If any of these macros is defined, it indicates that the
implementation supports a certain IEC or ISO standard:

_ STDC_IEC 559

This constant is defined with the value 1 if the implementation’s real floating-point
arithmetic conforms to the IEC 60559 standard.

__STDC_IEC_ 559 COMPLEX__

This constant is defined with the value 1 if the implementation’s complex floating-
point arithmetic also conforms to the IEC 60559 standard.

__STDC_ISO_10646__

This long integer constant represents a date in the form yyyymmL (example: 199712L).
This constant is defined if the encoding of wide characters with the type wchar_t
conforms to the Unicode standard ISO/IEC 10646, including all supplements and
corrections up to the year and month indicated by the macro’s value.

The C11 standard adds the following optional macros:

__STDC_MB_MIGHT_NEQ WC__
This constant is defined with the value 1 if a character in the basic character set,

when encoded in a wchar_t object, is not necessarily equal to its encoding in the
corresponding character constant.

_ STDC_UTF_16__

This constant is defined with the value 1 if characters of the type char16_t are
encoded in UTF-16. If the type uses a different encoding, the macro is not defined.

__ STDC_UTF_32__

This constant is defined with the value 1 if characters of the type char32_t are
encoded in UTF-32. If the type uses a different encoding, the macro is not defined.

_ STDC_ANALYZABLE_

This constant is defined with the value 1 if the implementation supports the analysis
of runtime errors as specified in Annex L of the C11 standard.

__STDC_LIB EXT1_ _

This constant is defined with the value 201112L if the implementation supports the
new functions with bounds-checking specified in Annex K of the C11 standard. The
names of these new function end in _s.

__STDC_NO_ATOMICS _
This constant is defined with the value 1 if the implementation does not include the

types and functions for atomic memory access operations (that is, the header
stdatomic.h is absent).

_ STDC_NO_COMPLEX___

This constant is defined with the value 1 if the implementation does not support
arithmetic with complex numbers (that is, the header complex.h is absent).

_ STDC_NO_THREADS___

This constant is defined with the value 1 if the implementation does not support
multithreading (that is, the header threads.h is absent).
__STDC_NO_VLA__

This constant is defined with the value 1 if the implementation does not support
variable-length arrays.

You must not use any of the predefined macro names described in this section in a
#define or #undef directive. Finally, the macro name _ cplusplus is reserved for C++
compilers, and must not be defined when you compile a C source file.

Part II. Standard Library

Chapter 16. The Standard Headers

Each standard library function is declared in one or more of the standard headers. These
headers also contain all the macro and type definitions that the C standard provides. This
chapter describes the contents and use of the standard headers.

Each of the standard headers contains a set of related function declarations, macros, and
type definitions. For example, mathematical functions are declared in the header math.h.
The standard headers are also called header files, as the contents of each header are
usually stored in a file. Strictly speaking, however, the standard does not require the
headers to be organized in files.

The C standard defines the following 29 headers (those marked with an asterisk were
added in C11):

assert.h inttypes.h signal.h stdint.h threads.h*
complex.h iso646.h stdalign.h* stdio.h time.h
ctype.h limits.h stdarg.h stdlib.h uchar.h*

errno.h locale.h stdatomic.h* stdnoreturn.h* wchar.h
fenv.h math.h stdbool.h string.h wctype.h

float.h setjimp.h stddef.h tgmath.h

The headers complex.h, stdatomic.h, and threads.h are optional components. There are
standard macros that a C11 implementation can define to indicate that it does not include
these options. If the macro _ STDC_NO_COMPLEX__, _ STDC_NO_ATOMICS_ , or

__STDC_NO_THREADS__is defined as equal to 1, the implementation does not include the
corresponding optional header.

Using the Standard Headers

You can add the contents of a standard header to a source file by inserting an #include
directive, which must be placed outside all functions (see “Inserting the Contents of
Header Files™). You can include the standard headers as many times as you want, and in
any order. However, before the #include directive for any header, your program must not
define any macro with the same name as an identifier in that header. To make sure that
your programs respect this condition, always include the required standard headers at the
beginning of your source files, before any header files of your own.

Execution Environments

C programs run in one of two execution environments: hosted or freestanding. Most
common programs run in a hosted environment; that is, under the control and with the
support of an operating system. In a hosted environment, the full capabilities of the
standard library are available. Furthermore, programs compiled for a hosted environment
must define a function named main (), which is the first function invoked on program

start.

A program designed for a freestanding environment runs without the support of an
operating system. In a freestanding environment, the name and type of the first function
invoked when a program starts is determined by the given implementation. Programs for a
freestanding environment cannot use complex floating-point types, and may be limited to
the following headers:

float.h stdalign.h stddef.h
iso646.h stdarg.h stdint.h

limits.h stdbool.h stdnoreturn.h

Specific implementations may also provide additional standard library resources.

Function and Macro Calls

All standard library functions have external linkage. You may use standard library
functions without including the corresponding header by declaring them in your own code.
However, if a standard function requires a type defined in the header, then you must
include the header.

The standard library functions are not guaranteed to be reentrant — that is, two calls to a
standard library function may not safely be in execution concurrently in one process. One
reason for this rule is that several of the functions use and modify static or thread-local
variables, for example.

As aresult, you can’t generally call standard library functions in signal handling routines.
Signals are asynchronous, which means that a program may receive a signal at any time,
even while it’s executing a standard library function. If that happens, and the handler for
that signal calls the same standard function, then the function must be reentrant. It is up to
individual implementations to determine which functions are reentrant, or whether to
provide a reentrant version of the whole standard library.

Most of the standard library functions — with a few explicitly specified exceptions — are
thread-safe, meaning they can be safely executed by several threads “simultaneously.” In
other words, the standard functions must be so implemented that any objects they use
internally are not subject to data races when called in more than one thread. In particular,
they must not use static objects without ensuring synchronization. However, you the
programmer are responsible for coordinating different threads’ access to any objects
referred to directly or indirectly by a function’s arguments.

Each stream has a corresponding lock which the functions in the I/O library use to obtain
exclusive access to the stream before performing an operation. In this way, the standard
library functions prevent data races when several threads access a given stream.

As the programmer, you are responsible for calling functions and function-like macros
with valid arguments. Wrong arguments can cause severe runtime errors. Typical mistakes
to avoid include the following:

» Argument values outside the domain of the function, as in the following call:

double x = -1.0, y = sqrt(x);

» Pointer arguments that do not point to an object or a function, as in this function call
with an uninitialized pointer argument:

char *msg; strcpy(msg, "error");

= Arguments whose type does not match that expected by a function with a variable
number of arguments. In the following example, the conversion specifier %f calls for a
float pointer argument, but &x is a pointer to double:

double x; scanf("%f", &x);

m Array address arguments that point to an array that isn’t large enough to accommodate
data written by the function. Here is an example:

char name[] = "Hi "; strcat(name, "Alice");

Macros in the standard library make full use of parentheses so that you can use them in
expressions in the same way as individual identifiers. Furthermore, each function-like
macro in the standard library uses its arguments only once.! This means that you can call
these macros in the same way as ordinary functions, even using expressions with side
effects as arguments. Here is an example:

int ¢ = 'A';
while (¢ <= 'Z') putchar(c++); // Output: 'ABC.. XYZ'

The functions in the standard library may be implemented both as macros and as
functions. In such cases, the same header file contains both a function prototype and a
macro definition for a given function name. As a result, each use of the function name
after you include the header file invokes the macro. The following example calls the
macro or function toupper () to convert a lowercase letter to uppercase:

#include <ctype.h>
/E L0/
c = toupper(c); // Invokes the macro toupper(), if there is one.

However, if you specifically want to call a function and not a macro with the same name,
you can use the #undef directive to cancel the macro definition:

#include <ctype.h>

#undef toupper // Remove any macro definition with this name.
VA4
Cc = toupper(c) // Calls the function toupper().

You can also call a function rather than a macro with the same name by setting the name
in parentheses:

#include <ctype.h>
VA4
c = (toupper)(c) // Calls the function toupper().

Finally, you can omit the header containing the macro definition, and declare the function
explicitly in your source file:

extern int toupper(int);
VA4
c = toupper(c) // Calls the function toupper().

Reserved Identifiers

When choosing identifiers to use in your programs, you must be aware that certain
identifiers are reserved for the standard library. Reserved identifiers include the following:

m All identifiers that begin with an underscore followed by a second underscore or an
uppercase letter are always reserved. Thus, you cannot use identifiers such as __ x or
_Max, even for local variables or labels.

m All other identifiers that begin with an underscore are reserved as identifiers with file
scope. Thus, you cannot use an identifier such as _a_ as the name of a function or a
global variable, although you can use it for a parameter, a local variable, or a label. The
identifiers of structure or union members can also begin with an underscore, as long as
the second character is not another underscore or an uppercase letter.

m Identifiers declared with external linkage in the standard headers are reserved as
identifiers with external linkage. Such identifiers include function names, as well as the
names of global variables such as errno. Although you cannot declare these identifiers
with external linkage as names for your own functions or objects, you may use them
for other purposes. For example, in a source file that does not include string.h, you may
define a static function named strcpy().

m The identifiers of all macros defined in any header you include are reserved.

m Identifiers declared with file scope in the standard headers are reserved within their
respective name spaces. Once you include a header in a source file, you cannot use any
identifier that is declared with file scope in that header for another purpose in the same
name space (see “Identifier Name Spaces™) or as a macro name.

Although some of the conditions listed here have “loopholes” that allow you to reuse
identifiers in a certain name space or with static linkage, overloading identifiers can cause
confusion, and it’s generally safest to avoid the identifiers declared in the standard headers
completely. In the following sections, we also list identifiers that have been reserved for
future extensions of the C standard. The last three rules in the previous list apply to such
reserved identifiers as well.

Functions with Bounds-Checking

Many traditional functions in the C standard library copy strings to arrays that are
provided by the programmer as pointer arguments. There is no way for these functions to
test whether the given destination array is large enough to accommodate the result. The
programmer alone is responsible for ensuring that no data is written past the end of an
array, where it could modify adjacent objects in memory. This is a significant threat to the
reliability and security of a program, and can cause it to crash.

To alleviate this problem, Appendix K of the C11 standard, “Bounds-checking Interfaces,”
introduces many new functions as secure alternatives to the traditional standard C
functions. These alternative functions, also called the secure functions, take an additional
argument which specifies the size of the destination array. The secure functions use this
information to ensure that the results they produce do not exceed the array’s bounds. The
names of the secure functions end with the suffix _s (s for “secure”), as in strcpy_s(), for
example. Unlike the traditional function strcpy(), the function strcpy_s() only copies a
string if the specified destination vector is large enough to accommodate it.

Availability

Support for the bounds-checking functions is optional. They are available only in
implementations that define the macro __STDC_LIB_EXT1_ .

If these functions are provided, their declarations and the accompanying type and macro
definitions are included in the same headers that provide the corresponding traditional
functions. For example, the header stdio.h then contains the declaration of scanf_s() in
addition to scanf (), and string.h contains the declaration of strcpy_s() alongside
strcpy(). To make the declarations of the secure functions visible to the compiler,
however, your program must define the macro _ STDC_WANT_LIB_EXT1__ as equal to 1
before including the corresponding headers, for example, by using the lines:

#define _ STDC_WANT_LIB_EXT1__ 1
#include <stdio.h>

To prevent name conflicts with functions defined in your program or in other libraries it
uses, you can ensure that the secure functions are not visible by defining the macro
__STDC_WANT_LIB_EXT1__asequalto O.If _ STDC _WANT_LIB_EXT1__is not defined before
the program includes a standard header, the corresponding secure functions may or may
not be available, depending on the given compiler.

Runtime Constraints

The parameter that specifies the size of an array in a bounds-checking function has the
type rsize_t. This type is defined in the header stddef.h as equal to size_t. However,
rsize_t places a special restriction on the value of a variable: a variable of the type
rsize_t must not be assigned a value greater than that of the macro RSIZE_MAX. Passing
an array length argument greater than RSIZE_MAX to a bounds-checking function causes an

error. This constraint can detect errors that arise through the conversion of negative
numbers to unsigned types, as such conversions result in very large positive numbers.

The secure functions perform other tests in addition to bounds-checking. For example,
they test whether pointers passed as arguments are non-null. All the conditions that must
be fulfilled for a function to execute successfully are called the function’s runtime
constraints.

If a secure function’s runtime constraints are violated, the destination objects remain
unchanged, and the function calls a runtime constraint handler, passing it a return value
and an error message. The handler can end the program by calling abort (), or return to

the secure function which called it. A program may replace the default runtime constraint
handler with another standard handler or with a function of its own by calling the function
set_constraint_handler_s(). For details, see the description of the function
set_constraint_handler_s() in Chapter 18.

The return value of a secure function indicates whether an error has occurred. Many of the
secure functions have a return value of the type errno_t. This type is defined in the

header errno.h as int. These secure functions return the value 0 after a successful call,
and a nonzero value if an error has occured.

Contents of the Standard Headers

The following subsections list the standard headers in alphabetical order, with brief
descriptions of their contents, including all the types and macros defined in them.

The standard functions are described in the next two chapters: Chapter 17 summarizes the
functions that the standard library provides for each area of application — the
mathematical functions, string manipulation functions, functions for time and date
operations, and so on. Chapter 18 then provides a detailed description of each function
individually, in alphabetical order, with examples illustrating their use.

assert.h

This header defines the function-like macro assert (), which tests whether the value of an
expression is nonzero in the running program. If you define the macro NDEBUG before
including assert.h , then calls to assert () have no effect.

In C11, the header assert.h defines the macro static_assert as a synonym for the
keyword _Static_assert. A _Static_assert declaration tests a constant expression for a
nonzero value at compile time (see “_Static_assert Declarations”).

complex.h

C99 supports arithmetic with complex numbers by introducing complex floating-point
types and including appropriate functions in the math library. The header file complex.h
contains the prototypes of the complex math functions and defines the related macros. For
a brief description of complex numbers and their representation in C, see “Complex
Floating-Point Types”.

Under the C11 standard, support for complex numbers is optional. The header complex.h
is absent if the macro _ STDC_NO_COMPLEX__ is defined.

The names of the mathematical functions for complex numbers all begin with the letter c.
For example, csin() is the complex sine function, and cexp() the complex exponential
function. You can find a complete list of these functions in “Mathematical Functions”. In
addition, the following function names are reserved for future extensions:

cerf() cerfc() cexp2() cexpml() clog10() clogip()
clog2() clgamma() ctgamma()

The same names with the suffixes f (for float _Complex) and 1 (for long double
_Complex) are also reserved.
The header file complex.h defines the following macros:
complex
This is a synonym for the keyword _Complex.
_Complex_I

This macro represents an expression of type const float _Complex whose value is
the imaginary unit, i.

This macro is a synonym for _Complex_I (or for _Imaginary_I, if defined), and
likewise represents the imaginary unit, i.

A C11 implementation may also include types to represent pure imaginary numbers. If and
only if a given C implementation includes such types, it defines the two following macros:
imaginary

This is a synonym for the keyword _Imaginary.
_Imaginary_I

This macro represents an expression of type const float _Imaginary whose value is
the imaginary unit, i. If _Imaginary_I is defined, the macro I is defined as a
synonym for it.

C11 also provides the function-like macros CMPLX, CMPXF, and CMPLXL to compose a
complex number from its real and imaginary parts.

ctype.h

This header contains the declarations of functions to classify and convert single characters.
These include the following functions, which are usually also implemented as macros:

isalnum() isalpha() disblank() discntrl() isdigit() disgraph()
islower() disprint() dispunct() isspace() disupper() isxdigit()
tolower () toupper()

These functions or macros take an argument of type int, whose value must be between 0
and 255, inclusive, or EOF. The macro EOF is defined in stdio.h. The classification of
characters, and hence the behavior of these functions (except isdigit() and isxdigit()),
is dependent on the current locale.

All names that begin with is or to followed by a lowercase letter are reserved for future
extensions.

errno.h

The header errno.h defines the macro errno as representing a thread-local error variable
of the type int. Various functions in the standard library set errno to a specified positive

value to indicate the type of error encountered during execution. For each function that
uses errno, its possible values are indicated in the function’s description in Chapter 18.

The identifier errno is not necessarily declared as a global variable. It may be a macro that
represents a modifiable Ivalue with the type int. For example, if _errno() is a function
that returns a pointer to int, then errno could be defined as follows:

#define errno (* _errno())

When the program starts, errno in the initial thread has the value zero. The initial value of
errno in any other thread is undetermined. Because no standard function sets the value of
errno to zero, a program that uses errno to detect errors should set the value of errno to
zero before calling a standard library function.

The header errno.h also defines an appropriate macro constant for each possible value of
errno. The names of these macros begin with E, and include at least these three:

EDOM

Domain error; the function is mathematically not defined for the given value of the
argument.

EILSEQ
Illegal sequence. For example, a multibyte character conversion function may have

encountered a sequence of bytes that cannot be interpreted as a multibyte character in
the encoding used.

ERANGE
Range error; the function’s mathematical result is not representable by its return type.

All macro names that begin with E followed by a digit or an uppercase letter are reserved
for future extensions.

C11 implementations that support the new bounds-checking, “secure” functions also
define the type errno_t in the header errno.h as a synonym for int.

fenv.h

C99 introduced the floating-point environment, which provides system variables to allow
programs to deal flexibly with floating-point exceptions and control modes. (See also
“Mathematical Functions”.) The header fenv.h contains all the declarations that may be
used in accessing the floating-point environment, although implementations are not
required to support floating-point exceptions or control modes.

Macro and type definitions for the floating-point environment
The header fenv.h contains the following definitions to manipulate the floating-point
environment:

fenv_t
A type capable of representing the floating-point environment as a whole.
FE_DFL_ENV

An object of the type const fenv_t *; points to the default floating-point
environment, which is in effect when the program starts.

Macro and type definitions for floating-point exceptions

Implementations that support floating-point exceptions also define an integer macro
corresponding to the status flag for each kind of exception that can occur. Standard names
for these macros are:

FE_DIVBYZERO, FE_INEXACT, FE_INVALID, FE_OVERFLOW, FE_UNDERFLOW

These macros allow you to select one or more kinds of exceptions when accessing
the status flags. You can also combine several such macros using the bitwise OR
operator (|) to obtain a value that represents several kinds of exceptions.

FE_ALL_EXCEPT

This macro represents the bitwise OR of all the exception macros defined in the
given implementation.

If a given implementation does not support one or more of the exceptions indicated by
these macros, then the corresponding macro is not defined. Furthermore, implementations
may also define other exception macros, with names that begin with FE_ followed by an
uppercase letter.

In addition to the macros listed previously, implementations that support floating-point
exceptions also define a type for the floating-point exception status flags:

fexcept_t

This type represents all of the floating-point exception status flags, including all the
information that the given implementation provides about exceptions. Such
information may include the address of the instruction that raised the exception, for
example. This type is used by the functions fegetexceptflag() and
fesetexceptflag().

Macro definitions for rounding modes
Implementations may allow programs to query or set the way floating-point results are

rounded. If so, the header fenv.h defines the following macros as distinct integer constants:

FE_DOWNWARD FE_TOWARDZERO

FE_TONEAREST FE_UPWARD

A given implementation might not define all of these macros if it does not support the
corresponding rounding direction, and might also define macro names for other rounding
modes that it does support. The function fegetround() returns the current rounding mode
— that is, the value of the corresponding macro name; and fesetround() sets the
rounding mode as specified by its argument.

float.h

The header file float.h defines macros that describe the value range, the precision, and
other properties of the types float, double, and long double.

Normalized representation of floating-point numbers

The values of the macros in float.h refer to the following normalized representation of a
floating-point number x:

x =5 % 0.dydy...dy X b°

The symbols in this representation have the following meanings and conditions:

s
The signof x; s=1ors=-1
dj
A base b digit in the significand (also called the mantissa) of x (0.d;d,...d, in the
general representation); d; > 0if x # 0
p
The number of digits in the significand (or to be more precise, in the fraction part)
b
The base of the exponent; b > 1
e
The integer exponent; e, < € < €%

The floating-point types may also be able to represent other values besides normalized
floating-point numbers, such as the following kinds of values:

= Subnormal floating-point numbers, or those for which x # 0, e = e;;,, and d; = 0.

= Non-normalized floating-point numbers, for which x # 0, e > e and d; = 0.

min’
» Infinities; that is, values that represent +oo or —oo.

= NaNs, or values that do not represent valid floating-point numbers. NaN stands for “not
a number.”

NaNs can be either quiet or signaling NaNs. When a signaling NaN occurs in the
evaluation of an arithmetic expression, it sets the exception flag FE_INVALID in the

floating-point environment. Quiet NaNs do not set the exception flag.

Rounding mode and evaluation method

The following two macros defined in the header float.h provide details about how

floating-point arithmetic is performed:
FLT_ROUNDS

This macro represents the currently active rounding direction, and is the only macro
defined in float.h whose value can change during runtime. It can have the following
values:

-1 Undetermined

0 Toward zero

1 Toward the nearest representable value
2 Toward the next greater value

3 Toward the next smaller value

Other values may stand for implementation-defined rounding modes. If the
implementation supports different rounding modes, you can change the active
rounding mode by calling the function fesetround().

FLT_EVAL_METHOD

The macro FLT_EVAL_METHOD has one of several possible values, but does not change
during the program’s runtime. This macro indicates the floating-point format used
internally for operations on floating-point numbers. The internal format may have
greater precision and a broader value range than the operands’ type. The possible
values of FLT_EVAL_METHOD have the following meanings:

-1 Undetermined
0 Arithmetic operations are performed with the precision of the operands’ type.

1 Operations on float or double values are executed in double precision, and operations on long double are
executed in long double precision.

2 All operations are performed internally in 1ong double precision.

Precision and value range

For a given base, the precision with which numbers are represented is determined by the
number of digits in the significand, and the value range is indicated by the least and
greatest values of the exponent. These values are provided, for each real floating-point
type, by the following macros. The macro names with the prefix FLT_ represent
characteristics of the type float; those with the prefix DBL_ refer to double; and those
with LDBL_ refer to 1ong double. The value of FLT_RADIX applies to all three floating-

point types.
FLT_RADIX

The radix or base (b) of the exponential representation of floating point numbers;
usually 2

FLT_MANT_DIG, DBL_MANT_DIG, LDBL_MANT_DIG
The number of digits in the significand or mantissa (p)
FLT_MIN_EXP, DBL_MIN_EXP, LDBL_MIN_EXP

The smallest negative exponent to the base FLT_RADIX (ep;,)

FLT_MAX_EXP, DBL_MAX_EXP, LDBL_MAX_EXP

The largest positive exponent to the base FLT_RADIX (e,,4)

In practice, it is useful to have the precision and the value range of a floating-point type in
decimal notation. Macros for these characteristics are listed in Table 16-1. The values in
the second column represent the C standard’s minimum requirements. The values in the
third column are the requirements of the IEC 60559 standard for floating-point numbers
with single and double precision. In most C implementations, the types float and double
have these IEC 60559 characteristics.

Table 16-1. Macros for the range and precision of floating-point types in decimal notation

Macro ISO IEC 60559 Meaning

9899
FLT_DIG 6 6 The precision as a number of decimal digits. A decimal
DBL_DIG 10 15 floating-point number of this many digits, stored in binary
LDBL_DIG . . .

10 representation, always yields the same value to this many

digits when converted back to decimal notation.

DECIMAL_DIG 10 17 The number of decimal digits necessary to represent any
number of the largest floating-point type supported so that it
can be converted to decimal notation and back to binary
representation without its value changing.

FLT_MIN_10_Exp -37 -37 The smallest negative exponent to base 10, n, such that 10" is
DBL_MIN_10_EXP .37 .307 within the positive range of the type.
LDBL_MIN_10_EXP .
FLT_MAX_10_EXP +37 +38 The greatest exponent to base 10, n, such that 10" is within
DBL_MAX_10_EXP 137 1308 the range of the type.
LDBL_MAX_10_EXP

+37
FLT_MIN 1E-37 1.17549435E-38F The smallest representable positive floating-point number.
DBL_MIN 1E-37 2.2250738585072014E-308
LDBL_MIN

1E-37
FLT_MAX 1E+37 3.40282347E+38F The greatest representable finite floating-point number.
DBL_MAX 1E+37 1.7976931348623157E+308
LDBL_MAX 1E+37
FLT_EPSILON 1E-5 1.19209290E-07F The positive difference between 1 and the smallest
DBL_EPSILON 1E-9 2.2204460492503131E-16 representable number greater than 1.

I DRI FPSTI ON

inttypes.h

The header inttypes.h includes the header stdint.h, and contains extensions to it. The
header stdint.h defines integer types with specified bit widths, including the types
intmax_t and uintmax_t, which represent the widest integer types implemented. (See also
“Integer Types Defined in Standard Headers”.)

Types
The header inttypes.h defines the following structure type:

Imaxdiv_t

This is a structure type of two members named quot and rem, whose type is
intmax_t. The function imaxdiv() divides one number of type intmax_t by another,
and stores the quotient and remainder in an object of type struct imaxdiv_t.

Functions

In addition to imaxdiv(), the header inttypes.h also declares the function imaxabs (),
which returns the absolute value of an integer of the type intmax_t, and four functions to
convert strings into integers with the type intmax_t or uintmax_t.

Macros

Furthermore, inttypes.h defines macros for string literals that you can use as type
specifiers in format string arguments to the printf and scanf functions. The header

contains macros to specify each of the types defined in stdint.h.

The names of the type specifier macros for the printf family of functions begin with the
prefix PRI, followed by a conversion specifier (d, i, o, x, or X) and a sequence of

uppercase letters that refers to a type name. For example, the macro names with the
conversion specifier d are:

PRIAN PRIALEASTN PRIAFASTN PRIAMAX PRIdPTR

The letter v at the end of the first three macro names listed here is a placeholder for a

decimal number indicating the bit width of a given type. Commonly implemented values
are 8, 16, 32, and 64.

Other PRI... macro names are analogous to the five just listed, but have different
conversion specifiers in place of the letter d, such as i, o, x, or X. The following example
uses a variable with the type int_fast32_t:

#include <inttypes.h>
int_fast32_t i32var;
VA4
printf("The value of i32Var, in hexadecimal notation: "
"%10" PRIXFAST32 "\n'", i32var);

The preprocessor concatenates the string literals "%10" and PRIXFAST32 to form the full
conversion specification. The resulting output of i32var has a field width of 10 characters.

The names of the conversion specifier macros for the scanf family of functions begins
with the prefix scN. The remaining characters are the same as the corresponding PRI...
macros, except that there is no conversion specifier X for scanf (). For example, the macro
names with the conversion specifier d are:

SCNdN SCNALEASTN SCNdFASTN SCNdMAX SCNdPTR

Again, the letter v at the end of the first three macro names as listed here is a placeholder
for a decimal number indicating the bit width of a given type. Commonly implemented
values are 8, 16, 32, and 64.

1S0646.h

The header iso646.h defines the eleven macros listed in Table 16-2, which you can use as
synonyms for C’s logical and bitwise operators.

Table 16-2.
ISO 646
operator

names

Macro Meaning

and &&
or |
not !
bitand &
bitor |
xor A
compl ~
and_eq &=
or_eq |=
xor_eq A=

not_eq !=

limits.h

The header limits.h contains macros to represent the least and greatest representable value
of each integer type. These macros are listed in Table 16-3. The numeric values in the
table represent the minimum requirements of the C standard.

Table 16-3. Value ranges of the integer types

Type Minimum Maximum Maximum value of the unsigned type
char CHAR_MIN CHAR_MAX UCHAR_MAX
281

signed char SCHAR_MIN SCHAR_MAX
27-1) 27-1

short SHRT_MIN SHRT_MAX USHRT_MAX
@51 215-1 9164

int INT_MIN INT_MAX UINT_MAX

@51 215-1 9164

long LONG_MIN LONG_MAX ULONG_MAX

long long LLONG_MIN LLONG_MAX ULLONG_MAX
(53-1) 2631 2644

The range of the type char depends on whether char is signed or unsigned. If char is
signed, then CHAR_MIN is equal to SCHAR_MIN and CHAR_MAX equal to SCHAR_MAX. If char is
unsigned, then CHAR_MIN is zero and CHAR_MAX is equal to UCHAR_MAX.

The header limits.h also defines the following two macros:
CHAR_BIT

The number of bits in a byte, which must be at least 8.
MB_LEN_MAX

The maximum number of bytes in a multibyte character, which must be at least 1.

The value of the macro CHAR_BIT determines the value of UCHAR_MAX: UCHAR_MAX is equal
to 2CHAR_BIT _ 1

The value of MB_LEN_MAX is greater than or equal to the value of MB_CUR_MAX, which is
defined in the header stdlib.h. MB_CUR_MAX represents the maximum number of bytes in a

multibyte character in the current locale. More specifically, the value depends on the
locale setting for the LC_CTYPE category (see the description of setlocale() in Chapter 18

for details). If the current locale uses a stateful multibyte encoding, then both MB_LEN_MAX
and MB_CUR_MAX include the number of bytes necessary for a state-shift sequence before
the actual multibyte character.

locale.h

The standard library supports the development of C programs that are able to adapt to
local cultural conventions. For example, programs may use locale-specific character sets
or formats for currency information.

The header locale.h declares two functions, the type struct lconv, the macro NULL for
the null pointer constant, and macros whose names begin with Lc_ for the locale
information categories.

The function setlocale() allows you to query or set the current locale. The information
that makes up the locale is divided into categories, which you can query and set
individually. The following integer macros are defined to designate these categories:

LC_ALL LC_COLLATE LC_CTYPE
LC_MONETARY LC_NUMERIC LC_TIME

The function setlocale() takes one of these macros as its first argument, and operates on

the corresponding locale category. The meanings of the macros are described under the
setlocale() function in Chapter 18. Implementations may also define additional macros

whose names start with LC_ followed by an uppercase letter.

The second function declared in locale.h is localeconv (), which supplies information
about the conventions of the current locale by filling the members of a structure of the
type struct lconv. localeconv() returns a pointer to the structure. The structure
contains members to describe the local formatting of numerals, monetary amounts, and
date and time information. For details, see the description of 1ocaleconv() in Chapter 18.

math.h

The header math.h declares the mathematical functions for real floating-point numbers,
and the related macros and types.

The mathematical functions for integer types are declared in stdlib.h, and those for
complex numbers in complex.h. In addition, the header tgmath.h defines the type-generic
macros, which allow you to call mathematical functions by uniform names regardless of
the arguments’ type. For a summary of the mathematical functions in the standard library,
see “Mathematical Functions”.

The types float_t and double_t

The header math.h defines the two types float_t and double_t. These types represent the
floating-point precision used internally by the given implementation in evaluating
arithmetic expressions of the types float and double. (If you use operands of the type
float_t or double_t in your programs, they will not need to be converted before
arithmetic operations, as float and double may.) The value of the macro
FLT_EVAL_METHOD, defined in the header float.h, indicates which basic types correspond to
float_t and double_t. The possible values of FLT_EVAL_METHOD are explained in

Table 16-4.

Table 16-4. The types float_t and
double t

FLT_EVAL_METHOD float_t double_t

0 float double
1 double double
2 long double long double

Any other value of FLT_EVAL_METHOD indicates that the evaluation of floating-point
expressions is implementation-defined.

Classification macros

In addition to normalized floating-point numbers, the floating-point types can also
represent other values, such as infinities and NaNs (see “Normalized representation of
floating-point numbers™). C99 specifies five classes of floating-point values, and defines
an integer macro to designate each of these categories. The five macros are:

FP_ZERO FP_NORMAL FP_SUBNORMAL FP_INFINITE FP_NAN

Implementations may also define additional categories, and corresponding macros whose

names begin with FP_ followed by an uppercase letter.

math.h defines the following function-like macros to classify floating-point values:

fpclassify()

This macro expands to the value of the FP_... macro that designates the category of
its floating-point argument.

isfinite(), isinf(), isnan(), isnormal(), signbit()

These function-like macros test whether their argument belongs to a specific
category.

Other macros in math.h

The header math.h also defines the following macros:

HUGE_VAL, HUGE_VALF, HUGE_VALL

HUGE_VAL represents a large positive value with the type double. Mathematical
functions that return double can return the value of HUGE_VAL, with the appropriate
sign, when the result exceeds the finite value range of double. The value of HUGE_VAL
may also represent a positive infinity, if the implementation supports such a value.

HUGE_VALF and HUGE_VALL are analogous to HUGE_VAL, but have the types float and
long double.

INFINITY

NAN

This macro’s value is constant expression of type float that represents a positive or
unsigned infinity, if such a value is representable in the given implementation. If not,
then INFINITY represents a constant expression of type float that yields an overflow
when evaluated, so that the compiler generates an error message when processing it.

NaN stands for “not a number.” The macro NAN is a constant of type float whose
value is not a valid floating-point number. It is defined only if the implementation
supports quiet NaNs — that is, if a NaN can occur without raising a floating-point
exception.

FP_FAST_FMA, FP_FAST_FMAF, FP_FAST_FMAL

FMA stands for “fused multiply-and-add.” The macro FP_FAST_FMA is defined if the
function call fma(x, y, z) can be evaluated at least as fast as the mathematically
equivalent expression x*y+z, for x, y, and z of type double. This is typically the case
if the fma() function makes use of a special FMA machine operation.

The macros FP_FAST_FMAF and FP_FAST_FMAL are analogous to FP_FAST_FMA, but
refer to the types float and long double.

FP_IL0OGBO, FP_ILOGBNAN

These macros represent the respective values returned by the function call ilogb(x)
when the argument x is zero or NalN. FP_ILOGBO is equal either to INT_MIN or to -
INT_MAX, and FP_ILOGBNAN equals either INT_MIN or INT_MAX.

MATH_ERRNO, MATH_ERREXCEPT, math_errhandling

MATH_ERRNO is the constant 1 and MATH_ERREXCEPT is the constant 2. These values are
represented by distinct bits, and hence can be used as bit masks in querying the value
of math_errhandling. The identifier math_errhandling is either a macro or an
external variable with the type int. Its value is constant throughout runtime, and you
can query it in your programs to determine whether the mathematical functions
indicate errors by raising exceptions or by providing an error code, or both. If the
expression math_errhandling & MATH_ERRNO is not equal to zero, then the program
can read the global error variable errno to identify domain and range errors in math
function calls. Similarly, if math_errhandling & MATH_ERREXCEPT is nonzero, then
the math functions indicate errors using the floating-point environment’s exception
flags. For more details, see “Error Handling”.

If a given implementation supports programs that use floating-point exceptions, then the
header fenv.h must define at least the macros FE_DIVBYZERO, FE_INVALID, and

FE_OVERFLOW.

setjmp.h

The header setjmp.h declares the function longjmp(), and defines the array type jmp_buf
and the function-like macro setjmp().

Calling setjmp() saves the current execution environment, including at least the
momentary register and stack values, in a variable whose type is jmp_buf. In this way, the
setjmp() call bookmarks a point in the program, which you can then jump back to at any
time by calling the companion function longjmp(). In effect, setjmp() and longjmp()
allow you to program a nonlocal “goto.”

signal.h

The header signal.h declares the functions raise() and signal(), as well as related
macros and the following integer type:

sig_atomic_t

You can use the type sig_atomic_t to define objects that are accessible in an atomic
operation. Such objects are suitable for use in hardware interrupt signal handlers, for
example. The value range of this type is described by the values of the macros
SIG_ATOMIC_MIN and SIG_ATOMIC_MAX, which are defined in the header stdint.h.

A signal handler is a function that is automatically executed when the program receives a
given signal from the operating environment. You can use the function signal() in your
programs to install functions of your own as signal handlers.

Each type of signal that programs can receive is identified by a signal number.
Accordingly, signal.h defines macros of type int to designate the signal types. The
required signal type macros are:

SIGABRT SIGILL SIGSEGV

SIGFPE SIGINT SIGTERM

The meanings of these signal types are described along with the signal() function in

Chapter 18. Implementations may also define other signals. The names of the
corresponding macros begin with S1G or SIG_, followed by an uppercase letter.

The first argument to the function signal() is a signal number. The second is the address
of a signal handler function, or one of the following macros:

SIG_DFL, SIG_IGN

These macros are constant expressions whose values cannot be equal to the address
of any declarable function. SIG_DFL installs the implementation’s default signal
handler for the given signal type. If you call signal() with SIG_IGN as the second
argument, the program ignores signals of the given type, if the implementation allows
programs to ignore them.

SIG_ERR

This macro represents the value returned by the signal() function if an error occurs.

stdalign.h
The header stdalign.h is new in C11, and defines the following four macros:
alignas

This is a synonym for the specifier _Alignas. When an object is defined with the
specifier _Alignas, it can have a stricter alignment than its type requires.

alignof

This is a synonym for the operator _Alignof, which obtains the alignment of a type.
__alignas_1is_defined, __alignof_1is_defined

These macros are equal to the integer constant 1.

For more information on the alignment of objects, see “The Alignment of Objects in
Memory”.

stdarg.h

The header stdarg.h defines one type and four macros for use in accessing the optional
arguments of functions that support them (see “Variable Numbers of Arguments™):

va_list

Functions with variable numbers of arguments use an object of the type va_list to
access their optional arguments. Such an object is commonly called an argument
pointer, as it serves as a reference to a list of optional arguments.

The following function-like macros operate on objects of the type va_list:
va_start()
Sets the argument pointer to the first optional argument in the list.
va_arg()
Returns the current argument and sets the argument pointer to the next one in the list.
va_copy()
Copies the va_1list object in its current state.
va_end()

Cleans up after the use of a va_list object. A function with a variable number of
arguments must contain a va_end() macro call corresponding to each invocation of
va_start() or va_copy().

The macros va_copy() and va_end() may also be implemented as functions.

stdatomic.h

The header stdatomic.h is new in C11. It contains function declarations and definitions of
various types and macros for atomic operations on data that is shared by several threads.
For explanations and examples of atomic operations, see “Accessing Shared Data”.

Support for atomic operations is optional: C11 implementations that define the macro
__STDC_NO_ATOMICS__ need not provide the header stdatomic.h.

The names of the functions declared begin with the prefix atomic_, as in atomic_store().
All function names that begin with the prefix atomic_ followed by a lowercase letter are
reserved for future extensions. Type names that begin with atomic_ or memory_ followed
by a lowercase letter are likewise reserved, as are macro names that begin with ATOMIC_
followed by an uppercase letter.

Types defined in stdatomic.h

atomic_flag

A structure type that is capable of representing the states “set” and “clear,” and is
atomically accessible without using a lock.
memory_order

An enumerated type that defines the following constants used for specifying the
memory-ordering constraints of atomic operations:

memory_order_relaxed memory_order_release memory_order_acquire
memory_order_consume memory_order_acg_rel memory_order_seq_cst

For a description of these enumeration constants with examples, see “Memory Ordering”.
An argument of the type memory_order is used with the atomic functions whose names
end with the suffix _explicit, such as atomic_store_explicit(), and with the function
atomic_thread_fence().

The header stdatomic.h also defines the type names listed in Table 16-5, which are
synonyms for the integer atomic types named in the right column.

Table 16-5. Integer atomic types

Atomic type name Type

atomic_bool _Atomic _Bool
atomic_char _Atomic char
atomic_schar _Atomic signed char
atomic_uchar _Atomic unsigned char

atomic_short _Atomic short

atomic_ushort

atomic_int

atomic_uint

atomic_long

atomic_ulong

atomic_llong

atomic_ullong

atomic_chari16_t

atomic_char32_t

atomic_wchar_t

atomic_int_least8_t

atomic_uint_least8_t

atomic_int_least16_t

atomic_uint_least16_t

atomic_int_least32_t

atomic_uint_least32_t

atomic_int_least64_t

_Atomic

_Atomic

_Atomic

_Atomic

_Atomic

_Atomic

_Atomic

_Atomic

_Atomic

_Atomic

_Atomic

_Atomic

_Atomic

_Atomic

_Atomic

_Atomic

_Atomic

atomic_uint_least64_t _Atomic

atomic_int_fast8_t

atomic_uint_fast8_t

atomic_int_fasti16_t

atomic_uint_fast16_t

atomic_int_fast32_t

atomic_uint_fast32_t

atomic_int_fast64_t

_Atomic

_Atomic

_Atomic

_Atomic

_Atomic

_Atomic

_Atomic

unsigned short

int

unsigned int

long

unsigned long

long long

unsigned long long

chari16_t

char32_t

wchar_t

int_least8_t

uint_least8_t

int_least16_t

uint_least16_t

int_least32_t

uint_least32_t

int_least64_t

uint_least64_t

int_fast8_t

uint_fast8_t

int_fasti16_t

uint_fasti16_t

int_fast32_t

uint_fast32_t

int_fast64_t

atomic_uint_fast64_t _Atomic uint_fast64_t

atomic_intptr_t _Atomic intptr_t
atomic_uintptr_t _Atomic uintptr_t
atomic_size_t _Atomic size_t

atomic_ptrdiff_t _Atomic ptrdiff_t
atomic_intmax_t _Atomic intmax_t
atomic_uintmax_t _Atomic uintmax_t

Macros Defined in stdatomic.h

The values of the following macros indicate whether the corresponding atomic types
(signed and unsigned) are “lock free” — in other words, whether they permit atomic
access without the use of a lock.

ATOMIC_BOOL_LOCK_FREE ATOMIC_SHORT_LOCK_FREE
ATOMIC_CHAR_LOCK_FREE ATOMIC_INT_LOCK_FREE

ATOMIC_CHAR16_T_LOCK_FREE ATOMIC_LONG_LOCK_FREE
ATOMIC_CHAR32_T_LOCK_FREE ATOMIC_LLONG_LOCK_FREE

ATOMIC_WCHAR_T_LOCK_FREE ATOMIC_POINTER_LOCK_FREE

All of these macros have values of 0, 1, or 2. The value 0 means that the type is never
lock-free, 1 means it is lock-free for certain objects, and 2 means it is always lock-free.

In addition to the LOCK_FREE macros, stdatomic.h also defines three other macros:
ATOMIC_FLAG_INIT

This macro is an initializer used to initialize an object of the type atomic_f1lag to the
“clear” state.

ATOMIC _VAR_INIT(value)

This function-like macro expands to an initializer which can be used to initialize an
atomic object that is capable of storing the argument’s value.

Atomic objects can also be initialized using the generic function atomic_init(). In any
case, the initialization of an atomic object is not an atomic operation. Like non-atomic
objects, atomic objects with static or thread-local storage duration which are not explicitly
initialized have the initial value 0.

kill dependency(y)

This function-like macro breaks a dependency chain that was started by a consume
operation — that is, by an atomic load operation with the memory order specification
memory_order_consume. The macro’s return value is the value of the argument y, and
is no longer a part of a dependency chain. This allows the compiler to apply further
optimization.

stdbool.h
The header stdbool.h defines the following four macros:
bool

A synonym for the type Bool

true

The constant 1

false

The constant 0

__bool_true false are _defined

The constant 1

stddef.h
The header stddef.h defines three types and two macros for use in all kinds of programs.
The three types are:
ptrdiff_t
A signed integer type that represents the difference between two pointers.
size_t

An unsigned integer type used to represent the result of sizeof operations; also
defined in stdlib.h, wchar.h, stdio.h, and string.h.
wchar_t

An integer type that is wide enough to store any code in the largest extended
character set that the implementation supports; also defined in stdlib.h and wchar.h.

Macros that specify the least and greatest representable values of these three types are
defined in the header stdint.h .

In C11 implementations, one or two other types are also defined in stddef.h:
max_align_t
In C11, this is an object type with the largest possible alignment that the

implementation supports in all contexts. It may be a type with an alignment of 8 or
16, for example.

rsize t

This type is equivalent with size_t, and is defined only if the C11 implementation
supports the secure standard functions with bounds-checking. If rsize_t is defined,
then the macro RSIZE_MAX is also defined in the header stdint.h, typically with a value
less than that of SIzE_MAX. In standard functions with a parameter of the type
rsize_t, passing a value greater than RSIZE_MAX violates a runtime constraint.

The two macros defined in stddef.h are:
NULL
This macro represents a null pointer constant, which is an integer constant expression

with the value 0, or such an expression cast as the type void *. The macro NULL is
also defined in the headers stdio.h, stdlib.h, string.h, time.h, and wchar.h.

offsetof(structure_type, member)

This macro yields an integer constant with type size_t whose value is the number of
bytes between the beginning of the structure and the beginning of its member member.
The member must not be a bit-field.

stdint.h

The header stdint.h defines integer types with specific bit widths, and macros that indicate
the value ranges of these and other types. For example, you can use the int64_t type,
defined in stdint.h, to define a signed, 64-bit integer.

Value ranges of the integer types with specific widths

If a signed type of a given specific width is defined, then the corresponding unsigned type
is also defined, and vice versa. Unsigned types have names that start with u (such as
uint64_t, for example), which is followed by the name of the corresponding signed type
(such as int64_t).

For each type defined in stdint.h, macros are also defined to designate the type’s least and
greatest representable values. Table 16-6 lists the names of these macros, with the
standard’s requirements for their values. The word “exactly” in the table indicates that the
standard specifies an exact value rather than a maximum or minimum. Otherwise, the
standard allows the implementation to exceed the ranges given in the table. The letter N
before an underscore in the type names as listed here is a placeholder for a decimal
number indicating the bit width of a given type. Commonly implemented values are 8, 16,
32, and 64.

Table 16-6. Value ranges of the integer types with specific widths
Type Minimum Maximum Maximum value of the unsigned type

intn_t INTN_MIN INTN_MAX UINTN_MAX
_ _ N
Exactly (2" 1) Exactly2" 1 -1 Exactly 2" - 1

int_leastN_t INT_LEASTN_MIN INT_LEASTN_MAX UINT_LEASTN_MAX
— - N _
_(2N]._1) 2N 1_1 2]_

int_fastN_t INT_FASTN_MIN INT_FASTN_MAX UINT_FASTN_MAX

(2N]. _ 1) 2N_1 -1 2N -1
intmax_t INTMAX_MIN INTMAX_MAX UINTMAX_MAX
intptr_t INTPTR_MIN INTPTR_MAX UINTPTR_MAX

For the meanings of the fixed-width integer type names, and the C standard’s requirements
as to which of them must be defined, see “Integer Types Defined in Standard Headers”.

Value ranges of other integer types

The header stdint.h also contains macros to document the value ranges of types defined in

other headers. These types are listed in Table 16-7. The numbers in the table represent the
minimum requirements of the C standard. The types sig_atomic_t, wchar_t, and wint_t
may be defined as signed or unsigned.

Table 16-7. Value ranges of other integer

types
Type Minimum Maximum
ptrdiff_t PTRDIFF_MIN PTRDIFF_MAX
—-65535 +65535

sig_atomic_t SIG_ATOMIC_MIN SIG_ATOMIC_MAX
If signed: <127 If signed: > 127

If unsigned: 0 If unsigned: > 255
size_t N/A SIZE_MAX
65535
rsize_t N/A RSIZE_MAX
< SIZE_MAX
wchar_t WCHAR_MIN WCHAR_MAX
If signed: <—-127 If signed: > 127
If unsigned: 0 If unsigned: > 255
wint_t WINT_MIN WINT_MAX
If signed: < —32767 If signed: > 32767
If unsigned: 0 If unsigned: > 65535

The types ptrdiff_t, size_t, rsize_t and wchar_t are described in “stddef.h”. The type
rsize_t, and hence the corresponding macro RSIZE_MAX, are only defined if the

implementation supports the bounds-checking, “secure” functions. The type
sig_atomic_t is described in “signal.h”, and wint_t is described in “wchar.h”.

Macros for integer constants

For each decimal number ~ for which the stdint.h header defines a type int_least N_t (an
integer type that is at leastn bits wide), the header also defines two function-like macros to
generate values with the type int_leastN_t. Arguments to these macros must be

constants in decimal, octal, or hexadecimal notation, and must be within the value range of
the intended type (see “Integer Constants”). The macros are:

INTN_C(value), UINTN_C(value)

Expands to a signed or unsigned integer constant with the specified value and the
type int_leastN_t or uint_leastN_t, which is at least n bits wide. For example, if
uint_least32_t is defined as a synonym for the type unsigned long, then the
macro call UINT32_C(123) may expand to the constant 123UL.

The following macros are defined for the types intmax_t and uintmax_t:

INTMAX_C(value), UINTMAX_C(value)

These macros expand to a constant with the specified value and the type intmax_t or
uintmax_t.

stdio.h

The header stdio.h contains the declarations of all the basic functions for input and output,
as well as related macro and type definitions. The declarations for wide-character I/0
functions — that is, for input and output of characters with the type wchar_t — are
contained in the header file wchar.h (see also Chapter 13).

In addition to size_t, which is discussed in “stddef.h”, stdio.h defines the following two
types:
FILE

An object of the type FILE contains all the information necessary for controlling an
I/0 stream. This information includes a pointer to the stream’s buffer, a file access
position indicator, and flags to indicate error and end-of-file conditions.

fpos_t

Objects of this type, which is the return type of the fgetpos() function, are able to
store all the information pertaining to a file access position. You can use the
fsetpos() function to resume file processing at the position described by an fpos_t
object.

NOTE

In C11 implementations that support the bounds-checking, “secure” functions, the header stdio.h also
declares the types errno_t (see “errno.h”) and rsize_t (see “stddef.h”).

The header stdio.h defines the macro NULL (described in “stddef.h”) as well as the
following 12 macros, all of which represent integer constant expressions:

_IOFBF, _IOLBF, _IONBF

These constants are used as arguments to the setvbuf () function, and specify I/O
buffering modes. The names stand for “fully buffered,” “line buffered,” and “not
buffered.”

BUFSIZ
This is the size of the buffer activated by the setbuf () function, in bytes.
EOF

“End of file.” A negative value (usually -1) with type int. Various functions return
the constant EOF to indicate an attempt to read at the end of a file, or to indicate an
error.

FILENAME_MAX

This constant indicates how big a char array must be to store the longest filename
supported by the fopen() function.

FOPEN_MAX
Programs are allowed to have at least this number of files open simultaneously.

L_tmpnam

This constant indicates how big a char array must be to store a filename generated by
the tmpnam() function.

SEEK_SET, SEEK_CUR, SEEK_END

These constants are used as the third argument to the fseek() function.
TMP_MAX

The maximum number of unique filenames that the tmpnam() function can generate.
This number is at least 25.

C11 implementations that support the new bounds-checking, “secure” functions also
define the following macros:

L_tmpnam_s, TMP_MAX_S

The meanings of these macros in the context of the function tmpnam_s() are
analogous to those of the macros L_tmpnam and TMP_MAX, described in the preceding
list, for the function tmpnam().

The header stdio.h also declares three objects:
stdin, stdout, stderr

These are the standard I/O streams. They are pointers to the FILE objects associated
with the “standard input,” “standard output,” and “standard error output” streams.

stdlib.h

The header stdlib.h declares general utility functions for the following purposes:

m Conversion of numeral strings into binary numeric values

» Random number generation

= Memory management

» Communication with the operating system

m Searching and sorting

m Integer arithmetic

m Conversion of multibyte characters to wide characters and vice versa

stdlib.h also defines the types size_t and wchar_t, which are described in “stddef.h”, as
well as the following three types:

div_t, 1div_t, 11div_t

These are structure types used to hold the results of the integer division functions
div(), 1div(), and 11div(). These types are structures of two members, quot and
rem, which have the type int, long, or long long.

In C11 implementations that support the bounds-checking, “secure” functions, the header
stdlib.h also declares the types errno_t (see “errno.h”), and rsize_t (see “stddef.h”), and

the following type:

constraint_handler_t

This is the function-pointer type of the constraint handler argument passed to the
function set_constraint_handler_s(). The last handler function passed in this way
to the set_constraint_handler_s() function is called when a runtime constraint is
violated during a call to a “secure” function.

The header stdlib.h defines the macro NULL (see “stddef.h”) as well as the following four
macros:

EXIT_FAILURE, EXIT_SUCCESS

Integer constants that you can pass as arguments to the functions exit() and _Exit()
to report your program’s exit status to the operating environment.

MB_CUR_MAX

A nonzero integer expression with the type size_t. This is the maximum number of
bytes in a multibyte character under the current locale setting for the locale category
LC_CTYPE. This value must be less than or equal to MB_LEN_MAX, defined in limits.h.

RAND_MAX

An integer constant that indicates the greatest possible value that can be returned by
the function rand().

stdnoreturn.h

The header stdnoreturn.h is new in C11 and defines only one macro, noreturn, as a
synonym for the keyword _Noreturn.

string.h

The header string.h declares the string manipulation functions, along with other functions
that operate on byte arrays. The names of these functions begin with str, as in strcpy(),

for example, or with mem, as in memcpy (). Function names beginning with str, mem, or wcs
followed by a lowercase letter are reserved for future extensions.

The header string.h also defines the type size_t and the macro NULL, described in
“stddef.h”.

NOTE

In C11 implementations that support the bounds-checking, “secure” functions, the header string.h also
declares the types errno_t (described in “errno.h”) and rsize_t (described in “stddef.h”).

tgmath.h

The header tgmath.h includes the headers math.h and complex.h, and defines the type-
generic macros. These macros allow you to call different variants of mathematical
functions by a uniform name, regardless of the arguments’ type.

The mathematical functions in the standard library are defined with parameters of specific
real or complex floating-point types. Their names indicate types other than double by the
prefix c for _Complex, or by the suffixes f for float and 1 for long double. The type-
generic macros are overloaded names for these functions that you can use with arguments
of any arithmetic type. These macros detect the arguments’ type and call the appropriate
math function.

The header tgmath.h defines type-generic macros for all the mathematical functions with
floating-point parameters except modf (), modff(), and modf1(). If a given function is
defined for both real and complex or only for real floating-point types, then the
corresponding type-generic macro has the same name as the function version for
arguments of the type double — that is, the base name of the function with no c prefix and
no f or 1 suffix. For an example, assume the following declarations:

#include <tgmath.h>

float f = 0.5F;

double d = 1.5;

double _Complex z1 = -1;
long double _Complex z2 = I;

Each of the macro calls in Table 16-8 then expands to the function call shown in the right
column.

Table 16-8. Expansion of
type-generic macros

Type-generic macro call Expansion

sqrt(f) sqrtf(f)
sqrt(d) sqrt(d)
sqrt(zl1) csqrt(zl1)
sqrt(z2) csqrtl(z2)

Arguments with integer types are automatically converted to double. If you use arguments
of different types in invoking a type-generic macro with two parameters, such as pow(),

the macro calls the function version for the argument type with the higher rank (see
“Hierarchy of Types”). If any argument has a complex floating-point type, the macro calls
the function for complex numbers.

Several functions are defined only for complex floating-point types. The type-generic
macros for these functions have names that start with ¢, but with no f or 1 suffix:

carg() cimag() conj() cproj() creal()

If you invoke one of these macros with a real argument, it calls the function for the
complex type that corresponds to the argument’s real floating-point type.

threads.h

The header threads.h, which was introduced in C11, declares the functions for
multithreading support, and defines the accompanying types and macros. The header
threads.h also includes the header time.h. For details and examples on multithreaded
programming using C11 features, see Chapter 14.

Multithreading support is optional in C11: implementations that define the macro
__STDC_NO_THREADS__ need not provide the header threads.h.

The functions and types defined in threads.h are related to threads, mutex objects,
condition variables and thread-specific storage. Accordingly, the names of the functions
and types begin with one of the prefixes thrd_, mtx_, cnd_ and tss_. Other names
beginning with any of these prefixes, followed by a lowercase letter, are reserved for
future extensions.

Types Defined in threads.h
thrd_t

The type of an object that represents a thread.
thrd_start_t

The type int (*)(void*) (that is, a pointer to a function that takes one void-pointer
argument and returns an integer). This is the function pointer type passed as an
argument to the function thrd_create() to specify the function that a new thread
will execute.

mtx_t
The type of an object that represents a mutex.
cnd_t
The type of an object that represents a condition variable.
tss_t
The type of an object that represents a pointer to thread-specific storage.
tss_dtor_t

The type void (*)(void*) (that is, a pointer to a function that takes one void-pointer
argument and has no return value). This is the function-pointer type of the argument
passed to the function tss_create() to specify the destructor function for the thread-
specific storage requested.

once_flag

The type of a flag used by the function call_once().

Enumeration constants defined in threads.h

The header threads.h defines the following enumeration constants for the return value of
the thread functions:

thrd_success

Indicates that the function succeeded in performing the requested operation.
thrd_error

Indicates that an error occurred during the execution of the function.
thrd_busy

Indicates that the function failed because a required resource is still in use.
thrd_nomem

Indicates that the function was unable to allocate sufficient memory.
thrd_timeout

Indicates that the time limit specified in the function call expired before the function
was able to obtain the required resource.

Three constants are defined for use as an argument to the function mtx_init () to specify

the properties of the new mutex to be created. The three constants are used to form one of
four argument values as follows:

mtx_plain

Create a simple mutex without support for recursion or timeouts.
mtx_timed

Create a mutex that supports timeouts.
mtx_plain|mtx_recursive

Create a mutex that supports recursion.

mtx_timed|mtx_recursive

Create a mutex that supports timeouts and recursion.

Macros defined in threads.h

The threads.h header defines the following three macros:
thread_local
This is a synonym for the keyword _Thread_local.
ONCE_FLAG_INIT
This macro represents an initializer for objects of the type once_flag.

TSS_DTOR_ITERATIONS

A constant integer expression that specifies the maximum number of times a thread-
specific storage destructor will be called on thread termination.

time.h

The header time.h declares the standard functions, macros, and types for manipulating date
and time information (by the Gregorian calendar). These functions are listed in “Date and
Time”.
The types declared in time.h are size_t (see stddef.h in this chapter) and the following
three types:
clock_t
This is the arithmetic type returned by the function clock() (usually defined as
unsigned long).
time_t
This is an arithmetic type returned by the functions timer () and mktime() (usually
defined as long).
struct tm
The members of this structure represent a date or a time, broken down into seconds,
minutes, hours, the day of the month, and so on. The functions gmtime() and

localtime() return a pointer to struct tm. The structure’s members are described
under the gmtime () function in Chapter 18.

NOTE

In C11 implementations that support the bounds-checking, “secure” functions, the header time.h also
declares the types errno_t (see “errno.h”) and rsize_t (see “stddef.h”).

The header time.h defines the macro NULL (see stddef.h) and the following macro:
CLOCKS_PER_SEC

This is a constant expression with the type clock_t. You can divide the return value
of the clock() function by CLOCKS_PER_SEC to obtain your program’s CPU use in
seconds.

uchar.h

In C11, the new header uchar.h declares types and functions for processing Unicode
characters. The types declared are size_t (see “stddef.h”), mbstate_t (see “wchar.h”),
and the following two new types:

charl16_t

An unsigned integer type for 16-bit characters. This type is the same as
uint_least16_t. Implementations that define the macro _ STDC_UTF_16__ use UTF-
16 encoding for characters of the type char16_t. The macro is not defined if a
different encoding is used.

char32 t

An unsigned integer type for 32-bit characters. This type is the same as
uint_least32_t. Implementations that define the macro _ STDC_UTF_32__ use UTF-
32 encoding for characters of the type char32_t. The macro is not defined if a
different encoding is used.

The types uint_least16_t and uint_least32_t are described in “stdint.h”. The header
uchar.h declares the following four functions for converting 16-bit or 32-bit Unicode
characters to multibyte characters and vice versa: mbrtoc16(), c16rtomb(), mbrtoc32(),
and c32rtomb().

Functions and types for processing wide characters of the type wchar_t are declared in the
header wchar.h.

wchar.h

The headers stdio.h, stdlib.h, string.h, and time.h all declare functions for processing byte-
character strings — that is, strings of characters with the type char. The header wchar.h
declares similar functions for wide strings: strings of wide characters, which have the type
wchar_t. The names of these functions generally contain an additional w, as in wprintf(),
for example, or start with wcs instead of str, as in wescpy(), which is the name of the
wide-string version of the strcpy() function.

Furthermore, the header wchar.h declares more functions for converting multibyte
characters to wide characters and vice versa, in addition to those declared in stdlib.h.
wchar.h declares functions for the following kinds of purposes:

= Wide and multibyte character I/O

Conversion of wide-string numerals

Copying, concatenating, and comparing wide strings and wide-character arrays

Formatting date and time information in wide strings

Conversion of multibyte characters to wide characters and vice versa

The types defined in wchar.h are size_t and wchar_t (explained in “stddef.h); struct
tm (see time.h); and the following two types:

mbstate_t
Objects of this type store the parsing state information involved in the conversion of
a multibyte string to a wide-character string, or vice versa.

wint_t
An integer type whose bit width is at least that of int. wint_t must be wide enough

to represent the value range of wchar_t and the value of the macro WeoF. The types
wint_t and wchar_t may be identical.

NOTE

In C11 implementations that support the bounds-checking, “secure” functions, the header wchar.h also
declares the types errno_t (see “errno.h”) and rsize_t (see “stddef.h”).

The header wchar.h defines the macro NULL (see “stddef.h”), the macros WCHAR_MIN and
WCHAR_MAX (see “stdint.h”), and the following macro:

WEOF

The macro WEOF has the type wint_t and a value that is distinct from all the character
codes in the extended character set. Unlike EOF, its value may be positive. Various
functions return the constant WeOF to indicate an attempt to read at the end of a file, or
to indicate an error.

wctype.h

The header wctype.h declares functions to classify and convert wide characters. These
functions are analogous to those for byte characters declared in the header ctype.h. In
addition, wctype.h declares extensible wide-character classification and conversion
functions.

The types defined in wctype.h are wint_t (described in “wchar.h”) and the following two

types:
wctrans_t

This is a scalar type to represent locale-specific mapping rules. You can obtain a
value of this type by calling the wctrans() function, and use it as an argument to the
function towctrans() to perform a locale-specific wide-character conversion.

wctype_t

This is a scalar type to represent locale-specific character categories. You can obtain
a value of this type by calling the wctype() function, and pass it as an argument to
the function iswctype() to determine whether a given wide character belongs to the
given category.

The header wctype.h also defines the macro WeoF, described in “wchar.h”.

I The C11 standard contradicts itself on this point. In describing the use of library
functions, it says, “Any invocation of a library function that is implemented as a macro
shall expand to code that evaluates each of its arguments exactly once, fully protected by
parentheses where necessary, so it is generally safe to use arbitrary expressions as
arguments,” but in its descriptions of the functions putc(), putwc(), getc(), and

getwc (), the standard contains warnings like this one: “The putc function is equivalent to
fputc, except that if it is implemented as a macro, it may evaluate stream more than once,
so that argument should never be an expression with side effects.”

Chapter 17. Functions at a Glance

This chapter lists the functions in the standard library according to their respective areas of
application, describing shared features of the functions and their relationships to one
another. This compilation might help you to find the right function for your purposes
while programming.

TIP

The individual functions are described in detail in Chapter 18, which explains them in alphabetical order,
with examples.

The alternative functions with bounds-checking introduced in C11, also called the secure
functions, are listed in Tables 17-1 and 17-2. The names of these functions end with the
suffix _s (s for “secure”), as in scanf_s(). Note that C implementations are not required
to support the secure functions. For more information on using the secure functions, see
“Functions with Bounds-Checking”.

Input and Output

We have dealt with this topic in detail in Chapter 13, which contains sections on I/O
streams, sequential and random file access, formatted I/O, and error handling. A tabular
list of the I/O functions will therefore suffice here. Table 17-1 lists general file access
functions declared in the header stdio.h.

Table 17-1. General file access functions

Purpose Functions
Rename a file, delete a file rename(), remove()
Create and/or open a file fopen(), freopen(), tmpfile()

fopen_s(), freopen_s(), tmpfile_s()

Close a file fclose()
Generate a unique filename tmpnam(), tmpnam_s()
Query or clear file access flags feof (), ferror(), clearerr()

Query the current file access position ftell(), fgetpos()
Change the current file access position rewind(), fseek(), fsetpos()
Write buffer contents to file fflush()

Control file buffering setbuf(), setvbuf()

There are two complete sets of functions for input and output of characters and strings: the
byte-character and the wide-character 1/0 functions (see “Byte-Oriented and Wide-
Oriented Streams” for more information). The wide-character functions operate on
characters with the type wchar_t, and are declared in the header wchar.h. Table 17-2 lists
both sets.

Table 17-2. File 1/O functions

Purpose Functions in stdio.h Functions in wchar.h

Get/set stream orientation fwide()

Write characters fputc(), putc(), putchar() fputwc(), putwc(), putwchar()
Read characters fgetc(), getc(), getchar() fgetwc(), getwc(), getwchar ()

Put back characters read ungetc() ungetwc ()

Write lines fputs(), puts() fputws()

Read lines fgets(), gets(), gets_s() fgetws()

Write blocks fwrite()

Read blocks fread()

Write formatted strings printf(), vprintf() wprintf(), vwprintf()
fprintf (), vfprintf() fwprintf (), vfwprintf()
sprintf(), vsprintf() swprintf(), vswprintf()

snprintf(), vsnprintf()

Read formatted strings scanf(), vscanf() wscanf (), vwscanf()
fscanf (), vfscanf() fwscanf (), vfwscanf ()
sscanf (), vsscanf() swscanf (), vswscanf()

For each function in the printf and scanf families, there is a secure alternative function
whose name ends in the suffix _s.

Mathematical Functions

The standard library provides many mathematical functions. Most of them operate on real
or complex floating-point numbers. However, there are also several functions with integer
types, such as the functions to generate random numbers.

The functions to convert numeral strings into arithmetic types are listed in “String
Processing”. The remaining math functions are described in the following subsections.

Mathematical Functions for Integer Types

The math functions for the integer types are declared in the header stdlib.h. Two of these
functions, abs() and div(), are declared in three variants to operate on the three signed

integer types int, long, and long long. As Table 17-3 shows, the functions for the type
long have names beginning with the letter 1; those for 1ong long begin with 11.
Furthermore, the header inttypes.h declares function variants for the type intmax_t, with
names that begin with imax.

Table 17-3. Integer arithmetic functions

Purpose Functions declared in stdlib.h Functions declared in stdint.h
Absolute value abs(), labs(), 11labs() imaxabs()
Division div(), 1div(), 11div() imaxdiv()

Random numbers rand(), srand()

Floating-Point Functions

The functions for real floating-point types are declared in the header math.h, and those for
complex floating-point types are declared in complex.h. Table 17-4 lists the functions that
are available for both real and complex floating-point types. The complex versions of
these functions have names that start with the prefix c. Table 17-5 lists the functions that

are only defined for the real types; and Table 17-6 lists the functions that are specific to
complex types.

For the sake of readability, Tables 17-4 through 17-6 show only the names of the functions
for the types double and double _Complex. Each of these functions also exists in variants

for the types float (or float _Complex) and long double (or long double _Complex).
The names of these variants end in the suffix f for float or 1 for long double. For
example, the functions sin() and csin() listed in Table 17-4 also exist in the variants
sinf(), sinl(), csinf(), and csinl() (but see also “Type-generic macros”).

Table 17-4. Functions for real and complex floating-point types

Mathematical function C functions in math.h C functions in complex.h

Trigonometry sin(), cos(), tan() csin(), ccos(), ctan()
asin(), acos(), atan() casin(), cacos(), catan()

Hyperbolic trigonometry sinh(), cosh(), tanh() casinh(), cacosh(), catanh()

asinh(), acosh(), atanh() csinh(), ccosh(), ctanh()

Exponential function exp() cexp()
Natural logarithm log() clog()
Powers, square root pow(), sqrt() cpow(), csqrt()
Absolute value fabs() cabs()

Table 17-5. Functions for real floating-point types

Mathematical function C function
Arctangent of a quotient atan2()
Exponential functions exp2(), expmi(), frexp(), ldexp(),

scalbn(), scalbln()

Logarithmic functions log10(), log2(), loglp(),
logb(), ilogb()

Roots cbrt (), hypot()

Error functions for normal erf(), erfc()

distributions
Gamma function tgamma(), lgamma()
Remainder fmod(), remainder (), remquo()

Separate integer and fractional parts modf ()

Next integer ceil(), floor()

Next representable number nextafter (), nexttoward()

Rounding functions trunc(), round(), 1round(), 11round(), nearbyint(), rint(), lrint(),
11lrint()

Positive difference fdim()

Multiply and add fma()

Minimum and maximum fmin(), fmax()

Assign one number’s sign to another copysign()

Generate a NaN nan()

Table 17-6. Functions for complex floating-

point types
Mathematical function C function
Isolate real and imaginary parts creal(), cimag()

Argument (the angle in polar coordinates) carg()

Conjugate conj()

Project onto the Riemann sphere cproj()

Function-Like Macros

The standard headers math.h and tgmath.h define a number of function-like macros that
can be invoked with arguments of different floating-point types. Variable argument types
in C are supported only in macros, not in function calls.

Type-generic macros

Each floating-point math function exists in three or six different versions: one for each of
the three real types, or for each of the three complex types, or for both real and complex
types. The header tgmath.h defines the type-generic macros, which allow you to call any
version of a given function under a uniform name. The compiler detects the appropriate
function from the arguments’ type. Thus, you do not need to edit the math function calls in
your programs when you change an argument’s type from double to long double, for
example. The type-generic macros are described in “tgmath.h”.

Categories of floating-point values

C99 defines five kinds of values for the real floating-point types, with distinct integer
macros to designate them (see the section on math.h in Chapter 16):

FP_ZERO FP_NORMAL FP_SUBNORMAL FP_INFINITE FP_NAN

These classification macros, and the function-like macros listed in Table 17-7, are defined
in the header math.h. The argument of each of the function-like macros must be an
expression with a real floating-point type.

Table 17-7. Function-like macros to classify floating-point values

Purpose Function-like macros

Get the category of a floating-point value fpclassify()

Test whether a floating-point value belongs to a certain isfinite(), isinf(), isnan(), isnormal(),
category signbit()

For example, the following two tests are equivalent:

if (fpclassify(x) == FP_INFINITE) /* ... */ ;
if (isinf(x)) S

Comparison macros

Any two real, finite floating-point numbers can be compared. In other words, one is
always less than, equal to, or greater than the other. However, if one or both operands of a
comparative operator is a NalN — a floating-point value that is not a number — for
example, then the operands are not comparable. In this case, the operation yields the value
0, or “false,” and may raise the floating-point exception FE_INVALID.

In practice, you may want to avoid risking an exception when comparing floating-point
objects. For this reason, the header math.h defines the function-like macros listed in
Table 17-8. These macros yield the same results as the corresponding expressions with
comparative operators, but perform a “quiet” comparison; that is, they never raise
exceptions, but simply return false if the operands are not comparable. The two
arguments of each macro must be expressions with real floating-point types.

Table 17-8. Function-like macros to compare floating-point values

Comparison Function-like macro
(x) > (v) isgreater(x, y)

(x) >= (y) isgreaterequal(x,y_)
(x) < (y) isless(x, y)

(x) <= (y) islessequal(x, y)
() <) 11 () >) islessgreater (x, y)°
Test for comparability isunordered(x, y)

4 Unlike the corresponding operator expression, the function-like macro islessgreater() evaluates its arguments only
once.

Pragmas for Arithmetic Operations

The following two standard pragmas influence the way in which arithmetic expressions
are compiled:

#pragma STDC FP_CONTRACT on_off_switch
#pragma STDC CX_LIMITED_RANGE on_off_switch

The value of on_off_switch must be ON, OFF, or DEFAULT. If switched ON, the first of these
pragmas, FP_CONTRACT, allows the compiler to contract floating-point expressions with
several C operators into fewer machine operations, if possible. Contracted expressions are
faster in execution. However, because they also eliminate rounding errors, they may not
yield precisely the same results as uncontracted expressions. Furthermore, an uncontracted
expression may raise floating-point exceptions that are not raised by the corresponding
contracted expression. It is up to the compiler to determine how contractions are
performed, and whether expressions are contracted by default.

The second pragma, CX_LIMITED_RANGE, affects the multiplication, division, and absolute
values of complex numbers. These operations can cause problems if their operands are
infinite, or if they result in invalid overflows or underflows. When switched 0N, the
pragma CX_LIMITED_RANGE instructs the compiler that it is safe to use simple arithmetic
methods for these three operations, as only finite operands will be used, and no overflows
or underflows need to be handled. By default, this pragma is switched OFF.

In source code, these pragma directives can be placed outside all functions, or at the
beginning of a block, before any declarations or statements. The pragmas take effect from
the point where they occur in the source code. If a pragma directive is placed outside all
functions, its effect ends with the next directive that invokes the same pragma, or at the
end of the translation unit. If the pragma directive is placed within a block, its effect ends
with the next directive that invokes the same pragma in a nested block, or at the end of the
containing block. At the end of a block, the compiler behavior returns to the state that was
in effect at the beginning of the block.

The Floating-Point Environment

The floating-point environment consists of system variables for floating-point status flags
and control modes. Status flags are set by operations that raise floating-point exceptions,
such as division by zero. Control modes are features of floating-point arithmetic behavior
that programs can set, such as the way in which results are rounded to representable
values. Support for floating-point exceptions and control modes is optional.

All of the declarations involved in accessing the floating-point environment are contained
in the header fenv.h (see Chapter 16).

Programs that access the floating-point environment should inform the compiler
beforehand by means of the following standard pragma:

#pragma STDC FENV_ACCESS ON

This directive prevents the compiler from applying optimizations, such as changes in the
order in which expressions are evaluated, that might interfere with querying status flags or
applying control modes.

FENV_ACCESS can be applied in the same ways as FP_CONTRACT and CX_LIMITED_RANGE:

outside all functions, or locally within a block (see the preceding section). It is up to the
compiler whether the default state of FENV_ACCESS is ON or OFF.

Accessing status flags

The functions in Table 17-9 allow you to access the exception status flags. One argument
to these functions indicates the kind or kinds of exceptions to operate on. The following
integer macros are defined in the header fenv.h to designate the individual exception types:

FE_DIVBYZERO FE_INEXACT FE_INVALID FE_OVERFLOW FE_UNDERFLOW

Each of these macros is defined only if the implementation supports the corresponding
exception. The macro FE_ALL_EXCEPT designates all the supported exception types.

Table 17-9. Functions giving access to the
floating-point exceptions

Purpose Function

Test floating-point exceptions fetestexcept()
Clear floating-point exceptions feclearexcept()
Raise floating-point exceptions feraiseexcept()
Save floating-point exceptions fegetexceptflag()

Restore floating-point exceptions fesetexceptflag()

Rounding modes

The floating-point environment also includes the rounding mode currently in effect for
floating-point operations. The header fenv.h defines a distinct integer macro for each
supported rounding mode. Each of the following macros is defined only if the
implementation supports the corresponding rounding direction:

FE_DOWNWARD FE_TONEAREST FE_TOWARDZERO FE_UPWARD

Implementations may also define other rounding modes and macro names for them. The
values of these macros are used as return values or as argument values by the functions
listed in Table 17-10.

Table 17-10. Rounding mode
functions

Purpose Function

Get the current rounding mode fegetround()

Set a new rounding mode fesetround()

Saving the whole floating-point environment

The functions listed in Table 17-11 operate on the floating-point environment as a whole,
allowing you to save and restore the floating-point environment’s state.

Table 17-11. Functions that operate on the whole floating-point environment

Purpose Function

Save the floating-point environment fegetenv()
Restore the floating-point environment fesetenv()

Save the floating-point environment and switch to nonstop processing feholdexcept ()2
Restore a saved environment and raise any exceptions that are currently set feupdateenv()

4 In the nonstop processing mode activated by a call to feholdexcept (), floating-point exceptions do not interrupt
program execution.

Error Handling

C99 defines the behavior of the functions declared in math.h in cases of invalid arguments
or mathematical results that are out of range. The value of the macro math_errhandling,
which is constant throughout a program’s runtime, indicates whether the program can
handle errors using the global error variable errno, or the exception flags in the floating-
point environment, or both.

Domain errors

A domain error occurs when a function is mathematically not defined for a given
argument value. For example, the real square root function sqrt() is not defined for
negative argument values. The domain of each function in math.h is indicated in the
description of the function in Chapter 18.

In the case of a domain error, functions return a value determined by the implementation.
In addition, if the expression math_errhandling & MATH_ERRNO is not equal to zero — in
other words, if the expression is true — then a function incurring a domain error sets the
error variable errno to the value of EDOM. If the expression math_errhandling &
MATH_ERREXCEPT is true, then the function raises the floating-point exception FE_INVALID.

Range errors

A range error occurs if the mathematical result of a function is not representable in the
function’s return type without a substantial rounding error. An overflow occurs if the range
error is due to a mathematical result whose magnitude is finite, but too large to be
represented by the function’s return type. If the default rounding mode is in effect when an
overflow occurs, or if the exact result is infinity, then the function returns the value of
HUGE_VAL (or HUGE_VALF or HUGE_VALL, if the function’s type is float or long double)
with the appropriate sign. In addition, if the expression math_errhandling & MATH_ERRNO
is true, then the function sets the error variable errno to the value of ERANGE. If the
expression math_errhandling & MATH_ERREXCEPT is true, then an overflow raises the
exception FE_OVERFLOW if the mathematical result is finite, or FE_DIVBYZERO if it is
infinite.

An underflow occurs when a range error is due to a mathematical result whose magnitude
is nonzero, but too small to be represented by the function’s return type. When an
underflow occurs, the function returns a value that is defined by the implementation but
less than or equal to the value of DBL_MIN (or FLT_MIN, or LDBL_MIN, depending on the
function’s type). The implementation also determines whether the function sets the error
variable errno to the value of ERANGE if the expression math_errhandling & MATH_ERRNO
is true. Furthermore, the implementation defines whether an underflow raises the
exception FE_UNDERFLOW if the expression math_errhandling & MATH_ERREXCEPT is true.

Character Classification and Conversion

The standard library provides a number of functions to classify characters and to perform
conversions on them. The header ctype.h declares such functions for byte characters, with
character codes from 0 to 255. The header wctype.h declares similar functions for wide
characters, which have the type wchar_t. These functions are commonly implemented as

macros.
The results of these functions, except for isdigit() and isxdigit(), depends on the
current locale setting for the locale category LC_CTYPE. You can query or change the locale
using the setlocale() function.

Character Classification

The functions listed in Table 17-12 test whether a character belongs to a certain category.
Their return value is nonzero, or true, if the argument is a character code in the given

category.

Table 17-12. Character classification functions

Category Functions in ctype.h Functions in wctype.h
Letters isalpha() iswalpha()
Lowercase letters islower() iswlower ()
Uppercase letters isupper() iswupper ()
Decimal digits isdigit() iswdigit()

Hexadecimal digits isxdigit() iswxdigit()

Letters and decimal digits isalnum() iswalnum()
Printable characters (including whitespace) isprint() iswprint()
Printable, non-whitespace characters isgraph() iswgraph()
Whitespace characters isspace() iswspace()
Whitespace characters that separate words in a line of text isblank() iswblank()
Punctuation marks ispunct() iswpunct()
Control characters iscntrl() iswentrl()

The functions isgraph() and iswgraph() behave differently if the execution character set

contains other byte-coded, printable, whitespace characters (that is, whitespace characters
that are not control characters) in addition to the space character (' '). In that case,

iswgraph() returns false for all such printable whitespace characters, while isgraph()
returns false only for the space character (').

The header wctype.h also declares the two additional functions listed in Table 17-13 to test
wide characters. These are called the extensible classification functions, which you can
use to test whether a wide-character value belongs to an implementation-defined category
designated by a string.

Table 17-13. Extensible character classification functions

Purpose Function

Map a string argument that designates a character class to a scalar value that can be used as the second wctype()
argument to iswctype()

Test whether a wide character belongs to the class designated by the second argument iswctype()

The two functions in Table 17-13 can be used to perform at least the same tests as the
functions listed in Table 17-12. The strings that designate the character classes recognized
by wctype() are formed from the name of the corresponding test functions, minus the
prefix isw. For example, the string "alpha", like the function name iswalpha(),
designates the category “letters.” Thus, for a wide-character value wc, the following tests
are equivalent:

iswalpha(wc)
iswctype(wc, wctype("alpha"))

Implementations may also define other such strings to designate locale-specific character
classes.

Case Mapping

The functions listed in Table 17-14 yield the uppercase letter that corresponds to a given
lowercase letter, and vice versa. All other argument values are returned unchanged.

Table 17-14. Character conversion functions

Conversion Functions in ctype.h Functions in wctype.h
Upper- to lowercase tolower () towlower ()
Lower- to uppercase toupper () towupper ()

Here again, as in the previous section, the header wctype.h declares two additional
extensible functions to convert wide characters. These are described in Table 17-15. Each
kind of character conversion supported by the given implementation is designated by a

string.
Table 17-15. Extensible character conversion functions

Purpose Function

Map a string argument that designates a character conversion to a scalar value that can be used as the wctrans()
second argument to towctrans()

Perform the conversion designated by the second argument on a given wide character towctrans()

The two functions in Table 17-15 can be used to perform at least the same conversions as
the functions listed in Table 17-14. The strings that designate those conversions are
"tolower" and "toupper". Thus, for a wide-character wc, the following two calls have the
same result:

towupper(wc);
towctrans(wc, wctrans("toupper"));

Implementations may also define other strings to designate locale-specific character
conversions.

String Processing

A string is a continuous sequence of characters terminated by '\0', the string terminator
character. The length of a string is considered to be the number of characters before the
string terminator. Strings can be either byte strings, which consist of byte characters, or
wide strings, which consist of wide characters. Byte strings are stored in arrays of char,
and wide strings are stored in arrays whose elements have one of the wide-character types:
wchar_t, char16_t, or char32_t.

C does not have a basic type for strings, and hence has no operators to concatenate,
compare, or assign values to strings. Instead, the standard library provides numerous
functions, listed in Table 17-16, to perform these and other operations with strings. The
header string.h declares the functions for conventional strings of char. The names of these
functions begin with str. The header wchar.h declares the corresponding functions for
strings of wide characters, with names beginning with wcs.

Like any other array, a string that occurs in an expression is implicitly converted into a
pointer to its first element. Thus, when you pass a string as an argument to a function, the
function receives only a pointer to the first character, and can determine the length of the
string only by the position of the string terminator character.

Table 17-16. String-processing functions

Purpose

Find the length of a string

Copy a string

Concatenate strings

Compare strings

Transform a string so that a comparison of two transformed strings using

Functions in
string.h

strlen(),
strnlen_s()

strepy(),
strncpy(),

strepy_s(),
strncpy_s()

strcat(),
strncat(),

strcat_s(),
strncat_s()

stremp(),

strncmp(),
strcoll()

strxfrm()

Functions in
wchar.h

wcslen(),
wcsnlen_s()

wesepy (),
wesnepy(),

wescpy_s(),
wecsncpy_s()

wcscat(),
wcsncat(),

wcscat_s(),
wcsncat_s()

wesemp(),

wesnemp(),
wcscoll()

wesxfrm()

strcmp() yields the same result as a comparison of the original strings using
the locale-sensitive function strcoll()

In a string, find:

... the first or last occurrence of a given character

... the first occurrence of another string

... the first occurrence of any of a given set of characters

... the first character that is not a member of a given set

Parse a string into tokens

strchr(),
strrchr()

strstr()

strcspn(),
strpbrk()

strspn()

strtok(),
strtok_s()

wcschr(),
wcsrchr()

wcsstr()

wcsespn(),
wespbrk()

wcsspn()

wcstok(),
wcstok_s()

Multibyte Characters

In multibyte character sets, each character is coded as a sequence of one or more bytes
(see “Wide Characters and Multibyte Characters”). While each wide character is
represented by one object of the type wchar_t, char16_t, or char32_t, the number of
bytes necessary to represent a given character in a multibyte encoding is variable.
However, the number of bytes that represent a multibyte character, including any
necessary state-shift sequences, is never more than the value of the macro MB_CUR_MAX,
which is defined in the header stdlib.h.

Standard library functions allow you to obtain the character code of the wide character
corresponding to any multibyte character, and the multibyte representation of any wide
character. Some multibyte encoding schemes are stateful; the interpretation of a given
multibyte sequence may depend on its position with respect to control characters, called
shift sequences, that are used in the multibyte stream or string. In such cases, the
conversion of a multibyte character to a wide character, or the conversion of a multibyte
string into a wide string, depends on the current shift state at the point where the first
multibyte character is read. For the same reason, converting a wide character to a
multibyte character, or a wide string to a multibyte string, may entail inserting appropriate
shift sequences in the output. An example of a multibyte-encoding that uses shift
sequences is BOCU-1, a MIME-compatible, compressed Unicode encoding that takes up
less space than UTF-8. UTF-8 itself, on the other hand, does not use shift sequences.

Conversions between wide and multibyte characters or strings may be necessary when you
read or write characters from a wide-oriented stream (see “Byte-Oriented and Wide-
Oriented Streams™).

Table 17-17 lists all of the standard library functions for handling multibyte characters.

Table 17-17. Multibyte character functions

Purpose Functions in Functions in wcharh Functions in
stdlib.h uchar.h

Find the length of a multibyte character mblen() mbrlen()

Find the wide character corresponding to a given mbtowc () mbrtowc() mbrtoc16(),

multibyte character mbrtoc32()

Find the multibyte character corresponding to a wctomb(), wertomb (), cl6rtomb(),

given wide character wctomb_s() wecrtomb_s() c32rtomb()

Convert a multibyte string into a wide string

Convert a wide string into a multibyte string

mbstowcs(),
mbstowcs_s()

wcstombs(),
wcstombs_s()

mbsrtowcs (),
mbsrtowcs_s()

wcsrtombs(),
wcsrtombs_s()

Convert between byte characters and wide btowc (), wctob()
characters

Test for the initial shift state mbsinit()

The letter r in the names of functions declared in wchar.h stands for “restartable.” The
restartable functions — in contrast to those declared in stdlib.h, without the r in their
names — take an additional argument, which is a pointer to an object that stores the shift
state of the multibyte character or string argument.

Converting Between Numbers and Strings

The standard library provides a variety of functions to interpret a numeral string and return
a numeric value. These functions are listed in Table 17-18. The numeral conversion
functions differ both in their target types and in the string types they interpret. The
functions for char strings are declared in the header stdlib.h, and those for wide strings in
wchar.h. Furthermore, C99 introduced four functions to convert a string into a number of
the widest available signed or unsigned integer type, intmax_t or uintmax_t. These four
functions are declared in inttypes.h.

Table 17-18. Conversion of numeral strings

Conversion Functions in stdlib.h Functions in wchar.h Functions in inttypes.h
String to int atoi()

String to long atol(), strtol() wcstol()

String to unsigned long strtoul() wcstoul()

String to long long atoll(), strtoll() wcstoll()

String to unsigned long long strtoull() wcstoull()

String to intmax_t strtoimax(), wcstoimax()
String to uintmax_t strtoumax(), wcstoumax()
String to float strtof() wcstof ()

String to double atof(), strtod() wcstod()

String to long double strtold() wcstold()

The functions strtol(), strtoll(), and strtod() can be more practical to use than the
corresponding functions atol(), atoll(), and atof(), as they return the position of the
next character in the source string after the character sequence that was interpreted as a
numeral.

In addition to the functions listed in Table 17-18, you can also perform string-to-number
conversions using one of the sscanf () functions with an appropriate format string.
Similarly, you can use the sprintf() functions to perform the reverse conversion,
generating a numeral string from a numeric argument. These functions are declared in the
header stdio.h. Once again, the corresponding functions for wide strings are declared in
the header wchar.h. Both sets of functions are listed in Table 17-19.

Table 17-19. Conversions between strings and numbers using format
strings

Conversion Functions in stdio.h Functions in wchar.h

String to number sscanf(), vsscanf() swscanf (), vswscanf ()

Number to string sprintf(), snprintf(), vsprintf(), vsnprintf() swprintf(), vswprintf()

For each of these functions, there is a secure alternative function whose name ends in the
suffix _s.

Searching and Sorting

Table 17-20 lists the standard library’s four general searching and sorting functions, which
are declared in the header stdlib.h. The functions to search the contents of a string are
listed in “String Processing™.

Table 17-20. Searching and sorting

functions
Purpose Function
Sort an array gsort(), gsort_s()

Search a sorted array bsearch(), bsearch_s()

These functions feature an abstract interface that allows you to use them for arrays of any
element type. One parameter of the gsort() and gsort_s() functions is a pointer to a
call-back function that gsort() and gsort_s() can use to compare pairs of array
elements. Usually you will need to define this function yourself. The bsearch() and
bsearch_s() functions, which find the array element designated by a “key” argument, use
the same technique, calling a user-defined function to compare array elements with the
specified key.

The bsearch() and bsearch_s() functions use the binary search algorithm, and therefore
require that the array be sorted beforehand. Although the names of the gsort() and
gsort_s() functions suggest that they implement the quick-sort algorithm, the standard
does not specify which sorting algorithm they use.

Memory Block Handling

The functions listed in Table 17-21 initialize, copy, search, and compare blocks of
memory. The functions declared in the header string.h access a memory block byte by
byte, and those declared in wchar.h read and write units of the type wchar_t. Accordingly,
the size parameter of each function indicates the size of a memory block as a number of
bytes, or as a number of wide characters.

Table 17-21. Functions to manipulate blocks of memory

Purpose

Copy a memory block, where source and
destination do not overlap

Copy a memory block, where source and
destination may overlap

Compare two memory blocks
Find the first occurrence of a given character

Fill the memory block with a given character
value

Functions in string.h

memcpy (), memcpy_s()

memmove (), memmove_s()

memcmp ()
memchr ()

memset (), memset_s()

Functions in wchar.h

wmemcpy (), wmemcpy_s()

wmemmove (), wmemmove_s()

wmemcmp ()
wmemchr ()

wmemset (), wmemset_s()

Dynamic Memory Management

Many programs, including those that work with dynamic data structures, for example,
depend on the ability to allocate and release blocks of memory at runtime. C programs can
do that by means of the four dynamic memory management functions declared in the
header stdlib.h, which are listed in Table 17-22. The use of these functions is described in
detail in Chapter 12.

Table 17-22. Dynamic memory management
functions

Purpose Function

Allocate a block of memory malloc()
Allocate a memory block and fill it with null bytes calloc()
Resize an allocated memory block realloc()

Release a memory block free()

Date and Time

The header time.h declares the standard library functions to obtain the current date and
time, to obtain the process’s running time, to perform certain conversions on date and time
information, and to format it for output. A key function is time(), which yields the current
calendar time in the form of an arithmetic value of the type time_t. This is usually

encoded as the number of seconds elapsed since a specified moment in the past, called the
epoch. The Unix epoch is 00:00:00 o’clock on January 1, 1970, UTC (Coordinated
Universal Time, formerly called Greenwich Mean Time or GMT).

There are also standard functions to convert a calendar time value with the type time_t
into a string or a structure of type struct tm. The structure type has members of type int
for the second, minute, hour, day, month, year, day of the week, day of the year, and a
daylight saving time flag (see the description of the gmtime () function in Chapter 18).
Table 17-23 lists all the date and time functions.

Table 17-23. Date and time functions

Purpose Function

Get the amount of CPU time used clock()

Get the current calendar time time()

Get the difference between two calendar times difftime()

Convert calendar time to struct tm gmtime(), gmtime_s()
Convert calendar time to struct tm with local time values localtime(),

localtime_s()

Normalize the values of a struct tm object and return the calendar time mktime()
with type time_t

Convert calendar time to a string ctime(), ctime_s(),

asctime(), asctime_s(), strftime(),
wcsftime()

The extremely flexible strftime() function uses a format string (in a similar way as the
printf() functions) and the LC_TIME locale category to generate a date and time string.
You can query or change the locale using the setlocale() function. The function
wcsftime() is the wide-string version of strftime(), and is declared in the header
wchar.h rather than time.h.

The diagram in Figure 17-1 offers an organized summary of the available date and time
functions.

System

time()

Calendar time with the
arithmetic type time_t

Calendar time as a string

asctime()
strftime
wcsttime

ﬁmtlme()

ocaltime()

Date and time information broken down
into a structure of type struct tm

Figure 17-1. Date a