

CSS	Floating
Eric	A.	Meyer

CSS	Floating

by	Eric	A.	Meyer

Copyright	©	2016	Eric	A.	Meyer.	All	rights	reserved.

Printed	in	the	United	States	of	America.

Published	by	O’Reilly	Media,	Inc.,	1005	Gravenstein	Highway	North,	Sebastopol,	CA
95472.

O’Reilly	books	may	be	purchased	for	educational,	business,	or	sales	promotional	use.
Online	editions	are	also	available	for	most	titles	(http://safaribooksonline.com).	For	more
information,	contact	our	corporate/institutional	sales	department:	800-998-9938	or
corporate@oreilly.com.

Editor:	Meg	Foley

Production	Editor:	Colleen	Lobner

Copyeditor:	Molly	Ives	Brower

Proofreader:	Amanda	Kersey

Interior	Designer:	David	Futato

Cover	Designer:	Randy	Comer

Illustrator:	Rebecca	Demarest

January	2016:	First	Edition

http://safaribooksonline.com

Revision	History	for	the	First	Edition
2016-01-08:	First	Release

See	http://oreilly.com/catalog/errata.csp?isbn=9781491929643	for	release	details.

The	O’Reilly	logo	is	a	registered	trademark	of	O’Reilly	Media,	Inc.	CSS	Floating,	the
cover	image	of	salmon,	and	related	trade	dress	are	trademarks	of	O’Reilly	Media,	Inc.

While	the	publisher	and	the	author	have	used	good	faith	efforts	to	ensure	that	the
information	and	instructions	contained	in	this	work	are	accurate,	the	publisher	and	the
author	disclaim	all	responsibility	for	errors	or	omissions,	including	without	limitation
responsibility	for	damages	resulting	from	the	use	of	or	reliance	on	this	work.	Use	of	the
information	and	instructions	contained	in	this	work	is	at	your	own	risk.	If	any	code
samples	or	other	technology	this	work	contains	or	describes	is	subject	to	open	source
licenses	or	the	intellectual	property	rights	of	others,	it	is	your	responsibility	to	ensure	that
your	use	thereof	complies	with	such	licenses	and/or	rights.

978-1-491-92964-3

[LSI]

http://oreilly.com/catalog/errata.csp?isbn=9781491929643

Preface

Conventions	Used	in	This	Book
The	following	typographical	conventions	are	used	in	this	book:

Italic

Indicates	new	terms,	URLs,	email	addresses,	filenames,	and	file	extensions.
Constant	width

Used	for	program	listings,	as	well	as	within	paragraphs	to	refer	to	program	elements
such	as	variable	or	function	names,	databases,	data	types,	environment	variables,
statements,	and	keywords.

Constant	width	bold

Shows	commands	or	other	text	that	should	be	typed	literally	by	the	user.
Constant	width	italic

Shows	text	that	should	be	replaced	with	user-supplied	values	or	by	values	determined
by	context.

NOTE
This	element	signifies	a	general	note.

WARNING
This	element	indicates	a	warning	or	caution.

Safari®	Books	Online
NOTE

Safari	Books	Online	is	an	on-demand	digital	library	that	delivers	expert	content	in	both
book	and	video	form	from	the	world’s	leading	authors	in	technology	and	business.

Technology	professionals,	software	developers,	web	designers,	and	business	and	creative
professionals	use	Safari	Books	Online	as	their	primary	resource	for	research,	problem
solving,	learning,	and	certification	training.

Safari	Books	Online	offers	a	range	of	plans	and	pricing	for	enterprise,	government,
education,	and	individuals.

Members	have	access	to	thousands	of	books,	training	videos,	and	prepublication
manuscripts	in	one	fully	searchable	database	from	publishers	like	O’Reilly	Media,
Prentice	Hall	Professional,	Addison-Wesley	Professional,	Microsoft	Press,	Sams,	Que,
Peachpit	Press,	Focal	Press,	Cisco	Press,	John	Wiley	&	Sons,	Syngress,	Morgan
Kaufmann,	IBM	Redbooks,	Packt,	Adobe	Press,	FT	Press,	Apress,	Manning,	New	Riders,
McGraw-Hill,	Jones	&	Bartlett,	Course	Technology,	and	hundreds	more.	For	more
information	about	Safari	Books	Online,	please	visit	us	online.

http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com

How	to	Contact	Us
Please	address	comments	and	questions	concerning	this	book	to	the	publisher:

O’Reilly	Media,	Inc.

1005	Gravenstein	Highway	North

Sebastopol,	CA	95472

800-998-9938	(in	the	United	States	or	Canada)

707-829-0515	(international	or	local)

707-829-0104	(fax)

We	have	a	web	page	for	this	book,	where	we	list	errata,	examples,	and	any	additional
information.	You	can	access	this	page	at	http://bit.ly/css-floating.

To	comment	or	ask	technical	questions	about	this	book,	send	email	to
bookquestions@oreilly.com.

For	more	information	about	our	books,	courses,	conferences,	and	news,	see	our	website	at
http://www.oreilly.com.

Find	us	on	Facebook:	http://facebook.com/oreilly

Follow	us	on	Twitter:	http://twitter.com/oreillymedia

Watch	us	on	YouTube:	http://www.youtube.com/oreillymedia

http://bit.ly/css-floating
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Chapter	1.	Floating	and	Shapes

For	a	very	long	time,	floated	elements	were	the	basis	of	all	our	web	layout	schemes.	(This
is	largely	because	of	the	property	clear,	which	we’ll	get	to	in	a	bit.)	But	floats	were	never
meant	for	layout;	their	use	as	a	layout	tool	was	a	hack	nearly	as	egregious	as	the	use	of
tables	for	layout.	They	were	just	what	we	had.

Floats	are	quite	interesting	and	useful	in	their	own	right,	however,	especially	given	the
recent	addition	of	float	shaping,	which	allows	the	creation	of	nonrectangular	shapes	past
which	content	can	flow.

Floating
You	are	almost	certainly	acquainted	with	the	concept	of	floated	elements.	Ever	since
Netscape	1.1,	it	has	been	possible	to	float	images	by	declaring,	for	instance,	.	This	causes	an	image	to	float	to	the	right	and	allows
other	content	(such	as	text)	to	“flow	around”	the	image.	The	name	“floating,”	in	fact,
comes	from	the	Netscape	DevEdge	page	“Extensions	to	HTML	2.0,”	which	stated:

The	additions	to	your	ALIGN	options	need	a	lot	of	explanation.	First,	the	values	“left”
and	“right”.	Images	with	those	alignments	are	an	entirely	new	floating	image	type.

In	the	past,	it	was	only	possible	to	float	images	and,	in	some	browsers,	tables.	CSS,	on	the
other	hand,	lets	you	float	any	element,	from	images	to	paragraphs	to	lists.	In	CSS,	this
behavior	is	accomplished	using	the	property	float.

FLOAT

Values: left	|	right	|	none	|	inherit

Initial	value: none

Applies	to: All	elements

Inherited: No

Computed	value: As	specified

For	example,	to	float	an	image	to	the	left,	you	could	use	this	markup:

As	Figure	1-1	makes	clear,	the	image	“floats”	to	the	left	side	of	the	browser	window	and
the	text	flows	around	it.	This	is	just	what	you	should	expect.

Figure	1-1.	A	floating	image

However,	when	floating	elements	in	CSS,	some	interesting	issues	come	up.

Floated	Elements
Keep	a	few	things	in	mind	with	regard	to	floating	elements.	In	the	first	place,	a	floated
element	is,	in	some	ways,	removed	from	the	normal	flow	of	the	document,	although	it	still
affects	the	layout.	In	a	manner	utterly	unique	within	CSS,	floated	elements	exist	almost	on
their	own	plane,	yet	they	still	have	influence	over	the	rest	of	the	document.

This	influence	derives	from	the	fact	that	when	an	element	is	floated,	other	content	“flows
around”	it.	This	is	familiar	behavior	with	floated	images,	but	the	same	is	true	if	you	float	a
paragraph,	for	example.	In	Figure	1-2,	you	can	see	this	effect	quite	clearly,	thanks	to	the
margin	added	to	the	floated	paragraph:

p.aside	{float:	right;	width:	15em;	margin:	0	1em	1em;	padding:	0.25em;

				border:	1px	solid;}

Figure	1-2.	A	floating	paragraph

One	of	the	first	interesting	things	to	notice	about	floated	elements	is	that	margins	around
floated	elements	do	not	collapse.	If	you	float	an	image	with	20-pixel	margins,	there	will	be
at	least	20	pixels	of	space	around	that	image.	If	other	elements	adjacent	to	the	image	—
and	that	means	adjacent	horizontally	and	vertically	—	also	have	margins,	those	margins
will	not	collapse	with	the	margins	on	the	floated	image,	as	you	can	see	in	Figure	1-3:

p	img	{float:	left;	margin:	25px;}

Figure	1-3.	Floating	images	with	margins

If	you	do	float	a	nonreplaced	element,	you	must	declare	a	width	for	that	element.
Otherwise,	according	to	the	CSS	specification,	the	element’s	width	will	tend	toward	zero.
Thus,	a	floated	paragraph	could	literally	be	one	character	wide,	assuming	one	character	is
the	browser’s	minimum	value	for	width.	If	you	fail	to	declare	a	width	value	for	your
floated	elements,	you	could	end	up	with	something	like	Figure	1-4.	(It’s	unlikely,	granted,
but	still	possible.)

Figure	1-4.	Floated	text	without	an	explicit	width

No	floating	at	all

There	is	one	other	value	for	float	besides	left	and	right.	float:	none	is	used	to
prevent	an	element	from	floating	at	all.

This	might	seem	a	little	silly,	since	the	easiest	way	to	keep	an	element	from	floating	is	to
simply	avoid	declaring	a	float,	right?	Well,	first	of	all,	the	default	value	of	float	is	none.
In	other	words,	the	value	has	to	exist	in	order	for	normal,	nonfloating	behavior	to	be
possible;	without	it,	all	elements	would	float	in	one	way	or	another.

Second,	you	might	want	to	override	a	certain	style	from	an	imported	stylesheet.	Imagine
that	you’re	using	a	server-wide	stylesheet	that	floats	images.	On	one	particular	page,	you
don’t	want	those	images	to	float.	Rather	than	writing	a	whole	new	stylesheet,	you	could
simply	place	img	{float:	none;}	in	your	document’s	embedded	stylesheet.	Beyond	this
type	of	circumstance,	though,	there	really	isn’t	much	call	to	actually	use	float:	none.

Floating:	The	Details
Before	we	start	digging	into	details	of	floating,	it’s	important	to	establish	the	concept	of	a
containing	block.	A	floated	element’s	containing	block	is	the	nearest	block-level	ancestor
element.	Therefore,	in	the	following	markup,	the	floated	element’s	containing	block	is	the
paragraph	element	that	contains	it:

<h1>

				Test

</h1>

<p>

				This	is	paragraph	text,	but	you	knew	that.	Within	the	content	of	this

				paragraph	is	an	image	that's	been	floated.	<img	src="testy.gif"

				style="float:	right;">	The	containing	block	for	the	floated	image	is

				the	paragraph.

</p>

We’ll	return	to	the	concept	of	containing	blocks	when	we	discuss	positioning	later	in	this
chapter.

Furthermore,	a	floated	element	generates	a	block	box,	regardless	of	the	kind	of	element	it
is.	Thus,	if	you	float	a	link,	even	though	the	element	is	inline	and	would	ordinarily
generate	an	inline	box,	it	generates	a	block	box	when	floated.	It	will	be	laid	out	and	act	as
if	it	was,	for	example,	a	div.	This	is	not	unlike	declaring	display:	block	for	the	floated
element,	although	it	is	not	necessary	to	do	so.

A	series	of	specific	rules	govern	the	placement	of	a	floated	element,	so	let’s	cover	those
before	digging	into	applied	behavior.	These	rules	are	vaguely	similar	to	those	that	govern
the	evaluation	of	margins	and	widths	and	have	the	same	initial	appearance	of	common
sense.	They	are	as	follows:

1.	 The	left	(or	right)	outer	edge	of	a	floated	element	may	not	be	to	the	left	(or	right)	of
the	inner	edge	of	its	containing	block.

This	is	straightforward	enough.	The	outer-left	edge	of	a	left-floated	element	can	only	go	as
far	left	as	the	inner-left	edge	of	its	containing	block.	Similarly,	the	furthest	right	a	right-
floated	element	may	go	is	its	containing	block’s	inner-right	edge,	as	shown	in	Figure	1-5.
(In	this	and	subsequent	figures,	the	circled	numbers	show	the	position	where	the	markup
element	actually	appears	in	relation	to	the	source,	and	the	numbered	boxes	show	the
position	and	size	of	the	floated	visible	element.)

2.	 The	left,	outer	edge	of	a	floated	element	must	be	to	the	right	of	the	right,	outer	edge
of	a	left-floating	element	that	occurs	earlier	in	the	document	source,	unless	the	top	of
the	later	element	is	below	the	bottom	of	the	earlier	element.	Similarly,	the	right,
outer	edge	of	a	floated	element	must	be	to	the	left	of	the	left,	outer	edge	of	a	right-
floating	element	that	comes	earlier	in	the	document	source,	unless	the	top	of	the	later
element	is	below	the	bottom	of	the	earlier	element.

This	rule	prevents	floated	elements	from	“overwriting”	each	other.	If	an	element	is	floated
to	the	left,	and	another	floated	element	is	already	there,	the	latter	element	will	be	placed

against	the	outer-right	edge	of	the	previously	floated	element.	If,	however,	a	floated
element’s	top	is	below	the	bottom	of	all	earlier	floated	images,	then	it	can	float	all	the	way
to	the	inner-left	edge	of	the	parent.	Some	examples	of	this	are	shown	in	Figure	1-6.

Figure	1-5.	Floating	to	the	left	(or	right)

Figure	1-6.	Keeping	floats	from	overlapping

The	advantage	of	this	rule	is	that	all	your	floated	content	will	be	visible,	since	you	don’t
have	to	worry	about	one	floated	element	obscuring	another.	This	makes	floating	a	fairly
safe	thing	to	do.	The	situation	is	markedly	different	when	using	positioning,	where	it	is

very	easy	to	cause	elements	to	overwrite	one	another.

3.	 The	right,	outer	edge	of	a	left-floating	element	may	not	be	to	the	right	of	the	left,
outer	edge	of	any	right-floating	element	to	its	right.	The	left,	outer	edge	of	a	right-
floating	element	may	not	be	to	the	left	of	the	right,	outer	edge	of	any	left-floating
element	to	its	left.

This	rule	prevents	floated	elements	from	overlapping	each	other.	Let’s	say	you	have	a
body	that	is	500	pixels	wide,	and	its	sole	content	is	two	images	that	are	300	pixels	wide.
The	first	is	floated	to	the	left,	and	the	second	is	floated	to	the	right.	This	rule	prevents	the
second	image	from	overlapping	the	first	by	100	pixels.	Instead,	it	is	forced	down	until	its
top	is	below	the	bottom	of	the	right-floating	image,	as	depicted	in	Figure	1-7.

Figure	1-7.	More	overlap	prevention

4.	 A	floating	element’s	top	may	not	be	higher	than	the	inner	top	of	its	parent.	If	a
floating	element	is	between	two	collapsing	margins,	then	the	floated	element	is
placed	as	though	it	had	a	block-level	parent	element	between	the	two	elements.

The	first	part	of	this	rule	is	quite	simple	and	keeps	floating	elements	from	floating	all	the
way	to	the	top	of	the	document.	The	correct	behavior	is	illustrated	in	Figure	1-8.	The
second	part	of	this	rule	fine-tunes	the	alignment	in	some	situations	—	for	example,	when
the	middle	of	three	paragraphs	is	floated.	In	that	case,	the	floated	paragraph	is	floated	as	if
it	had	a	block-level	parent	element	(say,	a	div).	This	prevents	the	floated	paragraph	from
moving	up	to	the	top	of	whatever	common	parent	the	three	paragraphs	share.

Figure	1-8.	Unlike	balloons,	floated	elements	can’t	float	upward

5.	 A	floating	element’s	top	may	not	be	higher	than	the	top	of	any	earlier	floating	or
block-level	element.

Similarly	to	rule	4,	rule	5	keeps	floated	elements	from	floating	all	the	way	to	the	top	of
their	parent	elements.	It	is	also	impossible	for	a	floated	element’s	top	to	be	any	higher	than
the	top	of	a	floated	element	that	occurs	earlier.	Figure	1-9	is	an	example	of	this:	since	the
second	float	was	forced	to	be	below	the	first	one,	the	third	float’s	top	is	even	with	the	top
of	the	second	float,	not	the	first.

Figure	1-9.	Keeping	floats	below	their	predecessors

6.	 A	floating	element’s	top	may	not	be	higher	than	the	top	of	any	line	box	that	contains
a	box	generated	by	an	element	that	comes	earlier	in	the	document	source.

Similarly	to	rules	4	and	5,	this	rule	further	limits	the	upward	floating	of	an	element	by
preventing	it	from	being	above	the	top	of	a	line	box	containing	content	that	precedes	the
floated	element.	Let’s	say	that,	right	in	the	middle	of	a	paragraph,	there	is	a	floated	image.
The	highest	the	top	of	that	image	may	be	placed	is	the	top	of	the	line	box	from	which	the
image	originates.	As	you	can	see	in	Figure	1-10,	this	keeps	images	from	floating	too	far
upward.

Figure	1-10.	Keeping	floats	level	with	their	context

7.	 A	left-floating	element	that	has	another	floating	element	to	its	left	may	not	have	its
right	outer	edge	to	the	right	of	its	containing	block’s	right	edge.	Similarly,	a	right-
floating	element	that	has	another	floating	element	to	its	right	may	not	have	its	right
outer	edge	to	the	left	of	its	containing	block’s	left	edge.

In	other	words,	a	floating	element	cannot	stick	out	beyond	the	edge	of	its	containing
element,	unless	it’s	too	wide	to	fit	on	its	own.	This	prevents	a	situation	where	a	succeeding
number	of	floated	elements	could	appear	in	a	horizontal	line	and	far	exceed	the	edges	of
the	containing	block.	Instead,	a	float	that	would	otherwise	stick	out	of	its	containing	block
by	appearing	next	to	another	one	will	be	floated	down	to	a	point	below	any	previous
floats,	as	illustrated	by	Figure	1-11	(in	the	figure,	the	floats	start	on	the	next	line	in	order
to	more	clearly	illustrate	the	principle	at	work	here).

Figure	1-11.	If	there	isn’t	room,	floats	get	pushed	to	a	new	“line”

8.	 A	floating	element	must	be	placed	as	high	as	possible.

Rule	8	is,	of	course,	subject	to	the	restrictions	introduced	by	the	previous	seven	rules.
Historically,	browsers	aligned	the	top	of	a	floated	element	with	the	top	of	the	line	box	after
the	one	in	which	the	image’s	tag	appears.	Rule	8,	however,	implies	that	its	top	should	be
even	with	the	top	of	the	same	line	box	as	that	in	which	its	tag	appears,	assuming	there	is
enough	room.	The	theoretically	correct	behaviors	are	shown	in	Figure	1-12.

9.	 A	left-floating	element	must	be	put	as	far	to	the	left	as	possible,	and	a	right-floating
element	as	far	to	the	right	as	possible.	A	higher	position	is	preferred	to	one	that	is
further	to	the	right	or	left.

Again,	this	rule	is	subject	to	restrictions	introduced	in	the	preceding	rules.	As	you	can	see
in	Figure	1-13,	it	is	pretty	easy	to	tell	when	an	element	has	gone	as	far	as	possible	to	the
right	or	left.

Figure	1-12.	Given	the	other	constraints,	go	as	high	as	possible

Figure	1-13.	Get	as	far	to	the	left	(or	right)	as	possible

Applied	Behavior
There	are	a	number	of	interesting	consequences	that	fall	out	of	the	rules	we’ve	just	seen,
both	because	of	what	they	say	and	what	they	don’t	say.	The	first	thing	to	discuss	is	what
happens	when	the	floated	element	is	taller	than	its	parent	element.

This	happens	quite	often,	as	a	matter	of	fact.	Take	the	example	of	a	short	document,
composed	of	no	more	than	a	few	paragraphs	and	h3	elements,	where	the	first	paragraph
contains	a	floated	image.	Further,	this	floated	image	has	a	margin	of	5	pixels	(5px).	You
would	expect	the	document	to	be	rendered	as	shown	in	Figure	1-14.

Figure	1-14.	Expected	floating	behavior

Nothing	there	is	unusual,	of	course,	but	Figure	1-15	shows	what	happens	when	you	set	the
first	paragraph	to	have	a	background.

There	is	nothing	different	about	the	second	example,	except	for	the	visible	background.	As
you	can	see,	the	floated	image	sticks	out	of	the	bottom	of	its	parent	element.	Of	course,	it
did	so	in	the	first	example,	but	it	was	less	obvious	there	because	you	couldn’t	see	the
background.	The	floating	rules	we	discussed	earlier	address	only	the	left,	right,	and	top
edges	of	floats	and	their	parents.	The	deliberate	omission	of	bottom	edges	requires	the
behavior	in	Figure	1-15.

In	practice,	some	browsers	do	not	do	this	correctly.	Instead,	they	will	increase	the	height
of	a	parent	element	so	that	the	floated	element	is	contained	within	it,	even	though	this
results	in	a	great	deal	of	extra	blank	space	within	the	parent	element.

Figure	1-15.	Backgrounds	and	floated	elements

CSS	2.1	clarified	one	aspect	of	floated-element	behavior,	which	is	that	a	floated	element
will	expand	to	contain	any	floated	descendants.	(Previous	versions	of	CSS	were	unclear
about	what	should	happen.)	Thus,	you	could	contain	a	float	within	its	parent	element	by
floating	the	parent,	as	in	this	example:

<div	style="float:	left;	width:	100%;">

					The	'div'	will	stretch	around	the

				floated	image	because	the	'div'	has	been	floated.

</div>

On	a	related	note,	consider	backgrounds	and	their	relationship	to	floated	elements	that
occur	earlier	in	the	document,	which	is	illustrated	in	Figure	1-16.

Because	the	floated	element	is	both	within	and	outside	of	the	flow,	this	sort	of	thing	is
bound	to	happen.	What’s	going	on?	The	content	of	the	heading	is	being	“displaced”	by	the
floated	element.	However,	the	heading’s	element	width	is	still	as	wide	as	its	parent
element.	Therefore,	its	content	area	spans	the	width	of	the	parent,	and	so	does	the
background.	The	actual	content	doesn’t	flow	all	the	way	across	its	own	content	area	so
that	it	can	avoid	being	obscured	behind	the	floating	element.

Figure	1-16.	Element	backgrounds	“slide	under”	floated	elements

Negative	margins

Interestingly,	negative	margins	can	cause	floated	elements	to	move	outside	of	their	parent
elements.	This	seems	to	be	in	direct	contradiction	to	the	rules	explained	earlier,	but	it	isn’t.
In	the	same	way	that	elements	can	appear	to	be	wider	than	their	parents	through	negative
margins,	floated	elements	can	appear	to	protrude	out	of	their	parents.

Let’s	consider	an	image	that	is	floated	to	the	left,	and	that	has	left	and	top	margins	of
-15px.	This	image	is	placed	inside	a	div	that	has	no	padding,	borders,	or	margins.	The
result	is	shown	in	Figure	1-17.

Contrary	to	appearances,	this	does	not	violate	the	restrictions	on	floated	elements	being
placed	outside	their	parent	elements.

Here’s	the	technicality	that	permits	this	behavior:	a	close	reading	of	the	rules	in	the
previous	section	will	show	that	the	outer	edges	of	a	floating	element	must	be	within	the
element’s	parent.	However,	negative	margins	can	place	the	floated	element’s	content	such
that	it	effectively	overlaps	its	own	outer	edge,	as	detailed	in	Figure	1-18.

The	math	situation	works	out	something	like	this:	assume	the	top,	inner	edge	of	the	div	is
at	the	pixel	position	100.	The	browser,	in	order	to	figure	out	where	the	top,	inner	edge	of
the	floated	element	should	be,	will	do	this:	100px	+	(-15px)	margin	+	0	padding	=
85px.	Thus,	the	top,	inner	edge	of	the	floated	element	should	be	at	pixel	position	85;	even
though	this	is	higher	than	the	top,	inner	edge	of	the	float’s	parent	element,	the	math	works

out	such	that	the	specification	isn’t	violated.	A	similar	line	of	reasoning	explains	how	the
left,	inner	edge	of	the	floated	element	can	be	placed	to	the	left	of	the	left,	inner	edge	of	its
parent.

Figure	1-17.	Floating	with	negative	margins

Figure	1-18.	The	details	of	floating	up	and	left	with	negative	margins

Many	of	you	may	have	an	overwhelming	desire	to	cry	“Foul!”	right	about	now.
Personally,	I	don’t	blame	you.	It	seems	completely	wrong	to	allow	the	top,	inner	edge	to
be	higher	than	the	top,	outer	edge,	for	example;	but	with	a	negative	top	margin,	that’s
exactly	what	you	get	—	just	as	negative	margins	on	normal,	nonfloated	elements	can
make	them	visually	wider	than	their	parents.	The	same	is	true	on	all	four	sides	of	a	floated
element’s	box:	set	the	margins	to	be	negative,	and	the	content	will	overrun	the	outer	edge
without	technically	violating	the	specification.

There	is	one	important	question	here:	what	happens	to	the	document	display	when	an
element	is	floated	out	of	its	parent	element	by	using	negative	margins?	For	example,	an

image	could	be	floated	so	far	up	that	it	intrudes	into	a	paragraph	that	has	already	been
displayed	by	the	user	agent.	In	such	a	case,	it’s	up	to	the	user	agent	to	decide	whether	the
document	should	be	reflowed.	The	CSS1	and	CSS2	specifications	explicitly	stated	that
user	agents	are	not	required	to	reflow	previous	content	to	accommodate	things	that	happen
later	in	the	document.	In	other	words,	if	an	image	is	floated	up	into	a	previous	paragraph,
it	may	simply	overwrite	whatever	was	already	there.	On	the	other	hand,	the	user	agent
may	handle	the	situation	by	flowing	content	around	the	float.	Either	way,	it’s	probably	a
bad	idea	to	count	on	a	particular	behavior,	which	makes	the	utility	of	negative	margins	on
floats	somewhat	limited.	Hanging	floats	are	probably	fairly	safe,	but	trying	to	push	an
element	upward	on	the	page	is	generally	a	bad	idea.

There	is	one	other	way	for	a	floated	element	to	exceed	its	parent’s	inner	left	and	right
edges,	and	that’s	when	the	floated	element	is	wider	than	its	parent.	In	that	case,	the	floated
element	will	simply	overflow	the	right	or	left	inner	edge	—	depending	on	which	way	the
element	is	floated	—	in	its	best	attempt	to	display	itself	correctly.	This	will	lead	to	a	result
like	that	shown	in	Figure	1-19.

Figure	1-19.	Floating	an	element	that	is	wider	than	its	parent

Floats,	Content,	and	Overlapping
An	even	more	interesting	question	is	this:	what	happens	when	a	float	overlaps	content	in
the	normal	flow?	This	can	happen	if,	for	example,	a	float	has	a	negative	margin	on	the
side	where	content	is	flowing	past	(e.g.,	a	negative	left	margin	on	a	right-floating
element).	You’ve	already	seen	what	happens	to	the	borders	and	backgrounds	of	block-
level	elements.	What	about	inline	elements?

CSS1	and	CSS2	were	not	completely	clear	about	the	expected	behavior	in	such	cases.	CSS
2.1	clarified	the	subject	with	explicit	rules.	These	state	that:

An	inline	box	that	overlaps	with	a	float	has	its	borders,	background,	and	content	all
rendered	“on	top”	of	the	float.

A	block	box	that	overlaps	with	a	float	has	its	borders	and	background	rendered
“behind”	the	float,	whereas	its	content	is	rendered	“on	top”	of	the	float.

To	illustrate	these	rules,	consider	the	following	situation:

<p	class="box">

				This	paragraph,	unremarkable	in	most	ways,	does	contain	an	inline	element.

				This	inline	contains	some	strongly	emphasized	text,	which	is	so

				marked	to	make	an	important	point.	The	rest	of	the	element's

				content	is	normal	anonymous	inline	content.

</p>

<p>

				This	is	a	second	paragraph.		There's	nothing	remarkable	about	it,	really.

				Please	move	along	to	the	next	bit.

</p>

<h2	id="jump-up">

				A	Heading!

</h2>

To	that	markup,	apply	the	following	styles,	with	the	result	seen	in	Figure	1-20:

.sideline	{float:	left;	margin:	10px	-15px	10px	10px;}

p.box	{border:	1px	solid	gray;	background:	hsl(117,50%,80%);	padding:	0.5em;}

p.box	strong	{border:	3px	double;	background:	hsl(215,100%,80%);	padding:	2px;}

h2#jump-up	{margin-top:	-25px;	background:	hsl(42,70%,70%);}

Figure	1-20.	Layout	behavior	when	overlapping	floats

The	inline	element	(strong)	completely	overlaps	the	floated	image	—	background,	border,
content,	and	all.	The	block	elements,	on	the	other	hand,	have	only	their	content	appear	on
top	of	the	float.	Their	backgrounds	and	borders	are	placed	behind	the	float.

The	described	overlapping	behavior	is	independent	of	the	document	source	order.	It	does
not	matter	if	an	element	comes	before	or	after	a	float:	the	same	behaviors	still	apply.

Clearing
We’ve	talked	quite	a	bit	about	floating	behavior,	so	there’s	only	one	more	thing	to	discuss
before	we	turn	to	shapes.	You	won’t	always	want	your	content	to	flow	past	a	floated
element	—	in	some	cases,	you’ll	specifically	want	to	prevent	it.	If	you	have	a	document
that	is	grouped	into	sections,	you	might	not	want	the	floated	elements	from	one	section
hanging	down	into	the	next.	In	that	case,	you’d	want	to	set	the	first	element	of	each
section	to	prohibit	floating	elements	from	appearing	next	to	it.	If	the	first	element	might
otherwise	be	placed	next	to	a	floated	element,	it	will	be	pushed	down	until	it	appears
below	the	floated	image,	and	all	subsequent	content	will	appear	after	that,	as	shown	in
Figure	1-21.

Figure	1-21.	Displaying	an	element	in	the	clear

This	is	done	with	clear.

CLEAR

Values: left	|	right	|	both	|	none	|	inherit

Initial	value: none

Applies	to: Block-level	elements

Inherited: No

Computed	value: As	specified

For	example,	to	make	sure	all	h3	elements	are	not	placed	to	the	right	of	left-floating
elements,	you	would	declare	h3	{clear:	left;}.	This	can	be	translated	as	“make	sure
that	the	left	side	of	an	h3	is	clear	of	floating	images,”	and	has	an	effect	very	similar	to	the
HTML	construct	<br	clear="left">.	(Ironically,	browsers’	default	behavior	is	to	have	br
elements	generate	inline	boxes,	so	clear	doesn’t	apply	to	them	unless	you	change	their
display!)	The	following	rule	uses	clear	to	prevent	h3	elements	from	flowing	past	floated
elements	to	the	left	side:

h3	{clear:	left;}

While	this	will	push	the	h3	past	any	left-floating	elements,	it	will	allow	floated	elements	to
appear	on	the	right	side	of	h3	elements,	as	shown	in	Figure	1-22.

In	order	to	avoid	this	sort	of	thing,	and	to	make	sure	that	h3	elements	do	not	coexist	on	a
line	with	any	floated	elements,	you	use	the	value	both:

h3	{clear:	both;}

Understandably	enough,	this	value	prevents	coexistence	with	floated	elements	on	both
sides	of	the	cleared	element,	as	demonstrated	in	Figure	1-23.

If,	on	the	other	hand,	we	were	only	worried	about	h3	elements	being	pushed	down	past
floated	elements	to	their	right,	then	you’d	use	h3	{clear:	right;}.

Figure	1-22.	Clear	to	the	left,	but	not	the	right

Figure	1-23.	Clear	on	both	sides

Finally,	there’s	clear:	none,	which	allows	elements	to	float	to	either	side	of	an	element.
As	with	float:	none,	this	value	mostly	exists	to	allow	for	normal	document	behavior,	in
which	elements	will	permit	floated	elements	to	both	sides.	none	can	be	used	to	override
other	styles,	of	course,	as	shown	in	Figure	1-24.	Despite	the	document-wide	rule	that	h3
elements	will	not	permit	floated	elements	to	either	side,	one	h3	in	particular	has	been	set
so	that	it	does	permit	floated	elements	on	either	side:

h3	{clear:	both;}

<h3	style="clear:	none;">What's	With	All	The	Latin?</h3>

Figure	1-24.	Not	clear	at	all

In	CSS1	and	CSS2,	clear	worked	by	increasing	the	top	margin	of	an	element	so	that	it
ended	up	below	a	floated	element,	so	any	margin	width	set	for	the	top	of	a	cleared	element
was	effectively	ignored.	That	is,	instead	of	being	1.5em,	for	example,	it	would	be
increased	to	10em,	or	25px,	or	7.133in,	or	however	much	was	needed	to	move	the	element
down	far	enough	so	that	the	content	area	is	below	the	bottom	edge	of	a	floated	element.

In	CSS	2.1,	clearance	was	introduced.	Clearance	is	extra	spacing	added	above	an
element’s	top	margin	in	order	to	push	it	past	any	floated	elements.	This	means	that	the	top
margin	of	a	cleared	element	does	not	change	when	an	element	is	cleared.	Its	downward
movement	is	caused	by	the	clearance	instead.	Pay	close	attention	to	the	placement	of	the
heading’s	border	in	Figure	1-25,	which	results	from	the	following:

img.sider	{float:	left;	margin:	0;}

h3	{border:	1px	solid	gray;	clear:	left;	margin-top:	15px;}

<h3>

				Why	Doubt	Salmon?

</h3>

Figure	1-25.	Clearing	and	its	effect	on	margins

There	is	no	separation	between	the	top	border	of	the	h3	and	the	bottom	border	of	the
floated	image	because	25	pixels	of	clearance	were	added	above	the	15-pixel	top	margin	in
order	to	push	the	h3’s	top	border	edge	just	past	the	bottom	edge	of	the	float.	This	will	be
the	case	unless	the	h3’s	top	margin	calculates	to	40	pixels	or	more,	in	which	case	the	h3
will	naturally	place	itself	below	the	float,	and	the	clear	value	will	be	irrelevant.

In	most	cases,	you	can’t	know	how	far	an	element	needs	to	be	cleared.	The	way	to	make
sure	a	cleared	element	has	some	space	between	its	top	and	the	bottom	of	a	float	is	to	put	a
bottom	margin	on	the	float	itself.	Therefore,	if	you	want	there	to	be	at	least	15	pixels	of
space	below	the	float	in	the	previous	example,	you	would	change	the	CSS	like	this:

img.sider	{float:	left;	margin:	0	0	15px;}

h3	{border:	1px	solid	gray;	clear:	left;}

The	floated	element’s	bottom	margin	increases	the	size	of	the	float	box,	and	thus	the	point
past	which	cleared	elements	must	be	pushed.	This	is	because,	as	we’ve	seen	before,	the
margin	edges	of	a	floated	element	define	the	edges	of	the	floated	box.

Float	Shapes
Having	explored	basic	floats	in	great	detail,	let’s	shift	to	looking	at	a	really	powerful	way
to	modify	the	space	those	floats	take	up.	The	CSS	Shapes	module,	a	recent	addition	to	the
specification,	describes	a	small	set	of	properties	that	allow	you	to	reshape	the	float	box	in
nonrectangular	ways.	Old-school	web	designers	may	remember	old	techniques	such	as
“Ragged	Floats”	and	“Sandbagging”	—	in	both	cases,	using	a	series	of	short,	floated
images	of	varying	widths	to	create	ragged	float	shapes.	Thanks	to	CSS	Shapes,	these
tricks	are	no	longer	needed.

NOTE
In	the	future,	Shapes	may	be	available	for	nonfloated	elements,	but	as	of	late	2015,	they’re	only	allowed	on
floated	elements.

Creating	a	Shape
In	order	to	shape	the	flow	of	content	around	a	float,	you	need	to	define	one	—	a	shape,
that	is.	The	property	shape-outside	is	how	you	do	so.

SHAPE-OUTSIDE

Value: none	|	[<basic-shape>	||	<shape-box>]	|	<image>	|	inherit

Initial	value: none

Applies	to: Floats

Inherited: No

Computed
value:

For	a	<basic-shape>,	as	defined	(see	below);	for	an	<image>,	its	URL	made	absolute;	otherwise	as
specified	(see	below)

With	none,	of	course,	there’s	no	shaping	except	the	margin	box	of	the	float	itself	—	same
as	it	ever	was.	That’s	straightforward	and	boring.	Time	for	the	good	stuff.

Let’s	start	with	using	an	image	to	define	the	float	shape,	as	it’s	both	the	simplest	and	(in
many	ways)	the	most	exciting.	Say	we	have	an	image	of	a	crescent	moon,	and	we	want	the
content	to	flow	around	the	visible	parts	of	it.	If	that	image	has	transparent	parts,	as	in	a
GIF87a	or	a	PNG,	then	the	content	will	flow	into	those	transparent	parts,	as	shown	in
Figure	1-26.

img.lunar	{float:	left;	shape-outside:	url(moon.png);}

Figure	1-26.	Using	an	image	to	define	a	float	shape

It	really	is	that	simple.	We’ll	talk	in	the	following	sections	about	how	to	push	the	content
away	from	the	visible	parts	of	the	image,	and	how	to	vary	the	transparency	threshold	that
determines	the	shape,	but	for	now,	let’s	just	savor	the	power	this	affords	us.

There	is	a	point	that	needs	to	be	clarified	at	this	stage,	which	is	that	the	content	will	flow

into	transparent	parts	to	which	it	has	“direct	access,”	for	lack	of	a	better	term.	That	is,	the
content	doesn’t	flow	to	both	the	left	and	right	of	the	image	in	Figure	1-26,	but	just	the
right	side.	That’s	the	side	that	faces	the	content,	it	being	a	left-floated	image.	If	we	right-
floated	the	image,	then	the	content	would	flow	into	the	transparent	areas	on	the	image’s
left	side.	This	is	illustrated	in	Figure	1-27	(with	the	text	right-aligned	to	make	the	effect
more	obvious):

p	{text-align:	right;}

img.lunar	{float:	right;	shape-outside:	url(moon.png);}

Figure	1-27.	An	image	float	shape	on	the	right

Always	remember	that	the	image	has	to	have	actual	areas	of	transparency	to	create	a
shape.	With	an	image	format	like	JPEG,	or	even	if	you	have	a	GIF	or	PNG	with	no	alpha
channel,	then	the	shape	will	be	a	rectangle,	exactly	as	if	you’d	said	shape-outside:	none.

Now	let’s	turn	to	the	<basic-shape>	and	<shape-box>	values.	A	basic	shape	is	one	of	the
following	types:

inset()

circle()

ellipse()

polygon()

In	addition,	the	<shape-box>	can	be	one	of	these	types:

margin-box

border-box

padding-box

content-box

These	shape	boxes	indicate	the	outermost	limits	of	the	shape.	You	can	use	them	on	their
own,	as	illustrated	in	Figure	1-28.

Figure	1-28.	The	basic	shape	boxes

The	default	is	the	margin	box,	which	makes	sense,	since	that’s	what	float	boxes	use	when
they	aren’t	being	shaped.	You	can	also	use	a	shape	box	in	combination	with	a	basic	shape;
thus,	for	example,	you	could	declare	shape-outside:	inset(10px)	border-box.	The
syntax	for	each	of	the	basic	shapes	is	different,	so	we’ll	take	them	in	turn.

Inset	shapes

If	you’re	familiar	with	border	images,	or	even	the	old	clip	property,	inset	shapes	are
pretty	straightforward.	Even	if	you	aren’t,	the	syntax	isn’t	too	complicated.	You	define
distances	to	offset	inward	from	each	side	of	the	shape	box,	using	from	one	to	four	lengths
or	percentages,	with	an	optional	corner-rounding	value.

To	pick	a	simple	case,	suppose	we	just	want	to	shrink	the	shape	2.5em	inside	the	shape
box.	That’s	simple:

shape-outside:	inset(2.5em);

Four	offsets	are	created,	each	2.5	em	inward	from	the	outside	edge	of	the	shape	box.	In
this	case,	the	shape	box	is	the	margin	box,	since	we	haven’t	altered	it.	If	we	wanted	the
shape	to	shrink	from,	say,	the	padding	box,	then	the	value	would	change	like	so:

shape-outside:	inset(2.5em)	padding-box;

See	Figure	1-29	for	illustrations	of	the	two	inset	shapes	we	just	defined.

Figure	1-29.	Insets	from	two	basic	shape	boxes

As	with	margins,	padding,	borders,	and	so	on,	value	replication	is	in	force:	if	there	are
fewer	than	four	lengths	or	percentages,	then	the	missing	values	are	derived	from	the	given
values.	They	go	in	Top-Right-Bottom-Left	(TRouBLe)	order,	and	thus	the	following	pairs
are	internally	equivalent:

shape-outside:	inset(23%);

shape-outside:	inset(23%	23%	23%	23%);		/*	same	as	previous	*/

shape-outside:	inset(1em	13%);

shape-outside:	inset(1em	13%	1em	13%);		/*	same	as	previous	*/

shape-outside:	inset(10px	0.5em	15px);

shape-outside:	inset(10px	0.5em	15px	0.5em);		/*	same	as	previous	*/

An	interesting	addition	to	inset	shapes	is	the	ability	to	round	the	corners	of	the	shape	once
the	inset	has	been	calculated.	The	syntax	(and	effects)	are	identical	to	the	border-radius
property.	Thus,	if	you	wanted	to	round	the	corners	of	the	float	shape	with	a	5-pixel	round,
you’d	write	something	like:

shape-outside:	inset(7%)	round	5px;

On	the	other	hand,	if	you	want	each	corner	to	be	rounded	elliptically,	so	that	the	elliptical
curving	is	5	pixels	tall	and	half	an	em	wide,	you’d	write	it	like	this:

shape-outside:	inset(7%	round	0.5em/5px);

Setting	a	different	rounding	radius	in	each	corner	is	also	simple,	and	follows	the	usual
replication	pattern,	except	it	starts	from	the	top	left	instead	of	the	top.	So	if	you	have	more
than	one	value,	they’re	in	the	order	TL-TR-BR-BL	(TiLTeR-BuRBLe),	and	are	filled	in	by
copying	declared	values	in	for	the	missing	values.	You	can	see	a	few	examples	of	this	in
Figure	1-30.	(The	purple	shapes	are	the	float	shapes,	which	have	been	added	for	clarity.
Browsers	do	not	actually	draw	the	float	shapes	on	the	page.)

Figure	1-30.	Rounding	the	corners	of	a	shape	box

NOTE
Note	that	if	you	set	a	border-radius	value	for	your	floated	element,	this	is	not	the	same	as	creating	a	flat
shape	with	rounded	corners.	Remember	that	shape-outside	defaults	to	none,	so	the	floated	element’s	box
won’t	be	affected	by	the	rounding	of	borders.	If	you	want	to	have	text	flow	closely	past	the	border	rounding
you’ve	defined	with	border-radius,	you’ll	need	to	supply	identical	rounding	values	to	shape-outside.

Circles	and	ellipses

Circular	and	elliptical	float	shapes	use	very	similar	syntax,	which	makes	sense.	In	either
case,	you	define	the	radius	(or	radii,	for	the	ellipse)	of	the	shape,	and	then	the	position	of
its	center.

NOTE
If	you’re	familiar	with	circular	and	elliptical	gradients,	the	syntax	for	defining	circular	and	elliptical	float
shapes	will	seem	very	much	the	same.	There	are	some	important	caveats,	however,	as	this	section	will
explore.

Suppose	we	want	to	create	a	circle	shape	that’s	centered	in	its	float,	and	25	pixels	in
radius.	That’s	pretty	straightforward,	although	we	can	accomplish	it	in	any	of	the
following	ways:

shape-outside:	circle(25px);

shape-outside:	circle(25px	at	center);

shape-outside:	circle(25px	at	50%	50%);

Regardless	of	which	we	use,	the	result	will	be	that	shown	in	Figure	1-31.

Figure	1-31.	A	circular	float	shape

Something	to	watch	out	for	is	that	shapes	cannot	exceed	their	shape	box,	even	if	you	set
up	a	condition	where	that	seems	possible.	For	example,	suppose	we	applied	the	previous
25-pixel-radius	rule	to	a	small	image,	one	that’s	no	more	than	30	pixels	on	a	side.	In	that
case,	you’ll	have	a	circle	50	pixels	in	diameter	centered	on	a	rectangle	that’s	smaller	than
the	circle.	What	happens?	The	circle	may	be	defined	to	stick	out	past	the	edges	of	the
shape	box	—	in	the	default	case,	the	margin	box	—	but	it	will	be	clipped	at	the	shape	box.
Thus,	given	the	following	rules,	the	content	will	flow	past	the	image	as	if	it	had	no	shape,
as	shown	in	Figure	1-32:

img	{shape-outside:	circle(25px	at	center);}

img#small	{height:	30px;	width:	35px;}

Figure	1-32.	A	rather	small	circular	float	shape	for	an	even	smaller	image

We	can	see	the	circle	extending	past	the	edges	of	the	image	in	Figure	1-32,	but	notice	how
the	text	flows	along	the	edge	of	the	image,	not	the	float	shape.	Again,	that’s	because	the
actual	float	shape	is	clipped	by	the	shape	box;	in	Figure	1-32,	that’s	the	margin	box,	which
is	at	the	outer	edge	of	the	image.	So	the	actual	float	shape	isn’t	a	circle,	but	a	box	the	exact
dimensions	of	the	image.

The	same	holds	true	no	matter	what	edge	you	define	to	be	the	shape	box.	If	you	declare
shape-outside:	circle(5em)	content-box;,	then	the	shape	will	be	clipped	at	the	edges
of	the	content	box.	Content	will	be	able	to	flow	over	the	padding,	borders,	and	margins,
and	will	not	be	pushed	away	in	a	circular	fashion.

This	means	you	can	do	things	like	create	a	float	shape	that’s	the	lower-right	quadrant	of	a
circle	in	the	upper-left	corner	of	the	float,	like	so:

shape-outside:	circle(3em	at	top	left);

For	that	matter,	if	you	have	a	perfectly	square	float,	you	can	define	a	circle-quadrant	that
just	touches	the	opposite	sides,	using	a	percentage	radius:

shape-outside:	circle(50%	at	top	left);

But	note:	that	only	works	if	the	float	is	square.	If	it’s	rectangular,	oddities	creep	in.	Take
this	example,	which	is	illustrated	in	Figure	1-33:

img	{shape-outside:	circle(50%	at	center);}

img#tall	{height:	150px;	width:	70px;}

Figure	1-33.	The	circular	float	shape	that	results	from	a	rectangle

Don’t	bother	trying	to	pick	which	dimension	is	controlling	the	50%	calculation,	because
neither	is.	Or,	in	a	sense,	both	are.

When	you	define	a	percentage	for	the	radius	of	a	circular	float	shape,	it’s	calculated	with
respect	to	a	calculated	reference	box.	The	height	and	width	of	this	box	are	calculated	as
follows:

In	effect,	this	creates	a	square	that’s	a	blending	of	the	float’s	intrinsic	height	and	width.	In
the	case	of	our	floated	image	that’s	70	x	150	pixels,	that	works	out	to	a	square	that’s
117.047	pixels	on	a	side.	Thus,	the	circle’s	radius	is	50%	of	that,	or	58.5235	pixels.

Once	again,	note	how	the	content	in	Figure	1-34	is	flowing	past	the	image	and	ignoring
the	circle.	That’s	because	the	actual	float	shape	is	clipped	by	the	shape	box,	so	the	final
float	shape	would	be	a	kind	of	vertical	bar	with	rounded	ends,	something	very	much	like
what’s	shown	in	Figure	1-34.

Figure	1-34.	A	clipped	float	shape

It’s	a	lot	simpler	to	position	the	center	of	the	circle	and	have	it	grow	until	it	touches	either
the	closest	side	to	the	circle’s	center,	or	the	farthest	side	from	the	circle’s	center.	Both	are
easily	possible,	as	shown	here	and	illustrated	in	Figure	1-35:

shape-outside:	circle(closest-side);

shape-outside:	circle(farthest-side	at	top	left);

shape-outside:	circle(closest-side	at	25%	40px);

shape-outside:	circle(farthest-side	at	25%	50%);

Figure	1-35.	Various	circular	float	shapes

NOTE
In	one	of	the	examples	in	Figure	1-35,	the	shape	was	clipped	to	its	shape	box,	whereas	in	the	others,	the
shape	was	allowed	to	extend	beyond	it.	The	clipped	shape	was	clipped	because	if	it	hadn’t	been,	it	would
have	been	too	big	for	the	figure!	We’ll	see	this	again	in	an	upcoming	figure.

Now,	how	about	ellipses?	Besides	using	the	name	ellipse(),	the	only	syntactical
difference	between	circles	and	ellipses	is	that	you	define	two	radii	instead	of	one	radius.
The	first	is	the	x	(horizontal)	radius,	and	the	second	is	the	y	(vertical)	radius.	Thus,	for	an
ellipse	with	an	x	radius	of	20	pixels	and	a	y	radius	of	30	pixels,	you’d	declare
ellipse(20px	30px).	You	can	use	any	length	or	percentage,	plus	the	keywords	closest-
side	and	farthest-side,	for	either	of	the	radii	in	an	ellipse.	A	number	of	possibilities	are
shown	in	Figure	1-36.

Figure	1-36.	Defining	float	shapes	with	ellipses

WARNING
As	of	late	2015,	there	were	bugs	with	Chrome’s	handling	of	farthest-side	when	applied	to	ellipses.	As
applied	to	circles,	it	worked	fine,	and	closest-side	worked	as	expected	for	both	circles	and	ellipses.

With	regards	to	percentages,	things	are	a	little	different	with	ellipses	than	they	are	with
circles.	Instead	of	a	calculated	reference	box,	percentages	in	ellipses	are	calculated	against
the	axis	of	the	radius.	Thus,	horizontal	percentages	are	calculated	with	respect	to	the	width
of	the	shape	box,	and	vertical	percentages	with	respect	to	the	height.	This	is	illustrated	in
Figure	1-37.

As	with	any	basic	shape,	an	elliptical	shape	is	clipped	at	the	edges	of	the	shape	box.

Figure	1-37.	Elliptical	float	shapes	and	percentages

Polygons

Polygons	are	a	lot	more	complicated	to	write,	though	they’re	probably	a	little	bit	easier	to
understand.	You	define	a	polygonal	shape	by	specifying	a	comma-separated	list	of	x-y

coordinates,	expressed	as	either	lengths	or	percentages,	calculated	from	the	top	left	of	the
shape	box.	Each	x-y	pair	is	a	vertex	in	the	polygon.	If	the	first	and	last	vertices	are	not	the
same,	the	browser	will	close	the	polygon	by	connecting	them.	(All	polygonal	float	shapes
must	be	closed.)

So	let’s	say	we	want	a	diamond	shape	that’s	50	pixels	tall	and	wide.	If	we	start	from	the
top	vertex,	the	polygon()	value	would	look	like	this:

polygon(25px	0,	50px	25px,	25px	50px,	0	25px)

Percentages	have	the	same	behavior	as	they	do	in	background-image	positioning	(for
example),	so	we	can	define	a	diamond	shape	that	always	“fills	out”	the	shape	box,	it
would	be	written	like	so:

polygon(50%	0,	100%	50%,	50%	100%,	0	50%)

The	result	of	this	and	the	previous	polygon	example	are	shown	in	Figure	1-38.

Figure	1-38.	A	polygonal	float	shape

Those	examples	started	from	the	top	because	that’s	the	habit	in	CSS,	but	they	didn’t	have
to.	All	of	the	following	will	yield	the	same	result:

polygon(50%	0,	100%	50%,	50%	100%,	0	50%)	/*	clockwise	from	top	*/

polygon(0	50%,	50%	0,	100%	50%,	50%	100%)	/*	clockwise	from	left	*/

polygon(50%	100%,	0	50%,	50%	0,	100%	50%)	/*	clockwise	from	bottom

polygon(0	50%,	50%	100%,	100%	50%,	50%	0)	/*	anticlockwise	from	left	*/

As	before,	remember:	a	shape	can	never	exceed	the	shape	box,	but	is	always	clipped	to	it.
So	even	if	you	create	a	polygon	with	coordinates	that	lie	outside	the	shape	box	(by	default,
the	margin	box),	the	polygon	will	get	clipped.	This	is	demonstrated	in	Figure	1-39.

Figure	1-39.	How	a	float	shape	is	clipped	when	it	exceeds	the	shape	box

There’s	an	extra	wrinkle	to	polygons,	which	is	that	you	can	toggle	their	fill	rule.	By
default,	the	fill	rule	is	nonzero,	but	the	other	possible	value	is	evenodd.	It’s	easier	to	show
the	difference	than	to	describe	it,	so	here’s	a	star	polygon	with	two	different	fill	rules,
illustrated	in	Figure	1-40:

polygon(nonzero,	51%	0%,	83%	100%,	0	38%,	100%	38%,	20%	100%)

polygon(evenodd,	51%	0%,	83%	100%,	0	38%,	100%	38%,	20%	100%)

Figure	1-40.	The	two	polygonal	fills

The	nonzero	case	is	what	we	tend	to	think	of	with	filled	polygons:	a	single	shape,
completely	filled.	evenodd	has	a	different	effect,	where	some	pieces	of	the	polygon	are
filled	and	others	are	not.

This	particular	example	doesn’t	show	much	difference,	since	the	part	of	the	polygon	that’s
missing	is	completely	enclosed	by	filled	parts,	so	the	end	result	is	the	same	either	way.
However,	imagine	a	shape	that	has	a	number	of	sideways	spikes,	and	then	a	line	that	cuts
vertically	across	the	middle	of	them.	Rather	than	a	comb	shape,	you’d	end	up	with	a	set	of
discontinuous	triangles.	There	are	a	lot	of	possibilities.

WARNING
As	of	late	2015,	the	one	browser	that	supports	CSS	Shapes,	Chrome,	does	not	support	fill	styles.	All
polygons	are	treated	as	nonzero.

As	you	can	imagine,	a	polygon	can	become	very	complex,	with	a	large	number	of	vertices.
You’re	welcome	to	work	out	the	coordinates	of	each	vertex	on	paper	and	type	them	in,	but
it	makes	a	lot	more	sense	to	use	a	tool	to	do	this.	A	good	example	of	such	a	tool	is	the
Shapes	Editor	available	for	Chrome.	With	it,	you	can	select	a	float	in	the	DOM	inspector,
bring	up	the	Shapes	Editor,	select	a	polygon,	and	then	start	creating	and	moving	vertices

in	the	browser,	with	live	reflowing	of	the	content	as	you	do	so.	Then,	once	you’re
satisfied,	you	can	drag-select-copy	the	polygon	value	for	pasting	into	your	stylesheet.
Figure	1-41	shows	a	screenshot	of	the	Shapes	Editor	in	action.

Figure	1-41.	The	Chrome	Shapes	Editor	in	action

Shaping	With	Image	Transparency
As	we	saw	in	the	previous	section,	it’s	possible	to	use	an	image	with	transparent	areas	to
define	the	float	shape.	What	we	saw	there	was	that	any	part	of	the	image	that	isn’t	fully
transparent	creates	the	shape.	That’s	the	default	behavior,	but	you	can	modify	it	with
shape-image-threshold.

SHAPE-IMAGE-THRESHOLD

Values: <number>	|	inherit

Initial	value: 0.0

Applies	to: Floats

Inherited: No

Computed	value: The	same	as	the	specified	value	after	clipping	the	<number>	to	the	range	[0.0,1.0]

This	property	lets	you	decide	what	level	of	transparency	determines	an	area	where	content
can	flow;	or,	conversely,	what	level	of	opacity	defines	the	float	shape.	Thus,	with	shape-
image-threshold:	0.5,	any	part	of	the	image	with	more	than	50%	transparency	can
allow	content	to	flow	into	it,	and	any	part	of	the	image	with	less	than	50%	transparency	is
part	of	the	float	shape.	This	is	illustrated	in	Figure	1-42.

Figure	1-42.	Using	image	opacity	to	define	the	float	shape	at	the	50%	opacity	level

If	you	set	the	value	of	the	shape-image-threshold	property	to	1.0	(or	just	1),	then	no	part
of	the	image	can	be	part	of	the	shape,	so	there	won’t	be	one,	and	the	content	will	flow	over
the	entire	float.

On	the	other	hand,	a	value	of	0.0	(or	just	0)	will	make	any	nontransparent	part	of	the
image	the	float	shape;	in	other	words,	only	the	fully	transparent	(0%	opacity)	areas	of	the
image	can	allow	content	to	flow	into	them.	Furthermore,	any	value	below	zero	is	reset	to
0.0,	and	any	above	one	is	reset	to	1.0.

Adding	a	Shape	Margin
Once	a	float	shape	has	been	defined,	it’s	possible	to	add	a	“margin”	—	more	properly,	a
shape	modifier	—	to	that	shape	using	the	property	shape-margin.

SHAPE-MARGIN

Values: <length>	|	<percentage>	|	inherit

Initial	value: 0

Applies	to: Floats

Inherited: No

Computed	value: The	absolute	length

Much	like	a	regular	element	margin,	a	shape	margin	pushes	content	away	by	either	a
length	or	a	percentage;	a	percentage	is	calculated	with	respect	to	the	width	of	the
element’s	containing	block,	just	as	are	regular	margins.

The	advantage	of	a	shape	margin	is	that	you	can	define	a	shape	that	exactly	matches	the
thing	you	want	to	shape,	and	then	use	the	shape	margin	to	create	some	extra	space.	Take
an	image-based	shape,	where	part	of	the	image	is	visible	and	the	rest	is	transparent.
Instead	of	having	to	add	some	opaque	portions	to	the	image	to	keep	text	and	other	content
away	from	the	visible	part	of	the	image,	you	can	just	add	a	shape	margin.	This	enlarges
the	shape	by	the	distance	supplied.

In	detail,	the	new	shape	is	found	by	drawing	a	line	perpendicular	from	each	point	along
the	basic	shape,	with	a	length	equal	to	the	value	of	shape-margin,	to	find	a	point	in	the
new	shape.	At	sharp	corners,	a	circle	is	drawn	centered	on	that	point	with	a	radius	equal	to
the	value	of	shape-margin.	After	all	that,	the	new	shape	is	the	smallest	shape	that	can
describe	all	those	points	and	circles	(if	any).

Remember,	though,	that	a	shape	can	never	exceed	the	shape	box.	Thus,	by	default,	the
shape	can’t	get	any	bigger	than	the	margin	box	of	the	un-shaped	float.	Since	shape-
margin	actually	increases	the	size	of	the	shape,	that	means	any	part	of	the	newly	enlarged
shape	that	exceed	the	shape	box	will	be	clipped.

To	see	what	this	means,	consider	the	following,	as	illustrated	in	Figure	1-43:

img	{float:	left;	margin:	0;	shape-outside:	url(star.svg);

				border:	1px	solid	hsla(0,100%,50%,0.25);}

#one	{shape-margin:	0;}

#two	{shape-margin:	1.5em;}

#thr	(shape-margin:	10%;}

Figure	1-43.	Adding	margins	to	float	shapes

Notice	the	way	the	content	flows	past	the	second	and	third	examples.	There	are	definitely
places	where	the	content	gets	closer	than	the	specified	shape-margin,	because	the	shape
has	been	clipped	at	the	margin	box.	In	order	to	make	sure	the	separation	distance	is	always
observed,	it’s	necessary	to	include	standard	margins	that	equal	or	exceed	the	shape-
margin	distance.	For	example,	we	could	have	avoided	the	problem	by	modifying	two	of
the	rules	like	so:

#two	{shape-margin:	1.5em;	margin:	0	1.5em	1.5em	0;}

#thr	(shape-margin:	10%;	margin:	0	10%	10%	0;}

In	both	cases,	the	right	and	bottom	margins	are	set	to	be	the	same	as	the	shape-margin
value,	ensuring	that	the	enlarged	shape	will	never	exceed	the	shape	box	on	those	sides.
This	is	demonstrated	in	Figure	1-44.

Figure	1-44.	Making	sure	the	shape	margins	don’t	get	clipped

Of	course,	if	you	have	a	float	go	to	the	right,	then	you’ll	have	to	adjust	its	margins	to
create	space	below	and	to	the	left,	not	the	right,	but	the	principle	is	the	same.

Summary
Floats	may	be	a	fundamentally	simple	aspect	of	CSS,	but	that	doesn’t	keep	them	from
being	useful	and	powerful.	They	fill	a	vital	and	honorable	niche,	allowing	the	placement
of	content	to	one	side	while	the	rest	of	the	content	flows	around	it.	And	thanks	to	float
shapes,	we’re	not	limited	to	square	float	boxes	any	more.

About	the	Author

Eric	A.	Meyer	has	been	working	with	the	Web	since	late	1993	and	is	an	internationally
recognized	expert	on	the	subjects	of	HTML,	CSS,	and	web	standards.	A	widely	read
author,	he	is	also	the	founder	of	Complex	Spiral	Consulting,	which	counts	among	its
clients	America	Online;	Apple	Computer,	Inc.;	Wells	Fargo	Bank;	and	Macromedia,
which	described	Eric	as	“a	critical	partner	in	our	efforts	to	transform	Macromedia
Dreamweaver	MX	2004	into	a	revolutionary	tool	for	CSS-based	design.”

Beginning	in	early	1994,	Eric	was	the	visual	designer	and	campus	web	coordinator	for	the
Case	Western	Reserve	University	website,	where	he	also	authored	a	widely	acclaimed
series	of	three	HTML	tutorials	and	was	project	coordinator	for	the	online	version	of	the
Encyclopedia	of	Cleveland	History	and	the	Dictionary	of	Cleveland	Biography,	the	first
encyclopedia	of	urban	history	published	fully	and	freely	on	the	Web.

Author	of	Eric	Meyer	on	CSS	and	More	Eric	Meyer	on	CSS	(New	Riders),	CSS:	The
Definitive	Guide	(O’Reilly),	and	CSS2.0	Programmer’s	Reference	(Osborne/McGraw-
Hill),	as	well	as	numerous	articles	for	the	O’Reilly	Network,	Web	Techniques,	and	Web
Review,	Eric	also	created	the	CSS	Browser	Compatibility	Charts	and	coordinated	the
authoring	and	creation	of	the	W3C’s	official	CSS	Test	Suite.	He	has	lectured	to	a	wide
variety	of	organizations,	including	Los	Alamos	National	Laboratory,	the	New	York	Public
Library,	Cornell	University,	and	the	University	of	Northern	Iowa.	Eric	has	also	delivered
addresses	and	technical	presentations	at	numerous	conferences,	among	them	An	Event
Apart	(which	he	co-founded),	the	IW3C2	WWW	series,	Web	Design	World,	CMP,	SXSW,
the	User	Interface	conference	series,	and	The	Other	Dreamweaver	Conference.

In	his	personal	time,	Eric	acts	as	list	chaperone	of	the	highly	active	css-discuss	mailing
list,	which	he	cofounded	with	John	Allsopp	of	Western	Civilisation,	and	which	is	now
supported	by	evolt.org.	Eric	lives	in	Cleveland,	Ohio,	which	is	a	much	nicer	city	than
you’ve	been	led	to	believe.	For	nine	years	he	was	the	host	of	“Your	Father’s	Oldsmobile,”
a	big-band	radio	show	heard	weekly	on	WRUW	91.1	FM	in	Cleveland.

You	can	find	more	detailed	information	on	Eric’s	personal	web	page.

http://www.complexspiral.com
http://bit.ly/css-tdg-3e
http://www.css-discuss.org
http://evolt.org
http://www.meyerweb.com/eric

Colophon

The	animals	on	the	cover	of	CSS	Floating	are	salmon	(salmonidae),	which	is	a	family	of
fish	consisting	of	many	different	species.	Two	of	the	most	common	salmon	are	the	Pacific
salmon	and	the	Atlantic	salmon.

Pacific	salmon	live	in	the	northern	Pacific	Ocean	off	the	coasts	of	North	America	and
Asia.	There	are	five	subspecies	of	Pacific	salmon,	with	an	average	weight	of	10	to	30
pounds.	Pacific	salmon	are	born	in	the	fall	in	freshwater	stream	gravel	beds,	where	they
incubate	through	the	winter	and	emerge	as	inch-long	fish.	They	live	for	a	year	or	two	in
streams	or	lakes	and	then	head	downstream	to	the	ocean.	There	they	live	for	a	few	years,
before	heading	back	upstream	to	their	exact	place	of	birth	to	spawn	and	then	die.

Atlantic	salmon	live	in	the	northern	Atlantic	Ocean	off	the	coasts	of	North	America	and
Europe.	There	are	many	subspecies	of	Atlantic	salmon,	including	the	trout	and	the	char.
Their	average	weight	is	10	to	20	pounds.	The	Atlantic	salmon	family	has	a	life	cycle
similar	to	that	of	its	Pacific	cousins,	and	also	travels	from	freshwater	gravel	beds	to	the
sea.	A	major	difference	between	the	two,	however,	is	that	the	Atlantic	salmon	does	not	die
after	spawning;	it	can	return	to	the	ocean	and	then	return	to	the	stream	to	spawn	again,
usually	two	or	three	times.

Salmon,	in	general,	are	graceful,	silver-colored	fish	with	spots	on	their	backs	and	fins.
Their	diet	consists	of	plankton,	insect	larvae,	shrimp,	and	smaller	fish.	Their	unusually
keen	sense	of	smell	is	thought	to	help	them	navigate	from	the	ocean	back	to	the	exact	spot
of	their	birth,	upstream	past	many	obstacles.	Some	species	of	salmon	remain	landlocked,
living	their	entire	lives	in	freshwater.

Salmon	are	an	important	part	of	the	ecosystem,	as	their	decaying	bodies	provide	fertilizer
for	streambeds.	Their	numbers	have	been	dwindling	over	the	years,	however.	Factors	in
the	declining	salmon	population	include	habitat	destruction,	fishing,	dams	that	block
spawning	paths,	acid	rain,	droughts,	floods,	and	pollution.

The	cover	image	is	a	19th-century	engraving	from	the	Dover	Pictorial	Archive.	The	cover
fonts	are	URW	Typewriter	and	Guardian	Sans.	The	text	font	is	Adobe	Minion	Pro;	the
heading	font	is	Adobe	Myriad	Condensed;	and	the	code	font	is	Dalton	Maag’s	Ubuntu
Mono.

Preface
Conventions	Used	in	This	Book

Safari®	Books	Online

How	to	Contact	Us

1.	Floating	and	Shapes
Floating

Floated	Elements

Floating:	The	Details

Applied	Behavior

Floats,	Content,	and	Overlapping

Clearing

Float	Shapes
Creating	a	Shape

Shaping	With	Image	Transparency

Adding	a	Shape	Margin

Summary

	Preface
	Conventions Used in This Book
	Safari® Books Online
	How to Contact Us

	1. Floating and Shapes
	Floating
	Floated Elements
	No floating at all

	Floating: The Details
	Applied Behavior
	Negative margins

	Floats, Content, and Overlapping

	Clearing
	Float Shapes
	Creating a Shape
	Inset shapes
	Circles and ellipses
	Polygons

	Shaping With Image Transparency
	Adding a Shape Margin

	Summary

