
www.allitebooks.com

http://www.allitebooks.org

Clojure for Finance

Leverage the power and flexibility of the Clojure
language for finance

Timothy Washington

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Clojure for Finance

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2016

Production reference: 1040116

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-928-6

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Timothy Washington

Reviewers
Ed Babcock

Nicholas Quirk

Dajana Štiberová

Acquisition Editors
Richard Brookes-Bland

Divya Poojari

Content Development Editor
Shweta Pant

Technical Editor
Rahul C. Shah

Copy Editor
Sonia Cheema

Project Coordinator
Sanjeet Rao

Proofreader
Safis Editing

Indexer
Hemangini Bari

Graphics
Disha Haria

Production Coordinator
Nilesh Mohite

Cover Work
Nilesh Mohite

www.allitebooks.com

http://www.allitebooks.org

About the Author

Timothy Washington is a senior software developer with over 15 years of
experience in designing and building enterprise web applications from end to
end. His experience includes delivering stable, robust software architectures to
organizations ranging from start-ups to Fortune 500 companies. His skills include
managing agile projects, systems analysis and design, functional programming, DSL
and language design, and object-oriented design, with contributions to the open
source community.

Thanks to Richard Brooks-Bland for first convincing me to write
this book. This wouldn't have happened without your goading. I'd
also like to thank Chris Zheng for the first bits of feedback, and all
the reviewers, for their hard work, catching errors I would have
otherwise missed.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Ed Babcock is a software developer who has been enjoying Clojure and
ClojureScript since first hearing about them back in 2011. Over the last few years, he
has been able to use Clojure for a variety of projects, ranging from mobile and web
development to a large-scale search engine. Having worked with other programming
languages in the past, he is certain that Clojure's simple design patterns and excellent
community have made him a much better programmer. He is currently working
for HomeSpotter, a home search start-up, and exploring cross-platform application
development though several open source projects on GitHub.

Nicholas Quirk is currently finishing his master's degree in computer science.
He has 5 years of industry experience, primarily with Java web application
development; however, he also loves LISP dialects, such as Clojure, and the history
of computer science itself. His staples in life are reading and programming. If
you can't find him doing either of these, he might be doodling, hiking, mountain
stomping, or enjoying the company of friends and family.

I would like to thank my friends and family for their support as I've
bought my first house.

Dajana Štiberová is a young Clojure enthusiast who's based in Bratislava, Slovakia.
After deciding to abandon her work in the finance sector, she rediscovered her passion
for math and analytical thinking with the help of programming. She currently works
on distributed testing platforms that are written almost entirely in Clojure.

She likes to spend her free time cycling to discover new roads and places, helping
animals, and seeks to improve the lives of children in hospitals.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

[i]

Table of Contents
Preface v
Chapter 1: Orientation – Addressing the Questions Clojure
Answers 1

Notions of computation 2
Notions of finance 3
Concrete types of computation 4
Tooling 5
A first look at Clojure's core functions 7

Primitives 7
Collections 10

Summary 12
Chapter 2: First Principles and a Useful Way to Think 13

Modeling stock price activity 14
Function evaluation 14
First-class functions 15
Lazy evaluation 15
Basic Clojure functions and immutability 16
Namespaces and creating our first function 17

The Read-Eval-Print-Loop 17
Basic data structures 19

Macros and more in-depth data transformation 20
Elaborating our equation 23

Summary 28
Chapter 3: Developing the Simple Moving Average 29

Perception and representation 30
Knowing the data input 30
Knowing the data output 31

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Reasoning about the equation needed to achieve our output 32
Understanding Vars and bindings 34
Working with lazy sequences 35
Implementing our equation 35
Destructuring 42
Summary 45

Chapter 4: Strategies for Calculating and Manipulating Data 47
Our first refactor – the price list 47
The exponential moving average 49
The Bollinger Bands 53
Summary 56

Chapter 5: Traversing Data, Branching, and Conditional Dispatch 57
Our second refactor – the generate prices function 57
Polynomial expressions 60
A sine wave 64
Stitching the pieces together 67
Surveying the function landscape 69

Traversing data 69
Branching and conditional dispatch 70

First order functions 71
Applying functions 71
Summary 83

Chapter 6: Surveying the Landscape 85
Scalar data types 86
Numbers and precision 86
A review of collections 89
Data transformation patterns and principles 90
Clojure's model of state and identity 93
Introducing side effects 96
Concurrency and parallelism 97
Type systems 98
Comparing Clojure with object orientation 99
Comparing Clojure with FP and strong typing 103
Summary 107

Chapter 7: Dealing with Side Effects 109
Simple writing 110
Extensible Data Notation 110
Devising a persistence strategy 111

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Consuming from a data stream 113
Using a componentized architecture 116
Summary 121

Chapter 8: Strategies for Using Macros 123
Simple reading 123
Functions for querying a system 125

An example of a regular expression 125
A basic lookup 126
Flattening structures 127
A more expressive lookup 128
A simple query language 130
Variable argument functions 130
The :pre and :post function conditions 131
The juxt higher order function 133

Separate OR AND lookups 135
Deriving a query language using macros 139
Summary 143

Chapter 9: Building Algorithms – Strategies to Manipulate and
Compose Functions 145

Structuring our data for further analysis 145
A third refactor of the analytic functions 148
Signals using moving averages 151
The Relative Strength Index 153
Bollinger Band signals 156
Summary 163

Index 165

www.allitebooks.com

http://www.allitebooks.org

[v]

Preface
Clojure is a dynamic programming language with an emphasis on functional
programming. As a functional language with immutability and laziness as the default,
Clojure is well suited to financial modeling. Such languages help developers work at
high-levels of abstraction, thus implementing features much more quickly and with
more confidence, than is otherwise possible in languages without these facilities.

In this book, we will demonstrate Clojure's utility in processing and analyzing
financial data. Whether it's core banking, risk assessment, compliance, or other
domains, this book's audience mostly comprises finance professionals who can use
Clojure to improve their Excel spreadsheets or existing toolsets.

What this book covers
Chapter 1, Orientation – Addressing the Questions Clojure Answers, gives you the
background required to understand Clojure's utility to solve real-world problems in
many domains, and finance in particular. It also orients and helps you understand
Clojure's approach to computation.

Chapter 2, First Principles and a Useful Way to Think, provides you with an
understanding of what a stream of stock price data may look like. It then applies
some core functional programming features that Clojure provides to transform data
into the stock price shape we desire.

Chapter 3, Developing the Simple Moving Average, aims to teach you how to translate
requirements to data input, deriving the target data output, and reasoning about
an equation needed to achieve your output. It also helps you understand Vars and
bindings and how to implement a Simple Moving Average (SMA). This chapter
focuses on developing a solid understanding of a problem, easily representing data,
and quickly performing calculations.

Preface

[vi]

Chapter 4, Strategies for Calculating and Manipulating Data, implements two more
functions, the Exponential Moving Average (EMA) and Bollinger Band. These are
both technical trading indicators, which involve more advanced mathematics. This
chapter explores the math in each equation and the algorithmic steps needed to
arrive at a desired endpoint.

Chapter 5, Traversing Data, Branching, and Conditional Dispatch, provides you with
an understanding of more advanced branching and conditional logic. This chapter
fleshes out the overall approach of Clojure's functions around recursion, list
comprehensions, conditional dispatch, and first-order functions. This should then
enable you to traverse and manipulate your data until you get what you want.

Chapter 6, Surveying the Landscape, takes a step back and reviews all of Clojure's
features together. We'll review Clojure's scalars, collection types, and composite data
types. Then, we'll take a look at how to use Clojure's functions to access, update, and
compose data structures, I/O operations, and ways to approach what are known as
side effects. We will also touch on Clojure's options when dealing with concurrency
and parallelism.

Chapter 7, Dealing with Side Effects, shows how a componentized architecture can
encapsulate all the functionality that we've developed so far. We will also develop
a persistence strategy to write out our core tick list and accompanying analytics in
the EDN format.

Chapter 8, Strategies for Using Macros, helps you understand how to read in data
using Clojure. Once data is in our system, we will look at a few ways of querying
it, including simple filtering and adding more constraints in a logical OR and AND
fashion. We will also derive a a little query language using macros.

Chapter 9, Building Algorithms – Strategies to Manipulate and Compose Functions, uses
all the knowledge you've gained so far to design buy and sell signals. It teaches you
how to structure your data for further analysis, refactor your lagging indicator
functions (SMA, EMA, and Bollinger Bands) to work lazily, and compose them
together to get new information.

Preface

[vii]

What you need for this book
You just need Leiningen and one of the common OSes, including OSX, Linux,
Windows, and that's it!

Other than this, you need the following hardware:

• MacBook Pro (Retina, Mid 2012)
• A 2.3 GHz Intel Core i7 processor
• 8 GB 1600 MHz DDR3 RAM

You also need the following software:

• OSX Yosemite (10.10.2)
• Java version "1.8.0_45"
• Leiningen 2.5.2
• Clojure 1.7.0

Who this book is for
If you're a finance professional who is currently using VBA (Excel) to perform
financial calculations and quantitative analysis, and would like to use Clojure to
augment your existing toolset, then this book is for you.

Basic knowledge of financial concepts is essential. Basic programming knowledge
would also be an added advantage.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"You can test this out by running java -version in the shell or command prompt
provided by your system."

A block of code is set as follows:

(defn generate-prices [lower-bound upper-bound]
 (filter (fn [x] (>= x lower-bound))
 (repeatedly (fn [] (rand upper-bound)))))

Preface

[viii]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

(defn generate-sine-sequence []

 (let [ein (randomize-vertical-dilation sine 0.5 2.7)
 zwei (randomize-horizontal-dilation ein 0.3 2.7)
 sine-partial (partial zwei 0)

 xinterc-sine-left (find-xintercept - sine-xintercept)
 xinterc-sine-right (find-xintercept + sine-xintercept)

 granularityS (rand-double-in-range 0.1 1)
 xsequenceS (iterate (partial + granularityS) xinterc-sine-left)]

 (map sine-partial xsequenceS)))

(defn generate-oscillating-sequence []
 (four analytics/generate-prices-without-population 5 15))

Any command-line input or output is written as follows:

> (alter-var-root #'system component/start)

> (clojure.pprint/pprint system)

{:tms

 {:channel

 #object[clojure.core.async.impl.channels.ManyToManyChannel 0x14d1e55
"clojure.core.async.impl.channels.ManyToManyChannel@14d1e55"]},

 :cns

 {:timeseries

 {:channel

 #object[clojure.core.async.impl.channels.ManyToManyChannel 0x14d1e55
"clojure.core.async.impl.channels.ManyToManyChannel@14d1e55"]},

 :channel

 #object[clojure.core.async.impl.channels.ManyToManyChannel 0x14d1e55
"clojure.core.async.impl.channels.ManyToManyChannel@14d1e55"]}}

Preface

[ix]

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "To be
precise, these values are called Vars."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[x]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

Orientation – Addressing the
Questions Clojure Answers

Hello. In this book, I'll try to demonstrate Clojure's utility in processing and analyzing
financial data. Whether it is core banking, risk assessment, compliance, and so on,
this book's audience mostly comprises finance professionals who use Clojure to
improve their Excel spreadsheets or existing toolsets. As such, this will be a beginners
programming book, but it won't be light on substance. I want to assert a broader
philosophical point: better tools make your professional life easier. By better, I mean
tools that offers greater expressive power, which is a measure of a tool's capacity to let
you do and see more with the same or less amount of effort as compared to other tools.

To justify replacing or augmenting your existing tools, I'll try to point out the benefits
of using functional programming (Clojure, in this case) in an organization in order to
fully represent and manage capital. You might want to know how you can quickly
and effectively analyze financial conditions and decide when and how to invest
and maximize capital growth. So, I'll begin by weaving together the two concepts of
capital flows and state-of-the-art computation. You will see how concepts, such as
functional programming (FP), part of computer science's cutting edge, enable a high
fidelity of data representation and transformation and information extraction.

The goals of this book are as follows:

• Highlighting the importance of quickly and effectively representing
data and its calculations

• Showing how Clojure can easily represent data and quickly
perform calculations

• Giving you confidence to deal with basic data types and manipulations

Orientation – Addressing the Questions Clojure Answers

[2]

• Pointing you to more advanced approaches to calculate and transform
data as well as build algorithms

There are an unlimited number of financial equations we can study (such as the
cost of capital, rate calculation, fee calculation, and so on). So, I think it will be
more useful to focus on one particular application. As such, this book's pedagogy
will be to walk you through slowly building a set of lagging price indicators that
follow a moving stock price time series. I'll also introduce you to topics, such as I/O,
concurrency, macros, types, and type theory. However, as these topics are out of
scope for this book, we won't go into very much detail about them. These are
tools that are used in building software libraries and systems. There are several
places that you can refer to for more advanced information.

Notions of computation
I'll state up front my position that computer programming languages are simply
tools that let us communicate with other programmers and give human control
of the machine. But, what does it mean to compute? Alan Turing was an English
mathematician who invented the disciplines of computer science and artificial
intelligence. You can read more about him at http://en.wikipedia.org/wiki/
Alan_Turing. He believed that computation can be thought of as an actualization or
concrete version of a mathematical function. His ideas of computation can be found
in the contributions he made to the concept of an algorithm and his description of a
Turing Machine. He perceived an algorithm to be a step-by-step procedure used for
calculations. These steps are expressed as a finite list of well-defined instructions to
calculate a function. Further, Turing postulated a theoretical computer (the Turing
Machine) that could calculate anything that is computable, in spite of the complexity
involved.

Others, such as Alonzo Church, approached the notion of computation by trying
to solve the Entscheidungsproblem, which is German for a decision problem
(http://en.wikipedia.org/wiki/Entscheidungsproblem). The decision
problem asks for an algorithm, where the input is a statement of first-order logic
and answers yes or no according to whether the statement is universally valid.
Alonzo Church proposed the lambda calculus as a formal system in mathematical
logic that satisfied this decision problem. The lambda calculus expresses
computation based on function abstraction and application using variable
binding and substitution (http://en.wikipedia.org/wiki/Lambda_calculus).

http://en.wikipedia.org/wiki/Alan_Turing
http://en.wikipedia.org/wiki/Alan_Turing
http://en.wikipedia.org/wiki/Entscheidungsproblem
http://en.wikipedia.org/wiki/Lambda_calculus

Chapter 1

[3]

Further still, MIT professor, Gerald Sussman, says, "We (as humans) really don't know
how to compute" (you can read more at http://www.infoq.com/presentations/
We-Really-Dont-Know-How-To-Compute). That is in comparison with data and
computation that we see in the natural world. Plants, for example, can harvest
up to 95% of energy from the light that they absorb. They transform sunlight into
carbohydrates in one million billionths of a second, preventing much of this energy
from dissipating as heat. This near instantaneous process uses the basic principle of
quantum computing—the exploration of a multiplicity of different answers at the same
time—to achieve near perfect efficiency. The protein structure of a plant, which can be
derived using this quantum effect, somehow allows the transfer of energy but not heat.
According to David Biello, "Inside every spring leaf is a system capable of performing
a speedy and efficient quantum computation" (you can read more about it at http://
www.scientificamerican.com/article/when-it-comes-to-photosynthesis-
plants-perform-quantum-computation/). We as humans just don't understand how
it happens. Gerald Jay Sussman compares our computational skills with a genome,
concluding that we are way behind in creating complex systems such as living
organisms.

Even if our tools and approaches are primitive, we can still grasp the importance of
such capabilities. The structures of the modern world dictate tools that let humans
quickly calculate, abstract, and derive algorithms (ways of representing abstract
data, credit in this case). The computation tools we use simply give us fine-grained
control of these problems. Without them, the modern world as it is today would
not be possible. Strong computation has applications in every real-world discipline
[engineering, science, business (credit and financial systems), and so on], or at least
any discipline where data can be represented digitally.

Notions of finance
It's useful to think of capital as a store of time and labor. Let's consider money
outside our current banking system. In The Ascent Of Money: A Financial History
of the World by the Penguin Group, Niall Ferguson discusses the history of money
and credit in human civilization (you can find it at http://www.amazon.com/
The-Ascent-Money-Financial-History/dp/0143116177). This approach lets
us consider how societies use capital to distribute wealth. Among other things, he
argues that the evolution of credit and debt is as important as any technological
innovation in the rise of a civilization. I've mentioned this to highlight the purpose
of finance and the fact that money and finance have existed across many banking
systems, including before our current one. It's important that this approach not be
ideological. I want to frame the core purpose and function of a bank and flesh out
the mechanics of money flows.

www.allitebooks.com

http://www.infoq.com/presentations/We-Really-Dont-Know-How-To-Compute
http://www.infoq.com/presentations/We-Really-Dont-Know-How-To-Compute
http://www.scientificamerican.com/article/when-it-comes-to-photosynthesis-plants-perform-quantum-computation/
http://www.scientificamerican.com/article/when-it-comes-to-photosynthesis-plants-perform-quantum-computation/
http://www.scientificamerican.com/article/when-it-comes-to-photosynthesis-plants-perform-quantum-computation/
http://www.amazon.com/The-Ascent-Money-Financial-History/dp/0143116177
http://www.amazon.com/The-Ascent-Money-Financial-History/dp/0143116177
http://www.allitebooks.org

Orientation – Addressing the Questions Clojure Answers

[4]

When programming (computers), the first task is to build an understanding of the
systems we're trying to model and the problems that we are trying to solve. As such,
let's distill some central notions of money and how it fits into the banking function.
This is written in the spirit of banks simply becoming information processes and
looking more like software companies. Technology produces alternative mediums
of capital, such as cryptocurrencies, for example, bitcoin (you can find more about
this at http://en.wikipedia.org/wiki/Cryptocurrency). But this concept is
outside the scope of the book. I make the point to emphasize the seismic effect that
software is having on finance and all modern professions. I will try to describe the
context and constraints within which such banking software must operate.

Money is a medium of exchange, unit of account (divisible, fungible, or of a specific
measure or size), store of value, and a standard of deferred payment. In economics,
money creation is the process by which the money supply of a country or a monetary
region (for example, the EU) is increased. Changes in the quantity of money may
be caused due to the actions of a central bank, depository institutions (principally
commercial banks), or the public. However, the major control rests with a central bank.
The actual process of money creation takes place primarily in banks (refer to https://
archive.org/details/ModernMoneyMechanics and http://upload.wikimedia.
org/wikipedia/commons/4/4a/Modern_Money_Mechanics.pdf). In the U.S., the
money creation process centers around the US Federal Reserve. So, a central bank may
introduce new money into an economy by purchasing financial assets or lending
money to financial institutions or governments. The majority of money in our modern
economy is created by commercial banks who give loans or demand deposits.

There's much more to take into account. However, this context allows us to begin
considering how to faithfully represent credit levels and flows within and between
bank and bank-like entities. We can also start thinking about a commercial bank's
core functions and constraints, and the systems it should implement to perform all
of these.

Concrete types of computation
Most to all computer languages are Turing Complete or can compute every
Turing-computable function. This refers to a language that has conditional branching
and allows an arbitrary number of variables. If this is the case, then how do different
language categories address the notion of computation?

• Imperative or procedural programming (Assembly, C, Fortran, et al.):
This generally describes computation in terms of statements that change a
program state.

http://en.wikipedia.org/wiki/Cryptocurrency
https://archive.org/details/ModernMoneyMechanics
https://archive.org/details/ModernMoneyMechanics
http://upload.wikimedia.org/wikipedia/commons/4/4a/Modern_Money_Mechanics.pdf
http://upload.wikimedia.org/wikipedia/commons/4/4a/Modern_Money_Mechanics.pdf

Chapter 1

[5]

• Object-Oriented programming (Simula, Smalltalk, Java, C++, et al.):
This grew out of a need to build larger and more complex systems. Its
computation model focuses on data encapsulation and object interaction.
While procedural programming treats computation in terms of statements
that change a program state, the object-oriented (OO) paradigm
encapsulates program states in objects and procedures in methods.

• Functional programming (Lisp , R, Haskell, APL, et al.): This treats
computation as the evaluation of mathematical functions and avoids state
and mutable data. In contrast, procedural and object-oriented programming
emphasize changes in state, while Functional Programming FP emphasizes
the application of functions, very often with immutable data. FP has its roots
in the lambda calculus, and many functional programming languages can
be viewed as elaborations of lambda calculus.

There are other categories and techniques being researched, such as logic
programming, type theory, and so on. We'll focus mainly on functional programming
and Clojure, as they provide sufficient and powerful expressivity needed to model
our problem domains. These provide a high fidelity of information, faithfully
representing credit levels and credit flows within and between bank and bank-like
entities. For example, the notion of a function used in imperative programming is
that it can have side effects that may change the value of the program state. Functions
lack referential transparency, where the same language expression can result in
different values at different times depending on the executing program state. This
has negative implications when making financial calculations or representing
credit properly in your systems. Conversely, in FP, the output value of a function
depends only on the arguments that are input to the function, which is much closer
to a mathematical function. Eliminating these side effects make it much easier to
understand and predict the behavior of a program. This and FP's close proximity
to mathematical functions are some of the key motivations for the development
of functional programming.

Tooling
Let's begin by setting up the tools we'll need to run the book's code. You can author
the code for this book in any text editor you prefer. I'll be using Emacs. Leiningen
will be the build tool that we'll use to compile and run our Clojure code. It lets us
leverage Clojure's many key features shown as follows:

• Functional programming or a first class function evaluation model
(a la lambda calculus).

• Immutability is a feature where data that is created is never changed.
It is only transformed via the functions you apply.

Orientation – Addressing the Questions Clojure Answers

[6]

• Laziness is the feature of not evaluating any code until it is absolutely
required. This saves computing resources.

• Homoiconic, which refers to the programs you write, is actual data and
vice versa.

• A well-designed, which syntax makes your code easy to read and reason out.
• A Read-Eval-Print-Loop (REPL) lets us quickly evaluate our code and make

changes in real time.

The following steps will guide you to create your first Clojure project:

1. The first requirement is a Java runtime, if you don't already have one.
You can test this out by running java -version in the shell or command
prompt provided by your system. If you don't have Java, you can download
it from https://java.com/en/download/. You can also consult your OS'
software or package management tool for the best way to install Java.

2. The next step is to install Leiningen (you can do this from http://www.
leiningen.org). Follow Leiningen's installation instructions by visiting
http://leiningen.org/#install. You can test your installation by
executing lein to see the help menu that is produced.

3. Now we're ready to create a Clojure project and perform some simple
operations.

4. In your shell, within the directory of your choice, run lein new edgar.
There should be a new project directory there named edgar/.

5. Next, change into the edgar/ directory and run lein repl. After a
few seconds, you will be brought into an REPL.

6. From here, you can begin to evaluate primitive expressions, such as numbers
and strings. In your REPL, type 1 [Enter], and then "foobar" [Enter].

7. Clojure is also known as a list processing language or a LISP. Now
we're going to evaluate a list with a function as the first argument,
which is (+ 1 1).

8. Clojure functions are evaluated in the first position of a list with all
function arguments, including subexpressions, placed afterwards.

9. Try evaluating (+ 5 (* 2 4 6)). Here, the * function is applied to 2 4 6,
which produces 48. After this, the REPL applies + to 5 and 48, yielding 53.

Clojure has some special reserved characters that it needs to use exclusively.
As such, we won't be able to use them when naming our program elements.
The Macro characters section of Clojure's Reader page at http://clojure.org/
reader, itemizes them.

https://java.com/en/download/
http://www.leiningen.org
http://www.leiningen.org
http://leiningen.org/#install
http://clojure.org/reader
http://clojure.org/reader

Chapter 1

[7]

A first look at Clojure's core functions
There are many places you can refer to for Clojure's core functions such as the
official Clojure documentation (http://clojure.org/documentation).
Additionally, this site provides a handy cheatsheet that gives a bird's-eye view
of core functions and their categories (http://clojure.org/cheatsheet).

These are a few community maintained sites that help you get an overview of
Clojure's core functions:

• https://clojuredocs.org/quickref (ClojureDocs)
• http://conj.io (Grimoire)
• http://clojure-doc.org (Clojure Documentation; source: https://

github.com/clojuredocs/guides)

Let's take a look at the Grimoire Community Clojure documentation. If you navigate
to http://conj.io, you'll see a good mix of the official cheatsheet's overview,
with a dynamic ability to filter on function names that we type into a search field.
The functions are also grouped into overriding concerns. We'll only touch on a few
functions from each category. The following section will provide you with a Clojure
environment where you can explore Clojure's core functions.

Note that the text following ;; refers to comments and is not
evaluated by Clojure.

Primitives
Let's have a look at the following list of primitives:

• Nil: This simply represents the absence of a value. It is the lowest in
any sort order (for example, when appearing in a sorted set) and equates
to a logical false (for example, when appearing in an if condition):
nil ;; nil
(type nil) ;; nil

• Booleans: Clojure's primitive boolean types are true or false.
These are java java.lang.Boolean classes under the hood:
true ;; true
(type false) ;; java.lang.Boolean

http://clojure.org/documentation
http://clojure.org/cheatsheet
https://clojuredocs.org/quickref
http://conj.io
http://clojure-doc.org
https://github.com/clojuredocs/guides
https://github.com/clojuredocs/guides
http://conj.io

Orientation – Addressing the Questions Clojure Answers

[8]

• Numbers: These are functions to help you test, generate, and
manipulate numbers. Here is an example of how to apply the
most basic number functions:
(+ 9 5) ;; 14
(- 400 18.75) ;; 381.25
(* 6 10) ;; 60
(/ 50 5) ;; 10
(quot 50 5) ;; 10 - the quotient (same as division `/`) of
the numerator and denominator, respectively
(rem 26 12) ;; 2 - the remainder of the numerator and
denominator, respectively
(mod 26 12) ;; 2 - the modulus (same as remainder `rem`)
of the numerator and denominator, respectively
(inc 67) ;; 68 - increment the argument (a number) by 1
(dec 100) ;; 99 - decrement the argument (a number) by 1
(max 250 45) ;; 250 - the maximum number between the first
and second arguments
(min 250 45) ;; 45 - the minimum number between the first
and second arguments

• Characters: Characters in Clojure are either single nonnumeric (*, +, !)
or alphanumeric (a, s, d, f) things. Characters are prefixed with a backslash
\h, \e, \l, \l, \o. We can also represent special characters, such as
a \newline, \space, \return, and so on.

• Strings: Strings are a simple sequence of characters. They are surrounded
by double quotes, such as "hello". As you'll see in the next section, this is
very close to the definition of a collection. So, some collection functions
work on strings as well. Any function that takes a collection and doesn't
require it to be a persistent collection can often operate on a string:
(reverse "hello") ;; (\o \l \l \e \h)
(count "hello") ;; 5
(first "hello") ;; \h

This is a subtle distinction. Sometimes, you'll need to pull in string-specific
functions that do what you mean. The clojure.string/reverse function
versus the clojure.core/reverse function is such an example:
(require '[clojure.string :as s])

(s/reverse "hello") ;; "olleh"
(reverse "hello") ;; (\o \l \l \e \h)
(s/join ", " "hello") ;; "h, e, l, l, o"

Chapter 1

[9]

We can also apply functions to patterns of strings. These patterns are
described with regular expressions, which are written as strings (double-
quotes) and prefixed with a hash. Regular expressions follow Java's Regular
Expression system, which is specified in the java.util.regex.Pattern
class, available at http://java.sun.com/j2se/1.5.0/docs/api/java/
util/regex/Pattern.html. They can often be a more expressive way of
targeting a string pattern in a large block of text. For example, we can target
only continuous blocks of numbers. Or, we can target a specific word or
character sequence, as shown here:

(re-find #"\d+" "hello1234") ;; "1234"
(s/replace "Hello World" #"World" "Clojure") ;; "Hello
 Clojure"

• Symbols: Symbols in Clojure point to things in a system runtime.
For example, the core functions we have looked at so far are actually
represented by symbols that point to a function. So, if we try to evaluate
inc or first outside a list, the runtime system will return a gnarly
looking function representation. We can take this result function and
use it somewhere else. Symbols can contain any alphanumeric character,
must begin with a nonnumeric character, and can also contain *, +, !, -, _,
and ?. We can create our own symbols or use a function, such as def, to
assign values to symbols:
(symbol 'hello) ;; hello
(symbol "hello") ;; hello
(symbol "clojure.core" "hello") ;; clojure.core/hello
(def hello "world") ;; #'user/hello
hello ;; "world"

• Keywords: Keywords are like symbols, except they are self-referencing.
If you pass a keyword to a Clojure environment, you'll get back the same
:hello ;; :hello value. This makes them handy as keys or identifiers
to other associations. For example, a popular Clojure pattern is to use
keywords as keys in maps (discussed shortly) or other associative datatypes.
This is because keywords act as self-referring functions. Being able to act
like functions means that we can use keywords as functions of other data
structures. So taking the previous example of the map, we can look up
values on a map, such as (:foo {:foo "bar" :hello "world"}),
and get the result, which is "bar":

:hello ;; :hello
(:foo {:foo "bar" :hello "world"}) ;; "bar"

http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html

Orientation – Addressing the Questions Clojure Answers

[10]

Collections
All of these Clojure collection types are what is known as immutable. This property
means that once a collection has been created, it cannot change. If we want to operate
on a collection, we can call a function over it. A new collection is returned and it
shares the original's structure plus any modifications resulting from the function.
This, as we'll explore later on, is a central part of Clojure's computation model.
And, it turns out that it's an efficient use of a computer's resources. Let's take a
look at the following Collection types:

• Lists: Lisps, including Clojure, have a syntax that is represented directly
in data structures. This is what's known as homoiconic—where the code is
the data. We'll explore this concept later on. However, homoiconicity offers
a lot of benefits, including the ability to dynamically change your running
program or even produce new programs if you want. This is an advanced
concept that we'll explore a little more in later chapters. Lists in Clojure (or
any Lisp) are its most rudimentary data structure. They are a linear sequence
of items. The first item points to the next and so on until the end. They are
also the primary way of invoking functions. Evaluating this following form
will apply the max function to its two arguments (max 4 90). In this format,
the function always goes at the beginning of the list. All arguments to this
function come after. An unevaluated list is only a data structure. As such,
we can put anything at the beginning of a list (not just a function). However,
we must prefix lists with an apostrophe (called quoting), for example, '
(4 90 "hello"). Another important fact to note is that the efficient point
of access for a list is its head. Randomly accessing a list, say, in its middle,
is relatively inefficient:
(conj '("a" "s" "d" "f") "z") ;; ("z" "a" "s" "d" "f")

Here, "z" gets "conjoined" to the front of the ("z" "a" "s" "d" "f") list, due
to list's head first efficiency attribute

(count '("a" "s" "d" "f")) ;; 4
(empty '("a" "s" "d" "f")) ;; ()
(empty? '("a" "s" "d" "f")) ;; false

• Vectors: Vectors are also a linear sequence of items from the beginning to
the end, as shown in the following code. They are denoted by opposing
square brackets, such as [75 6 452 40]. The difference, as compared to a
list, is that they give efficient random access. They are also meant to provide
a visual break from lists. This makes them comparatively easier than other
Lisps for the purpose of reading Clojure source code. A vector is closer to an
array as opposed to a list, which is more like a linked list:
(conj ["a" "s" "d" "f"] "z") ;; ["a" "s" "d" "f" "z"]

Chapter 1

[11]

Here, "z" gets conjoined to the end of the vector as vectors offer efficient
random access
(mapv inc [1 2 3 4]) ;; [2 3 4 5]

This applies (or maps) the inc function over each of the vector's elements

• Sets: Sets are a collection of unique items. This is to say that we can only put
one of each item into a set. They are denoted by curly braces, prefixed with
a hash, for example, #{1 2 3 4}. Your Clojure environment will give you
an error if you try to create a literal set with a duplicate item, which is #{1 2
3 3}. There's also a neat trick to note. Sets (along with maps and keywords)
can act as functions. In this case, a set can be placed in the first position of a
list and then applied to an argument. What's happening here is that the set is
acting as the "does this exist" function of its items. So, (#{"a" "s" "d" "f"}
2) will return nil, because 2 is not in the set. However, (#{"a" "s" "d"
"f"} "d") will return the d item as it is in the set:
(#{"a" "s" "d" "f"} 2) ;; nil
(#{"a" "s" "d" "f"} "d") ;; "d"

• Maps: Maps are Clojure's associative data structure. They associate keys to
values. Keys and values can include any Clojure data structure. But, very
often, you'll see Clojure code using keywords as keys. Maps are denoted
by opposing curly braces, for example, {:hello "world" :foo "bar"}.
Similar to sets, maps act as functions of their elements—in the form of an
associative look up in this case. So, if I evaluate ({:hello "world" :foo
"bar"} :foo) in a Clojure runtime environment, I'll get back bar:

({:hello "world" :foo "bar"} :foo) ;; "bar"
(assoc {} :a "b") ;; {:a "b"}
(zipmap [:hello :foo] ["world" "bar"]) ;; {:foo "bar", :hello "world"}

There are many more core Clojure functions. Some of the categories you should be
seeing in Grimoire are mentioned as follows. Further in the book, we'll explore the
concepts of vars, macros, first-class functions, sequences, and so on. But at least for
now, you have a place that you can go to look up functions that pertain to these topics:

• Sequences: Sequences are a central part of Clojure's computation model.
They are a logical sequential representations over a more concrete form,
such as a vector, list, set, and so on. Most of Clojure's core functions
(map, reduce, and so on) operate on and produce sequences.

Orientation – Addressing the Questions Clojure Answers

[12]

• Functions: Functions in Clojure form the core of how to do things. As in
other functional programming languages, functions are first class program
elements that can be passed around and transformed just like data. As such,
Clojure has functions that can change functions to delay evaluation, change
their argument order, and so on.

• Macros: Any computer language's syntax gets translated to an internally
abstract tree in order to be run. Since Clojure code is already data (the property
of being homoiconic), macros provide a way of changing an actual program.

• Reader Macros: These are preexisting macros that are available in the
language's runtime. They perform useful tasks such as converting a string
into an internal date representation.

• Metadata: This contains data about our functions or program elements.
Metadata is attached directly to the thing it describes. However, it does
not factor in the actual value of its subject. It simply provides useful
information, such author information, documentation, and so on.

There are many more categories of functions to explore. Having a look at the various
functions in Grimoire and the official documentation, will begin to give you a feel for
each's category, and, thus, utility.

Summary
In this chapter, we were introduced to the notions of computation and finance.
This gave us the background required to understand Clojure's utility to solve
real-world problems in many domains and finance in particular. It also gave us
an orientation to help us understand Clojure's approach to computation. Clojure
fits under the banner of functional programming, a different approach from
imperative or object-oriented programming. We took a first look at its core
Functions that act on primitives (numbers, characters, strings, symbols, and
keywords) and Collections (lists, vectors, sets, and maps). Many other core
functions and their categories (sequences, functions, and others) will be
addressed further on in this book. Finally, we installed the Leiningen build
and run tool, which will help us build and run our functions throughout the book.

In the next chapter, we'll take a look at Clojure's principles and core artifacts.
We'll begin to apply these to our financial data structures and functions.

[13]

First Principles and a Useful
Way to Think

We looked at central notions of computation and finance in the last chapter so that
we could come up with the best approach to represent our financial data. In essence,
you're learning how to fish. We're going to build on this knowledge right away and
start developing an equation to generate price data. At each step, we're going to look
more closely at core functional programming features. This should give you a solid
understanding of important concepts in their immediate context.

In this chapter, we will cover the following topics:

• Function evaluation
• First-class functions
• Lazy evaluation
• Basic Clojure functions and immutability
• Namespaces and creating our first function
• The Read-Eval-Print-Loop (REPL)
• Basic data structures
• Macros and more in-depth data transformation

Let's begin by looking at the data we need to represent.

www.allitebooks.com

http://www.allitebooks.org

First Principles and a Useful Way to Think

[14]

Modeling stock price activity
There are many types of banks. Commercial entities (large stores, parking areas,
hotels, and others) that collect and retain credit card information are either quasi
banks or farm out credit operations to bank-like processing companies. There are
other well-known consumer banks, which accept demand deposits from the public,
and a range of other banks, such as commercial banks, insurance companies and
trusts, credit unions, and in our case, investment banks. As promised, this book will
slowly build a set of lagging price indicators that follow a moving stock price time
series. In order to do this, I think it's useful to touch on stock markets and crudely
model stock price activity. A stock (or equity) market is a collection of buyers and
sellers trading economic assets, usually companies (for more details on the stock
market, visit http://en.wikipedia.org/wiki/Stock_market). The stock (or
shares) of these companies can be equities that are listed on an exchange (the New
York Stock Exchange, London Stock Exchange, and so on) or traded privately.

Earlier, we reviewed the nature of capital. This helped to frame the core purpose
and function of a bank and flesh out the mechanics of money flows. From here
on, we can create an imaginary investment bank. Chartering a bank would also
involve plugging it into an imaginary central bank network. Once this is done,
our bank would need to register to trade on one or more exchanges. Now, our
bank can (among other things) buy and sell on a stock market.

Our next exercise will do the following:

• Crudely model stock price movement, giving us a test bed to write our
lagging price indicators

• Introduce some basic features of the Clojure language

Function evaluation
The Clojure website has a cheatsheet (http://clojure.org/cheatsheet) with all
the language's core functions. The first function we'll look at is rand, a function that
randomly gives you a number within a given range. So, in your edgar/ project,
launch the Read-Eval-Print-Loop (REPL) with the lein repl shell command.
After a few seconds, you will be brought into a REPL. Again, Clojure functions are
executed by being placed in the first position of a list. The function's arguments are
placed directly afterwards as follows:

• In your REPL, evaluate (rand 35), (rand 99), (rand 43.21), or any
number you fancy

http://en.wikipedia.org/wiki/Stock_market
http://clojure.org/cheatsheet

Chapter 2

[15]

• Run it many times to see whether you can get a different floating point
number within 0 and the upper bound of the number you've provided

First-class functions
The next functions that we'll look at are repeatedly and fn. The repeatedly
function takes a second function and returns an infinite (or n length if supplied) lazy
sequence of calls to this second function. This is the first encounter with a function
that can take another function. We'll also encounter functions that return other
functions. Described as first-class functions, these fall out of the lambda calculus and
are the central features of functional programming.

As such, we need to wrap our previous (rand 35) call in another function. The fn
function is one of Clojure's core functions and produces an anonymous, unnamed
function. We can now supply this function to repeatedly.

Lazy evaluation
We have only taken the first 25 numbers of the (repeatedly (fn [] (rand 35)))
result list because the list (actually a lazy sequence) is infinite. Lazy evaluation
(or laziness) is a common feature in functional programming languages, http://
en.wikipedia.org/wiki/Lazy_evaluation. Being infinite, Clojure chooses to
delay evaluating most of the list until it's needed by some other function that pulls
out some values. Laziness benefits us by increasing performance and letting us easily
construct control flow. We can avoid needless calculation, repeated evaluations, and
potential error conditions in compound expressions. Let's try to pull out some values
with the take function. The take function itself returns another lazy sequence of the
first n items of a collection.

Evaluating (take 25 (repeatedly (fn [] (rand 35)))) will pull out the first 25
repeatedly calls to rand, which generates a float between 0 and 35.

http://en.wikipedia.org/wiki/Lazy_evaluation
http://en.wikipedia.org/wiki/Lazy_evaluation

First Principles and a Useful Way to Think

[16]

Basic Clojure functions and immutability
There are many operations we can perform over our result list (or lazy sequence). One
of the main approaches of functional programming (FP) is to take a data structure
and perform operations over it to produce a new data structure or atomic result (such
as a string, number, and so on). This may sound inefficient at first. However, most FP
languages employ something called immutability to make these operations efficient.
Immutable data structures are those that cannot change once they've been created.
This is feasible as most immutable FP languages use some kind of structural data
sharing between an original and a modified version. The idea is that if we run evaluate
(conj [1 2 3] 4), the resulting [1 2 3 4] vector shares the original vector
of [1 2 3]. The only additional resource that's assigned is for any novelty that's
been introduced in the data structure (4). There's a more detailed explanation of,
for example, Clojure's persistent vectors here: http://hypirion.com/musings/
understanding-persistent-vector-pt-1:

• conj: This conjoins an element to a collection—the collection decides where.
So, conjoining an element to a (conj [1 2 3] 4) vector versus conjoining
an element to a (conj '(1 2 3) 4) list yields different results. Try doing
this in your REPL.

• map: This passes a function over one or many lists, yielding another list.
Evaluating (map inc [1 2 3]) increments each element by 1.

• reduce (or left fold): This passes a function over each element, accumulating
one result. Evaluating (reduce + (take 100 (repeatedly (fn [] (rand
35))))) sums the list.

• filter: This constrains an input by providing some condition.
• >=: This is a conditional function that tests whether the first argument is

greater than, or equal to the second function. Try (>= 4 9) and (>= 9 1).
• fn: This is a function that creates a function. This unnamed or anonymous

function can have any instructions that you choose to put in it.

So, if we only want numbers above 12, we can add this assertion to a predicate
function. Try entering the following expression into your REPL:

 (take 25 (filter (fn [x] (>= x 12))
 (repeatedly (fn [] (rand 35)))))

http://hypirion.com/musings/understanding-persistent-vector-pt-1
http://hypirion.com/musings/understanding-persistent-vector-pt-1

Chapter 2

[17]

Namespaces and creating our first
function
We now have the basis to create a function. It will return a lazy infinite sequence of
floating point numbers within an upper and lower bound. defn is a Clojure function
that takes an anonymous function and binds a name to it in a given namespace. A
Clojure namespace is an organizational tool used to map human readable names
to things, such as functions, named data structures, and so on. Here, we're going to
bind our function to the generate-prices name in our current namespace. You'll
notice that our function is starting to span multiple lines. This will be a good time to
author the code in your text editor of choice. I'll be using Emacs (you can read more
about Emacs at https://en.wikipedia.org/wiki/Emacs):

1. Open your text editor and add this code to the file called src/edgar/core.clj.
Make sure that (ns edgar.core) is at the top of this file.

2. After adding the following code, you can then reload the code in your REPL.
(load "edgaru/core") uses the load function to load the Clojure code in
src/edgaru/core.clj:
 (defn generate-prices [lower-bound upper-bound]
 (filter (fn [x] (>= x lower-bound))
 (repeatedly (fn [] (rand upper-bound)))))

The Read-Eval-Print-Loop
In our REPL, we can pull in code in various namespaces with the help of the
require function. This applies to the src/edgar/core.clj file we've just edited.
Here is the code in the edgar.core namespace:

1. In your REPL, evaluate (require '[edgar.core :as c]); c is just a
handy alias we can use instead of the long name.

2. You can then generate random prices within an upper and lower bound.
Take the first 10 of them (take 10 (c/generate-prices 12 35)).

3. You should see results akin to the following output. All elements should
be within the range of 12 to 35:

 (29.60706184716407 12.507593971664075 19.79939384292759
 31.322074615579716 19.737852534147326 25.134649707849572
 19.952195022152488 12.94569843904663 23.618693004455086
 14.695872710062428)

https://en.wikipedia.org/wiki/Emacs

First Principles and a Useful Way to Think

[18]

Here's a sample graph output (your data may vary):

There's a subtle abstraction in the preceding code that deserves attention.
(require '[edgar.core :as c]) introduces the quote symbol. ' is the reader
shorthand for the quote function. So, the equivalent invocation would be
(require (quote [edgar.core :as c])). Quoting a form tells the Clojure reader
not to evaluate the subsequent expression (or form). Therefore, evaluating '(a b
c) returns a list of 3 symbols without trying to evaluate any part of that form. Even
though these symbols haven't yet been assigned, it's okay because this expression (or
form) has not yet been evaluated.

But, this begs a larger question. What is the reader? Clojure (and all Lisps) are what's
known as homoiconic (you can read more about it at http://en.wikipedia.org/
wiki/Homoiconicity). This means that Clojure code is also data and data can be
directly output and evaluated as code. The reader is what parses our src/edgar/
core.clj file (or the (+ 1 1) input from the REPL prompt) and produces data
structures that are evaluated. read and eval are the two essential processes by which
Clojure code runs. The evaluation result is printed (or output) to the standard output
device usually. Then, we loop the process back to the read function. So, when REPL
reads your src/edgar/two.clj file, it directly transforms this text representation into
data and evaluates it. A few things fall out of this. For example, it becomes trivial for
Clojure programs to directly read, transform, and write out other Clojure programs.
The implications of this will become clearer when we look at macros. But for now,
know that there are ways to modify or delay the evaluation process, in this case by
quoting a form.

http://en.wikipedia.org/wiki/Homoiconicity
http://en.wikipedia.org/wiki/Homoiconicity

Chapter 2

[19]

Basic data structures
Okay! Now we need to assign each price to a point in time in order to produce a
time series. Let's think about what this data structure might look like. Assigning
the price and time together might look something like '((t1 29.60706184716407)
(t2 12.507593971664075)). But, this is not quite right. If you recall, evaluating
(t1 29.60706184716407) would be how we invoke a function. If t1 is not a
function, then your Clojure REPL will produce an error. Also, t1 and t2 denote
points in time, but Clojure treats them as symbols—which have not been created
yet. This will also produce an error. We could delay evaluation by quoting the
'((t1 29.60706184716407) (t2 12.507593971664075) form). However,
we'll still need to create the t1 and t2 symbols before we start using this form.
There's a better way to do this, as follows:

• Maps are Clojure data structures that associate a key with a value.
Evaluating {0 1} or {:a 1} creates a map that associates the 0 number key
with the number value of 1. The second example associates the :a keyword
with the value of 1 (you can read more at http://clojure.org/data_
structures#Data Structures-Maps.

• Keywords are symbolic identifiers that evaluate to themselves. So,
evaluating :a, :fubar, and :thing will all return themselves. However,
trying to evaluate fubar or thing will produce an error as these represent
symbols that have not yet been assigned (for more details on keywords, visit
http://clojure.org/data_structures#Data Structures-Keywords).

• Symbols are identifiers that are normally used to refer to something
else (you can read more about symbols at http://clojure.org/data_
structures#Data Structures-Symbols). The simplest way to create
a symbol is to use the def function to bind a value to some name in the
current namespace. So, evaluating (def fubar 1) or (def thing 2) will
create these symbols. Now we can successfully evaluate fubar or thing:

 ° let is a special form in Clojure that also lets you bind values to
symbols within a lexical scope. It's one of the language's fundamental
building blocks. You'll see it often in Clojure code as follows:

 (let [pricelist (c/generate-prices 12 35)]
 (println pricelist))

http://clojure.org/data_structures#Data Structures-Maps
http://clojure.org/data_structures#Data Structures-Maps
http://clojure.org/data_structures#Data Structures-Keywords
http://clojure.org/data_structures#Data Structures-Symbols
http://clojure.org/data_structures#Data Structures-Symbols

First Principles and a Useful Way to Think

[20]

While we can use anything as a key in a map, keywords are the easiest as they
provide very fast equality tests. Writing (def fubar "something") and then
{fubar 1}, is more heavy-handed than just writing {:something 1}. This
leads to another pattern in Clojure of using keywords to assign keys in maps.
Therefore, while {0 29.60706184716407} is a valid map, {:time 0 :price
29.60706184716407} will let us easily manipulate internal data. It is also easier
to read and reason about.

Let's play around with this a bit. The following code will give us a lazy infinite
sequence of maps with the {:price <each-price>} shape:

 (def pricelist (c/generate-prices 12 35))
 (take 25 (map (fn [x] {:price x}) pricelist))

Macros and more in-depth data
transformation
For each map, we still need to put in {:time <moment-in-time>}. Clojure's map
function has some more useful features as follows:

• It will simultaneously pass a mapping function over an arbitrary number
of lists.

• It applies the mapping function to the first item of each collection and iterates
until the shortest collection is exhausted. The remaining elements in all other
collections are discarded. As such, the mapping function should accept the
same number of arguments as collections being mapped over.

These features let us take our lazy infinite sequence of {:price <each-price>}
and generate a corresponding {:time <moment-in-time>} entry. We'll start by
using simple integers to denote our moments in time. You can see that the mapping
function just returns an [x y] vector of each incoming (the :time and :price
entries) argument. If you evaluate the following form, you should see a lazy infinite
sequence of vectors in the shape of ([{:time 0} {:price 23.113293577419874}]
...):

 (take 25 (map (fn [x y]
 [x y])
 (map (fn [x] {:time x}) (iterate inc 0))
 (map (fn [x] {:price x}) pricelist)))

Chapter 2

[21]

Vectors are another type of collection where values are indexed by integers
(you can read more about vectors at http://clojure.org/data_structures#Data
Structures-Vectors. Thus, you can efficiently access the (log32N hops)
elements. Incidentally, vectors are also functions of their elements. So, evaluating
([58 23 4 638] 2) returns the element at index 2, which is 4 in this case.
Alternatively, you can use the get function, (get [58 23 4 638] 2), to also get an
element by index.

We currently have two maps per element. Finally, we'll need to transform each
[{:time 0} {:price 23.113293577419874}] element into something that looks
like our original aim of {:time 0 :price 23.113293577419874}. This can be
accomplished with the merge function. So, if you evaluate (merge {:time 0}
{:price 23.113293577419874}), you'll see the desired structure of {:price
23.113293577419874, :time 0} (the order of the entries doesn't matter). We
just need to apply this form over each element in our collection of vectors.
Therefore, we can again use the map function to make the application.

Normally, we would have to introduce an intermediate symbol that binds to
([{:time 0} {:price 23.113293577419874}] ...), and then feed this into
our second mapping function. However, there's a shortcut that lets us bypass this
symbol binding. -> and ->> are macros (http://clojure-doc.org/articles/
language/macros.html) that take an intermediate value and thread it through a
series of expressions in either the first or last positions, respectively. This is our first
brush with macros. Recall that Clojure, which is homoiconic, can rewrite programs,
the results of which are evaluated upon completion. Macros employ this rewriting
feature to rewrite code that is given to them. So, (-> 10 (/ 5)) produces 2 because
it places 10 in the / function's first argument position, (/ 10 2), while (->> 10
(/ 5)) produces 1/2 because it places 10 in the / function's last argument position
(/ 5 10). In this case, ->> rewrites the following expression to assign the necessary
symbols, and then threads the result to the next form. The main point here is that it
just makes for more readable code and can be used when intermediate values are
only going to be used once. The following expression will give us the structure that
we need:

 (take 25 (->> (map (fn [x y]
 [x y])
 (map (fn [x] {:time x}) (iterate inc 0))
 (map (fn [x] {:price x}) pricelist))
 (map (fn [x] (merge (first x) (second x))))))

http://clojure.org/data_structures#Data Structures-Vectors
http://clojure.org/data_structures#Data Structures-Vectors
http://clojure-doc.org/articles/language/macros.html
http://clojure-doc.org/articles/language/macros.html

First Principles and a Useful Way to Think

[22]

There are two collections that are important to grasp,(iterate inc 0) and
pricelist, which are first mapped over with mapping functions that create maps
using the :time and :price keys. These two lists are then mapped over using the
(fn [x y] [x y]) mapping function. The result of this is then passed to the second
form in the ->> threading form. The result is then in the form of a list of maps with
the :time and :price entries, for example, ({:time x :price y}). As such, we
can simplify this function to just one map call over both collections and return a
map with both values. Let's add this expression to a function and make our code
a little more manageable:

 (defn generate-timeseries [pricelist]
 (map (fn [x y]
 {:time x :price y})
 (iterate inc 0)
 pricelist))

Your src/edgar/core.clj file should look like this:

 (ns edgar.core)

 (defn generate-prices [lower-bound upper-bound]
 (filter (fn [x] (>= x lower-bound))
 (repeatedly (fn [] (rand upper-bound)))))

 (defn generate-timeseries [pricelist]
 (map (fn [x y]
 {:time x :price y})
 (iterate inc 0)
 pricelist))

Then, in your REPL, you can require the namespace and generate a time series (see
the following code). Notice the small size of the code that's required to give us a
crude time series. As a rule, object-oriented and procedural languages require many
more multiples of code to produce the same result. Since these languages lack FP
features, such as laziness, first-class functions, immutability, homoiconicity, and so
on, creating this time series would require significantly more code and effort. The fact
that code that is this small in size produces results has implications on how fast we can
conceptualize and prototype algorithms that model our problem domains:

 (require '[edgar.core :as c])

 (def pricelist (c/generate-prices 12 35))

Chapter 2

[23]

 ;;

 (take 10 (c/generate-timeseries pricelist))
de-price {:last 21.417286127291007}} {:last-trade-time #inst
"2015-09-13T20:12:56.560-00:00", :last-trade-price {:last
25.700743352749207}} {:last-trade-time #inst "2015-09-
13T20:12:58.560-00:00", :last-trade-price {:last
20.560594682199365}} {:last-trade-time #inst "2015-\
09-13T20:12:59.560-00:00", :last-trade-price {:last
24.67271361863924}} {:last-trade-time #inst "2015-09-
13T20:12:59.560-00:00", :last-trade-price {:last
19.73817089491139}} {:last-trade-time #inst "2015-09-
13T20:12:59.560-00:00", :last-trade-price {:last
23.68580507389367\
}} {:last-trade-time #inst "2015-09-13T20:13:00.560-00:00", :last-
trade-price {:last 18.948644059114937}} {:last-trade-time #inst
"2015-09-13T20:13:02.560-00:00", :last-trade-price {:last
15.15891524729195}})

Elaborating our equation
Now we have a time series of stock prices. If you recall, though, we're choosing
random floats within an upper and lower bound, so it in no way represents what
we would see in the real world. If I precisely knew the direction of any given stock
price, I'd be rich. However, I think we can make some educated approximations on
stock price movement.

In the next section, we're going to use clj-time, a Clojure date and time library
as follows:

1. Add a [clj-time "0.9.0"] vector to the :dependencies entry of your
edgar/project.clj.

2. Then, we're going to require some of its namespaces into our code. This can
be done at the namespace level. So, change the top of your src/edgar/core.
clj file to look like this:
(ns edgaru.core
 (:require [clj-time.core :as tc]
 [clj-time.periodic :as tp]
 [clj-time.coerce :as tco]))

3. Now, restart your REPL.

First Principles and a Useful Way to Think

[24]

A price, of course, is an economic signal of the point at which sellers and buyers
are willing to exchange something. What would be useful is to give some crude
approximation of the fluctuations that a stock price makes over time. There are a
few equations that can produce these kinds of random fluctuations. A stochastic
process in probability theory is a collection of random variables that represent the
evolution of some system of random values over time (you can read more at http://
en.wikipedia.org/wiki/Stochastic_process). Here, I'll try to generate prices that
stochastically oscillate around its previous levels and a high/low range. This being a
test data source, we don't really have input data per se. We do know that our desired
data output is a time series, which is similar to what we already have. We just want
the price fluctuations to be slightly more realistic. Our first task, then, is to devise an
equation that will give us a semi-realistic, random price movement as follows:

1. The first thing to randomize is the direction of the price movement from one
tick to the next. This is easy enough as FP allows us to pass around functions
like any other variable.

2. The next thing to determine is the size of the price movement. So, instead
of any random float between an upper and lower bound, the price needs
to move within a reasonable range from the last price.

3. Now, we'll take the difference of the last price from its lower bound (if it's
below 50% of the high/low range) or from its upper bound (if it's above
50% of the high/low range).

4. The previous price to boundary difference is divided by the overall
high/low range, which gives us a percentage of price movement. We'll
use this as our next price movement that is randomized by direction.

In terms of code complexity, I've made quite a leap from our preceding simpler
function. I just want to show the progression your equations can take. generate-
prices now has a few helper functions as follows:

• random-in-range: This just generates a random initial price within an
upper and lower bound. Here, r in the let binding is a random number
between 0 and the input upper bound. If this random number is above our
input lower bound, then we'll use it. If not, (rand (- upper lower)) picks
a random floating point number between 0 and the upper and lower bound's
difference. Then, we add this (within the difference) random number to the
lower bound to get the random number within the function's supplied
upper and lower bounds.

• stochastic-k: This gives us our percentage of price movement of the
high/low price.

http://en.wikipedia.org/wiki/Stochastic_process
http://en.wikipedia.org/wiki/Stochastic_process

Chapter 2

[25]

• break-local-minima-maxima: This is a small cheat function that ensures
that our k values don't go too far above or below 0. Recall that the -> and ->>
macros put everything in the first or last argument positions of a function.
For threaded expressions, we need a way to explicitly place an input value.
Clojure's as-> macro lets us do this by naming and using a Var.

• The (tc/now) function call, from the clj-time library, gives us the current
moment in time.

• generate-prices collects some values for calculation, such as high, low, k,
newprice, and any new high or low values that have occurred:
(defn random-in-range [lower upper]
 (let [r (rand upper)]
 (if (>= r lower)
 r
 (+ (rand (- upper lower))
 lower))))

(defn stochastic-k [last-price low-price high-price]
 (let [hlrange (- high-price low-price)
 hlmidpoint (/ hlrange 2)
 numerator (if (> last-price hlmidpoint)
 (- last-price hlmidpoint)
 (- hlmidpoint low-price))]
 (/ numerator hlrange)))

(defn break-local-minima-maxima [k]
 (as-> k k
 (if (<= (int (+ 0.95 k)) 0)
 (+ 0.15 k) k)
 (if (>= k 1)
 (- k 0.15) k)))

(defn generate-prices

 ([low high]
 (generate-prices (random-in-range low high)))

 ([last-price]
 (iterate (fn [{:keys [last]}]

 (let [low (- last 5)

First Principles and a Useful Way to Think

[26]

 high (+ last 5)
 k (stochastic-k last low high)
 plus-OR-minus (rand-nth [- +])

 kPM (if (= plus-OR-minus +)
 (+ 1 (break-local-minima-maxima k))
 (- 1 (break-local-minima-maxima k)))

 newprice (* kPM last)
 newlow (if (< newprice low) newprice low)
 newhigh (if (> newprice high) newprice high)]

 {:last newprice}))
 {:last last-price})))

(defn generate-timeseries
 ([pricelist]
 (generate-timeseries pricelist (tc/now)))
 ([pricelist datetime]
 (->> (map (fn [x y] [x y])
 (map (fn [x] {:time x}) (iterate #(tc/plus % (tc/seconds (rand 4))) datetime))

 (map (fn [x] {:price x}) pricelist))
 (map (fn [x] (merge (first x) (second x)))))))

Try evaluating the preceding code and running it with an expression such as
(map :last (take 40 (generate-prices 5 15))). You should see something
like this:

(12.28252717329855 8.944783789632453 12.473307599143377
9.321686446713104 13.350227044440029 11.14774269158978
6.853345365994445 8.123506953556976 10.660889999227342
6.0350125579488845 5.410381179463253 4.376792141566374
4.7619372823332355 5.180974089566862 5.636884932598482
6.6550182288604045 5.813422472457867 4.6667949515838645
5.077459506906932 4.630657649913592 4.2231730733714565
3.766544060739548 3.146182949164578 2.4081361785088022
3.1516592732767386 2.178570011368031 1.459459572689432
2.0318823257034344 1.2349464622890414 1.7416251541648224
2.4561859726269675 1.4484523310344963 2.04272905050674
2.880827959870769 4.06278538620401 5.729680954323048
8.080476992412756 8.783707763945229 7.570532804510094
9.0845037171544)

Chapter 2

[27]

Calling (def pricelist (generate-prices 5 15)) and then (take 40
(generate-timeseries pricelist)) should give you a result such as the
following . The first record's :last price was 15.42, and the time this price was
recorded was on 04/19/2015 at 17:56:58 GMT:

 {:price {:last 15.423964294614002}, :time #<DateTime 2015-04-
19T17:56:58.596Z>}
 {:price {:last 15.737626638301053}, :time #<DateTime 2015-04-
19T17:57:00.596Z>}
 {:price {:last 17.94475850354465}, :time #<DateTime 2015-04-
19T17:57:01.596Z>}
 {:price {:last 16.66187358467036)}, :time #<DateTime 2015-04-
19T17:57:02.596Z>}
 {:price {:last 17.521292102081574}, :time #<DateTime 2015-04-
19T17:57:03.596Z>}
 {:price {:last 19.310727826293594}, :time #<DateTime 2015-04-
19T17:57:06.596Z>}
 {:price {:last 16.444691958028105}, :time #<DateTime 2015-04-
19T17:57:09.596Z>}
)

Here's a sample graph output (your data may vary):

First Principles and a Useful Way to Think

[28]

Summary
Keep in mind that none of the previous equations are absolutely correct. The point of
the exercise is to think about the kind of relationships that each data point has with
the other. For a more elaborate equation, feel free to play around with the function,
or choose a completely different equation from a stochastically oscillating price. I can
see sine waves or polynomials (perhaps, nested) being just as useful. Feel free to play
around with the data and share your results.

We've taken pains to first understand what a stream of stock price data may look
like. We then applied some core functional programming features that Clojure
provides to transform data into the stock price shape we desire. This is an important
point to note for any programming language. It should be a tool that empowers
you to shape your data as your needs develop. In the next chapter, we're going to
continue this lesson, paying close attention to some useful ideas on how to fully
capture and represent our data.

[29]

Developing the Simple
Moving Average

We can think of humans as a symbolic species. By this, I mean that we use a number
of characters and scripts to represent abstract things. These symbols are used by
us to communicate with each other, our outside world, and our abstract thoughts.
Symbolic representation is used in written language, math, and music notation.
Dolphins or monkeys, while very intelligent, do not by themselves use any written
symbols to communicate with each other. I'm not mentioning this simply as a
philosophical musing. I think this is directly useful to consider when reaching for
ideas on how to fully capture and represent our data.

In this chapter, we'll cover the following topics:

• Translating requirements to data input
• Knowing the target data output
• Reasoning an equation needed to achieve our output
• Understanding Vars and bindings
• Working with lazy sequences
• Implementing a Simple Moving Average(SMA) equation
• Destructuring

Developing the Simple Moving Average

[30]

Perception and representation
A big part of building working systems is the ability to correctly and fully abstract the
problem we're trying to solve. In our case, this abstraction means quantifying all the
input data that a problem involves, knowing the precise result data we need, and any
processes or transformations that affect these inputs to get your desired output. This
is what I'll describe as fully perceiving a problem. Let's take Clojure data structures,
functions, and FP approaches as a way of representing our problem and solving it.

We ultimately need to gauge how close our perception and representations are to
actual stock price data. However, for now, we have an infinite stream of price and
time points. Apart from this stream of data, we want to calculate a moving average
of prices. So, an average is just the sum of a collection of things divided by the length
of the collection. This sounds easy enough. However, the moving qualifier only
means that the average is calculated at each tick increment of price/time data.

Knowing the data input
When we completed Chapter 2, First Principles and a Useful Way to Think, we had
helper functions that generated some test time series data for us. So, our input data
will look something like the following output. This is just a lazy sequence of maps.
Each map has two entries with the keys, last-trade-price and last-trade-time.
The fact that the input data is a lazy sequence is important. It means we can treat it as
infinite, so it can be consumed as the data comes in:

({:last-trade-time #inst "2015-09-24T04:13:13.868-00:00",
 :last-trade-price {:last 5.466160487301605}}
 {:last-trade-time #inst "2015-09-24T04:13:15.868-00:00",
 :last-trade-price {:last 6.540895364039775}}
 {:last-trade-time #inst "2015-09-24T04:13:16.868-00:00",
 :last-trade-price {:last 5.53301182972796}}
 {:last-trade-time #inst "2015-09-24T04:13:17.868-00:00",
 :last-trade-price {:last 5.827927905654936}}
 {:last-trade-time #inst "2015-09-24T04:13:19.868-00:00",
 :last-trade-price {:last 6.31043832017862}}
 {:last-trade-time #inst "2015-09-24T04:13:21.868-00:00",
 :last-trade-price {:last 7.1373823393671865}}
 {:last-trade-time #inst "2015-09-24T04:13:24.868-00:00",
 :last-trade-price {:last 8.564858807240624}}
 {:last-trade-time #inst "2015-09-24T04:13:24.868-00:00",
 :last-trade-price {:last 10.277830568688747}}
 {:last-trade-time #inst "2015-09-24T04:13:25.868-00:00",
 :last-trade-price {:last 8.222264454950999}}

Chapter 3

[31]

 {:last-trade-time #inst "2015-09-24T04:13:28.868-00:00",
 :last-trade-price {:last 9.866717345941199}}
...
)

Here's a sample graph output (your data may vary):

Knowing the data output
The output that we ultimately want is a running average of the last few ticks of our
time series. For the number of our last few ticks, I'm going to pick 20 because it's a
nice round number. However, we'll make our algorithm flexible enough to accept
different time intervals for our running average. So, now it looks like our output can
start with the input with an added entry for the running average at each tick, which
is described in the following output. We can't evaluate this data structure yet. The
elided values after the :average key, are just pseudo code, representing the result
we need to reach:

({:average <…>,
 :last-trade-time #inst "2015-09-24T04:13:13.868-00:00",
 :last-trade-price {:last 5.466160487301605}}
 {:average <…>,

Developing the Simple Moving Average

[32]

 :last-trade-time #inst "2015-09-24T04:13:15.868-00:00",
 :last-trade-price {:last 6.540895364039775}}
 {:average <…>,
 :last-trade-time #inst "2015-09-24T04:13:16.868-00:00",
 :last-trade-price {:last 5.53301182972796}}
 {:average <…>,
 :last-trade-time #inst "2015-09-24T04:13:17.868-00:00",
 :last-trade-price {:last 5.827927905654936}}
 {:average <…>,
 :last-trade-time #inst "2015-09-24T04:13:19.868-00:00",
 :last-trade-price {:last 6.31043832017862}}
 {:average <…>,
 :last-trade-time #inst "2015-09-24T04:13:21.868-00:00",
 :last-trade-price {:last 7.1373823393671865}}
 {:average <…>,
 :last-trade-time #inst "2015-09-24T04:13:24.868-00:00",
 :last-trade-price {:last 8.564858807240624}}
 {:average <…>,
 :last-trade-time #inst "2015-09-24T04:13:24.868-00:00",
 :last-trade-price {:last 10.277830568688747}}
 {:average <…>,
 :last-trade-time #inst "2015-09-24T04:13:25.868-00:00",
 :last-trade-price {:last 8.222264454950999}}
 {:average <…>,
 :last-trade-time #inst "2015-09-24T04:13:28.868-00:00",
 :last-trade-price {:last 9.866717345941199}}
...)

Reasoning about the equation needed to
achieve our output
Our simple moving average equation will operate for an infinite input stream of
ticks. We'll pick a starting point anywhere in the infinite input stream, pick a size n
that we'd like to average, take the previous n (including the current) ticks, and apply
our average equation.

Nominally, our equation will be similar to (/ price-sum (count ticks-within-window)).

Here, price-sum, as the name implies, is the sum of all the prices with our chosen
average range, and ticks-within-window is the collection of ticks we want to
include in our calculations.

The important part is that this equation has to be applied at each increment of the
tick window. To get an average, therefore, we have to use the length of the tick
window as the starting point.

Chapter 3

[33]

So, we'll begin our moving average function by passing in the infinite lazy
sequence (tick-seq) and the size of ticks for which we want to calculate our
average (tick-window). The next thing to note in the following code, is that
I've introduced a new core Clojure function, partition, which can be found at
http://clojuredocs.org/clojure.core/partition. The partition function
conveniently divides many kinds of collections.

So, in your REPL, try evaluating (partition 4 (range 20)). You should see the
following result. We can see that it's dividing a list of 20 into five lists with four
elements each, for example, [0-indexed (0 to 19)]:

 (partition 4 (range 20))
 ;;=> ((0 1 2 3) (4 5 6 7) (8 9 10 11) (12 13 14 15) (16 17 18 19))

Our case, though, requires that each partition's starting index begins at the next
increment from the previous one. The partition function also provides this
feature. If you try evaluating (partition 5 1 (range 10)), you should see the
following result:

 (partition 5 1 (range 10))
 ;;=> ((0 1 2 3 4) (1 2 3 4 5) (2 3 4 5 6) (3 4 5 6 7) (4 5 6 7 8) (5 6 7 8 9))

With this knowledge, we can start by dividing the infinite sequence that we've been
given. Try creating this function now:

 (defn moving-average [tick-seq tick-window]
 (partition tick-window 1 tick-seq))

Then, evaluating the following expressions should yield results like in the
subsequent example code. You'll notice that the second price in the first list,
(15.423964294614002, in my case), is the first price in the second list. This is the
partition window sliding along
one increment:

 (def pricelist (generate-prices 5 15))
 (def timeseries (generate-timeseries pricelist))
 (def our-average (moving-average timeseries 20))

 (take 2 our-average)
 ;;=> (({:last-trade-price {:last 5.466160487301605},
 :last-trade-time #inst "2015-09-24T04:13:13.868-00:00"}
 {:last-trade-price {:last 6.540895364039775},
 :last-trade-time #inst "2015-09-24T04:13:15.868-00:00"}
 {:last-trade-price {:last 5.53301182972796},
 :last-trade-time #inst "2015-09-24T04:13:16.868-00:00}
 ...)

www.allitebooks.com

http://clojuredocs.org/clojure.core/partition
http://www.allitebooks.org

Developing the Simple Moving Average

[34]

 ({:last-trade-price {:last 6.540895364039775},
 :last-trade-time #inst "2015-09-24T04:13:15.868-00:00"}
 {:last-trade-price {:last 5.53301182972796},
 :last-trade-time #inst "2015-09-24T04:13:16.868-00:00}
 ...)

Understanding Vars and bindings
The previous expressions work. However, there's some assumed knowledge that
may be helpful to deconstruct. Firstly, I'm using def to bind a value (lazy sequences,
in this case) to a symbol. To be precise, these values are called Vars. Vars are just
a way to bind a named location (a symbol) to something else, such as numbers,
functions, or in our case, lazy sequences. The notion of binding is important.
It allows us to use a value on a per context basis, that is, we have the ability to
dynamically rebind Vars in different contexts. So, the following code is possible
(taken from http://clojure.org/vars):

 (def ^:dynamic x 1)
 (def ^:dynamic y 1)

 (+ x y)
 ;;=> 2

 (binding [x 2 y 3]
 (+ x y))
 ;;=> 5

 (+ x y)
 ;;=> 2

The root context is the namespace in which we evaluate our expressions. By default,
the user namespace along with Clojure's core functions (which are bound to the Vars
symbol), are always available. The def, defn, and with-redefs functions allow us
to rebind Vars in a local or root context (of our namespace). Vars and context binding
are important because they give us the ability to bind different functions (or entire
components or programs) to a symbol for a specific context. This includes redefining
functions in a running program. So, for example, you could wrap a function with
logging behavior only in certain call contexts (or threads that aren't discussed here).
For further information on Vars, visit http://clojure.org/vars.

http://clojure.org/vars
http://clojure.org/vars

Chapter 3

[35]

Working with lazy sequences
There's another subtle notion to grasp when we talk about infinite lazy sequences.
If we normally assign (or bind, in this case) some list or collection, we expect those
artifacts to have values right away. You may have noticed that even after binding
pricelist and timeseries, nothing happened. This is to say that binding these two
Vars didn't immediately compute any values from the aforementioned expressions.
This is the main feature that laziness provides. Only when we needed to pull out
values using, for example, (take 40 (generate-prices 5 15)) or (take 2 our-
average), were the expressions actually run. This means that (def timeseries
(generate-timeseries pricelist) bound a lazy sequence to the timeseries
symbol. We can also pass round this lazy sequence without necessarily consuming it.

In Down The Clojure Rabbit Hole, Clojure developer, Christophe Grand, describes
sequences as "Reified Computation" and as a core part of Clojure's computation
model, which can be seen at http://www.infoq.com/presentations/clojure-
stories. By reified, what he's referring to is to literally realize computation. This
allows us to treat sequences as a data flow pipeline. This just means that we can
compose functions, and pieces of functions with greater ease as long as everybody's
using lazy sequences.

The idea here is that when data enters your system from the outside world, it is
mostly a more concrete form (such as lists, vectors, and so on). However, most core
Clojure functions optimally consume and produce sequences. You may have also
noticed that most of the core functions we've used so far (repeatedly, filter,
map, and so on) also produce sequences. If we can begin to visualize data flowing
through our systems, it becomes very useful to swap different functions that can
perform anything from analysis to transformation and so on. It allows what software
developers describe as loose coupling (http://en.wikipedia.org/wiki/Loose_
coupling) between functions and components. We can thus allow data and its
desired outputs to drive design.

Implementing our equation
So far, our moving-average function only gives us a partitioned list of prices (or
ticks). Now, we only need to visit a sliced list at each increment and calculate each
increment's price average. The reduce function provides a way of accumulating (or
folding over) each item in a list and producing a result based on those values. We'll
take our partitioned list and have reduce apply an accumulator function on each
sublist. The form looks roughly like this:

(reduce (fn [accumulated-result-so-far each-item-list]
 ;; ** single line comments come after semi-colons

http://www.infoq.com/presentations/clojure-stories
http://www.infoq.com/presentations/clojure-stories
http://en.wikipedia.org/wiki/Loose_coupling
http://en.wikipedia.org/wiki/Loose_coupling

Developing the Simple Moving Average

[36]

 ;; do stuff, return accumulated result
 ;; for each item iteration
)
 initial-list-of-accumulated-values
 initial-list-of-input-values)

Our accumulator function only has to maintain a few temporary values that our
equation needs. In this case, it's the sum of each-item-list (or lazy sequence). For
this, we want to contain or bind intermediate values in a temporary context. The let
macro gives us a scope or temporary place to set and use some vars.

To begin with, let's get a visualization of how our list will be traversed. We want to
look at 20 price points or ticks at a time. Since this is a running average, our function
will need to take a look at the first 20 ticks before getting the first average. By doubling
the amount of ticks given to partition, it will give you a list of the first 20. It will then
increment this number by 1 until the 40th tick (39) is reached. Also, since partition
doesn't want to give you a list that contains less than 20 ticks, it will discard any list
above this number. Thus, by constraint, some lists only have 19 items at the most, that
is, a partitioned list at the 20th point will have the remaining ticks up to 39:

(partition 20 1 '(0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30 31 32 33 34
35 36 37 38 39))
'((0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)
(2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21)
(3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22)
(4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23)
(5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)
(6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25)
(7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26)
(8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27)
(9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)
(10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29)
(11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)
(12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31)
(13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)
(14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33)
(15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34)
(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35)
(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)
(18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37)
(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38)
(20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39))

Chapter 3

[37]

This is how partition will behave in the following function. We need to double
the given tick window and remember to take this amount as the input in an infinite
sequence. When reducing over each partitioned list, we calculate the sum, and then
the average. With the average for our given list in place, we'll add it to the existing
last-trade-price and last-trade-time (merge and zipmap). We'll then add these
to the tail position of our list (using the function lazy-cat). Let's write our simple-
moving-average function now. In your leiningen project, create a new file called
analytics.clj under the directory structure, src/edgar. The final file path should
be src/edgar/analytics.clj. At the top of this file, declare the namespace with
the (ns edgar.analytics) form. In here, we'll also want to use the code from our
edgar.core namespace. Here's how we can do this:

(ns edgar.analytics
 (:require [edgaru.core :as core]))

Now we can start to write our function as follows:

(defn simple-moving-average
"This is an optional documentation string that can be passed to your
functions definition. Here, you can put any
relevant information about the function and its definition. For
example, we can note down the meaning of the
'option' argument."

 Options are:
 :input - input key function will look for (defaults to :last-trade-price)
 :output - output key function will emit (defaults to :last-trade-price-average)

 :etal - other keys to emit in each result map
 ** This function assumes the latest tick is on the left**"
 [options tick-window tick-list]

 (let [start-index tick-window

 {input-key :input
 output-key :output
 etal-keys :etal
 :or {input-key :last-trade-price
 output-key :last-trade-price-average
 etal-keys [:last-trade-price :last-trade-time]}}
options]

 (reduce (fn [rslt ech]

Developing the Simple Moving Average

[38]

 (let [tsum (reduce (fn [rr ee]
 (let [ltprice (:last-trade-price ee)]
 (+ ltprice rr))) 0 ech)

 taverage (/ tsum (count ech))]

 (lazy-cat rslt
 [(merge
 (zipmap etal-keys
 (map #(% (last ech)) etal-keys))
 {output-key taverage
 :population ech})])))
 '()
 (partition tick-window
 1
 (take (* 2 tick-window) tick-list)))))

Let's inspect this slowly for good measure:

• All the code takes place inside a let binding (http://clojuredocs.org/
clojure.core/let). In Clojure, let is a special function that lets us assign
values to symbols that we can use inside the let block. So, start-index is
assigned the value of tick-window.

• The next expression is a trick called destructuring (https://gist.github.
com/john2x/e1dca953548bfdfb9844). This is simply a technique to extract
values from a collection or map and assign them to symbols. So, in our
preceding example, the values from the options map are extracted with the
:input, :output, and :etal keys. These values are assigned to the symbols,
input-key, output-key, and etal-keys, respectively. If any of the keys,
such as :input, :output, or :etal, cannot be found, then default values
of :last-trade-price, :last-trade-price-average, or [:last-trade-
price :last-trade-time]}} are assigned.

• Our inner map (within lazy-cat) uses an anonymous #() function, where
the % sign is an implicit parameter or each item is mapped over.

• Recall that our input data looks like the following list. Here, ech, an
argument of the reducing function, represents each list that the partition
function generated:
 ({:last-trade-price {:last 11.08212939452855},
 :last-trade-time #<DateTime 2015-04-19T17:56:57.596Z>}
 {:last-trade-price {:last 15.423964294614002},
 :last-trade-time #<DateTime 2015-04-19T17:56:58.596Z>}
 {:last-trade-price {:last 15.737626638301053},
 :last-trade-time #<DateTime 2015-04-19T17:57:00.596Z>}

http://clojuredocs.org/clojure.core/let
http://clojuredocs.org/clojure.core/let
https://gist.github.com/john2x/e1dca953548bfdfb9844
https://gist.github.com/john2x/e1dca953548bfdfb9844

Chapter 3

[39]

 {:last-trade-price {:last 17.94475850354465},
 :last-trade-time #<DateTime 2015-04-19T17:57:01.596Z>}
 {:last-trade-price {:last 16.66187358467036},
 :last-trade-time #<DateTime 2015-04-19T17:57:02.596Z>}
 {:last-trade-price {:last 17.521292102081574},
 :last-trade-time #<DateTime 2015-04-19T17:57:03.596Z>}
 {:last-trade-price {:last 19.310727826293594},
 :last-trade-time #<DateTime 2015-04-19T17:57:06.596Z>}
 {:last-trade-price {:last 16.444691958028105},
 :last-trade-time #<DateTime 2015-04-19T17:57:09.596Z>}
 ...)

• etal-keys is a [:last-trade-price :last-trade-time] vector that is
created in the let block's binding form. So, the (map #(% (last ech))
etal-keys) expression maps an anonymous function over this vector. Recall
that keywords also act as functions on maps. This means that we're calling
:last-trade-price and :last-trade-time on a map, that looks like
{ :last-trade-price {:last 11.08212939452855}, :last-trade-time
#inst "2015-09-24T04:13:13.868-00:00" }.

• The (map #(% (first ech)) etal-keys) expression pulls out
a list of values that look like ({:last 5.466160487301605} #inst
"2015-09-24T04:13:13.868-00:00"). This is done for each element
that is reduced over.

• We'll then rejoin the aforementioned values to the extraction keys that we
just used. The zipmap function does this by interleaving values in two or
more lists to produce a map:
(def etal-keys [:last-trade-price :last-trade-time])

(map #(% {:last-trade-price {:last 5.466160487301605}, :last-
trade-time #inst "2015-09-24T04:13:13.868-
00:00"})
 etal-keys)
;; ({:last 5.466160487301605}#inst "2015-09-24T04:13:13.868-
00:00")

(zipmap [:a :b] [1 2])
;; {:b 2, :a 1}

(zipmap etal-keys
 (map #(% {:last-trade-price {:last 5.466160487301605},
:last-trade-time #inst "2015-09-
24T04:13:13.868-00:00"})
 etal-keys))
;; {:last-trade-time #inst "2015-09-24T04:13:13.868-00:00", :last-
trade-price {:last 5.466160487301605}}

Developing the Simple Moving Average

[40]

There is an actual interleave function that produces a result list (though this is
not what we want). We want to produce a result map, which is what the zipmap
function provides:

(interleave '(1 2 3 4) '(:a :b :c :d))
;; (1 :a 2 :b 3 :c 4 :d)

We'll then take the map result and merge in our new average value. The merge
function is simple enough, simply joining together the values of two maps. We can
then employ this function to merge together the result of the zipmap call to the new
zipmap entry that we want to add:

(merge {:a 1 :b 2} {:c 3})
;; {:c 3, :b 2, :a 1}

(merge
 (zipmap etal-keys
 (map #(% {:last-trade-price 6.111604269033163, :last-trade-time trade-time})

 etal-keys))
{:last-trade-price-average 6.0972436})

;; {:last-trade-price-average 6.0972436,
;; :last-trade-time #inst "2015-06-28T18:31:51.810-00:00",
;; :last-trade-price 6.111604269033163}

Adding the result of this to our running (reduced) list is a bit trickier. There's a small
semantic inefficiency that we have to manage. Our running time series is infinite
and the newest values on the right. The reduce function is also known as a left fold
(see https://en.wikipedia.org/wiki/Fold_(higher-order_function)), which
means that it collects values from left to right. So far, we've been able to blithely
ignore the ordering of our lists. However, if we cons or conj an item into the result
list, it will always go to the head of the list, which is on the left. Recall that the list
implementation decides how to append items based on its own knowledge of what's
efficient. In this case, the left placement happens to be the most efficient way to
append an item. If each rslt collection were a vector, then conj would add the new
item to the end (or right) of the vector, instead of adding it to the head (or left) of it.
This is just an alternative path to keep in mind:

(conj '(1 2 3) 4)
;; (4 1 2 3)

(cons 4 '(1 2 3))
;; (4 1 2 3)

https://en.wikipedia.org/wiki/Fold_(higher-order_function)

Chapter 3

[41]

Since we are dealing with a time series, however, the ordering of the list is crucially
important. Thus, we need to place the result to the right-hand side of the list. This
is tricky because we'll need to switch the kind of collection in which we place the
result so that it goes to the collection's end. The concat function joins the contents of
two lists and puts the addition on the right-hand side. The lazy-cat macro does the
same thing but respects the semantics of lazy sequences, only realizing values when
invoked. The key thing here is that both parameters need to be lists (or vectors). If we
pass only a map to lazy-cat, it will do the next best thing it knows, which is to get
the lists to join together with the sequenced out the entries in the map:

(concat [1 2] [3])
;; (1 2 3)

(lazy-cat [1 2] [3])
;; (1 2 3)

;; Not what we want
(lazy-cat '(1)
 (merge
 (zipmap etal-keys
 (map #(% {:last-trade-price 6.111604269033163, :last-trade-time trade-time})

 etal-keys))
 {:last-trade-price-exponential 6.0972436}))
;; (1
;; [:last-trade-price-exponential 6.0972436]
;; [:last-trade-time #inst "2015-06-28T18:31:51.810-00:00"]
;; [:last-trade-price 6.111604269033163])

(seq {:a 1 :b 2})
;; ([:b 2] [:a 1])

In the subsequent code, we are forced to put the result in its own list or vector in this
case. This will add the result to the end (or right-hand side) of the running result list.

;; What we want
(lazy-cat '(1)
 [(merge
 (zipmap etal-keys
 (map #(% {:last-trade-price 6.111604269033163, :last-trade-time trade-time})

 etal-keys))
 {:last-trade-price-average 6.0972436})])
;; (1

Developing the Simple Moving Average

[42]

;; {:last-trade-price-average 6.0972436,
;; :last-trade-time #inst "2015-06-28T18:31:51.810-00:00",
;; :last-trade-price 6.111604269033163})

We now properly append our average results to the right-hand side of the list, which
corresponds to how the input was originally partitioned. To call simple-moving-
average, we'll operate on our timeseries sequence, which was defined in the
Reasoning about the equation needed to achieve our output section. Remember that the
first average represents the first 20 price points, thus corresponding to the 20th item
in our price list. The following algorithms will continue along this line:

(simple-moving-average {} 20 timeseries)
({:last-trade-price {:last 5.466160487301605},
 :last-trade-time #inst "2015-09-24T04:13:13.868-00:00",
 :last-trade-price-average 7.194490217405031,
 :population
 ({:last-trade-time #inst "2015-09-24T04:13:13.868-00:00",
 :last-trade-price {:last 5.466160487301605}}
 {:last-trade-time #inst "2015-09-24T04:13:15.868-00:00",
 :last-trade-price {:last 6.540895364039775}}
 ...)}
 {:last-trade-price {:last 6.540895364039775},
 :last-trade-time #inst "2015-09-24T04:13:15.868-00:00",
 :last-trade-price-average 7.180900526986235,
 :population
 ({:last-trade-time #inst "2015-09-24T04:13:15.868-00:00",
 :last-trade-price {:last 6.540895364039775}}
 {:last-trade-time #inst "2015-09-24T04:13:16.868-00:00",
 :last-trade-price {:last 5.53301182972796}}
 ...)}
...)

Destructuring
Earlier, I gave an explanation of a destructuring code block. Here, we'll elaborate on
it a little further. The inner let block is where we assigned values to the input-key,
output-key, and etal-keys. We can assign these symbols for later use as keys in
maps. The input-key, which is assigned in the let block, is later used to pull out the
last price from our input list. The output-key is the last average that we calculated
in our function. The etal-keys are vectors of price and time, which we used to join
those keys with previous values, thereby adding the average key (or output key) and
value to each one:

(let [...
 {input-key :input

Chapter 3

[43]

 output-key :output
 etal-keys :etal
 :or {input-key :last-trade-price
 output-key :last-trade-price-average
 etal-keys [:last-trade-price :last-trade-time]}}
options]
 ...
)

The syntax, as we introduced in the previous chapter, uses something called
destructuring, which is a small custom language [or little language or domain-
specific Language (DSL)] in Clojure. This is another example of the possibilities
offered by macros and code rewriting. Destructuring lets you extract values from
data structures and bind them to local symbols (symbols are explained in Chapter
1, Orientation – Addressing the Questions Clojure Answers). It works in let bindings,
function parameters, or macros that expand to one of these forms. You can extract
symbols from vectors or maps. Refer to the official documentation at http://
clojure.org/vars for a more exhaustive breakdown. In our case, we want to pull
out Vars from a map and allow for default values if a user doesn't supply any of
the required entries. So, let's say we supply the {:input :fubar :output :thing
:etal [:one :two]} map to the destructuring form. The first set of mappings will
be applied and we'll see a result like this:

(let [{input-key :input
 output-key :output
 etal-keys :etal
 :or {input-key :last-trade-price
 output-key :last-trade-price-exponential
 etal-keys [:last-trade-price :last-trade-time]}}
 {:input :fubar
 :output :thing
 :etal [:one :two]}]

 (println input-key)
 (println output-key)
 (println etal-keys))

;; :fubar
;; :thing
;; [:one :two]

However, if we give a nil value to our destructuring form, the default bindings after
:or, will be applied. We'll then get a result like this:

(let [{input-key :input
 output-key :output

http://clojure.org/vars
http://clojure.org/vars

Developing the Simple Moving Average

[44]

 etal-keys :etal
 :or {input-key :last-trade-price
 output-key :last-trade-price-exponential
 etal-keys [:last-trade-price :last-trade-time]}}
 nil]

 (println input-key)
 (println output-key)
 (println etal-keys))

;; :last-trade-price
;; :last-trade-price-exponential
;; [:last-trade-price :last-trade-time]

Here's a sample graph output (your data may vary):

Chapter 3

[45]

Summary
In this chapter, we built on the simple-moving-average function using the more
advanced partition Clojure data transformation function. Vars, binding, and
lazy sequences helped us organize our expressions. And our function design was
guided by the data input and desired data output. The goal here is to form a solid
understanding of a problem, easily represent data, and quickly perform calculations.
From our basic tick list, we were able to (from a starting point) calculate the average
price at each point up to the current price. We did this by slicing or partitioning our
list so that each price point had a history of the previous 20 price points. These are
the kinds of functions that will empower us to manipulate and shape our data. We'll
take the lessons we've learned in this chapter to the next chapter and implement a
slightly more advanced algorithm—the exponential moving average.

[47]

Strategies for Calculating and
Manipulating Data

The previous chapter gave us our first introduction to building an equation: a simple
moving average. In this chapter, we're going to implement two more functions
where the math is only slightly more advanced than the simple moving average
(SMA). The exponential moving average (EMA) and Bollinger Bands are both
technical trading indicators. These, coupled with the SMA, will give us a nice set
of lagging indicators on top of our base stream of stock price data. The moving
averages lag price movement because they're based on past data. They smoothen
price data and show its current direction by filtering out noise or erratic price points
in a time series.

Our first refactor – the price list
Our exponential moving average calculation is calculated on every tick increment
over our time series. Again, we'll employ the reduce function to fold up the previous
20 ticks, into an average value. In order to do this, though, we'll need to dig into the
source data for the SMA.

If you recall from Chapter 2, First Principles and a Useful Way to Think, our prices were
a list of maps that looked like the following piece of code. We put the price in a map
to communicate the fact that it was the last or most recent price being calculated:

{:last 16.68101235523256}

Our final time series was a list of maps that looked like the following:

{:last-trade-price {:last 5.466160487301605},
 :last-trade-time #inst "2015-09-24T04:13:13.868-00:00"}

Strategies for Calculating and Manipulating Data

[48]

This means that our price lists aren't just carrying around prices. They're carrying
around price and time values. Now we'll add our calculated average to the stuff
carried around. You'll often find the need to carry around essential data as well as
some extra stuff (also known as a local or dangling state) that's needed to perform
future calculations, regression testing, and so on.

In math, to factor a number refers to breaking it up into other numbers that can be
operated on together to get the original number. This is a good way to explain how
code is factored. Code that is well factored is composed of several pieces that, when
changed or modified, does not affect other pieces of code. It is, therefore, easy to
compose small pieces of code into a larger whole. This is referred to as orthogonality
(you can read more about it at https://en.wikipedia.org/wiki/Orthogonality_
(programming)) and usually means writing code that does only one thing very
well. The result of that piece is passed on to the next piece, which does its job, and
so on. Discerning the amount of stuff to carry around informs us on how to design
our algorithms and vice versa. Ideally, we should only carry around the necessary
amount of stuff needed for a given calculation or set of calculations. The :last
key and accompanying map are artifacts of the oscillating stochastic function that
we used to generate each price. In this case, they are no longer necessary when
calculating the SMA.

Let's make a function to strip the :last key and accompanying map, out of our time
series. Then we'll slightly adjust the SMA function so that you do not have to deal
with the unnecessary structure. Remember that our original price list looks like this:

 ({:last 10.978625695681702}
 {:last 15.393542022616002}
 {:last 15.68497326182313}
 {:last 17.894866781714637}
 {:last 19.178454686228328}
 ...)

Our keywords also act as functions. So, all we really need to do is traverse or map
over the original price list (a lazy sequence) and extract only the :last (price)
entry. Here's how we do this. Put this extract-price-only function into your
analytics.clj file:

(defn extract-price-only [pricelist]
 (map :last pricelist))

In our edgar.analytics namespace, as we call it now, we can pass in results from
the generate-prices function in the core namespace. Here's how our price-only
list will look:

(def price-only-list (extract-price-only (core/generate-prices 5 15)))

https://en.wikipedia.org/wiki/Orthogonality_(programming)
https://en.wikipedia.org/wiki/Orthogonality_(programming)

Chapter 4

[49]

'(10.978625695681702
 15.393542022616002
 15.68497326182313
 17.894866781714637
 19.178454686228328
 ...)

We can even put that into a convenience function:

(defn generate-prices-essential [beginning-low beginning-high]
 (extract-price-only (core/generate-prices beginning-low beginning-high)))

Now our time series looks a little cleaner. We can also use a cleaner input list in our
original SMA function as follows:

(def time-series (core/generate-timeseries price-only-list))

'({:last-trade-price 10.774174002394385,
 :last-trade-time #inst "2015-06-27T17:54:37.583Z"}
 {:last-trade-price 6.221195542189912,
 :last-trade-time #inst "2015-06-27T17:54:40.583Z"}
 {:last-trade-price 6.98092516851132,
 :last-trade-time #inst "2015-06-27T17:54:40.583Z"}
 {:last-trade-price 5.5980561319315,
 :last-trade-time #inst "2015-06-27T17:54:40.583Z"}
 {:last-trade-price 5.263260952271663,
 :last-trade-time #inst "2015-06-27T17:54:42.583Z"})

The exponential moving average
An exponential moving average (EMA) basically weights newer prices more
than older ones, thereby reducing lag and applying more weight to recent prices
(for more details on EMA, visit https://en.wikipedia.org/wiki/Moving_
average#Exponential_moving_average). This way, more recent price changes
have a greater effect on the overall average. Let's build our EMA function. To begin,
I'll use raw algebra to outline the equation:

1. The EMA is a function of the SMA. Thus, we use the SMA as the price input
to our function.

2. We also have to decide the time period (or tick-window) for which our EMA
will apply. Since our SMA has used 20 time periods (or ticks), we're also
going to use this number for our EMA.

https://en.wikipedia.org/wiki/Moving_average#Exponential_moving_average
https://en.wikipedia.org/wiki/Moving_average#Exponential_moving_average

Strategies for Calculating and Manipulating Data

[50]

3. Next, we'll calculate our constant. This constant is typically denoted as k. This
is then 2 divided by our time period plus 1. Mathematically, the equation is
k = 2 / (tick-window + 1). So, a time period of 20 gives us 2 / (20 + 1), which
equals 0.04761904761905.

4. Finally, the EMA denotes the price, which is now multiplied by k plus the
previous EMA multiplied by 1 minus k. So, let's say that the most recent
nominal prices are '(9.8 10) and the SMA is (9.6 9.7):

This would make the EMA (10 * 0.04761904761905) + (9.6 * (1 -
0.04761904761905)).
This equates to 0.47619047619 + 9.14285714286, which then equals
9.61904761905.

Working backwards from a point on our EMA = ((price(now) * k) + (ema(previous) *
(1 - k))), we see that we need these pieces of data:

• price(now): This is in our original time series, which is now a part of the
SMA list.

• k: This is easily calculated using simple algebra, k = 2 / (tick-window + 1).
• ema(previous): One of the first calculations, we'll use the previous SMA (9.8

in this case). Thereafter, we'll calculate it (using the preceding equation) and
pass on the result to our next calculation.

We're going to use two let blocks because one is needed inside reduce's accumulator
function. However, we don't need to recalculate k, input-key, and so on for each
item traversal. So, we put that into a more globally scoped let block. With these bits
broken out, we should be able to step back and look at the entire EMA function:

(defn exponential-moving-average
 "From a tick-list, generates an accompanying exponential moving average list.

 EMA = price(today) * k + EMA(yesterday) * (1 - k)
 k = 2 / N + 1
 N = number of days
 Returns a list, equal in length to the tick-list, but only with slots filled,

 where preceding tick-list allows.
 Options are:
 :input - input key function will look for (defaults to :last-trade-price)
 :output - output key function will emit (defaults to :last-trade-price-exponential)

 :etal - other keys to emit in each result map

Chapter 4

[51]

 ** This function assumes the latest tick is on the left**"

 ([options tick-window tick-list]
 (exponential-moving-average options tick-window tick-list (simple-moving-average {} tick-window tick-list)))

 ([options tick-window tick-list sma-list]

 ;; 1. calculate 'k'
 ;; k = 2 / N + 1
 ;; N = number of days
 (let [k (/ 2 (+ tick-window 1))

 {input-key :input
 output-key :output
 etal-keys :etal
 :or {input-key :last-trade-price
 output-key :last-trade-price-exponential
 etal-keys [:last-trade-price :last-trade-time]}} options]

 ;; 2. get the simple-moving-average for a given tick - 1
 (reduce (fn [rslt ech]

 ;; 3. calculate the EMA (for the first tick, EMA(yesterday) = MA(yesterday))

 (let [;; price(today)
 ltprice (input-key ech)

 ;; EMA(yesterday)
 ema-last (if (output-key (first rslt))
 (output-key (first rslt))
 (input-key ech))

 ;; ** EMA now = price(today) * k + EMA(yesterday) * (1 - k)

 ema-now (+ (* k ltprice)
 (* ema-last (- 1 k)))]

 (lazy-cat rslt
 [(merge
 (zipmap etal-keys
 (map #(% (last (:population ech))) etal-keys))

 {output-key ema-now})])))
 '()
 sma-list))))

Strategies for Calculating and Manipulating Data

[52]

Now we can call this function with a timeseries (created from a pricelist):

(def price-only-list (extract-price-only (core/generate-prices 5 15)))
(def time-series (core/generate-timeseries price-only-list))

(def ema-list (exponential-moving-average {} 20 (take 40 time-series)))

You should see a result that looks something like this:

 ({:last-trade-price 6.994839831563898,
 :last-trade-time #inst "2015-09-25T00:56:57.133-00:00",
 :last-trade-price-exponential 9.861794696331243}
 {:last-trade-price 8.390198342705236,
 :last-trade-time #inst "2015-09-25T00:57:00.133-00:00",
 :last-trade-price-exponential 9.673950987829697}
 {:last-trade-price 6.71215867416419,
 :last-trade-time #inst "2015-09-25T00:57:03.133-00:00",
 :last-trade-price-exponential 9.523676021028459}
 {:last-trade-price 7.861386743797853,
 :last-trade-time #inst "2015-09-25T00:57:06.133-00:00",
 :last-trade-price-exponential 9.602513190297485}
...)

Here's a sample graph output (your data may vary):

Chapter 4

[53]

The Bollinger Bands
The Bollinger Band is another technical trading indicator. It provides a volatility
range for a stock price. This is based on the standard deviation from a price's mean.
The standard deviation changes as volatility increases and decreases. This translates
to a widening of the band when volatility increases and a narrowing of the band
when volatility decreases. You can read more about Bollinger Bands at https://
en.wikipedia.org/wiki/Bollinger_Bands and http://www.investopedia.com/
terms/b/bollingerbands.asp.

The Bollinger Band has upper, lower, and middle bands. For us, the middle band
will be the SMA. The upper and lower bands will be two standard deviations from
the mean. The standard deviation is the square root of a variance. The variance is
the average of the squared differences from the mean. Let's take a closer look at the
math. Again, we'll first note down the equation using an algebraic pseudocode:

1. We'll start with a list of SMAs and our middle band.
2. Then, we'll calculate the average (or the mean) of the last 20 SMAs.
3. For each mean, we calculate its difference from the nominal price and square

this difference like this (mean - last-trade-price)^2.
4. This time, we'll calculate the average of the squared differences to get

the variance.
5. Then, simply take the square root of this variance to get the standard

deviation.

We're going to similarly work backwards from the data points that we need:

• Middle Bollinger Band: This refers to our SMA list.
• Variance: This refers to (sum-of-the-price-mean-difference-squared % number-of-

means). Here, the % is the remainder operator.
• Standard deviation: This refers to the square root of the variance.
• Upper Bollinger Band: This refers to (moving-average + (2 * standard-deviation)).
• Lower Bollinger Band: This refers to (moving-average - (2 * standard-deviation)).

From here, we can take a similar approach of reducing the SMA and calculating the
variables that we need. I've included the following completed function as a guide
for you to follow. However, see if you can build it on your own, patterning your
solution after the first two functions we've completed:

(defn bollinger-band
 "From a tick-list, generates an accompanying list with upper-band and lower-band

https://en.wikipedia.org/wiki/Bollinger_Bands
https://en.wikipedia.org/wiki/Bollinger_Bands
http://www.investopedia.com/terms/b/bollingerbands.asp
http://www.investopedia.com/terms/b/bollingerbands.asp

Strategies for Calculating and Manipulating Data

[54]

 Upper Band: K times an N-period standard deviation above the moving average (MA + Kσ)

 Lower Band: K times an N-period standard deviation below the moving average (MA − Kσ)

 K: number of standard deviations
 N: period, or tick-window we are looking at
 Returns a list, equal in length to the tick-list, but only with slots filled,

 where preceding tick-list allows.
 ** This function assumes the latest tick is on the left**"

 ([tick-window tick-list]
 (bollinger-band tick-window tick-list (three/simple-moving-average nil tick-window tick-list)))

 ([tick-window tick-list sma-list]

 ;; At each step, the Standard Deviation will be: the square root of the variance (average of the squared differences from the Mean)

 (reduce (fn [rslt ech]

 (let [;; get the Moving Average
 ma (:last-trade-price-average ech)

 ;; work out the mean
 mean (/ (reduce (fn [rslt ech]
 (+ (:last-trade-price ech)
 rslt))
 0
 (:population ech))
 (count (:population ech)))

 ;; Then for each number: subtract the mean and square the result (the squared difference)

 sq-diff-list (map (fn [ech]
 (let [diff (- mean (:last-trade-price ech))]

 (* diff diff)))
 (:population ech))

 variance (/ (reduce + sq-diff-list) (count (:population ech)))

 standard-deviation (. Math sqrt variance)]

Chapter 4

[55]

 (lazy-cat rslt
 [{:last-trade-price (:last-trade-price ech)
 :last-trade-time (:last-trade-time ech)
 :upper-band (+ ma (* 2 standard-deviation))
 :lower-band (- ma (* 2 standard-deviation))}])))

 '()
 sma-list)))

The timeseries collection should already be defined, so now we can call our
bollinger-band function in a similar way to the exponential-moving-average
function:

(def bol-band (bollinger-band 20 (take 40 time-series)))

You should see a result that looks something like this:

 ({:last-trade-price 14.72248400774257,
 :last-trade-time #inst "2015-09-25T00:59:16.924-00:00",
 :upper-band 24.882020638795275,
 :lower-band 9.546205067243378}
 {:last-trade-price 17.666980809291083,
 :last-trade-time #inst "2015-09-25T00:59:19.924-00:00",
 :upper-band 24.882647571351672,
 :lower-band 9.541527911594255}
 {:last-trade-price 21.2003769711493,
 :last-trade-time #inst "2015-09-25T00:59:21.924-00:00",
 :upper-band 24.87967020977339,
 :lower-band 9.53964500546127}
 ...)

Strategies for Calculating and Manipulating Data

[56]

Here's a sample graph output (your data may vary):

Summary
In this chapter, I've intentionally spent most of my time exploring the math in each
equation and the algorithmic steps needed to arrive at a desired endpoint. By now,
you can see how Clojure is a tool that lets you easily represent data and quickly
perform calculations. As with Christophe Grande's suggestion, we want to let data
drive the design of our software. We also want a loose coupling of our software,
which will allow an orthogonal design. This means that small pieces will be easily
composed into a larger whole. This also means minimizing the amount of baggage
data or extra stuff (also known as local or dangling state) we carry in our data
structures to only allow what's necessary in performing a given calculation.

In Chapter 5, Traversing Data, Branching, and Conditional Dispatch, we're going to do a
larger code refactoring of our original time series generator. Let's see what kind of
cleanup we can perform there.

[57]

Traversing Data, Branching,
and Conditional Dispatch

In this chapter, we'll be looking at more advanced branching and conditional logic.
However, these are just the implementation details of the kind of control we're
beginning to realize. Alan Kay, a notable computer programmer, has stated that,
"Lisp isn't a language, it's a building material." The fact that Clojure is a Lisp fits this
description. It also helps us understand that Clojure should just be the starting point
when building functions and engineering our systems. It is the kind of building
material that lets us be as precise as we need.

Our second refactor – the generate
prices function
For example, our current oscillating stochastic price generator isn't the best fit for our
needs. The generated prices either regularly trend to zero or trend much too high:

(defn random-in-range [lower upper]

 (let [r (+ (rand (- upper lower))
 lower)]

 (if (> r upper)
 upper r)))

(defn stochastic-k [last-price low-price high-price]
 (let[hlrange (- high-price low-price)
 hlmidpoint (/ hlrange 2)
 numerator (if (> last-price hlmidpoint)

Traversing Data, Branching, and Conditional Dispatch

[58]

 (- last-price hlmidpoint)
 (- hlmidpoint low-price))]
 (/ numerator hlrange)))

(defn break-local-minima-maxima [k]
 (as-> k k
 (if (<= (int (+ 0.95 k)) 0)
 (+ 0.15 k) k)
 (if (>= k 1)
 (- k 0.15) k)))

(defn generate-prices

 ([low high]
 (generate-prices (random-in-range low high) low high))

 ([last-price low high]
 (iterate (fn [{:keys [last lows highs]}]

 (let [low (-> lows first)
 high (-> highs reverse first)
 k (stochastic-k last low high)
 plus-OR-minus (rand-nth [- +])

 kPM (if (< k 0.5)
 (if (= plus-OR-minus +)
 (+ 1 (break-local-minima-maxima k))
 (- 1 (break-local-minima-maxima k)))
 (if (= plus-OR-minus +)
 (+ 1 (- 1 (break-local-minima-maxima k)))
 (- 1 (- 1 (break-local-minima-maxima k)))))

 newprice (* kPM last)
 newlow (if (< newprice low) newprice low)
 newhigh (if (> newprice high) newprice high)]

 (println (str "[" last " | " low " | " high "] <=> k[" k "] / kPM[" kPM "] / newprice[" newprice "]"))

 {:last newprice
 :lows (take 5 (conj lows newlow))
 :highs (take 5 (conj highs newhigh))}))

 {:last last-price :lows [low] :highs [high]})))

Chapter 5

[59]

The preceding code shows why we need the break-local-minima-maxima guard
function: to keep our prices within a reasonable range. However, this is a less elegant
workaround, akin to a set of guardrails. You can evaluate the function in your REPL
using the following code:

(require '[edgar.core :as core

 '[edgar.analytics :as analytics]

(def price-only-list
 (analytics/extract-price-only (core/generate-prices 5 15))

(take 50 price-only-list)

;; (6.223646585866444 6.985200975509927 8.371903754581446
11.194829124888214
6.935005351100434 5.593078104671486 5.261364888511671
6.188083226538929
5.45288743795115 4.3879999001375065 4.00841221377164 3.465993865670304
2.7745356087257838 3.5321301673360033 2.567672336389048
1.814142431466118
2.471619508589675 3.367377825071922 4.587774686750374 6.25046480370463
8.51574301919856 7.273943476527238 7.649623431542617 8.26265266318511
9.308951577246637 11.22640931794612 7.281474468812783
6.901246804698159
5.7046915345434 7.772171932425898 8.467256074658573 9.670849322422702
11.928275932423938 7.101779616374013 8.441108859931914
9.624246864446237
7.411713217948748 6.951478047181248 5.719732052754735
7.792663398578526
7.083636475728704 8.409797330774097 7.251018224192089
5.801476360694858
3.698919442080443 2.3583660758658964 1.5036527923589607
0.9193511112141406
0.5197016575549582 0.7609002592527179)

We may want to keep this function around as stock prices do sometimes flatline
to zero or skyrocket as well. However, we also need a function that more directly
keeps prices within a reasonable range for long periods. We should be able to
choose or combine both functionalities now that we know we can get more finely
grained control over our input data. The only barrier now is figuring out which
function can give us a more consistent oscillation. Are there any math functions that
give us the kind of wave formation that we usually see in stock graphs? For this,
both polynomials and sine waves approximate the oscillating behavior that we're
interested in. Also, having a powerful building material at our disposal, we can
spend our time investigating their mathematical properties, confident that Clojure
will be able to clearly and directly implement any solution we derive.

Traversing Data, Branching, and Conditional Dispatch

[60]

In both cases, these are several desirable properties that we'll want our function
to have:

• Can the function's graph repeat, to get continuous waves?
• Can we make the waves slimmer or wider?
• Can we make the waves taller or shorter?
• Are we able to nest waves within waves?

Polynomial expressions
A polynomial is an expression of more than two algebraic terms. These terms have
variables and coefficients that only involve addition, subtraction, and multiplication.
The variables can only have non-negative exponents, and these exponents typically
decrease in size from the left-hand side to the right-hand side of the equation. So, for
example, (2 * x^3) + (2 * x^2) - (3 * x) is a typical polynomial equation.

Polynomial expressions that have the right variables and coefficients are interesting
for our purpose because they graph as a nice upward and downward wave:

Chapter 5

[61]

If we try to encode the preceding polynomial expression, we'll get something like
the following polynomial function in this section. We've seen the threading macro
before, which is ->. This takes some data (or an expression that outputs some data)
and places it in the first parameter position of the next expression. If we used ->>,
it would place the data in the last parameter position of the next expression. The
algebra also translates pretty directly from a source equation. Take the power of a
variable, multiply it by the coefficient, then add the result with the next term. Take
this result and subtract the subsequent term from it. Open your editor and create a
file called datasource.clj in the src/edgar directory. We're going to pull in and
use some library functions. To do this, create a namespace form as follows:

(ns edgar.datasource
 (:require [edgar.core :as core]
 [edgar.analytics :as analytics]
 [clojure.math.numeric-tower :as math])
 (:import [org.apache.commons.math3.distribution BetaDistribution]))

In order to use the clojure.math.numeric-tower Clojure namespace and the org.
apache.commons.math3.distribution Java package, we have to include these
libraries in our project.clj file. It should look like the following piece of code.
After you're done editing project.clj, restart any REPLs you may have opened:

(defproject edgaru "0.1.0-SNAPSHOT"
 :description ""
 :url "https://github.com/twashing/edgaru"
 :license {:name "Eclipse Public License"
 :url "http://www.eclipse.org/legal/epl-v10.html"}
 :dependencies [[org.clojure/clojure "1.7.0"]
 [clj-time "0.9.0"]
 [org.clojure/math.numeric-tower "0.0.4"]
 [org.apache.commons/commons-math3 "3.5"]])

Our next function, polynomial, goes into src/edgar/datasource.clj and looks
like this:

(defn polynomial [x]
 (->
 (+ (* 2
 (Math/pow x 3))
 (* 2
 (Math/pow x 2)))
 (- (* 3 x))))

Traversing Data, Branching, and Conditional Dispatch

[62]

If we try to map this function over a range from -5 to 5, we'll get the following result.
If we compare the result with our graph, we'll see that the values match. When x is
-5, y will be -185, which is way off the graph. We have to get to x of -2 to see y of -2
become visible in our graph. When x of 1, puts y at 3, which matches the left hump
we see (let's call this the local maxima) before the graph curves back down again to x
of 0 and y of 0. When x is 1, y is 1, and when x is 2, y swings up and out of our view
again to 18:

=> (map polynomial '(-5 -4 -3 -2 -1 0 1 2 3 4 5))
(-185.0 -84.0 -27.0 -2.0 3.0 0.0 1.0 18.0 63.0 148.0 285.0

The preceding code shows the sharp swings we see, and we're going to have to get
more granular in order to better capture some of y's changes. Let's zoom in and get
the y values at each tenth increment of x from 0 to 1. We can see y decrease (to a local
minima) from x of 0 to 0.5. This decrease also shrinks from 0.3 to 0.5 (-0.6659 -0.752
-0.75). After this, 0.6, 0.7, and 0.8 start to swing y up again:

=> (map polynomial '(0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1))
(0.0 -0.278 -0.5040000000000001 -0.6659999999999999
-0.7520000000000001 -0.75 -
0.6479999999999999 -0.43399999999999994 -0.09600000000000009
0.3780000000000001 1.0)

So far, we have been able to easily create a polynomial function that could give us
some interesting price swings. Let's see how it fits our needs:

• Repeatable: We can repeat the swings in the x's right before and after the
local y maxima and minima.

• Slimmer or wider waves: If we give the first exponent a larger odd value, the
hump on the left of our curve gets slimmer. However, we then start to lose
any symmetry that we have on the left versus the right-hand side. This is not
necessarily a bad thing as price movements are seldom symmetrical. But, at
the very least, we'd like to be able to control this as much as possible:

Chapter 5

[63]

• Taller or shorter waves: I've hard-coded the coefficients and exponents used
in this expression. However, when playing with the numbers, notice that
smaller coefficients in the first term (from 2 to 0.4) make the overall wave grow
(by mostly making it taller and a little wider). Similarly, larger coefficients in
the next two terms also make the wave taller and slightly wider. The opposite
happens when we perform the associated opposite actions on each term:

Traversing Data, Branching, and Conditional Dispatch

[64]

• Nestable waves: Since the y values swing so sharply, I think it would
be difficult to place a polynomial wave within a wave at, say, between x
values of -1 and 0. This doesn't improve much if we make the wave taller
(and a little wider).

So, this function has some interesting properties. Strikingly, though, our polynomial
function, even though we've just started, is much smaller and more direct
(as Clojurians often say, "easier to reason about") than the original generate-prices
function. This is a good sign. Again, we've spent most of our time thinking about
the problem (the math, in this case). Clojure was just the medium that let us quickly
translate our equation.

A sine wave
A sine is a trigonometric function of an angle of a right triangle. The sine (of an
angle) is the ratio of the opposite side's length to the length of the hypotenuse
(the longest side of the triangle).

A sine wave is a repetitive oscillating graph of the sine function. Therefore, as the
function of the angle changes (usually by a clockwise rotation of the hypotenuse),
the resulting y value follows. It provides a natural upward and downward wave that
we're looking for:

Chapter 5

[65]

It's specific equation is as follows. Let's take a closer look at it and its derivation:

f(x) = a sin (b(x − c)) + d

y = a sin (b(x − c)) + d

y = a sin (b(x − Pi/2)) + d

The variables in the equation are described here:

• f(x): The value of this is y
• a: The amplitude of the wave (this makes the wave taller or shorter)
• b: The horizontal dilation (this makes the wave wider or thinner)
• c: Pi/2 is the horizontal translation (this moves the wave to the left or

right-hand side)
• d: The vertical translation (this moves the wave in an upward or

downward direction)

Once we've derived and understood the equation y = a sin (b(x − Pi/2)) + d, we
can translate it again pretty quickly. The following code is a simple Clojure
implementation, which is based on the algebra we've written. Note that Math/PI is
a constant value that approximates Pi. The Math class is an alias to the java.lang.
Math Java class, in which the PI variable is a static (or class-level) member. This is an
example of Clojure's interoperability with the underlying Java platform:

(defn sine [a b x d]
 (- (* a
 (Math/sin (* b
 (- x
 (/ Math/PI 2)))))
 d))

Mapping this function over an integer range of -5 to 5 provides y values that look
approximately like what we saw in the previous graph:

(map #(sine 2 2 % 0) '(-5 -4 -3 -2 -1 0 1 2 3 4 5))
(-1.0880422217787393 1.9787164932467636 -0.5588309963978519
-1.5136049906158564
1.8185948536513634 -2.4492935982947064E-16 -1.8185948536513632
1.5136049906158566
0.5588309963978515 -1.9787164932467636 1.0880422217787398)

Traversing Data, Branching, and Conditional Dispatch

[66]

If we graph our numbers, the graph looks a bit choppier. However, this is because
we've only plugged in whole integer values for x:

Getting more granular with our x values will again smooth out our curve. This will
matter as we determine what our price values should look like. So, let's once again
see how the sine function fits our needs:

• Repeatable: By the very nature of the clockwise rotation of the sine phases,
the graph of the function repeats itself.

• Slimmer or wider waves: This is the horizontal dilation or b in our equation.
• Taller or shorter waves: This is the vertical dilation or amplitude a in

our equation.
• Nestable waves: This will again be difficult because y's slope is often quite

steep. However, because we can repeat the wave and dilate it vertically and
horizontally, this property might not be as important to generate interesting
price movements.

As well as we fared with the polynomial function, our sine function seems to give us
even better control facilities. It is easier to separately vertically and/or horizontally
dilate the graph. The sine Clojure function is also, again, much smaller and more
direct than the original generate-prices function.

Chapter 5

[67]

Stitching the pieces together
While the sine function has so far given us the most amount of control, there are
properties of all those functions that would be nice to incorporate into our stream of
price data. What we will aim for is to randomly include data samples from the sine,
polynomial, and oscillating stochastic functions.

To do this, we'll need a way to mark the start and end of each cycle or phase of a
graph. This at least applies to the polynomial and sine functions, and not to the
oscillating stochastic one. In order to find the phase of the first two functions, we'll
need to determine the x intercepts of each one. There's a mathematical way of
determining both. However, we'll use a different algorithmic approach that employs
Clojure's data traversal mechanisms. We can also randomize phase entry points and
the sample length taken from each phase.

Since we're using these math functions to mimic the behavior of real stock graphs,
we'll want to randomize a few other inputs to each graph.

We can randomize the vertical dilation of both the sine and polynomial graphs.
For the sine wave, this is done by adjusting the value of the amplitude (or a) of y
= a sin (b(x − Pi/2)) + d. A larger amplitude increases the vertical dilation. For the
polynomial, the vertical (and, in some cases, horizontal) dilation are controlled by the
a variable. However, in this case, larger values result in smaller curves. For example,
(0.5 * x^3) + (b * x^2) - (c * x) yields a larger curve than (2 * x^3) + (b * x^2) - (c * x).

We randomize the horizontal dilation of both graphs. The sine wave's horizontal
dilation is controlled by the b variable in y = a sin (b(x − Pi/2)) + d. The larger the
absolute value of b, the tighter each cycle is, that is, 2 yields tighter cycles than 1, and
-2 yields tighter cycles than -1. The polynomial wave's horizontal (and, in some cases,
vertical) dilation is controlled by its b variable in (0.5 * x^3) + (b * x^2) - (c * x).

You may remember how taking y values at an increment of 1 of each whole number
gave a very coarse view of a curve. When we zoomed into the steps at each 1/10th
increment, we saw a much more granular view of this curve. Accordingly, we can
randomize the granularity (or zoom level) of points on both curves.

Traversing Data, Branching, and Conditional Dispatch

[68]

Finally, we need a way to randomly generate either of our three graph functions
with a given set of inputs. Clojure lets us randomly select integers, so we can take
a random integer within a range, determine if it's within a subrange, then sample
(that is, generate) a graph from it. However, math also gives us useful tools. In
this case, a probability distribution can help us evenly distribute graph generation
according to inputs for a given probability curve. There are a number of probability
(or continuous) distributions available (normal, exponential, beta, gamma, and so
on). A graphic from Apache Commons math library gives an overview of some
probability distributions, which can be seen at https://en.wikipedia.org/wiki/
Probability_distribution:

Source: http://commons.apache.org/proper/commons-math/images/userguide/real_distribution_examples.png

https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Probability_distribution

Chapter 5

[69]

We're going to use a beta distribution for our function. Try out an online beta
distribution calculator at http://keisan.casio.com/exec/system/1180573226.
Plug in the initial values of a=2 and b=3 and your result. The idea is that if we take
a sample of 100 items, the likelihood that a value will be under 0.33 is determined
by the shape of the curve. Therefore, there is a likelihood that a sample will be
between 0.34 and 0.66 or above 0.67. We're going to use these very metrics to make
online decisions of which price graphs get generated. By online, I mean we do not
have to hardcode our sections between 0 and 1 [for example, 0.66 and 0.86 (0.20); the
remainder will be (0.14)]. We can evenly divide an area between 0 and 1, and if the
hump of our probability curve is skewed to the left-hand side of the graph, there's a
greater probability that sampled values will fall under this area of the graph.

Surveying the function landscape
In order to accomplish everything we've spoken about so far, let's take a step back
and explore some functions to traverse data, branching, and conditional dispatch,
and other first order functions. The Clojure cheatsheet is a good location for a bird's-
eye view of different categories of functions. Their official documentation can be
found at http://clojure.org/cheatsheet.

Traversing data
Recursion in computer science is a technique where a function continuously
calls itself until some decision point is reached (you can read more about this
technique at https://en.wikipedia.org/wiki/Recursion_(computer_science)).
This is useful when the same block of code needs to be run against successive or
iterative contexts.

The reduce function is used when we have a finite list that we need to collect or fold
up into a result value.

Clojure also has the repeatedly function, which continuously calls a function with
no arguments. There's also iterate, which is a single argument function that takes
its results and successively calls the same function on successive results.

http://keisan.casio.com/exec/system/1180573226
http://clojure.org/cheatsheet
https://en.wikipedia.org/wiki/Recursion_(computer_science)

Traversing Data, Branching, and Conditional Dispatch

[70]

These options constrain the number and evaluation of input arguments. If more
input arguments are needed, you also have the option of simply recalling your
same function over and over again until some condition is reached. However, this
has some internal side effects where a resource called stack is consumed. The loop
function (technically a macro) lets us recur over a block of code without consuming
this stack. It also has the benefit of allowing us to set a different recursion point in
our code. Paired with loop is the recur function (also a macro) that evaluates a set
of expressions, goes back to the recursion point (set by the preceding loop function),
and binds these results in a source binding location. The recur operator can also be
used outside loop where it will just call the available recursion point, which would
be the function itself.

List comprehensions in computer science are ways of creating new lists from
previous lists. The map, filter, and so on, are the functions which generally let us
create a new list from a source list using one condition or pass over the source data.
Clojure's for comprehension lets us take an arbitrary number of lists and create a
new result list based on one or more conditionals or modifiers.

Branching and conditional dispatch
The macros, case and cond, are two straightforward ways of making a decision. case
is a macro that looks at one value (scalar or composite) and tries to find a matching
pair in the following body. This is a good option when there's a single known Var
and we want to take different actions based on its value. cond, on the other hand, is a
macro that simply tries to find a true condition in a series of pairs. It can be used when
you need to meet a condition between several competing predicate values.

Multimethods let us add decision points (or dispatches) in our code based on any
attribute of a value, such as its type, metadata, and so on. This functionality, called
runtime polymorphism, is provided by Clojure's defmulti and defmethod macros.

Pattern matching in computer science is a language feature that lets us check a set
of values for a particular pattern. Dispatch of a particular kind of code occurs when
a pattern is matched. Clojure's core.match is a third-party library that implements
pattern matching as an add-on to the language. This, again, is made possible by
macros, which rewrite the code on the fly. It's another example of a little language
being embedded into the main one.

Chapter 5

[71]

First order functions
The central artifact of a functional programming language is the function, also called
a lambda. It is the primary way of doing things and is itself a value that can be
manipulated in the given language. Clojure has many functions that in turn operate
on or change other functions. Here, we will discuss a few.

The partial function takes a function of any number of arguments. What it does
is apply the function, but only to a partial set of arguments. A new function is
returned, which is a partial application of the original. So, a caller now just has to call
the function with the remaining arguments. There are some instances in your code
where you will want to partially apply a function in one part and will only be able to
complete the function application in another location or later on. The apply function
takes another function and applies it over a list of arguments. Its need is motivated
by the fact that we sometimes don't have access to all arguments to a function when
writing and compiling (part of the REPL) our code. Only at runtime can we access a
function's arguments. This is the main motivation for its use. The comp is a function
that takes several functions and composes them together. This is often useful when
several functions are used together in the same place. We can create a more general
function out of its composition and use it in turn. The juxt function takes a set of
functions and returns a function that is a juxtaposition of these very functions to
input arguments of the original juxt call. This is useful when you have a set of
functions that you want to call on the same argument.

Applying functions
Let's make a function to determine phases or the start and end of our graph's cycles.
We'll write a function that finds the x intercepts of both the polynomial and sine
graphs. Recall that these two functions appear as follows:

(defn polynomial [a b c x]
 (->
 (+ (* a
 (Math/pow x 3))

 (* b
 (Math/pow x 2)))
 (- (* c x))))

(defn sine [a b d x]
 (- (* a
 (Math/sin (* b
 (- x
 (/ Math/PI 2)))))
 d))

Traversing Data, Branching, and Conditional Dispatch

[72]

Looking again at the representative graphs, the first thing to note is a constant x
intercept of x=0. Next, if we go in either direction, the graph goes in a particular
direction, then returns to pass through x, and winds back up again:

The graph on left-hand side shows a polynomial curve and the one on right-hand side shows a sine wave

Algorithmically, we can use this to first determine the direction (or side) of the curve.
Next, when we pass through x, the direction (or side) will change. If the side does
change, we need to go back in the other direction until the side changes again. We
can keep doing this in increasingly smaller steps until we have an effective 0 value.
For our purposes, I've chosen an x of 0 to the 7th power. Any values beyond this can
be considered negligible to our phase.

To implement our x-intercept function, we'll need to track a few variables. At each
step, we need to know the following:

• The starting point
• The distance to step
• The direction (or side) of the curve
• The corresponding y value, which will ultimately get returned when x is

effectively 0

With all these variables (or states) to track, loop/recur looks to be a useful function.
We can track multiple values and recursively evaluate them until we reach our
desired result:

(defn polynomial-xintercept [x]
 (polynomial 2 2 3 x))

Chapter 5

[73]

(defn sine-xintercept [x]
 (sine 2 2 0 x))

(defn ydirection [ypos]
 (if (pos? ypos)
 :positive
 :negative))

(defn direction-changed? [ypos dirn]
 (not (= (ydirection ypos)
 dirn)))

(defn get-opposite-direction-key [ydir]
 (if (= ydir :positive)
 :negative
 :positive))

(defn get-opposite-direction-fn [dirn]
 (if (= dirn +) - +))

(defn effectively-zero? [xval]
 (= 0.0 (Double. (format "%.7f" xval))))

(defn find-xintercept [direction mfn]
 (loop [start-point 0.0
 distance 1.0
 ydir (ydirection (mfn (direction 0 0.1)))
 dirn direction]

 (let [next-point (dirn start-point distance)]

 (if (effectively-zero? (mfn next-point))
 next-point
 (let [dc? (direction-changed? (mfn next-point) ydir)]

 (recur next-point
 (if dc? (/ distance 2) distance)
 (if dc? (get-opposite-direction-key ydir) ydir)
 (if dc? (get-opposite-direction-fn dirn) dirn)))))))

www.allitebooks.com

http://www.allitebooks.org

Traversing Data, Branching, and Conditional Dispatch

[74]

So, this is one implementation that works. Focus on the loop and recur bindings.
The let and if functions revolve around setting up and deciding whether to
continue. We have some helper functions that let us split code. These make some
of the bits of code reusable and the main function more readable. The x-intercept
algorithm basically follows these steps:

1. Sets up an initial y value.
2. Calls ydirection to determine the graph's direction (or side). This is where

we set up and use the sine-xintercept and polynomial-xintercept
helper functions. They simplify the parameters passed to them.

3. Determines if x is effectively 0. This code is split out into the
effectively-zero? helper function:

 ° If it is effectively 0, return the associated y value
 ° If it's not 0, check whether the direction (or side) of the curve has

changed (direction-changed?)
 ° If it has, recurse with i) the y value, ii) half the distance to a step,

iii) a flag marking the opposite direction, and iv) a function for
the opposite direction

 ° If it has not, recurse with i) the y value, ii) the same step distance,
iii) the same direction flag, and iv) the same step function

Now, if we want to find the polynomial's or sine's x-intercept, we can use find-
xintercept as follows. Also, note that we can find x-intercepts on both the left and
right-hand side of x=0:

(find-xintercept - polynomial-xintercept)
-1.8228756561875343

(find-xintercept + polynomial-xintercept)
0.8228756487369537

(find-xintercept - sine-xintercept)
-1.570796325802803

(find-xintercept + sine-xintercept)
1.570796325802803

Chapter 5

[75]

In order to randomize vertical and horizontal dilations, we'll need a function
that generates a random double value within a specified range. The Clojure core
namespace doesn't have such a function. However, we can use one from an older
project, lazytest, which is no longer under active development. The following code
is taken from https://github.com/stuartsierra/lazytest/blob/master/
modules/lazytest/src/main/clojure/lazytest/random.clj:

(defn rand-double-in-range
 "Returns a random double between min and max."
 [min max]
 {:pre [(<= min max)]}
 (+ min (* (- max min) (Math/random))))

Taking a first pass at randomizing the vertical dilation for the polynomial and sine
equations, we get the following functions:

(defn randomize-vertical-dilation-P [x]
 (let [a (rand-double-in-range 0.5 2)]
 (polynomial a 2 3 x)))

(defn randomize-vertical-dilation-S [x]
 (let [a (rand-double-in-range 0.5 2.7)]
 (sine a 2 0 x)))

However, both shapes (polynomial and sine) are very similar. These can, therefore,
be generalized into one function called randomize-vertical-dilation. With this
function derived, we can reuse a pattern to create randomize-horizontal-dilation.
Also, notice how adjusting the vertical and horizontal dilations means adjusting the a
and b values as well:

(defn randomize-vertical-dilation [mathfn min' max']
 (let [a (rand-double-in-range min' max')]
 (partial mathfn a)))

(defn randomize-horizontal-dilation [mathfn-curried min' max']
 (let [b (rand-double-in-range min' max')]
 (partial mathfn-curried b)))

This is a good use case to partially apply a function with the first argument (a value).
Take this partially applied function and then partially apply it again to b and any
other successive values. We'll then find x-intercepts, select a granularity, and then
iteratively generate x values by stepping (iterate) forward at each granularity
increment, starting with the left-most x-intercept. Finally, we can map our partially
applied polynomial or sine functions over the granular sequence of x's, yielding y's
at each of these x points.

https://github.com/stuartsierra/lazytest/blob/master/modules/lazytest/src/main/clojure/lazytest/random.clj
https://github.com/stuartsierra/lazytest/blob/master/modules/lazytest/src/main/clojure/lazytest/random.clj

Traversing Data, Branching, and Conditional Dispatch

[76]

For each feature, we're selecting from a range of random values that work in this
context. You can play with these numbers and try whatever works for you:

Vertical dilation:

• polynomial: We've selected values within 2 and 0.5
• sine: We've selected values between 0.5 and 2.7

Horizontal dilation:

• polynomial: We've selected values within 2 and 0.5 (a larger b yields a
narrower curve)

• sine: We've selected values within 2.7 and 0.3

Granularity:

• polynomial: We've selected values between 0.1 and 1
• sine: We've selected values between 0.1 and 1

Let's take a look at the following code which demonstrates the implementation of
what we just covered:

(def one (randomize-vertical-dilation polynomial 0.5 2))
(def two (randomize-horizontal-dilation one 0.5 2))
(def polyn-partial (partial two 3))

(def xinterc-polyn-left (find-xintercept - polynomial-xintercept))
(def xinterc-polyn-right (find-xintercept + polynomial-xintercept))

(def granularityP (rand-double-in-range 0.1 1))
(def xsequenceP (iterate (partial + granularityP) xinterc-polyn-left))

(map polyn-partial xsequenceP)

Our sequence generation functions now look like this:

(defn generate-polynomial-sequence []

 (let [one (randomize-vertical-dilation polynomial 0.5 2)
 two (randomize-horizontal-dilation one 0.5 2)
 polyn-partial (partial two 3)

 xinterc-polyn-left (find-xintercept - polynomial-xintercept)
 xinterc-polyn-right (find-xintercept + polynomial-xintercept)

 granularityP (rand-double-in-range 0.1 1)

Chapter 5

[77]

 xsequenceP (iterate (partial + granularityP) xinterc-polyn-left)]

 (map polyn-partial xsequenceP)))

(defn generate-sine-sequence []

 (let [ein (randomize-vertical-dilation sine 0.5 2.7)
 zwei (randomize-horizontal-dilation ein 0.3 2.7)
 sine-partial (partial zwei 0)

 xinterc-sine-left (find-xintercept - sine-xintercept)
 xinterc-sine-right (find-xintercept + sine-xintercept)

 granularityS (rand-double-in-range 0.1 1)
 xsequenceS (iterate (partial + granularityS) xinterc-sine-left)]

 (map sine-partial xsequenceS)))

(defn generate-oscillating-sequence []
 (analytics/generate-prices-without-population 5 15))

Apache Commons Math is a Java library that implements a Beta probability curve.
Clojure is a language that runs atop the JVM and can leverage this library for its own
use. Remember that we now want to combine all our price generating functions into
one long stream of price data. This means that we can distribute the polynomial,
sine, and stochastic oscillating functions under a beta curve.

If we create a beta distribution of a=2, b=4.1, and x=0 (implicit in the library), the
curve looks like this:

Traversing Data, Branching, and Conditional Dispatch

[78]

Using this, we'll sample evenly in 1/3rds from the pool of our price functions. If we
sample from the pool 100 times, the probability distribution will determine how
often each third gets sampled. So, for example, in your REPL, try calling test-beta
100 times, which will yield the following results (sorted):

(defn test-beta [beta-distribution]
 (let [sample-val (.sample beta-distribution)]
 (cond
 (< sample-val 0.33) :a
 (< sample-val 0.66) :b
 :else :c)))

(def beta-distribution (org.apache.commons.math3.distribution.BetaDistribution. 2.0 4.1))

(def result (repeatedly #(test-beta beta-distribution)))
(sort (take 100 result))

'(:a
:a
:a :a :a :a :a :a :a :a :b :b :b :b :b :b :b :b :b :b :b :b :b :b :b
:b
:b :b :b :c :c :c :c :c :c)

Here's a sample graph output (your data may vary):

Chapter 5

[79]

With this in mind, it's now trivial to create a simple function that samples from
the beta distribution. If a sample falls within a specified range, generate a sequence
with a random length (itself within a given range):

(defn sample-dispatcher [sample-type sample-length sample-fn]
 (take sample-length (sample-fn)))

(defn sample-prices [beta-distribution]

 (let [sample-val (.sample beta-distribution)]

 (cond
 (< sample-val 0.33) (sample-dispatcher :sine (rand-double-in-range 10 15) generate-sine-sequence)
 (< sample-val 0.66) (sample-dispatcher :polynomial (rand-double-in-range 4 6) generate-polynomial-sequence)

 :else (sample-dispatcher :oscillating (rand-double-in-range 8 10) generate-oscillating-sequence))))

We can now generate an infinite sequence of price samples. The (repeatedly
#(sample-prices beta-distribution)) expression will give us a list of lists,
each sublist being a sample of either a polynomial graph, sine graph, or a sequence
of oscillating stochastic points. This is where we'll begin the next step. We could
just concat them all together (recall that concat acts lazily) and be done with it.
However, the last problem is that each list has its own y starting point. For the entire
sequence of prices to make sense, we have to normalize the price levels of each
subsequent sequence:

(defn generate-prices [beta-distribution]

 (reduce (fn [^clojure.lang.LazySeq rslt
 ^clojure.lang.LazySeq each-sample-seq]

 (let [beginning-price (if (empty? rslt)
 (rand-double-in-range 5 15)
 (last rslt))
 sample-seq-head (first each-sample-seq)
 price-difference (math/abs (- sample-seq-head beginning-price))]

 (if (< sample-seq-head beginning-price)
 (concat rslt (map #(+ % price-difference) each-sample-seq))
 (concat rslt (map #(- % price-difference) each-sample-seq) each-sample-seq))))

 '()
 (repeatedly #(sample-prices beta-distribution))))

Traversing Data, Branching, and Conditional Dispatch

[80]

You're probably familiar with Clojure's basic functions by now. And your first
instinct may be to reduce over the infinite sequence and adjust all the prices of a
subsequent list based on the last price of the previous list. However, this approach
will fail. The reduce function is a core Clojure function that does not act lazily. It
is meant to be used when we have finished accumulating data into a list. It then
folds over all the elements in a list to arrive at a final value. This means realizing
any lazy values. So, if we have an infinite sequence, the preceding function will run
indefinitely, which is what generate-prices does. If we run (generate-prices
beta-distribution), it will never return a list of generated prices as it will never
finish reducing. Clearly, we need another approach:

(defn generate-prices-iterate [beta-distribution]

 (let [sample-seq (repeatedly #(sample-prices beta-distribution))

 iterfn (fn [[^clojure.lang.LazySeq rslt
 ^clojure.lang.LazySeq remaining-sample-seq]]

 (let [each-sample-seq (first remaining-sample-seq)
 beginning-price (if (empty? rslt)
 (rand-double-in-range 5 15)
 (last rslt))
 sample-seq-head (first each-sample-seq)
 price-difference (math/abs (- sample-seq-head beginning-price))]

 ;; only raise the price if below the beginning price
 (if (< sample-seq-head beginning-price)

 [(concat rslt (map #(+ % price-difference) each-sample-seq))

 (rest remaining-sample-seq)]
 [(concat rslt (map #(- % price-difference) each-sample-seq))

 (rest remaining-sample-seq)])))]

 (map first (iterate iterfn ['() sample-seq]))))

Instead of reduce, we can use iterate to successively call a function and only
one argument. This works. However, because we need to maintain the state
between lists, we end up having to manually maintain the results and remaining lists
between calls. This result in code that is very unclear and the code is unintuitive as
a result of having to handle rslt and remaining-sample-seq (Var bindings in the
preceding code):

(defn generate-prices-for [beta-distribution]

 (def previous-price nil)

 (let [adjusted-samples (for [each-sample-seq (repeatedly #(sample-prices beta-distribution))

Chapter 5

[81]

 :let [beginning-price (if (nil? previous-price)

 (rand-double-in-range 5 15)

 previous-price)

 sample-seq-head (first each-sample-seq)
 price-difference (math/abs (- sample-seq-head beginning-price))

 adjusted-sample (if (< sample-seq-head beginning-price)
 (map #(+ % price-difference) each-sample-seq)

 (map #(- % price-difference) each-sample-seq))

 _ (alter-var-root #'previous-price (fn [x] (last adjusted-sample)))]]

 adjusted-sample)]

 (apply concat adjusted-samples)))

So, we need to remain lazy while cleanly handling intermediate state that is
required by a list and its predecessor. The for function (a macro) is Clojure's
way of implementing list comprehensions. It lets us manipulate many lists at a
time in order to create a single sublist. Again, (repeatedly #(sample-prices
beta-distribution)) creates a list of lists, which will be the input to our for
comprehension. Each sublist is the focus for the each-sample-seq binding and the
:let modifier associated with it. It can, along with the :while and :when modifiers,
apply conditions for how to modify or consider each value in the list. This means
that there's much less state for us to maintain. We can simply adjust each-sample-
seq based on whether the first price is above or below the last price. While this
approach is lazy, we have once again not been able to avoid a little hack to maintain
the state of previous-price:

(defn generate-prices-partition [beta-distribution]

 (let [samples-sequence (repeatedly #(sample-prices beta-
distribution))
 partitioned-sequences (partition 2 1 samples-sequence)
 mapping-fn (fn [[fst snd]]
 (let [beginning-price (last fst)
 sample-seq-head (first snd)
 price-difference (math/abs (- sample-seq-head beginning-price))]

 (if (< sample-seq-head beginning-price)
 (concat fst (map #(+ % price-difference) snd))
 (concat fst (map #(- % price-difference) snd)))))]

 (apply concat (map mapping-fn partitioned-sequences))))

Traversing Data, Branching, and Conditional Dispatch

[82]

The partition function is a good idea as it lets us divide our list of lists into
successive pairs (incremented by 1). But, each modified list can't be seen by the
successive pair. So, generate-prices-partition, while much cleaner, produces a
price stream with large and arbitrary price jumps:

(defn generate-prices-reductions [beta-distribution]

 (reductions (fn [^clojure.lang.LazySeq rslt
 ^clojure.lang.LazySeq each-sample-seq]

 (let [beginning-price (if (empty? rslt)
 (rand-double-in-range 5 15)
 (last rslt))
 sample-seq-head (first each-sample-seq)
 price-difference (math/abs (- sample-seq-head beginning-price))]

 ;; only raise the price if below the beginning price
 (if (< sample-seq-head beginning-price)
 (concat rslt (map #(+ % price-difference) each-sample-seq))
 (concat rslt (map #(- % price-difference) each-sample-seq) each-sample-seq))))

 '()
 (repeatedly #(sample-prices beta-distribution))))

Finally, we arrive at a way of maintaining successive states lazily through our
infinite sequence of lists. The reductions function produces a lazy sequence of all
the intermediate values of the reduce function. More importantly, however, is the
fact that during function processing, previous intermediate results are available to
the current iteration. We now have a clean solution that is very close to our original
reduce version. We've also had a chance to see the utility and trade-offs of the
partition, for, and iterate functions in this situation. We can now stitch these
into an updated generate-prices function with a simple guard condition to ensure
that our prices aren't negative:

(defn generate-prices
 ([] (generate-prices (BetaDistribution. 2.0 4.1)))
 ([beta-distribution]
 (map (fn [x]
 (if (neg? x) (* -1 x) x))
 (distinct
 (apply concat (generate-prices-reductions beta-distribution))))))

Chapter 5

[83]

Here's a sample graph output (your data may vary):

Summary
When refactoring the generate-prices function, we took a step back and
considered some useful math equations that could help us generate a list of prices.
Indeed, the central moral of Clojure is that it should be a building material or
simply the building blocks we use when engineering our systems. We were able to
confidently combine results from polynomial and sine equations to our pre-existing
stochastic oscillating function.

For the new functions, we were able to vary the vertical dilation, horizontal dilation,
and granularity of the samples we took. We were also able to combine these results
within a beta probability distribution that we configured to our needs. Much of the
work was this kind of math-based consideration. Fleshing out the overall approach
of Clojure's functions around recursion, list comprehensions, conditional dispatch,
and first order functions then enabled us to traverse and manipulate our data until
we got what we wanted.

Dwelling on the different approaches of reduce, iterate, for, and partition
provided us with a better intuition on how Clojure approaches list transformation.
We've only touched on the functionality available for data and program transformations.
In the next chapter, we'll step back and review all of Clojure's features together.

[85]

Surveying the Landscape
So far, this book has been driven by the problem domain, pulling in Clojure's
features as we need to solve a specific problem. The purpose of this chapter is to
step back and review all of Clojure's features together. We'll review Clojure's scalars,
collection types, and composite data types again. Then, we'll take a look at how to
use Clojure's functions to access, update, and compose data structures.

We'll look at I/O operations and ways to approach what are called side effects.
We'll also touch on Clojure's options when dealing with concurrency and parallelism
and gain an understanding of the difference between the two. We'll then take our
accumulated Clojure knowledge and compare it to similar computation models
offered by object-oriented and strongly typed functional programming systems
using Java and Haskell, respectively. This will be a good opportunity to gain a
basic understanding of type systems, how they apply to Clojure, Java, and Haskell,
and the implications of each computation model. The topics that we'll cover in this
chapter are as follows:

• Scalar data types
• Numbers and precision
• A review of collections
• Data transformation patterns and principles
• Clojure's model of state and identity
• Introducing side-effects
• Concurrency and parallelism
• Type systems
• Comparing Clojure with object orientation
• Comparing Clojure with FP and strong typing

Surveying the Landscape

[86]

Scalar data types
Scalar data types are those that contain one value at a time, as opposed to collections
of composite data types. A scalar can be in the form of a nil, boolean, number, string,
character, regular expression, keyword, or symbol. The following program elements
are all scalar in nature and can be directly evaluated in your REPL:

nil
true
4
2.3
567/11
"hello"
\b
#"^hello\d?world$"
:hello
'hello

Numbers and precision
Clojure numbers default to their host implementation, which refers to the JVM in
most cases. So, 1 is of type java.lang.Long, and 2.5 or 0.1 is of the java.lang.
Double type:

(type 1)
java.lang.Long

(type 0.1)
java.lang.Double

Clojure supports Java's primitive number types of byte, char, int, long, and float.
These symbols also correspond to Clojure functions, which convert to a native
type. This is useful when dealing with a function where a particular type hints at a
primitive number:

(defn double' ^long [^long n]
 (+ n n))

(double' (int 4))
8

Chapter 6

[87]

Clojure also supports native JVM numeric types, such as Byte, Short, Integer, Long,
BigInteger, Float, Double, and BigDecimal. Larger numbers in Clojure have custom
types because they require a greater internal memory representation or a different
method of processing. The clojure.lang.BigInt class is used whenever we need to
represent integers that are larger than 64 bits. It is also used for rational numbers that
can't be represented with terminating decimals:

(type 10000000000000000000000)
clojure.lang.BigInt

(* 2.9 10000000000000000000000)
2.8999999999999998E22

(type (* 2.9 10000000000000000000000))
java.lang.Double

(type 1/3)
clojure.lang.Ratio

(def a 5/6)

a
5/6

(* a 9)
15/2

(* 2 7.936e-16)
1.5872E-15

Math operations work seamlessly both on converting values as necessary and
maintaining their precision. However, this only applies when the numbers fit
within Clojure's numeric types and default memory sizes (or when performing an
interoperation between Clojure and Java). If you fall outside these memory ranges,
your numbers might experience truncation, promotion, overflow, underflow,
or rounding errors (you can read more at http://dev.clojure.org/display/
design/Documentation+for+1.3+Numerics):

• Truncation occurs when the precision of a floating point number is limited
because we can't fit the necessary bits into a particular representation.

• Promotion occurs when a number is too large for its representation. Clojure
will automatically promote this number to a bigger type. For example,
promoting java.lang.Double to java.lang.BigDecimal or java.lang.
Integer to java.lang.Long.

http://dev.clojure.org/display/design/Documentation+for+1.3+Numerics
http://dev.clojure.org/display/design/Documentation+for+1.3+Numerics

Surveying the Landscape

[88]

• Overflow mostly takes place by operating on int and long primitive values
when the result is larger than its 32 bit representation.

• Underflow is the opposite, occurring when a number is so small that its value
is set to zero.

• Rounding errors occur when a floating number type isn't big enough to
handle the actual value that's needed. This often happens when interacting
with Java libraries and is very hard to spot because the error is small. These
small errors, though, can accumulate over time and negatively affect your
calculations. So, pay close attention to your numbers and your calculations
over time.

In The Joy Of Clojure, by Manning, Michael Fogus describes how to evade preceding the
conditions when you need to (you can read more at https://www.joyofclojure.com/).
This is done using Clojure's clojure.lang.Ratio type, (that is, the Rational Type) to
attain perfect accuracy in your calculations. The ratio?, rational?, and rationalize
functions help you determine whether your number(s) are rational and convert them
to a rational type (or ratio) if the need arises. Fogus recommends that with really large
or really small numbers, if you need to maintain precision, check the associative and
distributive properties of the numbers resulting from your calculations. By associative,
we mean that it doesn't matter how we group our numbers:

(def a (rationalize 1.0e50))
(def b (rationalize -1.0e50))
(def c (rationalize 17.0e00))

(+ (+ a b) c)
17

(+ a (+ b c))
17

A distributive property signals an indifference to how we distribute a multiplicative
factor. With the help of the following code, we can multiply a by the sum of b and c.
Or, we can multiply a by b, and then add it to a times c. Both should yield the
same result:

(let [a (rationalize 0.1)
 b (rationalize 0.2)
 c (rationalize 0.3)]

 (= (* a (+ b c))
 (+ (* a b) (* a c))))
true

https://www.joyofclojure.com/

Chapter 6

[89]

A review of collections
We introduced the Clojure collection types in Chapter 1, Orientation – Addressing the
Questions Clojure Answers, and Chapter 3, Developing the Simple Moving Average. They
are all immutable with sequences having the extra facility of laziness. Let's review
what we know so far:

• Lists: These are data structures that are surrounded by the () parentheses.
Unquoted, lists evaluate functions in a list's head position (myfn 1 2 3).
Any number of arguments can follow after the head. Quoted, lists are simply
data. They can contain any value type '(1 2 3 myfn :fubar).

• Vectors: These are data structures with efficient random access, where list's
efficient point of access is its head. Vectors are written with two opposing
square brackets, for example, [75 6 452 40].

• Sets: These are collections of unique items where only one of each thing can
be put into a set. They are written with curly braces and prefixed with a hash,
for example, #{1 2 3 4}. A set can also act as a "does this exist" function of
its items. So, (#{"a" "s" "d" "f"} 2)will return nil and (#{"a" "s" "d"
"f"} "d"), will return the d item.

• Maps: These are a part of Clojure's associative data structures, associating
keys to values. They are denoted by opposing curly braces, such as {:hello
"world" :foo "bar"}. A map entry is a pair of keys and values. Keys and
values can refer to any Clojure data structure. However, very often, you'll
see Clojure code using keywords as keys. Like sets and keywords, maps
act as functions, performing an associative lookup of their elements. So,
evaluating({:hello "world" :foo "bar"} :foo) will return bar.

• Sequences: A sequence, similar to a list, is a linked list of items. Sequences are
also written with parentheses, but have the additional property of laziness.
A lazy sequence does not immediately compute any value inside itself. This
is a central notion in functional programming, leading to more performant
systems. Only when a value is consumed by another non-lazy process, will
the value and, crucially, the computer's resources be consumed. This is a
central part of Clojure's computation model, allowing us to stitch together
unrealized results of lazy functions and creating a kind of data flow pipeline.
Strategically, we'd prefer to execute as much of our data processing in this
manner, thus conserving our compute resources and letting us swap in and
out transformation functions that consume and produce lazy sequences.
Sequences allow loose coupling (https://en.wikipedia.org/wiki/Loose_
coupling) between functions and components, allowing data to drive design.

https://en.wikipedia.org/wiki/Loose_coupling
https://en.wikipedia.org/wiki/Loose_coupling

Surveying the Landscape

[90]

• Queues: Persistent queues are Clojure's First-in First-out (FiFo)
implementation. These don't have a reader-literal syntax, only allowing
empty queue creation with clojure.lang.PersistentQueue/EMPTY (for
example, (def q1 clojure.lang.PersistentQueue/EMPTY)). A persistent
queue is immutable, thus functions like conj, peek, and pop return new
values, leaving the original value intact.

Data transformation patterns and
principles
Clojure's collection types are, by definition, composite as they are composed of many
elements. However, we can also put collections within each other, nesting these data
structures to fit your needs. As such, we'd like to know the best approaches to build
composite collections, access, and update collections. We'll also look at patterns of
grouping, sorting, mapping, filtering, and reducing our data, as well as avoiding
mutations. We'll also take a look at how to introduce side effects when necessary.
We're going to return to the Clojure cheatsheet (http://clojure.org/cheatsheet)
and look at some of the basic functions needed to do the following. Try evaluating
these functions in your REPL:

• Accessing and updating collections: These are just some of the functions
that let you get and update values inside your data structures:

 ° get: This returns a value mapped to a key such as (get [1 2 3] 1)
(get {:a :s :d :f} :s).

 ° get-in: This returns a value that's nested in an associative data
structure such as (get-in {:a [1 5] :b [10 20]} [:b 1]).

 ° update: This updates a value mapped to a key in an associative data
structure such as (update {:one 1 :two 2} :two inc) (update
{:a "fu" :b "world"} :b (fn [x] (str "hello " x))).

 ° update-in: This updates a nested value according to a supplied path
such as (update-in {:a [1 5] :b [10 20]} [:b 1] inc).

http://clojure.org/cheatsheet

Chapter 6

[91]

• Building composite collections: Building nested and composite data
structures very much depends on the combination of the structure of your
data and the operation you want to perform on it. For example, our nominal
simple-moving-average function can return a list of average prices plus the
set of original prices on which this average is based. If there's no processing
needed for the original population data, it doesn't need to be included in the
simple moving average result.

• Grouping: These are functions that let us group elements in a collection:
 ° group-by: This groups a list of elements by a supplied function. The

result is a map where the key is the result of the function and the value
is a vector of similar elements, for example, (group-by :id [{:id 3
:a 1 :b 2} {:id 1 :c 3 :a 4} {:id 3 :a 5 :e 6 :b 7}]).

• Sorting: These are functions that let us sort elements in our collection:
 ° sort: This returns a lazy sequence that's sorted by a source's natural

order or supplied comparator, for example, (sort [85 623 6 47 2
20]) (sort > [85 623 6 47 2 20]).

 ° sort-by: This returns a lazy sequence that's sorted by a supplied key
function and, optionally, a comparator function, for example, (sort-
by :id [{:id 3 :a 1 :b 2} {:id 1 :c 3 :a 4} {:id 3 :a 5
:e 6 :b 7}]) (sort-by :id > [{:id 3 :a 1 :b 2} {:id 1 :c
3 :a 4} {:id 3 :a 5 :e 6 :b 7}]).

 ° sorted-set: This returns a sorted set of parameters, for example,
(sorted-set 8 9 7 7 8 15 9).

 ° sorted-set-by: This returns a sorted set of parameters using a
comparator that's been supplied, for example, (sorted-set-by > 8
9 7 7 8 15 9).

 ° sorted-map: This returns a sorted map of key value pairs, for
example,(sorted-map "b" 2 "a" 1) (sorted-map :q 1 :w 2 :e
3 :r 4 :t 5 :y 6).

 ° sorted-map-by: This returns a sorted map of key value pairs that
are sorted by a comparator function on the keys, for example,
(sorted-map-by > 1 :q 2 :w 3 :e 4 :r 5 :t 6 :y).

Surveying the Landscape

[92]

• Mapping: These are functions that let us pass a function over a collection,
returning a new collection with the results of a function call on each element
each time:

 ° map: This returns a lazy sequence when applying a function to the
first element of each supplied collection, for example, (map inc [9
8 7 6 5]) (map + [1 2 3 4 5] [6 7 8 9 10]).

 ° mapv: This returns a vector when applying a function to the first
element of each supplied collection, for example, (map inc [9 8 7
6 5]) (map + [1 2 3 4 5] [6 7 8 9 10]).

 ° pmap: This behaves exactly like map, except pmap runs a function in
parallel, for example, (map inc [9 8 7 6 5]) (map + [1 2 3 4
5] [6 7 8 9 10]).

 ° map-indexed: This returns a lazy sequence of a supplied function
where the parameters are the index (starting at 0) and the
accompanying element. Try this in your REPL (map-indexed (fn
[idx itm] [idx itm]) [:q :w :e :r :t :y]).

 ° mapcat: This maps a function over a list of lists, and then
concatenates the result, for example, (mapcat sort [[5 4 3 2 1]
[9 7 8 6]]).

 ° zipmap: This returns a map where key/values are derived from an
interleaving of two collections, for example, (zipmap [:q :w :e :r
:t :y] [1 2 3 4 5 6]).

• Filtering: These are functions that let us constrain collections by one or more
constraints as follows:

 ° filter: This filters elements and returns a lazy sequence that meets
the predicate function's criteria, for example, (filter keyword? [:a
"q" :s "w" :d "e" :f "r" "t" "y"]).

 ° filterv: This filters elements and returns a vector that meets the
predicate function's criteria, for example, (filter keyword? [:a
"q" :s "w" :d "e" :f "r" "t" "y"]).

• Reducing: These are functions that let us take a list and reduce element
values to a single value as follows:

 ° reduce: Reduce or left fold passes a function over each element,
collecting values from left to right, for example, (reduce + (range
10)) (reduce + 100 (range 10)).

 ° reductions: This is like reduce, but yields a lazy sequence of
intermediate values, of the reduce process. Try this in your REPL
(reductions + [10 20 30 40 50]).

Chapter 6

[93]

 ° reduced: This lets you terminate a reduction, returning a passed
value:

 (def a (repeat 1))
 (take 100 a)
 ; => (1
 1
 1
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1)

 (reduce (fn[rslt ech]
 (if (< rslt 20)
 (+ rslt ech)
 (reduced :break)))
 a)
 ; => :break

 ° reduce-kv: This lets you iterate over the elements of a map:

 (reduce-kv (fn [m k v] (assoc m k (inc v)))
 {} {:a 1 :b 2 :c 3}))
 ; => {:a 2, :b 3, :c 4}

Clojure's model of state and identity
Clojure has an immutable data model. However, this doesn't mean that we can't
represent data and change it over time. Direct change or mutation should be avoided
at all costs. If necessary, a binding macro will create new var values (or bindings)
that are local only to a binding context or scope. These Vars must be marked as
^:dynamic and they should already exist:

(def ^:dynamic a 1)
(def ^:dynamic b 2)

(binding [a 10 b 20] (+ a b))
; => 30

a
; => 1

b
; => 2

Surveying the Landscape

[94]

It is, however, preferable to choose one of four reference types: Var, Atom, Agent,
and Ref. Doing this requires an understanding of Clojure's notion of identity, value,
and time. In his presentation Are We There Yet? (you can read more at http://www.
infoq.com/presentations/Are-We-There-Yet-Rich-Hickey), Clojure creator,
Rich Hickey, describes most computer languages as having variables that allow
programmers to set and change a value in the program's runtime. This model assumes,
however, that the world stops while you look at or change it (you can read more at
http://clojure.org/state). Clojure's approach includes having an immutable
value, such as Sally's address, and forever maintaining this value at a point in time.
Sally's address, however, is just a value in 2014. Clojure sees identity as a continuous
logical entity that has a series of different values over time. So, Sally's home, would be
an identity where the value of her address in 2014 may be different from her address
in 2015. As we've seen, Clojure's core functions take immutable values and return new
values that are updates of the original. The two values share data structures under the
hood (Clojure's Persistent Data Structures), which is possible since each value won't
change. This succession of data updates is how we disambiguate between values over
time. These values often need to be shared with other threads of execution. The Var,
Atom, Agent, and Ref reference types are ways of managing shared identities that
have a particular state at a given point in time. These reference types can change using
a prescribed set of functions to create, update, and reset their state:

• Refs are used for synchronous, coordinated access to many identities. These
functions let you modify their values. You can create a ref using ref, update
it using alter or commute, and reset it using ref-set.
(def one (ref []))
 ;; #object[clojure.lang.Ref 0x1fbb15f {:status :ready, :val []}]

 (dosync
 (alter one conj 12))
 ;; [12]

 (deref one) ;; [12]
 @one ;; [12]

 (dosync
 (ref-set one [:fubar]))
 ;; [:fubar]

 @one ;; [:fubar]

http://www.infoq.com/presentations/Are-We-There-Yet-Rich-Hickey
http://www.infoq.com/presentations/Are-We-There-Yet-Rich-Hickey
http://clojure.org/state

Chapter 6

[95]

• Atoms are used for synchronous, uncoordinated access to a single identity.
These functions let you modify their values. You can create an atom using
atom, update it using swap!, and reset it using reset!:
(def two (atom []))
 ;; #object[clojure.lang.Atom 0xe2fb45 {:status :ready, :val []}]

 (swap! two conj 12)
 ;; [12]

 @two
 ;; [12]

 (reset! two [:fubar])
 ;; [:fubar]

 @two
 ;; [:fubar]

• Agents are used for asynchronous, uncoordinated access to a single identity.
These functions let you modify their values. You can create an agent using
agent, update it using send or send-off, and reset it using restart-agent.
(send three conj 12)
 ;; #object[clojure.lang.Agent 0x1198a8c {:status :ready, :val []}]

 @three
 ;; [12]

 (restart-agent three [:fubar])
 java.lang.RuntimeException
 Agent does not need a restart
 Util.java: 221
 clojure.lang.Util/runtimeException
 Agent.java: 210
 clojure.lang.Agent/restart
 core.clj: 2078
 clojure.core/restart-agent
 RestFn.java: 425
 clojure.lang.RestFn/invoke
 six.clj: 66
 edgaru.six.six/eval14571

 (send three inc)

Surveying the Landscape

[96]

 java.lang.ClassCastException
 clojure.lang.PersistentVector cannot be cast to java.lang.Number

 (restart-agent three [:fubar])
 ;; [:fubar]

 @three
 ;; [:fubar]

• Vars are used for isolated (or thread local) changes made to identities with
a shared default value. These functions let you modify their values. You can
create Vars using def, update them using alter-var-root, and reset them
using var-set:
(def four [])
 ;; []

 (alter-var-root (var four) conj 12)
 ;; [12]

 four
 ;; [12]

Introducing side effects
In Out of the Tar Pit, Ben Moseley and Peter Marks identify complexity as the
single biggest obstacle to the successful development of large-scale software
systems (you can read more at http://shaffner.us/cs/papers/tarpit.pdf).
Essential complexity is directly inherent to solving the problem at hand. Accidental
complexity is all that remains and is usually introduced by unnecessary tooling
or infrastructure. The authors advocate for avoiding complexity and separating it
where unavoidable. Managing our program's identity and making changes to its
state should take place in well-contained locations of your code.

The with-open macro is an example of how to communicate with the outside
world. It takes an input or output stream and binds it to a local var that our local
expressions can interact with. The complexity here is dealing with an external
resource (an input or output stream). The with-open macro handles the side effects
of reading and writing to outside systems and performs resource cleanup after
function completion.

http://shaffner.us/cs/papers/tarpit.pdf

Chapter 6

[97]

The component pattern, popularized by Stuart Sierra, is widely used in the
Clojure community. It isolates and manages the life cycle of units of code (called
components) that have runtime state. Managing runtime state is a major area of focus
for all programming languages. We've looked at Clojure's basic facilities for data
transformation as well as its model of state and identity. More generally, though, we
can also consider when you have to perform many simultaneous tasks. Next, we'll
look at Clojure's facilities for doing this.

Concurrency and parallelism
Though slightly beyond the scope of this book, there may come a time when you will
want to run simultaneous paths of execution. If this happens, it's good to know the
options that Clojure provides for running concurrent or parallel code. We should, of
course, understand the difference between the two.

Concurrency occurs when many threads of execution are running independent of
each other. This can technically happen on a single-core chip where a processor
multitasks between performing work in each thread. Concurrency makes resource-
intensive software more usable by allowing many things to happen at once.
Parallelism is made possible by computer processors with multiple cores. It occurs
when multiple tasks physically take place at the same time in a multicore chip.
Performance is greatly improved by running many threads of execution at the same
time. Clojure provides several ways of tackling concurrent execution based on the
needs and constraints of a given situation. These are as follows:

• Future: This takes one or more expressions, gives you a future object, and
runs this object asynchronously in a separate thread. When complete, the
future object returns the result, which you can obtain by dereferencing it.

• Promise: This gives you a promise object for which another code block or
thread can deliver just one result at a later point in time. To see if a promise
has been delivered, you can dereference (deref) the promise or query it with
the realized? function.

• Threads: The Java language already has an advanced threading library. Java
executors (https://docs.oracle.com/javase/tutorial/essential/
concurrency/executors.html), used in larger applications encapsulate
thread creation and management into a set of functions called executors.

https://docs.oracle.com/javase/tutorial/essential/concurrency/executors.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/executors.html

Surveying the Landscape

[98]

• Reducers: These are a way of executing your functions to perform sequence
manipulation, but in a parallel manner. The way this is done and the main
rationale for this approach is to separate the what from the how in standard
core functions, such as map and reduce. A reducer combines a reducible
collection (one that knows how to reduce itself) with a reducing function
(a recipe for what to do during reduction). We won't delve into the details
here. Just know that reducers provide a different and more performant way
of performing sequence transformations via parallelism (using Java's fork/
join framework).

• core.async: We've so far seen that Clojure provides many ways of performing
concurrency, and parallelism. Another option for concurrency is a pattern
known as Communicating Sequential Processes (CSP). It's technically a
formal language in the process algebra family, which is used to describe
patterns of interactions in concurrent systems. Clojure's implementation of
CSP, also inspired by implementations in the Go language, is called core.
async. It allows for asynchronous programming using message passing via
channels.Refs and transactions, agents, and asynchronous actions.

Type systems
Clojure is homoiconic, functional, lazy, and list-based. But, it's also a typed
language—dynamically typed in this case (https://en.wikipedia.org/wiki/
Type_system#DYNAMIC). In computer science, type systems are tools that are mainly
used to reduce bugs and improve the correctness of programs. What follows is
not an exhaustive discourse on type systems. We only explore their rationale and
variations. It's important to know that type systems are just tools that programming
languages can employ under a certain set of conditions. There are different
categories of type systems: duck typing, dependent types, gradual typing, and
so on. In computation, type systems present an approach to data representation
and transformation. Haskell, for example, encourages a very strict way of data
representation and data transformation. Its type system is very closely derived from
category theory (https://en.wikipedia.org/wiki/Category_theory), which
is a mathematical formalism. Essentially, category theory rigorously tries to take
some state and transform it to another state. These are attempts at having a provable
system. The focus on types of data and their transformations gives us more clarity
on when and why we should use these tools. There's a lot of value in having a
system that we can prove is always correct for a given set of concurrent, distributed
inputs. These properties are important in many domains: military, finance, global
communications, and so on.

https://en.wikipedia.org/wiki/Type_system#DYNAMIC
https://en.wikipedia.org/wiki/Type_system#DYNAMIC
https://en.wikipedia.org/wiki/Category_theory

Chapter 6

[99]

To apply these concepts in the real world, let's think in terms of mathematics and
consider how acoustic waves get transformed into digital representations. How is
video captured, and what algorithms can we run over top of the data to flip it, or
get a negative of an image. So, what is an image and how would you represent it
digitally, in order to perform some of these interesting transformations? These data
representation and transformation questions are what Type Systems are addressing.
Type systems are closely related to and informed by type theory (also used in
mathematics and logic), which formally studies the different forms of type systems.
Type systems try to assure correctness by applying types to program elements
(functions, variables, and so on). It may be useful to think of types as a contract
between program elements to behave in a certain way. The contracted behavior
can be checked at compile time (statically) or runtime (dynamically). Compile time
or static checking generally enforces contracted behavior for a certain set of inputs
when a program is being generated (this is called the compilation process). This is
meant to ensure the correctness of a program before it's run. Runtime or dynamic
checking is used while the program is running. Its purpose is to ensure that the
program makes decisions based on the types or subtypes it encounters (runtime
polymorphism). You can also combine static and dynamic type checking.

Comparing Clojure with object orientation
Java is a class-based, object-oriented programming language. This object-oriented
paradigm was developed in the late 1950s. It grew out of a need to reliably build
larger, more complex systems than was previously possible using an imperative
programming model (you can read more at https://en.wikipedia.org/wiki/
Imperative_programming). Object orientation's original computation model focused
on data encapsulation and object interaction through message passing versus
imperative's model of statements that change the state of a program. These objects
can be derived from classes, prototypes, or through some other mechanism. Object-
oriented programming was first popularized in languages, such as Simula (you can
read more at https://en.wikipedia.org/wiki/Simula) and Smalltalk (you can
read more at https://en.wikipedia.org/wiki/Smalltalk). There are now many
major languages that use this programming model, including Java.

It has statically and dynamically typed program elements. This means that you can
inspect and dispatch (decide) based on the type of object at runtime. Java variable
types are also checked at compile time. Let's take a look at a possible implementation
of our simple-moving-average function using Java:

import java.io.IOException;
import java.net.URI;
import java.net.URISyntaxException;
import java.nio.charset.StandardCharsets;

https://en.wikipedia.org/wiki/Imperative_programming
https://en.wikipedia.org/wiki/Imperative_programming
https://en.wikipedia.org/wiki/Simula
https://en.wikipedia.org/wiki/Smalltalk

Surveying the Landscape

[100]

import java.nio.file.Paths;
import java.nio.file.Files;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
import java.util.stream.Collectors;
import java.util.stream.Stream;

public class Lagging {

 public Stream<Double> readPrices(String path) throws URISyntaxException , IOException {

 return Files.lines(Paths.get(new URI(path)), StandardCharsets.UTF_8)

 .map(Double::parseDouble);
 }

 public List listPrices(String path) throws URISyntaxException , IOException {

 return this.readPrices(path).collect(Collectors.toList());
 }

 public List simpleMovingAverages(String pricesPath, int tickWindow) throws URISyntaxException , IOException {

 List priceList = this.listPrices(pricesPath);
 List averageList = new ArrayList();

 int begin = 1;
 int end = tickWindow;
 while(end <= priceList.size()) {

 List currentWindow = priceList.subList(begin, end);
 Iterator iter = currentWindow.iterator();
 double total = 0d;
 while (iter.hasNext()) {
 total += (Double)iter.next();
 }

 averageList.add(total / tickWindow);

 begin++;
 end++;
 }

Chapter 6

[101]

 return averageList;
 }

 public static void main(String[] args) throws URISyntaxException , IOException {

 String pricesPath = "file:///Users/timothyw/Projects/
LaggingJava/src/main/resources/prices.txt";
 int tickWindow = 20;
 Lagging lagging = new Lagging();

 List simpleMovingAverages = lagging.simpleMovingAverages(pricesPath, tickWindow);

 System.out.println(simpleMovingAverages);
 }
}

The main method is the start point of the program. However, before we study it,
notice that it exists inside the Lagging class. All program state and behavior must
be created inside a class or similar structure (interface, abstract class, and so on).
The idea is that the class is a template from which we create an actual thing called
an object.

Static program elements are those that exist in the class or template itself, not its
objects. This is the condition of the main method. After compiling this code, there
will be a compiled Lagging representation that we can run from our computer. This
is done by invoking the java runner (or runtime environment) and passing in the
compiled Lagging representation. By default, the java runtime invokes the static
main method on the class it is given. In this case, when run, main creates a string
variable that represents the input file on a computer's hard drive. The Lagging
lagging = new Lagging(); expression then creates a new Lagging instance or
an object. The next expression, List simpleMovingAverages = lagging.simple
MovingAverages(pricesPath, tickWindow);, calls the simpleMovingAverages
method on this object. The result is assigned to another object of the abstract List,
type which is then printed to the console.

Just by studying the main method and its context, we see that classes and class
instantiation is central to where Java places state and behavior. Diving into the
simpleMovingAverages method, the first expression calls the listPrices method
on the current object or the this reference. listPrices then calls out again to the
readPrices helper method to pull in the pricelist.txt data file, divides it into a
list of text lines, and then converts each element of this list into a numeric value of
the java.lang.Double type.

Surveying the Landscape

[102]

The second expression, List averageList = new ArrayList();, simply creates a
list that will be added to or mutated later on in the method. The next two expressions
set up the begin and end states to be used to control the while loop. while loops
are control structures in imperative and object-oriented languages that repeatedly
execute code inside a block until some condition is met. In our case, we have two
while loops. The first while(end <= priceList.size()) condition will execute
everything inside its block, while the end variable is below or equal to the length
(or size) of the price list. What this block is doing is taking a subset or window of
the entire list and calculating the average for this window. The second while loop
walks or iterates over the subset or currentWindow, using the Iterator type in order
to sum all the numbers in this subset. Each time the outer while loop is executed,
the average is calculated, the result placed into averageList, and the begin and end
markers each increment forward until end hits the length of the list. When we run
this class, the console printed averageList, has the average values we expect.

[6.971467579790411, 7.464540409139185, 8.010389878709972,
8.595550217357273, 9.199880686839014, 9.803134294595337,
10.391281772750983, 10.960810205584073, 11.519789847777256,
12.085410173832697, 12.657204984470962, 13.512979176946038,
14.336798333665858, 15.033597887711505, 15.93293648884989,
17.236687274535527, 18.017166796811743, 18.747178634896592,
19.36891681775512, 19.88107990363371, 20.352063482865127,
20.809990525663345, 21.292779590969797, 21.65720104327843,
21.88759572553658, 22.0960538285178, 22.522518975747712,
22.921023864595572, 23.300273299533917, 23.677893061861866,
23.791812046695554, 23.92261161858174, 24.13540925343312,
24.28043376993932, 23.99307801388237, 23.69529121331615,
23.444825362117815, 23.313832222382498, 23.30398859426755,
23.34531490845263, 23.386641222637703, 23.52694480589677,
23.67574694970999, 23.906119057816472, 24.25121614021084,
24.211544668391998, 24.23599987692504, 24.305644963968547,
24.243653669023793, 24.31898689789535, 24.369948081810513,
24.364340164808066, 24.518113870232213, 24.573545352458943,
24.63940787919494, 24.75959935515974, 24.806090418384898,
24.772532158349563, 24.774246735296167, 24.857257750991796,
24.765966922838224, 24.67207478924459, 24.61362131993375,
24.52537925344091, 24.58801417608733, 24.586522418381865,
24.532091262456568, 24.56313935471497, 24.393672293029404,
24.188468574045014, 24.05833078712983, 23.919361348321903,
23.947386025442054, 23.872246343092222, 23.637285378280023,
23.515604315240033, 23.594912277922973, 23.649875136387475,
23.505921609914147, 23.30230219819553, 23.255901647048383]

Chapter 6

[103]

However, the way in which we've calculated this information, by manually sliding
a current window through the length of the price list, is different from our original
Clojure version. The Java version forces us to not just declare types for each program
element. It's also a more manual process of managing how lists are processed and
all the intermediate types and steps required in this traversal. Clojure's partition
function lazily gave us a subset of an entire list. reduce walks over this list of lists to
calculate the average value of each one. Nowhere did we manually manage the order
of operations to walk a list. We simply gave calculation instructions at each step. This
is what's meant by a more declarative style of programming (you can read more at
https://en.wikipedia.org/wiki/Declarative_programming).

Comparing Clojure with FP and
strong typing
Haskell is a statically typed programming language. The type system is a central part
of the language and applies to all program elements, even at the most granular level.
We'll take a look at how to implement the simple-moving-average function using
this system:

module Main where

import Data.List.Split(chop)

type Prices = [Float]
type AveragePrices = [Float]

loadPrices :: FilePath -> IO Prices
loadPrices path = do
 priceContents <- readFile path
 let priceLines = (lines priceContents)
 return (map (\x -> read x :: Float) priceLines)

divvy :: Int -> Int -> [a] -> [[a]]
divvy n m lst =
 filter (\ws -> (n == length ws)) choppedl
 where choppedl = chop (\xs -> (take n xs , drop m xs)) lst

average :: [Float] -> Float

https://en.wikipedia.org/wiki/Declarative_programming

Surveying the Landscape

[104]

average xs = sum xs / (fromIntegral $ length xs)

simpleMovingAverage :: Prices -> AveragePrices
simpleMovingAverage priceList =
 map average divvyedPrices
 where divvyedPrices = divvy 20 1 priceList

main :: IO ()
main = do
 priceList <- loadPrices "prices.txt"
 let priceAverages = simpleMovingAverage priceList
 print priceAverages

Let's start at the bottom of the file, the main function. This is the entry point of a
program. The main :: IO () expression names the function. The part to the right-
hand side of :: declares that the function will return an effective I/O operation,
which returns a ()Unit type. A Unit type is akin to a void type in Java, which simply
means that the function doesn't return anything. By introducing IO and its effects, we
have to understand that Haskell has a strict policy of containing any operation that
doesn't return the value of its evaluation. These are known as impure operations, or
side effects.

Pure functional languages are those that do not have any side effects. The
computation model is composed entirely of program elements whose operations
can be guaranteed at compile time. The goal is to make more provable systems. The
result of this is that code tends to be more declarative, as we can see in the preceding
Haskell example.

Most Haskell functions return the result of one nested evaluation block. The main
function evaluation occurs in a do block that lets us evaluate several expressions
one after the other. loadPrices pulls in a large text of price data. Loading data
from a filesystem is an operation with side-effects because data is being loaded from
outside the system's runtime environment:

5.776354340433784
4.819385095126501
4.024983019350133
3.6118300426230148
3.69365835786349
4.247942377070631
5.1220995447382265
6.0754930574679324

Chapter 6

[105]

We then bind that result to priceList, which is then used in our
simpleMovingAverage function, the result of which is printed to the console (the
IO () operation). loadPrices then divides this data into lines and maps a function
over this list to convert each text line into a numeric value (Float). Something to note
about loadPrices is that it explicitly declares the type of data you can input, and the
type of data that will be returned. loadPrices :: FilePath -> IO Prices declare
the function, and FilePath and Prices are types that we've declared in the previous
section. Both types are lists of float values. The IO qualifier again declares an effectful
operation that will be returned, only this time on Prices (a list of Float values).

Simply by looking at the main and loadPrices functions, we already have an idea
of Haskell's general computation model. The type system is pervasive and is used
all the way down to the most granular program elements. This is a tool meant to
maintain pure operations that are free of side effects. Any required side effects are
contained to effectful types and explicitly declared when using these types. The result
is more compile-time guarantees of program correctness, and peripherally, a more
declarative code style. Clojure is not a pure functional language because it allows side
effects where they are pragmatically needed. It is also more loosely typed as program
element types do not have to be declared and arranged at compile time. Clojure veers
toward fewer types that are consistent and can represent a wider array of data. This
also means more functions and more general functions can operate on this data. While
Clojure is more declarative than Java, it emphasizes List processing (how we get the
name Lisp). You can read more about Lisp at https://en.wikipedia.org/wiki/
Lisp_(programming_language). Lisp's macro system, or the ability to rewrite code
on the fly, came out of its data-centric and homoiconic property. It's also what enables
Lisps and Clojure, in this case, to have several third-party options for static analysis.
core.contracts (you can read more at https://github.com/clojure/core.
contracts) and core.typed (you can read more at https://github.com/clojure/
core.typed), for example, are just two third-party tools that offer static code analysis
using the design by contract and gradual typing approaches, respectively.

Haskell's more declarative code style is evident in the simpleMovingAverage
function. The simpleMovingAverage :: Prices -> AveragePrices declaration
tells us that it takes the Prices type (a list of Float values) and returns the
AveragePrices type (also a list of Float values). map acts the same as it does
in Clojure, mapping the average function over the divvyedPrices list. The
divvyedPrices list is created from the original priceList using the divvy
function we've created. Our divvy function behaves in the same way as the Clojure
partition function, returning a list of n items, where the start of each partition is
separated by m elements. The average function simply takes a list of Float values
and divides their sum by their size.

https://en.wikipedia.org/wiki/Lisp_(programming_language) >> endobj 939 0 obj << /A 940 0 R /BS << /S /S /Type /Border /W 0 >> /Border [0 0 0] /H /N /Rect [108.0 392.045 254.963 377.9] /StructParent 251 /Subtype /Link /Type /Annot >> endobj 942 0 obj << /IsMap false /S /URI /URI (https://github.com/clojure/core.contracts) >> endobj 941 0 obj << /A 942 0 R /BS << /S /S /Type /Border /W 0 >> /Border [0 0 0] /H /N /Rect [292.792 354.245 473.717 340.1] /StructParent 252 /Subtype /Link /Type /Annot >> endobj 944 0 obj << /IsMap false /S /URI /URI (https://github.com/clojure/core.contracts) >> endobj 943 0 obj << /A 944 0 R /BS << /S /S /Type /Border /W 0 >> /Border [0 0 0] /H /N /Rect [108.0 341.645 158.872 327.5] /StructParent 253 /Subtype /Link /Type /Annot >> endobj 946 0 obj << /IsMap false /S /URI /URI (https://github.com/clojure/core.typed) >> endobj 945 0 obj << /A 946 0 R /BS << /S /S /Type /Border /W 0 >> /Border [0 0 0] /H /N /Rect [347.261 341.645 499.924 327.5] /StructParent 254 /Subtype /Link /Type /Annot >> endobj 948 0 obj << /IsMap false /S /URI /URI (https://github.com/clojure/core.typed) >> endobj 947 0 obj << /A 948 0 R /BS << /S /S /Type /Border /W 0 >> /Border [0 0 0] /H /N /Rect [108.0 329.045 164.524 314.9] /StructParent 255 /Subtype /Link /Type /Annot >> endobj 936 0 obj [937 0 R 939 0 R 941 0 R 943 0 R 945 0 R 947 0 R] endobj 949 0 obj << /Filter /FlateDecode /Length 3831 >> streamH��Wmo�F��. �a�U>X+r�^����|M�{��]�kq%��H����~�=�$%*ኮ����23;��3��9����b�r4}�X�c>���ϑ�,���m����gy��툇����g��h:�k�G�������#�{l����Q��ҽ�ȉ||��G���-J2���d��D$��y��q���#᳐��P����|4�/�d
https://github.com/clojure/core.contracts
https://github.com/clojure/core.contracts
https://github.com/clojure/core.typed
https://github.com/clojure/core.typed

Surveying the Landscape

[106]

The remaining import function simply pulls in the chop function from the Data.
List.Split module, and the module declaration is Haskell's way of grouping
program elements. These include functions, data, type definitions, and so on. It's
Haskell's namespacing facility and has the same purpose as Clojure's ns macro.
I'm using a Haskell build tool called cabal (you can read more at https://www.
haskell.org/cabal). If we compile our Haskell file, we'll get an executable that
runs, using the the prices.txt file, as input:

\\ cabal build

Building lagging-haskell-0.1.0.0...

Preprocessing executable 'lagging-haskell' for lagging-haskell-0.1.0.0...

[1 of 1] Compiling Main (Main.hs, dist/build/lagging-
haskell/lagging-haskell-tmp/Main.o)

Linking dist/build/lagging-haskell/lagging-haskell ...

\\ cabal run

Preprocessing executable 'lagging-haskell' for lagging-haskell-0.1.0.0...

Running lagging-haskell...

[7.260286,7.70551,8.211639,8.776141,9.384563,10.015532,10.6473875,11.2645
855,11.862074,12.446443,13.012064,13.83844,14.66226,15.385584,16.131344,1
7.447102,18.75085,19.480864,20.09607,20.608353,21.086105,21.557089,22.058
533,22.446215,22.703249,22.940306,23.395824,23.822289,24.226925,24.604544
,24.973045,25.071888,25.18419,25.378178,25.50724,25.209455,24.908524,24.6
62724,24.543427,24.55034,24.591665,24.775486,24.829182,24.952164,25.30392
6,25.511312,25.535767,25.611546,25.547924,25.61414,25.650028,25.625921,25
.760883,25.800354,25.855785,25.97283,26.023987,26.002125,26.020596,26.103
607,26.15481,25.97431,25.890036,25.923187,25.84811,25.910746,25.907635,25
.80542,25.764154,25.519506,25.314304,25.315907,25.229626,25.154488,24.970
709,24.779993,24.790949,24.897942,24.835285,24.599857,24.464247]

https://www.haskell.org/cabal
https://www.haskell.org/cabal

Chapter 6

[107]

Summary
Hopefully, you've taken away a broader scope of the available Clojure functions,
and how to use them to access, update, and compose data structures. This applies
to scalars, collection types, and composite data types. You should also have a good
grasp of I/O operations, which are Clojure's options when dealing with concurrency
and parallelism and an understanding of the difference between the two.

We also stepped back and compared our Clojure simple-moving-average function
to equivalent versions in an object-oriented language (Java) and a purely functional,
statically typed language (Haskell). This is all meant to orient you to Clojure's
approach to computation and the different trade-offs that it makes.

The next chapter will consider our existing data structures output from the
generate-prices, simple-moving-average, exponential-moving-average, and
bollinger-band functions, and store each tick progression for later look ups. We'll
also deal with IO and its side effects and the best way to contain them.

[109]

Dealing with Side Effects
We're going to try and take the data we've generated so far and save it so we can
look it up later. In functional programming, reading and writing from the outside
world is called a side effect because such an operation does not directly deal with
inputs or outputs that are passed into or returned from a function. This goes back
to the idea of a pure functional language that's closer to a mathematical expression.
The following properties that result from this are more practical in nature:

• Given the same input, a function will always return the same output.
• If data from more than one pure function don't depend on each other, their

orders can be reversed or they can all be run in parallel.
• There are other benefits, such as the ability to remove expressions or change

evaluation strategies. However, this is usually the domain of the compiler
(the thing that translates your code to 0s and 1s or some executable form).

So, we'll deal with IO, its side effects, and the best way to contain them. In this
chapter, we'll cover these topics:

• Writing out data
• The Extensible Data Notation (EDN)
• Devising a persistence strategy
• Consuming from a data stream
• Using a componentized architecture

Dealing with Side Effects

[110]

Simple writing
Things, such as threads, input, or output streams to files consume your computer's
resources. Thus, it's important to manage them efficiently. The with-open macro
takes any open readers and writers, lets you perform your evaluation that reads or
writes to them, and then closes these resources on completion. This is a good start to
ensuring that we're making efficient use of our resources.

The simplest way to try this is to write some data to your filesystem. Open your
REPL and evaluate the following code. The (io/writer "datafile") expression
creates a Java writer (java.io.BufferedWriter) object, which we then use to write
the data. The (.write wr (str '(:some :data))) method is another example
of Clojure's interoperability with Java, that is, we call the .write method on the wr
Java object, all of which are in Clojure. The directory in which you started your REPL
should now have a file called datafile with the following contents (:some :data):

(require '[clojure.java.io :as io])
(with-open [wr (io/writer "datafile")]
 (.write wr (str '(:some :data))))

If we run it again and submit some new data, the file's old contents should be gone
and replaced by what you've just written out:

(with-open [wr (io/writer "datafile")]
 (.write wr (str '(:new :data))))

It turns out that the spit function uses with-open to write the content of your data
to a file. This is a bit simpler to use, so we'll go with it:

(spit "datafile" '(:foo :bar))

Extensible Data Notation
Notice that, so far, we've just written out lists of keywords. The output file shows
the exact data we submitted in our REPL. Recall that Clojure, like all Lisps, is
homoiconic. This means that your code is also data. By comparison, you cannot
simply write out Java or Haskell program elements. You can write out their code's
string equivalents. However, you can't do this with literal code as it lives in the
runtime. Clojure has used this homoiconic quality to distill a subset of itself into
a data format called the Extensible Data Notation (EDN) (you can read more at
https://github.com/edn-format/edn).

https://github.com/edn-format/edn

Chapter 7

[111]

EDN data values should be considered as immutable, having no notion of any
program reference in a language's runtime (that is no notion of object identity). As
such, this data format can be used to save data, transfer data between programs that
are in different languages, and so on. EDN has its own built-in elements, such as
integers, strings, lists, keywords, and so on.

There is also a facility to extend notations with tags such as (#uuid
"f81d4fae-7dec-11d0-a765-00a0c91e6bf6"). Tagged elements describe custom
data types and allow you to extend the notation with your own types (hence the
extensible moniker). EDN has its own built-in tagged types. This will be important
later on when we want to write out the time or instance of a particular stock price
(#inst "1985-04-12T23:20:50.52Z").

So, we can rightly spit out our data to a file using the .edn file extension (spit
"datafile.edn" '(:more :stuff) :append true):

(defn generate-file-name [fname]
 (str "data/" fname))

(defn write-data [fname data]
 (let [full-path (generate-file-name fname)]

 (io/make-parents full-path)
 (spit full-path (list (apply pr-str data))
 :encoding "UTF-8")))

(write-data "datafile.edn" '(:one :two :three))

Devising a persistence strategy
Considering the structure of data and how it will be used later, may inform us about
how we write it now. We know that we have an infinite sequence of data that we
need to write. In the software profession, these are known as data streams. They can
be in the form of video feeds from CCTV cameras or social media content, or in our
case, a continuously updating stock price. This means that we will never be able to
collect all the data in memory and then write it out. Knowing this, we need to devise
a strategy to collect and save our data in a manageable way.

Dealing with Side Effects

[112]

In fact, input and output streams are conceptual ways of handling an infinite stream
of data. Clojure leverages Java's streaming API in the clojure.java.io namespace
(you can read more at http://clojuredocs.org/clojure.java.io). We're going
to itemize the operations we need to perform in order to decide whether to use an
approach that directly spits out the contents of some data versus incrementally
streaming out this data.

To begin, we need to store each tick progression incrementally so that it can be
looked up later on. These are the operations and data components that are relevant:

• Storing a raw tick list
• Storing a simple moving average
• Storing a exponential moving average
• Storing a bollinger band
• Relating them by time

Streaming new data to an existing file nominally means appending to the end of this
file. For example, evaluating (spit "datafile.edn" '(:more :stuff) :append
true) will append to the end of the previous file, producing the following content
(:foo :bar)(:more :stuff). The format, as we've just seen, won't work for our
purposes. We'd want to see something, such as (:foo :bar :more :stuff), which
would involve the following:

• Opening up an existing file
• Reading its content
• Appending to the content
• Writing out the content again

This is not an efficient use of our computer's resources, given that this update may
take place every second or whenever a stock price's data gets updated.

http://clojuredocs.org/clojure.java.io

Chapter 7

[113]

Given the frequency of the data updates, it makes more sense to collect a set of data
and write this batch out to a file. Deciding the threshold at which to write out a batch
of data should entail its own analysis. This would involve knowing how often a data
update would take place, the size of our program's memory, where this data will be
used later, and so on. For the sake of simplicity, however, I'll randomly pick a list
size of 320 ticks at which we can flush out the content of our data. I'll also separately
write out each data analytic (raw tick list, simple moving average, and
so on). This separation is possible because the analytics can later be related to time
(the EDN #inst tag). In this way, we can arrive at the following features:

• Save data as separate size-manageable files
• Each analytic is easily distinguished without any extra labeling; this will be

necessary if they were comingled in the same file

These features will also be useful when later looking up our data. We should be able
to do the following:

• Look up a price based on a specific period of time
• Look up a price based on a time range
• Look up a data point based on a specific price
• Look up a data point based on a price range

With our data neatly arranged, we should be able to layer additional analytics on
top of it. For example, by looking at the composition of our source tick list, simple
moving average, exponential moving average, and bollinger band, we can start to
derive some buy and sell signals.

Consuming from a data stream
In order to consume from an infinite stream of data, let's review the approaches
discussed in Chapter 6, Surveying the Landscape.

Futures and promises only offer a one-time asynchronous task and are not suitable in
this case. Also, we need some kind of list into which a data producer can insert ticks
and analytics data. A consumer of this data would then be able to asynchronously
take from the list. This is what a queue provides conceptually.

The clojure.lang.PersistentQueue/EMPTY option is nonblocking. So, if there's
no data in a queue, the consumer would have to continuously ask for data until it
arrives (known as polling). This is not quite what we want. Ideally, the consumer
should wait (or block) until the data is available for use.

Dealing with Side Effects

[114]

Java's persistent queues, paired with threads (or other concurrency tool) would
mean having to deal with extra memory resources that threads impose, and Java
interoperability issues such as thread monitoring and so on. Reducers, simply
offer parallelism. These would be useful later on as an optimization but they're not
necessary in the first pass of our design.

Recall that for the concurrency model of Communicating Sequential Processes,
Clojure has a third-party library called core.async. Clojure's core.async library
offers queues and concurrency in the form of channels and go blocks. Channels can
also be easily passed around, and consumers block until data becomes available.
These are good options for us. We'll set up the remainder of the chapter by first
adding the core.async and component libraries to our project:

(defproject edgar "0.1.0-SNAPSHOT"
:dependencies [[org.clojure/clojure "1.7.0"]
 [clj-time "0.9.0"]
 [org.clojure/math.numeric-tower "0.0.4"]
 [org.apache.commons/commons-math3 "3.5"]
 [org.clojure/core.async "0.1.346.0-17112a-alpha"]
 [com.stuartsierra/component "0.2.3"]])

When done, the project.clj file should look similar to the preceding code
(leiningen will already have added the entries: description, :url, and :license
to defproject). You can now restart REPL environment.

1. The first order of business is to create an infinite data stream and pull tick
data from it in chunks of 320. This is possible with the functionality we've
already created. Recall that in Chapter 5, Traversing Data, Branching, and
Conditional Dispatch, our refactored datasource/generate-prices function
was used to generate raw price data. We can plug the result of this to our
core/generate-timeseries from Chapter 2, First Principles and a Useful
Way to Think. Now, it's just a matter of taking the first 320 elements and then
the remaining part of the list. In your REPL, begin by pulling the necessary
namespaces and aliases. Then, perform the subsequent evaluations:
 (require '[edgar.core :as core]
 '[edgar.analytics :as analytics]
 '[edgar.datasource :as datasource]
 '[clojure.core.async :as async :refer [go go-loop
 chan close! <! >!]]))

(def price-list (datasource/generate-prices))
(def time-series (core/generate-timeseries price-list))

(def prices (take 320 time-series))
(def remaining (drop 320 time-series))

Chapter 7

[115]

2. With our price data, we can call our analytic functions. All the functions
are available in Chapter 4, Strategies for Calculating and Manipulating Data;
the four/simple-moving-average function takes this list of 320 ticks and
calculates their averages in a window of 20 ticks. This window will slide
forward until the end of the list is reached. The price list and results from
the analytics/simple-moving-average function are then fed into the
analytics/exponential-moving-average and analytics/bollinger-
band functions to produce these results:
(def sma (analytics analytics/simple-moving-average {} 20 prices))
(def ema (analytics analytics/exponential-moving-average {} 20
prices sma))
(def bol (analytics analytics/bollinger-band 20 prices sma))

3. It's simple for us to now take all the data we've calculated and save it in a file.
We can use the write-data function to simply write our data to named files:
(write-data "ticks.edn" prices)
(write-data "sma.edn" sma)
(write-data "ema.edn" ema)
(write-data "bol.edn" bol)

4. Now that we know that there will be a producer and consumer of data, let's
use the pulled in core.async library. Creating a channel is simple. We'll
use the >! function to put data into this channel within the context of the go
block. This block is the concurrency mechanism that core.async provides,
which manages threads and concurrency in the background. After those four
pieces of data are on the channel, we can pull them off with the <! function,
again within the context of the go block. Try evaluating this in your REPL:
(let [c (chan)]

 ;; 4. put generate prices into core.async channel
 (go (>! c {:ticks prices}))
 (go (>! c {:sma sma}))
 (go (>! c {:ema ema}))
 (go (>! c {:bol bol}))

 ;; 5. analytics reads data from channel
 (println (<!! (go (<! c))))
 (println (<!! (go (<! c))))
 (println (<!! (go (<! c))))
 (println (<!! (go (<! c))))

 (close! c))

Dealing with Side Effects

[116]

Using a componentized architecture
Now that we've laid out the preceding steps, we'll put the functionalities into a
more cohesive package. A queue of data is runtime state that has to be managed.
Recall the component architecture that's widely used in the Clojure community. This
architecture is the result of an academic paper called Out Of The Tarpit in which the
authors have argued that complexity is the biggest nemesis to working software (you
can read more at http://shaffner.us/cs/papers/tarpit.pdf). Any incidental
complexity should be avoided or removed, and things, such as runtime state, should
be cordoned off to a small managed component of the program. This is important
because it reflects a componentized architecture that many banks use. It allows for an
incremental approach to building out and architecting core banking systems. Many
industry participants adopt what's known as a Service-Oriented Architecture (SOA)
as part of a suite of best practices. There's a core banking platform or environment
that puts basic core banking capabilities in place quickly. Then, gradually, a bank
can add components sourced from many different vendors. This is done in a way
that ensures open standards and keeps the bank flexible enough to make future
investments. The benefits of this approach are such that the bank gets to choose
the best tools for its needs. These are tools and technologies that let management
ask key questions pertaining to assets, liability, liquidity, risk, and so on, in a
timely manner (you can read more at https://en.wikipedia.org/wiki/Core_
banking and http://www-05.ibm.com/cz/businesstalks/pdf/Core_Banking_
Modernization_Point_of_View.PDF).

Similarly, a component isolates and manages the life cycles of units of code that have
a runtime state. So, we can be confident in using this approach. So far, we've entered
code into an REPL. Now, you can create a file called src/edgar/component.clj.
At the top of our namespace declaration, we're going to require the same libraries
as those in the preceding section. However, we're also going to add a component
library and some date formatting libraries:

(ns edgar.component
 (:require [clojure.java.io :as io]
 [clojure.core.async :as async :refer [go go-loop chan
 close! <! >!]]
 [com.stuartsierra.component :as component]
 [clj-time.format :as fmt]
 [edgar.core :as core]
 [edgar.analytics :as analytics]
 [edgar.datasource :as datasource])
 (:import [java.text SimpleDateFormat]))

http://shaffner.us/cs/papers/tarpit.pdf
https://en.wikipedia.org/wiki/Core_banking
https://en.wikipedia.org/wiki/Core_banking
http://www-05.ibm.com/cz/businesstalks/pdf/Core_Banking_Modernization_Point_of_View.PDF
http://www-05.ibm.com/cz/businesstalks/pdf/Core_Banking_Modernization_Point_of_View.PDF

Chapter 7

[117]

Now we can begin to write our code. After reviewing component's documentation,
we can put up an initial scaffolding with components for the infinite stream of time
series data, and consumers of this data:

(defrecord Timeseries []
 component/Lifecycle

 (start [component]
 (let [c (chan)]
 (assoc component :channel c)))

 (stop [component]
 (let [c (:channel component)]
 (close! c)
 (dissoc component :channel))))

(defrecord Consumer [timeseries]
 component/Lifecycle

 (start [component]
 (assoc component :channel (:channel timeseries)))

 (stop [component]
 (dissoc component :channel)))

(defn new-timeseries []
 (map->Timeseries {}))

(defn new-consumer []
 (map->Consumer {}))

(defn build-system []
 (component/system-map
 :tms (new-timeseries)
 :cns (component/using
 (new-consumer)
 {:timeseries :tms})))

(def system (build-system))

Dealing with Side Effects

[118]

When we're done, we will be able to start our system with the component/start
function. Often, when we def a symbol, it indicates a simple scalar value or collection.
However, when we called component/system-map (within build-system), it
returned a Clojure var (one of Clojure's container values that allows controlled
updates). So, to change the system var, we'll use alter-var-root to atomically
assign a new value, thereby avoiding concurrent updates. Thus, in a scenario where
def would redefine an existing var, alter-var-root creates a new value, which is
a succession of the previous value. You can now inspect the system map and see the
core.async channel that's shared between the time series and consumer components.
The clojure.pprint/pprint call neatly prints and formats structured data:

> (alter-var-root #'system component/start)

> (clojure.pprint/pprint system)

{:tms

 {:channel

 #object[clojure.core.async.impl.channels.ManyToManyChannel 0x14d1e55
"clojure.core.async.impl.channels.ManyToManyChannel@14d1e55"]},

 :cns

 {:timeseries

 {:channel

 #object[clojure.core.async.impl.channels.ManyToManyChannel 0x14d1e55
"clojure.core.async.impl.channels.ManyToManyChannel@14d1e55"]},

 :channel

 #object[clojure.core.async.impl.channels.ManyToManyChannel 0x14d1e55
"clojure.core.async.impl.channels.ManyToManyChannel@14d1e55"]}}

We can now add the send-data! and receive-data functions that are used by the
time-series and consumer components, respectively:

(defn send-data! [channel time-series]

 (go-loop [prices (take 320 time-series)
 remaining (drop 320 time-series)]

 (let [sma (analytics/simple-moving-average {} 20 prices)
 ema (analytics/exponential-moving-average {} 20 prices
 sma)
 bol (analytics/bollinger-band 20 prices sma)]

 (>! channel {:ticks prices :sma sma :ema ema :bol bol})
 (Thread/sleep 1000))

 (recur (take 320 remaining)

Chapter 7

[119]

 (drop 320 remaining))))

(defn receive-data! [channel]

 (go-loop [data (<! channel)]
 (println data)
 (if-not (nil? data)
 (recur (<! channel)))))

(defrecord Timeseries []
 component/Lifecycle

 (start [component]
 (let [c (chan)
 price-list (datasource/generate-prices)
 time-series (core/generate-timeseries price-list)]

 (send-data! c time-series)
 (assoc component :channel c)))

 (stop [component]
 (let [c (:channel component)]
 (close! c)
 (dissoc component :channel))))

(defrecord Consumer [timeseries]
 component/Lifecycle

 (start [component]
 (let [channel (:channel timeseries)]

 (receive-data! channel)
 (assoc component :channel channel)))

 (stop [component]
 (dissoc component :channel)))

Dealing with Side Effects

[120]

The receive-data! expression just prints out what it's consumed. Once we see this
working successfully, we can improve receive-data! to write the data out in the
manner we laid out in the Devising a persistence strategy section:

(defn receive-data! [channel]

 (go-loop [data (<! channel)]

 (if-not (nil? data)
 (do
 (let [{ticks :ticks sma :sma ema :ema bol :bol} data
 timestamp (-> ticks last :last-trade-time .toString)
 generate-file-name-with-timestamp-fn (fn [fname]
 (str timestamp "-" fname))]

 (write-data (generate-file-name-with-timestamp-fn
 "ticks.edn") ticks)
 (write-data (generate-file-name-with-timestamp-fn
 "sma.edn") sma)
 (write-data (generate-file-name-with-timestamp-fn
 "ema.edn") ema)
 (write-data (generate-file-name-with-timestamp-fn
 "bol.edn") bol))
 (recur (<! channel))))))

Run your system for a few seconds by calling (alter-var-root #'system
component/start). When you think you've collected enough data, stop your system
with (alter-var-root #'system component/stop). When you look at your data/
directory, you should see output files that look something like this:

$ ls data/

. 2015-08-09T23:10:43.979Z-ticks.edn
2015-08-09T23:34:30.979Z-bol.edn 2015-08-09T23:49:21.979Z-ema.edn
2015-08-10T00:05:30.979Z-sma.edn 2015-08-10T00:22:00.979Z-ticks.edn
2015-08-10T00:45:34.979Z-bol.edn

.. 2015-08-09T23:18:25.979Z-bol.
edn 2015-08-09T23:34:30.979Z-ema.edn 2015-08-09T23:49:21.979Z-sma.
edn 2015-08-10T00:05:30.979Z-ticks.edn 2015-08-10T00:29:57.979Z-bol.
edn 2015-08-10T00:45:34.979Z-ema.edn

2015-08-09T23:02:58.979Z-bol.edn 2015-08-09T23:18:25.979Z-ema.edn
2015-08-09T23:34:30.979Z-sma.edn 2015-08-09T23:49:21.979Z-ticks.edn
2015-08-10T00:13:46.979Z-bol.edn 2015-08-10T00:29:57.979Z-ema.edn
2015-08-10T00:45:34.979Z-sma.edn

Chapter 7

[121]

2015-08-09T23:02:58.979Z-ema.edn 2015-08-09T23:18:25.979Z-sma.
edn 2015-08-09T23:34:30.979Z-ticks.edn 2015-08-09T23:57:20.979Z-bol.
edn 2015-08-10T00:13:46.979Z-ema.edn 2015-08-10T00:29:57.979Z-sma.
edn 2015-08-10T00:45:34.979Z-ticks.edn

2015-08-09T23:02:58.979Z-sma.edn 2015-08-09T23:18:25.979Z-ticks.edn
2015-08-09T23:41:43.979Z-bol.edn 2015-08-09T23:57:20.979Z-ema.edn
2015-08-10T00:13:46.979Z-sma.edn 2015-08-10T00:29:57.979Z-ticks.edn

2015-08-09T23:02:58.979Z-ticks.edn 2015-08-09T23:26:10.979Z-bol.edn
2015-08-09T23:41:43.979Z-ema.edn 2015-08-09T23:57:20.979Z-sma.edn
2015-08-10T00:13:46.979Z-ticks.edn 2015-08-10T00:37:28.979Z-bol.edn

2015-08-09T23:10:43.979Z-bol.edn 2015-08-09T23:26:10.979Z-ema.edn
2015-08-09T23:41:43.979Z-sma.edn 2015-08-09T23:57:20.979Z-ticks.edn
2015-08-10T00:22:00.979Z-bol.edn 2015-08-10T00:37:28.979Z-ema.edn

2015-08-09T23:10:43.979Z-ema.edn 2015-08-09T23:26:10.979Z-sma.edn
2015-08-09T23:41:43.979Z-ticks.edn 2015-08-10T00:05:30.979Z-bol.edn
2015-08-10T00:22:00.979Z-ema.edn 2015-08-10T00:37:28.979Z-sma.edn

2015-08-09T23:10:43.979Z-sma.edn 2015-08-09T23:26:10.979Z-ticks.edn
2015-08-09T23:49:21.979Z-bol.edn 2015-08-10T00:05:30.979Z-ema.edn
2015-08-10T00:22:00.979Z-sma.edn 2015-08-10T00:37:28.979Z-ticks.edn

Summary
We successfully used a componentized architecture to encapsulate all the
functionality that we developed so far. We were also able to develop a persistence
strategy to write out our core tick list and accompanying analytics in the EDN format.
This was all done by writes to functions that employed the with-open macro, which
contained the IO that had side effects and cleaned up resources when finished. The
next chapter will explore ways of searching for data we've saved.

[123]

Strategies for Using Macros
The previous chapter saw us saving the data we read and analyzed. This gave us the
chance to develop a persistence strategy which writes our data in the EDN format
and uses a component pattern. Let's now turn our attention to reading this data and
seeing how far we can go while searching for it. In this chapter, we'll roughly cover
the following topics:

• Simple reading
• An example of a regular expression
• Querying and looking up data
• A simple query language
• Variable argument functions
• The :pre and :post function conditions
• The juxt higher order function
• Separating the OR/AND lookups
• Deriving a small query language using macros

Simple reading
Reading in EDN (or any other) files follows the same pattern as writing. This is because
our writes employ the with-open macro, which may contain any IO that has side
effects, and cleans up resources when finished. The slurp data is the mirror image of
spit, in that it reads in data from your filesystem using the with-open macro.

Strategies for Using Macros

[124]

To try it out, open up your REPL and add the following code. Replace the
08-15-2015-04:55:56-ticks.edn data with any EDN data file that you've
written out from the previous chapter. The slurp command will simply read in any
data that is in this file. In this case, there will be a bunch of characters that make
up an EDN data structure. We can then transform these characters into Clojure
data structures by simply using the built-in edn/read-string function from the
clojure.edn namespace:

(require '[clojure.edn :as edn])

;; read one file usung slurp
(def one-file (slurp "data/08-15-2015-04:55:56-ticks.edn"))
(def one-edn (edn/read-string one-file))

The preceding code demonstrates how easy it is to read just one file. However,
this is generally a good approach for small to medium-sized files. Larger files will
warrant reading directly from a stream. But we won't cover that option here. What
we do want to cover is how to recursively read all files under a directory. This is
easily done using the file-seq function. Simply give the function the directory
from which you want to read and it will suck up all the files under it. Be sure to give
it a Java type of java.util.File. This is easily done with the file function in the
clojure.java.io namespace.

When you refer to the following code, many-files will just be a sequence of
java.util.File (including the source directory), which has been picked up. We
can try this out by taking one of the files and slurping it. As shown in our simple
file read example, we have all the characters present in this file. Since it is an EDN
document, we can put the stream of characters (a string) into the EDN namespace's
read-string function and get back the Clojure data structure that was represented
in the file:

(require '[clojure.java.io :as io])
(def many-files (file-seq (io/file "data/")))

;; slurp takes a file name or a file object
(def second-file (slurp (second many-files)))

;; we've now demonstrated round tripping of our data
(def second-edn (edn/read-string second-file))

Chapter 8

[125]

Functions for querying a system
If you've followed the progress from the last chapter, per data chunk, you would
have written out four kinds of files that represent all the data we've generated:

 <file-name>-tick.edn
 <file-name>-sma.edn
 <file-name>-ema.edn
 <file-name>-bol.edn

Since we've named the files appropriately in our list of many-files, we can use
the filter function to isolate on any condition—in this case, we'll isolate only one
type of file.

An example of a regular expression
For our predicate function, we can use a regular expression to search for a string
pattern in a filename. Clojure represents regular expressions with a string prefixed
by a hash such as #"". So, the re-matches function, for example, takes a regular
expression and string and returns the first match it finds, if any:

(re-matches #"x" "foobar")
;; nil

(re-matches #"foo.*" "foobar")
;; "foobar"

The returned value (or the absence of one, which is nil) is considered truthy, which
just means that we can use it in an if condition or a predicate. So, our filter function
will look something like this:

;; filter on the type of file
(filter #(re-matches #".*\-ticks.edn" (.getName %))
 many-files)

Here, we filter over our many-files result list. The predicate is an anonymous
function that checks a condition by calling re-matches on each element in the list
using the #".*\-ticks.edn" name pattern. Each element happens to be a Java
java.io.File class with the getName method. Therefore, any filename that matches
our name pattern will satisfy the filter.

Strategies for Using Macros

[126]

A basic lookup
Our re-matches expression is just one kind of a predicate that filters on a type of file.
We can also filter the content in files. This time, however, let's pick a particular time
instance that you've saved. My filesystem has #inst 2015-08-15T17:18:51.352-
00:00. With regard to the following code, we can understand it by first looking at
the outer map function, which itself takes a mapping function, and a list of files. This
input list is filtered due to the constraint of being a file—no directories are allowed.
Therefore, it makes sense to look at the inner filter function. It takes a (pred-fn)
predicate function and inputs EDN data, for example, (input-edn). The predicate
function qualifies that the :last-trade-time value in each map is exactly the time
instance of #inst "2015-08-15T17:18:51.352-00:00". However, input-edn is
a little more interesting. Each file that's passed to the mapping function calls our
created read-fn. The read-fn function is another example of how the comp function
is used. Recall that comp simply creates a function by composing other functions
together. So, in this case, read-fn is a composition of edn/read-string and slurp.
When used, the input to read-fn will first go to slurp, the results of which are then
chained to edn/read-string:

(map (fn [each-file]
 (let [read-fn (comp edn/read-string slurp) ;; -> use of comp function

 pred-fn #(= #inst "2015-08-15T17:18:51.352-00:00" (:last-trade-time %))

 inp-edn (read-fn each-file)]

 (filter pred-fn
 inp-edn)))

 (filter #(.isFile %) many-files))

'(({:last-trade-time #inst "2015-08-15T17:18:51.352-00:00",
 :last-trade-price 101.90402553222992}
 {:last-trade-time #inst "2015-08-15T17:18:51.352-00:00",
 :last-trade-price 101.63143059175933})
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()

Chapter 8

[127]

 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ())

Running this expression on all my files shows that only two maps have this instant.
This is to be expected since the time constraint is so specific. However, map will
return an empty list for each element where (filter pred-fn inp-edn) doesn't
match and return anything. So, the output format is not easy to look at.

Flattening structures
We can clean up the preceding nested expression by simply flattening the result
list. This can again easily be done with the flatten function. It takes a nested
combination of sequential data structures (such as lists, vectors, and so on) and gives
back content in a single flat sequence, removing empty sequences and maintaining
the shape of associative structures:

(flatten '({:a {:b {:c 1}}}
 {:g :h}
 ({:e :R})))

;; ({:a {:b {:c 1}}} {:g :h} {:e :R})

(flatten '({:a {:b {:c 1}}}
 ({:g :h}
 ({:e :R}))))
;; ({:a {:b {:c 1}}} {:g :h} {:e :R})

The following code is the same as the expression we encountered earlier, but with
its results flattened and wrapped in a function definition. In your REPL, define
this function, replacing the string to the right-hand side of #inst along with a date
format that was written to your filesystem. After creating the function, simply
evaluate it by calling (lookupfn):

(defn lookupfn []

 (flatten
 (map (fn [x]

Strategies for Using Macros

[128]

 (let [read-fn (comp edn/read-string slurp)
 pred-fn #(= #inst "2015-08-15T17:18:51.352-00:00" (:last-trade-time %))

 inp-edn (read-fn x)]

 (filter pred-fn
 inp-edn)))

 (filter #(.isFile %) many-files))))

(lookupfn)

;; ({:last-trade-time #inst "2015-08-15T17:18:51.352-00:00", :last-
trade-price 101.90402553222992} {:last-trade-time #inst "2015-08-
15T17:18:51.352-00:00", :last-trade-price 101.63143059175933})

A more expressive lookup
Let's clean up our code by factoring out the filtered list and predicate function. This
has the additional benefit of parameterizing predicates to the function and the file list
in which we want to search. Create a file called src/edgar/readdata.clj and add
this namespace with the require definition:

(ns edgar.readdata
 (:require [clojure.java.io :as io]
 [clojure.edn :as edn]))

Start to author the file by adding the following code:

(defn lookupfn [flist pred-fn]

 (flatten
 (map (fn [x]
 (let [read-fn (comp edn/read-string slurp)
 inp-edn (read-fn x)]
 (filter pred-fn
 inp-edn)))
 flist)))

Now we can search for data using a range of criteria. With regard to the data we've
written, we can look up tick data based on the following criteria:

• A specific time
• After a specific time
• Before a specific time

Chapter 8

[129]

• A time range
• A specific price
• Above a specific price
• Below a specific price
• Price range

These predicates encode the criteria we've just listed:

(defn specific-time-pred [inst] ;; -> functions returning functions
 #(= inst (:last-trade-time %)))

(defn time-after-pred [time]
 #(.after (:last-trade-time %) time))

(defn time-before-pred [time]
 #(.before (:last-trade-time %) time))

(defn time-range-pred [lower upper]
 #(and (.after (:last-trade-time %) lower)
 (.before (:last-trade-time %) upper)))

(defn specific-price-pred [price]
 #(= price (:last-trade-price %)))

(defn price-abouve-pred [price]
 #(> (:last-trade-price %) price))

(defn price-below-pred [price]
 #(< (:last-trade-price %) price))

(defn price-range-pred [lower upper]
 #(and (> (:last-trade-price %) lower)
 (< (:last-trade-price %) upper)))

We can also try out a few of these predicates on the lookup function we just created. Try
these out on your system using the time instants that were written to your disk:

(def files (filter #(.isFile %) many-files))

(lookupfn files (specific-time-pred #inst "2015-08-15T17:18:51.352-
00:00"))

Strategies for Using Macros

[130]

(lookupfn files (time-range-pred #inst "2015-08-15T17:18:00.000-00:00"
#inst "2015-08-15T17:19:00.000-00:00"))

(lookupfn files (specific-price-pred 4.028309189176084))

(lookupfn files (price-range-pred 6 10))

A simple query language
So far, we have a very rudimentary lookup function that takes one predicate at a
time. It would be nice to have a way to pass many conditions that a lookup function
would satisfy so that multiple expressions are possible, as follows:

(lookup :time-after #inst "2015-08-15T17:18:00.000-00:00")
(lookup :time-after #inst "2015-08-15T17:18:00.000-00:00"
 :time-before #inst "2015-08-15T17:19:00.000-00:00")

(lookup :price-abouve 12 :price-below 20)

(lookup :time-after #inst "2015-08-15T17:18:00.000-00:00"
 :time-before #inst "2015-08-15T17:19:00.000-00:00"
 :price-abouve 12
 :price-below 20)

Variable argument functions
To implement that syntax, the first thing our function should do is accept a variable
list of arguments. Clojure functions let us do this by inserting an ampersand before a
symbol that will contain our arguments. Try copying the following simple function
into your REPL:

(defn foobarfn [& manyargs-ofanyname]
 (println manyargs-ofanyname)
 (println (type manyargs-ofanyname)))

(foobarfn 1 2 3 4 4 5 6 7)
;; (1 2 3 4 5 6 7)
;; clojure.lang.ArraySeq

(foobarfn :one :two :three)
;; (:one :two :three)
;; clojure.lang.ArraySeq

(foobarfn '("a" "s" "d" "f"))
;; (("a" "s" "d" "f"))
;; clojure.lang.ArraySeq

Chapter 8

[131]

We can now call this function with any number of arguments. Passing seven integers
to the function is just as valid as passing three keywords or one list.

The :pre and :post function conditions
The other thing that our function will want to do up front is ensure that parameters
are submitted in pairs. Again, Clojure provides a facility to assert conditions with the
:pre and :post assertions. These let you provide conditions that must be satisfied
when entering or exiting your function. Simply put a map with the :pre and :post
keys at the very beginning of your function in order to do this. The values should be
vectors of conditions that you want to be true in both cases:

(defn onefn [one]
 {:pre [(not (nil? one)])
 :post [(pos? %)]}

 one)

(onefn nil)
;; java.lang.AssertionError: Assert failed: (not (nil? one))

(onefn -1)
;; java.lang.AssertionError: Assert failed: (pos? %)

(onefn 5)
;; 5

Try entering the preceding function in your REPL. Calling it with parameters that fall
outside the :pre and :post constraints will throw an AssertionError. Keep in mind
that you can put as many assertions as you like in either vector of the conditions:

(defn lookup [& constraints]
 {:pre [(even? (count constraints))]}

)

We can now use these two features to begin our function. Let's use variable
arguments and ensure that these constraints are in pairs. Take a look at the following
function and try to glean what it's doing:

(defn load-directory [fname]
 (filter #(.isFile %) (file-seq (io/file fname))))

(defn lookup [& constraints]

Strategies for Using Macros

[132]

 ;; ensure constraints are in pairs -> Preconditions
 {:pre [(even? (count constraints))]}

 ;; map over pairs - find predicate fn based on keyword - partially apply fn with arg

 (let [files (if (some #{:source} constraints)

 (let [source-source (comp (partial filter #(= :source (first %1)))

 (partial partition 2))
 source-value (comp second source-source)
 source-key (comp first source-source)]

 (if (string? source-key)
 (load-directory (source-key constraints))
 source-value))

 (load-directory "data/"))

 constraint-pairs (->> constraints
 (partition 2)
 (remove #(= :source (first %))))

 find-lookup-fn (fn [inp]
 (case inp
 :time specific-time-pred
 :time-after time-after-pred
 :time-before time-before-pred
 :price specific-price-pred
 :price-abouve price-abouve-pred
 :price-below price-below-pred))

 constraint-pairs-A (map (fn [x]
 [(find-lookup-fn (first x)) (second x)])

 constraint-pairs)

 lookupfn-fns-A (map (fn [x]
 (fn [y]
 (lookupfn y ((first x) (second x)))))

 constraint-pairs-A)]

 ;; apply all fns with args
 (apply concat ((apply juxt lookupfn-fns-A)
 files))))

Chapter 8

[133]

After the input arguments and function precondition, we read the function from
the let expression:

• constraint-pairs: This breaks function parameters into pairs
• find-lookup-fn: This creates a function to look up a corresponding

predicate function for a given constraint key (for example, :time-after and
:price-above)

• constraint-pairs-A: This replaces a constraint key with the corresponding
predicate function

• lookupfn-fns-A: This returns another list of functions that call lookupfn
with the file list, predicate, and submitted value that we've just looked up

The juxt higher order function
The juxt function is a Clojure core function that, like comp, returns another function
that comprises its input functions. The juxt function, however, generates a function
that is the juxtaposition of its input functions. It returns a vector of the result of
applying each function to an input argument. You can supply as many input
arguments as you like to a generated function. Just be sure that the source function(s)
you supply will operate on the inputs you've provided:

(juxt inc dec)
;; #object[clojure.core$juxt$fn__4510 0x1d3be6d "clojure.core$juxt$fn__4510@1d3be6d"]

((juxt inc dec keyword) 10)
;; (11 9 nil)

((juxt inc dec (comp keyword name str)) 10)
;; [11 9 :10]

((juxt inc dec (comp keyword name str)) 10 20 30)
;; clojure.lang.ArityException: Wrong number of args (3) passed to: core/inc

((juxt + *) 10 20 30)
;; [60 6000]

(apply (juxt min max) '(10 20 30))
;; [10 30]

www.allitebooks.com

http://www.allitebooks.org

Strategies for Using Macros

[134]

With that understanding, let's take a look at the double apply expression.

(apply concat ((apply juxt lookupfn-fns-A)
 files))))

This expression can be explained as follows:

• The (apply juxt lookupfn-fns-A) expression will take our list of
functions and generate a juxtaposition function

• The generated juxtaposition function is then called with the input
files (files)

• What's returned from this call is the result list of each function in
lookupfn-fns-A that's inside a list (a list of lists)

• We can normally concat many lists together, for example, (concat [1 2 3]
[4 5 6] [7 8 9]) ;; (1 2 3 4 5 6 7 8 9)

• However, we reach for apply to use functions on arguments in lists, for
example, (apply concat [[1 2] [3 4]]) ;; (1 2 3 4)

• Thus, we (apply concat ...) to our list of lists

These are examples of how we can use the lookup function that's developing.
Replace the stringified time values, such as (example 2015-08-15T17:18:51.352-
00:00), with ones that reflect what's on your system:

 (def many-files (file-seq (io/file "data/")))

 (lookup :time #inst "2015-08-15T17:18:51.352-00:00")
 (lookup :time-after #inst "2015-08-15T17:18:00.000-00:00")
 (lookup :time-before #inst "2015-08-15T17:19:00.000-00:00")
 (lookup :time-after #inst "2015-08-15T17:18:00.000-00:00" :time-before #inst "2015-08-15T17:19:00.000-00:00")

 (lookup :price 4.028309189176084)
 (lookup :price-abouve 12)
 (lookup :price-below 12)
 (lookup :price-abouve 12 :price-below 20)

 (lookup :time-after #inst "2015-08-15T17:18:00.000-00:00"
 :time-before #inst "2015-08-15T17:19:00.000-00:00"
 :price-abouve 12
 :price-below 20)

 (lookup :source many-files
 :time #inst "2015-08-15T17:18:51.352-00:00")

 (lookup :source "data/"
 :time #inst "2015-08-15T17:18:51.352-00:00")

Chapter 8

[135]

Separate OR AND lookups
Our first pass at a lookup function looks fruitful. We can call it with a number of
constraints and get back expected results. However, this function assumes that all
our conditions are logical ORs This means a function should satisfy the a OR b OR c
condition. But this will satisfy only some of our needs. Often, we'll want more than
one constraint to be satisfied at the same time. This is a logical AND. Let's implement
this function now. While we're at it, we can refactor our first lookup function and
reuse some of its parts:

(defn generate-input-list [constraints]
 (if (some #{:source} constraints)
 (let [source-source (comp (partial filter #(= :source (first %1)))

 (partial partition 2))
 source-value (comp second source-source)
 source-key (comp first source-source)]

 (if (string? source-key)
 (load-directory (source-key constraints))
 source-value))

 (load-directory "data/")))

(defn generate-constraint-pairs [constraints]
 (->> constraints
 (partition 2)
 (remove #(= :source (first %)))))

(defn find-lookup-fn [inp]
 (case inp
 :time specific-time-pred
 :time-after time-after-pred
 :time-before time-before-pred
 :price specific-price-pred
 :price-abouve price-abouve-pred
 :price-below price-below-pred))

;; refactor some code to clean up
(defn lookup-refactored [& constraints]

 ;; ensure constraints are in pairs -> Preconditions
 {:pre [(even? (count constraints))]}

Strategies for Using Macros

[136]

 ;; map over pairs - find predicate fn based on keyword - partially apply fn with arg

 (let [files (generate-input-list constraints)
 constraint-pairs (generate-constraint-pairs constraints)

 constraint-pairs-A (map (fn [x]
 [(find-lookup-fn (first x)) (second x)])

 constraint-pairs)

 lookupfn-fns-A (map (fn [x]
 (fn [y]
 (lookupfn y ((first x) (second x)))))

 constraint-pairs-A)]

 ;; apply all fns with args
 (apply concat ((apply juxt lookupfn-fns-A)
 files))))

(defn lookup-and [& constraints]

 ;; ensure constraints are in pairs -> Preconditions
 {:pre [(even? (count constraints))]}

 ;; map over pairs - find predicate fn based on keyword - partially apply fn with arg

 (let [files (generate-input-list constraints)
 constraint-pairs (generate-constraint-pairs constraints)

 constraint-pairs-B (map (fn [x]
 [(find-lookup-fn (first x)) (second x)])

 constraint-pairs)

 constraint-predicates (map (fn [x]
 ((first x) (second x)))
 constraint-pairs-B)

 ;; lookupfn
 ;; constraint-predicates ;; (f1 f2 ...)
 ;; files

 pred-fn (fn [input-tick]

Chapter 8

[137]

 (every? (fn [pred]
 (pred input-tick))
 constraint-predicates))]

(lookupfn files pred-fn)))

The generate-input-list, generate-constraint-pairs, and find-lookup-fn
functions are pulled out of the let block from the original lookup function. The
lookup-refactored function is now a lot smaller and we can reuse the first three
functions in our AND implementation. The lookup-and expression also uses the
let block to create an input file list and pairs of input constraints. The constraint-
pairs-B function replaces a constraint key with a corresponding predicate function.
The lookup-and function differs slightly thereon.

The Var, constraint-predicates, is a Var of the result of each predicate function
applied with a supplied input. Recall that predicates themselves returned yet
another function, for example, (defn time-after-pred [time] #(.after
(:last-trade-time %) time)). So, the result of this will be in the form of a list
of predicate functions.

Given that this lookup function implements a logical AND, we want all of the
predicates to hold true for each input tick. Therefore, when lookupfn is finally called
with a file list (files), we want a function that holds true for all conditions. This is
where pred-fn comes in.

The pred-fn function is a function that takes input ticks as its arguments. For each
input tick, we apply the every? function, for example, (every? pos? '(10 20
30)) ;; true. This expression asks "does every one of the predicate functions
hold true for this one tick?" A true or false answer determines what's finally returned
by lookupfn:

(count (lookup-or :time-after #inst "2015-08-15T17:18:00.000-00:00" :price-abouve 20))

;; 2126

(count (lookup-and :time-after #inst "2015-08-15T17:18:00.000-00:00" :price-abouve 20))

;; 424

(count (lookup-and :time-after #inst "2015-08-15T17:18:00.000-00:00"
 :time-before #inst "2015-08-15T17:19:00.000-00:00"
 :price-abouve 20))
;; 47

Strategies for Using Macros

[138]

With the logical AND function implemented, we can try it out and compare the
results we get from what was returned with our original OR implementation. The
same constraints using an OR condition return 2126 ticks, where the use of an AND
condition returns only 424 results. Constraining our first AND further (prices that
are only above 20) again shrinks the number of ticks that satisfy all constraints.

So far, we've made progress. However, it would be nice to further simplify our
overall interface to use either AND or OR. When comparing only a pseudocode
outline of code to an OR AND function where each implementation becomes larger,
we'd like to implement some features:

(defn lookup-combined' [mode & constraints]

 ;; ensure constraints are in pairs -> Preconditions
 {:pre [(even? (count constraints))]}

 ;; map over pairs - find predicate fn based on keyword - partially apply fn with arg

 (let [files (generate-input-list constraints)
 constraint-pairs (generate-constraint-pairs constraints)

 ;; OR
 constraint-pairs-A (map (fn [x]
 [(find-lookup-fn (first x)) (second x)])

 constraint-pairs)

 lookupfn-fns-A (map (fn [x]
 (fn [y]
 (lookupfn y ((first x) (second x)))))

 constraint-pairs-A)

 ;; AND
 constraint-pairs-B (map (fn [x]
 [(find-lookup-fn (first x)) (second x)])

 constraint-pairs)

 constraint-predicates (map (fn [x]
 ((first x) (second x)))
 constraint-pairs-B)

 pred-fn (fn [x]

Chapter 8

[139]

 (every? (fn [pfn]
 (pfn x))
 constraint-predicates))]

 ;; OR
 (apply concat ((apply juxt lookupfn-fns-A)
 files))

 ;; AND
 (lookupfn files pred-fn)))

Deriving a query language using macros
To be sure, we could refactor the preceding lookup function again and shrink it
to a manageable size. In fact, implementing solutions using first-class functions
is the preferred approach in 9 out of 10 cases. However, it's useful to know other
approaches for the proverbial 10th case. With the preceding function-based approach
understood, there are other ways of implementing syntaxes, which are otherwise
known as Domain-specific Languages (DSLs). The most popular approach in Lisp is
using a macro.

Since Clojure syntax is made up of data (homoiconic), we can transform it similar
to any other piece of data flowing through our system. Macros are facilities that
let us perform this code transformation. In this case, it can help us better design a
syntax interface. One thing to be aware of is that the evaluation of inputs (that is,
expressions) to your macro is deferred. You have complete control as to if and when
they will be evaluated based on the nature of the syntax you provide:

(defn apply-juxt-helper [lookupfn-fns]
 (apply concat ((apply juxt lookupfn-fns)
 files)))

(defn choose-constraint [mode files constraint-pairs]

 (if (= :or mode)

 (->> (quote ~constraint-pairs)

 (map (fn [x#]
 [(find-lookup-fn (first x#)) (second x#)]))

 (map (fn [x#]
 (fn [y#]

Strategies for Using Macros

[140]

 (lookupfn y# ((first x#) (second x#))))))

 (apply-juxt-helper))

 (->> (quote ~constraint-pairs)

 (map (fn [x#]
 [(find-lookup-fn (first x#)) (second x#)]))

 (map (fn [x#]
 ((first x#) (second x#))))

 (fn [x#]
 (fn [y#]
 (every? (fn [pfn#]
 (pfn# y#))
 x#)))

 (lookupfn files))))

(defmacro lookup-combined [mode & constraints]
 {:pre [(even? (count constraints))]}

 (let [files (generate-input-list constraints)
 constraint-pairs (generate-constraint-pairs constraints)]

 (choose-constraint mode files constraint-pairs)))

I've changed the syntax slightly to allow for the logical mode to be passed in as
the first argument. But the preceding macro that we've created looks similar to the
previous lookup functions we made. I've introduced the ->> thrush (recall that it
passes each output to the last parameter of the subsequent form) to streamline the
let code. The OR and AND blocks are now slightly cleaned up. As stated earlier,
though, the evaluation model is different. The body of the macro, including the call
out to choose-constraint (apply-juxt-helper is just a helper function that's
needed to fit with the ->> thrush pattern), is evaluated because the forms are there.
What's interesting, though, is that in the body of choose-constraint, we return one
of two possible forms based on the mode that's passed in. Either form is the code that
ultimately gets returned from the macro expansion, then evaluated, and ultimately
returned from the macro.

Chapter 8

[141]

Indeed, Clojure provides the macroexpand-1 function that performs this very task. It
expands the macro down one level (not expanding all nested macros and expressions),
showing the code that is returned, which would ultimately get evaluated by your
REPL. So, if we macro expand lookup-combined using the :or mode, it will look a
bit different from a macro expanded lookup-combined using the :and mode. While
doing this is possible, it isn't meant to be read so much as it is a demonstration of how
your code is transformed and the difference produced for each option:

(macroexpand-1 '(lookup-combined :or :time-after #inst "2015-08-
15T17:18:00.000-00:00" :price-abouve 20))

(clojure.core/->>
 '((:time-after #inst "2015-08-15T17:18:00.000-00:00")
 (:price-abouve 20))
 (clojure.core/map
 (clojure.core/fn
 [x__27781__auto__]
 [(edgaru.eight/find-lookup-fn (clojure.core/first x__27781__auto__))

 (clojure.core/second x__27781__auto__)]))
 (clojure.core/map
 (clojure.core/fn
 [x__27781__auto__]
 (clojure.core/fn
 [y__27782__auto__]
 (edgaru.eight/lookupfn
 y__27782__auto__
 ((clojure.core/first x__27781__auto__)
 (clojure.core/second x__27781__auto__))))))
 (edgaru.eight/apply-juxt-helper))

(macroexpand-1 '(lookup-combined :and :time-after #inst "2015-08-15T17:18:00.000-00:00" :price-abouve 20))

(clojure.core/->>
 '((:time-after #inst "2015-08-15T17:18:00.000-00:00")
 (:price-abouve 20))
 (clojure.core/map
 (clojure.core/fn
 [x__27783__auto__]
 [(edgaru.eight/find-lookup-fn (clojure.core/first x__27783__auto__))

 (clojure.core/second x__27783__auto__)]))
 (clojure.core/map
 (clojure.core/fn

Strategies for Using Macros

[142]

 [x__27783__auto__]
 ((clojure.core/first x__27783__auto__)
 (clojure.core/second x__27783__auto__))))
 (clojure.core/fn
 [x__27783__auto__]
 (clojure.core/fn
 [y__27784__auto__]
 (clojure.core/every?
 (clojure.core/fn
 [pfn__27785__auto__]
 (pfn__27785__auto__ y__27784__auto__))
 x__27783__auto__)))
 (edgaru.eight/lookupfn edgaru.eight/files))

Now we can use the finalized lookup-combined macro to execute in either logical
AND or OR mode:

(count (lookup-combined :or :time-after #inst "2015-08-15T17:18:00.000-00:00" :price-abouve 20))

;; 2126

(count (lookup-combined :and :time-after #inst "2015-08-15T17:18:00.000-00:00" :price-abouve 20))

;; 1915

Let's try a slightly more data-oriented query syntax where we pass in a vector of
conditions. This is easily deconstructed in the first let block of the macro:

(defmacro lookup [query-params]

 ;; ensure constraints are in pairs -> Preconditions
 {:pre [(even? (count (rest query-params)))]}

 ;; map over pairs - find predicate fn based on keyword - partially apply fn with arg

 (let [mode (first query-params)
 constraints (rest query-params)
 files (generate-input-list constraints)
 constraint-pairs (generate-constraint-pairs constraints)]

 (choose-constraint mode files constraint-pairs)))

Chapter 8

[143]

But an approach where the query syntax body itself can become data allows for
queries to be stored in separate locations. Now we can execute lookups like this:

(count (lookup [:or :time-after #inst "2015-08-15T17:18:00.000-00:00" :price-abouve 20]))

;; 2126

(count (lookup [:and :time-after #inst "2015-08-15T17:18:00.000-00:00" :price-abouve 20]))

;; 1915

These are very rudimentary initial steps. We may choose to expand our syntax to
include negation or nested AND/OR conditions. Since the evaluation of inputs (that
is, expressions) to your macro is deferred, we can pass in constraint expressions
instead of values and control if and when these expression paths are chosen.

Summary
These are initial steps to understanding how to read in data using Clojure. We chose
to use a filesystem. However, in the real world, data can come from a web source,
e-mail source, data feeds from your financial provider, and so on.

Once data was in your system, we took a look at a few ways of querying it. This
included simple filtering, then adding more constraints in a logical OR and AND
fashion. Most of these approaches involved first-class function manipulations, which
is often the preferred choice. However, if you need a syntax to alter the control flow
of a program or control if or when inputs get evaluated, custom syntaxes that are
provided by macros are a popular approach in Clojure.

In the final chapter, we'll take all the knowledge we've gained and design buy or sell
signals based on our analysis so far.

[145]

Building Algorithms –
Strategies to Manipulate and

Compose Functions
The ultimate goal of the kind of analytics system we've been building is to get clear
signals for the direction of an asset (stocks, in this case). With regard to our SMAs,
EMAs and Bollinger Bands that capture market dynamics, let's see if we can use
these analyses to glean whether an underlying asset will go up or down.

This chapter will use all the knowledge we've gained so far to design these signals.
We'll see how we can reason about this process, and then encode new business rules
on top of existing ones to create new functionality and information. In this chapter,
we'll cover the following topics:

• Structuring our data for further analysis
• The third refactor of our analytic functions
• Signals using moving averages
• The Relative Strength Index
• Bollinger Band signals

Structuring our data for further analysis
SMAs and EMAs lag an underlying stock price, but in slightly different ways. The
SMA assigns equal weight to all input ticks, whereas the EMA assigns greater weight
to more recent stock ticks. For example, if we take a baseline time series along with
its SMAs and EMAs, we can look out for when the EMA overlaps (above or below)
the SMA.

Building Algorithms – Strategies to Manipulate and Compose Functions

[146]

Create the src/edgar/signals.clj file and add this namespace definition at the top:

(ns edgar.signals
 (:require [edgaru.nine.core :as core]
 [edgaru.nine.analytics :as analytics]
 [edgaru.nine.datasource :as datasource]))

To make these comparisons, we'll first have to make a function that joins all our data
into one list. Review the join-averages function; we'll go through it step by step here:

(defn join-averages
 ([tick-window tick-list]

 (let [sma-list (simple-moving-average nil tick-window tick-list)

 ema-list (exponential-moving-average nil tick-window tick-list sma-list)]

 (join-averages tick-list sma-list ema-list)))

 ([tick-list sma-list ema-list]

 (let [trimmed-ticks (drop-while #(not (= (:last-trade-time %)
 (:last-trade-time (first sma-list))))
 tick-list)]

 (map (fn [titem sitem eitem]

 (if (and (and (not (nil? (:last-trade-time sitem)))
 (not (nil? (:last-trade-time eitem))))
 (= (:last-trade-time titem) (:last-trade-time sitem) (:last-trade-time eitem)))

 {:last-trade-time (:last-trade-time titem)
 :last-trade-price (if (string? (:last-trade-price titem))
 (read-string (:last-trade-price titem))
 (:last-trade-price titem))
 :last-trade-price-average (:last-trade-price-average sitem)
 :last-trade-price-exponential (:last-trade-price-exponential eitem)}

 nil))

 trimmed-ticks
 sma-list
 ema-list))))

Chapter 9

[147]

The join-averages function overlays a stock price tick list, SMA list, and an EMA
list into one list. Recall that the moving average values begin 20 ticks (or whatever
you set the tick window to be) into the source tick list. As such, the join-averages
function will need to line up all three lists to the same trade time. This is what the
trimmed-ticks Var represents. We've created it using the drop-while function. This
function takes a collection and from left to right keeps dropping its elements until
some condition is met. This condition is supplied by the predicate we've provided.
Since we know that tick-list will be the longer list, we'll drop its earliest elements
(elements on the left) until it's :last-trade-time matches :last-trade-time from
the first simple-moving-average.

We can now map over all three lists at once. Remember that the map function accepts
as many list as you want to give it. The number of parameters to the mapping
function must match the number of lists that are supplied. The map function will also
process all lists until the first list is exhausted. In our mapping function, the if block
on each iteration will ensure that :last-trade-time in all lists are equal:

(and (and (not (nil? (:last-trade-time sitem)))
 (not (nil? (:last-trade-time eitem))))
 (= (:last-trade-time titem) (:last-trade-time sitem) (:last-trade-time eitem)))

We then simply return a map with all the relevant data elements inside it:

{:last-trade-time (:last-trade-time titem)
 :last-trade-price (if (string? (:last-trade-price titem))
 (read-string (:last-trade-price titem))
 (:last-trade-price titem))
 :last-trade-price-average (:last-trade-price-average sitem)
 :last-trade-price-exponential (:last-trade-price-exponential eitem)}

I've introduced a subtle code change that we must address. simple-moving-average
and exponential-moving-average (and bollinger-band) compute their final values
with the reduce function. The reduce function has a finality to it, in that it returns
a concrete list, which is no longer lazy. Inversely, if you execute reduce over a lazy
sequence, it will run indefinitely. The join-averages function and all subsequent
signal functions will be lazy and expect infinite sequences. Back in Chapter 3, Developing
the Simple Moving Average, we learned that while data is being processed, a good
architectural principle is to keep it in lazy sequences. As long as everybody's using lazy
sequences, we can treat these as data flow pipelines that easily compose functions and
pieces of functions. So, now is a good time to return to our core analytic functions and
make them lazy.

Building Algorithms – Strategies to Manipulate and Compose Functions

[148]

A third refactor of the analytic functions
We'll refactor simple-moving-average, exponential-moving-average, and
bollinger-band at the same time. At each point, we need to take the reduce block
of code and change it to a lazy version that fits a function's process criteria:

(defn simple-moving-average
 [options tick-window tick-list]

 (let [start-index tick-window

 {input-key :input
 output-key :output
 etal-keys :etal
 :or {input-key :last-trade-price
 output-key :last-trade-price-average
 etal-keys [:last-trade-price :last-trade-time]}} options]

 (map (fn [ech]

 (let [tsum (reduce (fn [rr ee]
 (let [ltprice (:last-trade-price ee)]
 (+ ltprice rr))) 0 ech)

 taverage (/ tsum (count ech))]

 (merge
 (zipmap etal-keys
 (map #(% (last ech)) etal-keys))
 {output-key taverage
 :population ech})))
 (partition tick-window 1 tick-list))))

The simple-moving-average function partitions an input tick list into a sliding
window of tick data, incrementing by one tick. We now have a list of lists as input to
the original reduce function. It then builds a new list using lazy-cat for each new
computation to the end of a result list. However, doing this is unnecessary as each
element in the list doesn't need to know about the other. We can simply map over the
partitioned list and return each calculation independently:

(defn exponential-moving-average
 ([options tick-window tick-list]
 (exponential-moving-average options tick-window tick-list (simple-moving-average {} tick-window tick-list)))

 ([options tick-window tick-list sma-list]

 ;; 1. calculate 'k'

Chapter 9

[149]

 ;; k = 2 / N + 1
 ;; N = number of days
 (let [k (/ 2 (+ tick-window 1))

 {input-key :input
 output-key :output
 etal-keys :etal
 :or {input-key :last-trade-price
 output-key :last-trade-price-exponential
 etal-keys [:last-trade-price :last-trade-time]}} options]

 ;; 2. get the simple-moving-average for a given tick - 1
 (last (reductions (fn [rslt ech]

 ;; 3. calculate the EMA (for the first tick, EMA(yesterday) = MA(yesterday))

 (let [;; price(today)
 ltprice (input-key ech)

 ;; EMA(yesterday)
 ema-last (if (output-key (last rslt))
 (output-key (last rslt))
 (input-key ech))

 ;; ** EMA now = price(today) * k + EMA(yesterday) * (1 - k)

 ema-now (+ (* k ltprice)
 (* ema-last (- 1 k)))]

 (lazy-cat rslt
 [(merge
 (zipmap etal-keys
 (map #(% (last (:population ech))) etal-keys))

 {output-key ema-now})])))
 '()
 sma-list)))))

The process criteria for exponential-moving-average is slightly different as the
calculation of the current iteration needs the last value from the previous calculation.
So, map won't work in this case. The reduce function provides access to an
accumulation of results, but it isn't lazy. This is where we get to use reductions again.
Recall that reductions behaves like reduce, but in a lazy fashion. The reduce function
folds over a list and maintains a running result while iterating over each element,
whereas reductions returns a lazy sequence of intermediate results along with the
final result. Therefore, the only change made to the algorithm is swapping out reduce
for reductions and taking out the last item (the accumulated list) from the result:

Building Algorithms – Strategies to Manipulate and Compose Functions

[150]

(defn bollinger-band
 ([tick-window tick-list]
 (bollinger-band tick-window tick-list (simple-moving-average nil tick-window tick-list)))

 ([tick-window tick-list sma-list]

 ;; At each step, the Standard Deviation will be: the square root of the variance (average of the squared differences from

the Mean)

 (map (fn [ech]

 (let [;; get the Moving Average
 ma (:last-trade-price-average ech)

 ;; work out the mean
 mean (/ (reduce (fn [rlt ech]
 (+ (:last-trade-price ech)
 rlt))
 0
 (:population ech))
 (count (:population ech)))

 ;; Then for each number: subtract the mean and square the result (the squared difference)

 sq-diff-list (map (fn [ech]
 (let [diff (- mean (:last-trade-price ech))]

 (* diff diff)))
 (:population ech))

 variance (/ (reduce + sq-diff-list) (count (:population ech)))

 standard-deviation (. Math sqrt variance)]
 {:last-trade-price (:last-trade-price ech)
 :last-trade-time (:last-trade-time ech)
 :upper-band (+ ma (* 2 standard-deviation))
 :lower-band (- ma (* 2 standard-deviation))}))
 sma-list)))

The bollinger-band refactor follows the same pattern as the one used for the
simple-moving-average refactor. Though each item is iterated over, it doesn't need
to know about any other item. Thus, we can simply map over the source simple-
moving-average list, returning a map of the :last-trade-price, :last-trade-
time, :upper-band, and :lower-band entries.

Chapter 9

[151]

Signals using moving averages
Now that our analytic functions are lazy and we can join them into one list, we can
start thinking about what signals we may be interested in. A simple and direct signal
is finding out whether the EMA in one tick element has crossed above the SMA from
a previous element. Another signal would be the inverse of this—we can find out
whether, in the first element, the EMA has crossed below the SMA from the second
element. This is another process criteria where a current tick needs to know about a
previous tick. However, in this situation, the previous computation isn't needed by
the current one. We can just partition our ticks by two to check for a crossover. Let's
take a look at an implementation now:

(defn moving-averages-signals
 "Takes baseline time series, along with 2 other moving averages.
 Produces a list of signals where the 2nd moving average overlaps (abouve or below) the first.

 By default, this function will produce a Simple Moving Average and an Exponential Moving Average."

 ([tick-window tick-list]

 (let [sma-list (simple-moving-average nil tick-window tick-list)
 ema-list (exponential-moving-average nil tick-window tick-list sma-list)]

 (moving-averages-signals tick-list sma-list ema-list)))

 ([tick-list sma-list ema-list]

 ;; create a list where i) tick-list ii) sma-list and iii) ema-list are overlaid

 (let [joined-list (join-averages tick-list sma-list ema-list)
 partitioned-join (partition 2 1 (remove nil? joined-list))]

 ;; find time points where ema-list (or second list) crosses over the sma-list (or 1st list)

 (map (fn [[fst snd]]
 (let [
 ;; in the first element, has the ema crossed abouve the sma from the second element

 signal-up (and (< (:last-trade-price-exponential snd) (:last-trade-price-average snd))

 (> (:last-trade-price-exponential fst) (:last-trade-price-average fst)))

 ;; in the first element, has the ema crossed below the sma from the second element

 signal-down (and (> (:last-trade-price-exponential snd) (:last-trade-price-average snd))

 (< (:last-trade-price-exponential fst) (:last-trade-price-average fst)))

 raw-data fst]

 ;; return either i) :up signal, ii) :down signal or iii) nothing, with just the raw data

 (if signal-up

Building Algorithms – Strategies to Manipulate and Compose Functions

[152]

 (assoc raw-data :signals [{:signal :up
 :why :moving-average-crossover

 :arguments [fst snd]}])
 (if signal-down
 (assoc raw-data :signals [{:signal :down
 :why :moving-average-crossover

 :arguments [fst snd]}])
 raw-data))))
 partitioned-join))))

In the preceding code, moving-averages-signals will generate a simple and
exponential moving average if it hasn't been passed in. In the second let block,
we'll join the underlying ticks, SMA, and EMA into one list (called joined-list).
As described previously, we then partition this joined-list into twos (called
partitioned-join).

Now we map over partitioned-join and apply our algorithm. The mapping
function takes each element and destructures it into the first and second elements
(fst and snd). Recall from Chapter 4, Strategies for Calculating and Manipulating Data,
that destructuring is a small custom language used to extract values from data
structures. In this case, each element in partitioned-join will be a collection and
not an associative structure (a map). So, [[fst snd]] is the list destructuring syntax
needed to extract elements 0 and 1 and bind them to fst and snd. We can now use
these Vars to see whether the second exponential price is below the second average
price and the first exponential price is above the first average price. We then assign
the true or false result to signal-up:

(and (< (:last-trade-price-exponential snd) (:last-trade-price-average snd))

 (> (:last-trade-price-exponential fst) (:last-trade-price-average fst)))

We will now make the inverse check and assign this true or false result to
signal-down:

(and (> (:last-trade-price-exponential snd) (:last-trade-price-average snd))

 (< (:last-trade-price-exponential fst) (:last-trade-price-average fst)))

As these calculations are contingent on the intersections between the ticks, either the
first or second tick can be considered a signal point. I've chosen the first (assigned to
raw-data) as any algorithm would see this signal sooner than later. However, this
choice will have to be remembered for any future signals that we'd like to line up.

Chapter 9

[153]

The last expressions we'll look at are nested if statements. Logically, we know
that signal-up and signal-down are mutually exclusive. So, if signal-up is true,
we can return raw data with an :up signal attached to it along with any other
information such as the reason. If signal-up is false and signal-down is true, then
we'll return a :down signal and any other relevant data. If neither is true, we can just
return raw-data:

(if signal-up
 (assoc raw-data :signals [{:signal :up
 :why :moving-average-crossover
 :arguments [fst snd]}])
 (if signal-down
 (assoc raw-data :signals [{:signal :down
 :why :moving-average-crossover
 :arguments [fst snd]}])
 raw-data)

The Relative Strength Index
Our next signal is based on the Bollinger Band, but this signal uses yet another signal
called the Relative Strength Index (RSI) divergence. RSI is a technical momentum
indicator that indicates the strength or weakness of a stock based on recent trading.
It compares the size of recent gains to recent losses in order to determine whether
an asset is overbought or oversold. An RSI divergence signal can appear before
the momentum or trend of stock changes. This provides a valuable early warning
mechanism and/or a confirming signal to associated trend changes. In this analysis,
we'll take a look at a few things:

• Does the price make a higher high from previous price points?
• Does RSI divergence make a lower high?
• Does divergence take place above the overbought line?
• For an entry signal, check whether one of the next three closes are

underneath the priors (or the same holds true in the opposite direction)

Review this code; we'll go through it step by step:

(defn relative-strength-index

 [tick-window tick-list]

 (let [twindow (or tick-window 14)
 window-list (partition twindow 1 tick-list)]

Building Algorithms – Strategies to Manipulate and Compose Functions

[154]

 ;; run over the collection of populations
 (last (reductions (fn [rslt ech]

 ;; each item will be a population of tick-window (default of 14)

 (let [pass-one (reduce (fn [rslt ech]

 (let [fst (:last-trade-price (first ech))

 snd (:last-trade-price (second ech))

 up? (< fst snd)
 down? (> fst snd)

 sideways? (and (not up?) (not down?))]

 (if (or up? down?)
 (if up?
 (conj rslt (assoc (first ech) :signal :up))

 (conj rslt (assoc (first ech) :signal :down)))

 (conj rslt (assoc (first ech) :signal :sideways)))))

 []
 (partition 2 1 (remove nil? ech)))

 up-list (:up (group-by :signal pass-one))

 down-list (:down (group-by :signal pass-one))

 avg-gains (/ (apply +
 (map :last-trade-price up-list))

 tick-window)
 avg-losses (/ (apply +
 (map :last-trade-price down-list))

 tick-window)

 rs (if-not (= 0 avg-losses)
 (/ avg-gains avg-losses)
 0)
 rsi (- 100 (/ 100 (+ 1 rs)))]

 (conj rslt {:last-trade-time (:last-trade-time (first ech))

 :last-trade-price (:last-trade-price (first ech))

 :rs rs
 :rsi rsi})))
 []
 window-list))))

Chapter 9

[155]

The relative-strength-index function implements raw RSI, a momentum oscillator
that measures the speed and change of price movements. It oscillates between 0 and
100. We describe the function, beginning with function arguments, if no tick-window
is given, it defaults to 14, which is the standard RSI measurement period.

1. The first step is to partition by 14 our source tick-list, incrementing each
new list by one (window-list).

2. We then perform a lazy reduce, called reductions, over the partitioned list
of lists.

3. Next up is the let block in the reducing function, where we first perform
a second reduce on a two-window partition. We partition by two as, for
each pair, we will check if the second price is greater, less than, or equal to
the first (up?, down?, or sideways?). This is just the first pass of the algorithm
(pass-one).

4. The structure of pass-one will be similar to tick-list, with additional
:signal entries of :up, :down, or :sideways. We can now group pass-one
by (group-by), which is the :signal key, pulling out the :up and :down
signals (up-list and down-list).

5. Summing up :last-trade-price from all the :up movements (apply +
(map :last-trade-price up-list)), and then dividing by a tick-window
of 14 will give us the average gains (avg-gains).

6. We will perform the same calculation, though for the average losses this time
(avg-losses).

7. We can now calculate the relative strength of the stock over a given 14-tick
period by dividing the gains by the losses (/ avg-gains avg-losses)
(provided there are no zero losses).

8. From this relative strength, we just need to factor it by 100 (- 100 (/ 100
(+ 1 rs))) to get the RSI (rsi).

So, if we had average gains of 20 and average losses of 15, the RSI would be (- 100
(/ 100 (+ 1 (/ 20 15)))) ;; 400/7 or 57.14285714285714. Otherwise, if we had
average gains of 15 and average losses of 20, the RSI would be (- 100 (/ 100 (+ 1
(/ 15 20)))) ;; 300/7 or 42.85714285714286. Therefore, for a given tick list, we
will have a running calculation of RSIs, and also have an indication as to when the
average gains will change relative to the average losses.

Building Algorithms – Strategies to Manipulate and Compose Functions

[156]

Bollinger Band signals
Bollinger Band signals involve a few more checks. When the band width is very low,
this indicates that the price will break out sooner than later. For this strategy, let's call
it "A", we need to check for a few things:

• Is the moving average in an up or down market?
• Width-wise, we should check for a narrowing Bollinger Band. However, is

the bandwidth less than the three previous narrow bands? Three is a random
number that can be tuned once this algorithm has been tested on real data.

• Is the close outside the Bollinger Bands, and previous high or low swing
inside the bands?

When the width of the Bollinger Band is high (indicating high volatility), this can mean
that a trend is ending soon or that it's either going to change direction or consolidate.
For this strategy, let's call it "B", we need to check a different set of conditions:

• Is the moving average in a sideways (or choppy) market? Here, we will check
whether the last three closes are above or below the Bollinger Bands.

• Width-wise, we should check for a widening Bollinger Band. Is the band
width greater than the three previous bands? Three is a random number that
can be tuned once this algorithm has been tested on real data.

• Here, we will apply the RSI divergence, that is, the change of the average
gains, relative to the average losses.

Take a look at the following bollinger-band-signals function. We will go through
it in detail afterwards:

(declare sort-bollinger-band)
(defn bollinger-band-signals

 ([tick-window tick-list]
 (let [sma-list (simple-moving-average nil tick-window tick-list)
 bband (bollinger-band tick-window tick-list sma-list)]

 (bollinger-band-signals tick-window tick-list sma-list bband)))

 ([tick-window tick-list sma-list bband]

 (last (reductions (fn [rslt ech-list]

 (let [

Chapter 9

[157]

 ;; track widest & narrowest band over the last 'n' (3) ticks

 sorted-bands (sort-bollinger-band ech-list)

 most-narrow (take 3 sorted-bands)
 most-wide (take-last 3 sorted-bands)

 partitioned-list (partition 2 1 (remove nil? ech-list))

 upM? (up-market? 10 (remove nil? partitioned-list))

 downM? (down-market? 10 (remove nil? partitioned-list))

 side-market? (and (not upM?)
 (not downM?))

 ;; find last 3 peaks and valleys
 peaks-valleys (find-peaks-valleys nil (remove nil? ech-list))

 peaks (:peak (group-by :signal peaks-valleys))

 valleys (:valley (group-by :signal peaks-valleys))]

 (if (empty? (remove nil? ech-list))

 (conj rslt nil)

 (if (or upM? downM?)

 ;; A.
 (calculate-strategy-a rslt ech-list most-narrow upM? peaks valleys)

 ;; B.
 (calculate-strategy-b rslt ech-list most-wide peaks valleys)))

 (conj rslt (first ech-list))))
 []
 (partition tick-window 1 bband)))))

Building Algorithms – Strategies to Manipulate and Compose Functions

[158]

The bollinger-band-signals and accompanying helper and calculation functions
are rather large, so we'll tackle these one section at a time. The signal function needs
a tick list and an accompanying SMA and Bollinger Band. These are passed in or are
otherwise generated:

• Before each strategy is implemented, we will first collect the three widest and
narrowest bands over the last 20 ticks (most-narrow and most-wide). The
sort-bollinger-band function is defined as follows. At each tick, we will
only take the difference between the upper and lower bands and then sort
the result using this difference:
(defn sort-bollinger-band [bband]
 (let [diffs (map (fn [inp]
 (assoc inp :difference (- (:upper-band inp) (:lower-band inp))))

 (remove nil? bband))]
 (sort-by :difference diffs)))

• Similar to the relative-strength-index function, we partition the
source tick-list by two in order to determine whether there's an up market
or down market (upM? or downM?). This calculation is slightly different,
however, in that we determine whether every new tick is greater than the
previous one over a 10-tick period (upM?):
(defn up-market? [period partitioned-list]
 (every? (fn [inp]
 (< (:last-trade-price (first inp))
 (:last-trade-price (second inp))))
 (take period partitioned-list)))

• We'll perform the same, but inverse calculation to determine the down
market (downM?), over a 10-tick period:
(defn down-market? [period partitioned-list]
 (every? (fn [inp]
 (> (:last-trade-price (first inp))
 (:last-trade-price (second inp))))
 (take period partitioned-list)))

• The next set of calculations finds the peaks and valleys in the source tick list.
A peak is a set of three prices where we begin at any price level, go upward,
then downward. The opposite of this is applied to a valley (peaks-valleys).
Next, we'll group and collect each of both (peaks and valleys):
(defn find-peaks-valleys [options tick-list]

 (let [{input-key :input

Chapter 9

[159]

 :or {input-key :last-trade-price}} options]

 (reduce (fn [rslt ech]
 (let [fst (input-key (first ech))
 snd (input-key (second ech))
 thd (input-key (nth ech 2))

 valley? (and (and (-> fst nil? not) (-> snd nil? not) (-> thd nil? not))

 (> fst snd)
 (< snd thd))
 peak? (and (and (-> fst nil? not) (-> snd nil? not) (-> thd nil? not))

 (< fst snd)
 (> snd thd))]

 (cond
 peak? (conj rslt (assoc (second ech) :signal :peak))

 Valley? (conj rslt (assoc (second ech) :signal :valley)))

 :else rslt)))
 []
 (partition 3 1 tick-list))))

With the first let block out of the way, we will now either apply strategy A
or B based on whether we have an up, down, ("A") or sideways market ("B").
To calculate strategy A, we will check for a narrowing band. Is the band
width less than the three previous narrow bands? Is the close outside the
Bollinger Band? Were there previous high or low swings inside the band?
(defn calculate-strategy-a [rslt ech-list most-narrow upM? peaks valleys]

(let [latest-diff (- (:upper-band (last ech-list)) (:lower-band (last ech-list)))

 less-than-any-narrow? (some (fn [inp] (< latest-diff (:difference inp))) most-narrow)]

 (if less-than-any-narrow?

 (if upM?

 (if (and (< (:last-trade-price (last ech-list)) (:upper-band (last ech-list)))

 (> (:last-trade-price (last peaks))
 (:upper-band (last (some #(= (:last-trade-time %)

 (:last-trade-time (last peaks)))

 ech-list)))))

 (conj rslt (assoc (last ech-list) :signals [{:signal :down
 :why :bollinger-close-abouve

 :arguments [ech-list peaks]}]))

 (conj rslt (last ech-list)))

Building Algorithms – Strategies to Manipulate and Compose Functions

[160]

 (if (and (> (:last-trade-price (last ech-list)) (:lower-band (last ech-list)))

 (< (:last-trade-price (last valleys))
 (:lower-band (last (some #(= (:last-trade-time %)

 (:last-trade-time (last valleys)))

 ech-list)))))

 (conj rslt (assoc (last ech-list) :signals [{:signal :up
 :why :bollinger-close-below

 :arguments [ech-list valleys]}]))

 (conj rslt (last ech-list)))))))

• Of our overall 20 tick window, we have the three most narrow bands (most-
narrow). Using these, we will determine whether the latest difference in
Bollinger Bands is less than the last three most narrow bands (less-than-
any-narrow?).

• If the latest difference is less than the previous three most narrow bands, and
we're in an up market, then we can determine the exit or :down signal. We
will also determine the close outside (above) the upper band, and whether
the previous swing is high inside the band:
(and (< (:last-trade-price (last ech-list)) (:upper-band (last ech-list)))

 (> (:last-trade-price (last peaks))
 (:upper-band (first (some #(= (:last-trade-time %)
 (:last-trade-time (last peaks)))

 ech-list)))))

If the last condition is true, we will return a down signal. Otherwise, we will just
return the latest tick:

{:signal :down
 :why :bollinger-close-abouve
 :arguments [ech-list peaks]}

If the latest difference is less than the last three most narrow bands, and we're in a
down market, then we make a determination on the entry or :up signal. Is the close
outside (below) the lower band, and is the previous swing low inside the band?

(and (> (:last-trade-price (last ech-list)) (:lower-band (last ech-list)))

 (< (:last-trade-price (last valleys))
 (:lower-band (last (some #(= (:last-trade-time %)
 (:last-trade-time (last valleys)))

 ech-list)))))

Chapter 9

[161]

If this is the case, we return an up signal. Otherwise, we just return the latest tick:

{:signal :up
 :why :bollinger-close-below
 :arguments [ech-list valleys]}

This concludes strategy A. Strategy "B" is slightly more involved, where we employ
the RSI. Determining the set of conditions that are true is the minutiae that we will
look at here:

(defn calculate-strategy-b [rslt ech-list most-wide peaks valleys]

 (let [latest-diff (- (:upper-band (last ech-list)) (:lower-band (last ech-list)))

 more-than-any-wide? (some (fn [inp] (> latest-diff (:difference inp))) most-wide)]

 (if more-than-any-wide?

 ;; B iii RSI Divergence
 (let [
 OVER_BOUGHT 80
 OVER_SOLD 20
 rsi-list (relative-strength-index 14 ech-list)

 ;; i. price makes a higher high and
 higher-highPRICE? (if (empty? peaks)
 false
 (> (:last-trade-price (last ech-list))
 (:last-trade-price (last peaks))))

 ;; ii. rsi divergence makes a lower high
 lower-highRSI? (if (or (empty? peaks)
 (some #(nil? (:last-trade-time %)) rsi-list)

 #_(not (nil? rsi-list))
)
 false
 (< (:rsi (last rsi-list))
 (:rsi (last (filter (fn [inp]
 (= (:last-trade-time inp)

 (:last-trade-time (last peaks))))

 rsi-list)))))

 ;; iii. and divergence should happen abouve the overbought line

 divergence-overbought? (> (:rsi (last rsi-list))

Building Algorithms – Strategies to Manipulate and Compose Functions

[162]

 OVER_BOUGHT)

 ;; i. price makes a lower low
 lower-lowPRICE? (if (or (empty? valleys)
 (some #(nil? (:last-trade-time %)) rsi-list))

 false
 (< (:last-trade-price (last ech-list))
 (:last-trade-price (last valleys))))

 higher-highRSI? (if (or (empty? valleys)
 (not (nil? rsi-list)))
 false
 (> (:rsi (last rsi-list))
 (:rsi (last (filter (fn [inp]
 (= (:last-trade-time inp)

 (:last-trade-time (last valleys))))

 rsi-list)))))

 divergence-oversold? (< (:rsi (last rsi-list))
 OVER_SOLD)]

 (if (and higher-highPRICE? lower-highRSI? divergence-overbought?)

 (conj rslt (assoc (last ech-list) :signals [{:signal :down
 :why :bollinger-divergence-overbought

 :arguments [peaks ech-list rsi-list]}]))

 (if (and lower-lowPRICE? higher-highRSI? higher-highRSI? divergence-oversold?)

 (conj rslt (assoc (last ech-list) :signals [{:signal :up
 :why :bollinger-divergence-oversold

 :arguments
[valleys ech-list rsi-list]}]))

 (conj rslt (last ech-list)))))

 (conj rslt (last ech-list)))))

Starting with the first let block, we can determine whether the latest Bollinger Band
difference is wider than the three widest points in the last 20 ticks (more-than-any-
wide?). If it is, then we can apply our algorithm:

• We first set the OVER_BOUGHT and OVER_SOLD levels

Chapter 9

[163]

• Then, for a given 20-tick list (ech-list), calculate a list of 14-tick windows
that are relative to the strength indices (rsi-list)

If the latest price is higher than the last peak, then we have a price that is higher than
the last high price (higher-highPRICE?). We need two other, accompanying metrics:

• Is the latest RSI less than the latest (time-corresponding) tick from our
peaks? If so, then we have a lower high RSI (lower-highRSI?).

• Is the latest RSI above the OVER_BOUGHT line? If so, then we have an RSI
divergence that is overbought (divergence-overbought?).

If the latest price is lower than the last valley, then we have a price that is lower
than the last low price (lower-lowPRICE?). Again, we'll need two other
accompanying metrics:

• Is the latest RSI greater than the latest (time-corresponding) tick from
our valleys? If so, then we have a higher RSI than our last low tick
(higher-highRSI?).

• Now if the latest RSI is less than the OVER_SOLD level, then we have an RSI
divergence that is over sold (divergence-sold?).

In effect, over a given range, if we have a convergence of a higher high price,
lower high RSI, and the RSI divergence is overbought, then this indicates a :down
(or sell) signal.

If we have a convergence of a lower low price, higher high RSI, and a divergence that
is oversold, then we have an :up (or buy) signal.

Summary
The real power of this approach is when we start combining signals. So far, we've
only looked at moving averages (lagging indicators) and Bollinger Band signals
(leading and confirming indicators). But, there are many more strategies that you can
employ to make financial decisions.

What should be emphasized is the focus on taking normal business rules and
applying them directly with a set of filters, list transformations, and so on, to yield a
system that provides us with valuable business information. We've taken our lagging
indicator functions (SMA, EMA, and Bollinger Band) and composed them together to
get new information—buy or sell signals.

[165]

Index
A
analytic functions

third refactor, defining 148-150
Apache Commons Math 77

B
basic data structures

about 19
data transformation 20-22
equation, elaborating 23-26
keywords 19
macros 20, 22
maps 19
symbols 19

bindings 34
Bollinger Band

about 47, 53, 55
Lower Bollinger Band 53
Middle Bollinger Band 53
reference link 53
standard deviation 53
Upper Bollinger Band 53
variance 53

Bollinger Band signals 156-163
branching 70
break-local-minima-maxima 25

C
cabal

URL 106
cheatsheet

URL 7
Clojure

comparing, with FP 103-106

comparing, with object orientation 99-103
core functions 7
functions 16
model of identity 94, 95
model of state 93-95
numbers 86-88
precision 87, 88
persistent vectors 16

Clojure cheatsheet
URL, for documentation 69

Clojure collection types
about 89
lists 89
maps 89
queues 90
sequences 89
sets 89
vectors 89

ClojureDocs
URL 7

clojure.java.io namespace
URL 112

Clojure project
creating 6

Clojure stories
reference link 35

collection types
defining 10

Communicating Sequential
Processes (CSP) 98

componentized architecture
using 116-120

computation
defining 2, 3
URL 3

[166]

computation types
defining 4, 5
functional programming 5
imperative or procedural programming 4
object oriented programming 5

concurrency 97
concurrent execution

core.async 98
future 97
promise 97
reducers 98
threads 97

conditional dispatch 70
core functions, Clojure

collections 10-12
primitives 7-9

cryptocurrencies
URL 4

D
data

structuring, for analysis 145-147
traversing 69, 70

data input
knowing 30

data output
knowing 31

data stream
consuming 113-115

data transformation patterns 90-93
data transformation principles 90-93
design by contract approach 105
destructuring

about 42-44
reference link 38

Domain-specific Languages (DSLs) 139

E
Emacs

reference 17
Entscheidungsproblem

URL 2
equation

implementing 35-42
reasoning 32, 33

Exponential Moving Average (EMA)
about 47-52
reference link 49

Extensible Data Notation (EDN)
about 110, 111
URL 110

F
finance

defining 3, 4
first-class functions 15
first function

creating 17
First-in First-out (FiFo) 90
first order functions 71
functional programming (FP) 1, 16
function evaluation 14
function landscape

surveying 69
functions

applying 71-83
defining 12
implementing 67, 69

functions, for system querying
:post function condition 131-133
:pre function condition 131-133
about 125
basic lookup 126, 127
example, of regular expression 125
expressive lookup 128, 129
juxt higher order function 133, 134
query language 130
structures, flattening 127
variable argument functions 130

G
generate prices function 57-60
gradual typing approach 105
granularity

polynomial 76
sine 76

Grimoire
URL 7

[167]

H
homoiconic

reference 18
horizontal dilation

polynomial 76
sine 76

human civilization
URL 3

I
immutability 16

J
java.util.regex.Pattern class

URL 9
juxt function 71

L
lambda 71
lambda calculus expresses computation

URL 2
lazy evaluation 15
lazy sequences

working with 35
lazytest

reference link 75
left fold

reference link 40
Leiningen

URL 6
let binding

reference link 38
List processing (Lisp)

URL 105
logical ORs

and logical AND, separating 135-138
loose coupling

about 35, 89
reference link 35

Lower Bollinger Band 53

M
macros

defining 12
used, for deriving query language 139-142

metadata
defining 12

Middle Bollinger Band 53
money creation process

URL 4
moving averages

used, for signals 151, 152
multimethods 70

N
namespaces 17

O
object orientation

Clojure, comparing with 99-103
online beta distribution calculator

reference link 69
orthogonality

about 48
reference link 48

P
parallelism 97
partition function

reference link 33
perception 30
persistence strategy

devising 111, 112
persistent vectors, Clojure

>= 16
conj 16
filter 16
fn 16
map 16
reduce 16

polling 113
polynomial expressions 60-62
price list 47-49

[168]

price swings, polynomial function
nestable waves 64
repeatable 62
slimmer or wider waves 62
taller or shorter waves 63

probability distributions
reference link 68

pure functional languages 104

Q
quantum computation

URL 3
query language

deriving, macros used 139-142

R
random-in-range 24
Reader Macros

defining 12
Read-Eval-Print-Loop 17, 18
reading, in EDN

defining 123, 124
recursion, in computer science

reference link 69
Relative Strength Index (RSI) 153-155
REPL (Read-Eval-Print-Loop) 6
representation 30
runtime polymorphism 70

S
scalar data types 86
sequences

defining 11
Service-Oriented Architecture (SOA) 116
side effects 96, 110
signals

defining, moving averages used 151, 152

simple-moving-average function
implementing 103-106

Simple Moving Average (SMA) 47
sine wave

about 64-66
nested waves 66
repeatable 66
slimmer or wider waves 66
taller or shorter waves 66

standard deviation 53
stochastic-k 24
stock price activity

modeling 14

T
tools

setting up 5, 6
type systems 98

U
Unit type 104
Upper Bollinger Band 53

V
variance 53
Vars

about 34
reference link 34, 43

vectors 21
vertical dilation

polynomial 76
sine 76

Thank you for buying
Clojure for Finance

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Mastering Clojure Data
Analysis
ISBN: 978-1-78328-413-9 Paperback: 340 pages

Leverage the power and flexibility of Clojure through
this practical guide to data analysis

1. Explore the concept of data analysis using
established scientific methods combined with
the powerful Clojure language.

2. Master Naïve Bayesian Classification, Benford's
Law, and much more in Clojure.

3. Learn with the help of examples drawn from
exciting, real-world data.

Clojure High Performance
Programming
Second Edition
ISBN: 978-1-78528-364-2 Paperback: 198 pages

Become an expert at writing fast and high performant
code in Clojure 1.7.0

1. Enhance code performance by using
appropriate Clojure features.

2. Improve the efficiency of applications and plan
their deployment.

3. A hands-on guide to designing Clojure
programs to get the best performance.

Please check www.PacktPub.com for information on our titles

Clojure Reactive Programming
ISBN: 978-1-78398-666-8 Paperback: 232 pages

Design and implement highly reusable reactive
applications by integrating different frameworks
with Clojure

1. Learn how to leverage the features of functional
reactive programming using Clojure.

2. Create dataflow-based systems that are the
building blocks of reactive programming.

3. Learn different Functional Reactive
Programming frameworks and techniques by
implementing real-world examples.

Clojure High Performance
Programming
ISBN: 978-1-78216-560-6 Paperback: 152 pages

Understand performance aspects and write high
performance code with Clojure

1. See how the hardware and the JVM impact
performance.

2. Learn which Java features to use with Clojure,
and how.

3. Deep dive into Clojure's concurrency and
state primitives.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Orientation – Addressing the Questions Clojure Answers
	Notions of computation
	Notions of finance
	Concrete types of computation
	Tooling
	A first look at Clojure's core functions
	Primitives
	Collections

	Summary

	Chapter 2: First Principles and a Useful Way to Think
	Modeling stock price activity
	Function evaluation
	First-class functions
	Lazy evaluation
	Basic Clojure functions and immutability
	Namespaces and creating our first function
	The Read-Eval-Print-Loop

	Basic data structures
	Macros and more in-depth data transformation
	Elaborating our equation

	Summary

	Chapter 3: Developing the Simple Moving Average
	Perception and representation
	Knowing the data input
	Knowing the data output
	Reasoning about the equation needed to achieve our output
	Understanding Vars and bindings
	Working with lazy sequences
	Implementing our equation
	Destructuring
	Summary

	Chapter 4: Strategies for Calculating and Manipulating Data
	Our first refactor – the price list
	The exponential moving average
	The Bollinger Bands
	Summary

	Chapter 5: Traversing Data, Branching, and Conditional Dispatch
	Our second refactor – the generate prices function
	Polynomial expressions
	A sine wave
	Stitching the pieces together
	Surveying the function landscape
	Traversing data
	Branching and conditional dispatch

	First order functions
	Applying functions
	Summary

	Chapter 6: Surveying the Landscape
	Scalar data types
	Numbers and precision
	A review of collections
	Data transformation patterns and principles
	Clojure's model of state and identity
	Introducing side effects
	Concurrency and parallelism
	Type systems
	Comparing Clojure with object orientation
	Comparing Clojure with FP and
strong typing
	Summary

	Chapter 7: Dealing with Side Effects
	Simple writing
	Extensible Data Notation
	Devising a persistence strategy
	Consuming from a data stream
	Using a componentized architecture
	Summary

	Chapter 8: Strategies for Using Macros
	Simple reading
	Functions for querying a system
	An example of a regular expression
	A basic lookup
	Flattening structures
	A more expressive lookup
	A simple query language
	Variable argument functions
	The :pre and :post function conditions
	The juxt higher order function

	Separate OR AND lookups
	Deriving a query language using macros
	Summary

	Chapter 9: Building Algorithms – Strategies to Manipulate and Compose Functions
	Structuring our data for further analysis
	A third refactor of the analytic functions
	Signals using moving averages
	The Relative Strength Index
	Bollinger Band signals
	Summary

	Index

