
www.allitebooks.com

http://www.allitebooks.org

Cloning Internet Applications
with Ruby

Make your own TinyURL, Twitter, Flickr, or Facebook
using Ruby

Chang Sau Sheong

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Cloning Internet Applications with Ruby

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2010

Production Reference: 1110810

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849511-06-3

www.packtpub.com

Cover Image by Asher Wishkerman (a.wishkerman@mpic.de)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Chang Sau Sheong

Reviewer
Warren Brian Noronha

Francisco

Acquisition Editor
Douglas Paterson

Development Editor
Chaitanya Apte

Technical Editors
Alfred John

Kartikey Pandey

Indexer
Hemangini Bari

Editorial Team Leader
Aanchal Kumar

Project Team Leader
Lata Basantani

Project Coordinator
Jovita Pinto

Proofreader
Aaron Nash

Graphics
Geetanjali Sawant

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

www.allitebooks.com

http://www.allitebooks.org

About the Author

Chang Sau Sheong has more than 15 years experience in software application
development and has spent much of his career working on Web and Internet-based
applications. He started up elipva, an e-business software company, and was the
Vice President of Product Engineering as well as Chief Architect. Subsequently he
was Director of Software Development for Welcome Real-time, a bank loyalty
software company, Engineering Director for Yahoo! Southeast Asia and Chief
Technology Officer for Garena Online, an online game publishing company. He is
currently the Director of the Applied Cloud Computing Lab in HP Labs Singapore,
the research arm of Hewlett Packard, leading a team of engineers to implement
cloud computing solutions.

Sau Sheong frequently writes for technical magazines and journals, including Java
Report, Java World, and Dr. Dobb’s Journal. He is a passionate programmer who
contributes to open source projects in various technologies including Ruby and Java.
He has a wide range of experience in web application development on the Internet
and mobile devices. His first book was ‘Ruby on Rails Mashup Projects’ in 2008, also
published by Packt Publishing.

Sau Sheong hails from tropical Malaysia but spent most of his adult and working
life in sunny Singapore, where he shares his spare time between enthusiastically
writing software and equally enthusiastically playing Nintendo Wii with his wife
and son. He has a Bachelors degree in Computer Engineering, a Masters degree in
Commercial Law, and is a certified international arbitrator.

www.allitebooks.com

http://www.allitebooks.org

Acknowledgement

Firstly, many thanks to Douglas Paterson who agreed to this second book project,
the book reviewers who have helped me improve my sprawling book and Jovita, the
patient project coordinator who would wait patiently and gently prompt me as my
chapter deadline approaches. I would also like to thank my Twitter and Hackerspace
friends who on many occasions had to endure my relentless requests to test my
‘clones’ and provide feedback on them. A big thank you to Philippe Monnet who
helped to review the first few chapters and even offered to re-draw a diagram for
me. Final thanks to the love of my life, Wooi Ying, who suffered my erratic ‘nightlife’
in huddling in front of my laptop, creating software and writing yet another book
(with her eyes rolling), and then there is Kai Wen who understands Daddy is finally
an author.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Warren Noronha is an entrepreneur and a geek. Computers have been part
of Warren’s life since he was four years old. He began his career as a system
administrator, but ended up doing everything from security, design, to product
development. He enjoys managing people as much as he does managing code or
machines. Having worked with small startups as well as Fortune 500 companies,
Warren is also a staunch supporter of free software and free speech. He has been a
frequent speaker at various colleges and events, discussing subjects ranging from
technology and media to launching a startup.

Warren loves working with new technologies, a trait which lead him to become one
of the first users of GNU/Linux, Drupal, and Ruby on Rails, much before they grew
exponentially and became mainstream technologies. He spends his time working
on databases, distributed computing, and social computing, and enjoys using the
Internet and communication technology to bridge the digital divide.

Francisco started out as a software architect and a project manager for various
desktop and web applications. Then after falling out of love with outdated
technologies and processes switched over to system admin and server infrastructure
expert. Ruby was the catalyst to bring him back to the software development with
agile processes. Currently a Mac lover and Ruby all in one backend expert. His
experience in the server provisioning world and background as software developer
resulted in quick rollout of fast, secure, and reliable backend Ruby on Rails
applications for the enterprise.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Cloning Internet Applications	 7

Who would find this book useful	 8
Popular Internet applications	 9
Technologies used	 10

Sinatra	 10
Installing	 11
Routes	 11
Splitting a route into multiple files	 12
Redirection	 13
Filters	 13
Static pages	 14
Views	 14
Layouts	 14
Helpers	 15
Error handling	 15

DataMapper	 16
Installing	 17
Connecting to the database	 17
Creating models	 17
Defining associations between models	 19
Creating the database tables	 26
Finding records	 26

Haml	 27
Installing	 27
Using Haml	 27
Haml and Ruby	 28

How this book works	 29
Caveat	 30
Summary	 30

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 2: URL Shorteners – Cloning TinyURL	 31
All about URL shorteners	 31
Main features	 35
Designing the clone	 36

Creating a short URL for each long URL	 36
Automatically redirecting from a short URL to a long URL	 37
Providing a customized short URL	 38
Filtering undesirable words out	 38

Previewing the long URL	 38
Providing statistics 	 39

Technologies and platforms used	 39
Sinatra	 40
Haml	 40
DataMapper	 40
Blueprint CSS	 40
Mashups	 40

Google Chart API	 41
HostIP	 41

Heroku	 41
Building the clone	 41

Data model	 42
Url	 42
Link	 43
Visit	 44

Application flow	 47
Deploying the clone	 52
Summary	 56

Chapter 3: Microblogs – Cloning Twitter	 57
All about microblogs	 57

Twitter	 60
Why Twitter?	 61

Main features	 65
Designing the clone	 65

Posting statuses	 66
Following users	 66
Sending publicly directed messages	 68
Sending privately directed messages	 68
Re-tweeting	 69
Public timeline	 69
API	 69

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Authentication, access control, and user management	 70
Third party authentication and access control	 71
Authentication and user management	 72

Scalability and stability	 74
Technologies and platforms used	 75

JSON	 75
Mashups	 76

RPX	 76
Google ClientLogin	 78
Gravatar	 79
TinyURL	 80

Heroku	 80
Building the clone	 80

Modeling the data	 80
User	 81
Status	 85

Building the application flow	 90
Authenticating and managing users	 91
Displaying and updating statuses	 96
Sending and displaying direct messages	 106
Showing and forming relationships	 109

Implementing the API	 111
Deploying the clone	 115

Deploying locally	 115
Deploying to the cloud	 116

Summary	 119
Chapter 4: Photo Sharing – Cloning Flickr	 121

All about photo-sharing services	 121
Flickr	 123

Main features	 124
Designing the clone	 124

Authentication, access control, and user management	 124
Albums and photos	 125
Uploading and storing photos	 125
Comments	 127
Annotations	 128
Editing photos	 128
Friendly URLs	 128
Sharing photos	 128

Technologies and platforms used	 129
Mashups	 129

RPX	 130
Gravatar	 130

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iv]

Pixlr	 130
Amazon Web Services Simple Storage Service (S3)	 131
RightAWS	 133

Building the clone	 133
Configuration	 133
Modeling the data	 134

User	 135
Album	 138
Photo	 139
Annotation	 146
Comment	 146

Building the application flow	 147
Authenticating and managing users	 147
Landing page	 152
Managing albums	 157
Uploading photos	 167
Displaying photos	 169
Annotating photos	 179
Commenting on photos	 184
Editing photos	 185
Sharing photos	 188

Deploying the clone	 193
Deploying on a server	 193

Summary	 194
Chapter 5: Social Networking Services – Cloning Facebook 1	 195

All about social networking services	 195
Facebook	 197

Main features	 198
User	 199
Community	 199
Content sharing	 200

Designing the clone	 200
Authentication, access control, and user management	 200
Status updates	 201
User activity feeds and news feeds	 201
Friends list and inviting users to join	 202
Posting to the wall	 202
Sending messages	 203
Attending events	 203
Forming groups	 204
Commenting on and liking content	 204

Table of Contents

[v]

Sharing photos	 205
Blogging with pages	 205

Technologies and platforms used	 205
Mashups	 205

Facebook Connect	 206
Building the clone	 206

Configuring the clone	 206
Modeling the data	 206

User	 207
Request	 212
Message	 212
Album	 213
Photo	 213
Status	 217
Group	 219
Event	 220
Page	 222
Wall	 223
Activity	 224
Comment	 224
Like	 225

Summary	 225
Chapter 6: Social Networking Services – Cloning Facebook 2	 227

Building the application flow	 227
Structure of the application and flow	 227
Authenticating and managing users	 230
Landing page, news feed, and statuses	 234
Inviting friends and friends list	 240

Registering a Facebook application	 248
Creating a cross-domain communication channel file	 249
Writing the code	 249

User page and activity feeds	 253
Posting to a wall	 255
Sharing photos	 259

Managing albums	 259
Uploading photos	 265
Displaying photos	 267
Annotating photos	 273
Viewing friends' photos	 277

Sending messages	 277
Creating events	 284
Forming groups	 294
Sharing content through pages	 301

Table of Contents

[vi]

Commenting and liking	 307
Deploying the clone	 310

Deploying locally	 310
Deploying to the cloud	 311

Summary	 312
Index	 313

Preface
We stand on the shoulders of giants. This has been true since the time of Newton
(and even before) and it is certainly true now. Much of what we know and learn of
programming, we learnt from the pioneering programmers before us and what we
leave behind to future generations of programmers is our hard-earned experience
and precious knowledge. This book is all about being the scaffolding upon which
the next generation of programmers stands when they build the next Sistine Chapel
of software.

There are many ways that we can build this scaffolding but one of the best ways
is simply to copy from what works. Many programming books attempt to teach
with code samples that the readers can reproduce and try it out themselves. This
book goes beyond code samples. The reader doesn’t only copy snippets of code or
build simple applications but have a chance to take a peek at how a few of the most
popular Internet applications today can possibly be built. We explore how these
applications are coded and also the rationale behind the way they are designed. The
aim is to guide the programmer through the steps of building clones of the various
popular Internet applications.

What this book covers
Chapter 1, Cloning Internet Applications gives a brief description of the purpose of
the book, the target readers of the book, and a list of the four popular Internet
applications we will be cloning in the subsequent chapters. The bulk of this chapter
gives a brief run-down on the various technologies we will be using to build
those clones.

Chapter 2, URL Shorteners – Cloning TinyURL explains about the first popular Internet
application that we investigate and clone in the book, which is TinyURL. This
chapter describes how to create a TinyURL clone, its basic principles, and
algorithms used.

Preface

[2]

Chapter 3, Microblogs – Cloning Twitter. The clone in this chapter emulates one of
the hottest and most popular Internet web applications now—Twitter. It describes
the basic principles of a microblogging application and explains how to recreate a
feature-complete Twitter clone.

Chapter 4, Photo -sharing – Cloning Flickr. Flickr is one of the most popular and
enduring photo-sharing applications on the Internet. This chapter describes how the
reader can re-create a feature complete photo-sharing application the simplest way
possible, following the interface and style in Flickr.

Chapter 5, Social Networking Services – Cloning Facebook 1. The final two chapters
describe the various aspects of Internet social networking services, focusing on one
of the most popular out there now—Facebook. These two chapters also describe
the minimal features of a social networking service and show the reader how to
implement these features in a complete step-by-step guide. The first part is described
in this chapter, which sets the groundwork for the clone and proceeds to describe the
data model used in the clone.

Chapter 6, Social Networking Services – Cloning Facebook 2. The final chapter is part two
in describing how to create a Facebook clone. This chapter follows on the previous
chapter and describes the application flow of the Facebook clone we
started earlier.

What you need for this book
Basic Ruby programming skills and basic level operational knowledge of Sinatra,
DataMapper, Haml, Blueprint CSS, and MySQL.

Who this book is for
This book is written for web application programmers with an intermediate
knowledge of Ruby. The reader should also know how web applications work and
have used at least some of the cloned Internet services before.

A typical reader would be a programmer looking to write their own customized
TinyURL, Twitter, Flickr, or Facebook. Programmers who want to include features
of these Internet services into their own web applications will also find this
book interesting.

Preface

[3]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: “The many-to-many association can be
defined with the has n and belongs_to methods.”

A block of code is set as follows:

after :create, :create_wall
def create_wall
self.wall = Wall.create
self.save
end

Any command-line input or output is written as follows:

$ sudo gem install Haml

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: “The one
big difference is of course, the list of statuses belongs to only that user, and there is a
big follow button for the viewing user to follow him.”

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

Preface

[4]

If there is a book that you need and would like to see us publish, please send us a
note in the SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@
packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book on, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code for this book
You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

http://www.PacktPub.com
http://www.PacktPub.com/support
http://www.PacktPub.com/support

Preface

[5]

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

Cloning Internet Applications
This book is about copying. Copying has an unpleasant reputation in these copyright
and intellectual property sensitive times, but it's probably unknown to many, that it
has an illustrious past. When we were babies, the main way we learnt was through
copying what our parents did. If you have young children you soon learn to your
regret the first time you utter any insalubrious words and how quickly your child
copies your exclamation and mannerisms. Our number system was copied from
the Arabs (that's why they are called Arabic numerals) but it was first used by the
Indians from the Indian subcontinent, and subsequently copied by the Arabs in the
Middle-East. The English language regularly copies words from other languages. In
fact the word 'copy' comes from the Old French word copie which comes from the
Medieval Latin word copia.

That is not to say infringing copyright is the right thing to do when someone else
has spent tremendous effort in coming up with the original. However, it should be
recognized that not all things are copyrightable, patentable, or can be trademarked,
and that is for a good reason. Ideas for example are generally not considered as
intellectual property. Copyright is the protection of expressions of ideas, not the
protection of the ideas themselves. Patent law is used for the protection of inventions
for a limited time in return for the disclosure of the invention. Again it is not a
protection of ideas; the concept of patent law is to promote the liberation of the idea
in exchange for limited monopoly. Google is well known to have dominance in the
search engine market but it doesn't mean it has monopoly on search engines. Anyone
else is free to write his/her own search engine (though taking part of Google's search
engine code to write your own search engine is copyright infringement).

This idea of copying is the basis of the book you are holding. In short, the premise
of this book is to learn how each of the popular Internet applications we clone work
through copying the ideas behind them.

www.allitebooks.com

http://www.allitebooks.org

Cloning Internet Applications

[8]

In this chapter we will cover:

•	 A brief description of the type of people who would like to read this book
•	 The popular Internet applications described in this book and why we

chose them
•	 The various technologies used in this book, including Sinatra, DataMapper,

and Haml

Who would find this book useful
The primary audience for this book are Ruby programmers with an intermediate
level of experience in Ruby as well as web application programming. This sounds
quite limiting but in reality if you have any intermediate level of programming in
any object-oriented language you should be able to follow the implementations with
relative ease. Of course, if you know something about the Ruby programming lan-
guage it helps a lot too.

The technology stack that we will be using for these clones is slightly off the usual
track for the Ruby on Rails crowd. The main reason is because it's a simpler stack
to use. Ruby on Rails, while extremely easy to use and very powerful, has a lot of
added frills to the framework, which adds on unnecessary complexity for a book that
focuses on clones and features of the clones only. The chosen stack however does not
different too greatly for programmers who are familiar with Rails. In this chapter we
will go through all that is needed to follow the rest of the chapters in this book.

So why are we interested in cloning these applications at all, since we can't possibly
build a clone that is better than the original? There are plenty of reasons for doing so
but let me just give four common ones:

1.	 To learn how these applications work. We use them all the time and
while we would know how these applications functionally work, cloning
them will teach us how these features can be implemented. Although the
implementation is not definitive, at least learning how difficult or easy it is
to clone them gives us a better appreciation of how things work behind the
scenes to provide us with the features.

2.	 To incorporate features of the clones into your own application. As you will
see in this book, each chapter shows how key features in those applications
are implemented. If you want to build these key features into your own
application, learning how these features are implemented will give you an
insight into building them for your own use.

Chapter 1

[9]

3.	 To build a customized clone. While each popular Internet application has
plenty of features to go with, there will be special niche needs that can only
be fulfilled by a customized version of that application.

4.	 Learning the technology stack. The best way to learn any new technology
stack is to build something with it. Going through the chapters in this book
will give you ample exercise in this stack.

If you find yourself having any of the above needs then this book is for you.

Popular Internet applications
Why did we choose the Internet applications in this book and not others? Firstly
and most obviously, the applications must be popular and have a large number of
users. Secondly the application should be a mainstream one for consumers and not
for businesses. We want applications that have a more direct interface to the final
consumers of the application. Thirdly, we don't want to deal with payment related
issues in this book so any e-commerce applications are left alone. The reason is
simple—e-commerce is no longer rocket science but implementing payment well is
still not a trivial undertaking, and we did not want to mislead users into believing
it is easy to clone payment features. Finally (and most importantly for me) the
applications we chose to clone must also be easy to implement and would fit in
nicely into a single chapter.

With these criteria, we have picked the following small number of applications to
cover in this book:

•	 A URL shortener—TinyURL
•	 A microblogging application—Twitter
•	 A photo sharing application—Flickr
•	 A social networking service—Facebook

It's interesting that none of the crop of popular Internet applications we are cloning
in this book is the true original implementation of the main idea in that application.
There have been URL shorteners before TinyURL, there were micro-blogging sites
before Twitter, photo-sharing before Flickr, and definitely social networking services
before Facebook. However, each of these is, as of writing, the most popular service of
its kind.

Cloning Internet Applications

[10]

Technologies used
The technology stack used in this book consists of mainly Ruby-only libraries
and tools:

•	 Sinatra—a Ruby domain-specific language (DSL) with a minimalist approach
in building web applications

•	 DataMapper—a Ruby object-relational mapping library
•	 Haml—a Ruby-friendly markup language that allows us to manipulate

XHTML of any web document programmatically

We will be going in depth in each of these technologies. While this seems a bit too
much to cover within a single chapter, each technology is essentially not complex.
Once you have grasped the basics of each technology, a quick reference back to the
documentation will allow you do to anything you want.

Sinatra
Sinatra is a domain-specific language built with Ruby, used to build web applica-
tions. Sinatra was created with a minimalist approach in mind and focuses on the
fastest way to get a web application up and running. For example, you can create a
simple web application with just the following in a file named hello.rb:

require 'rubygems'
require 'sinatra'

get '/' do
"Hello world, it's #{Time.now} at the server!"
end

After that just run the following command:

ruby hello.rb

Then go to http://localhost:4567/ and you will see the hello statement with the
current time. Writing a web application becomes almost trivial up to this stage. Of
course as web applications become more complex, unlike other full-fledged web
frameworks such as Ruby on Rails or Merbs, you will need to write more code.

As mentioned earlier, one of the reasons why we chose Sinatra is because of its
simplicity and minimalist approach. In a book that teaches how application features
can be implemented, more complex frameworks can often add to the clutter because
of 'the way it works' rather than clarifying the implementation of the feature. As a
result, a DSL such as Sinatra, where nothing is taken for granted, is very useful as a
teaching tool.

http://localhost:4567/

Chapter 1

[11]

Installing
Sinatra can be easily installed through Rubygems:

$ sudo gem install sinatra

That's all there is to it. You will be able to use Sinatra immediately after that.

Routes
In Sinatra, a route is HTTP method and a URL matching pattern. For example,
this is a route:

get '/' do
 ...
end

And so are these:

post '/some_url' do
 ...
end

put '/another_url' do
 ...
end

delete '/any_url' do
 ...
end

Whenever a HTTP request comes in, the request will be matched in the order they
are defined. For example, if a POST request is made to http://localhost:4567/
some_url, the some_url route will be invoked. The route pattern matching includes
named parameters, for example:

get '/hello/:name' do
 puts "Hello #{params[:name]}!"
end

http://localhost:4567/some_url

Cloning Internet Applications

[12]

Patterns may also include other matching conditions such as user agents. This is
useful if we want to determine the type of device that is accessible by the application,
for example if we create an iPhone web application we can indicate that the user
agent is the following:

Mozilla/5.0 (iPhone; U; CPU iPhone OS 2_0 like Mac OS X; en-us)
AppleWebKit/525.18.1 (KHTML, like Gecko) Version/3.1.1 Mobile/1A543
Safari/525.20

get '/hello', :agent => /iPhone/ do
 puts "You are using an iPhone!"
end

GET and POST methods are quite simply implemented above, but how about PUT
and DELETE? These two methods are normally not natively supported by most
browsers but can be worked around using a POST. If you set up a HTML form that
sends a POST with a hidden element with the name '_method' and the value 'put' or
'delete' accordingly, Sinatra will interpret it accordingly and invoke the correct route.

For example:

<form method="post" action="/destroy">
 <input name="_method" value="delete" />
 <button type="submit">Destroy</button>
</form>

The above code will invoke this route:

delete '/destroy' do
 ...
end

Splitting a route into multiple files
Sinatra looks very good and simple if we're writing simple web applications with
only a few routes but what if the application is much larger? Managing all those
routes in a single file becomes a hassle and is rather unwieldy. Remember Sinatra is
also all-Ruby, so you use load to load in other files that contain routes. This way you
can make your application more modular by placing related routes in the same file.

%w(photos user helpers).each {|feature| load "#{feature}.rb"}

In the example code snippet above, we have three files named photos.rb, users.rb,
and helpers.rb in which we place related routes. This helps us to include features
that we want and potentially to remove features we do not want by changing the list.
The code snippet above would then be placed in the main file such as myapp.rb.

Chapter 1

[13]

Redirection
Sometimes within a route you want to redirect the user somewhere else. This can be
some other route or to an external site. This can be done using the redirect helper,
for example:

redirect '/'
redirect 'http://www.google.com'

The redirect actually sends back a 302 Found HTTP status code to the browser and
tells the browser where to go next. To force Sinatra to send a different status code,
just add the status code to the redirection helper.

redirect '/', 303
redirect '/', 307

Note that this sends the browser to another route or site and not to a view.

Filters
Sinatra has a simple filtering mechanism. If you define a before filter, it will be
invoked every time before a route is invoked.

before do
 ...
end

This becomes especially useful in securing routes because we can check if the user
has access to that route before it is invoked. Any instance variables defined in the
before filter will be available to the route and the views subsequently.

Similarly, if you define an after filter, it will be invoked every time after a route
is invoked.

after do
 ...
end

Just as the before filter, you can modify the instance variables that go to the view.
You can also modify the response.

Cloning Internet Applications

[14]

Static pages
By default, all pages in a folder named public are served out as static pages. For
example, if you have a page.html file in the public folder, you will be able to access
it from http://localhost:4567/page.html. This means that you can also serve out
Javascript libraries, CSS stylesheets, and image files through the same folder.

If you want to change default public folder, just change the settings:

set :public, File.dirname(__FILE__) + '/static'

Views
Similarly, by default Sinatra looks for view templates in a folder named views. You
can also change the default directory by changing the settings as follows:

set :views, File.dirname(__FILE__) + '/templates'

View templates are files that are used to display data that is processed by a route. For
example, this route will redirect to a Haml view template, which is a file called view_
page.haml in the views folder:

get '/page/view' do
 . . .
 haml :view_page
end

Besides Haml, Sinatra also supports a variety of view template types such as Erb,
Erubis, Sass, Builder, and so on. We will discuss Haml in a later section in
this chapter.

Note that the templates always need to be referenced as symbols, even in
subdirectories. For example, if the Haml view template is in a file called view.haml
in the views/page subfolder, then you should reference it as:'page/view'.

Layouts
While you are not required to use any layouts, if you have a file named layout.haml
(or layout.erb and so on) in your views folder, it will be used as a layout template.
A layout template is a view template that is re-used for multiple views. For example,
this is a Haml layout:

html
 %head
 %title Cloning Internet Applications with Ruby
 %body
 #container
 =yield

http://localhost:4567/page.html
http://localhost:4567/page.html

Chapter 1

[15]

Any view rendered for Haml will now use this layout and the page will include the
layout with the view replaced in the yield.

Helpers
If you have some functions you need repeatedly, you can create helpers. Helpers in
Sinatra are methods that can be reused in routes and templates.

helpers do
 def encrypt(data)
 . . .
 end
end

get '/secret/:policy' do
 encrypt(params[:policy])
end

One use of helpers we employ repeatedly in this book is to create partials. Sinatra does
not support partials on its own, which can be a bit annoying, but the implementation
of partials is easily done.

helpers do
 def snippet(page, options={})
 haml page, options.merge!(:layout => false)
 end
end

Essentially we just render a given page template, and declaring that we do not use
the layout.

Error handling
Sinatra handles error in a minimalist way. There are two basic handlers. If any
resource or route is not found, and if not_found is defined, it will be invoked.

not_found do
 'This is nowhere to be found'
end

Any other errors will be caught by error. By default error will catch
Sinatra::ServerError and Sinatra will pass you the error through sinatra.error
in request.env.

error do
 'Sorry there was a nasty error - ' + request.env['sinatra.error'].
name
end

Cloning Internet Applications

[16]

You can also customize the errors such as the following:

error MyCustomError do
 'So what happened was...' + request.env['sinatra.error'].message
end

This could happen:

get '/' do
 raise MyCustomError, 'something bad'
end

In which case, the error helper will be called and the message displayed.

That was a whirlwind tour of Sinatra but it has covered everything you need to
know about Sinatra to start writing Sinatra applications. For more information on
Sinatra please head on to http://www.sinatrarb.com.

DataMapper
DataMapper is a Ruby object-relational mapping library, one of the three main
libraries as of writing. Object-relational mapping libraries exist to resolve impedance
mismatch between Ruby, the object-oriented programming language, and a
relational database. Essentially it maps database tables as classes, rows as objects,
and columns as properties and values of an object while mapping relationships as
one-to-one, one-to-many, or many-to-many.

Object-oriented programming languages and relational databases
are a common match and a large number of applications have been
developed with such pairing of technologies. However, the underlying
principles of object-oriented programming and relational databases do
not match and can potentially cause problems. For example, the basic
principles of classes of objects, inheritance, and polymorphism don't
exist in relational databases and the expectations of the data types
often differ. This mismatch is commonly known as the object-relational
impedance mismatch.
One way to overcome this mismatch is to use object-relational
mapping or ORM tools such as DataMapper. Such tools map a
relational database to a layer of objects that can be manipulated by
the application. As a result the application does not interact with the
relational database directly. Instead, it manipulates data through the
ORM, which in turn controls how the data is finally persisted into the
database.

Chapter 1

[17]

DataMapper and ActiveRecord (the default ORM library in Ruby on Rails) are quite
similar. If you have prior experience in ActiveRecord, most of what you read here
will be very familiar.

A note on the DataMapper version used in this book. As of writing, the latest version
of DataMapper is 0.10.2. However, in this book we will be using version 0.9.11. This is
because a feature we need in the projects in this book (self-referential many-to-many)
is not supported in 0.10.2. In fairness the feature has been removed to prepare a better
implementation in a future version. Unfortunately, for this book we will be using a
slightly older version.

Installing
DataMapper is broken up into the core library, dm-core, various database adapters
and a number of optional libraries collectively known as dm-more. While you can
install dm-more as an umbrella library, it is generally more advisable to just install
those that you need. For a basic installation, you need to install the core library as
well as at least one database adapter:

gem install dm-more

The most popular adapters are probably ones that relate to the DataObjects library.
The DataObjects library is an attempt to rewrite existing database drivers to conform
to a standard interface and has some of the more popular databases supported. For
example to install support for MySQL:

gem install do_mysql

Connecting to the database
The first thing you need to do before you start using DataMapper is to specify
the connection to the database. This is easily done by specifying the database
connection string:

DataMapper.setup(:default, 'mysql://localhost/ database_name')

Creating models
Once you have the connection, you can define your DataMapper models. Unlike
ActiveRecord (or Sequel, the other popular ORM library), DataMapper does not need
a separate migration step or file to create the database tables. The database tables are
created from the definition of the model itself.

www.allitebooks.com

http://www.allitebooks.org

Cloning Internet Applications

[18]

An example of a DataMapper model is as follows:

class User
 include DataMapper::Resource
 property :id, Serial
 property :email, String, :length => 255
 property :nickname, String, :length => 255
 property :birth_date, DateTime
 property :education, Text
 property :work_history, Text
 property :description, TExt
end

Let's go through several key elements of this definition. Firstly all DataMapper
models are classes that include the Datamapper::Resource module. This provides
them with the necessary methods used in defining the model. Each property of
the model is defined with the method property, with a given name and a type.
The types used are atypical. The Serial type however is a shortcut for defining an
auto-incrementing integer that is a primary key. Otherwise you'll need to define it
yourself like this:

property :some_id, :key => true

Note that DataMapper supports composite keys, meaning we can make more than
one property in the model a primary key.

While dm-core supports the standard set of properties you'll find in any database,
DataMapper actually supports a lot more other types if you include dm-types,
including CSV (comma-separated values), IP addresses, JSON, URIs and so on.

Properties can be configured to be lazy loaded, which means that the value of the
property is not requested from the data store by default but only loaded when its
accessor is called for the first time. Some properties, such as the Text, are lazily
loaded by default to improve performance.

Lazy loading can also be done together. For example, if one property is loaded, we
can force related properties to be loaded. For example, the three properties for the
User model above, education, work_history, and description are Text and are
lazily loaded by default. If we define them this way:

property :education, Text, :lazy => [:show]
property :work_history, Text :lazy => [:show]
property :description, Text

Chapter 1

[19]

If the education property is called, the work_history property will also be loaded
from the datastore, since both of them are members of the :show group. However,
the description property will only be fetched when it's asked.

Defining associations between models
A major use of ORM libraries such as DataMapper is that it provides object-oriented
convenience for relationships between rows in different tables. The three main types
of relationships or associations between tables are:

•	 One-to-one
•	 One-to-many
•	 Many-to-many

One-to-one
DataMapper's one-to-one association uses the has 1 and belongs_to methods.

class User
 include DataMapper::Resource
 property :id, Serial
 has 1, :account
end

class Account
 include DataMapper::Resource
 property :id, Serial
 belongs_to, :user
end

Very simply put, the has 1 method shows the user owning one account while
belongs_to defines the two-way relationship back to the user.

Cloning Internet Applications

[20]

The database tables generated from these models looks like the following:

To use these models, fire up irb.

$ irb -r models.rb

>> user = User.create

=> #<User id=1>

>> account = Account.create

=> #<Account id=1 user_id=nil>

We create a user and an account. Note that when the account is created it's not
attached to any users yet.

>> user.account = account

=> #<Account id=1 user_id=nil>

>> user.save

=> true

>> user.account

=> #<Account id=1 user_id=1>

By specifying that user only has 1 account, we added in the User#account and
User#account= methods to the User class. This allows us to set our new account
to the user object. Notice that even after having set the account to the user, the
Accounts table user_id column is still unpopulated. This is because we are still
manipulating in memory. We need to persist it by saving the object.

Chapter 1

[21]

One-to-many
The one-to-many association can be defined with the has n and belongs_to methods ,
shown as follows:

class User
 include DataMapper::Resource
 property :id, Serial
 has n, :comments
end

class Comment
 include DataMapper::Resource
 property :id, Serial
 belongs_to, :user
end

The database tables created from these models look like the following:

Cloning Internet Applications

[22]

The database tables look exactly the same as in the one-to-one. This is because the
controls and logic are actually set by the has n method we used in the User class.
Let's look at how we use the one-to-many relationship. As before let's start with
creating the user and some comments:

>> user = User.create

=> #<User id=1>

>> comment1 = Comment.create

=> #<Comment id=1 user_id=nil>

>> comment2 = Comment.create

=> #<Comment id=2 user_id=nil>

To add the comments to the user, we treat user.comments as an array and simply
stuff the comments in using the << operator:

>> user.comments << comment1 << comment2

Note that user.comments can be treated as an array, and even be converted to
one if necessary:

>> user.comments.class

=> DataMapper::Associations::OneToMany::Proxy

>> user.comments.to_a

=> [#<Comment id=1 user_id=1>, #<Comment id=2 user_id=1>]

Many-to-many
The many-to-many association can be defined with the has n and belongs_to
methods. There are two ways of defining many-to-many associations. The first is
to use a concrete model to represent the relationship between the two models. In
this example, we have a user who can borrow many books and books that can be
borrowed by many users. To represent the relationship between users and books, we
will create a concrete model called Loan.

class User
 include DataMapper::Resource
 property :id, Serial
 has n, :loans
 has n, :books, :through => :loans
end

Chapter 1

[23]

class Loan
 include DataMapper::Resource
 property :id,	 Serial
 property :created_at, DateTime

 belongs_to :user
 belongs_to :book
end

class Book
 include DataMapper::Resource
 property :id, Serial
 has n, :loans
 has n, :users, :through => :loans
end

This creates the database tables as follows:

Cloning Internet Applications

[24]

To use these models:

>> user1 = User.create

=> #<User id=1>

>> book1 = Book.create

=> #<Book id=1>

>> Loan.create(:book => book1, :user => user1)

=> #<Loan id=1 created_at=nil user_id=1 book_id=1>

>> user1.books.to_a

=> [#<Book id=1>]

Why can't we add the books to the user right away like that we did in the one-to-
many? Unfortunately, DataMapper in version 0.9.11 has a bug that does not allow
this. It has been fixed in version 0.10.2 but as mentioned earlier it is not the version
used in this book.

The second way of defining many-to-many associations is through an
anonymous resource:

class User
 include DataMapper::Resource
 property :id, Serial
 has n, :books, :through => Resource
end

class Book
 include DataMapper::Resource
 property :id, Serial
 has n, :users, :through => Resource
end

Chapter 1

[25]

These are the tables generated by the models:

Notice that a table named books_users has been created for you with the user_id
and book_id primary keys.

The shorter way of adding books to users works here as in one-to-many:

>> user1 = User.create

=> #<User id=1>

>> book1 = Book.create

=> #<Book id=1>

>> user1.books << book1

=> . . .

>> user1.save

=> true

>> user1.books.to_a

=> [#<Book id=1>]

Cloning Internet Applications

[26]

There are some reasons why you would use one way or the other. You can have
additional attributes for the concrete models so if you need to add additional
attributes you cannot run away from them. In the preceding example we can include
the date and time when the loan was made. We can't do this with the anonymous
resource. However, the anonymous resource way is much shorter and simpler to
maintain and at least at this point in time works better than the awkward creation of
the many-to-many concrete model.

Creating the database tables
Creating the database tables is relatively simple. We just need to log into irb with
the necessary models loaded and run auto_migrate. Assuming that the database
setup and model definitions are in a file named models.rb:

$ irb –r models.rb

>> DataMapper.auto_migrate!

This will create the necessary tables.

Finding records
One of the most important and frequent actions with DataMapper would be to
find and retrieve data from the database. DataMapper provides a few methods of
retrieving data. The simplest is to retrieve a record by its key:

>> User.get(1)

We can also find a record by any of the columns using the first method:

>> User.first(:nickname => 'sausheong')

We can get all the records in the table:

>> User.all

Records can also be filtered and the filters can be chained:

>> active_users = User.all(:active => true)

>> male_active_users = active_users.all(:sex => 'male')

The all and first methods can both have more than one filter and these filters can
use certain symbols to specify how the filters work. For example, the filters below
indicate that we want to find all users who are born after 1980, who are not married
and the sex as male:

>> User.all(:birth_date.gt => '1980-01-01', :marital_status.not =>
'married', :sex => 'male')

Chapter 1

[27]

However, note that these filters are AND filters, meaning that the records retrieved
must pass all the filters before they are retrieved. In the later 0.10.2 release, you can
combine these queries using OR or more complex filtering conditions.

DataMapper is very powerful and we have only scratched the surface on its
capabilities. DataMapper supports an aspect-oriented approach in doing callbacks
or hooks, chained association calls, single table inheritance, multiple data stores, and
many other features that are provided by various optional packages in dm-more. To
find out more about DataMapper you should visit http://www.datamapper.org
and go through the existing documentation.

Haml
Haml (which stands for XHTML Abstraction Markup Language) is a markup
language that cleanly describes XHTML without the use of inline code. Haml
was originally written for Ruby but has since been used in many other languages
including Python, PHP, Perl, ASP.NET and even Scala.

Installing
Installing Haml is very easy and done through the usual Haml gem:

$ sudo gem install Haml

Using Haml
The easiest way to explain Haml is to do a quick comparison between Haml and
HTML. This is a simple HTML snippet:

<div id='content'>
 <div class='left column'>
 <h2>Welcome to our site!</h2>
 <p>Some basic information</p>
 </div>
 <div class="right column">
 Some more information
 </div>
 <div>
 here
 </div>
</div>

http://www.datamapper.org/

Cloning Internet Applications

[28]

And this is the Haml equivalent:

#content
 .left.column
 %h2 Welcome to our site!
 %p Some basic information
 .right.column
 Some more information
 %a{:href => "/some_url"}

Note that the Haml template is smaller and easier to read without the opening and
closing tags. We can do away with the tags because Haml is whitespace active,
meaning whitespaces are important in Haml. The indentation defines how the tags
are grouped. While this can be restrictive at times, it actually helps us to write code
that is more easily debugged and maintained. Ultimately the Haml template is
compiled into the same HTML.

Here are some simple rules to start using Haml:

•	 All tags are replaced with %. For example, instead of writing <h2> you just
need to do %h2. The exception to this is the DIV tag, which is used so often
that it is simply omitted if there are attributes.

•	 As mentioned earlier, indentation is important and defines the nesting in the
tags. For example, in the snippet above the H2 tag is at the same indentation
level as the P tag. This means they are not nested but are sibling tags. If
instead of being on the same level, the P tag is indented another level to the
H2 tag, the P tag will be nested within the H2 tag.

•	 Brackets represent a Ruby hash that is used for specifying the attributes
of a tag. For example %a{:href => '/some_url'} here is compiled to here.

•	 Borrowing from CSS, we can use the . shortcut to indicate a class attribute
and the # shortcut to indicate an id attribute. For example, .left.column
is compiled to <div class='left column'> since DIV is assumed if no
tag is used.

Haml and Ruby
While Haml is interesting and useful as a means to simplify HTML, it is only really
powerful as a templating engine when combined with Ruby. Here is the same
snippet above, re-written to include some Ruby code:

#content
 .left.column
 %h2 Welcome to our site #{@user.name}!

Chapter 1

[29]

 %p Some basic information
	 %ol
	 - @some_array.each do |item|
 %li= item.name

 .right.column
 Some more information
	 %a{:href => "/some_url"}

There are a few ways Ruby code can be integrated within Haml:

•	 To evaluate some Ruby code and insert the output into the compiled
document, we use the equals(=) sign. This can be placed after the tag to place
the output within the tag.

•	 To evaluate some Ruby code but not insert any output into the compiled
document, we the dash(-) sign. We can place the dash sign anywhere. If the
evaluated code is a block, we don't need to explicitly close the block, Haml
will take care of it.

•	 To evaluate some Ruby code and insert the output within some text, you can
use #{} and place it within any text just as you would do with a Ruby string.

For more information on Haml please go to http://www.haml-lang.com.

Now that we have wrapped up the quick tour of the technology stack, let's get back
to the book and describe how to approach reading it.

How this book works
Before we start with the first clone chapter, let's review how each of the subsequent
chapters are structured. Each chapter after this book has the same structure:

•	 We start off with a description of the kind of application we will be cloning
in the chapter. For example, in the second chapter we will clone TinyURL, so
we will start off by discussing URL shorteners in general. This will include
the history of URL shorteners and how they came about.

•	 After that we follow with a description of the specific application that we will
be cloning, for example TinyURL. This might include discussion of its market
share and why it is the most popular application of its kind.

•	 Next we list the specific major features of the application we want to clone
and briefly explain what the feature is all about.

•	 After the list of features we jump into a discussion on how we design the
clone of each feature.

http://www.haml-lang.com/

Cloning Internet Applications

[30]

•	 Before jumping into the actual code, we run through various technologies
and third party providers we will be using for the clone.

•	 The actual code and description of the implementation will cover both
the data model as well as the application flow. This will be the bulk of the
chapter.

•	 After the description of the implementation we describe how the clone
can be deployed.

•	 Finally we wrap up with a summary of what we have done for the chapter.

Caveat
A word of warning for the reader. The code in this book is by no means production
quality and is meant for educational and illustrative purposes only. There is little to
no security consideration and not much exception handling built into the code either.
Do not attempt to use the code directly in your application without thinking through
some of these considerations.

Summary
This first chapter started off with a discussion on the objectives of the book as well
as the target readers for the book. The reasons behind choosing each chapter were
also briefly mentioned. The bulk of this chapter however dealt with the technology
stack we will use in the rest of the book. We started off the technology discussion
with Sinatra, the domain specific language used for developing web applications,
followed by DataMapper, a popular Ruby object-relational mapping (ORM) library
and finally rounding off with Haml, a Ruby-specific templating engine. We rounded
off this chapter with a description of the structure of the rest of the chapters. With
this, let's start with the first clone chapter.

URL Shorteners – Cloning
TinyURL

We start off with an easy application, a simple yet very useful Internet application,
URL shorteners. We will take a quick tour of URL shorteners before jumping into
the design of a simple URL shortener, followed by an in-depth discussion of how we
clone our own URL shortener, Tinyclone.

All about URL shorteners
Internet applications dont always need to be full of features or cover all aspects of
your Internet life to be successful. Sometimes it's ok to be simple and just focus on
providing a single feature. It doesn't even need to be earth-shatteringly important—it
should be just useful enough for its target users. The archetypical and probably most
extreme example of this is the URL shortening application or URL shortener.

This service offers a very simple but surprisingly useful feature. It provides a
shorter URL that represents a normally longer URL. When a user goes to the short
URL, he will be redirected to the original URL. For this simple feature, top three
most popular URL shortening services (TinyURL, bit.ly, and is.gd) collectively had
about 11 million unique visitors, 110 million page views and a reach of about 1%
of the Internet in June 2009. In 2008, the most popular URL shortener at that time,
TinyURL, was made one of Time Magazine's Top 50 Best Websites.

The idea to shorten long and unwieldy URLs into shorter, more manageable ones has
been around for some time. One of the earlier attempts to make it a public service
is Make A Shorter Link (MASL), which appeared around July 2001. MASL did just
that, though the usefulness was debatable as the domain name was long and the
shortened URL could potentially be longer than the original.

URL Shorteners – Cloning TinyURL

[32]

However, the pioneering site that popularized this concept (and subsequently
bought over MASL and a few other similar sites) is TinyURL. TinyURL was
launched in January 2002 by Kevin Gilbertson to help him to link directly to
newsgroup postings which frequently had long URLs. It rapidly became one of the
most popular URL shorteners around. In 2008, an estimated 100 similar services
came to existence in various forms.

URLs or Uniform Resource Locators are resource identifiers that specify
where identified resources are available and how they can be retrieved.
A popular term for URL is a eeb address. Every URL is made up of the
following:
<resource type>://<username>:<password>@<domain>:<port
>/<file path name>?<query string>#<anchor>

Not all parts of the URL are required by a browser, if the resource type
is missing, it is normally assumed to be http, if the port is missing, it is
normally assumed to be 80 (for http). The username, password, query
string, and anchor components are optional.

Initially, TinyURL and similar types of URL shorteners focused on simply providing
a short representative URL to their users. Naturally the competitive breadth for
shortening URLs was rather well, short. Many chose TinyURL over MASL because
TinyURL had a shorter and easier to remember domain name (http://tinyurl.com
over http://makeashorterlink.com).

Subsequent competition over this space intensified and extended to providing
various other features, including custom short URLs (TinyURL, bit.ly), analysis
of click-through statistics (bit.ly), advertisements (Adjix, Linkbee), preview pages
(TinyURL, is.gd) and so on.

The explosive growth of Twitter (from June 2008 to June 2009, Twitter grew 1,164%)
opened a new chapter for URL shorteners. Twitter chose a limit of 140 characters
for each tweet to accommodate the 160 characters in an SMS message (Twitter was
invented as a service for people to use SMS to tell small groups what they are doing).
With Twitter's popularity skyrocketing, the need arose for users to shorten URLs to
fit into the 140 characters limit. Originally Twitter used TinyURL as its default URL
shortener and this triggered a steep climb in the usage of TinyURL during the early
days of Twitter.

http://tinyurl.com/
http://makeashorterlink.com/
http://makeashorterlink.com/

Chapter 2

[33]

However, in May 2009, bit.ly replaced TinyURL as Twitter's default URL shortener
and the impact was immediate. For the first time in that period, TinyURL recorded
a drop in the number of users in May 2009, dropping from 6.1 million to 5.3 million
unique users, while bit.ly jumped from 1.8 million to 2.9 million almost overnight.
That's not the end of the story though. In April 2010 during Twitter's Chirp
conference, Twitter announced its own URL shortener (twt.tl). As of writing it is still
unclear the market share will pan out but it's clear that URL shorteners have good
value and everyone is jumping into this market. In December 2009, Google came
up with its own two URL shorteners, goo.gl and youtu.be. Amazon.com (amzn.to),
Facebook (fb.me), and Wordpress (wp.me) all have their own URL shorteners as well.

Next, let's do a quick review of why URLs shorteners are so popular and why they
attract criticism as well.

Here's a quick summary of the benefits:

•	 Create short and easy to remember URLs
•	 Allow passing of links in character-limited services such as Twitter
•	 Create vanity URLs for marketing purposes
•	 Can verbally pass URLs

The most obvious benefit of having a shortened URL is that it's, well, short. A typical
example of an URL gone bad is a link to a location in Google Maps:

http://maps.google.com/maps?f=q&source=s_q&hl=en&geocode=&q=singapore
+flyer&vps=1&jsv=169c&sll=1.352083,103.819836&sspn=0.68645,1.382904&g
=singapore&ie=UTF8&latlng=8354962237652576151&ei=Shh3SsSRDpb4vAPsxLS3
BQ&cd=1&usq=Singapore+Flyer

Such URLs are meant to be clicked on as it is virtually impossible to pass it around
verbally. It might be justifiable if the URL is cut and pasted on documents, but
sometimes certain applications will truncate parts of the URL while processing. This
makes a long URL difficult to click on and even produces erroneous links. In fact,
this was the main motivation in creating most of the earlier URL shorteners—older
e-mail clients tend to truncate URLs when they are more than 80 characters.

Short links are of course crucial in character-limited message passing systems like
Twitter, Plurk, and SMS. Passing long URLs is impossible without URL shorteners.

http://maps.google.com/maps?f=q&source=s_q&hl=en&geocode=&q=singapore+flyer&vps=1&jsv=169c&sll=1.352083,103.819836&sspn=0.68645,1.382904&g=singapore&ie=UTF8&latlng=8354962237652576151&ei=Shh3SsSRDpb4vAPsxLS3BQ&cd=1&usq=Singapore+Flyer
http://maps.google.com/maps?f=q&source=s_q&hl=en&geocode=&q=singapore+flyer&vps=1&jsv=169c&sll=1.352083,103.819836&sspn=0.68645,1.382904&g=singapore&ie=UTF8&latlng=8354962237652576151&ei=Shh3SsSRDpb4vAPsxLS3BQ&cd=1&usq=Singapore+Flyer
http://maps.google.com/maps?f=q&source=s_q&hl=en&geocode=&q=singapore+flyer&vps=1&jsv=169c&sll=1.352083,103.819836&sspn=0.68645,1.382904&g=singapore&ie=UTF8&latlng=8354962237652576151&ei=Shh3SsSRDpb4vAPsxLS3BQ&cd=1&usq=Singapore+Flyer
http://maps.google.com/maps?f=q&source=s_q&hl=en&geocode=&q=singapore+flyer&vps=1&jsv=169c&sll=1.352083,103.819836&sspn=0.68645,1.382904&g=singapore&ie=UTF8&latlng=8354962237652576151&ei=Shh3SsSRDpb4vAPsxLS3BQ&cd=1&usq=Singapore+Flyer
http://maps.google.com/maps?f=q&source=s_q&hl=en&geocode=&q=singapore+flyer&vps=1&jsv=169c&sll=1.352083,103.819836&sspn=0.68645,1.382904&g=singapore&ie=UTF8&latlng=8354962237652576151&ei=Shh3SsSRDpb4vAPsxLS3BQ&cd=1&usq=Singapore+Flyer

URL Shorteners – Cloning TinyURL

[34]

Short URLs are very useful in cases of vanity URLs where for example, the Google
Maps link above could be shortened to http://tinyurl.com/singapore-flyer.
Such vanity URLs are useful when passing from one person to another, or even
when being used in a mass marketing way. Sticking to the maps theme in our
examples, if you want to give a Google Maps link to your restaurant and put it up in
catalogs and brochures, you will not want to give the long URL. Instead you would
want a nice, descriptive, and short URL.

Short URLs are also useful in cases of accessibility. For example, reading out the
Google Maps link above is almost impossible, but reading out the TinyURL link
(vanity or otherwise) is much easier in comparison.

Many popular URL shorteners also provide some form of statistics and analytics on
the usage of the links. This feature allows you to track your short URLs to see how
many clicks it received and what kind of patterns can be derived from the clicks.
Although the metrics are usually not advanced, they do provide basic usefulness.

On the other hand, URL shorteners have their fair share of criticisms as well. Here is
a summary of the bad side of URL shorteners:

•	 Provide the opportunity to spammers because they hide original URLs
•	 Could be unreliable if dependent on them for redirection
•	 Possible undesirable or vulgar short URLs

URL shorteners have security issues. When a URL shortener creates a short URL, it
effectively hides the original link and this provides the opportunity for spammers
or other abusers to redirect users to their sites. One relatively mild form of such an
attack is 'rickrolling'. Rickrolling uses a classic bait-and-switch trick to redirect users
to a Rick Astley music video of Never Gonna Give You Up. For example, you might
feel that the URL http://tinyurl.com/singapore-flyer goes to Google Map,
but when you click on it, you might be rickrolled and redirected to that Rick Astley
music video instead.

Also, because most short URLs are not customized, it is quite difficult to see if the
link is genuine or not just from the URL. Many prominent websites and applications
have such concerns, including MySpace, Flickr, and even Microsoft Live Messenger,
and have one time or another banned or restricted usage of TinyURL because of this
problem. To combat spammers and fraud, URL shortening services have come up
with the idea of link previews, which allows users to preview a short URL before
it redirects the user to the long URL. For example, TinyURL will show the user the
long URL on a preview page and requires the user to explicitly go to the long URL.

http://tinyurl.com/singapore-flyer
http://tinyurl.com/singapore-flyer

Chapter 2

[35]

Another problem is performance and reliability. When you access a website, your
browser goes to a few DNS servers to resolve the address, but the URL shortener
adds another layer of indirection. While DNS servers have redundancy and
failsafe measures, there is no such assurance from URL shorteners. If the traffic to a
particular link becomes too high, will the shortening service provider be able to add
more servers to improve performance or even prevent a meltdown altogether? The
problem of course lies in over-dependency on the shortening service.

Finally, a negative side effect of random or even customized short URLs is that
undesirable, vulgar, or embarrassing short URLs can be created. Earlier on, TinyURL
short URLs were predictable and it was exploited, such as embarrassing short URLs
that were made to redirect to the White House websites of then U.S. Vice President
Dick Cheney and Second Lady Lynne Cheney.

We have just covered significant ground on URL shorteners. If you are a programmer
you might be wondering, "Why do I need to know such information? I am really
interested in the programming bits, the others are just fluff to me."

Background information on the application we want to clone is very important. It
tells us why that application exists in the first place and gives us an idea of what
the main features are (what makes it popular). It also tells us what problems it
faces, such that we are aware of the problem while programming it, or even avoid it
altogether. This is important when we come to the design of the application. Finally,
it gives us better appreciation of the application and the motivations and issues faced
by the product and technical people behind the application we wish to clone.

Main features
Next, let's list down the features of a URL shortener. In subsequent chapters we
will go down similar paths with each popular Internet application. The intention in
this section is to distill the basic features of the application, features that define the
service. Features listed here will be features that make the application what it is.

However, as much as possible we want to also explore some additional features
that extend the application and are provided by many of its competitors. Most
importantly, the features here are mostly features of the most popular and definitive
web application in the category. In this chapter, this will be TinyURL.

These are the main features of a URL shortener:

•	 Users can create a short URL that represents a long URL
•	 Users who visit the short URL will be redirected to the long URL

URL Shorteners – Cloning TinyURL

[36]

•	 Users can preview a short URL to enable them to see what the long URL is
•	 Users can provide a custom URL to represent the long URL
•	 Undesirable words are not allowed in the short URL
•	 Users are able to view various statistics involving the short URL, including

the number of clicks and where the clicks come from (optional, not
in TinyURL)

URL shorteners are simple web applications and the one that we will design and
build will also be simple.

Designing the clone
Cloning TinyURL is relatively simple but there is some thought behind the design of
the application. We will be building a clone of TinyURL called Tinyclone, which will
be hosted at the domain http://tinyclone.saush.com.

Creating a short URL for each long URL
The domain of the short URL is fixed. What's left is the file pathname. We need to
represent the long URL with a unique file pathname (a key), one for each long URL.
This means we need to persist the relationship between the key and the URL.

One of the ways we can associate the long URL with a unique key is to hash the
long URL and use the resulting hash as the unique key. However, the resulting hash
might be long and hashing functions could be slow.

The faster and easier way is to use a relational database's auto-incremented row ID
as the unique key. The database will help ensure the uniqueness of the ID. However,
the running row ID number is base 10. To represent a million URLs would already
require seven characters, to represent 1 billion would take up nine characters.
In order to keep the number of characters smaller, we will need a larger base
numbering system.

In this clone we will use base 36, which is 26 characters of the alphabet (case
insensitive) and 10 numbers. Using this system, we will only need five characters to
represent 1 million URLs:

1,000,000 base 36 = lfls

And 1 billion URLs can be represented in just six characters:

1,000,000,000 base 36 = gjdgxs

Chapter 2

[37]

Automatically redirecting from a short URL to
a long URL
HTTP has a built-in mechanism for redirection. In fact it has a whole class of HTTP
status codes to do this. HTTP status codes that start with 3 (such as 301, 302) tell
the browser to go look for that resource in another location. This is used in the case
where a web page has moved to another location or is no longer at the original
location. The two most commonly used redirection status codes are 301 Move
Permanently and 302 Found.

301 tells the browser that the resource has moved away permanently and that it
should look at that location as the permanent location of the resource. 302 on the
other hand (despite its name) tells the browser that the resource it is looking for has
moved away temporarily.

While the difference seems trivial, search engines (as user agents) treat the status
codes differently. 301 tells the search engines that the short URL's location has
moved permanently away to the long URL, so credit for the long URL goes to the
long URL. However, because 302 only tells the search engine that the location has
moved temporarily, the credit goes to the short URL. This can cause issues with
search engine marketing accounting.

Obviously in our design we will need to use the 301 Moved Permanently HTTP status
code to do the redirection. When the short URL http://tinyclone.saush.com/
singapore-flyer is requested, we need to send a HTTP response:

HTTP/1.1 301 Moved Permanently
Location: http://maps.google.com/maps?f=q&source=s_q&hl=en&geocode=&q=
singapore+flyer&vps=1&jsv=169c&sll=1.352083,103.819836&sspn=0.68645,1.
382904&g=singapore&ie=UTF8&latlng=8354962237652576151&ei=Shh3SsSRDpb4v
APsxLS3BQ&cd=1&usq=Singapore+Flyer
Content-Type: text/html
Content-Length: 235

<html>
 <head>
 <title>Moved</title>
 </head>
 <body>
 <h1>Moved</h1>
 <p>This page has moved to <a href="http://maps.google.com/maps?f=q
&source=s_q&hl=en&geocode=&q=singapore+flyer&vps=1&jsv=169c&sll=1.35
2083,103.819836&sspn=0.68645,1.382904&g=singapore&ie=UTF8&latlng=8354-
962237652576151&ei=Shh3SsSRDpb4vAPsxLS3BQ&cd=1&usq=Singapore+Flyer">Si
ngapore Flyer.</p>
 </body>
</html>

www.allitebooks.com

http://tinyclone.saush.com/singapore-flyer
http://www.allitebooks.org

URL Shorteners – Cloning TinyURL

[38]

Providing a customized short URL
Providing a customized short URL with the above design we had in mind before
makes things less straightforward. Remember that our design uses the database
row ID in base 36 as the unique key. To customize the short URL we cannot use this
database row ID, so the customized short URL needs to be stored separately.

In Tinyclone we store the customized short URL in a separate secondary table called
Links, which in turn points to the actual data in a table called Url. When a short URL
is created and the user doesn't request a customized URL, we store the database re-
cord ID from the Url table as a base-36 string into the Links table. If the user requests
a customized URL, we store the customized URL instead of the record ID.

A record in the Links table therefore maps a string to the actual record ID in the URL
table. When a short URL is requested, we first look into the secondary table, which in
turn points us to the actual record in the primary table.

Filtering undesirable words out
While we could use more complex filtering mechanisms, URL shorteners are simple
web applications, so we stick to a simpler filtering mechanism. When we create the
secondary table record, we compare the key with a list of banned words loaded in
memory on startup.

If it is a customized short URL and the word is in the list, we prevent the user from
using it. If the key was the actual record ID in the primary table, we create another
record (therefore using another record ID) to store the URL.

What happens if the new record ID is also coincidentally in the banned words list?
We'll just have to create another one recursively until we find one that is not in the
list. There is a probability that two or more consequent record IDs are in the banned
words list, but the frequency of it happening is low enough that we don't need to
worry about it.

Previewing the long URL
This feature is simple to implement. When the short URL preview function is
called, we will show a page that displays the long URL instead of redirecting to that
page. In Tinyclone we lump the preview long URL page together with the statistics
information page.

Chapter 2

[39]

Providing statistics
To provide statistics for the usage of the short URL, we need to store the number of
times the short URL has been clicked and where the user is coming from. To do this,
we create a Visits table to store the number of times the short URL has been visited.
Each record in the Visits table stores the information about a particular visit,
including its date and where the visitor comes from.

We use the environment variable from the server called REMOTE_ADDR to find
out where the visitor comes. REMOTE_ADDR provides the remote IP address of the
client that is accessing the short URL. We use this IP address with an IP geocoding
provider to find the country that the visitor comes from then store the country code
as well as the IP address.

Collecting the data is only the first step though. We will need to display it properly.
There are plenty of visualization APIs and tools in the market; many of them are
freely available. For the purpose of this chapter, we have chosen to use the Google
Charts API to generate the following charts:

•	 A bar chart showing the daily number of visits
•	 A bar chart showing the total number of visits from individual countries
•	 A map of the world visualizing the number of visits from

individual countries

You might notice that in our design the user does not need to log into
this application to use it. Tinyclone is the only clone in the book that
does not have any access control on its pages. Most URL shorteners have
a public and main feature that redirects short URLs to their original,
long URLs. In addition to that some URL shorteners have user-specific
access controlled pages that provide information to the users such as the
statistics and reporting feature shown above. However, in this clone we
will not be implementing any access controlled pages.

Technologies and platforms used
We will use a number of technologies in this chapter, mainly revolving around the
Ruby programming language and its various libraries. The main Ruby technologies
have been discussed in detail in Chapter 1, Cloning Internet Applications, and this
section is a refresher before we jump into the code discussion.

URL Shorteners – Cloning TinyURL

[40]

Sinatra
Sinatra is a Domain Specific Language (DSL) for quickly creating web applications
in Ruby. It keeps a minimal feature set for developers and is an excellent tool for
creating small to mid-sized web applications using Ruby.

We discussed Sinatra in depth in Chapter 1.

Haml
Haml (HTML Abstraction Markup Language) is a simple markup language that is
used to cleanly describe HTML in a web page. Haml was originally built for Ruby
but has also been ported to other languages and platforms. We discussed Haml in
depth in Chapter 1.

DataMapper
DataMapper is an object-relational mapping library for Ruby. While there are a
number of Ruby object-relational mapping libraries, DataMapper has a number of
good features. It is independent and doesn't tie in with any particular frameworks.
It is also built to be fast and efficient, often delaying interacting with the data store
until it is needed. It is also very Ruby centric and fits in well with the rest of the
technologies that we use in the book.

We discussed DataMapper in depth in Chapter 1.

Blueprint CSS
Blueprint CSS is a simple and effective CSS framework. It provides a basic set of CSS
styles that makes developing web applications much easier. One of its most useful
features is a set of grid layout styles that allows simple to complex layouts to be
created easily and effectively. Used together with HAML, it allows us to create great
looking front-ends for our web applications.

Mashups
While the main features in the applications are all implemented within the chapters
itself, sometimes we still depend on other services provided by generally well-known
providers. In this chapter we use two services—Google Chart API for visualizing the
statistics we gather on the short URLs and HostIP to geocode IP addresses we get.

Chapter 2

[41]

Google Chart API
The Google Chart API provides its users a means of dynamically generating various
types of charts. In this chapter, we use the Google Chart API to generate statistics
visualizations, specifically bar charts and maps.

The Google Chart API returns a PNG-format image in response to a URL. Several
types of image can be generated, and for each image type, you can specify attributes
such as size, colors, and labels. The Google Chart API is not rate-limited but Google
advises users to let them know if they use more than 250,000 API calls per day.

HostIP
HostIP is a free service that provides geocoding services based on IP addresses. Its
usage is very simple—we just need to call a HostIP URL with an IP address and it
will return geocoded information on the IP address. HostIP is a community-based
project that gets its data from its users so accuracy is not perfect. However, for our
purpose it is good enough.

Heroku
Heroku is a Ruby-specific cloud-computing platform that provides specialized Ruby
hosting services for developers. It allows Ruby developers to easily and almost
instantly deploy web applications to the Internet. Heroku supports Rack-based web
applications so deploying our Sinatra applications to Heroku is a breeze. While
Heroku charges for hosting, it also provides a free basic tier account. More information
on how Heroku is used at the end of this chapter when we talk about deployment.

Building the clone
Finally we get to the meat of the chapter. Here we roll up our sleeves and get to the
business of coding Tinyclone. The overall web application is around 200 lines of
code, so we will put everything into a single file called tinyclone.rb. With a bit of
Sinatra magic this becomes our entire web application.

We will be looking at Tinyclone from two simple perspectives. The first is the data
model. The data model is an abstract view of the objects that are used to represent
the application problem space. The second is the application flow, which describes
how the application uses the data model to provide the functions needed. As the
application isn't very large, we can inspect its code in detail, something we will not
be able to do in later chapters when we deal with larger applications.

URL Shorteners – Cloning TinyURL

[42]

Data model
Let's look at the data model first. The model we use has three classes. The Link
is the main class for the application, one that has an identifier (short URL) that
represents an actual URL. A Link object (that is, an instance of the Link class) has a
Url object. Url represents the original URL that has been shortened. The reason why
we separate the short URL and the original URL is to allow custom short URLs, as
described above when we discussed the design.

A Link object has many Visit objects. Each Visit object represents a visit to the short
URL and contains information about the visit, namely the date of the visit and where
the visitor came from. The diagram below describes the three classes we will be
using in Tinyclone:

Now that we have the properties of the objects, let's look at the logic that is required
for each object.

Url
The Url class has no additional built-in logic as it's just a container to store the
original URL. Here's the code for the Url class:

class Url
 include DataMapper::Resource
 property :id, Serial
 property :original, String, :length => 255
 belongs_to :link
end

Chapter 2

[43]

Link
The main logic in the Link class is based on shortening URLs, that is, turning a given
URL into a short URL. Naturally, we create a class method called shorten for this,
shown as follows:

def self.shorten(original, custom=nil)
 url = Url.first(:original => original)
 return url.link if url
 link = nil
 if custom
 raise 'Someone has already taken this custom URL, sorry' unless
Link.first(:identifier => custom).nil?
 raise 'This custom URL is not allowed because of profanity' if
DIRTY_WORDS.include? custom
 transaction do |txn|
 link = Link.new(:identifier => custom)
 link.url = Url.create(:original => original)
 link.save
 end
 else
 transaction do |txn|
 link = create_link(original)
 end
 end
 return link
 end

We pass in an original URL and optionally a custom label we want for the short URL.
First, we check if the original URL is already shortened. If it is, we just return the link.
Otherwise, we have split choices, where we will react differently to each situation. If
a custom label is provided, we check if the label is already in use. If it is, we throw an
exception and ask the user to use another label. We also check the custom label with
a list of banned words that we don't want as custom labels. If these two checks are
cleared, we proceed to create the Link object and the Url object then save them.

If a custom label is not provided, we will use a recursive method to create the link.
We use a recursive method because without a custom label, we will use the record
ID as the identifier for the Link object. If coincidentally the custom label is in the list
of banned words or if the record ID created is the same as an existing custom label,
we want to create another Url object to represent the new Link object. Of course, if
even more coincidentally the new Url object ID is also in the banned words list or
is a custom label that already exists, we want to create yet another Url object and so
on, hence the recursion. The danger that it becomes a never-ending recursion is quite
low as it is highly unlikely recursion will happen more than twice.

URL Shorteners – Cloning TinyURL

[44]

The list of banned words is loaded up in a separate Ruby file named dirty_words.rb.
For obvious reasons, this file is not re-printed here.

def self.create_link(original)
 url = Url.create(:original => original)
 if Link.first(:identifier => url.id.to_s(36)).nil? or !DIRTY_
WORDS.include? url.id.to_s(36)
 link = Link.new(:identifier => url.id.to_s(36))
 link.url = url
 link.save
 return link
 else
 create_link(original)
 end
 end

Note that we convert from the Url's ID to a base 36 numbering system before storing
it, as explained above.

Visit
The Visit object has the most built-in logic. While storing the data for the visits to
the short URL is trivial, we want to also use the Visit object for retrieving the usage
charts and statistics.

Remember one of the things we want to do is find and store the country where
each visitor comes from. Whenever a visitor visits a short URL in the application,
we will create a Visit object and associate it with the correct Link object. Using
information from the environment variables, we get the IP address where the visitor
comes from. However, getting the IP address is not good enough, as we also want
to find out which country the visitor came from. To do this, we use the HostIP IP
geocoding API. By sending it the IP address, we will get an XML document that
contains information on the country where the client comes from. We parse this XML
document and store the country into the Visit object.

To implement this, we use the after callback mechanism in the Visit object, where
we call a method after the object is created.

after :create, :set_country

Chapter 2

[45]

This results in the set_country method being called after an object is created. The
set_country method in turn calls HostIP with the IP and is returned geocoded
information in an XML document. Using XmlSimple, we parse that document and
set the country code. The country information is in the form of ISO 3166-1 country
codes, which are two letter abbreviations of the country name. For example,
Singapore would be SG, France would be FR, and the United States would be US.

def set_country
 xml = RestClient.get "http://api.hostip.info/get_xml.php?ip=#{ip}"
 self.country = XmlSimple.xml_in(xml.to_s, { 'ForceArray' => false
})['featureMember']['Hostip']['countryAbbrev']
 self.save
end

Next, we want to get the visit statistics after storing the visit information. We use
two methods to do this – one that get the statistics by date, and another by country
of origin.

def self.count_by_date_with(identifier,num_of_days)
 visits = repository(:default).adapter.query("SELECT date(created_
at) as date, count(*) as count FROM visits where link_identifier =
'#{identifier}' and created_at between CURRENT_DATE-#{num_of_days} and
CURRENT_DATE+1 group by date(created_at)")
 dates = (Date.today-num_of_days..Date.today)
 results = {}
 dates.each { |date|
 visits.each { |visit| results[date] = visit.count if visit.date
== date }
 results[date] = 0 unless results[date]
 }
 results.sort.reverse
end

In the count_by_date_with method, we use SQL directly on the table to get the data
for the range of dates that we want. This results in an array of Ruby Struct objects
that contains the information we want. However, we can't use this directly, because
there would be some dates without visits, and the SQL doesn't return empty dates.
To do this, we create a contiguous list of dates and for each date, we put in the visit
count if it is not 0, and 0 if there are no visits. The result we return from this method
is a hash table of data with the date as the key and the count as the value.

def self.count_by_country_with(identifier)
 repository(:default).adapter.query("SELECT country, count(*) as
count FROM visits where link_identifier = '#{identifier}' group by
country")
end

URL Shorteners – Cloning TinyURL

[46]

The count_by_country_with method is simpler—we just get the count per country.

Getting the numbers is useful but visualizing it in charts and maps is probably
more appealing to most users. Tinyclone uses only charts and maps to visualize the
statistics and uses the statistics methods described above to get the numbers. Again,
we use two methods to return the charts we need.

def self.count_days_bar(identifier,num_of_days)
 visits = count_by_date_with(identifier,num_of_days)
 data, labels = [], []
 visits.each {|visit| data << visit[1]; labels << "#{visit[0].
day}/#{visit[0].month}" }
"http://chart.apis.google.com/chart?chs=820x180&cht=bvs&chxt=x&chco=a
4b3f4&chm=N,000000,0,-1,11&chxl=0:|#{labels.join('|')}&chds=0,#{data.
sort.last+10}&chd=t:#{data.join(',')}"
 end

The count_days_bar method takes in the identifier and the number of days we
want to display the information on and returns a Google Chart API URL that shows
image chart that we want. In this case, it is a vertical bar chart that shows the visit
count by date.

def self.count_country_chart(identifier,map)
 countries, count = [], []
 count_by_country_with(identifier).each {|visit| countries <<
visit.country; count << visit.count }
 chart = {}
 chart[:map] = "http://chart.apis.google.com/chart?chs=440x22
0&cht=t&chtm=#{map}&chco=FFFFFF,a4b3f4,0000FF&chld=#{countries.
join('')}&chd=t:#{count.join(',')}"
 chart[:bar] = "http://chart.apis.google.com/chart?chs=320x240&cht=
bhs&chco=a4b3f4&chm=N,000000,0,-1,11&chbh=a&chd=t:#{count.join(',')}&c
hxt=x,y&chxl=1:|#{countries.reverse.join('|')}"
 return chart
 end

The count_country_chart method takes in the identifier and the geographical
zoom-in of the map we want and returns two charts. The first chart is a horizontal
chart showing the number of visits by country and the second chart is a map
visualizing the countries where the visits come from. The countries with the larger
number of visits are in a darker shade of blue, compared to the countries with the
smaller number of visits.

Next, we look at the application flow.

Chapter 2

[47]

Application flow
Like many web applications, most of the logic for the application lies in the model.
The logic in the application flow (as the name suggests) mainly deals with routing
or display formatting, besides actually calling the various classes and objects to do
their jobs. As a result, this part of Tinyclone is relatively simple. As the routing flow
becomes more complex in later chapters, this might not be necessarily true.

The application has six different routes, but only three of them do any significant
work. The main route (/) does nothing except to display the main page.

get '/' do haml :index end

The create shortened URL route is a HTTP POST request to (/). It is used to create the
short URL. First, it makes sure that the input is a valid HTTP or HTTPS URL. If it is,
it will use the shorten method in the Link class to create a Link object, which is then
passed on to the view.

post '/' do
 uri = URI::parse(params[:original])
 custom = params[:custom].empty? ? nil : params[:custom]
 raise "Invalid URL" unless uri.kind_of? URI::HTTP or uri.kind_of?
URI::HTTPS
 @link = Link.shorten(params[:original], custom)
 haml :index
end

The short URL route is the one that is most frequently used. Given the short URL, it
redirects the user to the original URL. At the same time it records the call as a visit.

get '/:short_url' do
 link = Link.first(:identifier => params[:short_url])
 link.visits << Visit.create(:ip => get_remote_ip(env))
 link.save
 redirect link.url.original, 301
end

The redirect command in Sinatra normally issues a HTTP 302 response code.
However, we need to send a 301, as mentioned in the design section. Fortunately,
Sinatra is flexible enough to let us send a 301 instead.

URL Shorteners – Cloning TinyURL

[48]

To get the IP address of the calling client, we use a method called get_remote_ip
and pass it the current environment.

def get_remote_ip(env)
 if addr = env['HTTP_X_FORWARDED_FOR']
 addr.split(',').first.strip
 else
 env['REMOTE_ADDR']
 end
end

Astute readers who already know Sinatra or Rack would know that the Request
object inherent in the block has an ip method that returns the IP address already and
looking at the source it seems to be the same. However, there is a small difference
and this has to do with how web applications get the client's IP address.

Most web servers send a set of information when it interacts with the web
applications. These environment variables (which are specified in the CGI
specification) contain information about the resource that was requested from the
web server, and the information in turn can be used by the web application. An
example of the information is SERVER_NAME, which gives the web application the
host name of the server. Amongst the other information is the REMOTE_ADDR, which
tells the web application the IP address of the calling client.

This is all well and good in an ideal world where the clients and servers are
connected to and interact directly with the Internet. However, in many production
situations, clients and servers are often proxied (by one or more layers) for caching or
other reasons. As a result the REMOTE_ADDR variable only gives you the IP address of
the last proxy.

Many proxies try to be helpful and add HTTP headers to let the web applications
know the real IP address of the calling client. The most popular of these HTTP
headers, pioneered by the Squid proxy, is known as X-Forwarded-For. X-Forwarded-
For provides a list of IP addresses, from the calling client to the last proxy:

X-Forwarded-For: client1, proxy1, proxy2

Sinatra gets both the REMOTE_ADDR HTTP environment variable and X-Forwarded-
For HTTP header through its env variable in the Request object provided by Rack.
However, the current implementation of Rack (1.0.0) has the ip method in the
Request class taking the last IP address while what we need is really the first IP
address. Therefore we need to modify the implementation slightly in order to get
the IP address.

Chapter 2

[49]

X-Forwarded-For is not very secure though, and any machines along the way can
always change the HTTP header to something else altogether. However, as the
information is statistical anyway, this is not a big concern for us.

Next is a group of routes that show the information on the short URL:

['/info/:short_url', '/info/:short_url/:num_of_days', '/info/:short_
url/:num_of_days/:map'].each do |path|
 get path do
 @link = Link.first(:identifier => params[:short_url])
 raise 'This link is not defined yet' unless @link
 @num_of_days = (params[:num_of_days] || 15).to_i
 @count_days_bar = Visit.count_days_bar(params[:short_url], @num_
of_days)
 chart = Visit.count_country_chart(params[:short_url], params[:map]
|| 'world')
 @count_country_map = chart[:map]
 @count_country_bar = chart[:bar]
 haml :info
 end
end

You might notice that we are grouping three different routes under a single block.
This is possible under Sinatra because each route is a method that is being called and
not being defined in the code. We grouped the routes by placing them in an array
and iterating them with a get call.

To show the information in the short URL, firstly we need to establish that the short
URL is an existing link in the system. The rest of the code just calls the logic in the
models and retrieves the necessary data and charts from the models.

In this chapter we are discussing the views separately from
the routes because the application is very small. In subsequent
chapters the routes are discussed alongside the views.

The view in the application is implemented using Haml. The Haml templates are
also in the same file. To do this takes a little Sinatra magic. Ruby has a __END__
directive that indicates that anything that comes after it will not be parsed. Instead,
we can use the DATA constant to get the rest of the data after the __END__ directive.

Using the command use_in_file_templates! we can tell Sinatra to use whatever
after the __END__ directive as the template files. As a result, the Haml templates at
the end of the file are the templates for the Sinatra application. This is not the norm
for the rest of the chapters though, and is not suitable if there are a large number
of views.

URL Shorteners – Cloning TinyURL

[50]

Just as in the routes, the view pages are relatively simple. We have a layout page, an
index page and an info page. Each inline template page starts with @@ followed by
the name of the page. In the Sinatra route, we use this to call a page:

haml :index

In Sinatra, if we define a template called layout, Sinatra will use it as the layout for
all pages, unless we tell it specifically not to.

@@ layout
!!! 1.1
%html
 %head
 %title Tinyclone
 %link{:rel => 'stylesheet', :href => 'http://www.blueprintcss.org/
blueprint/screen.css', :type => 'text/css'}
 %body
 .container
 = yield

We use Blueprint, a CSS framework that provides us with a ready made set of CSS
for various styling and layout purposes. Blueprint goes well with Haml.

Let's look at the index page, which is the front page of the application. The index
page also acts as a catchall that includes error handling and providing feedback to
the user.

@@ index
%h1.title Tinyclone
- unless @link.nil?
 .success
 %code= @link.url.original
 has been shortened to
 %a{:href => "/#{@link.identifier}"}
 = "http://tinyclone.saush.com/#{@link.identifier}"
 %br
 Go to
 %a{:href => "/info/#{@link.identifier}"}
 = "http://tinyclone.saush.com/info/#{@link.identifier}"
 to get more information about this link.
- if env['sinatra.error']
 .error= env['sinatra.error']
%form{:method => 'post', :action => '/'}
 Shorten this:
 %input{:type => 'text', :name => 'original', :size => '70'}
 %input{:type => 'submit', :value => 'now!'}

Chapter 2

[51]

 %br
 to http://tinyclone.saush.com/
 %input{:type => 'text', :name => 'custom', :size => '20'}
 (optional)
%p
%small copyright ©
%a{:href => 'http://blog.saush.com'}
 Chang Sau Sheong
%p
 %a{:href => 'http://github.com/sausheong/tinyclone'}
 Full source code

Reading Haml code takes some getting used to but after a while it becomes a
breeze. If you feel confused at this point in time please refresh your Haml
knowledge in Chapter 1!

The other page is the information page, which provides information of the short URL
to the user. To access the information page, the visitor needs to add info to the URL
path, just before the short URL key, as shown in the following code:

@@info
%h1.title Information
.span-3 Original
.span-21.last= @link.url.original
.span-3 Shortened
.span-21.last
 %a{:href => "/#{@link.identifier}"}
 = "http://tinyclone.saush.com/#{@link.identifier}"
.span-3 Date created
.span-21.last= @link.created_at
.span-3 Number of visits
.span-21.last= "#{@link.visits.size.to_s} visits"

%h2= "Number of visits in the past #{@num_of_days} days"
- %w(7 14 21 30).each do |num_days|
 %a{:href => "/info/#{@link.identifier}/#{num_days}"}
 ="#{num_days} days "
 |
%p
.span-24.last
 %img{:src => @count_days_bar}

%h2 Number of visits by country
- %w(world usa asia europe africa middle_east south_america).each do
|loc|

URL Shorteners – Cloning TinyURL

[52]

 %a{:href => "/info/#{@link.identifier}/#{@num_of_days.to_s}/#{loc}"}
 =loc
 |
%p
.span-12
 %img{:src => @count_country_map}
.span-12.last
 %img{:src => @count_country_bar}
%p

The information template is mostly laid out using Blueprint CSS. The rules for
using Blueprint grid layout are rather simple. Blueprint defines a grid on a page to
be 950px, with 24 columns of width 30px, and a 10px margin between columns. By
adding a CSS class selector that starts with span to a tag, we indicate the width of
that tag. For example, span-2 means the tag is set a width of two columns. The last
tag in the list needs another tag that is last to complete the row.

Now that we have gone through the application in detail, let's look at how we can
deploy it.

Deploying the clone
There are a few ways to run the Sinatra web application. The simplest is probably to
run it off the command line. To do this, we need to set up the database. We assume
that for this application you would have installed MySQL. At the command line go
into the MySQL interactive command console:

$ mysql –u <username> -p <password>

Then just execute the following command:

mysql> create database tinyclone;

This will just create the database. Next, go into IRB and run this command:

> require 'tinyclone'

This will require the necessary classes for creating the database tables. Next, just run
this command:

> DataMapper.auto_migrate!

This will create the tables for the application. To run the application, we just need to
run this at the command line:

$ ruby tinyclone.rb

Chapter 2

[53]

Then, go to http://localhost:4567/ and you will see the running application:

This is how the info page looks:

http://localhost:4567/

URL Shorteners – Cloning TinyURL

[54]

Alternatively we can also deploy to Heroku, the Ruby cloud-computing platform.
Deploying Sinatra applications to Heroku is dead simple as well. These are the steps:

1.	 First, create a config.ru file.
This is the Rack configuration file, which is actually just another Ruby script.
All you need to have in this file is the following:
%w(sinatra tinyclone).each { |lib| require lib}

run Sinatra::Application

This tells Rack to include Sinatra and Tinyclone, and then run the Sinatra ap-
plication.

2.	 Install the Heroku gem.
Just execute the following command:
$ sudo gem install heroku

Heroku provides us with a set of useful tools packaged in a gem, very much
like Capistrano. To deploy our clone to Heroku we must install this gem.

3.	 Initialize an empty git repository in the tinyclone folder:
$ cd tinyclone

tinyclone $ git init

Initialized empty Git repository in .git/

tinyclone $ git add .

tinyclone $ git commit -m 'initial import'

Created initial commit 5581d23: initial import

2 files changed, 52 insertions(+), 0 deletions(-)

create mode 100644 config.ru

create mode 100644 tinyclone.rb

This just creates and initializes an empty git repository on your computer.
4.	 Create the Heroku application:

tinyclone $ heroku create tinyclone

Created http:// tinyclone.heroku.com/ | git@heroku.com: tinyclone.
git

Git remote heroku added

Chapter 2

[55]

You will be prompted for your username and password the first time you
run a Heroku command. Subsequently this will be saved in ~/.heroku/
credentials and you won't be prompted anymore. It will also upload your
public key to allow you to push and pull code.

5.	 Push your code to Heroku:
tinyclone $ git push heroku master

Counting objects: 4, done.

Compressing objects: 100% (4/4), done.

Writing objects: 100% (4/4), 999 bytes, done.

Total 4 (delta 0), reused 0 (delta 0)

-----> Heroku receiving push

-----> Rack app detected

Compiled slug size is 004K

-----> Launching....... done

App deployed to Heroku

To git@heroku.com: tinyclone.git

* [new branch] master -> master

Notice that this pushes your code and loads your application into deployment.
The application is now deployed, but you'll need to create the database.

6.	 Log in to the Heroku console and create the database:
tinyclone $ heroku console

Ruby console for tinyclone.heroku.com

>> DataMapper.auto_migrate!

=> [Url]

Heroku allows you access to a console similar to IRB but with the environment of
your deployment loaded up, just like script/console in Ruby on Rails. To create
the database, we just need to run DataMapper.auto_migrate! and it will create the
database accordingly.

Now go to your application on Heroku (here it is http://tinyclone.heroku.com).

http://tinyclone.heroku.com/

URL Shorteners – Cloning TinyURL

[56]

Summary
This is just a warm-up. In this chapter, we cloned one of the simplest popular
Internet applications around, TinyURL. Later applications will gradually get
more complicated. We started off the chapter with a general introduction to URL
shorteners and a list of pros and cons of using URL shorteners. Then we listed the
main features and discussed the design of our URL shortener, called Tinyclone. This
set the foundation for the discussion on actual construction of the application. After
designing our clone, we went briefly into a short refresher on the technologies used
before going into detail on how the application was built.

The chapter broke up the application into a data model and an application flow
discussion. Both parts were discussed and explained in detail. Finally, we ended the
chapter with a description of how Tinyclone can be deployed. We discussed two
options for deployment—one to a normal server (simulated locally) by running it off
the command line and the other to Heroku, a Ruby cloud-computing platform.

In the next chapter, we will move on to one of the hottest topics
today—microblogging, and in particular Twitter.

Microblogs – Cloning Twitter
One of the most successful new Internet services of recent times is Twitter. Since
its launch it has exploded from niche usage to usage by the general populace,
with celebrities such as Oprah Winfrey, Britney Spears, and Shaquille O'Neal, and
politicians such as Barack Obama and Al Gore jumping into it.

With so much Twitter coverage sometimes it's difficult to remember that Twitter
itself is not unique but is one service in a group of up and coming Internet services
generally called microblogs. In this chapter we look at this Internet phenomenon,
dissect it and as before, clone its main features.

All about microblogs
Microblogs are nominally condensed blogs where users send brief text updates
instead of the usual paragraphs to page-sized updates. One of the first microblogs
(also known as tumblelogs) was Anarchaia, whose owner Christian Neukirchen
described it as 'more than a linkblog but contains less than a usual blog'. Anarchaia was
started in March 2005 and various similar services were rolled out over the same
period of time. However, it is only when Twitter broke into the scene in 2006 when
microblogs gained the most attention.

Microblogs are heavily influenced by numerous technological developments
including obviously blogs, Instant Messaging (IM), Internet Relay Chat (IRC), and in
more recent times, the mobile phone.

Microblogs – Cloning Twitter

[58]

Blogging (a contraction of the word weblog) started as an activity on the Internet for
people to keep personal online diaries or journals. These diaries, basically running
commentaries of the writer's daily lives, appeared on the Internet starting from
1994. Jorn Barger coined the term 'weblog' in 1997 in his blog Robot Wisdom weblog,
which was a record (or log) of books and articles he read as well as subjects he found
interesting. The short form, 'blog', was coined by Peter Merholz, who jokingly broke
the word weblog into the phrase 'we blog' in the sidebar of his blog http://www.
peterme.com in April or May 1999. Shortly thereafter, Evan Williams at Pyra Labs
used 'blog' as both a noun and verb ('to blog' meaning 'to post to one's weblog') and
used the term 'blogger' to mean a person who blogs. Blogging subsequently became
an Internet cultural phenomenon that had wide-reaching influence online as well
as offline.

IRC came into existence in 1988. IRC is a form of synchronous text chatting or
conferencing. Anything typed on the IRC becomes instantly available, almost
like having a bunch of people on IRC chatting with each other. Invented by
Jarkko Oikarinen, it was the forerunner to instant messaging tools such as Yahoo!
Messenger and Google Talk. The IRC community created specific protocols using
special characters that provided instructions to IRC users. Two examples of such
protocols are the namespace channel (#namespace) and the directed message
(@username), both of which eventually made their way into Twitter.

Instant messaging or IM for short started on a similar but slightly different
communications track. Modern, Internet-wide instant messaging clients, as they are
known today, began to take off in the mid 1990s with PowWow, then ICQ, followed
by AOL Instant Messenger. Soon after, AOL bought Mirabilis, the company who
ran ICQ, and other companies started developing their own applications based on
proprietary protocols.

While IM and IRC sound and feel pretty similar, there are slight but significant
differences in architecture and usage of IRC and IM. Firstly, IRC's chat is real-time
and the recipients see what the users were typing. Secondly, while IRC always
connects to a server for all communications, IM clients normally only connect to the
server to get the contacts list of friends. The actual messages that are communicated
are between the users. Finally, while IRC is normally a public forum where people
come together to chat about something, IM is more personal and one-to-one
(although most IM clients have conference or group chat features).

IM eventually evolved a feature where users are able to leave custom status
messages instead of the 'not at my desk' message. After a while it became the norm
to express yourself in these status messages and for your friends to catch up with
you by reading those messages and even sharing things like songs that you were
listening to at the moment or URLs to interesting sites on the Internet.

Chapter 3

[59]

The final and probably the triggering point is the mobile phone and text messaging.
Text messaging is a form of message exchange involving the mobile phone that
started with and is predominantly using the GSM network's Short Message Service
(SMS) protocol. Most text messages are just text, though other forms of content
including sounds, pictures, and videos have been shared through other protocols
such as MMS. Text messaging is primarily one-to-one and private though its usage
included text marketing (marketing to consumers through sending text messages)
and sending text commands (think text voting for American Idol).

SMS technology has been included in GSM as early as 1985 during a GSM meeting in
Oslo but the first SMS was sent in the UK in 1992 by Neil Papworth of Sema Group
(now Airwide Solutions), who used a personal computer to send "Merry Christmas"
to Richard Jarvis of Vodafone, who was using an Orbitel 901 handset. The initial
take up for text messaging was quite slow because users were only allowed to send
messages to someone using the same operator. It was only in 1999 when messaging
was allowed between networks that SMS really started to take off.

As you can probably notice now, all these technologies show their influence in the
creation of microblogs. Microblogging evolved from these 'ancestors' to be a new
form of blogging that allows people to share their thoughts and also share links,
images, and videos, much like their lengthier cousins. The conventions in microblogs
such as hash-tagging topics and using @ replies have been adopted from IRC. Instant
messaging prepared users for the norm of leaving asynchronous messages (such as
status messages) for their friends and sending one-to-one private messages. Finally
texting enabled microblogging on a much larger scale by tying text messaging
to microblogs, and also prepared users for the norm of composing short and
succinct messages. The mobility of texting enabled users to communicate any time
they wanted and also showed in the influence of Twitter with their 140-character
limitation (SMS limits messages to 160 characters—Twitter limited it to 140 and left
20 for the username).

It is only right that Evan Williams, who helped define the word 'blog' and was also
the co-founder of Blogger (one of the earliest blog publishing tools that helped to
popularize blogging) eventually co-founded Twitter.

Microblogs – Cloning Twitter

[60]

Twitter
Twitter is a phenomenon that broke onto the Internet scene in 2006. The first Twitter
prototype was used as an internal service for Odeo employees in March 2006
and was later launched publicly into a full-scale version in July 2006. The tipping
point for Twitter happened in March 2007 during the South by Southwest (SXSW)
music festival in Austin, Texas. During the event, the number of tweets grew from
20,000 per day to 60,000 per day. The Twitter people placed plasma screens in the
conference hallways to stream Twitter, panelists and speakers mentioned the service,
and the bloggers in attendance touted it. Reaction at the festival was overwhelmingly
positive and that was the event generally known to have sparked the Twitter uptake.
Twitter won the festival's Web Award and Twitter staff accepted their prize with the
remark "We'd like to thank you in 140 characters or less. And we just did!"

Twitter is obviously the top dog amongst the microblogs. Amongst its more
prominent direct competitors are Plurk, Tumblr, Brightkite, Jaiku, Pownce, and
Identi.ca, but in recent times the big boys are moving into this area as well. Google
bought Jaiku in 2007. Pownce was bought by SixApart in December 2008 and was
shutdown in the same month. In 2009, Yahoo! launched a microblogging service
called Meme. Even Facebook and LinkedIn got into the act by adding new features
that competed with the standalone microblogs.

Nonetheless, Twitter is way ahead of its competitors. According to Compete
(http://www.compete.com) in September 2009, Twitter had 23.5 million unique users
per month, while the nearest competitor Tumblr had about 3.3 million unique users,
about eight times less than Twitter. In addition, according to statistics gathered by
TwitStat, the 23 million users on Twitter's website represent only 18% of their user
base; the rest access Twitter through client applications that connect to Twitter through
their API(s).

Chapter 3

[61]

Microblog Unique users in September 2009
Twitter 23,538,791
Tumblr 3,389,721
Brightkite 246,684
Plurk 214,551
Identi.ca 91,046

To be fair, Facebook, LinkedIn, and other popular social network's microblogging
features are not included in this comparison as it is difficult to get accurate numbers
that are separate from the rest of their services. It is likely that these services will be
the serious challenger to Twitter and not the standalone microblogging sites. On the
other hand, Twitter itself is changing and moving ahead to be more of a discovery
engine, since buying out the popular Twitter search engine Summize in July 2008.

While there are statistics and more statistics on Twitter, a very quick gauge of
Twitter's influence on the Internet and popular culture can be made with a simple
search on Google. A quick search on Google in October 2009 on the keyword
'Twitter' returned close to a billion results, as compared with the keyword 'Google',
which returned about 2 billion, Facebook about 1.8 billion, and Yahoo! about 2.2
billion. However, the contrasts could not have been bigger—Google has about
20,000 employees, Yahoo! has about 13,000 employees, Facebook has about 1,000
employees, while Twitter has only 74 employees. As a comparison, a similar
keyword search for 'Tumblr' only shows 16.4 million results.

Why Twitter?
So how did Twitter succeeded so dramatically? By all accounts, with its sparse
features (it mostly just allows users to post and read tweets) and competition there
isn't much to argue for its success. The need for such a service was practically nil.
Many people in fact couldn't understand why anyone except a narcissist would want
to post mundane tweets about themselves.

Although there is no clear-cut reason why Twitter became so wildly successful, the
following are some possible reasons.

Microblogs – Cloning Twitter

[62]

Simple
Twitter's premise is simple—just type in what you are currently doing in 140
characters and share it with the world. It doesn't care what you share, as long as
it's less than 140 characters. Using it isn't rocket science and it's simple enough to
pick up and go with it. This philosophy can be seen in its APIs and user interface.
Twitter's user interface is uncomplicated and its APIs are easy to use. The proof
of the API's simplicity is in its wide adoption. In fact writing Twitter clients are so
easy that it's been called the new 'Hello World' application (a 'Hello World' is an
application that prints out 'Hello World' on a display device and is widely used as
the introductory tutorial application for many programming language text books
and tutorials).

A means to have public conversation
An interesting though not unique feature with Twitter and microblogs is to allow
users to have public conversations amongst themselves. This is a feature that is
inherited from blogs. However, while blogs are all about posting and allowing
anyone to comment on that blog post, Twitter allows a user to tweet and have users
respond using '@' reply, comment, or re-tweet. Responding with replies emulates a
real-world conversation in both its brevity and directedness while comment and re-
tweeting emulates spreading of news through the grapevine. This is one of the key
strengths of Twitter and microblogs in general.

Let's compare a blog with Twitter. A full blog does not compare directly with Twitter
but with an account in Twitter, since a user does not post into Twitter but into his/
her own account. In this sense we can consider each user account in Twitter as a
nanoblog in which the user writes his/her blog posts and Twitter as the blogosphere in
which these nanoblogs exist. While blogs are individualistic and spread throughout
the blogosphere (each blogger has his/her own blog) with their own interface and
their regular readers, Twitter aggregates all the blog posts from each nanoblog and
provides a single interface to access them. This forms a social bond between each
nanoblogger, something that blog sites are not capable of doing today (though sites
such as Blogger and Wordpress try). This is the social network effect.

Fan versus friend
The social effect of microblogs like Twitter is subtly different from that of social
networks such as Facebook, Myspace, and Friendster. The connections in social
networks are that of 'friends', that is, the relationship goes both ways. The friend you
know in Facebook is most likely someone you knew before joining Facebook, and
Facebook requires you to approve the connection. This is the friend model.

Chapter 3

[63]

On the other hand the connections in microblogs can go either one way or both
ways. When it is in the one-way mode, the connections are like being fans. A typical
example—you might know Barack Obama but it is most unlikely that he knows
you in return. This is the fan model. However, if he does know you, then connection
becomes both ways and the model is similar to that of the social networks.

The differences are subtle but important. Facebook's model is reciprocal, that is the
user needs to approve and agree that you are his friend before a connection is made,
but Twitter's model is not. You can 'follow' any one that catches your fancy and the
number of 'followers' can be quite exponential. While Facebook had a 5,000 friends
limit until March 2009, Ashton Kutcher (@aplusk) was racing with CNN to have
more than 1 million followers in April 2009 (which he eventually won). As of writing
(October 2009) Ashton Kutcher leads the pack of close to 200 Twitter accounts with
more than 1 million followers, with 3.8 million followers himself.

Of course, Facebook also have a fan model (after March 2009), which has a top
account (Michael Jackson) reaching more than 10 million fans but if we compare the
friend model in Facebook versus the fan model in Twitter you can see how the fan
model has tremendous reach. The fact that Facebook modified their 5,000 friends
limit and added features that support the fan model shows the importance of this
model, and we can see how it had helped to push Twitter to its current heights.

Understanding user behavior
Regardless whether intentional or not (though I am inclined to think that it was),
Twitter understood what users wanted. Blogs, though highly popular, were usually
for the more verbose because not everyone can write lengthy blog posts or even
write well. The need to share and to convey thoughts could be there but the process
of translating it from the to-be-blogger's mind to a blog post usually took effort many
people would normally consider work. Also writing long posts (or even short posts)
takes time and that forms a barrier for many casual bloggers.

Using Twitter however, takes very little time and effort. The 140-character limitation
is a double-edged sword—while it is a bane for people who need to write more,
it also forced users to write succinctly and reduces the amount of time and effort
needed to write. As there are no rules in writing as many 140-character tweets as
you like, there is sufficient flexibility to extend the limitation. The barrier to blog
and share with the world what you are doing at all times has been greatly
reduced in Twitter.

Microblogs – Cloning Twitter

[64]

In addition, some people do not find it comfortable to read lengthy blog posts on
a computer screen while bite-sized tweets are more acceptable. This especially
applies to reading on the mobile phone and on the go. Catching up with friends and
knowing what they have been up to is something blogs and social networks have
offered up until now. Twitter provides the means to access such updates for both
friends and fans anywhere and easily. Social networks such as Facebook, LinkedIn,
and others are catching up though. Many of these social networks also offer status
update capabilities very much like Twitter and other microblogs.

Easy to share through text messaging
The need to share and convey meaning doesn't always occur in front of a laptop or a
desktop computer. More often than not, it is those idle times and waiting moments,
or when an idea strikes that the urge to share and communicate occurs. In this sense,
Twitter's strategy of using texting as a major means of tweeting hit the bullseye. With
billions of mobile phones in the world and tens of billions of text messages in the
world flying around every month, Twitter was ensured an audience who is already
familiar with their easy-to-use product. Users who are used to texting took to it like
ducks to water—tweeting is merely an extension of their normal texting behavior,
except that it provided a means to have a public one-to-many conversation instead
of a one-to-one conversation. It is easy enough to see that the need to share coupled
with the capability to actually do it quickly and easily at that time propelled Twitter
into the stratosphere.

While it is easy enough to see how text messaging works for tweeting updates, Twitter
actually sends updates to your mobile phone for you to read as well. However, as of
writing, receiving updates only works for a few countries (in the U.S., UK, Canada,
India, and New Zealand now but this could change rapidly) due to the costs involved.

Easy to access through multiple devices and applications
Twitter's mobility extends to not only text messaging but through its simple API—it
enabled hundreds of different clients on multiple platforms. As long as connectivity
over the Internet is available, it is easy enough to write a Twitter accessing client. At
the same time, Twitter's APIs are easy enough to use that anyone can write a simple
Twitter client.

RapLeaf, a social media company that conducted research on Twitter in August 2009
estimates over 1,900 Twitter clients in their survey of 4 million Twitter users. This
of course does not include the myriad of applications that make use of Twitter APIs
for discovery, statistics, and other purposes. By all standards, the current number is
conservative as more new services and clients are being added daily.

Chapter 3

[65]

Main features
As in the previous chapter, before we jump into designing the clone, let's look at
the main features of a microblog. An open standard called OpenMicroBlogging exists
but it is not widely adopted. In a market dominated by a single powerful player it is
often difficult to introduce an open standard that allows interoperability, unless the
dominant player is the one that came up with it.

In this chapter we will be discussing some of the main features common to many
microblogs. As before, the main features represent the features that define a
microblog. Inevitably the features are mostly Twitter features.

•	 Allow users to post status updates (known as 'tweets' in Twitter) to
the public.

•	 Allow users to follow and unfollow other users. Users can follow any other
user but it is not reciprocal.

•	 Allow users to send public messages directed to particular users using the @
replies convention (in Twitter this is known as mentions).

•	 Allow users to send direct messages to other users, messages are private
to the sender and the recipient user only (direct messages are only to a
single recipient).

•	 Allow users to re-tweet or forward another user's status in their own
status update.

•	 Provide a public timeline where all statuses are publicly available
for viewing.

•	 Provide APIs to allow external applications access.

There are a number of features that we have skipped in this chapter, which are
normally part of most microblogs. These include search, trending topics, posting
photos, and videos on the tweet.

Designing the clone
With the features we want for the clone well defined, let's delve into the functional
design of our Twitter clone. We will be building a clone of Twitter called Tweetclone,
which we will be hosting at the domain http://tweetclone.saush.com. Tweetclone
contains a minimal feature set that is just enough to implement a simple Twitter clone.

Microblogs – Cloning Twitter

[66]

Posting statuses
Let's start off with the main entity in the application. Tweets, generically known
as statuses, are freely viewable by everyone. Each user must be logged in to post a
status update (or to tweet) as in any normal blog. This means status updates belong
to only one user at a time. This also means that we need a user to be registered
and logged in (authenticated). Although this statement is simple, it is really quite
crucial—it means we need to have a user authentication mechanism, unlike in
Tinyclone in the previous chapter, where anyone can use it without logging in.

For many Internet applications, the username is not an important part of the
functionality of the system (at least for the user himself). It is mainly used to
authenticate the user at login and for the system to address the user. However,
in microblogs such as Twitter and Tweetclone the username provides crucial
information for the user himself. This is because users interact with other users
using the username as the handle.

As a result, designing the username is important. Needless to say, the username
needs to be unique. However, the username also needs to be editable by the user
himself. At the same time, the username should be short (users don't like to type out
long usernames and space is limited anyway). If a user can change his/her username
at will, how can we identify him/her uniquely? In most cases we will identify him/
her directly using a unique identifier, but in the cases where we need to use his/her
nickname and if he/she changes it, he/she will not be able to access his/her tweets.
This is actually the same behavior as in Twitter.

As for the status text, Twitter and some microblogs implement a 140-character limit.
This is mainly because Twitter was originally built for SMS text messages. While
this is not a hard-and-fast rule in microblogs, for faithful reproduction (aka cloning)
purposes, we will implement the same limit in Tweetclone.

Following users
If posting statuses is the only thing users do in a microblog then microblogs are
really nothing more than mini blogs with less text. What makes microblogs more
than just blogs with less text are their social features. In fact, some suggest that
microblogs such as Twitter are actually more similar to social networking services.

One of the main features in any social network involves modeling the interaction
between its users. The two more commonly adopted models are the friend model
and the fan model as described in a section above. Let's review the models again
before we go through the design because this is a crucial part of a microblog.

Chapter 3

[67]

In the friend model, users in the system already know each other and they connect to
each other to renew that friendship or acquaintance. In this model, user Tom needs
to accept Waldo's invitation to connect before the connection is made. Without that
connection, Waldo will not get to have deeper information that is available on the
system about Tom or be able to read Tom's status updates. Only minimal public
information is provided, if any at all. Once that connection is made however, the
relationship becomes mutual, Tom and Waldo have equal access to each other's
information and status updates.

In the fan model on the other hand, Waldo doesn't need Tom to approve the
connection. Waldo's connection to Tom is similar to a fan to a movie star; Waldo
knows and follows Tom while Tom doesn't necessarily follow Waldo. In this case,
the connection made is one-sided; Waldo knows about Tom's information and
status updates while Tom doesn't get any information in return. However, Tom can
follow Waldo in return without Waldo's approval too. This seemingly lop-sided
relationship is not something new, even in other applications. It is widely used for
example, in contact management systems where a user's contacts list (or address
book, depending on the kind of application you're using) can contain contacts of
friends, or contacts of people you know but who might not know you in return.

While both models seem similar and the difference trivial, the usage of systems
based on either model is quite different. Users make use of systems built on the fan
model, such as Twitter and the other microblogs, to make new friends and discover
new things happening in the world around them. In fact, Twitter calls their search
feature a 'discovery engine'. Twitter's live information stream coupled with a search
engine allows its users to utilize Twitter as a real-time search engine. This has
become enough of a threat that Google has responded by incorporating microblog
search in its search engine.

In Tweetclone we will be implementing the fan model. This means users in
Tweetclone have a one-way relationship with each other. If the users are friends,
then two relationships will be built. The relationship is called follows, which is the
more commonly known term used in Twitter. For example, Waldo and Ivan follow
Tom; they are Tom's followers. At the same time Tom follows Ivan, so Tom is Ivan's
follower. Tom has two followers and one follows, while Ivan has one follower and
one follows, and Waldo has only one follows.

Microblogs – Cloning Twitter

[68]

Sending publicly directed messages
A key feature in all microblogs is allowing users to send publicly directed messages
to specific users. The message is actually a normal status update that is directed
to specific users. From a user's point of view, this means that the status is publicly
viewable by all users, but at the same time the recipient knows that the status
update/message is intended for him/her. The normal convention used is to add the
@ symbol in front of the user name. This convention is actually propagated from the
IRC along with the namespace channel (also popularly known as the hash-tag). In
Twitter, this feature is known as a mention.

The difference between a publicly directed message and a normal status update is that
users are able to show just those messages that are directed to them. This means that
in the system, we need to be able to indicate that a status update is directed to a user.
Since a single public message can be directed at a number of users at the same time,
the relationship between the status update and the user is one of many-to-many.

Sending privately directed messages
While the publicly directed messages are viewable by one and all, some microblogs,
including Twitter, implement a private messaging system (known as direct messages
in Twitter) that sends messages from one user to another, privately. Direct messages
are directed from one user to another and only either one of the two users are able to
view it. Direct messages are viewed separately altogether from the status updates.

Direct messages have a sender and a recipient. In the preceding example, Tom sends
the direct message to Waldo. Tom is the sender of the direct message while Waldo is
the recipient.

Chapter 3

[69]

Re-tweeting
Re-tweeting is a social network related feature and for a long time was not an official
feature provided by Twitter. The basic premise of a re-tweet is very simple—the user
copies another user's tweet and posts it as his/her tweet, sometimes adding his/her
comments to it. The most common format of a re-tweet is to add RT to the front of
the tweet, followed by the @ and the username though sometimes RT is placed at the
back of the tweet, or 'via @username' is used instead.

In August 2009 Twitter announced Project ReTweet, which is basically Twitter's
project to add re-tweeting into its platform, including its APIs. This simplifies the
act of re-tweet, as well as making it consistent. Along with this feature Twitter
also provided a set of Twitter APIs to go along with it. In November 2009, Twitter
released the feature.

What is probably most controversial is of course that Twitter chose not to implement
commenting on re-tweets. The community created convention of re-tweeting allows
the user to add in their own comments or even modify it if they want to. The official
Twitter feature doesn't allow this at all. On the other hand, with a more organized
way of tweeting as well as an API, gathering re-tweeting statistics and discovering
more information in Twitter is much easier.

In Tweetclone we will be implementing the simpler community convention
based re-tweeting.

Public timeline
All tweets in most microblogs are, by default public, although in some microblogs
you can block access to the tweets by making them private. Some microblogs like
Identi.ca and Twitter publish public timelines that show all tweets from everyone.
The public timeline is a simple feature. It's simply a list of all the latest tweets from
all users in the system that is viewable without the user actually logging in.

API
Almost all microblogs (actually most web 2.0 styled web applications) have some
APIs or Application Programming Interfaces that allow developers to access some
parts of their service or data. While many popular web applications that provide API
have clients, Twitter generated a whole sub-industry of client applications.

Microblogs – Cloning Twitter

[70]

Twitter clients are so popular that they have been dubbed as the new 'Hello World'
application (a 'Hello World' is an application that prints out 'Hello World' on a
display device and is widely used as the introductory tutorial application for many
programming language text books and tutorials).

Although there are many reasons why Twitter clients are so popular (mostly dealing
with the popularity of the service itself), one of them is probably the ease of use
of the APIs themselves. Twitter provided many of their original APIs without the
need for authentication, and for those that do require authentication, simple HTTP
Basic Authentication was used. Although Twitter also supported OAuth later as
their recommended and more secured authentication service, Basic Authentication
remained highly popular just because it's so easy to use. In fact Twitter recognizes
this and for a very long time, both Basic Authentication and OAuth co-existed. In
December 2009, Twitter announced that Basic Authentication would be turning off
its Basic Authentication APIs in favor of OAuth by June 2010.

In terms of base functionality, a Twitter client is very simple. Twitter itself is built
around the simple premise of asking: "What are you doing right now?" and letting
the users answer. A Twitter client essentially needs to do two things—display the
user's timeline and let him post tweets.

In the same spirit, Tweetclone will be implementing a small set of APIs. This small
subset allows for a minimal Tweetclone client (which we will not implement, leaving
it as an exercise for the reader). The APIs we will be implementing are as follows:

•	 Get all tweets for a user
•	 Post a tweet
•	 Get the public timeline

These APIs will be protected by HTTP Basic Authentication.

Authentication, access control, and user
management
All applications require users (the definition of an application software is a computer
program that supports or improves its users' work) but not all applications require
their users to log in. The word processor desktop application and URL shortener web
application in the previous chapter are examples of applications that do not require
user login.

Chapter 3

[71]

Applications normally require a user to log in when we need to identify the user
and provide services that are specific to him only. This is true especially with web
applications that support multiple users concurrently—if we have to provide a
personalized service we need to identify him. The action of identifying a user is
called authentication. Along with authentication is the idea of access control, which
tells the application if an authenticated user is allowed to access certain resources,
or not. The third leg of that supports user login in applications is user management,
which is a set of functions that support the management of users, including user
registration and password management.

Traditionally web application developers use existing libraries or write their own
authentication, access control, and user management modules to support user
login. The application would require users to register for an account then send a
validation-cum-activation e-mail to the new user. Once the user receives and
activates his/her account through the URL embedded in the e-mail, he/she would
be allowed to enter his/her username and password into the application and be
authenticated and identified. Other essential functions of user management include
facilities to reset the password should the user forget, change his/her password,
change his/her profile, settings, and so on.

As you can imagine, authentication, access control, and user management can be
quite involved and complicated, especially when issues of security and privacy
weigh in. When writing web applications (and even other types of applications) the
authentication and user management modules take up a big chunk of critical work
for developers and require continual maintenance and operations post-deployment,
even with usage of external libraries.

Third party authentication and access control
At the same time, many larger software organizations started to tout their
proprietary own authentication and access control mechanism. Microsoft started its
Passport service in 1999 and received much criticism along the way (later it changed
its name to Windows Live ID). Soon after, in September 2001, the Liberty Alliance
(which many considered a counter to Passport) was started by Sun Microsystems,
Oracle, Novell, and others to do federated identity management.

On the open front, two different technologies have surfaced to solve the issues of
authentication and access control separately. OpenID is a popular digital identity
used for authentication, originally developed for LiveJournal in 2005. Many large
companies including Yahoo!, Google, PayPal, IBM, and Microsoft support it. As of
November 2008, there are over 500 million OpenIDs on the Internet and about 27,000
sites have integrated it.

Microblogs – Cloning Twitter

[72]

OAuth is a newer protocol used for access control, first drafted in 2007. It allows
a user to grant access to information from one site (provider) to another site
(consumer) without sharing his/her identity. OAuth is strongly supported by
Google and Yahoo!, and is also used in Twitter, LinkedIn, and many other popular
Internet applications.

As mentioned before, Google is an initial and strong supporter of OAuth but it
also offers the older AuthSub web authentication as well as ClientLogin client
authentication APIs in addition to being an OpenID provider (it calls its OpenID
service Federated Login). Yahoo! started supporting OAuth officially in 2008,
alongside its older BBAuth APIs and is also an OpenID provider. Facebook joined
the race in 2008 with Facebook Connect, which does authentication as well as sharing
Facebook information. MySpace also came in with their platform in 2008, originally
called Data Availability, which quickly became MySpaceID.

In April 2009, Twitter started offering 'Sign In with Twitter', which true to its name,
allows users to sign in with their Twitter accounts. Originally, Twitter used HTTP
basic authentication to protect its resources but eventually support grew for OAuth.
On top of all that, there is an extension to OpenID called OpenID OAuth Extension
that combines OpenID's authentication with OAuth's access control, and Google,
Yahoo!, and MySpace announced their support for it in September 2009.

As you can see there are really lots of players in the market. RPX, a popular
authentication service provider, took advantage of these offerings and came up with
a unified and simplified set of APIs to allow authentication with Yahoo!, Google,
Windows Live ID, Facebook, AOL, MySpace, and various OpenID providers.

Authentication and user management
It's obvious from the preceding discussion that there are plenty of choices for a web
developer today in terms of third party authentication and access control services.
For smaller web applications (such as Tweetclone) it is foolish to write our own
when we can pick and choose from a list. Also, from our requirements above you can
realize that we don't need access control services, only authentication.

However, there is a slight twist to our requirements in Tweetclone. Before we
jump into the explanation, let's look at third party authentication services
from another angle. Looking from a different perspective, there are two
types of third party authentication:

•	 Web authentication for web applications
•	 Client authentication for desktop or mobile client applications

Chapter 3

[73]

The main difference between these two types of authentication is that Web
authentication will redirect the user to provider's site for him/her to enter his/her
username and password, then returns to the calling web application, usually with
a success or failure token. Client authentication (usually) cannot do this, and would
require the application to capture the username and password, which is sent by
the client application to the provider. Obviously from a security point of view, web
authentication is more secure and re-assuring to users since the user never need to
pass the username and password to the application at all.

From the above you would realize that web authentication only works for web
applications. This is the prickly point. If you remember from the section on designing
APIs, we need to get the developer using our API to authenticate before using the
API. However, he/she authenticates through his/her code only, and does not use
a web interface. So how can we overcome this? Do we really need to write our own
authentication and also user management module?

Not really. From our discussion above you will notice that out of the few providers,
Google and Twitter both provide us with web as well as client authentication
services. If we use either one of them, we can use the web authentication services
for the Tweetclone web application and the client authentication services for the
Tweetclone APIs. For Tweetclone we have chosen to use Google (because using
Twitter authentications services would be too dependent on Twitter itself).

Also, for the web authentication, we have chosen to use RPX for Google to simplify
the integration and also to allow for future flexibility (we will be using RPX in
subsequent chapters too). This means that although RPX provides interfaces to a
number of authentication providers, we will limit it to only Google.

As for user management, the functions are split between Google and Tweetclone. As
the users are really Google users who happen to also use Tweetclone, the functions
to change their profile, manage their passwords, and generally secure their account
lies with Google. However, Tweetclone requires a user entity to manage the user-
to-user relationships as well as tweet ownership and therefore we store some user
information in Tweetclone. For example, we want to display some nice avatars on
Tweetclone; the avatar information is going to be placed in our user profile and not
in Google.

Microblogs – Cloning Twitter

[74]

Scalability and stability
Two of the key issues that plague startups that become successful are the scalability
and stability of the application. This is especially true with microblogs—the point
in case is Twitter and their (in)famous and intermittent series of server failures
throughout 2008 and 2009. Twitter was initially developed for internal use by a small
company and its rapid growth wasn't anticipated. Spikes of utilization during large
events and conferences such as Macworld, the Super Bowl, and Michael Jackson's
death caused mini-meltdowns in which users were greeted by a stock image of
a whale being lifted out of the sea by a flock of birds. This became the famous
'fail whale' and it is a warning sign for developers-to-be of large-scale Internet
applications to be prepared for scalability.

While there are many techniques for scalability, we will focus on just one that is the
most practically implemented at the start of deployment, and that is to deploy it on a
cloud platform, Heroku.

Chapter 3

[75]

Technologies and platforms used
We use a number of technologies in this chapter, mainly revolving around the Ruby
programming language and its various libraries. In addition to Ruby and its libraries
we also use a few mashups, which are described below. We have described Sinatra,
DataMapper, and Haml in the previous chapters so we will not repeat this here.
Please refer to Chapter 1, Cloning Internet Applications for the details if you need to
refresh your memory.

JSON
JSON (JavaScript Object Notation) is a lightweight data-interchange format, often
used within a web context. It is meant to be easy for humans to read as well as for
machines to parse or create. As the name suggests, it was derived from Javascript
for representing simple data structures and hashes. However, JSON itself is
not programming language-specific and has many implementations in various
languages. It is increasingly becoming the popular alternative to sending and
receiving XML.

In this application we will be using the JSON gem, which is one of the most popular
JSON Ruby libraries. Installing the JSON library is simple:

% sudo gem install json

To use the library you need to require it first:

require 'json'

There are primarily two uses of any JSON library—you either use it to parse JSON
data or to create JSON formatted data from another format. Parsing is very easy with
the JSON Ruby library:

obj = JSON.parse(json_data)

Creating is relatively easy as well:

JSON.generate(obj)

In this chapter and in many chapters, we often use generate JSON from the object
itself using the to_json method.

Microblogs – Cloning Twitter

[76]

Mashups
As with previous chapters, while the main features in the applications are all
implemented within the chapters itself, sometimes we still depend on other services
provided by generally well-known providers. In this chapter we use four services—
RPX/Google for user web authentication, Google ClientLogin for API authentication,
Gravatar for avatar services, and TinyURL for URL shortening.

RPX
RPX is an authentication provisioning service provided by JanRain, a technology
startup with deep roots in the OpenID community. It doesn't do the actual
authentication itself but acts as a proxy to a multitude of third party authentication
providers such as Google, Yahoo!, MySpace, Windows Live ID, Facebook, Twitter,
and a number of OpenID providers such as LiveJournal and Blogger. By wrapping
around these third party providers it exposes a uniform interface that enables
websites and applications to easily use any of the third party authentication
providers. This is how it works:

1.	 The user chooses their identity provider from a sign-in interface provided
by RPX. This sends some POST parameters to the RPX server, including a
token URL, which is a URL that RPX will send to the user once they've been
authenticated.

2.	 RPX initiates the authentication process with the chosen provider on behalf
of the web application, including sending the user to the chosen provider.

3.	 The provider displays an authentication form to the user for him to
authenticate himself (to the provider) and informs the user that he will be
signing in to the web application.

4.	 Once the user is authenticated, the provider sends the user back to RPX,
which in turn sends the user to the token URL specified earlier, along with a
token parameter.

5.	 Armed with the token parameter and an API key that was given by
RPX during registration, the web application sends a request to RPX
for more information.

6.	 RPX returns the data accordingly if the token is valid. At this point in time,
the user is authenticated and can be considered logged in.

To use RPX, we need to firstly register ourselves with RPX. RPX uses its own services
for authentication so you can log in with any of the shown third party providers.
Once you have registered, you need to create an application within RPX.

https://rpxnow.com/docs#sign-in_interface

Chapter 3

[77]

Once you have created the application you will be provided with an API key. This
API key is what we will be using to interact with RPX at step 5 above.

www.allitebooks.com

http://www.allitebooks.org

Microblogs – Cloning Twitter

[78]

Once you have the application you can also set up which providers you want to
allow. For Tweetclone, because of the reasons given above, we will only use Google.

Google ClientLogin
As explained above, Google has a couple of authentication mechanism. Google's
ClientLogin mechanism is for installed applications, following Google's terminology.
However, any application can use it, even web applications. For Tweetclone we use
ClientLogin to authenticate for the APIs.

If you read the ClientLogin documentation in Google's ClientLogin for Installed
Application page, you might see a complicated diagram that includes token
exchange and CAPTCHA challenges.

In actual usage this is not strictly necessary and even a bit misleading. If you use the
generic service code in the service parameter, xapi (for GData services), you will not
be challenged for a CAPTCHA. Naturally this is less secure but for our needs (for
usage in an API) we will not be able to demand a CAPTCHA answer anyway so the
flexibility suits us.

The generic URL for ClientLogin is:

https://www.google.com/accounts/ClientLogin

Chapter 3

[79]

We need to send a POST request to the preceding URL, with the following
minimal parameters:

Parameter Description
accountType Type of account to request authorization for. Possible values are

GOOGLE (get authorization for a Google account only), HOSTED (get
authorization for a hosted account only) and HOSTED_OR_GOOGLE
(get authorization first for a hosted account; if attempt fails, get
authorization for a Google account). For Tweetclone we will use
GOOGLE.

email User's full e-mail address. It must include the domain.
passwd User's password.
service This is the name of the service we are requesting. For the case of

Tweetclone we are not requesting any service at all, so we stick with the
generic 'xapi' service code.

source This is a short string identifying your application, for logging purposes.

Gravatar
Gravatar is short for Globally Recognized Avatar, and is a free Internet application
that allows you to map avatars (which are mid-to-small-sized thumbnail pictures
representing yourself) to e-mails. The service itself is quite simple—it allows the user
to add any number of avatar pictures and also any number of e-mail addresses that
belong to you. You can map any of the pictures to any of the e-mail addresses.

We use Gravatar in Tweetclone because we need an avatar and because we don't
have an authentication service and only keep a simple profile. We also use Gravatar
centrally because not all third-party authentication providers will provide avatars.

Gravatar is very easily usable in web applications. An avatar in Gravatar is identified
through its e-mail address, converted into lowercase, with whitespaces trimmed and
then hashed with MD5. A typical avatar URL looks like the following:

http://www.gravatar.com/avatar/ee191858f0d96ad93098694537f71998

Note that the file extension is optional, and if it is required by some application,
you can append any extension to it (Gravatar doesn't mind or care about the
extension at all).

http://www.gravatar.com/avatar/ee191858f0d96ad93098694537f71998
http://www.gravatar.com/avatar/ee191858f0d96ad93098694537f71998

Microblogs – Cloning Twitter

[80]

TinyURL
TinyURL is a URL shortening service that we cloned in Chapter 2, URL Shorteners
– Cloning TinyURL. However, in Chapter 2 we did not implement an API, which
is what we require in this chapter. We use TinyURL in Tweetclone to shorten and
replace the URLs we encounter while parsing the status. TinyURL has a very simple
API. Just execute the following in the web application:

http://tinyurl.com/api-create.php?url=<long url>

And you will be returned the shortened URL.

Heroku
Heroku is a Ruby-specific, cloud-computing platform that provides specialized
Ruby hosting services for developers. It allows Ruby developers to easily and
almost instantly deploy web applications to the Internet. Heroku supports Rack-
based web applications so deploying our Sinatra applications to Heroku is a breeze.
While Heroku charges for hosting, it also provides a free basic tier account. More
information on how Heroku is used at the end of this chapter when we talk
about deployment.

Building the clone
Now that we are done with the discussions on Twitter, its features and also the
design of the clone, let's roll up our sleeves and get into the act of building it.

Modeling the data
The data model for Tweetclone is quite simple; it consists of two major classes—User
and Status, and two minor classes that describe the relationships—Relationship
and Mention.

http://tinyurl.com/api-create.php?url=<long
http://tinyurl.com/api-create.php?url=<long

Chapter 3

[81]

The Relationship class defines the many-to-many relationship between users,
that is it defines who follows whom. The Mention class defines the many-to-many
relationship between users and statuses (aka tweets). Each status can mention one or
more users and each user can be mentioned in one or more statuses. A user can have
one or more statuses, while only one user can be the recipient of a status. In addition
to that, because we're modeling direct messages with statuses, a user can also have
one or more direct messages.

In Tweetclone we have placed all the models in a single file called models.rb.

User
Let's define the User class first. The source code to define the DataMapper model of
User is as follows:

class User
 include DataMapper::Resource

 property :id, Serial
 property :email, String, :length => 255
 property :nickname, String, :length => 255
 property :formatted_name, String, :length => 255
 property :provider, String, :length => 255
 property :identifier, String, :length => 255
 property :photo_url, String, :length => 255
 property :location, String, :length => 255
 property :description, String, :length => 255

 has n, :statuses
 has n, :direct_messages, :class_name => "Status"
 has n, :relationships
 has n, :followers, :through => :relationships, :class_name =>
"User", :child_key => [:user_id]
 has n, :follows, :through => :relationships, :class_name => "User",
:remote_name => :user, :child_key => [:follower_id]

 has n, :mentions
 has n, :mentioned_statuses, :through => :mentions, :class_name =>
'Status', :child_key => [:user_id], :remote_name => :status

 validates_is_unique :nickname, :message => "Someone else has taken
up this nickname, try something else!"

 def self.find(identifier)
 u = first(:identifier => identifier)

Microblogs – Cloning Twitter

[82]

 u = new(:identifier => identifier) if u.nil?
 return u
 end

 def displayed_statuses
 statuses = []
 statuses += self.statuses.all(:recipient_id => nil, :limit => 10,
:order => [:created_at.desc]) # don't show direct messsages
 self.follows.each do |follows| statuses += follows.statuses.
all(:recipient_id => nil, :limit => 10, :order => [:created_at.desc])
end if @myself == @user
 statuses.sort! { |x,y| y.created_at <=> x.created_at }
 statuses[0..10]
 end
end

The properties of the User class are the profile of a user. We will be using it later
when creating or modifying the user profile. The property to take note of in this
is nickname. As mentioned during the design section, identifying the user is very
important in Tweetclone. As we're using RPX, the unique identifying property is
actually identifier, which for Google is the unique OpenID identifier with the
following format:

https://www.google.com/accounts/o8/id?id=AItOawnFFjWL15Ie5xEw4EB4RBx

nd_ervO

However, it's impossible to use because it is not user-friendly (there is no way a
user will remember the whole URL). Instead we use a nickname to identify the user,
which is also why we need to make sure it is unique:

validates_is_unique :nickname, :message => "Someone else has taken up
this nickname, try something else!"

If you have gone to the Tweetclone site you will realize that the user sets the
nickname when he/she first logs in. If the nickname is already taken, he/she will
be asked to use something else. If he/she leaves the nickname empty, a random
string will be set for him, based on the hash of the identifier, converted into an
alphanumeric string.

user.update_attributes({:nickname => profile['identifier'].hash.
to_s(36), :email => profile['email'], :photo_url => photo, :provider
=> profile['provider']})

As mentioned above, a user can own multiple statuses and multiple messages, both
of which are also modeled with the Status class.

has n, :statuses
has n, :direct_messages, :class_name => "Status"

Chapter 3

[83]

We also define the two different relationships between users—follows, which is a
list of users you follow and followers, a list of your fans. Implicitly we have also
defined that if a user is in both these lists, he/she is a friend.

has n, :relationships
has n, :followers, :through => :relationships, :class_name => "User",
:child_key => [:user_id]
has n, :follows, :through => :relationships, :class_name => "User",
:remote_name => :user, :child_key => [:follower_id]

To keep track of the many-to-many relationships we define a separate class called
Relationship. We define the user_id and follower_id properties here, which
seems unusual because we use them in the belongs_to and has n relationships.
However, this is necessary because we're defining a many-to-many
self-referencing relationship.

class Relationship
 include DataMapper::Resource

 property :user_id, Integer, :key => true
 property :follower_id, Integer, :key => true
 belongs_to :user, :child_key => [:user_id]
 belongs_to :follower, :class_name => "User", :child_key =>
[:follower_id]
end

The user also keeps track of a list of statuses where he is mentioned. This will allow
us to display the list of statuses where he is mentioned more efficiently.

has n, :mentions
has n, :mentioned_statuses, :through => :mentions, :class_name =>
'Status', :child_key => [:user_id], :remote_name => :status

As before, we use a separate class called Mention to keep track of the relationship.
However, this class is simpler as it does not reference itself. Note that however we
need to create a primary key property called id because DataMapper doesn't allow
classes to be defined without a primary key. We could get away with this in the
Relationship class because we defined a composite key.

class Mention
 include DataMapper::Resource
 property :id, Serial
 belongs_to :user
 belongs_to :status
end

Microblogs – Cloning Twitter

[84]

Next, we define a method to return a user, given the OpenID identifier. If the user
exists, it is returned, and otherwise it will be created.

def self.find(identifier)
 u = first(:identifier => identifier)
 u = new(:identifier => identifier) if u.nil?
 return u
end

There is a method in DataMapper that allows the immediate creation of the object
(and database record) if an object is not found—first_or_create. This method is
not appropriate for our use here for a subtle reason—first_or_create will create
the actual database record while the preceding method will only return a Ruby object
without tying it to an actual record in the database. Why does this make a difference?
It's because we will check if it is a new record later on, using the new_record?
method on the object. If it's an object that is tied with an actual database record,
it will be considered an existing record and we will never be able to update any
further attributes.

user = User.find(profile['identifier'])
 if user.new_record?
 ...
 unless user.update_attributes({:nickname => profile['identifier'].
hash.to_s(36), :email => profile['email'], :photo_url => photo,
:provider => profile['provider']})
 flash[:error] = user.errors.values.join(',')
 redirect "/"
 end

Lastly, we need to define a method that retrieves all statuses that are relevant to this
user. This means that we want to retrieve the tweets he posted as well as tweets of
people he follows.

def displayed_statuses
 statuses = []
 statuses += self.statuses.all(:recipient_id => nil, :limit => 10,
:order => [:created_at.desc])
 self.follows.each do |follows| statuses += follows.statuses.
all(:recipient_id => nil, :limit => 10, :order => [:created_at.desc])
end if @myself == @user
 statuses.sort! { |x,y| y.created_at <=> x.created_at }
 statuses[0..10]
 end

Chapter 3

[85]

First, we retrieve all of the user's own tweets in reverse chronological order,
which means retrieving the statuses without recipients (statuses with recipients are
direct messages).

statuses += self.statuses.all(:recipient_id => nil, :limit => 10,
:order => [:created_at.desc])

We add to this list of statuses the tweets of each person that the user follows, also in
reverse chronological order.

self.follows.each do |follows| statuses += follows.statuses.
all(:recipient_id => nil, :limit => 10, :order => [:created_at.desc])
end if @myself == @user

After retrieving the statuses, we sort them in reverse chronological order again to get
the actual order we want.

statuses.sort! { |x,y| y.created_at <=> x.created_at }

Finally, we return the first ten statuses only. As you will have realized, this is
arbitrary and we did not implement a pagination system.

Status
Here's the source code for the Status class:

class Status
 include DataMapper::Resource

 property :id, Serial
 property :text, String, :length => 140
 property :created_at, DateTime
 belongs_to :recipient, :class_name => "User", :child_key =>
[:recipient_id]
 belongs_to :user
 has n, :mentions
 has n, :mentioned_users, :through => :mentions, :class_name =>
'User', :child_key => [:user_id]

 before :save do
 @mentions = []
 case
 when text,starts_with('D ')
 process_direct_message
 when text.starts_with('follow ')
 process_follow
 else
 process
 end
 end

 after :save do

Microblogs – Cloning Twitter

[86]

 unless @mentions.nil?
 @mentions.each {|m|
 m.status = self
 m.save
 }
 end
 end

 # general scrubbing
 def process
 # process url
 urls = self.text.scan(URL_REGEXP)
 urls.each { |url|
 tiny_url = open("http://tinyurl.com/api-create.
php?url=#{url[0]}") {|s| s.read}
 self.text.sub!(url[0], "#{tiny_url}")
 }
 # process @
 ats = self.text.scan(AT_REGEXP)
 ats.each { |at|
 user = User.first(:nickname => at[1,at.length])
 if user
 self.text.sub!(at, "#{at}")
 @mentions << Mention.new(:user => user, :status => self)
 end
 }
 end

 # process direct messages
 def process_direct_message
 self.recipient = User.first(:nickname => self.text.split[1])
 self.text = self.text.split[2..-1].join(' ') # remove the first 2
words
 process
 end

 # process follow commands
 def process_follow
 Relationship.create(:user => User.first(:nickname => self.text.
split[1]), :follower => self.user)
 throw :halt # don't save
 end

 def to_json(*a)
 {'id' => id, 'text' => text, 'created_at' => created_at, 'user' =>
user.nickname}.to_json(*a)
 end
end

URL_REGEXP = Regexp.new('\b ((https?|telnet|gopher|file|wais|ftp) :
[\w/#~:.?+=&%@!\-] +?) (?=[.:?\-] * (?: [^\w/#~:.?+=&%@!\-]| $))',
Regexp::EXTENDED)
AT_REGEXP = Regexp.new('@[\w.@_-]+', Regexp::EXTENDED)

Chapter 3

[87]

The Status class is quite simple compared with the User class; its main property is
the status text, which we define to be of length 140 characters.

property :text, String, :length => 140

We also define the creation time of the status; this is important as we always sort the
statuses in reverse chronological order.

property :created_at, DateTime

Just as a user owns multiple statuses, we define the reverse relationship here and
let the application know that a status belongs to a single user (this is the user that
created the status).

belongs_to :user

Each status that is a direct message also belongs to a recipient.

belongs_to :recipient, :class_name => "User", :child_key =>
[:recipient_id]

Finally, each status can mention zero, one, or more users and has a many-to-many
relationship with the user.

has n, :mentions
has n, :mentioned_users, :through => :mentions, :class_name => 'User',
:child_key => [:user_id]

Most of the logic processing in Tweetclone involves processing the tweet. Following
typical object-oriented design, we place our logic in the Status class and add a
before filter to process the tweet text prior to saving it to the database.

before :save do
 @mentions = []
 case
 when text.starts_with('D ')
 process_direct_message
 when text.starts_with('follow ')
 process_follow
 else
 process
 end
end

This block of code is executed when save is called. It methodically runs through the
tweet to look for patterns in the tweet and calls various methods to process them
accordingly. We implement the two common Twitter commands for sending direct
messages and following users by interpreting the tweet that starts with D or follow.

Microblogs – Cloning Twitter

[88]

When the tweet starts with D, we take the word after D and use that as the nickname
of the user to send the direct message to. Then we clean up the text by removing D
and the user nickname and run the catch-all process method.

def process_direct_message
 self.recipient = User.first(:nickname => self.text.split[1])
 self.text = self.text.split[2..-1].join(' ')
 process
end

When the tweet starts with follow we do the same thing. We get the nickname of the
user to follow from the second word after follow and create a relationship between
the owner of the status and the followed user. However, we stop processing at this
point because we don't want to save the tweet (it's not really a tweet but a command
to Tweetclone), so we throw a halt exception, which DataMapper will interpret,
stopping the save from proceeding.

def process_follow
 Relationship.create(:user => User.first(:nickname => self.text.
split[1]), :follower => self.user)
 throw :halt
end

The process method contains the bulk of the logic to parse the tweet:

def process
 urls = self.text.scan(URL_REGEXP)
 urls.each { |url|
 tiny_url = open("http://tinyurl.com/api-create.php?url=#{url[0]}")
{|s| s.read}
 self.text.sub!(url[0], "#{tiny_url}")
 }
 ats = self.text.scan(AT_REGEXP)
 ats.each { |at|
 user = User.first(:nickname => at[1,at.length])
 if user
 self.text.sub!(at, "#{at}")
 @mentions << Mention.new(:user => user, :status => self)
 end
 }
end

Chapter 3

[89]

We also define a couple of regular expression constants that will be used to parse
the tweets:

URL_REGEXP = Regexp.new('\b ((https?|telnet|gopher|file|wais|ftp) :
[\w/#~:.?+=&%@!\-] +?) (?=[.:?\-] * (?: [^\w/#~:.?+=&%@!\-]| $))',
Regexp::EXTENDED)
AT_REGEXP = Regexp.new('@[\w.@_-]+', Regexp::EXTENDED)

The first regular expression parses text looking for URLs while the second looks for
any text that starts with @.

urls = self.text.scan(URL_REGEXP)
 urls.each { |url|
 tiny_url = open("http://tinyurl.com/api-create.php?url=#{url[0]}")
{|s| s.read}
 self.text.sub!(url[0], "#{tiny_url}")>")

Using URL_REGEXP, we look for URLs and replace them with HTML anchor links to
shortened URLs. For example, we might find:

http://maps.google.com/maps?f=q&source=s_q&hl=en&geocode=&q=singap
ore+flyer&vps=1&jsv=169c&sll=1.352083,103.819836&sspn=0.68645,1.38
2904&g=singapore&ie=UTF8&latlng=8354962237652576151&ei=Shh3SsSRDpb
4vAPsxLS3BQ&cd=1&usq=Singapore+Flyer

We would replace it with:

 http://tinyurl.com/mc42ar

This uses TinyURL's API, which simply produces a shortened URL when we pass it
a long URL.

ats = self.text.scan(AT_REGEXP)
 ats.each { |at|
 user = User.first(:nickname => at[1,at.length])
 if user
 self.text.sub!(at, "#{at}")
 @mentions << Mention.new(:user => user)
 end
 }

Similarly, we use AT_REGEXP to look for mentions (such as @tom) and for each one of
them we replace it with a link to their displayed statuses. We also create a Mention
link from the parsed user to the status. For example, if we find @tom in the tweet, we
will replace it with:

@tom

Microblogs – Cloning Twitter

[90]

This also creates a Mention that links up the user Tom to this status.

Observant readers might notice that we created a @mention instance variable array at
the start of the before filter and we're actually placing all created mentions into this
array. Also, by calling the constructor for Mention instead of DataMapper's create
method we are only creating Mention Ruby objects, and not actual database records.
In any case, we're only passing the user object to the constructor and not the status.
So we're not saving the Mention objects to the database yet, but why?

It is because the Status objects are not created yet (remember—we're still executing in
the before filter), and any actual creation of the Mention objects will only link to nil
when it comes to the Status object. Saving the link to the database will not work.

To overcome this, we store the Mention objects created during processing in the @
mention instance variable, then run it through an after filter. The after filter will
only run after Status is saved successful, so we can now safely create the Mention
links to the users.

after :save do
 unless @mentions.nil?
 @mentions.each {|m|
 m.status = self
 m.save
 }
 end
 end

Building the application flow
Now that we have the data model in place and most of the processing logic, the next
step is to build the application routing flow. We categorized the various application
flows by functions, and we start with the important task of authenticating the
users first.

In Sinatra, a route is an HTTP method paired with an URL matching pattern. Each
route is associated with a block as shown in the following code snippet:

get '/' do
 .. show something ..
end

post '/' do
 .. create something ..
end

Chapter 3

[91]

put '/' do
 .. update something ..
end

delete '/' do
 .. destroy something ..
end

The block associated with the route is known as the route handler. We have placed
most of the routes and their associated handlers in a single source file called
tweetclone.rb. However, we have also defined another source file called helpers.
rb that contains all the Sinatra helper methods. helpers.rb is loaded from
tweetclone.rb.

You might be wondering what a Sinatra helper method is? Helper
methods are re-usable methods used in route handlers and templates.
Helper methods are installed into the Sinatra:EventContext
so you can use them in the route handlers as well as the templates.
In this chapter we use helper methods for common and reusable
functions in the route handlers and the view templates.

Authenticating and managing users
As mentioned during the design section, we will be using RPX to authenticate users.
This reduces the amount of work needed tremendously. Let's describe what will
happen. The first and most basic route is the index route or /. If the user is already
logged in and has a session, we will redirect him to his home page. Otherwise, we
will prepare the token for RPX, which is a URL that RPX can call after it successfully
authenticates the user.

get '/' do
 if session[:userid].nil? then
 @token = "http://#{env['HTTP_HOST']}/after_login"
 haml :login
 else
 redirect "/#{User.get(session[:userid]).nickname}"
 end
end

Microblogs – Cloning Twitter

[92]

We use Haml for the view templates. As before (and therefore we will not show
it again) we define a layout Haml template that will be used in all views, separate
from the template below, which contains only the content. Sinatra looks for all
view templates in a folder called views by default. Our login Haml template, called
login.haml is found in the same place.

.span-24.top-padding.last
 .span-4.prepend-3
 %img.span-4{:src => '/sheep.gif'}
 .span-12
 %h1.title Tweetclone
 %h2.comic Cloning is the sincerest form of flattery
 .span-2.last
 %a.rpxnow{:onclick => "return false;", :href => "https://
tweetclone.rpxnow.com/openid/v2/signin?token_url=#{@token}" }
 %h3 Sign In

 -if flash[:error]
 .span-24.last
 .error
 = flash[:error]

 %hr.space

 .span-14.prepend-5
 %h2.alt

%script{:src => "https://rpxnow.com/openid/v2/widget", :type => "text/
javascript"}
%script{:type => "text/javascript"}
 RPXNOW.overlay = true;
 RPXNOW.language_preference = 'en';

Let's look at the code in detail. First of all, we need to embed the RPX Javascript to
enable RPX authentication with Google.

%script{:src => "https://rpxnow.com/openid/v2/widget", :type => "text/
javascript"}
%script{:type => "text/javascript"}
 RPXNOW.overlay = true;
 RPXNOW.language_preference = 'en';

Next, we add an HTML anchor link that redirects us to RPX, passing in the token.

%a.rpxnow{:onclick => "return false;", :href => "https://tweetclone.
rpxnow.com/openid/v2/signin?token_url=#{@token}" }

Chapter 3

[93]

This will redirect the user to the RPX site, which in turn redirects the user to the
appropriate provider, in our case, Google. On completing authentication, RPX
will call on Tweetclone at the URL (after_login) that was provided earlier on.
RPX passes a token parameter to us in this call, which we will use to retrieve the
user's profile.

We will define a separate helper method to do the work of retrieving the user's
profile. All such methods are placed in the helpers.rb file:

def get_user_profile_with(token)
 response = RestClient.post 'https://rpxnow.com/api/v2/auth_info',
'token' => token, 'apiKey' => '<RPX API key>', 'format' => 'json',
'extended' => 'true'
 json = JSON.parse(response)
 return json['profile'] if json['stat'] == 'ok'
 raise LoginFailedError, 'Cannot log in. Try another account!'
end

We use the very useful Rest-Client library to easily send the POST request to
RPX, passing in the token and requesting the information back in JSON format. If
successful, RPX will return some information on the users, which we will use the
Ruby JSON library to parse and return. Let's look at the after_login route next.

post '/after_login' do
 profile = get_user_profile_with params[:token]
 user = User.find(profile['identifier'])
 if user.new_record?
 photo = profile ['email'] ? "http://www.gravatar.com/
avatar/#{Digest::MD5.hexdigest(profile['email'])}" : profile['photo']
 unless user.update_attributes({:nickname => profile['identifier'].
hash.to_s(36), :email => profile['email'], :photo_url => photo,
:provider => profile['provider']})
 flash[:error] = user.errors.values.join(',')
 redirect "/"
 end
 session[:userid] = user.id
 redirect '/change_profile'
 else
 session[:userid] = user.id
 redirect "/#{user.nickname}"
 end
end

Microblogs – Cloning Twitter

[94]

After getting the user profile from Google through RPX, we try to retrieve the user
from our database, using the unique OpenID identifier. As mentioned before, if the
user does not exist in Tweetclone yet, we'll create a new record. If it's a new record,
we will update the rest of the attributes from the profile. This includes a photo link
from Gravatar.

Gravatar uses e-mail addresses that are hashed using MD5 to uniquely identify a
user's avatar. Since a user can have multiple e-mail addresses, he can have multiple
avatars. However, in this case we're using only Google as the authentication
provider and a user with a Google account must have an e-mail account as well, so it
ends up that the Gravatar link created is always valid:

photo = profile ['email'] ? "http://www.gravatar.com/
avatar/#{Digest::MD5.hexdigest(profile['email'])}" : profile['photo']

Note that we can optionally take from the photo link if it is provided in the profile
though Gmail doesn't provide that as of date. So what happens if the user is not a
Gravatar user and therefore doesn't have a Gravatar avatar? In this case Gravatar
returns a default avatar that looks like the following figure:

You will also notice that we set the nickname here as well. We hash the identifier
returned by Google and convert it into an alphanumeric string, which we use as the
nickname. This means if a user did not change his/her nickname later, this will be
his/her nickname. Finally we set session[:user_id] with the user ID and redirect
the user to change his/her profile.

The profile and change_profile routes do very little other than redirecting to their
respective views. You might notice that the profile route uses a method called load_
users, which takes in the user ID.

get '/change_profile' do haml :change_profile end
get '/profile' do
 load_users(session[:userid])
 haml :profile
end

Chapter 3

[95]

load_users is a convenient method found in helpers.rb. It retrieves the User object
and also sets a few commonly used variables.

def load_users(id)
 @myself = User.get(id)
 @user = @myself
end

More security-minded users would realize that this is not very secured because the
user ID is stored in the session. Also, anyone can game this clone by just using any
user ID. In other words there are possible security holes. One of the ways to patch
this particular hole is to use random unique session IDs that will shield the user ID
and other application information. However, as mentioned in Chapter 1, we will not
be dealing with such issues in this book. Repeating the caveat in Chapter 1, the code
in this book is not production ready and is not intended to be. Anyone looking at
simply taking the code in this book and using it in their application should be aware
that the code in the clones only considered basic functional requirements and not
issues relating to production quality software.

The change_profile route does the actual work of saving any changes on the user
profile. You will realize that we don't actually change any information that is in
the Google account itself; we're only changing our own data. In fact the user needs
to go to Google to change his password. There are pros and cons to this approach.
We trade off the complexities and risks of managing a user (in terms of security
and privacy) for the downside of not owning your own user information and being
dependent on another company for your users. In the case of Tweetclone it's a good
trade-off since we still get some user information and there's a lot less code and risk
to manage.

post '/save_profile' do
 user = load_users(session[:userid])
 unless user.update_attributes(:nickname => params[:nickname],
:formatted_name => params[:formatted_name], :location =>
params[:location], :description => params[:description])
 flash[:error] = user.errors.values.join(',')
 redirect '/change_profile'
 end
 redirect "/#{user.nickname}"
end

Finally, the logout route simply resets session[:user_id] and redirects the user
back to the index route. Without the user ID, the index route shows the login view.

get '/logout' do
 session[:userid] = nil
 redirect '/'
end

Microblogs – Cloning Twitter

[96]

Displaying and updating statuses
The main feature of Tweetclone, as in Twitter, is to post status updates and to
display them. The main route for this is the home route (/:nickname). This is what
the index route redirects to upon login. It shows the home page of the user and also a
view of any other users that he/she is interested in.

get '/:nickname' do
 load_users(session[:userid])
 @user = @myself.nickname == params[:nickname] ? @myself : User.
first(:nickname => params[:nickname])
 @message_count = message_count
 if @myself == @user then
 @statuses = @myself.displayed_statuses
 haml :home
 else
 @statuses = @user.statuses
 haml :user
 end
end

We also need to get a count of direct messages that have been send to the user so we
use another helper method in the helpers.rb file.

Ruby on Rails developers might be puzzled when we refer
to helpers here but they are not used the same way as Rails
helpers. Rails helpers are methods used in views only, but
Sinatra helpers can be used in routes and views alike; in a
way Sinatra helpers are more powerful than Rails helpers.

Here we return the count of statuses that have a recipient who is the user (messages
sent to the user) as well as statuses that the owner (that is sender) is the user.

def message_count
 Status.count(:recipient_id => session[:userid]) + Status.
count(:user_id => session[:userid], :recipient_id.not => nil) || 0
end

After loading the current user, we determine if the user is looking at himself/herself
or at another user.

@user = @myself.nickname == params[:nickname] ? @myself : User.
first(:nickname => params[:nickname])

Chapter 3

[97]

If he/she is looking at himself/herself, we will show him/her the home page (home.
haml) with a list of displayed statuses. Otherwise we will show the user page (user.
haml) with the viewed user's statuses. Remember that displayed_statuses retrieve
the user's own tweets and also the tweets of any user he follows while statuses will
only retrieve that particular user's own tweets.

if @myself == @user then
 @statuses = @myself.displayed_statuses
 haml :home
 else
 @statuses = @user.statuses
 haml :user
 end

Let's look at the home page first.

=snippet :'snippets/top'
.span-15.append-1
 =snippet :'snippets/update_box'
 %h2.comic Home
 =snippet :'snippets/statuses'
.span-5
 =snippet :'snippets/info_box'
.span-2.last

Well, it's that simple. We re-use snippets of common Haml code that are stored in
the /views/snippets folder. This is basically the partial templates mechanism that
is popularly used in many web frameworks. Although Sinatra does not support
partials directly, it's very easy to re-create simple partials support by adding the
following helper method:

def snippet(page, options={})
 haml page, options.merge!(:layout => false)
end

Again, yes, that's it! We simply run haml again on the given page, and include any
parameters we pass to it, only telling the haml page not to use the default layout.

Let's look at the various snippets we're using in the home page. The top snippet is
trivial, it's just a re-used Haml template for all logged in users to show the banner
and the top-level menu.

.span-2
 %img{:src => '/sheephead.gif'}
.span-12
 %a{:href => '/'}

Microblogs – Cloning Twitter

[98]

 %h2.banner Tweetclone
.span-4.prepend-3.last
 %a{:href => '/'} [home]
 %a{:href => '/profile'} [profile]
 %a{:href => '/logout'} [logout]

The update_box snippet provides the user with a form and a text box to enter
his tweet.

=snippet :'/snippets/text_limiter_js'
%h2.comic What are you doing?
%form{:method => 'post', :action => '/update'}
 %textarea.update.span-15#update{:name => 'status', :rows => 2,
:onKeyDown => "text_limiter($('#update'), $('#counter'))"}
 .span-6
 %span#counter
 140
 characters left
 .prepend-12
 %input#button{:type => 'submit', :value => 'update'}

The output of the snippet looks like the following:

The update_box snippet also uses the text_limiter_js snippet to limit the text box to
140 characters.

:javascript
 function text_limiter(field,counter_field) {
 limit = 139;
 if (field.val().length > limit)
 field.val(field.val().substring(0, limit));
 else
 counter_field.text(limit - field.val().length);
 }

Chapter 3

[99]

Although nominally a Haml file, in reality it is a Javascript function in disguise. Next
we have the statuses snippet, which displays a list of statuses.

.statuses
 -@statuses.each do |status|
 %hr
 .span-2
 %img.span-2{:src => "#{status.user.photo_url}"}
 .span-10
 %a{:href => "/#{status.user.nickname}"}
 =status.user.nickname

 =status.text
 .span-3.last
 %a{:href =>"#", :onclick => "$('#update').
attr('value','@#{status.user.nickname} ');$('#update').focus();"}
(reply)
 %br
 %a{:href =>"#", :onclick => "$('#update').attr('value','D
#{status.user.nickname} ');$('#update').focus();"} (message)
 %br
 %a{:href =>"#", :onclick => "$('#update').attr('value','RT
@#{status.user.nickname}: #{status.text} ');$('#update').focus();"}
(retweet)

 %em.quiet
 =time_ago_in_words(status.created_at.to_time)
 %hr.space

Each status in the statuses snippet contains:

•	 An avatar of the user who posted that status
•	 That user's nickname and a link to his user page
•	 The text of the status
•	 A link to allow you to reply to that user
•	 A link to allow you to send a direct message to that user
•	 A link to retweet the status
•	 An indication of when that status was posted

Microblogs – Cloning Twitter

[100]

This is how a single status update looks:

The links to reply, send direct message, and re-tweet are just shortcuts that pre-
populate the update text box. For the reply link, this will place @ and the user's
nickname in the text box. For the direct message link, this will place D followed by
the user's nickname and for re-tweet, this will place RT then the whole status into the
text box.

As for the time the status was posted, to create the friendly time ago text, we use a
helper method to format the time accordingly:

def time_ago_in_words(timestamp)
 minutes = (((Time.now - timestamp).abs)/60).round
 return nil if minutes < 0
 case minutes
 when 0 then 'less than a minute ago'
 when 0..4 then 'less than 5 minutes ago'
 when 5..14 then 'less than 15 minutes ago'
 when 15..29 then 'less than 30 minutes ago'
 when 30..59 then 'more than 30 minutes ago'
 when 60..119 then 'more than 1 hour ago'
 when 120..239 then 'more than 2 hours ago'
 when 240..479 then 'more than 4 hours ago'
 else timestamp.strftime('%I:%M %p %d-%b-%Y')
 end
end

Finally, we look at the info_box snippet, which is a right sidebar component that is
found in a few other pages.

.span-2
 %a
 %img.span-2{:src => "#{@myself.photo_url}"}
.span-3.last
 .span-3
 %em #{@myself.nickname}
 .span-3
 %a{:href => '/follows'} #{@user.follows.count} following
 .span-3

Chapter 3

[101]

 %a{:href => '/followers'} #{@user.followers.count} followers
 .span-3
 %a{:href => "/tweets"} #{@user.statuses.count} tweets
%hr.space
%a{:href => '/replies'}
 ="@#{@myself.nickname}"
%br
.span-4
 Direct messages
.span-1.last
 #{@message_count}
.span-5.last
 %a{:href => '/messages/sent'} [sent]
 %a{:href => '/messages/received'} [received]
%hr.space
.span-5.last
 %h3.comic Follows
 -@user.follows.each do |follow|
 %a{:href => "/#{follow.nickname}"}
 %img.smallpic{:src => "#{follow.photo_url}", :width => '24px',
:alt => "#{follow.nickname}"}

The sidebar shows the following information on the user:

•	 The user's avatar.
•	 The user's nickname.
•	 The number of users this user is following. This is a link to the list of users

he/she follows.
•	 The number of users who follow this user. This is a link to the list of

his/her followers.
•	 The number of tweets this user has posted. This is also a link to a list

of his/her tweets.
•	 A list of tweets mentioning the user.
•	 The number of direct messages that the user has sent or received.
•	 A link to the list of direct messages the user has sent.
•	 A link to the list of direct messages the user has received.
•	 Avatars of users this user follows.

Microblogs – Cloning Twitter

[102]

This is how the sidebar looks:

The snippet is quite self-explanatory so we won't go into it any further. We're done
with the home page, so let's look at the other page the home route redirects to.

Unlike the home page, there are fewer re-usable codes in the user page, so there are
more lines of code.

=snippet :'/snippets/top'
.span-15.prepend-2
 .span-2
 %img.span-2{:src => "#{@user.photo_url}"}
 .span-13.last
 %h1
 =@user.nickname
 -if @user != @myself
 -if @myself.follows.include? @user
 %form{:method => 'post', :action => "/follow/#{@myself.
id}/#{@user.id}"}
 %input{:type => 'hidden', :name => '_method', :value =>
'delete'}
 %input#button{:type => 'submit', :value => 'unfollow'}
 -else
 %input#button{:type => 'button', :value => 'follow',
:onclick => "location.href='/follow/#{@user.nickname}'"}
 .span-15
 %h2

Chapter 3

[103]

 =@user.statuses.pop.text unless @user.statuses.empty?
 %em.quiet
 =time_ago_in_words(@user.statuses.last.created_at.to_time)
unless @user.statuses.empty?
 %hr.space
 -@user.statuses.reverse.each do |status|
 %hr
 .span-2
 %img.span-2{:src => "#{status.user.photo_url}"}
 .span-10
 %a{:href => "/#{status.user.nickname}"}
 =status.user.nickname
 %hr.space
 =status.text
 %em.quiet
 =time_ago_in_words(status.created_at.to_time)
 %hr.space
.span-5
 .span-5.last (Name):#{@user.formatted_name}
 .span-5.last (Location): #{@user.location}
 .span-5.last (Bio):#{@user.description}
 .span-5.last
 %br
 #{@user.follows.count} following
 %br
 #{@user.followers.count} followers
 %br
 #{@user.statuses.count} tweets

 %hr.space
 .span-5.reset
 %h3
 Follows
 -@user.follows.each do |follow|
 %a{:href => "/#{follow.nickname}"}
 %img.smallpic{:src => "#{follow.photo_url}", :width => '24px',
:alt => "#{follow.nickname}"}

Microblogs – Cloning Twitter

[104]

From the following screenshot you will notice that the user page has about the
same layout as the home page but with less information. The one big difference is
of course that the list of statuses belongs to only that user, and there is a big follow
button for the viewing user to follow him. Also, instead of the update box, we have
the last tweet posted by that user in larger font.

To post status updates, the user submits a post form to the update route. The route
then takes in the status text and creates the Status object. Note that when the Status
object is created and saved, the various processing logic in the before filter is called
and executed. After the status is saved to the database, the user is redirected back to
the home page, clearing the update text box.

post '/update' do
 user = User.get(session[:userid])
 Status.create(:text => params[:status], :user => user)
 redirect "/#{user.nickname}"
end

Chapter 3

[105]

The rest of the status update and display routes are relatively simple. The replies route
returns a list of statuses that mention the user and the logic is already in the models so
there is little to do except to retrieve the data and send it to the replies page.

get '/replies' do
 load_users(session[:userid])
 @statuses = @myself.mentioned_statuses || []
 @message_count = message_count
 haml :replies
end

The replies page is rather simple as well.

=snippet :'snippets/top'
.span-15.append-1
 =snippet :'snippets/update_box'
 %h2.comic Tweets mentioning me
 =snippet :'snippets/statuses'
.span-5
 =snippet :'snippets/info_box'
.span-2.last

You might notice that the replies page is almost the same as the home page. The
tweets route also does the same thing, except that it passes the statuses to the user
page instead of the home page.

get '/tweets' do
 load_users(session[:userid])
 @status = @myself.statuses
 haml :user
end

Finally the public_timeline route is a simple implementation that retrieves all statuses
from the database and shows them on a page that does not require any data from a
logged in user.

get '/public_timeline' do
 @statuses = Status.all
 haml :public_timeline
end

This is the page for the public timeline:

.span-2
 %img{:src => '/sheephead.gif'}
.span-12
 %a{:href => '/'}

Microblogs – Cloning Twitter

[106]

 %h2.banner Tweetclone
.span-4.prepend-3.last
 %a{:href => '/'} [login]
.span-15.append-1
 %h2.comic Recent Public Tweets
 .statuses
 -@statuses.reverse,each do |status|
 %hr
 .span-2
 %img.span-2{:src => "#{status.user.photo_url}"}
 .span-13.last
 %a{:href => "/#{status.user.nickname}"}
 =status.user.nickname

 =status.text
 %em.quiet
 =time_ago_in_words(status.created_at.to_time)
 %hr.space
.span-5

.span-2.last

Sending and displaying direct messages
Next we will look at how Tweetclone sends and displays direct messages. To
recap, direct messages are stored in Tweetclone as statuses and the only difference
between direct messages and a normal status is that it has a recipient (that is, it is
directed at someone).

To display messages, we create the get messages route:

get '/messages/:direction' do
 load_users(session[:userid])
 @friends = @myself.follows & @myself.followers
 case params[:direction]
 when 'received' then @messages = Status.all(:recipient_id => @
myself.id); @label = "Direct messages sent only to you"
 when 'sent' then @messages = Status.all(:user_id => @myself.id,
:recipient_id.not => nil); @label = "Direct messages you've sent"
 end
 @message_count = message_count
 haml :messages
end

Chapter 3

[107]

First, we get a list of the user's friends, that is, a list of users who follow this user and
whom this user also follows. This is simply the intersection of the follows list and
the followers list. We will use this later to provide a list of users whom we can send
messages to.

@friends = @myself.follows & @myself.followers

Then we check the requested direction. The direction parameter is used to determine
if we want to display the user's sent messages or received messages. If we want the
received messages, we retrieve all statuses which recipient is the user.

when 'received' then @messages = Status.all(:recipient_id => @myself.
id); @label = "Direct messages sent only to you"

If we want to display the user's sent messages, we retrieve all statuses that are owned
by the user and have a recipient.

when 'sent' then @messages = Status.all(:user_id => @myself.id,
:recipient_id.not => nil); @label = "Direct messages you've sent"

Once we have the messages, we send them to the view template.

=snippet :'snippets/top'
.span-15.append-1
 =snippet :'snippets/send_box'
 %h2.comic #{@label}
 =snippet :'snippets/messages'
.span-5
 =snippet :'snippets/info_box'
.span-2.last

As in the home page, it is made of reusable snippets. The two snippets that are
different from the home page are the send_box snippet and the message snippet. The
send_box snippet allows the user to send direct messages.

=snippet :'/snippets/text_limiter_js'
%form{:method => 'post', :action => '/message/send'}
 %h3
 Send
 %select{:name => 'recipient'}
 -@friends.each do |user|
 %option{:value => user.nickname} #{user.nickname}
 a message:
 %textarea.update.span-15#message{:name => 'message', :rows => 2,
:onKeyDown => "text_limiter($('#message'), $('#counter'))"}

Microblogs – Cloning Twitter

[108]

 .span-6
 %span#counter
 140
 characters left
 .prepend-12
 %input#button{:type => 'submit', :value => 'send'}

We reuse the text_limiter_js snippet to limit the size of the direct message. We also
provide a drop-down list box of friends whom the user can send to.

Send
 %select{:name => 'recipient'}
 -@friends.each do |user|
 %option{:value => user.nickname} #{user.nickname}

This is how the send message box looks:

The form will send a post to the send message route, which will create a Status
object with the recipient passed in and redirect to the get messages route with
the sent direction.

post '/message/send' do
 recipient = User.first(:nickname => params[:recipient])
 Status.create(:text => params[:message], :user => User.
get(session[:userid]), :recipient => recipient)
 redirect '/messages/sent'
end

Finally, the messages snippet is similar to the statuses snippet except it is focused on
sending direct messages only.

.messages
 -@messages.each do |message|
 %hr
 .span-2
 %img.span-2{:src => "#{message.recipient.photo_url}"}
 .span-10
 %a{:href => "/#{message.recipient.nickname}"}

Chapter 3

[109]

 =message.recipient.nickname

 =message.text
 .span-3.last
 %a{:href =>"#", :onclick => "$('#message').attr('value','D
#{message.recipient.nickname} ');$('#message').focus();"} (reply)
 %hr.space
 .span-13.pull-10.last
 %em.quiet
 =time_ago_in_words(message.created_at.to_time)
 %hr.space

Showing and forming relationships
Let's look at routes for showing and forming relationships next. Users related to each
other through a follow relationship. If a user Tom follows you, he is your follower.
Getting a list of your followers is quite simple; it's already in the User object, we just
need to call the followers method to return a list of your followers.

get '/followers' do
 load_users(session[:userid])
 @users = @myself.followers
 @message_count = message_count
 haml :followers
end

The followers page then displays the list of followers.

=snippet :'snippets/top'
.span-15.append-1
 %h2.comic Your #{@users.count} followers.
 =snippet :'snippets/follow_users'
.span-5
 =snippet :'snippets/info_box'
.span-2.last

As before, we re-use some snippets and include the follow_users snippet here.

.users
 -@users.each do |user|
 %hr
 .span-2
 %img.span-2{:src => "#{user.photo_url}"}
 .small #{user.nickname}
 .span-10
 %a{:href => "/#{user.nickname}"}
 %h3 #{user.formatted_name} | #{user.location}
 =user.description

Microblogs – Cloning Twitter

[110]

This snippet iterates the list of users retrieved by the follower route and displays their
avatars and some profile information. In the same way, the follows route retrieves all
users that the user follows and displays them in the follows page.

get '/follows' do
 load_users(session[:userid])
 @users = @myself.follows
 @message_count = message_count
 haml :follows
end

This is the follows page:

=snippet :'snippets/top'
.span-15.append-1
 %h2.comic You follow #{@users.count} people.
 =snippet :'snippets/follow_users'
.span-5
 =snippet :'snippets/info_box'
.span-2.last

As you can see the both the route and the page for both follower and follows routes
are very similar. So why didn't we refactor them and combine them like in the get
direct messages route? There is a specific reason for this. We didn't combine the
route handlers because we wanted to explicitly show that there are two different
routes. However, we could have both routes but still combine them in a single route
handler except for the second reason.

As explain during the design section, the follow relationship is not reciprocal—if you
follow someone it doesn't mean that he will follow you in return. In other words,
the relationship is one-way only and a friend relationship is only formed when
two one-way relationships are formed. This also means in terms of designing the
application, the logic and flow of the application could be different for a follow and a
follower relationship. This is why the route handlers are separated—it is to make the
relationships clearly different, and also to allow flexibility of having separate routing
logic in the future. Although this flexibility is not necessary in Tweetclone itself, it
is good to remember that the design and implementation of any application should
have the flow and relationship models clearly in mind.

Chapter 3

[111]

In addition to clicking the button, we also provide a means to follow a user directly
from the URL. For example, to follow a user with the nickname tom we go to the
URL address http://tweetclone.saush.com/follow/tom. This is the create
follow route.

get '/follow/:nickname' do
 user = User.first(:nickname => params[:nickname])
 rel = Relationship.first(:user => user :follower => @myself)
 Relationship.create(:user => user, :follower =>@myself) unless rel
 redirect "/#{params[:nickname]}"
end

Similarly, to delete a follows relationship, we pass in the follower ID and the ID of the
user being followed to the delete follow route.

delete '/follow/:follower_id/:user_id' do
 Relationship.first(:follower_id => params[:follower_id], :user_id =>
params[:user_id]).destroy if @myself.id == :user_id
 redirect "/"
end

For example, if Tom currently follows Waldo but Tom wants to unfollow Waldo, we
send an HTTP DELETE request to the URL address http://tweetclone.saush.
com/tom/waldo to remove that follow relationship.

Notice that we did not do anything to secure the usage of these features. To re-iterate
what was mentioned earlier, the code in this chapter and in the whole book has only
feature considerations and not security or exception handling.

We're all done with the Tweetclone UI features. Let's move on to the API next.

Implementing the API
The first thing to realize when implementing APIs is that the consumers of the
API are not end-users themselves but developers who use these APIs to build
applications that interact with the end-users. As a result it is important to
understand that the calls from to the APIs are probably not from the browser
but a HTTP client library.

In Tweetclone we place all API routes in a file appropriately named api.rb, which is
loaded from the main file tweetclone.rb. Before we jump into discussing the APIs
themselves, it's important to discuss how these APIs are protected.

Microblogs – Cloning Twitter

[112]

Many APIs use an industrial strength open specification called OAuth discussed in
an earlier section. However, using OAuth can be a daunting task for beginners and
as explained earlier, one of the possible reasons why Twitter APIs were so successful
is that they allowed a simpler authentication method, the HTTP Basic Access
Authentication. For Tweetclone we will follow Twitter's implementation of HTTP
Basic Access Authentication.

HTTP Basic Access Authentication is an authentication scheme that was
first defined along with the HTTP/1.0 specification in RFC 1945 and
further described in RFC 2616 (Hypertext Transfer Protocol – HTTP/1.1)
and RFC 2617 (HTTP Authentication: Basic and Digest Access
Authentication). It is a simple authentication mechanism that uses base64
encoding to send credentials to the server for validation. A typical HTTP
basic access authentication flow goes like this:

1. 	 The browser requests for a page from the server
If the page is protected by the HTTP basic access authentication,
the server will send a 401 Not Found response and the
authentication realm such as the response header will contain this:
WWW-Authenticate: Basic realm="Secure Area"

The browser shows the authentication realm in a popup
box, requesting for the username and password

2. 	 When the user enters the username and password, the browser
sends the same request again but this time it will add the header:
Authorization: Basic <base-64 encoded
combination of username:password>

The server decodes the base-64 encoded username:password combination
and determines if the username and password is correct. If it is, the server
returns the protected resource, otherwise it will send another 401 Not
Found response.
There are a few marked disadvantages in basic access authentication.
Base-64 encoding is very easily decoded. In fact encoding it with base-64
is meant to convert non-HTTP compliant characters to HTTP compliant
characters only. To avoid snooping on the network and finding out the
username and password, HTTP basic access authentication is usually
done over SSL, for example with HTTPS (though Twitter doesn't do this).
Also another problem with HTTP basic access authentication is that once
a user is logged in, there isn't the means provided by HTTP for the user to
log out.

Chapter 3

[113]

The mechanism works this way—all routes that need to be protected will call a
helper method called protected! before anything else. This method responds to the
client with a 401 Not Authorized status code as well as a WWW-Authenticate header
and the authentication realm, unless the client is already authorized.

def protected!
 response['WWW-Authenticate'] = %(Basic realm="Tweetclone") and
 throw(:halt, [401, "Not authorized\n"]) and
 return unless authorized?
end

We check the authorization by getting a new instance of Rack's basic access
authentication request and making sure that it's really HTTP basic access
authentication and that credentials are provided. Then we run a check on the
authorization credentials.

def authorized?
 @auth ||= Rack::Auth::Basic::Request.new(request.env)
 @auth.provided? && @auth.basic? && @auth.credentials && check(@auth.
credentials)
end

The credentials are actually passed in as an array. Using Ruby's splat operator we
extract the e-mail and password. Using the e-mail we retrieve the User from the
database. Next we use RestClient and post a request to Google's ClientLogin account
authentication, passing in the e-mail and the password. Google will respond to
us with a HTTP response with some content in its body. While we can parse the
response body to get more information, we really only want to check if the user and
password combination is valid. To do this we just check and make sure the server
returned a 200 OK. If that's the case, we will execute the rest of the code in the route.

def check(credentials)
 email, password = *credentials
 return false unless User.first(:email => email)
 response = RestClient.post 'https://www.google.com/accounts/
ClientLogin', 'accountType' => 'GOOGLE', 'Email' => email, 'Passwd' =>
password, :service => 'xapi', :source => Tweetclone'
 response.code == 200
end

As mentioned during the design section, we will only implement three functions:

•	 Get a user's status timeline
•	 Get everyone's status timeline
•	 Allow the user to post a status update

Microblogs – Cloning Twitter

[114]

The routes for these functions are very simple. For the user timeline API route, we just
extract the e-mail from the authentication credentials using the splat operator again.
Then with the e-mail we extract the User as before, and then ask it to return a list of
displayed statuses.

get '/api/statuses/user_timeline' do
 protected!
 email = *@auth.credentials
 user = User.first(:email => email)
 user.displayed_statuses.to_json if user
end

Note that the to_json method is called on the user's displayed statuses. Because we
included the JSON gem in the definition, we can call to_json on objects. However,
while the JSON gem recognizes standard Ruby classes, it doesn't recognize our
specific classes like User or Status. To enable a JSON view of the Status object, we
add a to_json method in the Status object.

def to_json(*a)
 {'id' => id, 'text' => text, 'created_at' => created_at, 'user' =>
user.nickname}.to_json(*a)
end

This simple method basically creates an array that describes the Status object,
running to_json on it and returning the Status in JSON format. The public_timeline
API route is even simpler; it simply returns all Status objects.

get '/api/statuses/public_timeline' do
 protected!
 Status.all.to_json
end

Finally, posting an update is very similar to getting a status. In this case we require
the client to use HTTP POST instead of a HTTP GET. We extract the user first, and
using the user and the text that is passed in, we create a Status object. If all goes well
we stop here, otherwise we throw a halt and stop processing.

post '/api/statuses/update' do
 protected!
 email = *@auth.credentials
 user = User.first(:email => email)
 throw(:halt, [400, "Bad Request\n"])unless user and Status.
create(:text => params[:text], :user => user)
end

Chapter 3

[115]

This wraps up our small set of APIs. We've covered building a clone of Twitter with
limited features. Next we will discuss the different ways we can deploy the clone.

Deploying the clone
As in the previous chapter, we will deploy to the local machine (your desktop or
laptop) and then to Heroku. The steps are quite similar except for one or two
minor differences.

Deploying locally
For development purposes we would normally run it off the command line using the
built-in web server. However, before we do this, we need to set up the database. Let's
assume that for this application we have installed MySQL. At the command line go
into the MySQL interactive command console:

$ mysql –u <username> -p <password>

Then just do a simple:

mysql> create database tweetclone;

This will just create the database. Next, go into IRB and run the following command:

> require 'models'

This will require the necessary classes for creating the database tables. Next, just run
the following command:

> DataMapper.auto_migrate!

This will create the tables for the application. To run the application, we just need to
run this at the command line:

$ ruby tweetclone.rb

Microblogs – Cloning Twitter

[116]

Then go to http://localhost:4567/ and you will see the login page:

Try logging in. If you have added localhost to the list of applicable URLs in RPX you
will be able to log in.

Deploying to the cloud
Alternatively we can also deploy to Heroku, the Ruby cloud-computing platform.
As mentioned earlier, one of the simplest ways to scale your application is to let
someone else do it for you. While ultimately a scalable Internet web application will
probably need manual tweaking to squeeze out the performance, a painless and
relatively cheap way of scaling is through using cloud platforms. Fortunately for
Ruby developers there exists a simple-to-use cloud platform in Heroku.

Heroku provides a scalable platform, provisionless platform for Ruby developers.
Heroku's platform is quite straightforward. The idea behind Heroku is that you
upload a Ruby application into Heroku and it automatically deploys into EC2 and
automatically scales.

Requests flow into Nginx used as a HTTP Reverse Proxy. Nginx then routes the
requests into a Varnish based HTTP cache and injected into an Erlang based
routing mesh that balances requests across a grid of 'dynos'. Dynos are a stack of:
POSIX, Ruby VM, application server, Rack, middleware, framework, and finally
the application itself. Applications are also provided with PostgreSQL and also
memcached for persistence and caching respectively though nothing really stops us
from persisting it outside of Heroku.

Chapter 3

[117]

Deploying Sinatra applications to Heroku is very simple.

1.	 First, create a config.ru file. This is the Rack configuration file, which is
actually just another Ruby script. All you need to have in this file is this:
%w(sinatra tweetclone).each { |lib| require lib}

run Sinatra::Application

2.	 Install the Heroku gem. Then run the following command:
$ sudo gem install heroku

Heroku provides us with a set of useful tools packaged in a gem, very much
like Capistrano.

3.	 Initialize an empty Git repository in the tweetclone folder:
$ cd tweetclone

tweetclone $ git init

Initialized empty Git repository in .git/

tweetclone $ git add .

tweetclone $ git commit -m 'initial import'

This just creates and initializes an empty git repository on your computer.

Microblogs – Cloning Twitter

[118]

4.	 Create the Heroku application.
tinyclone $ heroku create tweetclone

Created http:// tweetclone.heroku.com/ | git@heroku.com: tweet-
clone.git

Git remote heroku added

You will be prompted for your username and password the first
time you run a Heroku command. Subsequently this will be saved in
~/.heroku/credentials and you won't be prompted anymore. It
will also upload your public key to allow you to push and pull code.

5.	 Push your code to Heroku.
tweetclone$ git push heroku master

This will push your code and load your application into deployment. The
application is now deployed, but you'll need to create the database as before.

6.	 Log in to the Heroku console and create the database
Tweetclone $ heroku console

Ruby console for tweetclone.heroku.com

>> DataMapper.auto_migrate!

Heroku allows you access to a console similar to IRB but with the
environment of your deployment loaded up, just like script/
console in Ruby on Rails. To create the database, just run
DataMapper.auto_migrate! and it will create the database
accordingly.

Tweetclone has just been deployed to the cloud. You can also change settings to
point to a different domain. The final configuration of Tweetclone is at http://
tweetclone.saush.com.

Chapter 3

[119]

Summary
We have come a long way in this chapter. We ran through the history and ancestry
of microblogs and also Twitter, the most popular microblog around. Then we
jumped into the reasons why Twitter was so popular and also described the main
features of Twitter.

Next, we went into designing a clone of Twitter, called Tweetclone. Tweetclone
implemented most of the main features of Twitter, except for the search and search-
related features, which will be covered in further depth in the chapter on search
engines. This provided us with the outline and rationale of the application to be
developed in the later section.

After the design we went into the implementation of Tweetclone. First we described
and implemented the data model used in Tweetclone. Tweetclone consists of
two major entities—the User and the Status. Next we described the flow of the
application and how it is used. We went through authenticating and managing users,
displaying and updating statuses, sending and displaying direct messages, and
finally showing and forming relationships. After the application flow we went into
how a simple set of APIs can be created for Tweetclone.

Finally we learnt how to deploy a Ruby cloud platform on a local machine as well as
on Heroku.

Photo Sharing – Cloning
Flickr

The World Wide Web was started as a means to share information amongst
academics. While the original Web shared mostly text, the sharing of images came
from the very roots of the World Wide Web. The original proposal of the HTML
drafted in 1993 included the img tag that embeds images on the web page itself.
From this basic lineage, photo sharing has become one of the most popular web
services on the Internet as it became more commercial and mainstream.

In this chapter we will be creating a clone of Flickr, one of the most popular
photo-sharing services around. We will start with a discussion on photo-sharing
applications and then move on to the main features that make up such an
application. After that we will proceed to design the application then show how it
can be coded using the same technology stack we used in the previous chapters.

All about photo-sharing services
Photo sharing is one of the most popular services on the Internet and also one of its
most useful services. Basically, photo sharing is about the uploading of digital photos
by a user, to be shared with others either publicly or privately. The first photo-sharing
applications appeared during the time when the World Wide Web itself was in its
infancy, during the mid 1990s, but it was only after the dot-com bust that many of the
current crop of photo-sharing applications started. One of the earliest photo-sharing
applications is Webshots, which originated from a desktop screensaver software in
1995 and eventually migrated to the World Wide Web. Other popular photo-sharing
services include Flickr, Photobucket, ImageShack, SmugMug, Snapfish, and Picasa,
Google's photo-sharing service. In the past few years astonishingly (yet perhaps not)
an entrant to the photo-sharing market is Facebook. As of writing, Facebook users
upload an average of 3 billion photos every month and it is one of the largest
photo-sharing applications around, despite being a new entrant.

Photo Sharing – Cloning Flickr

[122]

Photo sharing as a market is pretty diverse and almost every one of the photo-sharing
applications has its own signature strengths and focuses, so direct comparison is often
meaningless. For example, while Facebook has many billions of images more than
Flickr, its main premise is social networking while Flickr's main motivation is photo-
sharing and social interaction through photos. As a result, Facebook doesn't allow
sharing photos outside of Facebook users, and resizes all photos that are uploaded
while Flickr allows anonymous sharing and viewing of photos and also maintains
multiple sizes of the uploaded photo, including the original.

However, a good snapshot of popularity is through gauging the number of unique
users of the service. We use Compete (http://www.compete.com) to analyse the
number of users to the various popular photo-sharing applications. Note that we did
not include Facebook in this comparison because it is impossible (without internal
Facebook information) to determine from Compete the number of unique visitors
to Facebook photos since they use a full URL to access their photo pages rather than
a more general domain (such as http://www.flickr.com) or subdomain (such as
http://picasa.google.com).

As we can see, Flickr ran closely with Photobucket for the honor of most popular
photo-sharing application though for the past year or so, Photobucket seems to have
fallen behind in the race. In this chapter we will be focusing on Flickr, one of the
most popular and widely known photo-sharing applications around.

Chapter 4

[123]

Flickr
Flickr was launched in February 2004 by Ludicorp, a Vancouver-based company.
Flickr was originally created for Ludicorp's Game Neverending, a web-based
massively multiplayer online game, but it became the main focus after the original
project was shelved. In March 2005, Yahoo! acquired Ludicorp and Flickr and all
content was migrated from servers in Canada to servers in the United States. On
April 9, 2008, Flickr began to allow paid subscribers to upload videos, limited to
90 seconds in length and 150 MB in size. On March 2, 2009, Flickr added the ability
to upload and view HD videos, and began allowing free users to upload normal-
resolution video.

Flickr offers two types of accounts: Free and Pro. Free account users are allowed
to upload 100 MB of images a month and two videos. If a free user has more than
200 photos on the site, they will only be able to see the most recent 200 in their
photostream, though the photos uploaded are still there. Pro accounts allow users
to upload an unlimited number of images and videos every month and receive
unlimited bandwidth and storage.

Flickr uses tags to organize images and also sets, which are convenient categories
that a photo can belong to. Sets may be grouped into collections, which can be
nested. Photos in Flickr can be private to the user, private to family and friends or
public to everyone, including anonymous viewers.

One of Flickr's stronger points is in the management of the copyright of the photos
uploaded by its users. While many photo-sharing applications have little to no
capabilities to manage the copyright of the uploaded photos, Flickr provides a
friendly guide to both uploaders and viewers of photos to its site. Uploaders
can choose copyright licenses that range from 'all rights reserved' to various
combinations of Creative Commons licensing. As a result uploaders can choose to
share their photos with various licences that are more assuring to viewers who fear
that their activities might infringe any copyright materials.

Flickr focuses a lot on, and is very strong with, the user community. The social
aspects of the site are probably the key features of Flickr. In fact, Flickr, at a certain
level, can be considered as a social network that focuses on photos. Several features
support this. Flickr has a concept of a photostream, which is a list of recent photos
that have been uploaded and published to the site. Photostreams implies a need to
continually take and upload photos and brings the sense of a photo blog to the site.
In this sense, Flickr was designed to reward recent activity, something that is in line
with the more recent social networks and microblogs such as Facebook and Twitter.

Photo Sharing – Cloning Flickr

[124]

Main features
As in the previous chapter, before we jump into designing the clone, let's look at
some major features of a photo-sharing application. Unlike in previous chapters,
we will not list all major features of Flickr and clone those features. Instead, we will
focus on a more generic photo-sharing application. However, the layout and design
of the clone will reflect that of Flickr:

•	 Users can upload photos
•	 Users can create folders or albums to store photos
•	 Users can add title and captions to photos
•	 Users can comment on photos
•	 Photos can be annotated
•	 Photos have friendly URLs
•	 Photos can be publicly viewable by all or privately by the user only
•	 Photos can be edited and saved back to the site
•	 Users can share photos with other users through the site
•	 Users can share photos with anonymous users

As you might realize, the features are only a fraction of Flickr's features. However,
the preceding features are enough to implement a no-frills photo-sharing application
that provides respectable services.

Designing the clone
For this chapter, we will be building a no-frills photo-sharing application called
Photoclone, hosted at the domain http://photoclone.saush.com.

Authentication, access control, and user
management
Authentication and user management follow the similar route we went through in
the Tweetclone. As before we will use RPX to proxy the third party authentication
providers we want to use. However, unlike in Tweetclone we're not going to provide
any APIs and therefore we're not going to use any client authentication. In this case
we're not going to restrict ourselves to using Google's authentication mechanism
as before.

http://photoclone.saush.com

Chapter 4

[125]

This means that for user management, the functions are split between Google and
Photoclone again. The functions to change their profile, manage their passwords,
and generally secure their account lies with the authentication provider. However,
Photoclone requires a user entity to manage the user-to-user relationships as well as
photo ownership and therefore we store some user information in Photoclone. We
also use the user information particularly the e-mail to get the avatar from Gravatar.

In Photoclone, access control is used to secure the user's right to view the photos.
Photos can be public or private. Public photos are viewable by everyone while
private photos can only be viewed by the owner/uploader. While Flickr has a
concept of private for friends and family, Photoclone opts for a simpler design. If
you follow a user, you will add his public photos in your shared photos list, basically
a list of photos belonging to people you follow. This list is in the landing page (the
page you 'land' on once you log in to the site). This allows you to have a clear view of
the photos of people you follow.

Albums and photos
Photoclone uses a simple design to store and manage photos. An album is a
container of photos. Each album belongs to a single user and can be shared through
that user. Each album has a cover photo, which is the representative photo that is
when displaying albums.

Uploading and storing photos
Uploading and storing photos properly is a critical part of any photo-sharing
application. A good photo-sharing application should have a user-friendly photo
uploading interface and speedy file transfer rates. This is especially true as digital
cameras become more powerful and take pictures of larger sizes than ever.

Uploading for Photoclone is simple and follows a conventional HTML file upload
format, which is a very familiar interface to most users. The upload page will allow
six photos to be uploaded at the same time.

There can be multiple ways of storing photos for Photoclone. The easiest and most
direct way is to store the photos locally in the same server that runs the application.
As you can imagine while this is relatively easy to implement it has many flaws.
The most obvious flaw is that the server will run out of disk space quickly if the
application data grows. Scaling becomes an issue at a later stage because it will be
difficult to run multiple servers easily to load balance. For smaller setups this is
usually not a problem though.

Photo Sharing – Cloning Flickr

[126]

Local storage of data can be implemented in one of two popular ways—either in the
filesystem (in a directory structure or not) or as binary data in a database. There are
many debates on the feasibility of storing large amounts of binary data in a database
as compared to the filesystem. Here are some of the considerations of the pros and
cons of storing photos as files in the filesystem or as binary data in a database.

Filesystem
•	 Speed of retrieving and displaying the photo is faster than if it's stored in

the database
•	 Photos can be cached easily
•	 No large database files to contend with
•	 Lower memory consumption

Database
•	 Can be used over the network (though it will be slower)
•	 More security (not anyone can view the photos)
•	 Backup of files are all in a single place

Very often though, the solution ends up with the photos being stored in the
filesystem but the database contains the metadata and pointers to the location where
the files are stored.

Another way of storing photos is up in the cloud where services such as the Amazon
Web Services (AWS) offer pay-per-use data storage facilities. The advantages of
using cloud storage are:

•	 Very scalable, there is no limit to the amount of data you can store
in the cloud

•	 Very little to no consideration for maintenance of servers or facilities
•	 Considerably cheaper than storing the data yourselves
•	 Can be used by multiple servers at the same time

As you can see the advantages of using cloud storage seems to be very similar to that
of using the database. However, one major disadvantage is that depending on the
location of the servers used in the cloud storage, the speed of uploading and storing
photos can be quite slow.

In Photoclone we use a hybrid of cloud storage, filesystem, and database to enable
optimal photo upload and display services keeping in mind the need for scaling as
well budget. The design uses the Amazon Simple Storage Service (S3), which stores
objects up to 8 GB in size in the cloud.

Chapter 4

[127]

Objects stored in Amazon S3 are placed in containers aptly called buckets. In
Photoclone, for easy management, we create a bucket for every user, when they first
log in they store all their photos in this bucket. The files are uploaded into S3 and
three different versions are created:

1.	 Original—this is the original photo that is uploaded. The extension of the file
is changed to .orig.

2.	 Display—this is a photo that is resized to 500 pixels wide (with the necessary
height in proportion), used for display in the main photo page. The extension
of the file is changed to .disp.

3.	 Thumbnail—this is a thumbnail of the photo for quick display. The extension
of the file is changed to .thmb.

A record is created for each photo that is uploaded and the database row ID becomes
the name of the file. For example, when a photo is uploaded, a database record
number 123 is created with the necessary metadata. The original file will be renamed
123.orig, the display photo will be named 123.disp, and the thumbnail photo will
be named 123.thmb. All three photos are then stored in S3.

However, to improve the performance of displaying the photos, we cache the photo
locally in the same server. The caches are just that, under normal circumstances,
photos that have been around for a period of time can be removed through a
regularly running script. This will reduce the disk space needed on the server while
keeping the bulk of the photos in S3.

You might realize that this design also facilitates easy scaling of Photoclone.
Although the photos are served through cached files on the server, we can just as
easily deploy new servers and serve out the same photos, as long as we have access
to the same database.

Comments
An important part of any Web 2.0 site is the community element of the site. Central
to building communities is providing a means for users to contribute back to the
site, in this case commenting on photos that are shared by users. The commenting
mechanism itself is quite simple. Each photo can have one or more comments and
any user can create a comment. However, only the commentator can remove his
own comments.

Photo Sharing – Cloning Flickr

[128]

Annotations
Annotating photos is a common feature among the popular photo-sharing
applications. Annotations allows the user to draw a rectangle around parts of the
photo and attach notes to it. A photo can have one or more annotations on it, and are
only applicable to the displayed photos. The annotations are not added in the photo
image itself but added and displayed as a layer over the photo.

Editing photos
The ability to edit and modify photos online is not a common feature provided by
most photo-sharing applications. However, we include this feature in because it
is relatively easy to integrate a good online photo editor to provide this service.
Amongst the better online photo editors that allow external integration include
Picnik, FotoFlexer, and Pixlr. However, Picnik and FotoFlexer include mandatory
advertisements in their integration. To provide a smoother user experience we
integrate with Pixlr, which has a straightforward integration mechanism.

The integration involves sending the display photo to the Pixlr online photo editor.
Once the user is satisfied with the changes, the photo is sent back to Photoclone
to be saved.

Edited photos are linked back to their originals—each edited photo belongs to an
original, so any photos that do not belong to an original is an original itself.

Friendly URLs
To share with non-users of Photoclone it's important that the URLs are friendly and
easy to send out to anyone. Photoclone allows for sharing of user albums through the
username like this:

http://photoclone.saush.com/user/sausheong

This will display all albums belonging to that user.

Sharing photos
Sharing photos is a main purpose of any photo-sharing application (hence the name).
When it comes to basic features, storing and sharing photos with friends are the key
purposes of any photo-sharing application and these two features are the highlight
of Photoclone.

http://photoclone.saush.com/user/sausheong
http://photoclone.saush.com/user/sausheong

Chapter 4

[129]

Sharing photos to non-users can be done through the user by passing the friendly
URLs above to any one. That will share albums and photos that belong to a particular
user to anyone. Only public photos will be shown in those albums. Sharing photos to
users of the Photoclone can be done through photostreams. If you follow another user,
you will see his/her photostream (the latest photos he/she uploaded).

One of the main features in any social network involves modeling the interaction
between its users. The two more commonly adopted models are the friend model
and the fan model as described in the previous chapter. Photoclone, like Tweetclone
previously, uses the fan model of social interaction. We use the fan model because
we want to share photos easily and quickly. While the friend model has more
privacy control there is a delay between the time a user requests for a connection and
his friend actually approving that connection. As a result the number of connections
in a friend model network is much smaller than in the fan model.

A quick recap—the fan model, unlike the friend model, is a one-way user connection.
A typical example—you might know Barack Obama but it is most unlikely that he
knows you in return. The differences are subtle but important. While the friend model
is reciprocal, that is the user needs to approve and agree that you are his/her friend
before a connection is made, the fan model is not. You can follow anyone that catches
your fancy and the number of followers any one person can have can be very large.

Photoclone uses a very simple mechanism for sharing photos. Instead of deliberately
sharing with friends (which you can still do via friendly URLs), the sharing mechanism
is inversed. Your fans are able to view your photos through their photostream
whenever you upload new photos, without any directed effort on your part (sharing
becomes very easy). Conversely, the more people you follow, the more pictures you
can view in your photostream. This encourages users to follow more users.

Technologies and platforms used
We use a number of technologies in this chapter, mainly revolving around the Ruby
programming language and its various libraries. In addition to Ruby and its libraries
we also use a few mashups, which are described below. For more information on the
technology stack used in this book (and in this chapter) please refer to Chapter 1.

Mashups
As with previous chapters, while the main features in the applications are all
implemented within the chapters itself, sometimes we still depend on other services
provided by other providers. In this chapter we use three services—RPX for user
web authentication, Gravatar for avatar services, Amazon S3 for photo storage, and
Pixlr for photo editing.

Photo Sharing – Cloning Flickr

[130]

RPX
RPX is an authentication provisioning service provided by JanRain, a technology
startup with deep roots in the OpenID community. It doesn't do the actual
authentication itself but acts as a proxy to a multitude of third party authentication
providers such as Google, Yahoo!, MySpace, Windows Live ID, Facebook, and
Twitter, and a number of OpenID providers such as LiveJournal and Blogger. By
wrapping around these third party providers it exposes a uniform interface that
enables web sites and applications to easily use any of the third party authentication
providers. RPX was previously discussed in more detail in Chapter 3.

Gravatar
Gravatar is short for Globally Recognized Avatar, and is a free Internet application
that allows you to map avatars (which are mid to small-sized thumbnail pictures
representing yourself) to e-mails. The service itself is quite simple—it allows the user
to add any number of avatar pictures and also any number of e-mail addresses that
belong to you. You can map any of the pictures to any of the e-mail addresses. We
discussed Gravatar previously in Chapter 3.

Pixlr
Pixlr is one of many pieces of free online photo-editing software available on the
Internet. Amongst its other more prominent competitors are FotoFlexer and Picnik.
We chose Pixlr for Photoclone for a few reasons, including its neat look and feel, but
mainly because other online photo editing software embeds advertising when used.

Pixlr has two photo editors—Pixlr Editor and Pixlr Express. Pixlr Editor is more
sophisticated and complex, while Pixlr Express offers a simple way to edit photos. In
Photoclone we will use Pixlr Express.

Pixlr has a small but effective set of APIs and it can be used in a few ways. Pixlr APIs
can be used in many ways, including through HTTP GET and HTTP POST forms.
However, for Photoclone we are going to use the Pixlr Javascript library.

The Javascript library allows us to call Pixlr in a few ways:

•	 As an overlay on top of the current page
•	 Opening up Pixlr in the same window
•	 Opening up Pixlr in another window

In Photoclone we will use the Javascript library to open Pixlr Express in the
same window.

Chapter 4

[131]

Amazon Web Services Simple Storage
Service (S3)
Amazon.com is a successful Internet retailer that started from selling books through
the Internet but has since extended its business to selling electronics, CDs, DVDs,
and many other types of merchandise. In July 2002, Amazon.com launched the
Amazon Web Services (AWS), a collection of web-based computing services. The
AWS provided these services over the Internet, through HTTP, either REST or SOAP
based interfaces. The services were billed per usage via various means, with a rather
complicated billing calculation. AWS's revolutionary services were the pioneers of
what eventually fell under the general umbrella of cloud computing.

One of the earliest services that were provided by AWS was the Simple Storage Service
(S3). The AWS S3 was the first publicly available web service, first launched in
2006 in the U.S. and rolled out subsequently to Europe in 2007 and Asia/Singapore
in 2010. Its basic premise is to provide unlimited storage space through a simple
web service, charged per usage. The AWS S3 was built for scalability and high
availability. Amazon claims to have more than 64 billion objects stored in its S3
servers as of August 2009.

AWS S3 allows users to store objects up to 5 GB in size, each accompanied by up
to 2 KB of metadata. Objects are organized into buckets and identified within each
bucket by a unique, user-assigned key. Buckets are organized within S3 to be unique
although bucket names can be arbitrarily assigned by the user. A bucket can be
stored in one of several regions including the U.S. Standard (Northern Virginia),
EU (Ireland), the U.S-West (Northern California), and Singapore. Objects stored in
a particular region never leave the region unless they are transferred out. Amazon
provides authentication mechanisms—objects can be made private or public, and
rights can be granted to specific users.

Buckets and objects can be created, listed, and retrieved using either a REST-style
HTTP interface or a SOAP interface. Objects can be downloaded using various
protocols including HTTP GET and Bittorrent.

Bucket names and keys (that identify objects that are stored) are chosen so that
objects are addressable using HTTP URLs:

•	 http://s3.amazonaws.com/bucket/key

•	 http://bucket.s3.amazonaws.com/key

http://en.wikipedia.org/wiki/Uniform_Resource_Locator

Photo Sharing – Cloning Flickr

[132]

Before we can start using the AWS S3, we will need to register for an Amazon
account at htttp://aws.amazon.com and then sign up for the S3 services at
http://aws.amazon.com/s3. Each service is signed up individually so do not
expect to sign up for all AWS services in one go. After you have signed up for AWS
S3 services, you can go into your credentials and look for your access key and secret
keys. You will need these to connect to AWS S3.

While using the AWS S3 can be quite involved, in Photoclone we will be using a
Ruby gem called RightAWS to shield us from the mundane complexities and focus
on just storing Photo objects in AWS S3.

http://aws.amazon.com/s3
http://aws.amazon.com/s3

Chapter 4

[133]

RightAWS
RightAWS is a set of Ruby libraries used to access AWS, packaged in a gem and
provided by RightScale, a company that provides cloud computing management
services. RightScale has a fully automated management platform used to control
and manage cloud services and is one of the more prominent companies providing
services in this new domain. RightAWS provides access to more than AWS S3 but in
Photoclone we only use the S3 interfaces.

Installing RightAWS is very simple:

$ gem install right_aws

For Photoclone we will only use its S3 interfaces and concentrate on using
RightAws::S3Interface. To setup RightAWS services we need to provide
the access key and secret keys that you got from the security credentials
in AWS. In Photoclone we set up a constant with the connection to the
RightAWS::S3Interface:

S3 = RightAws::S3Interface.new(S3_CONFIG['AWS_ACCESS_KEY'], S3_
CONFIG['AWS_SECRET_KEY'], {:multi_thread => true, :protocol => 'http',
:port => 80})

Note that we are setting RightAWS to be multi-threaded because Photoclone is a web
application and more than one user might be uploading or downloading photos at
the same time; if it is single-threaded we won't get very far.

Building the clone
Now that we have a clear understanding of the clone we want to build, let's get
into it. If you notice from the design discussion above, in terms of features the
clone is relatively simple when compared with Flickr. However, you will realize to
implement even just a portion of Flickr's core features does take some effort. In this
chapter, the building of the clone will take up a significant part of the description.
Now let's get on with it!

Configuration
Before we start building the application, let's configure AWS. From the preceding
section you would have gotten the AWS access and secret keys. In config.rb we
enter these keys.

S3_CONFIG = {}
S3_CONFIG['AWS_ACCESS_KEY'] = '<access key here>'
S3_CONFIG['AWS_SECRET_KEY'] = '<secret key here>'

Photo Sharing – Cloning Flickr

[134]

Then in models.rb, we create a constant called S3 that is an interface to S3. We set
this interface to be multi-threaded and to use HTTP as its protocol. We need the
interface to be multi-threaded because we need interface with S3 simultaneously.

S3 = RightAws::S3Interface.new(S3_CONFIG['AWS_ACCESS_KEY'], S3_
CONFIG['AWS_SECRET_KEY'], {:multi_thread => true, :protocol => 'http',
:port => 80})

Modeling the data
The data model used in Photoclone is only slightly more complex than Tweetclone.
While Tweetclone essentially has only two classes, describing Photoclone takes up
two further classes:

As you can see, the central model is the Photo class, which is the centerpiece
of our design.

Chapter 4

[135]

User
The User class is very similar to that used in Tweetclone, and we re-use much of
the previous code. If you have read the previous chapter you can go lightly over
this model.

class User
 include DataMapper::Resource

 property :id, Serial
 property :email, String, :length => 255
 property :nickname, String, :length => 255
 property :formatted_name, String, :length => 255
 property :provider, String, :length => 255
 property :identifier, String, :length => 255
 property :photo_url, String, :length => 255
 property :description, String, :length => 255

 has n, :relationships
 has n, :followers, :through => :relationships, :class_name =>
"User", :child_key => [:user_id]
 has n, :follows, :through => :relationships, :class_name => "User",
:remote_name => :user, :child_key => [:follower_id]

 has n, :albums
 has n, :photos, :through => :albums
 has n, :comments

 validates_is_unique :nickname, :message => "Someone else has taken
up this nickname, try something else!"
 after :create, :create_s3_bucket

 def self.find(identifier)
 u = first(:identifier => identifier)
 u = new(:identifier => identifier) if u.nil?
 return u
 end

 def follow(user)
 Relationship.create(:user => user, :follower => self)
 end

 def unfollow(user)
 Relationship.first(:user_id => user.id, :follower_id => self.id).
destroy
 end

 def create_s3_bucket
 S3.create_bucket("pc.#{id}")
 end
end

Photo Sharing – Cloning Flickr

[136]

The properties of the User object are the profile of a user. We will be using it
later when creating or modifying the user profile. The property to take note of in
this is nickname. As mentioned during the design section, identifying the user is
important in Photoclone because we need to share friendly URLs. As we're using
RPX, the unique identifying property is actually identifier. However, besides being
unfriendly (a typical identifier looks like this—https://me.yahoo.com/a/C.
UlGRU1t4SvPvc1bN6FBbvvw8QJyXc-#33d8b) the identifier changes from provider to
provider. Each provider uses a different way of identifying the user. As a result, we
use the nickname to identify the user instead, which is also why we need to make
sure it is unique:

validates_is_unique :nickname, :message => "Someone else has taken up
this nickname, try something else!"

If you have gone to the Photoclone site you will realize that the user sets the
nickname when he/she first logs in. If the nickname is already taken, he/she will
be asked to use something else. If he/she leaves the nickname empty, a random
string will be set for him/her, based on the hash of the identifier, converted into an
alphanumeric string.

user.update_attributes({:nickname => profile['identifier'].hash.
to_s(36), :email => profile['email'], :photo_url => photo, :provider
=> profile['provider']})

We also define the two different relationships between users—follows, which is a list
of users you follow and followers, a list of your fans. Implicitly we have also defined
that if a user is in both these lists, he/she is a friend.

has n, :relationships
has n, :followers, :through => :relationships, :class_name => "User",
:child_key => [:user_id]
has n, :follows, :through => :relationships, :class_name => "User",
:remote_name => :user, :child_key => [:follower_id]

To keep track of the many-to-many relationships we define a separate class called
Relationship. We define the user_id and follower_id properties here, which seems
unusual because we use them in the belongs_to and have n relationships. However,
this is necessary because we're defining a many-to-many, self-referencing relationship.

class Relationship
 include DataMapper::Resource

 property :user_id, Integer, :key => true
 property :follower_id, Integer, :key => true
 belongs_to :user, :child_key => [:user_id]
 belongs_to :follower, :class_name => "User", :child_key =>
[:follower_id]
end

Chapter 4

[137]

We define two convenient methods to allow a user to create or delete a
following relationship:

def follow(user)
 Relationship.create(:user => user, :follower => self)
end

def unfollow(user)
 Relationship.first(:user_id => user.id, :follower_id => self.id).
destroy
end

A user has one or more albums and has access to the photos in the albums:

has n, :albums
has n, :photos, :through => :albums
has n, :comments

A user can also have one or more comments on the photos. Remember that users are
able to comment on any photo.

Next, we define a method to return a user, given the OpenID identifier. If the user
exists it is returned, and otherwise it will be created.

def self.find(identifier)
 u = first(:identifier => identifier)
 u = new(:identifier => identifier) if u.nil?
 return u
end

There is a method in DataMapper that allows for the immediate creation of the object
(and database record) if an object is not found—first_or_create. This method is
not appropriate for our use here for a subtle reason—first_or_create will create
the actual database record while the method above will only return a Ruby object
without tying it to an actual record in the database. Why does this make a difference?
It's because we will check if it is a new record later on, using the new_record?
method on the object. If it's an object that is tied with an actual database record,
it will be considered an existing record and we will never be able to update any
further attributes.

user = User.find(profile['identifier'])
 if user.new_record?
 ...
 unless user.update_attributes({:nickname => profile['identifier'].
hash.to_s(36), :email => profile['email'], :photo_url => photo,
:provider => profile['provider']})
 flash[:error] = user.errors.values.join(',')
 redirect "/"
 end
 ...

www.allitebooks.com

http://www.allitebooks.org

Photo Sharing – Cloning Flickr

[138]

Finally, we create a bucket in S3 every time a new user record is created.

after :create, :create_s3_bucket
...
def create_s3_bucket
 S3.create_bucket("pc.#{id}")
end

Album
An album is a simple container for photos belonging to a user. Each photo has a cov-
er photo, which is the photo used when displaying a list of photos. An empty album
will show a default album icon instead. Each album can only belong to a single user.

Unlike sets in Flickr, photos can only belong to one album at a time.

class Album
 include DataMapper::Resource
 property :id, Serial
 property :name, String, :length => 255
 property :description, Text
 property :created_at, DateTime

 belongs_to :user
 has n, :photos
 belongs_to :cover_photo, :class_name => 'Photo', :child_key =>
[:cover_photo_id]

 def original_photos(viewer)
 criteria = {:photo_id => nil, :order => [:created_at.desc]}
 criteria[:privacy] = 'public' if viewer != user
 photos(criteria)
 end

 def edited_photos(viewer)
 criteria = {:photo_id.not => nil, :order => [:created_at.desc]}
 criteria[:privacy] = 'public' if viewer != user
 photos(criteria)
 end

 def public_photos
 photos(:photo_id => nil, :order => [:created_at.desc], :privacy
=> 'public')
 end

 def private_photos
 photos(:photo_id => nil, :order => [:created_at.desc], :privacy
=> 'private')
 end
end

Chapter 4

[139]

Besides being a container for photos, an album also provides a number of
convenience methods that return photos it contains.

Photo
A photo is the central class in Photoclone. Most of the application revolves around it
and not surprisingly, this is the class with the most code. A Photo has a title, which
is a brief one-liner that describes what the photo is about, and a caption that gives
more information on the photo. There are two privacy settings for the photo—public
or private. Public gives total access to one and all while private is only available for
the user himself. While this seems a bit extreme, this design allows the easiest way to
share photos yet retain privacy when needed.

A photo belongs to only one album, unlike in Flickr, where a photo can belong to any
number of sets.

class Photo
 include DataMapper::Resource
 attr_writer :tmpfile
 property :id, Serial
 property :title, String, :length => 255
 property :caption, String, :length => 255
 property :privacy, String, :default => 'public'

 property :format, String
 property :created_at, DateTime

 belongs_to :album
 belongs_to :original, :class_name => 'Photo', :child_key => [:photo_
id]

 has n, :annotations
 has n, :comments
 has n, :versions, :class_name => 'Photo'

 after :save, :save_image_s3
 after :destroy, :destroy_image_s3

 def filename_original; "#{id}.orig"; end
 def filename_display; "#{id}.disp"; end
 def filename_thumbnail; "#{id}.thmb"; end

def url_thumbnail

Photo Sharing – Cloning Flickr

[140]

 create_tmp_from_s3('thm')
 "/photos/#{id}.thm"
 end

 def url_display
 create_tmp_from_s3('tmp')
 "/photos/#{id}.tmp"
 end

 def previous_in_album(viewer)
 photos = viewer == album.user ? album.original_photos(viewer) :
album.public_photos
 index = photos.index self
 return nil unless index
 photos[index - 1] if index > 0
 end

 def next_in_album(viewer)
 photos = viewer == album.user ? album.original_photos(viewer) :
album.public_photos
 index = photos.index self
 return nil unless index
 photos[index + 1] if index < album.photos.length
 end

 def save_image_s3
 return unless @tmpfile
 S3.put(s3_bucket, filename_original, @tmpfile)

 img = Magick::Image.read(@tmpfile.open).first
 display = img.resize_to_fit(500)
 S3.put(s3_bucket, filename_display, display.to_blob)

 t = img.resize_to_fit(150)
 length = t.rows > t.columns ? t.columns : t.rows
 thumbnail = t.crop(CenterGravity, length, length)
 S3.put(s3_bucket, filename_thumbnail, thumbnail.to_blob)
 end

 def destroy_image_s3
 S3.delete s3_bucket, filename_original
 S3.delete s3_bucket, filename_display
 S3.delete s3_bucket, filename_thumbnail
 end

Chapter 4

[141]

def create_tmp_from_s3(type)
 tmp = File.dirname(__FILE__) + "/public/photos/#{id}.#{type}"
 return if File.exists? tmp
 File.open(tmp, 'w+') do |file|
 filename = (type == 'tmp' ? filename_display : filename_
thumbnail)
 S3.get(s3_bucket, filename) do |chunk|
 file.write chunk
 end
 end
 end
 def s3_bucket
 "pc.#{album.user.id}"
 end

 def self.random
 num_public_photos = all(:privacy => 'public').count
 return if num_public_photos == 0
 all(:privacy => 'public')[rand(num_public_photos)].url_display
 end
end

Photos can be edited through Pixlr. Editing photos in Photoclone means that the photo
itself is duplicated and the duplicate is sent to Pixlr. Once the user has completed
modifying the duplicate, it can be sent back to Photoclone to be saved. When this
happens, a new Photo object is created that is linked to the original Photo object.

belongs_to :original, :class_name => 'Photo', :child_key => [:photo_
id]

The original photo will then have another version added to its list of versions.

has n, :versions, :class_name => 'Photo'

After a user uploads a photo, Photoclone keeps three copies of it—the original copy, a
scaled down copy for web display, and a thumbnail copy. All three copies are given a
name according to the record ID of the record in the database, with different extensions
signifying whether it is an original copy, the display copy, or a thumbnail copy.

def filename_original; "#{id}.orig"; end
def filename_display; "#{id}.disp"; end
def filename_thumbnail; "#{id}.thmb"; end

Photo Sharing – Cloning Flickr

[142]

Saving an uploaded photo is relatively simple with the RightAWS S3 library. Notice
that unlike the other models, the Photo model has a writable instance variable
called tmpfile. Unlike properties, which are persisted as values in the database,
this variable is transient; the data is not saved in the database. We use this transient
variable to store the binary file data that has been uploaded to the server.

attr_writer :tmpfile

Let's look at how we can save the image to AWS S3.

def save_image_s3
 return unless @tmpfile
 S3.put(s3_bucket, filename_original, @tmpfile)

 img = Magick::Image.read(@tmpfile.open).first
 display = img.resize_to_fit(500)
 S3.put(s3_bucket, filename_display, display.to_blob)

 t = img.resize_to_fit(150)
 length = t.rows > t.columns ? t.columns : t.rows
 thumbnail = t.crop(CenterGravity, length, length)
 S3.put(s3_bucket, filename_thumbnail, thumbnail.to_blob)
end

The first step is to check if there is any data in the transient tmpfile variable. If there
isn't, we can't save anything. Then we use the S3 constant we defined earlier in a
configuration file, and save the data to S3.

S3.put(s3_bucket, filename_original, @tmpfile)

Note that the s3_bucket is basically derived from the user ID:

def s3_bucket
 "pc.#{album.user.id}"
end

tmpfile is actually binary data that is uploaded using the HTML file upload.

Chapter 4

[143]

Basically file inputs in HTML forms lets users include entire files from
their system through a form submission. The files could be text files,
image files, or other data. The mechanism for a form-based file upload
was originally proposed in RFC 1867 (published November 1995), as an
extension to HTML 2.0 (RFC 1866), after its publication. Form-based file
upload then was incorporated in HTML 3.2, which explicitly refers to
RFC 1867 for further information on form-based file upload. RFC 1867
also introduced the accept attribute for the input element that enables
file-type filtering based on MIME type. The accept attribute is a list of
comma-separated media types. If an accept attribute is present, the
browser should constrain the file patterns prompted for to match those
with the corresponding appropriate file extensions for the platform.
In addition the accept attribute, the form should also set the enctype
attribute, which specifies the encoding used by the form. A form without
any file uploads will have the enctype attribute set by default to
application/x-www-form-urlencoded, which is the well-known
format of name=value pairs. For file uploads this is irrelevant, and we
need to define the enctype to be multipart/form-data. This tells the
server that the form data is encoded so that the data set as a whole is a
multipart message containing a number of form fields as its components.
This is not needed in normal forms but is necessary for forms containing
file fields. The multipart structure means that each file comes in a package
inside a larger package, with suitable content type information on the
inner package.
The data is then sent to the server in its original formatting and it is up
to the server to decipher it. In our case, Photoclone retrieves the data as
a binary stream and this data stream is passed directly to S3 using the
RightAWS library as the original copy.

After saving the original to S3, we generate the display copy using the RMagick.
First, we open tmpfile. The variable tmpfile is a Tempfile object that is created
from the uploaded data. Using RMagick, read in the data in tmpfile and create an
RMagick image object. We resize this image object to fit in a width of 500 pixels, and
using the to_blob method, we reconvert this image object into a binary stream and
save it to S3.

img = Magick::Image.read(@tmpfile.open).first
display = img.resize_to_fit(500)
S3.put(s3_bucket, filename_display, display.to_blob)

Photo Sharing – Cloning Flickr

[144]

Ruby comes with a Tempfile class that can be used to manage
temporary files. Tempfile objects behave like any other I/O
objects, though it does not directly inherit from I/O itself.
Instead it delegates calls to a File object (which does inherit from
I/O). Rack creates a Tempfile object when a file is uploaded
through a form. We will look further into this in a later section.

We create the thumbnail in the same way, using the same RMagick image object.
However instead of simply resizing the thumbnail, we crop it into a small square
centering at the middle of the photo. We save the thumbnail into S3 as well.

t = img.resize_to_fit(150)
length = t.rows > t.columns ? t.columns : t.rows
thumbnail = t.crop(CenterGravity, length, length)
S3.put(s3_bucket, filename_thumbnail, thumbnail.to_blob)

Now that we have the photos in S3, we need to display them for the user. To display
the photos on the site, we need to have a URL to the photo.

def url_display
 create_tmp_from_s3('tmp')
 "/photos/#{id}.tmp"
end

This method returns the display photo URL. We call a common method called
create_tmp_from_s3 to create a temporary file. We create the temporary file first
from S3 and then using this file as the display photo. If the file already exists, we
don't re-create it of course. Otherwise, to create the temporary file, we use the
S3 interface again and get the display photo from S3, then write it to a display
temporary file with the extension .tmp.

 def create_tmp_from_s3(type)
 tmp = File.dirname(__FILE__) + "/public/photos/#{id}.#{type}"
 return if File.exists? tmp
 File.open(tmp, 'w+') do |file|
 filename = (type == 'tmp' ? filename_display : filename_
thumbnail)
 S3.get(s3_bucket, filename) do |chunk|
 file.write chunk
 end
 end
 end

Chapter 4

[145]

We repeat this for thumbnails, using the same common method, except this time we
use the extension .thm instead.

def url_thumbnail
 create_tmp_from_s3('thm')
 "/photos/#{id}.thm"
end

Now that we can upload photos, we would also want to delete photos when we
don't need it. Note that we don't actually need to remove the temporary photo files
locally; it should be cleared at regular intervals by a cache clearing script.

def destroy_image_s3
 S3.delete s3_bucket, filename_original
 S3.delete s3_bucket, filename_display
 S3.delete s3_bucket, filename_thumbnail
end

We also define some convenience methods in the Photo object to help us navigate the
photos in the album by finding the photo before it in the album, and the photo after
it. Which photos to view depends on who is viewing it (public photos are viewable
by all, private photos only for the user).

def previous_in_album(viewer)
 photos = viewer == album.user ? album.original_photos(viewer) :
album.public_photos
 index = photos.index self
 return nil unless index
 photos[index - 1] if index > 0
end

def next_in_album(viewer)
 photos = viewer == album.user ? album.original_photos(viewer) :
album.public_photos
 index = photos.index self
 return nil unless index
 photos[index + 1] if index < album.photos.length
end

Finally for the login page, we generate a random public photo to be displayed.

def self.random
 num_public_photos = all(:privacy => 'public').count
 return if num_public_photos == 0
 all(:privacy => 'public')[rand(num_public_photos)].url_display
end

Photo Sharing – Cloning Flickr

[146]

If the explanations in this section seem a bit vague, things will get clearer once we
start discussing the flow of the application.

Annotation
Each photo can have one or more annotations. Annotations are implemented as
a rectangular layer over the photo with white borders and text just below. The
annotation has a description, an X and Y point that describes the upper-left corner of
the layer, with a particular width and height. Each photo has one or more annotations.

class Annotation
 include DataMapper::Resource
 property :id, Serial
 property :description,Text
 property :x, Integer
 property :y, Integer
 property :height, Integer
 property :width, Integer
 property :created_at, DateTime

 belongs_to :photo
end

There isn't much to say about the Annotation model because it only stores the
annotation information to be retrieved and displayed when viewing the photo. We
will come to this in the following sections.

Comment
A user can comment on any public photos. The Comment class is very simple; the
only property it has is the text description. A comment belongs to a user and a photo.

class Comment
 include DataMapper::Resource
 property :id, Serial
 property :text, Text
 property :created_at, DateTime
 belongs_to :user
 belongs_to :photo
end

As with the annotations there is nothing further to discuss about comments, the
detailed explanation is made in a section below.

Chapter 4

[147]

Building the application flow
Now that we have the models used in Photoclone let's look at how these models
are used to build the web application. As before we start with authentication and
user management.

Authenticating and managing users
As mentioned during the design section, we will be using RPX to authenticate users.
This reduces the amount of work needed tremendously. Let's describe what will
happen. The first and most basic route is the index route:

get '/' do
 if session[:userid].nil? then
 @token = "http://#{env['HTTP_HOST']}/after_login"
 haml :login
 else
 redirect "/#{User.get(session[:userid]).nickname}"
 end
end

If the user is already logged in and has a session, we will redirect him/her to his/
her home page. Otherwise, we will prepare the token for RPX, which is a URL that
RPX can call after it successfully authenticates the user. We use Haml for the view
templates. As before we define a separate layout Haml template that will be used in
all pages:

%html
 %head
 %title Photoclone
 %link{:rel => 'stylesheet', :href => '/css/blueprint/screen.css',
:type => 'text/css'}
 %link{:rel => 'stylesheet', :href => '/css/blueprint/plugins/
fancy-type/screen.css', :type => 'text/css'}
 %link{:rel => 'stylesheet', :href => '/css/additional.css', :type
=> 'text/css'}
 %script{:src => 'http://ajax.googleapis.com/ajax/libs/
jquery/1.3.2/jquery.min.js', :type => 'text/javascript'}
 %script{:src => '/js/select.js', :type => 'text/javascript'}
 %script{:src => '/js/notes.js', :type => 'text/javascript'}
 %body
 .container
 = yield
 %hr.space
 .span-24.last
 .small.span-5.prepend-19

Photo Sharing – Cloning Flickr

[148]

 copyright ©
 %a{:href => 'http://www.saush.com'} Chang Sau Sheong
 2009

 - unless @user
 %script{:src => "https://rpxnow.com/openid/v2/widget", :type =>
"text/javascript"}
 %script{:type => "text/javascript"}
 RPXNOW.overlay = true;
 RPXNOW.language_preference = 'en';

Unlike in Tweetclone where we put the RPX authentication script only in the login
page, we place the script in the layout where it is used by every other page. The
reason for the difference is simple—in Tweetclone, the only time the user needs to
log in is at the login page. However, because of anonymous sharing of albums and
photos, users are able to view pages in Photoclone without logging in. This means
that for pages that are viewable by anonymous users, we need to have the facility for
the user to log in, hence putting the RPX script in layout makes the most sense.

Sinatra looks for all view templates in a folder called views by default. Our login
Haml template, called login.haml, is found in the same place:

.span-24
 .span-11
 %img.span-11{:src => '/images/login_logo.gif'}
 .span-9.prepend-2
 %h2{:style => 'margin-top:0; padding-top: 0;'} Sharing photos,
finding friends

 .subtitle Photoclone is a no-frills photo-sharing application
that allows you to share your photos with your friends!
 .subtitle You don't need to register any accounts, just use an
existing Google, Yahoo, Facebook or Twitter account!
 .span-2.prepend-10
 %a.rpxnow{:onclick => "return false;", :href => "https://
photoclone.rpxnow.com/openid/v2/signin?token_url=#{@token}" }
 %h3 Sign In

 -if flash[:error]
 .span-24
 .error
 = flash[:error]
 %img{:src => "#{Photo.random}"}

Chapter 4

[149]

This is the RPX login light-box overlaying the front page:

To allow login, we add a HTML anchor link that redirects us to RPX, passing
in the token.

%a.rpxnow{:onclick => "return false;", :href => "https://photoclone.
rpxnow.com/openid/v2/signin?token_url=#{@token}" }

This will redirect the user to the RPX site, which in turns redirects the user to the
appropriate provider. On authentication completion, RPX will call on Photoclone at
the URL (after_login) that was provided earlier on. RPX passes a token parameter
to us in this call, which we will use to retrieve the user's profile.

We will define a separate helper method to do the work of retrieving the user's
profile. All such methods are placed in the helpers.rb file:

def get_user_profile_with(token)
 response = RestClient.post 'https://rpxnow.com/api/v2/auth_info',
'token' => token, 'apiKey' => '<RPX API key>', 'format' => 'json',
'extended' => 'true'
 json = JSON.parse(response)
 return json['profile'] if json['stat'] == 'ok'
 raise LoginFailedError, 'Cannot log in. Try another account!'
end

Photo Sharing – Cloning Flickr

[150]

We use the very useful Rest-Client library to easily send the POST request to
RPX, passing in the token and requesting the information back in JSON format. If
successful, RPX will return some information about the users, which we will use the
Ruby JSON library to parse and return. Let's look at the after_login route next:

post '/after_login' do
 profile = get_user_profile_with params[:token]
 user = User.find(profile['identifier'])
 if user.new_record?
 photo = profile ['email'] ? "http://www.gravatar.com/
avatar/#{Digest::MD5.hexdigest(profile['email'])}" : profile['photo']
 unless user.update_attributes({:nickname => profile['identifier'].
hash.to_s(36), :email => profile['email'], :photo_url => photo,
:provider => profile['provider']})
 flash[:error] = user.errors.values.join(',')
 redirect "/"
 end
 session[:userid] = user.id
 redirect '/change_profile'
 else
 session[:userid] = user.id
 redirect "/#{user.nickname}"
 end
end

After getting the user profile from the authentication provider through RPX, we try
to retrieve the user from our database, using the unique identifier. As previously
mentioned, if the user does not exist in Photoclone yet, we'll create a new record.
If it's a new record, we will update the rest of the attributes from the profile. This
includes a photo link from Gravatar.

Gravatar uses e-mail addresses that are hashed using MD5 to uniquely identify
a user's avatar. As a user can have multiple e-mail addresses, he/she can have
multiple avatars:

photo = profile ['email'] ? "http://www.gravatar.com/
avatar/#{Digest::MD5.hexdigest(profile['email'])}" : profile['photo']

Note that we can optionally take from the photo link if it's provided in the profile,
though Gmail doesn't provide that as of date. So what happens if the user is not a
Gravatar user and therefore doesn't have a Gravatar avatar? In this case Gravatar
returns a default avatar.

Chapter 4

[151]

You will also notice that we set the nickname here as well. We hash the identifier
returned by Google and convert it into an alphanumeric string, which we use as the
nickname. This means if a user did not change his nickname later, this will be his
nickname. Finally, we set session[:userid] with the user ID and redirect the user
to change his profile.

The profile and change profile routes do very little other than redirecting to their
respective views.

get '/change_profile' do haml :change_profile end

get '/profile' do
 @myself = User.get(session[:userid]))
 @user = @myself
 haml :profile
end

The change profile route does the actual work of saving any changes on the user
profile. You will realize that we don't actually change any information that is in the
original account itself; we're only changing our own data. In fact the user needs to go
back to the authentication provider to change his password. There are pros and cons
to this approach as explained in the previous chapters. We trade off the complexities
and risks of managing a user (in terms of security and privacy) for the downside of
not owning your own user information and being dependent on another company
for your users. In the case of Photoclone (and in fact for all other web applications in
this book) it's a good trade-off since we still get some user information and there's a
lot less code and risk to manage.

post '/save_profile' do
 user = User.get(session[:userid])
 unless user.update_attributes(:nickname => params[:nickname],
:formatted_name => params[:formatted_name], :location =>
params[:location], :description => params[:description])
 flash[:error] = user.errors.values.join(',')
 redirect '/change_profile'
 end
 redirect "/#{user.nickname}"
end

Finally, the logout route simply resets session[:userid] and redirects the user back
to the index route. Without the user ID, the index route shows the login view.

get '/logout' do
 session[:userid] = nil
 redirect '/'
end

Photo Sharing – Cloning Flickr

[152]

Coming back to the login page, you will notice that there is a random public photo
each time Photoclone's login page is accessed. This random photo uses the random
method in the Photo class.

%img{:src => "#{Photo.random}"}

This is how the front page looks:

This wraps up authentication and user management.

Landing page
Once a user logs in to Photoclone, he is brought to his own landing page, which
contains the following:

•	 A logo and menu bar
•	 A photo avatar and a welcome greeting in multiple languages
•	 The recent photostream of the user
•	 The recent photostream of the people who the user follows

Chapter 4

[153]

This is how the landing page looks:

The landing route is quite simple:

get "/" do
 if session[:userid].nil? then
 haml :login
 else
 @user = User.get(session[:userid])
 @hello = HELLO[rand(HELLO.size)]
 haml :landing
 end
end

Note the hello variable. We will use this in a while. The landing page is found in
landing.haml:

=snippet :'/snippets/top'

.span-24.last
 .span-2
 %img.span-2{:src => "#{@user.photo_url}"}

Photo Sharing – Cloning Flickr

[154]

 .span-20.last
 %h2{:style => 'margin-bottom: 0;'} #{@hello[:translation]} #{@
user.formatted_name}!
 %h4 Now you know how to greet people in #{@hello[:lang]}!
%hr.space
.span-24.last
 %h2{:style => 'margin-bottom: 0;'} Your recent photostream
 %h3 Some of your latest uploads
 -unless @user.albums.empty?
 -@user.albums.photos(:photo_id => nil, :order => [:created_
at.desc])[0..11].each do |photo|
 %a{:href => "/photo/#{photo.id}"}
 %img.span-2{:src => "#{photo.url_thumbnail}", :title =>
"#{photo.title}"}

 %h2{:style => 'margin-bottom: 0;'} People you follow
 %h3 Photos shared by people you follow
 - unless @user.follows.empty? and @user.follows.albums.empty?
 - @user.follows.albums.photos(:photo_id => nil, :order =>
[:created_at.desc], :privacy => 'public')[0..23].each do |photo|
 %a{:href => "/photo/#{photo.id}"}
 %img.span-2{:src => "#{photo.url_thumbnail}", :title =>
"#{photo.title} (#{photo.album.user.nickname})"}

The logo and menu bar is a snippet using the same mechanism we first used in
Tweetclone. We re-use snippets of common Haml code that are stored in /views/
snippets folder. This is basically the partial templates mechanism that is popularly
used in many web frameworks. As mentioned in the previous chapter, although
Sinatra does not support partials directly, it's very easy to re-create simple partials
support by adding the following helper method:

def snippet(page, options={})
 haml page, options.merge!(:layout => false)
end

We simply run Haml again on the given page, and include any parameters we pass
to it, only telling the Haml page not to use the default layout. The logo and menu bar
is done with a snippet called top.haml:

.span-2
 %a{:href => '/'}
 %img{:src => '/images/logo.gif'}
- if @user
 .span-8.prepend-14.last
 %a{:href => '/'} [home]
 %a{:href => "/albums"} [albums]

Chapter 4

[155]

 %a{:href => '/upload'} [upload]
 %a{:href => '/follows'} [people]
 %a{:href => '/profile'} [profile]
 %a{:href => '/logout'} [logout]
- else
 .span-2.prepend-20.last
 %a.rpxnow{:onclick => "return false;", :href => "https://
photoclone.rpxnow.com/openid/v2/signin?token_url=#{@token}" } sign in

Note that if the user has logged in, we will show the normal menu bar; if it's an
anonymous user then we show a login link instead. Next are the photo avatar and
the hello greetings:

.span-24.last
 .span-2
 %img.span-2{:src => "#{@user.photo_url}"}
 .span-20.last
 %h2{:style => 'margin-bottom: 0;'} #{@hello[:translation]} #{@
user.formatted_name}!
 %h4 Now you know how to greet people in #{@hello[:lang]}!

Remember the hello variable we set earlier?

@hello = HELLO[rand(HELLO.size)]

This is trivially implemented with an array of hashes, using translation found from
the Internet, stored in a file named hello.haml:

HELLO = []
HELLO << {:lang => 'Albanian', :translation => 'Tungjatjeta'} \
 << {:lang => 'Armenian', :translation => 'Barevdzes'} \
 << {:lang => 'Arabic', :translation => 'Marhaba'} \
 << {:lang => 'Austrian', :translation => 'Servas'} \
 << {:lang => 'Azerbaijani', :translation => 'Salaam aleihum'} \
 << {:lang => 'Basque', :translation => 'Kaixo'} \
 << {:lang => 'Belarussian', :translation => 'Dobri Dzen'} \
 << {:lang => 'Bengali', :translation => 'Namoshkar'} \
 << {:lang => 'Bulgarian', :translation => 'Min ga la baa'} \
 << {:lang => 'Cantonese', :translation => 'Nei ho'} \
 << {:lang => 'Mandarin', :translation => 'Ni hao'} \
 << {:lang => 'Croatian', :translation => 'Bok'} \
 << {:lang => 'Czech', :translation => 'Ahoj'} \
 << {:lang => 'Danish', :translation => 'Goddag'} \
 << {:lang => 'Dutch', :translation => 'Hallo'} \
 << {:lang => 'English', :translation => 'Hello'} \
 << {:lang => 'Farsi', :translation => 'Salaam'} \

Photo Sharing – Cloning Flickr

[156]

 << {:lang => 'Finnish', :translation => 'Heippa'} \
 << {:lang => 'French', :translation => 'Bonjour'} \
 << {:lang => 'Estonian', :translation => 'Tere'} \
 << {:lang => 'Georgian', :translation => 'Gamarjobat'} \
 << {:lang => 'German', :translation => 'Hallo'} \
 << {:lang => 'Greek', :translation => 'Geia sou'} \
 << {:lang => 'Hindi', :translation => 'Namaste'} \
 << {:lang => 'Hungarian', :translation => 'Sziasztok'} \
 << {:lang => 'Gaelic', :translation => ' 	 Dia duit'} \
 << {:lang => 'Italian', :translation => 'Ciao'} \
 << {:lang => 'Japanese', :translation => 'Konnichi wa'} \
 << {:lang => 'Korean', :translation => 'Ahnyong'} \
 << {:lang => 'Latin', :translation => 'Salve'} \
 << {:lang => 'Latvian', :translation => 'Sveiki'} \
 << {:lang => 'Lithuanian', :translation => 'Labas'} \
 << {:lang => 'Malayalam', :translation => 'Namaskaram'} \
 << {:lang => 'Norwegian', :translation => 'Hallo'} \
 << {:lang => 'Polish', :translation => 'Czesc'} \
 << {:lang => 'Portuguese', :translation => 'Ola'} \
 << {:lang => 'Russian', :translation => 'Privet'} \
 << {:lang => 'Spanish', :translation => 'Hola'} \
 << {:lang => 'Swedish', :translation => 'Hej'} \
 << {:lang => 'Turkish', :translation => 'Merhaba'} \
 << {:lang => 'Welsh', :translation => 'Dydd da'} \

We just randomly select a greeting and display it.

Displaying the user's own photostream is quite simple as well. If the album is not
empty, we take the first 12 original photos belonging to the user and display them.

.span-24.last
 %h2{:style => 'margin-bottom: 0;'} Your recent photostream
 %h3 Some of your latest uploads
 -unless @user.albums.empty?
 -@user.albums.photos(:photo_id => nil, :order => [:created_
at.desc])[0..11].each do |photo|
 %a{:href => "/photo/#{photo.id}"}
 %img.span-2{:src => "#{photo.url_thumbnail}", :title =>
"#{photo.title}"}

We can see an interesting DataMapper feature here. DataMapper provides a shortcut
to access all photos belonging to a user, even though they are stored in separate
albums like this:

@user.albums.photos

Chapter 4

[157]

Finally, this is to show the photos in the photostreams of people the user follows:

%h2{:style => 'margin-bottom: 0;'} People you follow
 %h3 Photos shared by people you follow
 - unless @user.follows.empty? and @user.follows.albums.empty?
 - @user.follows.albums.photos(:photo_id => nil, :order =>
[:created_at.desc], :privacy => 'public', :limit => 24) each do
|photo|
 %a{:href => "/photo/#{photo.id}"}
 %img.span-2{:src => "#{photo.url_thumbnail}", :title =>
"#{photo.title} (#{photo.album.user.nickname})"}

We take the first 24 public photos belonging to anyone that the user follows, ordered
by the dates they were first uploaded and show them in a photostream.

Managing albums
Next, we look at the albums implementation. The albums are relatively simple
to implement. The albums route returns the currently logged in user to the
manage album page.

get "/albums" do
 @myself = @user = User.get(session[:userid])
 haml :"albums/manage"
end

We share the manage albums page with a number of other routes, so to identify
which portions of the page to display we need to identify if the logged in user is the
same as the user whose list of albums we want to view. The manage albums page
uses two instance variables for this—myself indicates the logged in user and user
indicates the user whose list of albums are being viewed.

=snippet :'/snippets/top'
.span-24
 .span-2
 %img.span-2{:src => "#{@user.photo_url}"}
 .span-9
 %h2{:style => 'margin-bottom: 0;'} #{@user == @myself ? 'Your' :
"#{@user.formatted_name}'s"} albums
 %h3
 = "You follow #{@user.formatted_name}" if @user != @myself and @
myself.follows.include? @user
%hr.space
.span-5
 %h3
 - if @user == @myself

Photo Sharing – Cloning Flickr

[158]

 %a{:href => '/album/add'} [Add a new album]

-if @user.albums.empty? and @user == @myself
 .span-24
 %h3
 Looks like you don't have any albums yet. Do you want to
 %a{:href => '/album/add'}create one?

-@user.albums.each do |album|
 %hr
 .span-24
 .span-17
 %h3{:style => 'margin-bottom:5px;'}
 %a{:href => "/album/#{album.id}"} #{album.name}
 %h4 #{album.description}
 %hr.space
 - unless album.photos.empty?
 %h4{:style => 'font-style: italic;'} (#{album.photos.size}
photos in this album, last photo uploaded on #{album.photos.last.
created_at.strftime('%d-%b-%Y')})
 .span-3
 - if album.cover_photo
 %img.span-3{:src => "#{album.cover_photo.url_display}"}
 - elsif !album.photos.empty?
 %img.span-3{:src => "#{album.photos.first.url_display}"}
 - else
 %img.span-3{:src => "/images/album_icon.png"}
 .span-3
 - if @user == @myself
 - if album.photos.empty?
 %form{:id => "form_#{album.id}", :method => 'post', :action
=> "/album/#{album.id}"}
 %input{:type => 'hidden', :name => '_method', :value =>
'delete'}
 %a{:href => '#', :onclick => '$("#form_' + "#{album.id}" +
'").submit();'} [remove]
 %a{:href => "/album/#{album.id}/upload"} [upload]

Chapter 4

[159]

This is how the manage albums page looks:

We use these two variables to format the view accordingly and display the
appropriate messages:

%h2{:style => 'margin-bottom: 0;'} #{@user == @myself ? 'Your' : "#{@
user.formatted_name}'s"} albums
 %h3
 = "You follow #{@user.formatted_name}" if @user != @myself and @
myself.follows.include? @user
%hr.space
.span-5
 %h3
 - if @user == @myself
 %a{:href => '/album/add'} [Add a new album]

Photo Sharing – Cloning Flickr

[160]

If the user has albums, we iterate through all his albums and display
them accordingly.

-if @user.albums.empty? and @user == @myself
 .span-24
 %h3
 Looks like you don't have any albums yet. Do you want to
 %a{:href => '/album/add'}create one?

-@user.albums.each do |album|
 %hr
 .span-24
 .span-17
 %h3{:style => 'margin-bottom:5px;'}
 %a{:href => "/album/#{album.id}"} #{album.name}
 %h4 #{album.description}
 %hr.space
 - unless album.photos.empty?
 %h4{:style => 'font-style: italic;'} (#{album.photos.size}
photos in this album, last photo uploaded on #{album.photos.last.
created_at.strftime('%d-%b-%Y')})

We also display a cover photo. If there is a given cover photo (the user has explicitly
set one of the photos as the cover photo) we will show that. Otherwise, we'll show
the first photo in the list or a default album icon if the album is empty.

- if album.cover_photo
 %img.span-3{:src => "#{album.cover_photo.url_display}"}
- elsif !album.photos.empty?
 %img.span-3{:src => "#{album.photos.first.url_display}"}
- else
 %img.span-3{:src => "/images/album_icon.png"}

Lastly we'll only allow some actions if the current user is managing his own albums,
and only allow the album to be deleted if the album is empty.

- if @user == @myself
 - if album.photos.empty?
 %form{:id => "form_#{album.id}", :method => 'post', :action => "/
album/#{album.id}"}
 %input{:type => 'hidden', :name => '_method', :value => 'delete'}
 %a{:href => '#', :onclick => '$("#form_' + "#{album.id}" + '").
submit();'} [remove]
 %a{:href => "/album/#{album.id}/upload"} [upload]

Chapter 4

[161]

Note that delete uses the DELETE method and we are using the form submit hack to
get around the problem of browsers not supporting any other HTTP methods other
than GET and POST.

Since we're in the neighborhood of doing album deletes let's quickly jump into the
delete album route:

delete "/album/:id" do
 album = Album.get(params[:id])
 user = User.get(session[:userid])
 if album.user == user
 if album.destroy
 redirect "/albums"
 else
 throw "Cannot delete this album!"
 end
 else
 throw "This is not your album, you cannot delete it!"
 end
end

Viewing someone else's albums uses the same manage albums page. The only
difference is that the myself variable points to the logged in user and the user
variable points to the user whose list of albums is being viewed.

get "/albums/:user_id" do
 @myself = User.get(session[:userid])
 @user = User.get(params[:user_id])
 haml :"albums/manage"
end

Creating the album is easy as well:

get "/album/add" do
 @user = User.get(session[:userid])
 haml :"/albums/add"
end

The add album page provides the user a form to add the album:

=snippet :'/snippets/top'
.span-24
 %h2 Create a new photo album
 Create an album here. You can add a cover photo later on if you
like.
.span-24
 %form{:method => 'post', :action => '/album/create'}

Photo Sharing – Cloning Flickr

[162]

 %p Name
 %p
 %input.span-10{:type => 'text', :name => 'name'}
 %p Description
 %p
 %textarea.span-10{:name => 'description'}
 %p
 %input{:type => 'submit', :value => 'create album'}

Actually creating the album is trivial:

post "/album/create" do
 album = Album.new
 album.attributes = {:name => params[:name], :description =>
params[:description]}
 album.user = User.get(session[:userid])
 album.save
 redirect "/albums"
end

As mentioned earlier, each album has a cover photo, which can be set explicitly. If
the cover photo is not set, the first photo in the list of photos will be used instead,
and if the album is empty a default album icon is used.

post "/album/cover/:photo_id" do
 photo = Photo.get(params[:photo_id])
 album = photo.album
 album.cover_photo = photo
 album.save!
 redirect "/album/#{album.id}"
end

There is not much in the view album route, which just allows an album and its
contents to be displayed:

get "/album/:id" do
 @album = Album.get params[:id]
 @user = User.get session[:userid]
 haml :"/albums/view"
end

The view album page is more involved:

=snippet :'/snippets/top'
=snippet :'/snippets/album_inline_js'
.span-24
 .span-2

Chapter 4

[163]

 %img.span-2{:src => "#{@album.user.photo_url}"}
 .span-20.last
 - if @user == @album.user
 %h2.edit_name{:style => 'margin-bottom: 0;'} #{@album.name}
 %h4.edit_area #{@album.description}
 - else
 %h2{:style => 'margin-bottom: 0;'} #{@album.name}
 %h4 #{@album.description}

.span-24
 %h3
 - if @user == @album.user
 %a{:href => "/album/#{@album.id}/upload"} [Upload photos]
 - if @user
 %a{:href => "/albums/#{@album.user.id}"} [Back to albums]
 - else
 %a{:href => "/user/#{@album.user.nickname}"} [Back to albums]

%hr.space

- if @user
 .span-24
 %h3 Photos in this album
 - if @album.original_photos(@user).empty?
 %h4
 There are no photos in this album.
 %a{:href => "/album/#{@album.id}/upload"} Upload some photos?

 - @album.original_photos(@user).each do |photo|
 %a{:href => "/photo/#{photo.id}"}
 %img.span-2{:src => "#{photo.url_thumbnail}"}

- else
 -@album.public_photos.each do |photo|
 %a{:href => "/photo/#{photo.id}"}
 %img.span-2{:src => "#{photo.url_thumbnail}"}

%hr.space

%h3 Edited versions of photos in this album
- if @album.edited_photos(@user).empty?
 %h4 There are no edited versions of photos in this album
- @album.edited_photos(@user).each do |photo|
 %a{:href => "/photo/#{photo.id}"}
 %img.span-2{:src => "#{photo.url_thumbnail}"}

Photo Sharing – Cloning Flickr

[164]

This is how the view album page looks:

There are a few parts in this album view. Just below the common top menu bar is
the photo avatar, followed by the title and description of the album. If you try the
Photoclone site you might notice that the title and description of the album can be
edited inline on the view album page itself. To provide the inline editing effect, we
use Jeditable (http://www.appelsiini.net/projects/jeditable) , a jQuery
plugin, and create the snippet album_inline_js.rb.

%script{:type => "text/javascript", :src => "/js/jeditable.mini.js"}
:javascript
$(document).ready(function() {
 $('.edit_name').editable('/album/name/#{@album.id}');
 $('.edit_area').editable('/album/description/#{@album.id}', {
 type : 'textarea',
 submit : 'OK',
 cancel : 'Cancel',
 height : 60
 });
});

Chapter 4

[165]

First, we include the Jeditable plugin Javascript. Then we define two editable
elements, one with the ID edit_name and the other with edit_area. We also tell
jQuery to make an AJAX call to the edit album property route, given the property to
edit and the album ID.

post "/album/:property/:photo_id" do
 album = Album.get params[:photo_id]
 if %w(name description).include? params[:property]
 album.send(params[:property] + '=', params[:value])
 album.save
 end
 album.send(params[:property])
end

Notice that we don't actually have an edit album name or edit album description
route. Instead we have a single edit album property route with a :property
parameter that is the property of the album we want to change. This next line is a
little bit of metaprogramming we're sneaking in:

album.send(params[:property] + '=', params[:value])

Here we are actually calling the set property method in album. For example, if
params[:property] is name, we're actually calling album.name= and the parameter
is in params[:value]. This means we can set any property of the album we want
with just this route and reduce the number of routes we need to create. However,
because we don't want anyone to change any property they want, we restrict it to
the name and description properties only. We will see this being used again later
on when managing photos. The final line returns the newly set property back to
the view template, which is then used by Jeditable to populate the text field or
text area accordingly.

Next, if the owner of the album is the currently logged in user, we will allow for
uploading new photos. Otherwise we will just allow for returning back to the
albums list.

.span-24
 %h3
 - if @user == @album.user
 %a{:href => "/album/#{@album.id}/upload"} [Upload photos]
 - if @user
 %a{:href => "/albums/#{@album.user.id}"} [Back to albums]
 - else
 %a{:href => "/user/#{@album.user.nickname}"} [Back to albums]

Photo Sharing – Cloning Flickr

[166]

Finally we show a list of photos in this album:

- if @user
 .span-24
 %h3 Photos in this album
 - if @album.original_photos(@user).empty?
 %h4
 There are no photos in this album.
 %a{:href => "/album/#{@album.id}/upload"} Upload some photos?

 - @album.original_photos(@user).each do |photo|
 %a{:href => "/photo/#{photo.id}"}
 %img.span-2{:src => "#{photo.url_thumbnail}"}

- else
 -@album.public_photos.each do |photo|
 %a{:href => "/photo/#{photo.id}"}
 %img.span-2{:src => "#{photo.url_thumbnail}"}

We show all original photos, public or private, if the user has logged in and is
viewing his album. Otherwise we will only show public photos. Edited versions of
the photos are shown regardless.

%h3 Edited versions of photos in this album
- if @album.edited_photos(@user).empty?
 %h4 There are no edited versions of photos in this album
- @album.edited_photos(@user).each do |photo|
 %a{:href => "/photo/#{photo.id}"}
 %img.span-2{:src => "#{photo.url_thumbnail}"}

Note that if original or edited, photos can be set to private and will not be shown if
the user has not logged in.

We want to allow anonymous users to view the albums and photos, so we provide
friendly URLs to let anonymous users view albums belonging to the users. For this
we have the public albums route:

get "/user/:username" do
 @viewed_user = User.first(:nickname => params[:username])
 redirect "/" if @viewed_user.nil?
 haml :"albums/public"
end

Chapter 4

[167]

Instead of getting the viewed user by his/her ID, we get it through his/her nickname
(this is why nicknames are important when the user first registers). Also instead of
going to the manage albums page, we go a public albums page, which is specifically
built for anonymous viewing.

=snippet :'/snippets/top'
.span-24
 .span-2
 %img.span-2{:src => "#{@viewed_user.photo_url}"}
 .span-9
 %h2{:style => 'margin-bottom: 0;'} #{@viewed_user.formatted_
name}'s albums
 %h3 #{@viewed_user.description}

%hr.space

-@viewed_user.albums.each do |album|
 %hr
 .span-24
 .span-17
 %h3{:style => 'margin-bottom:5px;'}
 %a{:href => "/album/#{album.id}"} #{album.name}
 %h4 #{album.description}
 %hr.space
 - unless album.photos.empty?
 %h4{:style => 'font-style: italic;'} (#{album.photos.size}
photos in this album, last photo uploaded on #{album.photos.last.
created_at.strftime('%d-%b-%Y')})
 .span-3
 - if album.cover_photo
 %img.span-3{:src => "#{album.cover_photo.url_display}"}
 - elsif !album.photos.empty?
 %img.span-3{:src => "#{album.photos.first.url_display}"}
 - else
 %img.span-3{:src => "/images/album_icon.png"}

Uploading photos
Let's look at one of the main features of Photoclone next. Uploading photos is critical
in any photo-sharing application and it's no different in Photoclone. The upload
photos route is as before, trivial as it simply shows the upload photos view.

get "/upload" do
 @user = User.get(session[:userid])
 @albums = @user.albums
 haml :upload
end

Photo Sharing – Cloning Flickr

[168]

Here we show all albums belonging to the logged in user and allow him to choose
which album he wants to upload to. However, at occasions we want to pre-choose
the album he/she must upload to, in this case we use this route instead:

get "/album/:id/upload" do
 @user = User.get(session[:userid])
 @albums = [Album.get(params[:id])]
 haml :upload
end

In this route there is only one album to upload to and in this way we can share the
same page.

=snippet :'/snippets/top'
.span-24
 %h2 Upload photos to an album
 - unless @albums.empty?
 .span-24
 %form{:method => 'post', :action => '/upload',
:enctype=>"multipart/form-data"}
 Upload photos to this album -
 %select.span-8{:name => 'album_id'}
 - @albums.each do |album|
 %option{:value => "#{album.id}"} #{album.name}
 %hr.space
 %ol
 %li
 %input{:type => 'file', :name => 'file1', :size => 60}
 %li
 %input{:type => 'file', :name => 'file2', :size => 60}
 %li
 %input{:type => 'file', :name => 'file3', :size => 60}
 %li
 %input{:type => 'file', :name => 'file4', :size => 60}
 %li
 %input{:type => 'file', :name => 'file5', :size => 60}
 %li
 %input{:type => 'file', :name => 'file6', :size => 60}

 %input{:type => 'submit', :value => 'upload'}
 %input{:type => 'button', :value => 'home', :onclick =>
"location.href='/'"}
 - else
 %h3
 Looks like you don't have any albums yet.
 %a{:href => "/album/add"} Create one
 before uploading photos!

Chapter 4

[169]

There isn't much to the page itself. As discussed earlier in the models section we
use the form field upload field to upload the photos. Most of the work is done by
the model but the post route for uploading does some basic manipulation to get the
pieces of data in place.

post "/upload" do
 album = Album.get params[:album_id]
 (1..6).each do |i|
 if params["file#{i}"] && (tmpfile = params["file#{i}"][:tempfile])
&& (name = params["file#{i}"][:filename])
 Photo.new(:title => name, :album => album, :tmpfile => tmpfile).
save
 end
 end
 redirect "/album/#{album.id}"
end

The parameters provided by most browsers are nested such that a parameter nested
in the named parameter (in this case it is file1, file2, and so on) named tempfile will
contain the binary data and parameter named filename will contain the name of the
file that is uploaded. We just need to extract them and pass them to Photo, as we're
saving a new record and the rest of the action happens in the model class.

Displaying photos
Displaying photos is another main feature of Photoclone. The next few features are
related to viewing photos and manipulating photos and they start from viewing the
photo. To explain them properly we will break them up into a few parts:

1.	 The action menu bar provides different actions for the user to
manipulate the photo.

2.	 Displaying the photo including the title and caption, both of which can be
edited inline.

3.	 Displaying photo metadata including editing the public/private
indicator inline.

4.	 Displaying edited versions.
5.	 Navigation in the album to the next and previous photos.
6.	 Annotating the photo.
7.	 Commenting on the photo.

Photo Sharing – Cloning Flickr

[170]

Annotating and commenting the photo will be left to the next two sections—we'll
concentrate on the first five parts in this section. This is the how the view photo page
finally looks after we're done:

Let's start with a quick look at the view photo route.

get "/photo/:id" do
 @photo = Photo.get params[:id]
 @user = User.get session[:userid]
 halt 403, 'This is a private photo' if @photo.privacy == 'Private'
and @user != @photo.album.user

Chapter 4

[171]

 notes = @photo.annotations.collect do |n|
 '{"x1": "' + n.x.to_s + '", "y1": "' + n.y.to_s +
 '", "height": "' + n.height.to_s + '", "width": "' + n.width.to_s
+
 '","note": "' + n.description + '"}'
 end
 @notes = notes.join(',')
 @prev_in_album = @photo.previous_in_album(@user)
 @next_in_album = @photo.next_in_album(@user)
 haml :photo
end

The view photo route is short, as with most of the other routes. After getting hold of
the photo and the logged in user, we check if the photo is private. If it is, we throw a
halt to inform the user that he/she is trying to view a private photo. Under normal
circumstances this will not happen because we will not show thumbnail or any links
to a private photo. However, this could happen if a previously public photo was
bookmarked and subsequently made private, or an unauthorized user was really
trying to view a private photo.

halt 403, 'This is a private photo' if @photo.privacy == 'Private' and
@user != @photo.album.user

The rest of the code deals with annotations and navigation so let's switch over to the
view first. It is a rather large page and the most complex in Photoclone:

=snippet :'/snippets/top'
=snippet :'/snippets/annotations_js'
=snippet :'/snippets/editor_js'
=snippet :'/snippets/photo_inline_js'

.span-24
 %h3
 .span-4
 %a{:href => "/album/#{@photo.album.id}"} [Back to album]
 - if @user == @photo.album.user
 .span-4
 %a{:href => '#', :id => 'add_annotation' } [annotate photo]
 .span-3
 %a{:href => '#', :onclick => "pixlr.open({image:'http://
photoclone.saush.com/photos/#{@photo.id}.tmp', title:'#{@photo.title}
copy', service:'express'});"} [edit photo]
 .span-4
 %form{:id => "form_cover_photo", :method => 'post', :action =>
"/album/cover/#{@photo.id}"}

Photo Sharing – Cloning Flickr

[172]

 %a{:href => '#', :onclick => '$("#form_cover_photo").
submit();'} [set album cover]
 .span-4
 %form{:id => "form_photo_#{@photo.id}", :method => 'post',
:action => "/photo/#{@photo.id}"}
 %input{:type => 'hidden', :name => '_method', :value =>
'delete'}
 %a{:href => '#', :onclick => '$("#form_photo_' + "#{@photo.
id}" + '").submit();'} [delete photo]

%hr.space
.span-24
 .span-13
 - if @user === @photo.album.user
 %h2.edit_title #{@photo.title}
 - else
 %h2 #{@photo.title}
 %img{:id => 'photo', :src => "#{@photo.url_display}"}
 - if @user === @photo.album.user
 %h4.edit_area #{@photo.caption}
 - else
 %h4 #{@photo.caption}

 #annotation_form
 %form{:id => 'annotation_add_form', :method => 'post', :action
=> "/annotation/#{@photo.id}"}
 %fieldset
 %legend
 %input{:name => 'annotation[x1]', :type => 'hidden', :id =>
'annotation_x1'}
 %input{:name => 'annotation[y1]', :type => 'hidden', :id =>
'annotation_y1'}
 %input{:name => 'annotation[height]', :type => 'hidden', :id
=> 'annotation_height'}
 %input{:name => 'annotation[width]', :type => 'hidden', :id
=> 'annotation_width'}
 %textarea{:name => 'annotation[text]', :id => 'annotation_
text'}
 .submit
 %input{:type => 'submit', :value => 'add'}
 %input{:type => 'button', :value => 'cancel', :id =>
'cancel_note'}
 .span-10
 %img.span-1{:src => "#{@photo.album.user.photo_url}"}
 Uploaded on #{@photo.created_at.strftime("%d %b %Y")} by

Chapter 4

[173]

 - if @user user and !@user.follows.include?(@photo.album.user)
 %form{:id => "form_create_#{@photo.album.user.id}", :method =>
'post', :action => "/follow/#{@photo.album.user.id}"}
 %input{:type => 'hidden', :name => '_method', :value => 'put'}
 %a{:href => '#', :onclick => '$("#form_create_' + "#{@photo.
album.user.id}" + '").submit();'}
 =@photo.album.user.formatted_name
 - else
 =@photo.album.user.formatted_name
 %h4
 This photo is
 - if @user === @photo.album.user
 %b.edit_privacy #{@photo.privacy}
 - else
 %b #{@photo.privacy}
 - if @user === @photo.album.user
 %h3 Annotations
 - if @photo.annotations.empty?
 %h4 No annotations on this photo.
 - else
 - @photo.annotations.each do |note|
 .span-6
 =note.description
 .span-3
 %form{:id => "form_#{note.id}", :method => 'post', :action
=> "/annotation/#{note.id}"}
 %input{:type => 'hidden', :name => '_method', :value =>
'delete'}
 %a{:href => '#', :onclick => '$("#form_' + "#{note.id}"
+ '").submit();'} [remove]
 %hr.space

 - unless @photo.versions.empty?
 %h3 Edited versions
 - @photo.versions.each do |version|
 %a{:href => "/photo/#{version.id}"}
 %img.span-2{:src => "#{version.url_thumbnail}"}
 - if @photo.original
 %h3 Original photo
 %a{:href => "/photo/#{@photo.original.id}"}
 %img.span-3{:src => "#{@photo.original.url_display}"}

 %h3 #{@photo.album.name}

 - if @prev_in_album

Photo Sharing – Cloning Flickr

[174]

 %a{:href => "/photo/#{@prev_in_album.id}"}
 %img.span-3{:src => "#{@prev_in_album.url_thumbnail}"}
 - else
 %img.span-3{:src => '/images/spacer.gif'}
 - if @next_in_album
 %a{:href => "/photo/#{@next_in_album.id}"}
 %img.span-3{:src => "#{@next_in_album.url_thumbnail}"}
 - else
 %img.span-3{:src => '/images/spacer.gif'}
 %br
 - if @prev_in_album
 %a{:href => "/photo/#{@prev_in_album.id}"}
 %img.span-2{:src => "/images/left_arrow.gif"}
 %a{:href => "/album/#{@photo.album.id}"}
 %img.span-2{:src => "/images/browse.gif"}
 - if @next_in_album
 %a{:href => "/photo/#{@next_in_album.id}"}
 %img.span-2{:src => "/images/right_arrow.gif"}

%hr.space

.span-24
 -@photo.comments.each do |comment|
 .span-13
 .span-2
 %img.span-2{:src => "#{comment.user.photo_url}"}
 .span-10
 .span-10
 %a.strong{:href => "/follow/#{comment.user.id}"} #{comment.
user.formatted_name} says:
 .span-10
 =comment.text
 .span-2
 - if @user == comment.user
 %form{:id => "form_comment_#{comment.id}", :method => 'post',
:action => "/comment/#{comment.id}"}
 %input{:type => 'hidden', :name => '_method', :value =>
'delete'}
 %a{:href => '#', :onclick => '$("#form_comment_' +
"#{comment.id}" + '").submit();'} [remove]
 %hr.space

.span-24
 %h3 Comments
 %form{:method => 'post', :action => "/comment/#{@photo.id}"}

Chapter 4

[175]

 %textarea.span-13.update{:name => 'text', :rows => '3'}
 %br
 %input{:type => 'submit', :value => 'post comment'}

As mentioned earlier, we'll be breaking this down in sequenced steps. First let's look
at the action menu bar. This menu bar contains all the actions that can be done on
the photo. However, the rest of the actions will be available only if the user owns the
photo being viewed.

.span-24
 %h3
 .span-4
 %a{:href => "/album/#{@photo.album.id}"} [Back to album]
 - if @user == @photo.album.user
 .span-4
 %a{:href => '#', :id => 'add_annotation' } [annotate photo]
 .span-3
 %a{:href => '#', :onclick => "pixlr.open({image:'http://
photoclone.saush.com/photos/#{@photo.id}.tmp', title:'#{@photo.title}
copy', service:'express'});"} [edit photo]
 .span-4
 %form{:id => "form_cover_photo", :method => 'post', :action =>
"/album/cover/#{@photo.id}"}
 %a{:href => '#', :onclick => '$("#form_cover_photo").
submit();'} [set album cover]
 .span-4
 %form{:id => "form_photo_#{@photo.id}", :method => 'post',
:action => "/photo/#{@photo.id}"}
 %input{:type => 'hidden', :name => '_method', :value =>
'delete'}
 %a{:href => '#', :onclick => '$("#form_photo_' + "#{@photo.
id}" + '").submit();'} [delete photo]

Next, we look at displaying the photo and doing inline editing of the title
and caption:

.span-24
 .span-13
 - if @user === @photo.album.user
 %h2.edit_title #{@photo.title}
 - else
 %h2 #{@photo.title}
 %img{:id => 'photo', :src => "#{@photo.url_display}"}
 - if @user === @photo.album.user
 %h4.edit_area #{@photo.caption}
 - else
 %h4 #{@photo.caption}

Photo Sharing – Cloning Flickr

[176]

As with editing the album title and description, we use Jeditable to allow inline
editing of the photo's title and caption. We use a similar snippet called photo_
inline_js.rb to add in the necessary JavaScript setup for Jeditable.

%script{:type => "text/javascript", :src => "/js/jeditable.mini.js"}
:javascript
 $(document).ready(function() {
 $('.edit_title').editable('/photo/title/#{@photo.id}');
 $('.edit_area').editable('/photo/caption/#{@photo.id}', {
 type : 'textarea',
 submit : 'OK',
 cancel : 'Cancel',
 height : 60
 });
 $('.edit_privacy').editable('/photo/privacy/#{@photo.id}', {
 data : " {'public':'public','private':'private'}",
 type : 'select',
 submit : 'OK',
 style : 'display: inline'
 });
});

Note that edit_title links to the edit photo title route while edit_area links to
the edit photo property route. As with editing the album, we use a single route
for both actions.

post "/photo/:property/:photo_id" do
 photo = Photo.get params[:photo_id]
 if %w(title caption).include? params[:property]
 photo.send(params[:property] + '=', params[:value])
 photo.save
 end
 photo.send(params[:property])
end

The last editable class refers to a privacy editable field, which we will discuss next.

%h4
 This photo is
 - if @user === @photo.album.user
 %b.edit_privacy #{@photo.privacy}
 - else
 %b #{@photo.privacy}

Chapter 4

[177]

Remember that privacy is an attribute of photo. This means that we can use the
same edit photo route above to perform the actual edit. However, if you click on the
public button on the page, you might notice that instead of turning into a text field
or a text area, it turns into a drop down select field. We supply the default data here
directly in the script.

We also provide some metadata on the time the photo was uploaded and the user
who uploaded it. The user can optionally follow this user if he/she is not already in
his/her list of people followed.

.span-10
 %img.span-1{:src => "#{@photo.album.user.photo_url}"}
 Uploaded on #{@photo.created_at.strftime("%d %b %Y")} by
 - if @user and !@user.follows.include?(@photo.album.user)
 %form{:id => "form_create_#{@photo.album.user.id}", :method =>
'post', :action => "/follow/#{@photo.album.user.id}"}
 %input{:type => 'hidden', :name => '_method', :value => 'put'}
 %a{:href => '#', :onclick => '$("#form_create_' + "#{@photo.
album.user.id}" + '").submit();'}
 =@photo.album.user.formatted_name
 - else
 =@photo.album.user.formatted_name

Just below the metadata we show a list of annotations on the photo and below that
is a list of edited versions of the photo. The navigation amongst photos in the same
album goes below the edit versions.

Remember we have these two variables in the route:

@prev_in_album = @photo.previous_in_album(@user)
@next_in_album = @photo.next_in_album(@user)

These two variables are used to determine the next and previous photos to view. The
logic is in the Photo model but here we determine the layout:

%h3 #{@photo.album.name}

 - if @prev_in_album
 %a{:href => "/photo/#{@prev_in_album.id}"}
 %img.span-3{:src => "#{@prev_in_album.url_thumbnail}"}

Photo Sharing – Cloning Flickr

[178]

 - else
 %img.span-3{:src => '/images/spacer.gif'}
 - if @next_in_album
 %a{:href => "/photo/#{@next_in_album.id}"}
 %img.span-3{:src => "#{@next_in_album.url_thumbnail}"}
 - else
 %img.span-3{:src => '/images/spacer.gif'}
 %br
 - if @prev_in_album
 %a{:href => "/photo/#{@prev_in_album.id}"}
 %img.span-2{:src => "/images/left_arrow.gif"}
 %a{:href => "/album/#{@photo.album.id}"}
 %img.span-2{:src => "/images/browse.gif"}
 - if @next_in_album
 %a{:href => "/photo/#{@next_in_album.id}"}
 %img.span-2{:src => "/images/right_arrow.gif"}

Note that the previous and next photos in the list represent a last-in-first-out
structure. The last uploaded photo is considered the first photo to view while the
next photo goes to the second to last.

Just below the thumbnails of the previous and next photos, we have a clearer
navigation guide, with arrows that point in either direction, and a central link that
points back to the album. As with web design it is always good to have multiple
links to the same page, to enforce interactivity of elements on the page as well as to
place navigation where it is most natural.

The navigation for photos before and after depends on the user that is viewing
the photo.

def previous_in_album(viewer)
 photos = viewer == album.user ? album.original_photos(viewer) :
album.public_photos
 index = photos.index self
 return nil unless index
 photos[index - 1] if index > 0

Chapter 4

[179]

end

def next_in_album(viewer)
 photos = viewer == album.user ? album.original_photos(viewer) :
album.public_photos
 index = photos.index self
 return nil unless index
 photos[index + 1] if index < album.photos.length
end

Also, we only show original photos and not edited photos.

Annotating photos
To annotate on a photo, we place a Javascript layer on top of the photo and draw a
white box around the item that that user marked. For this we use the ImgNotes jQuery
plugin by Tarique Sani that in turn uses another jQuery plugin called ImgAreaSelect
by Michał Wojciechowski. There are a few files we will need for this. In the public/
js folder we add notes.js and select.js, from the ImgNotes and ImgAreaSelect
jQuery plugins respectively. The links to these two scripts are in layout.rb.

%script{:src => '/js/select.js', :type => 'text/javascript'}
%script{:src => '/js/notes.js', :type => 'text/javascript'}

The two important functions in the two files of note are img_annotations in the
notes.js and imgAreaSelect in select.js. To add in the annotation feature, we
include a snippet called annotations_js in the view photo page:

=snippet :'/snippets/annotations_js'

This snippet allows us to provide annotations to photos:

:javascript
 notes = [#{@notes}];

 $(window).load(function () {
 $('#photo').img_annotations();

 $('#cancel_note').click(function(){
 $('#photo').imgAreaSelect({ hide: true });
 $('#annotation_form').hide();
 });

 $('#add_annotation').click(function(){
 $('#photo').imgAreaSelect({ onSelectChange: show_add_annotation,
x1: 120, y1: 90, x2: 280, y2: 210 });
 return false;

Photo Sharing – Cloning Flickr

[180]

 });
 });

 function show_add_annotation (img, area) {
 imgOffset = $(img).offset();
 form_left = parseInt(imgOffset.left) + parseInt(area.x1);
 form_top = parseInt(imgOffset.top) + parseInt(area.y1) +
parseInt(area.height)+5;

 $('#annotation_form').css({ left: form_left + 'px', top: form_top
+ 'px'});
 $('#annotation_form').show();
 $('#annotation_form').css("z-index", 10000);
 $('#annotation_x1').val(area.x1);
 $('#annotation_y1').val(area.y1);
 $('#annotation_height').val(area.height);
 $('#annotation_width').val(area.width);
 }	

notes is a JavaScript variable used store the list of notes added to the photo:

 notes = [#{@notes}];

The data looks something like this:

notes = [{"x1": "63", "y1": "39", "height": "239", "width":
"384","note": "La Rotonde lits up prettily at night!"},{"x1": "325",
"y1": "8", "height": "74", "width": "146","note": "Great Provencal
evening"}];

x1 and y1 are the coordinates of the upper-left corner of the white box while height
and width define the height and width of the box. The note field is the actual text
to be displayed. We indicate the image to be annotated to be the element that has a
class ID photo.

$('#photo').img_annotations();

Remember the function img_annotations, which we are using here. When we click
on an element that has the class ID add_annotation, we use the imgAreaSelect
function to draw the white select box and at the same time, call the show_add_anno-
tation function.

$('#add_annotation').click(function(){
 $('#photo').imgAreaSelect({ onSelectChange: show_add_annotation, x1:
120, y1: 90, x2: 280, y2: 210 });
 return false;
 });
});

Chapter 4

[181]

The show_add_annotation function in turn shows a form just below the white box,
and pre-populates certain dimensions data into that form:

function show_add_annotation (img, area) {
 imgOffset = $(img).offset();
 form_left = parseInt(imgOffset.left) + parseInt(area.x1);
 form_top = parseInt(imgOffset.top) + parseInt(area.y1) +
parseInt(area.height)+5;

 $('#annotation_form').css({ left: form_left + 'px', top: form_top +
'px'});
 $('#annotation_form').show();
 $('#annotation_form').css("z-index", 10000);
 $('#annotation_x1').val(area.x1);
 $('#annotation_y1').val(area.y1);
 $('#annotation_height').val(area.height);
 $('#annotation_width').val(area.width);
}

The annotation form is the form that allows the user to write the annotation text and
it is a basic HTML form with a submit and a cancel button:

#annotation_form
 %form{:id => 'annotation_add_form', :method => 'post', :action => "/
annotation/#{@photo.id}"}
 %fieldset
 %legend
 %input{:name => 'annotation[x1]', :type => 'hidden', :id =>
'annotation_x1'}
 %input{:name => 'annotation[y1]', :type => 'hidden', :id =>
'annotation_y1'}
 %input{:name => 'annotation[height]', :type => 'hidden', :id =>
'annotation_height'}
 %input{:name => 'annotation[width]', :type => 'hidden', :id =>
'annotation_width'}
 %textarea{:name => 'annotation[text]', :id => 'annotation_text'}
 .submit
 %input{:type => 'submit', :value => 'add'}
 %input{:type => 'button', :value => 'cancel', :id => 'cancel_
note'}

The cancel button calls the cancel_note function to hide the form once more:

$('#cancel_note').click(function(){
 $('#photo').imgAreaSelect({ hide: true });
 $('#annotation_form').hide();
});

Photo Sharing – Cloning Flickr

[182]

This is how an annotated photo looks:

When the user enters the note he/she wants to make on the photo and clicks on the
add button, the data will be sent to the add annotation route:

post "/annotation/:photo_id" do
 photo = Photo.get params[:photo_id]
 note = Annotation.create(:x => params["annotation"]["x1"],
 :y => params["annotation"]["y1"],
 :height => params["annotation"]["height"],
 :width => params["annotation"]["width"],
 :description => params["annotation"]
["text"])
 photo.annotations << note
 photo.save
 redirect "/photo/#{params[:photo_id]}"
end

The annotation is created and added to the photo and the user is redirected back to
the view photo route:

%h3 Annotations
 - if @photo.annotations.empty?
 %h4 No annotations on this photo.
 - else

Chapter 4

[183]

 - @photo.annotations.each do |note|
 .span-6
 =note.description
 .span-3
 %form{:id => "form_#{note.id}", :method => 'post', :action =>
"/annotation/#{note.id}"}
 %input{:type => 'hidden', :name => '_method', :value =>
'delete'}
 %a{:href => '#', :onclick => '$("#form_' + "#{note.id}" +
'").submit();'} [remove]

The page with the annotated photo looks like this:

Photo Sharing – Cloning Flickr

[184]

To remove the annotation, the user can click on the [remove] link at the list of
annotations to the right. This will simply remove the annotation and reload
the same page.

delete "/annotation/:id" do
 note = Annotation.get(params[:id])
 photo = note.photo
 if note.destroy
 redirect "/photo/#{photo.id}"
 else
 throw "Cannot delete this annotation!"
 end
end

Commenting on photos
Commenting on photos is a relatively simple feature to implement. Right at the bot-
tom of photo.haml is the comment form for each photo:

.span-24
 %h3 Comments
 %form{:method => 'post', :action => "/comment/#{@photo.id}"}
 %textarea.span-13.update{:name => 'text', :rows => '3'}
 %br
 %input{:type => 'submit', :value => 'post comment'}

Posting to the comment route will add a comment to the photo:

post "/comment/:photo_id" do
 photo = Photo.get params[:photo_id]
 comment = Comment.create(:text => params[:text])
 comment.user = User.get session[:userid]
 photo.comments << comment
 photo.save
 redirect "/photo/#{params[:photo_id]}"
end

After creating the comment, it will appear at the bottom of the view photo page:

.span-24
 -@photo.comments.each do |comment|
 .span-13
 .span-2
 %img.span-2{:src => "#{comment.user.photo_url}"}
 .span-10
 .span-10

Chapter 4

[185]

 %a.strong{:href => "/follow/#{comment.user.id}"} #{comment.
user.formatted_name} says:
 .span-10
 =comment.text
 .span-2
 - if @user == comment.user
 %form{:id => "form_comment_#{comment.id}", :method => 'post',
:action => "/comment/#{comment.id}"}
 %input{:type => 'hidden', :name => '_method', :value =>
'delete'}
 %a{:href => '#', :onclick => '$("#form_comment_' +
"#{comment.id}" + '").submit();'} [remove]
 %hr.space

Only the user who created the comment can delete the comment he wrote:

delete "/comment/:id" do
 comment = Comment.get(params[:id])
 photo = comment.photo
 commentor = comment.user
 user = User.get session[:userid]
 comment.destroy if user == commentor
 redirect "/photo/#{photo.id}"
end

Editing photos
We use Pixlr as the editor to modify the photos we create. The photo editing
mechanism works in the following way:

1.	 The user clicks on the edit photo link.
2.	 Photo data is sent to the Pixlr photo editor and the user is directed to

it as well.
3.	 The user modifies the photo on the Pixlr editor.
4.	 When the user is done with the changes, he saves the photo and the data is

sent back to Photoclone.
5.	 Photoclone saves it as an edited version and links it to the original photo.

Let's start with the link that triggers sending the photo to Pixlr:

%a{:href => '#', :onclick => "pixlr.open({image:'http://photoclone.
saush.com/photos/#{@photo.id}.tmp', title:'#{@photo.title} copy',
service:'express'});"} [edit photo]

Photo Sharing – Cloning Flickr

[186]

The link calls the Pixlr JavaScript library function open to send the temporary
display photo to the Pixlr editor; in this our case we're using the Pixlr Express editor.
The title of the photo is appended with the word copy. Let's look closer. Before we
can use the link, we need to include the snippet editor_js in photo.haml:

=snippet :'/snippets/editor_js'

The snippet is a bunch of settings that tells Pixlr how we want it to behave:

%script{:type => "text/javascript", :src => "/js/pixlr_minified.js"}
:javascript
 pixlr.settings.target = 'http://photoclone.saush.com/photo/save_
edited/#{@photo.id}';
 pixlr.settings.exit = "http://photoclone.saush.com/photo/#{@photo.
id}";
 pixlr.settings.credentials = true;
 pixlr.settings.method = 'post';
 pixlr.settings.locktarget = true;

First, the snippet adds in a minified version of the Pixlr Javascript library. The
target setting is the URL that Pixlr will call and send the edited photo data to. The
exit setting is the URL that Pixlr will redirect to (without sending any data) if the
user chooses to exit from the Pixlr photo editor. The credentials setting is used for
reducing the number of round-trips needed to the Pixlr server. If we set it to true,
we need a crossdomain.xml file in the root folder of the server (in this case it is the
public folder), which simply indicates that our server allows access for Pixlr. This
file is required by the Flash component used by Pixlr.

<?xml version="1.0"?>
<!DOCTYPE cross-domain-policy SYSTEM "http://www.adobe.com/xml/dtds/
cross-domain-policy.dtd">
<cross-domain-policy>
 <allow-access-from domain="pixlr.com" />
 <site-control permitted-cross-domain-policies="master-only"/>
 <allow-http-request-headers-from domain="pixlr.com" headers="*"
secure="true"/>
</cross-domain-policy>

The method setting tells Pixlr that we'll be sending the data through HTTP POST.
Lastly, the locktarget setting tells Pixlr to stop the user from saving the photo to
his/her computer because we want the user to save the photo back to Photoclone.

Chapter 4

[187]

This is how the Pixlr Express photo editor looks with the photo redirected
from Photoclone:

Once the user is satisfied with his/her changes and saves them by clicking on the
Done button, the photo will be sent back to the save edited photo route:

post "/photo/save_edited/:original_photo_id" do
 if params[:original_photo_id] && params["image"] && (tmpfile =
params["image"][:tempfile]) && (name = params["image"][:filename])
 original_photo = Photo.get params[:original_photo_id]
 new_photo = Photo.new(:title => name, :album => original_photo.
album, :tmpfile => tmpfile)
 original_photo.versions << new_photo
 original_photo.save
 end
 redirect "/photo/#{original_photo.id}"
end

This is very similar to the code we saw in the photo upload; in fact the methods
we used are the same, except this time we save the edited photo as a version
of the original.

Photo Sharing – Cloning Flickr

[188]

Sharing photos
Sharing photos is a primary function of a photo-sharing application. As mentioned
in the design section, Photoclone enables sharing photos through friendly URLs and
photostreams. We saw how Photoclone implements friendly URLs in the preceding
user management section; let's take a look at how photostreams are implemented by
examining how Photoclone enables users to search and follow other users.

This is the view users page, which shows a list of people who follow you and a list of
people who you follow:

Photoclone has a single page that shows the user a list of users they follow and the
users following him/her. The route used for this page is the follows route:

get "/follows" do
 @user = User.get session[:userid]
 @follows = @user.follows
 @followers = @user.followers

Chapter 4

[189]

 if params[:query]
 @search_results = User.all(:nickname.like => params[:query] + '%')
 end
 haml :'follows/manage'
end

This route retrieves the logged in user and extracts the people following him/her as
well as people he/she is following:

=snippet :'/snippets/top'
.span-24
 .span-2
 %img.span-2{:src => "#{@user.photo_url}"}
 .span-9
 %h2{:style => 'margin-bottom: 0;'} People you follow
 %h3 View photos shared by people you follow!
 .span-7.prepend-5
 %form{:method => 'get'}
 %input{:type => 'text', :name => 'query'}
 %input{:type => 'submit', :value => 'search people'}

- if @search_results
 %hr.space
 .span-24
 %h3 People who match your search criteria
 - @search_results.each do |res|
 .span-3.picbox
 %a{:href => "/albums/#{res.id}"}
 %img.span-2{:src => "#{res.photo_url}"}
 %h4{:style => 'margin-bottom:5px;'} #{res.nickname}
 - unless res == @user or @user.follows.include? res
 %form{:id => "form_create_#{res.id}", :method => 'post',
:action => "/follow/#{res.id}"}
 %input{:type => 'hidden', :name => '_method', :value =>
'put'}
 %a{:href => '#', :onclick => '$("#form_create_' + "#{res.
id}" + '").submit();'} [follow]
 %hr.space

%hr.space
.span-24
 %h3 People I follow
 - if @follows.empty?
 %h4 You are not following anyone right now. Search for someone and
follow them to view their photos!

Photo Sharing – Cloning Flickr

[190]

 - else
 .span-24
 -@follows.each do |follow|
 .span-3.picbox
 %a{:href => "/albums/#{follow.id}"}
 %img.span-2{:src => "#{follow.photo_url}"}
 %h4{:style => 'margin-bottom:5px;'} #{follow.nickname}
 %form{:id => "form_delete_#{follow.id}", :method => 'post',
:action => "/follow/#{follow.id}"}
 %input{:type => 'hidden', :name => '_method', :value =>
'delete'}
 %a{:href => '#', :onclick => '$("#form_delete_' +
"#{follow.id}" + '").submit();'} [unfollow]
 %hr.space

%hr.space
.span-24
 %h3 People following you
 - if @followers.empty?
 %h4 No one is following you at the moment. Tell them about it!
 - else
 .span-24
 -@followers.each do |follower|
 .span-3
 %a{:href => "/albums/#{follower.id}"}
 %img.span-2{:src => "#{follower.photo_url}"}
 %h4{:style => 'margin-bottom:5px;'} #{follower.nickname}
 - unless @user.follows.include? follower
 %form{:id => "form_follower_create_#{follower.id}",
:method => 'post', :action => "/follow/#{follower.id}"}
 %input{:type => 'hidden', :name => '_method', :value
=> 'put'}
 %a{:href => '#', :onclick => '$("#form_follower_
create_' + "#{follower.id}" + '").submit();'} [follow]
 %hr.space

For every user that the logged in user follows, there is an option for the user to stop
following that person.

%form{:id => "form_delete_#{follow.id}", :method => 'post', :action =>
"/follow/#{follow.id}"}
 %input{:type => 'hidden', :name => '_method', :value =>
'delete'}
 %a{:href => '#', :onclick => '$("#form_delete_' +
"#{follow.id}" + '").submit();'} [unfollow]

Chapter 4

[191]

To stop following a user, we simply use the unfollow method (remember the two
convenience methods mentioned in the authentication and user management
section) on the person being followed:

delete "/follow/:user_id" do
 me = User.get session[:userid]
 person = User.get params[:user_id]
 me.unfollow person
 redirect "/follows"
end

Similarly, for every user that is following the logged in user, there is an option for
him/her to follow that user in return (unless he is already following that user):

%form{:id => "form_follower_create_#{follower.id}", :method => 'post',
:action => "/follow/#{follower.id}"}
%input{:type => 'hidden', :name => '_method', :value => 'put'}
 %a{:href => '#', :onclick => '$("#form_follower_create_' +
"#{follower.id}" + '").submit();'} [follow]

To follow a user, we use the follow method on that person:

put "/follow/:user_id" do
 me = User.get session[:userid]
 person = User.get params[:user_id]
 me.follow person
 redirect "/follows"
end

Photoclone also implements a simple search function:

%form{:method => 'get'}
 %input{:type => 'text', :name => 'query'}
 %input{:type => 'submit', :value => 'search people'}

This simple search box goes out to the follows route, which does a SQL search on the
user's nickname:

if params[:query]
 @search_results = User.all(:nickname.like => params[:query] + '%')
end

The search results are then displayed above the other lists. As before we allow an
option for the user to follow people from the search results:

.span-24
 %h3 People who match your search criteria
 - @search_results.each do |res|

Photo Sharing – Cloning Flickr

[192]

 .span-3.picbox
 %a{:href => "/albums/#{res.id}"}
 %img.span-2{:src => "#{res.photo_url}"}
 %h4{:style => 'margin-bottom:5px;'} #{res.nickname}
 - unless res == @user or @user.follows.include? res
 %form{:id => "form_create_#{res.id}", :method => 'post',
:action => "/follow/#{res.id}"}
 %input{:type => 'hidden', :name => '_method', :value =>
'put'}
 %a{:href => '#', :onclick => '$("#form_create_' + "#{res.
id}" + '").submit();'} [follow]

These are the results from our search, also displayed in the view users page:

Chapter 4

[193]

And that is it! A minimalist and simple Flickr clone. We have covered quite a lot of
ground in building Photoclone. The next step is to deploy it.

Deploying the clone
Unlike as in the previous chapters, we will only see how we deploy to a normal
server, and not to Heroku. This is because while we store most of our data on
Amazon, for fast processing we actually keep temporary cached files in the same
server. Unfortunately Heroku doesn't provide for non-database file storage (we are
not allowed access to the file server). While there are a few other ways of deploying
Photoclone on a non-dedicated server, the steps are almost the same. We will only
describe one way of deploying the service.

Deploying on a server
For development purposes we would normally run it off the command line using the
built-in web server. However, before we do this, we need to set up the database. For
this application we would need to have MySQL already installed. At the command
line go into the MySQL interactive command console:

$ mysql –u <username> -p <password>

Then just do a simple command:

mysql> create database photoclone;

This will just create the database. Next, go into IRB and run the following command:

> require 'models'

This will get the necessary classes for creating the database tables. Next, just run the
following command:

> DataMapper.auto_migrate!

This will create the tables for the application. To run the application, we just need to
run this at the command line:

$ ruby photoclone.rb

Then go to http://localhost:4567/ and you will see the login page. Try logging
in. If you have added localhost to the list of applicable URLs in RPX you will be able
to log in.

Photo Sharing – Cloning Flickr

[194]

Summary
We have gone through a lot in this chapter. We began by introducing photo-sharing
applications in general and then Flickr specifically. We walked through what made
Flickr work and discussed the main features of a photo-sharing application. After
that we went through the design of implementing those main features. Before
jumping into describing how we implemented the design, we went on a tour of the
technologies we used in building the clone. In particular we discussed the three main
technologies used—RPX for authentication, Pixlr for photo editing, and AWS S3
for permanent photo storage. We spent the bulk of this chapter explaining how we
built Photoclone, a photo-sharing application that has those set of features. We went
through the data model used in Photoclone, where the bulk of logic resided and then
the major application flow in Photoclone. Finally, we wrapped up with a simple
description of how Photoclone can be deployed.

Social Networking Services –
Cloning Facebook 1

One of the most dominant Internet services today is the social networking service.
According to a report by the Nielsen Company, in January 2010, the amount of time
an average person spent on Facebook is more than seven hours per month, which
amounts to more than 14 minutes per day. If you lump together the time spent
on Google, Yahoo!, YouTube, Bing, Wikipedia, and Amazon, it still doesn't beat
Facebook! By March 2010, Facebook accounted for more than seven percent of all
Internet traffic in the United States, surpassing visits to Google. Social networking
services have risen in the past few years to be more than just a passing fad, to be an
important communications tool as well as a part of daily life.

We will be building our last and most complex clone based on Facebook, the most
popular social networking service as of date. The clone we will build here will
be described over this and the next chapter. In this chapter we will cover basic
information about social networking services, main features of the clone that we will
build, as well as the description of the data model we will be using for the clone.

All about social networking services
A social networking service is an Internet service that models social relationships
among people. Essentially it consists of a user profile, his or her social links, and
a variety of additional services. Most social networking services are web-based
and provide various ways for users to interact over the Internet, including sharing
content and communications.

Social Networking Services – Cloning Facebook 1

[196]

Early social networking websites started in the form of generalized online
communities such as The WELL (1985), theglobe.com (1994), GeoCities (1994), and
Tripod (1995). These early communities focused on communications through chat
rooms, and sharing personal information and topics via simple publishing tools.
Other communities took the approach of simply having people link to each other
via e-mail addresses. These sites included Classmates (1995), focusing on ties with
former schoolmates, and SixDegrees (1997), focusing on indirect ties.

SixDegrees.com in a way was the first to bring together the first few defining features
of a social networking service. The basic features of the first online social networking
services include user profiles, adding friends to a friends list, and sending private
messages. Unfortunately, SixDegrees was too advanced for its time and eventually
closed in 2001.

Interestingly the most popular social networking service in Korea, CyWorld, was
started around this time in 1999. The original intention for CyWorld was to develop
an online dating service similar to Match and provide an open public meeting place
for users to meet online. In 2001, CyWorld launched the minihompy service, a
feature that allows each user to create a virtual homepage. This was highly successful
as celebrities and politicians took to this platform to reach out to their fans and
audience. CyWorld also eventually included a virtual currency called "dottori" in
2002 and a mobile version in 2004. Up to 2008, CyWorld had more than one third of
Korea's entire population as members with a strong penetration of ninety percent in
the young adults market.

Between 2002 and 2004, a few social networking services became highly popular.
Friendster, started by Jon Abraham in 2002 to compete with Match.com, was highly
successful initially. However due to platform and scalability issues, its popularity
plummeted as newer social networking services were launched. MySpace,
launched in 2003, was started as a Friendster alternative and became popular with
independent rock bands from Los Angeles as promoters used the platform to
advertise VIP passes for popular clubs. Subsequently, MySpace facilitated a two-way
conversation between bands and their fans, and music became the growth engine of
MySpace. MySpace also introduced the concept of allowing users to personalize
their pages and to generate unique layouts and backgrounds. Eventually MySpace
became the most dominant social networking service in U.S. until Facebook took
over in 2009.

Chapter 5

[197]

Mixi is the largest online social networking service in Japan with a total of 20 million
users to date and over ninety percent of users being Japanese. Launched in February
2004 by founder Kenji Kasahara, the focus of Mixi is to enable users to meet new
people who share common interests. An interesting feature of Mixi (counterintuitive)
is that it's an invitation by friend social network, which means that a new user can
only join Mixi through an invitation by an existing user. This feature is only found
in niche and private social networks such as http://www.asmallworld.net, a
successful social networking service that caters to celebrities and high net worth
individuals. This invitation-based model holds the user responsible for who they
invite, and thus reduces unwanted behavior within the network, reflecting Japanese
culture itself.

Social networking began to emerge as a part of business Internet strategy at around
2005 when Yahoo! launched Yahoo! 360, its first attempt at a social networking
service. In July 2005 News Corporation bought MySpace. It was around this time as
well that the first mainland Chinese social networks started. The three most notable
examples in chronological order are 51.com (2005), Xiaonei (2005), and Kaixin001
(2008). 51.com drew its inspiration from CyWorld, and later MySpace and QQ. On
the other hand, Xiaonei has a user interface that follows Facebook, though it also
offers the user flexibility to change the look and feel, similar to MySpace. Kaixin001,
the latest social networking platform in China with the fastest growing number of
users, started in 2008 and the platform and user interface are remarkably similar
to Facebook.

It was also around this time that more niche social networking services focusing on
specific demographics sprang up, with the most successful example being LinkedIn,
which focused on business professionals. At the same time media content sharing
sites began slowly incorporated social networking service features and became social
networking services themselves. Examples include QQ (instant messaging), Flickr
(photo-sharing), YouTube (video-sharing), and Last.FM (music sharing).

As mentioned earlier, as of early 2010 social networking services are the dominant
service and purpose for many users on the Internet, with Internet traffic in US
surpassing the previous giant of the Internet.

Facebook
Facebook is the most dominant social networking service till date, with 400 million
active users, 5 billion pieces of content shared each week, and more than 100 million
active users concurrently accessing Facebook through their mobile devices.
It is also the most widespread, with 70 percent of its users from outside of US, its
home market.

Social Networking Services – Cloning Facebook 1

[198]

Mark Zuckerberg and some of his Harvard college roommates launched Facebook
in February 2004. Initially intended as an online directory for college students (the
initial membership was limited to Harvard College students) it was later expanded
to include other colleges, then high schools, and finally anyone around the world
who is 13 years old and above.

Facebook features are typically that of many social networks that were created
around that time. The more prominent ones are the Wall (a space on every user's
profile five friends to post messages on), pokes (which allows users to virtually
poke each other, that is to notify a user that they have been poked), photo uploading,
sharing, and status updates, which allow users to inform their friends of their
whereabouts and what they were doing. Over time, Facebook included features to
form virtual groups, to blog, to start events, chat with instant messaging, and even
send virtual gifts to friends.

Facebook launched Facebook Platform in May 2007, providing a framework for
software developers to create applications that interact with Facebook. It soon
became wildly popular, and within a year 400,000 developers have registered
for the platform, and built 33,000 applications. As of writing date there are more
than 500,000 active applications in Facebook, developed by more than 1 million
developers and there are more than 250 applications with more than 1 million
monthly active users!

In this chapter we will be cloning Facebook and creating an application called
Colony, which has the basic but essential features of Facebook.

Main features
Online social networking services are complex applications with a large number
of features. However, these features can be roughly grouped into a few
common categories:

•	 User
•	 Community
•	 Content-sharing
•	 Developer

User features are features that relate directly to and with the user. For example,
the ability to create and share their own profiles, and the ability to share status and
activities are user features. Community features are features that connect users with
each other. An example of this is the friends list feature, which shows the number of
friends a user has connected with in the social network.

Chapter 5

[199]

Content sharing features are quite easy to understand. These are features that
allow a user to share his self-created content with other users, for example photo
sharing or blogging. Social bookmarking features are those features that allow users
to share content they have discovered with other users, such as sharing links and
tagging items with labels. Finally, developer features are features that allow external
developers to access the services and data in the social networks.

While the social networking services out in the market often try to differentiate
themselves from each other in order to gain an edge over their competition, in this
chapter we will be building a stereotypical online social networking service. We will
be choosing only a few of the more common features in each category, except for
developer features, which for practical reasons will not be implemented here.

Let's look at these features we will implement in Colony, by category.

User
User features are features that relate directly to users:

•	 Users' activities on the system are broadcast to friends as an activity feed.
•	 Users can post brief status updates to all users.
•	 Users can add or remove friends by inviting them to link up. Friendship in

both ways need to be approved by the recipient of the invitation.

Community
Community features connect users with each other:

•	 Users can post to a wall belonging to a user, group, or event. A wall is a place
where any user can post on and can be viewed by all users.

•	 Users can send private messages to other users.
•	 Users can create events that represent an actual event in the real world.

Events pull together users, content, and provide basic event management
capabilities, such as RSVP.

•	 Users can form and join groups. Groups represent a grouping of like-minded
people and pulls together users and content. Groups are permanent.

•	 Users can comment on various types of shared and created content including
photos, pages, statuses, and activities. Comments are textual only.

•	 Users can indicate that they like most types of shared and created content
including photos, pages, statuses, and activities.

Social Networking Services – Cloning Facebook 1

[200]

Content sharing
Content sharing features allow users to share content, either self-generated or
discovered, with other users:

•	 Users can create albums and upload photos to them
•	 Users can create standalone pages belonging to them or attached pages

belonging to events and groups

You might notice that some of the features in the previous chapters are similar
to those here. This should not be surprising. Online social networking services
grew from existing communications and community services, often evolving and
incorporating features and capabilities from those services. The approach adopted in
this book is no different. We will be using some of the features we have built in the
previous chapter and adapt them accordingly for Colony.

For the observant reader you might notice that the previous
chapters have clones that end with clone. The original name of this
clone during writing was Faceclone, but apparently Facebook has
trademarked Face for many of its applications. In order to avoid
any potential trademark issues, I chose Colony instead.

Designing the clone
Now that we have the list of features that we want to implement for Colony, let's
start designing the clone. The design and implementation of this clone will be
described over this and the next chapter. We will start with the data model in this
chapter and move on to describing the application flow and deployment with the
next chapter.

Authentication, access control, and user
management
Authentication, access control, and user management are handled much the same as
in previous chapters. As with the other clones, authentication is done through RPX,
which means we delegate authentication to a third party provider such as Google,
Yahoo!, or Facebook. Access control however is still done by Colony, while user
management functions are shared between the authentication provider and Colony.

Chapter 5

[201]

Access control in Colony is done on all data, which prevents user from accessing
data that they are not allowed to. This is done through control of the user account,
to which all other data for a user belongs. In most cases a user is not allowed access
to any data that does not belong to him/her (that is not shared to everyone). In some
cases though access is implicit; for example, an event is accessible to be viewed only
if you are the organizer of the event. Note that unlike Photoclone, which has public
pages, there are no public pages in Colony.

As before, user management is a shared responsibility between the third party
provider and the clone. The provider handles password management and general
security while Colony stores a simple set of profile information for the user.

Status updates
Allowing you to send status updates about yourself is a major feature of all social
networking services. This feature allows the user, a member of the social networking
service, to announce and define his presence as well as state of mind to his network.
If you have gone through the Twitter clone chapter, you might notice that this
feature is almost the same as the one in Tweetclone.

The major difference in the features is in who can read the statuses, which can
be quite subtle yet obvious to someone who has read the previous chapters. In
Tweetclone, the user's followers can read the statuses (which is really just anyone
who chooses to follow him or her) while in Colony, only the user's friends can read
the statuses. Remember that a user's friend is someone validated and approved by
the user and not just anyone off the street who happens to follow that user.

Status updates belong to a single user but are viewable to all friends as a part of the
user's activity feed.

User activity feeds and news feeds
Activity feeds, activity streams, or life streams are continuous streams of information
on a user's activities. Activity feeds go beyond just status updates; they are a digital
trace of a user's activity in the social network, which includes his status updates. This
include public actions like posting to a wall, uploading photos, and commenting on
content, but not private actions like sending messages to individuals. The user's ac-
tivity feed is visible to all users who visit his user page.

Social Networking Services – Cloning Facebook 1

[202]

Activity feeds are a subset of news feeds that is an aggregate of activity feeds of the
user and his network. News feeds give an insight into the user's activities as well
as the activities of his network. In the design of our clone, the user's activity feed is
what you see when you visit the user page, for example http://colony.saush.
com/user/sausheong, while the news feed is what you see when you first log in
to Colony, that's the landing page. This design is quite common to many social
networking services.

Friends list and inviting users to join
One of the reasons why social networking services are so wildly successful is the
ability to reach out to old friends or colleagues, and also to see friends of your
friends. To clone this feature we provide a standard friends list and an option to
search for friends. Searching for friends allows you to find other users in the system
by their nicknames or their full names. By viewing a user's page, we are able to see
his friends and therefore see his friend's user pages as well.

Another critical feature in social networking services is the ability to invite friends
and spread the word around. In Colony we tap on the capabilities of Facebook and
invite friends who are already on Facebook to use Colony. While there is a certain
amount of irony (using another social networking service to implement a feature
of your social networking service), it makes a lot of practical sense, as Facebook
is already one of the most popular social networking services on the planet. To
implement this, we will use Facebook Connect. However, this means if the user
wants to reach out and get others to join him in Colony he will need to log into
Facebook to do so.

As with most features, the implementation can be done in many ways and Facebook
Connect (or any other type of third-party integration for that matter) is only one
of them. Another popular strategy is to use web mail clients such as Yahoo! Mail
or Gmail, and extract user contacts with the permission of the user. The e-mails
extracted this way can be used as a mailing list to send to potential users. This is in
fact a strategy used by Facebook.

Posting to the wall
A wall is a place where users can post messages. Walls are meant to be publicly read
by all visitors. In a way it is like a virtual cork bulletin board that users can pin their
messages on to be read by anyone. Wall posts are meant to be short public messages.
The Messages feature can be used to send private messages.

http://colony.saush.com/user/sausheong
http://colony.saush.com/user/sausheong

Chapter 5

[203]

A wall can belong to a user, an event, or a group and each of these owning entities
can have only one wall. This means any post sent to a user, event, or group is
automatically placed on its one and only wall.

A message on a wall is called a post, which in Colony is just a text message (Facebook's
original implementation was text only but later extended to other types of media).
Posts can be remarked on and are not threaded. Posts are placed on the wall in a
reverse chronological order in a way that the latest post remains at the top of the wall.

Sending messages
The messaging feature of Colony is a private messaging mechanism. Messages are
sent by senders and received by recipients. Messages that are received by a user are
placed into an inbox while messages that the user sent are placed into a sent box.
For Colony we will not be implementing folders so these are the only two message
folders that every user has.

Messages sent to and received from users are threaded and ordered by time. We
thread the messages in order to group different messages sent back and forth as part
of an ongoing conversation. Threaded messages are sorted in chronological order,
where the last received message is at the bottom of the message thread.

Attending events
Events can be thought of as locations in time where people can come together for
an activity. Social networking services often act as a nexus for a community so
organizing and attending events is a natural extension of the features of a social
networking service. Events have a wall, venue, date, and time where the event is
happening, and can have event-specific pages that allow users to customize and
market their event.

In Colony we categorize users who attend events by their attendance status.
Confirmed users are users who have confirmed their attendance. Pending users are
users who haven't yet decided to attend the event. Declined users are users who have
declined to attend the event after they have been invited. Declinations are explicit;
there is an invisible group of users who are in none of the above three types.

Attracting users to events or simply keeping them informed is a critical part of
making this or any feature successful. To do so, we suggest events to users and
display the suggested events in the user's landing page. The suggestion algorithm is
simple, we just go through each of the user's friends and see which other events they
have confirmed attending, and then suggest that event to the user.

Social Networking Services – Cloning Facebook 1

[204]

Besides suggestions, the other means of discovering events are through the activity
feeds (whenever an event is created, it is logged as an activity and published on
the activity feed) and through user pages, where the list of a user's pages are also
displayed. All events are public, as with content created within events like wall posts
and pages.

Forming groups
Social networking services are made of people and people have a tendency to
form groups or categories based on common characteristics or interests. The idea
of groups in Colony is to facilitate such grouping of people with a simple set of
features. Conceptually groups and events are very similar to each other, except
that groups are not time-based like events, and don't have a concept of attendance.
Groups have members, a wall, and can have specific pages created by the group.

Colony's capabilities to attract users to groups are slightly weaker than in events.
Colony only suggests groups in the groups page rather than the landing page.
However, groups also allow discovery through activity feeds and through user pages.
Colony has only public groups and no restriction on who can join these public groups.

Commenting on and liking content
Two popular and common features in many consumer focused web applications
are reviews and ratings. Reviews and ratings allow users to provide reviews (or
comments) or ratings to editorial or user-generated content. The stereotypical review
and ratings feature is Amazon.com's book review and rating, which allows users to
provide book reviews as well as rate the book from one to five stars.

Colony's review feature is called comments. Comments are applicable to all user-
generated content such as status updates, wall posts, photos, and pages. Comments
provide a means for users to review the content and give critique or encouragement
to the content creator.

Colony's rating feature is simple and follows Facebook's popular rating feature,
called likes. While many rating features provide a range of one to five stars for
the users to choose, Colony (and Facebook) asks the user to indicate if he likes the
content. There is no dislike though, so the fewer number of likes a piece of content,
the less popular it is.

Colony's comments and liking feature is applicable to all user-generated content
such as statuses, photos, wall posts, activities, and pages.

Chapter 5

[205]

Sharing photos
Photos are one of the most popular types of user-generated content shared online,
with users uploading 3 billion photos a month on Facebook; it's an important
feature to include in Colony. The photo-sharing feature in Colony is similar
to the one in Photoclone.

The basic concept of photo sharing in Colony is that each user can have one or more
albums and each album can have one or more photos. Photos can be commented,
liked, and annotated. Unlike in Photoclone, photos in Colony cannot be edited.

Blogging with pages
Colony's pages are a means of allowing users to create their own full-page content,
and attach it to their own accounts, a page, or a group. A user, event, or group can
own one or more pages. Pages are meant to be user-generated content so the entire
content of the page is written by the user. However in order to keep the look and
feel consistent throughout the site, the page will be styled according to Colony's look
and feel. To do this we only allow users to enter Markdown, a lightweight markup
language that takes many cues from existing conventions for marking up plain
text in e-mail. Markdown converts its marked-up text input to valid, well-formed
XHTML. We use it here in Colony to let users write content easily without worrying
about layout or creating a consistent look and feel.

Technologies and platforms used
We use a number of technologies in this chapter, mainly revolving around the
Ruby programming language and its various libraries. Most of them have been
described in Chapter 1. In addition to Ruby and its libraries we also use mashups,
which are described next.

Mashups
As with previous chapters, while the main features in the applications are all
implemented within the chapters itself, sometimes we still depend on other services
provided by other providers. In this chapter we use four such external services—RPX
for user web authentication, Gravatar for avatar services, Amazon Web Services S3
for photo storage, and Facebook Connect for reaching out to users on Facebook. RPX,
Gravatar, and AWS S3 have been explained in previous chapters.

Social Networking Services – Cloning Facebook 1

[206]

Facebook Connect
Facebook has a number of technologies and APIs used to interact and integrate with
their platform, and Facebook Connect is one of them. Facebook Connect is a set of
APIs that let users bring their identity and information into the application itself. We
use Facebook Connect in this chapter to send out requests to a user's friends, inviting
them to join our social network. The steps to integrate with Facebook Connect are
detailed in Chapter 6, Social Networking Services — Cloning Facebook 2.

Note that for the user invitation feature, once a user has logged in through Facebook
with RPX, he is considered to have logged into Facebook Connect and therefore can
send invitations immediately without logging in again.

Building the clone
This is the largest clone built in the book and has many components. Unlike the
previous chapters where all the source code are listed in the chapter itself, some of
the less interesting parts of the code are not listed or described here. To get access to
the full source code please go to http://github.com/sausheong/Colony

Configuring the clone
We use a few external APIs in Colony so we need to configure our access to these
APIs. In a Colony all these API keys and settings are stored in a Ruby file called
config.rb, shown as below:

S3_CONFIG = {}
S3_CONFIG['AWS_ACCESS_KEY'] = '<AWS ACCESS KEY>'
S3_CONFIG['AWS_SECRET_KEY'] = '<AWS SECRET KEY>'
RPX_API_KEY = '<RPX API KEY>'

Modeling the data
This is the chapter with the largest number of classes and relationships. A few major
classes you see here are similar but not exactly the same as the ones in the previous
chapters, so if you have gone through those chapters you would roughly know
how it works.

Chapter 5

[207]

The following diagram shows how the clone is modeled:

User
As before the first class we look at is the User class. If you have followed the
previous chapters you will have realized that that this class is very similar to the ones
before. However, the main differences are that there are more relationships with
other classes and the relationship with other users follows that of a friends model
rather than a followers model.

class User
 include DataMapper::Resource

 property :id, Serial
 property :email, String, :length => 255

Social Networking Services – Cloning Facebook 1

[208]

 property :nickname, String, :length => 255
 property :formatted_name, String, :length => 255
 property :sex, String, :length => 6
 property :relationship_status, String
 property :provider, String, :length => 255
 property :identifier, String, :length => 255
 property :photo_url, String, :length => 255
 property :location, String, :length => 255
 property :description, String, :length => 255
 property :interests, Text
 property :education, Text
 has n, :relationships
 has n, :followers, :through => :relationships, :class_name =>
'User', :child_key => [:user_id]
 has n, :follows, :through => :relationships, :class_name => 'User',
:remote_name => :user, :child_key => [:follower_id]
 has n, :statuses
 belongs_to :wall
 has n, :groups, :through => Resource
 has n, :sent_messages, :class_name => 'Message', :child_key =>
[:user_id]
 has n, :received_messages, :class_name => 'Message', :child_key =>
[:recipient_id]
 has n, :confirms
 has n, :confirmed_events, :through => :confirms, :class_name =>
'Event', :child_key => [:user_id], :date.gte => Date.today
 has n, :pendings
 has n, :pending_events, :through => :pendings, :class_name =>
'Event', :child_key => [:user_id], :date.gte => Date.today
 has n, :requests
 has n, :albums
 has n, :photos, :through => :albums
 has n, :comments
 has n, :activities
 has n, :pages

 validates_is_unique :nickname, :message => "Someone else has taken
up this nickname, try something else!"
 after :create, :create_s3_bucket
 after :create, :create_wall

 def add_friend(user)
 Relationship.create(:user => user, :follower => self)
 end

 def friends
 (followers + follows).uniq
 end

 def self.find(identifier)
 u = first(:identifier => identifier)

Chapter 5

[209]

 u = new(:identifier => identifier) if u.nil?
 return u
 end

 def feed
 feed = [] + activities
 friends.each do |friend|
 feed += friend.activities
 end
 return feed.sort {|x,y| y.created_at <=> x.created_at}
 end

 def possessive_pronoun
 sex.downcase == 'male' ? 'his' : 'her'
 end

 def pronoun
 sex.downcase == 'male' ? 'he' : 'she'
 end

 def create_s3_bucket
 S3.create_bucket("fc.#{id}")
 end

 def create_wall
 self.wall = Wall.create
 self.save
 end

 def all_events
 confirmed_events + pending_events
 end

 def friend_events
 events = []
 friends.each do |friend|
 events += friend.confirmed_events
 end
 return events.sort {|x,y| y.time <=> x.time}
 end

 def friend_groups
 groups = []
 friends.each do |friend|
 groups += friend.groups
 end
 groups – self.groups
 end
end

Social Networking Services – Cloning Facebook 1

[210]

As mentioned in the design section above, the data used in Colony is user-centric. All
data in Colony eventually links up to a user. A user has the following relationships
with other models:

•	 A user has none, one, or more status updates
•	 A user is associated with a wall
•	 A user belongs to none, one, or more groups
•	 A user has none, one, or more sent and received messages
•	 A user has none, one, or more confirmed and pending attendances at events
•	 A user has none, one, or more user invitations
•	 A user has none, one, or more albums and in each album there are none, one,

or more photos
•	 A user makes none, one, or more comments
•	 A user has none, one, or more pages
•	 A user has none, one, or more activities
•	 Finally of course, a user has one or more friends.

Once a user is created, there are two actions we need to take. Firstly, we need to
create an Amazon S3 bucket for this user, to store his photos.

after :create, :create_s3_bucket

def create_s3_bucket
 S3.create_bucket("fc.#{id}")
end

We also need to create a wall for the user where he or his friends can post to.

after :create, :create_wall
def create_wall
 self.wall = Wall.create
 self.save
end

Adding a friend means creating a relationship between the user and the friend.

def add_friend(user)
 Relationship.create(:user => user, :follower => self)
end

Chapter 5

[211]

You might realize that this was a follows relationship in the previous chapters, so you
might ask how could it go both ways? The answer to this question will be clearer
once the discussion turns to sending a request to connect. In short, Colony treats both
following and follows relationships as going both ways—they are both considered as a
friends relationship. The only difference here is who will initiate the request to join. This
is why when we ask the User object to give us its friends, it will add both followers and
follows together and return a unique array representing all the user's friends.

def friends
 (followers + follows).uniq
end

The Relationship class is almost the same as the one used in the other chapters,
except that each time a new relationship is created, an Activity object is also created
to indicate that both users are now friends.

class Relationship
 include DataMapper::Resource

 property :user_id, Integer, :key => true
 property :follower_id, Integer, :key => true
 belongs_to :user, :child_key => [:user_id]
 belongs_to :follower, :class_name => 'User', :child_key =>
[:follower_id]
 after :save, :add_activity

 def add_activity
 Activity.create(:user => user, :activity_type => 'relationship',
:text => "#{user.formatted_name}
and #{follower.formatted_name}</
a> are now friends.")
 end
end

Finally we get the user's news feed by taking the user's activities and going through
each of the user's friends, their activities as well.

def feed
 feed = [] + activities
 friends.each do |friend|
 feed += friend.activities
 end
 return feed.sort {|x,y| y.created_at <=> x.created_at}
end

Social Networking Services – Cloning Facebook 1

[212]

Request
We use a simple mechanism for users to invite other users to be their friends. The
mechanism goes like this:

1.	 Alice identifies another Bob whom she wants to befriend and sends
him an invitation.

2.	 This creates a Request class which is then attached to Bob.
3.	 When Bob approves the request to be a friend, Alice is added as a friend

(which is essentially making Alice follow Bob, since the definition of a friend
in Colony is someone who is either a follower or follows another user).

class Request

 include DataMapper::Resource

 property :id, Serial

 property :text, Text

 property :created_at, DateTime

 belongs_to :from, :class_name => User, :child_key => [:from_id]

 belongs_to :user

 def approve

 self.user.add_friend(self.from)

 end

end

Message
Messages in Colony are private messages that are sent between users of Colony.
As a result, messages sent or received are not tracked as activities in the user's
activity feed.

class Message
 include DataMapper::Resource
 property :id, Serial
 property :subject, String
 property :text, Text
 property :created_at, DateTime
 property :read, Boolean, :default => false
 property :thread, Integer

 belongs_to :sender, :class_name => 'User', :child_key => [:user_id]
 belongs_to :recipient, :class_name => 'User', :child_key =>
[:recipient_id]
end

Chapter 5

[213]

A message must have a sender and a recipient, both of which are users.

has n, :sent_messages, :class_name => 'Message', :child_key => [:user_
id]
has n, :received_messages, :class_name => 'Message', :child_key =>
[:recipient_id]

The read property tells us if the message has been read by the recipient, while the
thread property tells us how to group messages together for display.

Album
The photo sharing capabilities of Colony is transplanted from Photoclone in the
previous chapter and therefore the various models involved in photo sharing are
almost the same as the one in Photoclone. The main difference is that each time an
album is created, an activity is logged.

class Album
 include DataMapper::Resource
 property :id, Serial
 property :name, String, :length => 255
 property :description, Text
 property :created_at, DateTime

 belongs_to :user
 has n, :photos
 belongs_to :cover_photo, :class_name => 'Photo', :child_key =>
[:cover_photo_id]
 after :save, :add_activity

 def add_activity
 Activity.create(:user => user, :activity_type => 'album', :text =>
"#{user.formatted_name} created a
new album #{self.name}")
 end
end

Photo
The Photo class is the main class in the photo-sharing feature of Colony. Just like
the Album class, this is very similar to the one in Photoclone, except for some
minor differences.

class Photo
 include DataMapper::Resource
 include Commentable

Social Networking Services – Cloning Facebook 1

[214]

 attr_writer :tmpfile
 property :id, Serial
 property :title, String, :length => 255
 property :caption, String, :length => 255
 property :privacy, String, :default => 'public'

 property :format, String
 property :created_at, DateTime

 belongs_to :album

 has n, :annotations
 has n, :comments
 has n, :likes

 after :save, :save_image_s3
 after :create, :add_activity
 after :destroy, :destroy_image_s3

 def filename_display; "#{id}.disp"; end
 def filename_thumbnail; "#{id}.thmb"; end

 def s3_url_thumbnail; S3.get_link(s3_bucket, filename_thumbnail,
Time.now.to_i + (24*60*60)); end
 def s3_url_display; S3.get_link(s3_bucket, filename_display, Time.
now.to_i + (24*60*60)); end

 def url_thumbnail
 s3_url_thumbnail
 end

 def url_display
 s3_url_display
 end

 def previous_in_album
 photos = album.photos
 index = photos.index self
 return nil unless index
 photos[index - 1] if index > 0
 end

 def next_in_album

Chapter 5

[215]

 photos = album.photos
 index = photos.index self
 return nil unless index
 photos[index + 1] if index < album.photos.length
 end

 def save_image_s3
 return unless @tmpfile
 img = Magick::Image.from_blob(@tmpfile.open.read).first
 display = img.resize_to_fit(500, 500)
 S3.put(s3_bucket, filename_display, display.to_blob)

 t = img.resize_to_fit(150, 150)
 length = t.rows > t.columns ? t.columns : t.rows
 thumbnail = t.crop(CenterGravity, length, length)
 S3.put(s3_bucket, filename_thumbnail, thumbnail.to_blob)
 end

 def destroy_image_s3
 S3.delete s3_bucket, filename_display
 S3.delete s3_bucket, filename_thumbnail
 end

 def s3_bucket
 "fc.#{album.user.id}"
 end

 def add_activity
 Activity.create(:user => album.user, :activity_type => 'photo',
:text => "#{album.user.
formatted_name} added a new photo - <a href='/photo/#{self.
id}'>")
 end
end

First of all, we removed the feature of storing temporary file caches on the filesystem
of the server. The main reason is that of economy—we want to be able to deliver
everything from Amazon S3 deploy on the Heroku cloud platform (which does
not serve files). Of course this can be changed easily if you're planning to
customize Colony.

Social Networking Services – Cloning Facebook 1

[216]

Next, and related to the first difference, is that we no longer store the original
photo. Instead, we only keep a reduced-size display photo and a thumbnail of the
original photo. The rationale for this is the same as with Facebook. Colony is not a
full-fledged photo-sharing site for photographers and is meant to share photos with
friends only. Therefore storing large original files is unnecessary.

Photos can be commented on so it includes the Commentable module (explained
later). Also each photo has none, one, or more comments and likes.

Finally as with many of the classes in Colony, creating a Photo is considered an
activity and is logged for streaming on the activity feed. Note that we don't log an
activity after a save, but only after we create an object photo. This is because save
will be called each time the photo object is edited, annotated, or has its caption or
description modified. This is not an activity we want to log in to the activity stream.

class Annotation
 include DataMapper::Resource
 property :id, Serial
 property :description,Text
 property :x, Integer
 property :y, Integer
 property :height, Integer
 property :width, Integer
 property :created_at, DateTime

 belongs_to :photo
 after :create, :add_activity

 def add_activity
 Activity.create(:user => self.photo.album.user, :activity_type
=> 'annotation', :text => "<a href='/user/#{self.photo.album.user.
nickname}'>#{self.photo.album.user.formatted_name} annotated
a photo - <img class='span-1'
src='#{self.photo.url_thumbnail}'/> with '#{self.description}'")
 end
end

Annotation is another class, part of the photo-sharing feature that is transplanted
from Photoclone, with activity logging added in. We will not go into this, if you want
a refresher please read Chapter 4.

Chapter 5

[217]

Status
Just as the Album, Photo, and Annotation classes are transplanted from Photoclone,
the Status and Mention classes are derived from Tweetclone.

class Status
 include DataMapper::Resource
 include Commentable

 property :id, Serial
 property :text, String, :length => 160
 property :created_at, DateTime
 belongs_to :recipient, :class_name => "User", :child_key =>
[:recipient_id]
 belongs_to :user
 has n, :mentions
 has n, :mentioned_users, :through => :mentions, :class_name =>
'User', :child_key => [:user_id]
 has n, :comments
 has n, :likes

 before :save do
 @mentions = []
 process
 end

 after :save do
 unless @mentions.nil?
 @mentions.each {|m|
 m.status = self
 m.save
 }
 end
 Activity.create(:user => user, :activity_type => 'status', :text
=> self.text)
 end

 # general scrubbing
 def process
 # process url
 urls = self.text.scan(URL_REGEXP)
 urls.each { |url|
 tiny_url = RestClient.get "http://tinyurl.com/api-create.
php?url=#{url[0]}"
 self.text.sub!(url[0], "#{tiny_url}")

Social Networking Services – Cloning Facebook 1

[218]

 }
 # process @
 ats = self.text.scan(AT_REGEXP)
 ats.each { |at|
 user = User.first(:nickname => at[1,at.length])
 if user
 self.text.sub!(at, "#{at}")
 @mentions << Mention.new(:user => user, :status => self)
 end
 }
 end

 def starts_with?(prefix)
 prefix = prefix.to_s
 self.text[0, prefix.length] == prefix
 end

 def to_json(*a)
 {'id' => id, 'text' => text, 'created_at' => created_at, 'user' =>
user.nickname}.to_json(*a)
 end
end

As before, each time a user updates his status, an activity will be logged. Statuses
can be commented upon and also liked. The Mention class is unchanged from
Tweetclone. For an in-depth description of this class please refer to Chapter 3.

class Mention
 include DataMapper::Resource
 property :id, Serial
 belongs_to :user
 belongs_to :status
end

URL_REGEXP = Regexp.new('\b ((https?|telnet|gopher|file|wais|ftp) :
[\w/#~:.?+=&%@!\-] +?) (?=[.:?\-] * (?: [^\w/#~:.?+=&%@!\-]| $))',
Regexp::EXTENDED)
AT_REGEXP = Regexp.new('@[\w.@_-]+', Regexp::EXTENDED)

Chapter 5

[219]

Group
Each user can belong to none, one, or more groups. Each group that is created also
belongs to a user and it's this user that the activity is logged to. Each group has a set
of features:

•	 A group can have none, one, or more pages.
•	 A group has a wall where other users can post to. This wall is created right

after the group is created.

class Group

 include DataMapper::Resource

 property :id, Serial

 property :name, String

 property :description, String

 has n, :pages

 has n, :members, :class_name => 'User', :through => Resource

 belongs_to :user

 belongs_to :wall

 after :create, :create_wall

 def create_wall

 self.wall = Wall.create

 self.save

 end

 after :create, :add_activity

 def add_activity

 Activity.create(:user => self.user, :activity_type => 'event',
:text => "#{self.user.
formatted_name} created a new group - <a href='/group/#{self.
id}'>#{self.name}.")

 end

end

Social Networking Services – Cloning Facebook 1

[220]

Note that the User-Group relationship is a many-to-many relationship, and we use the
DataMapper::Resource class as an anonymous class to represent the relationship.
For convenience we also provide a method in the User object to retrieve all groups a
user's friends belong to. This becomes useful for us later when suggesting groups for
users to join.

def friend_groups
 groups = []
 friends.each do |friend|
 groups += friend.groups
 end
 groups - self.groups
end

Event
Events are quite similar to Groups but with a twist. As before we log it as an activity
each time the event is created. Each event has an administrative user who is the
person who created the event.

class Event
 include DataMapper::Resource

 property :id, Serial
 property :name, String
 property :description, String
 property :venue, String
 property :date, DateTime
 property :time, Time

 belongs_to :user
 has n, :pages
 has n, :confirms
 has n, :confirmed_users, :through => :confirms, :class_name =>
'User', :child_key => [:event_id], :mutable => true
 has n, :pendings
 has n, :pending_users, :through => :pendings, :class_name => 'User',
:child_key => [:event_id], :mutable => true
 has n, :declines
 has n, :declined_users, :through => :declines, :class_name =>
'User', :child_key => [:event_id], :mutable => true

 belongs_to :wall

Chapter 5

[221]

 after :create, :create_wall

 def create_wall
 self.wall = Wall.create
 self.save
 end

 after :create, :add_activity

 def add_activity
 Activity.create(:user => self.user, :activity_type => 'event',
:text => "#{self.user.formatted_
name} created a new event - #{self.
name}.")
 end
end

In addition, each event has three types of members depending on their current
attendance status:

•	 Users confirmed to attend the event
•	 Users who are still undecided on attending the event
•	 Users who have declined to attend the event

For this implementation we use a separate class for each type of user, that is we
have a Confirm class for confirmed users, a Pending class to indicate users who
are undecided, and a Decline class to indicate users who have declined to
attend the event.

class Pending
 include DataMapper::Resource
 property :id, Serial
 belongs_to :pending_user, :class_name => 'User', :child_key =>
[:user_id]
 belongs_to :pending_event, :class_name => 'Event', :child_key =>
[:event_id]
end

class Decline
 include DataMapper::Resource
 property :id, Serial
 belongs_to :declined_user, :class_name => 'User', :child_key =>
[:user_id]
 belongs_to :declined_event, :class_name => 'Event', :child_key =>
[:event_id]

Social Networking Services – Cloning Facebook 1

[222]

end

class Confirm
 include DataMapper::Resource
 property :id, Serial
 belongs_to :confirmed_user, :class_name => 'User', :child_key =>
[:user_id]
 belongs_to :confirmed_event, :class_name => 'Event', :child_key =>
[:event_id]
end

As with Group, we have a convenient method in the User class to help us find the
events the user's friends are attending. We only retrieve confirmed events for this
list, which is then sorted according to ascending chronological order.

def friend_events
 events = []
 friends.each do |friend|
 events += friend.confirmed_events
 end
 return events.sort {|x,y| y.time <=> x.time}
end

Page
Pages are a simple means for users to publish their own web pages. A Page can be
owned directly by a user, through a group, or through an event.

class Page
 include DataMapper::Resource
 include Commentable
 property :id, Serial
 property :title, String
 property :body, Text property :created_at, DateTime
 has n, :comments
 has n, :likes
 belongs_to :user
 belongs_to :event
 belongs_to :group

 after :create, :add_activity

 def add_activity
 if self.event
 Activity.create(:user => self.user, :activity_type => 'event
page', :text => "#{self.user.
formatted_name} created a page - <a href='/event/page/#{self.
id}'>#{self.title} for the event <a href='/event/#{self.event.
id}'>#{self.event.name}.")

Chapter 5

[223]

 elsif self.group
 Activity.create(:user => self.user, :activity_type => 'group
page', :text => "#{self.user.
formatted_name} created a page - <a href='/group/page/#{self.
id}'>#{self.title} for the group <a href='/group/#{self.group.
id}'>#{self.group.name}.")
 else
 Activity.create(:user => self.user, :activity_type => 'page',
:text => "#{self.user.formatted_
name} created a page - #{self.title}</
a>.")
 end
 end
end

Page also logs activities according to whichever object that owns it.

Wall
A wall is a place where users can place their posts. A wall can belong to a user, event,
or group. In fact each time a user, event, or group is created, we will automatically
create a wall on its behalf.

class Wall
 include DataMapper::Resource
 property :id, Serial
 has n, :posts
end

The implementation of a wall by itself has no definite properties other than being a
container for posts. A post is the actual content that a user will submit to a wall and
it is something that can be commented and liked. A post on a wall can come from
any user, so a post is also associated with the user who created the post.

class Post
 include DataMapper::Resource
 include Commentable
 property :id, Serial
 property :text, Text
 property :created_at, DateTime
 belongs_to :user
 belongs_to :wall
 has n, :comments
 has n, :likes
end

Social Networking Services – Cloning Facebook 1

[224]

Activity
An activity is a log of a user's action in Colony that is streamed to the user's activity
feed. Not all actions are logged as activities, for example messages are considered
private and are therefore not logged.

class Activity
 include DataMapper::Resource
 include Commentable

 property :id, Serial
 property :activity_type, String
 property :text, Text
 property :created_at, DateTime
 has n, :comments
 has n, :likes
 belongs_to :user
end

Activities are commented and can be liked by other users.

Comment
Comments in Colony are stored and managed through the Comment class. All user-
generated content including pages, posts, photo, and statuses can be commented by
users in Colony. Activities can also be commented on.

class Comment
 include DataMapper::Resource

 property :id, Serial
 property :text, Text
 property :created_at, DateTime
 belongs_to :user
 belongs_to :page
 belongs_to :post
 belongs_to :photo
 belongs_to :activity
 belongs_to :status
end

Chapter 5

[225]

Like
Like and Comment classes are very similar. The main difference between them is that
the Like mechanism is binary (either you like the content or you don't) whereas you
need to provide some content to comment.

class Like
 include DataMapper::Resource
 property :id, Serial
 belongs_to :user
 belongs_to :page
 belongs_to :post
 belongs_to :photo
 belongs_to :activity
 belongs_to :status
end

The implementation of the Like mechanism in Colony requires each class of objects
that can be liked or commented on to include the Commentable module.

module Commentable
 def people_who_likes
 self.likes.collect { |l| "#{l.
user.formatted_name}" }
 end
end

This allows you to retrieve an array of people of who likes the content, which are
then formatted as HTML links for easy display.

This wraps up the data models that we will be using in Colony. In the next chapter
we will cover Colony's application flow and deployment.

Summary
This is the second last chapter in this book and also the first one in a series of two
chapters describing how we can clone a social networking service like Facebook.
Social networking services are the next step in the evolution of Internet applications
and Facebook is currently the most successful incarnation of this service. Cloning
Facebook is not difficult though, as can be attested in this chapter and also in the
many Facebook 'clones' out there on the Internet. Let's look at what we have covered
in this chapter.

Social Networking Services – Cloning Facebook 1

[226]

First, we went through a whirlwind tour of social networking services and their
history, before discussing the most dominant service, Facebook. Next, we described
some of its more essential features and we categorized the features into User,
Community, and Content sharing features. After that, we went into a high level
discussion on these various features and how we implement them in our Facebook
clone, Colony. After that, we went briefly into the various technologies used in
the clone.

After the technology discussion, we jumped straight into the implementation,
starting with a detailed discussion of the data models used in this chapter. Our
next chapter is the last chapter in this book. We will finish what we have started in
this chapter with a detailed step-by-step description of Colony's application flow,
followed with the deployment of Colony on the Heroku cloud platform.

Social Networking Services –
Cloning Facebook 2

In the previous chapter we went through what social networking services are all
about. We also designed a Facebook clone with a small list of essential features that a
typical social networking service would have and talked through the design. We also
started describing its implementation with a description of the data model used by
Colony, our Facebook clone.

In this chapter we will continue with the clone we started previously. We will
discuss the application flow of each chapter and finish up with our usual deployment
to Heroku to a standalone server.

Let's start!

Building the application flow
While much of the application logic resides in the data model, the flow of the
application determines how the user uses Colony. Let's begin with the overall
structure of the application and then we'll inspect each feature for its flow.

Structure of the application and flow
Unlike the previous clones where we stored the entire flow in a single file, Colony is
too big to fit into a single file, so we split the application along the lines of its features
and use one file per feature. The main file is called colony.rb. It contains the main
processing necessary to log in as well as the landing page.

require 'rubygems'
gem 'rest-client', '=1.0.3'

Social Networking Services – Cloning Facebook 2

[228]

%w(config haml sinatra digest/md5 rack-flash json restclient models).
each { |lib| require lib}
set :sessions, true
set :show_exceptions, false
use Rack::Flash

get "/" do
 if session[:userid].nil? then
 @token = "http://#{env["HTTP_HOST"]}/after_login"
 haml :login
 else
 @all = @user.feed
 haml :landing
 end
end

get "/logout" do
 session[:userid] = nil
 redirect "/"
end

called by RPX after the login completes
post "/after_login" do
 profile = get_user_profile_with params[:token]
 user = User.find(profile["identifier"])
 if user.new_record?
 photo = profile["photo"].nil? ? "http://www.gravatar.com/
avatar/#{Digest::MD5.hexdigest(profile["email"])}" : profile["photo"]
 unless user.update_attributes({:nickname => profile["identifier"].
hash.to_s(36), :email => profile["email"], :photo_url => photo,
:provider => profile["provider"]})
 flash[:error] = user.errors.values.join(",")
 redirect "/"
 end
 session[:userid] = user.id
 redirect "/user/profile/change"
 else
 session[:userid] = user.id
 redirect "/"
 end
end

%w(pages friends photos messages events groups comments user helpers).
each {|feature| load "#{feature}.rb"}

Chapter 6

[229]

error NoMethodError do
 session[:userid] = nil
 redirect "/"
end

before do
 @token = "http://#{env["HTTP_HOST"]}/after_login"
 @user = User.get(session[:userid]) if session[:userid]
end

Let's jump into the code details of the main file. Note that we're using a specific gem
version for RestClient. This is because as of writing the RightAWS gem we use for
accessing S3 doesn't work with the latest version of RestClient.

gem 'rest-client', '=1.0.3'

As mentioned earlier, each feature is contained in a file and we load each feature
by file.

%w(pages friends photos messages events groups comments user helpers).
each {|feature| load "#{feature}.rb"}

The one piece of data that we will always get for each route is the currently logged in
user's ID, which we store in the session.

before do
 @user = User.get(session[:userid]) if session[:userid]
end

The before filter is run before each request to Colony and returns User object, which
is used in most of the routes. It also becomes a means of securing pages because if the
user has not logged in, we will not be able to retrieve the User object. This will result
in an error which clears the session and sends the user back to the login page.

error NoMethodError do
 session[:userid] = nil
 redirect "/"
end

Social Networking Services – Cloning Facebook 2

[230]

Authenticating and managing users
As with the other clones in this book we use RPX for Colony to reduce the amount of
work needed to build an authentication system. Let's describe what will happen. The
first and the most basic route is the index route. If the user is already logged in and
has a session, we will redirect him to the landing page described previously.

get "/" do
 if session[:userid].nil? then
 haml :login
 else
 @all = @user.feed
 haml :landing
 end
end

We use Haml for the view pages. As we did earlier, we define a separate layout
Haml page that will be used in all the subsequent pages.

!!! 1.1
%html{:xmlns => "http://www.w3.org/1999/xhtml", :'xmlns:fb' =>
"http://www.facebook.com/2008/fbml"}
 %head
 %title Colony
 %link{:rel => 'stylesheet', :href => '/css/blueprint/screen.css',
:type => 'text/css'}
 %link{:rel => 'stylesheet', :href => '/css/blueprint/plugins/
fancy-type/screen.css', :type => 'text/css'}
 %link{:rel => 'stylesheet', :href => '/css/additional.css', :type
=> 'text/css'}
 %link{:href => '/css/datepicker.css', :rel => 'stylesheet', :type
=> 'text/css'}
 %script{:src => '/js/jquery.min.js', :type => 'text/javascript'}
 %script{:src => '/js/select.js', :type => 'text/javascript'}
 %script{:src => '/js/notes.js', :type => 'text/javascript'}
 %script{:src => '/js/datepicker.js', :type => 'text/javascript'}
 %script{:src => '/js/timepicker.js', :type => 'text/javascript'}

 %body
 %script{:type => "text/javascript", :src => "http://static.
ak.connect.facebook.com/js/api_lib/v0.4/FeatureLoader.js.php"}
 .container
 = yield
 %hr.space
 .span-24.last
 .small.span-5.prepend-19
 copyright ©
 %a{:href => 'http://www.saush.com'} Chang Sau Sheong
 2010

Chapter 6

[231]

Like Tweetclone, but unlike Photoclone, we only place the RPX code in the login
page. Sinatra looks for all view templates in a folder called views by default. Our
login page, called login.haml, is found at the same place.

.span-24
 .span-11
 %img.span-12.prepend-6{:src => '/images/colony_login.png'}
 .span-10.prepend-7
 %h2{:style => 'font-size:2em;margin-bottom:0.75em;margin-top:0;
padding-top: 0;'} Connect with friends, share your life
 .subtitle You don't need to register any accounts, just use an
existing account from your favorite Internet provider!
 .span-3.prepend-9
 %a.rpxnow{:onclick => "return false;", :href => "https://colony.
rpxnow.com/openid/v2/signin?token_url=#{@token}" }
 %h2{:style => "font-size:2em;margin-bottom:0.75em;"} Sign In

%script{:type => 'text/javascript'}
 var rpxJsHost = (("https:" == document.location.protocol) ?
"https://" : "http://static."); document.write(unescape("%3Cscript
src='" + rpxJsHost + "rpxnow.com/js/lib/rpx.js' type='text/
javascript'%3E%3C/script%3E"));
%script{:type => "text/javascript"}
 RPXNOW.overlay = true;
 RPXNOW.language_preference = 'en';

Social Networking Services – Cloning Facebook 2

[232]

To allow login, we add an HTML anchor link that redirects us to RPX, passing
in the token.

%a.rpxnow{:onclick => "return false;", :href => "https://colony.
rpxnow.com/openid/v2/signin?token_url=#{@token}" }
 %h2{:style => "font-size:2em;margin-bottom:0.75em;"} Sign In

This will redirect the user to the RPX site, which in turn redirects the user to
the appropriate provider. On completion of the authentication, RPX will call on
Colony at the URL (after_login) which was provided earlier. RPX passes a token
parameter to us in this call, which we will use to retrieve the user's profile.

We will define a separate helper method to do the work of retrieving the user's
profile. All such methods are placed in the helpers.rb file:

def get_user_profile_with(token)
 response = RestClient.post 'https://rpxnow.com/api/v2/auth_info',
'token' => token, 'apiKey' => '<RPX API key>', 'format' => 'json',
'extended' => 'true'
 json = JSON.parse(response)
 return json['profile'] if json['stat'] == 'ok'
 raise LoginFailedError, 'Cannot log in. Try another account!'
end

We use the Rest-Client library again to send the POST request to RPX, passing in the
token and requesting the information back in JSON format. If successful, RPX will
return some information on the users, which we will use the Ruby JSON library to
parse and return. Let's look at the after_login route next.

post '/after_login' do
 profile = get_user_profile_with params[:token]
 user = User.find(profile['identifier'])
 if user.new_record?
 photo = profile ['email'] ? "http://www.gravatar.com/
avatar/#{Digest::MD5.hexdigest(profile['email'])}" : profile['photo']
 unless user.update_attributes({:nickname => profile['identifier'].
hash.to_s(36), :email => profile['email'], :photo_url => photo,
:provider => profile['provider']})
 flash[:error] = user.errors.values.join(',')
 redirect "/"
 end
 session[:userid] = user.id
 redirect '/user/profile/change'
 else
 session[:userid] = user.id
 redirect "/"
 end
end

Chapter 6

[233]

After getting the user's profile from the authentication provider through RPX, we
try to retrieve the user's record from our database, using the unique identifier. If the
user's record does not exist, we'll create a new record. If it's a new record, we will
update the rest of the attributes from his/her profile. This includes a photo link
from Gravatar.

Gravatar uses e-mail addresses that are hashed using MD5 to uniquely identify
a user's avatar. Since a user can have multiple e-mail addresses, he can have
multiple avatars:

photo = profile ['email'] ? "http://www.gravatar.com/
avatar/#{Digest::MD5.hexdigest(profile['email'])}" : profile['photo']

We can optionally take the URL to an avatar photo from the photo link, if it is
provided in the profile, though Gmail doesn't provide that as of date. As done
before, if the user is not a Gravatar user, Gravatar returns a default avatar.

As in Photoclone we set the nickname here as well. We hash the identifier returned
by the authentication provider and convert it into an alphanumeric string, which
we use as the nickname. This means if a user doesn't change his nickname later, this
will become his nickname. Finally we set session[:userid] with the user ID and
redirect the user to change his profile.

The user profile and change profile routes do very little, other than redirecting to their
respective views.

get "/user/profile" do
 haml :profile
end

get "/user/profile/change" do
 haml :change_profile
end

The change profile route does the actual work of saving any changes on the user
profile. There is more to store here than there was with Photoclone.

post "/user/profile" do
 unless @user.update_attributes(:nickname => params[:nickname],
 :formatted_name => params[:formatted_
name],
 :location => params[:location],
 :description => params[:description],
 :sex => params[:sex],
 :relationship_status =>
params[:relationship_status],

Social Networking Services – Cloning Facebook 2

[234]

 :interests => params[:interests],
 :education => params[:education])
 flash[:error] = @user.errors.values.join(",")
 redirect "/user/profile/change"
 end
 redirect "/"
end

Finally, the logout route simply resets session[:userid] and redirects the user back
to the index route. Without the user ID, the index route shows the login page.

get '/logout' do
 session[:userid] = nil
 redirect '/'
end

This wraps up authentication and user management.

Landing page, news feed, and statuses
The landing page is the first page that the user sees when he logs in. It contains
summary information for the user and is probably the most frequently used page.
The centerpiece of the landing page is the user's news feed.

Chapter 6

[235]

The main route will redirect the user to the login page, if he hasn't logged in yet, and
to the landing page, if he has.

get "/" do
 if session[:userid].nil? then
 haml :login
 else
 @all = @user.feed
 haml :landing
 end
end

The news feed is processed in the landing page, which is nothing more than a
collection of snippets. As explained in the previous chapters, a snippet is a small
piece of template code that we re-use in various view templates. We use snippets
extensively in Colony.

=snippet :'/snippets/top'

.span-24.last
 .span-3
 %img.span-3{:src => "#{@user.photo_url}"}
 =snippet :'/snippets/links'

 %h3 Groups
 =snippet :'/snippets/mini_groups'
 %h3 Friends
 =snippet :'/snippets/mini_friends', :locals => {:user => @user}
 .span-15

 %h3 News feed
 =snippet :'/snippets/update_box'
 %hr.space
 =snippet :'/snippets/feeds'

 .span-6.last
 %h3 Requests
 =snippet :'/snippets/mini_requests'
 %h3 Reach out
 =snippet :'/snippets/mini_invite'
 %h3 Events
 =snippet :'/snippets/mini_events'
%hr.space

Social Networking Services – Cloning Facebook 2

[236]

In particular, the news feed is used in the feeds snippet, in the feeds.haml file. The
feeds snippet shows a list of feed items, given that we use the @all instance variable.

.feeds
 -@all.each do |item|
 .span-1
 %img.span-1{:src => "#{item.user.photo_url}"}
 .span-13.last
 %a{:href => "/user/#{item.user.nickname}"}
 =item.user.nickname

 =item.text

 .span-8.last
 %em.quiet
 =time_ago_in_words(item.created_at.to_time)

 =snippet :'/snippets/comment_and_like', {:locals => {:item =>
item}}

We iterate through the news feed and display each one of the news feed items.
Remember news feeds are basically activities, but a user's activity feed includes his
activities and posts. We pass each item into the comment and like snippet as a variable
to be used to display the comments and list of likes.

.span-15.last
 .span-2
 %a{:href =>"#", :onclick => "$('#comment_box_#{item.class.
to_s}_#{item.id}').toggle();$('#comment_box_#{item.class.to_s}_#{item.
id}').focus();"} comment (#{item.comments.size})

 .span-13.last
 %form{:method => 'post', :action => "/like/#{item.class.
to_s.downcase}/#{item.id}", :id => "form_like_#{item.class.to_s.
downcase}_#{item.id}"}
 %input{:type => 'hidden', :name => 'return_url', :value =>
request.url.to_s}
 %input{:type => 'hidden', :name => '_method', :value => 'put'}
 %a{:href =>"#", :onclick => "$('#form_like_#{item.class.to_s.
downcase}_#{item.id}').submit();"} like
 - unless item.likes.empty?
 #{item.likes.size} people likes this. #{item.people_who_likes.
join(', ')} liked it.

.span-13.hide.last{:id => "comment_box_#{item.class.to_s}_#{item.id}"}

Chapter 6

[237]

 %form{:method => 'post', :action => "/comment/#{item.class.to_s.
downcase}/#{item.id}"}
 %textarea.span-10{:name => 'text', :style => 'height: 30px;'}
 %input{:type => 'hidden', :name => 'return_url', :value =>
request.url.to_s}
 %input{:type => 'hidden', :name => '_method', :value => 'put'}
 %br
 %input{:type => 'submit', :value => 'comment'}

%hr.space

- unless item.comments.empty?
 .span-14.push-1.last
 - item.comments.each do |comment|
 .span-1
 %a{:href => "/user/#{comment.user.nickname}"}
 %img.span-1{:src => "#{comment.user.photo_url}"}
 .span-12.last.comment_box
 #{comment.text}
 %br
 %em.quiet
 =time_ago_in_words(comment.created_at.to_time)

The comment and like snippet is split into three sections. The first section deals
with the likes, allowing the user to like the item as well as listing the people
who like this item.

%form{:method => 'post', :action => "/like/#{item.class.to_s.
downcase}/#{item.id}", :id => "form_like_#{item.class.to_s.
downcase}_#{item.id}"}
 %input{:type => 'hidden', :name => 'return_url', :value =>
request.url.to_s}
 %input{:type => 'hidden', :name => '_method', :value => 'put'}
 %a{:href =>"#", :onclick => "$('#form_like_#{item.class.to_s.
downcase}_#{item.id}').submit();"} like
 - unless item.likes.empty?
 #{item.likes.size} people likes this. #{item.people_who_likes.
join(', ')} liked it.

The second section allows users to add comments to the item using a form.

.span-13.hide.last{:id => "comment_box_#{item.class.to_s}_#{item.id}"}
 %form{:method => 'post', :action => "/comment/#{item.class.to_s.
downcase}/#{item.id}"}
 %textarea.span-10{:name => 'text', :style => 'height: 30px;'}

Social Networking Services – Cloning Facebook 2

[238]

 %input{:type => 'hidden', :name => 'return_url', :value =>
request.url.to_s}
 %input{:type => 'hidden', :name => '_method', :value => 'put'}
 %br
 %input{:type => 'submit', :value => 'comment'}

The final section displays all the comments on the item.

- unless item.comments.empty?
 .span-14.push-1.last
 - item.comments.each do |comment|
 .span-1
 %a{:href => "/user/#{comment.user.nickname}"}
 %img.span-1{:src => "#{comment.user.photo_url}"}
 .span-12.last.comment_box
 #{comment.text}
 %br
 %em.quiet
 =time_ago_in_words(comment.created_at.to_time)

With that we have our news feed. Let's go back a little bit and discuss the common
snippets. The top snippet provides us with the top bar.

.span-24
 .span-2
 %a{:href => '/'}
 %img{:src => '/images/colony_header.png'}
 - if @user
 .span-9.prepend-13.last
 %a.topbar{:href =>"/user/#{@user.nickname}"} #{@user.nickname} -
 %a.topbar{:href => '/'} home -
 %a.topbar{:href => '/user/profile'} profile -
 %a.topbar{:href => '/friends'} friends -
 %a.topbar{:href => '/logout'} logout
 - else
 .span-2.prepend-20.last
 %a.topbar.rpxnow{:onclick => "return false;", :href => "https://
colony.rpxnow.com/openid/v2/signin?token_url=#{@token}" } sign in

Chapter 6

[239]

The links snippet provides us with a simple left navigation sidebar.

%hr.space
.span-3
 .icons.icons_messages
 - num_unread_msgs = @user.received_messages.all(:read => false).
size
 %a{:href => '/messages/inbox'} Messages
 - if num_unread_msgs > 0
 (#{num_unread_msgs})

.span-3
 .icons.icons_event
 %a{:href => '/events'} Events
.span-3
 .icons.icons_photo
 %a{:href => '/albums'} Photos
.span-3
 .icons.icons_pages
 %a{:href => '/user/pages'} Pages
.span-3
 .icons.icons_group
 %a{:href => '/groups'} Groups
.span-3
 .icons.icons_friends
 %a{:href => '/friends'} Friends
%hr.space

The other snippets in the landing page will be described in their respective features.
A user updates his status (as in Tweetclone) through the update box snippet in a file
named update_box.haml. This snippet is like the one in Tweetclone, using a text
limiter Javascript and posting the status content to the user status route.

post '/user/status' do
 Status.create(:text => params[:status], :user => @user)
 redirect "/"
end

The user status route simply creates the status update and redirects the user back to
the landing page. The update box snippet is only used in the landing page.

Social Networking Services – Cloning Facebook 2

[240]

Inviting friends and friends list
The invite friends and friends list features are implemented with a file named
friends.rb. Let's look at the friends list first.

get '/friends' do
 if params[:query]
 results = User.all(:nickname.like => params[:query] + '%') + User.
all(:formatted_name.like => '%' + params[:query] + '%')
 @search_results = results.uniq[0..24]
 end
 haml :'/friends/friends', :locals => {:show_search => true, :user =>
@user}
end

The friends route performs two tasks. Firstly, it performs a simple search on all users
in the application, based on either the user's nickname or formatted name, and
returns the first 25 results found. Secondly, it tells the view page to show the search
for friends form and passes the user to the page. We do this to reuse the same page to
show the friends of a specific user and not your own friends.

All the views are in a folder named friends. The first page we will be looking at is
the friends.haml page.

=snippet :'/snippets/top'

.span-24.last
 .span-3
 %img.span-3{:src => "#{user.photo_url}"}
 =snippet :'/snippets/links'
 .span-15
 - if show_search
 %h3 Find your friends
 %form{:method => 'get'}
 Look for friends here -
 %input.span-8{:type => 'text', :name => 'query'}
 %input{:type => 'submit', :value => 'search people'}

 - if @search_results
 %hr.space
 - @search_results.each do |res|
 .span-1
 %img.span-1{:src => "#{res.photo_url}"}
 .span-12
 - unless res == @user

Chapter 6

[241]

 %a{:href => "/user/#{res.nickname}"} #{res.formatted_
name} (#{res.nickname})
 from #{res.location}
 %br
 - if @user.friends.include? res
 #{res.pronoun.capitalize} is your friend.
 - else
 %a{:href => "/request/#{res.id}"} add as friend
 - else
 This is me!
 %hr.space

 %h3 Friends
 - user.friends.each do |friend|
 .span-2
 %img.span-2{:src => "#{friend.photo_url}"}
 .span-12
 %a{:href => "/user/#{friend.nickname}"} #{friend.formatted_
name}
 %br
 #{friend.location}
 .span-1.last
 %form{:id => "form_friend_#{friend.id}", :method => 'post',
:action => "/friend/#{friend.id}"}
 %input{:type => 'hidden', :name => '_method', :value =>
'delete'}
 %a{:href => '#', :onclick => '$("#form_friend_' + "#{friend.
id}" + '").submit();', :class => 'remove_link'}

Notice the simple use of pronouns to make the experience friendlier. We also allow
the user to add people he has found as friends using a link to the create request route.

- if @user.friends.include? res
 #{res.pronoun.capitalize} is your friend.
- else
 %a{:href => "/request/#{res.id}"} add as friend

Below the search form and the search results we show a list of friends the user has.
For each friend displayed, we allow the friend to be viewed using a link to the view
user route, and also to be removed from the Friends list.

%h3 Friends
 - user.friends.each do |friend|
 .span-2
 %img.span-2{:src => "#{friend.photo_url}"}
 .span-12

Social Networking Services – Cloning Facebook 2

[242]

 %a{:href => "/user/#{friend.nickname}"} #{friend.formatted_
name}
 %br
 #{friend.location}
 .span-1.last
 %form{:id => "form_friend_#{friend.id}", :method => 'post',
:action => "/friend/#{friend.id}"}
 %input{:type => 'hidden', :name => '_method', :value => 'de-
lete'}
 %a{:href => '#', :onclick => '$("#form_friend_' + "#{friend.
id}" + '").submit();', :class => 'remove_link'}

To add a friend, we need to create a request object, and attach it to the user that we
want as a friend. This is initiated with the create request route.

get '/request/:userid' do
 @friend = User.get(params[:userid])
 haml :'/friends/request'
end

Chapter 6

[243]

This retrieves the user we want to befriend, and shows us the request creation page.

=snippet :'/snippets/top'
.span-3
 %img.span-3{:src => "#{@user.photo_url}"}
 =snippet :'/snippets/links'
.span-20.last
 %h3 Add #{@friend.formatted_name} as a friend?
 %h4 #{@friend.formatted_name} will have to confirm that you are
friends.

 %form{:action => '/request', :method => 'post'}
 .span-20 Add a personalized message (optional)
 .span-20
 %textarea.span-10{:name => 'text'}
 %input{:type => 'hidden', :name => '_method', :value => 'put'}
 %input{:type => 'hidden', :name => 'receiverid', :value => "#{@
friend.id}"}

 %input{:type => 'submit', :value => 'send request'}

The request creation page allows us to add an optional personalized message which is
sent along the request.

Social Networking Services – Cloning Facebook 2

[244]

The form submits to the put request route, which creates a request that sets from to
the requesting user and the user to the person he wishes to befriend.

put '/request' do
 Request.create(:text => params[:text], :from => @user, :user =>
User.get(params[:receiverid]))
 redirect '/friends'
end

Once the user receives the request, he or she will see a new request on the landing
page, displayed using the mini request snippet.

- unless @user.requests.empty?
 .icons.icons_add_friend
 %a{:href => '/requests/pending'}
 You have #{@user.requests.size} friend request(s).
- else
 No pending requests

Clicking on the request link will allow the user to see a list of pending requests,
which he may approve or ignore. This is done in the request pending route.

get '/requests/pending' do
 haml :'/friends/pending_requests'
end

Chapter 6

[245]

This goes to the request pending page.

=snippet :'/snippets/top'
.span-3
 %img.span-3{:src => "#{@user.photo_url}"}
 =snippet :'/snippets/links'
.span-21.last
 %h3 Pending requests
 - if @user.requests.empty?
 You have no pending requests.
 - @user.requests.each do |req|
 .span-13
 .span-2
 %img.span-2{:src => "#{req.from.photo_url}"}
 .span-10
 #{req.text}
 %br
 %form{:id => "form_approve_#{req.id}", :method => 'post',
:action => "/friend/#{req.id}"}
 %input{:type => 'hidden', :name => '_method', :value => 'put'}
 %a{:href => '#', :onclick => '$("#form_approve_' + "#{req.id}"
+ '").submit();'} approve
 \.
 %a{:href => "/friend/ignore/#{req.id}"} ignore

 %hr.space

Social Networking Services – Cloning Facebook 2

[246]

To approve the friendship, the user clicks on the approve link which goes to the
approve request route. This retrieves the request and approves it if it really belongs
to the current logged in user (we don't want just anyone to come in to approve
the request).

put '/friend/:requestid' do
 req = Request.get(params[:requestid])
if @user.requests.include? req
 req.approve
 req.destroy
end
 redirect '/requests/pending'
end

Approving the request simply means that the user is added as a friend to the
current user.

def approve
 self.user.add_friend(self.from)
end

Similarly to ignore the request the user clicks on the ignore link which goes to the
ignore request route. This will destroy the request if the user is the correct one.

get '/friend/ignore/:requestid' do
 req = Request.get(params[:requestid])
req.destroy if @user.requests.include? req
redirect '/requests/pending'
end

In the landing page, there is a mini friends snippet from a file named mini_friends.
haml that displays a minified image of the friends the user has (up to 12 friends
at once).

- if user.friends.empty?
 You don't have any friends in Colony! Start adding friends today!
- else
 - user.friends[0..11].each do |f|
 %a{:href => "/user/#{f.nickname}"}
 %img.span-1{:src => "#{f.photo_url}"}

%hr.space
- if user == @user
 %a{:href => "/friends"} view all
- else
 %a{:href => "/friends/#{user.id}"} view all

Chapter 6

[247]

If this snippet is used in the user page instead of the landing page, this will show the
viewed user's friends, via the user friends route.

get '/friends/:id' do
 viewed_user = User.get params[:id]
 haml :'/friends/friends', :locals => {:show_search => false, :user
=> viewed_user}
end

That's all for the friends list. Let's take a look at how we can invite friends to join
us in Colony. The design of the feature of inviting friends is based on Facebook
Connect. We use Facebook Connect to allow a user to log in to his Facebook account,
and then using this account, send invitations to his friends through Facebook.

When a user logs in, there is a button to the right of the landing page that invites
the user to log in to Facebook Connect, if he wasn't logged in to Facebook. Clicking
on that will request the user to log in to his Facebook account. Note that if you have
used the Facebook account to log in to Colony in the first place (through RPX) you
would have automatically logged in to Facebook Connect already.

Social Networking Services – Cloning Facebook 2

[248]

Let's look at how we use Facebook Connect in Colony. There are three basic steps to
enable Facebook Connect for a web application.

1.	 Register the application with Facebook by creating a Facebook application.
This will also give you the application key.

2.	 Create a cross-domain communication channel file called xd_receiver.htm
and place it in a directory relative to the Connect URL specified in the
first step.

3.	 Write the necessary Javascript and FBML.

Registering a Facebook application
Without going through every detail, here are the essential steps to create a Facebook
application for Colony's Facebook Connect integration:

1.	 Go to http://www.facebook.com/developers/createapp.php to create a
new application.

2.	 Go to http://www.facebook.com/developers/createapp.php to create a
new application.

3.	 Enter 'Colony' in the Application Name field and save to proceed.
4.	 Take note of the API Key, as we'll need this shortly.
5.	 Click on the Connect tab. Set Connect URL to http://colony.saush.com.

http://colony.saush.com/

Chapter 6

[249]

Creating a cross-domain communication channel
file
The Facebook JavaScript Client Library uses a cross-domain communications
library to establish communication between external web pages and Facebook
pages, and services inside a browser. To reference the library, we need to create
a cross-domain communications channel file named xd_receiver.htm with the
following information:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.
w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>xd</title>
 </head>
 <body>
 <script src="http://static.ak.facebook.com/js/api_lib/v0.4/
XdCommReceiver.js" type="text/javascript"></script>
 </body>
</html>

We then place this file in the public folder.

Writing the code
Our Facebook Connect code is in a snippet called mini invite in the file
mini_invite.haml.

=snippet :'/snippets/fbinit'
%div#fblogin
 %fb:login-button{:onlogin => "$('#fblogin').hide();$('#fbuser').
show();"}
 %fb:intl
 Connect with Facebook
%div#fbuser.hide
 %fb:profile-pic{:uid => "loggedinuser", :'facebook-logo' =>"true",
:linked => "true"}
 %br
 %a{:href => '/invite'}
 Invite your Facebook friends!

:javascript
 FB.ensureInit(function() {
 FB.Connect.get_status().waitUntilReady(function(status) {
 switch (status) {

Social Networking Services – Cloning Facebook 2

[250]

 case FB.ConnectState.connected:
 loggedIn = true;
 break;
 case FB.ConnectState.appNotAuthorized:
 case FB.ConnectState.userNotLoggedIn:
 loggedIn = false;
 }
 });
 });
 if (loggedIn) {
 $("#fblogin").hide();
 $("#fbuser").show();
 }
 else {
 $("#fblogin").show();
 $("#fbuser").hide();
 }

Notice that the code here is all JavaScript from the Facebook JavaScript libraries and
FBML. The first line inserts a snippet named fbinit.haml that initializes Facebook
with the application key and xd_receiver.htm.

:javascript
 FB.init("<FB APP KEY>", "xd_receiver.htm");

Why not just insert this line into the code? It's because there is another location where
we are using the Facebook JavaScript libraries and we will need to reuse fbinit.haml.

Creating FBML with Haml is easy; remember that Haml can create any XML-like
markup language.

%fb:login-button{:onlogin => "$('#fblogin').hide();$('#fbuser').
show();"}
 %fb:intl
 Connect with Facebook
%div#fbuser.hide
 %fb:profile-pic{:uid => "loggedinuser", :'facebook-logo' =>"true",
:linked => "true"}

We tell the FBML login button that whenever the login button is clicked, we need
to hide that button and show the fbuser element. This element contains the profile
picture FBML, which forms the necessary HTML tags for us to display the image.

As for the Javascript, the first thing we need to do is to initialize the library with the
application key and tell it where to look for the xd_receiver.htm file we created
earlier in step 2.

Chapter 6

[251]

After logging in, the Facebook Connect button is replaced by the user's Facebook
profile photo as well as a link to get the user invite his Facebook friends. The rest of
the JavaScript simply detects if the user has logged in, and toggles the display of the
button or the profile picture and link accordingly.

When the user clicks on the link, he will be directed to a new page, with a list of
his Facebook friends who he can send the invitation to join. This link goes to the
invite route.

get '/invite' do
 haml :'/friends/invite'
end

The route just redirects to the invite page.

=snippet :'/snippets/top'
%script{:src => "http://static.ak.connect.facebook.com/js/api_lib/
v0.4/FeatureLoader.js.php", :type=>"text/javascript"}
%fb:serverfbml
 %script{:type=>"text/fbml"}
 %fb:fbml
 %fb:request-form{:action => "http://colony.saush.com/", :method
=> "GET", :invite => "true", :type => "Colony", :content => "I am a
member of Colony and would like to invite you share the experience.
To visit the Colony, simply click on the Visit button below.<fb:req-
choice url='http://colony.saush.com/' label='Visit' />"}
 %fb:multi-friend-selector{:showborder => "false", :actiontext
=> "Invite your Facebook Friends to use Colony"}
=snippet :'/snippets/fbinit'

Social Networking Services – Cloning Facebook 2

[252]

This is a whole bunch of FBML. We start off by adding the Facebook Javascript
libraries, followed by the FBML tag <fb:serverfbml>. This tag enables us to place
FBML tags inside a Facebook iframe, which means everything else nested in this tag
is actually inside a Facebook iframe. Why is this?

This is because Facebook Connect applications use XFBML whereas usual Facebook
applications use FBML. If we want to use any FBML tag inside a Facebook Connect,
we need to wrap it around a ServerFBML tag.

Next, we have the usual <fb:fbml> tag, which indicates that we're using FBML now,
followed by the <fb:request-form> tag, which creates a form to send invitations
to users. Finally, nested within the request form, we use the <fb:multi-friend-
selector> tag. This tag provides us with a list of the user's friends which he can
select to send invitations with, using the request form. Right at the end of the
template we re-use the fbinit snippet to initialize the libraries.

Chapter 6

[253]

Clicking on the Send button will send an invitation to the user(s), and it will appear
in Facebook's list of requests.

User page and activity feeds
Next, we look at user pages and the activity feeds in the user pages. The user route is
found in the user.rb file.

get "/user/:nickname" do
 @myself = @user
 @viewed_user = User.first(:nickname => params[:nickname])
 @viewing_self = (@viewed_user == @myself)
 all = [] + @viewed_user.activities + @viewed_user.wall.posts + @
viewed_user.statuses
 @all = all.sort {|x,y| y.created_at <=> x.created_at}
 haml :user
end

If you are observant, you might notice that this route (like all other routes with
variables in its definition) is placed at the last in the file. This is to prevent confusion
by Sinatra when it is called. For example, in the same user.rb file we have the user
profile (user/profile) and user status (user/status) routes. If we placed the user
route (user/:nickname) definition before these two route definitions, when the
user profile route is called Sinatra will be misinformed that it is called with a user
named 'profile'!

Social Networking Services – Cloning Facebook 2

[254]

The user route has two user objects, the currently logged in user and the user that is
being viewed. These two users can be the same (if the logged in user is viewing his
own page), and if this is the case then we set the @viewing_self variable to be true.
We also extract all the viewed user's activities, wall posts, and statuses and sort them
by reverse chronological order.

The route goes to the user page, called user.haml. This page, like the landing page,
contains a number of snippets.

=snippet :'/snippets/top'

.span-24.last
 .span-3
 %img.span-3{:src => "#{@viewed_user.photo_url}"}
 =snippet :'/snippets/links'
 %h3 Friends
 =snippet :'/snippets/mini_friends', :locals => {:user => @viewed_
user}
 .span-15

 %h3 Wall
 =snippet :'/snippets/wall_box'
 %hr.space
 =snippet :'/snippets/feeds'

 .span-6.last
 %h3 Information
 .span-5 Name : #{@viewed_user.formatted_name}
 .span-5 Location : #{@viewed_user.location}
 .span-5 #{@viewed_user.description}
 %hr.space

 %h3 Photos
 =snippet :'/snippets/mini_album'

 %h3 Pages
 =snippet :'/snippets/mini_pages', {:locals => {:owner => @viewed_
user, :owner_name => 'user'}}

Chapter 6

[255]

Notice that we have re-used a number of snippets (this is the reason why we started
using snippets). The activity feed is used by the feeds snippet.

Posting to a wall
A wall is the place where users can post their views on. Walls belong to users,
events, and groups, and each one of these can only have one wall. A post is content
generated by the user placed on a wall.

The implementation of the wall is done at the various owning object's route files.
Let's look at the user wall first. The wall posting form is in the wall box snippet, in a
file named wall_box.haml. This snippet is found in the user page.

=snippet :'/snippets/text_limiter_js'
What's on your mind?
%form{:method => 'post', :action => '/user/wall'}
 %textarea.update.span-15#update{:name => 'status', :rows => 2,
:onKeyDown => "text_limiter($('#update'), $('#counter'))"}
 .span-6
 %span#counter
 160
 characters left
 .prepend-12

Social Networking Services – Cloning Facebook 2

[256]

 %input{:type => 'hidden', :name => 'wallid', :value => "#{@viewed_
user.wall.id}"}
 %input{:type => 'hidden', :name => 'nickname', :value => "#{@
viewed_user.nickname}"}
 %input#button{:type => 'submit', :value => 'update'}

This snippet is very similar to the status update snippet, except we need to pass in
the wall ID as well as the nickname of the user whom the wall belongs to. The form
posts to the user wall route, which is found in the user.rb file.

post '/user/wall' do
 Post.create(:text => params[:status], :user => @user, :wall_id =>
params[:wallid])
 redirect "/user/#{params[:nickname]}"
end

This creates a post from a user to a wall. To view the posts, we re-use the feeds snippet
we described earlier, which is also in the user page. We used this snippet to view the
user's news feed, but we can also use it to view the activity for the viewed user.

.feeds
 -@all.each do |item|
 .span-1
 %img.span-1{:src => "#{item.user.photo_url}"}
 .span-13.last
 %a{:href => "/user/#{item.user.nickname}"}
 =item.user.nickname

 =item.text

 .span-8.last
 %em.quiet
 =time_ago_in_words(item.created_at.to_time)

 =snippet :'/snippets/comment_and_like', {:locals => {:item =>
item}}

Next we look at a wall belonging to a group. The form is in the group wall snippet in
a file named group_wall_box.haml.

=snippet :'/snippets/text_limiter_js'
What's on your mind?
%form{:method => 'post', :action => '/group/wall'}
 %textarea.update.span-15#update{:name => 'status', :rows => 2,
:onKeyDown => "text_limiter($('#update'), $('#counter'))"}
 .span-6
 %span#counter

Chapter 6

[257]

 160
 characters left
 .prepend-12
 %input{:type => 'hidden', :name => 'wallid', :value => "#{@group.
wall.id}"}
 %input{:type => 'hidden', :name => 'group', :value => "#{@group.
id}"}
 %input#button{:type => 'submit', :value => 'update'}

This snippet allows the user to post to the group wall and it is found in the group
page (discussed in a later section).

%h3 Wall
 =snippet :'/snippets/group_wall_box'

 %hr.space

 -@group.wall.posts.each do |post|
 .span-2
 %img.span-2{:src => "#{post.user.photo_url}"}
 .span-4
 #{post.user.formatted_name}
 %br
 #{post.created_at.strftime "%d %b %Y"}
 %br
 #{post.created_at.strftime "%I:%M %P"}
 .span-8
 #{post.text}
 %hr

For this wall, instead of using a snippet to view all the wall posts for this group, we
add it in directly on the page. The route to create the group wall posts is also very
similar to the one used for creating user wall posts.

post '/group/wall' do
 Post.create(:text => params[:status], :user => @user, :wall_id =>
params[:wallid])
 redirect "/group/#{params[:group]}"
end

Social Networking Services – Cloning Facebook 2

[258]

Similarly for the event wall, we have an event wall snippet in a file named event_
wall_box.haml.

=snippet :'/snippets/text_limiter_js'
What's on your mind?
%form{:method => 'post', :action => '/event/wall'}
 %textarea.update.span-15#update{:name => 'status', :rows => 2,
:onKeyDown => "text_limiter($('#update'), $('#counter'))"}
 .span-6
 %span#counter
 160
 characters left
 .prepend-12
 %input{:type => 'hidden', :name => 'wallid', :value => "#{@event.
wall.id}"}
 %input{:type => 'hidden', :name => 'event', :value => "#{@event.
id}"}
 %input#button{:type => 'submit', :value => 'update'}

Correspondingly, we also have the event wall on the event page, which we will look
at later.

%h3 Wall
 =snippet :'/snippets/event_wall_box'

 %hr.space

 -@event.wall.posts.each do |post|
 .span-2
 %img.span-2{:src => "#{post.user.photo_url}"}
 .span-4
 #{post.user.formatted_name}
 %br
 #{post.created_at.strftime "%d %b %Y"}
 %br
 #{post.created_at.strftime "%I:%M %P"}
 .span-8
 #{post.text}
 %hr

The route to create the wall posts for an event is also quite similar.

post '/event/wall' do
 Post.create(:text => params[:status], :user => @user, :wall_id =>
params[:wallid])
 redirect "/event/#{params[:event]}"
end

Chapter 6

[259]

Sharing photos
Let's continue with more user-generated content, this time with photos. The
photo-sharing feature in Colony is transplanted from Photoclone and share many
similarities in design and code. The basic model for the photo-sharing feature is that
of albums as containers to photos. Each user can have one or more albums, and each
album has one or more photos in them. For the implementation we will look into the
albums first, then move on to uploading photos then annotating them.

Managing albums
Albums are relatively simple to implement. The albums route shows a list of albums
belonging to the currently logged in user.

get "/albums" do
 @myself = @user = User.get(session[:userid])
 haml :"albums/manage"
end

For the viewed user, we use the user albums route, which retrieves the albums
belonging to that user we are viewing.

get "/albums/:user_id" do
 @myself = User.get(session[:userid])
 @user = User.get(params[:user_id])
 haml :"albums/manage"
end

Social Networking Services – Cloning Facebook 2

[260]

Both routes go to the manage album page.

=snippet :'/snippets/top'
.span-24
 .span-3
 %img.span-3{:src => "#{@user.photo_url}"}
 =snippet :'/snippets/links'
 .span-21.last
 %hr.space
 .span-17
 %div.icons.icons_photo
 %strong{:style => 'vertical-align:bottom;font-size:18px;'}
 #{@user == @myself ? 'Your' : "#{@user.formatted_name}'s"}
albums
 - if @user == @myself
 .span-4.last.right
 %a.button{:href => '/album/add'} new album

 - if @user != @myself
 - if @myself.friends.include? @user
 .span-17.last You and #{@user.formatted_name} are friends.
 - else
 .span-17.last
 #{@user.formatted_name} and you are not connected in Colony.

 %hr.space

 -@user.albums.each do |album|
 %hr.space
 .span-3
 - if album.cover_photo
 %img.span-3{:src => "#{album.cover_photo.url_thumbnail}"}
 - elsif !album.photos.empty?
 %img.span-3{:src => "#{album.photos.first.url_thumbnail}"}
 - else
 %img.span-2{:src => "/images/album_icon.png"}

 .span-18.last
 %h4{:style => 'margin-bottom:5px;'}
 %a{:href => "/album/#{album.id}"} #{album.name}
 #{album.description}
 %hr.space
 - unless album.photos.empty?

Chapter 6

[261]

 %div{:style => 'font-style: italic;'} (#{album.photos.size}
photos in this album, last photo uploaded on #{album.photos.last.
created_at.strftime('%d-%b-%Y')})

 - if @user == @myself
 - if album.photos.empty?
 %div{:style => "width: 50px;float: left;"}
 %form{:id => "form_#{album.id}", :method => 'post',
:action => "/album/#{album.id}"}
 %input{:type => 'hidden', :name => '_method', :value
=> 'delete'}
 %a{:href => '#', :onclick => '$("#form_' + "#{album.
id}" + '").submit();'} remove
 .span-2
 %a{:href => "/album/#{album.id}/upload"} upload

The manage album page uses two instance variables for this—@myself indicates the
logged in user and @user indicates the user whose list of albums are being viewed.
We use these two instance variables to format the view accordingly and display the
appropriate messages.

We also display a cover photo. If there is a given cover photo (the user has explicitly
set one of the photos as the cover photo) we will show that, otherwise we'll show the
first photo in the list or a default album icon, if the album is empty.

- if album.cover_photo
 %img.span-3{:src => "#{album.cover_photo.url_display}"}
- elsif !album.photos.empty?
 %img.span-3{:src => "#{album.photos.first.url_display}"}
- else
 %img.span-3{:src => "/images/album_icon.png"}

Lastly, we'll only allow some actions if the current user is managing his own albums,
and only allow the album to be deleted if the album is empty.

- if @user == @myself
 - if album.photos.empty?
 %div{:style => "width: 50px;float: left;"}
 %form{:id => "form_#{album.id}", :method => 'post', :action => "/
album/#{album.id}"}
 %input{:type => 'hidden', :name => '_method', :value =>
'delete'}
 %a{:href => '#', :onclick => '$("#form_' + "#{album.id}" + '").
submit();'} remove
 .span-2
 %a{:href => "/album/#{album.id}/upload"} upload

Social Networking Services – Cloning Facebook 2

[262]

Note that delete uses the DELETE method and we are using the form submit hack to
get around the problem of browsers not supporting any other HTTP methods other
than GET and POST. Here is the delete album route.

delete "/album/:id" do
 album = Album.get(params[:id])
 user = User.get(session[:userid])
 if album.user == user
 if album.destroy
 redirect "/albums"
 else
 throw "Cannot delete this album!"
 end
 else
 throw "This is not your album, you cannot delete it!"
 end
end

Viewing someone else's albums uses the same view. The only difference is that the
@myself variable points to the logged in user and the @user variable points to the
viewed user. The view user album route is as follows:

get "/albums/:user_id" do
 @myself = User.get(session[:userid])
 @user = User.get(params[:user_id])
 haml :"albums/manage"
end

Creating an album is easy as well.

get "/album/add" do
 haml :"/albums/add"
end

The add album page provides the user a form to add the album, which submits to a
create album route as below. After creating the album, the user is redirected to the
main albums page.

post "/album/create" do
 album = Album.new
 album.attributes = {:name => params[:name], :description =>
params[:description]}
 album.user = @user
 album.save
 redirect "/albums"
end

Chapter 6

[263]

Next, we display the album with the view album route.

get "/album/:id" do
 @album = Album.get params[:id]
 haml :"/albums/view"
end

Displaying the album is done with the view album page in a file named view.haml.

=snippet :'/snippets/top'
=snippet :'/snippets/album_inline_js'
.span-24.last
 .span-3
 %img.span-3{:src => "#{@album.user.photo_url}"}
 =snippet :'/snippets/links'
 .span-15.last
 - if @user == @album.user
 %h3.edit_name{:style => 'margin-bottom: 0;'} #{@album.name}
 %h4.edit_area #{@album.description}
 - else
 %h3{:style => 'margin-bottom: 0;'} #{@album.name}
 %h4 #{@album.description}

 - if @user == @album.user
 %a{:href => "/album/#{@album.id}/upload"} Upload photos
 - if @user
 \-
 %a{:href => "/albums/#{@album.user.id}"} Back to albums
 - else
 \-
 %a{:href => "/user/#{@album.user.nickname}"} Back to albums

 %hr.space

 - if @user
 - if @album.photos.empty?
 %h4
 There are no photos in this album.
 %a{:href => "/album/#{@album.id}/upload"} Upload some
photos?

 - @album.photos.each do |photo|
 %a{:href => "/photo/#{photo.id}"}
 %img.span-2{:src => "#{photo.url_thumbnail}"}

Social Networking Services – Cloning Facebook 2

[264]

The view album page allows you to edit the name and the description of the album
inline through Javascript. The inline album snippet in the file name album_inline_
js.haml provides the code for us to do this. You would have seen this in Photoclone.

As in Chapter 4, modifying the name or description properties will use AJAX to call
the edit album properties route.

post "/album/:property/:photo_id" do
 album = Album.get params[:photo_id]
 if %w(name description).include? params[:property]
 album.send(params[:property] + '=', params[:value])
 album.save
 end
 album.send(params[:property])
end

This allows us to change the necessary album properties, in our case the name and
a description of the album. Notice that we don't allow changing other properties
besides name and description. The details of this mechanism are described in
full in Chapter 4.

Next, if the owner of the album is the currently logged in user, we will allow
uploading new photos. Otherwise we will only allow returning back to
the albums list.

- if @user == @album.user
 %h3.edit_name{:style => 'margin-bottom: 0;'} #{@album.name}
 %h4.edit_area #{@album.description}
 - else
 %h3{:style => 'margin-bottom: 0;'} #{@album.name}
 %h4 #{@album.description}

 - if @user == @album.user
 %a{:href => "/album/#{@album.id}/upload"} Upload photos
 - if @user
 \-
 %a{:href => "/albums/#{@album.user.id}"} Back to albums
 - else
 \-
 %a{:href => "/user/#{@album.user.nickname}"} Back to albums

Chapter 6

[265]

Finally, we show a list of photos in this album.

- if @user
 - if @album.photos.empty?
 %h4
 There are no photos in this album.
 %a{:href => "/album/#{@album.id}/upload"} Upload some
photos?

 - @album.photos.each do |photo|
 %a{:href => "/photo/#{photo.id}"}
 %img.span-2{:src => "#{photo.url_thumbnail}"}

Uploading photos
Let's turn to uploading photos next. The upload photo route is in the same
photos.rb file.

get "/upload" do
 @albums = @user.albums
 haml :upload
end

This allows us to show all albums that belong to the logged in user and allow him to
choose which album he wants to upload in. However, when we want to choose the
album we must upload to we use this route instead:

get "/album/:id/upload" do
 @albums = [@user.albums.get(params[:id])]
 haml :upload
end

Either route provides the albums for the upload photos page.

=snippet :'/snippets/top'
.span-3
 %img.span-3{:src => "#{@user.photo_url}"}
 =snippet :'/snippets/links'
.span-21.last
 %h3 Upload photos to an album
 - unless @albums.empty?
 .span-24.last
 %form{:method => 'post', :action => '/upload',
:enctype=>"multipart/form-data"}
 Upload photos to this album -
 %select.span-8{:name => 'album_id'}

Social Networking Services – Cloning Facebook 2

[266]

 - @albums.each do |album|
 %option{:value => "#{album.id}"} #{album.name}
 %hr.space
 .span-23.push-1
 %ol
 %li
 %input{:type => 'file', :name => 'file1', :size => 60}
 %li
 %input{:type => 'file', :name => 'file2', :size => 60}
 %li
 %input{:type => 'file', :name => 'file3', :size => 60}
 %li
 %input{:type => 'file', :name => 'file4', :size => 60}
 %li
 %input{:type => 'file', :name => 'file5', :size => 60}
 %li
 %input{:type => 'file', :name => 'file6', :size => 60}

 %input{:type => 'submit', :value => 'upload'}
 - else
 %h3
 Looks like you don't have any albums yet.
 %a{:href => "/album/add"} Create one
 before uploading photos!

Most of the work is done by the model, but the upload photo route for uploading does
some basic manipulation to get the pieces of data in place.

post "/upload" do
 album = Album.get params[:album_id]
 (1..6).each do |i|
 if params["file#{i}"] && (tmpfile = params["file#{i}"][:tempfile])
&& (name = params["file#{i}"][:filename])
 Photo.new(:title => name, :album => album, :tmpfile => tmpfile).
save
 end
 end
 redirect "/album/#{album.id}"
end

The parameters provided by most browsers are nested such that a parameter nested
in the parameter (in this case it is file1, file2, and so on) named tempfile will
contain the binary data and one named filename will contain the name of the file that
is uploaded. Extracting the data and passing it to the Photo object will persist the
data, as described in the Photo class used earlier.

Chapter 6

[267]

Displaying photos
To explain how Colony displays photos properly we will break up the description
into several parts.

•	 Displaying the photo including the title and caption, both of which can be
edited inline

•	 Displaying photo metadata
•	 Navigation in the album to the next and previous photos
•	 Annotating the photo

Let's start with the view photo route.

get "/photo/:id" do
 @photo = Photo.get params[:id]

 notes = @photo.annotations.collect do |n|
 '{"x1": "' + n.x.to_s + '", "y1": "' + n.y.to_s +
 '", "height": "' + n.height.to_s + '", "width": "' + n.width.to_s
+
 '","note": "' + n.description + '"}'
 end
 @notes = notes.join(',')
 @prev_in_album = @photo.previous_in_album
 @next_in_album = @photo.next_in_album
 haml :'/photos/photo'
end

We retrieve the annotations from the photo as well as find the next and previous
photos in the same album then show the view photo page. This page is one of the
longest in Colony and is stuffed with features. Let's look at them one at a time.

=snippet :'/snippets/top'
=snippet :'/snippets/annotations_js'
=snippet :'/snippets/photo_inline_js'

.span-24
 .span-3
 %img.span-3{:src => "#{@user.photo_url}"}
 =snippet :'/snippets/links'
 .span-15

 - if @user === @photo.album.user
 %h2.edit_title #{@photo.title}
 - else

Social Networking Services – Cloning Facebook 2

[268]

 %h2 #{@photo.title}
 %img{:id => 'photo', :src => "#{@photo.url_display}"}
 - if @user === @photo.album.user
 %h4.edit_area #{@photo.caption}
 - else
 %h4 #{@photo.caption}

 .span-3
 %a{:href => "/album/#{@photo.album.id}"} Back to album
 - if @user == @photo.album.user
 .span-3
 %a{:href => '#', :id => 'add_annotation' } annotate photo
 .span-3
 %form{:id => "form_cover_photo", :method => 'post', :action =>
"/album/cover/#{@photo.id}"}
 %a{:href => '#', :onclick => '$("#form_cover_photo").
submit();'} set album cover
 .span-3.last
 %form{:id => "form_photo_#{@photo.id}", :method => 'post',
:action => "/photo/#{@photo.id}"}
 %input{:type => 'hidden', :name => '_method', :value =>
'delete'}
 %a{:href => '#', :onclick => '$("#form_photo_' + "#{@photo.
id}" + '").submit();'} delete photo

 =snippet :'/snippets/comment_and_like', {:locals => {:item => @
photo}}

 .span-6.last
 %img.span-1{:src => "#{@photo.album.user.photo_url}"}
 Uploaded on #{@photo.created_at.strftime("%d %b %Y")} by
 - if @user
 %form{:id => "form_create_#{@photo.album.user.id}", :method =>
'post', :action => "/follow/#{@photo.album.user.id}"}
 %input{:type => 'hidden', :name => '_method', :value => 'put'}
 %a{:href => '#', :onclick => '$("#form_create_' + "#{@photo.
album.user.id}" + '").submit();'}
 =@photo.album.user.formatted_name
 - else
 =@photo.album.user.formatted_name
 %h4
 This photo is
 - if @user === @photo.album.user
 %b.edit_privacy #{@photo.privacy}
 - else

Chapter 6

[269]

 %b #{@photo.privacy}
 - if @user === @photo.album.user
 %h3 Annotations
 - if @photo.annotations.empty?
 %h4 No annotations on this photo.
 - else
 - @photo.annotations.each do |note|
 .span-6
 =note.description
 .span-3
 %form{:id => "form_#{note.id}", :method => 'post', :action
=> "/annotation/#{note.id}"}
 %input{:type => 'hidden', :name => '_method', :value =>
'delete'}
 %a{:href => '#', :onclick => '$("#form_' + "#{note.id}"
+ '").submit();'} [remove]
 %hr.space

 %h3 #{@photo.album.name}

 - if @prev_in_album
 %a{:href => "/photo/#{@prev_in_album.id}"}
 %img.span-2{:src => "#{@prev_in_album.url_thumbnail}"}
 - else
 %img.span-2{:src => '/images/spacer.gif'}
 - if @next_in_album
 %a{:href => "/photo/#{@next_in_album.id}"}
 %img.span-2{:src => "#{@next_in_album.url_thumbnail}"}
 - else
 %img.span-2{:src => '/images/spacer.gif'}
 %br
 - if @prev_in_album
 %a{:href => "/photo/#{@prev_in_album.id}"}
 %img.span-2{:src => "/images/left_arrow.gif"}
 %a{:href => "/album/#{@photo.album.id}"}
 %img.span-2{:src => "/images/browse.gif"}
 - if @next_in_album
 %a{:href => "/photo/#{@next_in_album.id}"}
 %img.span-2{:src => "/images/right_arrow.gif"}

%hr.space

.span-24
 #annotation_form

Social Networking Services – Cloning Facebook 2

[270]

 %form{:id => 'annotation_add_form', :method => 'post', :action =>
"/annotation/#{@photo.id}"}
 %fieldset
 %legend
 %input{:name => 'annotation[x1]', :type => 'hidden', :id =>
'annotation_x1'}
 %input{:name => 'annotation[y1]', :type => 'hidden', :id =>
'annotation_y1'}
 %input{:name => 'annotation[height]', :type => 'hidden', :id
=> 'annotation_height'}
 %input{:name => 'annotation[width]', :type => 'hidden', :id =>
'annotation_width'}
 %textarea{:name => 'annotation[text]', :id => 'annotation_
text'}
 .submit
 %input{:type => 'submit', :value => 'add'}
 %input{:type => 'button', :value => 'cancel', :id => 'cancel_
note'}

Chapter 6

[271]

First let's look at the action menubar, which is placed right below the displayed
photo. This menubar contains all the actions that can be done on the photo. Most
of the actions are only available to the owner of the photo. Notice that unlike in
Photoclone, we don't allow the photos to be edited.

.span-3
 %a{:href => "/album/#{@photo.album.id}"} Back to album
 - if @user == @photo.album.user
 .span-3
 %a{:href => '#', :id => 'add_annotation' } annotate photo
 .span-3
 %form{:id => "form_cover_photo", :method => 'post', :action =>
"/album/cover/#{@photo.id}"}
 %a{:href => '#', :onclick => '$("#form_cover_photo").
submit();'} set album cover
 .span-3.last
 %form{:id => "form_photo_#{@photo.id}", :method => 'post',
:action => "/photo/#{@photo.id}"}
 %input{:type => 'hidden', :name => '_method', :value =>
'delete'}
 %a{:href => '#', :onclick => '$("#form_photo_' + "#{@photo.
id}" + '").submit();'} delete photo

Next, we look at displaying the photo and doing inline editing of the title
and caption.

- if @user === @photo.album.user
 %h2.edit_title #{@photo.title}
 - else
 %h2 #{@photo.title}
 %img{:id => 'photo', :src => "#{@photo.url_display}"}
 - if @user === @photo.album.user
 %h4.edit_area #{@photo.caption}
 - else
 %h4 #{@photo.caption}

As with editing the album title and description earlier, we use a similar snippet
called photo_inline_js.rb to add in the necessary JavaScript, and an edit photo
properties route to do the actual modification of the properties. The edit photo properties
route is as below:

post "/photo/:property/:photo_id" do
 photo = Photo.get params[:photo_id]
 if %w(title caption).include? params[:property]
 photo.send(params[:property] + '=', params[:value])
 photo.save
 end
 photo.send(params[:property])
end

Social Networking Services – Cloning Facebook 2

[272]

Just as in Photoclone, we show a list of annotations on the photo and below that
is the navigation amongst photos in the same album. Remember we got these two
variables in the route:

@prev_in_album = @photo.previous_in_album(@user)
@next_in_album = @photo.next_in_album(@user)

These two variables are used to determine the next and previous photos to view.
The logic to retrieve the correct photo is in the Photo class but the layout is
determined here.

%h3 #{@photo.album.name}

 - if @prev_in_album
 %a{:href => "/photo/#{@prev_in_album.id}"}
 %img.span-2{:src => "#{@prev_in_album.url_thumbnail}"}
 - else
 %img.span-2{:src => '/images/spacer.gif'}
 - if @next_in_album
 %a{:href => "/photo/#{@next_in_album.id}"}
 %img.span-2{:src => "#{@next_in_album.url_thumbnail}"}
 - else
 %img.span-2{:src => '/images/spacer.gif'}
 %br
 - if @prev_in_album
 %a{:href => "/photo/#{@prev_in_album.id}"}
 %img.span-2{:src => "/images/left_arrow.gif"}
 %a{:href => "/album/#{@photo.album.id}"}
 %img.span-2{:src => "/images/browse.gif"}
 - if @next_in_album
 %a{:href => "/photo/#{@next_in_album.id}"}
 %img.span-2{:src => "/images/right_arrow.gif"}

Note that the previous and next photos in the list shows a last-in-first-out (LIFO)
structure. The last uploaded photo is considered the first photo to view while the
next photo goes to the second to last.

Chapter 6

[273]

Annotating photos
Annotating a photo involves placing a bounding box around an area and attaching
some text to this area. To annotate on a photo in Colony, we place a JavaScript layer
on top of the photo and draw a white box around the item that the user marked. This
is the same technique we used in Photoclone.

First, we use two JavaScript libraries, both of which are initalized in
the layout.rb file.

%script{:src => '/js/select.js', :type => 'text/javascript'}
%script{:src => '/js/notes.js', :type => 'text/javascript'}

The two important functions in the two files of note are img_annotations in the
notes.js file and imgAreaSelect in the select.js file. To add the annotation
feature, we include an annotations snippet in a file called annotations_js.haml in
the view photo page.

=snippet :'/snippets/annotations_js'

This snippet allows us to provide annotations to photo.

:javascript
notes = [#{@notes}];

$(window).load(function () {
$('#photo').img_annotations();

$('#cancel_note').click(function(){
$('#photo').imgAreaSelect({ hide: true });
$('#annotation_form').hide();
});

$('#add_annotation').click(function(){
$('#photo').imgAreaSelect({ onSelectChange: show_add_annotation, x1:
120, y1: 90, x2: 280, y2: 210 });
return false;
});
});

function show_add_annotation (img, area) {
 imgOffset = $(img).offset();
 form_left = parseInt(imgOffset.left) + parseInt(area.x1);
 form_top = parseInt(imgOffset.top) + parseInt(area.y1) +
parseInt(area.height)+5;

 $('#annotation_form').css({ left: form_left + 'px', top: form_top +
'px'});

Social Networking Services – Cloning Facebook 2

[274]

 $('#annotation_form').show();
 $('#annotation_form').css("z-index", 10000);
 $('#annotation_x1').val(area.x1);
 $('#annotation_y1').val(area.y1);
 $('#annotation_height').val(area.height);
 $('#annotation_width').val(area.width);
 }

notes is a JavaScript variable used to store a list of notes added to the photo.

notes = [#{@notes}];

The data is something like this:

notes = [{"x1": "63", "y1": "39", "height": "239", "width":
"384","note": "School trip to the zoo!!"},{"x1": "325", "y1": "8",
"height": "74", "width": "146","note": "This is me!"}];

x1 and y1 are the coordinates of the upper left corner of the white box while height
and width defines the height and width of the box. The note field is the actual text
to be displayed. We indicate the image to be annotated to be the element that has a
class ID photo.

$('#photo').img_annotations();

Remember the function img_annotations, which we are using here. When we click
on an element that has the class ID add_annotation, we use the imgAreaSelect
function to draw the white select box and at the same time, call the show_add_anno-
tation function.

$('#add_annotation').click(function(){
$('#photo').imgAreaSelect({ onSelectChange: show_add_annotation, x1:
120, y1: 90, x2: 280, y2: 210 });
return false;
});
});

The show_add_annotation function in turn shows a form just below the white box,
and pre-populates certain dimensions data into that form.

function show_add_annotation (img, area) {
 imgOffset = $(img).offset();
 form_left = parseInt(imgOffset.left) + parseInt(area.x1);
 form_top = parseInt(imgOffset.top) + parseInt(area.y1) +
parseInt(area.height)+5;

Chapter 6

[275]

 $('#annotation_form').css({ left: form_left + 'px', top: form_top +
'px'});
 $('#annotation_form').show();
 $('#annotation_form').css("z-index", 10000);
 $('#annotation_x1').val(area.x1);
 $('#annotation_y1').val(area.y1);
 $('#annotation_height').val(area.height);
 $('#annotation_width').val(area.width);
}

The annotation form is a simple HTML form that allows the user to create
the annotation.

#annotation_form
 %form{:id => 'annotation_add_form', :method => 'post', :action => "/
annotation/#{@photo.id}"}
 %fieldset
 %legend
 %input{:name => 'annotation[x1]', :type => 'hidden', :id =>
'annotation_x1'}
 %input{:name => 'annotation[y1]', :type => 'hidden', :id =>
'annotation_y1'}
 %input{:name => 'annotation[height]', :type => 'hidden', :id =>
'annotation_height'}
 %input{:name => 'annotation[width]', :type => 'hidden', :id =>
'annotation_width'}
 %textarea{:name => 'annotation[text]', :id => 'annotation_text'}
 .submit
 %input{:type => 'submit', :value => 'add'}
 %input{:type => 'button', :value => 'cancel', :id => 'cancel_
note'}
The cancel button calls the cancel_note function to hide the form once
more.

$('#cancel_note').click(function(){
$('#photo').imgAreaSelect({ hide: true });
$('#annotation_form').hide();
});

Social Networking Services – Cloning Facebook 2

[276]

The add anotation route creates a note whenever the form posts to it, given
the photo ID.

post "/annotation/:photo_id" do
 photo = Photo.get params[:photo_id]
 note = Annotation.create(:x => params["annotation"]["x1"],
 :y => params["annotation"]["y1"],
 :height => params["annotation"]["height"],
 :width => params["annotation"]["width"],
 :description => params["annotation"]
["text"])
 photo.annotations << note
 photo.save
 redirect "/photo/#{params[:photo_id]}"
end

The annotation is created and added to the photo and the user is redirected back to
the view photo route. To remove the annotation, the user can click on the remove link
at the list of annotations to the right.

%h3 Annotations
 - if @photo.annotations.empty?
 %h4 No annotations on this photo.
 - else
 - @photo.annotations.each do |note|
 .span-6
 =note.description
 .span-3
 %form{:id => "form_#{note.id}", :method => 'post', :action =>
"/annotation/#{note.id}"}
 %input{:type => 'hidden', :name => '_method', :value =>
'delete'}
 %a{:href => '#', :onclick => '$("#form_' + "#{note.id}" +
'").submit();'} [remove]

This will simply remove the annotation and reload the same page.

delete "/annotation/:id" do
 note = Annotation.get(params[:id])
 photo = note.photo
 if note.destroy
 redirect "/photo/#{photo.id}"
 else
 throw "Cannot delete this annotation!"
 end
end

Chapter 6

[277]

Viewing friends' photos
While viewing a friend's albums and photos is implemented the same way as
viewing the users's albums and photos, there are few ways of attracting other users
to view your photos. First, viewing a user's page will also show a list of photos the
viewed user has. This is done with the the mini album snippet, which shows the most
recent 16 photos belonging to that user.

- if @viewed_user.photos.empty?
 #{@viewed_user.formatted_name} has not uploaded any photos yet.

- @viewed_user.photos[0..15].each do |photo|
 %a{:href => "/photo/#{photo.id}"}
 %img.span-1{:src => photo.url_thumbnail }

%hr.space
%a{:href => "/albums/#{@viewed_user.id}"} view all

Clicking on an individual photo will show that photo while clicking on view all will
show all photos in that album.

Also, each time a photo is uploaded, the activity of uploading that photo is logged
and shown in the user's news and activity feeds. Also when the photo is annotated,
the action is also logged as an activity and appears in the news and activity feeds.

Sending messages
Sending messages is yet another feature transplanted from Tweetclone. However,
the implementation of sending messages in Colony is different. Importantly, the
main class used in this feature in Colony is the Message class, while in Tweetclone
we use the Status class for both public statuses and private messages.

Social Networking Services – Cloning Facebook 2

[278]

The routing logic for this feature is in the messages.rb file. Let's look at viewing all
messages first. The same route is used to view both sent and received messages.

get '/messages/:type' do
 @friends = @user.friends
 case params[:type]
 when 'inbox' then @messages = Message.all(:recipient_id => @user.
id, :order => [:created_at.desc]); @label = 'Inbox'
 when 'sent_box' then @messages = Message.all(:user_id => @user.id,
:order => [:created_at.desc]); @label = 'Sent'
 end
 haml :'/messages/messages'
end

The type parameter in this route is used to differentiate between sent (sent box)/
received (inbox) messages, and the retrieved messages are passed to the
messages page.

=snippet :'/snippets/top'
.span-24
 .span-3
 %img.span-3{:src => "#{@user.photo_url}"}
 =snippet :'/snippets/links'

 .span-21.last
 %hr.space
 .span-4
 %div.icons.icons_messages
 %strong{:style => 'vertical-align:bottom;font-size:18px;'} #{@
label}
 .span-12
 .span-5.last.right
 %a.button{:href =>'/messages/inbox'} inbox
 %a.button{:href =>'/messages/sent_box'} sent
 %a.button{:href =>'#', :onclick => "$('#compose_box').
toggle();"} + new message
 %hr.space

 #compose_box.span-21.last.hide
 %form{:action => "/message/send", :method => 'post'}
 Subject
 %br
 %input.span-15{:type => 'text', :name => 'subject'}
 %br

Chapter 6

[279]

 Recipient (please enter nickname)
 %br
 %input.span-15{:type => 'text', :name => 'recipient'}
 %br
 Message
 %br
 %textarea.span-15{:name => 'text'}
 %br
 %input{:type => 'submit', :value => 'send'}
 %hr.space

 #messages_list

 - @messages.each do |msg|
 - usr = params[:type] == 'inbox' ? msg.sender : msg.recipient
 .span-3
 %img.span-2{:src => "#{usr.photo_url}"}
 .span-4
 %a{:href => "/user/#{usr.nickname}"} #{usr.formatted_name}
 .quiet #{msg.created_at.strftime '%b %d at %I:%M %p'}
 .span-13
 .loud
 %a{:href => "/message/#{msg.id}"}
 - if msg.read?
 #{msg.subject}
 -else
 %strong #{msg.subject}
 #{msg.text[0,150]} ...
 .span-1.last
 %form{:id => "form_msg_#{msg.id}", :method => 'post',
:action => "/message/#{msg.id}"}
 %input{:type => 'hidden', :name => '_method', :value =>
'delete'}
 %a{:href => '#', :onclick => '$("#form_msg_' + "#{msg.id}"
+ '").submit();', :class => 'remove_link'}
 %hr

We toggle a compose message form to allow the user to click to write messages.

#compose_box.span-21.last.hide
 %form{:action => "/message/send", :method => 'post'}
 Subject
 %br
 %input.span-15{:type => 'text', :name => 'subject'}
 %br

Social Networking Services – Cloning Facebook 2

[280]

 Recipient (please enter nickname)
 %br
 %input.span-15{:type => 'text', :name => 'recipient'}
 %br
 Message
 %br
 %textarea.span-15{:name => 'text'}
 %br
 %input{:type => 'submit', :value => 'send'}

This submits a request to the send message route, which saves the message.

post '/message/send' do
 recipient = User.first(:nickname => params[:recipient])
 m = Message.create(:subject => params[:subject], :text =>
params[:text], :sender => @user, :recipient => recipient)
 if params[:thread].nil?
 m.thread = m.id
 else
 m.thread = params[:thread].to_i
 end
 m.save
 redirect '/messages/sent_box'
end

Chapter 6

[281]

Notice the thread property of a message. We will be using this later to filter messages
of the same thread. At this point, we only capture the thread number if the message
has a thread; if not it will use the message ID as the starting thread number.

We also list the messages provided, and truncate each message to
150 characters only.

@messages.each do |msg|
 - usr = params[:type] == 'inbox' ? msg.sender : msg.recipient
 .span-3
 %img.span-2{:src => "#{usr.photo_url}"}
 .span-4
 %a{:href => "/user/#{usr.nickname}"} #{usr.formatted_name}
 .quiet #{msg.created_at.strftime '%b %d at %I:%M %p'}
 .span-13
 .loud
 %a{:href => "/message/#{msg.id}"}
 - if msg.read?
 #{msg.subject}
 -else
 %strong #{msg.subject}
 #{msg.text[0,150]} ...

Finally, we let the users delete messages in their inbox as well as from their sent box.

%form{:id => "form_msg_#{msg.id}", :method => 'post', :action => "/
message/#{msg.id}"}
 %input{:type => 'hidden', :name => '_method', :value => 'delete'}
 %a{:href => '#', :onclick => '$("#form_msg_' + "#{msg.id}" + '").
submit();', :class => 'remove_link'}

Let's look at viewing the messages next, starting with the view message route.

get '/message/:id' do
 @message = Message.get(params[:id])
 @message.read = true
 @message.save
 @messages = Message.all(:thread => @message.thread).sort{|m1, m2|
m1.created_at <=> m2.created_at}
 haml :'/messages/message'
end

Social Networking Services – Cloning Facebook 2

[282]

This is simply getting the message and then all messages with the same thread
number, but sorted according to their reverse chronological date of creation. The
messages are then displayed in the view message page in a file named message.haml.
Note that we also set the read property to true, to indicate that the message has
been read.

=snippet :'/snippets/top'
.span-24
 .span-3
 %img.span-3{:src => "#{@user.photo_url}"}
 =snippet :'/snippets/links'

 .span-20
 %h3 #{@message.subject}
 %a.button{:href =>'/messages/inbox'} back to inbox
 %hr.space

 - @messages.each do |msg|
 .span-2
 %img.span-2{:src => "#{msg.sender.photo_url}"}

Chapter 6

[283]

 .span-17
 #{msg.text}
 %hr.space
 #{msg.sender.formatted_name}
 .quiet #{msg.created_at.strftime '%b %d at %I:%M %p'}
 %hr.space

 %h3 Reply
 %form{:action => "/message/send", :method => 'post'}
 %input{:type => 'hidden', :name => 'subject', :value => "#{@
message.subject}"}
 %input{:type => 'hidden', :name => 'recipient', :value => "#{@
message.sender.nickname}"}
 %input{:type => 'hidden', :name => 'thread', :value => "#{@
message.thread}"}
 %textarea.span-10{:name => 'text'}
 %br
 %input{:type => 'submit', :value => 'send'}

We display the main message, followed by each message in the same message
thread, then provide a reply form to reply this message.

Finally, let's see how we delete a message with the delete message route.

delete '/message/:id' do
 message = Message.get(params[:id])
 if message.sender == @user
 message.sender = nil
 elsif message.recipient == @user
 message.recipient = nil
 end
 message.save
 redirect '/messages/inbox'
end

Notice we don't actually delete the message, only de-link it from the various users.
This is useful to keep track of messages for auditing purposes.

Now that we are able to send, view, and delete messages put in the finishing touch to
let the user know about these messages. We place a number after the messages link
at the left navigation bar to indicate the number of unread messages a user has. In
the links snippet, we have the following code:

.icons.icons_messages
 - num_unread_msgs = @user.received_messages.all(:read => false).
size
 %a{:href => '/messages/inbox'} Messages
 - if num_unread_msgs > 0
 (#{num_unread_msgs})

Social Networking Services – Cloning Facebook 2

[284]

Creating events
Events can be thought of as locations in time where people can come together for an
activity. To recap, in Colony's implementation of events, an event can have a wall,
pages, and three types of users according to their attendance status. The first type is
the confirmed user (those who have confirmed their attendance to the event). The
second type is the declined user (users who have explicitly declined attendance to
the event). The last type is the pending user (users who are still undecided, if they
should attend or not).

Let's look at managing the events first. Managing events here refers to a user
managing his own list of events that he has confirmed, is pending, or has declined to
attend. The manage events route simply points the user to the manage events page.

get '/events' do
 haml :'/events/manage'
end

The manage events page shows the user a list of events that he has either created, is
attending, or pending a confirmation.

=snippet :'/snippets/top'
.span-24
 .span-3
 %img.span-3{:src => "#{@user.photo_url}"}
 =snippet :'/snippets/links'
 .span-15
 %hr.space
 .span-3
 %div.icons.icons_event
 %strong{:style => 'vertical-align:bottom;font-size:18px;'}
Events
 .span-8
 .span-4.last.right
 %a.button{:href =>"/event/add"} new event

 .span-15
 %hr.space
 - @user.all_events.each do |event|
 .span-11
 %strong #{event.name}
 .quiet #{event.description}
 .quiet Venue : #{event.venue}
 .quiet Date/time : #{event.time.strftime "%I:%M %p"},
#{event.date.strftime "%d %b %Y"}
 .span-4.last.right

Chapter 6

[285]

 %form{:id => "form_event_#{event.id}", :method => 'post',
:action => "/event/#{event.id}"}
 %input{:type => 'hidden', :name => '_method', :value =>
'delete'}
 - if event.user == @user
 %a.button{:href => '#', :onclick => '$("#form_event_' +
"#{event.id}" + '").submit();'} delete
 %a.button{:href => "/event/#{event.id}"}
 - if @user.pending_events.include? event
 pending
 - else
 view
 %hr.space
 %hr

 .span-6.last
 %h3 Suggestions
 - if @user.friend_events.empty?
 No suggested events
 - else
 Your friends are attending these events:
 %ul
 - @user.friend_events[0..9].each do |event|
 %li
 %a{:href => "/event/#{event.id}"} #{event.name}

Social Networking Services – Cloning Facebook 2

[286]

From the User class you might remember that the all_events method returns all
confirmed and pending events only, and these events should be later than or equal to
today's date.

has n, :confirms
 has n, :confirmed_events, :through => :confirms, :class_name =>
'Event', :child_key => [:user_id], :date.gte => Date.today
 has n, :pendings
 has n, :pending_events, :through => :pendings, :class_name =>
'Event', :child_key => [:user_id], :date.gte => Date.today

def all_events
 confirmed_events + pending_events
end

For each event that is displayed, if the user is the creator of the event, we also allow
him to delete it.

- @user.all_events.each do |event|
 .span-11
 %strong #{event.name}
 .quiet #{event.description}
 .quiet Venue : #{event.venue}
 .quiet Date/time : #{event.time.strftime "%I:%M %p"},
#{event.date.strftime "%d %b %Y"}
 .span-4.last.right
 %form{:id => "form_event_#{event.id}", :method => 'post',
:action => "/event/#{event.id}"}
 %input{:type => 'hidden', :name => '_method', :value =>
'delete'}
 - if event.user == @user
 %a.button{:href => '#', :onclick => '$("#form_event_' +
"#{event.id}" + '").submit();'} delete
 %a.button{:href => "/event/#{event.id}"}
 - if @user.pending_events.include? event
 pending
 - else
 view

Note if the user has not decided to attend the event yet, we indicate that he is
pending in this list. To cater for that connection, we also display a list of suggested
events, which are events that the user's friends are also attending.

%h3 Suggestions
 - if @user.friend_events.empty?
 No suggested events

Chapter 6

[287]

 - else
 Your friends are attending these events:
 %ul
 - @user.friend_events[0..9].each do |event|
 %li
 %a{:href => "/event/#{event.id}"} #{event.name}

These friend's events goes through the user's friends list and retrieve all their
confirmed events, then sort them out by chronological order.

def friend_events
 events = []
 friends.each do |friend|
 events += friend.confirmed_events
 end
 return events.sort {|x,y| y.time <=> x.time}
 end

We will now move on to create an event. As mentioned previously, the add event
route is very simple.

get '/event/add' do
 haml :'/events/add'
end

The add event page provides a form that sends the event creation data to the create
event route.

=snippet :'/snippets/top'
.span-24
 .span-3
 %img.span-3{:src => "#{@user.photo_url}"}
 =snippet :'/snippets/links'
 .span-20
 %h3 Create a new event
 Create a new event here. Add people you would like to invite.
 %form{:method => 'post', :action => '/event'}
 %input{:type => 'hidden', :name => '_method', :value => 'put'}
 %p Name
 %p
 %input.span-10{:type => 'text', :name => 'name'}
 %p Description
 %p
 %textarea.span-10{:name => 'description'}
 %p Venue
 %p

Social Networking Services – Cloning Facebook 2

[288]

 %input.span-10{:type => 'text', :name => 'venue'}
 %p Date
 %p
 %input.span-4#date{:type => 'text', :name => 'date'}
 :javascript
 var opts = { formElements:{"date":"d-ds-m-ds-Y"} };
 datePickerController.createDatePicker(opts);
 %p Time
 %p
 %input.span-2#time{:type => 'text', :name => 'time'}
 :javascript
 $("#time").timePicker({
 startTime: "08:00",
 show24Hours: false,
 separator: ':',
 step: 15});
 %p People you want to invite
 %p
 %input.span-10{:type => 'text', :name => 'invites'}
 %p
 %input{:type => 'submit', :value => 'create this event'}

In the add event page, we allow users to set a list of users that they want to invite.
This will effectively add the newly created event into each of the user's pending
events list. In the mini requests snippet, this will be shown as a pending event.

Chapter 6

[289]

Next, we look at viewing the event. As before, the view event route is simple.

get '/event/:id' do
 @event = Event.get params[:id]
 haml :'/events/event'
end

Viewing the event however is much more demanding.

=snippet :'/snippets/top'
.span-24
 .span-3
 %img.span-3{:src => "#{@user.photo_url}"}
 =snippet :'/snippets/links'
 .span-15

 %h3 #{@event.name}
 .span-14
 .span-3 Date
 .span-10 #{@event.date.strftime "%d %b %Y"}
 .span-14
 .span-3 Time
 .span-10 #{@event.time.strftime "%I:%M %p"}
 .span-14
 .span-3 Venue
 .span-10 #{@event.venue}

 %hr.space

 %h3 Description
 =@event.description

 %h3 Confirmed attendees
 - @event.confirmed_users.each do |user|
 .span-2
 %a{:href => "/user/#{user.nickname}"}
 %img.span-1{:src => "#{user.photo_url}", :alt => "#{user.
formatted_name}"}

%hr.space

 %h3 Pages
 .span-3.push-12.right
 - if @event.user == @user
 %a.button{:href =>"/event/#{@event.id}/page/add"} new page
 - @event.pages.each do |page|
 .span-12

Social Networking Services – Cloning Facebook 2

[290]

 %a{:href => "/event/page/#{page.id}" } #{page.title}
 .quiet Date created : #{page.created_at.strftime "%I:%M %p, %d
%b %Y"}
 .span-3.right.last
 %form{:id => "form_page_#{page.id}", :method => 'post',
:action => "/event/page/#{page.id}"}
 %input{:type => 'hidden', :name => '_method', :value =>
'delete'}
 - if @event.user == @user
 %a.button{:href => '#', :onclick => '$("#form_page_' +
"#{page.id}" + '").submit();'} del
 %a.button{:href => "/event/page/edit/#{page.id}"} edit
 %hr.space
 %hr
 %hr.space

 %h3 Wall
 =snippet :'/snippets/event_wall_box'

 %hr.space

 -@event.wall.posts.each do |post|
 .span-2
 %img.span-2{:src => "#{post.user.photo_url}"}
 .span-4
 #{post.user.formatted_name}
 %br
 #{post.created_at.strftime "%d %b %Y"}
 %br
 #{post.created_at.strftime "%I:%M %P"}
 .span-8
 #{post.text}
 %hr
 %hr.space

 .span-6.last
 %h3 Your RSVP
 =snippet :'/snippets/rsvp'

 %h3 Awaiting reply
 - @event.pending_users.each do |user|
 .span-2
 %a{:href => "/user/#{user.nickname}"}
 %img.span-1{:src => "#{user.photo_url}", :alt => "#{user.
formatted_name}"}

Chapter 6

[291]

We will split the description of this page into several parts:

•	 Displaying information about the event
•	 Showing the list of confirmed attendees and the list of pending attendees
•	 Listing the pages created for this event
•	 Showing the event wall
•	 Showing the RSVP form

Social Networking Services – Cloning Facebook 2

[292]

The uppermost part shows the event information. This is quite straightforward and
the page just dumps whatever has been created.

%h3 #{@event.name}
 .span-14
 .span-3 Date
 .span-10 #{@event.date.strftime "%d %b %Y"}
 .span-14
 .span-3 Time
 .span-10 #{@event.time.strftime "%I:%M %p"}
 .span-14
 .span-3 Venue
 .span-10 #{@event.venue}

 %hr.space

 %h3 Description
 =@event.description

Showing the list of confirmed attendees is also relatively straightforward, as with
showing the list of pending attendees. We show the list of confirmed attendees on
the middle column, while the list of pending attendees is on the right column.

%h3 Confirmed attendees
 - @event.confirmed_users.each do |user|
 .span-2
 %a{:href => "/user/#{user.nickname}"}
 %img.span-1{:src => "#{user.photo_url}", :alt => "#{user.
formatted_name}"}

%h3 Awaiting reply
 - @event.pending_users.each do |user|
 .span-2
 %a{:href => "/user/#{user.nickname}"}
 %img.span-1{:src => "#{user.photo_url}", :alt => "#{user.
formatted_name}"}

In both cases we show the profile picture of the user. Showing event pages is
similarly straightforward. We only allow the event administrator to create or delete
event pages. We will be looking at pages later in this chapter.

%h3 Pages
 .span-3.push-12.right
 - if @event.user == @user
 %a.button{:href =>"/event/#{@event.id}/page/add"} new page
 - @event.pages.each do |page|

Chapter 6

[293]

 .span-12
 %a{:href => "/event/page/#{page.id}" } #{page.title}
 .quiet Date created : #{page.created_at.strftime "%I:%M %p, %d
%b %Y"}
 .span-3.right.last
 %form{:id => "form_page_#{page.id}", :method => 'post',
:action => "/event/page/#{page.id}"}
 %input{:type => 'hidden', :name => '_method', :value =>
'delete'}
 - if @event.user == @user
 %a.button{:href => '#', :onclick => '$("#form_page_' +
"#{page.id}" + '").submit();'} del
 %a.button{:href => "/event/page/edit/#{page.id}"} edit

As for the event wall, we include the event wall box snippet and show the list of posts
just below the snippet.

%h3 Wall
 =snippet :'/snippets/event_wall_box'

 %hr.space

 -@event.wall.posts.each do |post|
 .span-2
 %img.span-2{:src => "#{post.user.photo_url}"}
 .span-4
 #{post.user.formatted_name}
 %br
 #{post.created_at.strftime "%d %b %Y"}
 %br
 #{post.created_at.strftime "%I:%M %P"}
 .span-8
 #{post.text}

The event wall box snippet was described earlier. Finally let's look at the RSVP form.

%form{:action => "/event/#{@event.id}", :method => 'post'}
 %p
 %input{:type => :radio, :name => 'attendance', :value => 'yes',
:checked => @event.confirmed_users.include?(@user) } Attending
 %p
 %input{:type => :radio, :name => 'attendance', :value => 'maybe',
:checked => @event.pending_users.include?(@user) } Maybe Attending
 %p
 %input{:type => :radio, :name => 'attendance', :value => 'no',
:checked => @event.declined_users.include?(@user) } Not Attending
%input{:type => 'submit', :value => 'send'}

Social Networking Services – Cloning Facebook 2

[294]

The input is a radio button, which allows the user to indicate if he is attending,
maybe attending, or not attending. Submitting this form goes to the event rsvp route.

post '/event/:id' do
 event = Event.get params[:id]
 case params[:attendance]
 when 'yes'
 Pending.first(:user_id => @user.id, :event_id => event.id).destroy
if event.pending_users.include? @user
 Decline.first(:user_id => @user.id, :event_id => event.id).destroy
if event.declined_users.include? @user
 Confirm.create(:confirmed_event => event, :confirmed_user => @
user)

 when 'no'
 Confirm.first(:user_id => @user.id, :event_id => event.id).destroy
if event.confirmed_users.include? @user
 Pending.first(:user_id => @user.id, :event_id => event.id).destroy
if event.pending_users.include? @user
 Decline.create(:declined_user => @user, :declined_event => event)

 when 'maybe'
 Confirm.first(:user_id => @user.id, :event_id => event.id).destroy
if event.confirmed_users.include? @user
 Decline.first(:user_id => @user.id, :event_id => event.id).destroy
if event.declined_users.include? @user
 Pending.create(:pending_user => @user, :pending_event => event)
 end

 redirect "/event/#{event.id}"
end

We need to switch between each type of attendance and add the event to the
respective queues under the user.

Forming groups
Groups in Colony place groups of one or more users together and provide services
for the group. Groups and events are very similar to each other, except that groups
are not time-based (unlike events), and do no have a concept of attendance. Groups
however have users who are called members of a group.

Chapter 6

[295]

The implementation of groups is quite similar to that of events. Let's look at
managing a group first. Managing groups in Colony as with managing events means
providing a page for users to look and control groups that he is either an admin or a
member of. The manage groups route is simple, similar to the manage events route.

get '/groups' do
 haml :'/groups/manage'
end

The manage groups page lists the groups a user belongs to.

=snippet :'/snippets/top'
.span-24
 .span-3
 %img.span-3{:src => "#{@user.photo_url}"}
 =snippet :'/snippets/links'
 .span-15
 %hr.space
 .span-3
 %div.icons.icons_group
 %strong{:style => 'vertical-align:bottom;font-size:18px;'}
Groups
 .span-8
 .span-4.last.right
 %a.button{:href =>"/group/add"} new group

 .span-15
 %hr.space
 - @user.groups.each do |group|
 .span-11
 %strong #{group.name}
 .quiet #{group.description}
 .span-4.last{:style => 'text-align:right;'}
 %form{:id => "form_group_#{group.id}", :method => 'post',
:action => "/group/#{group.id}"}
 %input{:type => 'hidden', :name => '_method', :value =>
'delete'}
 - if group.user == @user
 %a.button{:href => '#', :onclick => '$("#form_group_' +
"#{group.id}" + '").submit();'} delete
 %a.button{:href => "/group/#{group.id}"} view
 %hr.space
 %hr

 .span-6.last
 %h3 Suggestions
 - if @user.friend_groups.empty?
 No suggested groups
 - else

Social Networking Services – Cloning Facebook 2

[296]

 Your friends have joined the following groups:
 %ul
 - @user.friend_groups[0..9].each do |group|
 %li
 %a{:href => "/group/#{group.id}"} #{group.name}

Furthermore, the user can delete the group(s) in which the user is the administrator.
Also as with events, there is a list of suggested groups. These are the groups that the
user's friends belong to. The code to retrieve this list is in the User class. Note the last
line where we remove the groups that the users already belong to.

def friend_groups
 groups = []
 friends.each do |friend|
 groups += friend.groups
 end
 groups - self.groups
end

The add group route redirects us to the add group page.

get '/group/add' do
 haml :'/groups/add'
end

The add group page is a simple one.

=snippet :'/snippets/top'

.span-24
 .span-3
 %img.span-3{:src => "#{@user.photo_url}"}
 =snippet :'/snippets/links'
 .span-20

Chapter 6

[297]

 %h3 Create a new group
 Create a new group here, use it to share information!

 %form{:method => 'post', :action => '/group'}
 %input{:type => 'hidden', :name => '_method', :value => 'put'}
 %p Name
 %p
 %input.span-10{:type => 'text', :name => 'name'}
 %p Description
 %p
 %textarea.span-10{:name => 'description'}

The add group form is submitted to the create group route.

put '/group' do
 g = Group.create(:name => params[:name], :description =>
params[:description], :user => @user)
 g.members << @user
 g.save
 redirect "/group/#{g.id}"
end

This route creates a group and adds the user as both the administrator as well as a
member of the group that redirects the user to the view group route.

Viewing a group is simpler than viewing events. The view group route again points
us to the view group page.

get '/group/:id' do
 @group = Group.get params[:id]
 haml :'/groups/group'
end

The view group page is quite like the view event page. The only differences are that
instead of an RSVP form, we display the group admin, and instead of displaying
users who are undecided on attending the event, we have a form to allow the users
to join or leave the group. We will skip most of the description of this page, and
concentrate on the membership forms.

=snippet :'/snippets/top'
.span-24
 .span-3
 %img.span-3{:src => "#{@user.photo_url}"}
 =snippet :'/snippets/links'
 .span-15

 %h3 #{@group.name}
 =@group.description

 %h3 Members
 - @group.members.each do |user|

Social Networking Services – Cloning Facebook 2

[298]

 .span-1
 %a{:href => "/user/#{user.nickname}"}
 %img.span-1{:src => "#{user.photo_url}", :alt => "#{user.
formatted_name}"}

 %hr.space

 %h3 Pages
 .span-3.push-12.right
 - if @group.user == @user
 %a.button{:href =>"/group/#{@group.id}/page/add"} new page
 - @group.pages.each do |page|
 .span-11
 %strong
 %a{:href => "/group/page/#{page.id}" } #{page.title}
 .quiet Date created : #{page.created_at.strftime "%I:%M %p, %d
%b %Y"}
 .span-4.last.right
 %form{:id => "form_page_#{page.id}", :method => 'post',
:action => "/group/page/#{page.id}"}
 %input{:type => 'hidden', :name => '_method', :value =>
'delete'}
 - if @group.user == @user
 %a.button{:href => '#', :onclick => '$("#form_page_' +
"#{page.id}" + '").submit();'} delete
 %a.button{:href => "/group/page/edit/#{page.id}"} edit
 %hr.space
 %hr
 %hr.space

 %h3 Wall
 =snippet :'/snippets/group_wall_box'

 %hr.space

 -@group.wall.posts.each do |post|
 .span-2
 %img.span-2{:src => "#{post.user.photo_url}"}
 .span-4
 #{post.user.formatted_name}
 %br
 #{post.created_at.strftime "%d %b %Y"}
 %br
 #{post.created_at.strftime "%I:%M %P"}
 .span-8
 #{post.text}
 %hr
 %hr.space

 .span-6.last
 %h3 Group admin

Chapter 6

[299]

 .span-3
 %img.span-3{:src => "#{@group.user.photo_url}"}
 %a{:href => "/user/#{@group.user.nickname}"} #{@group.user.
formatted_name}
 %hr.space
 %h3 Your membership
 - if @group.members.include? @user
 You are a member of this group.

 - unless @group.user == @user
 %form{:method => 'post', :action => "/group/leave/#{@group.id}"}
 %input{:type => 'submit', :value => 'leave this group'}

 - else
 You are not a member of this group yet.
 %form{:method => 'post', :action => "/group/join/#{@group.id}"}
 %input{:type => 'submit', :value => 'join this group'}

Social Networking Services – Cloning Facebook 2

[300]

If the user is already a member in this group we display the leave group form, which
is just a single button that posts to the leave group route. The group admin however is
not allowed to leave the group.

%h3 Your membership
 - if @group.members.include? @user
 You are a member of this group.

 - unless @group.user == @user
 %form{:method => 'post', :action => "/group/leave/#{@group.
id}"}
 %input{:type => 'submit', :value => 'leave this group'}

 - else
 You are not a member of this group yet.
 %form{:method => 'post', :action => "/group/join/#{@group.id}"}
 %input{:type => 'submit', :value => 'join this group'}

The route removes the user from the list and redirects the user back to
viewing the group.

post '/group/leave/:id' do
 group = Group.get params[:id]
 if group.members.include?(@user)
 group.members.delete(@user)
 group.save
 end
 redirect "/group/#{params[:id]}"
end

Similarly if the user is not yet a member, the page shows a join group form that
submits to the join group route.

post '/group/join/:id' do
 group = Group.get params[:id]
 unless group.members.include? @user
 group.members << @user
 group.save
 end
 redirect "/group/#{params[:id]}"
end

This will add the user to the list of group members and redirect the user back to
viewing the group.

Chapter 6

[301]

Sharing content through pages
Colony's pages are a means of allowing users to create their own full-page content,
attaching it to themselves, a page, or a group. The implementation of Colony's
pages is distributed in the various objects that contain pages. Let's look at the
user pages first.

Each user can have one or more pages. The implementation of user pages is in a file
called pages.rb. We start off with managing pages. The manage pages route simply
redirects to the manage pages page; pass in a local variable named owner, with the
value of a string user.

get '/user/pages' do
 haml :'/pages/manage', {:locals => {:owner => 'user'}}
end

The manage pages page is quite small. It is essentially a list of pages belonging to the
user, with the options to edit and delete the pages. Where is the local variable owner
used? It is at the new page link. We share the manage pages page among the other
owners of the page, such as group and event, so we need to tell this page who the
owner is, in order to call the correct route. While it's possible to create a single route
to manage different owners, it is deliberately separated into different routes. This is
because we want each feature to be more modular and each page implementation to
be customizable.

=snippet :'/snippets/top'
.span-24
 .span-3
 %img.span-3{:src => "#{@user.photo_url}"}
 =snippet :'/snippets/links'
 .span-21.last
 %hr.space
 .span-11
 %div.icons.icons_pages
 %strong{:style => 'vertical-align:bottom;font-size:18px;'} Pages
 .span-10.last.right
 %a.button{:href =>"/#{owner}/page/add"} new page

 .span-21.last
 %hr.space
 - if @user.pages.empty?
 You don't have any pages yet.

 - @user.pages.each do |page|
 .span-11

Social Networking Services – Cloning Facebook 2

[302]

 %strong
 %a{:href => "/user/page/#{page.id}" } #{page.title}
 .quiet Date created : #{page.created_at.strftime "%I:%M %p,
%d %b %Y"}
 .span-10.last.right
 %form{:id => "form_page_#{page.id}", :method => 'post',
:action => "/user/page/#{page.id}"}
 %input{:type => 'hidden', :name => '_method', :value =>
'delete'}
 %a.button{:href => '#', :onclick => '$("#form_page_' +
"#{page.id}" + '").submit();'} delete
 %a.button{:href => "/user/page/edit/#{page.id}"} edit

Note that this list of pages can also be found on the user page, where the pages are
listed at the right column. To create a page, the user will click on the new page link
to the top right of the manage user pages page. This will go to the add page route.

get '/user/page/add' do
 @page = Page.new
 haml :'/pages/add', {:locals => {:owner => 'user'}}
end

Chapter 6

[303]

The route sends the user to the add page page, with the local variable owner with a
value of a string user. This again is used to tell the form to post to the correct route;
in this case it is the create user page route.

=snippet :'/snippets/top'

.span-24
 .span-3
 %img.span-3{:src => "#{@user.photo_url}"}
 =snippet :'/snippets/links'
 .span-21.last
 %h3 Create a new page
 Create a new page here. Use
 %a{:href => 'http://daringfireball.net/projects/markdown/basics'}
markdown
 for the body text and copy this link to be used elsewhere!
 %hr.space
 %form{:method => 'post', :action => "/#{owner}/page"}
 - if @page.title.nil?
 %input{:type => 'hidden', :name => '_method', :value => 'put'}
 - else
 %input{:type => 'hidden', :name => 'id', :value => "#{@page.
id}"}
 - if owner == 'event'
 %input{:type => 'hidden', :name => 'eventid', :value => "#{@
event.id}"}
 - if owner == 'group'
 %input{:type => 'hidden', :name => 'groupid', :value => "#{@
group.id}"}
 %strong Title
 %p
 %input.span-10{:type => 'text', :name => 'title', :value =>
"#{@page.title}"}
 %strong Body
 %p
 %textarea.span-18{:name => 'body', :style => 'height: 350px;'}
#{@page.body}
 %p
 - if @page.title.nil?
 %input{:type => 'submit', :value => 'create this page'}
 - else
 %input{:type => 'submit', :value => 'modify this page'}

Social Networking Services – Cloning Facebook 2

[304]

We use Markdown for markup text input for pages. Conveniently, Haml supports
Markdown and as you would see later, it is displayed rather nicely. Why use
Markdown instead of using a rich text editor, which can be more intuitive and user
friendly to end-users? After some consideration, I took this design path because we
want a consistent look and feel to the pages while retaining flexibility of content
creation by the users. If we have used a rich text editor, it is inevitable that the look
and feel of the pages would be radically different and this would have a downstream
bad effect on the user experience with the application. With Markdown, the look and
feel can be consistent with the rest of the site, and at the same time, the user doesn't
need to worry about making it look good, they just need to enter the text content and
link accordingly.

The create page form submits to the create user page route which redirects the user to
the view page page after the Page object is created.

put '/user/page' do
 p = Page.create(:title => params[:title], :body => params[:body],
:user => @user)
 redirect "/user/page/#{p.id}"
end

Chapter 6

[305]

Displaying the page is quite simple.

=snippet :'/snippets/top'
.span-24
 .span-3
 %img.span-3{:src => "#{@user.photo_url}"}
 =snippet :'/snippets/links'
 .span-15
 %h3 #{@page.title}
 :markdown
 #{@page.body}

 %hr.space

 =snippet :'/snippets/comment_and_like', {:locals => {:item => @
page}}

 .span-6.last
 %h3 Other pages
 =snippet :'/snippets/mini_pages', {:locals => {:owner => @user,
:owner_name => 'user'}}

As mentioned earlier, Haml conveniently provides Markdown support, so all the
Markdown content the user created earlier will be parsed and converted into HTML
for displaying in the page. Just under the page, we place the comment and like snippet,
passing in the page as a local variable. We'll come back to this snippet in a later section.

We also place the mini pages snippet at the right column in order to display the list of
pages that the user also owns.

- if owner.pages.empty?
 #{owner.formatted_name} has no pages.
%ul
 - owner.pages.each do |page|
 %li
 %a{:href => "/#{owner_name}/page/#{page.id}"}#{page.title}
 - if page.event
 %a{:href => "/event/#{page.event.id}"} (#{page.event.name})

Social Networking Services – Cloning Facebook 2

[306]

This just lists all the user's pages. The final resulting page looks like this:

As mentioned earlier, pages belong to events, groups, and users. The implementation
of the event pages and group pages are very similar to that of the user pages. The
implementations are placed together with the features that own them, for example,
the event page routes are all in the pages.rb file, but the views are shared amongst
all owning features.

Let's look at some examples of these implementations. Take the create event page
route—the only difference is that we set the event association in the Page object to
the owning event.

put '/event/page' do
 event = Event.get params[:eventid]
 p = Page.create(:title => params[:title], :body => params[:body],
:user => @user, :event => event)
 redirect "/event/page/#{p.id}"
end

Notice that the page still has a user. This is because each page must have an owner,
regardless of it being owned by a user, an event, or a group. The differences in the
other routes as well as in the groups are similar to this.

Chapter 6

[307]

Commenting and liking
The commenting and liking features are implemented together. Firstly all objects
that can be liked or commented on, such as Status, Post, Photo, and Page include the
Commentable module.

module Commentable
 def people_who_likes
 self.likes.collect { |l| "#{l.
user.formatted_name}" }
 end
end

This allows us to retrieve all users who have liked this object. Also, all these classes
have a one-to-many relationship with Like and Comment classes.

has n, :comments
has n, :likes

Commenting and liking, unlike other features, are not implemented through full
standalone pages. The views are through a comment and like snippet in a file named
comment_and_like.haml that is attached to the various places where commenting
and liking are needed.

There are a few sections to this snippet:

•	 Links to commenting and liking
•	 The comment form
•	 A list of comments

The following is the comment_and_like.haml file:

.span-15.last
 .span-2
 %a{:href =>"#", :onclick => "$('#comment_box_#{item.class.
to_s}_#{item.id}').toggle();$('#comment_box_#{item.class.to_s}_#{item.
id}').focus();"} comment (#{item.comments.size})

 .span-13.last
 %form{:method => 'post', :action => "/like/#{item.class.
to_s.downcase}/#{item.id}", :id => "form_like_#{item.class.to_s.
downcase}_#{item.id}"}
 %input{:type => 'hidden', :name => 'return_url', :value =>
request.url.to_s}
 %input{:type => 'hidden', :name => '_method', :value => 'put'}
 %a{:href =>"#", :onclick => "$('#form_like_#{item.class.to_s.
downcase}_#{item.id}').submit();"} like

Social Networking Services – Cloning Facebook 2

[308]

 - unless item.likes.empty?
 #{item.likes.size} people likes this.
#{item.people_who_likes.join(', ')} liked it.

.span-13.hide.last{:id => "comment_box_#{item.class.to_s}_#{item.id}"}
 %form{:method => 'post', :action => "/comment/#{item.class.to_s.
downcase}/#{item.id}"}
 %textarea.span-10{:name => 'text', :style => 'height: 30px;'}
 %input{:type => 'hidden', :name => 'return_url', :value =>
request.url.to_s}
 %input{:type => 'hidden', :name => '_method', :value => 'put'}
 %br
 %input{:type => 'submit', :value => 'comment'}

- unless item.comments.empty?
 .span-14.push-1.last
 - item.comments.each do |comment|
 .span-1
 %a{:href => "/user/#{comment.user.nickname}"}
 %img.span-1{:src => "#{comment.user.photo_url}"}
 .span-12.last.comment_box
 #{comment.text}
 %br
 %em.quiet
 =time_ago_in_words(comment.created_at.to_time)

The first few lines of code provide a link to toggle the comment field, allowing the
user to enter his comments. It also provides some statistical information on the
comments, such as the number of comments there are for the item.

%a{:href =>"#", :onclick => "$('#comment_box_#{item.class.
to_s}_#{item.id}').toggle();$('#comment_box_#{item.class.to_s}_#{item.
id}').focus();"} comment (#{item.comments.size})

Next, we have a form masquerading as a link that allows users to like the item.

%form{:method => 'post', :action => "/like/#{item.class.to_s.
downcase}/#{item.id}", :id => "form_like_#{item.class.to_s.
downcase}_#{item.id}"}
 %input{:type => 'hidden', :name => 'return_url', :value =>
request.url.to_s}
 %input{:type => 'hidden', :name => '_method', :value => 'put'}
 %a{:href =>"#", :onclick => "$('#form_like_#{item.class.to_s.
downcase}_#{item.id}').submit();"} like
 - unless item.likes.empty?
 #{item.likes.size} people likes this.
#{item.people_who_likes.join(', ')} liked it.

Chapter 6

[309]

This also shows the number of people who liked the item, as well as showing
the people who liked it (this is where we use the method from the Commentable
module). The form submits to the create like route.

put "/like/:class/:id" do
 return unless %w(status activity post photo page).include?
params[:class]
 clazz = Kernel.const_get(params[:class].capitalize)
 item = clazz.get params[:id]
 if Like.first(:user_id => @user.id, "#{params[:class]}_id".to_sym =>
item.id).nil?
 Like.create(params[:class].to_sym => item, :user => @user)
 end
 redirect params[:return_url]
end

This route is more interesting to describe than the others as it uses some
metaprogramming. Let's look at it in details. The URL route has two parameters—
class and ID. The class is the class of the object that is likable while the ID is the ID
of that object. The first line of the code rejects any other types of objects other than
Status, Activity, Post, Photo, or Page.

Next, we get the Class object through Kernel.const_get, which returns an object's
class (which is also an object, since everything in Ruby is an object!). We call the get
method of this Class object, given the ID and this returns the actual object that we
want. Once we have the object, we check if the user has already liked this object. If
not, we create add a like to this object and go back to the calling URL.

The implementation of the commenting feature is in the create comment route in the
comments.rb file, and is almost the same as the create like route.

put "/comment/:class/:id" do
 return unless %w(status activity post photo page).include?
params[:class]
 clazz = Kernel.const_get(params[:class].capitalize)
 item = clazz.get params[:id]
 Comment.create(:text => params[:text], params[:class].to_sym =>
item, :user => @user)
 redirect params[:return_url]
end

That's all for the application flow. It has been a lengthy discussion and we've covered
a lot of ground. If there are any parts that are less understood you should go through
the chapter again or read the code in full and run it carefully. However, most of the
codes are straightforward enough.

Social Networking Services – Cloning Facebook 2

[310]

Deploying the clone
As usual, I will deploy to the local machine (your desktop or laptop) and then to
Heroku. The steps are quite similar except for one or two minor differences.

Deploying locally
For development purposes we would normally run it through the command line
using the built-in web server. However before we do this, we need to set up the
database. I assume that for this application you would have installed MySQL.

1.	 At the command line go into the MySQL interactive command console:
$ mysql –u <username> -p <password>

Then do the following:

mysql> create database colony;

This will create the database.

2.	 Next, go into IRB and run this command:
> require 'models'

This will require in the necessary classes for creating the database tables.

3.	 Run the following command:
> DataMapper.auto_migrate!

This will create the tables for the application.

4.	 To run the application, we need to run this at the command line:
$ ruby colony.rb

Then go to http://localhost:4567/ to see the login page.

Try logging in. If you have added localhost to the list of applicable URLs in RPX
you will be able to log.

http://localhost:4567/
http://localhost:4567/

Chapter 6

[311]

Deploying to the cloud
As in the other clones, we will also show how the deployment can go to the Heroku
cloud platform.

1.	 First, create a config.ru file. This is the Rack configuration file, which is
actually just another Ruby script. All you need to have in this file is this:
%w(sinatra colony).each { |lib| require lib}

run Sinatra::Application

2.	 Install the Heroku gem. Just do the following:
$ sudo gem install heroku

Heroku provides us with a set of useful tools packaged in a gem, very much
like Capistrano.

3.	 Initialize an empty Git repository in the Colony folder:
$ cd colony

colony $ git init

Initialized empty Git repository in .git/

colony $ git add .

colony $ git commit -m 'initial import'

4.	 Create the Heroku application
colony $ heroku create colony

Created http:// colony.heroku.com/ | git@heroku.com: colony.git

Git remote heroku added

You will be prompted for your username and password the first time you
run a Heroku command. Subsequently this will be saved in ~/.heroku/
credentials and you won't be prompted anymore. It will also upload your
public key to allow you to push and pull code.

5.	 Push your code to Heroku:
colony $ git push heroku master

This will push your code and load your application into deployment. The
application is now deployed, but you'll need to create the database as before.

6.	 Log in to the Heroku console and create the database:

colony $ heroku console

Ruby console for colony.heroku.com

>> DataMapper.auto_migrate!

Social Networking Services – Cloning Facebook 2

[312]

7.	 Heroku allows you access to a console similar to IRB but with the
environment of your deployment loaded up, just like script/console in
Ruby on Rails. To create the database, just run DataMapper.auto_migrate!
and it will create the database accordingly.

8.	 You have just deployed Colony to the cloud! You can also change settings
to point to a different domain. The final configuration of Colony is at
http://colony.saush.com. Try it out!

Summary
This is the final chapter in the book and we have covered a lot of ground here.
We talked about social networking services in the previous chapter and
discussed the features and design of Colony, our Facebook clone. We also
went through the data model of the clone. In this chapter we continued
to describe the implementation of Colony.

We described the application flow of Colony in detail, feature-by-feature. We started
by describing the overall structure of the application flow, followed by the user
authentication and login mechanism. After that we described the landing page and
the friends list feature as well as the user's activity feeds. We went on describing
walls and wall posts followed by user photos and messages. Next were the
events, groups, and pages features. We wrapped up the description of the Colony
application flow with the comments and liking feature.

Finally we completed the chapter with our usual description of deploying the clone
on both a cloud platform (Heroku) and on a standalone server.

Index
Symbols
51.com 197

A
access control 71
access control, Colony 200
access control, Photoclone 125
account-Type parameter 79
activity class, Colony data model 224
after_login route, Tweetclone application

flow 93
album class, Colony data model 213
album class, Photoclone data model 138
albums, Photoclone 125
annotation class, Photoclone data model 146
annotations, Photoclone 128
API

implementing, in Tweetclone 111-113
API routes, Tweetclone application flow 111
APIs, Tweetclone

about 69
implementing 70

application flow, Colony
activity feeds, in user pages 253
building 227
commenting and liking features 307-309
content, sharing through pages 301-306
events, creating 284-293
groups, forming 294-300
invite friends and friends list

features 240-242
landing page 234
messages, sending 277-283
news feed 235-238

photos, sharing 259
statuses 239
structure 227-229
user pages 253
users, authenticating 230-233
users, managing 230-233
wall, posting to 255

application flow, Photoclone
about 147
after_login route 150
albums, managing 157-166
index route 147
landing page 152
landing page demo 153
photos, annotating 179-184
photos, commenting on 184, 185
photos, displaying 169-178
photos, editing 185-187
photos, sharing 188-193
photos, uploading 167, 169
users, authenticating 147-152
users, managing 147-152

application flow, Tinyclone 47-52
application flow, Tweetclone

after_login route 93
building 90
change_profile route 94, 95
direct messages, displaying 106-108
direct messages, sending 106-108
index route 91
profile route 94
relationships, forming 109-111
relationships, showing 109-111
statuses, displaying 96-105
statuses, updating 96-105
users, authenticating 91-95

[314]

users, managing 91-95
ASmallWorld 197
associations, DataMapper

about 19
many-to-many association 22-26
one-to-many association 21, 22
one-to-one association 19, 20

authentication 71
authentication, Photoclone 124
AWS S3

about 131
features 131

B
blogging 58
Blueprint CSS 40
Brightkite 60
buckets 127

C
change_profile route, Tweetclone

application flow 95
Classmates 196
Colony

access control 201
application flow 229
application flow, building 227
application structure 227, 228
authentication 200
building 206
comments 204
configuring 206
content sharing, through pages 301-306
data, modelling 206
deploying 310
deploying, on Heroku cloud platform 311
deploying, on standalone server 310
designing 200
events, attending 203
events, creating 284-294
friends list 202
groups, forming 204, 294-300
likes 204
messages, posting on wall 202
messages, sending 203, 277-283
news feed 202

pages, blogging with 205
photos, sharing 205
private messaging mechanism 203
status updates 201
user activity feeds 201
user management 201
users, inviting 202

comment class, Colony data model 224
comment class, Photoclone data model 146
commenting and liking features, Colony

implementing 307-309
comments, Colony 204
comments, Photoclone 127
community features, Facebook 199
config.rb 206
configuration, Photoclone 133
content sharing, Colony

through pages 301-306
content sharing features, Facebook 200
count_by_country_with method 46
count_by_date_with method 45
count_country_chart method 46
count_days_bar method 46
CyWorld 196

D
DataMapper

about 16, 17, 40
associations, defining models 19
database connection 17
database tables, creating 26
installing 17
models, creating 17, 18
records, finding 26, 27

DataMapper models
creating 17, 18

data model, Colony
about 206
activity class 224
album class 213
comment class 224
event class 220-222
group class 219, 220
like class 225
message class 212
page class 222, 223

[315]

photo class 213-216
request class 212
status class 217, 218
user class 207-211
wall class 223

data model, Photoclone
about 134
album class 138
annotation class 146
comment class 146
photo class 139-145, 146
user class 135-137

data model, Tinyclone
about 42
Link object 43
Url object 42
Visit object 44

data model, Tweetclone
about 80
diagrammatic representation 81
mention class 81
relationship class 81
status class 80
user class 80

DataObjects library 17
delete follow route, Tweetclone application

flow 111
display route, Tweetclone application

flow 105

E
email parameter 79
error handling, Sinatra 15
event class, Colony data model 220-222
events, Colony

about 203
creating 284-294

F
Facebook 60

about 197
community features 199
content sharing features 200
features 198, 199
overview 198

user features 199
Facebook Connect 206
Facebook Connect, in Colony

code, writing 249-253
cross-domain communication channel file,

creating 249
Facebook application, registering 248
using 248

filters, Sinatra 13
Flickr 197

about 121, 123
features 123, 124

follower route, Tweetclone application
flow 110

followers method 109
follows route, Tweetclone application

flow 110
follow_users snippet 109

G
get direct messages route, Tweetclone

application flow 110
get messages route, Tweetclone application

flow 106
Google Chart API 41
Google ClientLogin

about 78
URL 78

Gravatar
about 79, 130
URL 79

group class, Colony data model 219, 220
groups, Colony

forming 204, 294-300

H
Haml

about 27, 40
implementing 27
implementing rules 28
installing 27
Ruby code, integrating 28
using 27, 28

helpers.rb file 91
helpers, Sinatra 15

[316]

Heroku
about 41, 80
Tweetclone, deploying on 116-118

home route, Tweetclone application flow 96
HostIP 41
HTTP Basic Authentication 70

I
Identi.ca 60
IM 58
ImageShack 121
index route, Tweetclone application flow 91
info_box snippet 100
installing

DataMapper 17
Haml 27
Sinatra 11

instant messaging. See IM
internet applications

microblogging application, Twitter 9
photo sharing application, Flickr 9
social networking service, Facebook 9
URL shorteners 31
URL shortener, TinyURL 9

invite friends and friends list feature,
Colony

implementing 240-248
IRC 58

J
Jaiku 60
JSON 75
JSON gem 75
JSON library

installing 75
JSON Ruby library 75

K
Kaixin001 197

L
landing page, Colony

about 234
news feed 234-238

statuses 239
landing page, Photoclone 152-156
Last.FM 197
layouts, Sinatra 14, 15
like class, Colony data model 225
likes, Colony 204
LinkedIn 60
Link object, Tinyclone data model 43
load_users 95
login.haml 92
logout route, Tweetclone application

flow 95

M
Make A Shorter Link (MASL) 31
many-to-many association,

DataMapper 22-26
Mashups 40, 76
Match 196
Meme 60
message class, Colony data model 212
message snippet 107
messaging, Colony 203
microblogs

about 57
features 65
statistics 61

Mixi 197
MySpace 196

O
OAuth 72
one-to-many association,

DataMapper 21, 22
one-to-one association, DataMapper 19, 20
OpenID 71
OpenID OAuth Extension 72

P
page class, Colony data model 222, 223
pages, Colony

blogging 205
passwd parameter 79
Photobucket 121
photo class, Colony data model 213-216

[317]

photo class, Photoclone data model 139-146
Photoclone

access control 125
albums 125
annotations 128
authentication 124
building 133
comments 127
deploying 193
deploying, on server 193
designing 124
friendly URLs 128
photos 125
photos, editing 128
photos, sharing 128
photos, storing 126
photos, uploading 125
technologies and platforms 129
user management 125

Photoclone, building
application flow, building 147
configuration 133
data model 134

photos, Colony
sharing 205

photo-sharing, Colony
about 259
albums, managing 259-265
friends photos, viewing 277
photos, annotating 273-276
photos, displaying 267-272
photos, uploading 265, 266

photo sharing services
about 121
Facebook 122
Flickr 121
ImageShack 121
Photobucket 121
Picasa 121
SmugMug 121
Snapfish 121
Webshots 121

photos, Photoclone
cloud storage 126
editing 128
sharing 128, 129

storing 126
storing, in database 126
storing, in file system 126
uploading 125

photostream 123
Picasa 121
Pixlr

about 130
Pixlr Editor 130
Pixlr Express 130

Pixlr Editor 130
Pixlr Express 130
Plurk 60
posts 203
Pownce 60
process method 88
profile route, Tweetclone application

flow 94
Project ReTweet 69
public_timeline route, Tweetclone

application flow 105

Q
QQ 197

R
replies route, Tweetclone application

flow 105
request class, Colony data model 212
re-tweeting 69
RightAWS

about 133
installing 133

route 90
route handler 91
routes, Sinatra

about 11
splitting, into multiple files 12

RPX
about 76, 130
using 76-78
working 76

Ruby code
integrating, in Haml 28

[318]

S
send_box snippet 107
send message route, Tweetclone application

flow 108
service parameter 79
set_country method 45
Sinatra

about 10, 40
error handling 15, 16
filters 13
helpers 15
installing 11
layouts 14, 15
redirection 13
routes 11
route, splitting into multiple files 12
static pages 14
view template 14

SixDegrees 196
SmugMug 121
Snapfish 121
social networking service

51.com 197
about 195
ASmallWorld 197
Classmates 196
CyWorld 196
Flickr 197
Kaixin 197
Last.FM 197
Match.com 196
Mixi 197
MySpace 196
overview 196
QQ 197
SixDegrees 196
Theglobe 196
Tripod 196
WELL 196
Xiaonei 197
Yahoo! 360 197
YouTube 197

source parameter 79
static pages, Sinatra 14
status class, Colony data model 217, 218
status class, Tweetclone data model 85-89

statuses snippet 99
status update route, Tweetclone application

flow 105

T
technologies and platforms, Photoclone

AWS S3 131
Gravatar 130
Pixlr 130
RightAWS 133
RPX 130

text_limiter_js snippet 98
text messaging 59
Theglobe 196
third party authentication services 72
Tinyclone

application flow 47-52
automatic redirection, from short URL to

long URL 37
building 41
customized short URL, providing 38
data model 42
deploying 52, 54, 55
designing 36
long URL, previewing 38
short URL, creating 36
statistics, providing 39
words, filtering 38

TinyURL
about 32, 80
URL 80

to_json method 75, 114
Tripod 196
Tumblr 60
Tweetclone

about 65
access control 70
APIs 69
authentication 70, 72
building 80
deploying 115
deploying, on Heroku 116-118
deploying, on local machine 115
designing 65
fan model 67
fan model, implementing 67

[319]

friend model 67
functional design 65
private directed message, sending 68
public directed message, sending 68
public timeline 69
re-tweeting 69
scalability 74
stability 74
statuses, posting 66
third party access control 71
third party authentication 71
user management 71, 72
users, following 66

Tweetclone, building
APIs, implementing 111-115
application flow, building 90
data model 80

tweetclone.rb file 91
tweets route, Tweetclone application

flow 105
Twitter

about 60
features 61, 65

Twitter, features
easy access 64
fan versus friend 62
public conversations 62
simple premise 62
text messaging 64
user behavior, understanding 63

U
update_box snippet 98
update route, Tweetclone application

flow 104
Url object, Tinyclone data model 42
URLs 32
URL shortener

about 31
benefits 33
bit.ly 31
features 31, 35
is.gd 31

limitations 34, 35
TinyURL 31

user authentication, Colony 230-233
user class, Colony data model 207-211
user class, Photoclone data model 135-137
user class, Tweetclone data model

about 81, 83, 85
properties 82

user features, Facebook 199
user management 71
user management, Colony 230-233
user management, Photoclone 125
user page, Colony

about 253, 254
activity feeds 253, 254

user timeline API route 114

V
views, Sinatra 14
Visit object, Tinyclone data model

about 44
set_country method 45

W
wall 202
wall class, Colony data model 223
wall, Colony

implementing 255-258
posting to 255-258

wall posts 202
Webshots 121
WELL 196

X
Xiaonei 197
XmlSimple 45

Y
Yahoo! 360 197
YouTube 197

Thank you for buying
Cloning Internet Applications with Ruby

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Ruby on Rails Web Mashup
Projects
ISBN: 978-1-847193-93-3 Paperback: 272 pages

A step-by-step tutorial to building web mashups

1.	 Learn about web mashup applications and
mashup plug-ins

2.	 Create practical real-life web mashup projects
step by step

3.	 Access and mash up many different APIs with
Ruby and Ruby on Rails

Learning jQuery 1.3
ISBN: 978-1-847196-70-5 Paperback: 444 pages

Better Interaction Design and Web Development with
Simple JavaScript Techniques

1.	 An introduction to jQuery that requires
minimal programming experience

2.	 Detailed solutions to specific client-side
problems

3.	 For web designers to create interactive elements
for their designs

4.	 For developers to create the best user interface
for their web applications

Please check www.PacktPub.com for information on our titles

Learning Ext JS
ISBN: 978-1-847195-14-2 Paperback: 324 pages

Build dynamic, desktop-style user interfaces for your
data-driven web applications

1.	 Learn to build consistent, attractive web
interfaces with the framework components

2.	 Integrate your existing data and web services
with Ext JS data support

3.	 Enhance your JavaScript skills by using Ext's
DOM and AJAX helper

4.	 Extend Ext JS through custom components

jQuery 1.4 Reference Guide
ISBN: 9781849510042 Paperback: 336 pages

A comprehensive exploration of the popular
JavaScript library

1.	 Quickly look up features of the jQuery library

2.	 Step through each function, method, and
selector expression in the jQuery library with
an easy-to-follow approach

3.	 Understand the anatomy of a jQuery script

4.	 Write your own plug-ins using jQuery's
powerful plug-in architecture

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	About the Author
	Acknowledgement
	About the Reviewers
	Table of Contents
	Preface
	Chapter 1:
Cloning Internet Applications
	Who would find this book useful
	Popular Internet applications
	Technologies used
	Sinatra
	Installing
	Routes
	Splitting route into multiple files
	Redirection
	Filters
	Static pages
	Views
	Layouts
	Helpers
	Error handling

	DataMapper
	Installing
	Connecting to the database
	Creating models
	Defining associations between models
	Creating the database tables
	Finding records

	Haml
	Installing
	Using Haml
	Haml and Ruby

	How this book works
	Caveat
	Summary

	Chapter 2:
URL Shorteners – Cloning TinyURL
	All about URL shorteners
	Main features
	Designing the clone
	Creating a short URL for each long URL
	Automatically redirecting from a short URL to a long URL
	Providing a customized short URL
	Filtering undesirable words out
	Previewing the long URL
	Providing statistics

	Technologies and platforms used
	Sinatra
	Haml
	DataMapper
	Blueprint CSS
	Mashups
	Google Chart API
	HostIP

	Heroku

	Building the clone
	Data model
	Url
	Link
	Visit

	Application flow

	Deploying the clone
	Summary

	Chapter 3:
Microblogs – Cloning Twitter
	All about microblogs
	Twitter
	Why Twitter?

	Main features
	Designing the clone
	Posting statuses
	Following users
	Sending publicly directed messages
	Sending privately directed messages
	Re-tweeting
	Public timeline
	API
	Authentication, access control, and user management
	Third party authentication and access control
	Authentication and user management

	Scalability and stability

	Technologies and platforms used
	JSON
	Mashups
	RPX
	Google ClientLogin
	Gravatar
	TinyURL

	Heroku

	Building the clone
	Modeling the data
	User
	Status

	Building the application flow
	Authenticating and managing users
	Displaying and updating statuses
	Sending and displaying direct messages
	Showing and forming relationships

	Implementing the API

	Deploying the clone
	Deploying locally
	Deploying to the cloud

	Summary

	Chapter 4:
Photo Sharing – Cloning Flickr
	All about photo-sharing services
	Flickr

	Main features
	Designing the clone
	Authentication, access control, and user management
	Albums and photos
	Uploading and storing photos
	Comments
	Annotations
	Editing photos
	Friendly URLs
	Sharing photos

	Technologies and platforms used
	Mashups
	RPX
	Gravatar

	Pixlr
	Amazon Web Services Simple Storage Service (S3)
	RightAWS

	Building the clone
	Configuration
	Modeling the data
	User
	Album
	Photo
	Annotation
	Comment

	Building the application flow
	Authenticating and managing users
	Landing page
	Managing albums
	Uploading photos
	Displaying photos
	Annotating photos
	Commenting on photos
	Editing photos
	Sharing photos

	Deploying the clone
	Deploying on a server

	Summary

	Chapter 5:
Social Networking Services – Cloning Facebook 1
	All about social networking services
	Facebook

	Main features
	User
	Community
	Content sharing

	Designing the clone
	Authentication, access control, and user management
	Status updates
	User activity feeds and news feeds
	Friends list and inviting users to join
	Posting to the wall
	Sending messages
	Attending events
	Forming groups
	Commenting on and liking content
	Sharing photos
	Blogging with pages

	Technologies and platforms used
	Mashups
	Facebook Connect

	Building the clone
	Configuring the clone
	Modeling the data
	User
	Request
	Message
	Album
	Photo
	Status
	Group
	Event
	Page
	Wall
	Activity
	Comment
	Like

	Summary

	Chapter 6:
Social Networking Services – Cloning Facebook 2
	Building the application flow
	Structure of the application and flow
	Authenticating and managing users
	Landing page, news feed, and statuses
	Inviting friends and friends list
	Registering a Facebook application
	Creating a cross-domain communication channel file
	Writing the code

	User page and activity feeds
	Posting to a wall
	Sharing photos
	Managing albums
	Uploading photos
	Displaying photos
	Annotating photos
	Viewing friends' photos

	Sending messages
	Creating events
	Forming groups
	Sharing content through pages
	Commenting and liking

	Deploying the clone
	Deploying locally
	Deploying to the cloud

	Summary

	Index

