
www.allitebooks.com

http://www.allitebooks.org

Cocos2d-x Cookbook

Over 50 hands-on recipes to help you efficiently develop,
administer, and maintain your games with Cocos2d-x

Akihiro Matsuura

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Cocos2d-x Cookbook

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: October 2015

Production reference: 1261015

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-475-7

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Akihiro Matsuura

Reviewers
Luma

Pranav Paharia

Sergio Martínez-Losa Del
Rincón

Vamsi Krishna Veligatla

Chatchai Mark Wangwiwattana

Acquisition Editor
Kevin Colaco

Content Development Editor
Priyanka Mehta

Technical Editor
Ryan Kochery

Copy Editors
Imon Biswas

Tani Kothari

Project Coordinator
Izzat Contractor

Proofreader
Safis Editing

Indexer
Tejal Daruwale Soni

Graphics
Jason Monteiro

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

www.allitebooks.com

http://www.allitebooks.org

About the Author

Akihiro Matsuura has five years of experience as a Cocos2d-x developer. He founded his
own company called Syuhari, Inc. five years ago. He has more than 20 years of experience as
a programmer. He has written three technical books in Japanese. He also authored Cocos2d-x
Recipe Book, Shuwa System Co., Ltd , the first Cocos2d-x book in Japan, iPhone SDK Recipe
Book , Shuwa System Co., Ltd, and Cocos2d-x Guide Book, Mynavi Corporation.

7 years ago, iPhone3G was released in Japan. This was when he began to develop its
software and ended up developing a lot of applications for iPhone. First, he developed
them using Cocos2d for iPhone; however, he had to port to Android. So, he decided to use
Cocos2d-x to develop cross-platform applications. At that time, Cocos2d-x was at version 1.0.

Since then, he has developed a lot of applications using Cocos2d-x.

Firstly, I would like to thank Packt Publishing for giving me the opportunity
to write this book, especially Priyanka Mehta, Anish Sukumaran, and Kevin
Colaco for helping me to improve this book's quality.

The biggest thank you goes to the Cocos2d-x development team. I think
Cocos2d-x is a really great game framework. I really love Cocos2d-x.

Finally, a special thank you goes to my wife, Noriko, and daughters, Miu
and Yui.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Luma has several years of experience on iOS and Android. He focuses on game development
on mobile platforms. He is the creator of WiEngine, cocos2dx-better, and cocos2dx-classical.
His Github page is https://github.com/stubma.

Pranav Paharia is a game developer who makes games for mobile platforms and PCs.
He has experience in working on numerous game technologies, such as Unity3D, Cocos2dx,
Unreal Engine 4, Construct2, RPG Maker, and so on. He has also worked on many genres
such as platformers, infinite runners, RPGs, casual games, turn-based games, point and
click games, multiplayer action games, and so on.

After finishing his graduation in information technology, he took the decision of turning his
passion into profession and pursued a course in videogame development. Exploring the
diversity and depth in emerging game technologies, he worked with various multicultured
teams, participating in game jams and working on his personal experiments. He faced every
challenge with a "never give up" attitude. Gradually, his hard work and constant commitment
led him to Nasscom GDC in 2013 for the game "Song of Swords" with his team winning the
"People's Choice of the Year" award. Later in his career timeline, another game Chotta Bheem
Laddoo Runner entered the limelight in India, being the most popular game among Indian
kids. He has also reviewed Packtpub's Mastering Cocos2d Cross-Platform Game Development
and Unity 2D Game Development Cookbook.

Since childhood, he has been in love with computer games. Growing up as the first generation
of gamers, he was consumed by Mario, Dave Contra, and other 8-bit pixel art games. Being
a lefty, he is creative at heart. His endless curiosity set him on a contrasting journey, from
the sciences to a myriad of art forms. Playing computer games, making pencil sketches,
and reading books were a few of his many hobbies. By the end of his school days, he was
dedicating a lot of his time to playing Counter Strike. In the junior college and graduation
era, he competed in many gaming tournaments, and succeeded in making his team, the
best team in his college.

www.allitebooks.com

https://github.com/stubma
http://www.allitebooks.org

After entering into game development, he became fascinated with the other side of the coin,
that is, the science of creating great games. For him, a game is a form of art, which stimulates
the player's psychology and thereby raising various kind of emotions in him. Manipulating
these emotions using colors and code seems like wizardry to him. His main aim in life is to
create great games that can stimulate a positive transformation in people. He invests his free
time in photography, writing, and the philosophical reasoning behind life. You can find him at
pranavpaharia@gmail.com.

I would sincerely like to pay homage and thanks to my parents and to my
brother, Nikhil, for their cooperation and motivation while working on this
book and to beloved Krishna for giving me the secret knowledge of knowing
my inner passion, which has led me to this journey of becoming a Game
Wizard.

Sergio Martínez-Losa Del Rincón lives in Spain. He is a software engineer and
a serial entrepreneur. He likes to write technical documents as well as programming in
several languages.

He is always learning new programming languages and facing new challenges. Currently, he
is creating applications and games for iPhone, Macintosh, Android, GoogleGlass, and Ouya.
You can see part of his work at http://goo.gl/k5tOSX

Vamsi Krishna Veligatla is the director of engineering at Hike Messenger Pvt Ltd. He was
the lead developer on some iconic games, such as Shiva: The Time Bender and Dadi vs Jellies
developed at Tiny Mogul Games.

He has a master's degree in computer science from the International Institute of Information
Technology, Hyderabad. Previously, he worked at Nvidia Graphics Pvt Ltd, AMD (ATI), and the
University of Groningen, Netherlands.

He's also worked on Cocos2d-x by Example: Beginner's Guide - Second Edition as a reviewer

I would like to thank my family for their love and support.

www.allitebooks.com

http://goo.gl/k5tOSX
http://goo.gl/k5tOSX
http://www.allitebooks.org

Chatchai Mark Wangwiwattana is a game researcher and designer. His work is related
to developing and designing computer games for changing human behavior and facilitating
learning by utilized behavioral psychology and artificial intelligence. To learn more about his
work and publications, visit www.chatchaiwang.com.

He's also worked on Cocos2d-x by Example: Beginner's Guide - Second Edition as a reviewer

I would like to thank my family, professors, and friends for having faith in me
and supporting me.

www.allitebooks.com

www.chatchaiwang.com
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print, and bookmark content

ff On demand and accessible via a web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

i

Table of Contents
Preface	 v
Chapter 1: Getting Started with Cocos2d-x	 1

Introduction	 1
Setting up our Android Environment	 2
Installing Cocos2d-x	 5
Using the Cocos command	 8
Building the project using Xcode	 11
Building the project using Eclipse	 13
Implementing multi-resolution support	 19
Preparing your original game	 21

Chapter 2: Creating Sprites	 25
Introduction	 25
Creating sprites	 26
Getting the sprite's position and size	 28
Manipulating sprites	 30
Creating animations	 34
Creating actions	 37
Controlling actions	 40
Calling functions with actions	 44
Easing actions	 46
Using a texture atlas	 48
Using a batch node	 53
Using 3D modals	 55
Detecting collisions	 57
Drawing a shape	 59

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

Chapter 3: Working with Labels	 65
Creating system font labels	 65
Creating true type font labels	 69
Creating bitmap font labels	 71
Creating rich text	 73

Chapter 4: Building Scenes and Layers	 77
Introduction	 77
Creating scenes	 78
Transitioning between scenes	 82
Transitioning scenes with effects	 83
Making original transitions for replacing scenes	 85
Making original transitions for popping scenes	 91
Creating layers	 93
Creating modal layers	 94

Chapter 5: Creating GUIs	 97
Introduction	 97
Creating menus	 98
Creating buttons	 101
Creating checkboxes	 103
Creating loading bars	 106
Creating sliders	 108
Creating text fields	 111
Creating scroll views	 113
Creating page views	 115
Creating list views	 116

Chapter 6: Playing Sounds	 119
Playing background music	 119
Playing a sound effect	 121
Controlling volume, pitch, and balance	 122
Pausing and resuming background music	 123
Pausing and resuming sound effects	 124
Playing background music and a sound effect by using AudioEngine	 125
Playing movies	 127

Chapter 7: Working with Resource Files	 131
Selecting resource files	 131
Managing resource files	 133
Using SQLite	 141
Using .xml files	 145

iii

Table of Contents

Using .plist files	 147
Using .json files	 149

Chapter 8: Working with Hardware	 151
Introduction	 151
Using native code	 151
Changing the processing using the platform	 156
Using the acceleration sensor	 157
Keeping the screen on	 158
Getting dpi	 159
Getting the maximum texture size	 160

Chapter 9: Controlling Physics	 163
Introduction	 163
Using the physics engine	 163
Detecting collisions	 166
Using joints	 168
Changing gravity by using the acceleration sensor	 174

Chapter 10: Improving Games with Extra Features	 177
Introduction	 177
Using Texture Packer	 177
Using Tiled Map Editor	 183
Getting the property of the object in the tiled map	 191
Using Physics Editor	 195
Using Glyph Designer	 202

Chapter 11: Taking Advantages	 207
Introduction	 207
Using encrypted sprite sheets	 207
Using encrypted zip files	 210
Using encrypted SQLite files	 213
Creating Observer Pattern	 219
Networking with HTTP	 223

Index	 227

Preface

v

Preface
Cocos2d-x is a suite of open source, cross-platform game-development tools used by
thousands of developers all over the world. Cocos2d-x is a game framework written in C++,
with a thin platform-dependent layer. Completely written in C++, the core engine has the
smallest footprint and the fastest speed of any other game engine, and is optimized to be
run on all kinds of devices.

With this book, we aim to provide you with a detailed guide to create 2D games with
Cocos2d-x from scratch. You will learn everything, from the fundamental stage, all the
way up to an advanced level. We will help you successfully create games with Cocos2d-x.

What this book covers
Chapter 1, Getting Started with Cocos2d-x, covers the installation process for Cocos2d-x, also
teaches you how to create a project, and talks about how to build a project for multi-platform.

Chapter 2, Creating Sprite, teaches you to create the sprites, animations and actions.

Chapter 3, Working with Labels, shows how to display the strings, and create labels.

Chapter 4, Building Scenes and Layers, teaches you to create scenes and layers, and how to
change the scenes.

Chapter 5, Creating GUIs, talks about creating the GUI parts such as button and switches that
are essential to a game.

Chapter 6, Playing Sounds, gives information on playing the background music and
sound effects.

Chapter 7, Working with Resource files, teaches you how to manage the resource files, also
talks about how to using the database.

Chapter 8, Working with the Hardware, guides you on how to access native features.

Preface

vi

Chapter 9, Controlling Physics, tells you how to use physics on sprites.

Chapter 10, Improving Games with Extra Features, teaches you to use extra features on
Cocos2d-x, and using various tools.

Chapter 11, Taking Advantage, talks about using practical tips on games, and improving
the games.

What you need for this book
You will need a Mac that runs on OS X 10.10 Yosemite. Most of the tools that we will use
throughout this book are free to download and try. We've explained how to download and
install them.

Who this book is for
If you are a game developer and want to learn more about cross-platform game development
in Cocos2d-x, then this book is for you. Knowledge of C++, Xcode, Eclipse, and how to use
commands in the terminal are the prerequisites for this book.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do it,
How it works, There's more, and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows:

Getting ready
This section tells you what to expect in the recipe, and describes how to set up any software or
any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the previous section.

Preface

vii

There's more…
This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "If you
need to compile a file other than the extension .cpp file."

A block of code is set as follows:

CPP_FILES := $(shell find $(LOCAL_PATH)/../../Classes -name *.cpp)
LOCAL_SRC_FILES := hellocpp/main.cpp
LOCAL_SRC_FILES += $(CPP_FILES:$(LOCAL_PATH)/%=%)

LOCAL_C_INCLUDES := $(shell find $(LOCAL_PATH)/../../Classes -type
d)

Any command-line input or output is written as follows:

$./build_native.py

New terms and important words are shown in bold. Words that you see on the screen,
for example, in menus or dialog boxes, appear in the text like this: "You select Android
Application and click on OK."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

viii

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.packtpub.com
for all the Packt Publishing books you have purchased. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support and register to have the files e-mailed
directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from http://www.packtpub.com/sites/default/files/
downloads/B00561_Graphics.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you could report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the Errata Submission Form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the
errata will be uploaded to our website or added to any list of existing errata under the
Errata section of that title.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/sites/default/files/downloads/B00561_Graphics.pdf
http://www.packtpub.com/sites/default/files/downloads/B00561_Graphics.pdf
http://www.packtpub.com/submit-errata

Preface

ix

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come across
any illegal copies of our works in any form on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at questions@
packtpub.com, and we will do our best to address the problem.

https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

1
Getting Started
with Cocos2d-x

In this chapter, we're going to install Cocos2d-x and set up the development environment.
The following topics will be covered in this chapter:

ff Setting up our Android environment

ff Installing Cocos2d-x

ff Using the Cocos command

ff Building the project using Xcode

ff Building the project using Eclipse

ff Implementing multi-resolution support

ff Preparing your original game

Introduction
Cocos2d-x is an open source, cross-platform game engine, which is free and mature. It can
publish games for mobile devices and desktops, including iPhone, iPad, Android, Kindle,
Windows, and Mac. Cocos2d-x is written in C++, so it can build on any platform. Cocos2d-x is
open source written in C++, so we can feel free to read the game framework. Cocos2d-x is not
a black box, and this proves to be a big advantage for us when we use it. Cocos2d-x version 3,
which supports C++11, was only recently released. It also supports 3D and has an improved
rendering performance. This book focuses on using version 3.4, which is the latest version
of Cocos2d-x that was available at the time of writing this book. This book also focuses on
iOS and Android development, and we'll be using Mac because we need it to develop iOS
applications. This chapter explains how to set up Cocos2d-x.

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Cocos2d-x

2

Setting up our Android Environment

Getting ready
We begin by setting up our Android environment. If you wish to build only on iOS, you can skip
this step. To follow this recipe, you will need some files.

The following list provides the prerequisites that need to be downloaded to set up Android:

ff Eclipse ADT (Android Developer Tools) with the Android SDK:
https://dl.google.com/android/adt/adt-bundle-
mac-x86_64-20140702.zip

Eclipse ADT includes the Android SDK and Eclipse IDE. This is the Android
development tool that is used to develop Android applications. Android Studio is an
Android development IDE, but it is not supported to build NDK. The official site states
that a version of Android Studio that supports NDK will be released soon. That's why
we use Eclipse in this book.

ff Android NDK (Native Development Kit):
https://dl.google.com/android/ndk/android-ndk-r10c-
darwin-x86_64.bin

The NDK is required to build an Android application. You have to use NDK r10c.
This is because compiling and linking errors may occur when using NDK r9 or an
earlier version.

ff Apache ANT:

You can download Apache ANT from http://ant.apache.org/bindownload.cgi

This is a java library that aids in building software. At the time of writing this book,
version 1.9.4 was the latest stable version available.

How to do it...
1.	 You begin by installing Eclipse ADT with the Android SDK, and then continue to unzip

the zip file to any working directory you are aware of. I recommend that you unzip it
to the Documents folder (~/adt-bundle-mac-x86_64-20140702). ADT includes
Android SDK and Eclipse. The SDK and Eclipse folders are located under the ADT
folder. We call the SDK folder path that is located under the ADT folder ANDROID_
SDK_ROOT. You have to remember it because you will use it the next recipe. Now,
you can launch Eclipse from ~/adt-bundle-mac-x86_64-20140702/eclipse/
Eclipse.app.

https://dl.google.com/android/adt/adt-bundle-mac-x86_64-20140702.zip
https://dl.google.com/android/adt/adt-bundle-mac-x86_64-20140702.zip
https://dl.google.com/android/ndk/android-ndk-r10c-darwin-x86_64.bin
https://dl.google.com/android/ndk/android-ndk-r10c-darwin-x86_64.bin
http://ant.apache.org/bindownload.cgi

Chapter 1

3

2.	 The next step is to update Android SDK:

�� Open Eclipse from the eclipse folder located in ADT.

�� Go to Window | Android SDK Manager.

�� After opening Android SDK Manager, check Tools and the latest Android
SDK (API21), Android 2.3.3(API10), and any other SDK if necessary,
as shown in the following screenshot:

�� Click on Install packages....

Getting Started with Cocos2d-x

4

�� Select each license and click on Accept, as shown in the
following screenshot:

�� After you accept all licenses, you will see that the Install button is enabled.
Click on it.

�� You have to wait for a long time to update and install the SDKs.

3.	 Installing NDK:

Open the terminal window and change the directory to the path from which you
downloaded the package. Change the permission on the downloaded package
and execute the package. For example:
$ chmod 700 android-ndk-r10c-darwin-x86_64.bin

$./android-ndk-r10c-darwin-x86_64.bin

Finally, you move the NDK folder to the Documents folder. We call the installation
path for NDK NDK_ROOT. NDK_ROOT is the address of the folder that contains the
files, it helps the Cocos2dx engine to locate the native files of Android. You have to
remember NDK_ROOT because you will use it in the next recipe.

Chapter 1

5

4.	 Installing Apache ANT:

Unzip the file to the Documents folder. That's all. We call ANT_ROOT the installation
path for ANT. You have to remember ANT_ROOT, as we'll be using it in the next recipe.

5.	 Installing Java:

By entering the following command in the terminal, you can automatically install Java
(if you haven't installed it earlier):
$ java --version

After installing it, you can check that it was successfully installed by entering the
command again.

How it works...
Let's take a look at what we did throughout the recipe:

ff Installing Eclipse: You can use Eclipse as an editor for Cocos2d-x

ff Installing ADT: You can develop Android applications on Eclipse

ff Installing NDK: You can build a C++ source code for Java

ff Installing ANT: You can use command line tools for Cocos2d-x

Now you've finished setting up the Android development environment. At this point, you know
how to install them and their path. In the next recipe, you will use them to build and execute
Android applications. This will be very useful when you want to debug Android applications.

Installing Cocos2d-x

Getting ready
To follow this recipe, you need to download the zip file from the official site of Cocos2d-x
(http://www.cocos2d-x.org/download).

At the time of writing this book, version 3.4 was the latest stable version that was available.
This version will be used throughout this book.

How to do it...
1.	 Unzip your file to any folder. This time, we will install the user's home directory.

For example, if the user name is syuhari, then the install path is /Users/
syuhari/cocos2d-x-3.4. In this book, we call it COCOS_ROOT.

http://www.cocos2d-x.org/download

Getting Started with Cocos2d-x

6

2.	 The following steps will guide you through the process of setting up Cocos2d-x:

�� Open the terminal

�� Change the directory in terminal to COCOS_ROOT, using the following
command:
$ cd ~/cocos2d-x-v3.4

�� Run setup.py, using the following command:
$./setup.py

�� The terminal will ask you for NDK_ROOT. Enter into NDK_ROOT path.

�� The terminal will then ask you for ANDROID_SDK_ROOT. Enter the
ANDROID_SDK_ROOT path.

�� Finally, the terminal will ask you for ANT_ROOT. Enter the ANT_ROOT path.

�� After the execution of the setup.py command, you need to execute the
following command to add the system variables:

$ source ~/.bash_profile

Open the .bash_profile file, and you will find that setup.py
shows how to set each path in your system. You can view the
.bash_profile file using the cat command:
$ cat ~/.bash_profile

3.	 We now verify whether Cocos2d-x can be installed:

�� Open the terminal and run the cocos command without parameters:
$ cocos

�� If you can see a window like the following screenshot, you have successfully
completed the Cocos2d-x install process:

Chapter 1

7

How it works...
Let's take a look at what we did throughout the above recipe. You can install Cocos2d-x by just
unzipping it. You know setup.py is only setting up the cocos command and the path for
Android build in the environment. Installing Cocos2d-x is very easy and simple. If you want to
install a different version of Cocos2d-x, you can do that too. To do so, you need to follow the
same steps that are given in this recipe, but they will be for a different version.

There's more...
Setting up the Android environment is a bit tough. If you recently started to develop Cocos2d-x,
you can skip the settings part of Android. and you can do it when you run on Android. In this
case, you don't have to install Android SDK, NDK, and Apache ANT. Also, when you run
setup.py, you only press Enter without entering a path for each question.

Getting Started with Cocos2d-x

8

Using the Cocos command
The next step is using the cocos command. It is a cross-platform tool with which you
can create a new project, build it, run it, and deploy it. The cocos command works for
all Cocos2d-x supported platforms and you don't need to use an IDE if you don't want to.
In this recipe, we take a look at this command and explain how to use it.

How to do it...
1.	 You can use the cocos command help by executing it with the --help parameter,

as follows:
$ cocos --help

2.	 We then move on to generating our new project:

First, we create a new Cocos2d-x project with the cocos new command,
as shown here:
$ cocos new MyGame -p com.example.mygame -l cpp -d
~/Documents/

The result of this command is shown the following screenshot:

Chapter 1

9

Behind the new parameter is the project name. The other parameters that are
mentioned denote the following:

�� MyGame is the name of your project.

�� -p is the package name for Android. This is the application ID in the Google
Play store. So, you should use the reverse domain name as the unique name.

�� -l is the programming language used for the project. You should use cpp
because we will use C++ in this book.

�� -d is the location in which to generate the new project. This time, we
generate it in the user's documents directory.

You can look up these variables using the following command:
$ cocos new —help

Congratulations, you can generate your new project. The next step is to build and run
using the cocos command.

3.	 Compiling the project:

If you want to build and run for iOS, you need to execute the following command:
$ cocos run -s ~/Documents/MyGame -p ios

The parameters that are mentioned are explained as follows:

�� -s is the directory of the project. This could be an absolute path or a
relative path.

�� -p denotes which platform to run on. If you want to run on Android you
use -p android. The available options are IOS, Android, Win32, Mac,
and Linux.

�� You can run cocos run –help for more detailed information.

Getting Started with Cocos2d-x

10

The result of this command is shown in the following screenshot:

4.	 You can now build and run iOS applications on cocos2d-x. However, you have to wait
for a long time if this is your first time building an iOS application. It takes a long time
to build a Cocos2d-x library, depending on if it was a clean build or a first build.

Chapter 1

11

How it works...
The cocos command can create a new project and build it. You should use the cocos
command if you want to create a new project. Of course, you can build using Xcode or Eclipse.
You can easily develop and debug using these tools.

There's more...
The cocos run command has other parameters. They are the following:

ff --portrait will set the project as a portrait. This command has no argument.

ff --ios-bundleid will set the bundle ID for the iOS project. However, it is not difficult
to set it later.

The cocos command also includes some other commands, which are as follows:

ff The compile command: This command is used to build a project. The following
patterns are useful parameters. You can see all parameters and options if you
execute the cocos compile [–h] command:
cocos compile [-h] [-s SRC_DIR] [-q] [-p PLATFORM] [-m MODE]

ff The deploy command: This command only takes effect when the target platform is
Android. It will re-install the specified project to the android device or simulator:

cocos deploy [-h] [-s SRC_DIR] [-q] [-p PLATFORM] [-m MODE]

The run command continues to compile and deploy commands.

Building the project using Xcode

Getting ready
Before building the project using Xcode, you require Xcode with an iOS developer account to
test it on a physical device. However, you can also test it on an iOS simulator. If you did not
install Xcode, you can get it from the Mac App Store. Once you have installed it, get it activated.

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Cocos2d-x

12

How to do it...
1.	 Open your project from Xcode:

You can open your project by double-clicking on the file placed at: ~/Documents/
MyGame/proj.ios_mac/MyGame.xcodeproj:

2.	 Build and Run using Xcode:

You should select an iOS simulator or real device on which you want to run
your project.

How it works...
If this is your first time building, it will take a long time but continue to build with confidence
as it's the first time. You can develop your game faster if you develop and debug it using Xcode
rather than Eclipse.

Chapter 1

13

Building the project using Eclipse

Getting ready
You must finish the first recipe before you begin this step. If you have not finished it yet, you
will need to install Eclipse.

How to do it...
1.	 Setting up NDK_ROOT:

�� Open the preference of Eclipse

�� Open C++ | Build | Environment

Getting Started with Cocos2d-x

14

2.	 Click on Add and set the new variable, the name is NDK_ROOT, and the value is
NDK_ROOT path:

3.	 Importing your project into Eclipse:

�� Open the file and click on Import

�� Go to Android | Existing Android Code into Workspace

�� Click on Next

Chapter 1

15

4.	 Import the project into Eclipse at ~/Documents/MyGame/proj.android:

5.	 Importing the Cocos2d-x library into Eclipse:

�� Perform the same steps from Step 3 to Step 4.

Getting Started with Cocos2d-x

16

�� Import the project cocos2d lib at ~/Documents/MyGame/cocos2d/
cocos/platform/android/java, using the following command:

importing cocos2d lib

6.	 Build and Run:

�� Click on the Run icon

�� The first time, Eclipse will ask you to select a way to run your application.
Select Android Application and click on OK, as shown in the following
screenshot:

Chapter 1

17

�� If you connected to the Android device on your Mac, you can run your game
on your real device or an emulator. The following screenshot shows that
it is running on Nexus5:

Getting Started with Cocos2d-x

18

7.	 If you added cpp files into your project, you have to modify the Android.mk file at
~/Documents/MyGame/proj.android/jni/Android.mk. This file is needed to
build the NDK. This fix is required to add files.

8.	 The original Android.mk would look as follows:
LOCAL_SRC_FILES := hellocpp/main.cpp \
 ../../Classes/AppDelegate.cpp \
 ../../Classes/HelloWorldScene.cpp

9.	 If you added the TitleScene.cpp file, you have to modify it as shown in the
following code:

LOCAL_SRC_FILES := hellocpp/main.cpp \
 ../../Classes/AppDelegate.cpp \
 ../../Classes/HelloWorldScene.cpp \
 ../../Classes/TitleScene.cpp

The preceding example shows an instance of when you add the TitleScene.cpp file.
However, if you are also adding other files, you need to add all the added files.

How it works...
You get lots of errors when importing your project into Eclipse, but don't panic. After importing
the Cocos2d-x library, errors soon disappear. This allows us to set the path of the NDK, Eclipse
could compile C++. After you have modified the C++ codes, run your project in Eclipse. Eclipse
automatically compiles C++ codes, Java codes, and then runs.

It is a tedious task to fix Android.mk again to add the C++ files. The following code is the
original Android.mk:

LOCAL_SRC_FILES := hellocpp/main.cpp \
 ../../Classes/AppDelegate.cpp \
 ../../Classes/HelloWorldScene.cpp

LOCAL_C_INCLUDES := $(LOCAL_PATH)/../../Classes

The following code is the customized Android.mk that adds C++ files automatically:

CPP_FILES := $(shell find $(LOCAL_PATH)/../../Classes -name *.cpp)
LOCAL_SRC_FILES := hellocpp/main.cpp
LOCAL_SRC_FILES += $(CPP_FILES:$(LOCAL_PATH)/%=%)

LOCAL_C_INCLUDES := $(shell find $(LOCAL_PATH)/../../Classes -type
d)

Chapter 1

19

The first line of the code gets C++ files to the Classes directory into the CPP_FILES variable.
The second and third lines add C++ files into the LOCAL_C_INCLUDES variable. By doing so,
C++ files will be automatically compiled in the NDK. If you need to compile a file other than
the extension .cpp file, you will need to add it manually.

There's more...
If you want to manually build C++ in NDK, you can use the following command:

$./build_native.py

This script is located in ~/Documents/MyGame/proj.android . It uses ANDROID_SDK_
ROOT and NDK_ROOT in it. If you want to see its options, run ./build_native.py –help.

Implementing multi-resolution support
You may notice a difference in screen appearance on different devices. In some previous
recipes, there is an iOS's screenshot and a Nexus 5's screenshot. It shows different image
sizes. This image is HelloWorld.png located at MyGame/Resources. It is 480 x 320
pixels. In this recipe, we explain how to maintain the same size regardless of screen size.

How to do it…
Open AppDelegate.cpp through Xcode, and modify the AppDelegate::applicationDi
dFinishLaunching() method by adding the code after the director->setAnimationI
nterval(1.0/60.0); line, as shown in the following code:

director->setAnimationInterval(1.0 / 60);
glview->setDesignResolutionSize(640, 960,
ResolutionPolicy::NO_BORDER);

Getting Started with Cocos2d-x

20

In this book, we design the game with a screen size of iPhone's 3.5 inch screen. So, we set
this screen size to the design resolution size by using the setDesignResolutionSize
method. The last parameter is resolution policy. The following screenshot is the Nexus 5's
screenshot after implementing multi-resolution:

The following screenshot is the iPhone 5 simulator's screenshot. You now know that both
screenshots have the same appearance:

Chapter 1

21

How it works…
The resolution policy has EXACT_FIT, NO_BORDER, SHOW_ALL, FIXED_HEIGHT, and
FIXED_WIDTH. These are explained as follows:

ff EXACT_FIT: The entire application is visible in the specified area without trying to
preserve the original aspect ratio.

ff NO_BORDER: The entire application fills the specified area, without distortion but
possibly with some cropping, while maintaining the original aspect ratio of the
application.

ff SHOW_ALL: The entire application is visible in the specified area without distortion,
while maintaining the internal the aspect ratio of the application. Borders can appear
on two sides of the application.

ff FIXED_HEIGHT: The application takes the height of the design resolution size and
modifies the width of the internal canvas so that it fits the aspect ratio of the device.
No distortion will occur, however, you must make sure your application works on
different aspect ratios.

ff FIXED_WIDTH: The application takes the width of the design resolution size and
modifies the height of the internal canvas so that it fits the aspect ratio of the device.
No distortion will occur, however, you must make sure your application works on
different aspect ratios.

By implementing multi-resolution, regardless of screen size, you will maintain the image on
the screen.

Preparing your original game
In the next chapter, we will start the original game. You know there are a lot of comments
and codes in HelloWorldScene.cpp and the HelloWorldScene.h file. That's why we
will remove unnecessary codes in the template project and get started with the original
game right away.

How to do it…
1.	 Open HelloWorldScene.h and remove the menuCloseCallback method

and unnecessary comments. Now HelloWorldScene.h should look like the
following code:
#ifndef __HELLOWORLD_SCENE_H__
#define __HELLOWORLD_SCENE_H__
#include "cocos2d.h"

class HelloWorld : public cocos2d::Layer
{

Getting Started with Cocos2d-x

22

public:
 static cocos2d::Scene* createScene();
 virtual bool init();
 CREATE_FUNC(HelloWorld);
};
#endif // __HELLOWORLD_SCENE_H__

2.	 The next step is to open HelloWorldScene.cpp and remove unnecessary
comments, codes, and methods. Now HelloWorldScene.cpp should look
like the following code:
#include "HelloWorldScene.h"
USING_NS_CC;

Scene* HelloWorld::createScene()
{
 auto scene = Scene::create();
 auto layer = HelloWorld::create();
 scene->addChild(layer);
 return scene;
}

bool HelloWorld::init()
{
 if (!Layer::init())
 {
 return false;
 }
 return true;
}

3.	 The next step is to remove unnecessary images in resources. Remove
CloseNormal.png, CloseSelected.png and HelloWorld.png from
the Resources folder in Xcode:

Chapter 1

23

4.	 Finally, if you are developing only iOS and Android applications, you don't need files
for other platforms such as Linux, Windows, and Windows Phone. You should remove
these files.

Before removing platform files, it should look like the following screenshot:

Getting Started with Cocos2d-x

24

After removing platform files, it should look like the following screenshot:

How it works…
With this recipe, you can get the simplest project ready before removing unnecessary
comments, codes, and methods. Removing unnecessary platform codes and resources is
important for reducing the size of your application. If you start building your original game
from scratch, you will need to follow this recipe or chances are, you may get a black screen
if you build and run this project. In the next chapter, you can start coding within this
simple project.

Chapter 2

25

2
Creating Sprites

In this chapter we're going to create sprites, animations, and actions. The following topics will
be covered in this chapter:

ff Creating sprites

ff Getting the sprite's position and size

ff Manipulating sprites

ff Creating animations

ff Creating actions

ff Controlling actions

ff Calling functions with actions

ff Easing actions

ff Using a texture atlas

ff Using a batch node

ff Using 3D models

ff Detecting collisions

ff Drawing a shape

Introduction
Sprites are a 2D image. We can animate and transform them by changing their properties.
Sprites are basically, items and your game is not complete without them. Sprites are not only
displayed, but also transformed or moved. In this chapter, you will learn how to create sprites
using 3D models in Cocos2d-x, and then, we will go through the advantages of sprites.

Creating Sprites

26

Creating sprites
Sprites are the most important things in games. They are images that are displayed on the
screen. In this recipe, you will learn how to create a sprite and display it.

Getting ready
You can add the image that you made in the previous chapter into your project, by performing
the following steps:

1.	 Copy the image into the Resource folder MyGame/Resources/res.

2.	 Open your project in Xcode.

3.	 Go to Product | Clean from the Xcode menu.

You have to clean and build when you add new images into the resource folder. If you did not
clean after adding new images, then Xcode will not recognize them. Finally, after you add the
run_01.png to your project, your project will be seen looking like the following screenshot:

Chapter 2

27

How to do it...
We begin with modifying the HelloWorld::init method in the following code:

bool HelloWorld::init()
{
 if (!Layer::init())
 {
 return false;
 }
 Size size = Director::getInstance()->getWinSize();
 auto sprite = Sprite::create("res/run_01.png");
 sprite->setPosition(Vec2(size.width/2, size.height/2));
 this->addChild(sprite);
 return true;
}

And then, after we build & run the project, we can see the following:

How it works...
You can get the screen size from the Director::getWinSize method. The Director
class is a singleton class. You can get the instance using the getInstance method. So you
can get the screen size by Director::getInstance->getWinSize().

Creating Sprites

28

Please note that you can get an instance of a singleton
class in Cocos2d-x using the getInstance method.

Sprites are made from images. You can create a sprite by specifying the image. In this case,
you create the sprite by run_01.png in the res folder.

Next, you need to specify the coordinates of the sprite. In this case, you set the sprite in the
center of the screen. The Size class has the width and height property. You can specify the
location of the sprite using the setPosition method. The argument of the setPosition
method is Vec2. Vec2 has two properties as floating point vector, x axis coordinate and y
axis coordinate.

The last step is to add the sprite on the layer. A layer is like a transparent sheet on the screen.
You will learn about layers in Chapter 4. Building Scenes and Layers.

All objects that are displayed on the screen are node. Sprite and Layer are types of node. If
you haven't added it in the other nodes, the node does not appear on the screen. You can add
a node in the other nodes by the addChild method.

There's more...
You can set the sprite using the static coordinate. In the following case we see that the Sprite
position is (100, 200).

sprite->setPosition(Vec2(100, 200));

Also, you can set the sprite in the center of the screen using C++ operator overloading.

sprite->setPosition(size/2);

If you want to remove the sprite from the layer, you can remove it by the following code:

sprite->removeFromParent();

See also
The Sprite class has a lot of properties. You can manipulate them and change the sprite's
appearance. You will also learn more about layer and the scene, which will be explained in
Chapter 4. Building Scenes and Layers .

Getting the sprite's position and size
There is a certain size and position of the sprite. In this recipe, we explain how to view the size
and position of the sprite.

Chapter 2

29

How to do it...
To get the sprite position, use the following code:

Vec2 point = sprite->getPosition();

float x = point.x;

float y = point.y;

To get the sprite size, use the following code:

Size size = sprite->getContentSize();

float width = size.width;

float height = size.height;

How it works...
By default, the sprite position is (0,0). You can change the sprite position using the
setPosition method and get it using the getPosition method. You can get the sprite
size using the getContentSize method. However, you cannot change the sprite size by the
setContentSize method. The contentsize is a constant value. If you want to change the
sprite size, you have to change the scale of the sprite. You will learn about the scale in the
next recipe.

There's more...

Setting anchor points
Anchor point is a point that you set as a way to specify what part of the sprite will be used
when setting its position. The anchor point uses a bottom-left coordinate system. By default,
the anchor point of all Node objects is (0.5, 0.5). This means that the default anchor point
is the center.

To get the anchor point at the center of the sprite, we use the following code:

sprite->setAnchorPoint(Vec2(0.5, 0.5));

To get the anchor point at the bottom-left of the sprite, we use the following code:

sprite->setAnchorPoint(Vec2(0.0, 0.0));

To get the anchor point at the top-left of the sprite, we use the following code:

sprite->setAnchorPoint(Vec2(1.0, 0.0));

Creating Sprites

30

To get the anchor point at the bottom-right of the sprite, we use the following code:

sprite->setAnchorPoint(Vec2(0.0, 1.0));

To get the anchor point at the top-right of the sprite, we use the following code:

sprite->setAnchorPoint(Vec2(1.0, 1.0));

The following image shows the various positions of the anchor point:

Rectangle
To get the sprite rectangle, use the following code:

Rect rect = sprite->getBoundingBox();

Size size = rect.size;

Vec2 point = rect.origin;

Rect is the sprite rectangle that has properties such as Size and Vec2. If the scale is not
equal to one, then Size in Rect will not be equal to the size, using getContentSize
method. Size of getContentSize is the original image size. On the other side, Size in
Rect using getBoundingBox is the size of appearance. For example, when you set the
sprite to half scale, the Size in Rect using getBoundingBox is half the size, and the
Size using getContentSize is the original size. The position and size of a sprite is a very
important point when you need to specify the sprites on the screen.

See also
ff The Detecting collisions recipe, where you can detect collision using rect.

Manipulating sprites
A Sprite is a 2D image that can be animated or transformed by changing its properties,
including its rotation, position, scale, color, and so on. After creating a sprite you can obtain
access to the variety of properties it has, which can be manipulated.

Chapter 2

31

How to do it...

Rotate
You can change the sprite's rotation to positive or negative degrees.

sprite->setRotation(30.0f);

You can get the rotation value using getRotation method.

float rotation = sprite->getRotation();

The positive value rotates it clockwise, and the negative value rotates it counter clockwise.
The default value is zero. The preceding code rotates the sprite 30 degrees clockwise, as
shown in the following screenshot:

Scale
You can change the sprite's scale. The default value is 1.0f, the original size. The following
code will scale to half size.

sprite->setScale(0.5f);

You can also change the width and height separately. The following code will scale to half the
width only.

sprite->setScaleX(0.5f);

The following will scale to half the height only.

sprite->setScaleY(0.5f);

www.allitebooks.com

http://www.allitebooks.org

Creating Sprites

32

The following code will scale that width to double and the height to half.

sprite->setScale(2.0f, 0.5f);

Skew
You can change the sprite's skew, either by X, Y or uniformly for both X and Y. The default
value is zero for both X and Y.

The following code adjusts the X skew by 20.0:

sprite->setSkewX(20.0f);

The following code adjusts the Y skew by 20.0:

sprite->setSkewY(20.0f);

Color
You can change the sprite's color by passing in a Color3B object. Color3B has an RGB
value.

sprite->setColor(Color3b(255, 0, 0));

Chapter 2

33

Opacity
You can change the sprite's opacity. The opacity property is set between a value from 0 to 255.

sprite->setOpacity(100);

The sprite is fully opaque when it is set to 255, and fully transparent when it is set to zero. The
default value is always 255.

Visibility
You can change the sprite's visibility by passing in a Boolean value. If it is false, then the
sprite is invisible; if it is true, then the sprite is visible. The default value is always true.

sprite->setVisible(false);

Creating Sprites

34

If you want to check the sprite's visibility, use the isVisible method
rather than the getVisible method. The sprite class does not have
the getVisible method.

if (sprite->isVisible()) {

 // visible

} else {

 // invisible

}

How it works...
A Sprite has a lot of properties. You can manipulate a sprite using the setter and getter
methods.

RGB color is a 3 byte value from zero to 255. Cocos2d-x provides predefined colors.

Color3B::WHITE
Color3B::YELLOW
Color3B::BLUE
Color3B::GREEN
Color3B::RED
Color3B::MAGENTA
Color3B::BLACK
Color3B::ORANGE
Color3B::GRAY

You can find them by looking at the ccType.h file in Cocos2d-x.

Creating animations
When the characters in a game start to move, the game will come alive. There are many
ways to make animated characters. In this recipe, we will animate a character by using
multiple images.

Chapter 2

35

Getting ready
You can create an animation from a series of the following image files:

You need to add the running girl's animation image files to your project and clean your project.

Please check the recipe Creating sprites, which is the first recipe
in this chapter, on how to add images to your project.

How to do it...
You can create an animation using a series of images. The following code creates the running
girl's animation.

auto animation = Animation::create();
for (int i=1; i<=8; i++) { // from run_01.png to run_08.png
 std::string name = StringUtils::format("res/run_%02d.png", i);
 animation->addSpriteFrameWithFile(name.c_str());
}
animation->setDelayPerUnit(0.1f);
animation->setRestoreOriginalFrame(true);
animation->setLoops(10);
auto action = Animate::create(animation);
sprite->runAction(action);

How it works...
You can create an animation using the Animation class and the Animate class. They
change multiple images at regular intervals. The names of the series image files have the
serial number, we have added a file name to the Animation class in the for loop. We can
create the formatted string using the StringUtils class in Cocos2d-x.

Creating Sprites

36

StringUtils is a very useful class. The StringUtils::toString
method can generate the std::string value from a variety of values.

int i = 100;

std::string int_string = StringUtils::toString(i);

CCLOG("%s ", int_string.c_str());
float j = 123.4f;
std::string float_string = StringUtils::toString(j);
CCLOG("%s", float_string.c_str());

StringUtils::format method can generate the std::string value
using the printf format.
You can view the log by using CCLOG macro. CCLOG is very useful. You can
check the value of the variable in the log during the execution of your game.
CCLOG has the same parameters as a sprintf function.

We will add the file name into the Animation instance using the
addSpriteFrameWithFile method. It sets the units of time which the frame takes using
setDelayPerunit method. It is set to restore the original frame when the animation
finishes using the setRestoreOriginalFrame method. True value is to restore the original
frame. It is set to the number of times the animation is going to loop. Then, create the
Animate instance by passing it with the Animation instance that you created earlier. Finally,
run the runAction method by passing in the Animate instance.

If you want to run the animation forever, set -1 using the setLoops method.

animation->setLoops(-1);

There's more...
In the preceding code, you cannot control each animation frame. In such cases, you can use
the AnimationFrame class. This class can control each animation frame. You can set the
units of time the frame takes using the second argument of the AnimationFrame::create
method.

auto rect = Rect::ZERO;
rect.size = sprite->getContentSize();
Vector<AnimationFrame*> frames;
for (int i=1; i<=8; i++) {
 std::string name = StringUtils::format("res/run_%02d.png", i);
 auto frame = SpriteFrame::create(name.c_str(), rect);
 ValueMap info;
 auto animationFrame = AnimationFrame::create(frame, i, info);
 frames.pushBack(animationFrame);
}

Chapter 2

37

auto animation = Animation::create(frames, 0.1f);
animation->setDelayPerUnit(0.1f);
animation->setRestoreOriginalFrame(true);
animation->setLoops(-1);
auto action = Animate::create(animation);
sprite->runAction(action);

See also
ff The Using a texture atlas recipe to create an animation using texture atlas

Creating actions
Cocos2d-x has a lot of actions, for example, move, jump, rotate, and so on. We often use these
actions in our games. This is similar to an animation, when the characters in a game start their
action, the game will come alive. In this recipe you will learn how to use a lot of actions.

How to do it...
Actions are very important effects in a game. Cocos2d-x allows you to use various actions.

Move
To move a sprite by a specified point over two seconds, you can use the following command:

auto move = MoveBy::create(2.0f, Vec2(100, 100));
sprite->runAction(move);

To move a sprite to a specified point over two seconds, you can use the following command:

auto move = MoveTo::create(2.0f, Vec2(100, 100));
sprite->runAction(move);

Scale
To uniformly scale a sprite by 3x over two seconds, use the following command:

auto scale = ScaleBy::create(2.0f, 3.0f);
sprite->runAction(scale);

To scale the X axis by 5x, and Y axis by 3x over two seconds, use the following command:

auto scale = ScaleBy::create(2.0f, 5.0f, 3.0f);
sprite->runAction(scale);

Creating Sprites

38

To uniformly scale a sprite to 3x over two seconds, use the following command:

auto scale = ScaleTo::create(2.0f, 3.0f);
sprite->runAction(scale);

To scale X axis to 5x, and Y axis to 3x over two seconds, use the following command:

auto scale = ScaleTo::create(2.0f, 5.0f, 3.0f);
sprite->runAction(scale);

Jump
To make a sprite jump by a specified point three times over two seconds, use the following
command:

auto jump = JumpBy::create(2.0f, Vec2(20, 20), 20.0f, 3);
sprite->runAction(jump);

To make a sprite jump to a specified point three times over two seconds, use the following
command:

auto jump = JumpTo::create(2.0f, Vec2(20, 20), 20.0f, 3);
sprite->runAction(jump);

Rotate
To rotate a sprite clockwise by 40 degrees over two seconds, use the following command:

auto rotate = RotateBy::create(2.0f, 40.0f);
sprite->runAction(rotate);

To rotate a sprite counterclockwise by 40 degrees over two seconds, use the following
command:

auto rotate = RotateTo::create(2.0f, -40.0f);
sprite->runAction(rotate);

Blink
To make a sprite blink five times in two seconds, use the following command:

auto blink = RotateTo::create(2.0f, -40.0f);
sprite->runAction(blink);

Fade
To fade in a sprite in two seconds, use the following command:

auto fadein = FadeIn::create(2.0f);
sprite->runAction(fadein);

Chapter 2

39

To fade out a sprite in two seconds, use the following command:

auto fadeout = FadeOut::create(2.0f);
sprite->runAction(fadeout);

Skew
The following code skews a sprite's X axis by 45 degrees and Y axis by 30 degrees over
two seconds:

auto skew = SkewBy::create(2.0f, 45.0f, 30.0f);
sprite->runAction(skew);

The following code skews a sprite's X axis to 45 degrees and Y axis to 30 degrees over
two seconds.

auto skew = SkewTo::create(2.0f, 45.0f, 30.0f);
sprite->runAction(skew);

Tint
The following code tints a sprite by the specified RGB values:

auto tint = TintBy::create(2.0f, 100.0f, 100.0f, 100.0f);
sprite->runAction(tint);

The following code tints a sprite to the specified RGB values:

auto tint = TintTo:: create(2.0f, 100.0f, 100.0f, 100.0f);
sprite->runAction(tint);

How it works...
Action objects make a sprite perform a change to its properties. MoveTo, MoveBy,
ScaleTo, ScaleBy and others, are Action objects. You can move a sprite from one
position to another position using MoveTo or MoveBy.

You will notice that each Action has a By and To suffix. That's why they have different
behaviors. The method with the By suffix is relative to the current state of sprites. The
method with the To suffix is absolute to the current state of sprites. You know that all
actions in Cocos2d-x have By and To suffix, and all actions have the same rule as
its suffix.

Creating Sprites

40

There's more...
When you want to execute a sprite action, you make an action and execute the runAction
method by passing in the action instance. If you want to stop the action while sprites are
running actions, execute the stopAllActions method or stopAction by passing in the
action instance that you got as the return value of the runAction method.

auto moveTo = MoveTo::create(2.0f, Vec2(100, 100));
auto action = sprite->runAction(moveTo);
sprite->stopAction(action);

If you run stopAllActions, all of the actions that sprite is running will be stopped. If you run
stopAction by passing the action instance, that specific action will be stopped.

Controlling actions
In the previous recipe, you learned some of the basic actions. However, you may want to use
more complex actions; for example, rotating a character while moving, or moving a character
after jumping. In this recipe, you will learn how to control actions.

How to do it...

Sequencing actions
Sequence is a series of actions to be executed sequentially. This can be any number
of actions.

auto move = MoveBy::create(2.0f, Vec2(100, 0));
auto rotate = RotateBy::create(2.0f, 360.0f);
auto action = Sequence::create(move, rotate, nullptr);
sprite->runAction(action);

The preceding command will execute the following actions sequentially:

ff Move a sprite 100px to the right over two seconds

ff Rotate a sprite clockwise by 360 degree over two seconds

It takes a total of four seconds to execute these commands.

Spawning actions
Spawn is very similar to Sequence, except that all actions will run at the same time. You can
specify any number of actions at the same time.

auto move = MoveBy::create(2.0f, Vec2(100, 0));
auto rotate = RotateBy::create(2.0f, 360.0f);

Chapter 2

41

auto action = Spawn::create(move, rotate, nullptr);
sprite->runAction(action);

It will execute the following actions at the same time:

ff Moved a sprite 100px to the right over two seconds

ff Rotated a sprite clockwise by 360 degree over two seconds

It takes a total of two seconds to execute them.

Repeating actions
Repeat object is to repeat an action the number of specified times.

auto rotate = RotateBy::create(2.0f, 360.0f);
auto action = Repeat::create(rotate, 5);
sprite->runAction(action);

The preceding command will execute a rotate action five times.

If you want to repeat forever, you can use the RepeatForever action.

auto rotate = RotateBy::create(2.0f, 360.0f);
auto action = RepeatForever::create(rotate);
sprite->runAction(action);

Reversing actions
If you generate an action instance, you can call a reverse method to run it in the
reverse action.

auto move = MoveBy::create(2.0f, Vec2(100, 0));
auto action = Sequence::create(move, move->reverse(), nullptr);
sprite->runAction(action);

The preceding code will execute the following actions sequentially:

ff Move a sprite 100px to the right over two seconds.

ff Move a sprite 100px to the left over two seconds.

In addition, if you generate a sequence action, you can call a reverse method to run it in
the opposite order.

auto move = MoveBy::create(2.0f, Vec2(100, 0));
auto rotate = RotateBy::create(2.0f, 360.0f);
auto sequence = Sequence::create(move, rotate, nullptr);
auto action = Sequence::create(sequence, sequence->reverse(),
nullptr);
sprite->runAction(action);

Creating Sprites

42

The preceding code will execute the following actions sequentially:

ff Move a sprite 100px to the right over two seconds.

ff Rotate a sprite clockwise by 360 degree over two seconds

ff Rotate a sprite counterclockwise by 360 degree over two seconds

ff Move a sprite 100px to the left over two seconds.

DelayTime
DelayTime is a delayed action within the specified number of seconds.

auto move = MoveBy::create(2.0f, Vec2(100, 0));
auto delay = DelayTime::create(2.0f);
auto rotate = RotateBy::create(2.0f, 360.0f);
auto action = Sequence::create(move, delay, rotate, nullptr);
sprite->runAction(action);

The preceding command will execute the following actions sequentially:

ff Move a sprite 100px to the right over two seconds

ff Delay the next action by two seconds

ff Rotate a sprite clockwise by 360 degree over two seconds

It takes a total of six seconds to execute it.

How it works...
Sequence action runs actions sequentially. You can generate a Sequence instance with
actions sequentially. Also, you need to specify nullptr last. If you did not specify nullptr,
your game will crash.

Spawn action runs actions at the same time. You can generate a Spawn instance with actions
and nullptr like Sequence action.

Chapter 2

43

Repeat and RepeatForever actions can run, repeating the same action. Repeat
action has two parameters, the repeating action and the number of repeating actions.
RepeatForever action has one parameter, the repeating action, which is why it will
run forever.

Most actions, including Sequence, Spawn and Repeat, have the reverse method. But
like the MoveTo method that has the suffix To, it does not have the reverse method;
that's why it cannot run the reverse action. Reverse method generates its reverse action.
The following code uses the MoveBy::reverse method.

MoveBy* MoveBy::reverse() const
{
 return MoveBy::create(_duration, -_positionDelta);
}

DelayTime action can delay an action after this. The benefit of the DelayTime action is
that you can put it in the Sequence action. Combining DelayTime and Sequence is a very
powerful feature.

There's more...
Spawn produces the same results as running multiple consecutive runAction statements.

auto move = MoveBy::create(2.0f, Vec2(100, 0));
auto rotate = RotateBy::create(2.0f, 360.0f);
sprite->runAction(move);
sprite->runAction(rotate);

Creating Sprites

44

However, the benefit of Spawn is that you can put it in the Sequence action. Combining
Spawn and Sequence is a very powerful feature.

auto move = MoveBy::create(2.0f, Vec2(100, 0));
auto rotate = RotateBy::create(2.0f, 360.0f);
auto fadeout = FadeOut::create(2.0f);
auto spawn = Spawn::create(rotate, fadeout, nullptr);
auto fadein = FadeIn::create(2.0f);
auto action = Sequence::create(move, spawn, fadein, nullptr);
sprite->runAction(action);

Calling functions with actions
You may want to call a function by triggering some actions. For example, you are controlling
the sequence action, jump, and move, and you want to use a sound for the jumping action.
In this case, you can call a function by triggering this jump action. In this recipe, you will learn
how to call a function with actions.

How to do it...
Cocos2d-x has the CallFunc object that allows you to create a function and pass it to be run
in your Sequence. This allows you to add your own functionality to your Sequence action.

auto move = MoveBy::create(2.0f, Vec2(100, 0));
auto rotate = RotateBy::create(2.0f, 360.0f);
auto func = CallFunc::create([](){
 CCLOG("finished actions");
});
auto action = Sequence::create(move, rotate, func, nullptr);
sprite->runAction(action);

Chapter 2

45

The preceding command will execute the following actions sequentially:

ff Move a sprite 100px to the right over two seconds

ff Rotate a sprite clockwise by 360 degrees over two seconds

ff Execute CCLOG

How it works...
The CallFunc action is usually used as a callback function. For example, if you want to
perform a different process after finishing the move action. Using CallFunc, you can call
the method at any time. You can use a lambda expression as a callback function.

If you get a callback with parameters, its code is the following:

auto func = CallFuncN::create([](Ref* sender){
 CCLOG("callback");
 Sprite* sprite = dynamic_cast<Sprite*>(sender);
});

The instance of this parameter is the sprite that is running the action. You can get the sprite
instance by casting to Sprite class.

Then, you can also specify a callback method. CallFunc has CC_CALLBACK_0 macro as
an argument. CC_CALLBACK_0 is a macro for calling a method without parameters. If you
want to call a method with one parameter, you need to use the CallFuncN action and CC_
CALLBACK_1 macro. CC_CALLBACK_1 is a macro for calling a method with one argument. A
parameter of a method that is called by CallFuncN is the Ref class.

You can call a method using the following code:

bool HelloWorld::init() {
 …
 auto func =
CallFunc::create(CC_CALLBACK_0(HelloWorld::finishedAction, this));
 …
}

void HelloWorld::finishedAction()
{
 CCLOG("finished action");
}

Creating Sprites

46

To call a method with an argument, you can use the following code:

bool HelloWorld::init() {
 …
 auto func = CallFuncN::create(CC_CALLBACK_1(HelloWorld::callback,
this));
 …
}

void HelloWorld::callback(Ref* sender)
{
 CCLOG("callback");
}

There's more...
To combine the CallFuncN and the Reverse action, use the following code:

auto move = MoveBy::create(2.0f, Vec2(100, 0));
auto rotate = RotateBy::create(2.0f, 360.0f);
auto func = CallFuncN::create([=](Ref* sender){
 Sprite* sprite = dynamic_cast<Sprite*>(sender);
 sprite->runAction(move->reverse());
});
auto action = Sequence::create(move, rotate, func, nullptr);
sprite->runAction(action);

The preceding command will execute the following actions sequentially:

ff Move a sprite 100px to the right over two seconds

ff Rotate a sprite clockwise by 360 degree over two seconds

ff Move a sprite 100px to the left over two seconds

Easing actions
Easing is animating with a specified acceleration to make the animations smooth. Ease
actions are a good way to fake physics in your game. If you use easing actions with your
animations, your game looks more natural with smoother animations.

How to do it...
Let's move a Sprite object from (200,200) to (500,200) with acceleration
and deceleration.

Chapter 2

47

auto sprite = Sprite::create("res/run_01.png");
sprite->setPosition(Vec2(200, 200));
this->addChild(sprite);

auto move = MoveTo::create(3.0f, Vec2(500, 200));
auto ease = EaseInOut::create(move, 2.0f);
sprite->runAction(ease);

Next, let's drop a Sprite object from the top of the screen and make it bounce.

auto sprite = Sprite::create("res/run_01.png");
sprite->setPosition(Vec2(size.width/2, size.height));
sprite->setAnchorPoint(Vec2(0.5f, 0.0f));
this->addChild(sprite);

auto drop = MoveTo::create(3.0f, Vec2(size.width/2, 0));
auto ease = EaseBounceOut::create(drop);
sprite->runAction(ease);

How it works...
The animation's duration time is the same time regardless of whether you use easing.
EaseIn, EaseOut and EaseInOut have two parameters—the first parameter is the action by
easing, the second parameter is rate of easing. If you specified this parameter to 1.0f, this
easing action is the same without easing. Anything over 1.0f, means easing is fast, under
1.0f, and easing will be slow.

The following table are typical easing types.

Class Name Description
EaseIn Moves while accelerating.
EaseOut Moves while decelerating.
EaseInOut Start moving while accelerating, stop while decelerating.
EaseExponentialIn It's similar to EaseIn, but meant to accelerate at a rate of

exponential curve. It is also used with Out and InOut like EaseIn.
EaseSineIn It's similar to EaseIn, but meant to accelerate at a rate of sin

curve. It is also used with Out and InOut like EaseIn.
EaseElasticIn Moves after shaking slowly, little by little. It is also used with Out

and InOut like EaseIn.
EaseBounceIn Moves after bouncing. It is also used with Out and InOut like

EaseIn.
EaseBackIn Moves after moving in the opposite direction. It is also used with

Out and InOut like EaseIn

Creating Sprites

48

This is a graph that displays typical easing functions:

Using a texture atlas
A texture atlas is a large image containing a collection of each sprite. We often use a texture
atlas rather than individual images. In this recipe, you will learn how to use a texture atlas.

Chapter 2

49

Getting ready
You have to add the texture atlas files into your project and clean your project.

ff running.plist

ff running.png

How to do it...
Let's try to read the texture altas file and make a sprite from it.

auto cache = SpriteFrameCache::getInstance();
cache->addSpriteFramesWithFile("res/running.plist");
auto sprite = Sprite::createWithSpriteFrameName("run_01.png");
sprite->setPosition(size/2);
this->addChild(sprite);

How it works...
Firstly, we loaded the texture atlas file, when the SpritFrameCache class cached
all the images that are included in it. Secondly, you generated a sprite. Do not use the
Sprite::create method to generate it, use the Sprite::createWithSpriteFrameName
method instead. Then, you can handle the sprite as a normal sprite.

A texture atlas is a large image containing a collection of images. It is composed of a plist
file and a texture file. You can create a texture atlas by using tools. You will learn how
to make a texture atlas using tools in Chapter 10, Improving Games with Extra Features.
A plist file is defined as the original file name of the image and it is located within the
texture file. It also defines the image that will be used by the texture atlas. The plist file
for the texture atlas is xml format as follows.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
 <dict>
 <key>frames</key>
 <dict>
 <key>run_01.png</key>
 <dict>
 <key>frame</key>
 <string>{{2,2},{356,474}}</string>
 <key>offset</key>
 <string>{-62,-26}</string>

Creating Sprites

50

 <key>rotated</key>
 <false/>
 <key>sourceColorRect</key>
 <string>{{60,89},{356,474}}</string>
 <key>sourceSize</key>
 <string>{600,600}</string>
 </dict>
 <key>run_02.png</key>
 <dict>
 <key>frame</key>
 <string>{{360,2},{272,466}}</string>
 <key>offset</key>
 <string>{-30,-33}</string>
 <key>rotated</key>
 <false/>
 <key>sourceColorRect</key>
 <string>{{134,100},{272,466}}</string>
 <key>sourceSize</key>
 <string>{600,600}</string>
 </dict>

 omit

 </dict>
 <key>metadata</key>
 <dict>
 <key>format</key>
 <integer>2</integer>
 <key>realTextureFileName</key>
 <string>running.png</string>
 <key>size</key>
 <string>{2048,1024}</string>
 <key>smartupdate</key>
 <string>$TexturePacker:SmartUpdate
 :e4468ff02abe538ce50e3e1448059f78:1/1$</string>
 <key>textureFileName</key>
 <string>running.png</string>
 </dict>
 </dict>
</plist>

Chapter 2

51

Why would we use the texture atlas? Because using the memory efficiently is good. Double
the memory size is required when the computer loads the image into the memory. For
example, there are ten images that are 100x100 size. We will use nine images, but one image
requires memories for 128x128 size. On the other hand, texture atlas is one image containing
a collection of nine images, where the image size is 1000x1000. It requires a memory size of
1024x1024. This is why texture atlas is used to save wasting unnecessary memory usage.

There's more...
The size of the texture altas can vary in usage depending on the devices. You can check the
maximum texture size of the device in the following codes:

int max;

glGetIntegerv(GL_MAX_TEXTURE_SIZE, &max);

CCLOG("texture size = %d", max);

Creating Sprites

52

You can generate an animation using a texture atlas and a plist file. Firstly, you have to add
run_animation.plist file into your project. The file is shown in the following screenshot:

Chapter 2

53

This plist defines a frame animation. In this case, we defined an animation called run using
images from run_01.png to run_08.png. And the animation will loop forever if you specify
-1 to loop key's value. The texture atlas was specified running.plist.

Secondly, you need to generate an animation using the plist file.

auto cache = AnimationCache::getInstance();
cache->addAnimationsWithFile("res/run_animation.plist");
auto animation = cache->getAnimation("run");
auto action = Animate::create(animation);
sprite->runAction(action);

You also need to cache animation data using the AnimationCache::addAnimationWithFile
method with the animation plist. Next, you will generate an Animation instance by specifying
run that was defined as an animation name in the plist. And then, you generate an action from
the animation. After that, you can animate using runAction method with the action instance.

See also
It is very difficult to create a texture atlas manually. You had better use a tool such as the
TexturePacker, which you will learn about in Chapter 11, Taking Advantages.

Using a batch node
Renderer speed will be slow if there are a lot of sprites on the screen. However, a shooting
game needs a lot of images such as bullets, and so on. In this time, if renderer speed is slow,
the game earns a bad review. In this chapter, you will learn how to control a lot of sprites.

How to do it...
Let's try to display a lot of sprites using SpriteBatchNode.

auto batchNode = SpriteBatchNode::create("res/run_01.png");
this->addChild(batchNode);
for (int i=0; i<300; i++) {
 auto sprite = Sprite::createWithTexture(batchNode->getTexture());
 float x = CCRANDOM_0_1() * size.width;
 float y = CCRANDOM_0_1() * size.height;
 sprite->setPosition(Vec2(x,y));
 batchNode->addChild(sprite);
}

Creating Sprites

54

How it works...
The SpriteBatchNode instance can be used to do the following:

ff Generate a SpriteBatchNode instance using a texture

ff Add the instance on the layer

ff Generate sprites using the texture in the SpriteBatchNode instance

ff Add these sprites on the SpriteBatchNode instance

SpriteBatchNode can reference only one texture (one image file or one texture atlas). Only
the sprites that are contained in that texture can be added to the SpriteBatchNode. All
sprites added to a SpriteBatchNode are drawn in one OpenGL ES draw call. If the sprites
are not added to a SpriteBatchNode then an OpenGL ES draw call will be needed for each
one, which is less efficient.

There's more...
The following screenshot is an executing screen image. You can see three lines of information
for Cocos2d-x on the left bottom corner. The top line is the number of polygon vertices. The
middle line is the number of OpenGL ES draw call. You understand that a lot of sprites are
drawn by one OpenGL ES draw call. The bottom line is FPS and seconds per frame.

Chapter 2

55

If you want to hide this debug information, you should set a false
value to the Director::setDisplayStats method. You will find
it in the AppDelegate.cpp in your project.

director->setDisplayStats(false);

Since Cocos2d-x version 3, the auto batch function of draw calls has been added, Cocos2d-x
can draw a lot of sprites with one OpenGL ES draw call, without SpriteBatchNode. However,
it has the following conditions:

ff Same texture

ff Same BlendFunc

Using 3D modals
Cocos2d-x version 3 supports an exciting new function called 3D modals. We can use and
display 3D modals in Cocos2d-x. In this recipe, you will learn how to use 3D modals.

Getting ready
You have to add the 3D object data into your project and clean your project. The resource files
present in the COCOS_ROOT/test/cpp-tests/Resources/Sprite3DTest folder are—
body.png and girl.c3b

How to do it...
Let's try to display a 3D model and move it.

auto size = Director::getInstance()->getWinSize();

// create 3D modal
auto sprite3d = Sprite3D::create("res/girl.c3b");
sprite3d->setPosition(Vec2(size.width/2, 100));
this->addChild(sprite3d);

Creating Sprites

56

// action 3D modal
auto animation3d = Animation3D::create("res/girl.c3b");
auto animate3d = Animate3D::create(animation3d);
auto repeat = RepeatForever::create(animate3d);
sprite3d->runAction(repeat);

How it works...
You can create the 3D sprite from a 3D model in the same way as we made a 2D sprite and
displayed it. The Placement method and the action method is exactly the same as seen
in a 2D sprite. You can create the Animation3D instance from the animation data that is
defined in the 3D model.

There's more...
Finally you will try to move the 3D sprite to the left or right. You will notice that 3D sprites differ
in appearance depending on their position on the screen when you run the following code:

Sprite3d->setPositionX(size.width);

// move fro right to left
auto move1 = MoveBy::create(5.0f, Vec2(-size.width, 0));
auto move2 = MoveBy::create(5.0f, Vec2(size.width, 0));
auto seq = Sequence::create(move1, move2, NULL);
auto loop = RepeatForever::create(seq);
sprite3d->runAction(loop);

Chapter 2

57

See also
You can use 3D data formats such as obj, c3b, and c3t. “c3t” stands for Cocos 3d binary.
You can get this formatted data by converting fbx files.

Detecting collisions
In an action game, a very important technique is to detect collisions between each sprite.
However, it is pretty complicated to detect collisions between rect and rect or rect and
point. In this recipe, you will learn how to detect collisions easily.

How to do it...
There are two ways to detect collisions. The first method checks whether a point is contained
within the rectangle of the sprite.

Rect rect = sprite->getBoundingBox();
if (rect.containsPoint(Vec2())) {
 CCLOG("the point bumped rectangle");
}

The second method checks whether two sprite's rectangles have overlapped.

if (rect.intersectsRect(Rect(0, 0, 100, 100))) {
 CCLOG("two rectangles bumped");
}

How it works...
The Rect class has two properties—size and origin. The size property is the sprite's size.
The origin property is the sprite's left-bottom coordinate. Firstly, you get the sprite's rect
using the getBoundingBox method.

Creating Sprites

58

Using the Rect::containsPoint method by specifying the coordinate, it is possible to
detect whether it contains the rectangle. If it contains it, the method returns true. Using
Rect::intersectsRect method by specifying another rectangle, it is possible to detect
whether they overlap. If they overlap, the method returns true.

The following image shows a collision between rect and point or rect and rect:

There's more...
The Rect class has more methods including getMinX, getMidX, getMaxX, getMinY,
getMidY, getMaxY and unionWithRect. You can obtain the value in the following figure
using each of these methods.

Chapter 2

59

See also
ff If you used the physics engine, you can detect collision in a different way. Take a look

at Chapter 9, Controlling Physics.

ff If you want to detect collision with consideration of the transparent parts of an image,
take a look at Chapter 11 Taking Advantages.

Drawing a shape
Drawing a shape in Cocos2d-x can be easy using the DrawNode class. If you can draw various
shapes using DrawNode, you will to need to prepare textures for such shapes. In this section,
you will learn how to draw shapes without textures.

How to do it...
Firstly, you made a DrawNode instance as shown in the following codes. You got a window
size as well.

auto size = Director::getInstance()->getWinSize();
auto draw = DrawNode::create();
this->addChild(draw);

Creating Sprites

60

Drawing a dot
You can draw a dot by specifying the point, the radius and the color.

draw->drawDot(Vec2(size/2), 10.0f, Color4F::WHITE);

Drawing lines
You can draw lines by specifying the starting point, the destination point, and the color. A 1px
thick line will be drawn when you use the drawLine method. If you want to draw thicker lines,
use the drawSegment method with a given radius.

draw->drawLine(Vec2(300, 200), Vec2(600, 200), Color4F::WHITE);
draw->drawSegment(Vec2(300, 100), Vec2(600, 100), 10.0f,
Color4F::WHITE);

Chapter 2

61

Drawing circles
You can draw circles as shown in the following codes. The specification of the arguments is as
follows:

ff center position

ff radius

ff angle

ff segments

ff draw a line to center or not

ff scale x axis

ff scale y axis

ff color

draw->drawCircle(Vec2(300, size.height/2), 50.0f, 1.0f, 10, true,
1.0f, 1.0f, Color4F::WHITE);
draw->drawCircle(Vec2(450, size.height/2), 50.0f, 1.0f, 100, false,
1.0f, 1.0f, Color4F::WHITE);
draw->drawSolidCircle(Vec2(600, size.height/2), 50.0f, 1.0f, 100,
1.0f, 1.0f, Color4F::WHITE);

Segment is the number of vertices of the polygon. As you know, the circle is a polygon that has
a lot of vertices. Increasing the number of vertices is close to a smooth circle, but the process
load goes up. Incidentally, you should use drawSolidCircle method if you want to get a
solid circle.

Creating Sprites

62

Drawing a triangle
You can draw a triangle as in the following code with three vertices and the color.

draw->drawTriangle(Vec2(380,100), Vec2(480, 200), Vec2(580, 100),
Color4F::WHITE);

Drawing rectangles
You can draw rectangles using the following code with the left-bottom point, the right-top
point, and the color. You can draw fill color if you use the drawSolidRect method.

draw->drawRect(Vec2(240, 100), Vec2(340,200), Color4F::WHITE);
draw->drawSolidRect(Vec2(480, 100), Vec2(580, 200), Color4F::WHITE);

Chapter 2

63

Drawing a polygon
You can draw a polygon using the following code with the given vertices, the number of
vertices, filling color, border's width, and border's color.

std::vector<Vec2>verts;
verts.push_back(Vec2(380,100));
verts.push_back(Vec2(380,200));
verts.push_back(Vec2(480,250));
verts.push_back(Vec2(580,200));
verts.push_back(Vec2(580,100));
verts.push_back(Vec2(480,50));
draw->drawPolygon(&verts[0], verts.size(), Color4F::RED, 5.0f,
Color4F::GREEN);

Drawing a Bezier curve
You can draw a Bezier curve as shown in the following code. Using drawQuadBezier
method, you can draw a quadratic Bezier curve, and using drawCubicBezier method you
can draw a cubic Bezier curve. The third argument of the drawQuadBezier method and the
fourth argument of the drawCubicBezier method is the number of vertices in the same way
as the circle.

Creating Sprites

64

draw->drawQuadBezier(Vec2(240, 200), Vec2(480, 320), Vec2(720, 200),
24, Color4F::WHITE);
draw->drawCubicBezier(Vec2(240, 100), Vec2(240, 200), Vec2(720, 200),
Vec2(720, 100), 24, Color4F::WHITE);

How it works...
DrawNode is like a mechanism that enables Cocos2d-x to process at a high speed, by making
drawing shapes all at once and not separately, or one by one. When you draw multiple shapes,
you should use one DrawNode instance, instead of multiple DrawNode instances and then
add multiple shapes in it. Also DrawNode does not have the concept of depth. Cocos2d-x will
draw to the order of the added shapes in DrawNode.

65

3
Working with Labels

In this chapter, we're going to create labels. To display labels on the screen, you can use the
Label class with system fonts, true type fonts, and bitmap fonts. The following topics will be
covered in this chapter:

ff Creating system font labels

ff Creating true type font labels

ff Creating bitmap font labels

ff Creating rich text

Creating system font labels
Firstly, we will explain how to create a label with system fonts. System fonts are the fonts
already installed on your devices. Since they are already installed, there is no need to go
through the installation process. Therefore we will skip the installation instructions for
system fonts in this recipe, and dive directly into creating labels.

Working with Labels

66

How to do it...
Here's how to create a label by specifying a system font. You can create a single-line label by
using the following code:

auto label = Label::createWithSystemFont("Cocos2d-x", "Arial",
40);
label->setPosition(size/2);
this->addChild(label);

How it works...
You should use the Label class to display strings by specifying a string, a system font,
and the font size. The Label class will display a string that is converted into an image.
After creating a Label instance, you can use it in the same way as you use Sprite.
Because Label is also a Node, we can use properties such as actions, scaling, and
opacity functions to manipulate the labels.

Line break
You can also add a new line at any position by putting a line feed code into a string:

auto label = Label::createWithSystemFont("Hello\nCocos2d-x",
"Arial", 40);
label->setPosition(size/2);
this->addChild(label);

Chapter 3

67

Text align
You can also specify the text alignment in both the horizontal and the vertical directions.

Text alignment type Description

TextHAlignment::LEFT
Aligns text horizontally to the left. This is the default value
for horizontal alignment.

TextHAlignment::CENTER Aligns text horizontally to the center.
TextHAlignment::RIGHT Aligns text horizontally to the right.

TextVAlignment::TOP
Aligns text vertically to the top. This is the default value for
vertical alignment.

TextVAlignment::CENTER Aligns text vertically to the center.
TextVAlignment::BOTTOM Aligns text vertically to the bottom.

Working with Labels

68

The following code is used for aligning text horizontally to the center:

label-> setHorizontalAlignment(TextHAlignment::CENTER);

There's more...
You can also update the string after creating the label. If you want to update the string once
every second, you can do so by setting the timer as follows:

First, edit HelloWorld.h as follows:

class HelloWorld : public cocos2d::Layer
{
private:
 int sec;
public:
 …
;

Next, edit HelloWorld.cpp as follows:

sec = 0;
std::string secString = StringUtils::toString(sec);
auto label = Label::createWithSystemFont(secString, "Arial", 40);
label->setPosition(size/2);
this->addChild(label);

this->schedule([=](float dt) {
 sec++;
 std::string secString = StringUtils::toString(sec);
 label->setString(secString);
}, 1.0f, "myCallbackKey");

Chapter 3

69

First, you have to define an integer variable in the header file. Second, you need to create a
label and add it on the layer. Next, you need to set the scheduler to execute the function every
second. Then you can update the string by using the setString method.

You can convert an int or float value to a string value by using the
StringUtils::toString method.
A scheduler can execute the method at a specified interval. We will
explain how the scheduler works in Chapter 4, Building Scenes and
Layers. Refer to it for more details on the scheduler.

Creating true type font labels
In this recipe, we will explain how to create a label with true type fonts. True type fonts are
fonts that you can install into your project. Cocos2d-x's project already has two true type fonts,
namely arial.ttf and Maker Felt.ttf, which are present in the Resources/fonts
folder.

How to do it...
Here's how to create a label by specifying a true type font. The following code can be used for
creating a single-line label by using a true type font:

auto label = Label:: createWithTTF("True Type Font", "fonts/Marker
Felt.ttf", 40.0f);
label->setPosition(size/2);
this->addChild(label);

Working with Labels

70

How it works...
You can create a Label with a true type font by specifying a label string, the path to the true
type font, and the font size. The true type fonts are located in the font folder of Resources.
Cocos2d-x has two true type fonts, namely arial.ttf and Marker Felt.ttf. You can
generate Label objects of different font sizes from one true type font file. If you want to add
a true type font, you can use a original true type font if you added it into the font folder.
However, a true type font is slower than a bitmap font with respect to rendering, and changing
properties such as the font face and size is an expensive operation. You have to be careful
to not update it frequently.

There's more...
If you want to create a lot of Label objects that have the same properties from a true type
font, you can create them by specifying TTFConfig. TTFConfig has properties that are
required by a true type font. You can create a label by using TTFConfig as follows:

TTFConfig config;
config.fontFilePath = "fonts/Marker Felt.ttf";
config.fontSize = 40.0f;
config.glyphs = GlyphCollection::DYNAMIC;
config.outlineSize = 0;
config.customGlyphs = nullptr;
config.distanceFieldEnabled = false;

auto label = Label::createWithTTF(config, "True Type Font");
label->setPosition(size/2);
this->addChild(label);

A TTFConfig object allows you to set some labels that have the same properties.

If you want to change the color of Label, you can change its color property. For instance, by
using the following code, you can change the color to RED:

label->setColor(Color3B::RED);

See also
ff You can set effects to labels. Please check the last recipe in this chapter.

Chapter 3

71

Creating bitmap font labels
Lastly, we will explain how to create a label with bitmap type fonts. Bitmap fonts are also fonts
that you can install into your project. A bitmap font is essentially an image file that contains
a bunch of characters and a control file that details the size and location of each character
within the image. If you use bitmap fonts in your game, you can see that the bitmap fonts
will be the same size on all devices.

Getting ready
You have to prepare a bitmap font. You can create it by using a tool such as GlyphDesigner.
We will explain this tool after Chapter 10, Improving Games with Extra Features. Now, we
will use a bitmap font in Cocos2d-x. It is located in the COCOS_ROOT/tests/cpp-tests/
Resources/fonts folder. To begin with, you will have to add the files mentioned below to
your Resources/fonts folder in your project.

ff future-48.fnt

ff future-48.png

How to do it...
Here's how to create a label by specifying a bitmap font. The following code can be used for
creating a single-line label using a bitmap font:

auto label = Label:: createWithBMFont("fonts/futura-48.fnt",
"Bitmap Font");
label->setPosition(size/2);
this->addChild(label);

www.allitebooks.com

http://www.allitebooks.org

Working with Labels

72

How it works...
You can create Label with a bitmap font by specifying a label string, the path to the true
type font, and the font size. The characters in a bitmap font are made up of a matrix of
dots. This font renders very fast but is not scalable. That's why it has a fixed font size when
generated. A bitmap font requires the following two files: an .fnt file and a .png file.

There's more...
Each character in Label is a Sprite. This means that each character can be rotated or
scaled and has other changeable properties:

auto sprite1 = label->getLetter(0);
sprite1->setRotation(30.0f);

auto sprite2 = label->getLetter(1);
sprite2->setScale(0.5f);

Chapter 3

73

Creating rich text
After creating Label objects on screen, you can create some effects such as a drop shadow
and an outline on them easily without having your own custom class. The Label class can be
used for applying the effects to these objects. However, note that not all label types support
all effects.

How to do it...

Drop shadow
Here's how to create Label with a drop shadow effect:

auto layer = LayerColor::create(Color4B::GRAY);
this->addChild(layer);
auto label = Label::createWithTTF("Drop Shadow", "fonts/Marker
Felt.ttf", 40);
label->setPosition(size/2);
this->addChild(label);
// shadow effect
label->enableShadow();

Working with Labels

74

Outline
Here's how to create Label with an outline effect:

auto label = Label::createWithTTF("Outline", "fonts/Marker
Felt.ttf", 40);
label->setPosition(size/2);
this->addChild(label);
// outline effect
label->enableOutline(Color4B::RED, 5);

Glow
Here's how to create Label with a glow effect:

auto label = Label::createWithTTF("Glow", "fonts/Marker Felt.ttf",
40);
label->setPosition(size/2);
this->addChild(label);
// glow effect
label->enableGlow(Color4B::RED);

Chapter 3

75

How it works...
Firstly, we generate a gray layer and change the background color to gray because
otherwise we will not be able to see the shadow effect. Adding the effect to the label is
very easy. You need to generate a Label instance and execute an effect method such as
enableShadow(). This can be executed without arguments. The enableOutline() has
two arguments, namely the outline color and the outline size. The outline size has a default
value of -1. If it has a negative value, the outline does not show. Next, you have to set the
second argument. The enableGlow method has only one argument, namely glow color.

Not all label types support all effects, but all label types support the drop shadow effect.
The Outline and Glow effects are true type font effects only. In previous versions, we had
to create our own custom fonts class if we wanted to apply effects to labels. However, the
current version of Cocos2d-x, version 3, supports label effects such as drop shadow, outline,
and glow.

There's more...
You can also change the shadow color and the offset. The first argument is shadow color, the
second argument is the offset, and third argument is the blur radius. However, unfortunately,
changing the blur radius is not supported in Cocos2d-x version 3.4.

auto label = Label::createWithTTF("Shadow", "fonts/Marker
Felt.ttf", 40);
label->setPosition(Vec2(size.width/2, size.height/3*2));
this->addChild(label);
label->enableShadow(Color4B::RED, Size(5,5), 0);

Working with Labels

76

It is also possible to set two or more of these effects at the same time. The following code can
be used for setting the shadow and outline effects for a label:

auto label2 = Label::createWithTTF("Shadow & Outline",
"fonts/Marker Felt.ttf", 40);
label2->setPosition(Vec2(size.width/2, size.height/3));
this->addChild(label2);
label2->enableShadow(Color4B::RED, Size(10,-10), 0);
label2->enableOutline(Color4B::BLACK, 5);

Chapter 4

77

4
Building Scenes

and Layers

The following topics will be covered in this chapter:

ff Creating scenes

ff Transitioning between scenes

ff Transitioning scenes with effects

ff Making original transitions for replacing scenes

ff Making original transitions for popping scenes

ff Creating layers

ff Creating modal layers

Introduction
One screen has one scene. A scene is a container that holds Sprite, Labels, and other objects.
For example, a scene can be a title scene, a game scene, or an option menu scene. Each
scene has multiple layers. A layer is a transparent sheet similar to Photoshop's layer. Objects
that added to layers are displayed on the screen. In this chapter, we will explain how to use
the Scene class and the Layer class and how to transition between scenes. Finally, by the
end of this chapter, you will be able to create original scenes and layers.

Building Scenes and Layers

78

Creating scenes
In Cocos2d-x, your games should have one or more scenes. A scene is basically a node. In this
recipe, we will explain how to create and use a Scene class.

How to do it...
In this recipe, we will use the project that was created in Chapter 1, Getting Started with
Cocos2d-x.

1.	 Firstly, duplicate the HelloWorldScene.cpp and HelloWorldScene.h files at
Finder and rename them as TitleScene.cpp and TitleScene.h. Secondly, add
them to the Xcode project. The result is shown in the following image:

2.	 Next, we have to change HelloWorldScene to TitleScene and place the search
and replace method in the tips section.

How to search for and replace a class name?
In this case, select TitleScene.h and then the Find | Find and
Replace … menu in Xcode. Then, enter HelloWorld in the String
Matching area and TitleScene in the Replacement String area.
Execute all replacements. Follow the same process for TitleScene.
cpp. The result is the following code for TitleScene.h:

The result obtained for TitleScene.h is as follows:

#ifndef __TitleScene_SCENE_H__
#define __TitleScene_SCENE_H__

Chapter 4

79

#include "cocos2d.h"
class TitleScene : public cocos2d::Layer
{
public:
 static cocos2d::Scene* createScene();
 virtual bool init();
 CREATE_FUNC(TitleScene);
};

#endif // __TitleScene_SCENE_H__

Next, the result for TitleScene.cpp is as follows:

#include "TitleScene.h"

USING_NS_CC;

Scene* TitleScene::createScene()
{
 auto scene = Scene::create();
 auto layer = TitleScene::create();
 scene->addChild(layer);
 return scene;
}

// on "init" you need to initialize your instance
bool TitleScene::init()
{
 if (!Layer::init())
 {
 return false;
 }

 return true;
}

3.	 Next, add a label to the difference between TitleScene and HelloWorldScene.
Add it before the return line in the TitleScene::init method as follows:
bool TitleScene::init()
{
 if (!Layer::init())
 {
 return false;
 }

 auto size = Director::getInstance()->getWinSize();

Building Scenes and Layers

80

 auto label =
 Label::createWithSystemFont("TitleScene", "Arial",
 40);
 label->setPosition(size/2);
 this->addChild(label);

 return true;
}

4.	 Similarly, add the label in the HelloWorld::init method.
bool HelloWorld::init()
{
 if (!Layer::init())
 {
 return false;
 }

 auto size = Director::getInstance()->getWinSize();
 auto label = Label::createWithSystemFont("HelloWorld",
 "Arial", 40);
 label->setPosition(size/2);
 this->addChild(label);

 return true;
}

5.	 Next, to display the TitleScene class, change AppDelegate.cpp as follows:

#include "TitleScene.h"

bool AppDelegate::applicationDidFinishLaunching() {
 // initialize director
 auto director = Director::getInstance();
 auto glview = director->getOpenGLView();
 if(!glview) {
 glview = GLViewImpl::create("My Game");
 director->setOpenGLView(glview);
 }

 // turn on display FPS
 director->setDisplayStats(true);

 // set FPS. the default value is 1.0/60 if you don't
 call this director->setAnimationInterval(1.0 / 60);
 glview->setDesignResolutionSize(640, 960,
 ResolutionPolicy::NO_BORDER);

Chapter 4

81

 // create a scene. it's an autorelease object
 auto scene = TitleScene::createScene();

 // run
 director->runWithScene(scene);

 return true;
}

The result is shown in the following image:

How it works...
First, you need to create TitleScene by duplicating the HelloWorldScene class files.
It is pretty difficult to create an original Scene class from a blank file. However, a basic
class of Scene is patterned. So, you can create it easily by duplicating and modifying the
HelloWorldScene class files. While you are developing your game, you need to execute this
step when you need a new scene.

Finally, we change the AppDelegate.cpp file. The AppDelegate class is the first class to
be executed in Cocos2d-x. The AppDelegate:: applicationDidFinishLaunching
method is executed when the application is ready to run. This method will prepare the
execution of Cocos2d-x. Then, it will create the first scene and run it.

auto scene = TitleScene::createScene();
// run
director->runWithScene(scene);

Building Scenes and Layers

82

The TitleScene::createScene method is used to create a title scene, and the
runWithScene method is used to run it.

Transitioning between scenes
Your games have to transition between scenes. For example, after launching your games, the
title scene is displayed. Then, it is transitioned into the level selection scene, game scene, and
so on. In this recipe, we will explain how to facilitate transition between scenes, which would
improve the gameplay and the flow of the game.

How to do it...
A game has a lot of scenes. So, you might need to move between scenes in your game.
Perhaps, when a game is started, a title scene will be displayed. Then, a game scene will
appear in the next title scene. There are two ways to transition to a scene.

1.	 One is to use the Director::replaceScene method. This method replaces a
scene outright.
auto scene = HelloWorld::createScene();
Director::getInstance()->replaceScene(scene);

2.	 The other is to use the Director::pushScene method. This method suspends
the execution of the running scene and pushes a new scene on the stack of the
suspended scene.

auto scene = HelloWorld::createScene();
Director::getInstance()->pushScene(scene);

In this case, the old scene is suspended. You can get back to the old scene to pop up
a new scene.

auto Director::getInstance()->popScene();

How it works...
Layer, Sprite, and other nodes can be displayed by using the addChild method. However,
Scene cannot be displayed by using the addChild method; it can be displayed by using the
Director::replaceScene or Director::pushScene methods. That's why Scene is
visible only on one screen at the same time. Scene and Layer are similar, but there is a
significant difference.

Usually, you will use the replaceScene method when you change the scene from the title
scene to the game scene. Further, you can use the pushScene method to display a modal
scene, as in the case of pausing a scene during a game. In this case, an easy way to suspend
a game scene is to pause the game.

Chapter 4

83

When scenes are replaced in a game, the applications will release
the memory used by the old scenes. However, if games push scenes,
they will not release the memory used by the old scenes because
it will suspend it. Further, games are resumed when new scenes
are popped. If you added a lot of scenes by using the pushScene
method, the device memory will no longer be enough.

Transitioning scenes with effects
Popular games display some effects when transitioning scenes. These effects can be natural,
dramatic, and so on. Cocos2d-x has a lot of transitioning effects. In this recipe, we will explain
how to use a transitioning effect and the effect produced.

How to do it...
You can add visual effects to a scene transition by using the Transition class. Cocos2d-x
has many kinds of Transition classes. However, there is only one pattern for how to use
them.

auto nextScene = HelloWorld::createScene();
auto transition = TransitionFade::create(1.0f, nextScene);
Director::getInstance()->replaceScene(transition);

It can be used when a scene was pushed.

auto nextScene = HelloWorld::createScene();
auto transition = TransitionFade::create(1.0f, nextScene);
Director::getInstance()->pushScene(transition);

How it works...
Firstly, you need to create the nextscene object. Then, you need to create a transition
object with a set duration and an incoming scene object. Lastly, you need to run
Director::pushScene with the transition object. This recipe sets the duration for the
transition scene and the fade action as one second. The following table lists some of the
major Transition classes:

Transition Class Description
TransitionRotoZoom Rotates and zooms out of the outgoing scene, and

then, rotates and zooms into the incoming scene.
TransitionJumpZoom Zooms out and jumps the outgoing scene, and then

jumps and zooms into the incoming scene.

Building Scenes and Layers

84

Transition Class Description
TransitionMoveInL Moves scene in from right to the left.
TransitionSlideInL Slides in the incoming scene from the left border.
TransitionShrinkGrow Shrinks the outgoing scene while enlarging the

incoming scene.
TransitionFlipX Flips the screen horizontally.
TransitionZoomFlipX Flips the screen horizontally by doing a zoom out/

in. The front face shows the outgoing scene, and the
back face shows the incoming scene.

TransitionFlipAngular Flips the screen half horizontally and half vertically.
TransitionZoomFlipAngular Flips the screen half horizontally and half vertically by

zooming out/in a little.
TransitionFade Fades out of the outgoing scene, and then, fades into

the incoming scene.
TransitionCrossFade Cross-fades two scenes by using the

RenderTexture object.
TransitionTurnOffTiles Turns off the tiles of the outgoing scene in an random

order.
TransitionSplitCols The odd columns go upwards, while the even columns

go downwards.
TransitionSplitRows The odd rows go to the left, while the even rows go to

the right.
TransitionFadeTR Fades the tiles of the outgoing scene from the left-

bottom corner to the top-right corner.
TransitionFadeUp Fades the tiles of the outgoing scene from the bottom

to the top.
TransitionPageTurn Peels back the bottom right-hand corner of a scene to

transition to the scene beneath it, thereby simulating
a page turn.

TransitionProgressRadialCW Counterclockwise radial transition to the next scene.

There's more...
You can also learn the beginning and the end of the transition scene by using the
onEnterTransitionDidFinish method and the onExitTransitionDidStart
method. When your game shows the new scene completely, the
onEnterTransitionDidFinish method is called. When the old scene starts disappearing,
the onExitTransitionDidStart method is called. If you'd like to do something during the
time that the scenes appear or disappear, you will need to use these methods.

Chapter 4

85

Let's now look at an example of using the onEnterTransitionDidFinish and
onExitTransitionDidStart methods. HelloWorldScene.h has the following code:

class HelloWorld : public cocos2d::Layer
{
public:
 static cocos2d::Scene* createScene();
 virtual bool init();
 CREATE_FUNC(HelloWorld);

 virtual void onEnterTransitionDidFinish();
 virtual void onExitTransitionDidStart();
};

HelloWorldScene.cpp has the following code:
void HelloWorld::onEnterTransitionDidFinish()
{
 CCLOG("finished enter transition");
}

void HelloWorld::onExitTransitionDidStart()
{
 CCLOG("started exit transition");
}

Making original transitions for replacing
scenes

You know that Cocos2d-x has a lot of transitioning effects. However, if it does not have an
effect that you need, it is difficult to create an original transitioning effect. However, you can
create it if you have the basic knowledge of transitioning effects. In this recipe, we will show
you how to create original transitions.

How to do it...
Even though Cocos2d-x has a lot of different types of Transition classes, you may not find
a transition effect that you need. In this recipe, you can create an original transition effect
such as opening a door. When the replacement of a scene begins, the previous scene is
divided into two and open to the left or right.

You have to create new files named "TransactionDoor.h" and "TransactionDoor.cpp,"
and add them to your project.

Building Scenes and Layers

86

TransactionDoor.h has the following code:

#ifndef __TRANSITIONDOOR_H__
#define __TRANSITIONDOOR_H__

#include "cocos2d.h"

NS_CC_BEGIN

class CC_DLL TransitionDoor : public TransitionScene , public
TransitionEaseScene
{
public:
 static TransitionDoor* create(float t, Scene* scene);

 virtual ActionInterval* action();
 virtual void onEnter() override;
 virtual ActionInterval * easeActionWithAction(ActionInterval *
 action) override;
 virtual void onExit() override;
 virtual void draw(Renderer *renderer, const Mat4 &transform,
 uint32_t flags) override;
 CC_CONSTRUCTOR_ACCESS:
 TransitionDoor();
 virtual ~TransitionDoor();

protected:
 NodeGrid* _gridProxy;
 private:
 CC_DISALLOW_COPY_AND_ASSIGN(TransitionDoor);
};

class CC_DLL SplitDoor : public TiledGrid3DAction
{
public:
 /**
 * creates the action with the number of columns to split and
 the duration
 * @param duration in seconds
 */
 static SplitDoor* create(float duration, unsigned int cols);

 // Overrides
 virtual SplitDoor* clone() const override;
 /**
 * @param time in seconds
 */

Chapter 4

87

 virtual void update(float time) override;
 virtual void startWithTarget(Node *target) override;

CC_CONSTRUCTOR_ACCESS:
 SplitDoor() {}
 virtual ~SplitDoor() {}

 /** initializes the action with the number of columns to split
and the duration */
 bool initWithDuration(float duration, unsigned int cols);

protected:
 unsigned int _cols;
 Size _winSize;

private:
 CC_DISALLOW_COPY_AND_ASSIGN(SplitDoor);
};

NS_CC_END

#endif /* defined(__TRANSITIONDOOR_H__) */

Use the following code for TransactionDoor.cpp:

#include "TransitionDoor.h"

NS_CC_BEGIN

TransitionDoor::TransitionDoor()
{
 _gridProxy = NodeGrid::create();
 _gridProxy->retain();
}
TransitionDoor::~TransitionDoor()
{
 CC_SAFE_RELEASE(_gridProxy);
}

TransitionDoor* TransitionDoor::create(float t, Scene* scene)
{
 TransitionDoor* newScene = new (std::nothrow) TransitionDoor();
 if(newScene && newScene->initWithDuration(t, scene))
 {
 newScene->autorelease();
 return newScene;
 }
 CC_SAFE_DELETE(newScene);

Building Scenes and Layers

88

 return nullptr;
}

void TransitionDoor::onEnter()
{
 TransitionScene::onEnter();

 _inScene->setVisible(true);

 _gridProxy->setTarget(_outScene);
 _gridProxy->onEnter();

 ActionInterval* split = action();
 ActionInterval* seq = (ActionInterval*)Sequence::create
 (
 split,
 CallFunc::create(CC_CALLBACK_0(TransitionScene::finish,this)),
 StopGrid::create(),
 nullptr
);

 _gridProxy->runAction(seq);
}

void TransitionDoor::draw(Renderer *renderer, const Mat4
&transform, uint32_t flags)
{
 Scene::draw(renderer, transform, flags);
 _inScene->visit();
 _gridProxy->visit(renderer, transform, flags);
}

void TransitionDoor::onExit()
{
 _gridProxy->setTarget(nullptr);
 _gridProxy->onExit();
 TransitionScene::onExit();
}

ActionInterval* TransitionDoor:: action()
{
 return SplitDoor::create(_duration, 3);
}

ActionInterval*
TransitionDoor::easeActionWithAction(ActionInterval * action)
{
 return EaseInOut::create(action, 3.0f);

Chapter 4

89

}

SplitDoor* SplitDoor::create(float duration, unsigned int cols)
{
 SplitDoor *action = new (std::nothrow) SplitDoor();

 if (action)
 {
 if (action->initWithDuration(duration, cols))
 {
 action->autorelease();
 }
 else
 {
 CC_SAFE_RELEASE_NULL(action);
 }
 }

 return action;
}

bool SplitDoor::initWithDuration(float duration, unsigned int
cols)
{
 _cols = cols;
 return TiledGrid3DAction::initWithDuration(duration, Size(cols,
1));
}

SplitDoor* SplitDoor::clone() const
{
 // no copy constructor
 auto a = new (std::nothrow) SplitDoor();
 a->initWithDuration(_duration, _cols);
 a->autorelease();
 return a;
}

void SplitDoor::startWithTarget(Node *target)
{
 TiledGrid3DAction::startWithTarget(target);
 _winSize = Director::getInstance()->getWinSizeInPixels();
}

void SplitDoor::update(float time)
{
 for (unsigned int i = 0; i < _gridSize.width; ++i)

Building Scenes and Layers

90

 {
 Quad3 coords = getOriginalTile(Vec2(i, 0));
 float direction = 1;

 if ((i % 2) == 0)
 {
 direction = -1;
 }

 coords.bl.x += direction * _winSize.width/2 * time;
 coords.br.x += direction * _winSize.width/2 * time;
 coords.tl.x += direction * _winSize.width/2 * time;
 coords.tr.x += direction * _winSize.width/2 * time;|

 setTile(Vec2(i, 0), coords);
 }
}
NS_CC_END

The following code will allow us to use the TransitionDoor effect:

auto trans = TransitionDoor::create(1.0f,
HelloWorld::createScene());
Director::getInstance()->replaceScene(trans);

How it works...
All types of transitions have TransitionScene as SuperClass. TransitionScene
is a basic class and has a basic transition process. If you would like to create the original
transition effect in an easier way, you would look for a similar transition effect in Cocos2d-x.
You can then create your class from a similar class. The TransitionDoor class is created
from the TransitionSplitCol class. Then, add and modify them where necessary.
However, it is necessary to have basic knowledge about them in order to fix them.

The following are some of the important properties of the Transition class:

Properties Description
_inScene Pointer of the next scene.
_outScene Pointer of the out scene.
_duration Duration of the transition, a float value specified by

the create method.
_isInSceneOnTop Boolean value; if it is true, the next scene is the top of

the scene graph.

Chapter 4

91

Some of the important properties of the transition class are as follows:

Properties Description
onEnter To start the transition effect.
Action To create an effect action.
onExit To finish the transition effect and clean up.

In the case of the TransitionDoor class, the next scene is set to be visible and the
previous scene in split into two grids in the onEnter method. Then, an effect such as opening
a door is started. In the action method, an instance of the Action class is created by using
the SplitDoor class. The SplitDoor class is based on the SplitCol class in Cocos2d-x.
The SplitDoor class moves two grids of the previous scene to the left or the right.

There's more...
There are some necessary methods in addition to those described above. These methods are
defined in the Node class.

Properties Description
onEnter Node starts appearing on the screen
onExit Node disappears from the screen
onEnterTransitionDidFinish Node finishes the transition effect after appearing on

the screen
onExitTransitionDidStart Node starts the transition effect before disappearing

from the screen

If you want to play background music when the scene appears on the screen, you can play it
by using the onEnter method. If you want to play it before finishing the transition effect, use
the onEnterTransitionDidFinish method. Other than these, the initial process in the
onEnter method starts the animation in the onEnterTransitionDidFinish method,
cleans up the process in the onExit method, and so on.

Making original transitions for popping
scenes

Cocos2d-x has transition effects for pushing a scene. For some reason, it does not have
transition effects for popping scenes. We'd like to transition with an effect for popping scenes
after pushing scenes with effects. In this recipe, we will explain how to create an original
transition for popping scenes.

Building Scenes and Layers

92

Getting ready
In this recipe, you will understand how to pop a transition scene with effects. You will need a
new class, so you have to make new class files called DirectorEx.h and DirectorEx.cpp
and add them to your project.

How to do it...
Cocos2d-x has a transition scene with effects for pushing scenes. However, it does not
have transition effects for popping scenes. Therefore, we create an original class called
DirectorEx to create a transition effect for popping scenes. The code snippet is given next.

DirectorEx.h has the following code:

class DirectorEx : public Director
{
public:
 Scene* previousScene(void);
 void popScene(Scene* trans);
};

DirectorEx.cpp has the following code:

#include "DirectorEx.h"

Scene* DirectorEx::previousScene()
{
 ssize_t sceneCount = _scenesStack.size();
 if (sceneCount <= 1) {
 return nullptr;
 }
 return _scenesStack.at(sceneCount-2);
}

void DirectorEx::popScene(Scene* trans)
{
 _scenesStack.popBack();
 ssize_t sceneCount = _scenesStack.size();
 if (sceneCount==0) {
 end();
 } else {
 _sendCleanupToScene = true;
 _nextScene = trans;
 }
}

Chapter 4

93

This class can be used as follows:

DirectorEx* directorEx =
static_cast<DirectorEx*>(Director::getInstance());
Scene* prevScene = directorEx->previousScene();
Scene* pScene = TransitionFlipX::create(duration, prevScene);
directorEx->popScene(pScene);

How it works...
If we customized the Director class in Cocos2d-x, it can transition with the effect for
popping a scene. However, this is not a good idea. Therefore, we create a sub-class of the
Director class called the DirectorEx class and use this class as follows:

1.	 Firstly, you can get an instance of the DirectorEx class to cast an instance of the
Director class.
DirectorEx* directorEx =
static_cast<DirectorEx*>(Director::getInstance());

2.	 Further, you have to get an instance of the previous scene.
Scene* prevScene = directorEx->previousScene();

3.	 Next, you have to create a transition effect.
Scene* pScene = TransitionFlipX::create(duration,
prevScene);

4.	 Finally, you can pop a scene with this effect by using the DirectorEx::popScene
method.

directorEx->popScene(pScene);

Creating layers
A layer is an object that can be used on Scene. It is a transparent sheet similar to
Photoshop's layer. All the objects are added to Layer in order to be displayed on the screen.
Further, a scene can have multiple layers. Layers are also responsible for accepting inputs,
drawing, and touching. For example, in the game, a scene has a background layer, hud layer,
and a player's layer. In this recipe, we will explain how to use Layer.

How to do it...
The following code shows how to create a layer and add it to a scene:

auto layer = Layer::create();
this->addChild(layer);

Building Scenes and Layers

94

That's easy. If you have a color layer, you can do it.

auto layer = LayerColor::create(Color4B::WHITE);
this->addChild(layer);

How it works...
The Scene class is the one displayed on the screen, but the Layer class can be stacked in
many layers. Scene has one or more layers, and Sprite has to be on a layer. The Layer class
is a transparent sheet. In addition, a transparent node needs more CPU power. So, you need
to be careful not to stack too many layers.

Creating modal layers
In user interface design, a modal layer is an important layer. A modal layer is like a child
window. When a modal layer is showing, players cannot touch any other button outside the
modal layer. They can only touch the button on the modal layer. We will need modal layers
when we confirm something with the players. In this recipe, we will explain how to create
modal layers.

How to do it...
Firstly, you have to two new files named ModalLayer.h and ModalLayer.cpp. They should
contain the following code:

ModalLayer.h should have the following code:

#include "cocos2d.h"

USING_NS_CC;

class ModalLayer : public Layer
{
public:
 ModalLayer();
 ~ModalLayer();
 bool init();
 CREATE_FUNC(ModalLayer);
 void close(Ref* sender=nullptr);
};

ModalLayer.cpp should have the following code:
#include "ModalLayer.h"

Chapter 4

95

USING_NS_CC;

ModalLayer::ModalLayer()
{
}

ModalLayer::~ModalLayer()
{

}

bool ModalLayer::init()
{
 if (!Layer::init())
 {
 return false;
 }

 auto listener = EventListenerTouchOneByOne::create();
 listener->setSwallowTouches(true);
 listener->onTouchBegan = [](Touch *touch,Event*event)->bool{
 return true; };
 this->getEventDispatcher()->addEventListenerWithSceneGraphPriority(l
istener, this);

 return true;
}

void ModalLayer::close(Ref* sender)
{

 this->removeFromParentAndCleanup(true);
}

You should create a sub-class from the ModalLayer class and add a menu button or some
design that you need. You then have to create an instance of it and add it to the running
scene. Then, it should enable the buttons on the modal layer but disable the buttons at the
bottom of the modal layer.

// add modal layer
auto modal = ModalLayer::create();
this->addChild(modal);

// close modal layer
modal->close();

Building Scenes and Layers

96

How it works...
It is easy to create a modal layer in Cocos2d-x version 3. In version 3, a touch event occurs
from the top of the layer. So, if the modal layer picks up all the touch events, the nodes under
the modal layer are notified of these. The modal layer is picking up all of the events. Refer to
the following code:

listener->onTouchBegan = [](Touch *touch,Event*event)->bool{
return true; };

This modal layer can pick up all touching events. However, Android has key
events like the back key. When a player touches the back key when the
modal layer is displayed, you have to decide to do it. In one of the cases,
the modal is closed, and in another, the back key is ignored.

Chapter 5

97

5
Creating GUIs

In this chapter, we're going to create various UI parts. The following topics will be covered in
this chapter:

ff Creating menus

ff Creating buttons

ff Creating checkboxes

ff Creating loading bar

ff Creating sliders

ff Creating text fields

ff Creating scroll views

ff Creating page views

ff Creating list views

Introduction
Games have a lot of GUI parts, for example, there are menus, buttons, checkboxes, loading
bars, and so on. We cannot make our game without these parts. Further, these are a little
different from the node we've discussed until now. In this chapter we will see how to create
various GUI parts such as menus, sliders, text fields etc. for a game.

Creating GUIs

98

Creating menus
In this recipe, we will create a menu. A menu has various buttons such as a start button and a
pause button. A Menu is a very important component for any game and they are really useful
too. The steps to use a menu are little complex. In this recipe, we will have a glance over
creating menus to understand its complexity and to get used to them.

Getting ready
We prepared the following image as a button image and added them to the Resources/res
folder in our project. We will use the following image of the button to use it as menu:

How to do it...
Firstly, we will create a simple menu that has one item for a button. We will use the item1.
png file as the button image. Create the menu by using the code here.

auto normalItem = Sprite::create("res/item1.png");
auto selectedItem = Sprite::create("res/item1.png");
selectedItem->setColor(Color3B::GRAY);
auto item = MenuItemSprite::create(normalItem, selectedItem,
[](Ref* sender){
 CCLOG("tapped item");
});
auto size = Director::getInstance()->getVisibleSize();
item->setPosition(size/2);
auto menu = Menu::create(item, nullptr);
menu->setPosition(Vec2());
this->addChild(menu);

Chapter 5

99

The execution result of this code is shown in the following image:

Further, you can see the tapped item text in the log after tapping the menu item. You will
notice that the button becomes a little dark when you tap it.

How it works...
1.	 Create a sprite of the normal status when the button is not operated.

2.	 Create a sprite of the selected status when the button is pressed. In this case, we
used the same images for both the normal status and the selected status, but
players could not understand the change in status when they tapped the button.
That's why we changed the selected image to a slightly darker image by using the
setColor method.

3.	 Create an instance of the MenuItemSprite class by using these two sprites. The
third argument specifies the lambda expression to be processed when the button is
pressed.

This time, we created only one button in the menu, but we can add more buttons in the
menu. To do so, we can enumerate several items in the Menu::create method and specify
nullptr at the end. To add multiple buttons in the menu, use the following code:

auto menu = Menu::create(item1, item2, item3, nullptr);

Creating GUIs

100

In addition, it is possible to add an item by using the addChild method of the menu instance.

menu->addChild(item);

If the button is pressed, the lambda expression process that you specify when you create an
instance of MenuItemSprite starts running. The argument is passed an instance of the
MenuItemSprite that was pressed.

There's more...
It is also possible to automatically align multiple buttons. We created three items in the
Resources/res folder. These are named item1.png, item2.png, and item3.png. You
can create three buttons and use the following code to align these buttons vertically in the
center of the screen:

Vector<MenuItem*> menuItems;
for (int i=1; i<=3; i++) {
 std::string name = StringUtils::format("res/item%d.png", i);
 auto normalItem = Sprite::create(name);
 auto selectedItem = Sprite::create(name);
 selectedItem->setColor(Color3B::GRAY);
 auto item = MenuItemSprite::create(normalItem, selectedItem,
[](Ref* sender){
 auto node = dynamic_cast<Node*>(sender);
 if (node!=nullptr) {
 CCLOG("tapped item %d", node->getTag());
 }
 });
 item->setTag(i);
 menuItems.pushBack(item);
}
auto size = Director::getInstance()->getVisibleSize();
auto menu = Menu::createWithArray(menuItems);
menu->setPosition(size/2);
menu->alignItemsVertically();
this->addChild(menu);

Chapter 5

101

If you want to align these items horizontally, you can use the following code:

menu->alignItemsHorizontally();

Until now, the alignment of intervals has been adjusted automatically; however, if you want to
specify the padding, you can use another method.

The following code will specify the intervals side by side in a vertical manner:

menu->alignItemsVerticallyWithPadding(20.0f);

The following code will specify the intervals side by side in a horizontal manner:

menu->alignItemsHorizontallyWithPadding(20.0f);

Creating buttons
In this recipe, we will explain how to create buttons. Before the Button class was released,
we created a button by using the Menu class that was introduced in the previous recipe.
Due to the Button class, it has become possible to finely control the button press.

Creating GUIs

102

Getting ready
To use the Button class and other GUI parts mentioned in this chapter, you must include the
CocosGUI.h file. Let's add the following line of code in HelloWorldScene.cpp:

#include "ui/CocosGUI.h"

How to do it...
Let's create a button using the Button class. Firstly, you will generate a button instance
by using item1.png image that was used in the previous recipe. We will also specify the
callback function as a lambda expression by using the addEventListener method when
the button is pressed. You can create the button by using the following code:

auto size = Director::getInstance()->getVisibleSize();
auto button = ui::Button::create("res/item1.png");
button->setPosition(size/2);
this->addChild(button);
button-> addTouchEventListener(
 [](Ref* sender, ui::Widget::TouchEventType type){
 switch (type) {
 case ui::Widget::TouchEventType::BEGAN:
 CCLOG("touch began");
 break;
 case ui::Widget::TouchEventType::MOVED:
 CCLOG("touch moved");
 break;
 case ui::Widget::TouchEventType::ENDED:
 CCLOG("touch ended");
 break;
 case ui::Widget::TouchEventType::CANCELED:
 CCLOG("touch canceled");
 break;

 default:
 break;
 }
 });

How it works...
You can now run this project and push the button. Further, you can move your touch position
and release your finger. Thus, you will see that the touch status of the button will change in
the log. Let's take a look at it step-by-step.

Chapter 5

103

When you use the Button class and other GUI parts mentioned in this chapter, you have to
include the CocosGUI.h file as this file defines the necessary classes. Further, please note
that these classes have their own namespace such as "cocos2d::ui."

It is easy to create an instance of the Button class. You only need to specify the sprite
file name. Further, you can create a callback function as a lambda expression by using the
addTouchEventListener method. This function has two parameters. The first parameter
is a button instance that was pressed. The second parameter is the touch status. Touch
statuses are of four types. TouchEventType::BEGAN is the status at the moment that the
button is pressed. TouchEventType::MOVE is the event type that occurs when you move
your finger after you press it. TouchEventType::ENDED is the event that occurs at the
moment you release your finger from the screen. TouchEventType::CANCELED is the event
that occurs when you release your finger outside of the button.

There's more...
It is possible to create a button instance by specifying the selected status image and the
disabled status image. Create this button by using the code here.

auto button = ui::Button::create(
 "res/normal.png",
 "res/selected.png",
 "res/disabled.png");

Unlike the MenuItemSprite class, you won't be able to specify the selection status by
changing the normal image color that was set using the setColor method. You have to
prepare the images as selected image and disabled image.

Creating checkboxes
In this recipe, we will create a checkbox. In Cocos2d-x version 2, a checkbox was created by
using the MenuItemToggle class. However, doing so was quite cumbersome. In Cocos2d-x
version 3, we can create a checkbox by using the Checkbox class that can be used in
Cocos Studio.

Getting ready
So let's prepare the images of the checkbox before you start. Here, we have prepared
the images of the required minimum On and Off status. Please add these images to the
Resouces/res folder.

Creating GUIs

104

The Off status image will look something like this:

The On status image will look something like this:

How to do it...
Let's create a checkbox by using the Checkbox class. First, you will generate a checkbox
instance by using the check_box_normal.png image and the check_box_active.
png image. You will also specify the callback function as a lambda expression by using the
addEventListener method when the checkbox status is changed. Create the checkbox by
using the following code:

auto size = Director::getInstance()->getVisibleSize();
auto checkbox = ui::CheckBox::create(
 "res/check_box_normal.png",
 "res/check_box_active.png");
checkbox->setPosition(size/2);
this->addChild(checkbox);
checkbox->addEventListener([](Ref* sender, ui::CheckBox::EventType
type){
 switch (type) {
 case ui::CheckBox::EventType::SELECTED:
 CCLOG("selected checkbox");
 break;
 case ui::CheckBox::EventType::UNSELECTED:
 CCLOG("unselected checkbox");
 break;
 default:
 break;
 }
});

Chapter 5

105

The following figure shows that the checkbox was selected by running the preceding code.

How it works...
It generates the instance of a checkbox by specifying the On and Off images. Further, the
callback function was specified in the same way as the Button class was in the previous
recipe. A checkbox has two EventType options, namely ui::Checkbox::EventType::SE
LECTED and ui::Checkbox::EventType::UNSELECTED.

You can also get the status of the checkbox by using the isSelected method.

If (checkbox->isSelected()) {
 CCLOG("selected checkbox");
} else {
 CCLOG("unselected checkbox");
}

You can also change the status of the checkbox by using the setSelected method.

checkbox->setSelected(true);

Creating GUIs

106

There's more...
In addition, it is possible to further specify the image of a more detailed checkbox status. The
Checkbox::create method has five parameters. These parameters are as follows:

ff Unselected image

ff Unselected and pushing image

ff Selected image

ff Unselected and disabled image

ff Selected and disabled image

Here's how to specify the images of these five statuses:

auto checkbox = ui::CheckBox::create(
 "res/check_box_normal.png",
 "res/check_box_normal_press.png",
 "res/check_box_active.png",
 "res/check_box_normal_disable.png",
 "res/check_box_active_disable.png");

To disable the checkbox, use the following code:

checkbox->setEnabled(false);

Creating loading bars
When you are consuming a process or downloading something, you can indicate that it
is not frozen by showing its progress to the user. To show such progresses, Cocos2d-x has
a LoadingBar class. In this recipe, you will learn how to create and show the loading bars.

Getting ready
Firstly, we have to prepare an image for the progress bar. This image is called loadingbar.
png. You will add this image in the Resouces/res folder.

Chapter 5

107

How to do it...
It generates an instance of the loading bar by specifying the image of the loading bar. Further,
it is set to 0% by using the setPercent method. Finally, in order to advance the bar from 0%
to 100% by 1% at 0.1 s, we will use the schedule method as follows:

auto loadingbar = ui::LoadingBar::create("res/loadingbar.png");
loadingbar->setPosition(size/2);
loadingbar->setPercent(0);
this->addChild(loadingbar);
this->schedule([=](float delta){
 float percent = loadingbar->getPercent();
 percent++;
 loadingbar->setPercent(percent);
 if (percent>=100.0f) {
 this->unschedule("updateLoadingBar");
 }
}, 0.1f, "updateLoadingBar");

The following figure is an image of the loading bar at 100%.

Creating GUIs

108

How it works...
You have to specify one image as the loading bar image to create an instance of the
LoadingBar class. You can set the percentage of the loading bar by using the setPercent
method. Further, you can get its percentage by using the getPercent method.

There's more...
By default, the loading bar will progress toward the right. You can change this direction by
using the setDirection method.

loadingbar->setDirection(ui::LoadingBar::Direction::RIGHT);

When you set the ui::LoadingBar::Direction::RIGHT value, the start position of the
loading bar is the right edge. Then, the loading bar will progress in the left direction.

Creating sliders
In this recipe, we will explain the slider. The slider will be used for tasks such as changing the
volume of the sound or music. Cocos2d-x has a Slider class for it. If we use this class, we
can create a slider easily.

Getting ready
So, let's prepare the images of the slider before we start. Please add these images in the
Resouces/res folder.

ff sliderTrack.png: Background of the slider

ff sliderThumb.png: Image to move the slider

Chapter 5

109

How to do it...
Let's create a slider by using the Slider class. First, you will generate a slider instance by
using the sliderTrack.png image and the sliderThumb.png image. You will also specify
the callback function as a lambda expression by using the addEventListener method
when the slider value is changed.

auto slider = ui::Slider::create("res/sliderTrack.png",
"res/sliderThumb.png");
slider->setPosition(size/2);
this->addChild(slider);
slider->addEventListener([](Ref* sender, ui::Slider::EventType
type){
 auto slider = dynamic_cast<ui::Slider*>(sender);
 if (type==ui::Slider::EventType::ON_PERCENTAGE_CHANGED) {
 CCLOG("percentage = %d", slider->getPercent());
 }
});

The following figure shows the result of the preceding code.

Creating GUIs

110

How it works...
You have to specify two images as the slider's bar image and the slider's thumb image to
create an instance of the Slider class. The callback function was specified in the same
way as the Button class was in the previous recipe. The slider has only one EventType
as ui::Slider::EventType::ON_PERCENTAGE_CHANGED. That's why the status is
the only changing value. You can get the percentage shown on the slider by using the
getPercent method.

There's more...
If you want to see the progress on the slider, you can use the loadProgressBarTexture
method. We will require an image for the progress bar. The following image shows the
progress bar image. Let's add it to the Resources/res folder.

Then, we use the loadProgressbarTexture method by specifying this image.

slider->loadProgressBarTexture("res/sliderProgress.png");

Let's run the code that has been modified so far. You will see it with the color on the left side
of the bar as shown in the following screenshot:

Chapter 5

111

Creating text fields
You may want to set a nickname in your game. To set nicknames or to get the player's
input text, you can use the TextField class. In this recipe, we will learn about a simple
TextField sample and how to add a textfield in a game.

How to do it...
You will create a text field by specifying the placeholder text, font name, and font size. Then,
you set a callback function by using addEventListener. In the callback function, you can
get the text that the player input in the textField. Create the textField by using the
following code:

auto textField = ui::TextField::create("Enter your name", "Arial",
30);
textField->setPosition(Vec2(size.width/2, size.height*0.75f));
this->addChild(textField);
textField->addEventListener([](Ref* sender,
ui::TextField::EventType type){
 auto textField = dynamic_cast<ui::TextField*>(sender);
 switch (type) {
 case ui::TextField::EventType::ATTACH_WITH_IME:
 CCLOG("displayed keyboard");
 break;
 case ui::TextField::EventType::DETACH_WITH_IME:
 CCLOG("dismissed keyboard");
 break;
 case ui::TextField::EventType::INSERT_TEXT:
 CCLOG("inserted text : %s",
 textField->getString().c_str());
 break;
 case ui::TextField::EventType::DELETE_BACKWARD:
 CCLOG("deleted backward");
 break;
 default:
 break;
 }
});

Creating GUIs

112

Let's run this code. You will see it within the placeholder text, and it will show the keyboard
automatically as shown in the following screenshot:

How it works...
1.	 You create an instance of the TextField class. The first argument is the placeholder

string. The second argument is the font name. You can specify only a true type font.
The third argument is the font size.

2.	 You can get the event by using the addEventListener method. The following list
provides the event names and their descriptions:

Event Name Description
ATTACH_WITH_IME The keyboard will appear.
DETACH_WITH_IME The keyboard will disappear.
INSERT_TEXT The text was input. You can get the string

by using the getString method.
DELETE_BACKWARD The text was deleted.

There's more...
When a player enters a password, you have to hide it by using the setPasswordEnable
method.

textField->setPasswordEnabled(true);

Chapter 5

113

Let's run the code that has been modified so far. You will see how to hide a password that you
enter, as shown in the following screenshot:

Creating scroll views
When a huge map is displayed in your game, a scroll view is required. It can be scrolled by a
swipe, and bounce at the edge of the area. In this recipe, we explain the ScrollView class
of Cocos2d-x.

How to do it...
Let's implement it right away. In this case, we doubled the size of HelloWorld.png.
Further, we try to display this huge image in ScrollView. Create the scroll view by using
the following code:

auto scrollView = ui::ScrollView::create();
scrollView->setPosition(Vec2());
scrollView->setDirection(ui::ScrollView::Direction::BOTH);
scrollView->setBounceEnabled(true);
this->addChild(scrollView);

auto sprite = Sprite::create("res/HelloWorld.png");
sprite->setScale(2.0f);
sprite->setPosition(sprite->getBoundingBox().size/2);
scrollView->addChild(sprite);

Creating GUIs

114

scrollView->setInnerContainerSize(sprite->getBoundingBox().size);
scrollView->setContentSize(sprite->getContentSize());

Let's run this code. You will see the huge HelloWorld.png image. Further, you will see that
you can scroll it by swiping.

How it works...
1.	 You create an instance of the ScrollView class by using the create method

without arguments.

2.	 You set the direction of the scroll view by using the setDirection method. In this
case, we want to scroll up and down, and left and right, so you should set ui::Scr
ollView::Direction::BOTH. This implies that we can scroll in both the vertical
and the horizontal directions. If you want to scroll just up and down, you set ui::Scr
ollView::Direction::VERTICAL. If you want to scroll just left and right, you set
ui::ScrollView::Direction::HORIZONTAL.

3.	 If you want to bounce when it is scrolled at the edge of the area, you should set true
by using the setBounceEnabled method.

4.	 You will provide the content to be displayed in the scroll view. Here, we have used
HelloWorld.png that has been scaled twice.

Chapter 5

115

5.	 You have to specify the size of the content in the scroll view by using the
setInnerContainerSize method. In this case, we specify double the size of
HelloWorld.png in the setInnerContainerSize method

6.	 You have to specify the size of the scroll view by using the setContentSize
method. In this case, we specify the original size of HelloWorld.png by using the
setContentSize method.

Creating page views
A page view is similar to a scroll view, but it will be scrolled on a page-by-page basis.
PageView is also a class in Cocos2d-x. In this recipe, we will explain how to use the
PageView class.

How to do it...
Let's immediately get it implemented. Here, we will arrange three images of HelloWorld.
png side-by-side in the page view. Create the page view by using the following code:

auto pageView = ui::PageView::create();
pageView->setPosition(Vec2());
pageView->setContentSize(size);
this->addChild(pageView);

for (int i=0; i<3; i++) {
 auto page = ui::Layout::create();
 page->setContentSize(pageView->getContentSize());

 auto sprite = Sprite::create("res/HelloWorld.png");
 sprite->setPosition(sprite->getContentSize()/2);
 page->addChild(sprite);
 pageView->insertPage(page, i);
}

pageView->addEventListener([](Ref* sender, ui::PageView::EventType
type){
 if (type==ui::PageView::EventType::TURNING) {
 auto pageView = dynamic_cast<ui::PageView*>(sender);
 CCLOG("current page no =%zd",
 pageView->getCurPageIndex());
 }
});

When you run this code, you will see one HelloWorld.png. You will see that you can move
to the next page by using a swiping movement.

Creating GUIs

116

How it works...
Create an instance of the PageView class by using the create method without arguments.
Here, we set it as the same size as that of the screen.

Display three HelloWorld.png images side-by-side. You must use the Layout class to set
the page layout in PageView.

Set the page size and add the image by using the addChild method.

Insert an instance of the Layout class to the page view by using the insertPage method. At
this time, you specify the page number as the second argument.

Get the event when the page has changed, you use the addEventListener method.
PageView has only one event, PageView::EventType::TURNING. You can get the current
page number by using the getCurPageIndex method.

Creating list views
ListView is a class in Cocos2d-x. It is like UITableView for iOS or List View for Android.
ListView is useful for creating a lot of buttons as required in the case of setting a scene. In
this recipe, we will explain how to use the ListView class.

How to do it...
Here, we try to display ListView that has 20 buttons. Each button is identified with a number
such as "list item 10." In addition, we display the number of the button that you selected
on the log when you tap any button. Create the list view by using the following code:

auto listView = ui::ListView::create();
listView->setPosition(Vec2(size.width/2 - 200, 0.0f));
listView->setDirection(ui::ListView::Direction::VERTICAL);
listView->setBounceEnabled(true);
listView->setContentSize(size);
this->addChild(listView);

for (int i=0; i<20; i++) {
 auto layout = ui::Layout::create();
 layout->setContentSize(Size(400, 50));
 layout->setBackGroundColorType(ui::Layout::BackGroundColorType::S
OLID);
 layout->setBackGroundColor(Color3B::WHITE);

 auto button = ui::Button::create();
 button->setPosition(layout->getContentSize()/2);
 std::string name = StringUtils::format("list item %d", i);

Chapter 5

117

 button->setTitleText(name);
 button->setTitleFontSize(30);
 button->setTitleColor(Color3B::BLACK);

 layout->addChild(button);
 listView->addChild(layout);
}

listView->addEventListener([](Ref* sender, ui::ListView::EventType
type){
 auto listView = dynamic_cast<ui::ListView*>(sender);
 switch (type) {
 case ui::ListView::EventType::ON_SELECTED_ITEM_START:
 CCLOG("select item started");
 break;
 case ui::ListView::EventType::ON_SELECTED_ITEM_END:
 CCLOG("selected item : %zd", listView-
>getCurSelectedIndex());
 break;
 default:
 break;
 }
});

When you run this code, you will see some buttons. You will see that you can scroll it by
swiping and you can get the number of the button you tapped.

Creating GUIs

118

How it works...
1.	 Create an instance of the ListView class. It is possible to specify the scroll

direction in the same way as ScrollView. Since we want to scroll only in the
vertical direction, you specify ui::ListView::Direction::VERTICAL. Also, you
can specify the bounce at the edge of the area by using the setBounceEnabled
method.

2.	 Create 20 buttons to display in the list view. You have to use the Layout class to
display the content in the list view as in the case of PageView. You add an instance
of the Button class to the instance of the Layout class.

3.	 Get the event by using the addEventListener method. ListView has two events,
namely ON_SELECTED_ITEM_START and ON_SELECTED_ITEM_END. When you
touch the list view, ON_SELECTED_ITEM_START is fired. When you release the finger
without moving it, ON_SELECTED_ITEM_END is fired. If you move your finger, ON_
SELECTED_ITEM_END is not fired and it will be a scrolling process. You can get the
button number by using the getCurSelectedIndex method.

Chapter 6

119

6
Playing Sounds

A game without sound will be boring and lifeless. Background music and sound effects
that suit the visuals will lighten up the game. Initially, we used a very famous audio engine
called SimpleAudioEngine, but Cocos2d-x version 3.3 has now come up with an all-new
AudioEngine. In this chapter, we're going to talk about both SimpleAudioEngine and
AudioEngine. The following topics will be covered in this chapter:

ff Playing background music

ff Playing a sound effect

ff Controlling volume, pitch, and balance

ff Pausing and resuming background music

ff Pausing and resuming sound effects

ff Playing background music and a sound effect by using AudioEngine

ff Playing movies

Playing background music
By using SimpleAudioEngine, we can play background music very easily.
SimpleAudioEngine is a shared singleton object that can be called from anywhere in your
code. In SimpleAudioEngine, we can play only one background score.

Getting ready
We have to include the header file of SimpleAudioEngine to use it. Therefore, you will need
to add the following code:

#include "SimpleAudioEngine.h"

Playing Sounds

120

How to do it...
The following code is used to play background music called background.mp3.

auto audio = CocosDenshion::SimpleAudioEngine::getInstance();
audio->preloadBackgroundMusic("background.mp3");

// play the background music and continuously play it.
audio->playBackgroundMusic("background.mp3", true);

How it works...
SimpleAudioEngine has a namespace called CocosDenshion. For
SimpleAudioEngine, you just have to get an instance by using the getInstance method.
You can play the background music without preloading it, but this could result in a delay in
playback. That's why you should preload the music before playing it. If you want the playback
to be continuous, you need to set the true value as the second argument.

There's more...
SimpleAudioEngine supports a number of formats, including MP3 and Core Audio format.
It can play the following formats:

Format iOS (BGM) iOS (SE) Android (BGM) Android (SE)
IMA (.caf) ○ ○ £ £

Vorbis (.ogg) £ £ ○ ○
MP3 (.mp3) ○ ○ ○ ○
WAVE (.wav) ○ ○ △ △

If you want to play a sound in a different format on iOS and Android, you can play it by using
the following macro code:

#if (CC_TARGET_PLATFORM == CC_PLATFORM_ANDROID)
#define MUSIC_FILE "background.ogg"
#else
#define MUSIC_FILE "background.caf"
#endif

audio->playBackgroundMusic(MUSIC_FILE, true);

In this code, if the device is Android, it plays a .ogg file. If the device is iOS, it plays a
.caf file.

Chapter 6

121

Playing a sound effect
By using SimpleAudioEngine, we can play sound effects; to play them, we need to perform
only two steps, namely preload and play. Sound effects are not background music; note that
we can play multiple sound effects but only one background score at the same time. In this
recipe, we will explain how to play sound effects.

Getting ready
As in the case of playing background music, you have to include a header file for
SimpleAudioEngine.

#include "SimpleAudioEngine.h"

How to do it...
Let's try to immediately play a sound effect. The audio format is changed depending on
the operating system by using the macro that was introduced at the time of playing the
background music. The code for playing sound effects is as follows:

#if (CC_TARGET_PLATFORM == CC_PLATFORM_ANDROID)
#define EFFECT_FILE "effect.ogg"
#else
#define EFFECT_FILE "effect.caf"
#endif

auto audio = CocosDenshion::SimpleAudioEngine::getInstance();
audio->preloadEffect(EFFECT_FILE);
audio->playEffect(EFFECT_FILE);

How it works...
The overall flow is the same as that for playing background music. You need to preload a
sound effect file before playing it. The sound effect file is smaller than the background music
file. So, you can preload a lot of sound effects before playing them.

There's more...
The number of sound effects that we can play at the same time on Android is less than
that on iOS. So, we will now explain how to increase this number for Android. The maximum
number of simultaneous playbacks is defined in Cocos2dxSound.java.

Playing Sounds

122

The path of Cocos2dxSound.java is cocos2d/cocos/platform/android/java/src/
org/cocos2dx/lib. Then, in line 66, the maximum number of simultaneous playbacks is
defined.

private static final int MAX_SIMULTANEOUS_STREAMS_DEFAULT = 5;

If we changed this value to 10, we can play 10 sound effects at the same time.

Controlling volume, pitch, and balance
You can control the volume, pitch, and balance for sound effects. The right blend of these
three factors makes your game sound more fun.

How to do it...
Let's try to immediately play a sound effect by controlling its volume, pitch, and balance. The
following is the code snippet to do so:

auto audio = CocosDenshion::SimpleAudioEngine::getInstance();
// set volume
audio->setEffectsVolume(0.5);

// set pitch, pan, gain with playing a sound effect.
float pitch = 1.0f;
float pan = 1.0f;
float gain = 1.0f;
audio->playEffect(EFFECT_FILE, true, pitch, pan, gain);

How it works...
You can control the volume for sound effects by using the setEffectsVolume method. The
maximum value for the volume is 1.0, and the minimum value is 0.0. If you set the volume to
0.0, the sound effect is muted. The default value of the volume is 1.0.

You can play multiple sound effects at the same time, but you cannot set the volume for these
effects individually. To change the master volume for sound effects, set a volume by using the
setEffectsVolume method. If you want to change the volume individually, you should use a
gain value; which we will explain later.

The second argument in the playEffect method is the flag for continuously playing the
sound effects. For the third and the subsequent arguments, please check the following table:

Chapter 6

123

Arguments Description Minimum Maximum
Third argument (pitch) Playing speed 0.0 2.0
Fourth argument (pan) Balance of left and right -1.0 1.0
Fifth argument (gain) Distance from a sound source 0.0 1.0

The pitch is the quality that allows us to classify a sound as relatively high or low. By using
this pitch, we can control the playing speed in the third argument. If you set the pitch
to less than 1.0, the sound effect is played slowly. If you set it to more than 1.0, the sound
effect is played quickly. If you set it to 1.0, the sound effect plays at the original speed. The
maximum value of the pitch is 2.0. However, you can set the pitch to more than 2.0 in iOS.
On the other hand, the maximum value of the pitch in Android is 2.0. Therefore, we adopted
the maximum value as the lower.

You can change the balance of the left and the right speakers by changing the pan in the
fourth argument. If you set it to -1.0, you can hear it only from the left speaker. If you set it to
1.0, you can hear it from only the right speaker. The default value is 0.0; you can hear it at the
same volume from both the left and the right speakers. Unfortunately, you will not be able to
figure out much difference in the speaker of the device. If you use the headphones, you can
hear this difference.

You can change the volume of each sound effect by changing the gain in the fifth argument.
You can set the master volume by using the setEffectVolume method and the volume of
each effect by changing the gain value. If you set it to 0.0, its volume is mute. If you set it to
1.0, its volume is the maximum. The final volume of the sound effects will be a combination of
the gain value and the value specified in the setEffectsVolume method.

Pausing and resuming background music
This recipe will help you better understand the concept of pausing and resuming background
music.

How to do it...
It is very easy to stop or pause the background music. You don't specify the argument by using
these methods. The code for stopping the background music is as follows:

auto audio = CocosDenshion::SimpleAudioEngine::getInstance();
// stop the background music
audio->stopBackgroundMusic();

Code for pausing:

// pause the background music
audio->pauseBackgroundMusic();

Playing Sounds

124

Code for resuming the paused background music:

// resume the background music
audio->resumeBackgroundMusic();

How it works...
You can stop the background music that is playing by using the stopBackgroundMusic
method. Alternatively, you can pause the background music by using the
pauseBackgroundMusic method. Once you stop it, you can play it again by using the
playBackgroundMusic method. Further, if you pause it, you can resume playing the music
by using the resumeBackgroundMusic method.

There's more...
You can determine whether the background music is playing by using the
isBackgroundMusicPlaying method. The following code can be used for doing so:

auto audio = CocosDenshion::SimpleAudioEngine::getInstance();
if (audio->isBackgroundMusicPlaying()) {
 // background music is playing
} else {
 // background music is not playing
}

However, you are required to be careful while using this method. This
method always returns a true value that specifies the playing status in
the iOS simulator. At line 201 of audio/ios/CDAudioManager.m in
Cocos2d-x, if the device is the iOS simulator, SimpleAudioEngine sets
the volume to zero and plays it continuously. That's why there is a problem
in the iOS simulator. However, we tested the latest iOS simulator before
commenting out this process and found that there was no problem. If you
want to use this method, you should comment out this process.

Pausing and resuming sound effects
You might want to stop sound effects too. Also, you may want to pause them and then
resume them.

How to do it...
It is very easy to stop or pause a sound effect. The following is the code for stopping it:

auto audio = CocosDenshion::SimpleAudioEngine::getInstance();

Chapter 6

125

unsigned int _soundId;
// get the sound id as playing the sound effect
_soundId = audio->playEffect(EFFECT_FILE);
// stop the sound effect by specifying the sound id
audio->stopEffect(_soundId);

The following is the code for pausing it:

// pause the sound effect
audio->pauseEffect(_soundId);

You can resume the paused code as follows:

// resume the sound effect
audio->resumeEffect(_soundId);

How it works...
SimpleAudioEngine can play multiple sound effects. Therefore, you have to specify the
sound effect if you want to stop or pause it individually. You can get the sound ID when you play
the sound effect. You can stop, pause, or resume the specific sound effect by using this ID.

There's more...
You can stop, pause, or resume all the playing sound effects. The code to do so is as follows:

auto audio = CocosDenshion::SimpleAudioEngine::getInstance();
// stop all sound effects
audio->stopAllEffects();
// pause all sound effects
audio->pauseAllEffects();
// resume all sound effects
audio->resumeAllEffects();

Playing background music and a sound
effect by using AudioEngine
AudioEngine is a new class from Cocos2d-x version 3.3. SimpleAudioEngine cannot play
multiple background scores, but AudioEngine can play them. Furthermore, AudioEngine
can call a callback function when it finishes playing the background music. In addition, we can
get the playtime by using the callback function. In this recipe, we will learn more about the
brand new AudioEngine.

Playing Sounds

126

Getting ready
We have to include the header file of AudioEngine to use it. Further, AudioEngine has
a namespace called experimental. To include the header file, you will need to add the
following code:

#include "audio/include/AudioEngine.h"
USING_NS_CC;
using namespace experimental;

How to do it...
AudioEngine is much easier than SimpleAudioEngine. Its API is very simple. The
following code can be used to play, stop, pause, and resume the background music.

// play the background music
int id = AudioEngine::play2d("sample_bgm.mp3");
// set continuously play
AudioEngine::setLoop(id, true);
// change the volume, the value is from 0.0 to 1.0
AudioEngine::setVolume(id, 0.5f);
// pause it
AudioEngine::pause(id);
// resume it that was pausing
AudioEngine::resume(id);
// stop it
AudioEngine::stop(id);
// seek it by specifying the time
AudioEngine::setCurrentTime(int id, 12.3f);
// set the callback when it finished playing it
AudioEngine::setFinishCallback(int id, [](int audioId, std::string
filePath){
 // this is the process when the background music was finished.
});

How it works...
AudioEngine no longer needs the preload method. Further, AudioEngine does not
distinguish between background music and sound effects. You can play both background
music and sound effects by using the same method. When you play it, you can get a sound
ID as the return value. You have to specify the sound ID when you change the volume, stop it,
pause it, and so on.

Chapter 6

127

There's more...
If you want to unload audio files from the memory, you can uncache by using the
AudioEngine::uncache method or the AudioEngine::uncacheAll method. In the case
of the uncache method, you have to specify the path that you want to unload. In the case of
the uncacheAll method, all audio data is unloaded from the memory. While unloading files,
you have to stop the related music and sound effects.

Playing movies
You might want to play a movie in your game in order to enrich the representation. Cocos2d-x
provides a VideoPlayer class for this purpose. This class makes it easy to play a movie;
however, it is still an experimental class. So, you have to be very careful while using it.

Getting ready
You have to prepare something before using the VideoPlayer class.

1.	 You have to add the movie file to the Resources/res folder. In this case, we add the
video called splash.mp4.

2.	 Next, you have to including a header file. The code to do so is as follows:
#include "ui/CocosGUI.h"
USING_NS_CC;
using namespace experimental::ui;

3.	 Then, you have to add the following code to the proj.android/jni/Android.mk
file for building an Android application.
LOCAL_WHOLE_STATIC_LIBRARIES += cocos_ui_static
$(call import-module,ui)

Playing Sounds

128

4.	 In Xcode, you have to add MediaPlayer.framework for iOS, as shown in the
following image:

How to do it...
Let's try to play the video in your game. Here, it is:

auto visibleSize = Director::getInstance()->getVisibleSize();
auto videoPlayer = VideoPlayer::create();

videoPlayer->setContentSize(visibleSize);
videoPlayer->setPosition(visibleSize/2);
videoPlayer->setKeepAspectRatioEnabled(true);
this->addChild(videoPlayer);

videoPlayer->addEventListener([](Ref *sender,
VideoPlayer::EventType eventType) {
 switch (eventType) {
 case VideoPlayer::EventType::PLAYING:
 CCLOG("PLAYING");
 break;
 case VideoPlayer::EventType::PAUSED:
 CCLOG("PAUSED");
 break;

Chapter 6

129

 case VideoPlayer::EventType::STOPPED:
 CCLOG("STOPPED");
 break;
 case VideoPlayer::EventType::COMPLETED:
 CCLOG("COMPLETED");
 break;
 default:
 break;
 }
});

videoPlayer->setFileName("res/splash.mp4");
videoPlayer->play();

How it works...
Basically, the VideoPlayer class is the same as the other nodes. First, you create
an instance, specify its location, and then add it on a layer. Next, you set the content
size by using the setContentSize method. If you set a false value by using the
setKeepAspectRatioEnabled method, the video player's size becomes equal to the
content size that you specify by using the setContentSize method. In contrast, if you set a
true value, the video player retains the aspect ratio for the movie.

You can get the event of the playing status by adding an event listener.
VideoPlayer::EventType has four types of events, namely PLAYING, PAUSED, STOPPED,
and COMPLETED.

Finally, you set the movie file by using the setFileName method and you can play it by using
the play method.

There are a lot of video formats. However, the video format that you
can play on both iOS and Android is mp4. That's why you should use
the mp4 format to play videos in your games.

Chapter 7

131

7
Working with

Resource Files

Games have a lot of resources such as images and audio files. Cocos2d-x has a management
system of resources. The following topics will be covered in this chapter:

ff Selecting resource files

ff Managing resource files

ff Using SQLite

ff Using .xml files

ff Using .plist files

ff Using .json files

Selecting resource files
Your game has images of each resolution for multiresolution adaption. If you have resolved to
find an image for each resolution, your application logic is very complicated. Cocos2d-x has
a search path mechanism for solving this problem. In this recipe, we will explain this search
path mechanism.

www.allitebooks.com

http://www.allitebooks.org

Working with Resource Files

132

Getting ready
If you want to share some resources between different resolutions, then you can put all the
shared resources in the Resources folder, and put the resolution-specified resources in
different folders as shown in the following image.

CloseNormal.png and CloseSelected.png are shared resources between different
resolutions. However, HelloWorld.png is a resolution-specified resource.

How to do it...
You can set the priority to search resources for Cocos2d-x as follows:

std::vector<std::string> searchPaths;
searchPaths.push_back("ipad");
FileUtils::setSearchPaths(searchPaths);
Sprite *sprite = Sprite::create("HelloWorld.png");
Sprite *close = Sprite::create("CloseNormal.png");

How it works...
Cocos2d-x will find HelloWorld.png in Resources/ipad. Cocos2d-x will use
HelloWorld.png in this path; that's why it can find this resource in Resources/ipad.
However, Cocos2d-x cannot find CloseNormal.png in Resources/ipad. It will find the
Resources folder that is the next order path. The system can find it in the Resources folder
and use it.

You should add this code in the AppDelegate::applicationDidFinishLaunching
method before creating the first scene. Then, the first scene can use this search path setting.

Chapter 7

133

See also
ff The search path mechanism in the next recipe called Managing resource files.

Managing resource files
Cocos2d-x has an extension that manages resources. It is called
AssetsManagerExtension. This extension is designed for a hot update of resources such
as images and audio files. You can update a new version of resources on your games by using
this extension without updating your applications.

Getting ready
Before using AssetsManagerExtension, you should learn about it. This extension has
many useful features to help you make the hot update. Some of these features are as follows:

ff Multithread downloading support

ff Two-level progression support—File-level and byte-level progression

ff Compressed ZIP file support

ff Resuming download

ff Detailed progression information and error information

ff Possibility to retry failed assets

You have to prepare a web server, and hence, your application will download resources.

How to do it...
You need to upload resources and manifest files. In this case, we will update HelloWorld.
png and a .zip file called test.zip. This .zip file includes some new images.
AssetsManagerExtension will download resources according to the manifest files. The
manifest files are version.manifest and project.manifest.

The version.manifest file contains the following code:

{
 "packageUrl" : "http://example.com/assets_manager/",
 "remoteVersionUrl" :
 "http://example.com/assets_manager/version.manifest",
 "remoteManifestUrl" :
 "http://example.com/assets_manager/project.manifest",
 "version" : "1.0.1",
}

Working with Resource Files

134

The project.manifest file contains the following code:

{
 "packageUrl" : "http://example.com/assets_manager/",
 "remoteVersionUrl" : "http://example.com/assets_manager/version.
manifest",
 "remoteManifestUrl" : "http://example.com/assets_manager/project.
manifest",
 "version" : "1.0.1",
 "assets" : {
 "HelloWorld.png" : {
 "md5" : "b7892dc221c840550847eaffa1c0b0aa"
 },
 "test.zip" : {
 "md5" : "c7615739e7a9bcd1b66e0018aff07517",
 "compressed" : true
 }
 }
}

Then, you have to upload these manifest files and new resources.

Next, you have to prepare your application for a hot update. You have to create the local.
manifest file in your project. The local manifest file should contain the following code:

{
 "packageUrl" : "http://example.com/assets_manager/",
 "remoteVersionUrl" :
"http://example.com/assets_manager/version.manifest",
 "remoteManifestUrl" :
"http://example.com/assets_manager/project.manifest",
 "version" : "1.0.0",
}

You should make a class that manages AssetsManagerExtension in your project.
Here, we create a class called ResourceManager. Firstly, you will create a header file of
ResourceManager. It is called ResourceManager.h. This file contains the following code:

#include "cocos2d.h"
#include "extensions/cocos-ext.h"

class ResourceManager {
private:
 ResourceManager();
 static ResourceManager* instance;

Chapter 7

135

 cocos2d::extension::AssetsManagerEx* _am;
 cocos2d::extension::EventListenerAssetsManagerEx* _amListener;

public:
 // custom event name
 static const char* EVENT_PROGRESS;
 static const char* EVENT_FINISHED;

 virtual ~ResourceManager();
 static ResourceManager* getInstance();

 void updateAssets(std::string manifestPath);
};

The next step is to create a ResourceManager.cpp file. This file contains the following code:

#include "ResourceManager.h"

USING_NS_CC;
USING_NS_CC_EXT;

// custom event name
const char* ResourceManager::EVENT_PROGRESS =
"__cc_Resource_Event_Progress";
const char* ResourceManager::EVENT_FINISHED =
"__cc_Resource_Event_Finished";

ResourceManager* ResourceManager::instance = nullptr;

ResourceManager::~ResourceManager() {
 CC_SAFE_RELEASE_NULL(_am);
}

ResourceManager::ResourceManager()
:_am(nullptr)
,_amListener(nullptr)
{

}

ResourceManager* ResourceManager::getInstance() {
 if (instance==nullptr) {
 instance = new ResourceManager();
 }
 return instance;
}

Working with Resource Files

136

void ResourceManager::updateAssets(std::string manifestPath)
{
 std::string storagePath = FileUtils::getInstance()-
 >getWritablePath();
 CCLOG("storage path = %s", storagePath.c_str());

 if (_am!=nullptr) {
 CC_SAFE_RELEASE_NULL(_am);
 }
 _am = AssetsManagerEx::create(manifestPath, storagePath);
 _am->retain();

 if (!_am->getLocalManifest()->isLoaded()) {
 CCLOG("Fail to update assets, step skipped.");
 } else {
 _amListener = EventListenerAssetsManagerEx::create(_am,
[this](EventAssetsManagerEx* event){
 static int failCount = 0;
 switch (event->getEventCode())
 {
 case
EventAssetsManagerEx::EventCode::ERROR_NO_LOCAL_MANIFEST:
 {
 CCLOG("No local manifest file found, skip
 assets update.");
 break;
 }
 case
EventAssetsManagerEx::EventCode::UPDATE_PROGRESSION:
 {
 std::string assetId = event->getAssetId();
 float percent = event->getPercent();
 std::string str;
 if (assetId == AssetsManagerEx::VERSION_ID) {
 // progress for version file
 } else if (assetId ==
AssetsManagerEx::MANIFEST_ID) {
 // progress for manifest file
 } else {
 // dispatch progress event
 CCLOG("%.2f Percent", percent);
 auto event =
EventCustom(ResourceManager::EVENT_PROGRESS);
 auto data = Value(percent);
 event.setUserData(&data);
 Director::getInstance()->getEventDispatcher()-
>dispatchEvent(&event);
 }

Chapter 7

137

 break;
 }
 case
EventAssetsManagerEx::EventCode::ERROR_DOWNLOAD_MANIFEST:
 case
EventAssetsManagerEx::EventCode::ERROR_PARSE_MANIFEST:
 {
 CCLOG("Fail to download manifest file, update
skipped.");
 break;
 }
 case
EventAssetsManagerEx::EventCode::ALREADY_UP_TO_DATE:
 case
EventAssetsManagerEx::EventCode::UPDATE_FINISHED:
 {
 CCLOG("Update finished. %s",
 event->getMessage().c_str());
 CC_SAFE_RELEASE_NULL(_am);
 // dispatch finished updating event
 Director::getInstance()->getEventDispatcher()-
>dispatchCustomEvent(ResourceManager::EVENT_FINISHED);
 break;
 }
 case
EventAssetsManagerEx::EventCode::UPDATE_FAILED:
 {
 CCLOG("Update failed. %s", event-
>getMessage().c_str());

 // retry 5 times, if error occurred
 failCount ++;
 if (failCount < 5) {
 _am->downloadFailedAssets();
 } else {
 CCLOG("Reach maximum fail count, exit
update process");
 failCount = 0;
 }
 break;
 }
 case
EventAssetsManagerEx::EventCode::ERROR_UPDATING:
 {
 CCLOG("Asset %s : %s", event-
>getAssetId().c_str(), event->getMessage().c_str());
 break;
 }
 case

Working with Resource Files

138

EventAssetsManagerEx::EventCode::ERROR_DECOMPRESS:
 {
 CCLOG("%s", event->getMessage().c_str());
 break;
 }
 default:
 break;
 }
 });

 // execute updating resources
 Director::getInstance()->getEventDispatcher()-
>addEventListenerWithFixedPriority(_amListener, 1);
 _am->update();
 }
}

Finally, to start updating the resource, use the following code:

// label for progress
auto size = Director::getInstance()->getWinSize();
TTFConfig config("fonts/arial.ttf", 30);
_progress = Label::createWithTTF(config, "0%",
TextHAlignment::CENTER);
_progress->setPosition(Vec2(size.width/2, 50));
this->addChild(_progress);

// progress event
getEventDispatcher()-
>addCustomEventListener(ResourceManager::EVENT_PROGRESS,
[this](EventCustom* event){
 auto data = (Value*)event->getUserData();
 float percent = data->asFloat();
 std::string str = StringUtils::format("%.2f", percent) + "%";
 CCLOG("%.2f Percent", percent);
 if (this->_progress != nullptr) {
 this->_progress->setString(str);
 }
});

// fnished updating event
getEventDispatcher()-
>addCustomEventListener(ResourceManager::EVENT_FINISHED,
[this](EventCustom* event){
 // clear cache
 Director::getInstance()->getTextureCache()-
>removeAllTextures();
 // reload scene
 auto scene = HelloWorld::createScene();

Chapter 7

139

 Director::getInstance()->replaceScene(scene);
});

// update resources
ResourceManager::getInstance()-
>updateAssets("res/local.manifest");

How it works...
Firstly, we will explain the manifest file and the mechanism of AssetsManagerExtension.
The manifest files are in the JSON format. Local manifest and version manifest have the
following data:

Keys Description

packageUrl The URL where the assets manager will try to request and
download all the assets.

remoteVersionUrl The remote version manifest file URL that permits one to
check the remote version to determine whether a new version
has been uploaded to the server.

remoteManifestUrl The remote manifest file URL that contains all the asset
information.

version The version of this manifest file.

In addition, the remote manifest has the following data in the key called assets.

Keys Description

key Each key represents the relative path of the asset.

Md5 The md5 field represents the version information of the asset.

compressed When the compressed field is true, the downloaded file will
be decompressed automatically; this key is optional.

AssetsManagerExtension will execute the hot update in the following steps:

1.	 Read the local manifest in the application.

2.	 Download the version manifest according to the remote version URL in the local
manifest.

3.	 Compare the version in the local manifest to the version in the version manifest.

4.	 If both versions do not match, AssetsManagerExtension downloads the project
manifest according to the remote manifest URL in the local manifest.

Working with Resource Files

140

5.	 Compare the md5 value in the remote manifest to the md5 of the asset in the
application.

6.	 If both md5 values do not match, AssetsManagerExtension downloads this asset.

7.	 Next time, AssetsManagerExtension will use the version manifest that was
downloaded instead of the local manifest.

Next, we will explain the ResourceManager class. You can execute the hot update as follows:

ResourceManager::getInstance()->updateAssets("res/local.manifest");

You should call the ResourceManager::updateAssets method by specifying the path
of the local manifest. ResourceManager::updateAssets will create an instance of
AssetsManagerEx, which is the class name of AssetsManagerExtension, by specifying
the path of the local manifest and the path of the storage in the application.

It will create an instance of EventListenerAssetsManagerEx for listening to the progress
of the hot update.

If the compressed value is true, AssetsManagerExtension will unzip it after downloading it.

You can update assets by calling the AssetsManagerEx::update method. During the
update, you can get the following events:

Event Description

ERROR_NO_LOCAL_MANIFEST Cannot find the local manifest.

UPDATE_PROGRESSION Get the progression of the update.

ERROR_DOWNLOAD_MANIFEST Fail to download the manifest file.

ERROR_PARSE_MANIFEST Parse error for the manifest file.

ALREADY_UP_TO_DATE Already updating assets (The version in the
local manifest and the version in the version
manifest are equal.).

UPDATE_FINISHED Finished updating assets.

UPDATE_FAILED Error occurred during updating assets. In
this case, the cause of error may be the
connection. You should try to update again.

ERROR_UPDATING Failed to update.

ERROR_DECOMPRESS Error occurred during unzipping.

ResourceManager dispatches the event called EVENT_PROGRESS if it catches the event
called UPDATE_PROGRESSION. If you catch EVENT_PROGRESS, you should update the
progress label.

Chapter 7

141

Further, it dispatches the event called EVENT_FINISHED if it catches the event called
UPDATE_FINISHED. If you catch EVENT_FINISHED, you should refresh all textures.
That's why we remove all texture caches and reload the scene.

// clear cache
Director::getInstance()->getTextureCache()->removeAllTextures();
// reload scene
auto scene = HelloWorld::createScene();
Director::getInstance()->replaceScene(scene);

Using SQLite
You can save and load game data easily by using the database in your game. In a smartphone
application, the database called SQLite is usually used. SQLite is easy to use. However, you
have to set a few things before using it. In this recipe, we will explain how to set up and use
SQLite in Cocos2d-x.

Getting ready
Cocos2d-x doesn't have an SQLite library. You have to add SQLite's source code to Cocos2d-x.

You need to download the source code from the site http://sqlite.org/download.
html. The latest version at the time of writing this book is version 3.8.10. You can download
this version's .zip file and expand it. Then, you can add the resulting files to your project as
shown in the following image:

In this recipe, we will create an original class called SQLiteManager. So, you have to add the
SQLiteManager.h and SQLiteManager.cpp files to your project.

http://sqlite.org/download.html
http://sqlite.org/download.html

Working with Resource Files

142

Then, if you build for Android, you have to edit proj.android/jni/Android.mk as follows:

LOCAL_SRC_FILES := hellocpp/main.cpp \
 ../../Classes/AppDelegate.cpp \
 ../../Classes/HelloWorldScene.cpp \
 ../../Classes/SQLiteManager.cpp \
 ../../Classes/sqlite/sqlite3.c

How to do it...
First, you have to edit the SQLiteManager.h file as follows:

#include "cocos2d.h"
#include "sqlite/sqlite3.h"

class SQLiteManager {
private:
 SQLiteManager();
 static SQLiteManager* instance;
 sqlite3 *_db;
 bool open();
 void close();
public:
 virtual ~SQLiteManager();
 static SQLiteManager* getInstance();
 void insert(std::string key, std::string value);
 std::string select(std::string key);
};

Next, you have to edit the SQLiteManager.cpp file. This code is a little long. So, we will
explain it step by step.

1.	 Add the following code for the singleton class:
SQLiteManager* SQLiteManager::instance = nullptr;

SQLiteManager::~SQLiteManager() {
}

SQLiteManager::SQLiteManager()
{
 if (this->open()) {
 sqlite3_stmt* stmt;
 // create table
 std::string sql = "CREATE TABLE IF NOT EXISTS
data(key TEXT PRIMARY KEY,value TEXT);";
 if (sqlite3_prepare_v2(_db, sql.c_str(), -1, &stmt,

Chapter 7

143

nullptr) == SQLITE_OK) {
 if (sqlite3_step(stmt)!=SQLITE_DONE) {
 CCLOG("Error in CREATE TABLE");
 }
 }
 sqlite3_reset(stmt);
 sqlite3_finalize(stmt);
 this->close();
 }
}

SQLiteManager* SQLiteManager::getInstance() {
 if (instance==nullptr) {
 instance = new SQLiteManager();
 }
 return instance;
}

2.	 Add the method that opens and closes the database:
bool SQLiteManager::open()
{
 std::string path = FileUtils::getInstance()-
>getWritablePath()+"test.sqlite";
 return sqlite3_open(path.c_str(), &_db)==SQLITE_OK;
}

void SQLiteManager::close()
{
 sqlite3_close(_db);
}

3.	 Add the method that inserts data to the database:
void SQLiteManager::insert(std::string key, std::string
value)

{
 this->open();
 // insert data
 sqlite3_stmt* stmt;
 std::string sql = "INSERT INTO data (key, value)
 VALUES(?, ?)";
 if (sqlite3_prepare_v2(_db, sql.c_str(), -1, &stmt,
 nullptr) == SQLITE_OK) {
 sqlite3_bind_text(stmt, 1, key.c_str(), -1,
 SQLITE_TRANSIENT);
 sqlite3_bind_text(stmt, 2, value.c_str(), -1,
 SQLITE_TRANSIENT);

Working with Resource Files

144

 if (sqlite3_step(stmt)!=SQLITE_DONE) {
 CCLOG("Error in INSERT 1, %s",
 sqlite3_errmsg(_db));
 }
 }
 sqlite3_reset(stmt);
 sqlite3_finalize(stmt);
 this->close();
}

4.	 Add the method that selects data from the database:
std::string SQLiteManager::select(std::string key)
{
 this->open();

 // select data
 std::string value;
 sqlite3_stmt* stmt;
 std::string sql = "SELECT VALUE from data where key=?";
 if (sqlite3_prepare_v2(_db, sql.c_str(), -1, &stmt,
 NULL) == SQLITE_OK) {
 sqlite3_bind_text(stmt, 1, key.c_str(), -1,
 SQLITE_TRANSIENT);
 if (sqlite3_step(stmt) == SQLITE_ROW) {
 const unsigned char* val =
 sqlite3_column_text(stmt, 0);
 value = std::string((char*)val);
 CCLOG("key=%s, value=%s", key.c_str(), val);
 } else {
 CCLOG("Error in SELECT, %s",
 sqlite3_errmsg(_db));
 }
 } else {
 CCLOG("Error in SELECT, %s", sqlite3_errmsg(_db));
 }
 sqlite3_reset(stmt);
 sqlite3_finalize(stmt);
 this->close();
 return value;
}

5.	 Finally, here's how to use this class. To insert data, use the following code:
SQLiteManager::getInstance()->insert("foo", "value1");

To select data, use the following code:

std::string value = SQLiteManager::getInstance()-
>select("foo");

Chapter 7

145

How it works...
Firstly, in the constructor method of the SQLiteManager class, this class creates a table
called data if it does not already exist. The data table is created in SQL as follows:

CREATE TABLE IF NOT EXISTS data(key TEXT PRIMARY KEY,value TEXT);

In order to use SQLite, you have to include sqlite3.h and use the sqlite3 API. This API is in
the C language. If you would like to learn it, you should check the website http://sqlite.
org/cintro.html.

We created our database called test.sqlite in the sandbox area of the application. If you
want to change the location or the name, you should edit the open method.

std::string path = FileUtils::getInstance()->getWritablePath()+"test.
sqlite";

You can insert data by using the insert method to specify the key and the value.

SQLiteManager::getInstance()->insert("foo", "value1");

Further, you can select the value by using the select method to specify the key.

std::string value = SQLiteManager::getInstance()->select("foo");

There's more...
In this recipe, we created the insert method and the select method. However, you can
execute other SQL methods such as delete and replace. Further, you can make the
database match your game. So, you will need to edit this class for your game.

Using .xml files
XML is often used as an API's return value. Cocos2d-x has the TinyXML2 library that can parse
an XML file. In this recipe, we will explain how to parse XML files by using this library.

Getting ready
Firstly, you need to create an XML file and save it as test.xml in the Resources/res folder
in your project. In this case, we will use the following code:

<?xml version="1.0" encoding="UTF-8"?>
<root>
 <key>key text</key>
 <array>
 <name>foo</name>

http://sqlite.org/cintro.html
http://sqlite.org/cintro.html

Working with Resource Files

146

 <name>bar</name>
 <name>hoge</name>
 </array>
</root>

To use the TinyXML-2 library, you have to include it and use namespace as follows:

#include "tinyxml2/tinyxml2.h"
using namespace tinyxml2;

How to do it...
You can parse an XML file by using the TinyXML2 library. In the following code, we parse
test.xml and log each element in it.

std::string path = util->fullPathForFilename("res/test.xml");
XMLDocument *doc = new XMLDocument();
XMLError error = doc->LoadFile(path.c_str());
if (error == 0) {
 XMLElement *root = doc->RootElement();
 XMLElement *key = root->FirstChildElement("key");
 if (key) {
 CCLOG("key element = %s", key->GetText());
 }
 XMLElement *array = key->NextSiblingElement();
 XMLElement *child = array->FirstChildElement();
 while (child) {
 CCLOG("child element= %s", child->GetText());
 child = child->NextSiblingElement();
 }
 delete doc;
}

This result is the following log:

key element = key text
child element= foo
child element= bar
child element= hoge

Chapter 7

147

How it works...
First, you will have to create an instance of XMLDocument and then, parse the .xml file by
using the XMLDocument::LoadFile method. To get the root element, you will have to use
the XMLDocument::RootElement method. Basically, you can get the element by using the
FirstChildElement method. If it is a continuous element, you can get the next element by
using the NextSiblingElement method. If there are no more elements, the return value of
NextSiblingElement will be null.

Finally, you shouldn't forget to delete the instance of XMLDocment. That's why you created it
using a new operation.

Using .plist files
PLIST used in OS X and iOS is a property list. The file extension is .plist, but in fact, the
PLIST format is an XML format. We often use .plist files to store game settings and so on.
Cocos2d-x has a class through which you can easily use .plist files.

Getting ready
Firstly, you need to create a .plist file and save it as test.plist to the Resources/
res folder in your project. In this case, it has two keys, namely foo and bar. The foo key
has an integer value of 1. The bar key has a string value of This is string. Refer to the
following code:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>foo</key>
 <integer>1</integer>
 <key>bar</key>
 <string>This is string</string>
</dict>
</plist>

Working with Resource Files

148

How to do it...
You can parse a .plist file by using the FileUtils::getValueMapFromFile method. In
the following code, we parse test.plist and log a key value in it.

FileUtils* util = FileUtils::getInstance();
std::string path = util->fullPathForFilename("res/test.plist");
ValueMap map = util->getValueMapFromFile(path);
for (auto element : map) {
 std::string key = element.first;
 Value value = element.second;
 switch (value.getType()) {
 case Value::Type::BOOLEAN:
 CCLOG("%s, %s", key.c_str(),
 value.asBool()?"true":"false");
 break;
 case Value::Type::INTEGER:
 CCLOG("%s, %d", key.c_str(), value.asInt());
 break;
 case Value::Type::FLOAT:
 CCLOG("%s, %f", key.c_str(), value.asFloat());
 break;
 case Value::Type::DOUBLE:
 CCLOG("%s, %f", key.c_str(), value.asDouble());
 break;
 case Value::Type::STRING:
 CCLOG("%s, %s", key.c_str(),
 value.asString().c_str());
 break; default:
 break;
 }
}

How it works...
You can parse a .plist file by specifying the .plist file's path to the
FileUtils::getValueMapFromFile method. After doing so, you get the data from
the .plist file as a ValueMap value. The ValueMap class is a wrapper class-based
std::unordered_map. PLIST's data containers are Array and Dictionary. After parsing
the .plist file, Array is std::vector<Value> and Dictionary is std::unordered_
map<std::string, Value>. Further, you can distinguish the type of value by using the
Value::getType method. Then, you can get the value by using the Value::asInt,
asFloat, asDouble, asBool, and asString methods.

Chapter 7

149

There's more...
You can save the .plist file from ValueMap. By doing so, you can save your game data in
the .plist file. To save the .plist file, use the following code:

ValueMap map;
for (int i=0; i<10; i++) {
 std::string key = StringUtils::format("key_%d", i);
 Value val = Value(i);
 map.insert(std::make_pair(key, val));
}
std::string fullpath = util->getWritablePath() + "/test.xml";
FileUtils::getInstance()->writeToFile(map, fullpath);

First, you need to set the key value in ValueMap. In this case, the values are all of the integer
type, but you can set mixed-type values as well. Finally, you need to save the file as a .plist
file by using the FileUtils::writeToFile method.

Using .json files
We can use the JSON format like the XML format for saving/loading game-related data. JSON
is a simpler format than XML. It takes less space to represent the same data than the XML file
format. Further, today, it is used as the value of Web API. Cocos2d-x has a JSON parse library
called RapidJSON. In this recipe, we will explain how to use RapidJSON.

Getting ready
RapidJSON is usually included in Cocos2d-x. However, you need to include the header files
as follows:

#include "json/rapidjson.h"
#include "json/document.h"

How to do it...
Firstly, we will parse a JSON string as follows:

std::string str = "{\"hello\" : \"word\"}";

You can parse JSON by using rapidjson::Document as follows:

rapidjson::Document d;
d.Parse<0>(str.c_str());

Working with Resource Files

150

if (d.HasParseError()) {
 CCLOG("GetParseError %s\n",d.GetParseError());
} else if (d.IsObject() && d.HasMember("hello")) {
 CCLOG("%s\n", d["hello"].GetString());
}

How it works...
You can parse JSON by using the Document::Parse method and specifying the JSON
string. You may get a parse error when you use the Document::HasParseError method;
you can get a description of this error by using the Document::GetParseError method
for a string. Further, you can get an element by specifying the hash key and using the
Document::GetString method.

There's more...
In a real application, you can get a JSON string from a file. We will now explain how to get
this string from a file. First, you need to add a file called test.json to the Resources/res
folder in your project and save it as follows:

[{"name":"Tanaka","age":25}, {"name":"Ichiro","age":40}]

Next, you can get a JSON string from a file as follows:

std::string jsonData = FileUtils::getInstance()-
>getStringFromFile("res/test.json");
CCLOG("%s\n", jsonData.c_str());
rapidjson::Document d;
d.Parse<0>(jsonData.c_str());
if (d.HasParseError()) {
 CCLOG("GetParseError %s\n",d.GetParseError());
} else {
 if (d.IsArray()) {
 for (rapidjson::SizeType i = 0; i < d.Size(); ++i) {
 auto name = d[i]["name"].GetString();
 auto age = d[i]["age"].GetInt();
 CCLOG("name-%s, age=%d", name, age);
 }
 }
}

You can get the string from the file by using the FileUtils::getStringFromFile
method. Thereafter, you can parse in the same way. In addition, this JSON string may be
an array. You can check whether the format is an array by using the Document::IsArray
method. Then, you can use a for loop to go through the JSON object in the array.

Chapter 8

151

8
Working with Hardware

The following topics will be covered in this chapter:

ff Using native code

ff Change the processing using the platform

ff Using the acceleration sensor

ff Keeping the screen on

ff Getting dpi

ff Getting the maximum texture size

Introduction
Cocos2d-x has a lot of APIs. However, there are no APIs that we need, for example, In-App
purchase, push notification, and so on. In this case, we have to create original APIs and need
to write Objective-C code for iOS or Java code for Android. In addition, we want to get the
device information that it is running on. When we want to adjust for each device, we have
to get the device information such as the running application version, device name, dpi on
device, and so on. However, doing so is very difficult and confusing. In this chapter, you can
write the native code for iOS or Android and get the device information.

Using native code
In Cocos2d-x, you can write one source for the cross platform. However, you have to write an
Objective-C function or a Java function for the dependency process such as a purchase or push
notification. If you want to call Java for Android from C++, you have to use JNI (Java Native
Interface). In particular, JNI is very confusing. To call Java from C++, you have to use JNI. In this
recipe, we will explain how to call an Objective-C function or a Java function from C++.

Working with Hardware

152

Getting ready
In this case, we will make a new class called Platform. You can get the application version
by using this class. Before writing code, you will make three files called Platform.h, Platform.
mm, and Platform.cpp in your project.

It is important that you don't add Platform.cpp to Compile Sources in Xcode. That's why
Platform.cpp is for an Android target and doesn't need to be built for iOS. If you added it to
Compile Sources, you have to remove it from there.

Chapter 8

153

How to do it...
1.	 Firstly, you have to make a header file called Platform.h by using the following code:

class Platform
{
public:
 static const char* getAppVersion();
};

2.	 You have to make an execution file called Platform.mm for iOS. This code is in
Objective-C.
#include "Platform.h"

const char* Platform::getAppVersion()
{
 NSDictionary* info = [[NSBundle mainBundle]
 infoDictionary];
 NSString* version = [info
 objectForKey:(NSString*)kCFBundleVersionKey];
 if (version) {
 return [version UTF8String];
 }
 return nullptr;
}

3.	 You have to make an execution file called Platform.cpp for Android. The following
code is in C++ and uses Java through JNI:
#include "Platform.h"
#include "platform/android/jni/JniHelper.h"
#define CLASS_NAME "org/cocos2dx/cpp/AppActivity"

USING_NS_CC;

const char* Platform::getAppVersion()
{
 JniMethodInfo t;
 const char* ret = NULL;
 if (JniHelper::getStaticMethodInfo(t, CLASS_NAME,
 "getAppVersionInJava", "()Ljava/lang/String;")) {
 jstring jstr = (jstring)t.env-
>CallStaticObjectMethod(t.classID,t.methodID);
 std::string sstr = JniHelper::jstring2string(jstr);
 t.env->DeleteLocalRef(t.classID);

Working with Hardware

154

 t.env->DeleteLocalRef(jstr);
 ret = sstr.c_str();
 }
 return ret;
}

4.	 You have to edit proj.android/jni/Android.mk to build for Android when you
added a new class file in your project.
LOCAL_SRC_FILES := hellocpp/main.cpp \
 ../../Classes/AppDelegate.cpp \
 ../../Classes/HelloWorldScene.cpp \
 ../../Classes/Platform.cpp

5.	 Next, you have to write Java code in AppActivity.java. This file is named pro.
android/src/org/cocos2dx/cpp/AppActivity.java.
public class AppActivity extends Cocos2dxActivity {
 public static String appVersion = "";

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 try {
 PackageInfo packageInfo =
getPackageManager().getPackageInfo(getPackageName(),
PackageManager.GET_META_DATA);
 appVersion = packageInfo.versionName;
 } catch (NameNotFoundException e) {
 }
 }

 public static String getAppVersionInJava() {
 return appVersion;
 }
}

6.	 Finally, you can get a version of your game by using the following code:

#include "Platform.h"

const char* version = Platform::getAppVersion();
CCLOG("application version = %s", version);

Chapter 8

155

How it works...
1.	 Firstly, we will look at it for iOS. You will be able to get a version of your game by using

Objective-C in Platform.mm. You can write C++ and Objective-C in the .mm files.

2.	 Next, we will look for Android. When you call Platform::getAppversion on
Android devices, the method in Platform.cpp is executed. In this method, you can
call the getAppVersionInJava method in AppActivity.java. by using JNI. C++
can connect Java via JNI. That's why you can only get the application version by using
Java.

3.	 In Java, you can get the version of your application by using the onCreate method.
You can set it to a static variable and then, get it from the getAppVersionInJava
method in Java.

There's more…
You can use JNI easily by using the JniHelper class in Cocos2d-x. How this class manages
typos from C++ and creates a bridge between C++ and Java has already been explained. You
can use the JniHelper class by using the following code:

JniMethodInfo t;
JniHelper::getStaticMethodInfo(t, CLASS_NAME,
"getAppVersionInJava",
"()Ljava/lang/String;")

You can get the information about the Java method by using
JniHelper::getStaticMethodInfo. The first argument is a variable of JniMethodInfo.
The second argument is the name of the class that has the method you want to call. The
third argument is the method name. The last argument is the parameter of this method. This
parameter is decided by the return value and the arguments. The characters in the bracket
are the parameters for the Java method. In this case, this method has no parameters. The
characters after the bracket are the return value. Ljava/lang/String means that the
return value is a string. If you get this parameter easily, you should use the command called
javap. As the following result will be generated by using this command.

$ cd /path/to/project/pro.android/bin/classes
$ javap -s org.cocos2dx.cpp.AppActivity
Compiled from "AppActivity.java"
public class org.cocos2dx.cpp.AppActivity extends
org.cocos2dx.lib.Cocos2dxActivity {
 public static java.lang.String appVersion;
 descriptor: Ljava/lang/String;
 public org.cocos2dx.cpp.AppActivity();
 descriptor: ()V

Working with Hardware

156

 protected void onCreate(android.os.Bundle);
 descriptor: (Landroid/os/Bundle;)V

 public static java.lang.String getAppVersionInJava();
 descriptor: ()Ljava/lang/String;

 static {};
 descriptor: ()V
}

From the above result, you can see that the parameter for the getAppVersionInJava
method is ()Ljava/lang/String;

As mentioned earlier, you can get the information of the Java method as a t variable. So, you
can call the Java method by using this variable and the following code:

jstring jstr = (jstring)t.env-
>CallStaticObjectMethod(t.classID,t.methodID);

Changing the processing using the platform
You can make the program run on specific parts of the source code for each OS. For
example, you will change the file name, the file path, or the image scale by the platform.
In this recipe, we will introduce the branching code based on the platform of choice in the
case of a complication.

How to do it...
You can change the processing by using the preprocessor as follows:

#if (CC_TARGET_PLATFORM == CC_PLATFORM_ANDROID)
 CCLOG("this platform is Android");
#elif (CC_TARGET_PLATFORM == CC_PLATFORM_IOS)
 CCLOG("this platform is iOS");
#else
 CCLOG("this platfomr is others");
#endif

How it works...
Cocos2d-x defined the CC_TARGET_PLATFORM value in CCPlatformConfig.h. If your
game is compiled for Android devices, CC_TARGET_PLATFORM is equal to CC_PLATFORM_
ANDROID. If it is compiled for iOS devices, CC_TARGET_PLATFORM is equal to CC_
PLATFORM_IOS. Needless to say, there are other values besides Android and iOS. Please
check CCPlatformConfig.h.

Chapter 8

157

There's more…
The code that was used in the preprocessor is difficult to read on an editor. Further, you
cannot notice the error before compiling your code. You should define a constant value that
can be changed by the preprocessor, but you should change the processing by using code as
much as possible. You can check the platform by using the Application class in Cocos2d-x
as follows:

switch (Application::getInstance()->getTargetPlatform()) {
 case Application::Platform::OS_ANDROID:
 CCLOG("this device is Android");
 break;
 case Application::Platform::OS_IPHONE:
 CCLOG("this device is iPhone");
 break;
 case Application::Platform::OS_IPAD:
 CCLOG("this device is iPad");
 break;
 default:
 break;
}

You can get the value of the platform by using the Application::getTargetPlatform
method. You will be able to check, not just for iPhone or iPad, but also IOS by using this method.

Using the acceleration sensor
By using an acceleration sensor on the device, we can make the game more engrossing, by
using operations such as shaking and tilting the device. For example, move the ball by tilting
the screen, the maze game that aims at the goal, and the skinny panda trying to go on a diet,
wherein the players shake the device to play the game. You can get the tilt value and the
moving speed of the device by using the accelerometer. If you can use it, your game becomes
more unique. In this recipe, we learn how to use the acceleration sensor.

How to do it...
You can get the x, y, and z axis values from the acceleration sensor by using the following
code:

Device::setAccelerometerEnabled(true);
auto listener = EventListenerAcceleration::create([](Acceleration*
acc, Event* event){
 CCLOG("x=%f, y=%f, z=%f", acc->x, acc->y, acc->z);
});
this->getEventDispatcher()-
>addEventListenerWithSceneGraphPriority(listener, this);

Working with Hardware

158

How it works...
1.	 Firstly, you enable the acceleration sensor by using the

Device::setAccelerometerEnable method. The methods in the Device class
are static methods. So, you can directly call a method without an instance like this:
Device::setAccelerometerEnable(true);

2.	 You set the event listener for getting the value from the acceleration sensor. In this
case, you can get these values by using the lambda function.

3.	 Finally, you set the event listener in the event dispatcher.

4.	 You can get the value of the x, y, and z axes from the acceleration sensor, if you run
this code on the real device. The x axis is the left and the right of the slope. The y axis
is before and after of the slope. The z axis is the vertical motion.

There's more…
The acceleration sensor uses more battery power. When you use it, you set an appropriate
interval for when the event occurred. The following code sets the interval as one second.

Device::setAccelerometerInterval(1.0f);

If the interval is higher, we might miss some tilt inputs. However, if
we use a low interval, we will drain a lot of battery.

Keeping the screen on
You have to keep the device from entering into the sleep mode while playing your game. For
example, in your game, the player can control the game and keep the game going by using the
accelerometer. The problem is that if the player does not touch the screen while playing with
the accelerometer, the device goes to sleep and enters background mode. In this recipe, you
can keep the screen on easily.

How to do it...
You can keep the screen on if you set it to true by using the Device::setKeepScreenOn
method as follows:

Device::setKeepScreenOn(true);

Chapter 8

159

How it works...
There is a different way for each platform to prevent a device from entering the sleep mode.
However, Cocos2d-x can do it for every platform. You can use this method without executing a
platform. In the iOS platform, the setKeepScreenOn method is as follows:

void Device::setKeepScreenOn(bool value)
{
 [[UIApplication sharedApplication]
setIdleTimerDisabled:(BOOL)value];
}

In the Android platform, the method is as follows:

public void setKeepScreenOn(boolean value) {
 final boolean newValue = value;
 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 mGLSurfaceView.setKeepScreenOn(newValue);
 }
 });
}

Getting dpi
There are a lot of dpi (dots per inch) variations for each device. You can prepare several kinds
of images by resolution. You might want to change an image by the dpi running on the device.
In this recipe, if you would like to get the dpi that your game is running on, you need to use the
Cocos2d-x function.

How to do it...
You can get dpi of the device game is executing on, by using the Device::getDPI method
as follows:

int dpi = Device::getDPI();
CCLOG("dpi = %d", dpi);

Working with Hardware

160

How it works...
In fact, we checked the dpi of some devices. To use the dpi information, you can further adjust
the multiscreen resolution.

Device Dpi

iPhone 6 Plus 489

iPhone 6 326

iPhone 5s 326

iPhone 4s 326

iPad Air 264

iPad 2 132

Nexus 5 480

Getting the maximum texture size
The maximum texture size that can be used is different for each device. In particular, when
you use the texture atlas, you should be careful. That's why a texture atlas that has a lot of
images is too large in size. You can't use a texture that is over the maximum size. If you use it,
your game will crash. In this recipe, you can get the maximum texture size.

How to do it...
You can get the max texture size easily by using the following code:

auto config = Configuration::getInstance();
int texutureSize = config->getMaxTextureSize();
CCLOG("max texture size = %d", texutureSize);

How it works...
The Configuration class is a singleton class. This class has some OpenGL variables. OpenGL
is a multiplatform API for rendering 2D and 3D vector graphics. It is pretty difficult to use.
Cocos2d-x wraps it and makes it easy to use. OpenGL has a lot of information for graphics.
The max texture size is one of the variables providing this information. You can get the max
texture size of the device that your application is running on.

Chapter 8

161

There's more…
You can get other OpenGL variables. If you want to check the variables that Configuration
has, you will use the Configuration::getInfo method.

auto config = Configuration::getInstance();
std::string info = config->getInfo();
CCLOG("%s", info.c_str());

The result of the log on iPhone 6 Plus:

{
 gl.supports_vertex_array_object: true cocos2d.x.version:
 cocos2d-x 3.5
 gl.vendor: Apple Inc.
 gl.supports_PVRTC: true
 gl.renderer: Apple A8 GPU
 cocos2d.x.compiled_with_profiler: false
 gl.max_texture_size: 4096
 gl.supports_ETC1: false
 gl.supports_BGRA8888: false
 cocos2d.x.build_type: RELEASE
 gl.supports_discard_framebuffer: true
 gl.supports_NPOT: true
 gl.supports_ATITC: false
 gl.max_samples_allowed: 4
 gl.max_texture_units: 8
 cocos2d.x.compiled_with_gl_state_cache: true
 gl.supports_S3TC: false
 gl.version: OpenGL ES 2.0 Apple A8 GPU - 53.13
}

If you get each variable, and you check the source code of the Configuration class, you
can understand them easily.

Chapter 9

163

9
Controlling Physics

The following topics will be covered in this chapter:

ff Using the physics engine

ff Detecting collisions

ff Using joints

ff Changing gravity by using the acceleration sensor

Introduction
Physics is really important for games. Players need to simulate real-world situations. You
can add physical realism to your game by using a physics engine. As you know, there are two
famous physics engines: Box2D and Chipmunk. In Cocos2d-x version 2.x, you have to use
these physics engines. However, it is pretty difficult to use them. Since Cocos2d-x version 3.x,
Cocos2d-x has a useful physics engine wrapped in Chipmunk. Therefore, the physics engine is
no longer a concern for us as it is scalable and CPU friendly. In this chapter, you will learn how
to use the physics engine easily in your game.

Using the physics engine
What should you do when you realize that your game needs to simulate real-world situations?
You know that the answer is to use a physics engine. When you start using a physics engine,
you have to use some new classes and methods. In this recipe, you will learn how to use the
basic physics engine in Cocos2d-x.

Controlling Physics

164

How to do it...
1.	 Firstly, you have to create the physics world in your scene. You can create it by using

the following code:
Scene* HelloWorld::createScene()

{
 auto scene = Scene::createWithPhysics();
 auto layer = HelloWorld::create();
 scene->addChild(layer);
 return scene;
}

2.	 Next, you have to add the physics bodies in the physics world. A physics body is not
visible. It is a physical shape such as a square or a circle or a more complex shape.
Here, let's create a square shape. You have to create it and set it to the sprite to be
visible.
bool HelloWorld::init()
{
 if (!Layer::init())
 {
 return false;
 }
 Size visibleSize = Director::getInstance()->getVisibleSize();
 Vec2 origin = Director::getInstance()->getVisibleOrigin();

 auto wall = Node::create();
 auto wallBody = PhysicsBody::createEdgeBox(visibleSize,
PhysicsMaterial(0.1f, 1.0f, 0.0f));
 wall->setPhysicsBody(wallBody);
 wall->setPosition(Vec2(visibleSize.width/2+origin.x,
visibleSize.height/2+origin.y));
 addChild(wall);

 auto sprite = Sprite::create("CloseNormal.png");
 sprite->setPosition(visibleSize/2);
 auto physicsBody = PhysicsBody::createCircle(sprite-
>getContentSize().width/2);
 physicsBody->setDynamic(true);
 sprite->setPhysicsBody(physicsBody);
 this->addChild(sprite);

 return true;
}

3.	 Finally, you have to run the preceding code. You can then see the sprite falling and
bouncing on the ground.

Chapter 9

165

How it works...
1.	 Firstly, you have to create the physics world in the scene by using the

Scene::createWithPhysics method. In this way, you can use the physics engine
in your game.

2.	 Next, you have to create the wall upside down and from the left to the right on the
screen edge. If you remove this wall and run the code, the sprite object will be falling
forever. You can create an edge box by using the PhysicsBody::createEdgeBox
method with this size and material setting. In this case, the wall will be of the same
size as the screen. The material setting is specified as PhysicsMaterial(0.1f,
1.0f, 0.0f). This means that the density is 1.0f, restitution is 1.0f, and friction
is 0.0f. Let's try to change this parameter and check it in the given situation.

3.	 Finally, you can create the physics body with the sprite. In this case, the sprite is
circular in shape. So, you need to use the PhysicsBody::createCircle method
to create the circular physics body. Then, add the physics body to the sprite by using
the Sprite::setPhysicsBody method.

4.	 Cocos2d-x has a lot of physics body shapes as listed in the following table:

Shape Description

PhysicsShapeCircle Solid circle shape

PhysicsShapePolygon Solid polygon shape

PhysicsShapeBox Solid box shape

PhysicsShapeEdgeSegment Segment shape

PhysicsShapeEdgePolygon Hollow polygon shape

PhysicsShapeEdgeBox Hollow box shape

PhysicsShapeEdgeChain To connect many edges

There's more…
Then, you can get a PhysicsWorld instance by using the Scene::getPhysicsWorld
method. In this recipe, we set PhysicsWorld::DEBUGDRAW_ALL to the physics world. That's
why you can see that the edges of all physics objects are red lines. When you release your
game, you will have to remove this setting.

Scene* HelloWorld::createScene()
{
 auto scene = Scene::createWithPhysics();
 auto layer = HelloWorld::create();
 scene->addChild(layer);

Controlling Physics

166

 PhysicsWorld* world = scene->getPhysicsWorld();
 world->setDebugDrawMask(PhysicsWorld::DEBUGDRAW_ALL);

 return scene;
}

Further, you can set the original gravity value to PhysicsWorld. For example, you can
change the gravity when the device was tilted. The following code is how to change the gravity:

PhysicsWorld* world = scene->getPhysicsWorld();
auto gravity = Vec2(0, 98.0f);
world->setGravity(gravity);

The above code is against the force of the earth's gravity. The default gravity value is Vec2(0,
-98.0f).

Detecting collisions
When a collision between physics objects occurs, you want to take action against the physics
bodies, for example, showing an explosion and showing a particle. In this recipe, you learn
how to detect a collision in the physics world.

Chapter 9

167

How to do it...
1.	 Firstly, you have to create the event listener in the init method as follows:

auto contactListener =
EventListenerPhysicsContact::create();
contactListener->onContactBegin = [](PhysicsContact& contact){
 CCLOG("contact begin");
 auto shapeA = contact.getShapeA();
 auto bodyA = shapeA->getBody();

 auto shapeB = contact.getShapeB();
 auto bodyB = shapeB->getBody();
 return true;
};
this->getEventDispatcher()->addEventListenerWithSceneGraphPriority
(contactListener, this);

2.	 Next, you have to set the contact test bit mask to the physics bodies that you want
to check the collisions for. In this recipe, you set the wall body and the sprite body
as follows:

auto wallBody = PhysicsBody::createEdgeBox(visibleSize,
PhysicsMaterial(0.1f, 1.0f, 0.0f));
wallBody->setContactTestBitmask(1);

auto physicsBody = PhysicsBody::createCircle(sprite-
>getContentSize().width/2);
physicsBody->setContactTestBitmask(1);

How it works...
You can detect a collision in the physics world by using the
EventListenerPhysicsContact class. It will receive all the contact callbacks in the
physics world. If you set the onContactBegin method in this listener, you can catch
the collision of the physics bodies. You can get two physics shapes from the parameter's
PhysicsContact instance in the onContactBegin method by using the getShapeA,
getShapeB, and getBody method as follows:

contactListener->onContactBegin = [](PhysicsContact& contact){
 CCLOG("contact begin");
 auto shapeA = contact.getShapeA();
 auto bodyA = shapeA->getBody();

Controlling Physics

168

 auto shapeB = contact.getShapeB();
 auto bodyB = shapeA->getBody();
 return true;
};

The onContactBegin method returns true or false. If it returns true, the two physics bodies
will collide. If it returns false, there will not be a collision response. So, you decide to check
the type of collision of the two bodies any way.

The setContactTestBitmask method has a parameter to contact the test bit mask. This
mask defines which categories of bodies cause intersection notifications with this physics body.
When two bodies share the same space, each body's category mask is tested against the other
body's contact mask by performing a logical AND operation. If either comparison results in a
non-zero value, the PhysicsContact object is created and passed to the physics world's
delegate. For best performance, only set bits in the contacts mask for the interactions you
need. The bitmask is an integer number. The default value is 0x00000000 (all bits cleared).

PhysicsContact has some other events as listed in the following table:

Event Description

onContactBegin Called when two shapes start to contact

onContactPreSolve Two shapes are touching

onContactPostSolve Two shapes' collision responses have been processed

onContactSeparate Called when two shapes separate

Using joints
Joints are used to connect two physics bodies to each other. Then, you can create a complex
shape to join some shapes. In addition, you can create objects such as a gear or a motor to
use joints. Cocos2d-x has many different types of joints. In this recipe, we explain a typical
joint type.

Getting ready
You will create a method that creates a physics object. That's why you have to create multiple
physics objects. This method is called makeSprite. You have to add the following code in
HelloWorld.h:

cocos2d::Sprite* makeSprite();

Chapter 9

169

You have to add the following code in HelloWorld.cpp:

Sprite* HelloWorld::makeSprite()
{
 auto sprite = Sprite::create("CloseNormal.png");
 auto physicsBody = PhysicsBody::createCircle(sprite-
>getContentSize().width/2);
 physicsBody->setDynamic(true);
 physicsBody->setContactTestBitmask(true);
 sprite->setPhysicsBody(physicsBody);
 return sprite;
}

How to do it...
In this recipe, we explain PhysicsJointGear. This joint works to keep the angular velocity
ratio of a pair of bodies.

1.	 Firstly, you have to add the following code in HelloWorld.h:
void onEnter();
cocos2d::DrawNode* _drawNode;
cocos2d::PhysicsWorld* _world;

2.	 Secondly, you have to add the onEnter method to create a gear joint by using two
physics objects and the PhysicsJointGear class in HelloWorld.cpp:
void HelloWorld::onEnter()
{
 Layer::onEnter();

 Size visibleSize = Director::getInstance()->getVisibleSize();
 Vec2 origin = Director::getInstance()->getVisibleOrigin();

 _world = Director::getInstance()->getRunningScene()-
>getPhysicsWorld();

 // wall
 auto wall = Node::create();
 auto wallBody = PhysicsBody::createEdgeBox(visibleSize,
PhysicsMaterial(0.1f, 1.0f, 0.0f));
 wallBody->setContactTestBitmask(true);
 wall->setPhysicsBody(wallBody);
 wall->setPosition(Vec2(visibleSize.width/2+origin.x,
visibleSize.height/2+origin.y));
 addChild(wall);

 // gear object 1
 auto sp1 = this->makeSprite();

Controlling Physics

170

 sp1->setPosition(visibleSize/2);
 this->addChild(sp1);
 // gear object 2
 auto sp2 = this->makeSprite();
 sp2->setPosition(Vec2(visibleSize.width/2+2, visibleSize.
height));
 this->addChild(sp2);

 // joint: gear
 auto body1 = sp1->getPhysicsBody();
 auto body2 = sp2->getPhysicsBody();
 auto pin1 = PhysicsJointPin::construct(body1, wallBody, sp1-
>getPosition());
 _world->addJoint(pin1);
 auto pin2 = PhysicsJointPin::construct(body2, wallBody, sp2-
>getPosition());
 _world->addJoint(pin2);
 auto joint = PhysicsJointGear::construct(body1, body2, 0.0f,
2.0f);
 _world->addJoint(joint);
}

3.	 Next, you have to be able to touch physics objects. Add in HellowWorld.h, the
following code:
bool onTouchBegan(cocos2d::Touch* touch, cocos2d::Event* event);
void onTouchMoved(cocos2d::Touch* touch, cocos2d::Event* event);
void onTouchEnded(cocos2d::Touch* touch, cocos2d::Event* event);
cocos2d::Node* _touchNode;

Then, add to the HelloWorld::onEnter method in HelloWorld.cpp, the
following code:

auto touchListener = EventListenerTouchOneByOne::create();
touchListener->onTouchBegan = CC_CALLBACK_2(HelloWorld::onTouchBeg
an, this);
touchListener->onTouchMoved = CC_CALLBACK_2(HelloWorld::onTouchMov
ed, this);
touchListener->onTouchEnded = CC_CALLBACK_2(HelloWorld::onTouchEnd
ed, this);
_eventDispatcher->addEventListenerWithSceneGraphPriority(touchList
ener, this);

4.	 Next, you write the executing codes in three touch methods as follows:
bool HelloWorld::onTouchBegan(Touch* touch, Event* event)
{
 auto location = touch->getLocation();
 auto shapes = _world->getShapes(location);
 if (shapes.size()<=0) {

Chapter 9

171

 return false;
 }
 PhysicsShape* shape = shapes.front();
 PhysicsBody* body = shape->getBody();
 if (body != nullptr) {
 _touchNode = Node::create();
 auto touchBody = PhysicsBody::create(PHYSICS_INFINITY,
PHYSICS_INFINITY);
 _touchNode->setPhysicsBody(touchBody);
 _touchNode->getPhysicsBody()->setDynamic(false);
 _touchNode->setPosition(location);
 this->addChild(_touchNode);
 PhysicsJointPin* joint = PhysicsJointPin::construct(touchB
ody, body, location);
 joint->setMaxForce(5000.0f * body->getMass());
 _world->addJoint(joint);
 return true;
 }
 return false;
}

void HelloWorld::onTouchMoved(Touch* touch, Event* event)
{
 if (_touchNode!=nullptr) {
 _touchNode->setPosition(touch->getLocation());
 }
}

void HelloWorld::onTouchEnded(Touch* touch, Event* event)
{
 if (_touchNode!=nullptr) {
 _touchNode->removeFromParent();
 _touchNode = nullptr;
 }
}

5.	 Finally, you will run and test the gear joint by touching the physics objects.

How it works...
1.	 Firstly, you have to fix gear objects on the wall, as gear objects will drop to the floor if

they are not fixed. To fix them, you use the PhysicsJointPin class.
auto pin1 = PhysicsJointPin::construct(body1, wallBody,
sp1->getPosition());

Controlling Physics

172

2.	 Next, you create a gear joint by using the PhysicsJointGear class. In the
PhysicsJointGear::construct method, you specify two physics bodies, namely
phase value and ratio value. The phase value is the initial angular offset of the two
bodies. The ratio value is the gear ratio. If the ratio value is 2.0f, one axis will be
rotated twice and the other axis will be rotated once.
auto joint = PhysicsJointGear::construct(body1, body2, 0.0f,
2.0f);
_world->addJoint(joint);

3.	 You were able to create the gear joint in Step 2. However, you cannot move this gear.
That's why you enable the touching of the screen and the moving of the physics
objects. In the onTouchBegan method, we check the physics object in the touch
area. If the object didn't exist in the touch location, it returns false.
auto location = touch->getLocation();
auto shapes = _world->getShapes(location);
if (shapes.size()<=0) {
 return false;
}

4.	 If the object existed in the touch location, get the physics body from the physics
shape. Then, create a node on the touch location and add a physics body to this
node. This node is used in the onTouchMoved method.
PhysicsShape* shape = shapes.front();
PhysicsBody* body = shape->getBody();
if (body != nullptr) {
 _touchNode = Node::create();
 auto touchBody = PhysicsBody::create(PHYSICS_INFINITY,
PHYSICS_INFINITY);
 _touchNode->setPhysicsBody(touchBody);
 _touchNode->getPhysicsBody()->setDynamic(false);
 _touchNode->setPosition(location);
 this->addChild(_touchNode);

5.	 To add force to this object, add PhysicsJointPin by using touchBody and the
touch location. Then, set the force by using the setMaxForce method.
PhysicsJointPin* joint = PhysicsJointPin::construct(touchBody,
body, location);
joint->setMaxForce(5000.0f * body->getMass());
_world->addJoint(joint);

Chapter 9

173

6.	 In the onTouchMoved method, move the touch node as follows:
void HelloWorld::onTouchMoved(Touch* touch, Event* event)
{
 if (_touchNode!=nullptr) {
 _touchNode->setPosition(touch->getLocation());
 }
}

7.	 In the onTouchEnded method, remove the touch node as follows:

void HelloWorld::onTouchEnded(Touch* touch, Event* event)
{
 if (_touchNode!=nullptr) {
 _touchNode->removeFromParent();
 _touchNode = nullptr;
 }
}

There's more…
Cocos2d-x has a lot of joints. Each joint has a different task as given in the following table:

Joint Description

PhysicsJointFixed A fixed joint connects the two bodies together at a
reference point. Fixed joints are useful for creating
complex shapes that can be broken apart later.

PhysicsJointLimit A limit joint imposes the maximum distance between
the two bodies.

PhysicsJointPin Allowing two bodies to independently rotate around
the pin

PhysicsJointDistance Jointing two bodies with a fixed distance

PhysicsJointSpring Connecting two bodies with a spring

PhysicsJointRotarySpring Like a spring joint which rotates

PhysicsJointRotaryLimit Like a limit joint which rotates

PhysicsJointRatchet Like a socket wrench

PhysicsJointGear Keeps the angular velocity ratio of a pair of bodies

PhysicsJointMotor Keeps the relative angular velocity of a pair of bodies

Controlling Physics

174

This is difficult to explain by text. So, you should check the cpp-tests application that was
provided by Cocos2d-x. You run the cpp-tests application and select Node::Physics from
the menu. You can check the following image:

Then, you can touch or drag these physics objects, so, you can see each joint's working.

Changing gravity by using the acceleration
sensor

A game with a physics engine will often change the direction of gravity by tilting the device. By
doing so, it is possible to add realism in the game. In this recipe, you can change the direction
of gravity by using an acceleration sensor.

Getting ready
To avoid screen rotation, you have to change some code and settings. Firstly, you should set
Device Orientation to only Landscape Right as shown in the following image:

Chapter 9

175

Secondly, you change the shouldAutorotate method's return value to false in
RootViewController.mm.

- (BOOL) shouldAutorotate {
 return NO;
}

How to do it...
You check the acceleration sensor value in HelloWorld.cpp as follows:

Device::setAccelerometerEnabled(true);
auto listener = EventListenerAcceleration::create([=](Acceleration*
acc, Event* event){
 auto gravity = Vec2(acc->x*100.0f, acc->y*100.0f);
 world->setGravity(gravity);
});
this->getEventDispatcher()->addEventListenerWithSceneGraphPriority(li
stener, this);

How it works...
If you tilt the device, you can get the changing acceleration x and y values. At this time,
we have 100 times the value of the x-axis and y-axis. That's why the value of acceleration
is pretty small for using gravity.

auto gravity = Vec2(acc->x*100.0f, acc->y*100.0f);

While rotating the device, the home button is at the right, then it is the home position. At this
time, the acceleration y value is negative. While rotating, if the home button is at the left side;
the acceleration y value is positive. While rotating, if it is in the portrait position, then the
acceleration x value is positive. Or, while rotating, if it is upside down, then the acceleration
x value is negative. Then, to change gravity by using the acceleration sensor value, you can
realize real gravity in your game.

Chapter 10

177

10
Improving Games with

Extra Features

The following topics will be covered in this chapter:

ff Using Texture Packer

ff Using Tiled Map Editor

ff Getting the property of the object in the tiled map

ff Using Physics Editor

ff Using Glyph Designer

Introduction
For a long time, there have been a lot of tools available to you that help you in game
development. Some of these tools can be used in Cocos2d-x. With the use of these tools, you
can quickly and efficiently develop your game. You can, for example, use original fonts and
create sprite sheets, a map like a role-playing game, complex physical objects, and so on. In
this chapter, you will learn how to use these extra tools in your game development.

Using Texture Packer
Texture Packer is a tool that can drag and drop images and publish. With the use of this
tool, we can not only create sprite sheets, but also export multi sprite sheets. If there are
a lot of sprites, then we need to use the command line tool when we create sprite sheets,
encrypt them, and so on. In this recipe, you can use Texture Packer.

Improving Games with Extra Features

178

Getting ready
Texture Packer is a paid application. However, you can use the free trial version. If you don't
have it, you can download it by visiting https://www.codeandweb.com/texturepacker

How to do it...
1.	 You need to launch Texture Packer, after which you will see a blank window appear.

https://www.codeandweb.com/texturepacker

Chapter 10

179

2.	 In this recipe, we will use these sprites as shown in the following screenshot:

3.	 You simply need to drag the images into the Texture Packer window and it will
automatically read all the files and arrange them.

4.	 And that's it. So let's publish the sprite sheet image and plist to click the publish
button. That's how you can get the sprite sheet image and plist.

Improving Games with Extra Features

180

How it works...
You can get the sprite sheet image and plist file. In this part, we explain how to publish the
sprite sheet for all devices with a single click.

1.	 Click on the AutoSD button with the gear icon, and you will see an additional window
appear, as shown in the following screenshot:

2.	 Select the cocos2d-x HDR/HD/SD and click the Apply button. After clicking it,
setting the default scale, extension, size and so on like in the following image:

Chapter 10

181

3.	 Next, you have to click the publish button, you will see the window to select the
data file name. The important thing is to select the folder named HDR as in the
following image:

Improving Games with Extra Features

182

4.	 Finally, you will get three size sprite sheets automatically as in the following image:

The sprite sheet in HDR folder is the largest size. The images that were dragged and dropped
are HDR images. These images are good for resizing to HD or SD images.

There's more…
You can use the Texture Packer on the command like like this:

texturepacker foo_*.png --format cocos2d --data hoge.plist --sheet
hoge.png

The preceding command is to make a sprite sheet named hoge.plist and hoge.png by
using images named foo_*.png. For example, if there were foo_1.png to foo_10.png in
a folder, then the sprite sheet is created from these 10 images.

In addition, the command has other options as in the following table:

Option Description
--help Display help text
--version Print version information
--max-size Set the maximum texture size
--format cocos2d Format to write, default is cocos2d
--data Name of the data file to write
--sheet Name of the sheet to write

There are a lot of options other than that. You can see another options by using the
following command:

texturepacker --help

Chapter 10

183

Using Tiled Map Editor
A tiled map is a grid of cells where the value in the cell indicates what should be at the
location. For example, (0,0) is a road, (0,1) is a grass, (0,2) is a river and so on. Tiled maps
are very useful but they are pretty hard to create by hand. Tiled is a tool that can be used to
just create tiled maps. Tiled is a free application. However, this application is a very powerful,
useful and popular tool. There are various kinds of Tiled Map, for example, 2D maps such as
Dragon Quest, Horizontal scrolling game map such as Super Mario and so on. In this recipe,
you can basically use texture packer.

Getting ready
If you don't have Tiled Map Editor, you can download it from https://www.mapeditor.org/.

And then, after downloading it, you will install the application and copy the example folder in
the dmg file, into the working space of your computer.

Tiled Map Editor is free application. However, you can donate to this software if you like.

How to do it...
In this part, we explain how to create a new map from scratch with the Tiled tool.

1.	 Launch Tiled and selecting File | New in the menu. Open the new additional window
as in the following image:

https://www.mapeditor.org/

Improving Games with Extra Features

184

2.	 Select XML in Tile layer format and change Width and Height in Map size to 50 tiles.
Finally, click OK. So you can see the Tiled's window as in the following image:

3.	 Select Map | New Tileset… in the menu. You can select the tileset window. Select
the tileset image by clicking the Browse… button in the middle of the window. In this
case, you will select tmw_desert_spacing.png file in Tiled's example folder. This
tileset has tiles with a width and height of 32px and a margin and spacing of 1px. So
you have to change these values as shown in the following screenshot:

Chapter 10

185

4.	 Finally, click on the OK button, and you will see the new editor window as shown in
the following screenshot:

Improving Games with Extra Features

186

5.	 Next, let's try to paint the ground layer using the tile that you selected. Select the tile
from the right and lower panes, and select the bucket icon in the tool bar. Then, click
on the map, and you will see the ground painted with the same tile.

6.	 You can arrange the tiles on the map. Select the tile in the lower right pane and
select the stamp icon in the tool bar. Then, click on the map. That's how you can
put the tile on the map.

Chapter 10

187

7.	 After you have finished arranging the map, you need to save it as a new file. Go to File
| Save as… in the menu and save the new file that you made. To use Cococs2d-x, you
have to add the tmx file and tileset image file into the Resources/res folder in your
project. In this recipe, we added desert.tmx and tmw_desert_spacing.png in
Tiled's example folder.

Improving Games with Extra Features

188

8.	 From now on, you have to work in Xcode. Edit the HelloWorld::init method as
shown in the following code:
bool HelloWorld::init()
{
 if (!Layer::init())
 {
 return false;
 }
 Vec2 origin = Director::getInstance()-
 >getVisibleOrigin();
 _map = TMXTiledMap::create("res/desert.tmx");
 _map->setPosition(Vec2()+origin);
 this->addChild(_map);

 return true;
}

9.	 After building and running, you can see the following image on the simulator
or devices:

Chapter 10

189

How it works...
The files that Tiled map needs are the tmx file and tileset image file. That's why you have to
add these files into your project. You can see the Tiled map object using the TMXTiledMap
class. You have to specify the tmx file path to the TMXTiledMap::create method.
The TMXTiledMap object is Node. You can see the tiled map only when you add the
TMXTiledMap object using the addChild method.

_map = TMXTiledMap::create("res/desert.tmx");
_map->setPosition(Vec2()+origin);
this->addChild(_map);

TMXTileMap object's anchor position is Vec2(0,0). The normal
node's anchor position is Vec2(0.5f, 0.5f).

There's more…
The tiled map is huge. So, we try to move the map by scrolling it. In this case, you touch the
screen and scroll the map by the distance from the touching point to the center of the screen.

1.	 Add the following code in the HelloWorld::init method:
auto touchListener = EventListenerTouchOneByOne::create();
touchListener->onTouchBegan =
CC_CALLBACK_2(HelloWorld::onTouchBegan, this);
touchListener->onTouchEnded =
CC_CALLBACK_2(HelloWorld::onTouchEnded, this);
_eventDispatcher-
>addEventListenerWithSceneGraphPriority(touchListener,
this);

2.	 Define the touch method and some properties in HelloWorldScene.h as shown
in the following code:
bool onTouchBegan(cocos2d::Touch* touch, cocos2d::Event*
event);
void onTouchEnded(cocos2d::Touch* touch, cocos2d::Event*
event);
void update(float dt);
cocos2d::Vec2 _location;
cocos2d::TMXTiledMap* _map;

Improving Games with Extra Features

190

3.	 Add the touch method in HelloWorldScene.cpp as shown in the following code:
bool HelloWorld::onTouchBegan(Touch* touch, Event* event)
{
 return true;
}

void HelloWorld::onTouchEnded(Touch* touch, Event* event)
{
 auto size = Director::getInstance()->getVisibleSize();
 auto origin = Director::getInstance()-
 >getVisibleOrigin();
 auto center = Vec2(size/2)+origin;
 _location = touch->getLocation() - center;
 _location.x = floorf(_location.x);
 _location.y = floorf(_location.y);
 this->scheduleUpdate();
}

4.	 Finally, add the update method in HelloWorldScene.cpp as shown in the
following code:
void HelloWorld::update(float dt)
{
 auto mapSize = _map->getContentSize();
 auto winSize = Director::getInstance()-
 >getVisibleSize();
 auto origin = Director::getInstance()-
 >getVisibleOrigin();

 auto currentLocation = _map->getPosition();
 if (_location.x > 0) {
 currentLocation.x--;
 _location.x--;
 } else if (_location.x < 0) {
 currentLocation.x++;
 _location.x++;
 }
 if (_location.y > 0) {
 currentLocation.y--;
 _location.y--;
 } else if (_location.y < 0) {
 currentLocation.y++;
 _location.y++;
 }

Chapter 10

191

 if (currentLocation.x > origin.x) {
 currentLocation.x = origin.x;
 } else if (currentLocation.x < winSize.width + origin.x
 - mapSize.width) {
 currentLocation.x = winSize.width + origin.x -
 mapSize.width;
 }
 if (currentLocation.y > origin.y) {
 currentLocation.y = origin.y;
 } else if (currentLocation.y < winSize.height + origin.y
 - mapSize.height) {
 currentLocation.y = winSize.height + origin.y -
 mapSize.height;
 }

 _map->setPosition(currentLocation);
 if (fabsf(_location.x)<1.0f && fabsf(_location.y)<1.0f) {
 this->unscheduleUpdate();
 }
}

After that, run this project and touch the screen. This is how you can move the map in the
direction that you swipe.

Getting the property of the object in the
tiled map

Now, you can move the Tiled map. However, you might notice the object on the map. For
example, if there is a wood or wall in the direction of movement, you can't move in that
direction beyond that object. In this recipe, you will notice the object on the map by getting
the property of it.

Getting ready
In this recipe, you will make a new property of the tree object and set a value to it.

1.	 Launch the Tiled application and reopen the desert.tmx file.

2.	 Select the tree object in the Tilesets window.

3.	 Add a new property by clicking on the plus icon in the lower left corner in the
Properties window. Then, a window will pop up specifying the property's name.
Enter isTree in the text area.

Improving Games with Extra Features

192

4.	 After you name the new property, it will be shown in the properties list. However, you
will find that its value is empty. So, you have to set the new value to it. In this case,
you need to set a true value as shown in the following image:

5.	 Save it and update desert.tmx in your project.

How to do it...
In this recipe, you will get the property of the object that you touched.

1.	 Edit the HelloWorld::init method to show the tiled map and add the event
listener for touching.
bool HelloWorld::init()
{
 if (!Layer::init())
 {
 return false;
 }
 Vec2 origin = Director::getInstance()->getVisibleOrigin();
 _map = TMXTiledMap::create("res/desert.tmx");
 _map->setPosition(Vec2()+origin);
 this->addChild(_map);

 auto touchListener = EventListenerTouchOneByOne::create();
 touchListener->onTouchBegan =
CC_CALLBACK_2(HelloWorld::onTouchBegan, this);
 _eventDispatcher-
>addEventListenerWithSceneGraphPriority(touchListener, this);

 return true;
}

Chapter 10

193

2.	 Add the HelloWorld::getTilePosition method. You can get the tile's grid
row/column position if you called this method by specifying the touch position.
Vec2 HelloWorld::getTilePosition(Vec2 point)
{
 auto mapContentSize = _map->getContentSize();
 auto tilePoint = point - _map->getPosition();
 auto tileSize = _map->getTileSize();
 auto mapRowCol = _map->getMapSize();
 auto scale = mapContentSize.width / (mapRowCol.width *
tileSize.width);
 tilePoint.x = floorf(tilePoint.x / (tileSize.width * scale));
 tilePoint.y = floorf((mapContentSize.height -
tilePoint.y)/(tileSize.height*scale));
 return tilePoint;
}

3.	 Finally, you can get the properties of the object that you touch. Add the
HelloWorld::onTouchBegan method as shown in the following code:

bool HelloWorld::onTouchBegan(Touch* touch, Event* event)
{
 auto touchPoint = touch->getLocation();
 auto tilePoint = this->getTilePosition(touchPoint);
 TMXLayer* groundLayer = _map->getLayer("Ground");
 int gid = groundLayer->getTileGIDAt(tilePoint);
 if (gid!=0) {
 auto properties = _map-
>getPropertiesForGID(gid).asValueMap();
 if (properties.find("isTree")!=properties.end()) {
 if(properties.at("isTree").asBool()) {
 CCLOG("it's tree!");
 }
 }
 }
 return true;
}

Let's build and run this project. If you touched the tree to which you set the new isTree
property, you can see it's tree! in the log.

Improving Games with Extra Features

194

How it works...
There are two points in this recipe. The first point is getting the tile's row/column position on
the tiled map. The second point is getting the properties of the object on the tiled map.

Firstly, let's explain how to get the tiles' row/column position on the tiled map.

1.	 Get the map size using the TMXTiledMap::getContentSize method.
auto mapContentSize = _map->getContentSize();

2.	 Calculate the point on the map from the touching point and map position.
auto tilePoint = point - _map->getPosition();

3.	 Get the tile size using the TMXTiledMap::getTileSize method.
auto tileSize = _map->getTileSize();

4.	 Get the row/column of the tile in the map using the TMXTiledMap::getMapSize
method.
auto mapRowCol = _map->getMapSize();

5.	 Get the magnification display using the original size called mapContentSize and
real size calculated by the column's width and tile's width.
auto scale = mapContentSize.width / (mapRowCol.width * tileSize.
width);

6.	 The origin of coordinates for the tiles is located in the upper left corner. That's why
the tile's row/column position of the tile that you touched is calculated using the tile's
size, the row, and magnification display as shown in the following code:
tilePoint.x = floorf(tilePoint.x / (tileSize.width * scale));
tilePoint.y = floorf((mapContentSize.height -
tilePoint.y)/(tileSize.height*scale));

tilePoint.x is the column position and tilePoint.y is row position.

Next, let's take a look at how to get the properties of the object on the Tiled map.

1.	 Get the row/column position of the tile that you touched using the touching point.
auto touchPoint = touch->getLocation();
auto tilePoint = this->getTilePosition(touchPoint);

2.	 Get the layer called "Ground" from the tiled map.
TMXLayer* groundLayer = _map->getLayer("Ground");

3.	 There are the objects on this layer called Ground. Get the TileGID from this layer
using row/column of the tile.
int gid = groundLayer->getTileGIDAt(tilePoint);

Chapter 10

195

4.	 Finally, get the properties as ValueMap from the map using the
TMXTiledMap::getPropertiesForGID method. Then, get the isTree
property's value from them as shown in the following code:

auto properties = _map->getPropertiesForGID(gid).asValueMap();
if (properties.find("isTree")!=properties.end()) {
 if(properties.at("isTree").asBool()) {
 CCLOG("it's tree!");
 }
}

In this recipe, we showed only the log. However, in your real game, you will add the point to the
object, explosions and so on.

Using Physics Editor
In Chapter 9, Controlling Physics, you learned about Physics Engine. We can create physics
bodies to use Cocos2d-x API. However, we can only create a circle shape or a box shape.
Actually, you have to use complex shapes in real games. In this recipe, you will learn how to
create a lot of shapes using Physics Editor.

Getting ready
Physics Editor is created by the same company that created Texture Packer. Physics Editor is a
paid application. But you can use a free trial version. If you don't have it, you can download it
by visiting the https://www.codeandweb.com/physicseditor

Here, you prepare the image to use this tool. Here, we will use the following image that is
similar to a gear. This image's name is gear.png.

https://www.codeandweb.com/physicseditor

Improving Games with Extra Features

196

How to do it...
First of all, you will create a physics file to use Physics Editor.

1.	 Launch Physics Editor. Then, drag the image gear.png to the left pane.

2.	 Click on the shaper tracer icon that is the third icon from the left in the tool bar. The
shaper tracer icon is shown in the following image:

3.	 After this, you can see the pop-up window as shown in the following image:

Chapter 10

197

You can change the Tolerance value. If the Vertexes value is too big, the renderer is
slow. So you set the suitable Vertexes value to change the Tolerance value. Finally,
click on the OK button. You will see the following:

Improving Games with Extra Features

198

4.	 Select Cocos2d-x in Exporter. In this tool, the anchor point's default value is
Vec2(0,0). In Cocos2d-x, the anchor point's default is Vec2(0.5f, 0.5f). So you
should change the anchor point to the center as shown in the following screenshot:

5.	 Check the checkboxes for Category, Collision, and Contact. You need to scroll down
to see this window in the right pane. You can check all the checkboxes and click all
buttons that are in the bottom of the right pane.

6.	 Publish the plist file to use this shape in Cocos2d-x. Click on the Publish button
and save as the previous name.

7.	 You can see the Download loader code link under the Exporter selector. Click on the
link. After this, open the browser and browse to the github page. Cocos2d-x cannot
load Physics Editor's plist. However, the loader code is provided in github. So you
have to clone this project and add the codes in the Cocos2d-x folder in the project.

Chapter 10

199

Next, you will write code to create the physics bodies by using the Physics Editor data. In this
case, the gear object will appear at the touching point.

1.	 Include the file PhysicsShapeCache.h.
#include "PhysicsShapeCache.h"

2.	 Create a scene with the physics world as shown in the following code:
Scene* HelloWorld::createScene()
{
 auto scene = Scene::createWithPhysics();
 auto layer = HelloWorld::create();
 PhysicsWorld* world = scene->getPhysicsWorld();
 world->setDebugDrawMask(PhysicsWorld::DEBUGDRAW_ALL);
 scene->addChild(layer);
 return scene;
}

3.	 Create a wall of the same screen size in the scene and add the touching event
listener. Then, load the Physics Editor's data as shown in the following code:
bool HelloWorld::init()
{
 if (!Layer::init())
 {
 return false;
 }

 Size visibleSize = Director::getInstance()->getVisibleSize();
 Vec2 origin = Director::getInstance()->getVisibleOrigin();

 auto wall = Node::create();
 auto wallBody = PhysicsBody::createEdgeBox(visibleSize,
 PhysicsMaterial(0.1f, 1.0f, 0.0f));
 wallBody->setContactTestBitmask(true);
 wall->setPhysicsBody(wallBody);
 wall->setPosition(Vec2(visibleSize/2)+origin);
 this->addChild(wall);

 auto touchListener = EventListenerTouchOneByOne::create();
 touchListener->onTouchBegan =
 CC_CALLBACK_2(HelloWorld::onTouchBegan, this);
 _eventDispatcher-
 >addEventListenerWithSceneGraphPriority(touchListener, this);

Improving Games with Extra Features

200

 PhysicsShapeCache::getInstance()-
 >addShapesWithFile("res/gear.plist");

 return true;
}

4.	 Make the gear objects perform when touching the screen as shown in the
following code:
bool HelloWorld::onTouchBegan(Touch* touch, Event* event)
{
 auto touchPoint = touch->getLocation();
 auto body = PhysicsShapeCache::getInstance()-
 >createBodyWithName("gear");
 auto sprite = Sprite::create("res/gear.png");
 sprite->setPhysicsBody(body);
 sprite->setPosition(touchPoint);
 this->addChild(sprite);
 return true;
}

5.	 After this, build and run this project. After touching the screen, the gear objects
appear at the touching point.

Chapter 10

201

How it works...
1.	 Firstly, you have to add two files, plist and image. Physics body is defined in the

plist file that you published with Physics Editor. However, you use the gear image
to create a sprite. Therefore, you have to add the plist file and gear.png into
your project.

2.	 Cocos2d-x cannot read Physics Editor's data. Therefore, you have to add the loader
class that is provided in github.

3.	 To use the Physics Engine, you have to create a scene with Physics World and you
should set the debug draw mode to easy, to better understand physics bodies.
auto scene = Scene::createWithPhysics();
auto layer = HelloWorld::create();
PhysicsWorld* world = scene->getPhysicsWorld();
world->setDebugDrawMask(PhysicsWorld::DEBUGDRAW_ALL);

4.	 Without border or walls, the physics objects will drop out of the screen. So you have to
put up a wall that is the same size as the screen.
auto wall = Node::create();
auto wallBody = PhysicsBody::createEdgeBox(visibleSize,
PhysicsMaterial(0.1f, 1.0f, 0.0f));
wallBody->setContactTestBitmask(true);
wall->setPhysicsBody(wallBody);
wall->setPosition(Vec2(visibleSize/2)+origin);
this->addChild(wall);

5.	 Load the physics data's plist that was created by Physics Editor. The
PhysicsShapeCache will load the plist at once. After that, the physics data is
cached in the PhysicsShapeCache class.
PhysicsShapeCache::getInstance()-
>addShapesWithFile("res/gear.plist");

6.	 In the HelloWorld::onTouchBegan method, create the gear object at the
touching point. You can create physics body using the
PhysicsShapeCache::createBodyWithName method with physics object data.
auto body = PhysicsShapeCache::getInstance()-
>createBodyWithName("gear");

Improving Games with Extra Features

202

Using Glyph Designer
In games, you have to use text frequently. In which case, if you used the system font to display
the text, you will have some problems. That's why there are different fonts for each device. The
bitmap fonts are faster to render than the TTF fonts. So, Cocos2d-x uses the bitmap font to
display the fps information in the bottom-left corner. Therefore, you should add the bitmap font
into your game to display the text. In this recipe, you will learn how to use Glyph Designer which
is the tool to make the original bitmap font and how to use the bitmap font in Cocos2d-x.

Getting ready
Glyph Designer is a paid application. But you can use a free trial version. If you don't have it,
you can download it by visiting the following URL:

https://71squared.com/glyphdesigner

Next, we will find a free font that fits your game's atmosphere. In this case, we will use the font
called Arcade from the dafont site (http://www.dafont.com/arcade-ya.font). After
downloading it, you need to install it to your computer.

On the dafont site, there are a lot of fonts. However, the font license is different for each font.
If you used the font, you need to check its license.

How to do it...
In this section, you will learn how to use Glyph Designer.

1.	 Launch Glyph Designer. In the left pane, there are all the fonts that are installed on
your computer. You can choose the font that you want to use in your game from there.
Here we will use Arcade font that you downloaded a short time ago. If you didn't
install it yet, you can load it. To load the font, you have to click on the Load Font
button in the tool bar.

https://71squared.com/glyphdesigner
http://www.dafont.com/arcade-ya.font

Chapter 10

203

2.	 After selecting or loading the font, it is displayed in the center pane. If your game used a
part of the font, you have to hold the characters that you need to save memory and the
application capacity. To select the characters, you can use the Include Glyphs window
in the right pane. You need to scroll down to see this window in the right pane.

Improving Games with Extra Features

204

3.	 The others, you can specify the size, color, and shadow. In the font color option, you
can set a gradient.

4.	 Finally, you can create an original font by clicking on the Export icon on the right
side of the tool bar.

5.	 After exporting, you will have the two files that have the extension of .fnt and .png.

How it works...
The bitmap font has two files, .fnt and .png. These files are paired for use in the bitmap
font. Now, you will learn how to use bitmap fonts in Cocos2d-x.

1.	 You have to add the font that were created in Glyph Designer, into the
Resources/font folder in your project.

2.	 Add the following code to display "Cocos2d-x" in your game.
auto label = Label::createWithBMFont("fonts/arcade.fnt",
"Cocos2d-x");
label->setPosition(Vec2(visibleSize/2)+origin);
this->addChild(label);

3.	 After building and running your project, you will see the following:

Chapter 10

205

There's more…
Some fonts aren't monospaced. The true type font is good enough for use in a word-processor.
However, the monospaced font is more attractive. For example, the point character needs to
use the monospaced font. When you want to make the monospaced font into a
non-monospaced font, you can go through the following steps:

1.	 Check the checkbox named Fixed Width in Texture Atlas in right pane.

2.	 Preview your font and click on the Preview icon in the tool bar. Then, you can check
the characters that you want to check in the textbox.

3.	 If you want to change the character spacing, then you need to change the number
next to the checkbox of Fixed Width.

Chapter 11

207

11
Taking Advantages

The following topics will be covered in this chapter:

ff Using encrypted sprite sheets

ff Using encrypted zip files

ff Using encrypted SQLite files

ff Creating Observer Pattern

ff Networking with HTTP

Introduction
Until now, we have explained basic technical information in Cocos2d-x. It supports the
development of games on a smartphone. Actually, you can create your original games
using basic functions of Cocos2d-x. However, if your game is a major hit, cheaters might
attempt to crack the code. Therefore, there are cases where encryption is needed to
prevent unauthorized access to your game data. Encryption is an important aspect in
game development because it helps you to protect your code and prevent people from ruining
the overall experience of the game, and it also prevents illegal hacking of game. In this
chapter, you will learn how to encrypt your game resources.

Using encrypted sprite sheets
It is pretty easy for a hacker to extract resource files from the application. This is a huge
concern for copyright. Sprite sheets can be encrypted very easily using TexturePacker.
In this recipe, you will learn how to encrypt your sprites to protect them from hackers
and cheaters.

Taking Advantages

208

How to do it...
To encrypt sprite sheets using TexturePacker, you need to set it on the left pane of
TexturePacker. Then, you need to follow the steps written here to successfully encrypt
your sprite.

1.	 Change the Texture format to zlib compr. PVR(.pvr.ccz, Ver.2)

2.	 Click on the ContentProtection icon, and you will see the additional window in which
to set the password.

3.	 Type the encryption key in the text input area as shown in the following screenshot.
You can type in your favorite key. However, it is difficult to type in 32 hex digits and
thus, you can just click on the Create new key button. After clicking it, you will find
that it automatically inputs the Encryption key.

4.	 Take a note of this encryption key. This is the key you will need to decrypt the files
that are encrypted.

5.	 Finally, you can publish the encrypted sprite sheet.

Chapter 11

209

How it works...
Now, let's have a look on how to use these encrypted sprite sheets.

1.	 Add the encrypted sprite sheet to your project as shown in the following image:

2.	 Include the ZipUtils class in HelloWorld.cpp to decrypt.
#include "ZipUtils.h"

3.	 Set the encrypting key that is used for encryption by TexturePacker.
ZipUtils::setPvrEncryptionKey
 (0x5f2c492e, 0x635eaaf8, 0xe5a4ee49, 0x32ffe0cf);

4.	 Finally, the sprite is created using the encrypted sprite sheet.

Size visibleSize = Director::getInstance()-
>getVisibleSize();
Vec2 origin = Director::getInstance()->getVisibleOrigin();

SpriteFrameCache::getInstance()-
>addSpriteFramesWithFile("res/encrypted.plist");
auto sprite =
Sprite::createWithSpriteFrameName("run_01.png");
sprite->setPosition(Vec2(visibleSize/2)+origin);
this->addChild(sprite);

Taking Advantages

210

There's more…
The application has a lot of sprite sheets normally. You can use each encryption key per sprite
sheet. But this might create some confusion. You need to use the same key in all the sprite
sheets in your application. The first time, you need to click on the Create new key button to
create the encryption key. Then, you need to click on the Save as global key button to save
the encryption key as the global key. Next time, when you create a new encrypted sprite sheet,
you can set this encryption key as a global key by clicking on the Use global key button.

Now, we will move on to understanding how to check the encrypted sprite sheets. The
encrypted sprite sheet's extension is .ccz.

1.	 Double-click the encrypted file that has the .ccz extension.

2.	 Launch Texture Packer and you will see the window where you need to enter the
decryption key, as shown in the following screenshot:

3.	 Enter the decryption key or click on the Use global key button. If you have saved the
key as the global key, then click on the OK button.

4.	 If the key is the correct key, you will see the sprite sheet as shown in the preceding
screenshot:

Using encrypted zip files
In a smartphone, the game frequently downloads a zip file from the server to update
resources. These assets are generally the main targets for hackers. They can decode these
assets to manipulate information in a game system. Hence, security for these assets is very
important. In this case, zip is encrypted to protect against cheaters. In this recipe, you will
learn how to unzip an encrypted zip file with a password.

Chapter 11

211

Getting ready
Cocos2d-x has an unzip library. However, encryption/decryption is disabled in this
library. That's why we have to enable the crypt option in unzip.cpp. This file's path is
cocos2d/external/unzip/unzip.cpp. You will have to comment out line number
71 of unzip.cpp to enable the crypt option.

//#ifndef NOUNCRYPT
// #define NOUNCRYPT
//#endif

When we tried to build in Cocos2d-x version 3.7, an error occurred in unzip.h in line 46, as
shown in the following code:

#include "CCPlatformDefine.h"

You have to edit the following code to remove this error, as shown:

#include "platform/CCPlatformDefine.h"

How to do it...
First, include the unzip.h file to use the unzip library in HelloWorld.cpp as shown in the
following code:

#include "external/unzip/unzip.h"

Next, let's try to unzip the encrypted zip file with the password. This can be done by adding the
following code in HelloWorld.cpp:

#define BUFFER_SIZE 8192
#define MAX_FILENAME 512

bool HelloWorld::uncompress(const char* password)
{
 // Open the zip file
 std::string outFileName = FileUtils::getInstance()-
 >fullPathForFilename("encrypt.zip");
 unzFile zipfile = unzOpen(outFileName.c_str());
 int ret = unzOpenCurrentFilePassword(zipfile, password);
 if (ret!=UNZ_OK) {
 CCLOG("can not open zip file %s", outFileName.c_str());
 return false;
 }

 // Get info about the zip file
 unz_global_info global_info;

Taking Advantages

212

 if (unzGetGlobalInfo(zipfile, &global_info) != UNZ_OK) {
 CCLOG("can not read file global info of %s",
 outFileName.c_str());
 unzClose(zipfile);
 return false;
 }

 CCLOG("start uncompressing");

 // Loop to extract all files.
 uLong i;
 for (i = 0; i < global_info.number_entry; ++i) {
 // Get info about current file.
 unz_file_info fileInfo;
 char fileName[MAX_FILENAME];
 if (unzGetCurrentFileInfo(zipfile, &fileInfo, fileName,
 MAX_FILENAME, nullptr, 0, nullptr, 0) != UNZ_OK) {
 CCLOG("can not read file info");
 unzClose(zipfile);
 return false;
 }

 CCLOG("filename = %s", fileName);

 unzCloseCurrentFile(zipfile);

 // Goto next entry listed in the zip file.
 if ((i+1) < global_info.number_entry) {
 if (unzGoToNextFile(zipfile) != UNZ_OK) {
 CCLOG("can not read next file");
 unzClose(zipfile);
 return false;
 }
 }
 }

 CCLOG("end uncompressing");
 unzClose(zipfile);

 return true;
}

Chapter 11

213

Finally, you can unzip the encrypted zip file to use this method by specifying the password. If
the password is cocos2d-x, you can unzip with the following code:

this->uncompress("cocos2d-x");

How it works...
1.	 Open the encrypted zip file using the unzOpen function, as shown:

unzFile zipfile = unzOpen(outFileName.c_str());

2.	 After opening it with the unzOpen function, open it again using the
unzOpenCurrentFilePassword function, as shown here:
int ret = unzOpenCurrentFilePassword(zipfile, password);
if (ret!=UNZ_OK) {
 CCLOG("can not open zip file %s", outFileName.c_str());
 return false;
}

3.	 After that, you can continue in the same way that is used to unzip an unencrypted
zip file.

Using encrypted SQLite files
We often use SQLite to save the user data or game data. SQLite is a powerful and useful
database. However, there is a database file in your game's sand box. Cheaters will get it from
your game and they will edit it to cheat. In this recipe, you will learn how to encrypt your SQLite
and prevent cheaters from editing it.

Getting ready
We will use the wxSqlite library to encrypt SQLite. This is free software. Firstly, you need to
install wxSqlite in Cocos2d-x and edit some code and set files in Cocos2d-x.

1.	 Download the wxSqlite3 project's zip file. Visit the following url: http://
sourceforge.net/projects/wxcode/files/Components/wxSQLite3/
wxsqlite3-3.1.1.zip/download

2.	 Expand the zip file.

3.	 Create a new folder called wxsqlite under cocos2d/external.

http://sourceforge.net/projects/wxcode/files/Components/wxSQLite3/wxsqlite3-3.1.1.zip/download
http://sourceforge.net/projects/wxcode/files/Components/wxSQLite3/wxsqlite3-3.1.1.zip/download
http://sourceforge.net/projects/wxcode/files/Components/wxSQLite3/wxsqlite3-3.1.1.zip/download

Taking Advantages

214

4.	 Copy sqlite3/secure/src after expanding the folder to cocos2d/external/
wxsqlite as shown in the following screenshot:

5.	 Add sqlite3.h and sqlite3secure.c in wxsqlite/src that you added in step
4 to your project, as shown in the following screenshot:

6.	 Add -DSQLITE_HAS_CODEC to Other C Flags in Build Settings of Xcode, as
shown in the following screenshot:

7.	 Create a new file called Android.mk in cocos2d/external/wxsqlite, as shown
in the following code:
LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)
LOCAL_MODULE := wxsqlite3_static
LOCAL_MODULE_FILENAME := libwxsqlite3

Chapter 11

215

LOCAL_CFLAGS += -DSQLITE_HAS_CODEC
LOCAL_SRC_FILES := src/sqlite3secure.c
LOCAL_EXPORT_C_INCLUDES := $(LOCAL_PATH)/src
LOCAL_C_INCLUDES := $(LOCAL_PATH)/src
include $(BUILD_STATIC_LIBRARY)

8.	 Edit Android.mk in cocos2d/cocos/storage/local-storage, as shown in the
following code:
LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)

LOCAL_MODULE := cocos_localstorage_static

LOCAL_MODULE_FILENAME := liblocalstorage

LOCAL_SRC_FILES := LocalStorage.cpp

LOCAL_EXPORT_C_INCLUDES := $(LOCAL_PATH)/..

LOCAL_C_INCLUDES := $(LOCAL_PATH)/../..

LOCAL_CFLAGS += -Wno-psabi
LOCAL_CFLAGS += -DSQLITE_HAS_CODEC
LOCAL_EXPORT_CFLAGS += -Wno-psabi

LOCAL_WHOLE_STATIC_LIBRARIES := cocos2dx_internal_static
LOCAL_WHOLE_STATIC_LIBRARIES += wxsqlite3_static

include $(BUILD_STATIC_LIBRARY)

$(call import-module,.)

9.	 Edit LocalStorage.cpp in cocos2d/cocos/storage/local-storage.
Comment out line 33 and line 180, as shown in the following code.

LocalStorage.cpp line33:
//#if (CC_TARGET_PLATFORM != CC_PLATFORM_ANDROID)

LocalStorage.cpp line180:

//#endif // #if (CC_TARGET_PLATFORM != CC_PLATFORM_ANDROID)

Taking Advantages

216

10.	 Edit Android.mk in proj.andorid/jni, as shown in the following code:

LOCAL_SRC_FILES := hellocpp/main.cpp \
 ../../Classes/AppDelegate.cpp \
 ../../Classes/HelloWorldScene.cpp \
 ../../cocos2d/external/wxsqlite/src/
sqlite3secure.c

LOCAL_C_INCLUDES := $(LOCAL_PATH)/../../Classes
LOCAL_C_INCLUDES += $(LOCAL_PATH)/../../cocos2d/external/wxsqlite/
src/
LOCAL_CFLAGS += -DSQLITE_HAS_CODEC

After this, SQLite is encrypted and can be used in your project.

How to do it...
1.	 You have to include sqlite3.h to use SQLite APIs.

#include "sqlite3.h"

2.	 Create the encrypted database, as shown in the following code:
std::string dbname = "data.db";
std::string path = FileUtils::getInstance()->getWritablePath() +
dbname;
CCLOG("%s", path.c_str());

sqlite3 *database = nullptr;
if ((sqlite3_open(path.c_str(), &database) != SQLITE_OK)) {
 sqlite3_close(database);
 CCLOG("open error");
} else {
 const char* key = "pass_phrase";
 sqlite3_key(database, key, (int)strlen(key));

 // sql: create table
 char create_sql[] = "CREATE TABLE sample ("
 " id INTEGER PRIMARY KEY, "
 " key TEXT NOT NULL, "
 " value INTEGER NOT NULL "
 ") ";

 // create table
 sqlite3_exec(database, create_sql, 0, 0, NULL);

Chapter 11

217

 // insert data
 char insert_sql[] = "INSERT INTO sample (id, key, value)"
 " values (%d, '%s', '%d') ";

 char insert_record[3][256];
 sprintf(insert_record[0],insert_sql,0,"test",300);
 sprintf(insert_record[1],insert_sql,1,"hoge",100);
 sprintf(insert_record[2],insert_sql,2,"foo",200);

 for(int i = 0; i < 3; i++) {
 sqlite3_exec(database, insert_record[i], 0, 0, NULL);
 }

 sqlite3_reset(stmt);
 sqlite3_finalize(stmt);
 sqlite3_close(database);
}

3.	 Select the data from the encrypted database, as shown in the following code:

std::string dbname = "data.db";
std::string path = FileUtils::getInstance()->getWritablePath() +
dbname;
CCLOG("%s", path.c_str());

sqlite3 *database = nullptr;
if ((sqlite3_open(path.c_str(), &database) != SQLITE_OK)) {
 sqlite3_close(database);
 CCLOG("open error");
} else {
 const char* key = "pass_phrase";
 sqlite3_key(database, key, (int)strlen(key));

 // select data
 sqlite3_stmt *stmt = nullptr;

 std::string sql = "SELECT value FROM sample WHERE key='test'";
 if (sqlite3_prepare_v2(database, sql.c_str(), -1, &stmt, NULL)
== SQLITE_OK) {
 if (sqlite3_step(stmt) == SQLITE_ROW) {
 int value = sqlite3_column_int(stmt, 0);
 CCLOG("value = %d", value);
 } else {
 CCLOG("error , error=%s", sqlite3_errmsg(database));
 }

Taking Advantages

218

 }

 sqlite3_reset(stmt);
 sqlite3_finalize(stmt);
 sqlite3_close(database);
}

How it works...
Firstly, you have to create the encrypted database with the pass phrase. To create it, follow
these three steps:

1.	 Open the database normally.

2.	 Next, set the pass phrase using the sqlite3_key function.
const char* key = "pass_phrase";
sqlite3_key(database, key, (int)strlen(key));

3.	 Finally, execute sql to create tables.

After this, you will need the encrypted database file in the application. You can get it from the
path that was printed by CCLOG.

To select data from there, the same method is used. You can get data from the encrypted
database using the same pass phrase after opening the database.

There's more…
You must be wondering whether this database was really encrypted. So let's check it. Open
the database using the command line and executing the command as shown:

$ sqlite3 data.db

SQLite version 3.8.4.3 2014-04-03 16:53:12

Enter ".help" for usage hints.

sqlite> .schema

Error: file is encrypted or is not a database

sqlite>

If the database is encrypted, you will not be able to open it and an error message will pop up,
as shown:

"file is encrypted or is not a database".

Chapter 11

219

Creating Observer Pattern
Event Dispatcher is a mechanism for responding to events such as touching screen, keyboard
events and custom events. You can get an event using Event Dispatcher. In addition, you can
create Observer Pattern in the design patterns using it. In this recipe, you will learn how
to use Event Dispatcher and how to create Observer Pattern in Cocos2d-x.

Getting ready
Firstly, we will go through the details of Observer Pattern. Observer Pattern is a design pattern.
When an event occurs, Observer notifies the event about the subjects that are registered in
Observer. It is mainly used to implement distributed event handling. Observer Pattern is also a
key part in the MVC architecture.

Taking Advantages

220

How to do it...
We will create a count up label per second in this recipe. When touching a screen, count up
labels are created in this position, and then, count up per second using Observer Pattern.

1.	 Create Count class that is extended Label class as shown in the following code:
Count.h
class Count : public cocos2d::Label
{
private:
 int _count;
 void countUp(float dt);
public:
 ~Count();
 virtual bool init();
 CREATE_FUNC(Count);
};
Count.cpp
Count::~Count()
{
 this->getEventDispatcher()-
>removeCustomEventListeners("TimeCount");
}

bool Count::init()
{
 if (!Label::init()) {
 return false;
 }

 _count = 0;

 this->setString("0");
 this->setFontScale(2.0f);

 this->getEventDispatcher()-
>addCustomEventListener("TimeCount", [=](EventCustom*
event) {
 this->countUp(0);
 });

 return true;

}

Chapter 11

221

void Count::countUp(float dt)
{
 _count++;
 this->setString(StringUtils::format("%d", _count));
}

2.	 Next, when touching a screen, this label will be created at the touching position and
will call the HelloWorld::countUp method per second using a scheduler as the
following code in HelloWorld.cpp:
bool HelloWorld::init()
{
 if (!Layer::init())
 {
 return false;
 }

 auto listener = EventListenerTouchOneByOne::create();
 listener->setSwallowTouches(_swallowsTouches);
 listener->onTouchBegan =
 C_CALLBACK_2(HelloWorld::onTouchBegan, this);
 this->getEventDispatcher()-
 >addEventListenerWithSceneGraphPriority(listener,
 this);

 this->schedule(schedule_selector(HelloWorld::countUp),
1.0f);

 return true;
}

bool HelloWorld::onTouchBegan(cocos2d::Touch *touch,
cocos2d::Event *unused_event)
{
 auto countLabel = Count::create();
 this->addChild(countLabel);
 countLabel->setPosition(touch->getLocation());

 return true;
}

void HelloWorld::countUp(float dt)
{
 this->getEventDispatcher()-
>dispatchCustomEvent("TimeCount");
}

Taking Advantages

222

3.	 After building and running this project, when you touch the screen, it will create a
count up label at the touching position, and then you will see that the labels are
counting up per second at the same time.

How it works...
1.	 Add the custom event called TimeCount. If TimeCount event occurred, then the

Count::countUp method is called.
this->getEventDispatcher()-
>addCustomEventListener("TimeCount", [=](EventCustom*
event) {
 this->countUp(0);
});

2.	 Don't forget that you need to remove the custom event from EventDispatcher
when the instance of the Count class is removed. If you forget to do that, then the
zombie instance will be called from EventDispatcher when the event occurs and
your game will crash.
this->getEventDispatcher()-
>removeCustomEventListeners("TimeCount");

3.	 In HelloWorld.cpp, call the HelloWorld::countUp method using the scheduler.
The HelloWorld::countUp method calls the custom event called TimeOut.
this->getEventDispatcher()-
>dispatchCustomEvent("TimeCount");

And then, EventDispatcher will notify this event to the listed subjects. In this case,
the Count::countUp method is called.

void Count::countUp(float dt)
{
 _count++;
 this->setString(StringUtils::format("%d", _count));
}

There's more…
Using EventDispatcher, labels count up at the same time. If you use Scheduler instead of
EventDispatcher, you will notice something different.

Change the Count::init method as shown in the following code:

bool Count::init()
{
 if (!Label::init()) {

Chapter 11

223

 return false;
 }

 _count = 0;

 this->setString("0");
 this->setFontScale(2.0f);
 this->schedule(schedule_selector(Count::countUp), 1.0f);

 return true;
}

In this code, use a scheduler by calling the Count::countUp method per second. You can
see that the labels are not counting up at the same time in this way. Each label is counting up
per second, however not at the same time. Using Observer Pattern, a lot of subjects can be
called at the same time.

Networking with HTTP
In recent smartphone games, we normally use an Internet network to update data, download
resources, and so on. There aren't any games developed without networking. In this recipe,
you will learn how to use networking to download resources.

Getting ready
You have to include the header file of network/HttpClient to use networking.

 #include "network/HttpClient.h"

If you run it on Android devices, you need to edit proj.android/AndroidManifest.xml.

<user-permission android:name="android.permission.INTERNET" />

How to do it...
In the following code, we will get the response from http://google.com/ and then, print
the response data as a log.

auto request = new network::HttpRequest();
request->setUrl("http://google.com/ ");
request->setRequestType(network::HttpRequest::Type::GET);
request->setResponseCallback([](network::HttpClient* sender,
network::HttpResponse* response){
 if (!response->isSucceed()) {
 CCLOG("error");

http://google.com/

Taking Advantages

224

 return;
 }

 std::vector<char>* buffer = response->getResponseData();
 for (unsigned int i = 0; i <buffer-> size (); i ++) {
 printf("%c", (* buffer)[i]);
 }
 printf("\n");
});

network::HttpClient::getInstance()->send(request);
request->release();

How it works...
1.	 Firstly, create an HttpRequest instance. The HttpRequest class does not have a

create method. That's why you use new for creating the instance.
auto request = new network::HttpRequest();

2.	 Specify URL and the request type. In this case, set http://google.com/ as a
request URL and set GET as a request type.
request->setUrl("http://google.com/ ");
request->setRequestType(network::HttpRequest::Type::GET);

3.	 Set callback function to receive the data from the server. You can check its success
using the HttpResponse::isSucceed method. And then you can get the response
data using the HttpResponse::getResponseData method.
request->setResponseCallback([](network::HttpClient*
sender, network::HttpResponse* response){
 if (!response->isSucceed()) {
 CCLOG("error");
 return;
 }

 std::vector<char>* buffer = response-
>getResponseData();
 for (unsigned int i = 0; i <buffer-> size (); i ++) {
 printf("%c", (* buffer)[i]);
 }
 printf("\n");
});

http://google.com/

Chapter 11

225

4.	 You can request networking by calling the HttpClient::send method specifying
the instance of the HttpRequest class. If you are getting a response via the
network, then call the callback function as mentioned in Step3.
network::HttpClient::getInstance()->send(request);

5.	 Finally, you have to release the instance of HttpRequest. That's why you created it
by using new.
request->release();

There's more…
In this section, you will learn how you can get resources from the network using the
HttpRequest class. In the following code, get the Google log from the network and display it.

auto request = new network::HttpRequest();
request-
>setUrl("https://www.google.co.jp/images/branding/googlelogo/2x/
googlelogo_color_272x92dp.png");
request->setRequestType(network::HttpRequest::Type::GET);
request->setResponseCallback([&](network::HttpClient* sender,
network::HttpResponse* response){
 if (!response->isSucceed()) {
 CCLOG("error");
 return;
 }

 std::vector<char>* buffer = response->getResponseData();
 std::string path = FileUtils::getInstance()->getWritablePath()
+ "image.png";
 FILE* fp = fopen(path.c_str(), "wb");
 fwrite(buffer->data(), 1, buffer->size(), fp);
 fclose(fp);

 auto size = Director::getInstance()->getWinSize();
 auto sprite = Sprite::create(path);
 sprite->setPosition(size/2);
 this->addChild(sprite);
});

network::HttpClient::getInstance()->send(request);
request->release();

Taking Advantages

226

You can see the following window after building and running this code.

You have to save the original data in the sandbox. You can get the path of
the sandbox using the FileUtils::getWritablePath method.

227

Index
Symbols
3D modals

using 55, 56
.xml files

using 145, 146

A
acceleration sensor

used, for modifying gravity 174, 175
using 157, 158

actions
controlling 40
creating 37
easing 46
functions, calling with 44-46
repeating 41
reversing 41
sequencing 40
spawning 40

anchor points
setting 29, 30

Android environment
setting up 2-5

Android NDK
installing 4
URL 2

animations
creating 34-36

Apache ANT
installing 5
URL, for downloading 2

Arcade, in dafont
reference link 202

assets 139

AssetsManagerExtension 139
AudioEngine

used, for playing background music 125-127
used, for playing sound effect 125-127

B
background music

pausing 123, 124
playing 119, 120
playing, AudioEngine used 125-127
resuming 123, 124

balance
controlling 122, 123

batch node
using 53-55

Bezier curve
drawing 63

bitmap font labels
creating 71, 72

buttons
creating 101-103

C
C++

building, in NDK 19
checkboxes

creating 103-106
circles

drawing 61
Cocos2d-x

about 1
installing 5-7
URL 5

228

cocos command
compile command 11
deploy command 11
using 8-11

cocos run command, parameters
--ios-bundleid 11
--portrait 11

collisions
detecting 57, 58, 166-168

D
DelayTime action 42, 43
dot

drawing 60
dpi

about 159
obtaining 159

DrawNode 64
drop shadow effect

Label, creating with 73

E
easing 46
easing types

EaseBackIn 47
EaseBounceIn 47
EaseElasticIn 47
EaseExponentialIn 47
EaseIn 47
EaseInOut 47
EaseOut 47
EaseSineIn 47

Eclipse
project, building by 13-19

Eclipse ADT, with Android SDK
URL 2

effects
scenes, transitioning with 83-85

encrypted sprite sheets
using 207-210

encrypted SQLite files
using 213-218

encrypted zip files
using 210-213

F
functions

calling, with actions 44-46

G
glow effect

Label, creating with 74
Glyph Designer

URL 202
using 202-205

gravity
modifying, acceleration sensor used 174, 175

H
HTTP

networking with 223-225

I
installation, Cocos2d-x 5-7

J
Java

installing 5
JNI (Java Native Interface) 151
joints

PhysicsJointDistance 173
PhysicsJointFixed 173
PhysicsJointGear 173
PhysicsJointLimit 173
PhysicsJointMotor 173
PhysicsJointPin 173
PhysicsJointRatchet 173
PhysicsJointRotaryLimit 173
PhysicsJointRotarySpring 173
PhysicsJointSpring 173
using 168-174

json files
using 149, 150

L
labels

bitmap font labels, creating 71, 72
creating, TTFConfig used 70

229

system font labels, creating 65, 66
true type font labels, creating 69, 70

layers
creating 93, 94

line break 66
lines

drawing 60
list views

creating 116-118
loading bars

creating 106-108

M
makeSprite 168
max texture size

obtaining 160, 161
menus

creating 98-101
modal layer

creating 94-96
movies

playing 127-129
multi resolution support

implementing 19-21

N
native code

using 151-155
NDK

C++, building in 19
networking

with HTTP 223-225
Node class

properties 91

O
object property

obtaining, in tiled map 191-194
observer pattern

creating 219-223
original game

preparing 21-24
original transitions

making, for popping scenes 91-93
making, for replacing scenes 85-91

outline effect
Label, creating with 74

P
page views

creating 115, 116
physics 163
PhysicsContact

events 168
Physics Editor

URL 195
using 195-201

physics engine
using 163-166

pitch
controlling 122, 123

platform
processing, modifying by 156, 157

plist files
using 147, 148

polygon
drawing 63

position
obtaining, of sprite 29

processing
modifying, by platform 156, 157

project
building, by Eclipse 13-19
building, by Xcode 11

R
RapidJSON 149
rectangles

drawing 62
Repeat action 43
RepeatForver action 43
resolution policy

EXACT_FIT 21
FIXED_HEIGHT 21
FIXED_WIDTH 21
NO_BORDER 21
SHOW_ALL 21

resource files
managing 133-140
selecting, for usage 131, 132

230

rich text
creating 73-75

S
scenes

about 77
creating 78-82
transitioning between 82
transitioning, with effects 83-85

screen
keeping on 158, 159

scroll views
creating 113-115

Sequence action 42
shadow color

modifying 75
shape

drawing 59
SimpleAudioEngine 120
size

obtaining, of sprite 29
sliders

creating 108-110
sound effects

pausing 124, 125
playing 121
playing, AudioEngine used 125-127
resuming 124, 125

Spawn action 42
sprite rectangle

obtaining 30
sprites

about 25
blinking 38
code tint 39
creating 26, 27
creating, static coordinate used 28
fading 38
manipulating 30
moving 37
position, obtaining 28
preparing, for jump 38
rotating 38
scaling 37
size, obtaining 28
skewing 39

sprites, properties
Color 32
Opacity 33
Rotate 31
Scale 31
Skew 32
Visibility 33, 34

SQLite
URL 141
using 141-145

static coordinate
used, for setting sprites 28

string
updating, after label creation 68, 69

system font labels
creating 65, 66

T
text alignment

specifying 67
text fields

creating 111, 112
texture atlas

using 48-53
Texture Packer

URL 178
using 177-182
using, on command 182

tiled map
object property, obtaining in 192-194

Tiled Map Editor
URL 183
using 183-191

Transition Class
TransitionCrossFade 84
TransitionFade 84
TransitionFadeTR 84
TransitionFadeUp 84
TransitionFlipAngular 84
TransitionFlipX 84
TransitionJumpZoom 83
TransitionMoveInL 84
TransitionPageTurn 84
TransitionProgressRadialCW 84
TransitionRotoZoom 83
TransitionShirinkGrow 84

231

TransitionSlideInL 84
TransitionSplitCols 84
TransitionSplitRows 84
TransitionTurnOffTiles 84
TransitionZoomFlipAngular 84
TransitionZoomFlipX 84

triangle
drawing 62

true type font labels
creating 69, 70

TTFConfig
used, for creating labels 70

V
volume

controlling 122, 123

W
wxSqlite3 project

URL 213

X
Xcode

project, building by 11, 12

Thank you for buying

Cocos2d-x Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective MySQL
Management, in April 2004, and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality, cutting-edge
books for communities of developers, administrators, and newbies alike. For more information,
please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt open source brand, home
to books published on software built around open source licenses, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's open source Royalty Scheme, by which Packt gives a royalty to each open source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Creating Games with
cocos2d for iPhone 2
ISBN: 978-1-84951-900-7 Paperback: 388 pages

Master cocos2d through building nine complete games
for the iPhone

1.	 Games are explained in detail, from the design
decisions to the code itself.

2.	 Learn to build a wide variety of game types, from a
memory tile game to an endless runner.

3.	 Use different design approaches to help you
explore the cocos2d framework.

Cocos2d for iPhone 1 Game
Development Cookbook
ISBN: 978-1-84951-400-2 Paperback: 446 pages

Over 90 recipes for iOS 2D game development using
cocos2d

1.	 Discover advanced Cocos2d, OpenGL ES, and
iOS techniques spanning all areas of the game
development process.

2.	 Learn how to create top-down isometric games,
side-scrolling platformers, and games with
realistic lighting.

3.	 Full of fun and engaging recipes with modular
libraries that can be plugged into your project.

Please check www.PacktPub.com for information on our titles

Cocos2d for iPhone 0.99
Beginner's Guide
ISBN: 978-1-84951-316-6 Paperback: 368 pages

Make mind-blowing 2D games for iPhone with this fast,
flexible, and easy-to-use framework!

1.	 A cool guide to learning cocos2d with iPhone to
get you into the iPhone game industry quickly.

2.	 Learn all the aspects of cocos2d while building
three different games.

3.	 Add a lot of trendy features such as particles and
tilemaps to your games to captivate your players.

Learning Cocos2d-x Game
Development
ISBN: 978-1-78398-826-6 Paperback: 266 pages

Learn cross-platform game development with Cocos2d-x

1.	 Create a Windows Store account and upload your
game for distribution.

2.	 Develop a game using Cocos2d-x by going
through each stage of game development
process step by step.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started
with Cocos2d-x
	Introduction
	Setting up our Android Environment
	Installing Cocos2d-x
	Using the Cocos command
	Building the project using Xcode
	Building the project using Eclipse
	Implementing multi-resolution support
	Preparing your original game

	Chapter 2: Creating Sprites
	Introduction
	Creating sprites
	Getting the sprite's position and size
	Manipulating sprites
	Creating animations
	Creating actions
	Controlling actions
	Calling functions with actions
	Easing actions
	Using a texture atlas
	Using a batch node
	Using 3D modals
	Detecting collisions
	Drawing a shape

	Chapter 3: Working with Labels
	Creating system font labels
	Creating true type font labels
	Creating bitmap font labels
	Creating rich text

	Chapter 4: Building Scenes
and Layers
	Introduction
	Creating scenes
	Transitioning between scenes
	Transitioning scenes with effects
	Making original transitions for replacing scenes
	Making original transitions for popping scenes
	Creating layers
	Creating modal layers

	Chapter 5: Creating GUIs
	Introduction
	Creating menus
	Creating buttons
	Creating checkboxes
	Creating loading bars
	Creating sliders
	Creating text fields
	Creating scroll views
	Creating page views
	Creating list views

	Chapter 6: Playing Sounds
	Playing background music
	Playing a sound effect
	Controlling volume, pitch, and balance
	Pausing and resuming background music
	Pausing and resuming sound effects
	Playing background music and a sound effect by using AudioEngine
	Playing movies

	Chapter 7: Working with
Resource Files
	Selecting resource files
	Managing resource files
	Using SQLite
	Using .xml files
	Using .plist files
	Using .json files

	Chapter 8: Working with Hardware
	Introduction
	Using native code
	Changing the processing using the platform
	Using the acceleration sensor
	Keeping the screen on
	Getting dpi
	Getting the maximum texture size

	Chapter 9: Controlling Physics
	Introduction
	Using the physics engine
	Detecting collisions
	Using joints
	Changing gravity by using the acceleration sensor

	Chapter 10: Improving Games with Extra Features
	Introduction
	Using Texture Packer
	Using Tiled Map Editor
	Getting the property of the object in the tiled map
	Using Physics Editor
	Using Glyph Designer

	Chapter 11: Taking Advantages
	Introduction
	Using encrypted sprite sheets
	Using encrypted zip files
	Using encrypted SQLite files
	Creating Observer Pattern
	Networking with HTTP

	Index

